
9.4

Administering IBM MQ

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
561.

This edition applies to version 9 release 4 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Administering..7
Ways of administering IBM MQ queue managers and associated resources.. 8
Administering IBM MQ for Multiplatforms using control commands...10
Administering IBM MQ using MQSC commands... 12

MQSC command syntax... 12
MQSC input file syntax... 15
Running MQSC commands interactively under runmqsc...17
Running MQSC commands from text files under runmqsc.. 22
Automatic configuration from an MQSC script at startup... 23

Automating IBM MQ administration using PCF commands... 24
Introduction to IBM MQ Programmable Command Formats..25
Using the MQAI to simplify the use of PCFs.. 37

Administration using the REST API... 72
Getting started with the administrative REST API.. 73
Remote administration using the REST API.. 78
REST API time stamps... 82
REST API error handling...82
REST API discovery.. 85
REST API national language support...86
REST API versions.. 88

Administration using the IBM MQ Console... 89
Getting started with the IBM MQ Console... 89
Quick tour of the IBM MQ Console...91
IBM MQ Console settings...117

Administration using the IBM MQ Explorer.. 117
What you can do with the IBM MQ Explorer..117
Setting up the IBM MQ Explorer.. 119

Using the IBM MQ Taskbar application (Windows only)...125
The IBM MQ alert monitor application (Windows only)... 125

Working with local IBM MQ objects.. 125
Working with queue managers.. 126
Stopping MQI channels..136
Working with local queues...136
Working with remote queues...146
Working with alias queues... 149
Working with model queues.. 151
Working with dead-letter queues.. 152
Working with administrative topics... 171
Working with subscriptions..175
Working with services.. 179
Managing objects for triggering... 186
Using the dmpmqmsg utility between two systems... 188

Working with remote IBM MQ objects.. 192
Configuring queue managers for remote administration..193
Managing the command server for remote administration.. 197
Issuing MQSC commands on a remote queue manager...198
Data conversion between coded character sets .. 199

Administering Managed File Transfer... 204
Starting an MFT agent.. 205
Listing MFT agents... 210
Stopping an MFT agent.. 211
Starting a new file transfer...212

 iii

Creating a scheduled file transfer..216
Working with pending file transfers .. 217
Triggering a file transfer... 217
Monitoring file transfers that are in progress.. 219
Viewing the status of file transfers in the Transfer Log...221
Monitoring MFT resources... 223
Working with file transfer templates... 253
Transferring data from files to messages.. 256
Transferring data from messages to files.. 271
The protocol bridge.. 281
The Connect:Direct bridge... 303
Working with MFT from IBM Integration Bus..319
MFT recovery and restart... 319
Setting a timeout for recovery of stalled transfers..320

Administering MQ Telemetry...325
Configuring a queue manager for telemetry on Linux and AIX...326
Configuring a queue manager for telemetry on Windows...328
Configuring distributed queuing to send messages to MQTT clients... 329
MQTT client identification, authorization, and authentication... 332
Telemetry channel authentication using TLS.. 338
Publication privacy on telemetry channels... 342
TLS configuration of MQTT Java clients and telemetry channels...342
Telemetry channel JAAS configuration... 347

Administering an AMQP client...349
AMQP Service does not start automatically on queue manager startup..349
Viewing IBM MQ objects in use by AMQP clients..350
AMQP client identification, authorization, and authentication... 351
Publication privacy on channels.. 353
Configuring AMQP clients with TLS... 354
Disconnecting AMQP clients from the queue manager ..355

Administering multicast.. 355
Getting started with multicast... 355
IBM MQ Multicast topic topology.. 356
Controlling the size of multicast messages...357
Enabling data conversion for Multicast messaging...359
Multicast application monitoring... 360
Multicast message reliability... 360
Advanced multicast tasks.. 361

Administering IBM MQ for IBM i..364
Managing IBM MQ for IBM i using CL commands... 364
Alternative ways of administering IBM MQ for IBM i.. 378
Work management for IBM i.. 383
Availability, backup, recovery, and restart on IBM i.. 390
Quiescing IBM MQ for IBM i...431

Administering IBM MQ for z/OS.. 435
Issuing queue manager commands on z/OS...435
Using the operations and control panels on z/OS... 449
Using the IBM MQ for z/OS utilities... 458
Using the Command Facility on z/OS...461
Working with IBM MQ objects on z/OS..461
Implementing the system using multiple cluster transmission queues.. 464
Writing programs to administer IBM MQ for z/OS...466
Managing IBM MQ resources on z/OS... 478
Recovery and restart on z/OS.. 516
IBM MQ and IMS.. 536
Operating Advanced Message Security on z/OS... 549

Administering IBM MQ Internet Pass-Thru...550
Starting and stopping MQIPT...550

iv

Administering MQIPT by using the command line..553
Making backups..558
Performance tuning..559

Notices..561
Programming interface information..562
Trademarks.. 562

 v

vi

Administering IBM MQ

To administer your IBM MQ queue managers and associated resources, choose your preferred method
from a set of tasks that you can use to activate and manage those resources.

About this task
You can administer IBM MQ objects locally or remotely:
Local administration

Local administration means carrying out administration tasks on any queue managers you have
defined on your local system. You can access other systems, for example through the TCP/IP terminal
emulation program telnet, and carry out administration there. In IBM MQ, you can consider this as
local administration because no channels are involved, that is, the communication is managed by the
operating system.
For more information, see “Working with local IBM MQ objects” on page 125.

Remote administration
IBM MQ supports administration from a single point of contact through remote administration.
Remote administration allows you to issue commands from your local system that are processed
on another system and applies also to the IBM MQ Explorer. For example, you can issue a remote
command to change a queue definition on a remote queue manager. You do not have to log on to
that system, although you do need to have the appropriate channels defined. The queue manager and
command server on the target system must be running.
Some commands cannot be issued in this way, in particular, creating or starting queue managers and
starting command servers. To perform this type of task, you must either log on to the remote system
and issue the commands from there or create a process that can issue the commands for you. This
restriction applies also to the IBM MQ Explorer.
For more information, see “Working with remote IBM MQ objects” on page 192.

There are a number of different methods that you can use to create and administer your queue managers
and their related resources in IBM MQ. These methods include command-line interfaces, graphical user
interfaces, and an administration API.

There are different sets of commands that you can use to administer IBM MQ depending on your platform:

• “IBM MQ control commands” on page 8
• “IBM MQ Script (MQSC) commands” on page 8
• “Programmable Command Formats (PCFs)” on page 8
• The administrative REST API

• “IBM i Control Language (CL)” on page 9

There are also the other following options for creating and managing IBM MQ objects:

• “The IBM MQ Explorer” on page 9
• “The IBM MQ Console” on page 9

• “The Microsoft Cluster Service (MSCS)” on page 10

For information about the administration interfaces and options on IBM MQ for z/OS®, see
“Administering IBM MQ for z/OS” on page 435.

You can automate some administration and monitoring tasks for both local and remote queue managers
by using PCF commands. These commands can also be simplified by using the IBM MQ Administration
Interface (MQAI) on some platforms. For more information about automating administration tasks, see
“Automating IBM MQ administration using PCF commands” on page 24.

© Copyright IBM Corp. 2007, 2024 7

Related concepts
IBM MQ technical overview
Related tasks
Planning
Configuring
Related reference
Command sets comparison

Ways of administering IBM MQ queue managers and associated
resources

You can administer IBM MQ queue managers and associated resources by using IBM MQ control
commands, IBM MQ Script Commands (MQSC), Programmable Command Formats (PCFs), the
administrative REST API, the IBM MQ Console, and the IBM MQ Explorer. For IBM i you can also use
IBM i Control Language, and for Windows you can also use the Microsoft Cluster Service (MSCS).

IBM MQ control commands

The control commands provide a way to perform a number of IBM MQ administration tasks. For AIX®,
Linux®, and Windows, you issue these commands at the system command line. For IBM i, you issue these
commands within a Qshell. See “Administering IBM MQ for Multiplatforms using control commands” on
page 10.

IBM MQ Script (MQSC) commands
Use MQSC commands to manage queue manager objects, including the queue manager itself,
queues, process definitions, namelists, channels, client connection channels, listeners, services, and
authentication information objects.

On AIX, Linux, and Windows, you open a runmqsc command prompt, then issue MQSC
commands to a local or remote queue manager from that prompt. You can do this interactively, or you
can run a sequence of commands from an ASCII text file. For more information, see “Running MQSC
commands interactively under runmqsc” on page 17 and “Running MQSC commands from text files
under runmqsc” on page 22.

On IBM i, you create a list of commands in a Script file, then run the file by using the
STRMQMMQSC command. For more information, see “Administering using MQSC commands on IBM i” on
page 379.

On z/OS, MQSC commands can be issued from a number of sources, depending on the
command. For more information, see “Sources from which you can issue MQSC and PCF commands on
IBM MQ for z/OS” on page 436.

Programmable Command Formats (PCFs)
Programmable Command Formats (PCFs) define command and reply messages that can be exchanged
between a program and any queue manager (that supports PCFs) in a network. You can use PCF
commands in a systems management application program for administration of IBM MQ objects:
authentication information objects, channels, channel listeners, namelists, process definitions, queue
managers, queues, services, and storage classes. The application can operate from a single point in the
network to communicate command and reply information with any queue manager, local, or remote, using
the local queue manager.

For more information about PCFs, see “Introduction to IBM MQ Programmable Command Formats” on
page 25.

8 Administering IBM MQ

For definition of PCFs and structures for the commands and responses, see Programmable command
formats reference.

The administrative REST API
The administrative REST API provides a RESTful interface that you can use to administer IBM MQ. When
you use the administrative REST API, you invoke an HTTP method on a URL that represents an IBM MQ
object. For example, you can request information about IBM MQ installations by using the HTTP method
GET on the following URL:

https://localhost:9443/ibmmq/rest/v1/admin/installation

You can use the administrative REST API with the HTTP/REST implementation of a programming
language, or by using tools such as cURL, or a REST client browser add-on.

For more information, see The administrative REST API

The IBM MQ Console
You can use the IBM MQ Console to administer IBM MQ from a web browser.

For more information, see “Administration using the IBM MQ Console” on page 89.

The IBM MQ Explorer

Using the IBM MQ Explorer, you can perform the following actions:

• Define and control various resources, such as queue managers, queues, process definitions, namelists,
channels, client connection channels, listeners, services, and clusters.

• Start or stop a local queue manager and its associated processes.
• View queue managers and their associated objects on your workstation or from other workstations.
• Check the status of queue managers, clusters, and channels.
• Check to see which applications, users, or channels have a particular queue open, from the queue

status.

On Windows and Linux for x86-64 systems, you can start IBM MQ Explorer by using the system menu, or
the MQExplorer executable file.

On Linux, to start the IBM MQ Explorer successfully, you must be able to write a file to your
home directory, and the home directory must exist.

For more information, see “Administration using the IBM MQ Explorer” on page 117.

You can use IBM MQ Explorer to administer remote queue managers on other platforms including z/OS.

From IBM MQ 9.3.0, IBM MQ Explorer has been removed from the IBM MQ installation package. It
remains available as a separate download, and can be installed from the stand-alone IBM MQ Explorer
download available from Fix Central. For more information, see Installing and uninstalling IBM MQ
Explorer as a stand-alone application on Linux and Windows.

IBM i Control Language (CL)

This is the preferred way to issue administration commands to IBM MQ for IBM i. The commands can be
issued either at the command line or by writing a CL program. These commands perform similar functions
to PCF commands, but the format is different. CL commands are designed exclusively for servers and CL
responses are human-readable, whereas PCF commands are platform independent and both command
and response formats are intended for program use.

Administering IBM MQ 9

For full details of the IBM i Control Language (CL), see “Managing IBM MQ for IBM i using CL commands”
on page 364 and IBM MQ for IBM i CL commands.

The Microsoft Cluster Service (MSCS)

Microsoft Cluster Service (MSCS) enables you to connect servers into a cluster, giving higher availability
of data and applications, and making it easier to manage the system. MSCS can automatically detect and
recover from server or application failures.

It is important not to confuse clusters in the MSCS sense with IBM MQ clusters. The distinction is as
follows:
IBM MQ clusters

These are groups of two or more queue managers on one or more computers, providing automatic
interconnection, and allowing queues to be shared among them for load balancing and redundancy.

MSCS clusters
These are groups of computers, which are connected together and configured in such a way that,
if one fails, MSCS performs a failover, transferring the state data of applications from the failing
computer to another computer in the cluster and re-initiating their operation there.

Supporting the Microsoft Cluster Service (MSCS) provides detailed information about how to configure
your IBM MQ for Windows system to use MSCS.

Related tasks
“Administering IBM MQ using MQSC commands” on page 12
You can use MQSC commands to manage queue manager objects, including the queue manager itself,
queues, process definitions, channels, client connection channels, listeners, services, namelists, clusters,
and authentication information objects. MQSC commands are available on all platforms.
Related reference
Administration reference

Administering IBM MQ for Multiplatforms using control
commands

The control commands provide a way to perform a number of IBM MQ administration tasks. For AIX,
Linux, and Windows, you issue these commands at the system command line. For IBM i, you issue these
commands within a Qshell.

Before you begin
When using control commands that operate on a queue manager, you must use the command from the
installation associated with the queue manager you are working with.

When using control commands that operate on a queue manager configured to use connection
authentication with CHCKLOCL(REQUIRED), and a failure to connect is observed, either

• Supply a user ID and password if the control command allows this.
• Use MQSC equivalents of the control commands where those exist.
• Start the queue manager using the -ns option, while control commands that cannot connect need to be

run.

Note: Different platforms can accept command arguments entered in a different order. Particularly, this
means that commands that work on Linux might not work on other platforms. For this reason, you should
always enter arguments as specified in the syntax diagrams.

For a full list of the control commands, see the IBM MQ control commands reference.

10 Administering IBM MQ

Procedure

•
Use control commands on AIX and Linux systems.

In IBM MQ for AIX or Linux systems, you enter control commands in a shell window.

If you want to issue control commands, your user ID must be a member of the mqm group for
most control commands. For more information about this, see Authority to administer IBM MQ on
AIX, Linux, and Windows. In addition, note the environment-specific information. for the platform, or
platforms, your enterprise uses.

In UNIX and Linux environments, control commands, including the command name itself, the flags,
and any arguments, are case-sensitive. For example, in the command:

crtmqm -u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

– The command name must be crtmqm, not CRTMQM.
– The flag must be -u, not -U.
– The dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.
– The argument is specified as jupiter.queue.manager, which is different from
JUPITER.queue.manager.

Take care to type the commands exactly as you see them in the examples.

•
Use control commands on Windows systems.

In IBM MQ for Windows, you enter control commands at a command prompt.

If you want to issue control commands, your user ID must be a member of the mqm group for
most control commands. For more information about this, see Authority to administer IBM MQ on
AIX, Linux, and Windows. In addition, note the environment-specific information. for the platform, or
platforms, your enterprise uses.

The control commands and their flags are not case-sensitive, but arguments to those commands, such
as queue names and queue manager names, are case-sensitive.

For example, in the command:

crtmqm /u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

– The command name can be entered in uppercase or lowercase, or a mixture of the two. These are
all valid: crtmqm, CRTMQM, and CRTmqm.

– The flag can be entered as -u, -U, /u, or /U.
– SYSTEM.DEAD.LETTER.QUEUE and jupiter.queue.manager must be entered exactly as

shown.

•
Use control commands on IBM i systems.

On IBM MQ for IBM i, you run the control commands from a Qshell environment. To use the Qshell, you
type STRQSH at the IBM i command line. You can exit and return to the command line at any time by
pressing F3.

A small number of control commands are not supported on IBM i. For example, multi-installation
commands are not supported because you cannot have more than one copy of IBM MQ on an IBM
i system. Commands that are not supported on IBM i are flagged in the IBM MQ control
commands reference.

Administering IBM MQ 11

Related reference
IBM MQ control commands reference

Administering IBM MQ using MQSC commands
You can use MQSC commands to manage queue manager objects, including the queue manager itself,
queues, process definitions, channels, client connection channels, listeners, services, namelists, clusters,
and authentication information objects. MQSC commands are available on all platforms.

About this task
Available MQSC commands are detailed in the MQSC commands reference.

The way that you issue MQSC commands depends on your platform:

• On AIX, Linux, and Windows, you issue MQSC commands to a queue manager from the
runmqsc command prompt. You can use this command prompt in a number of ways:

– Interactively, issuing MQSC commands from a keyboard. See “Running MQSC commands
interactively under runmqsc” on page 17.

– Issuing MQSC commands from an ASCII text file. See “Running MQSC commands from text files
under runmqsc” on page 22.

– Issuing MQSC commands on a remote queue manager. See “Issuing MQSC commands on a remote
queue manager” on page 198.

• On IBM i, you create a list of commands in a Script file, then run the file by using the
STRMQMMQSC command. For more information, see “Administering using MQSC commands on IBM i” on
page 379.

• On z/OS, MQSC commands can be issued from a number of sources, depending on the
command. For more information, see “Sources from which you can issue MQSC and PCF commands on
IBM MQ for z/OS” on page 436.

Procedure
• “MQSC command syntax” on page 12
• “MQSC: Special characters and generic values” on page 14
• “Running MQSC commands interactively under runmqsc” on page 17
• “Running MQSC commands from text files under runmqsc” on page 22
• “Automatic configuration from an MQSC script at startup” on page 23

Related tasks
Resolving problems with MQSC commands
Related reference
runmqsc (run MQSC commands)

MQSC command syntax
You can use MQSC commands to manage queue manager objects. MQSC commands are available on all
platforms. Some elements of command syntax are platform-specific.

Sequence of parameters
Each command starts with a primary parameter (a verb), and this is followed by a secondary parameter
(a noun). This is then followed by the name or generic name of the object (in parentheses) if there is
one, which there is on most commands. Following that, parameters can usually occur in any order; if

12 Administering IBM MQ

a parameter has a corresponding value, the value must occur directly after the parameter to which it
relates.

Note: On z/OS, the secondary parameter does not have to be second.

Blanks and commas
Keywords, parentheses, and values can be separated by any number of blanks and commas. A comma
shown in the syntax diagrams can always be replaced by one or more blanks. There must be at least one
blank immediately preceding each parameter (after the primary parameter) except on z/OS .

Any number of blanks can occur at the beginning or end of the command, and between parameters,
punctuation, and values. For example, the following command is valid:

ALTER QLOCAL ('Account') TRIGDPTH (1)

Blanks within a pair of quotation marks are significant.

Additional commas can appear anywhere where blanks are allowed and are treated as if they were blanks
(unless, of course, they are inside strings enclosed by quotation marks).

Repeated parameters
Repeated parameters are not allowed. Repeating a parameter with its "NO" version, as in REPLACE
NOREPLACE, is also not allowed.

Strings and single quotation marks
Strings that contain blanks, lowercase characters or special characters must be enclosed in single
quotation marks, unless one of the following is true:

• The special characters are one or more of the following characters:

– Period (.)
– Forward slash (/)
– Underscore (_)
– Percent sign (%)

• The command is issued from the IBM MQ for z/OS operations and control panels.
• The string is a generic value ending with an asterisk. (on IBM i these must be enclosed in single

quotation marks)
• The string is a single asterisk, for example, TRACE(*) (on IBM i these must be enclosed in single

quotation marks)
• The string is a range specification containing a colon, for example, CLASS(01:03)

If the string itself contains a single quotation mark, the single quotation mark is represented by two single
quotation marks.

On Multiplatforms, a string containing no characters (that is, two single quotation marks
with no space in between) is interpreted as a blank space enclosed in single quotation marks, that is,
interpreted in the same way as (' '). The exception to this is if the attribute being used is one of the
following attributes, when two single quotation marks with no space are interpreted as a zero-length
string:

• TOPICSTR
• SUB
• USERDATA
• SELECTOR

Administering IBM MQ 13

On z/OS, if you want a blank space enclosed in single quotation marks, you must enter it as
such (' '). A string containing no characters ('') is the same as entering ().

Any trailing blanks in string attributes that are based on MQCHARV types, such as SELECTOR, sub user
data, are treated as significant, which means that 'abc ' does not equal 'abc'.

Empty parentheses
An opening parenthesis followed by a closing parenthesis, with no significant information in between, is
not valid except where specifically noted. For example, the following string is not valid:

NAME ()

Lowercase and uppercase
Keywords are not case sensitive: AltER, alter, and ALTER are all acceptable.

Anything that is not contained within quotation marks is folded to uppercase.

Synonyms
Synonyms are defined for some parameters. For example, DEF is always a synonym for DEFINE, so DEF
QLOCAL is valid. Synonyms are not, however, just minimum strings; DEFI is not a valid synonym for
DEFINE.

Note: There is no synonym for the DELETE parameter. This is to avoid accidental deletion of objects when
using DEF, the synonym for DEFINE.

Special characters
MQSC commands use certain special characters to have certain meanings. For more information about
these special characters and how to use them, see “MQSC: Special characters and generic values” on
page 14.

Related tasks
Resolving problems with MQSC commands
Related reference
runmqsc (run MQSC commands)

MQSC: Special characters and generic values
Some characters, for example, backslash (\) and double quote (") characters have special meanings when
used with MQSC commands. Some special characters that can be used with parameters can have generic
values but must be specified correctly.

Precede backslash (\) and double quote (") characters with a \, that is, enter \\ or \" if you want \ or " in
your text.

Wherever a parameter can have a generic value, it is entered ending with an asterisk (*), for example
ABC*. A generic value means all values beginning with; so ABC* means all values beginning with ABC.
If characters that require quotation marks are used in the value, the asterisk must be placed inside the
quotation marks, thus 'abc*'. The asterisk must be the last or only character in the value.

The question mark (?) and colon (:) are not allowed in generic values.

When you need to use any of these special characters in a field (for example as part of a description), you
must enclose the whole string in single quotation marks.

14 Administering IBM MQ

Table 1. Descriptions of characters that have special meanings

Charac
ter Description

Blanks are used as separators. Multiple blanks are equivalent to a single blank, except in
strings that are enclosed in apostrophes ('). Any trailing blanks in those string attributes which
are based on MQCHARV types are treated as significant.

, Commas are used as separators. Multiple commas are equivalent to a single comma, except in
strings that are enclosed in apostrophes (').

' An apostrophe indicates the beginning or end of a string. IBM MQ leaves all characters that are
enclosed in quotation marks exactly as they are entered. The containing apostrophes are not
included when calculating the length of the string.

'' Single quotation marks inside a string are treated by IBM MQ as one character when
calculating the length of the string and the string is not terminated.

= On z/OS, an equals sign indicates the start of a parameter value which is ended
by a comma or blank.

(An open parenthesis indicates the beginning of a parameter value or list of values.

) A close parenthesis indicates the end of a parameter value or list of values.

: A colon indicates an inclusive range. For example (1:5) means (1,2,3,4,5). This notation can be
used only in TRACE commands.

* An asterisk means all. For example, DISPLAY TRACE (*) means display all traces, and
DISPLAY QUEUE (PAY*) means display all queues with names that begin with PAY.

MQSC input file syntax
If you have long commands, or are using a particular sequence of commands repeatedly, you can use an
input file to issue MQSC commands. The contents of the input file must follow the syntax described in this
topic.

Overview
MQSC commands are input through the standard input device, also referred to as stdin. Typically this is
the keyboard, but you can specify that input is to come from an input file.

You can use this input file with any of the following platform-specific tools:

• The runmqsc command on AIX, Linux, and Windows. See “Running MQSC commands
from text files under runmqsc” on page 22

• The STRMQM command on IBM i. See “Administering using MQSC commands on IBM i” on
page 379

• The CSQINP1, CSQINP2, and CSQINPX initialization data sets or the CSQUTIL batch utility
on z/OS. See “Sources from which you can issue MQSC and PCF commands on IBM MQ for z/OS” on
page 436

Syntax
MQSC input file syntax:

• For portability among IBM MQ environments, limit the line length in MQSC command files to 72
characters.

• Each command must start on a new line.

Administering IBM MQ 15

• A line starting with an asterisk (*) in the first position is ignored. This can be used to insert comments
into the file.

• Blank lines are ignored.
• A plus sign (+) indicates that the command is continued from the first non-blank character in the

next line. If you use + to continue a command, remember to leave at least one blank before the next
parameter (except on z/OS where this is not necessary). Any comments or blank lines are discarded
when the command is reassembled into a single string.

• A minus sign (-), this indicates that the command is to be continued from the start of the next line. Any
comments or blank lines are discarded when the command is reassembled into a single string.

• MQSC commands that are contained within an Escape PCF (Programmable Command Format)
command cannot be continued with the plus sign, or the minus sign. The entire command must
be contained within a single Escape command. For information about the PCF commands, see
“Introduction to IBM MQ Programmable Command Formats” on page 25.

• On Multiplatforms, and on z/OS for commands issued from the CSQUTIL batch utility program, you can
use a semicolon character (;) to terminate a command, even if you have entered a plus sign (+) at the
end of the previous line.

• A line must not end in a keyboard control character (for example, a tab).
• If you run the runmqsc command in client mode by redirecting stdin from a text file, and you supply

the -u flag to provide credentials, the runmqsc command does not prompt for a password and instead
the password is read from stdin. You should ensure that the first line of data provided through stdin
is the password. This can be done by using command line tools such as "echo" or "cat" and passing the
password followed by the MQSC script into the runmqsc command stdin.

• On Windows, if certain special characters such as the pound sign (£) and the logical NOT
(¬) are used in a command script (for example, as part of an object description), they are displayed
differently in the output from a command such as DISPLAY QLOCAL.

See also “MQSC command syntax” on page 12.

Examples
The following example is an extract from an MQSC command file that shows command DEFINE QLOCAL.

DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +
DESCR(' ') +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(1024) +
DEFSOPT(SHARED) +
NOHARDENBO +
USAGE(NORMAL) +
NOTRIGGER;

Figure 1. Extract from an MQSC command file

When the runmqsc command completes, a report is returned. The following example is an extract from a
report:

16 Administering IBM MQ

Starting MQSC for queue manager jupiter.queue.manager.
.
.
12: DEFINE QLOCAL('ORANGE.LOCAL.QUEUE') REPLACE +
: DESCR(' ') +
: PUT(ENABLED) +
: DEFPRTY(0) +
: DEFPSIST(NO) +
: GET(ENABLED) +
: MAXDEPTH(5000) +
: MAXMSGL(1024) +
: DEFSOPT(SHARED) +
: NOHARDENBO +
: USAGE(NORMAL) +
: NOTRIGGER;
AMQ8006: IBM MQ queue created.
:
.
.

Figure 2. Extract from an MQSC command report file

You can also use the example MQSC command files to help you create your text file:
amqscos0.tst

Definitions of objects used by sample programs.
amqscic0.tst

Definitions of queues for CICS® transactions.

On AIX and Linux, these files are located in the directory
MQ_INSTALLATION_PATH/samp. MQ_INSTALLATION_PATH represents the high-level directory in which
IBM MQ is installed.

On Windows, these files are located in the directory
MQ_INSTALLATION_PATH\tools\mqsc\samples. MQ_INSTALLATION_PATH represents the high-level
directory in which IBM MQ is installed.

Running MQSC commands interactively under runmqsc
On AIX, Linux, and Windows, you can use the runmqsc command prompt to issue MQSC commands to a
queue manager interactively. Interactive running is particularly suitable for quick tests.

Before you begin
You must use the runmqsc command from the installation associated with the queue manager that you
are working with. You can find out which installation a queue manager is associated with by using the
dspmq -o installation command.

You can make it easier to see that you are in an MQSC environment and see some details of the current
environment by setting a prompt of your choice using the MQPROMPT environment variable. For more
information, see “Setting the MQSC command prompt” on page 20.

When you run MQSC commands interactively on AIX and Linux platforms,
the runmqsc command prompt also supports additional command line editor functions. See “Enabling
command recall and completion, and Emacs command keys, for runmqsc” on page 21.

About this task
The runmqsc command is used to open a command prompt from which you can issue MQSC commands.
These commands and their syntax are described in the MQSC commands reference.

Administering IBM MQ 17

When you start the runmqsc command prompt as described in this task, you set the prompt to run in one
of three modes, depending on the flags set on the command:

• Verification mode, where the MQSC commands are verified on a local queue manager, but are not run.
• Direct mode, where the MQSC commands are run on a local queue manager.
• Indirect mode, where the MQSC commands are run on a remote queue manager.

The procedure below sets the prompt to run in direct mode. Other options are illustrated in the examples
that follow the main steps.

Procedure
1. Open a command window or shell and enter the following command:

runmqsc QMgrName

Where QMgrName specifies the name of the queue manager that you want to process the MQSC
commands. You can leave QMgrName blank to process MQSC commands on the default queue
manager.

2. Type in any MQSC commands, as required. For example, to create a local queue called
ORANGE.LOCAL.QUEUE enter the following command:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

For commands that have too many parameters to fit on one line, use continuation characters to
indicate that a command is continued on the following line:

• A minus sign (-) indicates that the command is to be continued from the start of the following line.
• A plus sign (+) indicates that the command is to be continued from the first non-blank character on

the following line.

Command input terminates with the final character of a non-blank line that is not a continuation
character. You can also terminate command input explicitly by entering a semicolon (;).

3. Stop working with MQSC commands by entering the following command:

end

Alternatively, you can use the exit command, the quit command, or the EOF character for your
operating system.

Results
When you issue MQSC commands, the queue manager returns operator messages that confirm your
actions or tell you about the errors you have made. For example, the following message confirms a queue
is created:

AMQ8006: IBM MQ queue created.

The following message indicates that you have made a syntax error:

AMQ8405: Syntax error detected at or near end of command segment below:-
AMQ8426: Valid MQSC commands are:

ALTER
CLEAR
DEFINE
DELETE
DISPLAY
END
PING

18 Administering IBM MQ

REFRESH
RESET
RESOLVE
RESUME
START
STOP
SUSPEND
4 : end

These messages are sent to the standard output device, which by default is the display. If you have not
entered the command correctly, refer to the reference information for the command to find the correct
syntax. See MQSC commands reference.

Example

The following are variants of the runmqsc QMgrName command that is used in the previous steps. These
variants create different configurations of the runmqsc command prompt.

• The following command uses command filtering to pass a single MQSC command to the MQSC
interpreter.

On Windows:

echo display chstatus(*) | runmqsc QMname

On Linux:

echo "display chstatus(*)" | runmqsc QMname

• The following command does not specify a queue manager name, so the MQSC commands are
processed on the default queue manager.

runmqsc

• This command submits commands to the QMREMOTE queue manager, using QMLOCAL to submit the
commands.

runmqsc -w 30 -m QMLOCAL QMREMOTE

• This command verifies that the command syntax is correct on a local queue manager without running
the commands. Note that the commands to be verified are read from an input file myprog.in.

runmqsc -f myprog.in -v QmgrName

For more information about working with input and output files, see “Running MQSC commands from
text files under runmqsc” on page 22.

What to do next
For full details of the runmqsc command syntax, optional parameters and return codes, see runmqsc (run
MQSC commands).
Related tasks
“Running MQSC commands from text files under runmqsc” on page 22
If you have long commands, or are using a particular sequence of commands repeatedly, you can use
a text file to issue MQSC commands. You can redirect stdin from a text file. You can also redirect the
output to a file.
Related reference
MQSC commands reference

Administering IBM MQ 19

Setting the MQSC command prompt
On AIX, Linux, and Windows, use the MQPROMPT environment variable to set the prompt that is displayed
when you run the runmqsc command. This makes it easier to see that you are in an MQSC environment,
and to see some details of the current environment.

About this task
You can set the prompt that is displayed when you run the runmqsc command. The prompt is inserted
both when the runmqsc command is run interactively, and when input is redirected into runmqsc from a
file or from the standard input device (stdin).

You can include plain text in the command prompt, and you can also insert environment variables by
using the +VARNAME+ notation in the same manner as IBM MQ service object definitions. For more
information, see “Using replaceable inserts on service definitions” on page 183.

There are a number of other additional replaceable inserts IBM MQ provides, described in the following
table.

Replaceable insert Description

MQ_HOST_NAME Host name of the system

MQ_FILE_SEP Platform specific file separator:

• On AIX and Linux systems, the
MQ_FILE_SEP is /.

• On Windows systems, the location of the
MQ_FILE_SEP is \

MQ_PATH_SEP Platform specific path separator:

• On AIX and Linux systems, the
MQ_PATH_SEP is :.

• On Windows systems, the location of the
MQ_PATH_SEP is ;

MQ_DATE_TIME Local system date and time in a fixed YYYY-MM-DD hh:mm:ss.SSS
format, for example:

2020-12-25 17:41:37.408

Notes:

• The MQ replaceable inserts values relate to the IBM MQ installation and host system the runmqsc
command is associated with.

• MQPROMPT is limited to a maximum of 256 characters when inserts are expanded. MQPROMPT
expansions over this value result in the entire MQPROMPT string being truncated without the expansions.

Example

The following example sets the prompt to MQSC:

•

export MQPROMPT="MQSC"

•

20 Administering IBM MQ

set "MQPROMPT=MQSC"

The following example sets the MQPROMPT variable on an AIX system. The prompt is set to
display a username (taken from the associated system environment variable), the queue manager name,
and the IBM MQ host name (taken from the IBM MQ replaceable inserts):

sh> export MQPROMPT="+USER+ @ +QMNAME+ @ +MQ_HOST_NAME+> "
sh> runmqsc MY.QMGR
5724-H72 (C) Copyright IBM Corp. 1994, 2024.
Starting MQSC for queue manager MY.QMGR.

myuser @ MY.QMGR @ aix1> DISPLAY QMSTATUS

C:\ > set "MQPROMPT=+USERNAME+ @ +QMNAME+ @ +MQ_HOST_NAME+> "
C:\ > runmqsc MY.QMGR
5724-H72 (C) Copyright IBM Corp. 1994, 2024.
Starting MQSC for queue manager MY.QMGR.

myuser @ MY.QMGR @ WIN1> DISPLAY QMSTATUS

The following example adds a timestamp to the MQPROMPT examples above, taken from the MQ
replaceable inserts:

sh> export MQPROMPT="+MQ_DATE_TIME+ +USER+ @ +QMNAME+ @ +MQ_HOST_NAME+> "
sh> runmqsc MY.QMGR
5724-H72 (C) Copyright IBM Corp. 1994, 2024.
Starting MQSC for queue manager MY.QMGR.

2020-11-24 18:10:00.404 myuser @ MY.QMGR @ aix1> DISPLAY QMSTATUS

C:\ > set "MQPROMPT=+MQ_DATE_TIME+ +USERNAME+ @ +QMNAME+ @ +MQ_HOST_NAME+> "
C:\ > runmqsc MY.QMGR
5724-H72 (C) Copyright IBM Corp. 1994, 2024.
Starting MQSC for queue manager MY.QMGR.

2020-11-24 18:10:01.007 myuser @ MY.QMGR @ WIN1> DISPLAY QMSTATUS

Enabling command recall and completion, and Emacs
command keys, for runmqsc
Use the runmqsc command prompt on AIX and Linux to enable command recall, command completion,
and Emacs command keys.

About this task
On AIX and Linux systems, you can make the following additional command line editor functions available
from the runmqsc command prompt:

• Recall of previously entered commands by using the up arrow key and the down arrow key
• Automatic completion for the next keyword of a command by using the tab key and the space bar
• Emacs command keys, or similar command key functions

To use these functions, the curses library must be installed. If the curses library is not installed on your
system, the runmqsc prompt does not have the command line editor functions and a message is shown
when the runmqsc command prompt is started. The name of the curses library to install depends on the
UNIX platform:

• On AIX, install curses.

• On Linux, install ncurses.

Administering IBM MQ 21

https://opensource.com/resources/what-emacs

Procedure
• Install ncurses or curses.

Note: The following example uses instructions for Linux

Run the following command to find the existing ncurses packages:

rpm -qa | grep -i ncurses

The required ncurses packages are as follows:

ncurses-term-6.1-7.20180224.el8.noarch
ncurses-6.1-7.20180224.el8.x86_64
ncurses-base-6.1-7.20180224.el8.noarch
ncurses-c++-libs-6.1-7.20180224.el8.x86_64
ncurses-libs-6.1-7.20180224.el8.x86_64
ncurses-compat-libs-6.1-7.20180224.el8.x86_64
ncurses-devel-6.1-7.20180224.el8.x86_64

You can install all of the required ncurses packages listed in the preceding text by running the
following command:

yum install ncurses*

• Customize the Emacs key bindings.

You can customize the keys that are bound to the commands. For example, you can bind the keys to vi
bindings instead of the default Emacs key bindings.

The keys are customized by editing the .editrc file that is stored in the home directory. For more
information, see editrc in the FreeBSD man pages.

• Disable command recall, command completion, and Emacs command keys.

To do this, set the environment variable MQ_OVERRIDE_LIBEDIT_LOAD to TRUE.

This environment variable can be used as a workaround when the runmqsc command prompt displays
the following informational message:

AMQ8521I: Command completion and history unavailable

Running MQSC commands from text files under runmqsc
If you have long commands, or are using a particular sequence of commands repeatedly, you can use
a text file to issue MQSC commands. You can redirect stdin from a text file. You can also redirect the
output to a file.

Before you begin
This task assumes that you have created a text file that contains the MQSC commands that you want to
run. For detailed syntax and examples of these files, see “MQSC input file syntax” on page 15.

You can set the MQSC command prompt to a prompt of your choice by using the MQPROMPT environment
variable. For more information, see “Setting the MQSC command prompt” on page 20.

About this task
Input for the runmqsc command is taken from the standard input device, also referred to as stdin.
Typically this is the keyboard, but you can specify that input is to come from a serial port or a file.

Output for the runmqsc command is output to the standard output device, also referred to as stdout.
Typically this is a display, but you can redirect output to a serial port or a file.

22 Administering IBM MQ

https://www.freebsd.org/cgi/man.cgi?query=editrc&sektion=5

Procedure
1. On a local queue manager, verify that the command syntax in the file is correct without running the

commands.

Use the -v flag on the runmqsc command, along with one of the following options:

• Use the -f option to identify the input text filename. For example:

runmqsc -f myprog.in -v localQmgrName

You cannot specify a remote queue manager when verifying commands. That is, you cannot specify the
-w flag.

The returned report is similar to that shown in Figure 2 on page 17.
2. When the command syntax is correct, remove the -v flag then rerun the runmqsc command.

Note that you can now specify a remote queue manager.

• Run (for example) the following command:

runmqsc -f myprog.in QmgrName

Figure 1 on page 16 shows an extract from a command file such as myprog.in and Figure 2 on page
17 shows the corresponding extract of the output from a report file such as results.out.

What to do next
For full details of the runmqsc command syntax, optional parameters and return codes, see runmqsc (run
MQSC commands).

Related tasks
“Setting the MQSC command prompt” on page 20
On AIX, Linux, and Windows, use the MQPROMPT environment variable to set the prompt that is displayed
when you run the runmqsc command. This makes it easier to see that you are in an MQSC environment,
and to see some details of the current environment.
“Running MQSC commands interactively under runmqsc” on page 17
On AIX, Linux, and Windows, you can use the runmqsc command prompt to issue MQSC commands to a
queue manager interactively. Interactive running is particularly suitable for quick tests.
Related reference
MQSC commands reference

Automatic configuration from an MQSC script at startup
You can configure your queue manager to automatically apply the contents of an MQSC script, or set of
MQSC scripts, on every queue manager start.

You can use this functionality to have a configuration which can be modified, and automatically replayed
at the next queue manager restart. As an example, if the script or scripts are located on a mounted drive,
it is possible to have a centralized configuration where the latest version gets applied to every queue
manager as they start.

A particular scenario in which this can be useful, is to ensure a uniform cluster contains the same
definitions on all queue managers in the cluster, by having a single set of configuration which they all
apply. For an example of this, see Creating a new uniform cluster.

Before you begin
You can use:

1. A single script, and create a text file using MQSC commands.

Administering IBM MQ 23

2. A set of MQSC scripts:

• To identify a directory where the configurations will exist, and
• In that directory, create files, each with the extension .mqsc, for example queues.mqsc.

Given that this script is reapplied on every queue manager start, it is important that commands can be
replayed. For example, a DEFINE command must include the REPLACE string, otherwise the command
appears as a failure on the second queue manager start, as the object already exists.

Note that in an MQSC script, any line prefixed with * is treated as a comment.

Enabling automatic configuration of MQSC scripts
Important: You must not issue commands for channels of type MQTT, as they are not supported for
automatic configuration during startup.

You can configure a new queue manager by using the -ic flag to the crtmqm command, and pointing
either at a specific file, or directory. The supplied value is stored in the qm.ini file under the AutoConfig
stanza, as attribute MQSCConfig.

You can configure an existing queue manager to enable automatic MQSC configuration, by adding the
AutoConfig stanza attribute MQSCConfig, pointing to a valid file or directory. For example:

AutoConfig:
 MQSCConfig=C:\mq_configuration\uniclus.mqsc

How does automatic configuration work?
During queue manager startup, the configuration identified by the AutoConfig stanza attribute
MQSCConfig is passed through runmqsc validation, to ensure valid syntax, and then stored in the queue
manager data tree into the autocfg directory as a single file cached.mqsc.

When multiple files from a directory are processed in, they are processed in alphabetical order, and if it
contains an MQSC end or quit command, the rest of the contents of that file are skipped.

During the first ever start of the queue manager, an inability to read the file or directory, or a file with
MQSC syntax that is not valid, prevents the queue manager from starting, with an appropriate error
message both to the console and to the queue manager error log.

On subsequent restarts, if the file or directory pointed to is unreadable or contains invalid MQSC syntax,
the previously cached file is used and a message written to the error log of the queue manager highlights
this.

At the point the contents of the cached.mqsc are applied to the queue manager, when all of the MQSC
commands have been applied, the queue manager is enabled for applications to connect. The runmqsc
log of the configuration being applied is stored in the errors directory of the queue manager, as a file
called autocfgmqsc.LOG.

In addition, any MQSC command that does not complete successfully, is logged to the queue manager
error log, identifying why the command fails.

Automating IBM MQ administration using PCF commands
You might decide that it would be beneficial to your installation to automate some administration and
monitoring tasks. You can automate administration tasks for both local and remote queue managers using
programmable command format (PCF) commands. This section assumes that you have experience of
administering IBM MQ objects.

PCF commands
IBM MQ programmable command format (PCF) commands can be used to program administration tasks
into an administration program. In this way, from a program you can manipulate queue manager objects

24 Administering IBM MQ

(queues, process definitions, namelists, channels, client connection channels, listeners, services, and
authentication information objects), and even manipulate the queue managers themselves.

PCF commands cover the same range of functions provided by MQSC commands. You can write a program
to issue PCF commands to any queue manager in the network from a single node. In this way, you can
both centralize and automate administration tasks.

Each PCF command is a data structure that is embedded in the application data part of an IBM MQ
message. Each command is sent to the target queue manager using the MQI function MQPUT in the same
way as any other message. Providing the command server is running on the queue manager receiving the
message, the command server interprets it as a command message and runs the command. To get the
replies, the application issues an MQGET call and the reply data is returned in another data structure. The
application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text format that you can
read.

Briefly, these are some of the things needed to create a PCF command message:
Message descriptor

This is a standard IBM MQ message descriptor, in which:

• Message type (MsqType) is MQMT_REQUEST.
• Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:

• The PCF message type (Type) specifies MQCFT_COMMAND.
• The command identifier specifies the command, for example, Change Queue

(MQCMD_CHANGE_Q).

For a complete description of the PCF data structures and how to implement them, see “Introduction to
IBM MQ Programmable Command Formats” on page 25.

PCF object attributes
Object attributes in PCF are not limited to eight characters as they are for MQSC commands. They are
shown in this guide in italics. For example, the PCF equivalent of RQMNAME is RemoteQMgrName.

Escape PCFs
Escape PCFs are PCF commands that contain MQSC commands within the message text. You can use
PCFs to send commands to a remote queue manager. For more information about escape PCFs, see
Escape.

Introduction to IBM MQ Programmable Command Formats
Programmable Command Formats (PCFs) define command and reply messages that can be exchanged
between a program and any queue manager (that supports PCFs) in a network. PCFs simplify queue
manager administration and other network administration. They can be used to solve the problem of
complex administration of distributed networks especially as networks grow in size and complexity.

Programmable Command Formats are supported on all IBM MQ platforms.

The problem PCF commands solve
The administration of distributed networks can become complex. The problems of administration
continue to grow as networks increase in size and complexity.

Examples of administration specific to messaging and queuing include:

• Resource management.

Administering IBM MQ 25

For example, queue creation and deletion.
• Performance monitoring.

For example, maximum queue depth or message rate.
• Control.

For example, tuning queue parameters such as maximum queue depth, maximum message length, and
enabling and disabling queues.

• Message routing.

Definition of alternative routes through a network.

IBM MQ PCF commands can be used to simplify queue manager administration and other network
administration. PCF commands allow you to use a single application to perform network administration
from a single queue manager within the network.

What are PCFs?
PCFs define command and reply messages that can be exchanged between a program and any queue
manager (that supports PCFs) in a network. You can use PCF commands in a systems management
application program for administration of IBM MQ objects: authentication information objects, channels,
channel listeners, namelists, process definitions, queue managers, queues, services, and storage classes.
The application can operate from a single point in the network to communicate command and reply
information with any queue manager, local, or remote, using the local queue manager.

Each queue manager has an administration queue with a standard queue name and your application can
send PCF command messages to that queue. Each queue manager also has a command server to service
the command messages from the administration queue. PCF command messages can therefore be
processed by any queue manager in the network and the reply data can be returned to your application,
using your specified reply queue. PCF commands and reply messages are sent and received using the
normal Message Queue Interface (MQI).

For a list of the available PCF commands, including their parameters, see Definitions of the Programmable
Command Formats.

Using IBM MQ Programmable Command Formats
You can use PCFs in a systems management program for IBM MQ remote administration.

This section includes:

• “PCF command messages” on page 26
• “PCF responses in IBM MQ” on page 29

• “Extended responses” on page 31
• Rules for naming IBM MQ objects
• “Authority checking for PCF commands in IBM MQ” on page 32

PCF command messages
PCF command messages consist of a PCF header, parameters identified in that header and also user-
defined message data. The messages are issued using Message Queue interface calls.

Each command and its parameters are sent as a separate command message containing a PCF header
followed by a number of parameter structures; for details of the PCF header, see MQCFH - PCF header,
and for an example of a parameter structure, see MQCFST - PCF string parameter. The PCF header
identifies the command and the number of parameter structures that follow in the same message. Each
parameter structure provides a parameter to the command.

Replies to the commands, generated by the command server, have a similar structure. There is a PCF
header, followed by a number of parameter structures. Replies can consist of more than one message but
commands always consist of one message only.

26 Administering IBM MQ

On Multiplatforms, the queue to which the PCF commands are sent is always called the
SYSTEM.ADMIN.COMMAND.QUEUE.

On z/OS, commands are sent to SYSTEM.COMMAND.INPUT, although
SYSTEM.ADMIN.COMMAND.QUEUE can be an alias for it. The command server servicing this queue sends
the replies to the queue defined by the ReplyToQ and ReplyToQMgr fields in the message descriptor of
the command message.

How to issue PCF command messages
Use the normal Message Queue Interface (MQI) calls, MQPUT, MQGET, and so on, to put and retrieve PCF
command and response messages to and from their queues.

Note:

Ensure that the command server is running on the target queue manager for the PCF command to process
on that queue manager.

For a list of supplied header files, see IBM MQ COPY, header, include and module files.

Message descriptor for a PCF command
The IBM MQ message descriptor is fully documented in MQMD - Message descriptor.

A PCF command message contains the following fields in the message descriptor:

Report
Any valid value, as required.

MsgType
This field must be MQMT_REQUEST to indicate a message requiring a response.

Expiry
Any valid value, as required.

Feedback
Set to MQFB_NONE

Encoding
If you are sending to an IBM MQ for Multiplatforms system, set this field to the encoding used for the
message data. Conversion is performed if necessary.

CodedCharSetId
If you are sending to an IBM MQ for Multiplatforms system, set this field to the coded character-set
identifier used for the message data. Conversion is performed if necessary.

Format
Set to MQFMT_ADMIN.

Priority
Any valid value, as required.

Persistence
Any valid value, as required.

MsgId
The sending application can specify any value, or MQMI_NONE can be specified to request the queue
manager to generate a unique message identifier.

CorrelId
The sending application can specify any value, or MQCI_NONE can be specified to indicate no
correlation identifier.

ReplyToQ
The name of the queue to receive the response.

Administering IBM MQ 27

ReplyToQMgr
The name of the queue manager for the response (or blank).

Message context fields
These fields can be set to any valid values, as required. Normally the Put message option
MQPMO_DEFAULT_CONTEXT is used to set the message context fields to the default values.

If you are using a version-2 MQMD structure, you must set the following additional fields:

GroupId
Set to MQGI_NONE

MsgSeqNumber
Set to 1

Offset
Set to 0

MsgFlags
Set to MQMF_NONE

OriginalLength
Set to MQOL_UNDEFINED

Sending user data
The PCF structures can also be used to send user-defined message data. In this case the message
descriptor Format field must be set to MQFMT_PCF.

Sending and receiving PCF messages in a specified queue

Sending PCF messages to a specified queue
To send a message to a specified queue, the mqPutBag call converts the contents of the specified bag into
a PCF message and sends the message to the specified queue. The contents of the bag are unchanged
after the call.

As input to this call, you must supply:

• An MQI connection handle.
• An object handle for the queue on which the message is to be placed.
• A message descriptor. For more information about the message descriptor, see MQMD - Message

descriptor.
• Put Message Options using the MQPMO structure. For more information about the MQPMO structure,

see MQPMO - Put-message options.
• The handle of the bag to be converted to a message.

Note: If the bag contains an administration message and the mqAddInquiry call was used to insert
values into the bag, the value of the MQIASY_COMMAND data item must be an INQUIRE command
recognized by the MQAI.

For a full description of the mqPutBag call, see mqPutBag.

Receiving PCF messages from a specified queue

To receive a message from a specified queue, the mqGetBag call gets a PCF message from a specified
queue and converts the message data into a data bag.

As input to this call, you must supply:

• An MQI connection handle.

28 Administering IBM MQ

• An object handle of the queue from which the message is to be read.
• A message descriptor. Within the MQMD structure, the Format parameter must be MQFMT_ADMIN,

MQFMT_EVENT, or MQFMT_PCF.

Note: If the message is received within a unit of work (that is, with the MQGMO_SYNCPOINT option)
and the message has an unsupported format, the unit of work can be backed out. The message is then
reinstated on the queue and can be retrieved using the MQGET call instead of the mqGetBag call. For
more information about the message descriptor, see MQGMO - Get-message options.

• Get Message Options using the MQGMO structure. For more information about the MQGMO structure,
see MQMD - Message Descriptor.

• The handle of the bag to contain the converted message.

For a full description of the mqGetBag call, see mqGetBag.

PCF responses in IBM MQ
In response to each command, the command server generates one or more response messages. A
response message has a similar format to a command message.

The PCF header has the same command identifier value as the command to which it is a response (see
MQCFH - PCF header for details). The message identifier and correlation identifier are set according to the
report options of the request.

If the PCF header type of the command message is MQCFT_COMMAND, standard responses only are
generated. Such commands are supported on Multiplatforms only. Older applications do not support PCF
on z/OS ; the IBM MQ Windows Explorer is one such application (however, the IBM WebSphere® MQ 6.0 or
later IBM MQ Explorer does support PCF on z/OS).

If the PCF header type of the command message is MQCFT_COMMAND_XR, either extended or standard
responses are generated. Such commands are supported on z/OS and some Multiplatforms. Commands
issued on z/OS generate only extended responses.

If a single command specifies a generic object name, a separate response is returned in its own message
for each matching object. For response generation, a single command with a generic name is treated
as multiple individual commands (except for the control field MQCFC_LAST or MQCFC_NOT_LAST).
Otherwise, one command message generates one response message.

Certain PCF responses might return a structure even when it is not requested. This structure is shown in
the definition of the response (Definitions of the Programmable Command Formats) as always returned.
The reason that, for these responses, it is necessary to name the objects in the response to identify which
object the data applies.

Message descriptor for a response
A response message has the following fields in the message descriptor:

MsgType
This field is MQMT_REPLY.

MsgId
This field is generated by the queue manager.

CorrelId
This field is generated according to the report options of the command message.

Format
This field is MQFMT_ADMIN.

Encoding
Set to MQENC_NATIVE.

CodedCharSetId
Set to MQCCSI_Q_MGR.

Persistence
The same as in the command message.

Administering IBM MQ 29

Priority
The same as in the command message.

The response is generated with MQPMO_PASS_IDENTITY_CONTEXT.

Standard responses
Command messages with a header type of MQCFT_COMMAND, standard responses are generated. Such
commands are supported only on Multiplatforms.

There are three types of standard response:

• OK response
• Error response
• Data response

OK response
This response consists of a message starting with a command format header, with a CompCode field of
MQCC_OK or MQCC_WARNING.

For MQCC_OK, the Reason is MQRC_NONE.

For MQCC_WARNING, the Reason identifies the nature of the warning. In this case the command format
header might be followed by one or more warning parameter structures appropriate to this reason code.

In either case, for an inquire command further parameter structures might follow as described in the
following sections.

Error response
If the command has an error, one or more error response messages are sent (more than one might
be sent even for a command that would normally have only a single response message). These error
response messages have MQCFC_LAST or MQCFC_NOT_LAST set as appropriate.

Each such message starts with a response format header, with a CompCode value of MQCC_FAILED and
a Reason field that identifies the particular error. In general, each message describes a different error. In
addition, each message has either zero or one (never more than one) error parameter structures following
the header. This parameter structure, if there is one, is an MQCFIN structure, with a Parameter field
containing one of the following:

• MQIACF_PARAMETER_ID

The Value field in the structure is the parameter identifier of the parameter that was in error (for
example, MQCA_Q_NAME).

• MQIACF_ERROR_ID

This value is used with a Reason value (in the command format header) of
MQRC_UNEXPECTED_ERROR. The Value field in the MQCFIN structure is the unexpected reason code
received by the command server.

• MQIACF_SELECTOR

This value occurs if a list structure (MQCFIL) sent with the command contains a duplicate selector or
one that is not valid. The Reason field in the command format header identifies the error, and the
Value field in the MQCFIN structure is the parameter value in the MQCFIL structure of the command
that was in error.

• MQIACF_ERROR_OFFSET

This value occurs when there is a data compare error on the Ping Channel command. The Value field in
the structure is the offset of the Ping Channel compare error.

• MQIA_CODED_CHAR_SET_ID

30 Administering IBM MQ

This value occurs when the coded character-set identifier in the message descriptor of the incoming
PCF command message does not match that of the target queue manager. The Value field in the
structure is the coded character-set identifier of the queue manager.

The last (or only) error response message is a summary response, with a CompCode field of
MQCC_FAILED, and a Reason field of MQRCCF_COMMAND_FAILED. This message has no parameter
structure following the header.

Data response
This response consists of an OK response (as described earlier) to an inquire command. The OK response
is followed by additional structures containing the requested data as described in Definitions of the
Programmable Command Formats.

Applications must not depend upon these additional parameter structures being returned in any
particular order.

Extended responses
Commands issued on z/OS generate extended responses.

There are three types of extended response:

• Message response, with type MQCFT_XR_MSG
• Item response, with type MQCFT_XR_ITEM
• Summary response, with type MQCFT_XR_SUMMARY

Each command can generate one, or more, sets of responses. Each set of responses comprises one
or more messages, numbered sequentially from 1 in the MsgSeqNumber field of the PCF header. The
Control field of the last (or only) response in each set has the value MQCFC_LAST. For all other
responses in the set, this value is MQCFC_NOT_LAST.

Any response can include one, or more, optional MQCFBS structures in which the Parameter field is
set to MQBACF_RESPONSE_SET, the value being a response set identifier. Identifiers are unique and
identify the set of responses which contain the response. For every set of responses, there is an MQCFBS
structure that identifies it.

Extended responses have at least two parameter structures:

• An MQCFBS structure with the Parameter field set to MQBACF_RESPONSE_ID. The value in this field
is the identifier of the set of responses to which the response belongs. The identifier in the first set is
arbitrary. In subsequent sets, the identifier is one previously notified in an MQBACF_RESPONSE_SET
structure.

• An MQCFST structure with the Parameter field set to MQCACF_RESPONSE_Q_MGR_NAME, the value
being the name of the queue manager from which the set of responses come.

Many responses have additional parameter structures, and these structures are described in the following
sections.

You cannot determine in advance how many responses there are in a set other than by getting responses
until one with MQCFC_LAST is found. Neither can you determine in advance how many sets of responses
there are as any set might include MQBACF_RESPONSE_SET structures to indicate that additional sets are
generated.

Extended responses to Inquire commands
Inquire commands normally generate an item response (type MQCFT_XR_ITEM) for each item found
that matches the specified search criteria. The item response has a CompCode field in the header
with a value of MQCC_OK, and a Reason field with a value of MQRC_NONE. It also includes other
parameter structures describing the item and its requested attributes, as described in Definitions of the
Programmable Command Formats.

Administering IBM MQ 31

If an item is in error, the CompCode field in the header has a value of MQCC_FAILED and the Reason field
identifies the particular error. Additional parameter structures are included to identify the item.

Certain Inquire commands might return general (not name-specific) message responses in addition to the
item responses. These responses are informational, or error, responses of the type MQCFT_XR_MSG.

If the Inquire command succeeds, there might, optionally, be a summary response (type
MQCFT_XR_SUMMARY), with a CompCode value of MQCC_OK, and a Reason field value of MQRC_NONE.

If the Inquire command fails, item responses might be returned, and there might optionally be a summary
response (type MQCFT_XR_SUMMARY), with a CompCode value of MQCC_FAILED, and a Reason field
value of MQRCCF_COMMAND_FAILED.

Extended responses to commands other than Inquire
Successful commands generate message responses in which the CompCode field in the header has
a value of MQCC_OK, and the Reason field has a value of MQRC_NONE. There is always at least
one message; it might be informational (MQCFT_XR_MSG) or a summary (MQCFT_XR_SUMMARY).
There might optionally be additional informational (type MQCFT_XR_MSG) messages. Each informational
message might include a number of additional parameter structures with information about the
command; see the individual command descriptions for the structures that can occur.

Commands that fail generate error message responses (type MQCFT_XR_MSG), in which the CompCode
field in the header has a value of MQCC_FAILED and the Reason field identifies the particular error. Each
message might include a number of additional parameter structures with information about the error: see
the individual error descriptions for the structures that can occur. Informational message responses might
be generated. There might, optionally, be a summary response (MQCFT_XR_SUMMARY), with a CompCode
value of MQCC_FAILED, and a Reason field value of MQRCCF_COMMAND_FAILED.

Extended responses to commands using CommandScope
If a command uses the CommandScope parameter, or causes a command using the CommandScope
parameter to be generated, there is an initial response set from the queue manager where the
command was received. Then a separate set, or sets, of responses is generated for each queue manager
to which the command is directed (as if multiple individual commands were issued). Finally, there
is a response set from the receiving queue manager which includes an overall summary response
(type MQCFT_XR_SUMMARY). The MQCACF_RESPONSE_Q_MGR_NAME parameter structure identifies
the queue manager that generates each set.

The initial response set has the following additional parameter structures:

• MQIACF_COMMAND_INFO (MQCFIN). Possible values in this structure are
MQCMDI_CMDSCOPE_ACCEPTED or MQCMDI_CMDSCOPE_GENERATED.

• MQIACF_CMDSCOPE_Q_MGR_COUNT (MQCFIN). This structure indicates the number of queue
managers to which the command is sent.

Authority checking for PCF commands in IBM MQ
When a PCF command is processed, the UserIdentifier from the message descriptor in the command
message is used for the required IBM MQ object authority checks. Authority checking is implemented
differently on each platform as described in this topic.

The checks are performed on the system on which the command is being processed; therefore this user
ID must exist on the target system and have the required authorities to process the command. If the
message has come from a remote system, one way of achieving the ID existing on the target system is to
have a matching user ID on both the local and remote systems.

Note: For information about authority checking on z/OS, see Task 1: Identify the z/OS
system parameters.

32 Administering IBM MQ

IBM MQ for IBM i

In order to process any PCF command, the user ID must have dsp authority for the IBM MQ object on the
target system.

In addition, IBM MQ object authority checks are performed for certain PCF commands, as shown in Table
2 on page 34.

In most cases these checks are the same checks as those checks performed by the equivalent IBM MQ CL
commands issued on a local system. See the Setting up security on IBM i , for more information about the
mapping from IBM MQ authorities to IBM i system authorities, and the authority requirements for the IBM
MQ CL commands. Details of security concerning exits are given in the Link level security using a security
exit documentation.

To process any of the following commands the user ID must be a member of the group profile
QMQMADM:

• Ping Channel
• Change Channel
• Copy Channel
• Create Channel
• Delete Channel
• Reset Channel
• Resolve Channel
• Start Channel
• Stop Channel
• Start Channel Initiator
• Start Channel Listener

IBM MQ for UNIX, Linux, and Windows

In order to process any PCF command, the user ID must have dsp authority for the queue manager
object on the target system. In addition, IBM MQ object authority checks are performed for certain PCF
commands, as shown in Table 2 on page 34.

To process any of the following commands the user ID must belong to group mqm.

Note: For Windows only, the user ID can belong to group Administrators or group mqm.

• Change Channel
• Copy Channel
• Create Channel
• Delete Channel
• Ping Channel
• Reset Channel
• Start Channel
• Stop Channel
• Start Channel Initiator
• Start Channel Listener
• Resolve Channel
• Reset Cluster

Administering IBM MQ 33

• Refresh Cluster
• Suspend Queue Manager
• Resume Queue Manager

IBM MQ Object authorities for Multiplatforms

Table 2. Object authorities

Command IBM MQ object authority Class authority (for
object type)

Change Authentication
Information

dsp and chg n/a

Change Channel dsp and chg n/a

Change Channel Listener dsp and chg n/a

Change Client Connection
Channel

dsp and chg n/a

Change Namelist dsp and chg n/a

Change Process dsp and chg n/a

Change Queue dsp and chg n/a

Change Queue Manager chg see Note 3 and Note 5 n/a

Change Service dsp and chg n/a

Clear Queue clr n/a

Copy Authentication Information dsp crt

Copy Authentication Information
(Replace) see Note 1

from: dsp to: chg crt

Copy Channel dsp crt

Copy Channel (Replace) see Note
1

from: dsp to: chg crt

Copy Channel Listener dsp crt

Copy Channel Listener (Replace)
see Note 1

from: dsp to: chg crt

Copy Client Connection Channel dsp crt

Copy Client Connection Channel
(Replace) see Note 1

from: dsp to: chg crt

Copy Namelist dsp crt

Copy Namelist (Replace) see Note
1

from: dsp to: dsp and chg crt

Copy Process dsp crt

Copy Process (Replace) see Note
1

from: dsp to: chg crt

Copy Queue dsp crt

34 Administering IBM MQ

Table 2. Object authorities (continued)

Command IBM MQ object authority Class authority (for
object type)

Copy Queue (Replace) see Note 1 from: dsp to: dsp and chg crt

Create Authentication
Information

(system default authentication
information) dsp

crt

Create Authentication
Information (Replace) see Note 1

(system default authentication
information) dsp to: chg

crt

Create Channel (system default channel) dsp crt

Create Channel (Replace) see
Note 1

(system default channel) dsp to: chg crt

Create Channel Listener (system default listener) dsp crt

Create Channel Listener
(Replace) see Note 1

(system default listener) dsp to: chg crt

Create Client Connection Channel (system default channel) dsp crt

Create Client Connection Channel
(Replace) see Note 1

(system default channel) dsp to: chg crt

Create Namelist (system default namelist) dsp crt

Create Namelist (Replace) see
Note 1

(system default namelist) dsp to: dsp and
chg

crt

Create Process (system default process) dsp crt

Create Process (Replace) see
Note 1

(system default process) dsp to: chg crt

Create Queue (system default queue) dsp crt

Create Queue (Replace) see Note
1

(system default queue) dsp to: dsp and chg crt

Create Service (system default queue) dsp crt

Create Service (Replace) see Note
1

(system default queue) dsp to: chg crt

Delete Authentication
Information

dsp and dlt n/a

Delete Authority Record (queue manager object) chg see Note 4 see Note 4

Delete Channel dsp and dlt n/a

Delete Channel Listener dsp and dlt n/a

Delete Client Connection Channel dsp and dlt n/a

Delete Namelist dsp and dlt n/a

Delete Process dsp and dlt n/a

Delete Queue dsp and dlt n/a

Delete Service dsp and dlt n/a

Inquire Authentication
Information

dsp n/a

Administering IBM MQ 35

Table 2. Object authorities (continued)

Command IBM MQ object authority Class authority (for
object type)

Inquire Authority Records see Note 4 see Note 4

Inquire Channel dsp n/a

Inquire Channel Listener dsp n/a

Inquire Channel Status (for
ChannelType MQCHT_CLSSDR)

inq n/a

Inquire Client Connection
Channel

dsp n/a

Inquire Namelist dsp n/a

Inquire Process dsp n/a

Inquire Queue dsp n/a

Inquire Queue Manager see note 3 n/a

Inquire Queue Status dsp n/a

Inquire Service dsp n/a

Ping Channel ctrl n/a

Ping Queue Manager see note 3 n/a

Refresh Queue Manager (queue manager object) chg n/a

Refresh Security
(for SecurityType
MQSECTYPE_SSL)

(queue manager object) chg n/a

Reset Channel ctrlx n/a

Reset Queue Manager (queue manager object) chg n/a

Reset Queue Statistics dsp and chg n/a

Resolve Channel ctrlx n/a

Set Authority Record (queue manager object) chg see Note 4 see Note 4

Start Channel ctrl n/a

Stop Channel ctrl n/a

Stop Connection (queue manager object) chg n/a

Start Listener ctrl n/a

Stop Listener ctrl n/a

Start Service ctrl n/a

Stop Service ctrl n/a

Escape see Note 2 see Note 2

Notes:

1. This command applies if the object to be replaced does exist, otherwise the authority check is as for
Create, or Copy without Replace.

36 Administering IBM MQ

2. The required authority is determined by the MQSC command defined by the escape text, and it is
equivalent to one of the previous commands.

3. In order to process any PCF command, the user ID must have dsp authority for the queue manager
object on the target system.

4. This PCF command is authorized unless the command server has been started with the -a parameter.
By default the command server starts when the queue manager is started, and without the -a
parameter. For more information, see Programmable command formats reference.

5. Granting a user ID chg authority for a queue manager gives the ability to set authority records for all
groups and users. Do not grant this authority to ordinary users or applications.

IBM MQ also supplies some channel security exit points so that you can supply your own user exit
programs for security checking. For more information, see Displaying a channel.

Using the MQAI to simplify the use of PCFs
The IBM MQ Administration Interface (MQAI) is a programming interface to IBM MQ that is available on
AIX, IBM i, Linux, and Windows. It performs administration tasks on an IBM MQ queue manager using
data bags to handle properties (or parameters) of objects in a way that is easier than using Programmable
Command Formats (PCFs).

The MQAI performs administration tasks on a queue manager through the use of data bags. Data bags
allow you to handle properties (or parameters) of objects in a way that is easier than using PCFs.

The advantages of using the MQAI are as follows:
Simplify the use of PCF messages

The MQAI is an easier way to administer IBM MQ. If you use the MQAI, you do not have to write your
own PCF messages. This avoids the problems associated with complex data structures.

To pass parameters in programs written using MQI calls, the PCF message must contain the
command, and details of the string or integer data. To create this configuration manually, you have to
add several statements in your program for every structure, and you have to allocate memory space.
This task can be long and laborious.

Programs written using the MQAI pass parameters into the appropriate data bag, and you need only
one statement for each structure. The use of the MQAI data bags removes the need for you to handle
arrays and allocate storage, and provides some degree of isolation from the details of the PCF.

Handle error conditions more easily
It is difficult to get return codes back from PCF commands. The MQAI makes it easier for the program
to handle error conditions.

Exchange data between applications
The application data is sent in PCF format and packed and unpacked by the MQAI. If your message
data consists of integers and character strings, you can use the MQAI to take advantage of IBM MQ
built-in data conversion for PCF data. This avoids the need to write data-conversion exits.

After you have created and populated your data bag, you can send an administration command message
to the command server of a queue manager, using the mqExecute call. This call waits for any response
messages. The mqExecute call handles the exchange with the command server, and returns responses in
a response bag.

Examples of using the MQAI
The following sample programs demonstrate the use of MQAI to perform the various tasks:

• amqsaicq.c: create a local queue.
• amqsaiem.c: display events on the screen using a simple event monitor.
• amqsailq.c: print a list of all local queues and their current depths.
• amqsaicl.c: print a list of all channels and their types.

Administering IBM MQ 37

Building your MQAI application
To build your application using the MQAI, you link to the same libraries as you do for IBM MQ. For
information on how to build your IBM MQ applications, see Building a procedural application.

Hints and tips for configuring IBM MQ using MQAI
The MQAI uses PCF messages to send administration commands to the command server rather than
dealing directly with the command server itself. Tips for configuring IBM MQ using the MQAI can be found
in “Hints and tips for using MQAI to configure IBM MQ” on page 38.

Related reference
IBM MQ Administration Interface reference

Hints and tips for using MQAI to configure IBM MQ
The IBM MQ Administration Interface (MQAI) uses PCF messages to send administration commands to
the command server rather than dealing directly with the command server itself. Here are some tips for
configuring IBM MQ using the MQAI.

• Character strings in IBM MQ are blank padded to a fixed length. Using C, null-terminated strings can
normally be supplied as input parameters to IBM MQ programming interfaces.

• To clear the value of a string attribute, set it to a single blank character rather than an empty string.
• Consider in advance the attributes that you want to change and inquire on just those attributes.
• Certain attributes cannot be changed, for example a queue name or a channel type. Ensure that

you attempt to change only those attributes that can be modified. Refer to the list of required and
optional parameters for the specific PCF change object. See Definitions of the Programmable Command
Formats.

• If an MQAI call fails, some detail of the failure is returned to the response bag. Further detail can then
be found in a nested bag that can be accessed by the selector MQHA_BAG_HANDLE. For example, if an
mqExecute call fails with a reason code of MQRCCF_COMMAND_FAILED, this information is returned in
the response bag. A possible reason for this reason code is that a selector specified was not valid for the
type of command message and this detail of information is found in a nested bag that can be accessed
by a bag handle.

For more information on MQExecute, see “Sending administration commands to the qm command
server using the mqExecute call” on page 71

The following diagram shows this scenario:

38 Administering IBM MQ

Advanced MQAI topics
Information on indexing, data conversion and use of message descriptor

Indexing
Indexes are used when replacing or removing existing data items from a bag to preserve insertion
order.

Data conversion
The strings contained in an MQAI data bag can be in a variety of coded character sets and these can
be converted using the mqSetInteger call.

Use of the message descriptor
The MQAI generates a message descriptor which is set to an initial value when the data bag is
created.

Indexing in the MQAI
Indexes are used when replacing or removing existing data items from a bag. There are three types of
indexing, which allows data items to be retrieved easily.

Each selector and value within a data item in a bag have three associated index numbers:

• The index relative to other items that have the same selector.
• The index relative to the category of selector (user or system) to which the item belongs.
• The index relative to all the data items in the bag (user and system).

This allows indexing by user selectors, system selectors, or both as shown in Figure 3 on page 40.

Administering IBM MQ 39

Figure 3. Indexing

In Figure 3 on page 40, user item 3 (selector A) can be referred to by the following index pairs:

• selector A (ItemIndex 1)
• MQSEL_ANY_USER_SELECTOR (ItemIndex 2)
• MQSEL_ANY_SELECTOR (itemIndex 3)

The index is zero-based like an array in C; if there are 'n' occurrences, the index ranges from zero through
'n-1', with no gaps.

Indexes are used when replacing or removing existing data items from a bag. When used in this way, the
insertion order is preserved, but indexes of other data items can be affected. For examples of this, see
“Changing information within a bag” on page 68 and “Deleting data items” on page 70.

The three types of indexing allow easy retrieval of data items. For example, if there are three instances of
a particular selector in a bag, the mqCountItems call can count the number of instances of that selector,
and the mqInquire* calls can specify both the selector and the index to inquire those values only. This is
useful for attributes that can have a list of values such as some of the exits on channels.

Data conversion processing in the MQAI
The strings contained in an MQAI data bag can be in a variety of coded character sets. These strings can
be converted using the mqSetInteger call.

Like PCF messages, the strings contained in an MQAI data bag can be in a variety of coded character sets.
Usually, all of the strings in a PCF message are in the same coded character set; that is, the same set as
the queue manager.

Each string item in a data bag contains two values; the string itself and the CCSID. The string that is added
to the bag is obtained from the Buffer parameter of the mqAddString or mqSetString call. The CCSID is
obtained from the system item containing a selector of MQIASY_CODED_CHAR_SET_ID. This is known as
the bag CCSID and can be changed using the mqSetInteger call.

When you inquire the value of a string contained in a data bag, the CCSID is an output parameter from the
call.

Table 3 on page 41 shows the rules applied when converting data bags into messages and vice versa:

40 Administering IBM MQ

Table 3. CCSID processing

MQAI call CCSID Input to call Output to call

mqBagToBuffer Bag CCSID (1) Ignored Unchanged

mqBagToBuffer String CCSIDs in bag Used Unchanged

mqBagToBuffer String CCSIDs in buffer Not applicable Copied from string
CCSIDs in bag

mqBufferToBag Bag CCSID (1) Ignored Unchanged

mqBufferToBag String CCSIDs in buffer Used Unchanged

mqBufferToBagmqBuffe
rToBag

String CCSIDs in bag Not applicable Copied from string
CCSIDs in buffer

mqPutBag MQMD CCSID Used Unchanged (2)

mqPutBag Bag CCSID (1) Ignored Unchanged

mqPutBag String CCSIDs in bag Used Unchanged

mqPutBag String CCSIDs in
message sent

Not applicable Copied from string
CCSIDs in bag

mqGetBag MQMD CCSID Used for data conversion
of message

Set to CCSID of data
returned (3)

mqGetBag Bag CCSID (1) Ignored Unchanged

mqGetBag String CCSIDs in
message

Used Unchanged

mqGetBag String CCSIDs in bag Not applicable Copied from string
CCSIDs in message

mqExecute Request-bag CCSID Used for MQMD of
request message (4)

Unchanged

mqExecute Reply-bag CCSID Used for data conversion
of reply message (4)

Set to CCSID of data
returned (3)

mqExecute String CCSIDs in request
bag

Used for request
message

Unchanged

mqExecute String CCSIDs in reply
bag

Not applicable Copied from string
CCSIDs in reply message

Notes:

1. Bag CCSID is the system item with selector MQIASY_CODED_CHAR_SET_ID.
2. MQCCSI_Q_MGR is changed to the actual queue manager CCSID.
3. If data conversion is requested, the CCSID of data returned is the same as the output value. If data

conversion is not requested, the CCSID of data returned is the same as the message value. Note that
no message is returned if data conversion is requested but fails.

4. If the CCSID is MQCCSI_DEFAULT, the queue manager's CCSID is used.

Related concepts
“Data conversion between coded character sets ” on page 199

Administering IBM MQ 41

Message data in IBM MQ defined formats (also known as built-in formats) can be converted by the queue
manager from one coded character set to another, provided that both character sets relate to a single
language or a group of similar languages.
“The ccsid_part2.tbl file” on page 201
The ccsid_part2.tbl file is used to supply additional CCSID information. The ccsid_part2.tbl file
replaces the ccsid.tbl file that was used before IBM MQ 9.0.

Use of the message descriptor in the MQAI
The message descriptor that the MQAI generates is set to an initial value when the data bag is created.

The PCF command type is obtained from the system item with selector MQIASY_TYPE. When you create
your data bag, the initial value of this item is set depending on the type of bag you create:

Table 4. PCF command type

Type of bag Initial value of MQIASY_TYPE item

MQCBO_ADMIN_BAG MQCFT_COMMAND

MQCBO_COMMAND_BAG MQCFT_COMMAND

MQCBO_* MQCFT_USER

When the MQAI generates a message descriptor, the values used in the Format and MsgType parameters
depend on the value of the system item with selector MQIASY_TYPE as shown in Table 4 on page 42.

Table 5. Format and MsgType parameters of the MQMD

PCF command type Format MsgType

MQCFT_COMMAND MQFMT_ADMIN MQMT_REQUEST

MQCFT_REPORT MQFMT_ADMIN MQMT_REPORT

MQCFT_RESPONSE MQFMT_ADMIN MQMT_REPLY

MQCFT_TRACE_ROUTE MQFMT_ADMIN MQMT_DATAGRAM

MQCFT_EVENT MQFMT_EVENT MQMT_DATAGRAM

MQCFT_* MQFMT_PCF MQMT_DATAGRAM

Table 5 on page 42 shows that if you create an administration bag or a command bag, the Format of the
message descriptor is MQFMT_ADMIN and the MsgType is MQMT_REQUEST. This is suitable for a PCF
request message sent to the command server when a response is expected back.

Other parameters in the message descriptor take the values shown in Table 6 on page 42.

Table 6. Message descriptor values

Parameter Value

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_1

Report MQRO_NONE

MsgType see Table 5 on page 42

Expiry 30 seconds (note “1” on page 43)

Feedback MQFB_NONE

Encoding MQENC_NATIVE

42 Administering IBM MQ

Table 6. Message descriptor values (continued)

Parameter Value

CodedCharSetId depends on the bag CCSID (note “2” on page 43)

Format see Table 5 on page 42

Priority MQPRI_PRIORITY_AS_Q_DEF

Persistence MQPER_NOT_PERSISTENT

MsgId MQMI_NONE

CorrelId MQCI_NONE

BackoutCount 0

ReplyToQ see note “3” on page 43

ReplyToQMgr blank

Notes:

1. This value can be overridden on the mqExecute call by using the OptionsBag parameter. For
information about this, see mqExecute.

2. See “Data conversion processing in the MQAI” on page 40.
3. Name of the user-specified reply queue or MQAI-generated temporary dynamic queue for messages of

type MQMT_REQUEST. Blank otherwise.

Sample C program for creating a local queue (amqsaicq.c)
The sample C program amqsaicq.c creates a local queue using the MQAI.

/**/
/* */
/* Program name: AMQSAICQ.C */
/* */
/* Description: Sample C program to create a local queue using the */
/* IBM MQ Administration Interface (MQAI). */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 84H2000, 5765-B73 */
/* 84H2001, 5639-B42 */
/* 84H2002, 5765-B74 */
/* 84H2003, 5765-B75 */
/* 84H2004, 5639-B43 */
/* */
/* (C) Copyright IBM Corp. 1999, 2024 */
/* */
/**/
/* */
/* Function: */
/* AMQSAICQ is a sample C program that creates a local queue and is an */
/* example of the use of the mqExecute call. */
/* */
/* - The name of the queue to be created is a parameter to the program. */
/* */
/* - A PCF command is built by placing items into an MQAI bag. */
/* These are:- */
/* - The name of the queue */
/* - The type of queue required, which, in this case, is local. */
/* */
/* - The mqExecute call is executed with the command MQCMD_CREATE_Q. */
/* The call generates the correct PCF structure. */
/* The call receives the reply from the command server and formats into */
/* the response bag. */
/* */
/* - The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server then the code returned by the */
/* command server is retrieved from the system bag that is */

Administering IBM MQ 43

/* embedded in the response bag to the mqExecute call. */
/* */
/* Note: The command server must be running. */
/* */
/* */

/**/
/* */
/* AMQSAICQ has 2 parameters - the name of the local queue to be created */
/* - the queue manager name (optional) */
/* */
/**/
/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */

void CheckCallResult(MQCHAR *, MQLONG , MQLONG);
void CreateLocalQueue(MQHCONN, MQCHAR *);

int main(int argc, char *argv[])
{
 MQHCONN hConn; /* handle to IBM MQ connection */
 MQCHAR QMName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QMgr name */
 MQLONG connReason; /* MQCONN reason code */
 MQLONG compCode; /* completion code */
 MQLONG reason; /* reason code */

 /***/
 /* First check the required parameters */
 /***/
 printf("Sample Program to Create a Local Queue\n");
 if (argc < 2)
 {
 printf("Required parameter missing - local queue name\n");
 exit(99);
 }

 /***/
 /* Connect to the queue manager */
 /***/
 if (argc > 2)
 strncpy(QMName, argv[2], (size_t)MQ_Q_MGR_NAME_LENGTH);
 MQCONN(QMName, &hConn, &compCode, &connReason);

/**/
/* Report reason and stop if connection failed */
/**/
 if (compCode == MQCC_FAILED)
 {
 CheckCallResult("MQCONN", compCode, connReason);
 exit((int)connReason);
 }

/**/
/* Call the routine to create a local queue, passing the handle to the */
/* queue manager and also passing the name of the queue to be created. */
/**/
 CreateLocalQueue(hConn, argv[1]);

 /***/
 /* Disconnect from the queue manager if not already connected */
 /***/
 if (connReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&hConn, &compCode, &reason);
 CheckCallResult("MQDISC", compCode, reason);
 }
 return 0;

}
/**/
/* */
/* Function: CreateLocalQueue */

44 Administering IBM MQ

/* Description: Create a local queue by sending a PCF command to the command */
/* server. */
/* */
/**/
/* */
/* Input Parameters: Handle to the queue manager */
/* Name of the queue to be created */
/* */
/* Output Parameters: None */
/* */
/* Logic: The mqExecute call is executed with the command MQCMD_CREATE_Q. */
/* The call generates the correct PCF structure. */
/* The default options to the call are used so that the command is sent*/
/* to the SYSTEM.ADMIN.COMMAND.QUEUE. */
/* The reply from the command server is placed on a temporary dynamic */
/* queue. */
/* The reply is read from the temporary queue and formatted into the */
/* response bag. */
/* */
/* The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server then the code returned by the */
/* command server is retrieved from the system bag that is */
/* embedded in the response bag to the mqExecute call. */
/* */
/**/
void CreateLocalQueue(MQHCONN hConn, MQCHAR *qName)
{
 MQLONG reason; /* reason code */
 MQLONG compCode; /* completion code */
 MQHBAG commandBag = MQHB_UNUSABLE_HBAG; /* command bag for mqExecute */
 MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mqExecute */
 MQHBAG resultBag; /* result bag from mqExecute */
 MQLONG mqExecuteCC; /* mqExecute completion code */
 MQLONG mqExecuteRC; /* mqExecute reason code */

 printf("\nCreating Local Queue %s\n\n", qName);

 /***/
 /* Create a command Bag for the mqExecute call. Exit the function if the */
 /* create fails. */
 /***/
 mqCreateBag(MQCBO_ADMIN_BAG, &commandBag, &compCode, &reason);
 CheckCallResult("Create the command bag", compCode, reason);
 if (compCode !=MQCC_OK)
 return;

 /***/
 /* Create a response Bag for the mqExecute call, exit the function if the */
 /* create fails. */
 /***/
 mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &compCode, &reason);
 CheckCallResult("Create the response bag", compCode, reason);
 if (compCode !=MQCC_OK)
 return;

 /***/
 /* Put the name of the queue to be created into the command bag. This will */
 /* be used by the mqExecute call. */
 /***/
 mqAddString(commandBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, qName, &compCode,
 &reason);
 CheckCallResult("Add q name to command bag", compCode, reason);

 /***/
 /* Put queue type of local into the command bag. This will be used by the */
 /* mqExecute call. */
 /***/
 mqAddInteger(commandBag, MQIA_Q_TYPE, MQQT_LOCAL, &compCode, &reason);
 CheckCallResult("Add q type to command bag", compCode, reason);

 /***/
 /* Send the command to create the required local queue. */
 /* The mqExecute call will create the PCF structure required, send it to */
 /* the command server and receive the reply from the command server into */
 /* the response bag. */
 /***/
 mqExecute(hConn, /* IBM MQ connection handle */
 MQCMD_CREATE_Q, /* Command to be executed */
 MQHB_NONE, /* No options bag */
 commandBag, /* Handle to bag containing commands */
 responseBag, /* Handle to bag to receive the response*/

Administering IBM MQ 45

 MQHO_NONE, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE*/
 MQHO_NONE, /* Create a dynamic q for the response */
 &compCode, /* Completion code from the mqExecute */
 &reason); /* Reason code from mqExecute call */

 if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)
 {
 printf("Please start the command server: <strmqcsv QMgrName>\n")
 MQDISC(&hConn, &compCode, &reason);
 CheckCallResult("MQDISC", compCode, reason);
 exit(98);
 }

 /***/
 /* Check the result from mqExecute call and find the error if it failed. */
 /***/
 if (compCode == MQCC_OK)
 printf("Local queue %s successfully created\n", qName);
 else
 {
 printf("Creation of local queue %s failed: Completion Code = %d
 qName, compCode, reason);
 if (reason == MQRCCF_COMMAND_FAILED)
 {
 /***/
 /* Get the system bag handle out of the mqExecute response bag. */
 /* This bag contains the reason from the command server why the */
 /* command failed. */
 /***/
 mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &resultBag, &compCode,
 &reason);
 CheckCallResult("Get the result bag handle", compCode, reason);

 /***/
 /* Get the completion code and reason code, returned by the command */
 /* server, from the embedded error bag. */
 /***/
 mqInquireInteger(resultBag, MQIASY_COMP_CODE, MQIND_NONE, &mqExecuteCC,
 &compCode, &reason);
 CheckCallResult("Get the completion code from the result bag",
 compCode, reason);
 mqInquireInteger(resultBag, MQIASY_REASON, MQIND_NONE, &mqExecuteRC,
 &compCode, &reason);
 CheckCallResult("Get the reason code from the result bag", compCode,
 reason);
 printf("Error returned by the command server: Completion code = %d :
 Reason = %d\n", mqExecuteCC, mqExecuteRC);
 }
 }
 /***/
 /* Delete the command bag if successfully created. */
 /***/
 if (commandBag != MQHB_UNUSABLE_HBAG)
 {
 mqDeleteBag(&commandBag, &compCode, &reason);
 CheckCallResult("Delete the command bag", compCode, reason);
 }

 /***/
 /* Delete the response bag if successfully created. */
 /***/
 if (responseBag != MQHB_UNUSABLE_HBAG)
 {
 mqDeleteBag(&responseBag, &compCode, &reason);
 CheckCallResult("Delete the response bag", compCode, reason);
 }
} /* end of CreateLocalQueue */

/**/
/* */
/* Function: CheckCallResult */
/* */
/**/
/* */
/* Input Parameters: Description of call */
/* Completion code */
/* Reason code */
/* */
/* Output Parameters: None */
/* */

46 Administering IBM MQ

/* Logic: Display the description of the call, the completion code and the */
/* reason code if the completion code is not successful */
/* */
/**/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{
 if (cc != MQCC_OK)
 printf("%s failed: Completion Code = %d :
 Reason = %d\n", callText, cc, rc);

}

Sample C program for displaying events using an event monitor
(amqsaiem.c)
The sample C program amqsaiem.c demonstrates a basic event monitor using the MQAI.

**/
/* */
/* Program name: AMQSAIEM.C */
/* */
/* Description: Sample C program to demonstrate a basic event monitor */
/* using the IBM MQ Admin Interface (MQAI). */
/* Licensed Materials - Property of IBM */
/* */
/* 63H9336 */
/* (c) Copyright IBM Corp. 1999, 2024. All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/**/
/* */
/* Function: */
/* AMQSAIEM is a sample C program that demonstrates how to write a simple */
/* event monitor using the mqGetBag call and other MQAI calls. */
/* */
/* The name of the event queue to be monitored is passed as a parameter */
/* to the program. This would usually be one of the system event queues:- */
/* SYSTEM.ADMIN.QMGR.EVENT Queue Manager events */
/* SYSTEM.ADMIN.PERFM.EVENT Performance events */
/* SYSTEM.ADMIN.CHANNEL.EVENT Channel events */
/* SYSTEM.ADMIN.LOGGER.EVENT Logger events */
/* */
/* To monitor the queue manager event queue or the performance event queue,*/
/* the attributes of the queue manager need to be changed to enable */
/* these events. For more information about this, see Part 1 of the */
/* Programmable System Management book. The queue manager attributes can */
/* be changed using either MQSC commands or the MQAI interface. */
/* Channel events are enabled by default. */
/* */
/* Program logic */
/* Connect to the Queue Manager. */
/* Open the requested event queue with a wait interval of 30 seconds. */
/* Wait for a message, and when it arrives get the message from the queue */
/* and format it into an MQAI bag using the mqGetBag call. */
/* There are many types of event messages and it is beyond the scope of */
/* this sample to program for all event messages. Instead the program */
/* prints out the contents of the formatted bag. */
/* Loop around to wait for another message until either there is an error */
/* or the wait interval of 30 seconds is reached. */
/* */
/**/
/* */
/* AMQSAIEM has 2 parameters - the name of the event queue to be monitored */
/* - the queue manager name (optional) */
/* */
/***

/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

Administering IBM MQ 47

#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */

/**/
/* Macros */
/**/
#if MQAT_DEFAULT == MQAT_WINDOWS_NT
 #define Int64 "I64"
#elif defined(MQ_64_BIT)
 #define Int64 "l"
#else
 #define Int64 "ll"
#endif

/**/
/* Function prototypes */
/**/
void CheckCallResult(MQCHAR *, MQLONG , MQLONG);
void GetQEvents(MQHCONN, MQCHAR *);
int PrintBag(MQHBAG);
int PrintBagContents(MQHBAG, int);

/**/
/* Function: main */
/**/
int main(int argc, char *argv[])
{
 MQHCONN hConn; /* handle to connection */
 MQCHAR QMName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QM name */
 MQLONG reason; /* reason code */
 MQLONG connReason; /* MQCONN reason code */
 MQLONG compCode; /* completion code */

 /***/
 /* First check the required parameters */
 /***/
 printf("Sample Event Monitor (times out after 30 secs)\n");
 if (argc < 2)
 {
 printf("Required parameter missing - event queue to be monitored\n");
 exit(99);
 }

 /**/
 /* Connect to the queue manager */
 /**/
 if (argc > 2)
 strncpy(QMName, argv[2], (size_t)MQ_Q_MGR_NAME_LENGTH);
 MQCONN(QMName, &hConn, &compCode, &connReason);
 /***/
 /* Report the reason and stop if the connection failed */
 /***/
 if (compCode == MQCC_FAILED)
 {
 CheckCallResult("MQCONN", compCode, connReason);
 exit((int)connReason);
 }

 /***/
 /* Call the routine to open the event queue and format any event messages */
 /* read from the queue. */
 /***/
 GetQEvents(hConn, argv[1]);

 /***/
 /* Disconnect from the queue manager if not already connected */
 /***/
 if (connReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&hConn, &compCode, &reason);
 CheckCallResult("MQDISC", compCode, reason);
 }

 return 0;

}

/**/
/* */
/* Function: CheckCallResult */
/* */

48 Administering IBM MQ

/**/
/* */
/* Input Parameters: Description of call */
/* Completion code */
/* Reason code */
/* */
/* Output Parameters: None */
/* */
/* Logic: Display the description of the call, the completion code and the */
/* reason code if the completion code is not successful */
/* */
/**/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{
 if (cc != MQCC_OK)
 printf("%s failed: Completion Code = %d : Reason = %d\n",
 callText, cc, rc);

}

/**/
/* */
/* Function: GetQEvents */
/* */
/**/
/* */
/* Input Parameters: Handle to the queue manager */
/* Name of the event queue to be monitored */
/* */
/* Output Parameters: None */
/*
/* Logic: Open the event queue. */
/* Get a message off the event queue and format the message into */
/* a bag. */
/* A real event monitor would need to be programmed to deal with */
/* each type of event that it receives from the queue. This is */
/* outside the scope of this sample, so instead, the contents of */
/* the bag are printed. */
/* The program waits for 30 seconds for an event message and then */
/* terminates if no more messages are available. */
/* */
/**/
void GetQEvents(MQHCONN hConn, MQCHAR *qName)
{
 MQLONG openReason; /* MQOPEN reason code */
 MQLONG reason; /* reason code */
 MQLONG compCode; /* completion code */
 MQHOBJ eventQueue; /* handle to event queue */

 MQHBAG eventBag = MQHB_UNUSABLE_HBAG; /* event bag to receive event msg */
 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 MQLONG bQueueOK = 1; /* keep reading msgs while true */

 /***/
 /* Create an Event Bag in which to receive the event. */
 /* Exit the function if the create fails. */
 /***/
 mqCreateBag(MQCBO_USER_BAG, &eventBag, &compCode, &reason);
 CheckCallResult("Create event bag", compCode, reason);
 if (compCode !=MQCC_OK)
 return;

 /***/
 /* Open the event queue chosen by the user */
 /***/
 strncpy(od.ObjectName, qName, (size_t)MQ_Q_NAME_LENGTH);
 MQOPEN(hConn, &od, MQOO_INPUT_AS_Q_DEF+MQOO_FAIL_IF_QUIESCING, &eventQueue,
 &compCode, &openReason);
 CheckCallResult("Open event queue", compCode, openReason);

 /***/
 /* Set the GMO options to control the action of the get message from the */
 /* queue. */
 /***/
 gmo.WaitInterval = 30000; /* 30 second wait for message */
 gmo.Options = MQGMO_WAIT + MQGMO_FAIL_IF_QUIESCING + MQGMO_CONVERT;
 gmo.Version = MQGMO_VERSION_2; /* Avoid need to reset Message ID */
 gmo.MatchOptions = MQMO_NONE; /* and Correlation ID after every */
 /* mqGetBag
 /***/

Administering IBM MQ 49

 /* If open fails, we cannot access the queue and must stop the monitor. */
 /***/
 if (compCode != MQCC_OK)
 bQueueOK = 0;

 /***/
 /* Main loop to get an event message when it arrives */
 /***/
 while (bQueueOK)
 {
 printf("\nWaiting for an event\n");

 /***/
 /* Get the message from the event queue and convert it into the event */
 /* bag. */
 /***/
 mqGetBag(hConn, eventQueue, &md, &gmo, eventBag, &compCode, &reason);

 /***/
 /* If get fails, we cannot access the queue and must stop the monitor. */
 /***/
 if (compCode != MQCC_OK)
 {
 bQueueOK = 0;

 /***/
 /* If get fails because no message available then we have timed out, */
 /* so report this, otherwise report an error. */
 /***/
 if (reason == MQRC_NO_MSG_AVAILABLE)
 {
 printf("No more messages\n");
 }
 else
 {
 CheckCallResult("Get bag", compCode, reason);
 }
 }

 /***/
 /* Event message read - Print the contents of the event bag */
 /***/
 else
 {
 if (PrintBag(eventBag))
 printf("\nError found while printing bag contents\n");

 } /* end of msg found */
 } /* end of main loop */
 /***/
 /* Close the event queue if successfully opened */
 /***/
 if (openReason == MQRC_NONE)
 {
 MQCLOSE(hConn, &eventQueue, MQCO_NONE, &compCode, &reason);
 CheckCallResult("Close event queue", compCode, reason);
 }

 /***/
 /* Delete the event bag if successfully created. */
 /***/
 if (eventBag != MQHB_UNUSABLE_HBAG)
 {
 mqDeleteBag(&eventBag, &compCode, &reason);
 CheckCallResult("Delete the event bag", compCode, reason);
 }

} /* end of GetQEvents */

/**/
/* */
/* Function: PrintBag */
/* */
/**/
/* */
/* Input Parameters: Bag Handle */
/* */
/* Output Parameters: None */
/* */
/* Returns: Number of errors found */
/* */
/* Logic: Calls PrintBagContents to display the contents of the bag. */

50 Administering IBM MQ

/* */
/***

int PrintBag(MQHBAG dataBag)
{
 int errors;

 printf("\n");
 errors = PrintBagContents(dataBag, 0);
 printf("\n");

 return errors;
}

/**/
/* */
/* Function: PrintBagContents */
/* */
/**/
/* */
/* Input Parameters: Bag Handle */
/* Indentation level of bag */
/* */
/* Output Parameters: None */
/* */
/* Returns: Number of errors found */
/* */
/* Logic: Count the number of items in the bag */
/* Obtain selector and item type for each item in the bag. */
/* Obtain the value of the item depending on item type and display the */
/* index of the item, the selector and the value. */
/* If the item is an embedded bag handle then call this function again */
/* to print the contents of the embedded bag increasing the */
/* indentation level. */
/* */
/**/
int PrintBagContents(MQHBAG dataBag, int indent)
{
 /***/
 /* Definitions */
 /***/
 #define LENGTH 500 /* Max length of string to be read*/
 #define INDENT 4 /* Number of spaces to indent */
 /* embedded bag display */

 /***/
 /* Variables */
 /***/
 MQLONG itemCount; /* Number of items in the bag */
 MQLONG itemType; /* Type of the item */
 int i; /* Index of item in the bag */
 MQCHAR stringVal[LENGTH+1]; /* Value if item is a string */
 MQBYTE byteStringVal[LENGTH]; /* Value if item is a byte string */
 MQLONG stringLength; /* Length of string value */
 MQLONG ccsid; /* CCSID of string value */
 MQINT32 iValue; /* Value if item is an integer */
 MQINT64 i64Value; /* Value if item is a 64-bit */
 /* integer */
 MQLONG selector; /* Selector of item */
 MQHBAG bagHandle; /* Value if item is a bag handle */
 MQLONG reason; /* reason code */
 MQLONG compCode; /* completion code */
 MQLONG trimLength; /* Length of string to be trimmed */
 int errors = 0; /* Count of errors found */
 char blanks[] = " "; /* Blank string used to */
 /* indent display */

 /***/
 /* Count the number of items in the bag */
 /***/
 mqCountItems(dataBag, MQSEL_ALL_SELECTORS, &itemCount, &compCode, &reason);

 if (compCode != MQCC_OK)
 errors++;
 else
 {
 printf("
 printf("
 printf("
 }

Administering IBM MQ 51

 /***/
 /* If no errors found, display each item in the bag */
 /***/
 if (!errors)
 {
 for (i = 0; i < itemCount; i++)
 {

 /**/
 /* First inquire the type of the item for each item in the bag */
 /**/
 mqInquireItemInfo(dataBag, /* Bag handle */
 MQSEL_ANY_SELECTOR, /* Item can have any selector*/
 i, /* Index position in the bag */
 &selector, /* Actual value of selector */
 /* returned by call */
 &itemType, /* Actual type of item */
 /* returned by call */
 &compCode, /* Completion code */
 &reason); /* Reason Code */

 if (compCode != MQCC_OK)
 errors++;

 switch(itemType)
 {
 case MQITEM_INTEGER:
 /***/
 /* Item is an integer. Find its value and display its index, */
 /* selector and value. */
 /***/
 mqInquireInteger(dataBag, /* Bag handle */
 MQSEL_ANY_SELECTOR, /* Allow any selector */
 i, /* Index position in the bag */
 &iValue, /* Returned integer value
 &compCode, /* Completion code */
 &reason); /* Reason Code */

 if (compCode != MQCC_OK)
 errors++;
 else
 printf("%.*s %-2d %-4d (%d)\n",
 indent, blanks, i, selector, iValue);
 break

 case MQITEM_INTEGER64:
 /***/
 /* Item is a 64-bit integer. Find its value and display its */
 /* index, selector and value. */
 /***/
 mqInquireInteger64(dataBag, /* Bag handle */
 MQSEL_ANY_SELECTOR, /* Allow any selector */
 i, /* Index position in the bag */
 &i64Value, /* Returned integer value */
 &compCode, /* Completion code */
 &reason); /* Reason Code */

 if (compCode != MQCC_OK)
 errors++;
 else
 printf("%.*s %-2d %-4d (%"Int64"d)\n",
 indent, blanks, i, selector, i64Value);
 break;

 case MQITEM_STRING:
 /***/
 /* Item is a string. Obtain the string in a buffer, prepare */
 /* the string for displaying and display the index, selector, */
 /* string and Character Set ID. */
 /***/
 mqInquireString(dataBag, /* Bag handle */
 MQSEL_ANY_SELECTOR, /* Allow any selector */
 i, /* Index position in the bag */
 LENGTH, /* Maximum length of buffer */
 stringVal, /* Buffer to receive string */
 &stringLength, /* Actual length of string */
 &ccsid, /* Coded character set ID */
 &compCode, /* Completion code */
 &reason); /* Reason Code */

 /***/

52 Administering IBM MQ

 /* The call can return a warning if the string is too long for */
 /* the output buffer and has been truncated, so only check */
 /* explicitly for call failure. */
 /***/
 if (compCode == MQCC_FAILED)
 errors++;
 else
 {
 /**/
 /* Remove trailing blanks from the string and terminate with*/
 /* a null. First check that the string should not have been */
 /* longer than the maximum buffer size allowed. */
 /**/
 if (stringLength > LENGTH)
 trimLength = LENGTH;
 else
 trimLength = stringLength;
 mqTrim(trimLength, stringVal, stringVal, &compCode, &reason);
 printf("%.*s %-2d %-4d '%s' %d\n",
 indent, blanks, i, selector, stringVal, ccsid);
 }
 break;

 case MQITEM_BYTE_STRING:
 /***/
 /* Item is a byte string. Obtain the byte string in a buffer, */
 /* prepare the byte string for displaying and display the */
 /* index, selector and string. */
 /***/
 mqInquireByteString(dataBag, /* Bag handle */
 MQSEL_ANY_SELECTOR, /* Allow any selector */
 i, /* Index position in the bag */
 LENGTH, /* Maximum length of buffer */
 byteStringVal, /* Buffer to receive string */
 &stringLength, /* Actual length of string */
 &compCode, /* Completion code */
 &reason); /* Reason Code

 /***/
 /* The call can return a warning if the string is too long for */
 /* the output buffer and has been truncated, so only check */
 /* explicitly for call failure. */
 /***/
 if (compCode == MQCC_FAILED)
 errors++;
 else
 {
 printf("%.*s %-2d %-4d X'",
 indent, blanks, i, selector);

 for (i = 0 ; i < stringLength ; i++)
 printf("

 printf("'\n");
 }
 break;

 case MQITEM_BAG:
 /***/
 /* Item is an embedded bag handle, so call the PrintBagContents*/
 /* function again to display the contents. */
 /***/
 mqInquireBag(dataBag, /* Bag handle */
 MQSEL_ANY_SELECTOR, /* Allow any selector */
 i, /* Index position in the bag */
 &bagHandle, /* Returned embedded bag hdle*/
 &compCode, /* Completion code */
 &reason); /* Reason Code */

 if (compCode != MQCC_OK)
 errors++;
 else
 {
 printf("%.*s %-2d %-4d (%d)\n", indent, blanks, i,
 selector, bagHandle);
 if (selector == MQHA_BAG_HANDLE)
 printf("
 else
 printf("
 PrintBagContents(bagHandle, indent+INDENT);
 }
 break;

Administering IBM MQ 53

 default:
 printf("
 }
 }
 }
 return errors;
}

Sample C program for inquiring about channel objects (amqsaicl.c)
The sample C program amqsaicl.c inquires channel objects using the MQAI.

/**/
/* */
/* Program name: AMQSAICL.C */
/* */
/* Description: Sample C program to inquire channel objects */
/* using the IBM MQ Administration Interface (MQAI) */
/* */
/* <N_OCO_COPYRIGHT> */
/* Licensed Materials - Property of IBM */
/* */
/* 63H9336 */
/* (c) Copyright IBM Corp. 2008, 2024. All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* <NOC_COPYRIGHT> */
/**/
/* */
/* Function: */
/* AMQSAICL is a sample C program that demonstrates how to inquire */
/* attributes of the local queue manager using the MQAI interface. In */
/* particular, it inquires all channels and their types. */
/* */
/* - A PCF command is built from items placed into an MQAI administration */
/* bag. */
/* These are:- */
/* - The generic channel name "*" */
/* - The attributes to be inquired. In this sample we just want */
/* name and type attributes */
/* */
/* - The mqExecute MQCMD_INQUIRE_CHANNEL call is executed. */
/* The call generates the correct PCF structure. */
/* The default options to the call are used so that the command is sent */
/* to the SYSTEM.ADMIN.COMMAND.QUEUE. */
/* The reply from the command server is placed on a temporary dynamic */
/* queue. */
/* The reply from the MQCMD_INQUIRE_CHANNEL is read from the */
/* temporary queue and formatted into the response bag. */
/* */
/* - The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server, then the code returned by the */
/* command server is retrieved from the system bag that has been */
/* embedded in the response bag to the mqExecute call. */
/* */
/* Note: The command server must be running. */
/* */
/**/
/* */
/* AMQSAICL has 2 parameter - the queue manager name (optional) */
/* - output file (optional) default varies */
/**/

/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#if (MQAT_DEFAULT == MQAT_OS400)
#include <recio.h>
#endif

#include <cmqc.h> /* MQI */

54 Administering IBM MQ

#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */
#include <cmqxc.h> /* MQCD */

/**/
/* Function prototypes */
/**/
void CheckCallResult(MQCHAR *, MQLONG , MQLONG);

/**/
/* DataTypes */
/**/
#if (MQAT_DEFAULT == MQAT_OS400)
typedef _RFILE OUTFILEHDL;
#else
typedef FILE OUTFILEHDL;
#endif

/**/
/* Constants */
/**/
#if (MQAT_DEFAULT == MQAT_OS400)
const struct
{
 char name[9];
} ChlTypeMap[9] =
{
 "*SDR ", /* MQCHT_SENDER */
 "*SVR ", /* MQCHT_SERVER */
 "*RCVR ", /* MQCHT_RECEIVER */
 "*RQSTR ", /* MQCHT_REQUESTER */
 "*ALL ", /* MQCHT_ALL */
 "*CLTCN ", /* MQCHT_CLNTCONN */
 "*SVRCONN ", /* MQCHT_SVRCONN */
 "*CLUSRCVR", /* MQCHT_CLUSRCVR */
 "*CLUSSDR " /* MQCHT_CLUSSDR */
};
#else
const struct
{
 char name[9];
} ChlTypeMap[9] =
{
 "sdr ", /* MQCHT_SENDER */
 "svr ", /* MQCHT_SERVER */
 "rcvr ", /* MQCHT_RECEIVER */
 "rqstr ", /* MQCHT_REQUESTER */
 "all ", /* MQCHT_ALL */
 "cltconn ", /* MQCHT_CLNTCONN */
 "svrcn ", /* MQCHT_SVRCONN */
 "clusrcvr ", /* MQCHT_CLUSRCVR */
 "clussdr " /* MQCHT_CLUSSDR */
};
#endif

/**/
/* Macros */
/**/
#if (MQAT_DEFAULT == MQAT_OS400)
 #define OUTFILE "QTEMP/AMQSAICL(AMQSAICL)"
 #define OPENOUTFILE(hdl, fname) \
 (hdl) = _Ropen((fname),"wr, rtncode=Y");
 #define CLOSEOUTFILE(hdl) \
 _Rclose((hdl));
 #define WRITEOUTFILE(hdl, buf, buflen) \
 _Rwrite((hdl),(buf),(buflen));

#elif (MQAT_DEFAULT == MQAT_UNIX)
 #define OUTFILE "/tmp/amqsaicl.txt"
 #define OPENOUTFILE(hdl, fname) \
 (hdl) = fopen((fname),"w");
 #define CLOSEOUTFILE(hdl) \
 fclose((hdl));
 #define WRITEOUTFILE(hdl, buf, buflen) \
 fwrite((buf),(buflen),1,(hdl)); fflush((hdl));

#else
 #define OUTFILE "amqsaicl.txt"
 #define OPENOUTFILE(fname) \
 fopen((fname),"w");
 #define CLOSEOUTFILE(hdl) \
 fclose((hdl));

Administering IBM MQ 55

 #define WRITEOUTFILE(hdl, buf, buflen) \
 fwrite((buf),(buflen),1,(hdl)); fflush((hdl));

#endif

#define ChlType2String(t) ChlTypeMap[(t)-1].name

/**/
/* Function: main */
/**/
int main(int argc, char *argv[])
{
 /***/
 /* MQAI variables */
 /***/
 MQHCONN hConn; /* handle to MQ connection */
 MQCHAR qmName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QMgr name */
 MQLONG reason; /* reason code */
 MQLONG connReason; /* MQCONN reason code */
 MQLONG compCode; /* completion code */
 MQHBAG adminBag = MQHB_UNUSABLE_HBAG; /* admin bag for mqExecute */
 MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mqExecute */
 MQHBAG cAttrsBag; /* bag containing chl attributes */
 MQHBAG errorBag; /* bag containing cmd server error */
 MQLONG mqExecuteCC; /* mqExecute completion code */
 MQLONG mqExecuteRC; /* mqExecute reason code */
 MQLONG chlNameLength; /* Actual length of chl name */
 MQLONG chlType; /* Channel type */
 MQLONG i; /* loop counter */
 MQLONG numberOfBags; /* number of bags in response bag */
 MQCHAR chlName[MQ_OBJECT_NAME_LENGTH+1];/* name of chl extracted from bag */
 MQCHAR OutputBuffer[100]; /* output data buffer */
 OUTFILEHDL *outfp = NULL; /* output file handle */

 /***/
 /* Connect to the queue manager */
 /***/
 if (argc > 1)
 strncpy(qmName, argv[1], (size_t)MQ_Q_MGR_NAME_LENGTH);
 MQCONN(qmName, &hConn;, &compCode;, &connReason;);

 /***/
 /* Report the reason and stop if the connection failed. */
 /***/
 if (compCode == MQCC_FAILED)
 {
 CheckCallResult("Queue Manager connection", compCode, connReason);
 exit((int)connReason);
 }

 /***/
 /* Open the output file */
 /***/
 if (argc > 2)
 {
 OPENOUTFILE(outfp, argv[2]);
 }
 else
 {
 OPENOUTFILE(outfp, OUTFILE);
 }

 if(outfp == NULL)
 {
 printf("Could not open output file.\n");
 goto MOD_EXIT;
 }
 /***/
 /* Create an admin bag for the mqExecute call */
 /***/
 mqCreateBag(MQCBO_ADMIN_BAG, &adminBag;, &compCode;, &reason;);
 CheckCallResult("Create admin bag", compCode, reason);

 /***/
 /* Create a response bag for the mqExecute call */
 /***/
 mqCreateBag(MQCBO_ADMIN_BAG, &responseBag;, &compCode;, &reason;);
 CheckCallResult("Create response bag", compCode, reason);

 /***/
 /* Put the generic channel name into the admin bag */
 /***/

56 Administering IBM MQ

 mqAddString(adminBag, MQCACH_CHANNEL_NAME, MQBL_NULL_TERMINATED, "*",
 &compCode;, &reason;);
 CheckCallResult("Add channel name", compCode, reason);

 /***/
 /* Put the channel type into the admin bag */
 /***/
 mqAddInteger(adminBag, MQIACH_CHANNEL_TYPE, MQCHT_ALL, &compCode;, &reason;);
 CheckCallResult("Add channel type", compCode, reason);

 /***/
 /* Add an inquiry for various attributes */
 /***/
 mqAddInquiry(adminBag, MQIACH_CHANNEL_TYPE, &compCode;, &reason;);
 CheckCallResult("Add inquiry", compCode, reason);

 /***/
 /* Send the command to find all the channel names and channel types. */
 /* The mqExecute call creates the PCF structure required, sends it to */
 /* the command server, and receives the reply from the command server into */
 /* the response bag. The attributes are contained in system bags that are */
 /* embedded in the response bag, one set of attributes per bag. */
 /***/
 mqExecute(hConn, /* MQ connection handle */
 MQCMD_INQUIRE_CHANNEL, /* Command to be executed */
 MQHB_NONE, /* No options bag */
 adminBag, /* Handle to bag containing commands */
 responseBag, /* Handle to bag to receive the response*/
 MQHO_NONE, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE*/
 MQHO_NONE, /* Create a dynamic q for the response */
 &compCode;, /* Completion code from the mqexecute */
 &reason;); /* Reason code from mqexecute call */

 /***/
 /* Check the command server is started. If not exit. */
 /***/
 if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)
 {
 printf("Please start the command server: <strmqcsv QMgrName="">\n");
 goto MOD_EXIT;
 }

 /***/
 /* Check the result from mqExecute call. If successful find the channel */
 /* types for all the channels. If failed find the error. */
 /***/
 if (compCode == MQCC_OK) /* Successful mqExecute */
 {
 /***/
 /* Count the number of system bags embedded in the response bag from the */
 /* mqExecute call. The attributes for each channel are in separate bags. */
 /***/
 mqCountItems(responseBag, MQHA_BAG_HANDLE, &numberOfBags;,
 &compCode;, &reason;);
 CheckCallResult("Count number of bag handles", compCode, reason);

 for (i=0; i<numberOfbags; i++)
 {
 /***/
 /* Get the next system bag handle out of the mqExecute response bag. */
 /* This bag contains the channel attributes */
 /***/
 mqInquireBag(responseBag, MQHA_BAG_HANDLE, i, &cAttrsbag,
 &compCode, &reason);
 CheckCallResult("Get the result bag handle", compCode, reason);

 /***/
 /* Get the channel name out of the channel attributes bag */
 /***/
 mqInquireString(cAttrsBag, MQCACH_CHANNEL_NAME, 0, MQ_OBJECT_NAME_LENGTH,
 chlName, &chlNameLength, NULL, &compCode, &reason);
 CheckCallResult("Get channel name", compCode, reason);

 /***/
 /* Get the channel type out of the channel attributes bag */
 /***/

 mqInquireInteger(cAttrsBag, MQIACH_CHANNEL_TYPE, MQIND_NONE, &chlType,
 &compCode, &reason);
 CheckCallResult("Get type", compCode, reason);

 /***/

Administering IBM MQ 57

 /* Use mqTrim to prepare the channel name for printing. */
 /* Print the result. */
 /***/
 mqTrim(MQ_CHANNEL_NAME_LENGTH, chlName, chlName, &compCode, &reason);
 sprintf(OutputBuffer, "%-20s%-9s", chlName, ChlType2String(chlType));
 WRITEOUTFILE(outfp,OutputBuffer,29)
 }
 }

 else /* Failed mqExecute */
 {
 printf("Call to get channel attributes failed: Cc = %ld : Rc = %ld\n",
 compCode, reason);
 /***/
 /* If the command fails get the system bag handle out of the mqexecute */
 /* response bag.This bag contains the reason from the command server */
 /* why the command failed. */
 /***/
 if (reason == MQRCCF_COMMAND_FAILED)
 {
 mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &errorBag,
 &compCode, &reason);
 CheckCallResult("Get the result bag handle", compCode, reason);

 /***/
 /* Get the completion code and reason code, returned by the command */
 /* server, from the embedded error bag. */
 /***/
 mqInquireInteger(errorBag, MQIASY_COMP_CODE, MQIND_NONE, &mqExecuteCC,
 &compCode, &reason);
 CheckCallResult("Get the completion code from the result bag",
 compCode, reason);
 mqInquireInteger(errorBag, MQIASY_REASON, MQIND_NONE, &mqExecuteRC,
 &compCode, &reason);
 CheckCallResult("Get the reason code from the result bag",
 compCode, reason);
 printf("Error returned by the command server: Cc = %ld : Rc = %ld\n",
 mqExecuteCC, mqExecuteRC);
 }
 }

MOD_EXIT:
 /***/
 /* Delete the admin bag if successfully created. */
 /***/
 if (adminBag != MQHB_UNUSABLE_HBAG)
 {
 mqDeleteBag(&adminBag, &compCode, &reason);
 CheckCallResult("Delete the admin bag", compCode, reason);
 }

 /***/
 /* Delete the response bag if successfully created. */
 /***/
 if (responseBag != MQHB_UNUSABLE_HBAG)
 {
 mqDeleteBag(&responseBag, &compCode, &reason);
 CheckCallResult("Delete the response bag", compCode, reason);
 }

 /***/
 /* Disconnect from the queue manager if not already connected */
 /***/
 if (connReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&hConn, &compCode, &reason);
 CheckCallResult("Disconnect from Queue Manager", compCode, reason);
 }

 /***/
 /* Close the output file if open */
 /***/
 if(outfp != NULL)
 CLOSEOUTFILE(outfp);

 return 0;
}

/**/
/* */
/* Function: CheckCallResult */

58 Administering IBM MQ

/* */
/**/
/* */
/* Input Parameters: Description of call */
/* Completion code */
/* Reason code */
/* */
/* Output Parameters: None */
/* */
/* Logic: Display the description of the call, the completion code and the */
/* reason code if the completion code is not successful */
/* */
/**/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{
 if (cc != MQCC_OK)
 printf("%s failed: Completion Code = %ld : Reason = %ld\n", callText,
 cc, rc);
}

Sample C program for inquiring about queues and printing
information (amqsailq.c)
The sample C program amqsailq.c inquires the current depth of the local queues using the MQAI.

/**/
/* */
/* Program name: AMQSAILQ.C */
/* */
/* Description: Sample C program to inquire the current depth of the local */
/* queues using the IBM MQ Administration Interface (MQAI) */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 84H2000, 5765-B73 */
/* 84H2001, 5639-B42 */
/* 84H2002, 5765-B74 */
/* 84H2003, 5765-B75 */
/* 84H2004, 5639-B43 */
/* */
/* (C) Copyright IBM Corp. 1999, 2024 */
/* */
/**/
/* */
/* Function: */
/* AMQSAILQ is a sample C program that demonstrates how to inquire */
/* attributes of the local queue manager using the MQAI interface. In */
/* particular, it inquires the current depths of all the local queues. */
/* */
/* - A PCF command is built by placing items into an MQAI administration */
/* bag. */
/* These are:- */
/* - The generic queue name "*" */
/* - The type of queue required. In this sample we want to */
/* inquire local queues. */
/* - The attribute to be inquired. In this sample we want the */
/* current depths. */
/* */
/* - The mqExecute call is executed with the command MQCMD_INQUIRE_Q. */
/* The call generates the correct PCF structure. */
/* The default options to the call are used so that the command is sent */
/* to the SYSTEM.ADMIN.COMMAND.QUEUE. */
/* The reply from the command server is placed on a temporary dynamic */
/* queue. */
/* The reply from the MQCMD_INQUIRE_Q command is read from the */
/* temporary queue and formatted into the response bag. */
/* */
/* - The completion code from the mqExecute call is checked and if there */
/* is a failure from the command server, then the code returned by */
/* command server is retrieved from the system bag that has been */
/* embedded in the response bag to the mqExecute call. */
/* */
/* - If the call is successful, the depth of each local queue is placed */
/* in system bags embedded in the response bag of the mqExecute call. */
/* The name and depth of each queue is obtained from each of the bags */
/* and the result displayed on the screen. */
/* */

Administering IBM MQ 59

/* Note: The command server must be running. */
/* */
/**/
/* */
/* AMQSAILQ has 1 parameter - the queue manager name (optional) */
/* */
/**/

/**/
/* Includes */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#include <cmqc.h> /* MQI */
#include <cmqcfc.h> /* PCF */
#include <cmqbc.h> /* MQAI */

/**/
/* Function prototypes */
/**/
void CheckCallResult(MQCHAR *, MQLONG , MQLONG);

/**/
/* Function: main */
/**/
int main(int argc, char *argv[])
{
 /***/
 /* MQAI variables */
 /***/
 MQHCONN hConn; /* handle to IBM MQ connection */
 MQCHAR qmName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QMgr name */
 MQLONG reason; /* reason code */
 MQLONG connReason; /* MQCONN reason code */
 MQLONG compCode; /* completion code */
 MQHBAG adminBag = MQHB_UNUSABLE_HBAG; /* admin bag for mqExecute */
 MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mqExecute */
 MQHBAG qAttrsBag; /* bag containing q attributes */
 MQHBAG errorBag; /* bag containing cmd server error */
 MQLONG mqExecuteCC; /* mqExecute completion code */
 MQLONG mqExecuteRC; /* mqExecute reason code */
 MQLONG qNameLength; /* Actual length of q name */
 MQLONG qDepth; /* depth of queue */
 MQLONG i; /* loop counter */
 MQLONG numberOfBags; /* number of bags in response bag */
 MQCHAR qName[MQ_Q_NAME_LENGTH+1]; /* name of queue extracted from bag*/

 printf("Display current depths of local queues\n\n");

 /***/
 /* Connect to the queue manager */
 /***/
 if (argc > 1)
 strncpy(qmName, argv[1], (size_t)MQ_Q_MGR_NAME_LENGTH);
 MQCONN(qmName, &hConn, &compCode, &connReason);

 /***/
 /* Report the reason and stop if the connection failed. */
 /***/
 if (compCode == MQCC_FAILED)
 {
 CheckCallResult("Queue Manager connection", compCode, connReason);
 exit((int)connReason);
 }

 /***/
 /* Create an admin bag for the mqExecute call */
 /***/
 mqCreateBag(MQCBO_ADMIN_BAG, &adminBag, &compCode, &reason);
 CheckCallResult("Create admin bag", compCode, reason);
 /***/
 /* Create a response bag for the mqExecute call */
 /***/
 mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &compCode, &reason);
 CheckCallResult("Create response bag", compCode, reason);

 /***/
 /* Put the generic queue name into the admin bag */

60 Administering IBM MQ

 /***/
 mqAddString(adminBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, "*",
 &compCode, &reason);
 CheckCallResult("Add q name", compCode, reason);

 /***/
 /* Put the local queue type into the admin bag */
 /***/
 mqAddInteger(adminBag, MQIA_Q_TYPE, MQQT_LOCAL, &compCode, &reason);
 CheckCallResult("Add q type", compCode, reason);

 /***/
 /* Add an inquiry for current queue depths */
 /***/
 mqAddInquiry(adminBag, MQIA_CURRENT_Q_DEPTH, &compCode, &reason);
 CheckCallResult("Add inquiry", compCode, reason);

 /***/
 /* Send the command to find all the local queue names and queue depths. */
 /* The mqExecute call creates the PCF structure required, sends it to */
 /* the command server, and receives the reply from the command server into */
 /* the response bag. The attributes are contained in system bags that are */
 /* embedded in the response bag, one set of attributes per bag. */
 /***/
 mqExecute(hConn, /* IBM MQ connection handle */
 MQCMD_INQUIRE_Q, /* Command to be executed */
 MQHB_NONE, /* No options bag */
 adminBag, /* Handle to bag containing commands */
 responseBag, /* Handle to bag to receive the response*/
 MQHO_NONE, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE*/
 MQHO_NONE, /* Create a dynamic q for the response */
 &compCode, /* Completion code from the mqExecute */
 &reason); /* Reason code from mqExecute call */

 /***/
 /* Check the command server is started. If not exit. */
 /***/
 if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)
 {
 printf("Please start the command server: <strmqcsv QMgrName>\n");
 MQDISC(&hConn, &compCode, &reason);
 CheckCallResult("Disconnect from Queue Manager", compCode, reason);
 exit(98);
 }

 /***/
 /* Check the result from mqExecute call. If successful find the current */
 /* depths of all the local queues. If failed find the error. */
 /***/
 if (compCode == MQCC_OK) /* Successful mqExecute */
 {
 /***/
 /* Count the number of system bags embedded in the response bag from the */
 /* mqExecute call. The attributes for each queue are in a separate bag. */
 /***/
 mqCountItems(responseBag, MQHA_BAG_HANDLE, &numberOfBags, &compCode,
 &reason);
 CheckCallResult("Count number of bag handles", compCode, reason);

 for (i=0; i<numberOfBags; i++)
 {
 /***/
 /* Get the next system bag handle out of the mqExecute response bag. */
 /* This bag contains the queue attributes */
 /***/
 mqInquireBag(responseBag, MQHA_BAG_HANDLE, i, &qAttrsBag, &compCode,
 &reason);
 CheckCallResult("Get the result bag handle", compCode, reason);

 /***/
 /* Get the queue name out of the queue attributes bag */
 /***/
 mqInquireString(qAttrsBag, MQCA_Q_NAME, 0, MQ_Q_NAME_LENGTH, qName,
 &qNameLength, NULL, &compCode, &reason);
 CheckCallResult("Get queue name", compCode, reason);

 /***/
 /* Get the depth out of the queue attributes bag */
 /***/
 mqInquireInteger(qAttrsBag, MQIA_CURRENT_Q_DEPTH, MQIND_NONE, &qDepth,
 &compCode, &reason);

Administering IBM MQ 61

 CheckCallResult("Get depth", compCode, reason);

 /***/
 /* Use mqTrim to prepare the queue name for printing. */
 /* Print the result. */
 /***/
 mqTrim(MQ_Q_NAME_LENGTH, qName, qName, &compCode, &reason);
 printf("%4d %-48s\n", qDepth, qName);
 }
 }

 else /* Failed mqExecute */
 {
 printf("Call to get queue attributes failed: Completion Code = %d :
 Reason = %d\n", compCode, reason);

 /***/
 /* If the command fails get the system bag handle out of the mqExecute */
 /* response bag. This bag contains the reason from the command server */
 /* why the command failed. */
 /***/
 if (reason == MQRCCF_COMMAND_FAILED)
 {
 mqInquireBag(responseBag, MQHA_BAG_HANDLE, 0, &errorBag, &compCode,
 &reason);
 CheckCallResult("Get the result bag handle", compCode, reason);

 /**/
 /* Get the completion code and reason code, returned by the command */
 /* server, from the embedded error bag. */
 /**/
 mqInquireInteger(errorBag, MQIASY_COMP_CODE, MQIND_NONE, &mqExecuteCC,
 &compCode, &reason);
 CheckCallResult("Get the completion code from the result bag",
 compCode, reason);
 mqInquireInteger(errorBag, MQIASY_REASON, MQIND_NONE, &mqExecuteRC,
 &compCode, &reason);
 CheckCallResult("Get the reason code from the result bag",
 compCode, reason);
 printf("Error returned by the command server: Completion Code = %d :
 Reason = %d\n", mqExecuteCC, mqExecuteRC);
 }
 }

 /**/
 /* Delete the admin bag if successfully created. */
 /**/
 if (adminBag != MQHB_UNUSABLE_HBAG)
 {
 mqDeleteBag(&adminBag, &compCode, &reason);
 CheckCallResult("Delete the admin bag", compCode, reason);
 }

 /**/
 /* Delete the response bag if successfully created. */
 /**/
 if (responseBag != MQHB_UNUSABLE_HBAG)
 {
 mqDeleteBag(&responseBag, &compCode, &reason);
 CheckCallResult("Delete the response bag", compCode, reason);
 }

 /**/
 /* Disconnect from the queue manager if not already connected */
 /**/
 if (connReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&hConn, &compCode, &reason);
 CheckCallResult("Disconnect from queue manager", compCode, reason);
 }
 return 0;
}

***/
* */
* Function: CheckCallResult */
* */
***/
* */
* Input Parameters: Description of call */
* Completion code */
* Reason code */

62 Administering IBM MQ

* */
* Output Parameters: None */
* */
* Logic: Display the description of the call, the completion code and the */
* reason code if the completion code is not successful */
* */
***/
void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{
 if (cc != MQCC_OK)
 printf("%s failed: Completion Code = %d : Reason = %d\n",
 callText, cc, rc);
}

Data bags and the MQAI
A data bag is a means of handling properties or parameters of objects using the IBM MQ Administration
Interface (MQAI).

Data Bags

• The data bag contains zero or more data items. These data items are ordered within the bag as they are
placed into the bag. This is called the insertion order. Each data item contains a selector that identifies
the data item and a value of that data item that can be either an integer, a 64-bit integer, an integer
filter, a string, a string filter, a byte string, a byte string filter, or a handle of another bag. Data items are
described in details in “Types of data item available in the MQAI” on page 65

There are two types of selector; user selectors and system selectors. These are described in MQAI
Selectors. The selectors are usually unique, but it is possible to have multiple values for the same
selector. In this case, an index identifies the particular occurrence of selector that is required. Indexes
are described in “Indexing in the MQAI” on page 39.

A hierarchy of these concepts is shown in Figure 1.

Figure 4. Hierarchy of MQAI concepts

The hierarchy has been explained in a previous paragraph.

Administering IBM MQ 63

Types of data bag
You can choose the type of data bag that you want to create depending on the task that you want to
perform:
user bag

A simple bag used for user data.
administration bag

A bag created for data used to administer IBM MQ objects by sending administration messages
to a command server. The administration bag automatically implies certain options as described in
“Creating and deleting data bags” on page 64.

command bag
A bag also created for commands for administering IBM MQ objects. However, unlike the
administration bag, the command bag does not automatically imply certain options although these
options are available. For more information about options, see “Creating and deleting data bags” on
page 64.

group bag
A bag used to hold a set of grouped data items. Group bags cannot be used for administering IBM MQ
objects.

In addition, the system bag is created by the MQAI when a reply message is returned from the command
server and placed into a user's output bag. A system bag cannot be modified by the user.

Using Data Bags The different ways of using data bags are listed in this topic:

Using Data Bags
The different ways of using data bags are shown in the following list:

• You can create and delete data bags “Creating and deleting data bags” on page 64.
• You can send data between applications using data bags “Putting and receiving data bags using the

MQAI” on page 65.
• You can add data items to data bags “Adding data items to bags with the MQAI” on page 66.
• You can add an inquiry command within a data bag “Adding an inquiry command to a bag” on page 67.
• You can inquire within data bags “Inquiring within data bags” on page 67.
• You can count data items within a data bag “Counting data items” on page 70.
• You can change information within a data bag “Changing information within a bag” on page 68.
• You can clear a data bag “Clearing a bag using the mqClearBag call” on page 69.
• You can truncate a data bag “Truncating a bag using the mqTruncateBag call” on page 69.
• You can convert bags and buffers “Converting bags and buffers” on page 69.

Creating and deleting data bags

Creating data bags
To use the MQAI, you first create a data bag using the mqCreateBag call. As input to this call, you supply
one or more options to control the creation of the bag.

The Options parameter of the MQCreateBag call lets you choose whether to create a user bag, a
command bag, a group bag, or an administration bag.

To create a user bag, a command bag, or a group bag, you can choose one or more further options to:

• Use the list form when there are two or more adjacent occurrences of the same selector in a bag.
• Reorder the data items as they are added to a PCF message to ensure that the parameters are in their

correct order. For more information on data items, see “Types of data item available in the MQAI” on
page 65.

64 Administering IBM MQ

• Check the values of user selectors for items that you add to the bag.

Administration bags automatically imply these options.

A data bag is identified by its handle. The bag handle is returned from mqCreateBag and must be supplied
on all other calls that use the data bag.

For a full description of the mqCreateBag call, see mqCreateBag.

Deleting data bags

Any data bag that is created by the user must also be deleted using the mqDeleteBag call. For example, if
a bag is created in the user code, it must also be deleted in the user code.

System bags are created and deleted automatically by the MQAI. For more information about this, see
“Sending administration commands to the qm command server using the mqExecute call” on page 71.
User code cannot delete a system bag.

For a full description of the mqDeleteBag call, see mqDeleteBag.

Putting and receiving data bags using the MQAI
Data can also be sent between applications by putting and getting data bags using the mqPutBag and
mqGetBag calls. This lets the IBM MQ Administration Interface (MQAI) handle the buffer rather than the
application.

The mqPutBag call converts the contents of the specified bag into a PCF message and sends the message
to the specified queue and the mqGetBag call removes the message from the specified queue and
converts it back into a data bag. Therefore, the mqPutBag call is the equivalent of the mqBagToBuffer call
followed by MQPUT, and the mqGetBag is the equivalent of the MQGET call followed by mqBufferToBag.

For more information on sending and receiving PCF messages in a specific queue, see “Sending and
receiving PCF messages in a specified queue” on page 28

Note: If you choose to use the mqGetBag call, the PCF details within the message must be correct; if they
are not, an appropriate error results and the PCF message is not returned.

Types of data item available in the MQAI
Data items are used by the IBM MQ Administration Interface (MQAI) to populate data bags when they are
created. These data items can be user or system items.

These user items contain user data such as attributes of objects that are being administered. System
items should be used for more control over the messages generated: for example, the generation of
message headers. For more information about system items, see “System items and the MQAI” on page
66.

Types of Data Items
When you have created a data bag, you can populate it with integer or character-string items. You can
inquire about all three types of item.

The data item can either be integer or character-string items. Here are the types of data item available
within the MQAI:

• Integer
• 64-bit integer
• Integer filter
• Character-string
• String filter
• Byte string

Administering IBM MQ 65

• Byte string filter
• Bag handle

Using Data Items
These are the following ways of using data items:

• “Counting data items” on page 70.
• “Deleting data items” on page 70.
• “Adding data items to bags with the MQAI” on page 66.
• “Filtering and querying data items” on page 67.

System items and the MQAI

System items can be used by the IBM MQ Administration Interface (MQAI) for:

• The generation of PCF headers. System items can control the PCF command identifier, control options,
message sequence number, and command type.

• Data conversion. System items handle the character-set identifier for the character-string items in the
bag.

Like all data items, system items consist of a selector and a value. For information about these selectors
and what they are for, see MQAI Selectors.

System items are unique. One or more system items can be identified by a system selector. There is only
one occurrence of each system selector.

Most system items can be modified (see “Changing information within a bag” on page 68), but the
bag-creation options cannot be changed by the user. You cannot delete system items. (See “Deleting data
items” on page 70.)

Adding data items to bags with the MQAI
When a data bag is created using the IBM MQ Administration Interface (MQAI), you can populate it with
data items. These data items can be user or system items.

For more information about data items, see “Types of data item available in the MQAI” on page 65.

The MQAI lets you add integer items, 64-bit integer items, integer filter items, character-string items,
string filter, byte string items, and byte string filter items to bags and this is shown in Figure 5 on page
66. The items are identified by a selector. Usually one selector identifies one item only, but this is not
always the case. If a data item with the specified selector is already present in the bag, an additional
instance of that selector is added to the end of the bag.

Figure 5. Adding data items

Add data items to a bag using the mqAdd* calls:

• To add integer items, use the mqAddInteger call as described in mqAddInteger

66 Administering IBM MQ

• To add 64-bit integer items, use the mqAddInteger64 call as described in mqAddInteger64
• To add integer filter items, use the mqAddIntegerFilter call as described in mqAddIntegerFilter
• To add character-string items, use the mqAddString call as described in mqAddString
• To add string filter items, use the mqAddStringFilter call as described in mqAddStringFilter
• To add byte string items, use the mqAddByteString call as described in mqAddByteString
• To add byte string filter items, use the mqAddByteStringFilter call as described in

mqAddByteStringFilter

For more information on adding data items to a bag, see “System items and the MQAI” on page 66.

Adding an inquiry command to a bag

The mqAddInquiry call is used to add an inquiry command to a bag. The call is specifically for
administration purposes, so it can be used with administration bags only. It lets you specify the selectors
of attributes on which you want to inquire from IBM MQ.

For a full description of the mqAddInquiry call, see mqAddInquiry.

Filtering and querying data items

When using the MQAI to inquire about the attributes of IBM MQ objects, you can control the data that is
returned to your program in two ways.

• You can filter the data that is returned using the mqAddInteger and mqAddString calls. This approach
lets you specify a Selector and ItemValue pair, for example:

mqAddInteger(inputbag, MQIA_Q_TYPE, MQQT_LOCAL)

This example specifies that the queue type (Selector) must be local (ItemValue) and this
specification must match the attributes of the object (in this case, a queue) about which you are
inquiring.

Other attributes that can be filtered correspond to the PCF Inquire* commands that can be found
in “Introduction to IBM MQ Programmable Command Formats” on page 25. For example, to inquire
about the attributes of a channel, see the Inquire Channel command in this product documentation.
The "Required parameters" and "Optional parameters" of the Inquire Channel command identify the
selectors that you can use for filtering.

• You can query particular attributes of an object using the mqAddInquiry call. This specifies the selector
in which you are interested. If you do not specify the selector, all attributes of the object are returned.

Here is an example of filtering and querying the attributes of a queue:

/* Request information about all queues */
mqAddString(adminbag, MQCA_Q_NAME, "*")

/* Filter attributes so that local queues only are returned */
mqAddInteger(adminbag, MQIA_Q_TYPE, MQQT_LOCAL)

/* Query the names and current depths of the local queues */
mqAddInquiry(adminbag, MQCA_Q_NAME)
mqAddInquiry(adminbag, MQIA_CURRENT_Q_DEPTH)

/* Send inquiry to the command server and wait for reply */
mqExecute(MQCMD_INQUIRE_Q, ...)

Inquiring within data bags

You can inquire about:

• The value of an integer item using the mqInquireInteger call. See mqInquireInteger.
• The value of a 64-bit integer item using the mqInquireInteger64 call. See mqInquireInteger64.

Administering IBM MQ 67

• The value of an integer filter item using the mqInquireIntegerFilter call. See mqInquireIntegerFilter.
• The value of a character-string item using the mqInquireString call. See mqInquireString.
• The value of a string filter item using the mqInquireStringFilter call. See mqInquireStringFilter.
• The value of a byte string item using the mqInquireByteString call. See mqInquireByteString.
• The value of a byte string filter item using the mqInquireByteStringFilter call. See

mqInquireByteStringFilter.
• The value of a bag handle using the mqInquireBag call. See mqInquireBag.

You can also inquire about the type (integer, 64-bit integer, integer filter, character string, string filter,
byte string, byte string filter or bag handle) of a specific item using the mqInquireItemInfo call. See
mqInquireItemInfo.

Changing information within a bag

The MQAI lets you change information within a bag using the mqSet* calls. You can:

1. Modify data items within a bag. The index allows an individual instance of a parameter to be replaced
by identifying the occurrence of the item to be modified (see Figure 6 on page 68).

Figure 6. Modifying a single data item
2. Delete all existing occurrences of the specified selector and add a new occurrence to the end of the

bag. (See Figure 7 on page 68.) A special index value allows all instances of a parameter to be
replaced.

Figure 7. Modifying all data items

Note: The index preserves the insertion order within the bag but can affect the indices of other data
items.

The mqSetInteger call lets you modify integer items within a bag. The mqSetInteger64 call lets you
modify 64-bit integer items. The mqSetIntegerFilter call lets you modify integer filter items. The
mqSetString call lets you modify character-string items. The mqSetStringFilter call lets you modify string
filter items. The mqSetByteString call lets you modify byte string items. The mqSetByteStringFilter call
lets you modify byte string filter items. Alternatively, you can use these calls to delete all existing

68 Administering IBM MQ

occurrences of the specified selector and add a new occurrence at the end of the bag. The data item
can be a user item or a system item.

For a full description of these calls, see:

• mqSetInteger
• mqSetInteger64
• mqSetIntegerFilter
• mqSetString
• mqSetStringFilter
• mqSetByteString
• mqSetByteStringFilter

Clearing a bag using the mqClearBag call

The mqClearBag call removes all user items from a user bag and resets system items to their initial
values. System bags contained within the bag are also deleted.

For a full description of the mqClearBag call, see mqClearBag.

Truncating a bag using the mqTruncateBag call

The mqTruncateBag call reduces the number of user items in a user bag by deleting the items from the
end of the bag, starting with the most recently added item. For example, it can be used when using the
same header information to generate more than one message.

Figure 8. Truncating a bag

For a full description of the mqTruncateBag call, see mqTruncateBag.

Converting bags and buffers

To send data between applications, firstly the message data is placed in a bag. Then, the data in the bag
is converted into a PCF message using the mqBagToBuffer call. The PCF message is sent to the required
queue using the MQPUT call. This is shown in Figure Figure 9 on page 69. For a full description of the
mqBagToBuffer call, see mqBagToBuffer.

Figure 9. Converting bags to PCF messages

Administering IBM MQ 69

To receive data, the message is received into a buffer using the MQGET call. The data in the buffer is then
converted into a bag using the mqBufferToBag call, providing the buffer contains a valid PCF message.
This is shown in Figure Figure 10 on page 70. For a full description of the mqBufferToBag call, see
mqBufferToBag.

Figure 10. Converting PCF messages to bag form

Counting data items

The mqCountItems call counts the number of user items, system items, or both, that are stored in a data
bag, and returns this number. For example, mqCountItems(Bag, 7, ...), returns the number of
items in the bag with a selector of 7. It can count items by individual selector, by user selectors, by system
selectors, or by all selectors.

Note: This call counts the number of data items, not the number of unique selectors in the bag. A selector
can occur multiple times, so there might be fewer unique selectors in the bag than data items.

For a full description of the mqCountItems call, see mqCountItems.

Deleting data items

You can delete items from bags in a number of ways. You can:

• Remove one or more user items from a bag. For detailed information, see “Deleting data items from a
bag using the mqDeleteItem call” on page 70.

• Delete all user items from a bag, that is, clear a bag. For detailed information see “Clearing a bag using
the mqClearBag call” on page 69.

• Delete user items from the end of a bag, that is, truncate a bag. For detailed information, see
“Truncating a bag using the mqTruncateBag call” on page 69.

Deleting data items from a bag using the mqDeleteItem call

The mqDeleteItem call removes one or more user items from a bag. The index is used to delete either:

1. A single occurrence of the specified selector. (See Figure 11 on page 70.)

Figure 11. Deleting a single data item

or
2. All occurrences of the specified selector. (See Figure 12 on page 71.)

70 Administering IBM MQ

Figure 12. Deleting all data items

Note: The index preserves the insertion order within the bag but can affect the indices of other data
items. For example, the mqDeleteItem call does not preserve the index values of the data items that
follow the deleted item because the indices are reorganized to fill the gap that remains from the deleted
item.

For a full description of the mqDeleteItem call, see mqDeleteItem.

Sending administration commands to the qm command server
using the mqExecute call
When a data bag has been created and populated, an administrative command message can be sent to
the command server of a queue manager using the mqExecute call. This handles the exchange with the
command server and returns responses in a bag.

After you have created and populated your data bag, you can send an administration command message
to the command server of a queue manager. The easiest way to do this is by using the mqExecute call.
The mqExecute call sends an administration command message as a nonpersistent message and waits
for any responses. Responses are returned in a response bag. These might contain information about
attributes relating to several IBM MQ objects or a series of PCF error response messages, for example.
Therefore, the response bag could contain a return code only or it could contain nested bags.

Response messages are placed into system bags that are created by the system. For example, for
inquiries about the names of objects, a system bag is created to hold those object names and the bag is
inserted into the user bag. Handles to these bags are then inserted into the response bag and the nested
bag can be accessed by the selector MQHA_BAG_HANDLE. The system bag stays in storage, if it is not
deleted, until the response bag is deleted.

The concept of nesting is shown in Figure 13 on page 72.

Administering IBM MQ 71

Figure 13. Nesting

As input to the mqExecute call, you must supply:

• An MQI connection handle.
• The command to be executed. This should be one of the MQCMD_* values.

Note: If this value is not recognized by the MQAI, the value is still accepted. However, if the
mqAddInquiry call was used to insert values into the bag, this parameter must be an INQUIRE
command recognized by the MQAI. That is, the parameter should be of the form MQCMD_INQUIRE_*.

• Optionally, a handle of the bag containing options that control the processing of the call. This is also
where you can specify the maximum time in milliseconds that the MQAI should wait for each reply
message.

• A handle of the administration bag that contains details of the administration command to be issued.
• A handle of the response bag that receives the reply messages.

The following handles are optional:

• An object handle of the queue where the administration command is to be placed.

If no object handle is specified, the administration command is placed on the
SYSTEM.ADMIN.COMMAND.QUEUE belonging to the currently connected queue manager. This is the
default.

• An object handle of the queue where reply messages are to be placed.

You can choose to place the reply messages on a dynamic queue that is created automatically by the
MQAI. The queue created exists for the duration of the call only, and is deleted by the MQAI on exit from
the mqExecute call.

For examples uses of the mqExecute call, see Example code

Administration using the REST API
You can use the administrative REST API to administer IBM MQ objects, such as queue managers and
queues, and Managed File Transfer agents and transfers. Information is sent to, and received from,

72 Administering IBM MQ

the administrative REST API in JSON format. These RESTful APIs can help you to embed IBM MQ
administration into popular DevOps and automation tooling.

Before you begin

Note: You cannot use the administrative REST API with the stand-alone IBM MQ Web
Server. For more information about the installation options for the IBM MQ component that runs the
administrative REST API, see The IBM MQ Console and REST API.

For reference information about the available REST resources, see The administrative REST API
reference.

Procedure
• “Getting started with the administrative REST API” on page 73
• “Using the administrative REST API” on page 76
• “Remote administration using the REST API” on page 78
• “REST API time stamps” on page 82
• “REST API error handling” on page 82
• “REST API discovery” on page 85
• “REST API national language support” on page 86

Getting started with the administrative REST API
Get started quickly with the administrative REST API and try out a few example requests by using cURL to
create, update, view, and delete a queue.

Before you begin
To get you started with using the administrative REST API, the examples in this task have the following
requirements:

• The examples use cURL to make REST requests to display information about queue managers on the
system, and to create a queue, update, view, and delete a queue. Therefore, to complete this task you
need cURL installed on your system.

• To complete this task, you must be a user with certain privileges so that you can use the dspmqweb
command:

– On z/OS, you must have authority to run the dspmqweb command, and write access to
the mqwebuser.xml file.

– On all other operating systems, you must be a privileged user.

On IBM i, the commands should be running in QSHELL.

Procedure
1. Ensure that you configured the mqweb server for use by the administrative REST API, the

administrative REST API for MFT, the messaging REST API, or IBM MQ Console.
For more information about configuring the mqweb server with a basic registry, see Basic configuration
for the mqweb server.

2.
On z/OS, set the WLP_USER_DIR environment variable so that you can use the dspmqweb command.
Set the variable to point to your mqweb server configuration by entering the following command:

export WLP_USER_DIR=WLP_user_directory

Administering IBM MQ 73

where WLP_user_directory is the name of the directory that is passed to crtmqweb. For example:

export WLP_USER_DIR=/var/mqm/web/installation1

For more information, see Creating the mqweb server.
3. Determine the REST API URL by entering the following command:

dspmqweb status

The examples in the following steps assume that your REST API URL is the default URL https://
localhost:9443/ibmmq/rest/v1/. If your URL is different than the default, substitute your URL in
the following steps.

4. Try out a GET request on the qmgr resource by using basic authentication with the mqadmin user:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/qmgr -X GET -u mqadmin:mqadmin

5. Create, display, alter, and delete a queue by using the mqsc resource:

This example uses a queue manager QM1. Either create a queue manager with the same name, or
substitute an existing queue manager on your system.

a) Make a POST request on the mqsc resource to create the local queue:

In the body of the request, the name of the new queue is set to Q1. Basic authentication is used,
and an ibm-mq-rest-csrf-token HTTP header with an arbitrary value is set in the cURL REST
request. This additional header is required for POST, PATCH, and DELETE requests:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/action/qmgr/QM1/mqsc -X POST -u
mqadmin:mqadmin -H "ibm-mq-rest-csrf-token: value" -H "Content-Type: application/json" --
data "{\"type\": \"runCommandJSON\", \"command\": \"define\", \"qualifier\": \"qlocal\",
\"name\": \"Q1\"}"

b) Make a POST request on the mqsc resource to view the local queue created in step “5.a” on page
74:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/action/qmgr/QM1/mqsc -X POST -u
mqadmin:mqadmin -H "ibm-mq-rest-csrf-token: value" -H "Content-Type: application/json" --
data "{\"type\": \"runCommandJSON\", \"command\": \"display\", \"qualifier\": \"qlocal\",
\"name\": \"Q1\"}"

c) Make a POST request on the mqsc resource to resource to update the description of the queue:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/action/qmgr/QM1/mqsc -X POST -u
mqadmin:mqadmin -H "ibm-mq-rest-csrf-token: value" -H "Content-Type: application/json" --
data "{\"type\": \"runCommandJSON\", \"command\": \"alter\", \"qualifier\": \"qlocal\",
\"name\": \"Q1\", \"parameters\": {\"descr\": \"new description\" }}"

d) Make a POST request on the mqsc resource to view the new queue description. Specify the
responseParameters attribute in the request body so that the response includes the description
field:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/action/qmgr/QM1/mqsc -X POST -u
mqadmin:mqadmin -H "ibm-mq-rest-csrf-token: value" -H "Content-Type: application/json" --
data "{\"type\": \"runCommandJSON\", \"command\": \"display\", \"qualifier\": \"qlocal\",
\"name\": \"Q1\", \"responseParameters\" : [\"descr\"]}"

e) Make a POST request on the mqsc resource to delete the queue:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/action/qmgr/QM1/mqsc -X POST -u
mqadmin:mqadmin -H "ibm-mq-rest-csrf-token: value" -H "Content-Type: application/json" --
data "{\"type\": \"runCommandJSON\", \"command\": \"delete\", \"qualifier\": \"qlocal\",
\"name\": \"Q1\"}"

f) Make a POST request on the mqsc resource to prove that the queue is deleted:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/action/qmgr/QM1/mqsc -X POST -u
mqadmin:mqadmin -H "ibm-mq-rest-csrf-token: value" -H "Content-Type: application/json" --

74 Administering IBM MQ

data "{\"type\": \"runCommandJSON\", \"command\": \"display\", \"qualifier\": \"qlocal\",
\"name\": \"Q1\"}"

What to do next
• The examples use basic authentication to secure the request. You can use token-based authentication

or client-based authentication instead. For more information, see Using client certificate authentication
with the REST API and IBM MQ Console, and Using token-based authentication with the REST API.

• Learn more about using the administrative REST API and constructing URLs with query parameters:
“Using the administrative REST API” on page 76.

• Browse the reference information for the available administrative REST API resources and all the
available optional query parameters: administrative REST API reference.

• Learn how to use the administrative REST API to administer IBM MQ objects on remote systems:
“Remote administration using the REST API” on page 78.

• Learn how to use the administrative REST API with MFT:“Getting started with the REST API for MFT” on
page 75.

• Discover the messaging REST API, a RESTful interface for IBM MQ messaging: Messaging using the
REST API.

• Discover the IBM MQ Console, a browser-based GUI: “Administration using the IBM MQ Console” on
page 89.

Getting started with the REST API for MFT
Get started quickly with the administrative REST API for Managed File Transfer and try out a few example
requests to view the MFT agent status, and to view a list of transfers.

Before you begin
• The examples use cURL to send REST requests to view a list of transfers and view MFT agent status.

Therefore, to complete this task you need cURL installed on your system.
• To complete this task, you must be a user with certain privileges so that you can use the dspmqweb

command:

– On z/OS, you must have authority to run the dspmqweb command, and write access to
the mqwebuser.xml file.

– On all other operating systems, you must be a privileged user.

Procedure
1. Ensure that the mqweb server is configured for the administrative REST API for MFT:

• Ensure that you configured the mqweb server for use by the administrative REST API, the
administrative REST API for MFT, the messaging REST API, or IBM MQ Console. For more
information about configuring the mqweb server with a basic registry, see Basic configuration for
the mqweb server.

• If the mqweb server is configured, ensure that step 8 of Basic configuration for the mqweb server
was completed to enable the administrative REST API for MFT.

2.
On z/OS, set the WLP_USER_DIR environment variable so that you can use the dspmqweb command.
Set the variable to point to your mqweb server configuration by entering the following command:

export WLP_USER_DIR=WLP_user_directory

Administering IBM MQ 75

where WLP_user_directory is the name of the directory that is passed to crtmqweb. For example:

export WLP_USER_DIR=/var/mqm/web/installation1

For more information, see Creating the mqweb server.
3. Determine the REST API URL by entering the following command:

dspmqweb status

The examples in the following steps assume that your REST API URL is the default URL https://
localhost:9443/ibmmq/rest/v1/. If your URL is different than the default, substitute your URL in
the following steps.

4. Make a GET request on the agent resource to return basic details about all agents, including the
name, type and state:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/mft/agent/ -X GET -u mftadmin:mftadmin

5. Create some transfers to display by using the fteCreateTransfer command.

The mqweb server caches information about transfers and returns this information when a request is
made. This cache is reset when the mqweb server is restarted. You can see whether the server was
restarted by viewing the console.log and messages.log files, or on z/OS, looking at the output
from the started task.

6. Make a GET request on the transfer resource to return details of up to four transfers that were made
since the mqweb server was started:

curl -k https://localhost:9443/ibmmq/rest/v2/admin/mft/transfer?limit=4 -X GET -u
mftadmin:mftadmin

What to do next
• The examples use basic authentication to secure the request. You can use token-based authentication

or client-based authentication instead. For more information, see Using token-based authentication
with the REST API, and Using client certificate authentication with the REST API and IBM MQ Console.

• Learn more about using the administrative REST API and constructing URLs with query parameters:
“Using the administrative REST API” on page 76.

• Browse the reference information for the available administrative REST API for MFT resources and all
the available optional query parameters: administrative REST API reference.

• Discover the messaging REST API, a RESTful interface for IBM MQ messaging: Messaging using the
REST API.

• Discover the IBM MQ Console, a browser-based GUI: “Administration using the IBM MQ Console” on
page 89.

Using the administrative REST API
When you use the administrative REST API, you invoke HTTP methods on URLs that represent the various
IBM MQ objects, such as queue managers or queues. The HTTP method, for example POST, represents
the type of action to be performed on the object that is represented by the URL. Further information about
the action might be provided in JSON as part of the payload of the HTTP method, or encoded in query
parameters. Information about the result of performing the action might be returned as the body of the
HTTP response.

Before you begin
Consider these things before you use the administrative REST API:

• You must authenticate with the mqweb server in order to use the administrative REST API. You can
authenticate by using HTTP basic authentication, client certificate authentication, or token based

76 Administering IBM MQ

authentication. For more information about how to use these authentication methods, see IBM MQ
Console and REST API security.

• The REST API is case-sensitive. For example, an HTTP GET on the following URL does not display
information if the queue manager is called qmgr1.

/ibmmq/rest/v1/admin/qmgr/QMGR1

• Not all of the characters that can be used in IBM MQ object names can be directly encoded in a URL. To
encode these characters correctly, you must use the appropriate URL encoding:

– A forward slash, /, must be encoded as %2F.
– A percent sign, %, must be encoded as %25.

• Due to the behavior of some browsers, do not name objects by using only period or forward slash
characters.

About this task
When you use the REST API to perform an action on an object, you first need to construct a URL to
represent that object. Each URL starts with a prefix, which describes which host name and port to send
the request to. The rest of the URL describes a particular object, or set of objects, known as a resource.

The action that is to be performed on the resource defines whether the URL needs query parameters or
not. It also defines the HTTP method that is used, and whether additional information is sent to the URL,
or returned from it, in JSON form. The additional information might form part of the HTTP request, or be
returned as part of the HTTP response.

After you construct the URL, and create an optional JSON payload for sending in the HTTP request, you
can send the HTTP request to IBM MQ. You can send the request by using the HTTP implementation that
is built into the programming language of your choice. You can also send the requests by using command
line tools such as cURL, or a web browser, or web browser add-on.

Important: You must, as a minimum, carry out steps “1.a” on page 77 and “1.b” on page 77.

Procedure
1. Construct the URL:

a) Determine the prefix URL by entering the following command:

dspmqweb status

The URL that you want to use includes the /ibmmq/rest/ phrase.
b) Add the resource to the URL path.

The following IBM MQ resources are available:

• /admin/installation
• /admin/qmgr
• /admin/queue
• /admin/subscription
• /admin/channel
• /action/qmgr/{qmgrname}/mqsc

The following Managed File Transfer resources are available:

• /admin/agent
• /admin/transfer
• /admin/monitor

Administering IBM MQ 77

For example, to interact with queue managers, add /qmgr to the prefix URL to create the following
URL:

https://localhost:9443/ibmmq/rest/v2/admin/qmgr

c) Optional: Add any additional optional path segments to the URL.

In the reference information for each object type, the optional segments can be identified in the
URL by the braces that surround it { }.

For example, add the queue manager name QM1 to the URL to create the following URL:

https://localhost:9443/ibmmq/rest/v2/admin/qmgr/QM1

d) Optional: Add an optional query parameter to the URL.

Add a question mark, ?, variable name, equal sign =, and a value or list of values to the URL.

For example, to request all attributes of queue manager QM1, create the following URL:

https://localhost:9443/ibmmq/rest/v2/admin/qmgr/QM1?attributes=*

e) Add further optional query parameters to the URL.

Add an ampersand, &, to the URL, and then repeat step d.
2. Invoke the relevant HTTP method on the URL. Specify any optional JSON payload, and provide the

appropriate security credentials to authenticate. For example:

• Use the HTTP/REST implementation of your chosen programming language.
• Use a tool such as a REST client browser add-on or cURL.

Remote administration using the REST API
You can use the REST API to administer remote queue managers, and the IBM MQ objects that are
associated with those queue managers. This remote administration includes queue managers that are on
the same system, but not in the same IBM MQ installation as the mqweb server. Therefore, you can use
the REST API to administer your entire IBM MQ network with only one installation that runs the mqweb
server. To administer remote queue managers, you must configure the administrative REST API gateway
so that at least one queue manager in the same installation as the mqweb server acts as a gateway queue
manager. Then, you can specify the remote queue manager in the REST API resource URL to perform the
specified administrative action.

Before you begin
You can prevent remote administration by disabling the administrative REST API gateway. For more
information, see Configuring the administrative REST API gateway.

To use the administrative REST API gateway, the following conditions must be met:

• The mqweb server must be configured and started. For more information about configuring and starting
the mqweb server, see “Getting started with the administrative REST API” on page 73.

• The queue manager that you want to configure as the gateway queue manager must be in the same
installation as the mqweb server.

• The remote queue manager that you want to administer must be IBM MQ 8.0 or later.
• You must ensure that any attributes that are specified in your request are valid for the system that you

are sending the request to. For example, if the gateway queue manager is on Windows and the remote
queue manager is on z/OS, you cannot request that the dataCollection.statistics attribute is
returned for an HTTP GET request on the queue resource.

• You must ensure that any attributes that are specified in your request are valid for the level of IBM MQ
that you are sending the request to. For example, if the remote queue manager is running IBM MQ 8.0,

78 Administering IBM MQ

you cannot request that the extended.enableMediaImageOperations attribute is returned for an
HTTP GET request on the queue resource.

• You must use one of these supported REST resources:

– /queue
– /subscription
– /channel
– /mqsc
– /qmgr

The /qmgr resource returns only a subset of the attributes when you query a remote queue manager:
name, status.started, status.channelInitiatorState, status.ldapConnectionState,
status.connectionCount, and status.publishSubscribeState.

About this task
To use the administrative REST API gateway to administer remote queue managers, you must prepare the
queue managers for remote administration. That is, you must configure transmission queues, listeners,
and sender and receiver channels between the gateway queue manager and the remote queue manager.
You can then send a REST request to the remote queue manager by specifying the queue manager in
the resource URL. The gateway queue manager is specified by either using the setmqweb command to
set the mqRestGatewayQmgr attribute to the name of the gateway queue manager, or sending the name
of the gateway queue manager in a header that is sent with the request. The request is sent through
the gateway queue manager to the remote queue manager. The response is returned with a header that
indicates the queue manager that was used as the gateway queue manager.

Procedure
1. Configure communications between the gateway queue manager and the remote queue managers that

you want to administer. These configuration steps are the same steps that are required to configure
remote administration by runmqsc and PCF.
For more information about these steps, see “Configuring queue managers for remote administration”
on page 193.

2. Configure security on the remote queue managers:

a) Ensure that the relevant user IDs exist on the system that the remote queue manager runs on. The
user ID that must exist on the remote system depends on the role of the REST API user:

• If the REST API user is in the MQWebAdmin or the MQWebAdminRO group, the user ID that
started the mqweb server must exist on the remote system. On the IBM MQ Appliance, the user
that starts the mqweb server is mqsystem.

• If the REST API user is in the MQWebUser group, that REST API user ID must exist on the remote
system.

b) Ensure that the relevant user IDs are granted the necessary levels of authority to access the
appropriate REST API resources on the remote queue manager:

• Authority to put messages to the SYSTEM.ADMIN.COMMAND.QUEUE.
• Authority to put messages to the SYSTEM.REST.REPLY.QUEUE.
• Authority to access the transmissions queues that are defined for remote administration.
• Authority to display queue manager attributes.
• Authority to perform the REST requests. For more information, see the Security requirements

section of the REST API resources reference topics.
3. Configure which local queue manager is used as the gateway. You can configure a default gateway

queue manager, specify the gateway queue manager in an HTTP header, or use a combination of both
approaches:

Administering IBM MQ 79

• Configure a default gateway queue manager by using the setmqweb command:

setmqweb properties -k mqRestGatewayQmgr -v qmgrName

where qmgrName is the name of the gateway queue manager.

This gateway queue manager is used when both the following statements are true:

– A queue manager is not specified in the ibm-mq-rest-gateway-qmgr header of a REST
request.

– The queue manager that is specified in the REST API resource URL is not a local queue manager.
• Configure the gateway queue manager on every REST request by setting the HTTP header ibm-mq-

rest-gateway-qmgr to the name of the gateway queue manager.
4. Include the name of the remote queue manager that you want to administer in the resource URL.

For example, to get a list of queues from the remote queue manager remoteQM, use the following URL:

https://localhost:9443/ibmmq/rest/v1/admin/qmgr/remoteQM/queue

Results
An ibm-mq-rest-gateway-qmgr header is returned with the REST response. This header specifies
which queue manager was used as the gateway queue manager.

If you have difficulty with using the administrative REST API to administer remote queue managers:

• Check that the remote queue manager is running.
• Check that the command server is running on the remote system.
• Check that the channel disconnect interval has not expired. For example, if a channel started but then

shut down after some time. This is especially important if you start the channels manually.

Example
In the following example, there are three IBM MQ installations on two machines. On Machine 1, there
is an Installation 1 and an Installation 2. On Machine 2, there is an Installation 3. An
mqweb server is configured for Installation 1. There is a single queue manager in each installation,
and these queue managers are configured for remote administration. That is, the following listeners,
channels and queues are configured and started:

• On queue manager QM1, in Installation 1, on Machine 1:

– Sender channel QM1.to.QM2
– Receiver channel QM2.to.QM1
– Sender channel QM1.to.QM3
– Receiver channel QM3.to.QM1
– Transmission queue QM2
– Transmission queue QM3
– A listener configured on port 1414

• On queue manager QM2, in Installation 2, on Machine 1:

– Sender channel QM2.to.QM1
– Receiver channel QM1.to.QM2
– Transmission queue QM1
– A listener configured on port 1415

• On queue manager QM3, in Installation 3, on Machine 2:

– Sender channel QM3.to.QM1

80 Administering IBM MQ

– Receiver channel QM1.to.QM3
– Transmission queue QM1
– The default listener

A queue, Qon2 is defined on QM2, and a queue Qon3 is defined on QM3.

The user mquser is defined on both machines, is granted the MQWebAdmin role in the REST API, and is
granted authority to access the appropriate queues on each queue manager.

The setmqweb command is used to configure queue manager QM1 as the default gateway queue
manager.

The following diagram shows this configuration:

Figure 14. Diagram of example configuration for remote administration by using the REST API.

The following REST request is sent to the mqweb server:

GET https://localhost:9443/ibmmq/rest/v1/admin/qmgr/QM2/queue?
attributes=general.isTransmissionQueue

The following response is received:

{
 "queue" :
 [{
 "general": {
 "isTransmissionQueue": true
 },
 "name": "QM1",
 "type": "local"
 },
 {
 "general": {
 "isTransmissionQueue": false
 },
 "name" : "Qon2",
 "type" : "local"
 }]
}

The following REST request is sent to the mqweb server:

GET https://localhost:9443/ibmmq/rest/v1/admin/qmgr/QM3/queue?
attributes=general.isTransmissionQueue,general.description

Administering IBM MQ 81

The following response is received:

{
 "queue" :
 [{
 "general": {
 "isTransmissionQueue": true,
 "description": "Transmission queue for remote admin."
 },
 "name": "QM1",
 "type": "local"
 },
 {
 "general": {
 "isTransmissionQueue": false,
 "description": "A queue on QM3."
 },
 "name" : "Qon3",
 "type" : "local"
 }]
}

REST API time stamps
When date and time information is returned by the administrative REST API, it is returned in Coordinated
Universal Time (UTC), and in a set format.

The date and time is returned in the following time stamp format:

YYYY-MM-DDTHH:mm:ss:sssZ

For example, 2012-04-23T18:25:43.000Z, where the Z indicates that the time zone is Coordinated
Universal Time (UTC).

The accuracy of this time stamp is not guaranteed. For example, if the mqweb server is not started in
the same time zone as the queue manager that is specified in the resource URL, the time stamp might
not be accurate. Further, if Daylight Saving Time adjustments are necessary, the time stamp might not be
accurate.

REST API error handling
The REST API reports errors by returning an appropriate HTTP response code, for example 404 (Not
Found), and a JSON response. Any HTTP response code that is not in the range 200 - 299 is considered
an error.

The error response format
The response is in JSON format in UTF-8 encoding. It contains nested JSON objects:

• An outer JSON object that contains a single JSON array called error.
• Each element in the array is a JSON object that represents information about an error. Each JSON object

contains the following properties:
type

String.
The type of error.

messageId
String.
A unique identifier for the message of the form MQWBnnnnX. This identifier has the following
elements:
MQWB

A prefix that shows that the message originated in the IBM MQ Rest API.
nnnn

A unique number that identifies the message.

82 Administering IBM MQ

X
A single letter that denotes the severity of the message:

– I if a message is purely informational.
– W if a message is warning of an issue.
– E if a message indicates that an error occurred.
– S if a message indicates that a severe error occurred.

message
String.
A description of the error.

explanation
String.
An explanation of the error.

action
String.
A description of steps that can be taken to resolve the error.

qmgrName
This field is only available for z/OS where the queue manager is a member of the

queue sharing group. You must have specified the commandScope optional query parameter, or the
queueSharingGroupDisposition attribute.
String.
The name of the queue manager that experienced the error.
This field is not applicable for the messaging REST API.

completionCode
This field is only available when type is pcf, java, or rest.
Number.
The MQ completion code associated with the failure.

reasonCode
This field is only available when type is pcf, java, or rest.
Number.
The MQ reason code associated with the failure.

exceptions
This field is only available when type is java.
Array.
An array of chain Java or JMS exceptions. Each element of the exceptions array contains a
stackTrace string array.
The stackTrace string array contains the details of each exception split into lines.

Errors with queue sharing groups

In a queue sharing group, it is possible to specify an optional query parameter of commandScope for
certain commands. This parameter allows the command to be propagated to other queue managers in the
queue sharing group. Any one of these commands can fail independently, resulting in some commands
succeeding and some commands failing for the queue sharing group.

In cases where a command partially fails, an HTTP error code of 500 is returned. For each queue manager
that generated a failure, information on that failure is returned as an element in the error JSON array.
For each queue manager that successfully ran the command, the name of the queue manager is returned
as an element in a success JSON array.

Administering IBM MQ 83

Examples
• The following example shows the error response to an attempt to get information about a queue

manager that does not exist:

"error": [
 {
 "type": "rest",
 "messageId": "MQWB0009E",
 "message": "MQWB0009E: Could not query the queue manager 'QM1'",
 "explanation": "The MQ REST API was invoked specifying a queue manager name which
cannot be located.",
 "action": "Resubmit the request with a valid queue manager name or no queue manager
name, to retrieve a list of queue managers. "
 }
]

• The following example shows the error response to an attempt to delete a queue in a
queue sharing group that does not exist for some queue managers:

"error" : [
 {
 "type": "rest",
 "messageId": "MQWB0037E",
 "message": "MQWB0037E: Could not find the queue 'missingQueue' - the queue manager reason
code is 3312 : 'MQRCCF_UNKNOWN_OBJECT_NAME'",
 "explanation": "The MQ REST API was invoked specifying a queue name which cannot be
located.",
 "action": "Resubmit the request with the name of an existing queue, or with no queue name
to retrieve a list of queues.",
 "qmgrName": "QM1"
 },
 {
 "type": "rest",
 "messageId": "MQWB0037E",
 "message": "MQWB0037E: Could not find the queue 'missingQueue' - the queue manager reason
code is 3312 : 'MQRCCF_UNKNOWN_OBJECT_NAME'",
 "explanation": "The MQ REST API was invoked specifying a queue name which cannot be
located.",
 "action": "Resubmit the request with the name of an existing queue, or with no queue name
to retrieve a list of queues.",
 "qmgrName": "QM2"
 }
],
"success" : [{"qmgrName": "QM3"}, {"qmgrName": "QM4"}]

Errors with MFT requests
If MFT REST API services are not enabled, and you invoke the MFT REST API, you receive the following
exception:

{"error": [{
 "action": "Enable the Managed File Transfer REST API and resubmit the request.",
 "completionCode": 0,
 "explanation": "Managed File Transfer REST calls are not permitted as the service is
disabled.",
 "message": "MQWB0400E: Managed File Transfer REST API is not enabled.",
 "msgId": "MQWB0400E",
 "reasonCode": 0,
 "type": "rest"
}]}

If MFT REST API services are enabled and the coordination queue manager is not set in the
mqwebuser.xml file, you receive the following exception:

{"error": [{
 "action": "Set the coordination queue manager name and restart the mqweb server.",
 "completionCode": 0,
 "explanation": "Coordination queue manager name must be set before using Managed File
Transfer REST services.",
 "message": "MQWB0402E: Coordination queue manager name is not set.",

84 Administering IBM MQ

 "msgId": "MQWB0402E",
 "reasonCode": 0,
 "type": "rest"
}]}

REST API discovery
Documentation for the REST API is available within the IBM Documentation and in Swagger format.
Swagger is a commonly used approach for documenting REST APIs. The Swagger documentation for the
REST API can be viewed by enabling the API Discovery feature (apiDiscovery) on the mqweb server.

Before you begin

Important: The apiDiscovery feature has been stabilized. You can still use this feature. At present, IBM
MQ does not support the use of the mpOpenAPI feature.

You must enable security for the mqweb server to view the Swagger documentation by using API
Discovery. For more information about the steps that are required to enable security, see IBM MQ Console
and REST API security.

Procedure
1. Locate the mqwebuser.xml file in one of the following directories:

• MQ_DATA_PATH/web/installations/installationName/servers/mqweb

• WLP_user_directory/servers/mqweb

Where WLP_user_directory is the directory that was specified when the crtmqweb script ran to
create the mqweb server definition.

2. Add the appropriate XML to the mqwebuser.xml file:

• If the <featureManager> tags exist in your mqwebuser.xml file, add the following XML within
the <featureManager> tags:

<feature>apiDiscovery-1.0</feature>
• If the <featureManager> tags do not exist in your mqwebuser.xml file, add the following XML

within the <server> tags:

<featureManager>
 <feature>apiDiscovery-1.0</feature>
</featureManager>

3. View the Swagger documentation by using one of the following methods:

• Display a web page that you can browse and try out the REST API by entering the following URL in a
browser:

https://host:port/ibm/api/explorer

In addition to authenticating each request, you must include a ibm-mq-rest-csrf-token header
for each POST, PATCH, or DELETE request. The contents of this header can be any string, including
blank.

This request header is used to confirm that the credentials that are being used to authenticate
the request are being used by the owner of the credentials. That is, the token is used to prevent
cross-site request forgery attacks.

• Retrieve a single Swagger 2 document that describes the whole REST API by issuing an HTTP GET
to the following URL:

https://host:port/ibm/api/docs

Administering IBM MQ 85

This document can be used for applications where you want to programmatically navigate the
available APIs.

host
Specifies the host name or IP address that the REST API is available on.
The default value is localhost.

port
Specifies the HTTPS port number that the administrative REST API uses.
The default value is 9443.

If the host name or port number is changed from the default, you can determine the correct values
from the REST API URL. Use the dspmqweb status command to view the URL.

Related information
dspmqweb status (display mqweb server status)

REST API national language support
The REST API supports, with certain qualifications, the ability to specify national languages as part of an
HTTP request.

Background
HTTP headers allow particular behavior to be specified on requests and additional information to be
provided in responses.

Included in the HTTP headers is the ability to request that information is returned in a national language.
The REST API honors this header where possible.

Specifying a national language
In the ACCEPT-LANGUAGE HTTP header, one or more language tags can be supplied. You can optionally
associate a rank with the tags, allowing for the specification of a list ordered by preference. This page has
a helpful discussion of the principle.

The REST API honors this header, selecting a language from the ACCEPT-LANGUAGE header and returning
messages in that language. When the ACCEPT-LANGUAGE header contains no language that the REST
API can support, messages are returned in a default language. This default language corresponds to the
default locale of the REST API web server.

The “What data is translated?” on page 86 section explains what data is translated.

Indicating the applicable language on responses
The CONTENT-LANGUAGE HTTP header on responses from the REST API indicates the language in which
the messages are returned.

What data is translated?
Error and informational messages are translated, other text is not.

• Data that is returned from a queue manager is not translated - for example in the case of executing
an MQSC command via the REST API, the queue manager's responses are in the locale of the queue
manager.

• The generated (Swagger) documentation for the REST API, as exposed via the apiDiscovery feature,
is in English.

86 Administering IBM MQ

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Language

What languages are supported?
In addition to English, REST API error and informational messages are translated into the following
languages.
Chinese(Simplified)

Denoted by the language tag zh_CN
Chinese(Traditional)

Denoted by the language tag zh_TW
Czech

Denoted by the language tag cs
French

Denoted by the language tag fr
Hungarian

Denoted by the language tag hu
Italian

Denoted by the language tag it
Japanese

Denoted by the language tag ja
Korean

Denoted by the language tag ko
Polish

Denoted by the language tag pl
(Brazilian) Portuguese

Denoted by the language tag pt_BR
Russian

Denoted by the language tag ru
Spanish

Denoted by the language tag es

Examples
In the examples, the web server has an English default locale.

Specifying a single supported language
In the request headers, ACCEPT-LANGUAGE is set to fr. This setting specifies that French is the
preferred language for translatable text.
In the response headers, CONTENT-LANGUAGE is set to fr. This setting indicates that error and
informational messages in the response are in French.

Specifying a list of languages
In the request headers, ACCEPT-LANGUAGE is set to am, fr. This setting specifies that Amharic and
French are acceptable languages for translatable text and that Amharic is the preferred language for
translatable text.
In the response headers, CONTENT-LANGUAGE is set to fr. This setting indicates that error and
informational messages in the response are in French, as the REST API does not support Amharic.

Specifying a single unsupported language
In the request headers, ACCEPT-LANGUAGE is set to am. This setting specifies that Amharic is the
preferred language for translatable text.
In the response headers, CONTENT-LANGUAGE is set to en. This setting indicates that error and
informational messages in the response are in English, as the REST API does not support Amharic.

Administering IBM MQ 87

REST API versions
The REST API version number forms part of the base URL for REST requests. For example, https://
localhost:9443/ibmmq/rest/v2/admin/installation. The version number is used to isolate
clients from changes to the REST API that might be introduced in future releases.

IBM MQ 9.2.0 introduces version 2 of the REST API. This version increase applies to the administrative
REST API, messaging REST API, and MFT REST API. This version increase changes the resource URL that
is used for the REST API. The URL prefix for the resource URLs at version 2 is the following URL:

https://host:port/ibmmq/rest/v2/

Some changes that are introduced to the REST API might change existing REST API function
such that clients that use the REST API might need to be updated. To prevent such changes from forcing
clients to be updated, the REST API version number is increased, and existing function stabilized at the
previous number. The new function that might change the existing function is added to the REST API
at the new version number. Therefore, clients can continue to use the REST API at the previous version
without being updated.

The REST API changes that might result in requiring a client update includes the following changes:

• Removal of support for an existing attribute in the JSON that is sent to, or returned from, the REST API.
• Removal of a URL, HTTP verb, or header. For example, if a URL or header is renamed, or if a different

verb is used.
• Addition of a new mandatory JSON attribute to data that is sent to an existing URL.
• Addition of a new mandatory HTTP header to data that is sent to an existing URL.
• Addition of a new mandatory query parameter to an existing URL.

When this type of change is introduced to REST API function that existed in a Long Term Support (LTS)
release, the version number of the REST API is increased for the first of these changes. Any subsequent
changes that are made within a Continuous Delivery (CD) release that might require changes to clients
that use the REST API use the new version number.

This version number remains the same throughout subsequent CD releases until the next LTS release.
Therefore, the version number increases at most once between LTS releases.

When the version number is increased, the existing REST API function is stabilized at the
old version number. That is, the existing REST API function that was available at the LTS release remains
available at the old version number, but no further changes are made to that version. Any new function
that is added to the REST API is added to the new REST API version. However, any additions that are
made to the REST API in CD releases before the version increase are not guaranteed to be included in the
older version of the REST API.

Existing clients can continue to use the REST API at the old version number without
requiring any changes. Older versions of the REST API might be deprecated, and eventually removed.

Some changes do not require changes to clients that use the REST API. These changes do not result in an
increase of version number. Therefore, ensure that any client that uses the REST API does not need to be
updated when these types of changes are introduced. These changes to the REST API might include the
following changes:

• Addition of a new JSON attribute to existing data that is returned from the REST API.
• Addition of a new URL.
• Addition of a new HTTP verb to an existing URL.
• Addition of a new status code to an existing URL.
• Addition of new optional JSON attributes to data that is sent to an existing URL.
• Addition of new query parameters on an existing URL.
• Addition of new headers to data that is sent to an existing URL.

88 Administering IBM MQ

• Return of new headers from the REST API.

Changes to new Continuous Delivery REST API function
For new REST API function that is added in a CD release, any changes that are made to this new function
that might then require changes to REST API clients do not increase the version number. That is, the
new function can change before the next LTS release without increasing the version number. When the
function is included in an LTS release, any subsequent changes that might require changes to REST API
clients do increase the version number.

Example
1. At LTS release X, the REST API is at version 1.
2. At CD release X.0.1, support for a new URL is added. This change does not require changes to clients

that use the REST API. Therefore, the REST API remains at version 1.
3. At CD X.0.2, support for a new URL is added. This change does not require changes to clients that use

the REST API. Therefore, the REST API remains at version 1.
4. At LTS release Y, the REST API is at version 1.
5. At CD release Y.0.1, an existing URL is renamed. This change might require changes to clients that use

the REST API. Therefore, a new version of the REST API is created as version 2. The renamed URL is
included in version 2 of the REST API, along with all the existing function. Any new function that is
added to the REST API is added to version 2. Version 1 remains stabilized at the level in LTS release Y.

6. At CD release Y.0.2, another existing URL is renamed. As the version is already increased in CD release
Y, the REST API remains at version 2. Version 1 remains stabilized at the level in LTS release Y.

7. At LTS release Z, the REST API remains at version 2. Version 1 remains stabilized at the level in LTS
release Y.

Administration using the IBM MQ Console
You can perform basic administration tasks by using the IBM MQ Console.

Note: Do not disable the command server on any of your queue managers when you use the IBM MQ
Console. If the command server is disabled for a queue manager:

• The IBM MQ Console becomes unresponsive, with long delays to the processing of commands
• Any commands that are issued to the queue manager time out.

Related tasks
Tracing the IBM MQ Console

Getting started with the IBM MQ Console
Configure the mqweb server; determine the URI for the IBM MQ Console; connect to the console; log in to
the console.

Before you begin
To complete this task, you must be a user with certain privileges so that you can use the dspmqweb
command:

• On z/OS, you must have authority to run the dspmqweb command, and write access to the
mqwebuser.xml file.

• On all other operating systems, you must be a privileged user.

On IBM i, the commands should be running in QSHELL.

Administering IBM MQ 89

About this task
Be aware of the following restrictions:

•

– Queue managers on z/OS cannot be created, deleted, started or stopped.
– Channel initiators on z/OS cannot be started or stopped, and the channel initiator status is not

displayed.
– Listeners cannot be displayed or administered.
– Start, ping, resolve, and reset channel commands can only be issued with CHLDISP(DEFAULT).
– Objects defined with QSGDISP(GROUP) cannot be displayed or managed.
– Queue manager security cannot be managed.
– System resource usage cannot be monitored.

•

– You cannot use the IBM MQ Console to work with AMQP channels.
– You cannot use the IBM MQ Console to work with MQTT channels.

Procedure
1. If the mqweb server is not already configured for use by the IBM MQ Console, configure the mqweb

server.
For more information about configuring the mqweb server with a basic registry, see Basic configuration
for the mqweb server.

2.
On z/OS, set the WLP_USER_DIR environment variable so that you can use the dspmqweb command.
Set the variable to point to your mqweb server configuration by entering the following command:

export WLP_USER_DIR=WLP_user_directory

where WLP_user_directory is the name of the directory that is passed to crtmqweb. For example:

export WLP_USER_DIR=/var/mqm/web/installation1

For more information, see Creating the mqweb server.
3. Determine the URI for the IBM MQ Console by entering the following command:

dspmqweb status

The command generates an output similar to the following:

MQWB1124I: Server 'mqweb' is running.
 URLS:
 https://localhost:9443/ibmmq/rest/v1/
 https://localhost:9443/ibmmq/console/

The URI for the IBM MQ Console ends with the suffix console/.
4. Connect to the IBM MQ Console by entering the URL from the previous step in a browser.

A security exception might be produced by the browser because the default certificate that is provided
with the mqweb server is not a trusted certificate. Choose to proceed to the IBM MQ Console.

5. Log in to the IBM MQ Console. Use the user name mqadmin, and the password mqadmin.

90 Administering IBM MQ

What to do next
By default, the IBM MQ Console uses token-based authentication to authenticate users. You can also use
client certificate authentication. For more information, see Using client certificate authentication with the
REST API and IBM MQ Console.

Quick tour of the IBM MQ Console
When you first log in to the IBM MQ Console you are taken to the landing page. From here you can
choose to manage existing queue managers, create a queue manager or a queue, navigate to some
education topics, or open the IBM MQ product information in IBM Documentation. You can also launch
the application quick start, which guides you through the process of quickly and easily setting up
messaging between new or existing queue managers and applications.

Alternatively, you can just click the manage icon to start managing IBM MQ objects straightaway.

The manage view initially shows queue managers and their current state. You can also create new queue
managers, and connect remote queue managers.

Administering IBM MQ 91

Each queue manager has a menu that lets you stop or configure a running queue manager, or start or
delete a stopped queue manager.

Authority Records, Authentication Information objects, and Channel Authentication records for the queue
manager can be found on the Security tab of the queue manager's Configuration page, where you can
create and add new ones.

Click on the name of a running queue manager to open its dashboard.

92 Administering IBM MQ

From the queue manager dashboard you can complete the following actions:

On the Overview tab, view the following information:
CPU

Percentage estimate of CPU usage by the queue manager. (Not applicable on z/OS.)
Memory

Percentage estimate of memory usage by the queue manager. (Not applicable on z/OS or Windows.)
Storage

Percentage estimate of the free space of the disk on which the queue manager resides. (Not
applicable on z/OS.)

Active queues
Count of queues that either have messages, or are open for input or output.

Connected queue managers
Count of currently connected queue managers as derived from active channels.

Connected applications
Count of currently connected applications.

Messages in the last minute
Displays a summary of the PUT/GET system topics that show message throughput every 10 seconds.
(Not applicable on z/OS.)

Subscriptions
Displays a count of subscriptions. Only visible on z/OS and on other platforms where monitoring of
system topics is inhibited (see setmqweb properties).

Deepest queues
Lists queues in order of depth. Shows current queue depth and maximum queue depth.

Administering IBM MQ 93

Most recently used
Lists currently connected queue managers, ordered by last message date.

Most recently connected
Lists currently connected applications as derived from active server-connection channels, ordered by
channel start date and time.

Oldest messages
Lists queues ordered by the oldest message date and time.

The information displayed on the Overview tab is derived from the monitoring of system topics (see
Metrics published on the system topics). z/OS does not support system topic monitoring, and the
monitoring for console display purposes can be disabled on other platforms (see setmqweb properties).
In these cases the Overview tab displays more limited information and its appearance is similar to the
following example:

On the Queues tab:

• Create new queues
• Click on a queue name to view existing messages and create new ones, and to configure the queue.

On the Events tab:
Topics

• Create new topics

• Configure existing topics
• Click on a topic name to view matching subscriptions

Subscriptions

• Create new managed or unmanaged subscriptions

• Configure existing subscriptions

On the Applications tab:

94 Administering IBM MQ

Overview
Contains tiles which gives overviews of the following statistics:
Connected applications

Displays a count of the number of connected applications. Provides links to the following tabs:

• Application instances
• Connections

Running channel instances
Displays a count of the number of SVRCONN channel instances and from that links to those that
are defined or stopped on the App Channel tab.

Connections
Displays a count of the number of connections. Provides links to the following information on the
Connections tab:

• Local connections (those without a channel name)
• Remote connections (those with a channel name)

Most common applications
Displays a list of frequent applications, ordered by the number of connections they are using.

Most common channels
Displays a list of frequent channels, ordered by the number of instances that are active.

Oldest transactions
Displays a list of oldest transactions by application name. These transactions have connections
with open units of work and are ordered by the UOW start date and time.

Remote connected versions
Displays a list of common connected IBM MQ versions, that is, those channel instances that have
a specified REMOTE_VERSION.

Application channel security
Displays a list of common connected channel security protocols, that is, those channel instances
that have a specified SECURITY_PROTOCOL.

Channel transfer rates
Displays a list of common channels ordered by the transfer rates of messages and bytes. Uses the
channel start date and time to calculate the duration and uses MSGS and MQIACH_BYTES_SENT/
MQIACH_BYTES_RCVD to calculate the rate.

Applications
View information about applications that are connected to the queue manager.

Channels
View activity on channels connected to applications.

App channels

• Start, stop, ping, and configure channels
• Create new channels
• Reset channels

App channel instances

• View status of application channel instances

• Resolve in-doubt messages on channels

On the MQ Network tab:
Overview

Contains tiles which gives overviews of the following statistics:

Administering IBM MQ 95

Running queue manager channel instances
Displays a count of the number of non-SVRCONN channel instances. Displays links to the following
types of channel instances on the Queue managers connected tab:

• Defined channels
• Stopped channels

Connected queue managers
Displays a count of the queue managers connected by MQCA_REMOTE_Q_MGR_NAME. Also
provides a count of queue managers returned by MQCMD_INQUIRE_CLUSTER_Q_MGR.

Cluster membership
If there is only one queue manager cluster, displays the name of the cluster and whether the
queue manager is a full or partial repository. Displays how many queue managers are visible in the
cluster. If there is more than one cluster, then displays the number of clusters plus a count of full
and partial repository queue managers in each cluster.

Failing queue manager channels
Displays a list of channels that are in a retrying state (non stopped/running). Calculates the
number of retries remaining if in the retry state. The list contains channels with the following
status types:

• MQCHS_PAUSED
• MQCHS_RETRYING

Longest message delays
Displays a list of channels that have an XMIT time indicator (long period).

Unattended transmission queues
Displays a list of transmission queues that have a non-zero queue depth and no associated
handles.

Remote connection versions
Displays a list of common connected IBM MQ versions, that is, those channel instances that have
a specified REMOTE_VERSION.

Queue manager channel security
Displays a list of common connected channel security protocols, that is, those channel instances
that have a specified SECURITY_PROTOCOL.

Cluster health

Displays a number of independent statistics related to the health of the cluster. The status
includes:

• The number of cluster objects (queues, topics, queue managers).
• The number of suspended queue managers (MQIACF_SUSPEND set to YES).
• The depth of the SYSTEM.CLUSTER.COMMAND.QUEUE queue.
• The number of cluster queue manager entries starting with SYSTEM.TEMP.

If all of these values are zero then this tile is not displayed and the Listeners tile is shown
instead..

Listeners
Displays a list of listeners and whether they are in a running state. Only shown if the Cluster
health tile is not displayed.

Queue managers connected
View details of queue managers currently connected to this queue manager.

Queue manager channels

• Start, stop, ping, and configure channels
• Create new channels

96 Administering IBM MQ

• Reset channels

Queue manager channel instances

• View status of queue manager channel instances

• Resolve in-doubt messages on channels

IBM MQ Console: Working with local queue managers
You create, configure, and control local queue managers from the top level of the Manage view

.

About this task

The Manage view lists the local queue managers that are added to the IBM MQ installation
from which the IBM MQ Console is running. Queue managers that are associated with different
installations of IBM MQ on the same system are not listed.

On z/OS, the Manage view lists the queue managers that are at the same version as the IBM
MQ Console, and are defined on the system where the IBM MQ Console is running. Queue managers at a
different version to the IBM MQ Console are not listed.

You can select individual queue managers from the list to work with.

Note: The IBM MQ Console can connect to a local RDQM queue manager when it is active (that is, has the
primary role) , but does not offer any RDQM-specific features.

Procedure
• To create a new local queue manager:

a) Click the create button in the queue manager list view.
b) Enter a name for the new queue manager. The name can contain up to 48 characters. Valid

characters are letters and numbers and the ".", "/", "_", and "%" characters.
c) Optional: Enter an available TCP/IP port for the queue manager to listen on. The port number must

not exceed 65535.
d) Click Create. The new queue manager is created and started.

• To start a local queue manager:
a) Locate the queue manager that you want to start in the list.

b) Select Start from the menu .
• To stop a local queue manager:

a) Select the queue manager that you want to stop from the list in the local queue manager widget.

b) Select Stop from the menu .
• To delete a local queue manager:

a) If the queue manager is running, stop it.

b) Select View configuration from the menu and select Delete queue manager.

Administering IBM MQ 97

c) Confirm that you want to delete the queue manager by entering its name in the confirmation
window. The queue manager and all associated objects are deleted.

• To view and edit the properties of a local queue manager:
a) Ensure that the queue manager is running, and locate it in the queue manager list.

b) Select View configuration from the menu .
c) Ensure the Properties tab is selected. View the properties and edit them as required. If the

property text box is disabled, the property is read-only, or can be edited only from the command
line. For information about a property, you can view the property information in Queue manager
properties.

• To work with security settings for the local queue manager:
a) Ensure that the queue manager is running, and select it in the queue manager list.

b) Select View configuration from the menu .
c) Ensure the Security tab is selected.
d) You can work with authentication objects, authorization records, or channel authentication objects.

Visit the following topics for more information:

– “IBM MQ Console: Working with authentication information objects” on page 98
– “IBM MQ Console: Working with queue manager authority records” on page 100
– “IBM MQ Console: Working with channel authentication records” on page 101

IBM MQ Console: Working with authentication information objects
You can use the console to add and delete authentication information objects on a queue manager. You
can also view and set the properties, and manage the authority records for the objects.

About this task
The authentication information view lists the authentication information that exists for a specific queue
manager. You can select individual authentication information from the list to work with.

The queue manager authentication information forms part of IBM MQ support for Transport Layer Security
(TLS). These objects contain the definitions that are required to perform certificate revocation checking by
using OCSP or Certificate Revocation Lists (CRLs) on LDAP servers, and the definitions that are required to
enable user ID and password checking.

Procedure
• To view the authentication information for a queue manager:

a) Ensure that the queue manager is running, and select it in the queue manager list.

b) Select View configuration from the menu .
c) Ensure the Security tab is selected.
d) Select Authentication information from the navigation panel.

• To add an authentication information object:

a) Click the create button in the authentication information list view.
b) Specify the name of the authentication information object. Valid characters are letters and numbers

and the ".", "/", "_", and "%" characters.
c) Specify the type of authentication information object.

98 Administering IBM MQ

d) Specify additional information appropriate to the object type:

– For CRL LDAP, specify the LDAP server name. This name is the host name, IPv4 dotted decimal
address, or IPv6 hexadecimal notation of the host on which the LDAP server is running, with
an optional port number. You can optionally specify a username and password for the user
accessing the LDAP server.

– For OCSP, specify the OCSP responder URL. This URL is the URL of the responder that is used to
check for certificate revocation. This value must be an HTTP URL containing the host name and
port number of the OCSP responder. If the OCSP responder is using port 80, which is the default
for HTTP, then the port number can be omitted. HTTP URLs are defined in RFC 1738.

– For IDPW OS, there are no additional requirements although you can optionally specify further
options for this authentication type.

– For IDPW LDAP, specify the LDAP server name and the Short user name. The LDAP server
name is the host name, IPv4 dotted decimal address, or IPv6 hexadecimal notation of the host
on which the LDAP server is running, with an optional port number. The short user name is the
field in the LDAP user record that is used as a short name for the connection. You can optionally
specify further options for this authentication type.

e) Click Add.
• To delete an authentication information object:

a) Select the spanner icon for the authentication information object that you want to delete
from the list.

b) In the object properties view, click Delete authentication info object.
c) Confirm that you want to delete the authentication information object by clicking Delete. The object

is deleted.
• To view and edit the properties of an authentication information object:

a) Select the spanner icon for the authentication information object that you want to view from
the list.

b) To edit the displayed properties, click the Edit button
c) Edit the properties as required. If the property text box is disabled, the property is read-only, or can

be edited only from the command line.
d) Click Save to save your changes.

• To view and edit authority records for an authentication information object:

a) Select the spanner icon for the authentication information object that you want to view
authority record for from the list.

b) Select the Security tab.

c) To edit or delete an existing authority record, select Edit or Delete from the menu .

d) To add a new authority record, click the Add button , supply the details of the new
authority record and click Create.

Administering IBM MQ 99

IBM MQ Console: Working with queue manager authority records
You can control the access that users and groups have to queue managers by specifying an authority
record for that user or group.

About this task
You can fine-tune the access that a messaging user or group of messaging users has to a particular queue
manager by using authority records. There are two types of authority records: the queue manager access
records that control general authorities and the permission to create records that control which users
and groups can create objects for the queue manager.

Procedure
• To view the authority records for a queue manager:

a) Ensure that the queue manager is running, and select it in the queue manager list.

b) Select View configuration from the menu .
c) Ensure the Security tab is selected.
d) Select Authority records from the navigation panel. The view shows the authority records in two

panes, enabling you to work with general authority records and with create authority records.
• To add a general authority record:

a) Click the add button in the Queue manager access list view.
b) Choose whether you are adding an authority record for a user or a group.
c) Specify the name of the user or group you are adding an authority record for (the authority record

takes this as its name).
d) Select the authorities that you want to grant.
e) Click Create.

• To add a create authority record:

a) Click the add button in the Permission to create list view.
b) Choose whether you are adding an authority record for a user or a group.
c) Specify the name of the user or group you are adding an authority record for (the authority record

takes this as its name).
d) Select the types of object that you are granting the authority to create.
e) Click Create.

• To delete an authority record:
a) Select the authority record that you want to delete, and select Delete.
b) Confirm that you want to delete the authentication information object by clicking Delete. The object

is deleted.
• To view and edit the properties of an authority record:

a) Click the authority record that you want to view.
b) Change the settings as required and click Save to save your changes.

100 Administering IBM MQ

IBM MQ Console: Working with channel authentication records
You can use the IBM MQ Console to add and delete channel authentication records on a queue manager.
You can also view and set the properties for channel authentication records.

About this task
To exercise more precise control over the access that is granted to connecting systems at a channel level,
you can use channel authentication records.

To enforce security, you can use blocking channel authentication records to block access to your
channels. You can also use address map channel authentication records to allow access to specified
users. To learn more about channel authentication records, see Channel authentication records.

Procedure
• To view the channel authentication information for a queue manager:

a) Ensure that the queue manager is running, and select it in the queue manager list.

b) Select View configuration from the menu .
c) Ensure the Security tab is selected.
d) Select Channel authentication from the navigation panel.

• To add a channel authentication record:

a) Click the create button in the channel authentication information list view.
b) Choose the rule type that you want to use. Select one Allow, Block, or Warn.
c) Choose the type of identity that you are configuring a channel authentication rule for. Different

identity types are available, depending on the rule type you selected.
d) Provide the required information for the identity you are specifying. By default the minimum

recommended properties are displayed for you to provide values for. You can view all of the
available properties by selecting Custom create.

e) Click Create to create the channel authentication record.
For more information about the available settings for channel authentication records, see Channel
authentication records and SET CHLAUTH

• To delete a channel authentication record:

a) Click the spanner icon next to the channel authentication record that you want to delete.
b) In the Edit channel authentication view, click Delete channel authentication object.
c) Confirm that you want to delete the channel authentication record by clicking Delete. The channel

authentication record is deleted.
• To view and edit the properties of a channel authentication record:

a) Click the spanner icon next to the channel authentication record that you want to edit or
view. The properties are displayed.

b) Click the Edit button
c) Edit the properties as required. If the property text box is disabled, the property is read-only, or can

be edited only from the command line.
d) Click Save to save your changes.

Administering IBM MQ 101

IBM MQ Console: Working with listeners
You can use the IBM MQ Console to add and delete listeners, start and stop listeners, view and set
listener properties, and manage the authority records for a listener.

About this task
The listeners view displays the listeners that exist for a specific queue manager. You can select individual
listeners to work with.

Procedure
• To view the listeners of a queue manager:

a) Ensure that the queue manager is running, and select it in the queue manager list.

b) Select View configuration from the menu .
c) Select the Listeners tab.

• To create a listener:

a) Click the create button .
b) Provide the required information for the listener you are creating.
c) Click Create. The new listener is created.

• To start a listener:
a) Locate the listener that you want to start in the list.

b) Select Start from the menu .
• To stop a listener:

a) Locate the listener that you want to start in the list.

b) Select Stop from the menu .
• To view and edit the properties of a listener:

a) Locate the listener in the list.

b) Select View configuration from the menu .

c) Ensure the Properties tab is selected. To edit the properties, click the Edit button
d) Edit the properties as required. If the property text box is disabled, the property is read-only, or

can be edited only from the command line. For more information on the properties, see Listener
properties in the MQ Explorer documentation.

e) Click Save to save your changes.
• To view and edit authority records for a listener:

a) Locate the listener in the list.

b) Select View configuration from the menu .
c) Click the Security tab.
d) Work with the authority records as described for queue manager authority records. See “IBM MQ

Console: Working with queue manager authority records” on page 100.

102 Administering IBM MQ

• To delete a listener:
a) Locate the listener in the list.

b) Select View configuration from the menu .
c) Click Delete listener.

IBM MQ Console: Adding a remote queue manager
You can use the IBM MQ Console to administer a queue manager running on a remote system.

Before you begin
• You must prepare the queue manager on the remote system so that it can be administered remotely,

see step “1” on page 105, “2” on page 105, “3” on page 105, and “4” on page 106 of “Adding a remote
queue manager to the IBM MQ Console by using the command line” on page 104.

• You must also enable remote connections from the IBM MQ Console. For more information, see
Configuring remote queue manager connection behavior.

About this task
You use a client connection definition table (CCDT) in JSON format to specify the remote connection
details. You can create a JSON CCDT by using a text editor (see step “5” on page 106 of “Adding a remote
queue manager to the IBM MQ Console by using the command line” on page 104) or you can create one
by using the IBM MQ Console.

Alternatively, you can create the CCDT from the IBM MQ Console by specifying connection details directly
as you add the remote queue manager.

You can also connect a remote queue manager to the IBM MQ Console by using the command line for
all of the required tasks (in addition to preparing the remote queue manager and creating a CCDT). See
“Adding a remote queue manager to the IBM MQ Console by using the command line” on page 104.

Attention: if you receive the following messages:

MQWB2026E: The request to connect to the remote queue manager 'rqmgr-qmgr_name' failed
with the error message:
'JMSCC0051: The property 'JMS_IBM_MQMD_AccountingToken' should be set using type '[B',
not 'java.lang.Object'.'

you are attempting to pass a java.lang.Object to the accounting token, when a java object
type byte[] is expected.

Procedure
• To add a remote queue manager by specify an existing CCDT:

a) From the Home page, click Connect remote queue manager.
b) Specify the name of the remote queue manager.
c) Optionally, specify a unique name for the queue manager. If you do not specify a unique name, the

actual name is used with the prefix "remote-" added.
d) Ensure that Connect using a JSON CCDT is selected.
e) Click Browse and select the file containing the JSON CCDT that you want to use.
f) Click Next to move to the user page and optionally specify a username and password to connect to

the remote queue manager. If you do not specify this information, then authentication information
is taken from the remote connection configuration file.

g) Click Next to move to the Certificate page. If your CCDT specifies "transmissionSecurity"
information, this is information is used. You can optionally paste a certificate (as a base64 encoded
public key) and this is added to the global trust store.

Administering IBM MQ 103

The certificate is temporarily stored in WLP_USER_DIR/generated.crts/uniqueName-
qmgrName.crt before it is added to the trust store. When the connection is successfully added,
the certificate is deleted from this location.

h) Click Next to view the summary page. You can use the Back button to revisit previous pages and
make corrections. If you are happy with the information, click Connect to connect to the remote
queue manager.

• To add a remote queue manager and specify connection information manually:
a) From the Home page, click Connect remote queue manager.
b) Specify the name of the remote queue manager.
c) Optionally, specify a unique name for the queue manager. If you do not specify a unique name, the

actual name is used with the prefix "remote-" added.
d) Select Manual Entry.
e) Enter the name of the client connection channel that the connection will use.
f) Specify the name of the host where the remote queue manager is running. If remote MQ

installations are detected, the host names are displayed and you can select the host of the remote
queue manager that you want to connect to. In some network configurations, it is not possible to
detect remote MQ instances. In this case, add the host name and port manually.

g) Click Next to move to the user page and optionally specify a username and password to connect to
the remote queue manager. If you do not specify this information, then authentication information
is taken from the remote connection configuration file.

h) Click Next to move to the Certificate page. You can select an SSL CipherSpec from the drop-down
list. You can optionally paste a certificate (as a base64 encoded public key) and this is added to the
global trust store.

The certificate is temporarily stored in WLP_USER_DIR/generated.crts/uniqueName-
qmgrName.crt before it is added to the trust store. When the connection is successfully added,
the certificate is deleted from this location.

i) Click Next to view the summary page. You can use the Back button to revisit previous pages and
make corrections. If you are happy with the information, click Connect to connect to the remote
queue manager.

The connection information that you specified is written to CCDT file in your web directory. The path is
WLP_USER_DIR/generated.ccdt/ccdt-uniqueName.

Results
The remote queue manager appears in the remote queue manager list in the IBM MQ Console. Provided
that the connection is successful, you can administer the objects of the remote queue manager in the
same way that you work with the objects of a local queue manager.

Adding a remote queue manager to the IBM MQ Console by using the
command line
You can add a remote queue manager to the IBM MQ Console by using the setmqweb remote command
on the command line. A remote queue manager can be either a queue manager that is running in a
different installation on the same system as the IBM MQ Console, or a queue manager that is running on a
different system.

Before you begin
Note: The steps in this task require you to run MQSC commands:

• On AIX, Linux, and Windows, you issue MQSC commands from a runmqsc command
prompt. See Running MQSC commands interactively under runmqsc and Running MQSC commands

104 Administering IBM MQ

from text files under runmqsc. For this task, if you are running on AIX, Linux, and Windows, open a
runmqsc command prompt that uses QM1:

runmqsc QM1

• On IBM i, you create a list of commands in a Script file, then run the file by using the
STRMQMMQSC command. See Administration using MQSC commands on IBM i.

• On z/OS, MQSC commands can be issued from a number of sources, depending on the
command. See Sources from which you can issue MQSC and PCF commands on IBM MQ for z/OS.

Ensure that the mqweb server is configured to allow remote queue manager connections to the IBM MQ
Console. For more information, see Configuring remote queue manager connections behavior.

Procedure
1. On the remote queue manager, create a server-connection channel to allow remote administration of

the queue manager by using the DEFINE CHANNEL MQSC command.
For example, to create a server-connection channel QM1.SVRCONN for queue manager QM1, enter the
following MQSC command:

DEFINE CHANNEL(QM1.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)

For more information about DEFINE CHANNEL and the options available, see DEFINE CHANNEL.
2. Ensure that an appropriate user is authorized to administer the queue manager and MQ objects that

are associated with the queue manager.

• On AIX, Linux, and Windows use the setmqaut control command on a standard
command line.

• On z/OS, define RACF profiles to give the authorized user access to the queue manager.

For example on AIX, Linux, and Windows, to authorize user exampleUser to access the queue
manager QM1, enter the following control command:

setmqaut -m QM1 -t qmgr -p exampleUser +connect +inq +setall +dsp

This authorized user might be one of the following users:

• A user ID that is the same as the user ID that starts the mqweb server that runs the IBM MQ
Console on the system from which you want to remotely administer this queue manager.

• A user ID that matches a user ID and password that is then included in the setmqweb remote
command in step “7” on page 106. By including the user ID and password in the setmqweb
remote command, this user ID and password is used for authentication when the IBM MQ Console
connects to the queue manager.

• A user ID that is determined by channel security rules. For example, you might set a channel
authentication rule on the server-connection channel to allow connections from the IP address
from which you use the IBM MQ Console for remote administration, and map all these connections
to a specific user ID that is authorized to use the queue manager. For more information, see
Creating new CHLAUTH rules for channels.

3.
If there is no listener running on the remote queue manager, create a listener to accept incoming
network connections by using the DEFINE LISTENER MQSC command.
For example, to create a listener REMOTE.LISTENER on port 1414 for remote queue manager QM1,
enter the following MQSC command:

runmqsc QM1
DEFINE LISTENER(REMOTE.LISTENER) TRPTYPE(TCP) PORT(1414)
end

Administering IBM MQ 105

4. Ensure that the listener is running by using the START LISTENER MQSC command.

For example, on AIX, Linux, and Windows to start the listener REMOTE.LISTENER for
queue manager QM1, enter the following MQSC command:

runmqsc QM1
START LISTENER(REMOTE.LISTENER)
end

For example, on z/OS, to start the listener, enter the following MQSC command:

/cpf START LISTENER TRPTYPE(TCP) PORT(1414)

Note that the channel initiator address space must be started before you can start a listener on z/OS.
5. Create a JSON CCDT file that contains the remote queue manager connection information:

• Generate a CCDT file by using the IBM MQ Console that is associated with the same installation as
the queue manager that you want to connect to remotely.

From the Home panel, click the Download connection file tile.
• Create a JSON format CCDT file that defines the connection. For more information about creating a

JSON format CCDT, see Configuring a JSON format CCDT.

The CCDT file must include the name, clientConnection, and type information. You can
optionally include additional information such as transmissionSecurity information. For more
information about all the CCDT channel attribute definitions, see Complete list of CCDT channel
attribute definitions.

The following example shows a basic JSON CCDT file for a remote queue manager connection. It
sets the name of the channel to the same name as the example server-connection channel created
in step “1” on page 105, and the connection port to the same value as the port that is used by the
listener. The connection host is set to the host name of the system on which the example remote
queue manager, QM1, is running:

{
 "channel": [{
 "name": "QM1.SVRCONN",
 "clientConnection": {
 "connection": [{
 "host": "example.com",
 "port": 1414
 }],
 "queueManager": "QM1"
 },
 "type": "clientConnection"
 }]
}

6. Copy the JSON CCDT file to the system where the IBM MQ Console is running.
7. From the installation that is running the IBM MQ Console, use the setmqweb remote command to

add the remote queue manager information to the IBM MQ Console configuration.

As a minimum, to add a remote queue manager to the IBM MQ Console you must provide the queue
manager name, a unique name for the queue manager (to differentiate between other remote queue
managers that might have the same queue manager name), and the CCDT URL for the queue manager.
The unique name is the display name in the IBM MQ Console, so specify a name that makes it
clear that this is a remote queue manager, for example, "remote-QM2". There are several additional
options that you can specify, such as the username and password to use for the remote queue
manager connection, or details of the trust store and key store. For a full list of parameters than can be
specified with the setmqweb remote command, see setmqweb remote.

For example, to add the example remote queue manager QM1, using the example CCDT file, enter the
following command:

setmqweb remote add -uniqueName "MACHINEAQM1" -qmgrName "QM1" -ccdtURL "c:\myccdts\ccdt.json"

106 Administering IBM MQ

Results
The remote queue manager appears in the remote queue manager list in the IBM MQ Console when the
remote connection list is next refreshed. Provided that the connection is successful, you can administer
the objects of the remote queue manager in the same way that you work with the objects of a local queue
manager.

Example
The following example sets up the remote queue manager connection for a queue manager QM1. The
IBM MQ Console is authorized to administer the queue manager based on the authorization given to the
user exampleUser. The credentials of this user are provided to the IBM MQ Console when the setmqweb
remote command is used to configure the remote queue manager connection information.

1. On the system where the remote queue manager QM1 is, a server-connection channel and a listener
are created. The listener is started, and authorization is given for user exampleUser to administer the
queue manager. For example, on AIX, Linux, and Windows, run the following commands:

runmqsc QM1
#Define the server connection channel that will accept connections from the Console
DEFINE CHANNEL(QM1.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)
Define the listener to use for the connection from the Console
DEFINE LISTENER(REMOTE.LISTENER) TRPTYPE(TCP) PORT(1414)
Start the listener
START LISTENER(REMOTE.LISTENER)
end

#Set mq authorization for exampleUser to access the queue manager
setmqaut -m QM1 -t qmgr -p exampleUser +connect +inq +setall +dsp

2. On the system where the IBM MQ Console is running, a QM1_ccdt.json file is created with the
following connection information:

{
 "channel": [{
 "name": "QM1.SVRCONN",
 "clientConnection": {
 "connection": [{
 "host": "example.com",
 "port": 1414
 }],
 "queueManager": "QM1"
 },
 "type": "clientConnection"
 }]
}

3. On the system where the IBM MQ Console is running, the remote queue manager connection
information for queue manager QM1 is added to the mqweb server. The credentials for exampleUser
are included in the connection information:

setmqweb remote add -uniqueName "remote-QM1" -qmgrName "QM1" -ccdtURL
"c:\myccdts\QM1_ccdt.json" -username "exampleUser" -password "password"

4. The IBM MQ Console shows the remote queue manager QM1.

IBM MQ Console: Working with objects
Each IBM MQ queue manager has several different types of object associated with it.

About this task
You can use the console to work with the following types of IBM MQ object:

• Queues
• Events objects:

– Topics

Administering IBM MQ 107

– Subscriptions
• Applications objects:

– Connections
– App channels
– App channel instances

• MQ network objects:

– Connected queue managers
– Queue manager channels
– Queue manager channel instances

Procedure
To work with an IBM MQ object:
1. In the queue manager list view, click on the queue manager that owns the objects you want to work

with.
2. Click on the Queues, Events, Applications, or MQ network tab to select the type of object you want to

work with.
3. Consult one of the following topics for detailed instructions for working with the objects.

IBM MQ Console: Working with queues
You can view the queues that exist for a specific queue manager in the Queues tab. You can add and
delete queues, add and clear messages on a queue, browse messages, view and set the properties of a
queue, and manage the authority records of a queue.

About this task
The queues view lists the queues that exist for a specific queue manager. You access the queues list by
clicking on a queue manager and selecting the Queues tab. You can select individual queues from the list
to work with.

You cannot view or edit authority records for queues on z/OS.

Procedure
• To add a queue:

a) In the Queues tab, click the create button .
b) Select the type of queue that you want to create:

– Local queue - store messages within the queue manager it belongs to.
– Alias queue - a pointer to another queue on the same queue manager.
– Remote queue - a pointer to another queue on a different queue manager.
– Model queue - a template for a queue used when a dynamic queue manager is created.

c) Provide the required information for the type of queue you are creating. By default the minimum
recommended properties are displayed for you to provide values for. You can view all of the
available properties by selecting Custom create.

d) Click Create. The new queue is created.
• To put messages to a queue:

a) Click the queue that you want to add messages to in the list in the queues list view. You cannot
select a model queue.

108 Administering IBM MQ

b) Click the Create button
c) Enter the message that you want to put onto the queue.
d) Click Create.

• To clear messages from a queue:
a) Click the local queue that you want to clear messages from in the queues list.

b) Click the Clear queue icon
c) Confirm that you want to clear the queue by clicking Clear queue.

•
To delete an individual message from a queue:
a) Locate the message that you want to delete.

b) Click the delete icon next to the message .
c) Confirm that you want to clear the message by clicking Delete.

• To browse messages on a queue, click on the queue in the queues list view. A list of the messages on
that queue is displayed.

• To delete a queue:
a) Click on the local queue that you want to delete in the queues list.

b) Click the Actions button and select Delete queue.
c) Confirm that you want to delete the queue by clicking Delete. The queue is deleted.

• To view and edit the properties of a queue:

a) Select View configuration from the menu next to the queue that you want to edit.

b) Click the Edit button
c) Edit the properties as required. If the property text box is disabled, the property is read-only, or can

be edited only from the command line. For information about the properties, see Queue properties
in the IBM MQ Explorer documentation

d) Click Save to save your changes.
• To view and edit authority records for a queue:

a) Select View configuration from the menu next to the queue that you want to edit.
b) Click the Security tab.
c) Work with the authority records as described for queue manager authority records. See “IBM MQ

Console: Working with queue manager authority records” on page 100.

•
To view the IBM MQ objects associated with a queue:

a) Select View associated objects from the menu next to the queue that you want to view.
b) View the objects in the panel that appears. Click the links to view more details about each of the

listed objects.

Administering IBM MQ 109

You can use the panel to view which applications are putting messages on queues and see the
relationships between different queues. This can help you to identify and resolve issues.

IBM MQ Console: Working with topics
You can use the IBM MQ Console to add and delete topics, and view and set the properties of a topic.

About this task
The topics view lists the topics that exist for a specific queue manager. You access the topics from the
queue manager Events tab. You can select individual topics from the list to work with.

You cannot view or edit authority records for a topic on z/OS.

Procedure
• To add a topic:

a) From the queue manager view, open the Events tab and click Topics.

b) Click the create button .
c) Provide the required information for the topic you are creating. By default the minimum

recommended properties are displayed for you to provide values for. You can view all of the
available properties by selecting Custom create.

d) Click Create. The new topic is created.
• To delete a topic:

a) Click the spanner icon next to the topic that you want to delete.
b) In the Edit queue view, click Delete topic.
c) Confirm that you want to delete the topic by clicking Delete. The topic is deleted.

• To view and edit the properties of a topic:

a) Click the spanner icon next to the topic that you want to edit.

b) Click the Edit button
c) Edit the properties as required. If the property text box is disabled, the property is read-only, or can

be edited only from the command line. For information about the properties, see Topic properties in
the MQ Explorer documentation.

d) Click Save to save your changes.
• To publish a message on a topic, you must have at least one matching subscription.

a) Click the topic you want to publish to in the topic list.
b) Click the matching subscription name.

c) Click the Create button
d) Enter the message that you want to publish.

e) Click the Put button . The message is written to all matching subscriptions.
• To subscribe to a topic, see “IBM MQ Console: Working with subscriptions” on page 111:

110 Administering IBM MQ

• To view and edit authority records for a topic:

a) Click the spanner icon next to the topic that you want to edit authority records for.
b) Click the Security tab.
c) Work with the authority records as described for queue manager authority records, see “IBM MQ

Console: Working with queue manager authority records” on page 100.

IBM MQ Console: Working with subscriptions
You can use the IBM MQ Console to add and delete subscriptions, and view and set the properties of a
subscription.

About this task
The subscriptions view lists the subscriptions that exist for a specific queue manager. You access the
subscriptions from the queue manager Events tab. You can select individual topics from the list to work
with. You can select individual subscriptions from the list to work with.

For more information about subscriptions, see Subscribers and subscriptions and DEFINE SUB.

You cannot view or edit authority records for a subscription on z/OS.

Procedure
• To add a subscription:

a) From the queue manager view, open the Events tab and click Subscriptions.
b) Choose whether you want to create a managed or unmanaged subscription.
c) Provide the required information for the subscription you are creating. By default the minimum

recommended properties are displayed for you to provide values for. You can view all of the
available properties by selecting Custom create.

d) Click Create. The new subscription is created.
• To delete a subscription:

a) Click the spanner icon next to the subscription that you want to delete.
b) In the Edit queue view, click Delete subscription.
c) Confirm that you want to delete the subscription by clicking Delete. The subscription is deleted.

• To view and edit the properties of a subscription:

a) Click the spanner icon next to the subscription that you want to edit.

b) Click the Edit button
c) Edit the properties as required. If the property text box is disabled, the property is read-only, or can

be edited only from the command line.
d) Click Save to save your changes.

• To publish a message on the topic the subscription is subscribed to:
a) Click the subscription whose topic you want to publish to in the subscription list.

b) Click the Create button .
c) Enter the message that you want to publish.

Administering IBM MQ 111

d) Click the Put button . The message is written to all subscriptions that match the
topic you have published to.

IBM MQ Console: Working with queue manager channels
You can use the IBM MQ Console work with queue manager channels: you can add and delete queue
manager channels, start and stop channels, reset and resolve channels, and ping channels. You can also
view and set the properties of a queue manager channel, and manage authority records for the channel.

About this task
A queue manager channel is a logical communication link for transmitting messages between queue
managers across a network. The queue manager channel view includes a panel that shows a quick view of
how many channels are running, how many retrying, and how many stopped.

You cannot view or edit authority records for a channel on z/OS.

Procedure
• To add a queue manager channel:

a) From the queue manager view, open the MQ network tab and click Queue manager channels and

click the create button .
b) Select the type of queue manager channel that you want to create and click the next button

.
c) Provide the required information for the channel you are creating. By default the minimum

recommended properties are displayed for you to provide values for. You can view all of the
available properties by selecting Custom create.

d) Click Create. The new channel is created with the inactive status.
• To start a queue manager channel:

a) Locate the channel that you want to start in the list.

b) Select Start from the menu .
• To stop a queue manager channel:

a) Locate the channel that you want to stop in the list.

b) Select Stop from the menu .
• To view the properties of a queue manager channel:

a) Locate the channel in the list.

b) Select View configurations from the menu .

c) Ensure the Properties tab is selected. To edit the properties, click the Edit button
d) Edit the properties as required. If the property text box is disabled, the property is read-only, or

can be edited only from the command line. For more information about the properties, see Channel
properties in the MQ Explorer documentation.

112 Administering IBM MQ

e) Click Save to save your changes.
• To reset a queue manager channel:

a) Locate the channel in the list.

b) Select Advanced from the menu .
c) In the Reset section, specify a message sequence number.

You need to reset a channel if it will not start because the two ends disagree about the sequence
number of the next message to send. The message sequence number specifies that number.

d) Click Reset Channel.
• To resolve a sender or server channel:

a) Locate the channel in the list.

b) Select Advanced from the menu .
c) In the Resolve section, choose whether to commit or back out the current batch of messages by

clicking Restore messages to transmission queue or Discard messages.
• To ping a queue manager channel:

a) Locate the channel in the list.

b) Select Ping from the menu .
• To view and edit authority records for a queue manager channel:

a) Locate the channel in the list.

b) Select View configuration from the menu .
c) Click the Security tab.
d) Work with the authority records as described for queue manager authority records, see “IBM MQ

Console: Working with queue manager authority records” on page 100.
• To delete a queue manager channel:

a) Locate the channel in the list.

b) Select Configure from the menu .
c) Click Delete channel.

IBM MQ Console: Working with application channels
You can use the IBM MQ Console to work with application channels: you can add and delete channels,
start and stop channels, reset and resolve channels, and ping channels. You can also view and set the
properties of an application channel, and manage authority records for the channel.

About this task
An application channel is a logical communication link, used by applications to connect to a queue
manager across a network. The application channel view includes a panel that shows a quick view of how
many channels are running, how many retrying, and how many stopped.

You cannot view or edit authority records for a channel on z/OS.

Procedure
• To add an application channel:

Administering IBM MQ 113

a) From the queue manager view, open the Applications tab and click App channels and click the

create button .

b) Click the next button .
c) Provide the required information for the channel you are creating. By default the minimum

recommended properties are displayed for you to provide values for. You can view all of the
available properties by selecting Custom create.

d) Click Create. The new channel is created with the inactive status.
• To start an application channel:

a) Locate the channel that you want to start in the list.

b) Select Start from the menu .
• To stop an application channel:

a) Locate the channel that you want to stop in the list.

b) Select Stop from the menu .
• To view the properties of an application channel:

a) Locate the channel in the list.

b) Select View configuration from the menu .

c) Ensure the Properties tab is selected. To edit the properties, click the Edit button
d) Edit the properties as required. If the property text box is disabled, the property is read-only, or

can be edited only from the command line. For more information about the properties, see Channel
properties in the MQ Explorer documentation.

e) Click Save to save your changes.
• To reset an application channel:

a) Locate the channel in the list.

b) Select Advanced from the menu .
c) In the Reset section, specify a message sequence number.

You need to reset a channel if it will not start because the two ends disagree about the sequence
number of the next message to send. The message sequence number specifies that number.

d) Click Reset Channel.
• To resolve a sender or server channel:

a) Locate the channel in the list.

b) Select Advanced from the menu .
c) In the Resolve section, choose whether to commit or back out the current batch of messages by

clicking Restore messages to transmission queue or Discard messages.
• To ping a channel:

a) Locate the channel in the list.

114 Administering IBM MQ

b) Select Ping from the menu .
• To view and edit authority records for an application channel:

a) Locate the channel in the list.

b) Select Configure from the menu .
c) Click the Security tab.
d) Work with the authority records as described for queue manager authority records, see “IBM MQ

Console: Working with queue manager authority records” on page 100 .
• To delete an application channel:

a) Locate the channel in the list.

b) Select Configure from the menu .
c) Click Delete channel.

IBM MQ Console: Working with applications
You can use the IBM MQ Console to view information about applications connected to a queue manager.

About this task
An application is connected to a queue manager across a network by using a server-conn channel. The
applications view includes a panel that shows a quick view of how many applications are connected to a
queue manager.

Procedure
• To view application information:

a) From the queue manager view, open the Applications tab.
b) Click Connected applications to open the applications view.
c) If there are multiple instances of an application, click the down arrow to view details of each

instance.
d) Click objects in the view to get more details.

IBM MQ Console: Working with storage classes
You can use the IBM MQ Console to add, view, delete and update storage classes on z/OS queue
managers.

About this task
The storage classes view lists the storage classes that exist for a specific queue manager. You access
Storage classes from the sidebar on the queue manager Queues tab.

See Storage classes for IBM MQ for z/OS and DEFINE STGLASS for more information about storage
classes.

Procedure
• To add a storage class:

a) From the queue manager view, open the Queues tab, and click Storage classes.

b) On the Storage classes screen, click the Create button.

Administering IBM MQ 115

c) Provide the required information for the storage class you are creating.
By default, the minimum recommended properties you need to provide values for are displayed.
You can view all of the available properties by selecting Custom create.

d) Click the Create button.
The new storage class is created.

• To delete a storage class:

a) Click the spanner button next to the storage class that you want to delete.
b) In the Edit storage class view, click Delete storage class.
c) Confirm that you want to delete the queue by clicking Delete. The storage class is deleted.

• To view and edit the properties of a storage class:

a) Click the spanner button next to the storage class that you want to edit.

b) Click the Edit button
c) Edit the properties as required. If the property text box is disabled, the property is read-only, or can

be set only at the time of creation.
d) Click Save to save your changes.

IBM MQ Console: Working with page sets and buffer
pools
You can use the IBM MQ Console to view page sets and buffer pools on z/OS queue managers.

About this task
The page sets and buffer pools views list the page sets and buffer pools that exist for a specific queue
manager. You access the Page sets and Buffer pools views from the sidebar of the queue manager
Queues tab

See Page sets for IBM MQ for z/OS for more information about page sets, and Buffers and buffer pools for
IBM MQ for z/OS for more information about buffer pools.

Procedure
• To view the properties of a page set

Click the spanner button next to the page set that you want to view.
• To view the properties of a buffer pool

116 Administering IBM MQ

Click the spanner button next to the buffer pool that you want to view.

IBM MQ Console settings
You can specify some general settings for the IBM MQ Console.

Click the settings icon to switch to the IBM MQ Console settings view.

Use the settings to control the following features:

• Automatic refresh of queue managers every ten seconds. This feature can be turned on or off.
• Whether system objects are displayed. You can specify this for all object types, or select object types

individually.
• Whether trace information is collected or not.

Administration using the IBM MQ Explorer
The IBM MQ Explorer allows you to perform local or remote administration of your network from a
computer running Windows, or Linux x86-64 only.

IBM MQ for Windows and IBM MQ for Linux x86-64 provide an administration interface called the IBM
MQ Explorer to perform administration tasks as an alternative to using control or MQSC commands.
Comparing command sets shows you what you can do using the IBM MQ Explorer.

The IBM MQ Explorer allows you to perform local or remote administration of your network from a
computer running Windows, or Linux x86-64, by pointing the IBM MQ Explorer at the queue managers
and clusters you are interested in. It can remotely connect to queue managers that are running on any
supported platform including z/OS, enabling your entire messaging backbone to be viewed, explored, and
altered from the console.

To configure remote IBM MQ queue managers so that IBM MQ Explorer can administer them, see
“Prerequisite software and definitions for IBM MQ Explorer” on page 119.

It allows you to perform tasks, typically associated with setting up and fine-tuning the working
environment for IBM MQ, either locally or remotely within a Windows or Linux x86-64 system domain.

On Linux, the IBM MQ Explorer might fail to start if you have more than one Eclipse installation. If this
happens, start the IBM MQ Explorer using a different user ID to the one you use for the other Eclipse
installation.

On Linux, to start the IBM MQ Explorer successfully, you must be able to write a file to your home
directory, and the home directory must exist.

IBM MQ Explorer can be installed from the stand-alone IBM MQ Explorer download available from
Fix Central. For more information, see Installing and uninstalling IBM MQ Explorer as a stand-alone
application on Linux and Windows.

What you can do with the IBM MQ Explorer
You can use the IBM MQ Explorer to perform administration tasks using a series of Content Views and
Property dialogs. You can also extend the IBM MQ Explorer by writing one, or more, Eclipse plugins.

IBM MQ Explorer tasks
With the IBM MQ Explorer, you can perform the following tasks:

• Create and delete a queue manager (on your local machine only).

Administering IBM MQ 117

• Start and stop a queue manager (on your local machine only).
• Define, display, and alter the definitions of IBM MQ objects such as queues and channels.
• Browse the messages on a queue.
• Start and stop a channel.
• View status information about a channel, listener, queue, or service objects.
• View queue managers in a cluster.
• Check to see which applications, users, or channels have a particular queue open.
• Create a new queue manager cluster using the Create New Cluster wizard.
• Add a queue manager to a cluster using the Add Queue Manager to Cluster wizard.
• Manage the authentication information object, used with Transport Layer Security (TLS) channel

security.
• Create and delete channel initiators, trigger monitors, and listeners.
• Start or stop the command servers, channel initiators, trigger monitors, and listeners.
• Set specific services to start automatically when a queue manager is started.
• Modify the properties of queue managers.
• Change the local default queue manager.
• Create JMS objects from IBM MQ objects, and IBM MQ objects from JMS objects.
• Create a JMS Connection Factory for any of the currently supported types.
• Modify the parameters for any service, such as the TCP port number for a listener, or a channel initiator

queue name.
• Start or stop the service trace.

Content Views and Property dialogs
You perform administration tasks using a series of Content Views and Property dialogs.
Content View

A Content View is a panel that can display the following:

• Attributes, and administrative options relating to IBM MQ itself.
• Attributes, and administrative options relating to one or more related objects.
• Attributes, and administrative options for a cluster.

Property dialogs
A property dialog is a panel that displays attributes relating to an object in a series of fields, some of
which you can edit.

You navigate through the IBM MQ Explorer using the Navigator view. The Navigator allows you to select
the Content View you require.

Extending the IBM MQ Explorer
The IBM MQ Explorer presents information in a style consistent with that of the Eclipse framework and
the other plug-in applications that Eclipse supports.

Through extending the IBM MQ Explorer, system administrators have the ability to customize the IBM MQ
Explorer to improve the way they administer IBM MQ.

For more information, see Extending MQ Explorer.

118 Administering IBM MQ

Deciding whether to use the IBM MQ Explorer
When deciding whether to use the IBM MQ Explorer at your installation, consider the information listed in
this topic.

You need to be aware of the following points:
Object names

If you use lowercase names for queue managers and other objects with the IBM MQ Explorer, when
you work with the objects using MQSC commands, you must enclose the object names in single
quotation marks, or IBM MQ does not recognize them.

Large queue managers
The IBM MQ Explorer works best with small queue managers. If you have a large number of objects on
a single queue manager, you might experience delays while the IBM MQ Explorer extracts the required
information to present in a view.

Clusters
IBM MQ clusters can potentially contain hundreds or thousands of queue managers. The IBM MQ
Explorer presents the queue managers in a cluster using a tree structure. The physical size of a cluster
does not affect the speed of the IBM MQ Explorer dramatically because the IBM MQ Explorer does not
connect to the queue managers in the cluster until you select them.

Setting up the IBM MQ Explorer
This section outlines the steps you need to take to set up the IBM MQ Explorer.

• “Prerequisite software and definitions for IBM MQ Explorer” on page 119
• “Security for IBM MQ Explorer” on page 119
• “Showing and hiding queue managers and clusters in IBM MQ Explorer” on page 123
• “Cluster membership and IBM MQ Explorer” on page 124
• “Data conversion for IBM MQ Explorer” on page 124

Prerequisite software and definitions for IBM MQ Explorer
Ensure that you satisfy the following requirements before trying to use the IBM MQ Explorer.

The IBM MQ Explorer can connect to remote queue managers using the TCP/IP communication protocol
only.

Check that:

1. A command server is running on every remotely administered queue manager.
2. A suitable TCP/IP listener object must be running on every remote queue manager. This object can be

the IBM MQ listener or, on AIX and Linux systems, the inetd daemon.
3. A server-connection channel, by default named SYSTEM.ADMIN.SVRCONN, exists on all remote queue

managers.

You can create the channel using the following MQSC command:

DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN)

This command creates a basic channel definition. If you want a more sophisticated definition (to set up
security, for example), you need additional parameters. For more information, see DEFINE CHANNEL.

4. The system queue, SYSTEM.MQEXPLORER.REPLY.MODEL, must exist.

Security for IBM MQ Explorer
If you are using IBM MQ in an environment where it is important for you to control user access to
particular objects, you might need to consider the security aspects of using the IBM MQ Explorer.

Administering IBM MQ 119

Authorization to use the IBM MQ Explorer
Any user can use the IBM MQ Explorer, but certain authorities are required to connect, access, and
manage queue managers.

To perform local administrative tasks using the IBM MQ Explorer, a user is required to have the necessary
authority to perform the administrative tasks. If the user is a member of the mqm group, the user has
authority to perform all local administrative tasks.

To connect to a remote queue manager and perform remote administrative tasks using the IBM MQ
Explorer, the user executing the IBM MQ Explorer is required to have the following authorities:

• CONNECT authority on the target queue manager object
• INQUIRE authority on the target queue manager object
• DISPLAY authority to the target queue manager object
• INQUIRE authority to the queue, SYSTEM.MQEXPLORER.REPLY.MODEL
• DISPLAY authority to the queue, SYSTEM.MQEXPLORER.REPLY.MODEL
• INPUT (get) authority to the queue, SYSTEM.MQEXPLORER.REPLY.MODEL
• OUTPUT (put) authority to the queue, SYSTEM.MQEXPLORER.REPLY.MODEL
• OUTPUT (put) authority to the queue, SYSTEM.ADMIN.COMMAND.QUEUE
• INQUIRE authority on the queue, SYSTEM.ADMIN.COMMAND.QUEUE
• Authority to perform the action selected

Note: INPUT authority relates to input to the user from a queue (a get operation). OUTPUT authority
relates to output from the user to a queue (a put operation).

To connect to a remote queue manager on IBM MQ for z/OS and perform remote administrative tasks
using the IBM MQ Explorer, the following must be provided:

• A RACF® profile for the system queue, SYSTEM.MQEXPLORER.REPLY.MODEL
• A RACF profile for the queues, AMQ.MQEXPLORER.*

In addition, the user executing the IBM MQ Explorer is required to have the following authorities:

• RACF UPDATE authority to the system queue, SYSTEM.MQEXPLORER.REPLY.MODEL
• RACF UPDATE authority to the queues, AMQ.MQEXPLORER.*
• CONNECT authority on the target queue manager object
• Authority to perform the action selected
• READ authority to all the hlq.DISPLAY.object profiles in the MQCMDS class

For information about how to grant authority to IBM MQ objects, see Giving access to an IBM MQ object
on AIX, Linux, and Windows systems.

If a user attempts to perform an operation that they are not authorized to perform, the target queue
manager invokes authorization failure procedures and the operation fails.

The default filter in the IBM MQ Explorer is to display all IBM MQ objects. If there are any IBM MQ objects
that a user does not have DISPLAY authority to, authorization failures are generated. If authority events
are being recorded, restrict the range of objects that are displayed to those objects that the user has
DISPLAY authority to.

Security for connecting to remote queue managers from IBM MQ Explorer
You must secure the channel between the IBM MQ Explorer and each remote queue manager.

The IBM MQ Explorer connects to remote queue managers as an MQI client application. This means that
each remote queue manager must have a definition of a server-connection channel and a suitable TCP/IP
listener. If you do not secure your server connection channel it is possible for a malicious application
to connect to the same server connection channel and gain access to the queue manager objects with
unlimited authority. In order to secure your server connection channel either specify a non-blank value for
the MCAUSER attribute of the channel, use channel authentication records, or use a security exit.

120 Administering IBM MQ

The default value of the MCAUSER attribute is the local user ID. If you specify a non-blank user
name as the MCAUSER attribute of the server connection channel, all programs connecting to the queue
manager using this channel run with the identity of the named user and have the same level of authority.
This does not happen if you use channel authentication records.

Using a security exit with the IBM MQ Explorer
You can specify a default security exit and queue manager specific security exits using the IBM MQ
Explorer.

You can define a default security exit, which can be used for all new client connections from the IBM
MQ Explorer. This default exit can be overridden at the time a connection is made. You can also define
a security exit for a single queue manager or a set of queue managers, which takes effect when a
connection is made. You specify exits using the IBM MQ Explorer. For more information, see the IBM MQ
Explorer Help.

Using the IBM MQ Explorer to connect to a remote queue manager using TLS-enabled
MQI channels
The IBM MQ Explorer connects to remote queue managers using an MQI channel. If you want to secure
the MQI channel using TLS security, you must establish the channel using a client channel definition table.

For information how to establish an MQI channel using a client channel definition table, see IBM MQ MQI
clients.

When you have established the channel using a client channel definition table, you can use the IBM MQ
Explorer to connect to a remote queue manager using TLS-enabled MQI channel, as described in “Tasks
on the system that hosts the remote queue manager” on page 121 and “Tasks on the system that hosts
the IBM MQ Explorer” on page 121.

Tasks on the system that hosts the remote queue manager
On the system hosting the remote queue manager, perform the following tasks:

1. Define a server connection and client connection pair of channels, and specify the appropriate value
for the SSLCIPH attribute on the server connection on both channels. For more information about the
SSLCIPH attribute, see Protecting channels with TLS.

2. Send the channel definition table AMQCLCHL.TAB, which is found in the queue manager's @ipcc
directory, to the system hosting the IBM MQ Explorer.

3. Start a TCP/IP listener on a designated port.
4. Place both the CA and personal TLS certificates into the SSL directory of the queue manager:

• /var/mqm/qmgrs/+QMNAME+/SSL for AIX and Linux systems.

• C:\Program Files\IBM\MQ\qmgrs\+QMNAME+\SSL for Windows systems.

Where +QMNAME+ is a token representing the name of the queue manager.
5. Create a key database file of type CMS named key.kdb. Stash the key database password in a file by

specifying the -stash parameter in the runmqakm command that is used to create the key database.
6. Add the CA certificates to the key database created in the previous step.
7. Import the personal certificate for the queue manager into the key database.

For more detailed information about working with TLS on Windows systems, see Working with TLS on AIX,
Linux, and Windows.

Tasks on the system that hosts the IBM MQ Explorer
On the system hosting the IBM MQ Explorer, perform the following tasks:

1. Create a key database file of type JKS named key.jks. Set a password for this key database file.

The keystore that IBM MQ Explorer uses for TLS security must be a Java keystore (JKS) file.

Administering IBM MQ 121

2. Add the CA certificates to the key database created in the previous step.
3. Import the personal certificate for the queue manager into the key database.
4. On Windows and Linux systems, start IBM MQ Explorer by using the system menu, the MQExplorer

executable file, or the strmqcfg command.
5. From the IBM MQ Explorer toolbar, click Window -> Preferences, then expand IBM MQ Explorer and

click SSL Client Certificate Stores. Enter the name of, and password for, the JKS file created in step 1
of “Tasks on the system that hosts the IBM MQ Explorer” on page 121, in both the Trusted Certificate
Store and the Personal Certificate Store, then click OK.

6. Close the Preferences window, and right-click Queue Managers. Click Show/Hide Queue Managers,
and then click Add on the Show/Hide Queue Managers screen.

7. Type the name of the queue manager, and select the Connect directly option. Click next.
8. Select Use client channel definition table (CCDT) and specify the location of the channel table file

that you transferred from the remote queue manager in step 2 in “Tasks on the system that hosts the
remote queue manager” on page 121 on the system hosting the remote queue manager.

9. Click Finish. You can now access the remote queue manager from the IBM MQ Explorer.

Connecting through another queue manager with IBM MQ Explorer
The IBM MQ Explorer allows you to connect to a queue manager through an intermediate queue manager,
to which the IBM MQ Explorer is already connected.

In this case, the IBM MQ Explorer puts PCF command messages to the intermediate queue manager,
specifying the following:

• The ObjectQMgrName parameter in the object descriptor (MQOD) as the name of the target queue
manager. For more information on queue name resolution, see the Name resolution.

• The UserIdentifier parameter in the message descriptor (MQMD) as the local userId.

If the connection is then used to connect to the target queue manager via an intermediate queue
manager, the userId is flowed in the UserIdentifier parameter of the message descriptor (MQMD) again.
In order for the MCA listener on the target queue manager to accept this message, either the MCAUSER
attribute must be set, or the userId must already exist with put authority.

The command server on the target queue manager puts messages to the transmission queue specifying
the userId in the UserIdentifier parameter in the message descriptor (MQMD). For this put to succeed the
userId must already exist on the target queue manager with put authority.

The following example shows you how to connect a queue manager, through an intermediate queue
manager, to the IBM MQ Explorer.

Establish a remote administration connection to a queue manager. Verify that the:

• Queue manager on the server is active and has a server-connection channel (SVRCONN) defined.
• Listener is active.
• Command server is active.
• SYSTEM.MQ EXPLORER.REPLY.MODEL queue has been created and that you have sufficient authority.
• Queue manager listeners, command servers, and sender channels are started.

122 Administering IBM MQ

In this example:

• IBM MQ Explorer is connected to queue manager QMGRA (running on Server1) using a client connection.
• Queue manager QMGRB on Server2 can be now connected to IBM MQ Explorer through an intermediate

queue manager (QMGRA)
• When connecting to QMGRB with IBM MQ Explorer, select QMGRA as the intermediate queue manager

In this situation, there is no direct connection to QMGRB from IBM MQ Explorer; the connection to QMGRB
is through QMGRA.

Queue manager QMGRB on Server2 is connected to QMGRA on Server1 using sender-receiver channels. The
channel between QMGRA and QMGRB must be set up in such a way that remote administration is possible;
see “Configuring queue managers for remote administration” on page 193.

Showing and hiding queue managers and clusters in IBM MQ Explorer
The IBM MQ Explorer can display more than one queue manager at a time. From the Show/Hide
Queue Manager panel (selectable from the menu for the Queue Managers tree node), you can choose
whether you display information about another (remote) machine. Local queue managers are detected
automatically.

To show a remote queue manager:

1. Right-click the Queue Managers tree node, then select Show/Hide Queue Managers.
2. Click Add. The Show/Hide Queue Managers panel is displayed.
3. Enter the name of the remote queue manager and the host name or IP address in the fields provided.

The host name or IP address is used to establish a client connection to the remote queue manager
using either its default server connection channel, SYSTEM.ADMIN.SVRCONN, or a user-defined server
connection channel.

4. Click Finish.

The Show/Hide Queue Managers panel also displays a list of all visible queue managers. You can use this
panel to hide queue managers from the navigation view.

If the IBM MQ Explorer displays a queue manager that is a member of a cluster, the cluster is detected,
and displayed automatically.

To export the list of remote queue managers from this panel:

1. Close the Show/Hide Queue Managers panel.
2. Right-click the highest IBM MQ tree node in the Navigation pane of the IBM MQ Explorer, then select

Export IBM MQ Explorer Settings
3. Click IBM MQ Explorer > IBM MQ Explorer Settings
4. Select Connection Information > Remote queue managers.
5. Select a file to store the exported settings in.
6. Finally, click Finish to export the remote queue manager connection information to the specified file.

Administering IBM MQ 123

To import a list of remote queue managers:

1. Right-click the highest IBM MQ tree node in the Navigation pane of the IBM MQ Explorer, then select
Import IBM MQ Explorer Settings

2. Click IBM MQ Explorer > IBM MQ Explorer Settings
3. Click Browse, and navigate to the path of the file that contains the remote queue manager connection

information.
4. Click Open. If the file contains a list of remote queue managers, the Connection Information >

Remote queue managers box is selected.
5. Finally, click Finish to import the remote queue manager connection information into the IBM MQ

Explorer.

Cluster membership and IBM MQ Explorer
IBM MQ Explorer requires information about queue managers that are members of a cluster.

If a queue manager is a member of a cluster, then the cluster tree node will be populated automatically.

If queue managers become members of clusters while the IBM MQ Explorer is running, then you
must maintain the IBM MQ Explorer with up-to-date administration data about clusters so that it can
communicate effectively with them and display correct cluster information when requested. In order to
do this, the IBM MQ Explorer needs the following information:

• The name of a repository queue manager
• The connection name of the repository queue manager if it is on a remote queue manager

With this information, the IBM MQ Explorer can:

• Use the repository queue manager to obtain a list of queue managers in the cluster.
• Administer the queue managers that are members of the cluster and are on supported platforms and

command levels.

Administration is not possible if:

• The chosen repository becomes unavailable. The IBM MQ Explorer does not automatically switch to an
alternative repository.

• The chosen repository cannot be contacted over TCP/IP.
• The chosen repository is running on a queue manager that is running on a platform and command level

not supported by the IBM MQ Explorer.

The cluster members that can be administered can be local, or they can be remote if they can be
contacted using TCP/IP. The IBM MQ Explorer connects to local queue managers that are members of a
cluster directly, without using a client connection.

Data conversion for IBM MQ Explorer
The IBM MQ Explorer works in CCSID 1208 (UTF-8). This enables the IBM MQ Explorer to display the data
from remote queue managers correctly. Whether connecting to a queue manager directly, or by using an
intermediate queue manager, the IBM MQ Explorer requires all incoming messages to be converted to
CCSID 1208 (UTF-8).

An error message is issued if you try to establish a connection between the IBM MQ Explorer and a queue
manager with a CCSID that the IBM MQ Explorer does not recognize.

Supported conversions are described in Code page conversion.

124 Administering IBM MQ

Using the IBM MQ Taskbar application (Windows only)
The IBM MQ Taskbar application displays an icon in the Windows system tray on the server. The icon
provides you with the current status of IBM MQ and a menu from which you can perform some simple
actions.

On Windows, the IBM MQ icon is in the system tray on the server and is overlaid with a color-coded status
symbol, which can have one of the following meanings:
Green

Working correctly; no alerts at present
Blue

Indeterminate; IBM MQ is starting up or shutting down
Yellow

Alert; one or more services are failing or have already failed

To display the menu, right-click the IBM MQ icon. From the menu you can perform the following actions:

• Click Open to open the IBM MQ Alert Monitor.
• Click Exit to exit the IBM MQ Taskbar application.
• Click IBM MQ Explorer to start the IBM MQ Explorer.
• Click Stop IBM MQ to stop IBM MQ.
• Click About IBM MQ to display information about the IBM MQ Alert Monitor.

The IBM MQ alert monitor application (Windows only)
The IBM MQ alert monitor is an error detection tool that identifies and records problems with IBM MQ on
a local machine.

The alert monitor displays information about the current status of the local installation of an IBM MQ
server. It also monitors the Windows Advanced Configuration and Power Interface (ACPI) and ensures the
ACPI settings are enforced.

From the IBM MQ alert monitor, you can:

• Access the IBM MQ Explorer directly
• View information relating to all outstanding alerts
• Shut down the IBM MQ service on the local machine
• Route alert messages over the network to a configurable user account, or to a Windows workstation or

server

Working with local IBM MQ objects
You can administer local IBM MQ objects to support application programs that use the Message Queue
Interface (MQI).

About this task
In this context, local administration means creating, displaying, changing, copying, and deleting IBM MQ
objects.

In addition to the approaches described in this section, you can use the IBM MQ Explorer to administer
local IBM MQ objects. For more information, see “Administration using the IBM MQ Explorer” on page
117.

Procedure
• Use the information in the following topics to help you with administering local IBM MQ objects.

Administering IBM MQ 125

– Application programs using the MQI
– “Administering IBM MQ using MQSC commands” on page 12
– “Displaying and altering queue manager attributes” on page 133
– “Working with local queues” on page 136
– “Working with alias queues” on page 149
– “Working with model queues” on page 151
– “Working with services” on page 179
– “Managing objects for triggering” on page 186

Working with queue managers
You can use control commands to start and stop a queue manager. You can use MQSC commands to
display or alter queue manager attributes.
Related tasks
Creating queue managers on Multiplatforms

Starting a queue manager
When you create a queue manager, you must start it to enable it to process commands or MQI calls.

About this task
You can start a queue manager by using the strmqm command. For a description of the strmqm
command and its options, see strmqm.

Alternatively, on Windows and Linux (x86 and x86-64 platforms) systems, you
can start a queue manager by using the IBM MQ Explorer.

On Windows you can start a queue manager automatically when the system starts using the
IBM MQ Explorer. For more information, see “Administration using the IBM MQ Explorer” on page 117.

Procedure
• To start a queue manager by using the strmqm command, enter the command followed by the name of

the queue manager that you want to start.
For example, to start a queue manager called QMB, enter the following command:

strmqm QMB

Note: You must use the strmqm command from the installation associated with the queue manager
that you are working with. You can find out which installation a queue manager is associated with using
the dspmq -o installation command.

The strmqm command does not return control until the queue manager has started and is ready to
accept connection requests.

•
To start a queue manager by using the IBM MQ Explorer, complete the following steps:
a) Open the IBM MQ Explorer.
b) In the Navigator view, select the queue manager.
c) Click Start.

Results
The queue manager starts.

126 Administering IBM MQ

If the queue manager start-up takes more than a few seconds IBM MQ issues information messages
intermittently detailing the start-up progress.

Stopping a queue manager
You can use the endmqm command to stop a queue manager. This command provides four ways to stop
a queue manager: a controlled, or quiesced, shutdown, an immediate shutdown, a preemptive shutdown,
and a wait shutdown. Alternatively, on Windows and Linux, you can stop a queue manager by using the
IBM MQ Explorer.

About this task
There are four ways to stop a single instance queue manager with the endmqm command:
Controlled (quiesced) shutdown

By default, the endmqm command performs a quiesced shutdown of the specified queue manager. A
quiesced shutdown waits until all connected applications have disconnected, so might take a while to
complete.

Immediate shutdown
For an immediate shutdown, any current MQI calls are allowed to complete, but any new calls fail.
This type of shutdown does not wait for applications to disconnect from the queue manager.

Preemptive shutdown
The queue manager stops immediately. Use this type of shutdown only in exceptional circumstances,
for example, when a queue manager does not stop as a result of a normal endmqm command.

Wait shutdown
This type of shutdown is equivalent to a controlled shutdown except that control is returned to you
only after the queue manager has stopped.

The endmqm command stops all instances of a multi-instance queue manager in the same way as it stops
a single instance queue manager. You can issue the endmqm on either the active instance, or one of the
standby instances of a multi-instance queue manager. However, you must issue endmqm on the active
instance to end the queue manager.

You have the option to end the queue manager within a target time of a number of seconds that you
specify, either with or without interrupting non-essential queue manager maintenance tasks, see “Ending
a queue manager within a target time” on page 129.

Attention:

• Persistent messages will persist regardless of the type of shutdown used (including manually
ending IBM MQ processes), whereas non-persistent messages cannot be guaranteed to survive
any type of shutdown.

Specifying the queue property NPMCLASS(HIGH) saves non-persistent messages on a best-can-
do basis. Using endmqm -t, endmqm -tp, endmqm -p, or manually ending IBM MQ processes
reduces the chances of NPMCLASS(HIGH) messages surviving an IBM MQ shutdown or restart
cycle compared to endmqm -w or endmqm -i

• The combined time to both end and restart the queue manager can be longer as a result of using
a more abrupt shutdown method, particularly when using the -p and -tp options.

If the queue manager has to resort to ending IBM MQ processes to end the queue manager, then
more reconciliation of queue manager state is likely to be needed when the queue manager is
restarted.

For a detailed description of the endmqm command and its options, see endmqm.

Tip: Problems with shutting down a queue manager are often caused by applications. For example, when
applications:

• Do not check MQI return codes properly
• Do not request notification of a quiesce

Administering IBM MQ 127

• Terminate without disconnecting from the queue manager (by issuing an MQDISC call)

If a problem occurs when you try to stop the queue manager, you can break out of the endmqm command
by using Ctrl-C. You can then issue another endmqm command, but this time with a parameter that
specifies the type of shutdown that you require.

As an alternative to using the endmqm command, on Windows and Linux, you
can stop a queue manager by using the IBM MQ Explorer to carry out either a controlled or an immediate
shutdown.

Procedure
• To stop the queue manager by using the endmqm command, enter the command followed by the

appropriate parameter, if required, and the name of the queue manager that you want to stop.

Note: You must use the endmqm command from the installation associated with the queue manager
that you are working with. To find out which installation a queue manager is associated with, use the
dspmq command:

 dspmq -o installation

• To carry out a controlled (quiesced) shutdown, enter the endmqm command as shown in the
following example, which stops a queue manager called QMB:

endmqm QMB

Alternatively, entering the endmqm command with the -c parameter , as shown in the following
example, is equivalent to an endmqm QMB command.

endmqm -c QMB

In both cases, control is returned to you immediately and you are not notified when the queue
manager has stopped. If you want the command to wait until all applications have stopped and the
queue manager has ended before returning control to you, use the -w parameter instead as shown
in the following example.

endmqm -w QMB

• To carry out an immediate shutdown, enter the endmqm command with the -i parameter as shown
in the following example:

endmqm -i QMB

• To carry out a preemptive shutdown, enter the endmqm command with the -p parameter as shown
in the following example:

endmqm -p QMB

Attention: A preemptive shutdown can have unpredictable consequences for connected
applications. Do not use this option unless all other attempts to stop the queue manager

by using a normal endmqm command have failed. If the preemptive shutdown
does not work, try “Stopping a queue manager manually” on page 130 instead.

• To request automatic client reconnection, enter the endmqm command with the -r parameter. This
parameter has the effect of reestablishing the connectivity of clients to other queue managers in
their queue manager group.

Note: Ending a queue manager by using the default endmqm command does not trigger automatic
client reconnection.

128 Administering IBM MQ

• To transfer to a standby instance of a multi-instance queue manager after shutting down the
active instance, enter the endmqm command with the -s parameter on the active instance of the
multi-instance queue manager.

• To end the standby instance of a multi-instance queue manager and leave the active instance
running, enter the endmqm command with the -x parameter on the standby instance of the multi-
instance queue manager.

•
On Windows and Linux, to stop the queue manager by using IBM MQ Explorer, complete the following
steps:
a) Open the IBM MQ Explorer.
b) Select the queue manager from the Navigator View.
c) Click Stop.

The End Queue Manager panel is displayed.
d) Select Controlled, or Immediate.
e) Click OK.

The queue manager stops.

Related tasks
Applying maintenance level updates to multi-instance queue managers on AIX
Applying maintenance level updates to multi-instance queue managers on Linux
Applying maintenance level updates to multi-instance queue managers on Windows
Related reference
endmqm (end queue manager)

Ending a queue manager within a target time
You can end the queue manager within a target time of a number of seconds that you specify, either with
or without interrupting non-essential queue manager maintenance tasks.

There are two ways of specifying a target time when you use the endmqm command. The -t option
allows all queue manager maintenance tasks to complete, which might prolong the phase of the queue
manager ending. The -tp option interrupts non-essential queue manager maintenance tasks if necessary
to comply with the specified target time.

Non-essential maintenance tasks include: queue file compaction, and persisting NPMCLASS(HIGH)
messages. In the rest of this page, the word 'housekeeping' is used.

Depending on your application usage patterns, queue file compaction can take a long time, so if your
primary goal is ending the queue manager quickly, then use the -tp option.

When you specify a target time, the shutdown type of -w, -i, or -p indicates the starting shutdown type.

Note: An immediate shutdown is still orderly, differing from a controlled shutdown primarily in the
way that any running applications are quiesced. An immediate shutdown still performs housekeeping. A
time limited shutdown quits these actions when they interfere with meeting the target time.

The queue manager escalates the shutdown type as necessary, in an attempt to meet the target time. For
example:

• A 10 second -t target starting at -w might be seven seconds quiescing, two seconds immediate
shutdown of the queue manager, including housekeeping, then immediate shutdown without further
housekeeping:

endmqm -w -t 10 queue_manager

Administering IBM MQ 129

• A 10 second -tp target might be seven seconds quiescing, two seconds immediate shutdown
of the queue manager, including housekeeping, one second immediate shutdown without further
housekeeping, then start ending IBM MQ processes:

endmqm -c -tp 10 queue_manager

• A two second -tp target at -i might be one second immediate shutdown of the queue manager,
including housekeeping, one second immediate shutdown without further housekeeping, then start
ending IBM MQ processes:

endmqm -i -tp 2 queue_manager

• A one second target at -w could be 0.1 seconds at wait, for example, just long enough to send out IBM
MQ return codes to connected applications, 0.9 seconds immediate shutdown of the queue manager,
including housekeeping, then immediate shutdown without further housekeeping; then start ending
IBM MQ processes.

Related reference
endmqm (end queue manager)

Stopping a queue manager manually
If the standard methods for stopping and removing a queue manager fail, you can try to stop the queue
manager manually.

About this task
The standard way of stopping queue managers is by using the endmqm command, as described in
“Stopping a queue manager” on page 127. If you are unable to stop a queue manager in the standard
way, you can try to stop a queue manager manually. The way in which you do this depends on which
platform you are using.

Procedure

•
To stop a queue manager on Windows, see “Stopping a queue manager manually on Windows” on
page 130.

•
To stop a queue manager on AIX or Linux, see “Stopping a queue manager manually on AIX and Linux”
on page 131.

Related tasks
Creating and managing queue managers on Multiplatforms
Related reference
endmqm

Stopping a queue manager manually on Windows
If you are unable to stop a queue manager on Windows by using the endmqm command, you can try to
stop the queue manager manually by ending any processes that are running and stopping the IBM MQ
service.

About this task
Tip: The Windows Task Manager and the tasklist command give limited information about tasks. For
more information to help to determine which processes relate to a particular queue manager, consider
using a tool such as Process Explorer (procexp.exe), which is available for download from the Microsoft
website at http://www.microsoft.com.

130 Administering IBM MQ

https://www.microsoft.com/

To stop a queue manager on Windows, complete the following steps.

Procedure
1. List the names (IDs) of the processes that are running, by using the Windows Task Manager.
2. End the processes by using Windows Task Manager, or the taskkill command, in the following order

(if they are running):

Table 7. Windows processes to be stopped if running

Process name Description

AMQZMUC0 Critical process manager

AMQZXMA0 Execution controller

AMQZFUMA OAM process

AMQZLAA0 LQM agents

AMQZLSA0 LQM agents

AMQZMUF0 Utility Manager

AMQZMGR0 Process controller

AMQZMUR0 Restartable process manager

AMQFQPUB Publish Subscribe process

AMQFCXBA Broker worker process

AMQRMPPA Process pooling process

AMQCRSTA Non-threaded responder job process

AMQCRS6B LU62 receiver channel and client connection

AMQRRMFA The repository process (for clusters)

AMQPCSEA The command server

RUNMQTRM Invoke a trigger monitor for a server

RUNMQDLQ Invoke dead-letter queue handler

RUNMQCHI The channel initiator process

RUNMQLSR The channel listener process

AMQXSSVN Shared memory servers

3. Stop the IBM MQ service from Administration tools > Services on the Windows Control Panel.
4. If you have tried all methods and the queue manager has not stopped, reboot your system.

Stopping a queue manager manually on AIX and Linux
If you are unable to stop a queue manager on AIX or Linux by using the endmqm command, you can try
to stop the queue manager manually by ending any processes that are running and stopping the IBM MQ
service.

About this task
To stop a queue manager on AIX or Linux, complete the following steps.

If you stop the queue manager manually, FFST might be taken, and FDC files placed in /var/mqm/
errors. This should not be regarded as a defect in the queue manager.

Administering IBM MQ 131

The queue manager will restart normally, even after you have stopped it using this method of stopping it
manually.

Procedure
1. Find the process identifiers (PIDs) of the queue manager programs that are still running by using the
ps command.
For example, if the queue manager is called QMNAME, use the following command:

ps -ef | grep QMNAME

2. End any queue manager processes that are still running by using the kill command, specifying the
PIDs discovered by using the ps command.
To end a process, use either kill -KILL <pid> or the equivalent kill -9 <pid> command.

You have to work through the PIDs you want to kill, one by one, issuing that command each time.

Important: If you use any signal other than 9(SIGKILL) the process probably will not stop and you
will get unpredictable results.

End the processes in the following order:

Table 8. AIX and Linux processes to be stopped if running

Process name Description

amqzmuc0 Critical process manager

amqzxma0 Execution controller

amqzfuma OAM process

amqzlaa0 LQM agents

amqzlsa0 LQM agents

amqzmuf0 Utility Manager

amqzmur0 Restartable process manager

amqzmgr0 Process controller

amqfqpub Publish Subscribe process

amqfcxba Broker worker process

amqrmppa Process pooling process

amqcrsta Non-threaded responder job process

amqcrs6b LU62 receiver channel and client connection

amqrrmfa The repository process (for clusters)

amqpcsea The command server

runmqtrm Invoke a trigger monitor for a server

runmqdlq Invoke dead-letter queue handler

runmqchi The channel initiator process

runmqlsr The channel listener process

Related tasks
“Stopping a queue manager” on page 127

132 Administering IBM MQ

You can use the endmqm command to stop a queue manager. This command provides four ways to stop
a queue manager: a controlled, or quiesced, shutdown, an immediate shutdown, a preemptive shutdown,
and a wait shutdown. Alternatively, on Windows and Linux, you can stop a queue manager by using the
IBM MQ Explorer.

Restarting a queue manager
You can use the strmqm command to restart a queue manager, or on Windows and Linux x86-64 systems,
you can restart a queue manager from IBM MQ Explorer.

About this task
You can restart a queue manager by using the strmqm command. For a description of the strmqm
command and its options, see strmqm.

On Windows and Linux x86-64 systems, you can restart a queue manager by
using the IBM MQ Explorer in the same way as for starting a queue manager.

Procedure
• To restart a queue manager by using the strmqm command, enter the command followed by the name

of the queue manager that you want to restart.
For example, to start a queue manager called strmqm saturn.queue.manager, enter the following
command:

strmqm saturn.queue.manager

•
To start a queue manager by using the IBM MQ Explorer, complete the following steps:
a) Open the IBM MQ Explorer.
b) In the Navigator view, select the queue manager.
c) Click Start.

Results
The queue manager restarts.

If the queue manager restart takes more than a few seconds IBM MQ issues information messages
intermittently detailing the start-up progress.

Displaying and altering queue manager attributes
Use the DISPLAY QMGR MQSC command to display the queue manager parameters for a queue manager.
Use the ALTER QMGR MQSC command to alter the queue manager parameters for a local queue manager.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

Procedure
• To display the attributes of the queue manager specified on the runmqsc command, use the DISPLAY

QMGR MQSC command:

DISPLAY QMGR

Administering IBM MQ 133

The following example shows typical output from this command:

DISPLAY QMGR
 1 : DISPLAY QMGR
AMQ8408I: Display Queue Manager details.
 QMNAME(QM1) ACCTCONO(DISABLED)
 ACCTINT(1800) ACCTMQI(OFF)
 ACCTQ(OFF) ACTIVREC(MSG)
 ACTVCONO(DISABLED) ACTVTRC(OFF)
 ADVCAP(DISABLED) ALTDATE(2022-05-05)
 ALTTIME(14.24.34) AMQPCAP(NO)
 AUTHOREV(DISABLED) CCSID(437)
 CERTLABL(ibmwebspheremqqm1) CERTVPOL(ANY)
 CHAD(DISABLED) CHADEV(DISABLED)
 CHADEXIT() CHLEV(DISABLED)
 CHLAUTH(ENABLED) CLWLDATA()
 CLWLEXIT() CLWLLEN(100)
 CLWLMRUC(999999999) CLWLUSEQ(LOCAL)
 CMDEV(DISABLED) CMDLEVEL(930)
 COMMANDQ(SYSTEM.ADMIN.COMMAND.QUEUE) CONFIGEV(DISABLED)
 CONNAUTH(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)
 CRDATE(2020-12-22) CRTIME(15.42.49)
 CUSTOM() DEADQ()
 DEFCLXQ(SCTQ) DEFXMITQ()
 DESCR() DISTL(YES)
 IMGINTVL(60) IMGLOGLN(OFF)
 IMGRCOVO(YES) IMGRCOVQ(YES)
 IMGSCHED(MANUAL) INHIBTEV(DISABLED)
 INITKEY() IPADDRV(IPV4)
 LOCALEV(DISABLED) LOGGEREV(DISABLED)
 MARKINT(5000) MAXHANDS(256)
 MAXMSGL(4194304) MAXPROPL(NOLIMIT)
 MAXPRTY(9) MAXUMSGS(10000)
 MONACLS(QMGR) MONCHL(OFF)
 MONQ(OFF) PARENT()
 PERFMEV(DISABLED) PLATFORM(WINDOWS10)
 PSMODE(ENABLED) PSCLUS(ENABLED)
 PSNPMSG(DISCARD) PSNPRES(NORMAL)
 PSRTYCNT(5) PSSYNCPT(IFPER)
 QMID(QM1_2020-12-22_15.42.49) REMOTEEV(DISABLED)
 REPOS() REPOSNL()
 REVDNS(ENABLED) ROUTEREC(MSG)
 SCHINIT(QMGR) SCMDSERV(QMGR)
 SPLCAP(DISABLED) SSLCRLNL()
 SSLCRYP() SSLEV(DISABLED)
 SSLFIPS(NO) KEYRPWD()
 SSLKEYR(C:\ProgramData\IBM\MQ\qmgrs\QM1\ssl\key)
 SSLRKEYC(32767) STATACLS(QMGR)
 STATCHL(OFF) STATINT(1800)
 STATMQI(OFF) STATQ(OFF)
 STRSTPEV(ENABLED) SUITEB(NONE)
 SYNCPT TREELIFE(1800)
 TRIGINT(999999999) VERSION(09030000)
 XRCAP(NO)

Note: SYNCPT is a read only queue manager attribute.

The ALL parameter is the default on the DISPLAY QMGR command. It displays all the queue manager
attributes. In particular, the output tells you the default queue manager name, the dead-letter queue
name, and the command queue name.

You can confirm that these queues exist by entering the command:

DISPLAY QUEUE (SYSTEM.*)

This displays a list of queues that match the stem SYSTEM.*. The parentheses are required.
• To alter the attributes of the queue manager specified on the runmqsc command, use the MQSC

command ALTER QMGR, specifying the attributes and values that you want to change.

For example, use the following commands to alter the attributes of jupiter.queue.manager:

runmqsc jupiter.queue.manager
ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

134 Administering IBM MQ

The ALTER QMGR command changes the dead-letter queue used, and enables inhibit events.

Parameters not specified in the ALTER QMGR command result in the existing values for those
parameters being left unchanged.

Related tasks
Creating queue managers on Multiplatforms
Related reference
Attributes for the queue manager
runmqsc (run MQSC commands)
DISPLAY QMGR
ALTER QMGR

Deleting a queue manager
You can delete a queue manager using the dltmqm control command. Alternatively, on Windows and
Linux systems, you can use the IBM MQ Explorer to delete a queue manager.

Before you begin
Attention:

• Deleting a queue manager is a drastic step, because you also delete all resources associated
with the queue manager, including all queues and their messages and all object definitions. If
you use the dltmqm control command, there is no displayed prompt that allows you to change
your mind; when you press the Enter key all the associated resources are lost.

• On Windows, deleting a queue manager also removes the queue manager from
the automatic startup list (described in “Starting a queue manager” on page 126). When the
command has completed, an IBM MQ queue manager ending message is displayed; you are
not told that the queue manager has been deleted.

• Deleting a cluster queue manager does not remove it from the cluster. For more information, see
the usage notes in dltmqm.

About this task
You can delete a queue manager by using the dltmqm control command. For a description of the dltmqm
command and its options, see dltmqm. Ensure that only trusted administrators have the authority to use
this command. (For information about security, see Setting up security on AIX, Linux, and Windows.)

Alternatively, on Windows and Linux (x86 and x86-64 platforms) systems, you
can delete a queue manager by using the IBM MQ Explorer.

Procedure
• To delete a queue manager by using the dltmqm command, complete the following steps:

a) Stop the queue manager.
b) Issue the following command:

dltmqm QMB

Note: You must use the dltmqm command from the installation associated with the queue manager
that you are working with. You can find out which installation a queue manager is associated with
using the dspmq -o installation command.

•
To delete a queue manager by using the IBM MQ Explorer, complete the following steps:
a) Open the IBM MQ Explorer.

Administering IBM MQ 135

b) In the Navigator view, select the queue manager.
c) If the queue manager is not stopped, stop it.

To stop the queue manager, right-click it and then click Stop.
d) Delete the queue manager.

To delete the queue manager, right-click it and then click Delete.

Results
The queue manager is deleted.

Stopping MQI channels
When you issue a STOP CHANNEL command against a server-connection channel, you can choose what
method to use to stop the client-connection channel. This means that a client channel issuing an MQGET
wait call can be controlled, and you can decide how and when to stop the channel.

The STOP CHANNEL command can be issued with three modes, indicating how the channel is to be
stopped:
Quiesce

Stops the channel after any current messages have been processed.
If sharing conversations is enabled, the IBM MQ MQI client becomes aware of the stop request in a
timely manner; this time is dependent upon the speed of the network. The client application becomes
aware of the stop request as a result of issuing a subsequent call to IBM MQ.

Force
Stops the channel immediately.

Terminate
Stops the channel immediately. If the channel is running as a process, it can terminate the channel's
process, or if the channel is running as a thread, its thread.

This is a multi-stage process. If mode terminate is used, an attempt is made to stop the server-
connection channel, first with mode quiesce, then with mode force, and if necessary with mode
terminate. The client can receive different return codes during the different stages of termination. If
the process or thread is terminated, the client receives a communication error.

The return codes returned to the application vary according to the MQI call issued, and the STOP
CHANNEL command issued. The client will receive either an MQRC_CONNECTION_QUIESCING or
an MQRC_CONNECTION_BROKEN return code. If a client detects MQRC_CONNECTION_QUIESCING
it should try to complete the current transaction and terminate. This is not possible with
MQRC_CONNECTION_BROKEN. If the client does not complete the transaction and terminate fast enough
it will get CONNECTION_BROKEN after a few seconds. A STOP CHANNEL command with MODE(FORCE) or
MODE(TERMINATE) is more likely to result in a CONNECTION_BROKEN than with MODE(QUIESCE).

Related concepts
Channels

Working with local queues
This section contains examples of some MQSC commands that you can use to manage local, model, and
alias queues.

See MQSC commands for detailed information about these commands.

Related reference
Naming restrictions for queues
Naming restrictions for other objects

136 Administering IBM MQ

Defining a local queue with DEFINE QLOCAL
For an application, the local queue manager is the queue manager to which the application is connected.
Queues managed by the local queue manager are said to be local to that queue manager. You use the
MQSC command DEFINE QLOCAL to create a local queue.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

About this task
You use the MQSC command DEFINE QLOCAL to create a local queue. You can also use the default
defined in the default local queue definition, or you can modify the queue characteristics from those of
the default local queue.

Note: The default local queue is named SYSTEM.DEFAULT.LOCAL.QUEUE and it is created on system
installation.

Procedure
• To create a local queue, enter the DEFINE QLOCAL command as shown in the following example.

In this example, the DEFINE QLOCAL command defines a queue called ORANGE.LOCAL.QUEUE with
these characteristics:

– It is enabled for gets, enabled for puts, and operates on a priority order basis.
– It is an normal queue; it is not an initiation queue or transmission queue, and it does not generate

trigger messages.
– The maximum queue depth is 5000 messages; the maximum message length is 4194304 bytes.

DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) +
 DESCR('Queue for messages from other systems') +
 PUT(ENABLED) +
 GET(ENABLED) +
 NOTRIGGER +
 MSGDLVSQ(PRIORITY) +
 MAXDEPTH(5000) +
 MAXMSGL(4194304) +
 USAGE(NORMAL)

Notes:

1. With the exception of the value for the description, all the attribute values shown in the example are
the default values. These examples are included for illustration purposes. You can omit them if you
are sure that the defaults are what you want or have not been changed. See also “Displaying default
object attributes with DISPLAY QUEUE” on page 138.

2. USAGE(NORMAL) indicates that this queue is not a transmission queue.
3. If you already have a local queue on the same queue manager with the name

ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute if you want to overwrite
the existing definition of a queue, but see also “Changing local queue attributes with ALTER QLOCAL
or DEFINE QLOCAL” on page 139.

Related reference
DEFINE QLOCAL

Administering IBM MQ 137

Displaying default object attributes with DISPLAY QUEUE
You can use the DISPLAY QUEUE MQSC command to display attributes that were taken from the default
object when an IBM MQ object was defined.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

About this task
When you define an IBM MQ object, it takes any attributes that you do not specify from the default
object. For example, when you define a local queue, the queue inherits any attributes that you omit in the
definition from the default local queue, which is called SYSTEM.DEFAULT.LOCAL.QUEUE. You can use the
DISPLAY QUEUE command to see exactly what these attributes are.

Procedure
• To display the default object attributes for a local queue, use the following command:

DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE)

The syntax of the DISPLAY command is different from that of the corresponding DEFINE command.
On the DISPLAY command you can give just the queue name, whereas on the DEFINE command you
have to specify the type of the queue, that is, QLOCAL, QALIAS, QMODEL, or QREMOTE.

You can selectively display attributes by specifying them individually. For example:

DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +
MAXDEPTH +
MAXMSGL +
CURDEPTH;

This command displays the three specified attributes as follows:

AMQ8409: Display Queue details.
QUEUE(ORANGE.LOCAL.QUEUE) TYPE(QLOCAL)
CURDEPTH(0) MAXDEPTH(5000)
MAXMSGL(4194304)

CURDEPTH is the current queue depth, that is, the number of messages on the queue. This is a useful
attribute to display, because by monitoring the queue depth you can ensure that the queue does not
become full.

Related reference
DISPLAY QUEUE
DEFINE queues

Copying a local queue definition with DEFINE QLOCAL
You can copy a queue definition using the LIKE attribute on the DEFINE QLOCAL MQSC command.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

138 Administering IBM MQ

About this task
You can use the DEFINE command with the LIKE attribute to creates a queue with the same attributes as
the specified queue, rather than those of the system default local queue. You can also use this form of the
DEFINE command to copy a queue definition, but substitute one or more changes to the attributes of the
original.

Notes:

1. When you use the LIKE attribute on a DEFINE command, you are copying the queue attributes only.
You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as:

 DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE)

Procedure
• To creates a queue with the same attributes as the specified queue, rather than those of the system

default local queue, enter the DEFINE command as shown in the following example.
Enter the name of the queue to be copied exactly as it was entered when you created the queue. If the
name contains lowercase characters, enclose the name in single quotation marks.

This example creates a queue with the same attributes as the queue ORANGE.LOCAL.QUEUE, rather
than those of the system default local queue:

DEFINE QLOCAL (MAGENTA.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE)

• To copy a queue definition, but substitute one or more changes to the attributes of the original, enter
the DEFINE command as shown in the following example.
This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the queue THIRD.QUEUE,
but specifies that the maximum message length on the new queue is to be 1024 bytes, rather than
4194304:

DEFINE QLOCAL (THIRD.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE) +
MAXMSGL(1024);

Related reference
DEFINE queues

Changing local queue attributes with ALTER QLOCAL or DEFINE QLOCAL
You can change queue attributes in two ways, by using either the ALTER QLOCAL or the DEFINE QLOCAL
MQSC command with the REPLACE attribute.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

About this task
You can use the REPLACE attribute of either the ALTER and DEFINE command to replace an existing
definition with the specified new definition. The difference between using ALTER and DEFINE is that
ALTER with REPLACE does not change unspecified parameters, but DEFINE with REPLACE sets all the
parameters.

Administering IBM MQ 139

Procedure
• To change queue attributes, use either the ALTER command or the DEFINE command as shown in the

following examples.
In these examples, the maximum message length on the queue ORANGE.LOCAL.QUEUE is decreased
to 10,000 bytes.

– Using the ALTER command:

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000)

This command changes a single attribute, that of the maximum message length; all the other
attributes remain the same.

– Using the DEFINE command with the REPLACE option, for example:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(10000) REPLACE

This command changes not only the maximum message length, but also all the other attributes,
which are given their default values. So, for example, if the queue was previously put inhibited,
this is changed to put enabled because put enabled is the default, as specified by the queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

If you decrease the maximum message length on an existing queue, existing messages are not
affected. Any new messages, however, must meet the new criteria.

Related reference
ALTER queues
ALTER QLOCAL
DEFINE queues
DEFINE QLOCAL

Clearing a local queue with CLEAR QLOCAL
You can use the CLEAR QLOCAL MQSC command to clear a local queue.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

You cannot clear a queue if:

• There are uncommitted messages that have been put on the queue under sync point.
• An application currently has the queue open.

About this task
If you want to clear a local queue by using the CLEAR QLOCAL command, the name of the queue must be
defined to the local queue manager.

Note: There is no prompt that enables you to change your mind; once you press the Enter key the
messages are lost.

Procedure
To clear the messages from a local queue, use the CLEAR QLOCAL as shown in the following example.

In this example, all the messages are deleted from a local queue called MAGENTA.QUEUE:

140 Administering IBM MQ

CLEAR QLOCAL (MAGENTA.QUEUE)

Related reference
CLEAR QLOCAL

Deleting a local queue with DELETE QLOCAL
You can use the DELETE QLOCAL MQSC command to delete a local queue.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

A queue cannot be deleted if it contains uncommitted messages.

If a queue has one or more committed messages and no uncommitted messages, it can be deleted only if
you specify the PURGE option. The deletion then goes ahead even if there are committed messages on the
named queue, and these messages are also purged.

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it contains any committed
messages.

Procedure
• To delete a local queue, use the DELETE QLOCAL command as shown in the following example.

This example deletes the queue PINK.QUEUE if there are no committed messages on the queue:

DELETE QLOCAL (PINK.QUEUE) NOPURGE

This example deletes the queue PINK.QUEUE even if there are committed messages on the queue:

DELETE QLOCAL (PINK.QUEUE) PURGE

Related reference
DELETE QLOCAL

Browsing queues with the sample program
IBM MQ provides a sample queue browser that you can use to look at the contents of the messages on a
queue.

About this task
The browser is supplied in both source and executable formats in the following locations, where
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

On Windows, the file names and paths for the sample queue browser are as follows:
Source

MQ_INSTALLATION_PATH\tools\c\samples\
Executable

MQ_INSTALLATION_PATH\tools\c\samples\bin\amqsbcg.exe

On AIX and Linux, the file names and paths are as follows:
Source

MQ_INSTALLATION_PATH/samp/amqsbcg0.c

Administering IBM MQ 141

Executable
MQ_INSTALLATION_PATH/samp/bin/amqsbcg

Procedure
• To run the sample program, enter a command as shown in the following example.

The sample program requires two input parameters, the name of the queue on which the messages
are going to be browsed, and the queue manager that owns that queue. For example:

amqsbcg SYSTEM.ADMIN.QMGREVENT.tpp01 saturn.queue.manager

Results
Typical results from this command are shown in the following example:

AMQSBCG0 - starts here

 MQOPEN - 'SYSTEM.ADMIN.QMGR.EVENT'

 MQGET of message number 1
****Message descriptor****

 StrucId : 'MD ' Version : 2
 Report : 0 MsgType : 8
 Expiry : -1 Feedback : 0
 Encoding : 546 CodedCharSetId : 850
 Format : 'MQEVENT '
 Priority : 0 Persistence : 0
 MsgId : X'414D512073617475726E2E71756575650005D30033563DB8'
 CorrelId : X'00'
 BackoutCount : 0
 ReplyToQ : ' '
 ReplyToQMgr : 'saturn.queue.manager '
 ** Identity Context
 UserIdentifier : ' '
 AccountingToken :
 X'00'
 ApplIdentityData : ' '
 ** Origin Context
 PutApplType : '7'
 PutApplName : 'saturn.queue.manager '
 PutDate : '19970417' PutTime : '15115208'
 ApplOriginData : ' '

 GroupId : X'00'
 MsgSeqNumber : '1'
 Offset : '0'
 MsgFlags : '0'
 OriginalLength : '104'

**** Message ****

length - 104 bytes

00000000: 0700 0000 2400 0000 0100 0000 2C00 0000 '....→.......,...'
00000010: 0100 0000 0100 0000 0100 0000 AE08 0000 '................'
00000020: 0100 0000 0400 0000 4400 0000 DF07 0000 '........D.......'
00000030: 0000 0000 3000 0000 7361 7475 726E 2E71 '....0...saturn.q'
00000040: 7565 7565 2E6D 616E 6167 6572 2020 2020 'ueue.manager '
00000050: 2020 2020 2020 2020 2020 2020 2020 2020 ' '
00000060: 2020 2020 2020 2020 ' '

No more messages
MQCLOSE
MQDISC

Related reference
The Browser sample program

142 Administering IBM MQ

Enabling large queues
IBM MQ supports queues larger than 2 TB.

On Windows systems, support for large files is available without any additional enablement.

On AIX and Linux systems, you need to explicitly enable large file support
before you can create queue files of multiple gigabytes or terabytes. See your operating system
documentation for information on how to do this.

Some utilities, such as tar, cannot cope with files of multiple gigabytes or terabytes. Before enabling large
file support, check your operating system documentation for information on restrictions on utilities you
use.

For information about planning the amount of storage you need for queues, see MQ Performance
documents for platform-specific performance reports.

You can control the size of queue files using a new attribute on local and model queues. See “Modifying
IBM MQ queue files” on page 143 for more information.

Modifying IBM MQ queue files
You can control the size of queue files using an attribute on local and model queues. You can display the
current size of a queue file, and the maximum size it is currently able to grow to (based on the block size
currently in use in that file), using two queue status attributes.

Attribute used to modify queue files
The attribute on local and model queues is:
MAXFSIZE

Denotes the maximum size of the queue file used by the queue, in megabytes.
You can set or display the value of this attribute using MQSC commands, IBM MQ Explorer, or the
administrative REST API. You can also display the value of this attribute in the IBM MQ Console.
See MAXFSIZE and “Changing the size of an IBM MQ queue file ” on page 144 for more information.
The PCF equivalent of this attribute is MQIA_MAX_Q_FILE_SIZE. See Change, Copy, and Create
Queue.

The two attributes on queue status are:
CURFSIZE

Displays the current size of the queue file in megabytes, rounded up to the nearest megabyte.
You can set or display the value of this attribute using MQSC commands, IBM MQ Explorer, or the
administrative REST API.
See CURFSIZE for more information.
The PCF equivalent of this attribute is MQIA_CUR_Q_FILE_SIZE. See Inquire Queue and Inquire
Queue (response).

CURMAXFS
Indicates the current maximum size the queue file can grow to, rounded up to the nearest megabyte,
given the current block size in use on a queue.
You can set or display the value of this attribute using MQSC commands, IBM MQ Explorer, or the
administrative REST API.
See CURMAXFS for more information.
The PCF equivalent of this attribute is MQIA_CUR_MAX_FILE_SIZE. See Inquire Queue and Inquire
Queue (response).

Administering IBM MQ 143

https://ibm-messaging.github.io/mqperf/
https://ibm-messaging.github.io/mqperf/

Block size and granularity
Queue files are divided into segments called blocks. To increase the maximum size of a queue file, the
block size or granularity of the queue might need to be changed by the queue manager.

If a newly defined queue is created with a large MAXFSIZE value, the queue is created with a suitable
block size. However if an existing queue has its MAXFSIZE value increased, for example by using the
ALTER QLOCAL MQSC command, it might be necessary to allow the queue to be emptied in order for the
queue manager to reconfigure the queue.

See “Calculating how much data an IBM MQ queue file can store” on page 145 for more information.

Attention: Some file systems and operating systems have limits on the size of the entire file
system, or the size of an individual file. You should check the limits on the systems your enterprise
uses.

Related reference
ALTER QUEUES
DISPLAY QUEUE
DISPLAY QSTATUS

Changing the size of an IBM MQ queue file
You can increase or decrease the maximum size of a queue file.

Before you begin
Note: The steps in this task require you to run MQSC commands:

• On AIX, Linux, and Windows, you issue MQSC commands from a runmqsc command
prompt. See Running MQSC commands interactively under runmqsc and Running MQSC commands
from text files under runmqsc.

• On IBM i, you create a list of commands in a Script file, then run the file by using the
STRMQMMQSC command. See Administration using MQSC commands on IBM i.

Before setting a new size for a queue file, use the DISPLAY QLOCAL MQSC command to see the size of the
queue file you want to change. For example, issue the following command:

DISPLAY QLOCAL(SYSTEM.DEFAULT.LOCAL.QUEUE) MAXFSIZE

You receive the following output:

AMQ8409I: Display queue details
 QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE) TYPE(QLOCAL)
 MAXFSIZE(DEFAULT)

which shows that the maximum size of the queue file is the default value of 2,088,960 MB.

About this task
The following procedures show you how to:

• Reduce the maximum size that a queue file can grow to.
• Increase the maximum size that a queue file can grow to.

Attention: You should be cautious of increasing the size of queue files without considering
the way that your applications are written and the possible effect on performance. Accessing
messages at random in a very large queue file can be very slow.

If you are considering increasing the maximum size of a queue file beyond the default you
should be cautious of using message selectors such as correlation IDs and IBM MQ classes for

144 Administering IBM MQ

JMS or IBM MQ classes for Jakarta Messaging selector strings. Larger queue files
are better suited to first-in first-out access to the queue.

Having very large amounts of data in individual queue files should only be done on queue
managers that are configured for circular logging, or where media imaging has not been enabled
for the individual queue.

You should not limit the size of SYSTEM queues as this could affect the operation of the queue
manager.

Procedure
1. Reduce the maximum queue file size

a) Issue the following MQSC command to create a local file called SMALLQUEUE, with a size of 500
gigabytes :

DEFINE QLOCAL(SMALLQUEUE) MAXFSIZE(512000)
 2 : DEFINE QLOCAL(SMALLQUEUE) MAXFSIZE(512000)
AMQ8006I: IBM MQ queue created

and you receive message: AMQ8006I:

Note: If you configure a queue with a value smaller than the amount of data already in the file, new
messages cannot be put to the queue.

If an application attempts to put a message to a queue file that does not have sufficient space, the
application receives the return code MQRC_Q_SPACE_NOT_AVAILABLE. When enough messages
are destructively read from the queue, applications can begin to put new messages to the queue.

2. Increase the maximum queue file size.
a) Issue the following MQSC command to create a local file called LARGEQUEUE, with a size of 5

terabytes:

DEFINE QLOCAL(LARGEQUEUE) MAXFSIZE(5242880)
 3 : DEFINE QLOCAL(LARGEQUEUE) MAXFSIZE(5242880)
AMQ8006I: IBM MQ queue created

Calculating how much data an IBM MQ queue file can store
The amount of data that can be stored on a queue is limited by the size of the individual blocks the queue
is divided into. Use MQSC commands to confirm block size and granularity, and check the size of a queue
file.

Before you begin
Note: The steps in this task require you to run MQSC commands:

• On AIX, Linux, and Windows, you issue MQSC commands from a runmqsc command
prompt. See Running MQSC commands interactively under runmqsc and Running MQSC commands
from text files under runmqsc.

• On IBM i, you create a list of commands in a Script file, then run the file by using the
STRMQMMQSC command. See Administration using MQSC commands on IBM i.

Procedure
• Confirm block size and granularity.

The default block size is 512 bytes. To support queue files greater than two terabytes, the queue
manager will need to increase the block size.

Administering IBM MQ 145

The block size is automatically calculated when you configure the MAXFSIZE for a queue, but the
revised block size cannot be applied to the queue if the queue already has messages on it. Once a
queue is empty, the queue manager automatically modifies the block size to support the configured
MAXFSIZE.

The DISPLAY QSTATUS command has a new attribute, CURMAXFS, that allows you to confirm that a
queue has been modified to use a new block size.

In the following example, the CURMAXFS value of 4177920 confirms that the queue file is currently
able to grow to approximately four terabytes in size. If the value of MAXFSIZE configured on the queue
is greater than the value of CURMAXFS, then the queue manager is still waiting for the queue to be
emptied before it reconfigures the block size of the queue file.

DISPLAY QSTATUS(LARGEQUEUE) CURMAXFS
 2 : DISPLAY QSTATUS(LARGEQUEUE) CURMAXFS
AMQ8450I: Display queue status details
 QUEUE(LARGEQUEUE) TYPE(QUEUE)
 CURMAXFS(4177920) CURDEPTH(100000)

• Check the size of a queue file.

You can display the current size of a queue file on disk, in megabytes, using the CURFSIZE attribute
in the DISPLAY QSTATUS command. This can be useful on platforms such as the IBM MQ Appliance,
where it is not possible to access the file system directly.

DISPLAY QSTATUS(SMALLQUEUE) CURFSIZE
 1 : DISPLAY QSTATUS(SMALLQUEUE) CURFSIZE
AMQ8450I: Display queue status details
 QUEUE(SMALLQUEUE) TYPE(QUEUE)
 CURDEPTH(4024) CURFSIZE(10)

Note: When a queue has messages removed from it, the CURFSIZE attribute does not decrease
immediately.

Typically, space in a queue file is only released when no applications have the queue open and there
are no in-doubt messages stored on the queue. Any necessary truncation or compaction of a queue
file that is loaded by the queue manager occurs during checkpoint, queue manager shutdown or whilst
recording a media image of the queue.

Related reference
ALTER QUEUES
DISPLAY QSTATUS

Working with remote queues
A remote queue is a definition on a local queue manager that refers to a queue on a remote queue
manager. You do not have to define a remote queue from a local position, but if you do so then
applications can refer to the remote queue by its locally-defined name instead of having to specify a
name that is qualified by the ID of the queue manager on which the remote queue is located.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

About this task
An application connects to a local queue manager and then issues an MQOPEN call. In the open call,
the queue name specified is that of a remote queue definition on the local queue manager. The remote
queue definition supplies the names of the target queue, the target queue manager, and optionally,
a transmission queue. To put a message on the remote queue, the application issues an MQPUT call,
specifying the handle returned from the MQOPEN call. The queue manager uses the remote queue

146 Administering IBM MQ

name and the remote queue manager name in a transmission header at the start of the message. This
information is used to route the message to its correct destination in the network.

As administrator, you can control the destination of the message by altering the remote queue definition.

Procedure
• Put a message on a queue owned by a remote queue manager.

The application connects to a queue manager, for example, saturn.queue.manager. The target
queue is owned by another queue manager.

On the MQOPEN call, the application specifies these fields:

Field value Description

ObjectName CYAN.REMOTE.QUEUE Specifies the local name of the remote
queue object. This defines the target
queue and the target queue manager.

ObjectType (Queue) Identifies this object as a queue.

ObjectQmgrName Blank or saturn.queue.manager This field is optional.

If blank, the name of the local queue
manager is assumed. (This is the queue
manager on which the remote queue
definition exists.)

After this, the application issues an MQPUT call to put a message onto this queue.

On the local queue manager, you can create a local definition of a remote queue using the following
MQSC commands:

DEFINE QREMOTE (CYAN.REMOTE.QUEUE) +
DESCR ('Queue for auto insurance requests from the branches') +
RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE) +
RQMNAME (jupiter.queue.manager) +
XMITQ (INQUOTE.XMIT.QUEUE)

where:
QREMOTE (CYAN.REMOTE.QUEUE)

Specifies the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the MQOPEN call to
open the queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the remote queue manager
jupiter.queue.manager.

DESCR ('Queue for auto insurance requests from the branches')
Provides additional text that describes the use of the queue.

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE)
Specifies the name of the target queue on the remote queue manager. This is the real target queue
for messages sent by applications that specify the queue name CYAN.REMOTE.QUEUE. The queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE must be defined as a local queue on the remote queue
manager.

RQMNAME (jupiter.queue.manager)
Specifies the name of the remote queue manager that owns the target queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE.

XMITQ (INQUOTE.XMIT.QUEUE)
Specifies the name of the transmission queue. This is optional; if the name of a transmission queue
is not specified, a queue with the same name as the remote queue manager is used.

Administering IBM MQ 147

In either case, the appropriate transmission queue must be defined as a local queue with a Usage
attribute specifying that it is a transmission queue (USAGE(XMITQ) in MQSC commands).

• Put messages on a remote queue (alternative method).

Using a local definition of a remote queue is not the only way of putting messages on a remote queue.
Applications can specify the full queue name, including the remote queue manager name, as part of
the MQOPEN call. In this case, you do not need a local definition of a remote queue. However, this
means that applications must either know, or have access to, the name of the remote queue manager
at run time.

• Use other commands with remote queues.

You can use MQSC commands to display or alter the attributes of a remote queue object, or you can
delete the remote queue object. For example:

– To display the remote queue's attributes:

DISPLAY QUEUE (CYAN.REMOTE.QUEUE)

– To change the remote queue to enable puts. This does not affect the target queue, only applications
that specify this remote queue:

ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

– To delete this remote queue. This does not affect the target queue, only its local definition:

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: When you delete a remote queue, you delete only the local representation of the remote queue.
You do not delete the remote queue itself or any messages on it.

Remote queue definitions can be used as aliases
In addition to locating a queue on another queue manager, you can also use a local definition of a remote
queue for queue manager aliases and reply-to queue aliases. Both types of alias are resolved through the
local definition of a remote queue. You must set up the appropriate channels for the message to arrive at
its destination.

Queue manager aliases
An alias is the process by which the name of the target queue manager, as specified in a message, is
modified by a queue manager on the message route. Queue manager aliases are important because you
can use them to control the destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the point of control. The
sending application is not aware that the queue manager name specified is an alias.

For more information about queue manager aliases, see What are aliases?

Reply-to queue aliases
Optionally, an application can specify the name of a reply-to queue when it puts a request message on a
queue.

If the application that processes the message extracts the name of the reply-to queue, it knows where to
send the reply message, if required.

A reply-to queue alias is the process by which a reply-to queue, as specified in a request message, is
altered by a queue manager on the message route. The sending application is not aware that the reply-to
queue name specified is an alias.

148 Administering IBM MQ

A reply-to queue alias lets you alter the name of the reply-to queue and optionally its queue manager. This
in turn lets you control which route is used for reply messages.

For more information about request messages, reply messages, and reply-to queues, see Types of
message and Reply-to queue and queue manager.

For more information about reply-to queue aliases, see Reply-to queue aliases and clusters.

Working with alias queues
You can define an alias queue to refer indirectly to another queue or topic.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

Attention: Distribution lists do not support the use of alias queues that point to topic
objects. If an alias queue points to a topic object in a distribution list, IBM MQ returns
MQRC_ALIAS_BASE_Q_TYPE_ERROR.

About this task
The queue to which an alias queue refers can be any of the following:

• A local queue (see “Defining a local queue with DEFINE QLOCAL” on page 137).
• A local definition of a remote queue (see “Working with remote queues” on page 146).
• A topic.

An alias queue is not a real queue, but a definition that resolves to a real (or target) queue at run time. The
alias queue definition specifies the target queue. When an application makes an MQOPEN call to an alias
queue, the queue manager resolves the alias to the target queue name.

An alias queue cannot resolve to another locally defined alias queue. However, an alias queue can resolve
to alias queues that are defined elsewhere in clusters of which the local queue manager is a member. See
Name resolution for further information.

Alias queues are useful for:

• Giving different applications different levels of access authorities to the target queue.
• Allowing different applications to work with the same queue in different ways. (Perhaps you want to

assign different default priorities or different default persistence values.)
• Simplifying maintenance, migration, and workload balancing. (Perhaps you want to change the target

queue name without having to change your application, which continues to use the alias.)

For example, assume that an application has been developed to put messages on a queue called
MY.ALIAS.QUEUE. It specifies the name of this queue when it makes an MQOPEN request and, indirectly, if
it puts a message on this queue. The application is not aware that the queue is an alias queue. For each
MQI call using this alias, the queue manager resolves the real queue name, which could be either a local
queue or a remote queue defined at this queue manager.

By changing the value of the TARGET attribute, you can redirect MQI calls to another queue, possibly on
another queue manager. This is useful for maintenance, migration, and load-balancing.

Procedure
• Define an alias queue.

The following MQSC command creates an alias queue:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGET (YELLOW.QUEUE)

Administering IBM MQ 149

This command redirects MQI calls that specify MY.ALIAS.QUEUE to the queue YELLOW.QUEUE. The
command does not create the target queue; the MQI calls fail if the queue YELLOW.QUEUE does not
exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue. For example:

ALTER QALIAS (MY.ALIAS.QUEUE) TARGET (MAGENTA.QUEUE)

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear to have different
attributes for different applications. You do this by defining two aliases, one for each application.
Suppose there are two applications:

– Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed to get messages from
it.

– Application BETA can get messages from YELLOW.QUEUE, but is not allowed to put messages on it.

The following MQSC command defines an alias that is put enabled and get disabled for application
ALPHA:

DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +
TARGET (YELLOW.QUEUE) +
PUT (ENABLED) +
GET (DISABLED)

The following command defines an alias that is put disabled and get enabled for application BETA:

DEFINE QALIAS (BETAS.ALIAS.QUEUE) +
TARGET (YELLOW.QUEUE) +
PUT (DISABLED) +
GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses the queue name
BETAS.ALIAS.QUEUE. They both access the same queue, but in different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases, in the same way that you
use these attributes with local queues.

• Use other commands with alias queues.

You can use the appropriate MQSC commands to display or alter alias queue attributes, or to delete
the alias queue object. For example:

Use the DISPLAY QALIAS command to display the alias queue's attributes:

DISPLAY QALIAS (ALPHAS.ALIAS.QUEUE)

Use the ALTER QALIAS command to alter the base queue name, to which the alias resolves, where
the force option forces the change even if the queue is open:

ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGET(ORANGE.LOCAL.QUEUE) FORCE

Use the DELETE QALIAS command to delete this queue alias:

DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

You cannot delete an alias queue if an application currently has the queue open.

Related concepts
Distribution lists

150 Administering IBM MQ

Related reference
ALTER QALIAS
DEFINE QALIAS
DELETE QALIAS

Working with model queues
Model queues provide a convenient method for applications to create queues as required.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

About this task
A queue manager creates a dynamic queue if it receives an MQI call from an application specifying a
queue name that has been defined as a model queue. The name of the new dynamic queue is generated
by the queue manager when the queue is created. A model queue is a template that specifies the
attributes of any dynamic queues created from it.

Procedure
• Define a model queue.

You use the DEFINE QMODEL MQSC command to define a model queue with a set of attributes in
the same way that you define a local queue. Model queues and local queues have the same set
of attributes, except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue manager restarts,
temporary ones are not.) For example:

DEFINE QMODEL (GREEN.MODEL.QUEUE) +
DESCR('Queue for messages from application X') +
PUT (DISABLED) +
GET (ENABLED) +
NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1000) +
MAXMSGL (2000) +
USAGE (NORMAL) +
DEFTYPE (PERMDYN)

This command creates a model queue definition. From the DEFTYPE attribute, you can see that the
actual queues created from this template are permanent dynamic queues. Any attributes not specified
are automatically copied from the SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in the same way that
you use them with local queues.

• Use other commands with model queues.

You can use the appropriate MQSC commands to display or alter a model queue's attributes, or to
delete the model queue object. For example:

Use the DISPLAY QUEUE command to display the model queue's attributes:

DISPLAY QUEUE (GREEN.MODEL.QUEUE)

Use the ALTER QMODEL command to alter the model to enable puts on any dynamic queue created
from this model:

ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

Administering IBM MQ 151

Use the DELETE QMODEL command to delete this model queue:

DELETE QMODEL (RED.MODEL.QUEUE)

Related reference
ALTER QMODEL
DEFINE QMODEL
DELETE QMODEL
DISPLAY QUEUE

Working with dead-letter queues
Each queue manager typically has a local queue to use as a dead-letter queue, so that messages that
cannot be delivered to their correct destination can be stored for later retrieval. You tell the queue
manager about the dead-letter queue, and specify how messages found on a dead-letter queue are to be
processed. Using dead-letter queues can affect the sequence in which messages are delivered, so you
might choose not to use them.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

About this task
A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is available with the product. This
queue is automatically created when you create the queue manager. You can modify this definition if
required, and rename it.

A dead-letter queue has no special requirements except that:

• It must be a local queue
• Its MAXMSGL (maximum message length) attribute must enable the queue to accommodate the largest

messages that the queue manager has to handle plus the size of the dead-letter header (MQDLH)

Using dead-letter queues can affect the sequence in which messages are delivered, so you might choose
not to use them.

Procedure
• Tell the queue manager about the dead-letter queue.

To do this, specify a dead-letter queue name on the crtmqm command (crtmqm -u
DEAD.LETTER.QUEUE, for example), or by using the DEADQ attribute on the ALTER QMGR command
to specify one later. You must define the dead-letter queue before using it.

• Specify how messages found on a dead-letter queue are to be processed.

You set the USEDLQ channel attribute to determine whether the dead-letter queue is used when
messages cannot be delivered. This attribute can be configured so that some functions of the queue
manager use the dead-letter queue, while other functions do not. For more information about the
use of the USEDLQ channel attribute on different MQSC commands, see DEFINE CHANNEL, DISPLAY
CHANNEL, ALTER CHANNEL, and DISPLAY CLUSQMGR.

You use the IBM MQ dead-letter queue handler to specify how messages found on a dead-letter queue
are to be processed or removed. See “Processing messages on an IBM MQ dead-letter queue” on page
153.

Related concepts
Dead-letter queues

152 Administering IBM MQ

Related tasks
Undelivered messages troubleshooting
Related reference
ALTER QMGR
crtmqm (create queue manager)

Processing messages on an IBM MQ dead-letter queue
To process messages on a dead-letter queue (DLQ), use the default DLQ handler that is provided by IBM
MQ. The handler matches messages on the DLQ against entries in a rules table that you define.

About this task
Messages can be put on a DLQ by queue managers, message channel agents (MCAs), and applications.
All messages on the DLQ must be prefixed with a dead-letter header structure, MQDLH. Messages put on
the DLQ by a queue manager or a message channel agent always have this header; applications putting
messages on the DLQ must supply this header. The Reason field of the MQDLH structure contains a reason
code that identifies why the message is on the DLQ.

All IBM MQ environments need a routine to process messages on the DLQ regularly. IBM MQ supplies
a default routine, called the dead-letter queue handler (the DLQ handler), that you invoke using the
runmqdlq MQSC command.

Instructions for processing messages on the DLQ are supplied to the DLQ handler by means of a user-
written rules table. That is, the DLQ handler matches messages on the DLQ against entries in the rules
table; when a DLQ message matches an entry in the rules table, the DLQ handler performs the action
associated with that entry.

Related tasks
Undelivered messages troubleshooting
Related reference
Dead-letter queues

Invoking the dead-letter queue handler
Invoke the dead-letter queue (DLQ) handler using the runmqdlq control command. You can name the
DLQ you want to process and the queue manager you want to use in two ways.

Before you begin
To run the DLQ handler you must be authorized to access both the DLQ itself and any message queues
to which messages on the DLQ are forwarded. For the DLQ handler to put messages on queues with the
authority of the user ID in the message context, you must also be authorized to assume the identity of
other users.

About this task
The following examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE, owned by the queue
manager ABC1.QUEUE.MANAGER.

If you do not specify the DLQ or the queue manager as shown, the default queue manager for the
installation is used along with the DLQ belonging to that queue manager.

The runmqdlq command takes its input from stdin. You associate the rules table with runmqdlq by
redirecting stdin from the rules table.

For more information about the runmqdlq command, see runmqdlq.

Administering IBM MQ 153

Procedure
• You can name the DLQ and the queue manager as parameters to the runmqdlq command.

For example, from the command prompt:

runmqdlq ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER <qrule.rul

• You can name the DLQ and the queue manager in the rules table.

For example:

INPUTQ(ABC1.DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE.MANAGER)

Related concepts
Dead-letter queues
Related tasks
Undelivered messages troubleshooting

The sample DLQ handler amqsdlq
In addition to the dead-letter queue handler invoked using the runmqdlq command, IBM MQ provides
the source of a sample DLQ handler amqsdlq with a function that is similar to that provided by
runmqdlq.

You can customize amqsdlq to provide a DLQ handler that meets your requirements. For example, you
might decide that you want a DLQ handler that can process messages without dead-letter headers. (Both
the default DLQ handler and the sample, amqsdlq, process only those messages on the DLQ that begin
with a dead-letter header, MQDLH. Messages that do not begin with an MQDLH are identified as being in
error, and remain on the DLQ indefinitely.)

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

In IBM MQ for Windows, the source of amqsdlq is supplied in the directory:

MQ_INSTALLATION_PATH\tools\c\samples\dlq

and the compiled version is supplied in the directory:

MQ_INSTALLATION_PATH\tools\c\samples\bin

In IBM MQ for UNIX and Linux systems, the source of amqsdlq is supplied in the directory:

MQ_INSTALLATION_PATH/samp/dlq

and the compiled version is supplied in the directory:

MQ_INSTALLATION_PATH/samp/bin

A built version of the sample program, named amqsdlqc, is included. You can use this to connect to a
remote queue manager in client mode. To make use of amqsdlqc you must set one of the environment
variables MQSERVER , MQCHLLIB , or MQCHLTAB to identify how to connect to the queue manager. For
example:

 export MQSERVER="SYSTEM.DEF.SVRCONN/TCP/myappliance.co.uk(1414)"

The DLQ handler rules table
The dead-letter queue handler rules table defines how the DLQ handler processes messages that arrive
on the DLQ.

There are two types of entry in a rules table:

154 Administering IBM MQ

• The first entry in the table, which is optional, contains control data.
• All other entries in the table are rules for the DLQ handler to follow. Each rule consists of a pattern (a

set of message characteristics) that a message is matched against, and an action to be taken when a
message on the DLQ matches the specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

Related concepts
Dead-letter queues
Related tasks
Undelivered messages troubleshooting

DLQ control data
You can include keywords in a control-data entry in a dead-letter queue handler rules table.

Note:

• The vertical line (|) separates alternatives, only one of which can be specified.
• All keywords are optional.

INPUTQ (QueueName|' ' (default))
The name of the DLQ you want to process:

1. Any INPUTQ value you supply as a parameter to the runmqdlq command overrides any INPUTQ
value in the rules table.

2. If you do not specify an INPUTQ value as a parameter to the runmqdlq command, but you do
specify a value in the rules table, the INPUTQ value in the rules table is used.

3. If no DLQ is specified or you specify INPUTQ(' ') in the rules table, the name of the DLQ belonging
to the queue manager with the name that is supplied as a parameter to the runmqdlq command is
used.

4. If you do not specify an INPUTQ value as a parameter to the runmqdlq command or as a value in
the rules table, the DLQ belonging to the queue manager named on the INPUTQM keyword in the
rules table is used.

INPUTQM (QueueManagerName|' ' (default))
The name of the queue manager that owns the DLQ named on the INPUTQ keyword:

1. Any INPUTQM value you supply as a parameter to the runmqdlq command overrides any
INPUTQM value in the rules table.

2. If you do not specify an INPUTQM value as a parameter to the runmqdlq command, the INPUTQM
value in the rules table is used.

3. If no queue manager is specified or you specify INPUTQM(' ') in the rules table, the default queue
manager for the installation is used.

RETRYINT (Interval|60 (default))
The interval, in seconds, at which the DLQ handler should reprocess messages on the DLQ that could
not be processed at the first attempt, and for which repeated attempts have been requested. By
default, the retry interval is 60 seconds.

WAIT (YES (default) |NO|nnn)
Whether the DLQ handler should wait for further messages to arrive on the DLQ when it detects that
there are no further messages that it can process.
YES

The DLQ handler waits indefinitely.
NO

The DLQ handler ends when it detects that the DLQ is either empty or contains no messages that it
can process.

Administering IBM MQ 155

nnn
The DLQ handler waits for nnn seconds for new work to arrive before ending, after it detects that
the queue is either empty or contains no messages that it can process.

Specify WAIT (YES) for busy DLQs, and WAIT (NO) or WAIT (nnn) for DLQs that have a low level
of activity. If the DLQ handler is allowed to terminate, invoke it again using triggering. For more
information about triggering, see Starting IBM MQ applications using triggers.

An alternative to including control data in the rules table is to supply the names of the DLQ and its
queue manager as input parameters to the runmqdlq command. If you specify a value both in the rules
table and as input to the runmqdlq command, the value specified on the runmqdlq command takes
precedence.

If you include a control-data entry in the rules table, it must be the first entry in the table.

DLQ rules (patterns and actions)
A description of the pattern-matching keywords (those against which messages on the dead-letter queue
are matched), and the action keywords (those that determine how the DLQ handler is to process a
matching message). An example rule is also provided.

The pattern-matching keywords
The pattern-matching keywords, which you use to specify values against which messages on the DLQ are
matched, are as follows. (All pattern-matching keywords are optional):

APPLIDAT (ApplIdentityData|* (default))
The ApplIdentityData value specified in the message descriptor, MQMD, of the message on the DLQ.

APPLNAME (PutApplName|* (default))
The name of the application that issued the MQPUT or MQPUT1 call, as specified in the PutApplName
field of the message descriptor, MQMD, of the message on the DLQ.

APPLTYPE (PutApplType|* (default))
The PutApplType value, specified in the message descriptor, MQMD, of the message on the DLQ.

DESTQ (QueueName|* (default))
The name of the message queue for which the message is destined.

DESTQM (QueueManagerName|* (default))
The name of the queue manager of the message queue for which the message is destined.

FEEDBACK (Feedback|* (default))
When the MsgType value is MQFB_REPORT, Feedback describes the nature of the report.

You can use symbolic names. For example, you can use the symbolic name MQFB_COA to identify
those messages on the DLQ that need confirmation of their arrival on their destination queues.

FORMAT (Format|* (default))
The name that the sender of the message uses to describe the format of the message data.

MSGTYPE (MsgType|* (default))
The message type of the message on the DLQ.

You can use symbolic names. For example, you can use the symbolic name MQMT_REQUEST to
identify those messages on the DLQ that need replies.

PERSIST (Persistence|* (default))
The persistence value of the message. (The persistence of a message determines whether it survives
restarts of the queue manager.)

You can use symbolic names. For example, you can use the symbolic name MQPER_PERSISTENT to
identify messages on the DLQ that are persistent.

REASON (ReasonCode|* (default))
The reason code that describes why the message was put to the DLQ.

156 Administering IBM MQ

You can use symbolic names. For example, you can use the symbolic name MQRC_Q_FULL to identify
those messages placed on the DLQ because their destination queues were full.

REPLYQ (QueueName|* (default))
The name of the reply-to queue specified in the message descriptor, MQMD, of the message on the
DLQ.

REPLYQM (QueueManagerName|* (default))
The name of the queue manager of the reply-to queue, as specified in the message descriptor, MQMD,
of the message on the DLQ.

USERID (UserIdentifier|* (default))
The user ID of the user who originated the message on the DLQ, as specified in the message
descriptor, MQMD, of the message on the DLQ.

The action keywords
The action keywords, used to describe how a matching message is to be processed, are as follows:

ACTION (DISCARD|IGNORE|RETRY|FWD)
The action to be taken for any message on the DLQ that matches the pattern defined in this rule.
DISCARD

Delete the message from the DLQ.
IGNORE

Leave the message on the DLQ.
RETRY

If the first attempt to put the message on its destination queue fails, try again. The RETRY
keyword sets the number of tries made to implement an action. The RETRYINT keyword of the
control data controls the interval between attempts.

FWD
Forward the message to the queue named on the FWDQ keyword.

You must specify the ACTION keyword.

FWDQ (QueueName|&DESTQ|&REPLYQ)
The name of the message queue to which to forward the message when ACTION (FWD) is requested.
QueueName

The name of a message queue. FWDQ(' ') is not valid.
&DESTQ

Take the queue name from the DestQName field in the MQDLH structure.
&REPLYQ

Take the queue name from the ReplyToQ field in the message descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ (&REPLYQ) matches a message with a
blank ReplyToQ field, specify REPLYQ (?*) in the message pattern.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM|' ' (default))
The queue manager of the queue to which to forward a message.
QueueManagerName

The name of the queue manager of the queue to which to forward a message when ACTION (FWD)
is requested.

&DESTQM
Take the queue manager name from the DestQMgrName field in the MQDLH structure.

&REPLYQM
Take the queue manager name from the ReplyToQMgr field in the message descriptor, MQMD.

' '
FWDQM(' '), which is the default value, identifies the local queue manager.

Administering IBM MQ 157

HEADER (YES (default) |NO)
Whether the MQDLH should remain on a message for which ACTION (FWD) is requested. By default,
the MQDLH remains on the message. The HEADER keyword is not valid for actions other than FWD.

PUTAUT (DEF (default) | CTX)
The authority with which messages should be put by the DLQ handler:
DEF

Put messages with the authority of the DLQ handler itself.
CTX

Put the messages with the authority of the user ID in the message context. If you specify PUTAUT
(CTX), you must be authorized to assume the identity of other users.

RETRY (RetryCount|1 (default))
The number of times, in the range 1 - 999,999,999, to try an action (at the interval specified on the
RETRYINT keyword of the control data). The count of attempts made by the DLQ handler to implement
any particular rule is specific to the current instance of the DLQ handler; the count does not persist
across restarts. If the DLQ handler is restarted, the count of attempts made to apply a rule is reset to
zero.

Example rule
Here is an example rule from a DLQ handler rules table:

PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

This rule instructs the DLQ handler to make three attempts to deliver to its destination queue any
persistent message that was put on the DLQ because MQPUT and MQPUT1 were inhibited.

All keywords that you can use on a rule are described in the rest of this section. Note the following:

• The default value for a keyword, if any, is underlined. For most keywords, the default value is *
(asterisk), which matches any value.

• The vertical line (|) separates alternatives, only one of which can be specified.
• All keywords except ACTION are optional.

DLQ rules table conventions
The syntax, structure and contents of the dead-letter queue handler rules table must adhere to these
conventions.

The rules table must adhere to the following conventions:

• A rules table must contain at least one rule.
• Keywords can occur in any order.
• A keyword can be included only once in any rule.
• Keywords are not case-sensitive.
• A keyword and its parameter value must be separated from other keywords by at least one blank or

comma.
• There can be any number of blanks at the beginning or end of a rule, and between keywords,

punctuation, and values.
• Each rule must begin on a new line.
• On Windows systems, the last rule in the table must end with a carriage return/line feed character. You

can achieve this by ensuring that you press the Enter key at the end of the rule, so that the last line of
the table is a blank line.

• For reasons of portability, the significant length of a line must not be greater than 72 characters.

158 Administering IBM MQ

• Use the plus sign (+) as the last non-blank character on a line to indicate that the rule continues from
the first non-blank character in the next line. Use the minus sign (-) as the last non-blank character on a
line to indicate that the rule continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

For example:

APPLNAME('ABC+
D')

results in 'ABCD', and

APPLNAME('ABC-
D')

results in 'ABC D'.
• Comment lines, which begin with an asterisk (*), can occur anywhere in the rules table.
• Blank lines are ignored.
• Each entry in the DLQ handler rules table comprises one or more keywords and their associated

parameters. The parameters must follow these syntax rules:

– Each parameter value must include at least one significant character. The delimiting single quotation
marks in values that are enclosed in quotation marks are not considered to be significant. For
example, these parameters are valid:

FORMAT('ABC') 3 significant characters

FORMAT(ABC) 3 significant characters

FORMAT('A') 1 significant character

FORMAT(A) 1 significant character

FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant characters:

FORMAT('')

FORMAT()

FORMAT()

FORMAT

– Wildcard characters are supported. You can use the question mark (?) instead of any single character,
except a trailing blank; you can use the asterisk (*) instead of zero or more adjacent characters. The
asterisk (*) and the question mark (?) are always interpreted as wildcard characters in parameter
values.

– Wildcard characters cannot be included in the parameters of these keywords: ACTION, HEADER,
RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the message on the DLQ, are
not significant when performing wildcard matches. However, leading and embedded blanks within
strings that are enclosed in single quotation marks are significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard character. You can use the
asterisk (*) instead of an entire numeric parameter, but not as part of a numeric parameter. For
example, these are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible

MSGTYPE(*) Any message type is eligible

Administering IBM MQ 159

MSGTYPE('*') Any message type is eligible

However, MSGTYPE('2*') is not valid, because it includes an asterisk (*) as part of a numeric
parameter.

– Numeric parameters must be in the range 0-999 999 999. If the parameter value is in this range,
it is accepted, even if it is not currently valid in the field to which the keyword relates. You can use
symbolic names for numeric parameters.

– If a string value is shorter than the field in the MQDLH or MQMD to which the keyword relates, the
value is padded with blanks to the length of the field. If the value, excluding asterisks, is longer than
the field, an error is diagnosed. For example, these are all valid string values for an 8 character field:

'ABCDEFGH' 8 characters

'A*C*E*G*I' 5 characters excluding asterisks

'*A*C*E*G*I*K*M*O
*'

8 characters excluding asterisks

– Enclose strings that contain blanks, lowercase characters, or special characters other than period
(.), forward slash (?), underscore (_), and percent sign (%) in single quotation marks. Lowercase
characters not enclosed in single quotation marks are folded to uppercase. If the string includes a
quotation, use two single quotation marks to denote both the beginning and the end of the quotation.
When the length of the string is calculated, each occurrence of double quotation marks is counted as
a single character.

How the DLQ rules table is processed
The dead-letter queue handler searches the rules table for a rule where the pattern matches a message
on the DLQ.

The search begins with the first rule in the table, and continues sequentially through the table. When
the DLQ handler finds a rule with a matching pattern, it takes the action from that rule. The DLQ handler
increments the retry count for a rule by 1 whenever it applies that rule. If the first try fails, the DLQ
handler tries again until the number of tries matches the number specified on the RETRY keyword. If all
attempts fail, the DLQ handler searches for the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is successful. When each matching
rule has been attempted the number of times specified on its RETRY keyword, and all attempts have
failed, ACTION (IGNORE) is assumed. ACTION (IGNORE) is also assumed if no matching rule is found.

Note:

1. Matching rule patterns are sought only for messages on the DLQ that begin with an MQDLH. Messages
that do not begin with an MQDLH are reported periodically as being in error, and remain on the DLQ
indefinitely.

2. All pattern keywords can be allowed to default, such that a rule can consist of an action only. Note,
however, that action-only rules are applied to all messages on the queue that have MQDLHs and that
have not already been processed in accordance with other rules in the table.

3. The rules table is validated when the DLQ handler starts, and errors are flagged at that time. You can
make changes to the rules table at any time, but those changes do not come into effect until the DLQ
handler restarts.

4. The DLQ handler does not alter the content of messages, the MQDLH, or the message
descriptor. The DLQ handler always puts messages to other queues with the message option
MQPMO_PASS_ALL_CONTEXT.

5. Consecutive syntax errors in the rules table might not be recognized because the rules table is
designed to eliminate the generation of repetitive errors during validation.

6. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

160 Administering IBM MQ

7. Multiple instances of the DLQ handler can run concurrently against the same queue, using the same
rules table. However, it is more usual for there to be a one-to-one relationship between a DLQ and a
DLQ handler.

Related concepts
Dead-letter queues
Related tasks
Undelivered messages troubleshooting

An example DLQ handler rules table
An example dead-letter queue rules table for the runmqdlq command, containing a single control-data
entry and several rules.

* An example rules table for the runmqdlq command *

* Control data entry
* ------------------
* If no queue manager name is supplied as an explicit parameter to
* runmqdlq, use the default queue manager for the machine.
* If no queue name is supplied as an explicit parameter to runmqdlq,
* use the DLQ defined for the local queue manager.
*
inputqm(' ') inputq(' ')

* Rules
* -----
* We include rules with ACTION (RETRY) first to try to
* deliver the message to the intended destination.
* If a message is placed on the DLQ because its destination
* queue is full, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

* If a message is placed on the DLQ because of a put inhibited
* condition, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

* The AAAA corporation are always sending messages with incorrect
* addresses. When we find a request from the AAAA corporation,
* we return it to the DLQ (DEADQ) of the reply-to queue manager
* (&REPLYQM).
* The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never do things by half measures. If
* the queue manager BBBB.1 is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

* The CCCC corporation considers itself very security
* conscious, and believes that none of its messages
* will ever end up on one of our DLQs.
* Whenever we see a message from a CCCC queue manager on our
* DLQ, we send it to a special destination in the CCCC organization
* where the problem is investigated.

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

* Messages that are not persistent run the risk of being
* lost when a queue manager terminates. If an application
* is sending nonpersistent messages, it should be able
* to cope with the message being lost, so we can afford to

Administering IBM MQ 161

* discard the message. PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)
* For performance and efficiency reasons, we like to keep
* the number of messages on the DLQ small.
* If we receive a message that has not been processed by
* an earlier rule in the table, we assume that it
* requires manual intervention to resolve the problem.
* Some problems are best solved at the node where the
* problem was detected, and others are best solved where
* the message originated. We don't have the message origin,
* but we can use the REPLYQM to identify a node that has
* some interest in this message.
* Attempt to put the message onto a manual intervention
* queue at the appropriate node. If this fails,
* put the message on the manual intervention queue at
* this node.

REPLYQM('?*') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

Related concepts
Dead-letter queues
Related tasks
Undelivered messages troubleshooting
Related reference
runmqdlq (run dead-letter queue handler)

Invoking the dead-letter queue handler on IBM i
On IBM MQ for IBM i, you invoke the DLQ handler by setting the STRMQMDLQ command.

Before you begin
You must be authorized to access both the DLQ itself, and any message queues to which messages on the
DLQ are forwarded, in order to run the DLQ handler. You must also be authorized to assume the identity
of other users, for the DLQ to put messages on queues with the authority of the user ID in the message
context.

Note: It is often preferable to avoid placing messages on a DLQ. For information about the use and
avoidance of DLQs, see “Working with dead-letter queues” on page 152.

About this task
A dead-letter queue (DLQ), sometimes referred to as an undelivered-message queue, is a holding queue for
messages that cannot be delivered to their destination queues. Every queue manager in a network should
have an associated DLQ.

Queue managers, message channel agents, and applications can put messages on the DLQ. All messages
on the DLQ must be prefixed with a dead-letter header structure, MQDLH. Messages put on the DLQ
by a queue manager or by a message channel agent always have an MQDLH. For applications putting
messages on the DLQ, you must supply an MQDLH.

The Reason field of the MQDLH structure contains a reason code that identifies why the message is on the
DLQ.

In all IBM MQ environments, there must be a routine that runs regularly to process messages on the DLQ.
IBM MQ supplies a default routine, called the dead-letter queue handler (the DLQ handler), that you invoke
using the STRMQMDLQ command. A user-written rules table supplies instructions to the DLQ handler, for
processing messages on the DLQ. That is, the DLQ handler matches messages on the DLQ against entries
in the rules table. When a DLQ message matches an entry in the rules table, the DLQ handler performs the
action associated with that entry.

162 Administering IBM MQ

Procedure
• Invoke the DLQ handler

Use the STRMQMDLQ command to invoke the DLQ handler. You can name the DLQ that you want to
process and the queue manager that you want to use in two ways:

– As parameters to STRMQMDLQ from the command prompt. For example:

STRMQMDLQ UDLMSGQ(ABC1.DEAD.LETTER.QUEUE) SRCMBR(QRULE) SRCFILE(library/QTXTSRC)
MQMNAME(MY.QUEUE.MANAGER)

– In the rules table. For example:

INPUTQ(ABC1.DEAD.LETTER.QUEUE)

Note: The rules table is a member within a source physical file that can take any name.

The examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE, owned by the default queue
manager.

If you do not specify the DLQ or the queue manager as shown, the default queue manager for the
installation is used along with the DLQ belonging to that queue manager.

Related concepts
Dead-letter queues
Related tasks
Undelivered messages troubleshooting

The DLQ handler rules table on IBM i
The dead-letter queue handler rules table defines how the DLQ handler processes messages that arrive
on the IBM i DLQ.

The DLQ handler rules table defines how the DLQ handler is to process messages that arrive on the DLQ.
There are two types of entry in a rules table:

• The first entry in the table, which is optional, contains control data.
• All other entries in the table are rules for the DLQ handler to follow. Each rule consists of a pattern (a

set of message characteristics) that a message is matched against, and an action to be taken when a
message on the DLQ matches the specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

Control data
This section describes the keywords that you can include in a control-data entry in a DLQ handler rules
table. Note the following:

• The default value for a keyword, if any, is underlined.
• The vertical line (|) separates alternatives. You can specify only one of these.
• All keywords are optional.

INPUTQ (QueueName|' ' (default))
The name of the DLQ you want to process:

1. Any UDLMSGQ value (or *DFT) you specify as a parameter to the STRMQMDLQ command overrides
any INPUTQ value in the rules table.

2. If you specify a blank UDLMSGQ value as a parameter to the STRMQMDLQ command, the INPUTQ
value in the rules table is used.

3. If you specify a blank UDLMSGQ value as a parameter to the STRMQMDLQ command, and a blank
INPUTQ value in the rules table, the system default dead-letter queue is used.

Administering IBM MQ 163

INPUTQM (QueueManagerName|' ' (default))
The name of the queue manager that owns the DLQ named on the INPUTQ keyword.

If you do not specify a queue manager, or you specify INPUTQM(' ') in the rules table, the system uses
the default queue manager for the installation.

RETRYINT (Interval|60 (default))
The interval, in seconds, at which the DLQ handler should attempt to reprocess messages on the
DLQ that could not be processed at the first attempt, and for which repeated attempts have been
requested. By default, the retry interval is 60 seconds.

WAIT (YES (default) |NO|nnn)
Whether the DLQ handler should wait for further messages to arrive on the DLQ when it detects that
there are no further messages that it can process.
YES

Causes the DLQ handler to wait indefinitely.
NO

Causes the DLQ handler to terminate when it detects that the DLQ is either empty or contains no
messages that it can process.

nnn
Causes the DLQ handler to wait for nnn seconds for new work to arrive before terminating, after it
detects that the queue is either empty or contains no messages that it can process.

Specify WAIT (YES) for busy DLQs, and WAIT (NO) or WAIT (nnn) for DLQs that have a low level of
activity. If the DLQ handler is allowed to terminate, re-invoke it using triggering.

You can supply the name of the DLQ as an input parameter to the STRMQMDLQ command, as an alternative
to including control data in the rules table. If any value is specified both in the rules table and on input to
the STRMQMDLQ command, the value specified on the STRMQMDLQ command takes precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry in the table.

DLQ rules (patterns and actions) on IBM i
A description of the patterns and actions for each of the IBM i dead-letter queue rules.

Here is an example rule from a DLQ handler rules table:

PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

This rule instructs the DLQ handler to make 3 attempts to deliver to its destination queue any persistent
message that was put on the DLQ because MQPUT and MQPUT1 were inhibited.

This section describes the keywords that you can include in a rule. Note the following:

• The default value for a keyword, if any, is underlined. For most keywords, the default value is *
(asterisk), which matches any value.

• The vertical line (|) separates alternatives. You can specify only one of these.
• All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those against which messages
on the DLQ are matched). It then describes the action keywords (those that determine how the DLQ
handler is to process a matching message).

DLQ pattern-matching keywords on IBM i
The pattern-matching keywords are described in an example. Use these keywords to specify values
against which messages on the IBM i dead-letter queue are matched. All pattern-matching keywords are
optional.

164 Administering IBM MQ

APPLIDAT (ApplIdentityData|* (default))
The ApplIdentityData value of the message on the DLQ, specified in the message descriptor, MQMD.

APPLNAME (PutApplName|* (default))
The name of the application that issued the MQPUT or MQPUT1 call, as specified in the PutApplName
field of the message descriptor, MQMD, of the message on the DLQ.

APPLTYPE (PutApplType|* (default))
The PutApplType value specified in the message descriptor, MQMD, of the message on the DLQ.

DESTQ (QueueName|* (default))
The name of the message queue for which the message is destined.

DESTQM (QueueManagerName|* (default))
The queue manager name for the message queue for which the message is destined.

FEEDBACK (Feedback|* (default))
When the MsgType value is MQMT_REPORT, Feedback describes the nature of the report.

You can use symbolic names. For example, you can use the symbolic name MQFB_COA to identify
those messages on the DLQ that require confirmation of their arrival on their destination queues.

FORMAT (Format|* (default))
The name that the sender of the message uses to describe the format of the message data.

MSGTYPE (MsgType|* (default))
The message type of the message on the DLQ.

You can use symbolic names. For example, you can use the symbolic name MQMT_REQUEST to
identify those messages on the DLQ that require replies.

PERSIST (Persistence|* (default))
The persistence value of the message. (The persistence of a message determines whether it survives
restarts of the queue manager.)

You can use symbolic names. For example, you can use the symbolic name MQPER_PERSISTENT to
identify those messages on the DLQ that are persistent.

REASON (ReasonCode|* (default))
The reason code that describes why the message was put to the DLQ.

You can use symbolic names. For example, you can use the symbolic name MQRC_Q_FULL to identify
those messages placed on the DLQ because their destination queues were full.

REPLYQ (QueueName|* (default))
The reply-to queue name specified in the message descriptor, MQMD, of the message on the DLQ.

REPLYQM (QueueManagerName|* (default))
The queue manager name of the reply-to queue specified in the REPLYQ keyword.

USERID (UserIdentifier|* (default))
The user ID of the user who originated the message on the DLQ, as specified in the message
descriptor, MQMD.

DLQ action keywords on IBM i
Use these dead-letter queue action keywords to determine how a matching message on the IBM i
dead-letter queue is processed.

ACTION (DISCARD|IGNORE|RETRY|FWD)
The action taken for any message on the DLQ that matches the pattern defined in this rule.
DISCARD

Causes the message to be deleted from the DLQ.
IGNORE

Causes the message to be kept on the DLQ.

Administering IBM MQ 165

RETRY
Causes the DLQ handler to try again to put the message on its destination queue.

FWD
Causes the DLQ handler to forward the message to the queue named on the FWDQ keyword.

You must specify the ACTION keyword. The number of attempts made to implement an action is
governed by the RETRY keyword. The RETRYINT keyword of the control data controls the interval
between attempts.

FWDQ (QueueName|&DESTQ|&REPLYQ)
The name of the message queue to which the message is forwarded when you select the ACTION
keyword.
QueueName

The name of a message queue. FWDQ(' ') is not valid.
&DESTQ

Take the queue name from the DestQName field in the MQDLH structure.
&REPLYQ

Take the queue name from the ReplyToQ field in the message descriptor, MQMD.

You can specify REPLYQ (?*) in the message pattern to avoid error messages, when a rule
specifying FWDQ (&REPLYQ) matches a message with a blank ReplyToQ field.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM|' ' (default))
The queue manager of the queue to which a message is forwarded.
QueueManagerName

The queue manager name for the queue to which the message is forwarded when you select the
ACTION (FWD) keyword.

&DESTQM
Take the queue manager name from the DestQMgrName field in the MQDLH structure.

&REPLYQM
Take the queue manager name from the ReplyToQMgr field in the message descriptor, MQMD.

' '
FWDQM(' '), which is the default value, identifies the local queue manager.

HEADER (YES (default) |NO)
Whether the MQDLH should remain on a message for which ACTION (FWD) is requested. By default,
the MQDLH remains on the message. The HEADER keyword is not valid for actions other than FWD.

PUTAUT (DEF (default) |CTX)
The authority with which messages should be put by the DLQ handler:
DEF

Puts messages with the authority of the DLQ handler itself.
CTX

Causes the messages to be put with the authority of the user ID in the message context. You must
be authorized to assume the identity of other users, if you specify PUTAUT (CTX).

RETRY (RetryCount|1 (default))
The number of times, in the range 1 - 999,999,999, to attempt an action (at the interval specified on
the RETRYINT keyword of the control data).

Note: The count of attempts made by the DLQ handler to implement any particular rule is specific to
the current instance of the DLQ handler; the count does not persist across restarts. If you restart the
DLQ handler, the count of attempts made to apply a rule is reset to zero.

166 Administering IBM MQ

DLQ rules table conventions on IBM i
The IBM i dead-letter queue rules table must adhere to specific conventions regarding its syntax,
structure, and contents.

• A rules table must contain at least one rule.
• Keywords can occur in any order.
• A keyword can be included once only in any rule.
• Keywords are not case sensitive.
• A keyword and its parameter value must be separated from other keywords by at least one blank or

comma.
• Any number of blanks can occur at the beginning or end of a rule, and between keywords, punctuation,

and values.
• Each rule must begin on a new line.
• For portability, the significant length of a line must not be greater than 72 characters.
• Use the plus sign (+) as the last non-blank character on a line to indicate that the rule continues from

the first non-blank character in the next line. Use the minus sign (-) as the last non-blank character on a
line to indicate that the rule continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

For example:

APPLNAME('ABC+
D')

results in 'ABCD'.

APPLNAME('ABC-
D')

results in 'ABC D'.
• Comment lines, which begin with an asterisk (*), can occur anywhere in the rules table.
• Blank lines are ignored.
• Each entry in the DLQ handler rules table comprises one or more keywords and their associated

parameters. The parameters must follow these syntax rules:

– Each parameter value must include at least one significant character. The delimiting quotation marks
in values enclosed in quotation marks are not considered significant. For example, these parameters
are valid:

FORMAT('ABC') 3 significant characters

FORMAT(ABC) 3 significant characters

FORMAT('A') 1 significant character

FORMAT(A) 1 significant character

FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant characters:

FORMAT('')

FORMAT()

FORMAT()

Administering IBM MQ 167

FORMAT

– Wildcard characters are supported. You can use the question mark (?) in place of any single character,
except a trailing blank. You can use the asterisk (*) in place of zero or more adjacent characters. The
asterisk (*) and the question mark (?) are always interpreted as wildcard characters in parameter
values.

– You cannot include wildcard characters in the parameters of these keywords: ACTION, HEADER,
RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the message on the DLQ, are
not significant when performing wildcard matches. However, leading and embedded blanks within
strings in quotation marks are significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard character. You can include the
asterisk (*) in place of an entire numeric parameter, but the asterisk cannot be included as part of a
numeric parameter. For example, these are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible

MSGTYPE(*) Any message type is eligible

MSGTYPE('*') Any message type is eligible

However, MSGTYPE('2*') is not valid, because it includes an asterisk (*) as part of a numeric
parameter.

– Numeric parameters must be in the range 0-999 999 999. If the parameter value is in this range,
it is accepted, even if it is not currently valid in the field to which the keyword relates. You can use
symbolic names for numeric parameters.

– If a string value is shorter than the field in the MQDLH or MQMD to which the keyword relates, the
value is padded with blanks to the length of the field. If the value, excluding asterisks, is longer than
the field, an error is diagnosed. For example, these are all valid string values for an 8-character field:

'ABCDEFGH' 8 characters

'A*C*E*G*I' 5 characters excluding asterisks

'*A*C*E*G*I*K*M*O*' 8 characters excluding asterisks

– Strings that contain blanks, lowercase characters, or special characters other than period (.),
forward slash (?), underscore (_), and percent sign (%) must be enclosed in single quotation marks.
Lowercase characters not enclosed in quotation marks are folded to uppercase. If the string includes
a quotation mark, two single quotation marks must be used to denote both the beginning and the
end of the quotation. When the length of the string is calculated, each occurrence of double quotation
marks is counted as a single character.

How the DLQ rules table is processed on IBM i
The dead-letter queue handler searches the rules table for a rule with a pattern that matches a message
on the IBM i dead-letter queue.

The search begins with the first rule in the table, and continues sequentially through the table. When a
rule with a matching pattern is found, the rules table attempts the action from that rule. The DLQ handler
increments the retry count for a rule by 1 whenever it attempts to apply that rule. If the first attempt fails,
the attempt is repeated until the count of attempts made matches the number specified on the RETRY
keyword. If all attempts fail, the DLQ handler searches for the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is successful. When each matching
rule has been attempted the number of times specified on its RETRY keyword, and all attempts have
failed, ACTION (IGNORE) is assumed. ACTION (IGNORE) is also assumed if no matching rule is found.

Note:

168 Administering IBM MQ

1. Matching rule patterns are sought only for messages on the DLQ that begin with an MQDLH. Messages
that do not begin with an MQDLH are reported periodically as being in error, and remain on the DLQ
indefinitely.

2. All pattern keywords can default, so that a rule can consist of an action only. Note, however, that
action-only rules are applied to all messages on the queue that have MQDLHs and that have not
already been processed in accordance with other rules in the table.

3. The rules table is validated when the DLQ handler starts, and errors flagged at that time. (Error
messages issued by the DLQ handler are described in Messages and reason codes.) You can make
changes to the rules table at any time, but those changes do not come into effect until the DLQ handler
is restarted.

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of the message
descriptor. The DLQ handler always puts messages to other queues with the message option
MQPMO_PASS_ALL_CONTEXT.

5. Consecutive syntax errors in the rules table might not be recognized, because the validation of the
rules table eliminates the generation of repetitive errors.

6. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.
7. Multiple instances of the DLQ handler can run concurrently against the same queue, using the same

rules table. However, it is more usual for there to be a one-to-one relationship between a DLQ and a
DLQ handler.

An example DLQ handler rules table on IBM i
Example code for a dead-letter queue handler rules table on IBM i. This example rules table contains a
single control-data entry and several rules.

* An example rules table for the STRMQMDLQ command *

* Control data entry
* ------------------
* If no queue manager name is supplied as an explicit parameter to
* STRMQMDLQ, use the default queue manager for the machine.
* If no queue name is supplied as an explicit parameter to STRMQMDLQ,
* use the DLQ defined for the local queue manager.
*
inputqm(' ') inputq(' ')

* Rules
* -----
* We include rules with ACTION (RETRY) first to try to
* deliver the message to the intended destination.

* If a message is placed on the DLQ because its destination
* queue is full, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

* If a message is placed on the DLQ because of a put inhibited
* condition, attempt to forward the message to its
* destination queue. Make 5 attempts at approximately
* 60-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

* The AAAA corporation is always sending messages with incorrect
* addresses. When we find a request from the AAAA corporation,
* we return it to the DLQ (DEADQ) of the reply-to queue manager
* (&REPLYQM).
* The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.*) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

* The BBBB corporation never does things by half measures. If

Administering IBM MQ 169

* the queue manager BBBB.1 is unavailable, try to
* send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

* The CCCC corporation considers itself very security
* conscious, and believes that none of its messages
* will ever end up on one of our DLQs.
* Whenever we see a message from a CCCC queue manager on our
* DLQ, we send it to a special destination in the CCCC organization
* where the problem is investigated.

REPLYQM(CCCC.*) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

* Messages that are not persistent run the risk of being
* lost when a queue manager terminates. If an application
* is sending nonpersistent messages, it must be able
* to cope with the message being lost, so we can afford to
* discard the message.

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

* For performance and efficiency reasons, we like to keep
* the number of messages on the DLQ small.
* If we receive a message that has not been processed by
* an earlier rule in the table, we assume that it
* requires manual intervention to resolve the problem.
* Some problems are best solved at the node where the
* problem was detected, and others are best solved where
* the message originated. We do not have the message origin,
* but we can use the REPLYQM to identify a node that has
* some interest in this message.
* Attempt to put the message onto a manual intervention
* queue at the appropriate node. If this fails,
* put the message on the manual intervention queue at
* this node.

REPLYQM('?*') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

Ensuring that all DLQ messages are processed
The dead-letter queue handler keeps a record of all messages on the DLQ that have been seen but not
removed. Ensure that the DLQ contains as few messages as possible.

About this task
If you use the DLQ handler as a filter to extract a small subset of the messages from the DLQ, the
DLQ handler still keeps a record of those messages on the DLQ that it did not process. Also, the DLQ
handler cannot guarantee that new messages arriving on the DLQ are seen, even if the DLQ is defined
as first-in-first-out (FIFO). If the queue is not empty, the DLQ is periodically re-scanned to check all
messages.

For these reasons, you should ensure that the DLQ contains as few messages as possible. If messages
that cannot be discarded or forwarded to other queues (for whatever reason) are allowed to accumulate
on the queue, the workload of the DLQ handler increases and the DLQ itself is in danger of filling up.

To enable the DLQ handler to empty the DLQ, take the following measures:

Procedure
• For messages that you would otherwise ignore, use an action that moves the messages to another

queue.

Try not to use the ACTION (IGNORE) command, which leaves messages on the DLQ - and remember
that ACTION (IGNORE) is assumed for messages that are not explicitly addressed by other rules in
the table. Instead, use an action that moves the messages to another queue. For example:

170 Administering IBM MQ

ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

• Make the final rule in the table a "catch-all" to process messages that have not been addressed by
earlier rules in the table.

For example, the final rule in the table could be something like this:

ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This forwards messages that fall through to the final rule in the table to the queue
REALLY.DEAD.QUEUE, where they can be processed manually. If you do not have such a rule,
messages are likely to remain on the DLQ indefinitely.

Working with administrative topics
Use MQSC commands to manage administrative topics.

See MQSC commands for detailed information about these commands.

Related concepts
Administrative topic objects
Related tasks
“Defining an administrative topic” on page 171
Use the MQSC command DEFINE TOPIC to create an administrative topic. When defining an
administrative topic you can optionally set each topic attribute.
“Displaying administrative topic object attributes” on page 172
Use the MQSC command DISPLAY TOPIC to display an administrative topic object.
“Changing administrative topic attributes” on page 173
You can change topic attributes in two ways, using either the ALTER TOPIC command or the DEFINE
TOPIC command with the REPLACE attribute.
“Copying an administrative topic definition” on page 173
You can copy a topic definition using the LIKE attribute on the DEFINE command.
“Deleting an administrative topic definition” on page 174
You can use the MQSC command DELETE TOPIC to delete an administrative topic.

Defining an administrative topic
Use the MQSC command DEFINE TOPIC to create an administrative topic. When defining an
administrative topic you can optionally set each topic attribute.

Before you begin
Note: The example in this task requires you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

About this task
Any attribute of the topic that is not explicitly set is inherited from the default administrative topic,
SYSTEM.DEFAULT.TOPIC, that was created when the system installation was installed.

Example

For example, the DEFINE TOPIC command that follows, defines a topic called ORANGE.TOPIC with
these characteristics:

• Resolves to the topic string ORANGE. For information about how topic strings can be used, see
Combining topic strings.

Administering IBM MQ 171

• Any attribute that is set to ASPARENT uses the attribute as defined by the parent topic of this topic.
This action is repeated up the topic tree as far as the root topic, SYSTEM.BASE.TOPIC is found. For more
information, see Topic trees.

DEFINE TOPIC (ORANGE.TOPIC) +
TOPICSTR (ORANGE) +
DEFPRTY(ASPARENT) +
NPMSGDLV(ASPARENT)

Note:

• Except for the value of the topic string, all the attribute values shown are the default values. They are
shown here only as an illustration. You can omit them if you are sure that the defaults are what you want
or have not been changed. See also “Displaying administrative topic object attributes” on page 172.

• If you already have an administrative topic on the same queue manager with the name ORANGE.TOPIC,
this command fails. Use the REPLACE attribute if you want to overwrite the existing definition of a topic,
but see also “Changing administrative topic attributes” on page 173.

Related reference
DEFINE TOPIC

Displaying administrative topic object attributes
Use the MQSC command DISPLAY TOPIC to display an administrative topic object.

Before you begin
Note: The examples in this task require you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

Example

This command displays all topics:

DISPLAY TOPIC(ORANGE.TOPIC)

You can selectively display attributes by specifying them individually with the DISPLAY TOPIC
command. For example:

DISPLAY TOPIC(ORANGE.TOPIC) +
TOPICSTR +
DEFPRTY +
NPMSGDLV

This command displays the three specified attributes:

AMQ8633: Display topic details.
 TOPIC(ORANGE.TOPIC) TYPE(LOCAL)
 TOPICSTR(ORANGE) DEFPRTY(ASPARENT)
 NPMSGDLV(ASPARENT)

To display the topic ASPARENT values as they are used at Runtime, use the DISPLAY TPSTATUS
command. For example, use:

DISPLAY TPSTATUS(ORANGE) DEFPRTY NPMSGDLV

The command displays the following details:

AMQ8754: Display topic status details.

172 Administering IBM MQ

TOPICSTR(ORANGE) DEFPRTY(0)
NPMSGDLV(ALLAVAIL)

When you define an administrative topic, it takes any attributes that you do not specify explicitly from the
default administrative topic, which is called SYSTEM.DEFAULT.TOPIC. To see what these default attributes
are, use the following command:

DISPLAY TOPIC (SYSTEM.DEFAULT.TOPIC)

Related reference
DISPLAY TOPIC
DISPLAY TPSTATUS

Changing administrative topic attributes
You can change topic attributes in two ways, using either the ALTER TOPIC command or the DEFINE
TOPIC command with the REPLACE attribute.

Before you begin
Note: The examples in this task require you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

Example

If, for example, you want to change the default priority of messages delivered to a topic called
ORANGE.TOPIC, to be 5, use either of the following commands:

• Using the ALTER command:

ALTER TOPIC(ORANGE.TOPIC) DEFPRTY(5)

This command changes a single attribute, that of the default priority of message delivered to this topic
to 5; all other attributes remain the same.

• Using the DEFINE command:

DEFINE TOPIC(ORANGE.TOPIC) DEFPRTY(5) REPLACE

This command changes the default priority of messages delivered to this topic. All the other attributes
are given their default values.

If you alter the priority of messages sent to this topic, existing messages are not affected. Any new
message, however, uses the specified priority if not provided by the publishing application.

Related reference
ALTER TOPIC
DISPLAY TOPIC

Copying an administrative topic definition
You can copy a topic definition using the LIKE attribute on the DEFINE command.

Before you begin
Note: The examples in this task require you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

Administering IBM MQ 173

Example

The following command creates a topic, MAGENTA.TOPIC, with the same attributes as the original topic,
ORANGE.TOPIC, rather than those of the system default administrative topic. Enter the name of the topic
to be copied exactly as it was entered when you created the topic. If the name contains lowercase
characters, enclose the name in single quotation marks.

DEFINE TOPIC (MAGENTA.TOPIC) +
LIKE (ORANGE.TOPIC)

You can also use this form of the DEFINE command to copy a topic definition, but make changes to the
attributes of the original. For example:

DEFINE TOPIC(BLUE.TOPIC) +
TOPICSTR(BLUE) +
LIKE(ORANGE.TOPIC)

You can also copy the attributes of the topic BLUE.TOPIC to the topic GREEN.TOPIC and specify that
when publications cannot be delivered to their correct subscriber queue they are not placed onto the
dead-letter queue. For example:

DEFINE TOPIC(GREEN.TOPIC) +
TOPICSTR(GREEN) +
LIKE(BLUE.TOPIC) +
USEDLQ(NO)

Related reference
DEFINE TOPIC

Deleting an administrative topic definition
You can use the MQSC command DELETE TOPIC to delete an administrative topic.

Before you begin
Note: The example in this task requires you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

Example

DELETE TOPIC(ORANGE.TOPIC)

Applications will no longer be able to open the topic for publication or make new subscriptions using
the object name, ORANGE.TOPIC. Publishing applications that have the topic open are able to continue
publishing the resolved topic string. Any subscriptions already made to this topic continue receiving
publications after the topic has been deleted.

Applications that are not referencing this topic object but are using the resolved topic string that this topic
object represented, 'ORANGE' in this example, continue to work. In this case they inherit the properties
from a topic object higher in the topic tree. For more information, see Topic trees.

Related reference
DELETE TOPIC

174 Administering IBM MQ

Working with subscriptions
Use MQSC commands to manage subscriptions.

About this task
Subscriptions can be one of three types, defined in the SUBTYPE attribute:
ADMIN

Administratively defined by a user.
PROXY

An internally created subscription for routing publications between queue managers.
API

Created programmatically, for example, using the MQI MQSUB call.

See MQSC commands for detailed information about these commands.

Defining an administrative subscription
Use the MQSC command DEFINE SUB to create an administrative subscription. You can also use
the default defined in the default local subscription definition. Or, you can modify the subscription
characteristics from those of the default local subscription, SYSTEM.DEFAULT.SUB that was created when
the system was installed.

Before you begin
Note: The examples in this task require you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

Example

The DEFINE SUB command that follows defines a subscription called ORANGE with these
characteristics:

• Durable subscription, meaning that it persists over queue manager restart, with unlimited expiry.
• Receive publications made on the ORANGE topic string, with the message priorities as set by the

publishing applications.
• Publications delivered for this subscription are sent to the local queue SUBQ, this queue must be
defined before the definition of the subscription.

DEFINE SUB (ORANGE) +
TOPICSTR (ORANGE) +
DESTCLAS (PROVIDED) +
DEST (SUBQ) +
EXPIRY (UNLIMITED) +
PUBPRTY (ASPUB)

Note:

• The subscription and topic string name do not have to match.
• Except for the values of the destination and topic string, all the attribute values shown are the default

values. They are shown here only as an illustration. You can omit them if you are sure that the defaults
are what you want or have not been changed. See also “Displaying attributes of subscriptions” on page
176.

• If you already have a local subscription on the same queue manager with the name ORANGE, this
command fails. Use the REPLACE attribute if you want to overwrite the existing definition of a queue,
but see also “Changing local subscription attributes” on page 177.

• If the queue SUBQ does not exist, this command fails.

Administering IBM MQ 175

Related reference
DEFINE SUB

Displaying attributes of subscriptions
You can use the DISPLAY SUB command to display configured attributes of any subscription known to
the queue manager.

Before you begin
Note: The examples in this task require you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

Example

DISPLAY SUB(ORANGE)

You can selectively display attributes by specifying them individually. For example:

DISPLAY SUB(ORANGE) +
 SUBID +
 TOPICSTR +
 DURABLE

This command displays the three specified attributes as follows:

AMQ8096: IBM MQ subscription inquired.
 SUBID(414D5120414141202020202020202020EE921E4E20002A03)
 SUB(ORANGE) TOPICSTR(ORANGE)
 DURABLE(YES)

TOPICSTR is the resolved topic string on which this subscriber is operating. When a subscription is
defined to use a topic object the topic string from that object is used as a prefix to the topic string
provided when making the subscription. SUBID is a unique identifier assigned by the queue manager
when a subscription is created. This is a useful attribute to display because some subscription names
might be long or in a different character sets for which it might become impractical.

An alternate method for displaying subscriptions is to use the SUBID:

DISPLAY SUB +
 SUBID(414D5120414141202020202020202020EE921E4E20002A03) +
 TOPICSTR +
 DURABLE

This command gives the same output as before:

AMQ8096: IBM MQ subscription inquired.
 SUBID(414D5120414141202020202020202020EE921E4E20002A03)
 SUB(ORANGE) TOPICSTR(ORANGE)
 DURABLE(YES)

Proxy subscriptions on a queue manager are not displayed by default. To display them specify a SUBTYPE
of PROXY or ALL.

You can use the DISPLAY SBSTATUS command to display the Runtime attributes. For example, use the
command:

DISPLAY SBSTATUS(ORANGE) NUMMSGS

The following output is displayed:

176 Administering IBM MQ

AMQ8099: IBM MQ subscription status inquired.
 SUB(ORANGE)
 SUBID(414D5120414141202020202020202020EE921E4E20002A03)
 NUMMSGS(0)

When you define an administrative subscription, it takes any attributes that you do not specify explicitly
from the default subscription, which is called SYSTEM.DEFAULT.SUB. To see what these default attributes
are, use the following command:

DISPLAY SUB (SYSTEM.DEFAULT.SUB)

Related reference
DISPLAY SUB

Changing local subscription attributes
You can change subscription attributes in two ways, using either the ALTER SUB command or the DEFINE
SUB command with the REPLACE attribute.

Before you begin
Note: The examples in this task require you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

Example

If you want to change the priority of messages delivered to a subscription called ORANGE to be 5, use
either of the following commands:

• Using the ALTER command:

ALTER SUB(ORANGE) PUBPRTY(5)

This command changes a single attribute, that of the priority of messages delivered to this subscription
to 5; all other attributes remain the same.

• Using the DEFINE command:

DEFINE SUB(ORANGE) PUBPRTY(5) REPLACE

This command changes not only the priority of messages delivered to this subscription, but all the other
attributes which are given their default values.

If you alter the priority of messages sent to this subscription, existing messages are not affected. Any new
messages, however, are of the specified priority.

Related reference
ALTER SUB
DEFINE SUB

Copying a local subscription definition
You can copy a subscription definition using the LIKE attribute on the DEFINE command.

Before you begin
Note: The examples in this task require you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

Administering IBM MQ 177

Example

DEFINE SUB(BLUE) +
 LIKE(ORANGE)

You can also copy the attributes of the sub REAL to the sub THIRD.SUB, and specify that the correlID of
delivered publications is THIRD, rather than the publishers correlID. For example:

DEFINE SUB(THIRD.SUB) +
 LIKE(BLUE) +
 DESTCORL(ORANGE)

Related reference
DEFINE SUB

Deleting a local subscription
You can use the MQSC command DELETE SUB to delete a local subscription.

Before you begin
Note: The examples in this task require you to run MQSC commands. How you do this varies by platform.
See Administering IBM MQ using MQSC commands.

Example

DELETE SUB(ORANGE)

You can also delete a subscription using the SUBID:

DELETE SUB SUBID(414D5120414141202020202020202020EE921E4E20002A03)

Related reference
DELETE SUB

Checking messages on a subscription
When a subscription is defined it is associated with a queue. Published messages matching this
subscription are put to this queue. Use MQSC commands to check for messages currently queued for
a subscription.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

About this task
Note that the following MQSC commands show only those subscriptions that received messages.

To check for messages currently queued for a subscription perform the following steps:

Procedure
1. To check for messages queued for a subscription type DISPLAY SBSTATUS(sub_name) NUMMSGS,

see “Displaying attributes of subscriptions” on page 176.
2. If the NUMMSGS value is greater than zero identify the queue associated with the subscription by typing
DISPLAY SUB(sub_name)DEST.

178 Administering IBM MQ

3. Using the name of the queue returned you can view the messages by following the technique
described in “Browsing queues with the sample program” on page 141.

Related reference
DISPLAY SBSTATUS

Working with services
Service objects are a means by which additional processes can be managed as part of a queue manager.
With services, you can define programs that are started and stopped when the queue manager starts and
ends. IBM MQ services are always started under the user ID of the user who started the queue manager.

About this task
Service objects can be either of the following types:
Server

A server is a service object that has the parameter SERVTYPE specified as SERVER. A server service
object is the definition of a program that is executed when a specified queue manager is started.
Server service objects define programs that typically run for a long time. For example, a server service
object can be used to execute a trigger monitor process, such as runmqtrm.

Only one instance of a server service object can run concurrently. The status of running server service
objects can be monitored using the MQSC command, DISPLAY SVSTATUS.

Command
A command is a service object that has the parameter SERVTYPE specified as COMMAND. Command
service objects are similar to server service objects, however multiple instances of a command
service object can run concurrently, and their status cannot be monitored using the MQSC command
DISPLAY SVSTATUS.

If the MQSC command, STOP SERVICE, is executed, no check is made to determine whether the
program started by the MQSC command, START SERVICE, is still active before stopping program.

Related reference
DEFINE SERVICE
DISPLAY SVSTATUS
START SERVICE
STOP SERVICE

Defining a service object
You define a service object with the MQSC command DEFINE SERVICE.

Before you begin
Note: This task requires you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

Procedure
• Define a service object with the MQSC command DEFINE SERVICE.

The attributes that you need to define are as follows:
SERVTYPE

Defines the type of the service object. Possible values are as follows:
SERVER

A server service object.

Only one instance of a server service object can be executed at a time. The status of server
service objects can be monitored using the MQSC command, DISPLAY SVSTATUS.

Administering IBM MQ 179

COMMAND
A command service object.

Multiple instances of a command service object can be executed concurrently. The status of a
command service objects cannot be monitored.

STARTCMD
The program that is executed to start the service. A fully qualified path to the program must be
specified.

STARTARG
Arguments passed to the start program.

STDERR
Specifies the path to a file to which the standard error (stderr) of the service program should be
redirected.

STDOUT
Specifies the path to a file to which the standard output (stdout) of the service program should be
redirected.

STOPCMD
The program that is executed to stop the service. A fully qualified path to the program must be
specified.

STOPARG
Arguments passed to the stop program.

CONTROL
Specifies how the service is to be started and stopped:
MANUAL

The service is not to be started automatically or stopped automatically. It is controlled by use
of the START SERVICE and STOP SERVICE commands. This is the default value.

QMGR
The service being defined is to be started and stopped at the same time as the queue manager
is started and stopped.

STARTONLY
The service is to be started at the same time as the queue manager is started, but is not
requested to stop when the queue manager is stopped.

Related tasks
“Managing services” on page 180
An instance of a service object can be started and stopped automatically by the queue manager, or
started and stopped using the MQSC commands START SERVICE and STOP SERVICE.
Related reference
DEFINE SERVICE
DISPLAY SVSTATUS
START SERVICE
STOP SERVICE

Managing services
An instance of a service object can be started and stopped automatically by the queue manager, or
started and stopped using the MQSC commands START SERVICE and STOP SERVICE.

Before you begin
Note: This task requires you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

180 Administering IBM MQ

Procedure
• Set the CONTROL parameter on the queue manager to start or stop an instance of a service object

automatically, or use the MQSC commands START SERVICE and STOP SERVICE to do this manually.

When an instance of a service object is started, a message is written to the queue manager error
log containing the name of the service object and the process ID of the started process. Here is an
example log entry for a server service object starting:

02/15/2005 11:54:24 AM - Process(10363.1) User(mqm) Program(amqzmgr0)
Host(HOST_1) Installation(Installation1)
VRMF(7.1.0.0) QMgr(A.B.C)
AMQ5028: The Server 'S1' has started. ProcessId(13031).

EXPLANATION:
The Server process has started.
ACTION:
None.

Here is an example log entry for a command service object starting:

02/15/2005 11:53:55 AM - Process(10363.1) User(mqm) Program(amqzmgr0)
Host(HOST_1) Installation(Installation1)
VRMF(7.1.0.0) QMgr(A.B.C)
AMQ5030: The Command 'C1' has started. ProcessId(13030).

EXPLANATION:
The Command has started.
ACTION:
None.

When an instance server service stops, a message is written to the queue manager error logs
containing the name of the service and the process ID of the ending process. Here is an example
log entry for a server service object stopping:

02/15/2005 11:54:54 AM - Process(10363.1) User(mqm) Program(amqzmgr0)
Host(HOST_1) Installation(Installation1)
VRMF(7.1.0.0) QMgr(A.B.C)
AMQ5029: The Server 'S1' has ended. ProcessId(13031).

EXPLANATION:
The Server process has ended.
ACTION:
None.

Related tasks
“Defining additional environment variables in the service.env file” on page 181
When a service is started, the environment in which the service process is started is inherited from
the environment of the queue manager. It is possible to define additional environment variables to be
set in the environment of the service process by adding the variables you want to define to one of the
service.env environment override files.
Related reference
STOP SERVICE (stop a service) on Multiplatforms
START SERVICE (start a service) on Multiplatforms

Defining additional environment variables in the service.env file
When a service is started, the environment in which the service process is started is inherited from
the environment of the queue manager. It is possible to define additional environment variables to be

Administering IBM MQ 181

set in the environment of the service process by adding the variables you want to define to one of the
service.env environment override files.

About this task
There are two possible files to which you can add environment variables:

• The machine scope service.env file
• The queue manager scope service.env file

Both files are processed, if available, with definitions in the queue manager scope file taking precedence
over those definitions in the machine scope file.

You can specify any environment variable in the service.env file. For example, if the IBM MQ service
runs a number of commands, it might be useful to set the PATH user variable in the service.env file.

Note: The values that you set the variable to cannot be environment variables; for example CLASSPATH=
%CLASSPATH% is incorrect. Similarly, on Linux PATH= $PATH :/opt/mqm/bin would give unexpected
results.

CLASSPATH must be capitalized, and the class path statement can contain only literals. Some services
(Telemetry for example) set their own class path. The CLASSPATH defined in service.env is added to it.

The format of the variables defined in the service.env file is a list of name and value variable pairs.
Each variable must be defined on a new line, and each variable is taken as it is explicitly defined, including
white space.

Procedure
• Add environment variables to the machine scope service.env file.

This file is located in:

– /var/mqm on AIX and Linux systems.

– The data directory selected during installation on Windows systems.
• Add environment variables to the queue manager scope service.env file.

This file is located in the queue manager data directory. For example, the location of the environment
override file for a queue manager named QMNAME is:

– On AIX and Linux systems, /var/mqm/qmgrs/QMNAME/service.env

– On Windows systems, C:\ProgramData\IBM\MQ\qmgrs\QMNAME\service.env

Example of a service.env file

 #**#
 #* *#
 #* <N_OCO_COPYRIGHT> *#
 #* Licensed Materials - Property of IBM *#
 #* *#
 #* 63H9336 *#
 #* (C) Copyright IBM Corporation 2005, 2024. *#
 #* *#
 #* <NOC_COPYRIGHT> *#
 #* *#
 #**#
 #***#
 #* Module Name: service.env *#
 #* Type : IBM MQ service environment file *#
 #* Function : Define additional environment variables to be set *#
 #* for SERVICE programs. *#
 #* Usage : <VARIABLE>=<VALUE> *#
 #* *#
 #***#
 MYLOC=/opt/myloc/bin

182 Administering IBM MQ

 MYTMP=/tmp
 TRACEDIR=/tmp/trace
 MYINITQ=ACCOUNTS.INITIATION.QUEUE

Related tasks
“Using replaceable inserts on service definitions” on page 183
You can substitute tokens in the definition of a service object. Tokens that are substituted are
automatically replaced with their expanded text when the service program is executed.
Related reference
Environment variables descriptions

Using replaceable inserts on service definitions
You can substitute tokens in the definition of a service object. Tokens that are substituted are
automatically replaced with their expanded text when the service program is executed.

About this task
Substitute tokens can be taken from the following list of common tokens, or from any variables that are
defined in the file, service.env.

Procedure
• To use replaceable inserts, insert the token within + characters into any of the STARTCMD, STARTARG,

STOPCMD, STOPARG, STDOUT or STDERR strings.

For examples of this, see “Using a server service object” on page 184 and “Using a command service
object” on page 186.

The following are common tokens that can be used to substitute tokens in the definition of a service
object:
MQ_INSTALL_PATH

The location where IBM MQ is installed.
MQ_DATA_PATH

The location of the IBM MQ data directory:

– On AIX and Linux systems, the IBM MQ data directory location
is /var/mqm/

– On Windows systems, the location of the IBM MQ data directory is the data
directory selected during the installation of IBM MQ

QMNAME
The current queue manager name.

MQ_SERVICE_NAME
The name of the service.

MQ_SERVER_PID
This token can only be used by the STOPARG and STOPCMD arguments.

For server service objects this token is replaced with the process ID of the process started by the
STARTCMD and STARTARG arguments. Otherwise, this token is replaced with 0.

MQ_Q_MGR_DATA_PATH
The location of the queue manager data directory.

MQ_Q_MGR_DATA_NAME
The transformed name of the queue manager. For more information on name transformation, see
Understanding IBM MQ file names.

Administering IBM MQ 183

Using a server service object
These examples shows how to define, use, and alter a server service object to start a trigger monitor or
other program.

Before you begin
Note: These examples require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

These examples are written with UNIX style path separator characters, except where otherwise stated.

Procedure
1. Define a server service object, using the DEFINE SERVICE MQSC command:

DEFINE SERVICE(S1) +
CONTROL(QMGR) +
SERVTYPE(SERVER) +
STARTCMD('+MQ_INSTALL_PATH+bin/runmqtrm') +
STARTARG('-m +QMNAME+ -q ACCOUNTS.INITIATION.QUEUE') +
STOPCMD('+MQ_INSTALL_PATH+bin/amqsstop') +
STOPARG('-m +QMNAME+ -p +MQ_SERVER_PID+')

Where:

+MQ_INSTALL_PATH+ is a token representing the installation directory.
+QMNAME+ is a token representing the name of the queue manager.
ACCOUNTS.INITIATION.QUEUE is the initiation queue.
amqsstop is a sample program provided with IBM MQ which requests the queue manager to break
all connections for the process ID. amqsstop generates PCF commands, therefore the command
server must be running.
+MQ_SERVER_PID+ is a token representing the process ID passed to the stop program.

See “Using replaceable inserts on service definitions” on page 183 for a list of the common tokens.
2. An instance of the server service object executes when the queue manager is next started.

However, you can start an instance of the server service object immediately with the START
SERVICE MQSC command:

START SERVICE(S1)

3. Display the status of the server service process, using the DISPLAY SVSTATUS MQSC command:

DISPLAY SVSTATUS(S1)

4. Alter the server service object and have the updates picked up by manually restarting the server
service process, using the ALTER SERVICE MQSC command.

The server service object is altered so that the initiation queue is specified as
JUPITER.INITIATION.QUEUE.

ALTER SERVICE(S1) +
STARTARG('-m +QMNAME+ -q JUPITER.INITIATION.QUEUE')

Note: A running service does not pick up any updates to its service definition until it is restarted.
5. Restart the server service process so that the alteration is picked up, using the STOP SERVICE

and START SERVICE MQSC commands:

STOP SERVICE(S1)

184 Administering IBM MQ

Followed by:

START SERVICE(S1)

The server service process is restarted and picks up the alterations made in “4” on page 184.

Note: The MQSC command, STOP SERVICE, can only be used if a STOPCMD argument is specified in
the service definition.

More examples of passing arguments

• Define a server service object to start a program called runserv when a queue manager is started.

Do this using the DEFINE SERVICE MQSC command.

This example is written with Windows style path separator characters.

One of the arguments that is passed to the starting program is a string containing a space. This
argument needs to be passed as a single string. To achieve this, double quotation marks are used as
shown in the following command to define the command service object.

DEFINE SERVICE(S1) SERVTYPE(SERVER) CONTROL(QMGR) +
STARTCMD('C:\Program Files\Tools\runserv.exe') +
STARTARG('-m +QMNAME+ -d "C:\Program Files\Tools\"') +
STDOUT('C:\Program Files\Tools\+MQ_SERVICE_NAME+.out')

DEFINE SERVICE(S4) +
CONTROL(QMGR) +
SERVTYPE(SERVER) +
STARTCMD('C:\Program Files\Tools\runserv.exe') +
STARTARG('-m +QMNAME+ -d "C:\Program Files\Tools\"') +
STDOUT('C:\Program Files\Tools\+MQ_SERVICE_NAME+.out')

Where:

+QMNAME+ is a token representing the name of the queue manager.
"C:\Program Files\Tools\" is a string containing a space, which will be passed as a single
string.

• Define a server service object that can be used to automatically start the Trigger Monitor when the
queue manager starts.

Do this using the DEFINE SERVICE MQSC command.

DEFINE SERVICE(TRIG_MON_START) +
CONTROL(QMGR) +
SERVTYPE(SERVER) +
STARTCMD('runmqtrm') +
STARTARG('-m +QMNAME+ -q +IQNAME+')

Where:

+QMNAME+ is a token representing the name of the queue manager.
+IQNAME+ is an environment variable defined by the user in one of the service.env files representing
the name of the initiation queue.

Related reference
ALTER SERVICE
DEFINE SERVICE
DISPLAY SVSTATUS
START SERVICE
STOP SERVICE

Administering IBM MQ 185

Using a command service object
These examples show how to define a command service object to start a program that writes entries to
the operating system's system log when a queue manager is started or stopped.

Before you begin
Note: These examples require you to run the DEFINE SERVICE MQSC command. How you do this varies
by platform. See Administering IBM MQ using MQSC commands.

These examples are written with UNIX style path separator characters.

About this task
In the following examples:

logger is a sample program provided with IBM MQ that can write entries to the operating system's
system log.
+QMNAME+ is a token representing the name of the queue manager.

Procedure
• Define a command service object to start a program that writes entries to the operating system's

system log when a queue manager is started or stopped:

DEFINE SERVICE(S2) +
CONTROL(QMGR) +
SERVTYPE(COMMAND) +
STARTCMD('/usr/bin/logger') +
STARTARG('Queue manager +QMNAME+ starting') +
STOPCMD('/usr/bin/logger') +
STOPARG('Queue manager +QMNAME+ stopping')

• Define a command service object to start a program that writes entries to the operating system's
system log only when a queue manager is stopped:

DEFINE SERVICE(S3) +
CONTROL(QMGR) +
SERVTYPE(COMMAND) +
STOPCMD('/usr/bin/logger') +
STOPARG('Queue manager +QMNAME+ stopping')

Related reference
DEFINE SERVICE

Managing objects for triggering
These examples show how to start an application automatically when certain conditions on a queue are
met. For example, you might want to start an application when the number of messages on a queue
reaches a specified number. This facility is called triggering. You have to define the objects that support
triggering.

Before you begin
Note: These examples require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

These examples are written with UNIX style path separator characters.

About this task
For a detailed description of triggering, see Starting IBM MQ applications using triggers.

186 Administering IBM MQ

Procedure
• Define an application queue for triggering.

An application queue is a local queue that is used by applications for messaging, through the MQI.
Triggering requires a number of queue attributes to be defined on the application queue.

Triggering itself is enabled by the Trigger attribute (TRIGGER in MQSC commands). In this example,
a trigger event is to be generated when there are 100 messages of priority 5 or greater on the local
queue MOTOR.INSURANCE.QUEUE, as follows:

DEFINE QLOCAL (MOTOR.INSURANCE.QUEUE) +
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
MAXMSGL (2000) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INIT.QUEUE) +
TRIGGER +
TRIGTYPE (DEPTH) +
TRIGDPTH (100)+
TRIGMPRI (5)

where:
QLOCAL (MOTOR.INSURANCE.QUEUE)

Is the name of the application queue being defined.
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

Is the name of the process definition that defines the application to be started by a trigger monitor
program.

MAXMSGL (2000)
Is the maximum length of messages on the queue.

DEFPSIST (YES)
Specifies that messages on this queue are persistent by default.

INITQ (MOTOR.INS.INIT.QUEUE)
Is the name of the initiation queue on which the queue manager is to put the trigger message.

TRIGGER
Is the trigger attribute value.

TRIGTYPE (DEPTH)
Specifies that a trigger event is generated when the number of messages of the required priority
(TRIGMPRI) reaches the number specified in TRIGDPTH.

TRIGDPTH (100)
Is the number of messages required to generate a trigger event.

TRIGMPRI (5)
Is the priority of messages that are to be counted by the queue manager in deciding whether to
generate a trigger event. Only messages with priority 5 or higher are counted.

• Define an initiation queue

When a trigger event occurs, the queue manager puts a trigger message on the initiation queue
specified in the application queue definition. Initiation queues have no special settings, but you can
use the following definition of the local queue MOTOR.INS.INIT.QUEUE for guidance:

DEFINE QLOCAL(MOTOR.INS.INIT.QUEUE) +
GET (ENABLED) +
NOSHARE +
NOTRIGGER +
MAXMSGL (2000) +
MAXDEPTH (1000)

• Define a process

Use the DEFINE PROCESS command to create a process definition. A process definition defines
the application to be used to process messages from the application queue. The application queue

Administering IBM MQ 187

definition names the process to be used and thereby associates the application queue with the
application to be used to process its messages. This is done through the PROCESS attribute on the
application queue MOTOR.INSURANCE.QUEUE. The following MQSC command defines the required
process, MOTOR.INSURANCE.QUOTE.PROCESS, identified in this example:

DEFINE PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
DESCR ('Insurance request message processing') +
APPLTYPE (UNIX) +
APPLICID ('/u/admin/test/IRMP01') +
USERDATA ('open, close, 235')

Where:
MOTOR.INSURANCE.QUOTE.PROCESS

Is the name of the process definition.
DESCR ('Insurance request message processing')

Describes the application program to which this definition relates. This text is displayed when you
use the DISPLAY PROCESS command. This can help you to identify what the process does. If you
use spaces in the string, you must enclose the string in single quotation marks.

APPLTYPE (UNIX)
Is the type of application to be started.

APPLICID ('/u/admin/test/IRMP01')
Is the name of the application executable file, specified as a fully qualified file name. In Windows
systems, a typical APPLICID value would be c:\appl\test\irmp01.exe.

USERDATA ('open, close, 235')
Is user-defined data, which can be used by the application.

• Display attributes of a process definition

Use the DISPLAY PROCESS command to examine the results of your definition. For example:

DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)

24 : DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL
AMQ8407: Display Process details.
DESCR ('Insurance request message processing')
APPLICID ('/u/admin/test/IRMP01')
USERDATA (open, close, 235)
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
APPLTYPE (UNIX)

You can also use the MQSC command ALTER PROCESS to alter an existing process definition, and the
DELETE PROCESS command to delete a process definition.

Using the dmpmqmsg utility between two systems
The dmpmqmsg utility (formerly qload) allows you to copy or move the contents of a queue, or its
messages, to a file.

Overview
The file that you create with dmpmqmsg can be saved away as required and used at some later point to
reload the messages back onto the queue.

Important:

1. The file has a specific format understood by the utility. However, the file is human-readable, so that
you can update it in an editor before you reload it. If you do edit the file you must not change its
format.

2. The dmpmqmsg utility is shipped with the runtime fileset for AIX, Linux, and Windows, so is available in
both the IBM MQ server and client.

188 Administering IBM MQ

Possible uses are:

• Saving the messages that are on a queue, to a file. Possibly for archiving purposes, and later reload back
to a queue.

• Reloading a queue with messages you previously saved to a file.
• Removing old messages from a queue.
• 'Replaying' test messages from a stored location, even maintaining the correct time between the

messages if required.

Attention: SupportPac MO03 used the -l parameter for specifying local or client binding. -l has
been replaced by the -c parameter.

-P is now used for code page information instead of -c.

See dmpmqmsg for further information on the command and the available parameters.

Example of using the dmpmqmsg utility on Linux, using a Windows machine
You have a queue manager on a Linux machine that has messages on a queue (Q1) that you want to move
into another queue (Q2) in the same queue manager. You want to initiate the dmpmqmsg utility from a
Windows machine.

Queue (Q1) has four messages that have been added by using the sample amqsput (local queue
manager) or amqsputc (remote queue manager) application.

On the Linux machine you see:

display ql(Q1) CURDEPTH
 2 : display ql(Q1) CURDEPTH
AMQ8409: Display Queue details.
 QUEUE(Q1)
TYPE(QLOCAL)
 CURDEPTH(4)

Set the MQSERVER environment variable to point to the queue manager in Linux. For example:

set MQSERVER=SYSTEM.DEF.SVRCONN/TCP/veracruz.x.com(1414)

where veracruz is the name of the machine.

Run the dmpmqmsg utility to read from the queue, Q1, and store the output in c:\temp\mqqload.txt.

Connect as a remote client to the queue manager, QM_VER, running in the Linux host and port established
by MQSERVER. You achieve the connection as a remote client by using the attribute: -c.

dmpmqmsg -m QM_VER -i Q1 -f c:\temp\mqqload.txt -c
Read - Files: 0 Messages: 4 Bytes: 22
Written - Files: 1 Messages: 4 Bytes: 22

The output file c:\temp\mqqload.txt contains text, using a format that the dmpmqmsg utility
understands.

On the Windows machine, issue the dmpmqmsg command (using the -o option instead of the -i option) to
load queue (Q2) on the Linux machine from a file on the Windows machine:

dmpmqmsg -m QM_VER -o Q2 -f c:\temp\mqqload.txt -c
Read - Files: 1 Messages: 4 Bytes: 22
Written - Files: 0 Messages: 4 Bytes: 22

On the Linux machine, note that there are now four messages in the queue that have been restored from
the file.

Administering IBM MQ 189

display ql(Q2) CURDEPTH
 6 : display ql(Q2) CURDEPTH
AMQ8409: Display Queue details.
 QUEUE(Q2)
TYPE(QLOCAL)
 CURDEPTH(4)

On the Linux machine,

Delete the messages from the original queue.

clear qlocal(Q1)
 4 : clear qlocal(Q1)
AMQ8022: IBM MQ queue cleared.

Confirm that there are no more messages on the original queue:

display ql(Q1) CURDEPTH
 5 : display ql(Q1) CURDEPTH
AMQ8409: Display Queue details.
 QUEUE(Q1)
TYPE(QLOCAL)
 CURDEPTH(0)

See dmpmqmsg for a description of the command and its parameters.

Related concepts
“Examples of using the dmpmqmsg utility” on page 190
Simple ways in which you can use the dmpmqmsg utility (formerly qload).

Examples of using the dmpmqmsg utility
Simple ways in which you can use the dmpmqmsg utility (formerly qload).

Unload a queue to a file
Use the following options on the command line to save the messages that are on a queue, into a file:

dmpmqmsg -m QM1 -i Q1 -f c:\myfile

This command takes a copy of the messages from the queue and saves them in the file specified.

Unload a queue to a series of files
You can unload a queue to a series of files by using an insert character in the file name. In this mode
each message is written to a new file:

dmpmqmsg -m QM1 -i Q1 -f c:\myfile%n

This command unloads the queue to files, myfile1, myfile2, myfile3, and so on.

Load a queue from a file
To reload a queue with the messages you saved in “Unload a queue to a file” on page 190, use the
following options on the command line:

dmpmqmsg -m QM1 -o Q1 -f c:\myfile%n

This command unloads the queue to files, myfile1, myfile2, myfile3, and so on.

190 Administering IBM MQ

Load a queue from a series of files
You can load a queue from a series of files by using an insert character in the file name. In this mode
each message is written to a new file:

dmpmqmsg -m QM1 -o Q1 -f c:\myfile%n

This command loads the queue to files, myfile1, myfile2, myfile3, and so on.

Copy the messages from one queue to another queue
Replace the file parameter in “Unload a queue to a file” on page 190, with another queue name and use
the following options:

dmpmqmsg -m QM1 -i Q1 -o Q2

This command allows the messages from one queue to be copied to another queue.

Copy the first 100 messages from one queue to another queue
Use the command in the previous example and add the -r#100 option:

dmpmqmsg -m QM1 -i Q1 -o Q2 -r#100

Move the messages from one queue to another queue
A variation on “Load a queue from a file” on page 190. Note the distinction between using -i (lowercase)
which only browses a queue, and -I (uppercase) which destructively gets from a queue:

dmpmqmsg -m QM1 -I Q1 -o Q2

Move messages older than one day from one queue to another queue
This example shows the use of age selection. Messages can be selected that are older than, younger than,
or within a range of ages.

dmpmqmsg -m QM1 -I Q1 -o Q2 -T1440

Display the ages of messages currently on a queue
Use the following options on the command line:

dmpmqmsg -m QM1 -i Q1 -f stdout -dT

Work with the message file
Having unloaded the message from your queue, as in “Unload a queue to a file” on page 190, you might
want to edit the file.

You might also want to change the format of the file to use one of the display options that you did not
specify at the time you unloaded the queue.

Administering IBM MQ 191

You can use the dmpmqmsg utility to reprocess the file into the required format even after the unload of
the queue has taken place. Use the following options on the command line.

dmpmqmsg -f c:\oldfile -f c:\newfile -dA

See dmpmqmsg for a description of the command and its parameters.

Working with remote IBM MQ objects
You can administer IBM MQ objects on remote queue managers by using MQSC commands, PCF
commands, or the administrative REST API. Before you can use any of these methods, you must define
transmission queues and channels between the local queue manager and the remote queue manager
so that commands can be sent to the remote queue manager, and responses received by the local
queue manager. Alternatively, you can configure a queue manager cluster, and then use the same remote
administration methods.

About this task
To prepare queue managers for remote administration, you must configure the following objects on the
local queue manager:

• A listener.
• A transmission queue that has the name of the remote queue manager.
• A sender channel that has the connection details for the remote queue manager.
• A receiver channel that has the same name as the sender channel on the remote queue manager.

You must also configure the following objects on the remote queue manager:

• A listener.
• A transmission queue that has the name of the local queue manager.
• A sender channel that has the connection details for the local queue manager.
• A receiver channel that has the same name as the sender channel on the local queue manager.

For more information about configuring these objects, see “Configuring queue managers for remote
administration” on page 193.

Alternatively, you can configure a queue manager cluster. A cluster is a group of queue managers set
up in such a way that the queue managers can communicate directly with one another over a single
network without complex transmission queue, channel, and queue definitions. Clusters can be set up
easily, and typically contain queue managers that are logically related in some way and need to share data
or applications. Even the smallest cluster reduces system administration costs.

Establishing a network of queue managers in a cluster involves fewer definitions than establishing a
traditional distributed queuing environment. With fewer definitions to make, you can set up or change
your network more quickly and easily, and reduce the risk of making an error in your definitions.

To set up a cluster, you need one cluster sender (CLUSSDR) and one cluster receiver (CLUSRCVR)
definition for each queue manager. You do not need any transmission queue definitions or remote queue
definitions. The principles of remote administration are the same when used within a cluster, but the
definitions themselves are greatly simplified.

For more information about configuring a cluster, see Configuring a queue manager cluster.

Procedure
• For information on how to administer remote IBM MQ objects, see the following subtopics:

– “Configuring queue managers for remote administration” on page 193
– “Managing the command server for remote administration” on page 197
– “Issuing MQSC commands on a remote queue manager” on page 198

192 Administering IBM MQ

– “Data conversion between coded character sets ” on page 199

Configuring queue managers for remote administration
You can administer a remote queue manager from a local queue manager by using the administrative
REST API, MQSC, or PCF commands. The remote queue manager might be on the same system, in
a different installation, or on a different system with the same environment, or a different IBM MQ
environment. Before you can remotely administer a queue manager from a local queue manager, you
must create a sender and receiver channel, a listener, and a transmission queue on each queue manager.
These channels and queues enable the commands to be sent to the remote queue manager and the
responses to be received on the local queue manager. The procedure to create these queues and
channels is the same whether you want to use the administrative REST API, MQSC, or PCF commands.

Before you begin
• The following procedure uses example queue managers source.queue.manager, and
target.queue.manager. You must create and start these queue managers on your system to follow
these steps, or substitute your own queue manager names in the relevant steps.

• The following procedure uses TCP/IP as the transport type. You must know the IP address of both
systems to complete this task.

• The following procedure creates listeners that use the network ports 1818 on the local system and
1819 on the remote system. You can use other ports, but must substitute your port values in the
appropriate steps.

• You must run the commands in the procedure locally or over a network facility such as Telnet.

About this task

Figure 15. Setting up channels and queues for remote administration

Figure 15 on page 193 shows the configuration of queue managers, queues, and channels that you need
for remote administration:

• The object source.queue.manager is the source queue manager from which you can issue
administrative REST API, MQSC, or PCF commands, and to which the results of these commands are
returned.

• The object target.queue.manager is the name of the target queue manager, which processes the
commands and generates any operator messages.

• Commands get put onto the transmission queue that has the same name as the remote queue
manager. In this case, target.queue.manager. A transmission queue is a specialized local queue

Administering IBM MQ 193

that temporarily holds messages before the MCA picks them up and sends them to the remote queue
manager.

• The commands get sent by the source.to.target channel to the SYSTEM.ADMIN.COMMAND.QUEUE
on the remote queue manager. Each end of the channel has a separate definition. One end is a sender
and the other end is a receiver. The two definitions must have the same name and together constitute a
single message channel.

• The command output is put on the remote transmission queue that has the same name as the local
queue manager from which the command was sent. In this case, source.queue.manager.

• The output is sent by the target.to.source channel to an appropriate reply queue, where it is taken
and output by the original command.

Procedure
1. On the remote system queue manager, ensure that the command queue
SYSTEM.ADMIN.COMMAND.QUEUE is present. This queue is created by default when a queue manager
is created.

2. On the remote system, check that the command server is running on the queue manager. If the
command server is not running, remote administration is not possible:
a) Start runmqsc for the queue manager. For example, for queue manager target.queue.manager,

enter the following command:

runmqsc target.queue.manager

b) Display the status of the command server by entering the following command:

DISPLAY QMSTATUS CMDSERV

c) Exit the runmqsc command prompt by entering the following command:

end

d) If the command server is not started, start it. For example, for queue manager
target.queue.manager, enter the following command:

strmqcsv target.queue.manager

3. Define the channels, listener, and transmission queue on the local queue manager:
a) Start runmqsc for the queue manager. For example, for queue manager source.queue.manager,

enter the following command:

runmqsc source.queue.manager

b) Define the sender channel. This sender channel must have the same name as the receiver channel
on the remote queue manager. For example, enter the following MQSC command, replacing the
value for CONNAME with the IP address for the remote queue manager and the port number of the
listener:

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(SDR) +
CONNAME (localhost:1819) +
XMITQ ('target.queue.manager') +
TRPTYPE(TCP)

c) Define the receiver channel. This receiver channel must have the same name as the sender channel
on the remote queue manager. For example, enter the following command:

DEFINE CHANNEL ('target.to.source') +

194 Administering IBM MQ

CHLTYPE(RCVR) +
TRPTYPE(TCP)

d) Define the listener on the local queue manager. For example, enter the following command:

DEFINE LISTENER ('source.queue.manager') +
TRPTYPE (TCP) +
PORT (1818)

e) Define the transmission queue on the local queue manager. This transmission queue must have the
same name as the remote queue manager. For example, enter the following command:

DEFINE QLOCAL ('target.queue.manager') +
USAGE (XMITQ)

f) Start the listener. For example, enter the following command:

START LISTENER ('source.queue.manager')

g) Exit the runmqsc command prompt by entering the following command:

end

4. Define the channels, listener, and transmission queue on the remote queue manager:
a) Start runmqsc for the queue manager. For example, for queue manager target.queue.manager,

enter the following command:

runmqsc target.queue.manager

b) Define the sender channel. This sender channel must have the same name as the receiver channel
on the local queue manager. For example, enter the following MQSC command, replacing the value
for CONNAME with the IP address for the local queue manager and port number for the listener:

DEFINE CHANNEL ('target.to.source') +
CHLTYPE(SDR) +
CONNAME (localhost:1818) +
XMITQ ('source.queue.manager') +
TRPTYPE(TCP)

c) Define the receiver channel. This receiver channel must have the same name as the sender channel
on the local queue manager For example, enter the following command:

DEFINE CHANNEL ('source.to.target') +
CHLTYPE(RCVR) +
TRPTYPE(TCP)

d) Define the listener. For example, enter the following command:

DEFINE LISTENER ('target.queue.manager') +
TRPTYPE (TCP) +
PORT (1819)

e) Define the transmission queue. This transmission queue must have the same name as the local
queue manager. For example, enter the following command:

DEFINE QLOCAL ('source.queue.manager') +
USAGE (XMITQ)

f) Start the listener. For example, enter the following command:

START LISTENER ('target.queue.manager')

Administering IBM MQ 195

g) Exit runmqsc by entering the following command:

end

5. Start the sender channel on the local system:
a) Start runmqsc for the queue manager. For example, for queue manager source.queue.manager,

enter the following command:

runmqsc source.queue.manager

b) Start the sender channel. For example, enter the following command:

START CHANNEL ('source.to.target')

c) Exit runmqsc by entering the following command:

end

6. Start the sender channel on the remote system:
a) Start runmqsc for the queue manager. For example, for queue manager target.queue.manager,

enter the following command:

runmqsc target.queue.manager

b) Start the sender channel. For example, enter the following command:

START CHANNEL ('target.to.source')

c) Exit runmqsc by entering the following command:

end

7. Test that the configuration has completed successfully by sending an MQSC command from the local
system to the remote queue manager:
a) Start the runmqsc command prompt for the remote queue manager from the local system. For

example, enter the following command:

runmqsc -w 30 -m source.queue.manager target.queue.manager

b) Display the queues on the remote queue manager by entering the following command:

DISPLAY QUEUE (*)

On success, a list of queues from the remote queue manager is displayed.
c) If these steps do not work, check that the channels on both systems are in a running state. If

the channels are not running, and do not start, check the channels and transmission queues are
configured correctly, and that the command server is running. For example, check that the correct
CONNAME is specified for the sender channels, and that the transmission queues have the correct
names. Also, check the queue manager logs for security exceptions that might help resolve the
issue.

Results
Your queue managers are configured to remotely administer the remote queue manager from the local
system.

What to do next
• Learn more about remote administration using MQSC commands: “Issuing MQSC commands on a

remote queue manager” on page 198

196 Administering IBM MQ

• Learn more about writing administration programs using PCF commands: “Using IBM MQ
Programmable Command Formats” on page 26.

• Learn more about using the administrative REST API for remote administration: “Remote administration
using the REST API” on page 78.

Managing the command server for remote administration
Each queue manager has a command server associated with it. A command server processes any
incoming commands from remote queue managers, or PCF commands from applications. It presents
the commands to the queue manager for processing and returns a completion code or operator message.
You can start, stop, and display the status of the command server. A command server is mandatory for all
administration involving PCF commands, the MQAI, and also for remote administration.

Before you begin
Depending on the value of the queue manager attribute, SCMDSERV, the command server is either started
automatically when the queue manager starts, or must be started manually. If the command server
is started automatically, you cannot use the strmqcsv or endmqcsv commands to start and stop the
command server. You can change the value of the SCMDSERV attribute by using the MQSC command
ALTER QMGR. By default, the command server is started automatically.

Stopping a queue manager also ends the command server associated with it.

Procedure
• Display the status of the command server:

a) Start the runmqsc command prompt for the appropriate queue manager by entering the following
command:

runmqsc target.queue.manager

where target.queue.manager is the queue manager for which the command server is being
displayed.

b) Display the command server status by entering the following MQSC command:

DISPLAY QMSTATUS CMDSERV

c) Exit the runmqsc command prompt by entering the following command:

end

• If the command server is not set to start automatically, start the command server by entering the
following command:

strmqcsv target.queue.manager

where target.queue.manager is the queue manager for which the command server is being
started.

• If the command server is not set to start automatically, stop the command server by entering the
following command:

endmqcsv target.queue.manager

where target.queue.manager is the queue manager for which the command server is being
stopped.

Administering IBM MQ 197

By default, the command server stops in a controlled way. You can stop the command server
immediately by adding the -i flag to the command.

Issuing MQSC commands on a remote queue manager
After you configure queue managers for remote administration, you can use a particular form of the
runmqsc command on a local system to run MQSC commands on a remote queue manager. Each
command is sent as an Escape PCF to the command queue, SYSTEM.ADMIN.COMMAND.QUEUE, of the
remote queue manager. Replies are received on the SYSTEM.MQSC.REPLY.QUEUE queue.

Before you begin
You must complete the steps in “Configuring queue managers for remote administration” on page 193
to configure channels, transmission queues, listeners, and the command server before you can remotely
administer a queue manager by using MQSC commands.

Procedure
1. Ensure that the command server is running on the remote queue manager.

For information on how to start the command server on a queue manager, see “Managing the
command server for remote administration” on page 197.

2. On the source queue manager, you can then run MQSC commands in one of two ways:

• Interactively, by starting runmqsc with the following commands:

– If the remote queue manager is on z/OS, enter the following command:

runmqsc -w 30 -x -m source.queue.manager target.queue.manager

– If the remote queue manager is on Multiplatforms, enter the following command:

runmqsc -w 30 -m source.queue.manager target.queue.manager

• From a command file:

a. Put the MQSC commands to be run on the remote system in a text file, one command per line.
b. Verify your MQSC commands on the local queue manager by using the -v flag on the runmqsc

command. The -v flag checks that the commands are valid, but does not run them. Be aware
that some commands might fail if they are applicable to the remote queue manager but are not
applicable to the local queue manager:

runmqsc -v source.queue.manager < myCmdFile.in > results.out

The myCmdFile.in contains the MQSC commands to check, and the results.out file
contains the verification results for the commands.

c. Run the command file on the remote queue manager by entering one of the following
commands:

– If the remote queue manager is on z/OS, enter the following command:

runmqsc -w 30 -x -m source.queue.manager target.queue.manager < myCmdFile.in >
results.out

– If the remote queue manager is on Multiplatforms, enter the following command:

runmqsc -w 30 -m source.queue.manager target.queue.manager < myCmdFile.in >
results.out

The parameters used are the following parameters:

198 Administering IBM MQ

-w seconds
Specifies that the MQSC commands are run in indirect mode, where commands are put on the
command server input queue and executed in order.
The variable seconds specifies the length of time to wait, in seconds, for a response from
the remote queue manager. Any replies received after this time are discarded, but the MQSC
commands still run on the remote queue manager. The following message is generated on the local
queue manager when the command times out:

AMQ8416: MQSC timed out waiting for a response from the command server.

When you stop issuing MQSC commands, the local queue manager displays any timed-out
responses that have arrived and discards any further responses.

-x
Specifies that the remote queue manager is a z/OS queue manager.

-m localQMgrName
Specifies the name of the local queue manager that you want to use to submit commands to the
remote queue manager

What to do next
If you have difficulty in running MQSC commands remotely:

• Check that the remote queue manager is running.
• Check that the command server is running on the remote system.
• Check that the channel disconnect interval has not expired. For example, if a channel started but then

shut down after some time. This is especially important if you start the channels manually.
• Ensure that the requests that are sent from the local queue manager make sense to the target queue

manager. For example, requests that include parameters that are not supported on the remote queue
manager.

• Also see Resolving problems with MQSC commands.

Data conversion between coded character sets
Message data in IBM MQ defined formats (also known as built-in formats) can be converted by the queue
manager from one coded character set to another, provided that both character sets relate to a single
language or a group of similar languages.

For example, conversion between coded character sets with identifiers (CCSIDs) 850 and 500 is
supported, because both apply to Western European languages.

For EBCDIC newline (NL) character conversions to ASCII, see All queue managers stanza of the mqs.ini
file and the AMQ_CONVEBCDICNEWLINE environment variable.

Supported conversions are defined in Data conversion processing.

Converting between CCSIDs 37 and 500 is supported on the IBM MQ Appliance, Windows, Linux, and
macOS.

When a queue manager cannot convert messages in built-in formats
The queue manager cannot automatically convert messages in built-in formats if their CCSIDs represent
different national-language groups. For example, conversion between CCSID 850 and CCSID 1025 (which
is an EBCDIC coded character set for languages using Cyrillic script) is not supported because many of
the characters in one coded character set cannot be represented in the other. If you have a network of
queue managers working in different national languages, and data conversion among some of the coded
character sets is not supported, you can enable a default conversion.

Administering IBM MQ 199

For platforms to which the ccsid_part2.tbl applies, see “Specifying default data conversion” on page
203 using ccsid_part2.tbl for further information. Default data conversion on platforms other than
those to which the ccsid_part2.tbl file applies is described in “Default data conversion” on page 201.

Enhanced Unicode data conversion support
The product supports all Unicode characters defined in the Unicode 8.0 standard in data conversion. This
includes full support for UTF-16, including surrogate pairs (a pair of 2-byte UTF-16 characters in the
range X'D800' through to X'DFFF' that represent a Unicode code point above U+FFFF).

Combining character sequences are also supported in cases where a precomposed character in one
CCSID is mapped to a combining character sequence in another CCSID.

Data conversion to and from Unicode and CCSIDs 1388, 1390, 1399, 4933, 5488, and 16884 has been
extended, on some platforms, to support all the code points currently defined for these CCSIDs, including
those that map to code points in Unicode supplementary planes.

In the case of CCSIDs 1390, 1399, and 16884, this includes characters defined in the JIS X 0213
(JIS2004) standard.

Support has also been added for conversion to and from Unicode and six new CCSIDs (1374 through to
1379).

ccsid_part2.tbl file
An additional file, ccsid_part2.tbl, is provided.

The ccsid_part2.tbl file takes precedence over the ccsid.tbl file and:

• Allows you to add or modify CCSID entries
• Specify default data conversion
• Specify data for different command levels

The ccsid_part2.tbl is applicable to the following platforms only:

• Linux - all versions

• Windows

On IBM MQ for Windows, ccsid_part2.tbl is located in directory
MQDataRoot\conv\table by default. Furthermore, on IBM MQ for Windows it records all the supported
code sets.

On IBM MQ for Linux, ccsid_part2.tbl is located in directory MQDataRoot/conv/
table, and the supported code sets are held in conversion tables provided by IBM MQ.

Although the ccsid_part2.tbl file replaces the existing ccsid.tbl file used in previous versions of
IBM MQ to supply additional CCSID information, the ccsid.tbl file continues to be parsed by IBM MQ
and must therefore not be deleted.

For more information, see “The ccsid_part2.tbl file” on page 201.

ccsid.tbl file
On platforms other than those to which ccsid_part2.tbl applies, the file ccsid.tbl is used for the
following purposes:

• On AIX, the supported code sets are held internally by the operating system.
• It specifies any additional code sets. To specify additional code sets, you need to edit ccsid.tbl

(guidance on how to do this is provided in the file).
• It specifies any default data conversion.

200 Administering IBM MQ

You can update the information recorded in ccsid.tbl; you might want to do this if, for example, a
future release of your operating system supports additional coded character sets.

Default data conversion
If you set up channels between two machines on which data conversion is not normally supported, you
must enable default data conversion for the channels to work.

On platforms other than those to which ccsid_part2.tbl applies, to enable default data conversion,
edit the ccsid.tbl file to specify a default EBCDIC CCSID and a default ASCII CCSID. Instructions on
how to do this are included in the file. You must do this on all machines that will be connected using the
channels. Restart the queue manager for the change to take effect.

The default data-conversion process is as follows:

• If conversion between the source and target CCSIDs is not supported, but the CCSIDs of the source and
target environments are either both EBCDIC or both ASCII, the character data is passed to the target
application without conversion.

• If one CCSID represents an ASCII coded character set, and the other represents an EBCDIC coded
character set, IBM MQ converts the data using the default data-conversion CCSIDs defined in ccsid.tbl.

Note: Try to restrict the characters being converted to those that have the same code values in the coded
character set specified for the message and in the default coded character set. If you use only the set
of characters that is valid for IBM MQ object names (as defined in Naming IBM MQ objects) you will, in
general, satisfy this requirement. Exceptions occur with EBCDIC CCSIDs 290, 930, 1279, and 5026 used
in Japan, where the lowercase characters have different codes from those used in other EBCDIC CCSIDs.

Converting messages in user-defined formats
The queue manager cannot convert messages in user-defined formats from one coded character set to
another. If you need to convert data in a user-defined format, you must supply a data-conversion exit for
each such format. Do not use default CCSIDs to convert character data in user-defined formats. For more
information about converting data in user-defined formats and about writing data conversion exits, see
the Writing data-conversion exits.

Changing the queue manager CCSID
When you have used the CCSID attribute of the ALTER QMGR command to change the CCSID of the
queue manager, stop and restart the queue manager to ensure that all running applications, including the
command server and channel programs, are stopped and restarted.

This is necessary because any applications that are running when the queue manager CCSID is changed
continue to use the existing CCSID.

The ccsid_part2.tbl file
The ccsid_part2.tbl file is used to supply additional CCSID information. The ccsid_part2.tbl file
replaces the ccsid.tbl file that was used before IBM MQ 9.0.

Note: The ccsid.tbl file, which was used before IBM MQ 9.0 to supply additional CCSID information,
continues to be parsed by IBM MQ and should not be deleted. However, entries in ccsid_part2.tbl
take precedence over other entries in ccsid.tbl.

You should use ccsid_part2.tbl rather than ccsid.tbl because ccsid_part2.tbl:

• Contains support for the Unicode encoding values. From IBM MQ 9.0, the product supports all Unicode
characters defined in the Unicode 8.0 standard in data conversion, including full support for UTF-16. For
more information, see “Data conversion between coded character sets ” on page 199.

• Allows you to specify the version of CCSID entries, so that the entries are only applicable to selected
command levels.

You can use the ccsid_part2.tbl file to:

Administering IBM MQ 201

• Add or modify CCSID entries
• Specify default data conversion
• Specify data for different command levels

The ccsid_part2.tbl file is applicable to the following platforms only:

• Linux - all versions

• Windows

The location of the ccsid_part2.tbl file depends on your platform:

• The MQDataRoot/conv/table directory on all versions of Linux.

• The MQDataRoot\conv\table directory on Windows.

Adding or modifying CCSID entries
An entry in the ccsid_part2.tbl file has the following format:

<CCSID number> <Base CCSID> <DBCS CodePage> <SBCS CodePage>
<Type> <Encoding> <ACRI> <Name>

An example entry for CCSID 1200 (UTF-16) is:

 1200 1200 1200 1200 3 8 0 UTF-16

Note: For more details on the value for ACRI see the comment in the ccsid_part2.tbl file.

In the ccsid_part2.tbl format:
Type can equal:

1=SBCS
2=DBCS
3=MBCS

Encoding can equal:
1=EBCDIC
2 = ASCII
3 = ISO
4 = UCS-2
5 = UTF-8
6 = Euc
7 = GB18030
8 = UTF-16
9 = UTF-32

When editing the file you:

• Can specify a comment by using the # symbol at the start of a line. This prevents IBM MQ from
attempting to parse the line.

• Cannot supply in-line comments.
• Must ensure that you do not create blank lines.
• Must not add new entries at the end of the file.

New CCSID entries should be added before the ACRI table information.

202 Administering IBM MQ

Specifying default data conversion
You can define default conversion CCSIDs, which are used to convert between ASCII or similar and
EBCDIC CCSIDs, if no conversion is supported between two CCSIDs.

If you enable this function, the default conversion is used for transmission and message headers, and can
also be used in user data conversion.

Default conversions are enabled by creating two lines similar to the following:

default 0 500 1 1 0
default 0 850 1 2 0

The first line sets the default for EBCDIC CCSIDs to 500 and the second line sets the default for ASCII and
similar CCSIDs to 850.

Specifying data for different command levels
To specify CCSID entries for different command levels of IBM MQ you use a colon symbol followed by the
command level (or command levels) of IBM MQ that you want the next section to be applicable to.

The number represents the minimum command level that the queue manager or client must be running
in. For example, if the current queue manager is command level 900, and it encounters an 800 or 900
command level flag, the CCSIDs are read.

However, a queue manager at level 800 ignores any CCSIDs in the 900 section.

The command level specified is applicable to all CCSID entries encountered after a command level flag,
until a new command level flag is found.

If you require to set the command level to all command levels, specify the number zero.

When first parsing ccsid_part2.tbl, IBM MQ treats all CCSIDs encountered as valid for all command
levels of IBM MQ.

Versioning starts to be used only when IBM MQ encounters the first command level flag.

The following code snippet shows an example of using Versioning:

Comment Block
End of Comment Block
Because no command level flag is specified and we're at the start of the file
the following CCSIDs will be read on all versions
 819 819 0 819 1 3 0 ISO8859-1
 923 923 0 923 1 3 0 ISO8859-15
 1051 1051 0 1051 1 3 0 IBM-1051
The colon :900 below shows that the CCSIDs after will only be for MQ cmd level 900 and above
:900
 8629 437 0 437 1 2 0 IBM-437
 12725 437 0 437 1 2 0 IBM-437
 16821 437 0 437 1 2 0 IBM-437
 20917 437 0 437 1 2 0 IBM-437
The colon :0 below shows that the CCSIDs after will be for all version of MQ
:0
 4946 850 0 850 1 2 0 IBM-850
 33618 850 0 850 1 2 0 IBM-850
 61697 850 0 850 1 2 0 IBM-850
 61698 850 0 850 1 2 0 IBM-850

Administering IBM MQ 203

Administering Managed File Transfer
Use Managed File Transfer commands to administer Managed File Transfer. You can also use the IBM MQ
Explorer for some of the administrative tasks.

Start transfer by placing a message in an agent command queue
You can also start a file transfer by putting a file transfer message on the command queue of the source
agent. An example command queue name is SYSTEM.FTE.COMMAND.AGENT01. You must ensure that
the message reaches the command queue of the correct source agent; if the message is received by an
agent that does not match the source information in the XML, the message is rejected.

The transfer request XML must conform to the FileTransfer.xsd schema and use the <request>
element as the root element. See File transfer request message format for information about the
structure and content of a transfer request message. How you put the transfer request message on an
agent command queue is task-specific. For example, you can use the IBM MQ Java API to put a message
on the queue programmatically.

Related concepts
“Transferring data from files to messages” on page 256
You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.
“Transferring data from messages to files” on page 271
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.
“The protocol bridge” on page 281
The protocol bridge enables your Managed File Transfer (MFT) network to access files stored on a file
server outside your MFT network, either in your local domain or a remote location. This file server can
use the FTP, FTPS, or SFTP network protocols. Each file server needs at least one dedicated agent. The
dedicated agent is known as the protocol bridge agent. A bridge agent can interact with multiple file
servers.
“Working with MFT from IBM Integration Bus” on page 319
You can work with Managed File Transfer from IBM Integration Bus using the FTEOutput and FTEInput
nodes.
“MFT recovery and restart” on page 319
If your agent or queue manager are unavailable for any reason, for example because of a power or
network failure, Managed File Transfer recovers as follows in these scenarios:
Related tasks
“Starting an MFT agent” on page 205
Before you can use a Managed File Transfer agent for a file transfer, you must first start the agent.
“Starting a new file transfer” on page 212
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
“Monitoring file transfers that are in progress” on page 219
You can monitor a file transfer that is in progress using the Managed File Transfer - Current Transfer
Progress tab in IBM MQ Explorer. This file transfer can be one started from either IBM MQ Explorer or
the command line. The tab also displays the progress of scheduled transfers at the point the scheduled
transfers start.
“Viewing the status of file transfers in the Transfer Log” on page 221

204 Administering IBM MQ

You can view the details of file transfers by using the Transfer Log in IBM MQ Explorer. These can be
transfers started from either the command line or the IBM MQ Explorer. You can also customize what is
displayed in the Transfer Log.
“Monitoring MFT resources” on page 223
You can monitor Managed File Transfer resources; for example, a queue or a directory. When a condition
on this resource is satisfied, the resource monitor starts a task, such as a file transfer. You can create a
resource monitor by using the fteCreateMonitor command or the Monitors view in the Managed File
Transfer plug-in for IBM MQ Explorer.
“Working with file transfer templates” on page 253
You can use file transfer templates to store common file transfer settings for repeated or complex
transfers. Either create a transfer template from the command line by using the fteCreateTemplate
command or use the IBM MQ Explorer to create a transfer template by using the Create New Template
for Managed File Transfer wizard, or save a template while you are creating a file transfer by selecting
the Save transfer settings as a template check box. The Transfer Templates window displays all of the
transfer templates that you have created in your Managed File Transfer network.
“Listing MFT agents” on page 210
You can list the Managed File Transfer agents registered with a particular queue manager using the
command line or the IBM MQ Explorer.
“Stopping an MFT agent” on page 211
You can stop a Managed File Transfer agent from the command line. When you stop an agent, you are
quiescing the agent and allowing the agent to complete its current file transfer before stopping. You can
also specify the -i parameter at the command line to stop an agent immediately. When the agent has
stopped, you cannot use that agent to transfer files until you restart it.
Configuring an MFT logger
Related reference
Guidelines for transferring files

Starting an MFT agent
Before you can use a Managed File Transfer agent for a file transfer, you must first start the agent.

About this task
You can start a Managed File Transfer Agent from the command line. In this case, the agent process stops
when you log off the system.

On AIX, Linux, and Windows, you can configure an agent so that it continues running when
you log off from the system and can continue to receive file transfers.

On z/OS, you can configure the agent to start as a started task from JCL without the need for
an interactive session.

Note that, if an agent encounters an unrecoverable error when it is running, a first failure data capture
(FDC) is generated and the agent is stopped.

Procedure
• To start an agent from the command line, use the fteStartAgent command.

For more information, see fteStartAgent.

•
To configure an agent so that it continues running when you log off from the system:

– On Windows, configure the agent to run as a Windows service. For more information,
see “Starting an MFT agent as a Windows service” on page 206.

Administering IBM MQ 205

– On AIX and Linux, configure the agent to start automatically during a
reboot by using a script file. For more information, see “Starting an MFT agent at AIX and Linux
system startup” on page 208.

•
On z/OS, configure the agent to start as a started task from JCL without the need for an interactive
session.
For more information, see “Starting an MFT agent on z/OS” on page 210.

Related tasks
“Listing MFT agents” on page 210
You can list the Managed File Transfer agents registered with a particular queue manager using the
command line or the IBM MQ Explorer.
“Stopping an MFT agent” on page 211
You can stop a Managed File Transfer agent from the command line. When you stop an agent, you are
quiescing the agent and allowing the agent to complete its current file transfer before stopping. You can
also specify the -i parameter at the command line to stop an agent immediately. When the agent has
stopped, you cannot use that agent to transfer files until you restart it.
Related reference
MFT agent status values
fteStartAgent

Starting an MFT agent as a Windows service
You can start an agent as a Windows service so that when you log off Windows, your agent continues
running and can receive file transfers.

About this task
On Windows, when you start an agent from the command line, the agent process runs using the user
name you used to log on to Windows. When you log off the system, the agent process stops. To prevent
the agent stopping, you can configure an agent to run as a Windows service. Running as a Windows
service also allows you to configure agents to be started automatically when the Windows environment
starts or is restarted.

Complete the following steps to start an agent that runs as a Windows service. You must be running
Managed File Transfer on one of the supported Windows versions to run the agent as a Windows service.
For the list of supported environments, refer to the System Requirements for IBM MQ.

The exact steps depend on whether you have already created an agent or whether you are creating an
agent. Both options are described in the following steps.

Procedure
1. If you are creating a Managed File Transfer agent, use the fteCreateAgent, fteCreateCDAgent,

or fteCreateBridgeAgent command. Specify the -s parameter to run the agent as a Windows
service. In the following example, the agent AGENT1 is created, which has an agent queue manager
QMGR1. The Windows service runs using a user name of fteuser, which has an associated password
ftepassword.

fteCreateAgent -agentName AGENT1 -agentQMgr QMGR1 -s -su fteuser -sp ftepassword

You can optionally specify a name for the service after the -s parameter. If you do not specify a
name, the service is named mqmftAgentAGENTQMGR, where AGENT is the agent name you specified
and QMGR is your agent queue manager name. In this example, the default name for the service is
mqmftAgentAGENT1QMGR1.

206 Administering IBM MQ

https://www.ibm.com/support/pages/node/318077

Note: The Windows user account that you specify using the -su parameter must have the Log on as
a service rights. For information about how to configure this, see Troubleshooting an MFT agent or
logger running as a Windows service.

For more information, see fteCreateAgent, fteCreateCDAgent: create a Connect:Direct® bridge agent, or
fteCreateBridgeAgent (create and configure an MFT protocol bridge agent).

2. If you followed the previous step to create an agent, run the MQSC commands that are generated
by the fteCreateAgent, fteCreateCDAgent, or fteCreateBridgeAgent command. These
commands create the IBM MQ queues that are needed by the agent.
For example, for an agent named AGENT1, an agent queue manager named QMGR1 and a coordination
queue manager named COORDQMGR1, run the following command:

runmqsc QMGR1 MQ_DATA_PATH\mqft\config\COORDQMGR1\agents\AGENT1\AGENT1_create.mqsc

3. If you did not follow the previous steps to create an agent and instead want to configure an
existing agent to run as a Windows service, first stop your agent if it is running, and then modify
its configuration.
a) The following example uses an agent named AGENT1. Run the following command:

fteStopAgent AGENT1

b) Use the fteModifyAgent command to configure the agent to run as a Windows service:

fteModifyAgent -agentName AGENT1 -s -su fteuser -sp ftepassword

For more information, see fteModifyAgent: run an MFT agent as a Windows service.
4. Start your agent using the fteStartAgent command. Alternatively, you can use the Windows

Services tool, which is available from Administrative Tools in the Control Panel, selected from the
Windows desktop start menu, to start the service.

fteStartAgent AGENT1

The service continues to run even if you log off Windows. To ensure that the service also restarts
when Windows restarts after a shutdown, the Startup Type field in the Windows Services tool is set to
Automatic by default. Change this to Manual if you do not want the service to restart when Windows
restarts.

5. Optional: To stop the agent, either use the fteStopAgent command or use the Windows Services tool.
For example, from the command line, run the following command:

fteStopAgent AGENT1

• When you run the fteStopAgent command as a service, the command always runs using the -i
parameter regardless of whether you specified this parameter. The -i parameter stops the agent
immediately without completing any transfers that are in progress. This is caused by a limitation of
the Windows service.

What to do next
If you have problems starting your Windows service, see Troubleshooting an MFT agent or logger running
as a Windows service. This topic also describes the location of the Windows service log files.
Related tasks
“Listing MFT agents” on page 210
You can list the Managed File Transfer agents registered with a particular queue manager using the
command line or the IBM MQ Explorer.
“Stopping an MFT agent” on page 211

Administering IBM MQ 207

You can stop a Managed File Transfer agent from the command line. When you stop an agent, you are
quiescing the agent and allowing the agent to complete its current file transfer before stopping. You can
also specify the -i parameter at the command line to stop an agent immediately. When the agent has
stopped, you cannot use that agent to transfer files until you restart it.
Related reference
fteCreateAgent (create an MFT agent)
fteCreateCDAgent (create a Connect:Direct bridge agent)
fteCreateBridgeAgent (create and configure an MFT protocol bridge agent)
fteModifyAgent (run an MFT agent as a Windows service)
Related information
The MFT agent.properties file

Starting an MFT agent at AIX and Linux system startup
A Managed File Transfer Agent can be configured to start at system startup on AIX and Linux. When you
log off, your agent continues running and can receive file transfers.

When you have created and configured an agent using one of these Managed File Transfer commands;
fteCreateAgent, fteCreateCDAgent, or fteCreateBridgeAgent, you can configure it to start
automatically during a reboot on AIX and Linux machines by using a script file that simply executes
the following command:

su -l mqmft_user -c mq_install_root/bin/fteStartAgent agent_name

Where mq_install_root is the root directory of the required Managed File Transfer installation, the
default is: /opt/mqm and agent_name is the name of the Managed File Transfer Agent to be started. The
use of this script file varies depending on the specific operating system. For example, there are additional
options available under Linux.

Linux

For Linux systems there are multiple ways that you can start applications during the system boot process.
In general, consider following these steps:

1. Create a file called /etc/rc.mqmft with contents:

#!/bin/sh
su -l mqmft_user"-c mq_install_root/bin/fteStartAgent agent_name"

Where mqmft_user is the user ID under which the agent process is to run. This user ID must be a
member of the mqm group.

2. Make the file executable, for example:

chmod 755 /etc/rc.mqmft

3. Next add the following line to /etc/inittab:

mqmft:5:boot:/etc/rc.mqmft

Other ways to start an agent during boot on Linux include adding the script lines to the /etc/rc.d/
rc.local file, or on Linux SuSe, adding the script lines to the /etc/init.d/boot.local file. You
should select the method that works best for your environment. Here is some more information on other
ways to start an agent during startup on specific Linux distributions that are supported:

208 Administering IBM MQ

SLES 10 and 11

For SUSE Linux Enterprise Server (SLES) 10 and 11 systems, follow these steps:

1. As the system root user ID, create your own /etc/init.d/rc.rclocal file.
2. Add the following lines to the rc.rclocal file:

#!/bin/sh
BEGIN INIT INFO
Provides: rc.rclocal
Required-Start: $network $syslog
Required-Stop: $network $syslog
Default-Stop: 0 1 2 6
Description: MQMFT agent startup
END INIT INFO
su -l mqmft_user"-c mq_install_root/bin/fteStartAgent agent_name"

3. Run the following commands:

chmod 755 rc.rclocal

chkconfig --add rc.rclocal

Starting Managed File Transfer agents on Linux with systemd

Carry out the following procedure:

1. Create a file in the /etc/systemd/ system folder and name it, for example,
<agentname>.service. Add the following content, where <agentname> is MFT_AGT_LNX_0.

vi /etc/systemd/system/MFT_AGT_LNX_0.service
[Unit]
Description=IBM MQ MFT MFT_AGT_LNX_0
[Service]
ExecStart=/opt/mqm/bin/fteStartAgent MFT_AGT_LNX_0
ExecStop=/opt/mqm/bin/fteStopAgent MFT_AGT_LNX_0
Type=forking
User=mqm
Group=mqm
KillMode=none

2. To enable the service run the following commands:

systemctl enable MFT_AGT_LNX_0
systemctl daemon-reload

3. To start the agent and check its status, run the following commands:

systemctl start MFT_AGT_LNX_0
systemctl status MFT_AGT_LNX_0

Related tasks
“Stopping an MFT agent” on page 211
You can stop a Managed File Transfer agent from the command line. When you stop an agent, you are
quiescing the agent and allowing the agent to complete its current file transfer before stopping. You can
also specify the -i parameter at the command line to stop an agent immediately. When the agent has
stopped, you cannot use that agent to transfer files until you restart it.
Related reference
fteCreateAgent
fteCreateCDAgent: create a Connect:Direct bridge agent

Administering IBM MQ 209

fteCreateBridgeAgent (create and configure an MFT protocol bridge agent)

Starting an MFT agent on z/OS
On z/OS, in addition to running the fteStartAgent command from a z/OS UNIX System Services
session, you can start an agent as a started task from JCL without the need for an interactive session.

A started task is used because it runs under a specific user ID and is not affected by users logging off.

Note: Started tasks are typically run under an administrative user that might not have log-on
privileges and so it is not possible to log on to the z/OS system as the user that the agent is
running under. The fteStartAgent, fteStopAgent, fteSetAgentTraceLevel commands, and the
fteShowAgentDetails command with the -d parameter specified, cannot be issued for that agent.

You can use the agent property adminGroup with Managed File Transfer agents on z/OS. You can define
a security manager group, for example MFTADMIN and then add the started task userid and administrator
TSO ids to this group. Edit the agent properties file and set the adminGroup property to be the name of
this security manager group.

adminGroup=MFTADMIN

Members of this group can then issue the fteStartAgent, fteStopAgent, and
fteSetAgentTraceLevel commands, and the fteShowAgentDetails command with the -d
parameter specified, for the agent that is running as a started task.

For more information, see the adminGroup property in The MFT agent.properties file.

As a Java application, an agent is a z/OS UNIX System Services application that you can run from JCL
by using the BFGAGSTP member, from a generated Managed File Transfer command PDSE library data
set for an agent. For more information about how to create an MFT command PDSE library data set, and
customize it for the required agent, see Creating an MFT Agent or Logger command data set.

Related concepts
Enabling MFT agents to connect to remote z/OS queue managers
Related reference
“Stopping an MFT agent on z/OS” on page 211
If you are running a Managed File Transfer Agent on z/OS as a started task from JCL, the agent accepts
the z/OS operator commands MODIFY and STOP, in addition to the fteStopAgent command.
The MFT agent.properties file

Listing MFT agents
You can list the Managed File Transfer agents registered with a particular queue manager using the
command line or the IBM MQ Explorer.

About this task
To list agents using the command line, see fteListAgents command.

To list agents using the IBM MQ Explorer, in the Navigator view click Agents under the coordination queue
manager name.

If an agent is not listed by the fteListAgents command or is not displayed in the IBM MQ Explorer, use
the diagnosis flowchart in the following topic to locate and fix the problem: What to do if your MFT agent
is not listed by the fteListAgents command.

Related reference
fteListAgents: list the MFT agents for a coordination queue manager
MFT agent status values
fteShowAgentDetails

210 Administering IBM MQ

Stopping an MFT agent
You can stop a Managed File Transfer agent from the command line. When you stop an agent, you are
quiescing the agent and allowing the agent to complete its current file transfer before stopping. You can
also specify the -i parameter at the command line to stop an agent immediately. When the agent has
stopped, you cannot use that agent to transfer files until you restart it.

Before you begin
If you want to check the names of the agents associated with a queue manager, you can list agents by
using the IBM MQ Explorer or the command line, see fteListAgents command.

About this task
To stop an agent from the command line, see fteStopAgent.

If an agent is stopped in a controlled manner using the fteStopAgent, then the agent does not
accept any new managed transfer requests and waits for any in-progress transfers to complete before
it actually shuts itself down. From IBM MQ 9.3.0, to show that the agent is still in a transient state,
and therefore has not yet shut down and cannot yet be restarted, the agent enters the STOPPING state
until any ongoing transfers are complete. This status appears in the output of the fteListAgents and
fteShowAgentDetails commands, and in MFT REST API queries, and in the MFT plugin's Agents view
of IBM MQ Explorer.

If you have configured your agent to run as a Windows service, running the fteStopAgent
command also stops the Windows service. Alternatively, you can stop the agent by stopping the service
by using the Windows Services tool. For more information, see the topic “Starting an MFT agent as a
Windows service” on page 206.

Related tasks
“Starting an MFT agent” on page 205
Before you can use a Managed File Transfer agent for a file transfer, you must first start the agent.
Related reference
MFT agent status values
fteStopAgent
“Stopping an MFT agent on z/OS” on page 211
If you are running a Managed File Transfer Agent on z/OS as a started task from JCL, the agent accepts
the z/OS operator commands MODIFY and STOP, in addition to the fteStopAgent command.

Stopping an MFT agent on z/OS
If you are running a Managed File Transfer Agent on z/OS as a started task from JCL, the agent accepts
the z/OS operator commands MODIFY and STOP, in addition to the fteStopAgent command.

A started task is used because it runs under a specific user ID and is not affected by users logging off.

Note: Started tasks are typically run under an administrative user that might not have log-on
privileges and so it is not possible to log on to the z/OS system as the user that the agent is
running under. The fteStartAgent, fteStopAgent, fteSetAgentTraceLevel commands, and the
fteShowAgentDetails command with the -d parameter specified, cannot be issued for that agent.

You can use the agent property adminGroup with Managed File Transfer agents on z/OS. You can define
a security manager group, for example MFTADMIN and then add the started task userid and administrator
TSO ids to this group. Edit the agent properties file and set the adminGroup property to be the name of
this security manager group.

adminGroup=MFTADMIN

Administering IBM MQ 211

Members of this group can then issue the fteStartAgent, fteStopAgent, and
fteSetAgentTraceLevel commands, and the fteShowAgentDetails command with the -d
parameter specified, for the agent that is running as a started task.

For more information, see the adminGroup property in The MFT agent.properties file .

Controlled agent shutdown by using the z/OS MODIFY command (F)
The MODIFY command allows you to stop an agent in a controlled way as an alternative to the
fteStopAgent command. The agent completes any transfers currently in progress but the agent does
not start any new transfers.

For example:

F job_name,APPL=STOP

where job_name is the job that the agent process is running under.

Immediate agent shutdown by using the z/OS STOP command (P)
The STOP command is equivalent to an immediate stop by using the fteStopAgent command with the
-i parameter. The agent is stopped immediately even if the agent is currently transferring a file.

For example:

P job_name

where job_name is the job that the agent process is running under.
Related concepts
Enabling MFT agents to connect to remote z/OS queue managers
Related reference
“Starting an MFT agent on z/OS” on page 210
On z/OS, in addition to running the fteStartAgent command from a z/OS UNIX System Services
session, you can start an agent as a started task from JCL without the need for an interactive session.
The MFT agent.properties file

Starting a new file transfer
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.

About this task
To start a new file transfer from the command line, see fteCreateTransfer command.

To start a new file transfer by using the Create New Managed File Transfer wizard in IBM MQ Explorer,
use the following steps:

Procedure
1. In the Navigator view, click Managed File Transfer. Managed File Transfer Central is displayed in the

Content view.
2. All of your coordination queue managers are displayed in the Navigator view. Expand the name of the

coordination queue manager that the agent you want to use for the transfer is registered against. If you
are currently connected to a coordination queue manager other than the one you want to use for the
transfer, right-click that coordination queue manager name in the Navigator view and click Disconnect.
Then right-click the name of the coordination queue manager you want to use and click Connect.

3. Start the Create New Managed File Transfer wizard by using either of the following methods:

212 Administering IBM MQ

a) Right-click the name of any of the following nodes in the Navigator view: the relevant coordination
queue manager, Transfer Templates, Transfer Log, or Pending Transfers. Then click New Transfer
to start the wizard.

b) Click File > New > Other > Managed File Transfer Wizards > New Transfer Wizard
4. Follow the instructions on the wizard panels. There is also context-sensitive help provided for each

panel. To access the context-sensitive help on Windows, press F1. On Linux, press Ctrl+F1 or
Shift+F1.

Related concepts
“Using transfer definition files” on page 213
You can specify a transfer definition file which can be used to create a file transfer. The transfer definition
file is an XML file that defines some or all of the information required to create the transfer.
Related tasks
“Creating a scheduled file transfer” on page 216
You can schedule a new file transfer either from the IBM MQ Explorer, or from the command line. The
scheduled transfer can contain single files or multiple files in a group. You can perform a scheduled file
transfer once or repeat the transfer multiple times.
“Triggering a file transfer” on page 217
You can set certain trigger conditions on a file transfer that must be true before that transfer can take
place. If the triggering conditions are not true, the file transfer does not take place and a log message
is optionally submitted to record the fact the transfer did not happen. The file transfer request is then
discarded. For example, you can set up a file transfer that takes place only if a named file on the system
where the source agent is located is over a specified size, or if a particular named file exists on the system
where the source agent is located. You can set up a triggered file transfer from either the IBM MQ Explorer
or from the command line.
“Setting a timeout for recovery of stalled transfers” on page 320
You can set a transfer recovery timeout for stalled file transfers that applies to all the transfers for a
source agent. You can also set a transfer recovery timeout for an individual transfer. If you set a specific
amount of time, in seconds, during which a source agent keeps trying to recover a stalled file transfer and
the transfer is not successful when the agent reaches the timeout, the transfer fails.
Related reference
fteCreateTransfer: start a new file transfer
File transfer request message format
Guidelines for transferring files

Using transfer definition files
You can specify a transfer definition file which can be used to create a file transfer. The transfer definition
file is an XML file that defines some or all of the information required to create the transfer.

Transfer definition files are useful when you want to specify multiple source files and multiple destination
files in a single transfer operation. You can use a transfer definition file to submit a complex file transfer.
You can reuse and share the transfer definition file.

You can use two formats for a transfer definition file, and while these formats vary slightly, both conform
to the FileTransfer.xsd schema. You can find this schema in the samples\schema directory of the
Managed File Transfer installation.

The following two formats of transfer definition files are supported:

• A definition of the source and destination files for a transfer. This definition uses a
transferSpecifications element as the root.

• A definition of the entire transfer, including source and destination files and the source and destination
agents. This definition uses a request element as the root.

– Files with this format can be generated from the fteCreateTransfer command by using the -gt
parameter.

Administering IBM MQ 213

The following example shows a transfer definition file format that specifies only the source and
destination files for a transfer:

<?xml version="1.0" encoding="UTF-8"?>
<transferSpecifications xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <item checksumMethod="MD5" mode="text">
 <source recursive="false" disposition="leave">
 <file>textTransferTest.txt</file>
 </source>
 <destination type="directory" exist="overwrite">
 <file>c:\targetfiles</file>
 </destination>
 </item>
</transferSpecifications>

To submit this format of transfer definition file you must specify the source and destination agents on the
command line:

fteCreateTransfer -sa AGENT1 -sm agent1qm -da AGENT2 -dm agent2qm -td
 c:\definitions\example1.xml

The following example is a transfer definition file format that specifies all information required for a
transfer:

<?xml version="1.0" encoding="UTF-8"?>
<request version="3.00" xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>example.com.</hostName>
 <userID>fteuser</userID>
 </originator>
 <sourceAgent agent="AGENT1" QMgr="agent1qm"/>
 <destinationAgent agent="AGENT2" QMgr="agent2qm"/>
 <transferSet>
 <item mode="binary" checksumMethod="MD5">
 <source recursive="false" disposition="leave">
 <file>c:\sourcefiles*.jpg</file>
 </source>
 <destination type="directory" exist="error">
 <file>/targetfiles/images</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

You can generate a file with this format by using the -gt parameter on the fteCreateTransfer
command. When you submit a transfer definition file with this format, you do not need to specify anything
else on the command line:

fteCreateTransfer -td c:\definitions\example2.xml

You can override the source and destination agent information about the command line by passing in the
normal parameters in addition to the transfer definition file. For example:

fteCreateTransfer -da AGENT9 -dm agent9qm -td c:\definitions\example2.xml

This example uses the command-line options to override the destination agent defined inside the transfer
definition file with AGENT9 and the destination queue manager defined in the transfer definition file as
agent9qm.

Both of the formats described can contain one or more <item> elements. For further information about
the <item> element, see File transfer request message format. Each of these transfer items defines a
source and destination file pair with additional attributes to control the behavior of the transfer. For
example, you can specify the following behavior:

214 Administering IBM MQ

• Whether the transfer uses a checksum
• Whether the transfer is text or binary
• Whether to delete the source file after the transfer has completed
• Whether to overwrite the destination file if the file exists

An advantage of using transfer definition files is that you can specify additional options that are not
available from the command line. For example, when you are carrying out message-to-file transfers, you
can specify the groupId attribute by using a transfer definition file. This attribute specifies the IBM MQ
group ID of the messages that are read from the queue. Another advantage of transfer definition files is
that you can specify different options for each file pair. For example, you can specify whether a checksum
is used, or whether the file is transferred in text or binary mode, on a file-by-file basis. If you use the
command line, the same options apply for every file in a transfer.

For example:

 <item checksumMethod="none" mode="binary">
 <source disposition="leave">
 <file>c:\sourcefiles\source1.doc</file>
 </source>
 <destination type="file" exist="error">
 <file>c:\destinationfiles\destination1.doc</file>
 </destination>
 </item>

 <item checksumMethod="MD5" mode="text">
 <source disposition="delete">
 <file>c:\sourcefiles\source2.txt</file>
 </source>
 <destination type="file" exist="overwrite">
 <file encoding="UTF8" EOL="CRLF">c:\destinationfiles\destination2.txt</file>
 </destination>
 </item>

 <item checksumMethod="none" mode="text">
 <source recursive="false" disposition="leave">
 <file>c:\originfiles\source3.txt</file>
 </source>
 <destination type="file" exist="overwrite">
 <file>c:\targetfiles\destination3.txt</file>
 </destination>
 </item>

You can use items to transfer a file from a distributed system to a z/OS system:

 <item checksumMethod="none" mode="text">
 <source recursive="false" disposition="leave">
 <file>textTransferTest.txt</file>
 </source>
 <destination type="dataset" exist="overwrite">
 <file encoding="IBM-1047">//TEXT.TRANS.TEST</file>
 </destination>
 </item>

This example transfers the file textTransferTest.txt from the source agent to the data
set //TEXT.TRANS.TEST on the destination agent in text mode. This transfer converts the source data
from the default encoding of the source agent (no source encoding attribute is specified) to code page:
IBM-1047.

Administering IBM MQ 215

Creating a scheduled file transfer
You can schedule a new file transfer either from the IBM MQ Explorer, or from the command line. The
scheduled transfer can contain single files or multiple files in a group. You can perform a scheduled file
transfer once or repeat the transfer multiple times.

About this task
You can set up a file transfer schedule to occur once, or to occur at the following intervals:

• Every minute
• Hourly
• Daily
• Weekly
• Monthly
• Yearly

You can then specify the occurrences to stop at the following points:

• At a defined time and date
• After a defined number of occurrences

Alternatively, you can specify that the occurrences continue forever.

If a scheduled transfer runs at the same time each day, use the
adjustScheduleTimeForDaylightSaving attribute in the agent properties file to adjust the time
the schedule takes place when the clocks change. See The MFT agent.properties file for more
information.

To create a new scheduled file transfer using the command line, use the scheduling parameters (-tb,
-ss, -oi, -of, -oc, and -es) for the fteCreateTransfer command.

To create a new scheduled file transfer using the Create New Managed File Transfer wizard in IBM MQ
Explorer, use the following steps:

Procedure
1. In the Navigator view, click Managed File Transfer. Managed File Transfer Central is displayed in the

Content view.
2. All of your coordination queue managers are displayed in the Navigator view. Expand the name of the

coordination queue manager that the agent you want to use for the transfer is registered against. If you
are currently connected to a coordination queue manager other than the one you want to use for the
transfer, right-click that coordination queue manager name in the Navigator view and click Disconnect.
Then right-click the name of the coordination queue manager you want to use and click Connect.

3. Start the Create New Managed File Transfer wizard using either of the following methods:
a) Right-click the name of any of the following nodes in the Navigator view: the relevant coordination

queue manager, Transfer Templates, Transfer Log, or Pending Transfers. Then click New Transfer
to start the wizard.

b) Click File > New > Other > Managed File Transfer Wizards > New Transfer Wizard
4. Follow the instructions on the wizard panels. Ensure that you select the Enable schedule transfer

check box and enter your schedule details on the Schedule tab. Scheduled file transfers start within a
minute of the schedule start time, if there are no problems that might affect the transfer. For example,
there might be issues with your network or agent that prevent the scheduled transfer starting. There
is context-sensitive help provided for each panel. To access the context-sensitive help on Windows,
press F1. On Linux, press Ctrl+F1 or Shift+F1.

216 Administering IBM MQ

Results
For information about the messages involved in scheduled file transfers, see Scheduled file transfer log
message formats.

Working with pending file transfers
You can view scheduled file transfers that are pending from the IBM MQ Explorer. The Pending Transfers
window displays all of the pending transfers registered with the coordination queue manager that you are
currently connected to.

About this task
To view the status of a scheduled file transfer that has not yet started, use the following steps:

Procedure
1. Expand Managed File Transfer in the Navigator view. Managed File Transfer Central is displayed in

the Content view.
2. All of your coordination queue managers are displayed in the Navigator view. Expand the name of the

coordination queue manager that you have used for the scheduled transfer. If you want to change
which coordination queue manager you are connected to, right-click the name of the coordination
queue manager you want to use in Navigator view and click Connect.

3. Click Pending Transfers. The Pending Transfers window is displayed in the Content view.
4. The Pending Transfers window displays the following details about your scheduled file transfers:

a) Name The number of the scheduled file transfer. This number is automatically assigned.
b) Source The name of the source agent.
c) Source File The name of the file to be transferred on its host system.
d) Destination The name of the destination agent.
e) Destination File The name of the file after it is transferred to the destination system.
f) Scheduled Start (selected time zone) The time and date that the file transfer is scheduled to

start in the administrator's selected time zone. To change the time zone displayed, click Window >
Preferences > IBM MQ Explorer > Managed File Transfer and select an alternative time zone from
the Time zone: list. Click OK.

g) Repeat Every If you have chosen to repeat the scheduled transfer, the specified interval that you
want to repeat the transfer, expressed as a number.

h) Repeat Type If you have chosen to repeat the scheduled transfer, the type of repeat interval you
have specified for the file transfer. The type can be one of the following values: minutes, hours,
days, weeks, months, or years.

i) Repeat Until If you have chosen to repeat the scheduled transfer, the details of when you want the
repeating file transfer to stop. For example, a specified date and time, or after a specified number of
occurrences.

Results

To refresh what is displayed in the Pending Transfers window, click the Refresh button on the Content
view toolbar.

To cancel a pending file transfer, right-click the particular transfer and click Cancel. Canceling a transfer
completely discards the file transfer request.

Triggering a file transfer
You can set certain trigger conditions on a file transfer that must be true before that transfer can take
place. If the triggering conditions are not true, the file transfer does not take place and a log message

Administering IBM MQ 217

is optionally submitted to record the fact the transfer did not happen. The file transfer request is then
discarded. For example, you can set up a file transfer that takes place only if a named file on the system
where the source agent is located is over a specified size, or if a particular named file exists on the system
where the source agent is located. You can set up a triggered file transfer from either the IBM MQ Explorer
or from the command line.

About this task
You can monitor a resource continually for a trigger condition to be satisfied. For further information about
resource monitoring see: “Monitoring MFT resources” on page 223.

There are three different triggering conditions that you can set. The conditions are as follows:

• If a particular file exists on the same system as the source agent
• If a particular file does not exist on the same system as the source agent
• If a particular file is over a certain size on the system where the source agent is located (the size can be

expressed in bytes, KB, MB, or GB). These units of measurement use the 210 convention, for example 1
KB equals 1024 bytes and 1 MB equals 1024 KB.

The triggering types in the preceding list can be combined in two ways:

• For a single condition, you can specify more than one file on the system where the source agent is
located. This triggers the transfer if any one of the specified files meets the condition (Boolean operator
OR).

• You can specify multiple conditions. This triggers the transfer only if all of the conditions are met
(Boolean operator AND).

You can also combine a triggered transfer with a scheduled transfer. See Creating a scheduled file transfer
for more information. In this case the trigger conditions are evaluated at the time the schedule is due to
start, or for a repeating schedule every time the schedule is due to start.

Triggered transfers are not supported on protocol bridge agents.

To create a triggered file transfer by using the command line, use the -tr parameter on the
fteCreateTransfer command.

To create a scheduled file transfer by using the Create New Managed File Transfer wizard in IBM MQ
Explorer, use the following steps:

Procedure
1. In the Navigator view, click Managed File Transfer. Managed File Transfer Central is displayed in the

Content view.
2. All of your coordination queue managers are displayed in the Navigator view. Expand the name of the

coordination queue manager that you have used for the scheduled transfer. If you want to change
which coordination queue manager you are connected to, right-click the name of the coordination
queue manager you want to use in Navigator view and click Connect.

3. Start the Create New Managed File Transfer wizard by using either of the following methods:
a) Right-click the name of any of the following nodes in the Navigator view: the relevant coordination

queue manager, Transfer Templates, Transfer Log, or Pending Transfers. Then click New Transfer
to open the wizard.

b) Click File > New > Other > Managed File Transfer Wizards > New Transfer Wizard
4. Follow the instructions on the wizard panels. Ensure that you select the Enable triggered transfer

check box on the Triggers tab and complete the fields on that tab to set up triggering. There is
context-sensitive help provided for each panel. To access the context-sensitive help on Windows,
press F1. On Linux, press Ctrl+F1 or Shift+F1.

218 Administering IBM MQ

Monitoring file transfers that are in progress
You can monitor a file transfer that is in progress using the Managed File Transfer - Current Transfer
Progress tab in IBM MQ Explorer. This file transfer can be one started from either IBM MQ Explorer or
the command line. The tab also displays the progress of scheduled transfers at the point the scheduled
transfers start.

About this task
If you want to use IBM MQ Explorer to monitor transfers associated with a coordination queue manager
on a remote system, follow the instructions in the “Configuring IBM MQ Explorer to monitor a remote
coordination queue manager” on page 220 topic.

Previous file transfer information is not retained after you stop and restart IBM MQ Explorer. At restart,
the information about past transfers is cleared from the Current Transfer Progress tab. You can clear
completed transfers using Remove completed transfers at any point when IBM MQ Explorer is open.

Procedure
After you have started a new file transfer using IBM MQ Explorer or the command line, you can monitor
the progress of your transfer in the Current Transfer Progress tab. The following information is displayed
for each transfer in progress:
a) Source. The name of the agent used to transfer the file from the source system.
b) Destination. The name of the agent used to receive the file at the destination system.
c) Current file. The name of the file currently being transferred. The part of the individual file that has

already been transferred is displayed in B, KiB, MiB. GiB, or TiB along with total size of the file in
parentheses. The unit of measurement displayed depends on the size of the file.
B is bytes per second. KiB/s is kibibytes per second, where 1 kibibyte equals 1024 bytes. MiB/s is
mebibytes per second, where 1 mebibyte equals 1 048 576 bytes. GiB/s is gibibytes per second where
1 gibibyte equals 1 073 741 824 bytes. TiB/s is tebibytes per second where 1 tebibyte equals 1 099
511 627 776 bytes.

d) File number. If you are transferring more than one file, this number represents how far through the
total group of files the transfer is.

e) Progress. The progress bar shows how complete the current file transfer is as a percentage.
f) Rate. The rate the file is being transferred in KiB/s (kibibytes per second, where 1 kibibyte equals

1024 bytes.)
g) Started (selected time zone). The time that the file transfer started, presented in the selected time

zone of the administrator. To change the time zone displayed, click Window > Preferences > IBM MQ
Explorer > Managed File Transfer and select an alternative time zone from the Time zone: list. Click
OK.
If the transfer enters a recovery state while transferring the file, the started time updates to reflect the
time that the file transfer resumed.

Results
This tab regularly refreshes its information automatically, but to force a refreshed view of what is
displayed in the Current Transfer Progress tab, click Refresh on the Content view toolbar.

To delete file transfers from the Current Transfer Progress tab, click Remove completed transfers on
the Content view toolbar. Clicking this button removes file transfer details from the tab only; it does not
stop or cancel a current or scheduled transfer.

If you want to return to the Current Transfer Progress tab after closing it, you can display the tab by
clicking Window > Show View > Other > Other > Managed File Transfer - Current Transfer Progress.
Click OK.

Administering IBM MQ 219

What to do next
Additionally, it is possible to develop applications for custom file transfer monitoring. This can be
accomplished by creating a subscription to the appropriate Managed File Transfer administrative topic
(either programmatically or administratively), and the monitor application can then receive Managed File
Transfer file transfer activity publications on the topic. For more information on the subscription topic and
publication message format, see File transfer progress message examples.

Related tasks
“Configuring IBM MQ Explorer to monitor a remote coordination queue manager” on page 220
Use IBM MQ Explorer to monitor file transfers associated with a coordination queue manager running
on a remote system. You require a system that is capable of running the IBM MQ Explorer. The IBM
MQ Explorer component needs to be installed to be able to connect to the remote coordination queue
manager.
“Viewing the status of file transfers in the Transfer Log” on page 221
You can view the details of file transfers by using the Transfer Log in IBM MQ Explorer. These can be
transfers started from either the command line or the IBM MQ Explorer. You can also customize what is
displayed in the Transfer Log.

Configuring IBM MQ Explorer to monitor a remote coordination queue
manager
Use IBM MQ Explorer to monitor file transfers associated with a coordination queue manager running
on a remote system. You require a system that is capable of running the IBM MQ Explorer. The IBM
MQ Explorer component needs to be installed to be able to connect to the remote coordination queue
manager.

About this task
Assumptions: Authority to connect to the remote coordination queue manager by configuring the queue
manager to allow for remote connections.

For more information on how to configure this, see Connecting to a queue manager in client mode with
channel authentication and Managing authorities for MFT-specific resources.

To monitor queue managers and file transfers between agents on a system that is not running Windows or
Linux, configure the IBM MQ Explorer to connect to the remote system using the following steps:

Procedure
1. Start the local IBM MQ Explorer.
2. When IBM MQ Explorer is loaded, right-click on the Managed File Transfer folder and select New

configuration.
3. Proceed through the wizard, selecting the Coordination and Commands queue manager, then define a

name for the configuration.
4. Click finish to complete the definition.
5. When the definition is finished, right-click on the definition and select Connect.

Results
Now start IBM MQ Explorer and use it to monitor transfer activity for the Managed File Transfer network
associated with the coordination queue manager.

Related tasks
“Monitoring file transfers that are in progress” on page 219
You can monitor a file transfer that is in progress using the Managed File Transfer - Current Transfer
Progress tab in IBM MQ Explorer. This file transfer can be one started from either IBM MQ Explorer or

220 Administering IBM MQ

the command line. The tab also displays the progress of scheduled transfers at the point the scheduled
transfers start.
“Viewing the status of file transfers in the Transfer Log” on page 221
You can view the details of file transfers by using the Transfer Log in IBM MQ Explorer. These can be
transfers started from either the command line or the IBM MQ Explorer. You can also customize what is
displayed in the Transfer Log.

Viewing the status of file transfers in the Transfer Log
You can view the details of file transfers by using the Transfer Log in IBM MQ Explorer. These can be
transfers started from either the command line or the IBM MQ Explorer. You can also customize what is
displayed in the Transfer Log.

Procedure
1. Expand Managed File Transfer in the Navigator view and then expand the name of the coordination

queue manager that you want to view the transfer log for.
2. Click Transfer Log in the Navigator view. The Transfer Log is displayed in the Content view.
3. The Transfer Log window displays the following details about your file transfers:

a) Source The name of the agent on the system where the source file is located.
b) Destination The name of the agent on the system you want to transfer the file to.
c) Completion State The status of the file transfer. The state can be one of the following values:

"Started", "In progress", "Successful", "Partially Successful", "Cancelled", or "Failed".
d) Owner The user ID on the host that submitted the transfer request.
e) Started (selected time zone) The time and date that the file transfer request was accepted by the

Managed File Transfer agent, presented in the selected time zone of the administrator. To change
the time zone displayed, click Window > Preferences > IBM MQ Explorer > Managed File Transfer
and select an alternative time zone from the Time zone: list. Click OK.

f) State Recorded (selected time zone) (This column is not displayed by default. You can choose to

display the column by using the Configure Transfer Log Columns window.) The time and date
that the completion state was recorded, in the time zone selected by the administrator.

g) Job Name An identifier specified by the user by using the -jn parameter of fteCreateTransfer
or in an Ant script

h) Transfer ID The unique identifier for the file transfer.
i) Connect: Direct Details about Process Number, Process Name, Primary Node, Secondary Node,

Source Type and Destination Type are listed.

Results
Note: The internal format of the Transfer Log was changed in IBM MQ 8.0.0 Fix Pack 1 for APAR IC99545.
As a result, if an IBM MQ Explorer is upgraded to V8.0.0.1 or later, and then restored to V8.0.0.0, no audit
XML is displayed for transfers that took place while IBM MQ Explorer was at V8.0.0.1. The XML panel in
the Properties window for these transfers will contain an empty text box.

To view further details about a completed transfer, expand the transfer that you are interested in by
clicking the plus sign (+). You can then see all of the source and destination file names included in that
transfer. However, if the transfer is currently in progress and consists of many files, you can view only the
files that have already been transferred so far.

To refresh what is displayed in the Transfer Log, click the Refresh button on the Content view toolbar.
The file transfer information in the Transfer Log remains in the log after you stop and restart the IBM
MQ Explorer. If you want to delete all completed file transfers from the log, click Remove Completed
Transfers on the Content view toolbar.

Administering IBM MQ 221

To delete an individual completed file transfer from the log, right-click the transfer and click Delete. If you
delete a transfer, it does not stop or cancel a transfer that is in progress or that has been scheduled; you
are deleting only the stored historical data.

To copy the unique identifier of a transfer to the clipboard, right-click that transfer and click Copy ID.

The metadata and the complete audit XML for the transfer are available from the pop-up menu, under the
Properties action.

Related tasks
“Monitoring file transfers that are in progress” on page 219
You can monitor a file transfer that is in progress using the Managed File Transfer - Current Transfer
Progress tab in IBM MQ Explorer. This file transfer can be one started from either IBM MQ Explorer or
the command line. The tab also displays the progress of scheduled transfers at the point the scheduled
transfers start.
“Configuring the Transfer Log” on page 222
You can configure what information is displayed and how information is displayed in the Transfer Log in
the IBM MQ Explorer.
“Setting a timeout for recovery of stalled transfers” on page 320
You can set a transfer recovery timeout for stalled file transfers that applies to all the transfers for a
source agent. You can also set a transfer recovery timeout for an individual transfer. If you set a specific
amount of time, in seconds, during which a source agent keeps trying to recover a stalled file transfer and
the transfer is not successful when the agent reaches the timeout, the transfer fails.

Configuring the Transfer Log
You can configure what information is displayed and how information is displayed in the Transfer Log in
the IBM MQ Explorer.

About this task
To rearrange the order of the columns in the Transfer Log, click the title of the column you want to move
and drag the column to its new position. The new column order is retained only until you next stop and
restart the IBM MQ Explorer.

To filter entries in the Transfer Log, enter a string in the Filter the displayed log entries field. To restore
all of the entries to the log, delete the string you entered from the field. You can use any valid Java regular
expression in this field. For more information, see Regular expressions used by MFT.

To customize which columns are displayed in the Transfer Log, use Configure Transfer Log Columns .
Use the following steps to start and use the Configure Transfer Log Columns window.

Procedure
1. Ensure that you have the Transfer Log open in the Content view. Click Configure Transfer Log

Columns on the Content view toolbar. The Configure Transfer Log Columns window opens.
2. To customize your view of the Transfer Log, select or clear individual check boxes for the columns you

want to show or hide. You can click Select All, then OK to select all of the check boxes or Deselect All,
then OK to clear all of the check boxes.

Related tasks
“Monitoring file transfers that are in progress” on page 219
You can monitor a file transfer that is in progress using the Managed File Transfer - Current Transfer
Progress tab in IBM MQ Explorer. This file transfer can be one started from either IBM MQ Explorer or
the command line. The tab also displays the progress of scheduled transfers at the point the scheduled
transfers start.
“Viewing the status of file transfers in the Transfer Log” on page 221

222 Administering IBM MQ

You can view the details of file transfers by using the Transfer Log in IBM MQ Explorer. These can be
transfers started from either the command line or the IBM MQ Explorer. You can also customize what is
displayed in the Transfer Log.

Monitoring MFT resources
You can monitor Managed File Transfer resources; for example, a queue or a directory. When a condition
on this resource is satisfied, the resource monitor starts a task, such as a file transfer. You can create a
resource monitor by using the fteCreateMonitor command or the Monitors view in the Managed File
Transfer plug-in for IBM MQ Explorer.

About this task
Managed File Transfer resource monitoring uses the following terminology:
Resource monitor

A resource monitor is process that polls a resource (such as a directory or queue) at a predefined
regular interval to see if the resource contents have changed. If they have, the contents are compared
with the set of conditions for this monitor. If there is a match, the task for this monitor is started.

Resource
The system resource that the resource monitor examines at every poll interval to be compared
with the trigger conditions. Queues, directories, or nested directory structures can be the monitored
resource.

Condition and Trigger condition
A condition is an expression that is evaluated (typically against the content of the monitored
resource). If the expression evaluates to true, the condition contributes to the overall trigger
condition.
The trigger condition is the overall condition, which is satisfied when all conditions are satisfied. When
the trigger condition is satisfied the task can proceed.

Task
A task is the operation that is started when the trigger condition or set of conditions is satisfied.
Supported tasks are file transfer and command call.

Trigger file
A trigger file is a file that is placed in a monitored directory to indicate that a task (typically a
transfer) can begin. For example, it might indicate that all the files to be processed have arrived in a
known location and can be transferred or otherwise acted upon. The name of the trigger file can be
used to specify the files to be transferred by using variable substitution. For more information, see
“Customizing MFT resource monitor tasks with variable substitution” on page 234.
The trigger file is also known as ready file or go file. However, in this documentation it is usually
referred to as the trigger file.

Resource monitoring is not supported on protocol bridge agents or Connect:Direct bridge agents.

Related concepts
Guidance for configuring an MFT resource monitor to avoid overloading an agent
Related reference
fteCreateMonitor: create an MFT resource monitor
fteListMonitors: list MFT resource monitors
fteDeleteMonitor: delete an MFT resource monitor
MFT monitor request message formats

Administering IBM MQ 223

MFT resource monitoring concepts
An overview of the key concepts of the Managed File Transfer resource monitoring feature.

Resource monitors
You create a resource monitor by using the fteCreateMonitor command, which creates and starts
a new resource monitor from the command line. The resource monitor is associated with a Managed
File Transfer agent, and is only active when that agent is running. When the monitoring agent stops, so
does the resource monitor. If the agent is already running when the resource monitor is created, the
resource monitor starts immediately. The monitoring agent must also be the source agent of the task that
is initiated by the resource monitor.

Resource monitor names must be unique within their agent. The resource monitor name must be a
minimum of one character in length and must not contain asterisk (*), percent (%) or question mark (?)
characters. The case in which a resource monitor name is supplied is ignored and the resource monitor
name is converted to uppercase. If you try to create a resource monitor with a name that is already
present, the request is ignored and the attempt is logged to the resource monitor log topic.

Note: You cannot create a resource monitor with a task definition that contains scheduled transfers.

Before IBM MQ 9.3.0, the only way to stop a resource monitor is by stopping the agent that is running
the monitor operation. To restart a resource monitor, you must restart the agent altogether. From IBM MQ
9.3.0, you can start and stop resource monitors without needing to stop or restart an agent. For more
information, see “Starting and stopping resource monitors” on page 226.

There is no restriction on the number of resource monitors that can be created on an agent, and all run
with the same priority. Consider the implications of overlapping monitored resources, conflicting trigger
conditions and how frequently the resources are polled.

Overlapping resource monitors can cause:

• Possible contention on the source location/items.
• Possible duplicate transfer requests for same source items.
• Unexpected errors or failures for transfers due to conflicts of source items.

If multiple monitors scan the same location and can trigger on the same items, you can potentially end up
with the problem of two different monitors submitting managed transfer requests for the same item.

Resource monitors look at the contents of resources after every poll interval period. The contents of
the resource are compared with the trigger conditions and if those conditions are satisfied, the task
associated with the resource monitor is called.

The task is started asynchronously. If there is a condition match, and the task is started, the resource
monitor continues to poll for further changes to the resource contents. So for example, if a match
occurred because a file called reports.go arrived in a monitored directory, the task would be started
once. At the next poll interval, even if the file still exists, the task is not started again. However, if the file
is deleted and then placed in the directory again, or the file is updated (such that the last modified date
attribute is changed), the next trigger condition check causes the task to be called again.

Before IBM MQ 9.1.5, if a resource monitor performs a poll that takes longer than the polling interval, this
means that the next poll starts as soon as the current one finishes with no gap in between, which could
have an effect on how quickly resource monitors submit work to an agent. This could cause performance
issues if the items that are found during the first poll are still there when the second one takes place.

The resource monitor uses the ScheduledExecutorService and initiates the next poll only after the
completion of the previous poll plus the configured poll interval time. This means that there will always
be a gap in between the poll intervals, rather than having another poll starting straight away after the
previous poll if the poll time was longer than the poll interval.

If a file has failed to transfer, you can clear the resource monitor history, which allows another transfer
request to be submitted without the need to either delete the file and place it in the directory again, or
update the file to change its last modified date attribute. Clearing the history is useful, for example, in

224 Administering IBM MQ

situations where there is need for the file to be transferred but modifying the file is not possible. For more
information, see “Clearing resource monitor history” on page 252.

Resources
Resource monitors in Managed File Transfer can poll the contents of the following two types of resource:
Directories or nested directory structures

A common scenario is to monitor a directory for the presence of a trigger file. An external application
might be processing multiple files and placing them in a known source directory. When the application
has completed its processing, it indicates that the files are ready to be transferred, or otherwise acted
upon, by placing a trigger file into a monitored location. The trigger file can be detected by a Managed
File Transfer resource monitor and the transfer of those files from the source directory to another
Managed File Transfer Agent is initiated.
By default, the specified directory is monitored. To also examine sub-directories set the recursion
level in the fteCreateTransfer command.
Two examples of monitoring a directory are as follows:

• Monitor for a trigger file (for example trigger.file) and then transfer a wildcard (for example,
*.zip).

• Monitor for *.zip and then transfer ${FilePath} (for example, the file that triggered the
transfer). For more information about variable substitution, see “Customizing MFT resource monitor
tasks with variable substitution” on page 234.

Note: Do not create a monitor that monitors for *.zip, and then transfers *.zip. The monitor tries to
start a transfer of *.zip for every .zip file on your system. That is, the monitor generates * number of
transfers for *.zip.

For an example of creating a resource monitor to monitor a directory, see “Monitoring a directory and
using variable substitution” on page 232.

IBM MQ queues
An example of monitoring a queue is that an external application might be generating messages and
placing them on a known queue with the same group ID. When the application has completed putting
messages on the queue, it indicates that the group is complete. The complete group of messages can
be detected by a Managed File Transfer resource monitor and the transfer of the group of messages
from the source queue to a file is initiated. For an example of creating a resource monitor to monitor a
queue, see “Example: Configuring an MFT resource” on page 233.

Note: You can specify only one monitor per queue. If you specify more than one monitor to poll an
IBM MQ queue, unpredictable behavior occurs.

Monitoring data sets is not supported.

Conditions and trigger conditions
The condition is met when the resource contains a value that matches some other string or pattern.
Conditions can be one of the following:

• Match on file name (pattern)
• No match on file name (pattern)
• File size
• Match if file size remains the same for a number of polls

File name matching can be expressed as:

• Exact string match
• Simple wildcard match as described in Using wildcard characters with MFT
• Regular expression match

Administering IBM MQ 225

File names can also be excluded from file name matching by using a wildcard or Java regular expression
that identifies file names that are never matched.

When a matching file is detected, its last modified time stamp is retained. If subsequent polls detect that
the file has been changed, the trigger condition is satisfied again, and the task is started. If the condition
is to detect when a file does not exist, if no file in the monitored directory matches the file name pattern,
the task is started. If a file is then added to the directory that does match the file name pattern, the task is
only started if the file is then deleted.

Tasks
Managed File Transfer supports the following two types of task that you can configure to be started by
resource monitors:
File transfer tasks

File transfer tasks are defined in the same way as any other file transfer. A useful way to generate
the task XML required by a monitor is to run the fteCreateTransfer command with the -gt parameter.
This command generates a task definition as an XML document, including the transfer specification.
You then pass the name of the task XML document as the value for the -mt parameter on the
fteCreateMonitor command. When the fteCreateMonitor is run, it reads the task XML document.
After the fteCreateMonitor is run, any changes that are made to the task XML file are not used by
the monitor.
When using a file transfer task, you can select how many trigger conditions are batched into a task.
The default is for one trigger condition to start one task. You can run the fteCreateMonitor command
with the -bs option to select the number of trigger conditions that are batched together into one task.

Command tasks
Command tasks can run Ant scripts, call executable programs, or run JCL jobs. For more information,
see “Configuring MFT monitor tasks to start commands and scripts” on page 228.

Trigger files
You can use the contents of a trigger file in a resource monitor to define a set of files to transfer in a
single transfer request. Each time a matching trigger file is detected, its contents are parsed for source
file paths and optionally for destination file paths. These file paths are then used to define file items in
the task transfer XML file that you specify, which is submitted as single transfer request to the agent. The
definition of the resource monitor determines whether trigger content is enabled.

The format of each trigger file is a single file path to transfer on each line of text. The default format for
the line is either a single source file path or a source and destination file path separated by a comma.

For more information and examples, see “Using a trigger file” on page 243.

Starting and stopping resource monitors
Before IBM MQ 9.3.0, the only way to stop a resource monitor is by stopping the agent that is running
the monitor operation. To restart a resource monitor, you must restart the agent altogether. For more
information, see “Starting an MFT agent” on page 205 and “Stopping an MFT agent” on page 211.

From IBM MQ 9.3.0, you can start and stop resource monitors without needing to stop or restart an agent
by using the fteStartMonitor and fteStopMonitor commands. This is useful, for example, in the
following situations:

• If an agent has multiple resource monitors, and only some of them have encountered errors but
the remaining resource monitors are still working fine so you just want to restart the failed resource
monitors.

• If you want to stop a resource monitor to carry out some maintenance work, or if the resource monitor
is not required for certain time and you do not want it to run unnecessarily, thus consuming precious
system resources.

226 Administering IBM MQ

For more information, see “Starting an MFT resource monitor” on page 248 and “Stopping an MFT
resource monitor” on page 249.

Table 9. Behavior of a resource monitor depending on which command is run

Command Behavior of resource monitor

fteStartMonitor If the agent is running, then the resource monitor is
started if it is currently stopped.

fteStopMonitor If the agent is running, then the resource monitor is
stopped if it is currently started.

fteStartAgent The resource monitor is started as part of
agent start up, regardless of earlier calls to
fteStopMonitor.

fteStopAgent Any resource monitors that are running are
stopped.

Backing up and restoring resource monitors
You can back up the resource monitors that you have already defined so that you can re-use them in the
future. There are various options that you can use as follows:

• Use the fteCreateMonitor command with the -ox parameter to export a resource monitor
configuration to an XML file, and with the -ix parameter to restore a resource monitor by importing
the resource monitor configuration from an XML file.

• Use the fteListMonitors command with the -ox to export the definition for a single resource
monitor to an XML file.

• Use the fteListMonitors command with the -od to export multiple resource monitor definitions to a
specified directory. Each resource monitor definition is saved to separate XML file. You can also use the
-od option to export a single resource monitor definition to a specified directory.

For more information, see “Backing up and restoring MFT resource monitors” on page 250.

Resource monitor logging
Managed File Transfer includes resource monitor logging. For more information, see “Logging MFT
resource monitors” on page 245.

Related concepts
“Customizing MFT resource monitor tasks with variable substitution” on page 234
When the trigger conditions of an active resource monitor are satisfied, the defined task is called. In
addition to calling the transfer or command task with the same destination agent or the same destination
file name every time, you can also modify the task definition at run time. You do this by inserting variable
names into the task definition XML. When the monitor determines that the trigger conditions are satisfied,
and that the task definition contains variable names, it substitutes the variable names with the variable
values, and then calls the task.
Related tasks
“Configuring MFT monitor tasks to start commands and scripts” on page 228
Resource monitors are not limited to performing file transfers as their associated task. You can also
configure the monitor to call other commands from the monitoring agent, including executable programs,
Ant scripts or JCL jobs. To call commands, edit the monitor task definition XML to include one or more
command elements with corresponding command call parameters, such as arguments and properties.
“Example: Configuring an MFT resource” on page 233
You can specify an IBM MQ queue as the resource to be monitored by a resource monitor by using the
-mq parameter with the fteCreateMonitor command.
“Monitoring a queue and using variable substitution” on page 240

Administering IBM MQ 227

You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.
Related reference
fteCreateMonitor: create an MFT resource monitor
fteListMonitors: list MFT resource monitors
fteDeleteMonitor: delete an MFT resource monitor

Configuring MFT monitor tasks to start commands and scripts
Resource monitors are not limited to performing file transfers as their associated task. You can also
configure the monitor to call other commands from the monitoring agent, including executable programs,
Ant scripts or JCL jobs. To call commands, edit the monitor task definition XML to include one or more
command elements with corresponding command call parameters, such as arguments and properties.

About this task
The file path to the executable program, Ant script, or JCL job that you want the monitoring agent to call
must be included in the commandPath of the monitoring agent. For information about the command path
property, see commandPath MFT property.

You can create the task definition XML document in one of the following ways:

• Create the task definition XML document manually according to the FileTransfer.xsd schema.
• Use a generated XML document as the basis for your task definition.

Whether you want a transfer task or a command task, the task definition must start with a
<request> root element. The child element of <request> must be either <managedTransfer> or
<managedCall>. You would typically choose <managedCall> when there is a single command or script
to run, and <managedTransfer> if you want the task to include a file transfer and optionally up to four
command calls.

Procedure
• To create the task definition XML document manually according to the FileTransfer.xsd schema,

see “Creating a task definition XML manually according to the schema” on page 228.
• To create a task definition by modifying a generated document, edit the XML document generated

by the fteCreateTransfer -gt parameter. For more information, see “Creating a task definition
document by modifying a generated document” on page 230.

Creating a task definition XML manually according to the schema
You can manually create a task definition XML file according to the schema FileTransfer.xsd.

About this task
The schema FileTransfer.xsd can be found in the MQ_INSTALLATION_PATH/mqft/samples/
schema. For more information about this schema, see File transfer request message format.

Example
The following example shows an example task definition XML document saved as cleanuptask.xml,
which uses the <managedCall> element to call an Ant script called RunCleanup.xml. The
RunCleanup.xml Ant script must be located on the commandPath of the monitoring agent.

<?xml version="1.0" encoding="UTF-8"?>
<request version="4.00" xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedCall>
 <originator>
 <hostName>hostName</hostName>

228 Administering IBM MQ

 <userID>userID</userID>
 <mqmdUserID>mqmdUserID</mqmdUserID>
 </originator>
 <agent QMgr="QM1" agent="AGENT1"/>
 <reply QMGR="QM1">reply</reply>
 <transferSet priority="1">
 <metaDataSet>
 <metaData key="name1">value1</metaData>
 </metaDataSet>
 <call>
 <command name="RunCleanup.xml" type="antscript" retryCount="2"
 retryWait="30" successRC="0">
 <target>check_exists</target>
 <target>copy_to_archive</target>
 <target>rename_temps</target>
 <target>delete_files</target>
 <property name="trigger.filename" value="${FileName}"/>
 <property name="trigger.path" value="${FilePath}"/>
 </command>
 </call>
 </transferSet>
 <job>
 <name>JOBCLEAN1</name>
 </job>
 </managedCall>
</request>

The <agent> element specifies the Managed File Transfer Agent that is configured with the named Ant
script on its commandPath.

The <call><command>... structure defines the executable or script you want to run. The command
takes an optional type attribute that can have one of the following values:
antscript

Run an Ant script in a separate JVM.
executable

Invoke an executable program.
jcl

Invoke a JCL job.
If you omit the type attribute, the default value executable is used.

The name attribute specifies the name of the Ant script, executable, or JCL job you want to run, without
any path information. The agent searches for the script or program in the locations specified by the
commandPath property in the agent's agent.properties file.

The retrycount attribute specifies the number of times to try calling the program again if the program
does not return a success return code. The value assigned to this attribute must not be negative. If you do
not specify the retrycount attribute, a default value of zero is used.

The retrywait attribute specifies the time to wait, in seconds, before trying the program invocation
again. The value assigned to this attribute must not be negative. If you do not specify the retrywait
attribute, a default value of zero is used.

The successrc attribute is an expression used to determine when the program invocation successfully
runs. The process return code for the command is evaluated using this expression. The value can be
composed of one or more expressions combined with a vertical bar (|) character to signify Boolean OR, or
an ampersand (&) character to signify Boolean AND. Each expression can be one of the following types of
expression:

• A number to indicate an equality test between the process return code and the number.
• A number prefixed with a greater than character (>) to indicate a greater-than test between the number

and the process return code.
• A number prefixed with a less than character (<) to indicate a less-than test between the number and

the process return code.
• A number prefixed with an exclamation point character (!) to indicate a not-equal-to test between the

number and the process return code. For example: >2&<7&!5|0|14 is interpreted as the following return
codes being successful: 0, 3, 4, 6, 14. All other return codes are interpreted as being unsuccessful.

Administering IBM MQ 229

If you do not specify the successrc attribute, a default value of zero is used. This means that the
command is judged to have successfully run if, and only if, it returns a code of zero.

For an Ant script, you would typically specify <target> and <property> elements. The <target>
element values must match the target names in the Ant script.

For executable programs, you can specify <argument> elements. Nested argument elements specify
arguments to pass to the program that is being called as part of the program invocation. The program
arguments are built from the values specified by the argument elements in the order that the argument
elements are encountered. You can specify zero or more argument elements as nested elements of a
program invocation.

The administrator defines and starts the monitor as normal using the task definition XML document that
includes the <managedCall> element. For example:

fteCreateMonitor -ma AGENT1 -mm QM1 -md /monitored -mn MONITOR01 -mt
 /tasks/cleanuptask.xml -pi 30 -pu seconds -tr match,*.go

The path to the transfer definition XML document must be on the local file system that you
run the fteCreateMonitor command from (in this example /tasks/cleanuptask.xml). The
cleanuptask.xml document is used to create the resource monitor only. Any tasks that the
cleanuptask.xml document references (Ant scripts or JCL jobs) must be in the command path of
the monitoring agent. When the monitor trigger condition is satisfied, any variables in the task definition
XML are substituted with actual values from the monitor. So for example ${FilePath} is replaced in the
request message sent to the agent with /monitored/cleanup.go. The request message is put on the
agent command queue. The command processor detects that the request is for a program call and starts
the specified program. If a command of type antscript is called, a new JVM is started and the Ant task
runs under the new JVM. For more information about using variable substitution, see Customizing tasks
with variable substitution.

Related concepts
“Customizing MFT resource monitor tasks with variable substitution” on page 234
When the trigger conditions of an active resource monitor are satisfied, the defined task is called. In
addition to calling the transfer or command task with the same destination agent or the same destination
file name every time, you can also modify the task definition at run time. You do this by inserting variable
names into the task definition XML. When the monitor determines that the trigger conditions are satisfied,
and that the task definition contains variable names, it substitutes the variable names with the variable
values, and then calls the task.
Related reference
File transfer request message format
commandPath MFT property

Creating a task definition document by modifying a generated document
You can create the monitor task definition document by modifying the XML document generated by the
-gt option of fteCreateTransfer.

About this task
The generated document has a <request> followed by <managedTransfer> element. To convert this
task definition to a valid <managedCall> structure, follow these steps:

Procedure
1. Replace the <managedTransfer> start and end tags with <managedCall> tags.
2. Remove any <schedule> element and child nodes.
3. Replace the <sourceAgent> start and end tags with <agent> to match the monitoring agent

configuration details.
4. Remove <destinationAgent> and <trigger> elements.

230 Administering IBM MQ

5. Remove <item> elements.
6. Remove any preSourceCall, postSourceCall, preDestinationCall, or
postDestinationCall elements.

7. Insert a new <call>...</call> structure within the <transferSet> element. This structure
contains the command definition as shown in the following example:

<call>
 <command name="RunCleanup.xml" type="antscript" retryCount="2"
 retryWait="30" successRC="0">
 <target>check_exists</target>
 <target>copy_to_archive</target>
 <target>rename_temps</target>
 <target>delete_files</target>
 <property name="trigger.filename" value="${FileName}"/>
 <property name="trigger.path" value="${FilePath}"/>
 </command>
 </call>

Example
You can also retain the <managedTransfer> element including all the file transfer details, and insert up
to four command calls. In this case you insert any selection of the following call elements between the
<metaDataSet> and <item> elements:
preSourceCall

Call a program on the source agent before starting the transfer.
postSourceCall

Call a program on the source agent after completing the transfer.
preDestinationCall

Call a program on the destination agent before starting the transfer.
postDestinationCall

Call a program on the destination agent after completing the transfer.
Each of these elements takes the <command> element structure as described in the earlier example. The
FileTransfer.xsd schema defines the types used by the various call elements.

The following example shows preSourceCall, postSourceCall, preDestinationCall, and postDestinationCall
in a task definition document:

⋮
 <transferSet priority="1">
 <metaDataSet>
 <metaData key="key1">value1</metaData>
 </metaDataSet>
 <preSourceCall>
 <command name="send.exe" retryCount="0" retryWait="0" successRC="0"
 type="executable">
 <argument>report1.pdf</argument>
 <argument>true</argument>
 </command>
 </preSourceCall>
 <postSourceCall>
 <command name="//DO_IT.JCL" retryCount="0" retryWait="0" successRC="0"
 type="jcl">
 <argument>argument</argument>
 </command>
 </postSourceCall>
 <preDestinationCall>
 <command name="ant_script.xml" retryCount="0" retryWait="0" successRC="0"
 type="antscript">
 <target>step1</target>
 <property name="name" value="value"/>
 </command>
 </preDestinationCall>
 <postDestinationCall>
 <command name="runit.cmd" retryCount="0" retryWait="0" successRC="0" />
 </postDestinationCall>

Administering IBM MQ 231

 <item checksumMethod="none" mode="binary">
⋮

You can mix different types of command into the transfer. Argument, target, and property elements are
optional.

Monitoring a directory and using variable substitution
You can monitor a directory using the fteCreateMonitor command. The value of a substitution variable
can be substituted in the task XML definition and used to define the transfer behavior.

About this task
In this example, the source agent is called AGENT_HOP. The directory that AGENT_HOP monitors is
called /test/monitored. The agent polls the directory every 5 minutes.

After a .zip file is written to the directory, the application that writes the file to the directory writes a
trigger file to the same directory. The name of the trigger file is the same as the name of the .zip file,
but has a different file extension. For example, after the file file1.zip is written to the directory, the file
file1.go is written to the directory. The resource monitor monitors the directory for files that match the
pattern *.go then uses variable substitution to request a transfer of the associated .zip file.

Procedure
1. Create the task XML that defines the task that the monitor performs when it is triggered.

<?xml version="1.0" encoding="UTF-8" ?>
<request version="4.00"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>blue.example.com</hostName>
 <userID>USER1</userID>
 </originator>
 <sourceAgent agent="AGENT_HOP" QMgr="QM_HOP" />
 <destinationAgent agent="AGENT_SKIP" QMgr="QM_SKIP" />
 <transferSet>
 <item mode="binary" checksumMethod="none">
 <source>
 <file>/test/monitored/${fileName{token=1}{separator=.}}.zip</file>
 </source>
 <destination type="file" exist="overwrite">
 <file>/out/${fileName{token=1}{separator=.}}.zip</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

The variables that are replaced with the values associated with the trigger file are highlighted in bold.
This task XML is saved to the file /home/USER1/task.xml

2. Create a resource monitor to monitor the directory /test/monitored.
Submit the following command:

fteCreateMonitor -ma AGENT_HOP -mm QM_HOP -md /test/monitored
 -mn myMonitor -mt /home/USER1/task.xml
 -tr match,*.go -pi 5 -pu minutes

3. A user or program writes the file jump.zip to the directory /test/monitored, then writes the file
jump.go to the directory.

4. The monitor is triggered by the existence of the file jump.go. The agent substitutes the information
about the trigger file into the task XML.
This results in the task XML being transformed to:

232 Administering IBM MQ

<?xml version="1.0" encoding="UTF-8" ?>
<request version="4.00"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>blue.example.com</hostName>
 <userID>USER1</userID>
 </originator>
 <sourceAgent agent="AGENT_HOP" QMgr="QM_HOP" />
 <destinationAgent agent="AGENT_SKIP" QMgr="QM_SKIP" />
 <transferSet>
 <item mode="binary" checksumMethod="none">
 <source>
 <file>/test/monitored/jump.zip</file>
 </source>
 <destination type="file" exist="overwrite">
 <file>/out/jump.zip</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

Results
The transfer defined by the task XML is performed. The jump.zip file is read from the /test/
monitored directory by AGENT_HOP and is transferred to a file called /out/jump.zip located on the
system where AGENT_SKIP is running.
Related concepts
“Customizing MFT resource monitor tasks with variable substitution” on page 234
When the trigger conditions of an active resource monitor are satisfied, the defined task is called. In
addition to calling the transfer or command task with the same destination agent or the same destination
file name every time, you can also modify the task definition at run time. You do this by inserting variable
names into the task definition XML. When the monitor determines that the trigger conditions are satisfied,
and that the task definition contains variable names, it substitutes the variable names with the variable
values, and then calls the task.
Related tasks
“Configuring MFT monitor tasks to start commands and scripts” on page 228
Resource monitors are not limited to performing file transfers as their associated task. You can also
configure the monitor to call other commands from the monitoring agent, including executable programs,
Ant scripts or JCL jobs. To call commands, edit the monitor task definition XML to include one or more
command elements with corresponding command call parameters, such as arguments and properties.
Related reference
fteCreateMonitor: create an MFT resource monitor

Example: Configuring an MFT resource
You can specify an IBM MQ queue as the resource to be monitored by a resource monitor by using the
-mq parameter with the fteCreateMonitor command.

About this task
In this example, the resource to be monitored is the queue MONITORED_QUEUE. This queue must be on
the monitoring agent's queue manager, QM_NEPTUNE. The condition that the queue is monitored for is
the presence of a complete group of messages. The task to be performed if the condition is satisfied is
defined in the file task.xml.

Note: Do not create more than one resource monitor to monitor an individual queue. If you do then
unpredictable behavior occurs.

Administering IBM MQ 233

Procedure
Type the following command:

fteCreateMonitor -ma AGENT_NEPTUNE -mn myMonitor -mm QM_NEPTUNE -mq MONITORED_QUEUE
 -mt task.xml -tr completeGroups -pi 5 -pu minutes

The monitor checks the queue every five minutes to see if the condition completeGroups is true. If there
are one or more complete groups on the queue, the monitor runs the task defined in the task.xml file
once for each complete group.

Related concepts
“Customizing MFT resource monitor tasks with variable substitution” on page 234
When the trigger conditions of an active resource monitor are satisfied, the defined task is called. In
addition to calling the transfer or command task with the same destination agent or the same destination
file name every time, you can also modify the task definition at run time. You do this by inserting variable
names into the task definition XML. When the monitor determines that the trigger conditions are satisfied,
and that the task definition contains variable names, it substitutes the variable names with the variable
values, and then calls the task.
Related tasks
“Configuring MFT monitor tasks to start commands and scripts” on page 228
Resource monitors are not limited to performing file transfers as their associated task. You can also
configure the monitor to call other commands from the monitoring agent, including executable programs,
Ant scripts or JCL jobs. To call commands, edit the monitor task definition XML to include one or more
command elements with corresponding command call parameters, such as arguments and properties.
“Monitoring a queue and using variable substitution” on page 240
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.
Related reference
fteCreateMonitor: create an MFT resource monitor

Customizing MFT resource monitor tasks with variable substitution
When the trigger conditions of an active resource monitor are satisfied, the defined task is called. In
addition to calling the transfer or command task with the same destination agent or the same destination
file name every time, you can also modify the task definition at run time. You do this by inserting variable
names into the task definition XML. When the monitor determines that the trigger conditions are satisfied,
and that the task definition contains variable names, it substitutes the variable names with the variable
values, and then calls the task.

Attention: Variable names are not case-sensitive.

The variables that are used for substitution are only available for positive trigger conditions. Only match
and fileSize trigger conditions cause variables to be substituted. If a noMatch condition is used, and
there are substitution variable names in the task definition, the task is not called, and the monitor raises a
return code of 110 and error message BFGDM0060E.

If the monitored resource is a queue
The value of any IBM MQ message property in the first message to be read from the monitored queue can
be substituted in the task XML definition.

User-defined message properties are prefixed with usr. but do not include this prefix in the variable
name. Variable names must be preceded by a dollar sign ($) character and enclosed in braces {}.

For example, ${destFileName} is replaced with the value of the usr.destFileName message
property of the first message to be read from the source queue. For more information, see MQ message

234 Administering IBM MQ

properties read by MFT from messages on source queues and “Monitoring a queue and using variable
substitution” on page 240.

If a variable is not defined as a message property the monitor reports a BFGDM0060E error and returns
return code 110 (Monitor task variable substitution failed). In addition to this, the agent writes the
following error message to its event log (outputN.log):

BFGDM0113W: Trigger failure for <monitor name> for reason BFGDM0060E: A monitor task could
not complete as a variable substitution <variable name> was not present.

If moderate or verbose resource monitor logging is enabled for the monitor, the monitor writes the
following message to the resource monitor event log of the agent (resmoneventN.log):

BFGDM0060E: A monitor task could not complete as a variable substitution
<variable name> was not present.

See “Logging MFT resource monitors” on page 245 for more information on resource monitor logging.

The following table shows which substitution variables are provided by default. For example, $
{AGENTNAME} is replaced with the name of the resource monitor agent.

Table 10. Substitution variables provided by default

Variable Description

AGENTNAME The name of the resource monitor agent.

QUEUENAME The name of the queue that is being monitored.

ENCODING The character encoding of the first message on the queue or the first message in a
group.

MESSAGEID The IBM MQ message ID of the first message on the queue or the first message in
the group.

GROUPID The IBM MQ group ID of the group or the message ID if only a single message is
found. This variable is only set if you are monitoring for complete groups.

CurrentTimeStamp A time stamp based on the local time that the monitor triggered at. The time stamp
value is unique for the agent.

CurrentTimeStamp
UTC

A time stamp based on the time, in the UTC time zone, that the monitor triggered at.
The time stamp value is unique for the agent.

If the monitored resource is a directory
The following table shows the set of variable names that can be substituted in the task XML definition.

Table 11. Variables that can be substituted

Variable Description

FilePath The complete path name of the trigger file.

FileName The file name part of the trigger.

LastModifiedTi
me

The time that the trigger file was last modified. This time is expressed as the local time
of the time zone that the agent is running in and is formatted as an ISO 8601 time.

LastModifiedD
ate

The date that the trigger file was last modified. This date is expressed as the local date
of the time zone that the agent is running in and is formatted as an ISO 8601 date.

LastModifiedTi
meUTC

The time that the trigger file was last modified. This time is expressed as the local time
converted to the UTC time zone and is formatted as an ISO 8601 time

Administering IBM MQ 235

Table 11. Variables that can be substituted (continued)

Variable Description

LastModifiedD
ateUTC

The date that the trigger file was last modified. This date is expressed as the local date
converted to the UTC time zone and is formatted as an ISO 8601 date.

AgentName The name of the resource monitor agent.

CurrentTimeSt
amp

A time stamp that is based on the local time that the monitor triggered at. The time
stamp value is unique for the agent.

CurrentTimeSt
ampUTC

A time stamp that is based on the time in the UTC time zone that the monitor triggered
at. The time stamp value is unique for the agent.

If the monitored resource is a trigger file
The following table shows the set of variable names that can be substituted when a resource monitor is
using the contents of a trigger file to determine the files that need to be transferred.

Table 12. Variables that can be substituted when using a trigger file

Variable Description

contentSource The complete path name of the source file.

contentDestina
tion

The complete path name of the destination file.

Variable names must be preceded by a dollar sign ($) character and enclosed in braces, {}. For example,
${FilePath} is replaced with the fully qualified file path of the matching trigger file.

There are two special keywords that can be applied to variable names to provide further refinement.
These are:
token

The token index to substitute (starting at 1 from the left and starting at -1 from the right)
separator

A single character to tokenize the variable value. The default is the forward slash character (/) on AIX
and Linux platforms or backward slash character(\) on Windows platforms, but the separator can be
any valid character that can appear in the variable value.

If the separator keyword is specified in a variable name, the variable value is split into tokens according to
the separator character.

The value that is assigned to the token keyword is used as an index to select which token to use to replace
the variable name. The token index is relative to the first character in the variable, and starts at 1. If the
token keyword is not specified, the entire variable is inserted.

Any values that are substituted into an agent name in the message XML are treated in a not case-sensitive
way. All Managed File Transfer Agent names are uppercase. If the value Paris is substituted into an
agent attribute in the message XML, this value is interpreted as a reference to the agent PARIS.

Related concepts
“Examples: Variable substitution for resource monitor definitions” on page 237
Examples of variable substitution for resource monitor definitions using XML and IBM MQ Explorer.
Related tasks
What to do if variable substitution causes multiple files to go to a single file name

236 Administering IBM MQ

Examples: Variable substitution for resource monitor definitions
Examples of variable substitution for resource monitor definitions using XML and IBM MQ Explorer.

Examples showing how variable substitution works
Assuming that the file path to the matching trigger file is
c:\MONITOR\REPORTS\Paris\Report2009.doc on Windows and /MONITOR/REPORTS/Paris/
Report2009.doc on AIX and Linux platforms, the variables are substituted as shown in the following
table.

Table 13. How the variables are substituted

Variable specification After variable substitution

${FilePath} Windows :c:\MONITOR\REPORTS\Paris\Repor
t2009.doc

AIX and Linux : /MONITOR/REPORTS/Paris/
Report2009.doc

${FilePath{token=1}{separator=.}} Windows :c:\MONITOR\REPORTS\Paris\Repor
t2009

AIX and Linux : /MONITOR/REPORTS/Paris/
Report2009

${FilePath{token=2}{separator=.}} Windows: doc

AIX and Linux : doc

${FilePath{token=3}} Windows : REPORTS

AIX and Linux : Paris

You can also specify a negative token index to select tokens relative to the last character of the
variable, as shown in the following table. The examples in the table use the same variable value,
c:\MONITOR\REPORTS\Paris\Report2009.doc on Windows and /MONITOR/REPORTS/Paris/
Report2009.doc on AIX and Linux.

Table 14. Examples of using a negative token index

Variable specification After variable substitution

${FilePath} Windows :c:\MONITOR\REPORTS\Paris\Repor
t2009.doc

AIX and Linux : /MONITOR/REPORTS/Paris/
Report2009.doc

${FilePath{token=-2}{separator=.}} Windows :c:\MONITOR\REPORTS\Paris\Repor
t2009

AIX and Linux : /MONITOR/REPORTS/Paris/
Report2009

${FilePath{token=-2}{separator=\}} Windows : Paris

AIX and Linux : Paris

${FilePath{token=-4}} Windows : MONITOR

AIX and Linux : MONITOR

Administering IBM MQ 237

The variables that are used for substitution are only available for the following positive trigger conditions
and the noSizeChange option, which is an exception to the positive trigger condition rule:

• match
• fileSize
• noSizeChange

If a noMatch condition is used, and there are substitution variable names in the task definition, the task is
not called, and the monitor raises a return code of 110 and error message BFGDM0060E.

Example using XML
The following example task definition XML uses the monitor agent name as the source agent for the
transfer (Paris), uses the penultimate directory name in the file path as the destination agent name for
the transfer (Report2009), and renames the transferred file to be the root of the trigger file name with an
extension of .rpt.

<?xml version="1.0" encoding="UTF-8" ?>
<request version="4.00" xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>reportserver.com</hostName>
 <userID>USER1</userID>
 </originator>
 <sourceAgent agent="${AgentName}" QMgr="QM1" />
 <destinationAgent agent="${FilePath{token=-2}}" QMgr="QMD" />
 <transferSet>
 <item mode="binary" checksumMethod="MD5">
 <source recursive="false" disposition="leave">
 <file>c:/incoming/reports/summary/report.doc</file>
 </source>
 <destination type="file" exist="overwrite">
 <file>/reports/${FileName{token=1}{separator=.}}.rpt</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

This results in the task XML being transformed to:

<?xml version="1.0" encoding="UTF-8" ?>
<request version="4.00" xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>reportserver.com</hostName>
 <userID>USER1</userID>
 </originator>
 <sourceAgent agent="AGENT1" QMgr="QM1" />
 <destinationAgent agent="Paris" QMgr="QMD" />
 <transferSet>
 <item mode="binary" checksumMethod="MD5">
 <source recursive="false" disposition="leave">
 <file>c:/incoming/reports/summary/report.doc</file>
 </source>
 <destination type="file" exist="overwrite">
 <file>/reports/Report2009.rpt</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

The variable ${FilePath{token=-2}} in the <destinationAgent> element's agent attribute is
replaced with the value Paris. This value is treated in a not case-sensitive way and interpreted as a
reference to the agent PARIS.

238 Administering IBM MQ

Examples using IBM MQ Explorer
When creating a resource monitor through the IBM MQ Explorer, and once the monitor properties and
trigger conditions have been specified, the option is given to add transfer items to the monitor. The
following examples demonstrate how the ${FilePath} and ${FileName} variables can be used in the "Add
a transfer item panel" to customize transfers resulting from a resource monitor match.

Example 1

In order to simply transfer the source file to another location when a trigger condition is met, the
${FilePath} variable can be used:

• Set the source File name to be ${FilePath}.
• From the dropdown menu of Type for the destination, select Directory.
• Set the destination File name to be the location to which you wish the source file to be transferred, for

example, this could be C:\MFT\out\.

Example 2

In order to transfer the source file to another location and change the extension of the file, the $
{FileName} variable can be used in conjunction with the ${FilePath} variable:

In the following example it is assumed that the file path of the source file is equal to
C:\MONITOR\REPORTS\Paris\Report2009.doc:

• Set the source File name to be ${FilePath}.
• Set the destination File name to be the location to which you wish the source file to be transferred,

followed by ${FileName{token=1}{separator=.}}, followed by the new extension of the file. For
example, this could be C:\MFT\out\${FileName{token=1}{separator=.}}.rpt, which would
equate to C:\MFT\out\Report2009.rpt with the source file name.

Example 3

In order to use part of the file path of the source file to determine the destination of the transfer, the
${FilePath} variable can be used in conjunction with token and separator specifications.

In the following example it is assumed that the file path of the source file is equal to
C:\MONITOR\REPORTS\Paris\Report2009.doc.

It is possible to use part of the source file path to determine the destination of the file. Using the file
path example of C:\MONITOR\REPORTS\Paris\Report2009.doc, if the file were to be transferred to
a folder depending upon the location of the source file, that is, Paris in this example, then the following
could be done:

• Set the source File name to be ${FilePath}.
• Set the destination File name to be the destination to where the folders for each location are situated,

and then append the destination part of the file path and the file name. For example, this could
be C:\MFT\out\${FilePath{token=-2}{separator=\}}\${FileName}, which would equate to
C:\MFT\out\Paris\Report2009.doc with the source file name.

Related concepts
“Customizing MFT resource monitor tasks with variable substitution” on page 234
When the trigger conditions of an active resource monitor are satisfied, the defined task is called. In
addition to calling the transfer or command task with the same destination agent or the same destination
file name every time, you can also modify the task definition at run time. You do this by inserting variable
names into the task definition XML. When the monitor determines that the trigger conditions are satisfied,
and that the task definition contains variable names, it substitutes the variable names with the variable
values, and then calls the task.
Related tasks
What to do if variable substitution causes multiple files to go to a single file name

Administering IBM MQ 239

Monitoring a queue and using variable substitution
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.

About this task
In this example, the source agent is called AGENT_VENUS, which connects to QM_VENUS. The queue that
AGENT_VENUS monitors is called START_QUEUE and is located on QM_VENUS. The agent polls the queue
every 30 minutes.

When a complete group of messages is written to the queue the monitor task sends the group of
messages to a file at one of a number of destination agents, all of which connect to the queue manager
QM_MARS. The name of the file that the group of messages is transferred to is defined by the IBM
MQ message property usr.fileName on the first message in the group. The name of the agent that
the group of messages is sent to is defined by the IBM MQ message property usr.toAgent on the
first message in the group. If the usr.toAgent header is not set, the default value to be used for the
destination agent is AGENT_MAGENTA.

When you specify useGroups="true", if you do not also specify groupId="${GROUPID}", the transfer
just takes the first message on the queue. For example, if you are using variable substitution to generate
the fileName, it is therefore possible that the contents of a.txt will not be correct. This is because the
fileName is generated by the monitor, but the transfer actually gets a message that is not the one that
should generate the file called fileName.

Procedure
1. Create the task XML that defines the task that the monitor performs when it is triggered.

<?xml version="1.0" encoding="UTF-8" ?>
<request version="4.00"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>reportserver.com</hostName>
 <userID>USER1</userID>
 </originator>
 <sourceAgent agent="AGENT_VENUS" QMgr="QM_VENUS" />
 <destinationAgent agent="${toAgent}" QMgr="QM_MARS" />
 <transferSet>
 <item mode="binary" checksumMethod="none">
 <source>
 <queue useGroups="true" groupId="${GROUPID}">START_QUEUE</queue>
 </source>
 <destination type="file" exist="overwrite">
 <file>/reports/${fileName}.rpt</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

The variables that are replaced with the values of IBM MQ message headers are highlighted in bold.
This task XML is saved to the file /home/USER1/task.xml

2. Create a resource monitor to monitor the queue START_QUEUE.
Submit the following command:

fteCreateMonitor -ma AGENT_VENUS -mm QM_VENUS -mq START_QUEUE
 -mn myMonitor -mt /home/USER1/task.xml
 -tr completeGroups -pi 30 -pu minutes -dv toAgent=AGENT_MAGENTA

3. A user or program writes a group of messages to the queue START_QUEUE.

240 Administering IBM MQ

The first message in this group has the following IBM MQ message properties set:

usr.fileName=larmer
usr.toAgent=AGENT_VIOLET

4. The monitor is triggered when the complete group is written. The agent substitutes the IBM MQ
message properties into the task XML.
This results in the task XML being transformed to:

<?xml version="1.0" encoding="UTF-8" ?>
<request version="4.00"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>reportserver.com</hostName>
 <userID>USER1</userID>
 </originator>
 <sourceAgent agent="AGENT_VENUS" QMgr="QM_VENUS" />
 <destinationAgent agent="AGENT_VIOLET" QMgr="QM_MARS" />
 <transferSet>
 <item mode="binary" checksumMethod="none">
 <source>
 <queue useGroups="true" groupId="${GROUPID}">START_QUEUE</queue>
 </source>
 <destination type="file" exist="overwrite">
 <file>/reports/larmer.rpt</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

Results
The transfer that is defined by the task XML is performed. The complete group of messages that are
read from the START_QUEUE by AGENT_VENUS is written to a file called /reports/larmer.rpt on the
system where AGENT_VIOLET is running.

What to do next
Transferring each message to a separate file

If you want to monitor a queue and have every message transferred to a separate file, you can use a
similar technique to the one described previously in this topic.

1. Create the monitor as described previously, specifying the -tr completeGroups parameter on the
fteCreateMonitor command.

2. In the task XML specify the following:

<queue useGroups="true" groupId="${GROUPID}">START_QUEUE</queue>

However, when you put the messages onto the source queue, do not put them in an IBM MQ group. Add
IBM MQ message properties to each message. For example, specify the usr.filename property with a
unique file name value for each message. This effectively causes the Managed File Transfer Agent to treat
each message on the source queue as a separate group.

Related concepts
“Transferring data from messages to files” on page 271
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.

Administering IBM MQ 241

“Customizing MFT resource monitor tasks with variable substitution” on page 234
When the trigger conditions of an active resource monitor are satisfied, the defined task is called. In
addition to calling the transfer or command task with the same destination agent or the same destination
file name every time, you can also modify the task definition at run time. You do this by inserting variable
names into the task definition XML. When the monitor determines that the trigger conditions are satisfied,
and that the task definition contains variable names, it substitutes the variable names with the variable
values, and then calls the task.
What to do if destination files created by a transfer started by a queue resource monitor contain the wrong
data
Related tasks
“Configuring MFT monitor tasks to start commands and scripts” on page 228
Resource monitors are not limited to performing file transfers as their associated task. You can also
configure the monitor to call other commands from the monitoring agent, including executable programs,
Ant scripts or JCL jobs. To call commands, edit the monitor task definition XML to include one or more
command elements with corresponding command call parameters, such as arguments and properties.
“Example: Configuring an MFT resource” on page 233
You can specify an IBM MQ queue as the resource to be monitored by a resource monitor by using the
-mq parameter with the fteCreateMonitor command.
Related reference
fteCreateMonitor: create an MFT resource monitor
MQ message properties read by MFT from messages on source queues

Configuring monitor retry behavior for message-to-file transfers
If a message-to-file transfer that is triggered by a resource monitor fails and leaves the message group
that triggered the monitor on the queue, that transfer is resubmitted at subsequent poll intervals. The
number of times that the transfer is resubmitted is limited by the monitorGroupRetryLimit property
of the monitoring agent.

About this task
Each time a new message-to-file transfer is triggered a new transfer ID is generated for the transfer task.

If the agent is restarted the monitor triggers a transfer again even if the number of times the transfer has
been triggered has exceeded the value of monitorGroupRetryLimit in the agent.properties file.
The value of the monitorGroupRetryLimit property is the maximum number of times that a monitor
triggers a message-to-file transfer again if the message group still exists on the queue. The default value
of this property is 10. The value of this property can be set to any positive integer value or -1. If the value
-1 is specified for this property, the monitor triggers the transfer again an unlimited number of times, until
the trigger condition is not satisfied.

If a transfer attempt causes the number of times that the transfer has been triggered to exceed the value
of monitorGroupRetryLimit, the agent writes an error to its event log.

A single message is treated as if it was a single group, and the transfer is triggered again at each poll
interval while the message remains on the queue and while the number of times the transfer has been
triggered is less than the value of monitorGroupRetryLimit.

To set the monitorGroupRetryLimit property on the monitoring agent, perform the following steps:

Procedure
1. Stop the monitoring agent, using the fteStopAgent command.
2. Edit the agent.properties file for the monitoring agent to include the following line:

monitorGroupRetryLimit=number_of_retries

242 Administering IBM MQ

The agent.properties file is located in the directory MQ_DATA_PATH/mqft/config/
coordination_qmgr_name/agents/monitoring_agent_name.

3. Start the monitoring agent, using the fteStartAgent command.

Related tasks
“Example: Configuring an MFT resource” on page 233
You can specify an IBM MQ queue as the resource to be monitored by a resource monitor by using the
-mq parameter with the fteCreateMonitor command.

Using a trigger file
You can use the contents of a trigger file in a resource monitor to define a set of files to transfer in a
single transfer request. Each time a matching trigger file is detected, its contents are parsed for source
file paths and optionally for destination file paths. These file paths are then used to define file items in
the task transfer XML file that you specify, which is submitted as single transfer request to the agent. The
definition of the resource monitor determines whether trigger content is enabled.

You can enable file content triggering when you create a monitor by specifying the -tc (trigger content)
parameter. This -tc parameter applies only to the file trigger options match and noSizeChange. For
more information about creating a monitor, see fteCreateMonitor: create an MFT resource monitor.

When using a trigger content file, the default format of each line is either:

• A single source file path, or
• A source file path and a destination file path, separated by a comma

where white space characters are handled as part of the file paths. It is possible to change the default line
format by specifying the -tcr and -tcc parameters on the fteCreateMonitor command. For more
information, see “Advanced options” on page 244.

After a trigger file is parsed, a list of file paths is generated and applied to the transfer task XML that
you specified. As with all monitors, the format of the transfer task XML is a complete transfer task XML
generated by the fteCreateTransfer command with a single item or file defined. The single item must
use the substitution variables ${contentSource}, and optionally ${contentDestination}, as replacements
for the source and destination file paths. The monitor expands the transfer task XML to include a file item
for each line (file path) in the trigger file.

You cannot use file content triggering with the -bs parameter because the -tc parameter implies one
transfer request for each trigger file.

Example
The following example defines a monitor to trigger on a file that ends in trig and reads the file paths in
that file.

fteCreateTransfer -gt task.xml -sa SrcAgent -da DestAgent -dd /file/destdir ${contentSource}
fteCreateMonitor -mn TrigMonitor -md /home/trigdir -mt task.xml -ma SrcAgent -tr "match,*.trig"
-tc

The fteCreateTransfer command creates a file that is called task.xml for a single file with a source
file path of ${contentSource}. For example:

<item checksumMethod="MD5" mode="binary">
 <source disposition="leave" recursive="false">
 <file>${contentSource}</file>
 </source>
</item>

The fteCreateMonitor command scans for files that end in trig in the /home/trigdir directory and
uses the contents to create a single transfer request that is based on the task.xml for all paths in that

Administering IBM MQ 243

trigger file. The format of the trigger file must be one file path (source only) on each line with no comma
separator. For example:

/home/file/first.txt
/home/file/second.txt
/home/different/third.txt
⋮

All files are delivered to the /file/destdir directory with its file name and not its file path, that is, /
home/file/first.txt is delivered to /file/destdir/first.txt.

Alternatively, if you change the -dd /file/destdir parameter in the fteCreateTransfer command
to -df ${contentDestination} and the format of the content of a trigger file to source file
path,destination file path, you can define different destination paths for the same destination agent. For
example:

/home/file/first.txt,/home/other/sixth.txt

The destination location then becomes /home/other/sixth.txt.

The substitution variables can be tokenized. For example, you can separate the file name part from the
provided path using ${contentDestination{token=-1}}. Therefore, if the fteCreateTransfer destination
is defined as -df /file/destdir/${contentDestination{token=-1}}, the new destination for /
home/file/first.txt is /file/destdir/sixth.txt.

Advanced options
You can change the default line format for the content of the trigger file by using the -tcr regex
parameter. Supply a regular expression that matches the required line format and supplies either one
or two capture groups. The first capture group is the source and the second, optional, capture group is the
destination. For example:

• The source and destination path are separated by a hyphen:

((?:[^-])+)-((?:[^-])+)

In this example, the separator is defined in three locations and all three instances of the hyphen, -, can
be changed to any character. Ensure that you escape any special characters.

• The source and destination paths are separated by a comma with trailing spaces. Comments that are
indicated by a number sign (#) are ignored.

((?:[^,])+),((?:[^,])+) *(?:#.*)+

File paths cannot contain the number sign (#). Typically an entry is as follows: /home/source/
from.txt,/home/destination/to.txt # some comment.

If you use the -tcr parameter, ensure that the regular expression is well designed and tested so that the
expression can detect errors and correctly parse the trigger files.

You can reverse the order of the capture by using the -tcc destSrc parameter. If you specify this
parameter, the first capture group is the destination file path and the second group is the source file path.

How errors are handled
Empty trigger file

If the trigger file is empty, the outcome is no file transfer. That is, the monitor creates a transfer
request but no file items are specified.

Trigger file with errors
If any entry in a trigger file fails to parse against the expected format, no transfer request is generated.
A monitor error log is published and the error is also logged in the event log. The trigger file is marked

244 Administering IBM MQ

as processed and the monitor does not attempt to process the file again until the file has been
updated.

Mismatching transfer task XML
The transfer task XML must match the trigger file, that is if the transfer task XML has both $
{contentSource} and ${contentDestination}, all trigger files for that monitor must have source and
destination file paths and similarly for the reverse. In the first case the monitor reports a substitution
failure of the ${contentDestination} if the trigger file supplies the source file path only.

Examples
The following example is a basic content trigger where the contents of a trigger file has a source file path
only:

fteCreateTransfer -gt task.xml -sa SrcAgent -da DestAgent -dd /file/destdir ${contentSource}
fteCreateMonitor -mn TrigMonitor -md /home/trigdir -mt task.xml -ma SrcAgent -tr "match,*.trig"
-tc

The -tcr parameter defines two capture groups of a sequence of any characters that are separated by
a space character. The -tcc destSrc parameter and option indicate that the capture groups are to be
processed as destination then source.

fteCreateTransfer -gt task.xml -sa SrcAgent -da DestAgent -df ${contentDestination} $
{contentSource}
fteCreateMonitor -mn TrigMonitor -md /home/trigdir -mt task.xml -ma SrcAgent -tr "match,*.trig"
-tc
 -tcr "((?:[^])+) ((?:[^])+)" -tcc destSrc

Related concepts
“Customizing MFT resource monitor tasks with variable substitution” on page 234
When the trigger conditions of an active resource monitor are satisfied, the defined task is called. In
addition to calling the transfer or command task with the same destination agent or the same destination
file name every time, you can also modify the task definition at run time. You do this by inserting variable
names into the task definition XML. When the monitor determines that the trigger conditions are satisfied,
and that the task definition contains variable names, it substitutes the variable names with the variable
values, and then calls the task.
Related tasks
“Monitoring a queue and using variable substitution” on page 240
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.
Related reference
fteCreateMonitor: create an MFT resource monitor
fteCreateTransfer: start a new file transfer

Logging MFT resource monitors
You can obtain diagnostic information about resource monitors by using logging.

About this task
You can use logging for resource monitors by using either the fteSetAgentLoglevel command or the
agent.properties file to control resource monitor logging.

Note that existing trace points are still used for capturing information.

Administering IBM MQ 245

The resource monitor logs are written to a file named resmoneventN.log, where N stands for a number;
for example, resmonevent0.log. The event log files record several actions that take place when a
monitor polls a resource, for example, a directory or a queue.

Attention: All resource monitors of an agent write to the same log file.

For some example output of a resmoneventN.log file, see What to do if your MFT directory resource
monitor is not triggering files.

The following table lists the type of events the resource monitor writes to the log file. The third column
describes the log level needed to capture each event where the lowest level is INFO and highest is
VERBOSE.

Note that setting a higher log level, also writes lower level events. For example, setting log level to
MODERATE also writes INFO level events, but not VERBOSE level events.

Number Event Log level Description

1 Monitor Created INFO A resource monitor has been created.

2 Monitor Deleted INFO A resource monitor has been deleted.

3 Monitor Stopped INFO A resource monitor has been stopped.

4 Monitor Started INFO A resource monitor has been started.

5 Start Poll INFO A resource monitor started a new poll cycle.

6 End Poll INFO A resource monitor poll cycle has ended.

7 Pattern Match VERBOSE A file on the trigger monitor directory, or
a message in a queue that matches the
specified pattern, has been found.

8 Pattern Mismatch VERBOSE An unmatched file on the trigger monitor
directory, or a message in a queue that does
not match the specified pattern, has been
found.

9 Transfer Request INFO A transfer has been initiated by the resource
monitor.

10 Directory too deep VERBOSE The directory monitored by the resource
monitor contains more sub-directories to
poll, than the number specified in the
resource monitor configuration.

11 File locked MODERATE The trigger file monitored by the resource
monitor is locked by another process.

12 File size small MODERATE The trigger file is smaller than the
size specified in the resource monitor
configuration.

13 File size unstable MODERATE The trigger file is being changed more
frequently than expected by the resource
monitor configuration.

14 Too many polls MODERATE A resource monitor has polled an unstable
trigger file too many times.

15 Items Matched INFO Total number of trigger files found in the
directory polled by a resource monitor.

16 Transfer Items INFO Total number of items in the transfer request.

246 Administering IBM MQ

Number Event Log level Description

17 FDC Generated MODERATE A resource monitor has generated an
exception.

18 Transfer Request INFO Transfer request submitted by resource
monitor.

19 Monitor Start Failed MODERATE A resource monitor failed to start.

20 History Cleared INFO Monitor history information has been
cleared.

21 Clear Monitor History Failed INFO Attempt to clear monitor history information
has failed.

22 Transfer ID INFO ID of the transfer request has been
submitted by monitor.

23 Batching INFO Total number of transfer requests for
matched items: N, where N is a number.

24
Connected VERBOSE A resource monitor has connected to the

agent queue manager.

25
Disconnected VERBOSE A resource monitor has disconnected from

the agent queue manager.

26
Error during disconnect VERBOSE A resource monitor encountered an issue

when disconnecting from the agent queue
manager.

Procedure
• To use the fteSetAgentLoglevel command to turn resource monitor logging on and off, see

fteSetAgentLogLevel for a description of the logMonitor parameter, and examples of how you use
the different options.

• To use the agent.properties file to control resource monitor logging, see The MFT
agent.properties file for a description of the additional properties that allow you to carry out
the following logging activities:

– Turn logging on or off
– Limit the size of each log file
– Limit the number of logs that resource monitors can generate

Example

The following sample message sets verbose level logging for agent HA2, on queue manager MFTDEMO:

<?xml version="1.0"?>
<log:log version="6.00"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xmlns:log="https://www.ibm.com/log">
 <log:originator>
 <log:request>
 <log:hostName>192.168.7.1</log:hostName>
 <log:userID>johndoe</log:userID>
 </log:request>
 </log:originator>
 <log:endpoint agent="HA2" QMgr="MFTDEMO"/>
 <log:logMonitor>MON1="verbose"</log:logMonitor>
</log:log>

Administering IBM MQ 247

Related reference
fteSetAgentLogLevel command
The MFT agent.properties file

Starting an MFT resource monitor
From IBM MQ 9.3.0, you can start resource monitors without needing to stop or restart an agent by using
the fteStartMonitor command.

Before you begin
If user authority management has been enabled by setting the authorityChecking attribute to true
in the agent.properties file, you must have either Monitor or Monitor operations authority to
start a resource monitor. For more information about user authority management, see Restricting user
authorities on MFT agent actions.

About this task
You can run the fteStartMonitor command from any system where the Managed File Transfer
commands component is installed, which means that you can start a resource monitor from anywhere,
and are not restricted to the system where the agent that owns the resource monitor is running. For
information about the required and optional parameters for this command, see fteStartMonitor (start an
MFT resource monitor).

Procedure
• To find out the state of an agent before or after running the fteStartMonitor command, use the

fteListMonitors command with the -v parameter as shown in the following example:

fteListMonitors -ma monitoring_agent_name -v

• To start a resource monitor in an agent running on the same machine, enter the fteStartMonitor
command as follows:

fteStartMonitor -mn monitor_name -ma agent_name

• To start a resource monitor in an agent running on a different machine, enter the fteStartMonitor
command as follows:

fteStartMonitor -mn monitor_name -ma agent_name -mm AgentQueueManager

If the command queue manager is also the agent queue manager for the monitoring agent, then
the -mm parameter is optional, otherwise you must specify the agent queue manager with the -mm
parameter.

Results
If the agent is running, then the resource monitor is started if it is currently stopped. The command
outputs the following messages and logs an event in the agent's output0.log.
BFGCL0816I: A request to start resource monitor 'monitor_name' of agent 'agent_name' has been
issued.
BFGCL0251I: The request has successfully completed.

For information about the messages that the command outputs if it cannot start the resource monitor, see
fteStartMonitor (start an MFT resource monitor).

Related concepts
“MFT resource monitoring concepts” on page 224

248 Administering IBM MQ

An overview of the key concepts of the Managed File Transfer resource monitoring feature.
Related tasks
“Stopping an MFT resource monitor” on page 249
From IBM MQ 9.3.0, you can stop resource monitors without needing to stop or restart an agent by using
the fteStopMonitor command.
Related reference
fteStartMonitor (start an MFT resource monitor)

Stopping an MFT resource monitor
From IBM MQ 9.3.0, you can stop resource monitors without needing to stop or restart an agent by using
the fteStopMonitor command.

Before you begin
If user authority management has been enabled by setting the authorityChecking attribute to true
in the agent.properties file, you must have either Monitor or Monitor operations authority to
stop a resource monitor. For more information about user authority management, see Restricting user
authorities on MFT agent actions.

About this task
You can run the fteStopMonitor command from any system where the Managed File Transfer
commands component is installed, which means that you can stop a resource monitor from anywhere,
and are not restricted to the system where the agent that owns the resource monitor is running. For
information about the required and optional parameters for this command, see fteStopMonitor (stop an
MFT resource monitor).

When a resource monitor is stopped, it writes a message to the agent's resource monitor event log,
resmoneventnumber.log. If the resource monitor is stopped with the fteStopMonitor command,
the message includes the name of the user who issued the stop request:
Resource Monitor Stopped by user '<mquser_id>'

A resource monitor is automatically started if its agent restarts, even if the resource monitor was
previously stopped by using the fteStopMonitor command.

Agents process stop monitor requests serially rather than in parallel, so, for example, if an agent receives
a request to stop monitor M1 and then another request to stop monitor M2 in quick succession, it stops
M1 first before trying to stop M2.

Procedure
• To find out the state of an agent before or after running the fteStopMonitor command, use the

fteListMonitors command with the -v parameter as shown in the following example:

fteListMonitors -ma monitoring_agent_name -v

• To stop a resource monitor in an agent running on the same machine, enter the fteStopMonitor
command as follows:

fteStopMonitor -mn monitor_name -ma agent_name

• To stop a resource monitor in an agent running on a different machine, enter the fteStopMonitor
command as follows:

fteStopMonitor -mn monitor_name -ma agent_name -mm AgentQueueManager

If the command queue manager is also the agent queue manager for the monitoring agent, then
the -mm parameter is optional, otherwise you must specify the agent queue manager with the -mm
parameter.

Administering IBM MQ 249

Results
If the agent is running, then the resource monitor is stopped if it is currently started. The command
outputs the following messages and logs an event in the agent's output0.log.
BFGCL0813I: A request to stop resource monitor 'MNTR' of agent 'SOURCE' has been issued.
BFGCL0251I: The request has successfully completed.

For information about the messages that the command outputs if it cannot stop the resource monitor, see
fteStopMonitor (stop an MFT resource monitor)

Related concepts
“MFT resource monitoring concepts” on page 224
An overview of the key concepts of the Managed File Transfer resource monitoring feature.
Related tasks
“Starting an MFT resource monitor” on page 248
From IBM MQ 9.3.0, you can start resource monitors without needing to stop or restart an agent by using
the fteStartMonitor command.
Related reference
fteStopMonitor (stop an MFT resource monitor)

Backing up and restoring MFT resource monitors
You can back up the resource monitors that you want to have available for future use by exporting their
definitions to an XML file that you can then import to create a new resource monitor from the backup.

About this task
You might need to back up the resource monitors that you have previously defined so that you can re-use
their definitions in the future, for example to re-create the resource monitors in a different infrastructure
or if a resource monitor needs to be re-created because of queue manager issues.

You can back up a single resource manager definition by using either the fteCreateMonitor command
or the fteListMonitors command with the -ox parameter. In both cases, the resource manager
definition is backed up by exporting it to an XML file. You can then use the -ix parameter of the
fteCreateMonitor command to create a new resource manager by importing the definition from the
XML file.

With the -ox parameter, you can back up only one resource monitor definition at a time.

The -od parameter is added to the fteListMonitors command. By specifying this parameter, you can
back up more than one resource monitor at a time by exporting their definitions in bulk to a specified
directory. Each resource monitor definition is saved to a separate XML file with a name in the format
agent name.monitor name.xml.

The -od parameter is particularly useful if you have a large number of resource monitors that you want
to back up because you need to run the fteListMonitors -od command once only, instead of having
to run the fteListMonitors -ox command separately for each resource definition, or use a separate
script to run the fteListMonitors -ox command for each resource monitor.

Procedure
• To back up the definition of one resource monitor by exporting it to an XML file, use either of the

following commands:

– The fteCreateMonitor command with the -ox parameter.
– The fteListMonitors command with the -ox parameter.

When you are using the -ox parameter, you must also specify the -ma and -mn parameters, as shown
in the following example:

fteListMonitors -ma AGENT1 -mn MONITOR1 -ox filename1.xml

250 Administering IBM MQ

• To back up multiple resource monitor definitions by exporting them to XML files in a specified
directory, use the fteListMonitors command with the -od parameter as shown in the following
example:

fteListMonitors -od /usr/mft/resmonbackup

You must specify a valid target directory when you are backing up resource monitors in bulk. Not
specifying a target path results in an error message as shown in the following example:
BFGCL0762E: Output directory not specified. Rerun the command specifying a valid path.

The -od parameter must not be combined with the -ox parameter, otherwise the following error
message is displayed:
BFGCL0761E: It is not valid to specify both the '-od' and '-ox' parameters together.

You can define a particular set of resource monitors to include in the backup. For instance, by using
the -ma parameter to specify the name of an agent, you can back up all the resource monitors for that
agent, as shown in the following example:

fteListMonitors -ma AGENT1 -od /usr/mft/resmonbackup

You can also use wildcard matching by including an asterisk character (*) character when defining a
pattern to use for matching agent names or monitor names, or both. The following example backs up
all the resource monitors that have names matching a specified pattern and that are in an agent with a
name matching a specified pattern:

fteListMonitors -ma AGENT* -mn MON* -od /usr/mft/resmonbackup

While the command is running, it displays the following progress report messages:
A total of number matching resource monitor definitions found.
index of number resource monitor definitions saved to file system.

If you are using the verbose option, the running total is still displayed, but instead of displaying
index of number resource monitor definitions saved to file system

the command displays the name of the monitor definition being saved, for example:
BFGCL0762I: Definition of monitor 'FILEMON' of agent 'XFERAGENT' saved as
FILEMON.XFERAGENT.XML to file system.

• To back up one resource monitor for a particular agent by exporting it to an XML file in a specified
directory, use the fteListMonitors command with the -od parameter:

fteListMonitors -ma AGENT1 -mn MONITOR1 -od /usr/mft/resmonbackup

Using the -od parameter to back up a single resource monitor is similar to using the -ox parameter,
except that the output file name is in the format agent name.monitor name.xml.

• To restore resource monitor definitions from a backup, use the fteCreateMonitor command with
the -ix parameter as shown in the following example:

fteCreateMonitor -ix file name

For more examples of how to use the -od parameter, see fteListMonitors: list MFT resource monitors.

Related reference
fteCreateMonitor: create an MFT resource monitor
fteListMonitors: list MFT resource monitors

Administering IBM MQ 251

Clearing resource monitor history
You can clear the history of a resource monitor so that another file transfer request can be submitted for
a file that was not transferred earlier due to a failure. To clear the resource monitor history, you can use
either the fteClearMonitorHistory command or the IBM MQ Explorer.

Before you begin
If user authority management has been enabled by setting the authorityChecking attribute to true in
the agent.properties file, the user who clears the monitor history must have the appropriate authority
as shown in the following table.

Table 15. User authority required to run the fteClearMonitorHistory command

User clearing the monitor
history

MFT access authority Required authority

The same user as the one that
created the resource monitor.

Monitor BROWSE on
SYSTEM.FTE.AUTHMON1.<monit
or_agent_name>

This is the same authority as the
authority required to create or
delete the resource monitor.

Any user other than the user that
created resource monitor.

Monitor operations SET on
SYSTEM.FTE.AUTHPS1.<agent_n
ame>

This is the same authority as the
authority required to delete the
resource monitor.

For more information about user authority management, see Restricting user authorities on MFT agent
actions.

If a user without the required authority attempts to clear the resource monitor history, the
fteClearMonitorHistory command outputs an error message and logs the failure in the agent's
output0.log file. For more information, see fteClearMonitorHistory: clear resource monitor history.

About this task
If a file transfer has been initiated and a file cannot be transferred for any reason, the resource monitor
does not select this file for transfer again in its next poll because the monitor history indicates that the
file was seen in an earlier poll and it has not been modified since then (see “MFT resource monitoring
concepts” on page 224).

Before IBM MQ 9.1.3, if a file fails to transfer, the file transfer can only be initiated again either if the file
is deleted and then placed in the directory again, or if the file is updated so that the last modified date
attribute is changed, or if the resource monitor itself is recreated.

However, you can clear the resource monitor history either by using the fteClearMonitorHistory
command or by using the IBM MQ Explorer. Clearing the history allows another transfer request for a file
that has failed to transfer to be submitted without the need to either delete file and then place in the
directory again, or update the file to change its last modified date attribute, which is useful, for example,
in situations where there is need for the file to be transferred but modifying the file is not possible. Being
able to clear the history of a resource monitor also means that there is no need to recreate the resource
monitor in order to submit another transfer request for a file that has failed to transfer.

The sample SCSQFCMD member shipped with Managed File Transfer on z/OS includes a JCL
script to clear a monitor's history.

252 Administering IBM MQ

Procedure
• To use the fteClearMonitorHistory command to clear the resource monitor history, enter the

command in the following format:

fteClearMonitorHistory -p <configuration> -ma <agent name> -mn <monitor name> -w 1000

Only the -ma and -mn parameters are required. All other parameters are optional. For more
information about how to use the fteClearMonitorHistory command, including examples, see
fteClearMonitorHistory: clear resource monitor history.

If the history is cleared successfully, the command outputs the following message:
BFGCL0780I: A request to clear history of resource monitor 'monitor name' of agent 'agent
name' has been issued.
BFGCL0251I: The request has successfully completed.

and logs the success in the agent's output0.log file.

If the attempt to clear the resource monitor history fails, the fteClearMonitorHistory outputs an
error message and logs the failure in the agent's output0.log file.

• To use the resource monitor view in the IBM MQ Explorer MFT Plug-in to clear the resource monitor
history, right-click the resource monitor and select Clear History from the drop-down menu.

If the history is cleared successfully the following message is displayed:
BFGUI00171: Resource monitor history cleared successfully.

If the attempt to clear the history fails, an error message is displayed. For example:
BFGUI0016E Failed to clear history of specified resource monitor - reason 2059

Working with file transfer templates
You can use file transfer templates to store common file transfer settings for repeated or complex
transfers. Either create a transfer template from the command line by using the fteCreateTemplate
command or use the IBM MQ Explorer to create a transfer template by using the Create New Template
for Managed File Transfer wizard, or save a template while you are creating a file transfer by selecting
the Save transfer settings as a template check box. The Transfer Templates window displays all of the
transfer templates that you have created in your Managed File Transfer network.

About this task
To create a transfer template from the command line, use the fteCreateTemplate command. Then when
you want to submit a transfer template that you created on the command line, click Submit in IBM MQ
Explorer.

To view transfer templates in the IBM MQ Explorer, use the following steps:

Procedure
1. Expand Managed File Transfer in the Navigator view. Managed File Transfer Central is displayed in

the Content view.
2. All of your coordination queue managers are listed in the Navigator view. Expand the name of the

coordination queue manager that you have used for the scheduled transfer. If you want to change
which coordination queue manager you are connected to, right-click the name of the coordination
queue manager you want to use in Navigator view and click Connect.

3. Click Transfer Templates. The Transfer Templates window is displayed in the Content view.
4. The Transfer Templates window lists the following details about your file transfers:

a) Name The name of your file transfer template.
b) Source The name of the agent used to transfer the file from the source system.
c) Source File The name of the file to be transferred on its host system.

Expand the transfer template information to view this field.

Administering IBM MQ 253

d) Destination The name of the agent used to receive the file at the destination system.
e) Destination File The name of the file after it is transferred to the destination system.

Expand t the transfer template information to view this field.
f) Scheduled Start (selected time zone) The time and date that the file transfer is scheduled to start

in the time zone used by the administrator. To change the time zone displayed, click Window >
Preferences > IBM MQ Explorer > Managed File Transfer and select an alternative time zone from
the Time zone: list. Click OK.

g) Trigger Events The type of event that triggers the file transfer to start. The type can be one of the
following values: exists, does not exist, or exceeds.

Results

To refresh what is displayed in the Transfer Templates window, click the Refresh button on the
Content view toolbar.

To submit a transfer template and start the transfer defined in the template, right-click the template name
and click Submit.

To change a transfer template, right-click the template name and click Edit. All files included in the
original template are listed as part of a transfer group, even if they were not included as part of a group in
the original template. If you want to remove a file from the template you must select the file specification
from the group and click Remove selected. If you want to add new file specifications to the template use
the fields in the template panel and click the Add to group button. When you have made your edits, you
are prompted to give the edited template a new name.

To create a file transfer from a transfer template, right-click the template name and click Edit as New
Transfer.

To create a duplicate copy of a transfer template, right-click the template name and click Duplicate.
The duplicate transfer template is automatically saved with the same name as the original template,
appended with "(copy)".

To delete a transfer template, right-click the template name and click Delete.

Related tasks
“Creating a file transfer template using IBM MQ Explorer” on page 254
You can create a file transfer template from IBM MQ Explorer or from the command line. You can then use
that template to create new file transfers using the template details or submit the template to start the
file transfer.
Related reference
fteCreateTemplate: create new file transfer template
fteListTemplates
fteDeleteTemplates

Creating a file transfer template using IBM MQ Explorer
You can create a file transfer template from IBM MQ Explorer or from the command line. You can then use
that template to create new file transfers using the template details or submit the template to start the
file transfer.

About this task
To create a file transfer template from the command line, use the fteCreateTemplate command.

To create a file transfer template using the Create New Template for Managed File Transfer wizard in
IBM MQ Explorer, use the following steps:

254 Administering IBM MQ

Procedure
1. In the Navigator view, click Managed File Transfer. Managed File Transfer Central is displayed in the

Content view.
2. All of your coordination queue managers are displayed in the Navigator view. Expand the name of the

coordination queue manager that you have used for the scheduled transfer. If you want to change
which coordination queue manager you are connected to, right-click the name of the coordination
queue manager you want to use in Navigator view and click Connect.

3. Start the Create New Template for Managed File Transfer wizard by right-clicking Transfer
Templates and then clicking New Template.

4. Follow the instructions on the wizard panels. There is context-sensitive help provided for each panel.
To access the context-sensitive help on Windows, press F1. On Linux, press Ctrl+F1 or Shift+F1.

If you have created a template that contains all the required transfer details, ensure that you select the
Save transfer settings as a template check box on the Transfer Summary page if this check box is
not already selected. Also enter a name for the template in the Name field. If you create a template
that does not yet contain all of the required transfer details, the Save transfer settings as a template
check box is automatically checked for you.

Related tasks
“Working with file transfer templates” on page 253
You can use file transfer templates to store common file transfer settings for repeated or complex
transfers. Either create a transfer template from the command line by using the fteCreateTemplate
command or use the IBM MQ Explorer to create a transfer template by using the Create New Template
for Managed File Transfer wizard, or save a template while you are creating a file transfer by selecting
the Save transfer settings as a template check box. The Transfer Templates window displays all of the
transfer templates that you have created in your Managed File Transfer network.
Related reference
fteCreateTemplate: create new file transfer template
fteListTemplates
fteDeleteTemplates

Backing up a file transfer template definition
File transfer templates contain an XML document that defines the source and destination file
specifications for the transfer. You can use this XML file as input to the fteCreateTemplate command
to recreate a file transfer template.

About this task
To back up the XML document containing the source and destination file specifications for a transfer
template, use either the fteCreateTransfer command command or IBM MQ Explorer. To create a transfer
template XML-formatted backup file, use the following steps:

Procedure
• Method one: use the -gt parameter on an fteCreateTransfer command to generate a transfer template

XML message to a new file.
• Method two: create the template using IBM MQ Explorer.

When you get to the Transfer template summary page:
a) Copy the Request message XML preview.
b) Save this transfer template XML message to a new file.

• Method three: use IBM MQ Explorer to backup up existing templates.
a) Go to Managed File Transfer > Queue Manger Name > Transfer Templates.

Administering IBM MQ 255

b) In the Transfer panel, highlight the template that needs to be backed up, right click and select Edit
from the pop up menu.

c) Click Next until you get to the Transfer template summary page.
d) Copy the Request message XML preview.
e) Save this transfer template XML message to a new file.

Results
You can use the transfer template XML message file, created by one of the above methods, as input to
the fteCreateTemplate command. Refer to the fteCreateTemplate command for details of how you use
this command.

Related reference
fteCreateTemplate command
fteListtTmplates command

Transferring data from files to messages
You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.

For information about message-to-file transfers, see “Transferring data from messages to files” on page
271.

The destination agent for a file-to-message transfer cannot be a protocol bridge agent or a Connect:Direct
bridge agent.

You can transfer file data to IBM MQ message data. The IBM MQ messages can be read and used by
applications. The following types of file-to-message transfer are supported:

• From a single file to a single message. The message does not have an IBM MQ group ID set.
• From a single file to multiple messages, by splitting the file into messages of a given length. The

messages all have the same IBM MQ group ID.
• From a single file to multiple messages, by splitting a text file at a Java regular expression delimiter. The

messages all have the same IBM MQ group ID.
• From a single file to multiple messages, by splitting a binary file at a hexadecimal delimiter. The

messages all have the same IBM MQ group ID.

If you want to split a binary file using a sequence of bytes as the delimiter, use the -sqdb parameter of
the fteCreateTransfer command. For more information, see -sqdb parameter.

By default the messages created by a file-to-message transfer are persistent. The messages can be set to
be non-persistent or to have the persistence value defined by the destination queue.

If you specify that a file is split into multiple messages, all messages created from the file have the same
IBM MQ group ID. If you do not specify that a file is split into multiple messages, only one message is
created from the file and this message does not have the IBM MQ group ID set.

If you are transferring files to large messages, or many small messages, you might need to change
some IBM MQ or Managed File Transfer properties. For information about, see Guidance for setting MQ
attributes and MFT properties associated with message size.

Note: If the destination queue is either a clustered queue, or an alias to a clustered queue, you will get an
error message when transferring a file into a queue if the agent property enableClusterQueueInputOutput
has not been set to true. For more information see What to do if the destination queue is a clustered
queue, or an alias to a clustered queue

Related tasks
“Configuring an agent to perform file-to-message transfers” on page 257

256 Administering IBM MQ

By default agents cannot perform file-to-message or message-to-file transfers. To enable this function
you must set the agent property enableQueueInputOutput to true. To enable writing to IBM MQ clustered
queues, you must also set the agent property enableClusterQueueInputOutput to true.
“Example: Transferring a single file to a single message” on page 259
You can specify a queue as the destination of a file transfer by using the -dq parameter with the
fteCreateTransfer command. The source file must be smaller than the maximum message length set
on the destination queue. The destination queue does not have to be on the same queue manager as the
queue manager that the destination agent connects to, but these two queue managers must be able to
communicate.
“Example: Splitting a single file into multiple messages by length” on page 260
You can split a file into multiple IBM MQ messages by using the -qs parameter of the
fteCreateTransfer command. The file is split into fixed-length sections, each of which is written
to an individual message.
“Example: Splitting a text file with a regular expression delimiter and including the delimiter in the
messages” on page 263
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression and include the regular expression match in the resulting messages. To do this you use the
-dqdt and -qi parameters of the fteCreateTransfer command.
“Example: Splitting a text file into multiple messages using a regular expression delimiter” on page 262
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression. To do this you use the -dqdt parameter of the fteCreateTransfer command.
“Example: Setting IBM MQ message properties on a file-to-message transfer” on page 266
You can use the -qmp parameter on the fteCreateTransfer command to specify whether IBM MQ
message properties are set on the first message written to the destination queue by the transfer. IBM MQ
message properties allow an application to select messages to process, or to retrieve information about a
message without accessing IBM MQ Message Descriptor (MQMD) or MQRFH2 headers.
“Example: Setting user-defined properties on a file-to-message transfer” on page 267
User-defined metadata is set as an IBM MQ message property on the first message written to the
destination queue by the transfer. IBM MQ message properties enable an application to select messages
to process, or to retrieve information about a message without accessing IBM MQ Message Descriptor
(MQMD) or MQRFH2 headers.
“Starting a new file transfer” on page 212
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
Related reference
“Failure of a file-to-message transfer” on page 270
If a file-to- message transfer fails after the agent has started writing file data to the destination queue, the
agent writes a message to the queue to indicate to an application consuming the messages that a failure
has occurred.
MQ message properties set by MFT on messages written to destination queues
Guidance for setting MQ attributes and MFT properties associated with message size

Configuring an agent to perform file-to-message transfers
By default agents cannot perform file-to-message or message-to-file transfers. To enable this function
you must set the agent property enableQueueInputOutput to true. To enable writing to IBM MQ clustered
queues, you must also set the agent property enableClusterQueueInputOutput to true.

About this task

Administering IBM MQ 257

If you attempt to perform a file-to-message transfer to a destination agent that does not have the
enableQueueInputOutput property set to true, the transfer fails. The transfer log message that is
published to the coordination queue manager contains the following message:

BFGIO0197E: An attempt to write to a queue was rejected by the destination agent. The
agent must have enableQueueInputOutput=true set in the agent.properties file to
support transferring to a queue.

To enable the agent to write to and read from queues perform the following steps:

Procedure
1. Stop the destination agent using the fteStopAgent command.
2. Edit the agent.properties file to include the line enableQueueInputOutput=true.

The agent.properties file is located in the directory MQ_DATA_PATH/mqft/config/
coordination_queue_manager/agents/destination_agent_name.

3. Optional: Edit the agent.properties file to include the line
enableClusterQueueInputOutput=true. The agent.properties file is located
in the directory MQ_DATA_PATH/mqft/config/coordination_queue_manager/agents/
destination_agent_name.

4. Start the destination agent using the fteStartAgent command.

Related concepts
“Transferring data from files to messages” on page 256
You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.
Related tasks
“Example: Transferring a single file to a single message” on page 259
You can specify a queue as the destination of a file transfer by using the -dq parameter with the
fteCreateTransfer command. The source file must be smaller than the maximum message length set
on the destination queue. The destination queue does not have to be on the same queue manager as the
queue manager that the destination agent connects to, but these two queue managers must be able to
communicate.
“Example: Splitting a single file into multiple messages by length” on page 260
You can split a file into multiple IBM MQ messages by using the -qs parameter of the
fteCreateTransfer command. The file is split into fixed-length sections, each of which is written
to an individual message.
“Example: Splitting a text file with a regular expression delimiter and including the delimiter in the
messages” on page 263
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression and include the regular expression match in the resulting messages. To do this you use the
-dqdt and -qi parameters of the fteCreateTransfer command.
“Example: Splitting a text file into multiple messages using a regular expression delimiter” on page 262
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression. To do this you use the -dqdt parameter of the fteCreateTransfer command.
“Example: Setting IBM MQ message properties on a file-to-message transfer” on page 266
You can use the -qmp parameter on the fteCreateTransfer command to specify whether IBM MQ
message properties are set on the first message written to the destination queue by the transfer. IBM MQ
message properties allow an application to select messages to process, or to retrieve information about a
message without accessing IBM MQ Message Descriptor (MQMD) or MQRFH2 headers.
“Example: Setting user-defined properties on a file-to-message transfer” on page 267
User-defined metadata is set as an IBM MQ message property on the first message written to the
destination queue by the transfer. IBM MQ message properties enable an application to select messages

258 Administering IBM MQ

to process, or to retrieve information about a message without accessing IBM MQ Message Descriptor
(MQMD) or MQRFH2 headers.
Related reference
fteStopAgent
fteStartAgent
The MFT agent.properties file
“Failure of a file-to-message transfer” on page 270
If a file-to- message transfer fails after the agent has started writing file data to the destination queue, the
agent writes a message to the queue to indicate to an application consuming the messages that a failure
has occurred.

Example: Transferring a single file to a single message
You can specify a queue as the destination of a file transfer by using the -dq parameter with the
fteCreateTransfer command. The source file must be smaller than the maximum message length set
on the destination queue. The destination queue does not have to be on the same queue manager as the
queue manager that the destination agent connects to, but these two queue managers must be able to
communicate.

About this task
The source file is called /tmp/single_record.txt and is located on the same system as the source
agent, AGENT_NEPTUNE. The source agent, AGENT_NEPTUNE, uses the queue manager QM_NEPTUNE.
The destination agent is AGENT_VENUS and this agent connects to the queue manager QM_VENUS. The
destination queue, RECEIVING_QUEUE, is located on the queue manager QM_MERCURY. QM_MERCURY
is in the same IBM MQ network as, and can be accessed by, the queue manager QM_VENUS.

Procedure
Type the following command:

fteCreateTransfer -sa AGENT_NEPTUNE -sm QM_NEPTUNE -da AGENT_VENUS -dm QM_VENUS
 -dq RECEIVING_QUEUE@QM_MERCURY /tmp/single_record.txt

If the destination queue is on a different queue manager to the queue manager used by the
destination agent you must specify the value of the -dq parameter in the following format
queue_name@queue_manager_name. If you do not specify @queue_manager_name in the value, the
destination agent assumes that the destination queue is located on the destination agent queue manager.
The exception is when the enableClusterQueueInputOutput agent property has been set to true. In this
case the destination agent will use standard IBM MQ resolution procedures to determine where the
queue is located.

The source agent, AGENT_NEPTUNE, reads the data from the file /tmp/single_record.txt and
transfers this data to the destination agent, AGENT_VENUS. The destination agent, AGENT_VENUS, sends
the data to a persistent message on the queue RECEIVING_QUEUE@QM_MERCURY. The message does
not have an IBM MQ group ID set.

Related concepts
“Transferring data from files to messages” on page 256
You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.
Related tasks
“Configuring an agent to perform file-to-message transfers” on page 257

Administering IBM MQ 259

By default agents cannot perform file-to-message or message-to-file transfers. To enable this function
you must set the agent property enableQueueInputOutput to true. To enable writing to IBM MQ clustered
queues, you must also set the agent property enableClusterQueueInputOutput to true.
“Example: Splitting a single file into multiple messages by length” on page 260
You can split a file into multiple IBM MQ messages by using the -qs parameter of the
fteCreateTransfer command. The file is split into fixed-length sections, each of which is written
to an individual message.
“Example: Splitting a text file with a regular expression delimiter and including the delimiter in the
messages” on page 263
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression and include the regular expression match in the resulting messages. To do this you use the
-dqdt and -qi parameters of the fteCreateTransfer command.
“Example: Splitting a text file into multiple messages using a regular expression delimiter” on page 262
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression. To do this you use the -dqdt parameter of the fteCreateTransfer command.
“Example: Setting IBM MQ message properties on a file-to-message transfer” on page 266
You can use the -qmp parameter on the fteCreateTransfer command to specify whether IBM MQ
message properties are set on the first message written to the destination queue by the transfer. IBM MQ
message properties allow an application to select messages to process, or to retrieve information about a
message without accessing IBM MQ Message Descriptor (MQMD) or MQRFH2 headers.
“Example: Setting user-defined properties on a file-to-message transfer” on page 267
User-defined metadata is set as an IBM MQ message property on the first message written to the
destination queue by the transfer. IBM MQ message properties enable an application to select messages
to process, or to retrieve information about a message without accessing IBM MQ Message Descriptor
(MQMD) or MQRFH2 headers.
“Starting a new file transfer” on page 212
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
Related reference
“Failure of a file-to-message transfer” on page 270
If a file-to- message transfer fails after the agent has started writing file data to the destination queue, the
agent writes a message to the queue to indicate to an application consuming the messages that a failure
has occurred.

Example: Splitting a single file into multiple messages by length
You can split a file into multiple IBM MQ messages by using the -qs parameter of the
fteCreateTransfer command. The file is split into fixed-length sections, each of which is written
to an individual message.

About this task
The source file is called /tmp/source.file and is 36 KB in size. The source file is located on the
same system as the source agent AGENT_NEPTUNE. The source agent, AGENT_NEPTUNE, connects to
the queue manager QM_NEPTUNE. The destination agent is AGENT_MERCURY, which connects to the
queue manager QM_MERCURY. The destination queue, RECEIVING_QUEUE, is also located on the queue
manager QM_MERCURY. The transfer splits the source file into sections that are 1 KB in size and writes
each of these sections to a message on RECEIVING_QUEUE.

Procedure
Type the following command:

fteCreateTransfer -sa AGENT_NEPTUNE -sm QM_NEPTUNE -da AGENT_MERCURY -dm QM_MERCURY
 -dq RECEIVING_QUEUE -qs 1K /tmp/source.file

260 Administering IBM MQ

The source agent, AGENT_NEPTUNE, reads the data from the file /tmp/source.file and transfers
this data to the destination agent, AGENT_MERCURY. The destination agent, AGENT_MERCURY, writes
the data to thirty-six 1 KB persistent messages on the queue RECEIVING_QUEUE@QM_MERCURY. These
messages all have the same IBM MQ group ID and the last message in the group has the IBM MQ
LAST_MSG_IN_GROUP flag set.

Related concepts
“Transferring data from files to messages” on page 256
You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.
Related tasks
“Configuring an agent to perform file-to-message transfers” on page 257
By default agents cannot perform file-to-message or message-to-file transfers. To enable this function
you must set the agent property enableQueueInputOutput to true. To enable writing to IBM MQ clustered
queues, you must also set the agent property enableClusterQueueInputOutput to true.
“Example: Transferring a single file to a single message” on page 259
You can specify a queue as the destination of a file transfer by using the -dq parameter with the
fteCreateTransfer command. The source file must be smaller than the maximum message length set
on the destination queue. The destination queue does not have to be on the same queue manager as the
queue manager that the destination agent connects to, but these two queue managers must be able to
communicate.
“Example: Splitting a text file with a regular expression delimiter and including the delimiter in the
messages” on page 263
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression and include the regular expression match in the resulting messages. To do this you use the
-dqdt and -qi parameters of the fteCreateTransfer command.
“Example: Splitting a text file into multiple messages using a regular expression delimiter” on page 262
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression. To do this you use the -dqdt parameter of the fteCreateTransfer command.
“Example: Setting IBM MQ message properties on a file-to-message transfer” on page 266
You can use the -qmp parameter on the fteCreateTransfer command to specify whether IBM MQ
message properties are set on the first message written to the destination queue by the transfer. IBM MQ
message properties allow an application to select messages to process, or to retrieve information about a
message without accessing IBM MQ Message Descriptor (MQMD) or MQRFH2 headers.
“Example: Setting user-defined properties on a file-to-message transfer” on page 267
User-defined metadata is set as an IBM MQ message property on the first message written to the
destination queue by the transfer. IBM MQ message properties enable an application to select messages
to process, or to retrieve information about a message without accessing IBM MQ Message Descriptor
(MQMD) or MQRFH2 headers.
“Starting a new file transfer” on page 212
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
Related reference
“Failure of a file-to-message transfer” on page 270

Administering IBM MQ 261

If a file-to- message transfer fails after the agent has started writing file data to the destination queue, the
agent writes a message to the queue to indicate to an application consuming the messages that a failure
has occurred.

Example: Splitting a text file into multiple messages using a regular
expression delimiter
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression. To do this you use the -dqdt parameter of the fteCreateTransfer command.

About this task
The file is split into variable-length sections, each of which is written to an individual message. The text
file is split at each point where the text in the file matches a given regular expression. The source file is
called /tmp/names.text and has the following contents:

Jenny Jones,John Smith,Jane Brown

The regular expression that specifies where to split the file is the comma character (,).

The source file is located on the same system as the source agent AGENT_NEPTUNE, which connects
to the queue manager QM_NEPTUNE. The destination queue, RECEIVING_QUEUE, is located on the
queue manager QM_MERCURY. QM_MERCURY is also the queue manager used by the destination agent
AGENT_MERCURY. The transfer splits the source file into sections and writes each of these sections to a
message on RECEIVING_QUEUE.

Procedure
Type the following command:

fteCreateTransfer -sa AGENT_NEPTUNE -sm QM_NEPTUNE -da AGENT_MERCURY -dm QM_MERCURY
 -dq RECEIVING_QUEUE -t text -dqdp postfix -dqdt "," /tmp/names.text

The source agent, AGENT_NEPTUNE, reads the data from the file /tmp/names.text and transfers this
data to the destination agent, AGENT_MERCURY. The destination agent, AGENT_MERCURY, writes the
data to three persistent messages on the queue RECEIVING_QUEUE. These messages all have the same
IBM MQ group ID and the last message in the group has the IBM MQ LAST_MSG_IN_GROUP flag set.

The data in the messages is as follows.

• First message:

Jenny Jones

• Second message:

John Smith

• Third message:

Jane Brown

Related concepts
“Transferring data from files to messages” on page 256

262 Administering IBM MQ

You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.
Related tasks
“Configuring an agent to perform file-to-message transfers” on page 257
By default agents cannot perform file-to-message or message-to-file transfers. To enable this function
you must set the agent property enableQueueInputOutput to true. To enable writing to IBM MQ clustered
queues, you must also set the agent property enableClusterQueueInputOutput to true.
“Example: Transferring a single file to a single message” on page 259
You can specify a queue as the destination of a file transfer by using the -dq parameter with the
fteCreateTransfer command. The source file must be smaller than the maximum message length set
on the destination queue. The destination queue does not have to be on the same queue manager as the
queue manager that the destination agent connects to, but these two queue managers must be able to
communicate.
“Example: Splitting a single file into multiple messages by length” on page 260
You can split a file into multiple IBM MQ messages by using the -qs parameter of the
fteCreateTransfer command. The file is split into fixed-length sections, each of which is written
to an individual message.
“Example: Splitting a text file with a regular expression delimiter and including the delimiter in the
messages” on page 263
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression and include the regular expression match in the resulting messages. To do this you use the
-dqdt and -qi parameters of the fteCreateTransfer command.
“Example: Setting IBM MQ message properties on a file-to-message transfer” on page 266
You can use the -qmp parameter on the fteCreateTransfer command to specify whether IBM MQ
message properties are set on the first message written to the destination queue by the transfer. IBM MQ
message properties allow an application to select messages to process, or to retrieve information about a
message without accessing IBM MQ Message Descriptor (MQMD) or MQRFH2 headers.
“Example: Setting user-defined properties on a file-to-message transfer” on page 267
User-defined metadata is set as an IBM MQ message property on the first message written to the
destination queue by the transfer. IBM MQ message properties enable an application to select messages
to process, or to retrieve information about a message without accessing IBM MQ Message Descriptor
(MQMD) or MQRFH2 headers.
“Starting a new file transfer” on page 212
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
Related reference
“Failure of a file-to-message transfer” on page 270
If a file-to- message transfer fails after the agent has started writing file data to the destination queue, the
agent writes a message to the queue to indicate to an application consuming the messages that a failure
has occurred.
Regular expressions used by MFT

Example: Splitting a text file with a regular expression delimiter and
including the delimiter in the messages
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression and include the regular expression match in the resulting messages. To do this you use the
-dqdt and -qi parameters of the fteCreateTransfer command.

About this task
Transfer a single text file to multiple messages on a queue. The file is split into variable-length sections,
each of which is written to an individual message. The text file is split at each point where the text in the

Administering IBM MQ 263

file matches a given regular expression. The source file is called /tmp/customers.text and has the
following contents:

Customer name: John Smith
Customer contact details: john@example.net
Customer number: 314

Customer name: Jane Brown
Customer contact details: jane@example.com
Customer number: 42

Customer name: James Jones
Customer contact details: jjones@example.net
Customer number: 26

The regular expression that specifies where to split the file is Customer\snumber:\s\d+, which
matches the text "Customer number: " followed by any number of digits. Regular expressions specified at
the command line must be enclosed in double quotation marks to prevent the command shell evaluating
the regular expression. The regular expression is evaluated as a Java regular expression. For more
information, see Regular expressions used by MFT.

By default the number of characters that a regular expression can match is set to five. The regular
expression used in this example matches strings that are longer than five characters. To enable
matches that are longer than five characters edit the agent properties file to include the property
maxDelimiterMatchLength.

By default, the text that matches the regular expression is not included in the messages. To include the
text that matches the regular expression in the messages, as in this example, use the -qi parameter.
The source file is located on the same system as the source agent AGENT_NEPTUNE, which connects
to the queue manager QM_NEPTUNE. The destination queue, RECEIVING_QUEUE, is located on the
queue manager QM_MERCURY. QM_MERCURY is also the queue manager used by the destination agent
AGENT_MERCURY. The transfer splits the source file into sections and writes each of these sections to a
message on RECEIVING_QUEUE.

Procedure
1. Stop the destination agent using the following command:

fteStopAgent AGENT_MERCURY

2. Add the following line to the agent properties file for AGENT_MERCURY:

maxDelimiterMatchLength=25

Note: Increasing the value of maxDelimiterMatchLength can decrease performance.
3. Start the destination agent using the following command:

fteStartAgent AGENT_MERCURY

4. Type the following command:

fteCreateTransfer -sa AGENT_NEPTUNE -sm QM_NEPTUNE -da AGENT_MERCURY -dm QM_MERCURY
 -dq RECEIVING_QUEUE
 text -dqdt "Customer\snumber:\s\d+" -qi -dqdp postfix /tmp/customers.text

The source agent, AGENT_NEPTUNE, reads the data from the file /tmp/customers.text
and transfers this data to the destination agent, AGENT_MERCURY. The destination agent,
AGENT_MERCURY, writes the data to three persistent messages on the queue RECEIVING_QUEUE.
These messages all have the same IBM MQ group ID and the last message in the group has the IBM
MQ LAST_MSG_IN_GROUP flag set.

The data in the messages is as follows.

264 Administering IBM MQ

• First message:

Customer name: John Smith
Customer contact details: john@example.net
Customer number: 314

• Second message:

Customer name: Jane Brown
Customer contact details: jane@example.com
Customer number: 42

• Third message:

Customer name: James Jones
Customer contact details: jjones@example.net
Customer number: 26

Related concepts
“Transferring data from files to messages” on page 256
You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.
Related tasks
“Configuring an agent to perform file-to-message transfers” on page 257
By default agents cannot perform file-to-message or message-to-file transfers. To enable this function
you must set the agent property enableQueueInputOutput to true. To enable writing to IBM MQ clustered
queues, you must also set the agent property enableClusterQueueInputOutput to true.
“Example: Transferring a single file to a single message” on page 259
You can specify a queue as the destination of a file transfer by using the -dq parameter with the
fteCreateTransfer command. The source file must be smaller than the maximum message length set
on the destination queue. The destination queue does not have to be on the same queue manager as the
queue manager that the destination agent connects to, but these two queue managers must be able to
communicate.
“Example: Splitting a single file into multiple messages by length” on page 260
You can split a file into multiple IBM MQ messages by using the -qs parameter of the
fteCreateTransfer command. The file is split into fixed-length sections, each of which is written
to an individual message.
“Example: Splitting a text file into multiple messages using a regular expression delimiter” on page 262
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression. To do this you use the -dqdt parameter of the fteCreateTransfer command.
“Example: Setting IBM MQ message properties on a file-to-message transfer” on page 266
You can use the -qmp parameter on the fteCreateTransfer command to specify whether IBM MQ
message properties are set on the first message written to the destination queue by the transfer. IBM MQ
message properties allow an application to select messages to process, or to retrieve information about a
message without accessing IBM MQ Message Descriptor (MQMD) or MQRFH2 headers.
“Example: Setting user-defined properties on a file-to-message transfer” on page 267
User-defined metadata is set as an IBM MQ message property on the first message written to the
destination queue by the transfer. IBM MQ message properties enable an application to select messages
to process, or to retrieve information about a message without accessing IBM MQ Message Descriptor
(MQMD) or MQRFH2 headers.
“Starting a new file transfer” on page 212
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
Related reference
The MFT agent.properties file

Administering IBM MQ 265

Regular expressions used by MFT

Example: Setting IBM MQ message properties on a file-to-message transfer
You can use the -qmp parameter on the fteCreateTransfer command to specify whether IBM MQ
message properties are set on the first message written to the destination queue by the transfer. IBM MQ
message properties allow an application to select messages to process, or to retrieve information about a
message without accessing IBM MQ Message Descriptor (MQMD) or MQRFH2 headers.

About this task
Include the parameter -qmp true in the fteCreateTransfer command. In this example, the MQMD
user ID of the user submitting the command is larmer.

Procedure
Type the following command:

fteCreateTransfer -sa AGENT_JUPITER -da AGENT_SATURN -dq MY_QUEUE@MyQM -qmp true
 -t text /tmp/source_file.txt

The IBM MQ message properties of the first message written by the destination agent, AGENT_SATURN, to
the queue, MY_QUEUE, on queue manager, MyQM, are set to these values:

usr.WMQFTETransferId=414cbaedefa234889d999a8ed09782395ea213ebbc9377cd
usr.WMQFTETransferMode=text
usr.WMQFTESourceAgent=AGENT_JUPITER
usr.WMQFTEDestinationAgent=AGENT_SATURN
usr.WMQFTEFileName=source_file.txt
usr.WMQFTEFileSize=1024
usr.WMQFTEFileLastModified=1273740879040
usr.WMQFTEFileIndex=0
usr.WMQFTEMqmdUser=larmer

Related concepts
“Transferring data from files to messages” on page 256
You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.
Related tasks
“Configuring an agent to perform file-to-message transfers” on page 257
By default agents cannot perform file-to-message or message-to-file transfers. To enable this function
you must set the agent property enableQueueInputOutput to true. To enable writing to IBM MQ clustered
queues, you must also set the agent property enableClusterQueueInputOutput to true.
“Example: Transferring a single file to a single message” on page 259
You can specify a queue as the destination of a file transfer by using the -dq parameter with the
fteCreateTransfer command. The source file must be smaller than the maximum message length set
on the destination queue. The destination queue does not have to be on the same queue manager as the
queue manager that the destination agent connects to, but these two queue managers must be able to
communicate.
“Example: Splitting a single file into multiple messages by length” on page 260
You can split a file into multiple IBM MQ messages by using the -qs parameter of the
fteCreateTransfer command. The file is split into fixed-length sections, each of which is written
to an individual message.
“Example: Splitting a text file with a regular expression delimiter and including the delimiter in the
messages” on page 263

266 Administering IBM MQ

Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression and include the regular expression match in the resulting messages. To do this you use the
-dqdt and -qi parameters of the fteCreateTransfer command.
“Example: Splitting a text file into multiple messages using a regular expression delimiter” on page 262
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression. To do this you use the -dqdt parameter of the fteCreateTransfer command.
“Example: Setting user-defined properties on a file-to-message transfer” on page 267
User-defined metadata is set as an IBM MQ message property on the first message written to the
destination queue by the transfer. IBM MQ message properties enable an application to select messages
to process, or to retrieve information about a message without accessing IBM MQ Message Descriptor
(MQMD) or MQRFH2 headers.
“Starting a new file transfer” on page 212
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
Related reference
“Failure of a file-to-message transfer” on page 270
If a file-to- message transfer fails after the agent has started writing file data to the destination queue, the
agent writes a message to the queue to indicate to an application consuming the messages that a failure
has occurred.
MQ message properties set by MFT on messages written to destination queues

Example: Setting user-defined properties on a file-to-message transfer
User-defined metadata is set as an IBM MQ message property on the first message written to the
destination queue by the transfer. IBM MQ message properties enable an application to select messages
to process, or to retrieve information about a message without accessing IBM MQ Message Descriptor
(MQMD) or MQRFH2 headers.

About this task
Include the parameters -qmp true and -md account=123456 in the fteCreateTransfer command,
to set the usr.account property to 123456 in the RFH2 header.

Procedure
Type the following command:

fteCreateTransfer -sa AGENT_JUPITER -da AGENT_SATURN -dq MY_QUEUE@MyQM
 -qmp true -md account=123456 /tmp/source_file.txt

In addition to the standard set of IBM MQ message properties, the user-defined property is set in the
message header of the first message written by the destination agent, AGENT_SATURN, to the queue,
MY_QUEUE, on queue manager, MyQM. The header is set to the following value:

usr.account=123456

The prefix usr is added to the beginning of the name of the user-defined metadata.

Related concepts
“Transferring data from files to messages” on page 256
You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.
Related tasks
“Configuring an agent to perform file-to-message transfers” on page 257

Administering IBM MQ 267

By default agents cannot perform file-to-message or message-to-file transfers. To enable this function
you must set the agent property enableQueueInputOutput to true. To enable writing to IBM MQ clustered
queues, you must also set the agent property enableClusterQueueInputOutput to true.
“Example: Transferring a single file to a single message” on page 259
You can specify a queue as the destination of a file transfer by using the -dq parameter with the
fteCreateTransfer command. The source file must be smaller than the maximum message length set
on the destination queue. The destination queue does not have to be on the same queue manager as the
queue manager that the destination agent connects to, but these two queue managers must be able to
communicate.
“Example: Splitting a single file into multiple messages by length” on page 260
You can split a file into multiple IBM MQ messages by using the -qs parameter of the
fteCreateTransfer command. The file is split into fixed-length sections, each of which is written
to an individual message.
“Example: Splitting a text file with a regular expression delimiter and including the delimiter in the
messages” on page 263
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression and include the regular expression match in the resulting messages. To do this you use the
-dqdt and -qi parameters of the fteCreateTransfer command.
“Example: Splitting a text file into multiple messages using a regular expression delimiter” on page 262
Transfer a single text file to multiple messages by splitting the file at each match of a given Java regular
expression. To do this you use the -dqdt parameter of the fteCreateTransfer command.
“Example: Setting IBM MQ message properties on a file-to-message transfer” on page 266
You can use the -qmp parameter on the fteCreateTransfer command to specify whether IBM MQ
message properties are set on the first message written to the destination queue by the transfer. IBM MQ
message properties allow an application to select messages to process, or to retrieve information about a
message without accessing IBM MQ Message Descriptor (MQMD) or MQRFH2 headers.
“Starting a new file transfer” on page 212
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
Related reference
MQ message properties set by MFT on messages written to destination queues

Example: adding a user-defined message property for a file-to-message transfer
If you are using Managed File Transfer for message-to-file managed transfers, you can include a user-
defined message property for the resulting message.

About this task
You can use any of the following methods to define a custom message property:

• Specify the -md parameter on the transfer request. For more information, see “Example: Setting user-
defined properties on a file-to-message transfer” on page 267.

• Use an Ant task; you can use either fte:filecopy or fte:filemove. The following example is a fte:filecopy
task:

<project xmlns:fte="antlib:com.ibm.wmqfte.ant.taskdefs" default="complete">
<!-- Initialise the properties used in this script.-->

<target name="init" description="initialise task properties">
 <property name="src.file" value="/home/user/file1.bin"/>
 <property name="dst.queue" value="TEST.QUEUE@qm2"/>
 <fte:uuid property="job.name" length="8"
prefix="copyjob#"/>
</target>
<target name="step1" depends="init" description="transfer file">

<fte:filecopy cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 src="agent1@qm1" dst="agent2@qm2"

268 Administering IBM MQ

 rcproperty="copy.result">

<fte:metadata>
<fte:entry name="fileName" value="${FileName}"/>
</fte:metadata>

<fte:filespec srcfilespec="${src.file}" dstqueue="${dst.queue}"
dstmsgprops="true"/>

</fte:filecopy>

</target>
</project>

• Use a resource monitor and variable substitution. The following example shows some transfer task XML:

<?xml version="1.0" encoding="UTF-8"?>
<monitor:monitor
xmlns:monitor="https://www.ibm.com/xmlns/wmqfte/7.0.1/MonitorDefinition"
xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance" version="5.00"
xsi:schemaLocation="https://www.ibm.com/xmlns/wmqfte/7.0.1/MonitorDefinit ion ./Monitor.xsd">
 <name>METADATA</name>
 <pollInterval units="minutes">5</pollInterval>
 <batch maxSize="5"/>
 <agent>AGENT1</agent>
 <resources>
 <directory recursionLevel="0">e:\temp</directory>
 </resources>
 <triggerMatch>
 <conditions>
 <allOf>
 <condition>
 <fileMatch>
 <pattern>*.txt</pattern>
 </fileMatch>
 </condition>
 </allOf>
 </conditions>
 </triggerMatch>
 <tasks>
 <task>
 <name/>
 <transfer>
 <request version="5.00"
xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>mqjason.raleigh.ibm.com.</hostName>
 <userID>administrator</userID>
 </originator>
 <sourceAgent QMgr="AGENTQM" agent="AGENT1"/>
 <destinationAgent QMgr="AGENTQM" agent="AGENT2"/>
 <transferSet priority="0">
 <metaDataSet>
 <metaData key="FileName">${FileName}</metaData>
 </metaDataSet>
 <item checksumMethod="MD5" mode="text">
 <source disposition="delete" recursive="false">
 <file>${FilePath}</file>
 </source>
 <destination type="queue">
 <queue persistent="true"
setMqProps="true">TEST.QUEUE@AGENTQM</queue>
 </destination>
 </item>
 </transferSet>
 <job>
 <name>Metadata_example</name>
 </job>
 </managedTransfer>
 </request>
 </transfer>
 </task>
 </tasks>
 <originator>
 <hostName>mqjason.raleigh.ibm.com.</hostName>
 <userID>administrator</userID>

Administering IBM MQ 269

 </originator>
</monitor:monitor>

Related tasks
“Example: Setting IBM MQ message properties on a file-to-message transfer” on page 266
You can use the -qmp parameter on the fteCreateTransfer command to specify whether IBM MQ
message properties are set on the first message written to the destination queue by the transfer. IBM MQ
message properties allow an application to select messages to process, or to retrieve information about a
message without accessing IBM MQ Message Descriptor (MQMD) or MQRFH2 headers.
Related reference
fte:filecopy Ant task
fte:filemove Ant task

Failure of a file-to-message transfer
If a file-to- message transfer fails after the agent has started writing file data to the destination queue, the
agent writes a message to the queue to indicate to an application consuming the messages that a failure
has occurred.

The message written to the destination queue if a failure occurs:

• Is blank
• Has the same IBM MQ group ID as the previous message written to the destination queue by the agent
• Has the IBM MQ LAST_MSG_IN_GROUP flag set
• Contains additional IBM MQ message properties, if message properties are enabled. For more

information, see the topic MQ message properties set by MFT on messages written to destination
queues.

Example

A transfer is requested by running the following command:

fteCreateTransfer -sa AGENT_JUPITER -da AGENT_SATURN -dq RECEIVING_QUEUE
 -qmp true -qs 1K /tmp/source1.txt

The file source1.txt is 48 KB. The transfer splits this file into 1 KB messages and writes these
messages to the destination queue RECEIVING_QUEUE.

While the transfer is in progress, after the agent has written 16 messages to RECEIVING_QUEUE, a failure
occurs at the source agent.

The agent writes a blank message to RECEIVING_QUEUE. In addition to the standard set of message
properties, the blank message has the following message properties set:

usr.WMQFTEResultCode = 40
usr.WMQFTESupplement = BFGTR0036I: The transfer failed to complete successfully.

From IBM MQ 9.3.0, when a transfer from a file fails, because of a delimiter size check error, only one
empty message is sent. Additionally, the user properties are added to this message if transfer failure was
due to the delimiter exceeding the set size on the destination agent.

Related concepts
“Transferring data from files to messages” on page 256
You can use the file-to-message feature of Managed File Transfer to transfer data from a file to a single
message, or multiple messages, on an IBM MQ queue.
Related tasks
“Configuring an agent to perform file-to-message transfers” on page 257

270 Administering IBM MQ

By default agents cannot perform file-to-message or message-to-file transfers. To enable this function
you must set the agent property enableQueueInputOutput to true. To enable writing to IBM MQ clustered
queues, you must also set the agent property enableClusterQueueInputOutput to true.
“Starting a new file transfer” on page 212
You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
Related reference
The MFT agent.properties file
MQ message properties set by MFT on messages written to destination queues

Transferring data from messages to files
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.

For information about file-to-message transfers, see “Transferring data from files to messages” on page
256.

Attention: The source agent for a message-to-file transfer cannot be a protocol bridge agent or a
Connect:Direct bridge agent.

You can transfer IBM MQ message data to a file. The following types of message-to-file transfer are
supported:

• From a single message to a single file
• From multiple messages to a single file
• From multiple messages with the same IBM MQ group ID to a single file.
• From multiple messages to a single file, including a text or binary delimiter between the data from each

message written to the file.

If you are transferring files from large messages, or many small messages, you might need to change
some IBM MQ or Managed File Transfer properties. For more information about, see Guidance for setting
MQ attributes and MFT properties associated with message size.

In a message to file transfer, the source agent browses the messages from the source queue, unlike
the destructive GET in earlier versions of IBM MQ. The messages are removed from the source queue
after all messages (in a group if message grouping is used) have been browsed and data written to the
destination file. This allows messages to remain in the source queue if a transfer fails or is canceled. Due
to this change, authority to BROWSE must also be provided along with GET authority to run message to
file transfers.

Managed File Transfer compares the transfer identifier and the value of the groupId attribute within the
transfer request XML payload. If these two identifiers are equivalent, the source agent uses the identifier
as a message identifier match option (as opposed to a group identifier match option) for the first MQGET
attempt that is made on the input queue for the message-to-file transfer.

Related tasks
“Example: Configuring an MFT resource” on page 233
You can specify an IBM MQ queue as the resource to be monitored by a resource monitor by using the
-mq parameter with the fteCreateMonitor command.
Related reference
MQ message properties read by MFT from messages on source queues
Guidance for setting MQ attributes and MFT properties associated with message size

Administering IBM MQ 271

Configuring an agent to perform message-to-file transfers
By default agents cannot perform message to file, or file to message, transfers. To enable this function
you must set the agent property enableQueueInputOutput to true.

About this task
If you attempt to perform a message to file transfer from a source agent that does not have the
enableQueueInputOutput property set to true, the transfer fails. The transfer log message that is
published to the coordination queue manager contains the following message:

BFGIO0197E: An attempt to read from a queue was rejected by the source agent.
The agent must have enableQueueInputOutput=true set in the agent.properties file
to support transferring from a queue.

To enable the agent to write to and read from queues perform the following steps:

Procedure
1. Stop the source agent using the fteStopAgent command.
2. Edit the agent.properties file to include the line enableQueueInputOutput=true.

The agent.properties file is located in the directory MQ_DATA_PATH/mqft/config/
coordination_queue_manager/agents/source_agent_name.

3. Start the source agent using the fteStartAgent command.

Related concepts
“Transferring data from messages to files” on page 271
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.
Related tasks
“Example: Transferring from a queue to a single file” on page 273
You can specify an IBM MQ queue as the source of a file transfer by using the -sq parameter with the
fteCreateTransfer command.
“Example: Transferring a group of messages from a queue to a single file” on page 274
You can specify a single complete group on an IBM MQ queue as the source of a file transfer by using the
-sq and -sqgi parameters with the fteCreateTransfer command.
“Example: Inserting a text delimiter before the data from each message” on page 275
When you are transferring in text mode from a source queue to a file, you can specify that a text delimiter
is inserted before the data from individual messages by using the -sq, -sqdt and -sqdp parameters with
the fteCreateTransfer command.
“Example: Inserting a binary delimiter after the data from each message” on page 276
When transferring in binary mode from a source queue to a file, you can specify that a binary delimiter is
inserted after the data from individual messages by using the -sq, -sqdb, and -sqdp parameters with
the fteCreateTransfer command.
“Monitoring a queue and using variable substitution” on page 240
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.
“Example: Failing a message-to-file transfer using IBM MQ message properties” on page 279

272 Administering IBM MQ

You can cause a message to file transfer to fail by setting the usr.UserReturnCode IBM MQ message
property to a non-zero value. You can also specify supplementary information about the reason for the
failure by setting the usr.UserSupplement IBM MQ message property.
Related reference
The MFT agent.properties file

Example: Transferring from a queue to a single file
You can specify an IBM MQ queue as the source of a file transfer by using the -sq parameter with the
fteCreateTransfer command.

About this task
The source data is contained in three messages on the queue START_QUEUE. This queue must be on the
source agent's queue manager, QM_NEPTUNE.

Procedure
Type the following command:

fteCreateTransfer -sa AGENT_NEPTUNE -sm QM_NEPTUNE
 -da AGENT_VENUS -df /out/three_to_one.txt
 -sq START_QUEUE

The data in the messages on the queue START_QUEUE is written to the file /out/three_to_one.txt on
the system where AGENT_VENUS is running.

Related concepts
“Transferring data from messages to files” on page 271
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.
Related tasks
“Configuring an agent to perform message-to-file transfers” on page 272
By default agents cannot perform message to file, or file to message, transfers. To enable this function
you must set the agent property enableQueueInputOutput to true.
“Example: Transferring a group of messages from a queue to a single file” on page 274
You can specify a single complete group on an IBM MQ queue as the source of a file transfer by using the
-sq and -sqgi parameters with the fteCreateTransfer command.
“Example: Inserting a text delimiter before the data from each message” on page 275
When you are transferring in text mode from a source queue to a file, you can specify that a text delimiter
is inserted before the data from individual messages by using the -sq, -sqdt and -sqdp parameters with
the fteCreateTransfer command.
“Example: Inserting a binary delimiter after the data from each message” on page 276
When transferring in binary mode from a source queue to a file, you can specify that a binary delimiter is
inserted after the data from individual messages by using the -sq, -sqdb, and -sqdp parameters with
the fteCreateTransfer command.
“Monitoring a queue and using variable substitution” on page 240
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to

Administering IBM MQ 273

be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.
“Example: Failing a message-to-file transfer using IBM MQ message properties” on page 279
You can cause a message to file transfer to fail by setting the usr.UserReturnCode IBM MQ message
property to a non-zero value. You can also specify supplementary information about the reason for the
failure by setting the usr.UserSupplement IBM MQ message property.
Related reference
MQ message properties read by MFT from messages on source queues
fteCreateTransfer: start a new file transfer

Example: Transferring a group of messages from a queue to a single file
You can specify a single complete group on an IBM MQ queue as the source of a file transfer by using the
-sq and -sqgi parameters with the fteCreateTransfer command.

About this task
In this example, there are ten messages on the queue START_QUEUE. This queue must be
on the source agent's queue manager, QM_NEPTUNE. The first three messages belong to a
group with the IBM MQ group ID 41424b3ef3a2202020202020202020202020202020201111;
this group is not a complete group. The next five messages belong to a group with the
IBM MQ group ID 41424b3ef3a2202020202020202020202020202020202222; this group is
complete. The remaining two messages belong to a group with the IBM MQ group ID
41424b3ef3a2202020202020202020202020202020203333; this group is complete.

Procedure
Type the following command:

fteCreateTransfer -sa AGENT_NEPTUNE -sm QM_NEPTUNE -da AGENT_VENUS
 -df /out/group.txt -sqgi -sq START_QUEUE

The data in the messages belonging to the first complete group on the queue START_QUEUE, the group
with IBM MQ group ID 41424b3ef3a2202020202020202020202020202020202222, is written to the
file /out/group.txt on the system where AGENT_VENUS is running.

Related concepts
“Transferring data from messages to files” on page 271
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.
Related tasks
“Configuring an agent to perform message-to-file transfers” on page 272
By default agents cannot perform message to file, or file to message, transfers. To enable this function
you must set the agent property enableQueueInputOutput to true.
“Example: Transferring from a queue to a single file” on page 273
You can specify an IBM MQ queue as the source of a file transfer by using the -sq parameter with the
fteCreateTransfer command.
“Example: Inserting a text delimiter before the data from each message” on page 275

274 Administering IBM MQ

When you are transferring in text mode from a source queue to a file, you can specify that a text delimiter
is inserted before the data from individual messages by using the -sq, -sqdt and -sqdp parameters with
the fteCreateTransfer command.
“Example: Inserting a binary delimiter after the data from each message” on page 276
When transferring in binary mode from a source queue to a file, you can specify that a binary delimiter is
inserted after the data from individual messages by using the -sq, -sqdb, and -sqdp parameters with
the fteCreateTransfer command.
“Monitoring a queue and using variable substitution” on page 240
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.
“Example: Failing a message-to-file transfer using IBM MQ message properties” on page 279
You can cause a message to file transfer to fail by setting the usr.UserReturnCode IBM MQ message
property to a non-zero value. You can also specify supplementary information about the reason for the
failure by setting the usr.UserSupplement IBM MQ message property.
Related reference
fteCreateTransfer: start a new file transfer

Example: Inserting a text delimiter before the data from each message
When you are transferring in text mode from a source queue to a file, you can specify that a text delimiter
is inserted before the data from individual messages by using the -sq, -sqdt and -sqdp parameters with
the fteCreateTransfer command.

About this task
In this example, there are four messages on the queue START_QUEUE. This queue is on the source agent's
queue manager, QM_NEPTUNE. The text delimiter to be inserted before the data from each message can
be expressed as a Java literal string, for example: \n\u002D\u002D\u002D\n.

Procedure
Type the following command:

fteCreateTransfer -sa AGENT_NEPTUNE -sm QM_NEPTUNE -da AGENT_VENUS -df /out/output.txt
 -t text -sqdt "\n\u002D\u002D\u002D\n" -sqdp prefix -sq START_QUEUE

The text delimiter is added to the beginning of the data from each of the four messages on START_QUEUE
by the source agent, AGENT_NEPTUNE. This data is written to the destination file, /out/output.txt.

Related concepts
“Transferring data from messages to files” on page 271
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.
Related tasks
“Configuring an agent to perform message-to-file transfers” on page 272
By default agents cannot perform message to file, or file to message, transfers. To enable this function
you must set the agent property enableQueueInputOutput to true.
“Example: Transferring from a queue to a single file” on page 273

Administering IBM MQ 275

You can specify an IBM MQ queue as the source of a file transfer by using the -sq parameter with the
fteCreateTransfer command.
“Example: Transferring a group of messages from a queue to a single file” on page 274
You can specify a single complete group on an IBM MQ queue as the source of a file transfer by using the
-sq and -sqgi parameters with the fteCreateTransfer command.
“Example: Inserting a binary delimiter after the data from each message” on page 276
When transferring in binary mode from a source queue to a file, you can specify that a binary delimiter is
inserted after the data from individual messages by using the -sq, -sqdb, and -sqdp parameters with
the fteCreateTransfer command.
“Monitoring a queue and using variable substitution” on page 240
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.
“Example: Failing a message-to-file transfer using IBM MQ message properties” on page 279
You can cause a message to file transfer to fail by setting the usr.UserReturnCode IBM MQ message
property to a non-zero value. You can also specify supplementary information about the reason for the
failure by setting the usr.UserSupplement IBM MQ message property.
Related reference
fteCreateTransfer: start a new file transfer

Example: Inserting a binary delimiter after the data from each message
When transferring in binary mode from a source queue to a file, you can specify that a binary delimiter is
inserted after the data from individual messages by using the -sq, -sqdb, and -sqdp parameters with
the fteCreateTransfer command.

About this task
In this example, there are three messages on the queue START_QUEUE. This queue is on the
source agent's queue manager, QM_NEPTUNE. The binary delimiter to be inserted after the data from
each message must be expressed as a comma-separated list of hexadecimal bytes, for example:
x34,xE7,xAE.

Procedure
Type the following command:

fteCreateTransfer -sa AGENT_NEPTUNE -sm QM_NEPTUNE -da AGENT_VENUS -df /out/binary.file
 -sqdp postfix -sqdb x34,xE7,xAE -sq START_QUEUE

The binary delimiter is appended to the data from each of the three messages on START_QUEUE by the
source agent, AGENT_NEPTUNE. This data is written to the destination file, /out/binary.file.

Related concepts
“Transferring data from messages to files” on page 271
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.
Related tasks
“Configuring an agent to perform message-to-file transfers” on page 272

276 Administering IBM MQ

By default agents cannot perform message to file, or file to message, transfers. To enable this function
you must set the agent property enableQueueInputOutput to true.
“Example: Transferring from a queue to a single file” on page 273
You can specify an IBM MQ queue as the source of a file transfer by using the -sq parameter with the
fteCreateTransfer command.
“Example: Transferring a group of messages from a queue to a single file” on page 274
You can specify a single complete group on an IBM MQ queue as the source of a file transfer by using the
-sq and -sqgi parameters with the fteCreateTransfer command.
“Example: Inserting a text delimiter before the data from each message” on page 275
When you are transferring in text mode from a source queue to a file, you can specify that a text delimiter
is inserted before the data from individual messages by using the -sq, -sqdt and -sqdp parameters with
the fteCreateTransfer command.
“Monitoring a queue and using variable substitution” on page 240
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.
“Example: Failing a message-to-file transfer using IBM MQ message properties” on page 279
You can cause a message to file transfer to fail by setting the usr.UserReturnCode IBM MQ message
property to a non-zero value. You can also specify supplementary information about the reason for the
failure by setting the usr.UserSupplement IBM MQ message property.
Related reference
fteCreateTransfer: start a new file transfer

Monitoring a queue and using variable substitution
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.

About this task
In this example, the source agent is called AGENT_VENUS, which connects to QM_VENUS. The queue that
AGENT_VENUS monitors is called START_QUEUE and is located on QM_VENUS. The agent polls the queue
every 30 minutes.

When a complete group of messages is written to the queue the monitor task sends the group of
messages to a file at one of a number of destination agents, all of which connect to the queue manager
QM_MARS. The name of the file that the group of messages is transferred to is defined by the IBM
MQ message property usr.fileName on the first message in the group. The name of the agent that
the group of messages is sent to is defined by the IBM MQ message property usr.toAgent on the
first message in the group. If the usr.toAgent header is not set, the default value to be used for the
destination agent is AGENT_MAGENTA.

When you specify useGroups="true", if you do not also specify groupId="${GROUPID}", the transfer
just takes the first message on the queue. For example, if you are using variable substitution to generate
the fileName, it is therefore possible that the contents of a.txt will not be correct. This is because the
fileName is generated by the monitor, but the transfer actually gets a message that is not the one that
should generate the file called fileName.

Procedure
1. Create the task XML that defines the task that the monitor performs when it is triggered.

<?xml version="1.0" encoding="UTF-8" ?>
<request version="4.00"

Administering IBM MQ 277

 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>reportserver.com</hostName>
 <userID>USER1</userID>
 </originator>
 <sourceAgent agent="AGENT_VENUS" QMgr="QM_VENUS" />
 <destinationAgent agent="${toAgent}" QMgr="QM_MARS" />
 <transferSet>
 <item mode="binary" checksumMethod="none">
 <source>
 <queue useGroups="true" groupId="${GROUPID}">START_QUEUE</queue>
 </source>
 <destination type="file" exist="overwrite">
 <file>/reports/${fileName}.rpt</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

The variables that are replaced with the values of IBM MQ message headers are highlighted in bold.
This task XML is saved to the file /home/USER1/task.xml

2. Create a resource monitor to monitor the queue START_QUEUE.
Submit the following command:

fteCreateMonitor -ma AGENT_VENUS -mm QM_VENUS -mq START_QUEUE
 -mn myMonitor -mt /home/USER1/task.xml
 -tr completeGroups -pi 30 -pu minutes -dv toAgent=AGENT_MAGENTA

3. A user or program writes a group of messages to the queue START_QUEUE.
The first message in this group has the following IBM MQ message properties set:

usr.fileName=larmer
usr.toAgent=AGENT_VIOLET

4. The monitor is triggered when the complete group is written. The agent substitutes the IBM MQ
message properties into the task XML.
This results in the task XML being transformed to:

<?xml version="1.0" encoding="UTF-8" ?>
<request version="4.00"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>reportserver.com</hostName>
 <userID>USER1</userID>
 </originator>
 <sourceAgent agent="AGENT_VENUS" QMgr="QM_VENUS" />
 <destinationAgent agent="AGENT_VIOLET" QMgr="QM_MARS" />
 <transferSet>
 <item mode="binary" checksumMethod="none">
 <source>
 <queue useGroups="true" groupId="${GROUPID}">START_QUEUE</queue>
 </source>
 <destination type="file" exist="overwrite">
 <file>/reports/larmer.rpt</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

Results
The transfer that is defined by the task XML is performed. The complete group of messages that are
read from the START_QUEUE by AGENT_VENUS is written to a file called /reports/larmer.rpt on the
system where AGENT_VIOLET is running.

278 Administering IBM MQ

What to do next
Transferring each message to a separate file

If you want to monitor a queue and have every message transferred to a separate file, you can use a
similar technique to the one described previously in this topic.

1. Create the monitor as described previously, specifying the -tr completeGroups parameter on the
fteCreateMonitor command.

2. In the task XML specify the following:

<queue useGroups="true" groupId="${GROUPID}">START_QUEUE</queue>

However, when you put the messages onto the source queue, do not put them in an IBM MQ group. Add
IBM MQ message properties to each message. For example, specify the usr.filename property with a
unique file name value for each message. This effectively causes the Managed File Transfer Agent to treat
each message on the source queue as a separate group.

Related concepts
“Transferring data from messages to files” on page 271
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.
“Customizing MFT resource monitor tasks with variable substitution” on page 234
When the trigger conditions of an active resource monitor are satisfied, the defined task is called. In
addition to calling the transfer or command task with the same destination agent or the same destination
file name every time, you can also modify the task definition at run time. You do this by inserting variable
names into the task definition XML. When the monitor determines that the trigger conditions are satisfied,
and that the task definition contains variable names, it substitutes the variable names with the variable
values, and then calls the task.
What to do if destination files created by a transfer started by a queue resource monitor contain the wrong
data
Related tasks
“Configuring MFT monitor tasks to start commands and scripts” on page 228
Resource monitors are not limited to performing file transfers as their associated task. You can also
configure the monitor to call other commands from the monitoring agent, including executable programs,
Ant scripts or JCL jobs. To call commands, edit the monitor task definition XML to include one or more
command elements with corresponding command call parameters, such as arguments and properties.
“Example: Configuring an MFT resource” on page 233
You can specify an IBM MQ queue as the resource to be monitored by a resource monitor by using the
-mq parameter with the fteCreateMonitor command.
Related reference
fteCreateMonitor: create an MFT resource monitor
MQ message properties read by MFT from messages on source queues

Example: Failing a message-to-file transfer using IBM MQ message properties
You can cause a message to file transfer to fail by setting the usr.UserReturnCode IBM MQ message
property to a non-zero value. You can also specify supplementary information about the reason for the
failure by setting the usr.UserSupplement IBM MQ message property.

About this task
In this example, a transfer is in progress between the queue INPUT_QUEUE and the file /home/user/
output.file.

Administering IBM MQ 279

A user is creating messages and placing them on the queue INPUT_QUEUE. The source agent is
consuming messages from the queue INPUT_QUEUE and is sending the transfer data to the destination
agent. The destination agent is writing this data to the file /home/user/output.file.

The user writing messages to the queue INPUT_QUEUE wants to stop the transfer that is in progress and
delete any data that has already been written to the destination file.

Procedure
1. The user writes a message to the queue INPUT_QUEUE that has the following IBM MQ message

properties set:

usr.UserReturnCode=1
usr.UserSupplement="Cancelling transfer - sent wrong data."

2. The source agent reads the IBM MQ message properties and stops processing messages from the
queue. The destination agent deletes any file data that has been written to the destination directory.

3. The source agent sends a transfer log message to the coordination queue manager reporting the
transfer failure.
The message contains the following information:

<?xml version="1.0" encoding="UTF-8"?>
<transaction version="1.00"
 ID="414d5120514d312020202020202020207e970d4920008702" agentRole="sourceAgent"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="TransferLog.xsd"
 xmlns="">
 <action time="2008-11-02T21:28:09.593Z">progress</action>
 <sourceAgent agent="FTEAGENT" QMgr="QM1">
 <systemInfo architecture="x86" name="Windows 7"
 version="6.1 build 7601 Service Pack 1" />
 </sourceAgent>
 <destinationAgent agent="FTEAGENT" QMgr="QM1">
 <systemInfo architecture="x86" name="Windows 7"
 version="6.1 build 7601 Service Pack 1" />
 </destinationAgent>
 <originator>
 <hostName>reportserver.com</hostName>
 <userID>USER1</userID>
 <mqmdUserID>USER1 </mqmdUserID>
 </originator>
 <transferSet index="0" size="1"
 startTime="2008-11-02T21:28:09.281Z"
 total="1">
 <item mode="binary">
 <source>
 <queue>INPUT_QUEUE@QM1</queue>
 </source>
 <destination exist="error">
 <file>/home/user/output.file</file>
 </destination>
 <status resultCode="1">
 <supplement>Cancelling transfer - sent wrong data.</supplement>
 </status>
 </item>
 </transferSet>
</transaction>

Related concepts
“Transferring data from messages to files” on page 271
The message-to-file feature of Managed File Transfer enables you to transfer data from one or more
messages on an IBM MQ queue to a file, a data set (on z/OS), or a user file space. If you have an
application that creates or processes IBM MQ messages, you can use the message-to-file capability of
Managed File Transfer to transfer these messages to a file on any system in your Managed File Transfer
network.
Related tasks
“Configuring an agent to perform message-to-file transfers” on page 272

280 Administering IBM MQ

By default agents cannot perform message to file, or file to message, transfers. To enable this function
you must set the agent property enableQueueInputOutput to true.
“Example: Transferring from a queue to a single file” on page 273
You can specify an IBM MQ queue as the source of a file transfer by using the -sq parameter with the
fteCreateTransfer command.
“Example: Transferring a group of messages from a queue to a single file” on page 274
You can specify a single complete group on an IBM MQ queue as the source of a file transfer by using the
-sq and -sqgi parameters with the fteCreateTransfer command.
“Example: Inserting a text delimiter before the data from each message” on page 275
When you are transferring in text mode from a source queue to a file, you can specify that a text delimiter
is inserted before the data from individual messages by using the -sq, -sqdt and -sqdp parameters with
the fteCreateTransfer command.
“Example: Inserting a binary delimiter after the data from each message” on page 276
When transferring in binary mode from a source queue to a file, you can specify that a binary delimiter is
inserted after the data from individual messages by using the -sq, -sqdb, and -sqdp parameters with
the fteCreateTransfer command.
“Monitoring a queue and using variable substitution” on page 240
You can monitor a queue and transfer messages from the monitored queue to a file by using the
fteCreateMonitor command. The value of any IBM MQ message property in the first message to
be read from the monitored queue can be substituted in the task XML definition and used to define the
transfer behavior.
Related reference
MQ message properties read by MFT from messages on source queues

The protocol bridge
The protocol bridge enables your Managed File Transfer (MFT) network to access files stored on a file
server outside your MFT network, either in your local domain or a remote location. This file server can
use the FTP, FTPS, or SFTP network protocols. Each file server needs at least one dedicated agent. The
dedicated agent is known as the protocol bridge agent. A bridge agent can interact with multiple file
servers.

The protocol bridge is available as part of the Service component of Managed File Transfer. You can have
multiple dedicated agents on a single system running MFT that connect to different file servers.

You can use a protocol bridge agent to transfer files to multiple endpoints simultaneously. MFT provides
a file called ProtocolBridgeProperties.xml that you can edit to define the different protocol file
servers that you want to transfer files to. The fteCreateBridgeAgent command adds the details of
the default protocol file server to ProtocolBridgeProperties.xml for you. This file is described in
Protocol bridge properties file format.

You can use the protocol bridge agent to perform the following actions:

• Upload files from the MFT network to a remote server using FTP, FTPS, or SFTP.
• Download files from a remote server, using FTP, FTPS, or SFTP, to the MFT network

Note: The protocol bridge agent can support only FTP, FTPS, or SFTP servers that allow files to be
accessed by their absolute file path. If a relative file path is specified in a transfer request, the protocol
bridge agent will attempt to convert the relative path into an absolute file path based on the home
directory used to login to the protocol server. Those protocol servers that allow access to files based only
on the current directory are not supported by the protocol bridge agent.

Administering IBM MQ 281

The diagram shows two FTP servers, at different locations. The FTP servers are being used to exchange
files with the Managed File Transfer agents. The protocol bridge agent is between the FTP servers and the
rest of the MFT network, and is configured to communicate with both FTP servers.

Ensure that you have another agent in your MFT network in addition to the protocol bridge agent. The
protocol bridge agent is a bridge to the FTP, FTPS, or SFTP server only and does not write transferred
files to the local disk. If you want to transfer files to or from the FTP, FTPS, or SFTP server you must use
the protocol bridge agent as the destination or source for the file transfer (representing the FTP, FTPS, or
SFTP server) and another standard agent as the corresponding source or destination.

When you transfer files using the protocol bridge, the bridge must have permission to read the source or
destination directory containing the files you want to transfer. For example, if you want to transfer files
from the directory /home/fte/bridge that has execute permissions (d--x--x--x) only, any transfers you
attempt from this directory fail with the following error message:

BFGBR0032E: Attempt to read filename from the protocol file server
 has failed with server error 550. Failed to open file.

Configuring a protocol bridge agent
A protocol bridge agent is like a standard MFT agent. Create a protocol bridge agent by using
the fteCreateBridgeAgent command. You can configure a protocol bridge agent using the
ProtocolBridgeProperties.xml file, which is described in Protocol bridge properties file format.
If you are using an earlier version, configure the agent using the specific protocol bridge properties
described in Advanced agent properties: Protocol bridge and Advanced agent properties: Protocol bridge
agent logging. For all versions, you can also configure a credential mapping as described in “Mapping
credentials for a file server” on page 290. After you have configured a protocol bridge agent for a
particular protocol file server, you can then use that agent for that purpose only.

Protocol bridge recovery
If the protocol bridge agent is unable to connect to the file server because the file server is unavailable,
all file transfer requests are queued until the file server becomes available. If the protocol bridge agent
is unable to connect to the file server because the agent is using the wrong credentials, the transfer fails
and the transfer log message reflects this error. If the protocol bridge agent is ended for any reason, all
requested file transfers are retained and continue when the protocol bridge is restarted.

During file transfer, files are typically written as temporary files at the destination and are then renamed
when the transfer is complete. However, if the transfer destination is a protocol file server that is
configured as limited write (users can upload files to the protocol file server but cannot change those
uploaded files in any way; effectively users can write once only), transferred files are written to the

282 Administering IBM MQ

destination directly. This means that if a problem occurs during the transfer, the partially written files
remain on the destination protocol file server and Managed File Transfer cannot delete or edit these files.
In this situation, the transfer fails.

Related tasks
“Example: How to configure a protocol bridge agent to use private key credentials with a UNIX SFTP
server” on page 294
This example demonstrates how you can generate and configure the
ProtocolBridgeCredentials.xml file. This example is a typical example and the details might vary
according to your platform, but the principles remain the same.
“Defining properties for protocol file servers using the ProtocolBridgeProperties.xml file” on page 283
Define the properties of one or more protocol file servers that you want to transfer files to and from using
the ProtocolBridgeProperties.xml file, which is provided by Managed File Transfer in the agent
configuration directory.
Related reference
fteCreateBridgeAgent (create and configure an MFT protocol bridge agent)
“Mapping credentials for a file server” on page 290
Map user credentials in Managed File Transfer to user credentials on the file server by using the default
credential mapping function of the protocol bridge agent or by writing your own user exit. Managed File
Transfer provides a sample user exit that performs user credential mapping.
ProtocolBridgeCredentialExit.java interface
Sample protocol bridge credential user exit
FTPS server support by the protocol bridge

Defining properties for protocol file servers using the
ProtocolBridgeProperties.xml file
Define the properties of one or more protocol file servers that you want to transfer files to and from using
the ProtocolBridgeProperties.xml file, which is provided by Managed File Transfer in the agent
configuration directory.

About this task
The fteCreateBridgeAgent command creates the ProtocolBridgeProperties.xml file in
the agent configuration directory MQ_DATA_PATH/mqft/config/coordination_queue_manager/
agents/bridge_agent_name. The command also creates an entry in the file for the default protocol
file server, if a default was specified when the command was run.

The message BFGCL0392I gives the location of the ProtocolBridgeProperties.xml file.

<?xml version="1.0" encoding="IBM-1047"?>
<!--
This ProtocolBridgeProperties.xml file determines the protocol servers that will be accessed by
the
MQMFT protocol bridge agent.

Each protocol server is defined using either a <tns:ftpServer>, <tns:ftpsServer>, or
<tns:sftpServer>
element - depending on the protocol used to communicate with the server. When the protocol
bridge agent participates in a managed file transfer it will determine which server to used
based on
the prefix (if any) present on the file path. For example a file path of 'server1:/home/user/
file.txt' would
be interpreted as a request to transfer /home/user/file.txt using 'server1'. The server name
is compared
to the 'name' attribute of each <tns:ftpServer>, <tns:ftpsServer> or <tns:sftpServer> element
in this
XML document and the first match is used to determine which protocol server the protocol bridge
agent will connect to. If no match is found then the managed file transfer operation will fail.

If a file path is not prefixed with a server name, for example '/home/user/file.txt' then this
XML
document can specify a default server to use for the managed file transfer. To specify a
default server use the <tns:defaultServer> element as the first element inside the

Administering IBM MQ 283

<tns:serverProperties>
element. The default server will be used whenever the protocol bridge agent participates in
a managed file transfer for file names which do not specify a prefix.

An optional <tns:limits> element can be specified within each server definition. This element
contains
attributes that govern the amount of resources used by each defined server.

An optional <tns:credentialsFile> element can be specified within each serverProperties
definition. This
element contains a path to a file containing credentials to be used when connecting to defined
servers.

An example ProtocolBridgeProperties.xml file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<tns:serverProperties xmlns:tns="http://wmqfte.ibm.com/ProtocolBridgeProperties"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://wmqfte.ibm.com/ProtocolBridgeProperties
ProtocolBridgeProperties.xsd">

 <tns:credentialsFile path="$HOME/ProtocolBridgeCredentials.xml" />

 <tns:defaultServer name="myFTPserver" />

 <tns:ftpServer name="myFTPserver" host="windows.hursley.ibm.com" port="1234"
platform="windows"
 timeZone="Europe/London" locale="en_GB" fileEncoding="UTF-8"
 listFormat="unix" limitedWrite="false">

 <tns:limits maxListFileNames="100" maxListDirectoryLevels="999999999"
 maxReconnectRetry="2" reconnectWaitPeriod="10"
 maxSessions="60" socketTimeout="30" />

 </tns:ftpServer>

 <tns:ftpsServer name="myFTPSserver" host="unix.hursley.ibm.com" platform="unix"
 timeZone="Europe/London" locale="en_GB" fileEncoding="UTF8"
 listFormat="unix" limitedWrite="false" ftpsType="explicit"
 trustStore="C:\FTE\keystores\myFTPSserver\FTPSKeyStore.jks"
trustStorePassword="password">

 <tns:limits maxReconnectRetry="10" connectionTimeout="10"/>

 </tns:ftpsServer>

 <tns:sftpServer name="mySFTPserver" host="windows.hursley.ibm.com" platform="windows"
 timeZone="Europe/London" locale="en_GB" fileEncoding="UTF-8"
 limitedWrite="false">

 <tns:limits connectionTimeout="60"/>

 </tns:sftpServer>

</tns:serverProperties>

This example shows the outermost <tns:serverProperties> element which must exist for the
document to
be valid, an optional <tns:defaultServer> element, as well as definitions for an FTP, FTPS and
SFTP server.

The attributes of the <tns:ftpServer>, <tns:ftpsServer> and <tns:sftpServer> elements determine
the
characteristics of the connection established to the server. These attributes correspond to
the command
line parameters for the 'fteCreateBridgeAgent' command.

The following attributes are valid for all of the <tns:ftpServer>, <tns:ftpsServer> and
<tns:sftpServer>
elements: name, host, port, platform, fileEncoding, limitedWrite and controlEncoding.

The following attributes are valid for the <tns:ftpServer> and <tns:ftpsServer> elements:
timezone, locale,
listFormat, listFileRecentDateFormat, listFileOldDateFormat, and monthShortNames.

The following attributes are valid for the <tns:ftpServer> element only: passiveMode

The following attributes are valid for the <tns:ftpsServer> element only: ftpsType, trustStore,
trustStorePassword,
trustStoreType, keyStore, keyStorePassword, keyStoreType, ccc, protFirst, auth, and
connectTimeout.

284 Administering IBM MQ

The following attributes are valid for the <tns:limits> element within all of the
<tns:ftpServer>, <tns:ftpsServer>
and <tns:sftpServer> elements: maxListFileNames, maxListDirectoryLevels, maxReconnectRetry,
reconnectWaitPeriod,
maxSessions and socketTimeout

-->
<tns:serverProperties xmlns:tns="http://wmqfte.ibm.com/ProtocolBridgeProperties"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://wmqfte.ibm.com/ProtocolBridgeProperties
ProtocolBridgeProperties.xsd">

 <!-- By default the location of the credentials file is in the home directory of the user
that started the -->
 <!-- protocol bridge agent. If you wish to specify a different location use the
credentialsFile element to -->
 <!-- do this. For
example: -->
 <!-- <tns:credentialsFile path="/test/
ProtocolBridgeCredentials.xml"/> -->

 <tns:defaultServer name="WINMVSCA.HURSLEY.IBM.COM" />
 <tns:ftpServer name="WINMVSCA.HURSLEY.IBM.COM" host="WINMVSCA.HURSLEY.IBM.COM"
platform="unix"
 timeZone="Europe/London" locale="en-GB" fileEncoding="US-ASCII"
 listFormat="unix" limitedWrite="false" />

 <!-- Define servers here -->
</tns:serverProperties>

The command can produce the following message:BFGCL0532I:
For this agent to function an additional credentials file must be created manually.
By default this file is called ProtocolBridgeCredentials.xml and is located in the home
directory of the user who starts the agent. For example,if this user started the agent
the location would be: $HOME/ProtocolBridgeCredentials.xml

If you use a credentials file:

1. See the following text for further information on how to create one.
2. The credentials file must be in a directory with restricted permissions. For example, there must be no

read access for other users.
3. Specify the location of the directory for the credentials file in the $HOME environment variable for

the user ID of the started agent, or edit the ProtocolBridgeProperties.xml file and specify the
location in:

<tns:credentialsFile path="/test/ProtocolBridgeCredentials.xml"/>

If you want to add further non-default protocol servers, edit this file to define their properties. This
example adds an additional FTP server.

Note: The protocol bridge agent does not support file locking. This is because Managed File Transfer does
not support the file locking mechanism on a file server.

Procedure
1. Define a protocol file server by inserting the following lines into the file as a child element of
<tns:serverProperties>:

<tns:ftpServer name="myserver" host="myhost.hursley.ibm.com" port="1234"
 platform="windows"
 timeZone="Europe/London" locale="en-GB" fileEncoding="UTF-8"
 listFormat="unix" limitedWrite="false" >
<tns:limits maxListFileNames="10" maxListDirectoryLevels="500"/>

2. Then change the value of the attributes:

• name is the name of your protocol file server
• host is the host name or IP address of the protocol file server
• port is the port number of the protocol file server

Administering IBM MQ 285

• platform is the platform that the protocol file server runs on
• timeZone is the time zone that the protocol file server runs in
• locale is the language used on the protocol file server
• fileEncoding is the character encoding of the protocol file server
• listFormat is the file listing format returned from the protocol file server
• limitedWrite determines whether to follow the default mode when writing to a file server, which

is to create a temporary file and then rename that file when the transfer has completed. For a file
server that is configured as write only, the file is created directly with its final name. The value of this
property can be true or false. The limitedWrite attribute and the doNotUseTempOutputFile
agent property are used together in the case of protocol bridge agents. If you want to use temporary
files, then you must not set the value of doNotUseTempOutputFile, and you must set the value
of limitedWrite to false. Any other combination of settings means that temporary files will not be
used.

• maxListFileNames is the maximum number of names collected when scanning a directory on the
protocol file server for file names.

• maxListDirectoryLevels is the maximum number of directory levels to recurse when scanning a
directory on the protocol file server for file names.

For more details about these attributes, including whether they are required or optional and their
default values, see Protocol bridge properties file format.

Related reference
Protocol bridge properties file format
Regular expressions used by MFT

Looking up protocol file server properties: ProtocolBridgePropertiesExit2
If you have a large number of protocol file servers, you can implement the
com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit2 interface to look up
protocol file server properties that are referenced in transfers. You can implement this interface in
preference to maintaining a ProtocolBridgeProperties.xml file.

About this task
Managed File Transfer provides a sample user exit that looks up protocol file server properties. For more
information, see “Using the sample user exit to look up protocol file server properties” on page 287.

Any user exit that looks up protocol bridge properties must implement the interface
com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit2. For more information,
see ProtocolBridgePropertiesExit.java interface.

You can chain multiple protocol server properties exits together in a similar manner to
other user exits. The exits are called in the order that they are specified in using the
protocolBridgePropertiesExitClasses property in the agent properties file. The initialize
methods all return separately and if one or more returns a value of false, the agent does not start. The
error is reported in the agent event log.

Only one overall result is returned for the getProtocolServerProperties methods of all of the exits. If
the method returns a properties object as the result code, this value is the returned result and the
getProtocolServerProperties methods of the subsequent exits are not called. If the method returns a
value of null as the result code, the getProtocolServerProperties method of the next exit is called. If there
is no subsequent exit, the null result is returned. An overall result code of null is considered as a lookup
failure by the protocol bridge agent.

You are recommended to use the ProtocolBridgePropertiesExit2.java interface, but for information
about the ProtocolBridgePropertiesExit.java interface, see “Looking up protocol file server properties:
ProtocolBridgePropertiesExit” on page 288.

To run your exit, complete the following steps:

286 Administering IBM MQ

Procedure
1. Compile the protocol server properties user exit.
2. Create a Java archive (JAR) file containing the compiled exit and its package structure.
3. Put the JAR file containing the exit class in the exits directory of the protocol bridge agent .

This directory is found in the MQ_DATA_PATH/mqft/config/coordination_queue_manager/
agents/bridge_agent_name directory.

4. Edit the property file of the protocol bridge agent to include the property
protocolBridgePropertiesExitClasses. For the value of this property, specify a comma-
separated list of classes that implement a protocol bridge server properties user exit. The exit
classes are called in the order that they are specified in this list. For more information, see The MFT
agent.properties file.

5. You can optionally specify the protocolBridgePropertiesConfiguration property. The value
you specify for this property is passed in as a String to the initialize() method of the exit classes
specified by protocolBridgePropertiesExitClasses. For more information, see The MFT
agent.properties file.

Using the sample user exit to look up protocol file server properties
Managed File Transfer provides a sample user exit that looks up protocol file server properties.

About this task
A sample user exit that looks up protocol bridge properties is provided in the MQ_INSTALLATION_PATH/
mqft/samples/protocolBridge directory and in the topic Sample protocol bridge properties user
exit.

The SamplePropertiesExit2.java exit reads a properties file that contains properties for protocol
servers. The format of each entry in the properties file is as follows:

serverName=type://host:port

The location of the properties file is taken from the protocol bridge agent property
protocolBridgePropertiesConfiguration.

To run the sample user exit, complete the following steps:

Procedure
1. Compile the SamplePropertiesExit2.java file.
2. Create a JAR file containing the compiled exit and its package structure.
3. Put the JAR file in the MQ_DATA_PATH/mqft/config/coordination_queue_manager/agents/
bridge_agent/exits directory.

4. Edit the MQ_DATA_PATH/mqft/config/coordination_queue_manager/agents/
bridge_agent_name/agent.properties file to contain the line:

protocolBridgePropertiesExitClasses=SamplePropertiesExit2

5. Create a protocol bridge properties file, for example protocol_bridge_properties.properties,
in the directory MQ_DATA_PATH/mqft/config/coordination_queue_manager/agents/
bridge_agent. Edit this file to include entries in the format:

serverName=type://host:port

6. Edit the MQ_DATA_PATH/mqft/config/coordination_queue_manager/agents/
bridge_agent/agent.properties file to contain the line:

Administering IBM MQ 287

protocolBridgePropertiesConfiguration=MQ_DATA_PATH/mqft/config/coordination_queue_manager/
agents/bridge_agent/protocol_bridge_properties.properties

You must use the absolute path to the protocol_bridge_properties.properties file.
7. Start the protocol bridge agent by using the fteStartAgent command.

Related concepts
“The protocol bridge” on page 281
The protocol bridge enables your Managed File Transfer (MFT) network to access files stored on a file
server outside your MFT network, either in your local domain or a remote location. This file server can
use the FTP, FTPS, or SFTP network protocols. Each file server needs at least one dedicated agent. The
dedicated agent is known as the protocol bridge agent. A bridge agent can interact with multiple file
servers.
Related reference
ProtocolBridgePropertiesExit.java interface
Sample protocol bridge properties user exit
The MFT agent.properties file
fteCreateBridgeAgent (create and configure an MFT protocol bridge agent)

Looking up protocol file server properties: ProtocolBridgePropertiesExit
If you have a large number of protocol file servers, you can implement the
com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit interface to look up
protocol file server properties that are referenced in transfers.

About this task
You can implement the com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit
interface in preference to maintaining a ProtocolBridgeProperties.xml file.
Use the ProtocolBridgePropertiesExit2.java interface. The getCredentialLocation
method in ProtocolBridgePropertiesExit2.java uses the default location of the
ProtocolBridgeCredentials.xml file, which is your home directory.

Any user exit that looks up protocol bridge properties must implement the interface
com.ibm.wmqfte.exitroutine.api.ProtocolBridgePropertiesExit:

package com.ibm.wmqfte.exitroutine.api;

import java.util.Map;
import java.util.Properties;

/**
 * An interface that is implemented by classes that are to be invoked as part of
 * user exit routine processing. This interface defines methods that will be
 * invoked by a protocol bridge agent to look up properties for protocol servers
 * that are referenced in transfers.
 * <p>
 * There will be one instance of each implementation class for each protocol
 * bridge agent. The methods can be called from different threads so the methods
 * must be synchronised.
 */
public interface ProtocolBridgePropertiesExit {

 /**
 * Invoked once when a protocol bridge agent is started. It is intended to
 * initialize any resources that are required by the exit.
 *
 * @param bridgeProperties
 * The values of properties defined for the protocol bridge.
 * These values can only be read, they cannot be updated by the
 * implementation.
 * @return {@code true} if the initialization is successful and {@code
 * false} if unsuccessful. If {@code false} is returned from an exit
 * the protocol bridge agent will not start.
 */
 public boolean initialize(final Map<String, String> bridgeProperties);

288 Administering IBM MQ

 /**
 * Obtains a set of properties for the specified protocol server name.
 * <p>
 * The returned {@link Properties} must contain entries with key names
 * corresponding to the constants defined in
 * {@link ProtocolServerPropertyConstants} and in particular must include an
 * entry for all appropriate constants described as required.
 *
 * @param protocolServerName
 * The name of the protocol server whose properties are to be
 * returned. If a null or a blank value is specified, properties
 * for the default protocol server are to be returned.
 * @return The {@link Properties} for the specified protocol server, or null
 * if the server cannot be found.
 */
 public Properties getProtocolServerProperties(
 final String protocolServerName);

 /**
 * Invoked once when a protocol bridge agent is shut down. It is intended to
 * release any resources that were allocated by the exit.
 *
 * @param bridgeProperties
 * The values of properties defined for the protocol bridge.
 * These values can only be read, they cannot be updated by the
 * implementation.
 */
 public void shutdown(final Map<String, String> bridgeProperties);

}

You can chain multiple protocol server properties exits together in a similar manner to
other user exits. The exits are called in the order that they are specified in using the
protocolBridgePropertiesExitClasses property in the agent properties file. The initialize
methods all return separately and if one or more returns a value of false, the agent does not start. The
error is reported in the agent event log.

Only one overall result is returned for the getProtocolServerProperties methods of all of the exits. If
the method returns a properties object as the result code, this value is the returned result and the
getProtocolServerProperties methods of the subsequent exits are not called. If the method returns a
value of null as the result code, the getProtocolServerProperties method of the next exit is called. If there
is no subsequent exit, the null result is returned. An overall result code of null is considered as a lookup
failure by the protocol bridge agent.

Procedure
To run your exit, complete the following steps:
1. Compile the protocol server properties user exit.
2. Create a Java archive (JAR) file containing the compiled exit and its package structure.
3. Put the JAR file containing the exit class in the exits directory of the protocol bridge agent.

This directory is found in the MQ_DATA_PATH/mqft/config/coordination_queue_manager/
agents/bridge_agent_name directory.

4. Edit the property file of the protocol bridge agent to include the property
protocolBridgePropertiesExitClasses.
For the value of this property, specify a comma-separated list of classes that implement a protocol
bridge server properties user exit. The exit classes are called in the order that they are specified in this
list. For more information, see The MFT agent.properties file.

5. You can optionally specify the protocolBridgePropertiesConfiguration property.
The value you specify for this property is passed in as a String to the initialize() method of the exit
classes specified by protocolBridgePropertiesExitClasses. For more information, see The
MFT agent.properties file.

Administering IBM MQ 289

Mapping credentials for a file server
Map user credentials in Managed File Transfer to user credentials on the file server by using the default
credential mapping function of the protocol bridge agent or by writing your own user exit. Managed File
Transfer provides a sample user exit that performs user credential mapping.
Related concepts
“The protocol bridge” on page 281
The protocol bridge enables your Managed File Transfer (MFT) network to access files stored on a file
server outside your MFT network, either in your local domain or a remote location. This file server can
use the FTP, FTPS, or SFTP network protocols. Each file server needs at least one dedicated agent. The
dedicated agent is known as the protocol bridge agent. A bridge agent can interact with multiple file
servers.
Related tasks
“Mapping credentials for a file server by using the ProtocolBridgeCredentials.xml file” on page 290
Map user credentials in Managed File Transfer to user credentials on the file server by using the default
credential mapping function of the protocol bridge agent. Managed File Transfer provides an XML file that
you can edit to include your credential information.
“Mapping credentials for a file server by using exit classes” on page 292
If you do not want to use the default credential mapping function of the protocol bridge agent, you can
map user credentials in Managed File Transfer to user credentials on the file server by writing your own
user exit. If you configure credential mapping user exits, they take the place of the default credential
mapping function.
“Example: How to configure a protocol bridge agent to use private key credentials with a UNIX SFTP
server” on page 294
This example demonstrates how you can generate and configure the
ProtocolBridgeCredentials.xml file. This example is a typical example and the details might vary
according to your platform, but the principles remain the same.
Related reference
ProtocolBridgeCredentialExit.java interface
Sample protocol bridge credential user exit
The MFT agent.properties file

Mapping credentials for a file server by using the
ProtocolBridgeCredentials.xml file
Map user credentials in Managed File Transfer to user credentials on the file server by using the default
credential mapping function of the protocol bridge agent. Managed File Transfer provides an XML file that
you can edit to include your credential information.

About this task
The ProtocolBridgeCredentials.xml file must be manually created by the user. By default, the
location of this file is the home directory of the user who started the protocol bridge agent, but this can
be stored anywhere on the file system accessible by the agent. To specify a different location, add the
<credentialsFile> element to the ProtocolBridgeProperties.xml file. For example,

<tns:credentialsFile path="/example/path/to/ProtocolBridgeCredentials.xml"/>

Before you can use a protocol bridge agent, set up credential mapping by editing this file to include host,
user, and credential information. For more information and samples, see Protocol bridge credentials file
format.

Procedure
1. • Edit the line <tns:server name="server name"> to change the value of the name attribute to

the server name in the ProtocolBridgeProperties.xml file.

290 Administering IBM MQ

You can use the pattern attribute to specify that you used a server name that contains wildcards or
regular expressions. For example,

<tns:server name="serverA*" pattern="wildcard">

2. Insert user ID and credential information into the file as child elements of <tns:server>.
You can insert one or many of the following elements into the file:

• If the protocol file server is an FTP, FTPS, or SFTP server, you can use passwords to authenticate the
user requesting the transfer. Insert the following lines into the file:

<tns:user name="FTE User ID"
 serverUserId="Server User ID"
 serverPassword="Server Password">
</tns:user>

Then change the value of the attributes.

– name is a Java regular expression to match the MQMD user ID associated with the MFT transfer
request

– serverUserId is the value that is passed to the protocol file server as the login user ID. If the
serverUserId attribute is not specified, the MQMD user ID associated with the MFT transfer
request is used instead

– serverPassword is the password that is associated with the serverUserId.

The name attribute can contain a Java regular expression. The credential mapper attempts to match
the MQMD user ID of the MFT transfer request to this regular expression. The protocol bridge
agent attempts to match the MQMD user ID to the regular expression in the name attribute of
the <tns:user> elements in the order that the elements exist in the file. When a match is found
the protocol bridge agent does not look for more matches. If a match is found, the corresponding
serverUserId and serverPassword values are passed to the protocol file server as the login user
ID and password. The MQMD user ID matches are case-sensitive.

• If the protocol file server is an SFTP server, you can use public and private keys to authenticate
the user requesting the transfer. Insert the following lines into the file and change the value of the
attributes. The <tns:user> element can contain one or many <tns:privateKey> elements.

<tns:user name="FTE User ID"
 serverUserId="Server User ID"
 hostKey="Host Key">
 <tns:privateKey associationName="association"
 keyPassword="Private key password">
 Private key file text
 </tns:privateKey>
</tns:user>

– name is a Java regular expression to match the MQMD user ID associated with the MFT transfer
request

– serverUserId is the value that is passed to the protocol file server as the login user ID. If the
serverUserId attribute is not specified, the MQMD user ID associated with the MFT transfer
request is used instead

– hostKey is the expected key that is returned from the server when logging on
– key is the private key of the serverUserId
– keyPassword is the password for the key to generate public keys
– associationName is a value that is used to identify for trace and logging purposes

The name attribute can contain a Java regular expression. The credential mapper attempts to match
the MQMD user ID of the MFT transfer request to this regular expression. The protocol bridge
agent attempts to match the MQMD user ID to the regular expression in the name attribute of
the <tns:user> elements in the order that the elements exist in the file. When a match is found
the protocol bridge agent does not look for more matches. If a match is found, the corresponding

Administering IBM MQ 291

serverUserId and key values are used to authenticate the MFT user with the protocol file server.
The MQMD user ID matches are case-sensitive.

For more information about using private keys with a protocol bridge agent, see “Example: How to
configure a protocol bridge agent to use private key credentials with a UNIX SFTP server” on page
294.

Note:

When the transfer request is written to the command queue, the MQMD user ID might be converted
to uppercase if the source agent command queue is on a z/OS or IBM i system. As a result the
MQMD user ID for the same originating user might arrive at the credentials exit in the original case or
converted to uppercase depending on the source agent that is specified in the transfer request. The
default credential mapping exit performs case-sensitive matches against the supplied MQMD user ID,
which you might need to allow for in the mapping file.

Related reference
Protocol bridge credentials file format
Protocol bridge properties file format
Regular expressions used by MFT

Mapping credentials for a file server by using exit classes
If you do not want to use the default credential mapping function of the protocol bridge agent, you can
map user credentials in Managed File Transfer to user credentials on the file server by writing your own
user exit. If you configure credential mapping user exits, they take the place of the default credential
mapping function.

About this task
Managed File Transfer provides a sample user exit that performs user credential mapping. For more
information, see “Using the sample protocol bridge credential user exit” on page 293.

A user exit for mapping protocol bridge credentials must implement one of the following interfaces:

• com.ibm.wmqfte.exitroutine.api.ProtocolBridgeCredentialExit, which allows a protocol
bridge agent to transfer files to and from one default protocol file server

• com.ibm.wmqfte.exitroutine.api.ProtocolBridgeCredentialExit2, which allows you to
transfer files to and from multiple endpoints.

The com.ibm.wmqfte.exitroutine.api.ProtocolBridgeCredentialExit2 interface contains
the same function as com.ibm.wmqfte.exitroutine.api.ProtocolBridgeCredentialExit and
also includes extended function. For more information, see ProtocolBridgeCredentialExit.java interface
and ProtocolBridgeCredentialExit2.java interface.

The credential exits can be chained together in a similar manner to other user exits. The exits are called in
the order that they are specified in using the protocolBridgeCredentialConfiguration property in
the agent properties file. The initialize methods all return separately and if one or more returns a value of
false, the agent does not start. The error is reported in the agent event log.

Only one overall result is returned for the mapMQUserId methods of all of the exits as follows:

• If the method returns a value of USER_SUCCESSFULLY_MAPPED or USER_DENIED_ACCESS as the
result code, this value is the returned result and the mapMQUserId methods of the subsequent exits are
not called.

• If the method returns a value of NO_MAPPING_FOUND as the result code, the mqMQUserId method of
the next exit is called.

• If there is no subsequent exit, the NO_MAPPING_FOUND result is returned.
• An overall result code of USER_DENIED_ACCESS or NO_MAPPING_FOUND is considered as a transfer

failure by the bridge agent.

To run your exit, complete the following steps:

292 Administering IBM MQ

Procedure
1. Compile the protocol bridge credential user exit.
2. Create a Java archive (JAR) file that contains the compiled exit and its package structure.
3. Place the JAR file that contains the exit class in the exits directory of the bridge agent.

The directory is in the MQ_DATA_PATH/mqft/config/coordination_queue_manager/agents/
bridge_agent_name directory.

4. Edit the property file of the protocol bridge agent to include the property
protocolBridgeCredentialExitClasses. For the value of this property, specify a comma-
separated list of classes that implement a protocol bridge credential exit routine. The exit classes
are called in the order that they are specified in this list. For more information, see The MFT
agent.properties file.

5. Edit the property file of the protocol bridge agent to include:

exitClassPath=IBM MQ
installation_directory\mqft\config\configuration_queue_manager\agents\protocol_bridge_agent_n
ame\exits\SampleCredentialExit.jar

The agent.properties file for an agent is in your MQ_DATA_PATH/mqft/config/
coordination_qmgr_name/agents/bridge_agent_name directory.

If you change the agent.properties file, you must restart the agent to pick up the changes.
6. You can optionally specify the protocolBridgeCredentialConfiguration property. The value

that you specify for this property is passed in as a String object to the initialize() method of the exit
classes specified by protocolBridgeCredentialExitClasses. For more information, see The
MFT agent.properties file.

7. Start the protocol bridge agent with the fteStartAgent command.

Using the sample protocol bridge credential user exit
Managed File Transfer provides a sample user exit that performs user credential mapping.

About this task
A sample protocol bridge credential exit is provided in the MQ_INSTALLATION_PATH/mqft/samples/
protocolBridge directory and in the topic Sample protocol bridge credential user exit. This sample is
based on the com.ibm.wmqfte.exitroutine.api.ProtocolBridgeCredentialExit interface.

The SampleCredentialExit.java exit reads a properties file that maps the MQMD user IDs
associated with transfer requests to server user IDs and server passwords. The location of the properties
file is taken from the protocol bridge agent property protocolBridgeCredentialConfiguration.

To run the sample user exit, complete the following steps:

Procedure
1. Compile the SampleCredentialExit.java file.
2. Create a JAR file that contains the compiled exit and its package structure.
3. Place the JAR file in the MQ_DATA_PATH/mqft/config/coordination_queue_manager/
agents/bridge_agent_name/exits directory.

4. Edit the MQ_DATA_PATH/mqft/config/coordination_queue_manager/agents/
bridge_agent_name/agent.properties file to contain the line:

protocolBridgeCredentialExitClasses=SampleCredentialExit

5. Edit the property file of the protocol bridge agent to include:

exitClassPath=IBM MQ

Administering IBM MQ 293

installation_directory\mqft\config\configuration_queue_manager\agents\protocol_bridge_agent_n
ame\exits\SampleCredentialExit.jar

The agent.properties file for an agent is in your MQ_DATA_PATH/mqft/config/
coordination_qmgr_name/agents/agent_name directory.

If you change the agent.properties file, you must restart the agent to pick up the changes.
6. Create a credential properties file (credentials.properties) in the directory MQ_DATA_PATH/
mqft/config/coordination_queue_manager/agents/bridge_agent and edit it to include
entries in the format:

mqUserId=serverUserId,serverPassword

7. Edit the MQ_DATA_PATH/mqft/config/coordination_queue_manager/agents/
bridge_agent_name/agent.properties file to contain the line:

protocolBridgeCredentialConfiguration=MQ_DATA_PATH/mqft/
config/coordination_queue_manager/agents/bridge_agent_name/credentials.properties

You must use the absolute path to the credentials.properties file.
8. Start the protocol bridge agent by using the fteStartAgent command.

Related concepts
“The protocol bridge” on page 281
The protocol bridge enables your Managed File Transfer (MFT) network to access files stored on a file
server outside your MFT network, either in your local domain or a remote location. This file server can
use the FTP, FTPS, or SFTP network protocols. Each file server needs at least one dedicated agent. The
dedicated agent is known as the protocol bridge agent. A bridge agent can interact with multiple file
servers.
Related reference
ProtocolBridgeCredentialExit.java interface
ProtocolBridgeCredentialExit2.java interface
Sample protocol bridge credential user exit
The MFT agent.properties file
fteCreateBridgeAgent (create and configure an MFT protocol bridge agent)

Example: How to configure a protocol bridge agent to use private key
credentials with a UNIX SFTP server
This example demonstrates how you can generate and configure the
ProtocolBridgeCredentials.xml file. This example is a typical example and the details might vary
according to your platform, but the principles remain the same.

About this task

Procedure
1. Generate a public and private key to be used to authenticate with the SFTP server.

For example, on a Linux host system, you can use the tool ssh-keygen, supplied as part of the
'openssh' package, to create the public/private key pair.
By default, with no arguments, the ssh-keygen command prompts for a location and passphrase for
the two key files, which defaults to the names:

 id_rsa <-- Private key
 id_rsa.pub <-- Public key

294 Administering IBM MQ

Attention: If you are using the ssh-keygen command from a recent version of OpenSSH, such
as that supplied with RHEL 8, the key format used is not compatible with the protocol bridge
agent, and transfer attempts to the SFTP server fail with the message:

BFGBR0216E: Authentication to protocol server 'sftp.host.address' failed
because of invalid private key.

To create a compatible private key with these newer versions of OpenSSH, specify the key format with
the following argument to the ssh-keygen command:

ssh-keygen -m PEM

The contents of the id_rsa private key then have the first and last lines of:

-----BEGIN RSA PRIVATE KEY-----
...
-----END RSA PRIVATE KEY-----

which is compatible with the protocol bridge agent.
2. Copy the entire contents of the id_rsa.pub file into the ~/.ssh/authorized_keys file of the SFTP

user on the SFTP server.
Ensure that the file permissions on this file and the ~/.ssh directory are set appropriately for the
SFTP server to allow key authentication. These permissions are typically:

~/.ssh Mode 700
~/.ssh/authorized_keys Mode 600

3. Managed File Transfer requires a host ssh fingerprint generated using the MD5 algorithm. Run one of
the following commands to obtain the host ssh fingerprint of the SFTP server.

• For Red Hat® Enterprise Linux version 6.x and below, and Linux Ubuntu 14.04, run the following
command:

ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key.pub

• Starting with Red Hat Enterprise Linux 7.x, Linux Ubuntu 16.04 and SuSE Linux 12.4, the ssh-keygen
command generates, by default, the ssh fingerprint using the SHA256 algorithm. To generate the ssh
fingerprint using the MD5 algorithm, run the following command:

ssh-keygen -l -E MD5 -f /etc/ssh/ssh_host_rsa_key.pub

The output of the command will be similar to the following example:

2048 MD5:64:39:f5:49:41:10:55:d2:0b:81:42:5c:87:62:9d:27 no comment (RSA)

Extract the hexadecimal portion only of the output to use as the hostKey in the
ProtocolBridgeCredentials.xml file (see step “4” on page 295). Therefore, in this example,
you would extract 64:39:f5:49:41:10:55:d2:0b:81:42:5c:87:62:9d:27.

4. On the protocol bridge agent system, edit the ProtocolBridgeCredentials.xml file. Substitute
the values shown in italics in the following example with your own values:

<tns:credentials xmlns:tns="http://wmqfte.ibm.com/ProtocolBridgeCredentials"
xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wmqfte.ibm.com/ProtocolBridgeCredentials
 ProtocolBridgeCredentials.xsd ">

<tns:agent name="Agent_name">

<tns:server name="SFTP_name">

<tns:user name="mq_User_ID" serverUserId="SFTP_user_ID"
 hostKey="ssh_host_finger">
<tns:privateKey associationName="name" keyPassword="pass_phrase">

Administering IBM MQ 295

 Complete contents of the id_rsa file including the entries
 -----BEGIN RSA PRIVATE KEY-----

 -----END RSA PRIVATE KEY-----
</tns:privateKey>
</tns:user>

</tns:server>
</tns:agent>
</tns:credentials>

where:

• Agent_name is the name of the protocol bridge agent.
• SFTP_host_name is the name of the SFTP server as shown in the
ProtocolBridgeProperties.xml file.

• mq_User_ID is the MQMD user ID associated with the transfer request.
• SFTP_user_ID is the SFTP user ID as used in step 2. It is the value passed to the SFTP serve as the

login user ID.
• ssh_host_finger is the fingerprint collected in step 3.
• name is a name that you can specify to be used for trace and logging purposes.
• pass_phrase is the pass phrase you provided in the ssh-keygen in step 1.
• Complete contents of the id_rsa file is the complete contents of the generated id_rsa file from step

1. To prevent a connection error, ensure that you include both of the following entries:

-----BEGIN RSA PRIVATE KEY-----

-----END RSA PRIVATE KEY-----

You can add additional keys by duplicating the <tns:privatekey> element.
5. Start the protocol bridge agent if the agent is not already started. Alternatively, the protocol bridge

agent periodically polls the ProtocolBridgeCredentials.xml file and pick up the changes.

Related reference
Protocol bridge credentials file format
fteCreateBridgeAgent (create and configure an MFT protocol bridge agent)
The MFT agent.properties file
“Mapping credentials for a file server” on page 290
Map user credentials in Managed File Transfer to user credentials on the file server by using the default
credential mapping function of the protocol bridge agent or by writing your own user exit. Managed File
Transfer provides a sample user exit that performs user credential mapping.

Configuring a protocol bridge for an FTPS server
Configure an FTPS server in a similar way as you configure an FTP server: create a bridge agent for the
server, define the server properties, and map user credentials.

About this task
To configure an FTPS server, complete the following steps:

Procedure
1. Create a protocol bridge agent for the FTPS server by using the fteCreateBridgeAgent command.

The parameters that are applicable to FTP are also applicable to FTPS but there are also three required
parameters specific to FTPS:
a) The -bt parameter. Specify FTPS as the value of this parameter.
b) The -bts parameter for the truststore file. The command assumes that only server authentication

is required and you must specify the location of the truststore file.

296 Administering IBM MQ

The explicit form of the FTPS protocol is configured by the fteCreateBridgeAgent command by
default but you can configure the implicit form by changing the protocol bridge properties file. The
protocol bridge always connects to FTPS servers in passive mode.

For more information about the fteCreateBridgeAgent command, see fteCreateBridgeAgent
(create and configure an MFT protocol bridge agent).

If you need instructions about how to create truststore files see the information about the keytool at
the Oracle keytool documentation.

2. Define the FTPS server properties within an <ftpsServer> element in the protocol bridge properties
file: ProtocolBridgeProperties.xml. For more information, see “Defining properties for protocol
file servers using the ProtocolBridgeProperties.xml file” on page 283. You can also enable client
authentication by editing the protocol bridge properties file. For details of all the configuration options,
see Protocol bridge properties file format.

3. Map user credentials in Managed File Transfer to user credentials on the FTPS server either by using
the default credential mapping function of the protocol bridge agent or by writing your own user exit.
For more information, see “Mapping credentials for a file server” on page 290.

4. By default, the truststore file is configured as having the JKS format; if you want to change the format,
edit the protocol bridge properties file.

Example

An example entry for an FTPS server in the protocol bridge properties file is shown as follows:

<tns:serverProperties xmlns:tns="http://wmqfte.ibm.com/ProtocolBridgeProperties"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://wmqfte.ibm.com/ProtocolBridgeProperties
 ProtocolBridgeProperties.xsd">
 <tns:defaultServer name="ftpsserver.mycompany.com" />

 <tns:ftpsServer name="ftpsserver.mycompany.com" host="ftpsserver.mycompany.com" port="990"
platform="windows"
 timeZone="Europe/London" locale="en_US" fileEncoding="UTF8"
 listFormat="unix" limitedWrite="false"
 trustStore="c:\mydirec\truststore.jks" />

 <!-- Define servers here -->
</tns:serverProperties>

What to do next
For information about the parts of the FTPS protocol that are supported and, which are not supported, see
FTPS server support by the protocol bridge.

Related concepts
“The protocol bridge” on page 281
The protocol bridge enables your Managed File Transfer (MFT) network to access files stored on a file
server outside your MFT network, either in your local domain or a remote location. This file server can
use the FTP, FTPS, or SFTP network protocols. Each file server needs at least one dedicated agent. The
dedicated agent is known as the protocol bridge agent. A bridge agent can interact with multiple file
servers.
Related tasks
“Mapping credentials for a file server by using the ProtocolBridgeCredentials.xml file” on page 290
Map user credentials in Managed File Transfer to user credentials on the file server by using the default
credential mapping function of the protocol bridge agent. Managed File Transfer provides an XML file that
you can edit to include your credential information.
“Defining properties for protocol file servers using the ProtocolBridgeProperties.xml file” on page 283

Administering IBM MQ 297

https://docs.oracle.com/javase/6/docs/technotes/tools/

Define the properties of one or more protocol file servers that you want to transfer files to and from using
the ProtocolBridgeProperties.xml file, which is provided by Managed File Transfer in the agent
configuration directory.
Related reference
fteCreateBridgeAgent (create and configure an MFT protocol bridge agent)
Protocol bridge credentials file format
Protocol bridge properties file format
FTPS server support by the protocol bridge

Scenarios and examples for limiting the number of file transfers to individual
file servers
How the revised protocol bridge agent works with the maxActiveDestinationTransfers and
failTransferWhenCapacityReached attributes, together with some examples.

Scenarios showing the working of the protocol bridge agent based on the
maxActiveDestinationTransfers value

Scenario 1

The ProtocolBridgeProperties.xml file for a protocol bridge agent contains two file server
definitions:

• You have not set the global maxActiveDestinationTransfers attribute.
• You have not set the maxActiveDestinationTransfers attribute on both fileServerA and
FileServerB.

• You have set the protocol bridge agent maxDestinationTransfers attribute to the default value.

If you have set the protocol bridge agent maxDestinationTransfers attribute to the default value of
25, then:

• The destination agent starts processing two managed transfers to fileServerA.
• Both the transfers complete.

At this point of time, the client realizes that fileServerA has failed, and sets the following values for
fileServerA in the ProtocolBridgeProperties.xml file:

maxActiveDestinationTransfers = 0
failTransferWhenCapacityReached =true

• Another transfer arrives for fileServerA and a few for fileServerB:

Based on the properties set in the previous step, the managed transfer to fileServerA is rejected and
marked as failed, whereas the transfers for fileServerB are handled in the standard existing flow.

• After some time, the client finds out that the fileServerA is running again, so the client removes or
comments out the previously added value in the ProtocolBridgeProperties.xml. A new managed
transfer arrives for fileServerA and is handled in the standard existing flow.

Scenario 2

• You have set the maxActiveDestinationTransfers attribute for a file server and not set the
failTransferWhenCapacityReached attribute.

• The protocol bridge agent is acting as the destination agent for this number of managed transfers to the
file server.

• The value of the maxActiveDestinationTransfers attribute is reduced by 1.

298 Administering IBM MQ

The protocol bridge agent dynamically updates its configuration and sets
maxActiveDestinationTransfers to the new value while it is still active. The in-progress managed
transfers are not affected by this update and are allowed to complete.

Scenario 3

The ProtocolBridgeProperties.xml file for a protocol bridge agent contains two file server definitions:

• You have not set the global maxActiveDestinationTransfers attribute.
• You have not set the failTransferWhenCapacityReached attribute.
• You have set the maxActiveDestinationTransfers to 1 on fileServerA.
• You have not set the maxActiveDestinationTransfers attribute on fileServerB.

If the protocol bridge agent has the maxDestinationTransfers attribute set to 5:

• The maximum number of active destination transfers from the protocol bridge agent to fileServerA
is 1 (although the destination agent has 5 destination transfer slots, only 1 can be used for managed
transfers to fileServerA).

This is useful when fileServerA fails. Once fileServerA is running again, the value of
maxActiveDestinationTransfers can be increased to 5 to permit full capacity of the allowed
destination transfers.

• The maximum number of active destination transfers from the protocol bridge agent to fileServerB is
5.

As maxActiveDestinationTransfers is not set for this file server, the protocol bridge agent can use
all 5 of its destination transfers slots for managed transfers to it.

Scenario 4

In the following diagram:

• You have set the maxDestinationTransfers attribute to 2 in the agent.properties file.
• You have set the maxActiveDestinationTransfers to 2 on fileServerA.
• You have set the maxActiveDestinationTransfers attribute to 2 on fileServerB.
• You have not set the maxActiveDestinationTransfers attribute on fileServerC.

Administering IBM MQ 299

As the diagram shows, the maxActiveDestinationTransfers and maxDestinationTransfers
attributes are independent of each other.

The values for maxActiveDestinationTransfers for each of the servers is checked. Based
on this value, the transfers are either allowed to continue further, or pushed to the
WaitingForDestinationFileServerCapacity state.

The transfers that are allowed then pass through the existing standard flow of check against the
maxDestinationTransfers.

Scenario 5

Attention: You should be careful when setting the values of the
maxActiveDestinationTransfers attributes as you must keep the value of the
maxDestinationTransfers attribute in mind.

If you do not do this, a situation as described in the following text can occur:

• You have not set a value for the global maxActiveDestinationTransfers attribute.
• You have set a value of maxDestinationTransfers=2 in the agent.properties file.
• You have set a value of maxActiveDestinationTransfers=2 on fileServerA.
• You have not set a value for maxActiveDestinationTransfers on fileServerB.

Suppose that the following sequence of events occurs:

• The protocol bridge agent receives a request to transfer a file to fileServerA. The protocol bridge
agent is not currently doing anything, so it accepts this managed transfer request.

The transfer slots now look like this:

– Destination Transfers: 1
– Destination Transfers for fileServerA: 1
– Destination transfers for fileServerB: 0

• Now, the protocol bridge agent receives another request to act as the destination agent for a managed
transfer involving fileServerA. Once again, it accepts this request, and so the transfer slots look like
this:

– Destination Transfers: 2
– Destination Transfers for fileServerA: 2
– Destination transfers for fileServerB: 0

The two Destination Transfer slots in the agent are now occupied, and so the agent cannot
participate in any more managed transfers until one of the transfers to fileServerA has finished.

• A short time later fileServerA fails, which causes the two managed transfers to go into recovery. The
Destination transfer slots that these managed transfers are using remain in use during this time.

• Next, the protocol bridge agent receives a request to transfer a file to fileServerB. There is a space
for this transfer in the Destination Transfers for fileServerB slots, however, all of the
Destination Transfer slots for the agent are being used, and so the transfer is put onto the backlog
so that it can be retried later.

As a result, the transfer to fileServerB is blocked until at least one of the transfers to fileServerA
has completed and released its Destination Transfer slot.

To prevent this situation happening:

• Either set the value of maxActiveDestinationTransfers on the file servers to be less than the
maxDestinationTransfers value, so that free slots remain.

• Or evenly distribute the value of the maxActiveDestinationTransfers attribute among all the
endpoint servers.

300 Administering IBM MQ

Behavior of the protocol bridge agent based on the values of the
maxActiveDestinationTransfers attribute
Note: In all the error cases listed in the following table, if the maxActiveDestinationTransfers
attribute is set to a value that is not valid the protocol bridge agent assumes that this attribute is not set.

maxActiveDestinationTransfe
rs

Sample value Description

Not specified Not specified The transfers go as usual. There is no limit
placed on the number of transfers for *ftp*
endpoint.

Specified 0 No transfers allowed to this specific *ftp*
endpoint.

Negative value -1 Error logged in output0.log Value -1 is not
valid for a non negative integer.

The protocol bridge agent assumes that the
attribute is not set.

Non integer value abc Error logged in output0.log Value abc is not
valid for an integer.

The protocol bridge agent assumes that the
attribute is not set.

Empty "" The value '' of the attribute
maxActiveDestinationTransfers is not valid for
a non negative integer.

Specified 5 Allows only five active transfers to be running
at any point of time for this *ftp* endpoint.

The excessive transfers are retried or
rejected, based on the value of the
failTransferWhenCapacityReached attribute.

Behavior of the protocol bridge agent for the combination of the
maxActiveDestinationTransfers and failTransferWhenCapacityReached
attributes

failTransferWhenCapacityReac
hed value

maxActiveDestinationTransfers
value

Result

False 3 Three active transfers are
allowed to this endpoint server.
Any more transfers are retried.

True 3 Three active transfers are
allowed to this endpoint server.
Any more transfers are rejected
and marked as failed.

Not specified 3 Default value false for
failTransferWhenCapacityReache
d is considered.

The result is that three active
transfers are allowed to this

Administering IBM MQ 301

failTransferWhenCapacityReac
hed value

maxActiveDestinationTransfers
value

Result

endpoint server. Any more
transfers are retried.

Values other than Boolean value Specified Error logged in output.log.

The value specified for
failTransferWhenCapacityReache
d is not a Boolean value.

The default value for
failTransferWhenCapacityReache
d is considered.

Behavior of the protocol bridge agent for the combination of
the maxDestinationTransfers and failTransferWhenCapacityReached
attributes

failTransferWhenCapacityReac
hed value

maxDestinationTransfers value Result

True 10 When the number of concurrent
active transfers reaches 10, the
11th managed transfer is failed by
the protocol bridge agent.

False 10 Existing behavior.

When the number of concurrent
active transfers reaches 10, the
11th managed transfer is queued
waiting for a slot to be freed.

Not specified 10 Existing behavior

Error messages
Existing message:
BFGS0082I

Is logged in the output0.log file of the source agent when the protocol bridge agent rejects the
transfer, when the protocol bridge agent is already running the maximum number of transfers defined
in the maxDestinationTransfers attribute.

New messages:
BFGSS0085I

Is logged in the output0.log file of the source agent when the protocol bridge agent rejects and retries
a managed transfer,

BFGSS0086I
Is logged in the output0.log file of the source agent when the protocol bridge agent rejects and retries
a managed transfer, and the destination item does not include the file server name

BFGSS0084E
Is logged in the Explorer and audit.xml file when the protocol bridge agent rejects, for exceeding
the maximum number of concurrent transfers specified in the maxActiveDestinationTransfers
attribute, and marks a managed transfer as failed.

302 Administering IBM MQ

BFGSS0087E
Is logged in the Explorer and audit.xml file when the protocol bridge agent rejects, for exceeding
the maximum number of destination transfers specified in the maxActiveDestinationTransfers
attribute, and marks a managed transfer as failed.

BFGSS0088W
Is logged in the output0.log, when the value of the maxActiveDestinationTransfers attribute
exceeds the value of the maxDestinationTransfers attribute.

BFGSS0089I
Is logged in the output0.log file of the destination protocol bridge agent, when it is working a source
agent that is not at IBM MQ 9.3.0, or later.

Related concepts
“The protocol bridge” on page 281
The protocol bridge enables your Managed File Transfer (MFT) network to access files stored on a file
server outside your MFT network, either in your local domain or a remote location. This file server can
use the FTP, FTPS, or SFTP network protocols. Each file server needs at least one dedicated agent. The
dedicated agent is known as the protocol bridge agent. A bridge agent can interact with multiple file
servers.
Related tasks
“Defining properties for protocol file servers using the ProtocolBridgeProperties.xml file” on page 283
Define the properties of one or more protocol file servers that you want to transfer files to and from using
the ProtocolBridgeProperties.xml file, which is provided by Managed File Transfer in the agent
configuration directory.

The Connect:Direct bridge
You can transfer files to and from an existing IBM Sterling Connect:Direct network. Use the Connect:Direct
bridge, which is a component of Managed File Transfer, to transfer files between MFT and IBM Sterling
Connect:Direct.

The diagram shows an MFT Connect:Direct bridge between two departments, the B2B IT department and
the Application Integration IT department. The B2B IT department uses Connect:Direct to transfer files to
and from the company's business partners. The Application Integration IT department uses IBM MQ as its
messaging infrastructure and so has recently chosen Managed File Transfer as its file transfer solution.

Using the MFT Connect:Direct bridge, the two departments can transfer files between the Connect:Direct
network in the B2B IT department and the MFT network in the Application Integration IT department.
The Connect:Direct bridge is a component of Managed File Transfer, which includes an MFT agent
that communicates with a Connect:Direct node. The MFT agent is dedicated to transfers with the
Connect:Direct node, and is known as the Connect:Direct bridge agent.

Administering IBM MQ 303

The Connect:Direct bridge is available as part of the Service and Agent components of Managed File
Transfer, and can be used for the following tasks:

1. Use Managed File Transfer commands to initiate a transfer of a file, or multiple files, from an MFT agent
to a Connect:Direct node.

2. Use Managed File Transfer commands to initiate a transfer of a file, or multiple files, from a
Connect:Direct node to an MFT agent.

3. Use Managed File Transfer commands to initiate a file transfer that starts a user-defined
Connect:Direct process.

4. Use Connect:Direct process to submit an MFT file transfer request.

A Connect:Direct bridge can transfer files to or from only Connect:Direct nodes. The Connect:Direct bridge
can transfer files to or from its local file system only as part of a transfer submitted by a Connect:Direct
process.

You can use the Connect:Direct bridge to transfer to or from a data set that is located
on a Connect:Direct node on a z/OS system. There are some differences in behavior compared to data

set transfers that only involve Managed File Transfer agents. For more information, see
Transferring data sets to and from Connect:Direct nodes.

Supported platforms
The Connect:Direct bridge is made up of an MFT Connect:Direct bridge agent and a Connect:Direct node.
The agent is supported on Windows and Linux for x86-64. The node is supported on the platforms that
are supported for IBM Sterling Connect:Direct for Windows and IBM Sterling Connect:Direct for UNIX. For
instructions on creating the Connect:Direct bridge agent and configuring a Connect:Direct node for the
agent to communicate with, see Configuring the Connect:Direct bridge.

The Connect:Direct bridge can transfer files to and from Connect:Direct nodes that are running as part of
a Connect:Direct for Windows or Connect:Direct for UNIX , or Connect:Direct for z/OS Service installation.
For details of the versions of Connect:Direct that are supported, see the web page System Requirements
for IBM MQ.

The agent and node that make up the Connect:Direct bridge must be on the same system, or have
access to the same file system, for example through a shared NFS mount. This file system is used to
temporarily store files during file transfers that involve the Connect:Direct bridge, in a directory defined
by the cdTmpDir parameter. The Connect:Direct bridge agent and the Connect:Direct bridge node must
be able to address this directory using the same path name. For example, if the agent and node are on
separate Windows systems, the systems must use the same drive letter to mount the shared file system.
The following configurations allow the agent and the node to use the same path name:

• The agent and node are on the same system, which is either running Windows or Linux for x86-64
• The agent is on Linux for x86-64, and the node is on AIX
• The agent is on one Windows system, and the node is on another Windows system

The following configurations do not allow the agent and the node to use the same path name:

• The agent is on Linux for x86-64, and the node is on Windows
• The agent is on Windows, and the node is on UNIX

Consider this restriction when planning your installation of the Connect:Direct bridge.

Related concepts
“Recovery and restart for transfers to and from Connect:Direct nodes” on page 312
Managed File Transfer might be unable to connect to your IBM Sterling Connect:Direct node during a
transfer; for example, if the node becomes unavailable. Either Managed File Transfer attempts to recover
the transfer, or the transfer fails and an error message is produced.
“Submitting a user-defined Connect:Direct process from a file transfer request” on page 313

304 Administering IBM MQ

https://www.ibm.com/support/pages/node/318077
https://www.ibm.com/support/pages/node/318077

You can submit a transfer request for a transfer that goes through the Connect:Direct bridge agent that
calls a user-defined Connect:Direct process as part of the file transfer.
“Using Connect:Direct processes to submit Managed File Transfer transfer requests” on page 317
You can submit a transfer request to the Connect:Direct bridge agent from a Connect:Direct process.
Managed File Transfer provides commands that can be called from a RUN TASK statement in a
Connect:Direct process.
Related tasks
Configuring the Connect:Direct bridge
“Transferring a file to a Connect:Direct node” on page 305
You can transfer a file from a Managed File Transfer agent to a Connect:Direct node using the
Connect:Direct bridge. Specify a Connect:Direct node as the destination of the transfer by specifying
the Connect:Direct bridge agent as the destination agent and specifying the destination file in the form
connect_direct_node_name:file_path.
“Transferring a file from a Connect:Direct node” on page 306
You can transfer a file from a Connect:Direct node to a Managed File Transfer Agent by using the
Connect:Direct bridge. You can specify a Connect:Direct node as the source of the transfer by specifying
the Connect:Direct bridge agent as the source agent and specifying the source specification in the form
connect_direct_node_name:file_path.
“Transferring multiple files to a Connect:Direct node” on page 308
You can transfer multiple files from a Managed File Transfer Agent to a Connect:Direct node by using the
Connect:Direct bridge. To use a Connect:Direct node as the destination of the multiple file transfer, specify
the Connect:Direct bridge agent as the destination agent and specify the destination directory in the form
connect_direct_node_name:directory_path.
“Transferring multiple files from a Connect:Direct node” on page 309
You can transfer multiple files from a Connect:Direct node to a Managed File Transfer Agent by using the
Connect:Direct bridge. You can specify a Connect:Direct node as the source of the multiple file transfer
by specifying the Connect:Direct bridge agent as the source agent and specifying one or more source
specifications in the form connect_direct_node_name:file_path.
“Transferring multiple files to Connect:Direct by using wildcards” on page 310
To transfer multiple files from a Managed File Transfer agent to a Connect:Direct node, use the
Connect:Direct bridge. You can use wildcard characters in the source specification that you provide to
the fteCreateTransfer command. As with all Managed File Transfer transfers involving wildcards, only
the last part of the file path can contain a wildcard character. For example, /abc/def* is a valid file path
and /abc*/def is not valid.
Troubleshooting the Connect:Direct bridge
Related reference
fteCreateCDAgent: create a Connect:Direct bridge agent
Restrictions of the Connect:Direct bridge agent

Transferring a file to a Connect:Direct node
You can transfer a file from a Managed File Transfer agent to a Connect:Direct node using the
Connect:Direct bridge. Specify a Connect:Direct node as the destination of the transfer by specifying
the Connect:Direct bridge agent as the destination agent and specifying the destination file in the form
connect_direct_node_name:file_path.

Before you begin
Before transferring a file, you must configure the Connect:Direct bridge, which is a component of Managed
File Transfer. For more information, see Configuring the Connect:Direct bridge.

About this task
In this example, the Connect:Direct bridge agent is called CD_BRIDGE. The source agent is called
FTE_AGENT and can be any version of WMQFTE. The destination Connect:Direct node is called

Administering IBM MQ 305

CD_NODE1. The file to be transferred is located at the file path /home/helen/file.log on the system
where FTE_AGENT is located. The file is transferred to the file path /files/data.log on the system
where CD_NODE1 is running.

Procedure
1. Use the fteCreateTransfer command with the value for the -df (destination file) parameter in the form
connect_direct_node_name:file_path and the value of the -da (destination agent) parameter
specified as the name of the Connect:Direct bridge agent.

Note: The Connect:Direct node specified by connect_direct_node_name is the node that you want
the file to be transferred to, not the Connect:Direct node that operates as part of the Connect:Direct
bridge.

fteCreateTransfer -sa FTE_AGENT -da CD_BRIDGE
 -df CD_NODE1:/files/data.log /home/helen/file.log

For more information, see fteCreateTransfer: start a new file transfer.
2. The source agent FTE_AGENT transfers the file to the Connect:Direct bridge agent CD_BRIDGE. The

file is temporarily stored on the system where the Connect:Direct bridge agent is running, in the
location defined by the cdTmpDir agent property. The Connect:Direct bridge agent transfers the file to
the Connect:Direct node CD_NODE1.

Related concepts
“The Connect:Direct bridge” on page 303
You can transfer files to and from an existing IBM Sterling Connect:Direct network. Use the Connect:Direct
bridge, which is a component of Managed File Transfer, to transfer files between MFT and IBM Sterling
Connect:Direct.
Related tasks
“Transferring a file from a Connect:Direct node” on page 306
You can transfer a file from a Connect:Direct node to a Managed File Transfer Agent by using the
Connect:Direct bridge. You can specify a Connect:Direct node as the source of the transfer by specifying
the Connect:Direct bridge agent as the source agent and specifying the source specification in the form
connect_direct_node_name:file_path.
Related reference
The MFT agent.properties file

Transferring a file from a Connect:Direct node
You can transfer a file from a Connect:Direct node to a Managed File Transfer Agent by using the
Connect:Direct bridge. You can specify a Connect:Direct node as the source of the transfer by specifying
the Connect:Direct bridge agent as the source agent and specifying the source specification in the form
connect_direct_node_name:file_path.

Before you begin
Before transferring a file, you must configure the Connect:Direct bridge, which is a component of Managed
File Transfer. See Configuring the Connect:Direct bridge.

About this task
In this example, the Connect:Direct bridge agent is called CD_BRIDGE. The destination agent is called
FTE_AGENT and can be any version of Managed File Transfer. The source Connect:Direct node is called
CD_NODE1. The file to be transferred is located at the file path /home/brian/in.file on the system
where CD_NODE1 is located. The file is transferred to the file path /files/out.file on the system
where FTE_AGENT is running.

306 Administering IBM MQ

Procedure
Use the fteCreateTransfer command with the value for the source specification in the form
connect_direct_node_name:file_path and the value of the -sa parameter specified as the name
of the Connect:Direct bridge agent.

Note: The Connect:Direct node specified by connect_direct_node_name is the node that you want the
file to be transferred from, not the Connect:Direct node that operates as part of the Connect:Direct bridge.
For example:

fteCreateTransfer -sa CD_BRIDGE -da FTE_AGENT
 -df /files/out.file CD_NODE1:/home/brian/in.file

For more information, see fteCreateTransfer: start a new file transfer.

Results
The Connect:Direct bridge agent CD_BRIDGE requests the file from the Connect:Direct node CD_NODE1.
The Connect:Direct node sends the file to the Connect:Direct bridge. While the file is being transferred
from the Connect:Direct node, the Connect:Direct bridge stores the file temporarily in the location defined
by the cdTmpDir agent property. When the file has finished transferring from the Connect:Direct node
to the Connect:Direct bridge, the Connect:Direct bridge then sends the file to the destination agent
FTE_AGENT and deletes the file from the temporary location.
Related concepts
“The Connect:Direct bridge” on page 303
You can transfer files to and from an existing IBM Sterling Connect:Direct network. Use the Connect:Direct
bridge, which is a component of Managed File Transfer, to transfer files between MFT and IBM Sterling
Connect:Direct.
Related reference
The MFT agent.properties file

Transferring a data set to a Connect:Direct node on z/OS
You can transfer a data set from a Managed File Transfer agent on z/OS to a Connect:Direct node on z/OS
by using a Connect:Direct bridge that is located on a Windows or Linux system.

Before you begin
Before transferring a file, you must configure the Connect:Direct bridge, which is a component of Managed
File Transfer. See Configuring the Connect:Direct bridge.

About this task
In this example, the parameter -df is used to specify the destination of the transfer. The parameter -df
is valid for use when the source agent of the transfer is any version of Managed File Transfer. You can use
the -ds parameter instead. The source agent is called FTE_ZOS1 and is an Managed File Transfer agent.
The Connect:Direct bridge agent is called CD_BRIDGE and is located on a Linux system. The destination
Connect:Direct node is called CD_ZOS2. Both the source agent and the destination Connect:Direct node
are located on z/OS systems. The data set to be transferred is located at //FTEUSER.SOURCE.LIB on
the system where FTE_ZOS1 is located. The data set is transferred to the data set //CDUSER.DEST.LIB
on the system where CD_ZOS2 is located.

Procedure
1. Use the fteCreateTransfer command with the value for the -df parameter in the form:
connect_direct_node_name:data_set_name;attributes and the value of the -da
(destination agent) parameter specified as the name of the Connect:Direct bridge agent.

Administering IBM MQ 307

The Connect:Direct node specified by connect_direct_node_name is the node that you want the
data set to be transferred to, not the Connect:Direct node that operates as part of the Connect:Direct
bridge.

The data set name specified by data_set_name must be absolute, not relative. Connect:Direct does
not prefix the data set name with the name of the user.

fteCreateTransfer -sa FTE_ZOS1 -sm QM_ZOS
 -da CD_BRIDGE -dm QM_BRIDGE
 -df CD_ZOS2://'CDUSER.DEST.LIB;BLKSIZE(8000);LRECL(80)'
 //'FTEUSER.SOURCE.LIB'

For more information, see fteCreateTransfer: start a new file transfer.
2. The source agent FTE_ZOS1 transfers the data in the data set to the Connect:Direct bridge agent

CD_BRIDGE. The data is temporarily stored as a flat file on the system where the Connect:Direct
bridge agent is running, in the location defined by the cdTmpDir agent property. The Connect:Direct
bridge agent transfers the data to the Connect:Direct node CD_ZOS2. When the transfer is complete,
the flat file is deleted from the system where the Connect:Direct bridge agent is running.

Related concepts
“The Connect:Direct bridge” on page 303
You can transfer files to and from an existing IBM Sterling Connect:Direct network. Use the Connect:Direct
bridge, which is a component of Managed File Transfer, to transfer files between MFT and IBM Sterling
Connect:Direct.
Related tasks
Transferring data sets to and from Connect:Direct nodes
Related reference
BPXWDYN properties you must not use with MFT

Transferring multiple files to a Connect:Direct node
You can transfer multiple files from a Managed File Transfer Agent to a Connect:Direct node by using the
Connect:Direct bridge. To use a Connect:Direct node as the destination of the multiple file transfer, specify
the Connect:Direct bridge agent as the destination agent and specify the destination directory in the form
connect_direct_node_name:directory_path.

Before you begin
Before transferring files, you must configure the Connect:Direct bridge, which is a component of Managed
File Transfer. See Configuring the Connect:Direct bridge.

About this task
In this example, the source agent is called FTE_AGENT. The Connect:Direct bridge agent is called
CD_BRIDGE. The destination Connect:Direct node is called CD_NODE1. The files to be transferred are /
home/jack/data.log, /logs/log1.txt, and /results/latest on the system where FTE_AGENT is
located. The files are transferred to the directory /in/files on the system where CD_NODE1 is running.

Procedure
Use the fteCreateTransfer command with the value for the -dd (destination directory) parameter in
the form connect_direct_node_name:directory_path. Specify the value of the -da (destination
agent) parameter as the name of the Connect:Direct bridge agent.

Note: The Connect:Direct node specified by connect_direct_node_name is the node that you want the
files to be transferred to, not the Connect:Direct node that operates as part of the Connect:Direct bridge.

fteCreateTransfer -sa FTE_AGENT -da CD_BRIDGE
 -dd CD_NODE1:/in/files /home/jack/data.log
 /logs/log1.txt /results/latest

308 Administering IBM MQ

For more information, see fteCreateTransfer: start a new file transfer.

Results
The source agent FTE_AGENT transfers the first file to the Connect:Direct bridge agent CD_BRIDGE.
The Connect:Direct bridge agent temporarily stores the file in the location defined by the cdTmpDir
property. When the file has been completely transferred from the source agent to the Connect:Direct
bridge, the Connect:Direct bridge agent sends the file to the Connect:Direct node that is defined by the
cdNode agent property. This node sends the file to the destination Connect:Direct node CD_NODE1. The
Connect:Direct bridge agent deletes the file from the temporary location when the transfer between the
two Connect:Direct nodes is complete. This process is repeated for each specified source file.
Related concepts
“The Connect:Direct bridge” on page 303
You can transfer files to and from an existing IBM Sterling Connect:Direct network. Use the Connect:Direct
bridge, which is a component of Managed File Transfer, to transfer files between MFT and IBM Sterling
Connect:Direct.
Related tasks
“Transferring a file to a Connect:Direct node” on page 305
You can transfer a file from a Managed File Transfer agent to a Connect:Direct node using the
Connect:Direct bridge. Specify a Connect:Direct node as the destination of the transfer by specifying
the Connect:Direct bridge agent as the destination agent and specifying the destination file in the form
connect_direct_node_name:file_path.
“Transferring multiple files to Connect:Direct by using wildcards” on page 310
To transfer multiple files from a Managed File Transfer agent to a Connect:Direct node, use the
Connect:Direct bridge. You can use wildcard characters in the source specification that you provide to
the fteCreateTransfer command. As with all Managed File Transfer transfers involving wildcards, only
the last part of the file path can contain a wildcard character. For example, /abc/def* is a valid file path
and /abc*/def is not valid.
“Transferring a file from a Connect:Direct node” on page 306
You can transfer a file from a Connect:Direct node to a Managed File Transfer Agent by using the
Connect:Direct bridge. You can specify a Connect:Direct node as the source of the transfer by specifying
the Connect:Direct bridge agent as the source agent and specifying the source specification in the form
connect_direct_node_name:file_path.
“Transferring multiple files from a Connect:Direct node” on page 309
You can transfer multiple files from a Connect:Direct node to a Managed File Transfer Agent by using the
Connect:Direct bridge. You can specify a Connect:Direct node as the source of the multiple file transfer
by specifying the Connect:Direct bridge agent as the source agent and specifying one or more source
specifications in the form connect_direct_node_name:file_path.
Related reference
The MFT agent.properties file

Transferring multiple files from a Connect:Direct node
You can transfer multiple files from a Connect:Direct node to a Managed File Transfer Agent by using the
Connect:Direct bridge. You can specify a Connect:Direct node as the source of the multiple file transfer
by specifying the Connect:Direct bridge agent as the source agent and specifying one or more source
specifications in the form connect_direct_node_name:file_path.

Before you begin
Before transferring a file, you must configure the Connect:Direct bridge, which is a component of Managed
File Transfer. See Configuring the Connect:Direct bridge.

About this task
In this example, the Connect:Direct bridge agent is called CD_BRIDGE. The destination agent is called
FTE_Z, and is running on a z/OS system. The source Connect:Direct node is called CD_NODE1. The files

Administering IBM MQ 309

to be transferred are located at the file paths /in/file1, /in/file2, and /in/file3 on the system
where CD_NODE1 is located. The files are transferred to the partitioned data set //OBJECT.LIB on the
system where FTE_Z is running.

Procedure
Use the fteCreateTransfer command with the values for the source specifications in the form
connect_direct_node_name:file_path and the value of the -sa parameter specified as the name
of the Connect:Direct bridge agent.

Note: The Connect:Direct node specified by connect_direct_node_name is the node that you want
the files to be transferred from, not the Connect:Direct node that operates as part of the Connect:Direct
bridge.

fteCreateTransfer -sa CD_BRIDGE -da FTE_Z
 -dp //'OBJECT.LIB' CD_NODE1:/in/file1
 CD_NODE1:/in/file2 CD_NODE1:/in/file3

For more information, see fteCreateTransfer: start a new file transfer.

Results
The Connect:Direct bridge agent CD_BRIDGE requests the first file from the Connect:Direct node
CD_NODE1. The Connect:Direct node sends the file to the Connect:Direct bridge. While the file is
being transferred from the Connect:Direct node, the Connect:Direct bridge stores the file temporarily
in the location defined by the cdTmpDir agent property. When the file has finished transferring from
the Connect:Direct node to the Connect:Direct bridge, the Connect:Direct bridge sends the file to the
destination agent FTE_Z and then deletes the file from the temporary location. This process is repeated
for each specified source file.
Related concepts
“The Connect:Direct bridge” on page 303
You can transfer files to and from an existing IBM Sterling Connect:Direct network. Use the Connect:Direct
bridge, which is a component of Managed File Transfer, to transfer files between MFT and IBM Sterling
Connect:Direct.
Related reference
The MFT agent.properties file

Transferring multiple files to Connect:Direct by using wildcards
To transfer multiple files from a Managed File Transfer agent to a Connect:Direct node, use the
Connect:Direct bridge. You can use wildcard characters in the source specification that you provide to
the fteCreateTransfer command. As with all Managed File Transfer transfers involving wildcards, only
the last part of the file path can contain a wildcard character. For example, /abc/def* is a valid file path
and /abc*/def is not valid.

Before you begin
Before transferring a file, you must configure the Connect:Direct bridge, which is a component of Managed
File Transfer. For more information, see Configuring the Connect:Direct bridge.

About this task
In this example, the source agent is called FTE_AGENT and the Connect:Direct bridge agent is called
CD_BRIDGE. The destination Connect:Direct node is called CD_NODE1. The files to be transferred are
located in the directory /reports on the system where FTE_AGENT is located. Only files with names
that start with report, followed by two characters and the suffix .log, are transferred. For example, the
file /reports/report01.log is transferred, but the file /reports/report1.log is not transferred.
The files are transferred to the directory /home/fred on the system where CD_NODE1 is running.

310 Administering IBM MQ

Procedure
1. Use the fteCreateTransfer command with the value for the -dd (destination directory) parameter in the

form connect_direct_node_name:directory_path. For the -da (destination agent) parameter,
specify the Connect:Direct bridge agent.

Note: The Connect:Direct node specified by connect_direct_node_name is the node that you want
the files to be transferred to, not the Connect:Direct node that operates as part of the Connect:Direct
bridge.

fteCreateTransfer -sa FTE_AGENT -da CD_BRIDGE
 -dd CD_NODE1:/home/fred "/reports/report??.log"

For more information, see fteCreateTransfer: start a new file transfer.
2. The source agent FTE_AGENT transfers the first file that matches the pattern /reports/
report??.log to the Connect:Direct bridge agent CD_BRIDGE. The Connect:Direct bridge agent
temporarily stores the file in the location defined by the cdTmpDir property. When the file has been
completely transferred from the source agent to the Connect:Direct bridge, the Connect:Direct bridge
agent sends the file to the Connect:Direct node that is defined by the cdNode agent property. This
node sends the file to the destination Connect:Direct node CD_NODE1. The Connect:Direct bridge
agent deletes the file from the temporary location when the transfer between the two Connect:Direct
nodes is complete.This process is repeated for each source file that matches the wildcard pattern /
reports/report??.log.

Note: The list of files that match the pattern /reports/report??.log varies depending on the
operating system of the system where the source agent FTE_AGENT is located.

• If the source agent is located on a system with a Windows operating system, the pattern matching
is not case sensitive. The pattern matches all files in the /reports directory with a file name of the
form report followed by two characters and a suffix of .log, regardless of the case that the letters
are in. For example, Report99.Log is a match.

• If the source agent is located on a system with a Linux or UNIX operating system, the pattern
matching is case sensitive. The pattern matches only those files in the /reports directory with
a file name of the form report followed by two characters and a suffix of .log. For example,
reportAB.log is a match, but reportAB.LOG and Report99.Log are not matches.

Related concepts
“The Connect:Direct bridge” on page 303
You can transfer files to and from an existing IBM Sterling Connect:Direct network. Use the Connect:Direct
bridge, which is a component of Managed File Transfer, to transfer files between MFT and IBM Sterling
Connect:Direct.
Related tasks
Using wildcard characters with MFT
“Transferring a file to a Connect:Direct node” on page 305
You can transfer a file from a Managed File Transfer agent to a Connect:Direct node using the
Connect:Direct bridge. Specify a Connect:Direct node as the destination of the transfer by specifying
the Connect:Direct bridge agent as the destination agent and specifying the destination file in the form
connect_direct_node_name:file_path.
“Transferring multiple files to a Connect:Direct node” on page 308
You can transfer multiple files from a Managed File Transfer Agent to a Connect:Direct node by using the
Connect:Direct bridge. To use a Connect:Direct node as the destination of the multiple file transfer, specify
the Connect:Direct bridge agent as the destination agent and specify the destination directory in the form
connect_direct_node_name:directory_path.
“Transferring multiple files from a Connect:Direct node” on page 309
You can transfer multiple files from a Connect:Direct node to a Managed File Transfer Agent by using the
Connect:Direct bridge. You can specify a Connect:Direct node as the source of the multiple file transfer
by specifying the Connect:Direct bridge agent as the source agent and specifying one or more source
specifications in the form connect_direct_node_name:file_path.

Administering IBM MQ 311

Related reference
The MFT agent.properties file

Recovery and restart for transfers to and from Connect:Direct nodes
Managed File Transfer might be unable to connect to your IBM Sterling Connect:Direct node during a
transfer; for example, if the node becomes unavailable. Either Managed File Transfer attempts to recover
the transfer, or the transfer fails and an error message is produced.

If the Connect:Direct node becomes unavailable
If the Connect:Direct node becomes unavailable; for example, due to a network or power outage,
Managed File Transfer recovers a file transfer in the following ways:

• If Managed File Transfer has not previously successfully connected to the Connect:Direct node as part
of this transfer request, the transfer is tried again for a length of time determined by the values of
the cdMaxConnectionRetries and recoverableTransferRetryInterval properties. These
properties are specified in the agent.properties file for the Connect:Direct bridge agent. The
transfer fails, and an error message is produced, after the number of failed attempts reaches the value
of the cdMaxConnectionRetries property. By default, the transfer is attempted indefinitely, with
60 seconds between attempts.

• If Managed File Transfer has previously successfully connected to the Connect:Direct node as part of
this transfer request, the transfer is tried again for a length of time determined by the values of the
cdMaxPartialWorkConnectionRetries and recoverableTransferRetryInterval properties.
The transfer fails, and an error message is produced, after the number of failed attempts reaches the
value of the cdMaxPartialWorkConnectionRetries property. By default, the transfer is attempted
indefinitely, with 60 seconds between attempts.

• For certain types of Connect:Direct node failure, for example the node being forcibly stopped,
Connect:Direct processes go into Held Due to Error (HE) status when the node recovers. After
the node recovers, Managed File Transfer automatically resumes any Connect:Direct processes that are
related to the file transfer and have a status of HE.

• If the transfer fails, any temporary files relating to the transfer are deleted from the system that hosts
the Connect:Direct bridge. The location of these temporary files is defined by the cdTmpDir property.

• If the transfer is from Managed File Transfer to Connect:Direct, and a source disposition of delete is
specified, then the source files are not deleted if the transfer fails.

If the Connect:Direct node user credentials are invalid
If Managed File Transfer fails to connect to the Connect:Direct node because the credentials of the user
are rejected by the node, the transfer fails and an error message is produced. In this situation, check that
you have provided the correct user credentials for the Connect:Direct node. For more information, see
Mapping credentials for Connect:Direct.

If the Connect:Direct bridge agent becomes unavailable
If the Connect:Direct bridge agent becomes unavailable, any ongoing file transfers recover in the same
way as standard Managed File Transfer transfers. For more information, see “MFT recovery and restart”
on page 319.

Related concepts
“The Connect:Direct bridge” on page 303
You can transfer files to and from an existing IBM Sterling Connect:Direct network. Use the Connect:Direct
bridge, which is a component of Managed File Transfer, to transfer files between MFT and IBM Sterling
Connect:Direct.
“MFT recovery and restart” on page 319

312 Administering IBM MQ

If your agent or queue manager are unavailable for any reason, for example because of a power or
network failure, Managed File Transfer recovers as follows in these scenarios:
Related tasks
Configuring the Connect:Direct bridge
Related reference
The MFT agent.properties file

Submitting a user-defined Connect:Direct process from a file transfer request
You can submit a transfer request for a transfer that goes through the Connect:Direct bridge agent that
calls a user-defined Connect:Direct process as part of the file transfer.

By default, when you submit a file transfer request for a transfer that goes through the Connect:Direct
bridge, the Connect:Direct bridge agent generates the Connect:Direct process that is used to transfer the
file to or from the remote Connect:Direct node.

However, you can configure the Connect:Direct bridge agent to instead call a user-defined Connect:Direct
process by using the ConnectDirectProcessDefinition.xml file.

The ConnectDirectProcessDefinition.xml file
The fteCreateCDAgent command creates the file ConnectDirectProcessDefinitions.xml in
the agent configuration directory MQ_DATA_PATH/mqft/config/coordination_queue_manager/
agents/cd_bridge_agent_name. Before you can call user-defined Connect:Direct processes from the
Connect:Direct bridge agent, you must set up process definitions by editing this file.

The file defines one or more process sets that includes the location of one or more Connect:Direct
processes that are called as part of a transfer. Each process set includes a number of conditions.
If the transfer satisfies all of the conditions of the process set, the process set is used to specify
which Connect:Direct processes are called by the transfer. For more information, see “Specifying the
Connect:Direct process to start by using the ConnectDirectProcessDefinition.xml file” on page 314.

Intrinsic symbolic variables
You can use the intrinsic symbolic variables that are defined by Managed File Transfer to substitute values
into user-defined Connect:Direct processes. To follow the Connect:Direct naming convention, all intrinsic
symbolic variables used by Managed File Transfer have the format %FTE followed by five uppercase
alphanumeric characters.

When creating a process to transfer files from a Connect:Direct node to the Connect:Direct bridge system,
you must use the intrinsic variable %FTETFILE as the value of TO FILE in the Connect:Direct process.
When creating a process to transfer files to a Connect:Direct node from the Connect:Direct bridge system,
you must use the intrinsic variable %FTEFFILE as the value of FROM FILE in the Connect:Direct process.
These variables contain the temporary file paths that the Connect:Direct bridge agent uses for transfers
into and out of the Managed File Transfer network.

For more information about intrinsic symbolic variables, see the Connect:Direct product documentation.

Sample Connect:Direct processes
Managed File Transfer provides sample Connect:Direct processes. These samples are located in the
following directory: MQ_INSTALLATION_PATH/mqft/samples/ConnectDirectProcessTemplates.

Related tasks
“Specifying the Connect:Direct process to start by using the ConnectDirectProcessDefinition.xml file” on
page 314

Administering IBM MQ 313

Specify which Connect:Direct process to start as part of a Managed File Transfer transfer. Managed File
Transfer provides an XML file that you can edit to specify process definitions.
“Using intrinsic symbolic variables in Connect:Direct processes that are called by Managed File Transfer”
on page 315
You can call a user-defined Connect:Direct process from a Managed File Transfer transfer and pass in
information from the transfer to the Connect:Direct process by using intrinsic symbolic variables in the
process definition.
Related reference
Connect:Direct process definition file format
Substitution variables for use with user-defined Connect:Direct processes

Specifying the Connect:Direct process to start by using the
ConnectDirectProcessDefinition.xml file
Specify which Connect:Direct process to start as part of a Managed File Transfer transfer. Managed File
Transfer provides an XML file that you can edit to specify process definitions.

About this task
The fteCreateCDAgent command creates the file ConnectDirectProcessDefinitions.xml in
the agent configuration directory MQ_DATA_PATH/mqft/config/coordination_queue_manager/
agents/cd_bridge_agent_name. Before you can call user-defined Connect:Direct processes from the
Connect:Direct bridge agent, you must set up process definitions by editing this file.

For each process that you want to specify to call as part of a transfer through the Connect:Direct bridge,
perform the following steps:

Procedure
1. Define the Connect:Direct process that you want the Connect:Direct bridge agent to call as part of the

transfer and save the process template in a file.
2. Open the MQ_DATA_PATH/mqft/config/coordination_queue_manager/agents/
cd_bridge_agent_name/ConnectDirectProcessDefinitions.xml file in a text editor.

3. Create a <processSet> element.
4. Inside the <processSet> element, create a <condition> element.
5. Inside the <condition> element, create one or more elements that define a condition that the

transfer request must match to call the Connect:Direct process you defined in Step 1. These elements
can be either <match> elements or <defined> elements.

• Use a <match> element to specify that the value of a variable must match a pattern. Create the
<match> element with the following attributes:

– variable - the name of the variable whose value is compared. The variable is an
intrinsic symbol. For more information, see Substitution variables for use with user-defined
Connect:Direct processes.

– value - the pattern to compare to the value of the specified variable.
– Optional: pattern - the type of pattern used by the value of the value attribute. This pattern

type can be wildcard or regex. This attribute is optional and the default is wildcard.
• Use a <defined> element to specify that a variable must have a value defined. Create the

<defined> element with the following attribute:

– variable - the name of the variable that must have a value defined. The variable is an
intrinsic symbol. For more information, see Substitution variables for use with user-defined
Connect:Direct processes.

The conditions specified within the <condition> element are combined with a logical AND. All
conditions must be met for the Connect:Direct bridge agent to call the process specified by this

314 Administering IBM MQ

<processSet> element. If you do not specify a <condition> element, the process set matches all
transfers.

6. Inside the <processSet> element, create a <process> element.
7. Inside the <process> element, create a <transfer> element.

The transfer element specifies the Connect:Direct process that the Connect:Direct bridge agent calls
as part of the transfer. Create the <transfer> element with the following attribute:

• process- - the location of the Connect:Direct process that you defined in step 1. The location
of this file is specified with an absolute path or relative to the MQ_DATA_PATH/mqft/config/
coordination_queue_manager/agents/cd_bridge_agent_name directory.

Results
When searching for a condition match, the Connect:Direct bridge agent searches from the start of the file
to the end of the file. The first match that is found is the one that is used.
Related tasks
Configuring the Connect:Direct bridge
Related reference
Connect:Direct process definition file format
fteCreateCDAgent: create a Connect:Direct bridge agent

Using intrinsic symbolic variables in Connect:Direct processes that are called by
Managed File Transfer
You can call a user-defined Connect:Direct process from a Managed File Transfer transfer and pass in
information from the transfer to the Connect:Direct process by using intrinsic symbolic variables in the
process definition.

About this task
This example uses intrinsic symbolic variables to pass information from a Managed File Transfer transfer
in to a user-defined Connect:Direct process. For more information about intrinsic symbolic variables used
by Managed File Transfer, see Substitution variables for use with user-defined Connect:Direct processes.

In this example, the file is transferred from a Managed File Transfer Agent to a Connect:Direct bridge
node. The first part of the transfer is performed by Managed File Transfer. The second part of the transfer
is performed by a user-defined Connect:Direct process.

Procedure
1. Create a Connect:Direct process that uses intrinsic symbolic variables.

%FTEPNAME PROCESS
 SNODE=%FTESNODE
 PNODEID=(%FTEPUSER,%FTEPPASS)
 SNODEID=(%FTESUSER,%FTESPASS)

COPY001 COPY
 FROM (
 FILE=%FTEFFILE
 DISP=%FTEFDISP
)
 TO (
 FILE=%FTETFILE
 DISP=%FTETDISP
)
PEND

2. Save this process to a text file at the following location: MQ_DATA_PATH/mqft/config/
coordination_queue_manager/agents/cd_bridge_agent/Example.cdp

3. Edit the ConnectDirectProcessDefinition.xml file to include a rule that calls the
Connect:Direct process that you created in Step 1.

Administering IBM MQ 315

<?xml version="1.0" encoding="UTF-8"?>
<tns:cdprocess xmlns:tns="http://wmqfte.ibm.com/ConnectDirectProcessDefinitions"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://wmqfte.ibm.com/
 ConnectDirectProcessDefinitions ConnectDirectProcessDefinitions.xsd">

 <tns:processSet>
 <tns:condition>
 <tns:match variable="%FTESNODE" value="TOBERMORY" pattern="wildcard" />
 </tns:condition>
 <tns:process>
 <tns:transfer process="Example.cdp" />
 </tns:process>
 </tns:processSet>

</tns:cdprocess>

In this example, if a transfer request is submitted to the Connect:Direct bridge agent that has
TOBERMORY as its source or destination Connect:Direct node, the Example.cdp Connect:Direct
process is called.

4. Submit a file transfer request that satisfies the conditions that you defined in the
ConnectDirectProcessDefinition.xml file in Step 3.
For example,

fteCreateTransfer -sa ORINOCO -da CD_BRIDGE
 -sm QM_WIMBLEDON -dm QM_COMMON
 -de overwrite -df TOBERMORY:/home/bulgaria/destination.txt
 -sd leave c:\bungo\source.txt

In this example, the destination Connect:Direct node is TOBERMORY. This node is the secondary
node in the transfer and the value of %FTESNODE is set to TOBERMORY. This command matches the
condition that is set in the ConnectDirectProcessDefinition.xml file.

5. Managed File Transfer transfers the source file to a temporary location on the same system as the
Connect:Direct bridge agent.

6. The Connect:Direct bridge agent sets the values of the intrinsic symbolic variables from the
information in the transfer request and configuration information.
The intrinsic symbolic variables are set to the following values:

• %FTEPNAME=process_name - This value is an 8 character process name generated by the
Connect:Direct bridge agent.

• %FTESNODE=TOBERMORY - This value is set from the -df parameter of the fteCreateTransfer
command.

• %FTEPUSER,=primary_node_user - This information is taken from the
ConnectDirectCredentials.xml file.

• %FTEPPASS=primary_node_user_password - This information is taken from the
ConnectDirectCredentials.xml file.

• %FTESUSER,=secondary_node_user - This information is taken from the
ConnectDirectCredentials.xml file.

• %FTESPASS=secondary_node_user_password - This information is taken from the
ConnectDirectCredentials.xml file.

• %FTEFFILE =temporary_location - This value is the temporary location of the file on the same
system as the Connect:Direct bridge agent.

• %FTEFDISP=leave - This value is set from the -sd parameter of the fteCreateTransfer
command.

• %FTETFILE=/home/bulgaria/destination.txt - This value is set from the -df parameter of
the fteCreateTransfer command.

• %FTETDISP=overwrite - This value is set from the -de parameter of the fteCreateTransfer
command.

316 Administering IBM MQ

7. The Connect:Direct process is started on the Connect:Direct bridge node. Connect:Direct transfers
the file from the temporary location on the Connect:Direct bridge system to the destination /
home/bulgaria/destination.txt on the system where the Connect:Direct node TOBERMORY
is running.

Related concepts
“Submitting a user-defined Connect:Direct process from a file transfer request” on page 313
You can submit a transfer request for a transfer that goes through the Connect:Direct bridge agent that
calls a user-defined Connect:Direct process as part of the file transfer.
Related reference
Substitution variables for use with user-defined Connect:Direct processes

Using Connect:Direct processes to submit Managed File Transfer transfer
requests
You can submit a transfer request to the Connect:Direct bridge agent from a Connect:Direct process.
Managed File Transfer provides commands that can be called from a RUN TASK statement in a
Connect:Direct process.

Managed File Transfer provides the following commands for use with Connect:Direct processes:

ftetag
Specify this command in a step that precedes the ftebxfer or ftecxfer command to create
the required audit information for the transfer. This command takes the source specification of
the transfer as a parameter. For information about the format of the source specification, see
fteCreateTransfer: start a new file transfer.

ftebxfer
Specify this command to create a file transfer request when the queue manager that the transfer
request is submitted to is on the same system as the Connect:Direct node that submits the command.
This command takes the same parameters as the fteCreateTransfer command. For information
about these parameters, see fteCreateTransfer: start a new file transfer. This command also has
an extra parameter:
-qmgrname

Required. The name of the queue manager to submit the command to.
ftecxfer

Specify this command to create a file transfer request when the queue manager that the transfer
request is submitted to is located on a different system to the Connect:Direct node that submits the
command. This command takes the same parameters as the fteCreateTransfer command. For
information about the parameters, see fteCreateTransfer: start a new file transfer. This command
also has three additional parameters:
-qmgrname

Required. The name of the queue manager to submit the command to.
-connname

Required. The host and port of the queue manager to submit the command to, specified in IBM
MQ CONNAME format. For example, host.example.com(1337).

-channelname
Optional. The name of the channel to use to connect to the queue manager to submit the
command to. If this is not specified, a default of SYSTEM.DEF.SVRCONN is used.

Related tasks
“Creating and submitting a Connect:Direct process that calls Managed File Transfer by using the
Connect:Direct Requester” on page 318
The Connect:Direct Requester is a graphical user interface that you can use to create and submit a
Connect:Direct process that calls Managed File Transfer.
Related reference
Example: A Connect:Direct process file that calls MFT commands

Administering IBM MQ 317

Creating and submitting a Connect:Direct process that calls Managed File Transfer by
using the Connect:Direct Requester
The Connect:Direct Requester is a graphical user interface that you can use to create and submit a
Connect:Direct process that calls Managed File Transfer.

About this task
This task describes how to create a Connect:Direct process that calls the Managed File Transfer
ftecxfer command or the ftebxfer command. Use the ftecxfer command when the queue
manager that the transfer request is submitted to is located on a different system to the Connect:Direct
node that submits the command. Use the ftebxfer command when the queue manager that the transfer
request is submitted to is located on the same system as the Connect:Direct node that submits the
command. The ftecxfer command makes a client connection to the agent queue manager of the source
agent of the transfer. Before calling the ftecxfer command, you must call the ftetag command and
pass it the source specification information. This allows the process to be logged and audited in the same
way as transfers initiated from Managed File Transfer.

Procedure
1. Start the Connect:Direct Requester.
2. In the Nodes tab of the panel, select the Connect:Direct node that is used as the primary node of the

process.
3. Select File > New > Process. The Process Properties window opens.
4. In the Name: field, type the name of the process.
5. Select the secondary node from the Snode > Name: list.
6. Select the operating system of the secondary node from the Snode > Operating System: list.
7. Optional: Complete any further information in this window that you require.
8. Click OK. The Process Properties window closes.
9. Create a statement that runs the Managed File Transfer ftetag command.

a) Right-click in the Process window on the End statement.
b) Select Insert > Run Task. The Run Task Statement window opens.
c) In the Label: field, type Tag.
d) In the Optional Parameters or Commands field, type pgm(MQ_INSTALLATION_PATH/bin/
ftetag) args(source_specification). For more information about the format of
source_specification, see fteCreateTransfer: start a new file transfer.

e) Click OK. The Run Task Statement window closes.
10. Create a statement that runs the Managed File Transfer ftecxfer or ftebxfer command.

a) Right-click in the Process window on the End statement.
b) Select Insert > Run Task. The Run Task Statement window opens.
c) In the Label: field, type Transfer.
d) In the Optional Parameters or Commands field, type pgm(MQ_INSTALLATION_PATH/bin/
ftecxfer) args(parameters) or pgm(MQ_INSTALLATION_PATH/bin/ftebxfer)
args(parameters) depending on which command you choose. The parameters used by
the ftecxfer and ftebxfer commands are the same as the parameters used by the
fteCreateTransfer command, plus some additional parameters specific to ftecxfer and
ftebxfer. For more information, see fteCreateTransfer: start a new file transfer and “Using
Connect:Direct processes to submit Managed File Transfer transfer requests” on page 317.

e) Click OK. The Run Task Statement window closes.
11. Optional: Create any additional statements that you require.
12. Submit the process.

a) Right-click in the Process window.

318 Administering IBM MQ

b) Select Submit. The Connect:Direct Attach window opens.
c) Enter the user name and password to use to run the process.
d) Click OK.

Related concepts
“Using Connect:Direct processes to submit Managed File Transfer transfer requests” on page 317
You can submit a transfer request to the Connect:Direct bridge agent from a Connect:Direct process.
Managed File Transfer provides commands that can be called from a RUN TASK statement in a
Connect:Direct process.

Working with MFT from IBM Integration Bus
You can work with Managed File Transfer from IBM Integration Bus using the FTEOutput and FTEInput
nodes.

• Use the FTEInput node to transfer a file across the network using Managed File Transfer and then
process that file as part of an Integration Bus flow.

• Use the FTEOutput node to transfer a file that has been output by an Integration Bus flow to another
location in the network.

The agents that transfer files to or from the broker agent can be at any level of Managed File Transfer.

For more information, refer to the IBM Integration Bus product documentation.

MFT recovery and restart
If your agent or queue manager are unavailable for any reason, for example because of a power or
network failure, Managed File Transfer recovers as follows in these scenarios:

• Typically, if there is a problem while a file is being transferred, Managed File Transfer recovers and
restarts that file transfer after the problem is repaired.

• If a file that was in the process of being transferred is deleted or changed while the agent or queue
manager are unavailable, the transfer fails and you get a message in the transfer log that provides
details about the failure.

• If an agent process fails during a file transfer, the transfer continues when you restart the agent.
• If an agent loses the connection to its agent queue manager, the agent waits while trying to reconnect to

the queue manager. When the agent successfully reconnects to its queue manager, the current transfer
continues.

• If the agent is stopped for any reason, any resource monitors associated with an agent stop polling.
When the agent recovers, the monitors are also restarted, and resource polling resumes.

• For a file transfer with a source disposition of delete, if a recovery occurs after all the data is sent from
a source agent to a destination agent, the source file is unlocked before deletion. This unlocking means
that the source file could possibly be modified before the file is deleted. Therefore, it is considered to be
unsafe to delete the source file and the following warning is displayed:

BFGTR0075W: The source file has not been deleted because it is possible that the source file
was modified after the source file was transferred.

In this case, verify that the content of the source file is unmodified and then manually delete the source
file.

You can check the status of your transfers in the IBM MQ Explorer. If any transfers appear as Stalled,
you might need to take corrective action because the stalled status denotes an issue either with the agent
or between the two agents involved in the transfer.

Related tasks
“Setting a timeout for recovery of stalled transfers” on page 320

Administering IBM MQ 319

You can set a transfer recovery timeout for stalled file transfers that applies to all the transfers for a
source agent. You can also set a transfer recovery timeout for an individual transfer. If you set a specific
amount of time, in seconds, during which a source agent keeps trying to recover a stalled file transfer and
the transfer is not successful when the agent reaches the timeout, the transfer fails.

Setting a timeout for recovery of stalled transfers
You can set a transfer recovery timeout for stalled file transfers that applies to all the transfers for a
source agent. You can also set a transfer recovery timeout for an individual transfer. If you set a specific
amount of time, in seconds, during which a source agent keeps trying to recover a stalled file transfer and
the transfer is not successful when the agent reaches the timeout, the transfer fails.

About this task
You can set a transfer recovery timeout that applies to all the transfers for a source agent by adding a
transfer recovery timeout parameter to the agent's agent.properties file. You can also set a transfer
recovery timeout for an individual transfer from the command line, or with IBM MQ Explorer, or by using
Apache Ant tasks. If there is a transfer recovery timeout value set in the agent.properties file, setting
the transfer recovery timeout for an individual transfer overrides the value in the agent.properties
file.

There are three options for transfer recovery timeout:

• The agent continues to try to recover the stalled transfer until it completes successfully. This is the
same as the default behavior of the agent if the transfer recovery timeout is not set.

• The agent marks the transfer as failed immediately upon entering recovery.
• The agent keeps retrying the stalled transfer for a specified amount of time before the transfer is

marked as failed.

Setting the file transfer recovery timeout is optional. If you do not set it, transfers follow the default
behavior, where the agent keeps trying to recover a stalled transfer until it is successful.

Related concepts
“MFT recovery and restart” on page 319
If your agent or queue manager are unavailable for any reason, for example because of a power or
network failure, Managed File Transfer recovers as follows in these scenarios:

Transfer recovery timeout concepts
You can set the amount of time, in seconds, during which a source agent keeps trying to recover a stalled
file transfer. If the transfer is not successful when the agent reaches the timeout for the retry interval, the
transfer fails.

Recovery timeout precedence
A transfer recovery timeout value for an individual transfer specified through the fteCreateTransfer,
fteCreateTemplate, or fteCreateMonitor commands, or by using IBM MQ Explorer, or specified
in the fte:filespec nested element, takes precedence over the value that is specified for the
transferRecoveryTimeout parameter in the agent.properties file for the source agent.

For example, if the fteCreateTransfer command is started without the -rt parameter and value pair,
the source agent AGENT1 checks the agent.properties file for a transferRecoveryTimeout value
to determine the recovery timeout behavior:

fteCreateTransfer -sa AGENT1 -da AGENT2 -df C:\import\transferredfile.txt
C:\export\originalfile.txt

If the transferRecoveryTimeout parameter in the agent.properties file is either not set or is set
to -1, the agent follows the default behavior and tries to recover the transfer until it is successful.

320 Administering IBM MQ

However, if the fteCreateTransfer command includes the -rt parameter, the value of this parameter
takes precedence over the value in the agent.properties file and is used as the recovery timeout
setting for the transfer:

fteCreateTransfer -sa AGENT1 -da AGENT2 -rt 21600 -df C:\import\transferredfile.txt
C:\export\originalfile.txt

Recovery timeout counter
The recovery timeout counter starts when the transfer enters recovering state. A transfer log message
is published to the SYSTEM.FTE topic with the topic string Log/agent_name/transfer_ID to indicate
that the transfer status is changed to recovering and the source agent clock time at which the status
changed. If the transfer is resumed within the set retry interval and does not reach the recovery timeout
(counter<=recovery timeout), then the counter is reset to 0, ready to start again if the transfer enters
recovery.

If the counter reaches the maximum value set for the recovery timeout (counter==recovery timeout), the
recovery of the transfer stops and the source agent reports the transfer as failed. This type of transfer
failure, caused by the fact that the transfer reached the recovery timeout, is indicated by the message
code, RECOVERY TIMEOUT (69). Another transfer log message is published to the SYSTEM.FTE topic,
with a topic string of Log/agent_name/transfer_ID, to indicate that the transfer is failed and includes
a message, the return code, and the source agent's event log. The source agent's event log is updated
with a message when any of the following events occur during recovery:

• When the recovery timeout parameter is set to a value greater than -1, the transfer enters recovery.
The agent's event log is updated to indicate the start of the recovery timer for the TransferId and the
amount of time the source agent waits before it initiates the recovery timeout processing.

• When the recovering transfer is resumed, the source agent's event log is updated with a new message
to indicate that the TransferId that was in recovery is resumed.

• When a recovering transfer has timed out, the source agent's event log is updated to indicate the
TransferId that failed while recovering due to recovery timeout.

These log messages enable the users (subscribers and loggers) to identify the transfers that failed due to
the transfer recovery timeout.

The counter for the recovery timeout is always at the source agent. However, if the destination agent fails
to receive information from the source agent in a timely manner, it can send a request to the source agent
to put the transfer in recovery. For a transfer where the recovery timeout option is set, the source agent
starts the recovery timeout counter when it receives the request from the destination agent.

Manual handling is still required for transfers that do not use the recovery timeout option, the failed, and
partially complete transfers.

For transfer sets, where a single transfer request is issued for multiple files, and some of the files
completed successfully but one completed only partially, the transfer is still marked as failed as it did not
complete as expected. The source agent might have timed out while transferring the partially completed
file.

Ensure that the destination agent and file server are ready and in a state to accept file transfers.

You have to issue the transfer request again for the entire set, but to avoid problems because some of
the files remain on the destination from the initial transfer attempt, you can issue the new request with
the overwrite if existing option specified. This ensures that the incomplete set of files from the
previous transfer attempt are cleaned up as a part of the new transfer, before the files are written to the
destination again.

From IBM MQ 9.1.5, it is no longer necessary to manually remove part files left on a destination after
an initial transfer attempt has failed. If a transfer recovery timeout is set for a transfer, the source agent
moves the transfer into the RecoveryTimedOut state if transfer recovery times out. After the transfer has
been resynchronized, the destination agent removes any part files that were created during the transfer
and sends a completion message to the source agent.

Administering IBM MQ 321

Traces and messages
Tracing points are included for diagnostic purposes. The recovery timeout value, start of the retry interval,
start of the resume period and counter reset, and whether the transfer timed out and failed, are logged. In
case of a problem or unexpected behavior, you can collect the source agent output log and trace files, and
provide them when requested by IBM support, to help with troubleshooting.

Messages notify you when:

• A transfer enters recovery (BFGTR0081I)
• A transfer is terminated because it timed out from recovery (BFGSS0081E)
• Atransfer resumes after being in recovery (BFGTR0082I)

Related concepts
“MFT recovery and restart” on page 319
If your agent or queue manager are unavailable for any reason, for example because of a power or
network failure, Managed File Transfer recovers as follows in these scenarios:

Setting the transfer recovery timeout for all transfers for one source agent
You can set a transfer recovery timeout that applies to all the transfers for a source agent by adding the
transferRecoveryTimeout parameter to the agent.properties file.

About this task
To set a treansfer recovery timeout that applies to all the transfers for a source agent, you add the
parameter and value pair for the transferRecoveryTimeout to the agent.properties file.

There are three options for the transferRecoveryTimeout parameter:
-1

The agent continues to attempt to recover the stalled transfer until the transfer is successful. Using
this option is the equivalent of the default behavior of the agent when the property is not set.

0
The agent stops the file transfer as soon as it enters recovery.

>0
The agent continues to attempt to recover the stalled transfer for the amount of time in seconds as set
by the positive integer value specified.

Any changes that you make to the agent.properties file come into effect only after the agent is
restarted.

If required, you can override the transfer recovery timeout value in the agent.properties file for
an individual transfer. For more information, see “Setting the transfer recovery timeout for individual
transfers” on page 323.

Procedure
• To specify that the agent continues to try to recover the stalled transfer until it completes successfully,

set a transfer recovery timeout value of -1 as shown in the following example:

transferRecoveryTimeout=-1

• To specify that the agent marks the transfer as failed immediately upon entering recovery, set a
transfer recovery timeout value of 0 as shown in the following example:

transferRecoveryTimeout=0

• To specify that the agent keeps retrying a stalled transfer for a given amount of time before the
transfer is marked as failed, set a transfer recovery timeout value for the amount of time, in seconds,
that you want to agent to keep retrying.

322 Administering IBM MQ

For example, setting a transfer recovery timeout value of 21600 means that the agent keeps trying to
recover the transfer for six hours from when it enters recovery:

transferRecoveryTimeout=21600

The maximum value for this parameter is 999999999.

Setting the transfer recovery timeout for individual transfers
You can set the transfer recovery timeout for an individual transfer from the command line, or with
IBM MQ Explorer, or by using Apache Ant tasks. If there is a transfer recovery timeout value set in the
agent.properties file, setting the transfer recovery timeout for an individual transfer overrides the
value set in the agent.properties file.

About this task
You can set the transfer recovery timeout parameter for an individual transfer when you are:

• Creating a transfer either by using the fteCreateTransfer command, or by using IBM MQ Explorer.
• Creating a transfer template either by using the fteCreateTemplate command, or by using IBM MQ

Explorer.
• Creating a resource monitor either by using the fteCreateMonitor command, or by using IBM MQ

Explorer.
• Copying or moving files by using the fte:filecopy or fte:filemove Ant tasks.

If you set a transfer recovery timeout value for an individual transfer, this value overrides the transfer
recovery timeout value set in the agent.properties file (see“Setting the transfer recovery timeout for
all transfers for one source agent” on page 322).

Procedure
• To use the fteCreateTransfer or fteCreateTemplate command to set the transfer recovery

timeout, specify the appropriate option for the -rt parameter:
-1

The agent continues to attempt to recover the stalled transfer until the transfer is successful. Using
this option is the equivalent of the default behavior of the agent when the property is not set.

0
The agent stops the file transfer as soon as it enters recovery.

>0
The agent continues to attempt to recover the stalled transfer for the specified amount of time in
seconds.

Examples for the fteCreateTransfer command

fteCreateTransfer -sa AGENT1 -da AGENT2 -rt -1 -df C:\import\transferredfile.txt
C:\export\originalfile.txt

fteCreateTransfer -sa AGENT1 -da AGENT2 -rt 0 -df C:\import\transferredfile.txt
C:\export\originalfile.txt

fteCreateTransfer -sa AGENT1 -da AGENT2 -rt 21600 -df C:\import\transferredfile.txt
C:\export\originalfile.txt

Examples for the fteCreateTemplate command

fteCreateTemplate -tn "payroll accounts monthly report template" -rt -1 -sa PAYROLL -sm
QM_PAYROLL1 -da ACCOUNTS
-dm QM_ACCOUNTS -df C:\payroll_reports*.xls C:\out*.xls

Administering IBM MQ 323

fteCreateTemplate -tn "payroll accounts monthly report template" -rt 0 -sa PAYROLL -sm
QM_PAYROLL1 -da ACCOUNTS
-dm QM_ACCOUNTS -df C:\payroll_reports*.xls C:\out*.xls

fteCreateTemplate -tn "payroll accounts monthly report template" -rt 21600 -sa PAYROLL -sm
QM_PAYROLL1 -da ACCOUNTS
-dm QM_ACCOUNTS -df C:\payroll_reports*.xls C:\out*.xls

There is no -rt parameter for the fteCreateMonitor command. If you set the -rt parameter
with the fteCreateTransfer command and also set the -gt parameter, the recovery timeout
parameter is included in the XML document with the transfer definition that is generated when you run
the fteCreateTransfer command. The resource monitor then uses this the XML document when
you run the fteCreateMonitor command. In the following example, the transfer recovery timeout
details would be included in the task.xml file:

fteCreateMonitor -ma AgentName -md C:\mqmft\monitors -mn Monitor_Name -mt task.xml -tr
"fileSize>=5MB,*.zip"

• To use IBM MQ Explorer New Transfer, New Monitor, or New Template wizard page to set the transfer
recovery timeout, select the required option in the Transfer Recovery Timeout (seconds) field:

As Source Agent
If you select As Source Agent, the transferRecoveryTimeout parameter value from the
agent.properties file is used if it is set, otherwise the default behavior for transfer recovery
timeout is applied.

Numeric list box
If you enter a time in seconds in the numeric list box, the agent continues to attempt to recover the
stalled transfer for the specified amount of time.

None
If you select None, no transfer recovery timeout is set and the agent continues to attempt to
recover the stalled transfer until the transfer is successful.

• To set the recovery timeout by using Ant tasks. include the transferRecoveryTimeout option and
value, with the fte:filecopy or fte:filemove elements for moving or copying files, for example:

Example for fte:filecopy

<fte:filecopy cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 src="agent1@qm1" dst="agent2@qm2"
 rcproperty="copy.result" transferRecoveryTimeout="0">

 <fte:filespec srcfilespec="/home/fteuser1/file.bin" dstfile="/home/fteuser2/file.bin"/>

</fte:filecopy>

Example for fte:filemove

<fte:filemove cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 src=agent1@qm1 dst="agent2@qm2"
 rcproperty="move.result" transferRecoveryTimeout="21600">

 <fte:filespec srcfilespec="/home/fteuser1/file.bin" dstfile="/home/fteuser2/file.bin"/>

</fte:filemove>

Related concepts
“MFT recovery and restart” on page 319
If your agent or queue manager are unavailable for any reason, for example because of a power or
network failure, Managed File Transfer recovers as follows in these scenarios:
Related tasks
“Starting a new file transfer” on page 212

324 Administering IBM MQ

You can start a new file transfer from the IBM MQ Explorer or from the command line and you can choose
to transfer either a single file or multiple files in a group.
“Creating a file transfer template using IBM MQ Explorer” on page 254
You can create a file transfer template from IBM MQ Explorer or from the command line. You can then use
that template to create new file transfers using the template details or submit the template to start the
file transfer.
“Monitoring MFT resources” on page 223
You can monitor Managed File Transfer resources; for example, a queue or a directory. When a condition
on this resource is satisfied, the resource monitor starts a task, such as a file transfer. You can create a
resource monitor by using the fteCreateMonitor command or the Monitors view in the Managed File
Transfer plug-in for IBM MQ Explorer.
“Viewing the status of file transfers in the Transfer Log” on page 221
You can view the details of file transfers by using the Transfer Log in IBM MQ Explorer. These can be
transfers started from either the command line or the IBM MQ Explorer. You can also customize what is
displayed in the Transfer Log.
Related reference
The MFT agent.properties file
fteCreateTransfer: start a new file transfer
fteCreateTemplate: create new file transfer template
fteCreateMonitor: create an MFT resource monitor
fte:filecopy Ant task
fte:filemove Ant task

Administering MQ Telemetry
MQ Telemetry is administered using IBM MQ Explorer or at a command line. Use the explorer to configure
telemetry channels, control the telemetry service, and monitor the MQTT clients that are connected
to IBM MQ. Configure the security of MQ Telemetry using JAAS, TLS and the IBM MQ object authority
manager.

Administering using IBM MQ Explorer
Use the explorer to configure telemetry channels, control the telemetry service, and monitor the MQTT
clients that are connected to IBM MQ. Configure the security of MQ Telemetry using JAAS, TLS and the
IBM MQ object authority manager.

Administering using the command line
MQ Telemetry can be completely administered at the command line using MQSC commands.

The MQ Telemetry documentation also has sample scripts that demonstrate the basic usage of the IBM
MQ Telemetry Transport v3 Client application.

Read and understand the samples in IBM MQ Telemetry Transport sample programs before using them.
Related concepts
MQ Telemetry
Related reference
MQXR properties

Administering IBM MQ 325

Configuring a queue manager for telemetry on Linux and
AIX

Follow these steps to configure MQ Telemetry manually. If you only need a simple configuration that uses
the guest user ID, you can instead run the MQ Telemetry support wizard in IBM MQ Explorer.

Before you begin
If you only need a simple configuration, consider using the MQ Telemetry support in IBM MQ Explorer.
This support includes a wizard and a sample command procedure sampleMQM. These resources set up an
initial configuration using the guest user ID. See Verifying the installation of MQ Telemetry by using IBM
MQ Explorer and IBM MQ Telemetry Transport sample programs.

If you need a more complex configuration that uses a different authentication method, use the steps in
this task. Begin with the following initial steps:

1. See Installation considerations for MQ Telemetry for information on how to install IBM MQ, and the MQ
Telemetry feature.

2. Create and start a queue manager. The queue manager is referred to as qMgr in this task.
3. As part of this task you configure the telemetry (MQXR) service. The MQXR property settings are stored

in a platform-specific properties file: mqxr_win.properties. You do not normally need to edit the
MQXR properties file directly, because almost all settings can be configured through MQSC admin
commands or IBM MQ Explorer. If you do decide to edit the file directly, stop the queue manager
before you make your changes. See MQXR properties.

About this task
Follow the steps in this task to configure MQ Telemetry manually, using different authorization schemes.

Procedure
1. Open a command window at the telemetry samples directory.

The telemetry samples directory is /opt/mqm/mqxr/samples.
2. Create the telemetry transmission queue.

If SYSTEM.MQTT.TRANSMIT.QUEUE does not exist, it is created automatically when the
telemetry (MQXR) service is first started, and set to use the guest user ID. However this task
configures MQ Telemetry to use a different authorization scheme. For this task you create
SYSTEM.MQTT.TRANSMIT.QUEUE, and configure access to it, before you start the telemetry (MQXR)
service.

Run the following command:

echo "DEFINE QLOCAL('SYSTEM.MQTT.TRANSMIT.QUEUE') USAGE(XMITQ) MAXDEPTH(100000)" | runmqsc
qMgr

3. Set the default transmission queue.

It is easier to send messages directly to MQTT clients if SYSTEM.MQTT.TRANSMIT.QUEUE is the
default transmission queue. Otherwise, you have to add a remote queue definition for every client
that receives IBM MQ messages; see “Sending a message to a client directly” on page 331. Note that
altering the default transmission queue might interfere with your existing configuration.

When the telemetry (MQXR) service is first started, it does not set SYSTEM.MQTT.TRANSMIT.QUEUE
as the default transmission queue for the queue manager. To configure this setting, you alter the
default transmission queue property. You do this either by using the IBM MQ Explorer, or by running
the following command:

326 Administering IBM MQ

echo "ALTER QMGR DEFXMITQ('SYSTEM.MQTT.TRANSMIT.QUEUE')" | runmqsc qMgr

4. Follow a procedure in “Authorizing MQTT clients to access IBM MQ objects” on page 333 to create
one or more user IDs. The user IDs have the authority to publish, subscribe, and send publications to
MQTT clients.

5. Edit the installMQXRService_unix.mqsc file to configure the key file that is used to encrypt
passphrase for MQTT TLS channels:
a) Open the WMQ program installation directory/mqxr/samples/
installMQXRService_unix.mqsc file.

b) Locate the line that includes the STARTARGparameter and edit the -sf option to specify the
location of your credentials key file.
By default, the installMQXRService_unix.mqsc file uses a default key file named [DEFAULT].
The default key file is the same for all IBM MQ installations, so you must supply a key file that is
unique to your installation when you encrypt passphrases.

See also the example code in “Creating the SYSTEM.MQXR.SERVICE” on page 327.
6. Install the telemetry (MQXR) service by running the following command:

cat /opt/<install_dir>/mqxr/samples/installMQXRService_unix.mqsc | runmqsc queue_manager

7. Start the service.

echo "START SERVICE(SYSTEM.MQXR.SERVICE)" | runmqsc qMgr

The telemetry (MQXR) service is started automatically when the queue manager is started. It is started
manually in this task, because the queue manager is already running.

8. Using IBM MQ Explorer, configure telemetry channels to accept connections from MQTT clients.

The telemetry channels must be configured such that their identities are one of the user IDs defined in
step “4” on page 327.

See also DEFINE CHANNEL (MQTT).
9. Verify the configuration by running the sample client.

For the sample client to work with your telemetry channel, the channel must authorize the client to
publish, subscribe, and receive publications. The sample client connects to the telemetry channel on
port 1883 by default. See also IBM MQ Telemetry Transport sample programs.

Creating the SYSTEM.MQXR.SERVICE

Use the runMQXRService command to create the SYSTEM.MQXR.SERVICE.

DEF SERVICE(SYSTEM.MQXR.SERVICE) +
CONTROL(QMGR) +
DESCR('Manages clients using MQXR protocols such as MQTT') +
SERVTYPE(SERVER) +
STARTCMD('+MQ_INSTALL_PATH+/mqxr/bin/runMQXRService.sh') +
STARTARG('-m +QMNAME+ -d "+MQ_Q_MGR_DATA_PATH+" -g "+MQ_DATA_PATH+" -sf "/home/keyFileLocation/
keyFile.txt"') +
STOPCMD('+MQ_INSTALL_PATH+/mqxr/bin/endMQXRService.sh') +
STOPARG('-m +QMNAME+') +
STDOUT('+MQ_Q_MGR_DATA_PATH+/mqxr.stdout') +
STDERR('+MQ_Q_MGR_DATA_PATH+/mqxr.stderr')

Administering IBM MQ 327

Configuring a queue manager for telemetry on Windows
Follow these steps to configure MQ Telemetry manually. If you only need a simple configuration that uses
the guest user ID, you can instead run the MQ Telemetry support wizard in IBM MQ Explorer.

Before you begin
If you only need a simple configuration, consider using the MQ Telemetry support in IBM MQ Explorer.
This support includes a wizard and a sample command procedure sampleMQM. These resources set up an
initial configuration using the guest user ID. See Verifying the installation of MQ Telemetry by using IBM
MQ Explorer and IBM MQ Telemetry Transport sample programs.

If you need a more complex configuration that uses a different authentication method, use the steps in
this task. Begin with the following initial steps:

1. See Installation considerations for MQ Telemetry for information on how to install IBM MQ, and the MQ
Telemetry feature.

2. Create and start a queue manager. The queue manager is referred to as qMgr in this task.
3. As part of this task you configure the telemetry (MQXR) service. The MQXR property settings are stored

in a platform-specific properties file: mqxr_win.properties. You do not normally need to edit the
MQXR properties file directly, because almost all settings can be configured through MQSC admin
commands or IBM MQ Explorer. If you do decide to edit the file directly, stop the queue manager
before you make your changes. See MQXR properties.

About this task
Follow the steps in this task to configure MQ Telemetry manually, using different authorization schemes.

Procedure
1. Open a command window at the telemetry samples directory.

The telemetry samples directory is WMQ program installation directory\mqxr\samples.
2. Create the telemetry transmission queue.

If SYSTEM.MQTT.TRANSMIT.QUEUE does not exist, it is created automatically when the
telemetry (MQXR) service is first started, and set to use the guest user ID. However this task
configures MQ Telemetry to use a different authorization scheme. For this task you create
SYSTEM.MQTT.TRANSMIT.QUEUE, and configure access to it, before you start the telemetry (MQXR)
service.

Run the following command:

echo DEFINE QLOCAL('SYSTEM.MQTT.TRANSMIT.QUEUE') USAGE(XMITQ) MAXDEPTH(100000) | runmqsc qMgr

3. Set the default transmission queue.

It is easier to send messages directly to MQTT clients if SYSTEM.MQTT.TRANSMIT.QUEUE is the
default transmission queue. Otherwise, you have to add a remote queue definition for every client
that receives IBM MQ messages; see “Sending a message to a client directly” on page 331. Note that
altering the default transmission queue might interfere with your existing configuration.

When the telemetry (MQXR) service is first started, it does not set SYSTEM.MQTT.TRANSMIT.QUEUE
as the default transmission queue for the queue manager. To configure this setting, you alter the
default transmission queue property. You do this either by using the IBM MQ Explorer, or by running
the following command:

echo ALTER QMGR DEFXMITQ('SYSTEM.MQTT.TRANSMIT.QUEUE') | runmqsc qMgr

328 Administering IBM MQ

4. Follow a procedure in “Authorizing MQTT clients to access IBM MQ objects” on page 333 to create
one or more user IDs. The user IDs have the authority to publish, subscribe, and send publications to
MQTT clients.

5. Edit the installMQXRService_win.mqsc file to configure the key file that is used to encrypt
passphrase for MQTT TLS channels:
a) Open the WMQ program installation
directory\mqxr\samples\installMQXRService_win.mqsc file.

b) Locate the line that includes the STARTARGparameter and edit the -sf option to specify the
location of your credentials key file.
By default, the installMQXRService_win.mqsc file uses a default key file named [DEFAULT].
The default key file is the same for all IBM MQ installations, so you must supply a key file that is
unique to your installation when you encrypt passphrases.

See also the example code in “Creating SYSTEM.MQXR.SERVICE” on page 329.
6. Install the telemetry (MQXR) service by running the following command:

type installMQXRService_win.mqsc | runmqsc qMgr

7. Start the service.

echo START SERVICE(SYSTEM.MQXR.SERVICE) | runmqsc qMgr

The telemetry (MQXR) service is started automatically when the queue manager is started. It is started
manually in this task, because the queue manager is already running.

8. Using IBM MQ Explorer, configure telemetry channels to accept connections from MQTT clients.

The telemetry channels must be configured such that their identities are one of the user IDs defined in
step “4” on page 329.

See also DEFINE CHANNEL (MQTT).
9. Verify the configuration by running the sample client.

For the sample client to work with your telemetry channel, the channel must authorize the client to
publish, subscribe, and receive publications. The sample client connects to the telemetry channel on
port 1883 by default. See also IBM MQ Telemetry Transport sample programs.

Creating SYSTEM.MQXR.SERVICE

Use the runMQXRService command to create the SYSTEM.MQXR.SERVICE.

DEF SERVICE(SYSTEM.MQXR.SERVICE) +
CONTROL(QMGR) +
DESCR('Manages clients using MQXR protocols such as MQTT') +
SERVTYPE(SERVER) +
STARTCMD('+MQ_INSTALL_PATH+\mqxr\bin\runMQXRService.bat') +
STARTARG('-m +QMNAME+ -d "+MQ_Q_MGR_DATA_PATH+\." -g "+MQ_DATA_PATH+\." -sf
"c:\keyFileLocation\keyFile.txt"') +
STOPCMD('+MQ_INSTALL_PATH+\mqxr\bin\endMQXRService.bat') +
STOPARG('-m +QMNAME+') +
STDOUT('+MQ_Q_MGR_DATA_PATH+\mqxr.stdout') +
STDERR('+MQ_Q_MGR_DATA_PATH+\mqxr.stderr')

Configuring distributed queuing to send
messages to MQTT clients

IBM MQ applications can send MQTT v3 clients messages by publishing to subscription created by
a client, or by sending a message directly. Whichever method is used, the message is placed on

Administering IBM MQ 329

SYSTEM.MQTT.TRANSMIT.QUEUE, and sent to the client by the telemetry (MQXR) service. There are
a number of ways to place a message on SYSTEM.MQTT.TRANSMIT.QUEUE.

Publishing a message in response to an MQTT client subscription
The telemetry (MQXR) service creates a subscription on behalf of the MQTT client. The client is the
destination for any publications that match the subscription sent by the client. The telemetry services
forwards matching publications back to the client.

An MQTT client is connected to IBM MQ as a queue manager, with its queue manager name
set to its ClientIdentifier. The destination for publications to be sent to the client is a
transmission queue, SYSTEM.MQTT.TRANSMIT.QUEUE. The telemetry service forwards messages on
SYSTEM.MQTT.TRANSMIT.QUEUE to MQTT clients, using the target queue manager name as the key to a
specific client.

The telemetry (MQXR) service opens the transmission queue using ClientIdentifier as the queue
manager name. The telemetry (MQXR) service passes the object handle of the queue to the MQSUB
call, to forward publications that match the client subscription. In the object name resolution, the
ClientIdentifier is created as the remote queue manager name, and the transmission queue
must resolve to SYSTEM.MQTT.TRANSMIT.QUEUE. Using standard IBM MQ object name resolution,
ClientIdentifier is resolved as follows; see Table 16 on page 330.

1. ClientIdentifier matches nothing.

ClientIdentifier is a remote queue manager name. It does not match the local queue manager
name, a queue manager alias, or a transmission queue name.
The queue name is not defined. Currently, the telemetry (MQXR) service sets
SYSTEM.MQTT.PUBLICATION.QUEUE as the name of the queue. An MQTT v3 client does not
support queues, so the resolved queue name is ignored by the client.
The local queue manager property, Default transmission queue, name must
be set to SYSTEM.MQTT.TRANSMIT.QUEUE, so that the publication is put on
SYSTEM.MQTT.TRANSMIT.QUEUE to be sent to the client.

2. ClientIdentifier matches a queue manager alias named ClientIdentifier.

ClientIdentifier is a remote queue manager name. It matches the name of a queue manager
alias.
The queue manager alias must be defined with ClientIdentifier as the remote queue manager
name.
By setting the transmission queue name in the queue manager alias definition it is not necessary for
the default transmission to be set to SYSTEM.MQTT.TRANSMIT.QUEUE.

Table 16. Name resolution of an MQTT queue manager alias

Input Output

ClientIdenti
fier

Queue manager
name Queue name

Queue manager
name Queue name

Transmission
queue

Matches nothing ClientIdenti
fier

undefined ClientIdenti
fier

undefined Default
transmission
queue.

 SYSTEM.MQTT.
TRANSMIT.QUE
UE

Matches a queue
manager alias
named
ClientIdenti
fier

ClientIdenti
fier

undefined ClientIdenti
fier

undefined SYSTEM.MQTT.
TRANSMIT.QUE
UE

330 Administering IBM MQ

For further information about name resolution, see Name resolution.

Any IBM MQ program can publish to the same topic. The publication is sent to its subscribers, including
MQTT v3 clients that have a subscription to the topic.

If an administrative topic is created in a cluster, with the attribute CLUSTER(clusterName), any
application in the cluster can publish to the client; for example:

echo DEFINE TOPIC('MQTTExamples') TOPICSTR('MQTT Examples') CLUSTER(MQTT) REPLACE | runmqsc qMgr

Note: Do not give SYSTEM.MQTT.TRANSMIT.QUEUE a cluster attribute.

MQTT client subscribers and publishers can connect to different queue managers. The subscribers and
publishers can be part of the same cluster, or connected by a publish/subscribe hierarchy. The publication
is delivered from the publisher to the subscriber using IBM MQ.

Sending a message to a client directly
An alternative to a client creating a subscription and receiving a publication that matches the subscription
topic, send a message to an MQTT v3 client directly. MQTT V3 client applications cannot send messages
directly, but other application, such as IBM MQ applications, can.

The IBM MQ application must know the ClientIdentifier of the MQTT v3 client. As MQTT v3
clients do not have queues, the target queue name is passed to the MQTT v3 application client
messageArrived method as a topic name. For example, in an MQI program, create an object descriptor
with the client as the ObjectQmgrName:

MQOD.ObjectQmgrName = ClientIdentifier ;
MQOD.ObjectName = name ;

If the application is written using JMS, create a point-to-point destination; for example:

jakarta.jms.Destination jmsDestination =
(jakarta.jms.Destination)jmsFactory.createQueue
("queue://ClientIdentifier/name");

javax.jms.Destination jmsDestination =
(javax.jms.Destination)jmsFactory.createQueue
("queue://ClientIdentifier/name");

To send an unsolicited message to an MQTT client use a remote queue definition. The remote queue
manager name must resolvedto the ClientIdentifier of the client. The transmission queue must
resolve to SYSTEM.MQTT.TRANSMIT.QUEUE ; see Table 17 on page 331. The remote queue name can be
anything. The client receives it as a topic string.

Table 17. Name resolution of an MQTT client remote queue definition

Input Output

Queue name
Queue manager
name Queue name

Queue manager
name

Transmission
queue

Name of remote
queue definition

Blank or local queue
manager name

Remote queue name
used as a topic
string

ClientIdentifie
r

 SYSTEM.MQTT.
TRANSMIT.QUEUE

If the client is connected, the message is sent directly to the MQTT client, which calls the
messageArrived method; see messageArrived method.

Administering IBM MQ 331

If the client has disconnected with a persistent session, the message is stored in
SYSTEM.MQTT.TRANSMIT.QUEUE ; see MQTT stateless and stateful sessions. It is forwarded to the
client when the client reconnects to the session again.

If you send a non-persistent message it is sent to the client with at most once quality of service,
QoS=0. If you send a persistent message directly to a client, by default, it is sent with exactly once
quality of service, QoS=2. As the client might not have a persistence mechanism, the client can reduce the
quality of service that it accepts for messages sent directly. To reduce the quality of service for messages
sent directly to a client, make a subscription to the topic DEFAULT.QoS. Specify the maximum quality of
service the client can support.

MQTT client identification, authorization, and
authentication

The telemetry (MQXR) service publishes, or subscribes to, IBM MQ topics on behalf of MQTT clients, using
MQTT channels. The IBM MQ administrator configures the MQTT channel identity that is used for IBM MQ
authorization. The administrator can define a common identity for the channel, or use the Username or
ClientIdentifier of a client connected to the channel.

The telemetry (MQXR) service can authenticate the client using the Username supplied by the client, or
by using a client certificate. The Username is authenticated using a password provided by the client.

To summarize: Client identification is the selection of the client identity. Depending on the context, the
client is identified by the ClientIdentifier, Username, a common client identity created by the
administrator, or a client certificate. The client identifier used for authenticity checking does not have to
be the same identifier that is used for authorization.

MQTT client programs set the Username and Password that are sent to the server using an
MQTT channel. They can also set the TLS properties that are required to encrypt and authenticate
the connection. The administrator decides whether to authenticate the MQTT channel, and how to
authenticate the channel.

To authorize an MQTT client to access IBM MQ objects, authorize the ClientIdentifier, or Username
of the client, or authorize a common client identity. To permit a client to connect to IBM MQ, authenticate
the Username, or use a client certificate. Configure JAAS to authenticate the Username, and configure
TLS to authenticate a client certificate.

If you set a Password at the client, either encrypt the connection using VPN, or configure the MQTT
channel to use TLS, to keep the password private.

It is difficult to manage client certificates. For this reason, if the risks associated with password
authentication are acceptable, password authentication is often used to authenticate clients.

If there is a secure way to manage and store the client certificate it is possible to rely on certificate
authentication. However, it is rarely the case that certificates can be managed securely in the types of
environments that telemetry is used in. Instead, the authentication of devices using client certificates is
complemented by authenticating client passwords at the server. Because of the additional complexity,
the use of client certificates is restricted to highly sensitive applications. The use of two forms of
authentication is called two-factor authentication. You must know one of the factors, such as a password,
and have the other, such as a certificate.

In a highly sensitive application, such as a chip-and-pin device, the device is locked down during
manufacture to prevent tampering with the internal hardware and software. A trusted, time-limited, client
certificate is copied to the device. The device is deployed to the location where it is to be used. Further
authentication is performed each time the device is used, either using a password, or another certificate
from a smart card.

332 Administering IBM MQ

MQTT client identity and authorization
Use the client ID, Username, or a common client identity for authorization to access IBM MQ objects.

The IBM MQ administrator has three choices for selecting the identity of the MQTT channel. The
administrator makes the choice when defining or modifying the MQTT channel used by the client. The
identity is used to authorize access to IBM MQ topics. The choice is made in the following order:

1. The client ID (see USECLNTID).
2. An identity the administrator provides for the channel (the MCAUSER of the channel. See MCAUSER).
3. If neither of the previous choices applies, the Username passed from the MQTT client (Username

is an attribute of the MqttConnectOptions class. It must be set before the client connects to the
service. Its default value is null).

Avoid trouble: The identity chosen by this process is thereafter referred to, for example by the DISPLAY
CHSTATUS (MQTT) command, as the MCAUSER of the client. Be aware that this is not necessarily the
same identity as the MCAUSER of the channel that is referred to in choice (2).

Use the IBM MQ setmqaut command to select which objects, and which actions, are authorized to be
used by the identity associated with the MQTT channel. For example, the following code authorizes a
channel identity MQTTClient, provided by the administrator of queue manager QM1:

 setmqaut -m QM1 -t q -n SYSTEM.MQTT.TRANSMIT.QUEUE -p MQTTClient -all +put
setmqaut -m QM1 -t topic -n SYSTEM.BASE.TOPIC -p MQTTClient -all +pub +sub

Authorizing MQTT clients to access IBM MQ objects
Follow these steps to authorize MQTT clients to publish and subscribe to IBM MQ Objects. The steps
follow four alternative access control patterns.

Before you begin
MQTT clients are authorized to access objects in IBM MQ by being assigned an identity when they connect
to a telemetry channel. The IBM MQ Administrator configures the telemetry channel using IBM MQ
Explorer to give a client one of three types of identity:

1. ClientIdentifier
2. Username
3. A name the administrator assigns to the channel.

Whichever type is used, the identity must be defined to IBM MQ as a principal by the installed
authorization service. The default authorization service on Windows or Linux is called the Object Authority
Manager (OAM). If you are using the OAM, the identity must be defined as a user ID.

Use the identity to give a client, or collection of clients, permission to publish or subscribe to topics
defined in IBM MQ. If an MQTT client has subscribed to a topic, use the identity to give it permission to
receive the resulting publications.

It is hard to manage a system with tens of thousands of MQTT clients, each requiring individual access
permissions. One solution is to define common identities, and associate individual MQTT clients with
one of the common identities. Define as many common identities as you require to define different
combinations of permissions. Another solution is to write your own authorization service that can deal
more easily with thousands of users than the operating system.

You can combine MQTT clients into common identities in two ways, using the OAM:

1. Define multiple telemetry channels, each with a different user ID that the administrator allocates using
IBM MQ Explorer. Clients connecting using different TCP/IP port numbers are associated with different
telemetry channels, and are assigned different identities.

2. Define a single telemetry channel, but have each client select a Username from a small set of user
IDs. The administrator configures the telemetry channel to select the client Username as its identity.

Administering IBM MQ 333

In this task, the identity of the telemetry channel is called mqttUser, regardless of how it is set. If
collections of clients use different identities, use multiple mqttUsers, one for each collection of clients.
As the task uses the OAM, each mqttUser must be a user ID.

About this task
In this task, you have a choice of four access control patterns that you can tailor to specific requirements.
The patterns differ in their granularity of access control.

• “No access control” on page 334
• “Coarse-grained access control” on page 334
• “Medium-grained access control” on page 334
• “Fine-grained access control” on page 335

The result of the models is to assign mqttUsers sets of permissions to publish and subscribe to IBM MQ,
and receive publications from IBM MQ.

No access control
MQTT clients are given IBM MQ administrative authority, and can perform any action on any object.

Procedure
1. Create a user ID mqttUser to act as the identity of all MQTT clients.
2. Add mqttUser to the mqm group; see Adding a user to a group on Windows , or Creating and managing

groups on Linux

Coarse-grained access control
MQTT clients have authority to publish and subscribe, and to send messages to MQTT clients. They do not
have authority to perform other actions, or to access other objects.

Procedure
1. Create a user ID mqttUser to act as the identity of all MQTT clients.
2. Authorize mqttUser to publish and subscribe to all topics and to send publications to MQTT clients.

setmqaut -m qMgr -t topic -n SYSTEM.BASE.TOPIC -p mqttUser -all +pub +sub
setmqaut -m qMgr -t q -n SYSTEM.MQTT.TRANSMIT.QUEUE -p mqttUser -all +put

Medium-grained access control
MQTT clients are divided into different groups to publish and subscribe to different sets of topics, and to
send messages to MQTT clients.

Procedure
1. Create multiple user IDs, mqttUsers, and multiple administrative topics in the publish/subscribe

topic tree.
2. Authorize different mqttUsers to different topics.

setmqaut -m qMgr -t topic -n topic1 -p mqttUserA -all +pub +sub
setmqaut -m qMgr -t topic -n topic2 -p mqttUserB -all +pub +sub

3. Create a group mqtt, and add all mqttUsers to the group.
4. Authorize mqtt to send topics to MQTT clients.

setmqaut -m qMgr -t q -n SYSTEM.MQTT.TRANSMIT.QUEUE -p mqtt -all +put

334 Administering IBM MQ

Fine-grained access control
MQTT clients are incorporated into an existing system of access control, that authorizes groups to perform
actions on objects.

About this task
A user ID is assigned to one or more operating system groups depending on the authorizations it requires.
If IBM MQ applications are publishing and subscribing to the same topic space as MQTT clients, use this
model. The groups are referred to as Publish X, Subscribe Y, and mqtt

Publish X
Members of Publish X groups can publish to topicX.

Subscribe Y
Members of Subscribe Y groups can subscribe to topicY.

mqtt
Members of the mqtt group can send publications to MQTT clients.

Procedure
1. Create multiple groups, Publish X and Subscribe Y that are allocated to multiple administrative

topics in the publish/subscribe topic tree.
2. Create a group mqtt.
3. Create multiple user IDs, mqttUsers, and add the users to any of the groups, depending on what they

are authorized to do.
4. Authorize different Publish X and Subscribe X groups to different topics, and authorize the mqtt

group to send messages to MQTT clients.

setmqaut -m qMgr -t topic -n topic1 -p Publish X -all +pub
setmqaut -m qMgr -t topic -n topic1 -p Subscribe X -all +pub +sub
setmqaut -m qMgr -t q -n SYSTEM.MQTT.TRANSMIT.QUEUE -p mqtt -all +put

MQTT client authentication using a password
Authenticate the Username using the client password. You can authenticate the client using a different
identity to the identity used to authorize the client to publish and subscribe to topics.

The telemetry (MQXR) service uses JAAS to authenticate the client Username. JAAS uses the Password
supplied by the MQTT client.

The IBM MQ administrator decides whether to authenticate the Username, or not to authenticate at all,
by configuring the MQTT channel a client connects to. Clients can be assigned to different channels,
and each channel can be configured to authenticate its clients in different ways. Using JAAS, you can
configure which methods must authenticate the client, and which can optionally authenticate the client.

The choice of identity for authentication does not affect the choice of identity for authorization. You might
want to set up a common identity for authorization for administrative convenience, but authenticate each
user to use that identity. The following procedure outlines the steps to authenticate individual users to
use a common identity:

1. The IBM MQ administrator sets the MQTT channel identity to any name, such as MQTTClientUser,
using IBM MQ Explorer.

2. The IBM MQ administrator authorizes MQTTClient to publish and subscribe to any topic:

 setmqaut -m QM1 -t q -n SYSTEM.MQTT.TRANSMIT.QUEUE -p MQTTClient -all +put
setmqaut -m QM1 -t topic -n SYSTEM.BASE.TOPIC -p MQTTClient -all +pub +sub

3. The MQTT client application developer creates an MqttConnectOptions object and sets Username
and Password before connecting to the server.

Administering IBM MQ 335

4. The security developer creates a JAAS LoginModule to authenticate the Username with the
Password and includes it in the JAAS configuration file.

5. The IBM MQ administrator configures the MQTT channel to authenticate the UserName of the client
using JAAS.

MQTT client authentication using TLS
Connections between the MQTT client and the queue manager are always initiated by the MQTT client.
The MQTT client is always the SSL client. Client authentication of the server and server authentication of
the MQTT client are both optional.

By providing the client with a private signed digital certificate, you can authenticate the MQTT client to
IBM MQ. The IBM MQ Administrator can force MQTT clients to authenticate themselves to the queue
manager using TLS. You can only request client authentication as part of mutual authentication.

As an alternative to using SSL, some kinds of Virtual Private Network (VPN), such as IPsec, authenticate
the endpoints of a TCP/IP connection. VPN encrypts each IP packet that flows over the network. Once
such a VPN connection is established, you have established a trusted network. You can connect MQTT
clients to telemetry channels using TCP/IP over the VPN network.

Client authentication using TLS relies upon the client having a secret. The secret is the private key of
the client in the case of a self-signed certificate, or a key provided by a certificate authority. The key is
used to sign the digital certificate of the client. Anyone in possession of the corresponding public key
can verify the digital certificate. Certificates can be trusted, or if they are chained, traced back through a
certificate chain to a trusted root certificate. Client verification sends all the certificates in the certificate
chain provided by the client to the server. The server checks the certificate chain until it finds a certificate
it trusts. The trusted certificate is either the public certificate generated from a self-signed certificate, or
a root certificate typically issued by a certificate authority. As a final, optional, step the trusted certificate
can be compared with a "live" certificate revocation list.

The trusted certificate might be issued by a certificate authority and already included in the JRE
certificate store. It might be a self-signed certificate, or any certificate that has been added to the
telemetry channel keystore as a trusted certificate.

Note: The telemetry channel has a combined keystore/truststore that holds both the private keys to one
or more telemetry channels, and any public certificates needed to authenticate clients. Because an SSL
channel must have a keystore, and it is the same file as the channel truststore, the JRE certificate store
is never referenced. The implication is that if authentication of a client requires a CA root certificate, you
must place the root certificate in the keystore for the channel, even if the CA root certificate is already in
the JRE certificate store. The JRE certificate store is never referenced.

Think about the threats that client authentication is intended to counter, and the roles the client and
server play in countering the threats. Authenticating the client certificate alone is insufficient to prevent
unauthorized access to a system. If someone else has got hold of the client device, the client device is
not necessarily acting with the authority of the certificate holder. Never rely on a single defense against
unwanted attacks. At least use a two-factor authentication approach and supplement possession of a
certificate with knowledge of private information. For example, use JAAS, and authenticate the client
using a password issued by the server.

The primary threat to the client certificate is that it gets into the wrong hands. The certificate is held
in a password protected keystore at the client. How does it get placed in the keystore? How does
the MQTT client get the password to the keystore? How secure is the password protection? Telemetry
devices are often easy to remove, and then can be hacked in private. Must the device hardware be
tamper-proof? Distributing and protecting client-side certificates is recognized to be hard; it is called the
key-management problem.

A secondary threat is that the device is misused to access servers in unintended ways. For example, if
the MQTT application is tampered with, it might be possible to use a weakness in the server configuration
using the authenticated client identity.

To authenticate an MQTT client using SSL, configure the telemetry channel, and the client.

336 Administering IBM MQ

Related concepts
“Telemetry channel configuration for MQTT client authentication using TLS” on page 337
The IBM MQ administrator configures telemetry channels at the server. Each channel is configured to
accept a TCP/IP connection on a different port number. TLS channels are configured with passphrase
protected access to key files. If a TLS channel is defined with no passphrase or key file, the channel does
not accept TLS connections.
MQTT client configuration for client authentication using TLS

Telemetry channel configuration for MQTT client
authentication using TLS
The IBM MQ administrator configures telemetry channels at the server. Each channel is configured to
accept a TCP/IP connection on a different port number. TLS channels are configured with passphrase
protected access to key files. If a TLS channel is defined with no passphrase or key file, the channel does
not accept TLS connections.

Set the property, com.ibm.mq.MQTT.ClientAuth of a TLS telemetry channel to REQUIRED to force
all clients connecting on that channel to provide proof that they have verified digital certificates. The
client certificates are authenticated using certificates from certificate authorities, leading to a trusted root
certificate. If the client certificate is self-signed, or is signed by a certificate that is from a certificate
authority, the publicly signed certificates of the client, or certificate authority, must be stored securely at
the server.

Place the publicly signed client certificate or the certificate from the certificate authority in the telemetry
channel keystore. At the server, publicly signed certificates are stored in the same key file as privately
signed certificates, rather than in a separate truststore.

The server verifies the signature of any client certificates it is sent using all the public certificates and
cipher suites it has. The server verifies the key chain. The queue manager can be configured to test
the certificate against the certificate revocation list. The queue manager revocation namelist property is
SSLCRLNL.

If any of the certificates a client sends is verified by a certificate in the server keystore, then the client is
authenticated.

The IBM MQ administrator can configure the same telemetry channel to use JAAS to check the UserName
or ClientIdentifier of the client with the client Password.

You can use the same keystore for multiple telemetry channels.

Verification of at least one digital certificate in the password protected client keystore on the device
authenticates the client to the server. The digital certificate is only used for authentication by IBM
MQ. It is not used to verify the TCP/IP address of the client, or set the identity of the client for
authorization or accounting. The identity of the client adopted by the server is either the Username
or ClientIdentifier of the client, or an identity created by the IBM MQ administrator.

You can also use TLS cipher suites for client authentication. If you plan to use SHA-2 cipher suites, see
“System requirements for using SHA-2 cipher suites with MQTT channels” on page 341.

Related concepts
“Telemetry channel configuration for channel authentication using TLS” on page 338
The IBM MQ administrator configures telemetry channels at the server. Each channel is configured to
accept a TCP/IP connection on a different port number. TLS channels are configured with passphrase
protected access to key files. If a TLS channel is defined with no passphrase or key file, the channel does
not accept TLS connections.
CipherSpecs and CipherSuites
Related reference
DEFINE CHANNEL (MQTT)
ALTER CHANNEL (MQTT)

Administering IBM MQ 337

Telemetry channel authentication using TLS
Connections between the MQTT client and the queue manager are always initiated by the MQTT client.
The MQTT client is always the SSL client. Client authentication of the server and server authentication of
the MQTT client are both optional.

The client always attempts to authenticate the server, unless the client is configured to use a CipherSpec
that supports anonymous connection. If the authentication fails, then the connection is not established.

As an alternative to using SSL, some kinds of Virtual Private Network (VPN), such as IPsec, authenticate
the endpoints of a TCP/IP connection. VPN encrypts each IP packet that flows over the network. Once
such a VPN connection is established, you have established a trusted network. You can connect MQTT
clients to telemetry channels using TCP/IP over the VPN network.

Server authentication using SSL authenticates the server to which you are about to send confidential
information to. The client performs the checks matching the certificates sent from the server, against
certificates placed in its truststore, or in its JRE cacerts store.

The JRE certificate store is a JKS file, cacerts. It is located in JRE InstallPath\lib\security\.
It is installed with the default password changeit. You can either store certificates you trust in the JRE
certificate store, or in the client truststore. You cannot use both stores. Use the client truststore if you
want to keep the public certificates the client trusts separate from certificates other Java applications
use. Use the JRE certificate store if you want to use a common certificate store for all Java applications
running on the client. If you decide to use the JRE certificate store review the certificates it contains, to
make sure you trust them.

You can modify the JSSE configuration by supplying a different trust provider. You can customize a trust
provider to perform different checks on a certificate. In some OGSi environments that have used the
MQTT client, the environment provides a different trust provider.

To authenticate the telemetry channel using TLS, configure the server, and the client.

Telemetry channel configuration for channel
authentication using TLS
The IBM MQ administrator configures telemetry channels at the server. Each channel is configured to
accept a TCP/IP connection on a different port number. TLS channels are configured with passphrase
protected access to key files. If a TLS channel is defined with no passphrase or key file, the channel does
not accept TLS connections.

Store the digital certificate of the server, signed with its private key, in the keystore that the telemetry
channel is going to use at the server. Store any certificates in its key chain in the keystore, if you want to
transmit the key chain to the client. Configure the telemetry channel using IBM MQ explorer to use TLS.
Provide it with the path to the keystore, and the passphrase to access the keystore. If you do not set the
TCP/IP port number of the channel, the TLS telemetry channel port number defaults to 8883.

You can also use TLS cipher suites for channel authentication. If you plan to use SHA-2 cipher suites, see
“System requirements for using SHA-2 cipher suites with MQTT channels” on page 341.

Important: From IBM MQ 9.4.0, CMS key repositories and stash files are not
supported with AMQP and MQTT channels that use SSL/TLS. Use PKCS #12 key repositories and protect
the key repository passwords by using the IBM MQ password protection system instead. You can create a
PKCS #12 key repository by using the following command:

runmqakm -keydb -create -db filename.p12 -pw password -type pkcs12

This command creates a PKCS #12 key repository file named filename.p12 that is secured with the
specified password.

Related concepts
“Telemetry channel configuration for MQTT client authentication using TLS” on page 337

338 Administering IBM MQ

The IBM MQ administrator configures telemetry channels at the server. Each channel is configured to
accept a TCP/IP connection on a different port number. TLS channels are configured with passphrase
protected access to key files. If a TLS channel is defined with no passphrase or key file, the channel does
not accept TLS connections.
CipherSpecs and CipherSuites
Related reference
DEFINE CHANNEL (MQTT)
ALTER CHANNEL (MQTT)

Example MQTT channel configuration using TLS authentication
This example walks you through an example of configuring an MQTT channel that uses TLS
authentication.

The example configures a channel between MQTT and Mosquitto.

The example uses a Docker container for both IBM MQ on Red Hat Enterprise Linux and Mosquitto
on CentOS, but applies to any type of server. (CentOS was used for Mosquitto because of registry
entitlements.)

Configure IBM MQ keystore and channel for one-way TLS

Important: From IBM MQ 9.4.0, CMS key repositories and stash files are not
supported with AMQP and MQTT channels that use SSL/TLS. Use PKCS #12 key repositories and protect
the key repository passwords by using the IBM MQ password protection system instead.

Complete the following steps:

1. Create the IBM MQ keystore:

runmqakm -keydb -create -db mqtt.p12 -pw "passw0rd" -type p12

2. Create a personal certificate:

runmqakm -cert -create -db mqtt.p12 -pw "passw0rd" -size 2048 -dn "CN= mqm, OU=MQTest,
O=MQSuppor, C=US" -sig_alg SHA256_WITH_RSA -label ibmwebspheremqmqm

You can use the following command to confirm the creation of the certificate:

runmqakm -cert -list -v -db mqtt.p12 -pw "passw0rd"

3. Create the MQTT channel by entering the following command at the
runmqsc prompt:

DEFINE CHANNEL(MQTTDEMO) CHLTYPE(MQTT) BACKLOG(4096) PORT(8883) MCAUSER('mqm')
PROTOCOL(MQTTV311,MQTTV3,HTTP) SSLCAUTH(OPTIONAL) SSLCIPH('SSL_RSA_WITH_AES_256_CBC_SHA256')
SSLKEYR('/var/mqm/mqtt/mqtt.p12') SSLKEYP('passw0rd') TRPTYPE(TCP)

Note that the channel uses Java cipher mappings, see TLS CipherSpecs and CipherSuites in IBM MQ
classes for JMS.

4. Extract the certificate:

runmqakm -cert -extract -db mqtt.kdb -stashed -label ibmwebspheremqmqm -target serverCert.pem

Install Mosquitto on CentOS in a Docker container
Complete the following steps to create a Docker container with Mosquitto running on CentOS:

1. docker pull centos
2. docker run -it centos /bin/bash

Administering IBM MQ 339

3. yum -y install epel-release
4. yum -y install mosquitto

Move signer certificate to Mosquitto
Complete the following steps to move the certificate that you created in IBM MQ to Mosquitto. These
steps are run on the Docker host machine.

1. View the container IDs on Docker:

docker container ls

2. Copy the file from the docker container to your local system docker

cp MQ_Container_ID:/var/mqm/mqtt/serverCert.pem serverCert.pem

3. Copy the file from your local machine to the root directory on the centOS Machine:

docker cp serverCert.pem CentOS_ContainerID:/serverCert.pem

Publish with Mosquitto
Publish a test message on Mosquitto using the following command:

mosquitto_pub -h 172.17.0.2 --cafile serverCert.pem --insecure -p 8883 -i mosquittoClient -t
test -m 'test message' -d

The command arguments have the following meanings:
-h

The Red Hat Enterprise Linux host IP address (can be found using nslookup).
--cafile

The file containing the signer certificate.
--insecure

This option is specified because the example is using a self-signed certificate. Do not use this option
when using real CA certificates.

-p
Port number.

-i
Client ID.

-t
The topic being published to.

-m
The message being published.

-d
Enable debug messages.

Configure the MQTT channel for mutual TLS authentication
Enter the following command to reconfigure the MQTT channel as SSLCAUTH(REQUIRED).

ALTER CHANNEL(MQTTDEMO) CHLTYPE(MQTT) SSLCAUTH(REQUIRED)

Create a key/certificate pair on Mosquitto server and add to IBM MQ
Enter the following commands to create the key/certificate pair on Mosquitto:

340 Administering IBM MQ

1. Use openSSL to create the key/certificate pair for Mosquitto:

openssl req -x509 -newkey rsa:4096 -keyout mosquittoKey.pem -out mosquittoCert.pem -subj "/
CN=Mosquitto"

2. List the container IDs for the containers:

docker container ls

3. Copy the Mosquitto certificate to your local system docker:

docker cp CentOS_ContainerID:mosquittoCert.pem .

4. Copy the Mosquitto certificate to IBM MQ:

docker cp mosquittoCert.pem MQ_Container_ID:/var/mqm/mqtt

5. Add the certificate to the IBM MQ keystore:

runmqakm -cert -add -db mqtt.kdb -stashed -file mosquittoCert.pem

6. Restart the MQTT channel.

Publish with Mosquitto and mutual authentication
Complete the following steps to publish with Mosquitto using mutual authentication.

1. The following command should successfully publish a test message:

mosquitto_pub -h 172.17.0.2 --cafile serverCert.pem --insecure -p 8883 -i mosquittoClient -t
test -m 'test message' -d --cert mosquittoCert.pem --key mosquittoKey.pem

2. The following command should fail to publish a test message and generate an error message because
it does not send a personal certificate from Mosquitto:

mosquitto_pub -h 172.17.0.2 --cafile serverCert.pem --insecure -p 8883 -i mosquittoClient -t
test -m 'test message' -d /var/mqm/qmgrs/mqttDemoQM/errors/ mqxr_0.log

Related information
Managing keys and certificates

System requirements for using SHA-2 cipher
suites with MQTT channels
If you use a version of Java that supports SHA-2 cipher suites, you can use these suites to secure your
MQTT (telemetry) channels and client apps.

For IBM MQ 8.0 , which includes the telemetry (MQXR) service, the minimum Java version is Java 7 from
IBM , SR6. SHA-2 cipher suites are supported by default in Java 7 from IBM, SR4 onwards. You can
therefore use SHA-2 cipher suites with the telemetry (MQXR) service to secure your MQTT (telemetry)
channels.

If you are running an MQTT client with a different JRE, you need to ensure that it also supports the SHA-2
cipher suites.

Related concepts
Telemetry (MQXR) service
“Telemetry channel configuration for channel authentication using TLS” on page 338
The IBM MQ administrator configures telemetry channels at the server. Each channel is configured to
accept a TCP/IP connection on a different port number. TLS channels are configured with passphrase

Administering IBM MQ 341

protected access to key files. If a TLS channel is defined with no passphrase or key file, the channel does
not accept TLS connections.
Related reference
DEFINE CHANNEL (MQTT)
ALTER CHANNEL (MQTT)

Publication privacy on telemetry channels
The privacy of MQTT publications sent in either direction across telemetry channels is secured by using
TLS to encrypt transmissions over the connection.

MQTT clients that connect to telemetry channels use TLS to secure the privacy of publications transmitted
on the channel using symmetric key cryptography. Because the endpoints are not authenticated, you
cannot trust channel encryption alone. Combine securing privacy with server or mutual authentication.

As an alternative to using SSL, some kinds of Virtual Private Network (VPN), such as IPsec, authenticate
the endpoints of a TCP/IP connection. VPN encrypts each IP packet that flows over the network. Once
such a VPN connection is established, you have established a trusted network. You can connect MQTT
clients to telemetry channels using TCP/IP over the VPN network.

For a typical configuration, which encrypts the channel and authenticates the server, consult “Telemetry
channel authentication using TLS” on page 338.

Encrypting TLS connections without authenticating the server exposes the connection to man-in-the-
middle attacks. Although the information you exchange is protected against eavesdropping, you do not
know who you are exchanging it with. Unless you control the network, you are exposed to someone
intercepting your IP transmissions, and masquerading as the endpoint.

You can create an encrypted TLS connection, without authenticating the server, by using a Diffie-Hellman
key exchange CipherSpec that supports anonymous TLS. The master secret, shared between the client
and server, and used to encrypt TLS transmissions, is established without exchanging a privately signed
server certificate.

Because anonymous connections are insecure, most TLS implementations do not default to using
anonymous CipherSpecs. If a client request for TLS connection is accepted by a telemetry channel, the
channel must have a keystore protected by a passphrase. By default, since TLS implementations do not
use anonymous CipherSpecs, the keystore must contain a privately signed certificate that the client can
authenticate.

If you use anonymous CipherSpecs, the server keystore must exist, but it need not contain any privately
signed certificates.

Another way to establish an encrypted connection is to replace the trust provider at the client with your
own implementation. Your trust provider would not authenticate the server certificate, but the connection
would be encrypted.

Attention: When using TLS with MQTT you can use large messages, however, there might be a
possible performance impact when doing so. MQTT is optimized for processing small messages
(typically between 1KB and 1MB in size).

TLS configuration of MQTT Java clients and
telemetry channels

Configure TLS to authenticate the telemetry channel and the MQTT Java client, and encrypt the transfer
of messages between them. MQTT Java clients use Java Secure Socket Extension (JSSE) to connect
telemetry channels using TLS. As an alternative to using SSL, some kinds of Virtual Private Network (VPN),
such as IPsec, authenticate the endpoints of a TCP/IP connection. VPN encrypts each IP packet that flows
over the network. Once such a VPN connection is established, you have established a trusted network.
You can connect MQTT clients to telemetry channels using TCP/IP over the VPN network.

342 Administering IBM MQ

You can configure the connection between a Java MQTT client and a telemetry channel to use the TLS
protocol over TCP/IP. What is secured depends on how you configure TLS to use JSSE. Starting with the
most secured configuration, you can configure three different levels of security:

1. Permit only trusted MQTT clients to connect. Connect an MQTT client only to a trusted telemetry
channel. Encrypt messages between the client and the queue manager; see “MQTT client
authentication using TLS” on page 336

2. Connect an MQTT client only to a trusted telemetry channel. Encrypt messages between the client and
the queue manager; see “Telemetry channel authentication using TLS” on page 338.

3. Encrypt messages between the client and the queue manager; see “Publication privacy on telemetry
channels” on page 342.

JSSE configuration parameters
Modify JSSE parameters to alter the way an TLS connection is configured. The JSSE configuration
parameters are arranged into three sets:

1. MQ Telemetry channel
2. MQTT Java client
3. JRE

Configure the telemetry channel parameters using IBM MQ Explorer. Set the MQTT Java Client
parameters in the MqttConnectionOptions.SSLProperties attribute. Modify JRE security
parameters by editing files in the JRE security directory on both the client and server.

MQ Telemetry channel

Set all the telemetry channel TLS parameters using IBM MQ Explorer.

ChannelName

ChannelName is a required parameter on all channels.

The channel name identifies the channel associated with a particular port number. Name channels
to help you administer sets of MQTT clients.

PortNumber

PortNumber is an optional parameter on all channels. It defaults to 1883 for TCP channels, and
8883 for TLS channels.

The TCP/IP port number associated with this channel. MQTT clients are connected to a channel
by specifying the port defined for the channel. If the channel has TLS properties, the client must
connect using the TLS protocol; for example:

MQTTClient mqttClient = new MqttClient("ssl://www.example.org:8884", "clientId1");
mqttClient.connect();

KeyFileName

KeyFileName is a required parameter for TLS channels. It must be omitted for TCP channels.

KeyFileName is the path to the Java keystore containing digital certificates that you provide. Use
JKS, JCEKS or PKCS12 as the type of keystore on the server.

Identify the keystore type by using one of the following file extensions:

.jks

.jceks

.p12

.pkcs12

A keystore with any other file extension is assumed to be a JKS keystore.

You can combine one type of keystore at the server with other types of keystore at the client.

Administering IBM MQ 343

Place the private certificate of the server in the keystore. The certificate is known as the server
certificate. The certificate can be self-signed, or part of a certificate chain that is signed by a
signing authority.

If you are using a certificate chain, place the associated certificates in the server keystore.

The server certificate, and any certificates in its certificate chain, are sent to clients to
authenticate the identity of the server.

If you have set ClientAuth to Required, the keystore must contain any certificates necessary
to authenticate the client. The client sends a self-signed certificate, or a certificate chain, and the
client is authenticated by the first verification of this material against a certificate in the keystore.
Using a certificate chain, one certificate can verify many clients, even if they are issued with
different client certificates.

PassPhrase

PassPhrase is a required parameter for TLS channels. It must be omitted for TCP channels.

The passphrase is used to protect the keystore.

ClientAuth

ClientAuth is an optional TLS parameter. It defaults to no client authentication. It must be
omitted for TCP channels.

Set ClientAuth if you want the telemetry (MQXR) service to authenticate the client, before
permitting the client to connect to the telemetry channel.

If you set ClientAuth, the client must connect to the server using TLS, and authenticate the
server. In response to setting ClientAuth, the client sends its digital certificate to the server,
and any other certificates in its keystore. Its digital certificate is known as the client certificate.
These certificates are authenticated against certificates held in the channel keystore, and in the
JRE cacerts store.

CipherSuite

CipherSuite is an optional TLS parameter. It defaults to try all the enabled CipherSpecs. It must
be omitted for TCP channels.

If you want to use a particular CipherSpec, set CipherSuite to the name of the CipherSpec that
must be used to establish the TLS connection.

The telemetry service and MQTT client negotiate a common CipherSpec from all the CipherSpecs
that are enabled at each end. If a specific CipherSpec is specified at either or both ends of the
connection, it must match the CipherSpec at the other end.

Install additional ciphers by adding additional providers to JSSE.

Federal Information Processing Standards (FIPS)

FIPS is an optional setting. By default it is not set.

Either in the properties panel of the queue manager, or using runmqsc, set SSLFIPS. SSLFIPS
specifies whether only FIPS-certified algorithms are to be used.

Revocation namelist

Revocation namelist is an optional setting. By default it is not set.

Either in the properties panel of the queue manager, or using runmqsc, set SSLCRLNL. SSLCRLNL
specifies a namelist of authentication information objects which are used to provide certificate
revocation locations.

No other queue manager parameters that set TLS properties are used.

344 Administering IBM MQ

MQTT Java client

Set TLS properties for the Java client in MqttConnectionOptions.SSLProperties ; for example:

java.util.Properties sslClientProperties = new Properties();
sslClientProperties.setProperty("com.ibm.ssl.keyStoreType", "JKS");
com.ibm.micro.client.mqttv3.MqttConnectOptions conOptions = new MqttConnectOptions();
conOptions.setSSLProperties(sslClientProperties);

The names and values of specific properties are described in the MqttConnectOptions class.
For links to client API documentation for the MQTT client libraries, see MQTT client programming
reference.

Protocol

Protocol is optional.

The protocol is selected in negotiation with the telemetry server. If you require a specific protocol
you can select one. If the telemetry server does not support the protocol the connection fails.

ContextProvider

ContextProvider is optional.

KeyStore

KeyStore is optional. Configure it if ClientAuth is set at the server to force authentication of
the client.

Place the digital certificate of the client, signed using its private key, into the keystore. Specify
the keystore path and password. The type and provider are optional. JKS is the default type, and
IBMJCE is the default provider.

Specify a different keystore provider to reference a class that adds a new keystore provider. Pass
the name of the algorithm used by the keystore provider to instantiate the KeyManagerFactory
by setting the key manager name.

TrustStore

TrustStore is optional. You can place all the certificates you trust in the JRE cacerts store.

Configure the truststore if you want to have a different truststore for the client. You might not
need to configure the truststore if the server is using a certificate issued by a well known CA that
already has its root certificate stored in cacerts.

Add the publicly signed certificate of the server or the root certificate to the truststore, and specify
the truststore path and password. JKS is the default type, and IBMJCE is the default provider.

Specify a different truststore provider to reference a class that adds a new truststore
provider. Pass the name of the algorithm used by the truststore provider to instantiate the
TrustManagerFactory by setting the trust manager name.

JRE

Other aspects of Java security that affect the behavior of TLS on both the client and server
are configured in the JRE. The configuration files on Windows are in Java Installation
Directory\jre\lib\security. If you are using the JRE shipped with IBM MQ the path is as
shown in the following table:

Table 18. Filepaths by platform for JRE TLS configuration files

Platform Filepath

Windows WMQ Installation
Directory\java\jre\lib\security

AIX and Linux platforms WMQ Installation Directory/java/
jre64/jre/lib/security

Administering IBM MQ 345

Well-known certificate authorities

The cacerts file contains the root certificates of well-known certificate authorities. The cacerts
is used by default, unless you specify a truststore. If you use the cacerts store, or do not
provide a truststore, you must review and edit the list of signers in cacerts to meet your security
requirements.

You can use the runmqktool command to manage the cacerts
certificates file. cacerts is a JKS file. Specify the parameter -storetype jks when the
runmqktool command is used to manage the certificates file.

The default password for the cacerts file is changeit. Change the
password by using the runmqktool -storepasswd command to secure the file.

Configuring security classes

Use the java.security file to register additional security providers and other default security
properties.

Permissions
Use the java.policy file to modify the permissions granted to resources. javaws.policy
grants permissions to javaws.jar

Encryption strength
Some JREs ship with reduced strength encryption. If you cannot import keys into keystores,
reduced strength encryption might be the cause. If necessary, download strong, but limited
jurisdiction files from IBM developer kits, Security information.

Important: Your country of origin might have restrictions on the import, possession, use, or
re-export to another country, of encryption software. Before downloading or using the unrestricted
policy files, you must check the laws of your country. Check its regulations, and its policies
concerning the import, possession, use, and re-export of encryption software, to determine if it is
permitted.

Modify the trust provider to permit the client to connect to any server

The example illustrates how to add a trust provider and reference it from the MQTT client code. The
example performs no authentication of the client or server. The resulting TLS connection is encrypted
without being authenticated.

The code snippet in Figure 16 on page 346 sets the AcceptAllProviders trust provider and trust
manager for the MQTT client.

java.security.Security.addProvider(new AcceptAllProvider());
java.util.Properties sslClientProperties = new Properties();
sslClientProperties.setProperty("com.ibm.ssl.trustManager","TrustAllCertificates");
sslClientProperties.setProperty("com.ibm.ssl.trustStoreProvider","AcceptAllProvider");
conOptions.setSSLProperties(sslClientProperties);

Figure 16. MQTT Client code snippet

package com.ibm.mq.id;
public class AcceptAllProvider extends java.security.Provider {
private static final long serialVersionUID = 1L;
public AcceptAllProvider() {
super("AcceptAllProvider", 1.0, "Trust all X509 certificates");
put("TrustManagerFactory.TrustAllCertificates",
AcceptAllTrustManagerFactory.class.getName());
}

Figure 17. AcceptAllProvider.java

346 Administering IBM MQ

protected static class AcceptAllTrustManagerFactory extends
javax.net.ssl.TrustManagerFactorySpi {
public AcceptAllTrustManagerFactory() {}
protected void engineInit(java.security.KeyStore keystore) {}
protected void engineInit(
javax.net.ssl.ManagerFactoryParameters parameters) {}
protected javax.net.ssl.TrustManager[] engineGetTrustManagers() {
return new javax.net.ssl.TrustManager[] { new AcceptAllX509TrustManager() };
}

Figure 18. AcceptAllTrustManagerFactory.java

protected static class AcceptAllX509TrustManager implements
javax.net.ssl.X509TrustManager {
public void checkClientTrusted(
java.security.cert.X509Certificate[] certificateChain,
String authType) throws java.security.cert.CertificateException {
report("Client authtype=" + authType);
for (java.security.cert.X509Certificate certificate : certificateChain) {
report("Accepting:" + certificate);
}
}
public void checkServerTrusted(
java.security.cert.X509Certificate[] certificateChain,
String authType) throws java.security.cert.CertificateException {
report("Server authtype=" + authType);
for (java.security.cert.X509Certificate certificate : certificateChain) {
report("Accepting:" + certificate);
}
}
public java.security.cert.X509Certificate[] getAcceptedIssuers() {
return new java.security.cert.X509Certificate[0];
}
private static void report(String string) {
System.out.println(string);
}
}

Figure 19. AcceptAllX509TrustManager.java

Telemetry channel JAAS configuration
Configure JAAS to authenticate the Username sent by the client.

The IBM MQ administrator configures which MQTT channels require client authentication using JAAS.
Specify the name of a JAAS configuration for each channel that is to perform JAAS authentication.
Channels can all use the same JAAS configuration, or they can use different JAAS configurations. The
configurations are defined in WMQData directory\qmgrs\qMgrName\mqxr\jaas.config.

The jaas.config file is organized by JAAS configuration name. Under each configuration name is a list
of Login configurations; see “Sample jaas.config file” on page 348.

JAAS provides four standard Login modules. The standard NT and UNIX Login modules are of limited
value.
JndiLoginModule

Authenticates against a directory service configured under JNDI (Java Naming and Directory
Interface).

Krb5LoginModule
Authenticates using Kerberos protocols.

NTLoginModule
Authenticates using the NT security information for the current user.

UnixLoginModule
Authenticates using the UNIX security information for the current user.

Administering IBM MQ 347

The problem with using NTLoginModule or UnixLoginModule is that the telemetry (MQXR) service
runs with the mqm identity, and not the identity of the MQTT channel. mqm is the identity passed to
NTLoginModule or UnixLoginModule for authentication, and not the identity of the client.

To overcome this problem, write your own Login module, or use the other standard Login modules.
A sample JAASLoginModule.java is supplied with MQ Telemetry. It is an implementation of the
javax.security.auth.spi.LoginModule interface. Use it to develop your own authentication
method.

Any new LoginModule classes you provide must be on the class path of the telemetry (MQXR) service. Do
not place your classes in IBM MQ directories that are in the class path. Create your own directories, and
define the whole class path for the telemetry (MQXR) service.

You can augment the class path used by the telemetry (MQXR) service by setting class path in the
service.env file. CLASSPATH must be capitalized, and the class path statement can only contain
literals. You cannot use variables in the CLASSPATH; for example CLASSPATH=%CLASSPATH% is incorrect.
The telemetry (MQXR) service sets its own classpath. The CLASSPATH defined in service.env is added
to it.

The telemetry (MQXR) service provides two callbacks that return the Username and the Password
for a client connected to the MQTT channel. The Username and Password are set in the
MqttConnectOptions object. See “Sample JAASLoginModule.Login() method” on page 348 for an
example of how to access Username and Password.

Sample jaas.config file

An example of a JAAS configuration file with one named configuration, MQXRConfig

MQXRConfig {
samples.JAASLoginModule required debug=true;
//com.ibm.security.auth.module.NTLoginModule required;
//com.ibm.security.auth.module.Krb5LoginModule required
// principal=principal@your_realm
// useDefaultCcache=TRUE
// renewTGT=true;
//com.sun.security.auth.module.NTLoginModule required;
//com.sun.security.auth.module.UnixLoginModule required;
//com.sun.security.auth.module.Krb5LoginModule required
// useTicketCache="true"
// ticketCache="${user.home}${/}tickets";
};

Sample JAASLoginModule.Login() method

An example of a JAAS Login module coded to receive the Username and Password provided by an MQTT
client.

public boolean login()
throws javax.security.auth.login.LoginException {
javax.security.auth.callback.Callback[] callbacks =
new javax.security.auth.callback.Callback[2];
callbacks[0] = new javax.security.auth.callback.NameCallback("NameCallback");
callbacks[1] = new javax.security.auth.callback.PasswordCallback(
"PasswordCallback", false);
try {
callbackHandler.handle(callbacks);
String username = ((javax.security.auth.callback.NameCallback) callbacks[0])
.getName();
char[] password = ((javax.security.auth.callback.PasswordCallback) callbacks[1])
.getPassword();
 // Accept everything.
if (true) {
loggedIn = true;
} else
throw new javax.security.auth.login.FailedLoginException("Login failed");

principal= new JAASPrincipal(username);

348 Administering IBM MQ

} catch (java.io.IOException exception) {
throw new javax.security.auth.login.LoginException(exception.toString());
} catch (javax.security.auth.callback.UnsupportedCallbackException exception) {
throw new javax.security.auth.login.LoginException(exception.toString());
}

return loggedIn;
}

Related tasks
Resolving problem: JAAS login module not called by the telemetry service
Related reference
AuthCallback MQXR class

Administering an AMQP client
You can administer an AMQP client using IBM MQ Explorer or at a command line. Use the Explorer to
configure channels and monitor AMQP clients that are connected to IBM MQ. Configure the security of
AMQP clients using TLS and JAAS.

Before you begin
For information about installing AMQP on your platform, see Choosing what to install.

Administering using IBM MQ Explorer
Use the Explorer to configure AMQP channels and monitor the AMQP clients that are connected to IBM
MQ. You can configure the security of AMQP clients using TLS and JAAS.

Administering using the command line
You can administer an AMQP client at the command line using MQSC commands.

AMQP Service does not start
automatically on queue manager startup

From IBM MQ 9.4.0, the default behavior of the setting of the CONTROL attribute for starting the AMQP
service has changed. When creating and starting a new queue manager, the AMQP service does not
automatically start as part of the queue manager startup process.

Between IBM MQ 9.0.4 and IBM MQ 9.4.0, the default behavior of the setting of the CONTROL attribute for
starting the AMQP service is QMGR.

If the AMQP component was installed, the AMQP service started automatically, even if not utilized. To
avoid the default startup of the AMQP Java Virtual Machine (JVM), you had two options:

• Not installing the AMQP component, or
• Changing the AMQP service CONTROL attribute to MANUAL after the queue manager is started.

From IBM MQ 9.4.0, newly created queue managers have reverted the setting of the CONTROL attribute of
the SYSTEM.AMQP.SERVICE to MANUAL, which was the default setting prior to IBM MQ 9.0.4.

Migrated queue managers, if utilizing AMQP, continue to auto-start the service during queue manager
startup. To determine if AMQP was utilized the following are checked:

• Existing AMQP channels
• Channel started messages in the AMQP error log.

Attention:

• This happens once only; the first time the queue manager is started after an upgrade.

Administering IBM MQ 349

• During migration, if the CONTROL attribute is changed from QMGR to MANUAL, an information
message is logged in the IBM MQ error log to indicate the change. See Location of AMQP logs,
error logs, and configuration files for more information.

If you want the AMQP service to auto start, change the service CONTROL attribute to QMGR and restart the
queue manager. Subsequent restarts of the queue manager start the AMQP service.

Viewing IBM MQ objects in use by AMQP clients
You can view the different IBM MQ resources in use by AMQP clients, for example connections and
subscriptions.

Connections
When the AMQP service is started new Hconns are created and connected to the queue manager. This
pool of Hconns is used when AMQP clients publish messages. You can view the Hconns by using the
DISPLAY CONN command. For example:

DISPLAY CONN(*) TYPE(CONN) WHERE (APPLDESC LK 'IBM MQ Advanced Message Queuing Protocol*')

This command also shows any client-specific Hconns. The Hconns that have a blank client ID attribute are
the Hconns used in the pool

When an AMQP client connects to an AMQP channel, a new Hconn is connected to the queue manager.
This Hconn is used to consume messages asynchronously for the subscriptions that the AMQP client has
created. You can view the Hconn used by a particular AMQP client using the DISPLAY CONN command.
For example:

DISPLAY CONN(*) TYPE(CONN) WHERE (CLIENTID EQ 'recv_abcd1234')

Subscriptions created by clients
When an AMQP client subscribes to a topic, a new IBM MQ subscription is created. The subscription name
includes the following information:

• The name of the client. If the client joined a shared subscription, the name of the share is used
• The topic pattern that the client subscribed to
• A prefix. The prefix is private if the client created a non-shared subscription, or share if the client

joined a shared subscription

To view the subscriptions in use by a particular AMQP client, run the DISPLAY SUB command and filter
on the private prefix:

DISPLAY SUB(':private:*')

To view the shared subscriptions that are in use by multiple clients, run the DISPLAY SUB command and
filter on the share prefix:

DISPLAY SUB(':share:*')

Because shared subscriptions can be used by multiple AMQP clients, you might want to view the clients
currently consuming messages from the shared subscription. You can do this by listing the Hconns that
currently have a handle open on the subscription queue. To view the clients currently using a share,
complete the following steps:

1. Find the queue name that the shared subscription uses as a destination. For example:

DISPLAY SUB(':private:recv_e298452:public') DEST

350 Administering IBM MQ

 5 : DISPLAY SUB(':private:recv_e298452:public') DEST
AMQ8096: WebSphere MQ subscription inquired.
 SUBID(414D5120514D31202020202020202020707E0A565C2D0020)
 SUB(:private:recv_e298452:public)
 DEST(SYSTEM.MANAGED.DURABLE.560A7E7020002D5B)

2. Run the DISPLAY CONN command to find the handles open on that queue:

DISPLAY CONN(*) TYPE(HANDLE) WHERE (OBJNAME
EQ SYSTEM.MANAGED.DURABLE.560A7E7020002D5B)
 21 : DISPLAY CONN(*) TYPE(HANDLE) WHERE(OBJNAME EQ
SYSTEM.MANAGED.DURABLE.560A7E7020002D5B)

AMQ8276: Display Connection details.
 CONN(707E0A56642B0020)
 EXTCONN(414D5143514D31202020202020202020)
 TYPE(HANDLE)

 OBJNAME(SYSTEM.BASE.TOPIC) OBJTYPE(TOPIC)

 OBJNAME(SYSTEM.MANAGED.DURABLE.560A7E7020002961)
 OBJTYPE(QUEUE)

3. For each of the handles, view the AMQP client ID that has the handle open:

DISPLAY CONN(707E0A56642B0020) CLIENTID
 23 : DISPLAY CONN(707E0A56642B0020) CLIENTID

AMQ8276: Display Connection details.
 CONN(707E0A56642B0020)
 EXTCONN(414D5143514D31202020202020202020)
 TYPE(CONN)
 CLIENTID(recv_8f02c9d)
DISPLAY CONN(707E0A565F290020) CLIENTID
 24 : DISPLAY CONN(707E0A565F290020) CLIENTID
AMQ8276: Display Connection details.
 CONN(707E0A565F290020)
 EXTCONN(414D5143514D31202020202020202020)
 TYPE(CONN)
 CLIENTID(recv_86d8888)

AMQP client identification, authorization, and authentication
Like other IBM MQ client applications, you can secure AMQP connections in a number of ways.

You can use the following security features to secure AMQP connections to IBM MQ:

• Channel authentication records
• Connection authentication
• Channel MCA user configuration
• IBM MQ authority definitions
• TLS connectivity

From a security perspective, establishing a connection consists of the following two steps:

• Deciding whether the connection should continue
• Deciding which IBM MQ identity the application assumes for later authority checks

The following information outlines different IBM MQ configurations and the steps that are worked through
when an AMQP client tries to make a connection. Not all IBM MQ configurations use all of the steps
described. For example, some configurations do not use TLS for connections inside the company firewall
and some configurations use TLS but do not use client certificates for authentication. Many environments
do not use custom or custom JAAS modules.

Administering IBM MQ 351

Establishing a connection
The following steps describe what happens when a connection is being established by an AMQP client.
The steps determine whether the connection continues and which IBM MQ identity the application
assumes for authority checks:

1. If the client opens a TLS connection to IBM MQ and provides a certificate, the queue manager
attempts to validate the client certificate.

2. If the client provides user name and password credentials, an AMQP SASL frame is received by the
queue manager and MQ CONNAUTH configuration is checked.

3. MQ channel authentication rules are checked (for example, whether the IP address and TLS certificate
DN are valid)

4. Channel MCAUSER is asserted, unless channel authentication rules determine otherwise.
5. If a JAAS module has been configured, it is invoked
6. MQ CONNECT authority check applied to resulting MQ user ID.
7. Connection established with an assumed IBM MQ identity.

Publishing a message
The following steps describe what happens when a message is being published by an AMQP client. The
steps determine whether the connection continues and which IBM MQ identity the application assumes
for authority checks:

1. AMQP link attach frame arrives at queue manager. IBM MQ publish authority for the specified topic
string is checked for the MQ user identity established during connection.

2. Message is published to specified topic string.

Subscribing to a topic pattern
The following steps describe what happens when an AMQP client subscribes to a topic pattern. The steps
determine whether the connection continues and which IBM MQ identity the application assumes for
authority checks:

1. AMQP link attach frame arrives at queue manager. IBM MQ subscribe authority for the specified topic
pattern is checked for the MQ user identity established during connection.

2. Subscription is created.

AMQP client identity and authorization
Use the AMQP client ID, the AMQP user name, or a common client identity defined on the channel or in a
channel authentication rule, for authorization to access IBM MQ objects.

The administrator makes the choice when defining or modifying the AMQP channel, by configuring the
queue manager CONNAUTH setting, or by defining channel authentication rules. The identity is used to
authorize access to IBM MQ topics. The choice is made based on the following:

1. The channel USECLNTID attribute.
2. The ADOPTCTX attribute of the queue manager CONNAUTH rule.
3. The MCAUSER attribute defined on the channel.
4. The USERSRC attribute of a matching channel authentication rule.

Avoid trouble: The identity chosen by this process is thereafter referred to, for example by the DISPLAY
CHSTATUS (AMQP) command, as the MCAUSER of the client. Be aware that this is not necessarily the
same identity as the MCAUSER of the channel that is referred to in choice (2).

352 Administering IBM MQ

Use the IBM MQ setmqaut command to select which objects, and which actions, are authorized to be
used by the identity associated with the AMQP channel. For example, the following commands authorize a
channel identity AMQPClient, provided by the administrator of queue manager QM1:

setmqaut -m QM1 -t topic -n SYSTEM.BASE.TOPIC -p AMQPClient -all +pub +sub

and

setmqaut -m QM1 -t qmgr -p AMQPClient -all +connect

AMQP client authentication using a password
Authenticate the AMQP client user name using the client password. You can authenticate the client using
a different identity from the identity used to authorize the client to publish and subscribe to topics.

The AMQP service can use MQ CONNAUTH or JAAS to authenticate the client user name. If one of these
is configured, the password provided by the client is verified by the MQ CONNAUTH configuration or the
JAAS module.

The following procedure outlines example steps to authenticate individual users against the local OS
users and passwords and, if successful, adopt the common identity AMQPUser:

1. The IBM MQ administrator sets the AMQP channel MCAUSER identity to any name, such as AMQPUser,
using IBM MQ Explorer.

2. The IBM MQ administrator authorizes AMQPUser to publish and subscribe to any topic:

setmqaut -m QM1 -t topic -n SYSTEM.BASE.TOPIC -p AMQPUser -all +pub +sub +connect

3. The IBM MQ administrator configures an IDPWOS CONNAUTH rule to check the user name and
password presented by the client. The CONNAUTH rule should set CHCKCLNT(REQUIRED) and
ADOPTCTX(NO).

Note: You are recommended to use channel authentication rules and to set the MCAUSER channel
attribute to a user who has no privileges, to allow more control over connections to the queue manager.

Publication privacy on channels
The privacy of AMQP publications sent in either direction across AMQP channels is secured by using TLS
to encrypt transmissions over the connection.

AMQP clients that connect to AMQP channels use TLS to secure the privacy of publications transmitted on
the channel using symmetric key cryptography. Because the endpoints are not authenticated, you cannot
trust channel encryption alone. Combine securing privacy with server or mutual authentication.

As an alternative to using TLS, some kinds of Virtual Private Network (VPN), such as IPsec, authenticate
the endpoints of a TCP/IP connection. VPN encrypts each IP packet that flows over the network. Once
such a VPN connection is established, you have established a trusted network. You can connect AMQP
clients to AMQP channels using TCP/IP over the VPN network.

Encrypting TLS connections without authenticating the server exposes the connection to man-in-the-
middle attacks. Although the information you exchange is protected against eavesdropping, you do not
know who you are exchanging it with. Unless you control the network, you are exposed to someone
intercepting your IP transmissions, and masquerading as the endpoint.

You can create an encrypted TLS connection, without authenticating the server, by using a Diffie-Hellman
key exchange CipherSpec that supports anonymous TLS. The master secret, shared between the client
and server, and used to encrypt TLS transmissions, is established without exchanging a privately signed
server certificate.

Because anonymous connections are insecure, most TLS implementations do not default to using
anonymous CipherSpecs. If a client request for TLS connection is accepted by an AMQP channel, the

Administering IBM MQ 353

channel must have a keystore protected by a passphrase. By default, since TLS implementations do not
use anonymous CipherSpecs, the keystore must contain a privately signed certificate that the client can
authenticate.

If you use anonymous CipherSpecs, the server keystore must exist, but it need not contain any privately
signed certificates.

Another way to establish an encrypted connection is to replace the trust provider at the client with your
own implementation. Your trust provider would not authenticate the server certificate, but the connection
would be encrypted.

Configuring AMQP clients with TLS
You can configure AMQP clients to use TLS to protect data flowing across the network and to authenticate
the identity of the queue manager the client connects to.

To use TLS for the connection from an AMQP client to an AMQP channel, you must ensure the queue
manager has been configured to TLS. Configuring TLS on queue managers describes how to configure the
keystore that a queue manager reads TLS certificates from.

When the queue manager has been configured with a keystore, you must configure the TLS attributes
on the AMQP channel that clients will connect to. AMQP channels have four attributes related to TLS
configuration as follows:
SSLCAUTH

The SSLCAUTH attribute is used to specify whether the queue manager should require an AMQP client
to present a client certificate to verify its identity.

SSLCIPH
The SSLCIPH attribute specifies the cipher the channel should use to encode data in the TLS flow.

From IBM MQ 9.4.0, AMQP channels support ANY* generic CipherSpecs. For more
information about CipherSpecs, see Enabling CipherSpecs.

SSLPEER
The SSLPEER attribute is used to specify the distinguished name (DN) a client certificate must match
if a connection is to be allowed.

CERTLABL
The CERTLABL specifies the certificate the queue manager should present to the client. The
queue manager's keystore can contain multiple certificates. This attribute allows you to specify the
certificate to be used for connections to this channel. If no CERTLABL is specified, the certificate
in the queue manager key repository with the label corresponding to the queue manager CERTLABL
attribute is used.

When you have configured your AMQP channel with the TLS attributes, you must restart the AMQP service
using the following command:

STOP SERVICE(SYSTEM.AMQP.SERVICE) START SERVICE(SYSTEM.AMQP.SERVICE)

When an AMQP client connects to an AMQP channel protected by TLS, the client verifies the identity of
the certificate presented by the queue manager. To do this, you must configure your AMQP client with a
truststore containing the queue manager's certificate. The steps to do this vary depending on the AMQP
client you are using. For information about the various AMQP clients and APIs, see the respective AMQP
client documentation.

Related reference
DEFINE CHANNEL (define a new channel)
STOP SERVICE (stop a service) on Multiplatforms
START SERVICE (start a service) on Multiplatforms

354 Administering IBM MQ

Disconnecting AMQP clients from the queue manager
If you want to disconnect AMQP clients from the queue manager, either run the PURGE CHANNEL
command or stop the connection to the AMQP client.

• Run the PURGE CHANNEL command. For example:

PURGE CHANNEL(MYAMQP) CLIENTID('recv_28dbb7e')

• Alternatively, stop the connection that the AMQP client is using to disconnect the client by completing
the following steps:

1. Find the connection that the client is using by running the DISPLAY CONN command. For example:

DISPLAY CONN(*) TYPE(CONN) WHERE (CLIENTID EQ 'recv_28dbb7e')

The command output is as follows:

DISPLAY CONN(*) TYPE(CONN) WHERE(CLIENTID EQ 'recv_28dbb7e')
 40 : DISPLAY CONN(*) TYPE(CONN) WHERE(CLIENTID EQ 'recv_28dbb7e')
AMQ8276: Display Connection details.
 CONN(707E0A565F2D0020)
 EXTCONN(414D5143514D31202020202020202020)
 TYPE(CONN)
 CLIENTID(recv_28dbb7e)

2. Stop the connection. For example:

STOP CONN(707E0A565F2D0020)

Administering multicast
Use this information to learn about the IBM MQ Multicast administration tasks such as reducing the size of
multicast messages and enabling data conversion.

Getting started with multicast
Use this information to get started with IBM MQ Multicast topics and communication information objects.

About this task
IBM MQ Multicast messaging uses the network to deliver messages by mapping topics to group
addresses. The following tasks are a quick way to test if the required IP address and port are correctly
configured for multicast messaging.

Creating a COMMINFO object for multicast
The communication information (COMMINFO) object contains the attributes associated with
multicast transmission. For more information about the COMMINFO object parameters, see DEFINE
COMMINFO.

Use the following command-line example to define a COMMINFO object for multicast:

DEFINE COMMINFO(MC1) GRPADDR(group address) PORT(port number)

where MC1 is the name of your COMMINFO object, group address is your group multicast IP address
or DNS name, and the port number is the port to transmit on (The default value is 1414).

A new COMMINFO object called MC1 is created; This name is the name that you must specify when
defining a TOPIC object in the next example.

Administering IBM MQ 355

Creating a TOPIC object for multicast
A topic is the subject of the information that is published in a publish/subscribe message, and a topic
is defined by creating a TOPIC object. TOPIC objects have two parameters which define whether they
can be used with multicast or not. These parameters are: COMMINFO and MCAST.

• COMMINFO This parameter specifies the name of the multicast communication information object.
For more information about the COMMINFO object parameters, see DEFINE COMMINFO.

• MCAST This parameter specifies whether multicast is allowable at this position in the topic tree.

Use the following command-line example to define a TOPIC object for multicast:

DEFINE TOPIC(ALLSPORTS) TOPICSTR('Sports') COMMINFO(MC1) MCAST(ENABLED)

A new TOPIC object called ALLSPORTS is created. It has a topic string Sports, its related
communication information object is called MC1 (which is the name you specified when defining a
COMMINFO object in the previous example), and multicast is enabled.

Testing the multicast publish/subscribe

After the TOPIC and COMMINFO objects have been created, they can be tested using the amqspubc
sample and the amqssubc sample. For more information about these samples see The Publish/
Subscribe sample programs.

1. Open two command-line windows; The first command line is for the amqspubc publish sample,
and the second command line is for the amqssubc subscribe sample.

2. Enter the following command at command line 1:

amqspubc Sports QM1

where Sports is the topic string of the TOPIC object defined in an earlier example, and QM1 is the
name of the queue manager.

3. Enter the following command at command line 2:

amqssubc Sports QM1

where Sports and QM1 are the same as used in step “2” on page 356.
4. Enter Hello world at command line 1. If the port and IP address that are specified in the

COMMINFO object are configured correctly; the amqssubc sample, which is listening on the port
for publications from the specified address, outputs Hello world at command line 2.

IBM MQ Multicast topic topology
Use this example to understand the IBM MQ Multicast topic topology.

IBM MQ Multicast support requires that each subtree has its own multicast group and data stream within
the total hierarchy.

The classful network IP addressing scheme has designated address space for multicast address. The
full multicast range of IP address is 224.0.0.0 to 239.255.255.255, but some of these addresses
are reserved. For a list of reserved address either contact your system administrator or see https://
www.iana.org/assignments/multicast-addresses for more information. It is recommended that you use
the locally scoped multicast address in the range of 239.0.0.0 to 239.255.255.255.

In the following diagram, there are two possible multicast data streams:

DEF COMMINFO(MC1) GRPADDR(239.XXX.XXX.XXX
)

DEF COMMINFO(MC2) GRPADDR(239.YYY.YYY.YYY)

356 Administering IBM MQ

https://www.iana.org/assignments/multicast-addresses
https://www.iana.org/assignments/multicast-addresses

where 239.XXX.XXX.XXX and 239.YYY.YYY.YYY are valid multicast addresses.

These topic definitions are used to create a topic tree as shown in the following diagram:

DEFINE TOPIC(FRUIT) TOPICSTRING('Price/FRUIT') MCAST(ENABLED) COMMINFO(MC1)

DEFINE TOPIC(FISH) TOPICSTRING('Price/FISH') MCAST(ENABLED) COMMINFO(MC2)

Each multicast communication information (COMMINFO) object represents a different stream of data
because their group addresses are different. In this example, the FRUIT topic is defined to use
COMMINFO object MC1 , the FISH topic is defined to use COMMINFO object MC2 , and the Price node
has no multicast definitions.

IBM MQ Multicast has a 255 character limit for topic strings. This limitation means that care must be
taken with the names of nodes and leaf-nodes within the tree; if the names of nodes and leaf-nodes
are too long, the topic string might exceed 255 characters and return the 2425 (0979) (RC2425):
MQRC_TOPIC_STRING_ERROR reason code. It is recommended to make topic strings as short as possible
because longer topic strings might have a detrimental effect on performance.

Controlling the size of multicast messages
Use this information to learn about the IBM MQ message format, and reduce the size of IBM MQ
messages.

IBM MQ messages have a number of attributes associated with them which are contained in the message
descriptor. For small messages, these attributes might represent most of the data traffic and can have a
significant detrimental effect on the transmission rate. IBM MQ Multicast enables the user to configure
which, if any, of these attributes are transmitted along with the message.

The presence of message attributes, other than topic string, depends on whether the COMMINFO object
states that they must be sent or not. If an attribute is not transmitted, the receiving application applies a
default value. The default MQMD values are not necessarily the same as the MQMD_DEFAULT value, and
are described in Table 19 on page 358.

The COMMINFO object contains the MCPROP attribute which controls how many of the MQMD fields and
user properties flow with the message. By setting the value of this attribute to an appropriate level, you
can control the size of the IBM MQ Multicast messages:

MCPROP
The multicast properties control how many of the MQMD properties and user properties flow with the
message.
ALL

All user properties and all the fields of the MQMD are transmitted.
REPLY

Only user properties, and MQMD fields that deal with replying to the messages, are transmitted.
These properties are:

Administering IBM MQ 357

• MsgType
• MessageId
• CorrelId
• ReplyToQ
• ReplyToQmgr

USER
Only the user properties are transmitted.

NONE
No user properties or MQMD fields are transmitted.

COMPAT
This value causes the transmission of the message to be done in a compatible mode to RMM,
which allows some inter-operation with the current XMS applications and IBM Integration Bus
RMM applications.

XMS .NET Multicast messaging (using RMM) was deprecated from IBM MQ 9.2 and
removed at IBM MQ 9.3.

Multicast message attributes
Message attributes can come from various places, such as the MQMD, the fields in the MQRFH2, and
message properties.

The following table shows what happens when messages are sent subject to the value of MCPROP
(described previously in this section), and the default value used when an attribute is not sent.

Table 19. Messaging attributes and how they relate to multicast

Attribute Action when using multicast Default if not transmitted

TopicString Always Included Not applicable

MQMQ StrucId Not transmitted Not applicable

MQMD Version Not transmitted Not applicable

Report Included if not default 0

MsgType Included if not default MQMT_DATAGRAM

Expiry Included if not default 0

Feedback Included if not default 0

Encoding Included if not default MQENC_NORMAL(equiv)

CodedCharSetId Included if not default 1208

Format Included if not default MQRFH2

Priority Included if not default 4

Persistence Included if not default MQPER_NOT_PERSISTENT

MsgId Included if not default Null

CorrelId Included if not default Null

BackoutCount Included if not default 0

ReplyToQ Included if not default Blank

ReplyToQMgr Included if not default Blank

UserIdentifier Included if not default Blank

358 Administering IBM MQ

Table 19. Messaging attributes and how they relate to multicast (continued)

Attribute Action when using multicast Default if not transmitted

AccountingToken Included if not default Null

PutAppIType Included if not default MQAT_JAVA

PutAppIName Included if not default Blank

PutDate Included if not default Blank

PutTime Included if not default Blank

ApplOriginData Included if not default Blank

GroupID Excluded Not applicable

MsgSeqNumber Excluded Not applicable

Offset Excluded Not applicable

MsgFlags Excluded Not applicable

OriginalLength Excluded Not applicable

UserProperties Included Not applicable

Related reference

ALTER COMMINFO
DEFINE COMMINFO

Enabling data conversion for Multicast messaging
Use this information to understand how data conversion works for IBM MQ Multicast messaging.

IBM MQ Multicast is a shared, connectionless protocol, and so it is not possible for each client to make
specific requests for data conversion. Every client subscribed to the same multicast stream receives the
same binary data; therefore, if IBM MQ data conversion is required, the conversion is performed locally at
each client.

In a mixed platform installation, it might be that most of the clients require the data in a format that is not
the native format of the transmitting application. In this situation the CCSID and ENCODING values of the
multicast COMMINFO object can be used to define the encoding of the message transmission for efficiency.

IBM MQ Multicast supports data conversion of the message payload for the following built in formats:

• MQADMIN
• MQEVENT
• MQPCF
• MQRFH
• MQRFH2
• MQSTR

In addition to these formats, you can also define your own formats and use an MQDXP - Data-conversion
exit parameter data conversion exit.

For information about programming data conversions, see Data conversion in the MQI for multicast
messaging.

For more information about data conversion, see Data conversion.

For more information about data conversion exits and ClientExitPath, see ClientExitPath stanza of the
client configuration file.

Administering IBM MQ 359

Multicast application monitoring
Use this information to learn about administering and monitoring IBM MQ Multicast.

The status of the current publishers and subscribers for multicast traffic (for example, the number of
messages sent and received, or the number of messages lost) is periodically transmitted to the server
from the client. When status is received, the COMMEV attribute of the COMMINFO object specifies
whether or not the queue manager puts an event message on the SYSTEM.ADMIN.PUBSUB.EVENT. The
event message contains the status information received. This information is an invaluable diagnostic aid
in finding the source of a problem.

Use the MQSC command DISPLAY CONN to display connection information about the applications
connected to the queue manager. For more information on the DISPLAY CONN command, see DISPLAY
CONN.

Use the MQSC command DISPLAY TPSTATUS to display the status of your publishers and subscribers.
For more information on the DISPLAY TPSTATUS command, see DISPLAY TPSTATUS.

COMMEV and the multicast message reliability indicator
The reliability indicator, used in conjunction with the COMMEV attribute of the COMMINFO object, is a
key element in the monitoring of IBM MQ Multicast publishers and subscribers. The reliability indicator
(the MSGREL field that is returned on the Publish or Subscribe status commands) is an IBM MQ indicator
that illustrates the percentage of transmissions that have no errors Sometimes messages have to be
retransmitted due to a transmission error, which is reflected in the value of MSGREL. Potential causes
of transmission errors include slow subscribers, busy networks, and network outages. COMMEV controls
whether event messages are generated for multicast handles that are created using the COMMINFO
object and is set to one of three possible values:
DISABLED

Event messages are not written.
ENABLED

Event messages are always written, with a frequency defined in the COMMINFO MONINT parameter.
EXCEPTION

Event messages are written if the message reliability is under the reliability threshold. A message
reliability level of 90% or less indicates that there might be a problem with the network configuration,
or that one or more of the Publish/Subscribe applications is running too slowly:

• A value of MSGREL(100,100) indicates that there have been no issues in either the short term, or
the long-term time frame.

• A value of MSGREL(80,60) indicates that 20% of the messages are currently having issues, but
that it is also an improvement on the long-term value of 60.

Clients might continue transmitting and receiving multicast traffic even when the unicast connection to
the queue manager is broken, therefore the data might be out of date.

Multicast message reliability
Use this information to learn how to set the IBM MQ Multicast subscription and message history.

A key element of overcoming transmission failure with multicast is the buffering of transmitted data (a
history of messages to be kept at the transmitting end of the link) by IBM MQ. This process means
that no buffering of messages is required in the putting application process because IBM MQ provides
the reliability. The size of this history is configured via the communication information (COMMINFO)
object, as described in the following information. A bigger transmission buffer means that there is more
transmission history to be retransmitted if needed, but due to the nature of multicast, 100% assured
delivery cannot be supported.

The IBM MQ Multicast message history is controlled in the communication information (COMMINFO)
object by the MSGHIST attribute:

360 Administering IBM MQ

MSGHIST
This value is the amount of message history in kilobytes that is kept by the system to handle
retransmissions in the case of NACKs (negative acknowledgments).

A value of 0 gives the least level of reliability. The default value is 100 KB.

The IBM MQ Multicast new subscription history is controlled in the communication information
(COMMINFO) object by the NSUBHIST attribute:
NSUBHIST

The new subscriber history controls whether a subscriber joining a publication stream receives
as much data as is currently available, or receives only publications made from the time of the
subscription.
NONE

A value of NONE causes the transmitter to transmit only publication made from the time of the
subscription. NONE is the default value.

ALL
A value of ALL causes the transmitter to retransmit as much history of the topic as is known. In
some circumstances, this situation can give a similar behavior to retained publications.

Note: Using the value of ALL might have a detrimental effect on performance if there is a large
topic history because all the topic history is retransmitted.

Related reference
DEFINE COMMINFO

ALTER COMMINFO

Advanced multicast tasks
Use this information to learn about advanced IBM MQ Multicast administration tasks such as
configuring .ini files and interoperability with IBM MQ LLM.

For considerations for security in a Multicast installation, see Multicast security.

Bridging between multicast and non-multicast publish/subscribe domains
Use this information to understand what happens when a non-multicast publisher publishes to an IBM
MQ Multicast enabled topic.

If a non-multicast publisher publishes to a topic that is defined as MCAST enabled and BRIDGE enabled,
the queue manager transmits the message out over multicast directly to any subscribers that might be
listening. A multicast publisher cannot publish to topics that are not multicast enabled.

Existing topics can be multicast enabled by setting the MCAST and COMMINFO parameters of a topic
object. See Initial multicast concepts for more information about these parameters.

The COMMINFO object BRIDGE attribute controls publications from applications that are not using
multicast. If BRIDGE is set to ENABLED and the MCAST parameter of the topic is also set to ENABLED,
publications from applications that are not using multicast are bridged to applications that do. For more
information on the BRIDGE parameter, see DEFINE COMMINFO.

Configuring the .ini files for Multicast
Use this information to understand the IBM MQ Multicast fields in the .ini files.

Additional IBM MQ Multicast configuration can be made in an ini file. The specific ini file that you must
use is dependent on the type of applications:

• Client: Configure the MQ_DATA_PATH /mqclient.ini file.
• Queue manager: Configure the MQ_DATA_PATH /qmgrs/QMNAME/qm.ini file.

Administering IBM MQ 361

where MQ_DATA_PATH is the location of the IBM MQ data directory (/var/mqm/mqclient.ini), and
QMNAME is the name of the queue manager to which the .ini file applies.

The .ini file contains fields used to fine-tune the behavior of IBM MQ Multicast:

Multicast:
Protocol = IP | UDP
IPVersion = IPv4 | IPv6 | ANY | BOTH
LimitTransRate = DISABLED | STATIC | DYNAMIC
TransRateLimit = 100000
SocketTTL = 1
Batch = NO
Loop = 1
Interface = <IPaddress>
FeedbackMode = ACK | NACK | WAIT1
HeartbeatTimeout = 20000
HeartbeatInterval = 2000

Protocol
UDP

In this mode, packets are sent using the UDP protocol. Network elements cannot provide
assistance in the multicast distribution as they do in IP mode however. The packet format remains
compatible with PGM. This is the default value.

IP
In this mode, the transmitter sends raw IP packets. Network elements with PGM support assist in
the reliable multicast packet distribution. This mode is fully compatible with the PGM standard.

IPVersion
IPv4

Communicate using the IPv4 protocol only. This is the default value.
IPv6

Communicate using the IPv6 protocol only.
ANY

Communicate using IPv4, IPv6, or both, depending on which protocol is available.
BOTH

Supports communication using both IPv4 and IPv6.
LimitTransRate

DISABLED
There is no transmission rate control. This is the default value.

STATIC
Implements static transmission rate control. The transmitter would not transmit at a rate
exceeding the rate specified by the TransRateLimit parameter.

DYNAMIC
The transmitter adapts its transmission rate according to the feedback it gets from the receivers.
In this case the transmission rate limit cannot be more than the value specified by the
TransRateLimit parameter. The transmitter tries to reach an optimal transmission rate.

TransRateLimit
The transmission rate limit in Kbps.

SocketTTL
The value of SocketTTL determines if the multicast traffic can pass through a router, or the number of
routers it can pass through.

Batch
Controls whether messages are batched or sent immediately There are 2 possible values:

• NO The messages are not batched, they are sent immediately.
• YES The messages are batched.

362 Administering IBM MQ

Loop
Set the value to 1 to enable multicast loop. Multicast loop defines whether the data sent is looped
back to the host or not.

Interface
The IP address of the interface on which multicast traffic flows. For more information and
troubleshooting, see: Testing multicast applications on a non-multicast network and Setting the
appropriate network for multicast traffic

FeedbackMode
NACK

Feedback by negative acknowledgments. This is the default value.
ACK

Feedback by positive acknowledgments.
WAIT1

Feedback by positive acknowledgments where the transmitter waits for only 1 ACK from any of
the receivers.

HeartbeatTimeout
The heartbeat timeout in milliseconds. A value of 0 indicates that the heartbeat timeout events are
not raised by the receiver or receivers of the topic. The default value is 20000.

HeartbeatInterval
The heartbeat interval in milliseconds. A value of 0 indicates that no heartbeats are sent. The
heartbeat interval must be considerably smaller than the HeartbeatTimeout value to avoid false
heartbeat timeout events. The default value is 2000.

Multicast interoperability with IBM MQ Low Latency Messaging
Use this information to understand the interoperability between IBM MQ Multicast and IBM MQ Low
Latency Messaging (LLM).

Basic payload transfer is possible for an application using LLM, with another application using multicast to
exchange messages in both directions. Although multicast uses LLM technology, the LLM product itself is
not embedded. Therefore it is possible to install both LLM and IBM MQ Multicast, and operate and service
the two products separately.

LLM applications that communicate with multicast might need to send and receive message properties.
The IBM MQ message properties and MQMD fields are transmitted as LLM message properties with
specific LLM message property codes as shown in the following table:

Table 20. IBM MQ message properties to IBM MQ LLM property mappings

IBM MQ property IBM MQ LLM property type LLM property kind
LLM property
code

MQMD.Report RMM_MSG_PROP_INT32 LLM_PROP_KIND_Int32 -1001

MQMD.MsgType RMM_MSG_PROP_INT32 LLM_PROP_KIND_Int32 -1002

MQMD.Expiry RMM_MSG_PROP_INT32 LLM_PROP_KIND_Int32 -1003

MQMD.Feedback RMM_MSG_PROP_INT32 LLM_PROP_KIND_Int32 -1004

MQMD.Encoding RMM_MSG_PROP_INT32 LLM_PROP_KIND_Int32 -1005

MQMD.CodedCharSetId RMM_MSG_PROP_INT32 LLM_PROP_KIND_Int32 -1006

MQMD.Format RMM_MSG_PROP_BYTES LLM_PROP_KIND_String -1007

MQMD.Priority RMM_MSG_PROP_INT32 LLM_PROP_KIND_Int32 -1008

MQMD.Persistence RMM_MSG_PROP_INT32 LLM_PROP_KIND_Int32 -1009

MQMD.MsgId RMM_MSG_PROP_BYTES LLM_PROP_KIND_ByteArray -1010

Administering IBM MQ 363

Table 20. IBM MQ message properties to IBM MQ LLM property mappings (continued)

IBM MQ property IBM MQ LLM property type LLM property kind
LLM property
code

MQMD.BackoutCount RMM_MSG_PROP_INT32 LLM_PROP_KIND_Int32 -1012

MQMD.ReplyToQ RMM_MSG_PROP_BYTES LLM_PROP_KIND_String -1013

MQMD.ReplyToQMger RMM_MSG_PROP_BYTES LLM_PROP_KIND_String -1014

MQMD.PutDate RMM_MSG_PROP_BYTES LLM_PROP_KIND_String -1020

MQMD.PutTime RMM_MSG_PROP_BYTES LLM_PROP_KIND_String -1021

MQMD.ApplOriginData RMM_MSG_PROP_BYTES LLM_PROP_KIND_String -1022

MQPubOptions RMM_MSG_PROP_INT32 LLM_PROP_KIND_int32 -1053

For more information about LLM, see the LLM product documentation: IBM MQ Low Latency Messaging.

Administering IBM MQ for IBM i
CL commands are the preferred method to administer IBM MQ on IBM i. You can also use MQSC
commands, PCF commands, control commands, and remote administration.

About this task
Administration tasks include creating, starting, altering, viewing, stopping, and deleting clusters,
processes, and IBM MQ objects (queue managers, queues, namelists, process definitions, channels, client
connection channels, listeners, services, and authentication information objects).

See the following links for details of how to administer IBM MQ for IBM i.

Related concepts
Understanding IBM MQ for IBM i queue manager library names
Installable services and components on IBM i
Related tasks
Changing IBM MQ configuration information on Multiplatforms
Setting up security on IBM i
“Invoking the dead-letter queue handler on IBM i” on page 162
On IBM MQ for IBM i, you invoke the DLQ handler by setting the STRMQMDLQ command.
Determining problems with IBM MQ for IBM i applications
Related reference
System and default objects

Managing IBM MQ for IBM i using CL commands
Use this information to understand the IBM MQ IBM i commands.

Most groups of IBM MQ commands, including those associated with queue managers, queues, topics,
channels, namelists, process definitions, and authentication information objects can be accessed using
the relevant WRK* command.

The principal command in the set is WRKMQM. This command allows you, for example, to display a list of
all the queue managers on the system, together with status information. Alternatively, you can process all
queue manager specific commands using various options against each entry.

From the WRKMQM command you can select specific areas of each queue manager, for example, working
with channels, topics or queues, and from there select individual objects.

364 Administering IBM MQ

Recording IBM MQ application definitions
When you create or customize IBM MQ applications, it is useful to keep a record of all IBM MQ definitions
created. This record can be used for:

• Recovery purposes
• Maintenance
• Rolling out IBM MQ applications

You can record IBM MQ application definitions in 1 of 2 ways:

1. Creating CL programs to generate your IBM MQ definitions for the server.
2. Creating MQSC text files as SRC members to generate your IBM MQ definitions using the cross-

platform IBM MQ command language.

For further details about defining queue objects, see “Administering IBM MQ using MQSC commands” on
page 12 and “Using IBM MQ Programmable Command Formats” on page 26.

Related reference
IBM MQ for IBM i CL commands reference

Before you start using the IBM MQ for IBM i using CL commands
Use this information to start the IBM MQ subsystem and create a local queue manager.

Before you begin
Ensure that the IBM MQ subsystem is running (using the command STRSBS QMQM/QMQM), and that the
job queue associated with that subsystem is not held. By default, the IBM MQ subsystem and job queue
are both named QMQM in library QMQM.

About this task
Using the IBM i command line to start a queue manager

Procedure
1. Create a local queue manager by issuing the CRTMQM command from an IBM i command line.

When you create a queue manager, you have the option of making that queue manager the default
queue manager. The default queue manager (of which there can only be one) is the queue manager to
which a CL command applies, if the queue manager name parameter (MQMNAME) is omitted.

2. Start a local queue manager by issuing the STRMQM command from an IBM i command line.
If the queue manager startup takes more than a few seconds IBM MQ will show status messages
intermittently detailing the startup progress. For more information on these messages see Messages
and reason codes.

What to do next
You can stop a queue manager by issuing the ENDMQM command from the IBM i command line, and
control a queue manager by issuing other IBM MQ commands from an IBM i command line.

Remote queue managers cannot be started remotely but must be created and started in their systems by
local operators. An exception to this is where remote operating facilities (outside IBM MQ for IBM i) exist
to enable such operations.

The local queue administrator cannot stop a remote queue manager.

Note: As part of quiescing an IBM MQ system, you have to quiesce the active queue managers. This is
described in “Quiescing IBM MQ for IBM i” on page 431.

Administering IBM MQ 365

Creating IBM MQ for IBM i objects
Use this information to understand the methods for creating IBM MQ objects for IBM i.

Before you begin
The following tasks suggest various ways in which you can use IBM MQ for IBM i from the command line.

About this task
There are two online methods to create IBM MQ objects, which are:

Procedure
1. Using a Create command, for example: The Create MQM Queue command: CRTMQMQ
2. Using a Work with MQM object command, followed by F6, for example: The Work with MQM Queues

command: WRKMQMQ

What to do next
For a list of all commands see IBM MQ for IBM i CL commands.

Note: All MQM commands can be submitted from the Message Queue Manager Commands menu. To
display this menu, type GO CMDMQM on the command line and press the Enter key.

The system displays the prompt panel automatically when you select a command from this menu. To
display the prompt panel for a command that you have typed directly on the command line, press F4
before pressing the Enter key.

Creating a local queue using the CRTMQMQ command

Procedure
1. Type CHGMQM on the command line and press the F4 key.
2. On the Create MQM Queue panel, type the name of the queue that you want to create in the Queue
name field. To specify a mixed case name, you enclose the name in apostrophes.

3. Type *LCL in the Queue type field.
4. Specify a queue manager name, unless you are using the default queue manager, and press the Enter

key. You can overtype any of the values with a new value. Scroll forward to see further fields. The
options used for clusters are at the end of the list of options.

5. When you have changed any values, press the Enter key to create the queue.

Creating a local queue using the WRKMQMQ command

Procedure
1. Type WRKMQMQ on the command line.
2. Enter the name of a queue manager.
3. If you want to display the prompt panel, press F4. The prompt panel is useful to reduce the number of

queues displayed, by specifying a generic queue name or queue type.
4. Press Enter and the Work with MQM Queues panel is displayed. You can overtype any of the values

with a new value. Scroll forward to see further fields. The options used for clusters are at the end of the
list of options.

5. Press F6 to create a new queue; this takes you to the CRTMQMQ panel. See “Creating a local queue
using the CRTMQMQ command” on page 366 for instructions on how to create the queue. When you
have created the queue, the Work with MQM Queues panel is displayed again. The new queue is
added to the list when you press F5=Refresh.

366 Administering IBM MQ

Altering queue manager attributes

About this task
To alter the attributes of the queue manager specified on the CHGMQM command, specifying the attributes
and values that you want to change. For example, use the following options to alter the attributes of
jupiter.queue.manager:

Procedure
Type CHGMQM on the command line and press the F4 key.

Results
The command changes the dead-letter queue used, and enables inhibit events.

Working with local queues on IBM i
This section contains examples of some of the commands that you can use to manage local queues. All
the commands shown are also available using options from the WRKMQMQ command panel.

Defining a local queue
For an application, the local queue manager is the queue manager to which the application is connected.
Queues that are managed by the local queue manager are said to be local to that queue manager.

Use the command CRTMQMQ QTYPE *LCL to create a definition of a local queue and also to create the
data structure that is called a queue. You can also modify the queue characteristics from those of the
default local queue.

In this example, the queue we define, orange.local.queue, is specified to have these characteristics:

• It is enabled for gets, disabled for puts, and operates on a first-in-first-out (FIFO) basis.
• It is an ordinary queue, that is, it is not an initiation queue or a transmission queue, and it does not

generate trigger messages.
• The maximum queue depth is 1000 messages; the maximum message length is 2000 bytes.

The following command does this on the default queue manager:

CRTMQMQ QNAME('orange.local.queue') QTYPE(*LCL)
TEXT('Queue for messages from other systems')
PUTENBL(*NO)
GETENBL(*YES)
TRGENBL(*NO)
MSGDLYSEQ(*FIFO)
MAXDEPTH(1000)
MAXMSGLEN(2000)
USAGE(*NORMAL)

Note:

1. USAGE *NORMAL indicates that this queue is not a transmission queue.
2. If you already have a local queue with the name orange.local.queue on the same queue manager,

then this command fails. Use the REPLACE *YES attribute if you want to overwrite the existing
definition of a queue, but see also “Changing local queue attributes” on page 368.

Defining a dead-letter queue
Each queue manager must have a local queue to be used as a dead-letter queue so that messages that
cannot be delivered to their correct destination can be stored for later retrieval. You must explicitly tell
the queue manager about the dead-letter queue. You can do this by specifying a dead-letter queue on the

Administering IBM MQ 367

CRTMQM command, or you can use the CHGMQM command to specify one later. You must also define the
dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied with the product. This
queue is automatically created when you create the queue manager. You can modify this definition if
required. There is no need to rename it, although you can if you like.

A dead-letter queue has no special requirements except that:

• It must be a local queue.
• Its MAXMSGL (maximum message length) attribute must enable the queue to accommodate the largest

messages that the queue manager has to handle plus the size of the dead-letter header (MQDLH).

IBM MQ provides a dead-letter queue handler that allows you to specify how messages found on a
dead-letter queue are to be processed or removed. For further information, see “Invoking the dead-letter
queue handler on IBM i” on page 162.

Displaying default object attributes
When you define an IBM MQ object, it takes any attributes that you do not specify from the default
object. For example, when you define a local queue, the queue inherits any attributes that you omit in the
definition from the default local queue, which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly
what these attributes are, use the following command:

DSPMQMQ QNAME(SYSTEM.DEFAULT.LOCAL.QUEUE) MQMNAME(MYQUEUEMANAGER)

Copying a local queue definition
You can copy a queue definition using the CPYMQMQ command. For example:

CPYMQMQ FROMQ('orange.local.queue') TOQ('magenta.queue') MQMNAME(MYQUEUEMANAGER)

This command creates a queue with the same attributes as our original queue orange.local.queue,
rather than those of the system default local queue.

You can also use the CPYMQMQ command to copy a queue definition, but substituting one or more changes
to the attributes of the original. For example:

CPYMQMQ FROMQ('orange.local.queue') TOQ('third.queue') MQMNAME(MYQUEUEMANAGER)
MAXMSGLEN(1024)

This command copies the attributes of the queue orange.local.queue to the queue third.queue,
but specifies that the maximum message length on the new queue is to be 1024 bytes, rather than 2000.

Note: When you use the CPYMQMQ command, you copy the queue attributes only, not the messages on the
queue.

Changing local queue attributes
You can change queue attributes in two ways, using either the CHGMQMQ command or the CPYMQMQ
command with the REPLACE *YES attribute. In “Defining a local queue” on page 367, you defined the
queue orange.local.queue. If, for example, you need to increase the maximum message length on
this queue to 10,000 bytes.

• Using the CHGMQMQ command:

CHGMQMQ QNAME('orange.local.queue') MQMNAME(MYQUEUEMANAGER) MAXMSGLEN(10000)

368 Administering IBM MQ

This command changes a single attribute, that of the maximum message length; all the other attributes
remain the same.

• Using the CRTMQMQ command with the REPLACE *YES option, for example:

CRTMQMQ QNAME('orange.local.queue') QTYPE(*LCL) MQMNAME(MYQUEUEMANAGER)
MAXMSGLEN(10000) REPLACE(*YES)

This command changes not only the maximum message length, but all the other attributes, which are
given their default values. The queue is now put enabled whereas previously it was put inhibited. Put
enabled is the default, as specified by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have
changed it.

If you decrease the maximum message length on an existing queue, existing messages are not affected.
Any new messages, however, must meet the new criteria.

Clearing a local queue
To delete all the messages from a local queue called magenta.queue, use the following command:

CLRMQMQ QNAME('magenta.queue') MQMNAME(MYQUEUEMANAGER)

You cannot clear a queue if:

• There are uncommitted messages that have been put on the queue under syncpoint.
• An application currently has the queue open.

Deleting a local queue
Use the command DLTMQMQ to delete a local queue.

A queue cannot be deleted if it has uncommitted messages on it, or if it is in use.

Enabling large queues
IBM MQ supports queues larger than 2 GB. See your operating system documentation for information on
how to enable IBM i to support large files.

The IBM i product information can be found in IBM Documentation.

Some utilities might not be able to cope with files greater than 2 GB. Before enabling large file support,
check your operating system documentation for information on restrictions on such support.

Working with alias queues on IBM i
This section contains examples of some of the commands that you can use to manage alias queues. All
the commands shown are also available using options from the WRKMQMQ command panel.

An alias queue (sometimes known as a queue alias) provides a method of redirecting MQI calls. An alias
queue is not a real queue but a definition that resolves to a real queue. The alias queue definition contains
a target queue name, which is specified by the TGTQNAME attribute.

When an application specifies an alias queue in an MQI call, the queue manager resolves the real queue
name at run time.

For example, an application has been developed to put messages on a queue called my.alias.queue.
It specifies the name of this queue when it makes an MQOPEN request and, indirectly, if it puts a message
on this queue. The application is not aware that the queue is an alias queue. For each MQI call using this
alias, the queue manager resolves the real queue name, which could be either a local queue or a remote
queue defined at this queue manager.

Administering IBM MQ 369

By changing the value of the TGTQNAME attribute, you can redirect MQI calls to another queue, possibly on
another queue manager. This is useful for maintenance, migration, and load-balancing.

Defining an alias queue
The following command creates an alias queue:

CRTMQMQ QNAME('my.alias.queue') QTYPE(*ALS) TGTQNAME('yellow.queue')
MQMNAME(MYQUEUEMANAGER)

This command redirects MQI calls that specify my.alias.queue to the queue yellow.queue. The
command does not create the target queue; the MQI calls fail if the queue yellow.queue does not exist
at run time.

If you change the alias definition, you can redirect the MQI calls to another queue. For example:

CHGMQMQ QNAME('my.alias.queue') TGTQNAME('magenta.queue') MQMNAME(MYQUEUEMANAGER)

This command redirects MQI calls to another queue, magenta.queue.

You can also use alias queues to make a single queue (the target queue) appear to have different
attributes for different applications. You do this by defining two aliases, one for each application. Suppose
there are two applications:

• Application ALPHA can put messages on yellow.queue, but is not allowed to get messages from it.
• Application BETA can get messages from yellow.queue, but is not allowed to put messages on it.

You can do this using the following commands:

/* This alias is put enabled and get disabled for application ALPHA */

CRTMQMQ QNAME('alphas.alias.queue') QTYPE(*ALS) TGTQNAME('yellow.queue')
PUTENBL(*YES) GETENBL(*NO) MQMNAME(MYQUEUEMANAGER)

/* This alias is put disabled and get enabled for application BETA */

CRTMQMQ QNAME('betas.alias.queue') QTYPE(*ALS) TGTQNAME('yellow.queue')
PUTENBL(*NO) GETENBL(*YES) MQMNAME(MYQUEUEMANAGER)

ALPHA uses the queue name alphas.alias.queue in its MQI calls; BETA uses the queue name
betas.alias.queue. They both access the same queue, but in different ways.

You can use the REPLACE *YES attribute when you define alias queues, in the same way that you use
these attributes with local queues.

Using other commands with alias queues
You can use the appropriate commands to display or change alias queue attributes. For example:

* Display the alias queue's attributes */

DSPMQMQ QNAME('alphas.alias.queue') MQMNAME(MYQUEUEMANAGER)

/* ALTER the base queue name, to which the alias resolves. */
/* FORCE = Force the change even if the queue is open. */

CHQMQMQ QNAME('alphas.alias.queue') TGTQNAME('orange.local.queue') FORCE(*YES)
MQMNAME(MYQUEUEMANAGER)

370 Administering IBM MQ

Working with model queues on IBM i
This section contains examples of some of the commands that you can use to manage model queues. All
the commands shown are also available using options from the WRKMQMQ command panel.

A queue manager creates a dynamic queue if it receives an MQI call from an application specifying a
queue name that has been defined as a model queue. The name of the new dynamic queue is generated
by the queue manager when the queue is created. A model queue is a template that specifies the
attributes of any dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as they are required.

Defining a model queue
You define a model queue with a set of attributes in the same way that you define a local queue. Model
queues and local queues have the same set of attributes, except that on model queues you can specify
whether the dynamic queues created are temporary or permanent. (Permanent queues are maintained
across queue manager restarts, temporary ones are not). For example:

CRTMQMQ QNAME('green.model.queue') QTYPE(*MDL) DFNTYPE(*PERMDYN)

This command creates a model queue definition. From the DFNTYPE attribute, the actual queues created
from this template are permanent dynamic queues. The attributes not specified are automatically copied
from the SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the REPLACE *YES attribute when you define model queues, in the same way that you use
them with local queues.

Using other commands with model queues
You can use the appropriate commands to display or alter a model queue's attributes. For example:

/* Display the model queue's attributes */

DSPMQMQ MQMNAME(MYQUEUEMANAGER) QNAME('green.model.queue')

/* ALTER the model queue to enable puts on any */
/* dynamic queue created from this model. */

CHGMQMQ MQMNAME(MYQUEUEMANAGER) QNAME('blue.model.queue') PUTENBL(*YES)

Working with triggering on IBM i
Use this information to learn about triggering and process definitions.

IBM MQ provides a facility for starting an application automatically when certain conditions on a queue
are met. One example of the conditions is when the number of messages on a queue reaches a specified
number. This facility is called triggering and is described in detail in Triggering channels.

What is triggering?
The queue manager defines certain conditions as constituting trigger events. If triggering is enabled for
a queue and a trigger event occurs, the queue manager sends a trigger message to a queue called an
initiation queue. The presence of the trigger message on the initiation queue indicates that a trigger event
has occurred.

Trigger messages generated by the queue manager are not persistent. This has the effect of reducing
logging (thereby improving performance), and minimizing duplicates during restart, so improving restart
time.

Administering IBM MQ 371

What is the trigger monitor?
The program which processes the initiation queue is called a trigger-monitor application, and its function
is to read the trigger message and take appropriate action, based on the information contained in the
trigger message. Normally this action would be to start some other application to process the queue
which caused the trigger message to be generated. From the point of view of the queue manager, there is
nothing special about the trigger-monitor application - it is another application that reads messages from
a queue (the initiation queue).

Altering the job submission attributes of the trigger monitor
The trigger monitor supplied as command STRMQMTRM submits a job for each trigger message using the
system default job description, QDFTJOBD. This has limitations in that the submitted jobs are always
called QDFTJOBD and have the attributes of the default job description including the library list, *SYSVAL.
IBM MQ provides a method for overriding these attributes. For example, it is possible to customize the
submitted jobs to have more meaningful job names as follows:

1. In the job description specify the description you want, for example logging values.
2. Specify the Environment Data of the process definition used in the triggering process:

CHGMQMPRC PRCNAME(MY_PROCESS) MQMNAME(MHA3) ENVDATA ('JOBD(MYLIB/TRIGJOBD)')

The Trigger Monitor performs a SBMJOB using the specified description.

It is possible to override other attributes of the SBMJOB by specifying the appropriate keyword and value
in the Environment Data of the process definition. The only exception to this is the CMD keyword because
this attribute is filled by the trigger monitor. An example of the command to specify the Environment Data
of the process definition where both the job name and description are to be altered follows:

CHGMQMPRC PRCNAME(MY_PROCESS) MQMNAME(MHA3) ENVDATA ('JOBD(MYLIB/TRIGJOB)
JOB(TRIGGER)')

Defining an application queue for triggering
An application queue is a local queue that is used by applications for messaging, through the MQI.
Triggering requires a number of queue attributes to be defined on the application queue. Triggering itself
is enabled by the TRGENBL attribute.

In this example, a trigger event is to be generated when there are 100 messages of priority 5 or higher on
the local queue motor.insurance.queue, as follows:

CRTMQMQ MQMNAME(MYQUEUEMANAGER) QNAME('motor.insurance.queue') QTYPE(*LCL)
PRCNAME('motor.insurance.quote.process') MAXMSGLEN(2000)
DFTMSGPST(*YES) INITQNAME('motor.ins.init.queue')
TRGENBL(*YES) TRGTYPE(*DEPTH) TRGDEPTH(100) TRGMSGPTY(5)

where the parameters are:
MQMNAME(MYQUEUEMANAGER)

The name of the queue manager.
QNAME('motor.insurance.queue')

The name of the application queue being defined.
PRCNAME('motor.insurance.quote.process')

The name of the application to be started by a trigger monitor program.
MAXMSGLEN(2000)

The maximum length of messages on the queue.
DFTMSGPST(*YES)

Messages on this queue are persistent by default.

372 Administering IBM MQ

INITQNAME('motor.ins.init.queue')
The name of the initiation queue on which the queue manager is to put the trigger message.

TRGENBL(*YES)
The trigger attribute value.

TRGTYPE(*DEPTH)
A trigger event is generated when the number of messages of the required priority (TRGMSGPTY)
reaches the number specified in TRGDEPTH.

TRGDEPTH(100)
The number of messages required to generate a trigger event.

TRGMSGPTY(5)
The priority of messages that are to be counted by the queue manager in deciding whether to
generate a trigger event. Only messages with priority 5 or higher are counted.

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the initiation queue specified
in the application queue definition. Initiation queues have no special settings, but you can use the
following definition of the local queue motor.ins.init.queue for guidance:

CRTMQMQ MQMNAME(MYQUEUEMANAGER) QNAME('motor.ins.init.queue') QTYPE(*LCL)
GETENBL(*YES) SHARE(*NO) TRGTYPE(*NONE)
MAXMSGL(2000)
MAXDEPTH(1000)

Creating a process definition
Use the CRTMQMPRC command to create a process definition. A process definition associates an
application queue with the application that is to process messages from the queue. This is done through
the PRCNAME attribute on the application queue motor.insurance.queue. The following command
creates the required process, motor.insurance.quote.process, identified in this example:

CRTMQMPRC MQMNAME(MYQUEUEMANAGER) PRCNAME('motor.insurance.quote.process')
TEXT('Insurance request message processing')
APPTYPE(*OS400) APPID(MQTEST/TESTPROG)
USRDATA('open, close, 235')

where the parameters are:
MQMNAME(MYQUEUEMANAGER)

The name of the queue manager.
PRCNAME('motor.insurance.quote.process')

The name of the process definition.
TEXT('Insurance request message processing')

A description of the application program to which this definition relates. This text is displayed when
you use the DSPMQMPRC command. This can help you to identify what the process does. If you use
spaces in the string, you must enclose the string in single quotation marks.

APPTYPE(*OS400)
The type of application to be started.

APPID(MQTEST/TESTPROG)
The name of the application executable file, specified as a fully qualified file name.

USRDATA('open, close, 235')
User-defined data, which can be used by the application.

Administering IBM MQ 373

Displaying your process definition
Use the DSPMQMPRC command to examine the results of your definition. For example:

MQMNAME(MYQUEUEMANAGER) DSPMQMPRC('motor.insurance.quote.process')

You can also use the CHGMQMPRC command to alter an existing process definition, and the DLTMQMPRC
command to delete a process definition.

Communicating between two IBM MQsystems on IBM i
This coding example illustrates how to set up two IBM MQ for IBM i systems, using CL commands, so that
they can communicate with each other.

The systems are called SYSTEMA and SYSTEMB, and the communications protocol used is TCP/IP.

Carry out the following procedure:

1. Create a queue manager on SYSTEMA, calling it QMGRA1.

CRTMQM MQMNAME(QMGRA1) TEXT('System A - Queue +
Manager 1') UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)

2. Start this queue manager.

STRMQM MQMNAME(QMGRA1)

3. Define the IBM MQ objects on SYSTEMA that you need to send messages to a queue manager on
SYSTEMB.

/* Transmission queue */
CRTMQMQ QNAME(XMITQ.TO.QMGRB1) QTYPE(*LCL) +
MQMNAME(QMGRA1) TEXT('Transmission Queue +
to QMGRB1') MAXDEPTH(5000) USAGE(*TMQ)

/* Remote queue that points to a queue called TARGETB */
/* TARGETB belongs to queue manager QMGRB1 on SYSTEMB */
CRTMQMQ QNAME(TARGETB.ON.QMGRB1) QTYPE(*RMT) +
MQMNAME(QMGRA1) TEXT('Remote Q pointing +
at Q TARGETB on QMGRB1 on Remote System +
SYSTEMB') RMTQNAME(TARGETB) +
RMTMQMNAME(QMGRB1) TMQNAME(XMITQ.TO.QMGRB1)

/* TCP/IP sender channel to send messages to the queue manager on SYSTEMB*/
CRTMQMCHL CHLNAME(QMGRA1.TO.QMGRB1) CHLTYPE(*SDR) +
MQMNAME(QMGRA1) TRPTYPE(*TCP) +
TEXT('Sender Channel From QMGRA1 on +
SYSTEMA to QMGRB1 on SYSTEMB') +
CONNAME(SYSTEMB) TMQNAME(XMITQ.TO.QMGRB1)

4. Create a queue manager on SYSTEMB, calling it QMGRB1.

CRTMQM MQMNAME(QMGRB1) TEXT('System B - Queue +
Manager 1') UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)

5. Start the queue manager on SYSTEMB.

STRMQM MQMNAME(QMGRB1)

6. Define the IBM MQ objects that you need to receive messages from the queue manager on SYSTEMA.

/* Local queue to receive messages on */
CRTMQMQ QNAME(TARGETB) QTYPE(*LCL) MQMNAME(QMGRB1) +
TEXT('Sample Local Queue for QMGRB1')

374 Administering IBM MQ

/* Receiver channel of the same name as the sender channel on SYSTEMA */
CRTMQMCHL CHLNAME(QMGRA1.TO.QMGRB1) CHLTYPE(*RCVR) +
MQMNAME(QMGRB1) TRPTYPE(*TCP) +
TEXT('Receiver Channel from QMGRA1 to +
QMGRB1')

7. Finally, start a TCP/IP listener on SYSTEMB so that the channel can be started. This example uses the
default port of 1414.

STRMQMLSR MQMNAME(QMGRB1)

You are now ready to send test messages between SYSTEMA and SYSTEMB. Using one of the supplied
samples, put a series of messages to your remote queue on SYSTEMA.

Start the channel on SYSTEMA, either by using the command STRMQMCHL, or by using the command
WRKMQMCHL and entering a start request (Option 14) against the sender channel.

The channel should go to RUNNING status and the messages are sent to queue TARGETB on SYSTEMB.

Check your messages by issuing the command:

WRKMQMMSG QNAME(TARGETB) MQMNAME(QMGRB1).

Sample resource definitions on IBM i
This sample contains the AMQSAMP4 sample IBM i CL program.

/**/
/* */
/* Program name: AMQSAMP4 */
/* */
/* Description: Sample CL program defining MQM queues */
/* to use with the sample programs */
/* Can be run, with changes as needed, after */
/* starting the MQM */
/* */
/* <N_OCO_COPYRIGHT> */
/* Licensed Materials - Property of IBM */
/* */
/* 63H9336 */
/* (c) Copyright IBM Corp. 1993, 2024. All Rights Reserved. */
/* */
/* US Government Users Restricted Rights - Use, duplication or */
/* disclosure restricted by GSA ADP Schedule Contract with */
/* IBM Corp. */
/* <NOC_COPYRIGHT> */
/* */
/**/
/* */
/* Function: */
/* */
/* */
/* AMQSAMP4 is a sample CL program to create or reset the */
/* MQI resources to use with the sample programs. */
/* */
/* This program, or a similar one, can be run when the MQM */
/* is started - it creates the objects if missing, or resets */
/* their attributes to the prescribed values. */
/* */
/* */
/* */
/* */
/* Exceptions signaled: none */
/* Exceptions monitored: none */
/* */
/* AMQSAMP4 takes a single parameter, the Queue Manager name */
/* */
/**/
QSYS/PGM PARM(&QMGRNAME)

/**/
/* Queue Manager Name Parameter */

Administering IBM MQ 375

/**/
QSYS/DCL VAR(&QMGRNAME) TYPE(*CHAR)

/**/
/* EXAMPLES OF DIFFERENT QUEUE TYPES */
/* */
/* Create local, alias and remote queues */
/* */
/* Uses system defaults for most attributes */
/* */
/**/
/* Create a local queue */
CRTMQMQ QNAME('SYSTEM.SAMPLE.LOCAL') +
MQMNAME(&QMGRNAME) +
QTYPE(*LCL) REPLACE(*YES) +
+
TEXT('Sample local queue') /* description */+
SHARE(*YES) /* Shareable */+
DFTMSGPST(*YES) /* Persistent messages OK */

/* Create an alias queue */
CRTMQMQ QNAME('SYSTEM.SAMPLE.ALIAS') +
MQMNAME(&QMGRNAME) +
QTYPE(*ALS) REPLACE(*YES) +
+
TEXT('Sample alias queue') +
DFTMSGPST(*YES) /* Persistent messages OK */+
TGTQNAME('SYSTEM.SAMPLE.LOCAL')

/* Create a remote queue - in this case, an indirect reference */
/* is made to the sample local queue on OTHER queue manager */
CRTMQMQ QNAME('SYSTEM.SAMPLE.REMOTE') +
MQMNAME(&QMGRNAME) +
QTYPE(*RMT) REPLACE(*YES) +
+
TEXT('Sample remote queue')/* description */+
DFTMSGPST(*YES) /* Persistent messages OK */+
RMTQNAME('SYSTEM.SAMPLE.LOCAL') +
RMTMQMNAME(OTHER) /* Queue is on OTHER */

/* Create a transmission queue for messages to queues at OTHER */
/* By default, use remote node name */
CRTMQMQ QNAME('OTHER') /* transmission queue name */+
MQMNAME(&QMGRNAME) +
QTYPE(*LCL) REPLACE(*YES) +
TEXT('Transmision queue to OTHER') +
USAGE(*TMQ) /* transmission queue */

/**/
/* SPECIFIC QUEUES AND PROCESS USED BY SAMPLE PROGRAMS */
/* */
/* Create local queues used by sample programs */
/* Create MQI process associated with sample initiation queue */
/* */
/**/
/* General reply queue */
CRTMQMQ QNAME('SYSTEM.SAMPLE.REPLY') +
MQMNAME(&QMGRNAME) +
QTYPE(*LCL) REPLACE(*YES) +
+
TEXT('General reply queue') +
DFTMSGPST(*NO) /* Not Persistent */

/* Queue used by AMQSINQ4 */
CRTMQMQ QNAME('SYSTEM.SAMPLE.INQ') +
MQMNAME(&QMGRNAME) +
QTYPE(*LCL) REPLACE(*YES) +
+
TEXT('Queue for AMQSINQ4') +
SHARE(*YES) /* Shareable */+
DFTMSGPST(*NO) /* Not Persistent */+
+
TRGENBL(*YES) /* Trigger control on */+
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +
INITQNAME('SYSTEM.SAMPLE.TRIGGER')

/* Queue used by AMQSSET4 */
CRTMQMQ QNAME('SYSTEM.SAMPLE.SET') +
MQMNAME(&QMGRNAME) +
QTYPE(*LCL) REPLACE(*YES) +
+

376 Administering IBM MQ

TEXT('Queue for AMQSSET4') +
SHARE(*YES) /* Shareable */ +
DFTMSGPST(*NO)/* Not Persistent */ +
+
TRGENBL(*YES) /* Trigger control on */ +
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME('SYSTEM.SAMPLE.SETPROCESS') +
INITQNAME('SYSTEM.SAMPLE.TRIGGER')

/* Queue used by AMQSECH4 */
CRTMQMQ QNAME('SYSTEM.SAMPLE.ECHO') +
MQMNAME(&QMGRNAME) +
QTYPE(*LCL) REPLACE(*YES) +
+
TEXT('Queue for AMQSECH4') +
SHARE(*YES) /* Shareable */ +
DFTMSGPST(*NO)/* Not Persistent */ +
+
TRGENBL(*YES) /* Trigger control on */ +
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME('SYSTEM.SAMPLE.ECHOPROCESS') +
INITQNAME('SYSTEM.SAMPLE.TRIGGER')

/* Initiation Queue used by AMQSTRG4, sample trigger process */
CRTMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') +
MQMNAME(&QMGRNAME) +
QTYPE(*LCL) REPLACE(*YES) +
TEXT('Trigger queue for sample programs')

/* MQI Processes associated with triggered sample programs */
/* */
/***** Note - there are versions of the triggered samples ******/
/***** in different languages - set APPID for these ******/
/***** process to the variation you want to trigger ******/
/* */
CRTMQMPRC PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +
MQMNAME(&QMGRNAME) +
REPLACE(*YES) +
+
TEXT('Trigger process for AMQSINQ4') +
ENVDATA('JOBPTY(3)') /* Submit parameter */ +
/** Select the triggered program here **/ +
APPID('QMQM/AMQSINQ4') /* C +
/* APPID('QMQM/AMQ0INQ4') /* COBOL */ +
/* APPID('QMQM/AMQ3INQ4') /* RPG - ILE */

CRTMQMPRC PRCNAME('SYSTEM.SAMPLE.SETPROCESS') +
MQMNAME(&QMGRNAME) +
REPLACE(*YES) +
+
TEXT('Trigger process for AMQSSET4') +
ENVDATA('JOBPTY(3)') /* Submit parameter */ +
/** Select the triggered program here **/ +
APPID('QMQM/AMQSSET4') /* C */ +
/* APPID('QMQM/AMQ0SET4') /* COBOL */ +
/* APPID('QMQM/AMQ3SET4') /* RPG - ILE */

CRTMQMPRC PRCNAME('SYSTEM.SAMPLE.ECHOPROCESS') +
MQMNAME(&QMGRNAME) +
REPLACE(*YES) +
+
TEXT('Trigger process for AMQSECH4') +
ENVDATA('JOBPTY(3)') /* Submit parameter */ +
/** Select the triggered program here **/ +
APPID('QMQM/AMQSECH4') /* C */ +
/* APPID('QMQM/AMQ0ECH4') /* COBOL */ +
/* APPID('QMQM/AMQ3ECH4') /* RPG - ILE */

/**/
/* */
/* Normal return. */
/* */
/**/
SNDPGMMSG MSG('AMQSAMP4 Completed creating sample +
objects for ' *CAT &QMGRNAME)
RETURN
ENDPGM

/**/
/* */
/* END OF AMQSAMP4 */

Administering IBM MQ 377

/* */
/**/

Alternative ways of administering IBM MQ for IBM i
Using CL commands is the preferred method of administering IBM MQ for IBM i. However, you can use
various other administration methods including MQSC commands, PCF commands, control commands,
and remote administration.

About this task
You normally use IBM i CL commands to administer IBM MQ for IBM i. For an overview of these
commands, see “Managing IBM MQ for IBM i using CL commands” on page 364.

You can also use MQSC commands and PCF commands as described in the subtopics, and you can use
control commands as described in “Administering IBM MQ for Multiplatforms using control commands”
on page 10.

You can use IBM MQ instrumentation events to monitor the operation of queue managers. See
Instrumentation events for information about IBM MQ instrumentation events and how to use them.

Use any of the administration methods described in the following subtopics as an alternative to using IBM
i CL commands:

Local and remote administration on IBM i
You administer IBM MQ for IBM i objects locally or remotely.

About this task
Local administration means carrying out administration tasks on any queue managers that you have
defined on your local system. In IBM MQ, you can consider this as local administration because no IBM
MQ channels are involved, that is, the communication is managed by the operating system. To perform
this type of task, you must either log on to the remote system and issue the commands from there, or
create a process that can issue the commands for you.

IBM MQ supports administration from a single point through what is known as remote administration.
Remote administration consists of sending programmable command format (PCF) control messages to
the SYSTEM.ADMIN.COMMAND.QUEUE on the target queue manager.

There are a number of ways of generating PCF messages. These are described in the following steps.

Procedure
• Write a program using PCF messages. See “Administration using PCF commands on IBM i” on page

380.
• Write a program using the MQAI, which sends out PCF messages. See “Using the MQAI to simplify the

use of PCFs” on page 37.
• Use the IBM MQ Explorer, available with IBM MQ for Windows, which allows you to use a graphical

user interface (GUI) and generates the correct PCF messages. See “Using the IBM MQ Explorer with
IBM MQ for IBM i ” on page 381.

• Use STRMQMMQSC to send commands indirectly to a remote queue manager. See “Administering using
MQSC commands on IBM i” on page 379.

For example, you can issue a remote command to change a queue definition on a remote queue
manager.

Some commands cannot be issued in this way, in particular, creating or starting queue managers and
starting command servers. To perform this type of task, you must either log on to the remote system
and issue the commands from there or create a process that can issue the commands for you.

378 Administering IBM MQ

Administering using MQSC commands on IBM i
On IBM i, you create a list of commands in a Script file, then run the file by using the STRMQMMQSC
command. You use MQSC commands to manage queue manager objects, including the queue manager
itself, queues, process definitions, namelists, channels, client connection channels, listeners, services,
topics, and authentication information objects.

About this task
IBM MQ script (MQSC) commands are written in human-readable form, in EBCDIC text. You issue MQSC
commands to a queue manager using the STRMQMMQSC IBM MQ CL command. This method is a batch
method only, taking its input from a source physical file in the server library system. The default name for
this source physical file is QMQSC.

Attention: Do not use the QTEMP library as the source library to STRMQMMQSC, as the usage of
the QTEMP library is limited. You must use another library as an input file to the command.

For portability among IBM MQ environments, limit the line length in MQSC command files to 72
characters. Use the plus sign to indicate that the command is continued on the next line.

Object attributes specified in MQSC are shown in this topic in uppercase (for example, RQMNAME),
although they are not case-sensitive.

Note:

1. The format of an MQSC file does not depend on its location in the file system.
2. MQSC attribute names are limited to eight characters.
3. MQSC commands are available on all IBM MQ platforms.

For a description of each MQSC command and its syntax, see MQSC commands.

Procedure
1. Create the QMQSC source file.

IBM MQ for IBM i does not supply a source file called QMQSC. To process MQSC commands you must
create the QMQSC source file in a library of your choice, by issuing the following command:

CRTSRCPF FILE(MYLIB/QMQSC) RCDLEN(240) TEXT('IBM MQ - MQSC Source')

2. Work with the members.

MQSC source is held in members within this source file. To work with the members enter the following
command:

WRKMBRPDM MYLIB/QMQSC

You can now add new members and maintain existing ones.

Administering IBM MQ 379

.

.
DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +
DESCR(' ') +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(1024) +
DEFSOPT(SHARED) +
NOHARDENBO +
USAGE(NORMAL) +
NOTRIGGER;
.
.

Figure 20. Extract from an MQSC command file, myprog.in, showing an MQSC command (DEFINE
QLOCAL) with its attributes.

Related information
Administering IBM MQ using MQSC commands

Administration using PCF commands on IBM i
The purpose of IBM MQ programmable command format (PCF) commands is to allow administration
tasks to be programmed into an administration program. In this way you can create queues and process
definitions, and change queue managers, from a program.

PCF commands cover the same range of functions provided by MQSC commands. However, unlike MQSC
commands, PCF commands and their replies are not in a text format that you can read.

You can write a program to issue PCF commands to any queue manager in the network from a single
node. In this way, you can both centralize and automate administration tasks.

Each PCF command is a data structure that is embedded in the application data part of an IBM MQ
message. Each command is sent to the target queue manager using the MQI function MQPUT in the same
way as any other message. The command server on the queue manager receiving the message interprets
it as a command message and runs the command. To get the replies, the application issues an MQGET call
and the reply data is returned in another data structure. The application can then process the reply and
act accordingly.

Briefly, these are some of the things the application programmer must specify to create a PCF command
message:
Message descriptor

This is a standard IBM MQ message descriptor, in which:

• Message type (MsgType) is MQMT_REQUEST.
• Message format (Format) is MQFMT_ADMIN.

Application data
Contains the PCF message including the PCF header, in which:

• The PCF message type (Type) specifies MQCFT_COMMAND.
• The command identifier specifies the command, for example, Change Queue

(MQCMD_CHANGE_Q).

Escape PCFs are PCF commands that contain MQSC commands within the message text. You can use
PCFs to send commands to a remote queue manager. See “Using the MQAI to simplify the use of PCFs” on
page 37 for further information.

For a complete description of the PCF data structures and how to implement them, see Structures for
commands and responses.

380 Administering IBM MQ

Using the IBM MQ Explorer with IBM MQ for IBM i
Use this information to administer IBM MQ for IBM i using the IBM MQ Explorer.

IBM MQ for Windows (x86 platform), and IBM MQ for Linux (x86 and x86-64 platforms) provide an
administration interface called the IBM MQ Explorer to perform administration tasks as an alternative to
using CL, control, or MQSC commands.

The IBM MQ Explorer allows you to perform local or remote administration of your network from a
computer running Windows (x86 platform), or Linux (x86 and x86-64 platforms), by pointing the IBM MQ
Explorer at the queue managers and clusters you are interested in.

With the IBM MQ Explorer, you can:

• Start and stop a queue manager (on your local machine only).
• Define, display, and alter the definitions of IBM MQ objects such as queues, topics, and channels.
• Browse the messages on a queue.
• Start and stop a channel.
• View status information about a channel.
• View queue managers in a cluster.
• Check to see which applications, users, or channels have a particular queue open.
• Create a new queue manager cluster using the Create New Cluster wizard.
• Add a queue manager to a cluster using the Add Queue Manager to Cluster wizard.
• Manage the authentication information object, used with Transport Layer Security (TLS) channel

security.

Using the online guidance, you can:

• Define and control various resources including queue managers, queues, channels, process definitions,
client connection channels, listeners, topics, services, namelists, and clusters.

• Start or stop a queue manager and its associated processes.
• View queue managers and their associated objects on your workstation or from other workstations.
• Check the status of queue managers, clusters, and channels.

Ensure that you have satisfied the following requirements before attempting to use the IBM MQ Explorer
to manage IBM MQ on a server machine. Check that:

1. A command server is running for any queue manager being administered, started on the server by the
CL command STRMQMCSVR.

2. A suitable TCP/IP listener exists for every remote queue manager. This is the IBM MQ listener started
by the STRMQMLSR command.

3. The server connection channel, called SYSTEM.ADMIN.SVRCONN, exists on every remote queue
manager. You must create this channel yourself. It is mandatory for every remote queue manager
being administered. Without it, remote administration is not possible.

4. Verify that the SYSTEM.MQEXPLORER.REPLY.MODEL queue exists.

Managing the command server for remote administration on IBM i
Use this information to learn about the remote administration of IBM MQ for IBM i command server.

Each queue manager can have a command server associated with it. A command server processes any
incoming commands from remote queue managers, or PCF commands from applications. It presents the
commands to the queue manager for processing and returns a completion code or operator message
depending on the origin of the command.

A command server is mandatory for all administration involving PCFs, the MQAI, and also for remote
administration.

Administering IBM MQ 381

Note: For remote administration, you must ensure that the target queue manager is running. Otherwise,
the messages containing commands cannot leave the queue manager from which they are issued.
Instead, these messages are queued in the local transmission queue that serves the remote queue
manager. Avoid this situation if at all possible.

There are separate control commands for starting and stopping the command server. You can perform the
operations described in the following sections using the IBM MQ Explorer.

Starting and stopping the command server
To start the command server, use this CL command:

STRMQMCSVR MQMNAME('saturn.queue.manager')

where saturn.queue.manager is the queue manager for which the command server is being started.

To stop the command server, use one of the following CL commands:

1.
ENDMQMCSVR MQMNAME('saturn.queue.manager') OPTION(*CNTRLD)

to perform a controlled stop, where saturn.queue.manager is the queue manager for which
the command server is being stopped. This is the default option, which means that the
OPTION(*CNTRLD) can be omitted.

2.
ENDMQMCSVR MQMNAME('saturn.queue.manager') OPTION(*IMMED)

to perform an immediate stop, where saturn.queue.manager is the queue manager for which the
command server is being stopped.

Displaying the status of the command server
For remote administration, ensure that the command server on the target queue manager is running. If it
is not running, remote commands cannot be processed. Any messages containing commands are queued
in the target queue manager's command queue SYSTEM.ADMIN.COMMAND.QUEUE.

To display the status of the command server for a queue manager, called here saturn.queue.manager,
the CL command is:

DSPMQMCSVR MQMNAME('saturn.queue.manager')

Issue this command on the target machine. If the command server is running, the panel shown in Figure
21 on page 382 appears:

Display MQM Command Server (DSPMQMCSVR)

Queue manager name > saturn.queue.manager

MQM Command Server Status. . . . > RUNNING

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Figure 21. Display MQM Command Server panel

382 Administering IBM MQ

Running web console commands
You must configure your environment as described in the following text, for the web console related
Qshell commands to run correctly on IBM MQ for IBM i.

About this task
When the Qshell starts, it initializes internal tables for processing commands based on the CCSID of the
job. For the web console related Qshell commands to run correctly on IBM i, you must configure your
environment.

A locale is set by setting the LANG environment variable to the path name to a locale object. For example,
to set the locale for US English, the LANG environment variable is set as follows:

LANG=/QSYS.LIB/EN_US.LOCALE

In the Qshell, you can check the setting by issue command set to list all the environment variables.
Usually it is LANG which may impact the locale for the runtime environment. It may also has LC_ALL.

To run Qshell commands correctly, the locale environment setting must be consistent with your job
setting.

Procedure
Use CL command DSPJOB JOB(JobNumber/USERProfile/JobName)
a) Select option 2 to display the job definition attributes.
b) The following attributes should be consistent with the LANG or LC_ALL environment setting

• Language identifier
• Country or region identifier
• Coded character set identifier

For example, if

LANG=/QSYS.LIB/FR_FR.LOCALE

your job attributes should be:

• Language ID FRA
• Country or region ID FR
• Coded character set ID 297

What to do next
For more information on national language support, see the IBM Documentation topic National language
support (NLS) considerations.

Work management for IBM i
This information describes the way in which IBM MQ handles work requests, and details the options
available for prioritizing and controlling the jobs associated with IBM MQ.

Warning
Do not alter IBM MQ work management objects unless you fully understand the concepts of IBM i and
IBM MQ work management.

Additional information regarding subsystems and job descriptions can be found under Work Management
in the IBM i product documentation. Pay particular attention to the sections on Starting jobs and Batch
jobs.

Administering IBM MQ 383

IBM MQ for IBM i incorporates the IBM i UNIX environment and IBM i threads. Do not make any changes
to the objects in the Integrated File System (IFS).

During normal operations, an IBM MQ queue manager starts a number of batch jobs to perform different
tasks. By default these batch jobs run in the QMQM subsystem that is created when IBM MQ is installed.

Work management refers to the process of tailoring IBM MQ tasks to obtain the optimum performance
from your system, or to make administration simpler.

For example, you can:

• Change the run-priority of jobs to make one queue manager more responsive than another.
• Redirect the output of a number of jobs to a particular output queue.
• Make all jobs of a certain type run in a specific subsystem.
• Isolate errors to a subsystem.

Work management is carried out by creating or changing the job descriptions associated with the IBM MQ
jobs. You can configure work management for:

• An entire IBM MQ installation.
• Individual queue managers.
• Individual jobs for individual queue managers.

IBM MQ tasks for IBM i
This is a table of the IBM MQ for IBM i jobs and a brief description of each.

When a queue manager is running, you see some or all of the following batch jobs running under the
QMQM user profile in the IBM MQ subsystem. The jobs are described briefly in Table 21 on page 384.

You can view all jobs connected to a queue manager using option 22 on the Work with Queue Manager
(WRKMQM) panel. You can view listeners using the WRKMQMLSR command.

Table 21. IBM MQ tasks.

Job name Function

AMQZMUC0 Utility manager. This job executes critical queue manager utilities, for example the
journal chain manager.

AMQZXMA0 The execution controller that is the first job started by the queue manager. It handles
MQCONN requests, and starts agent processes to process IBM MQ API calls.

AMQZFUMA Object authority manager (OAM).

AMQZLAA0 Queue manager agents that perform most of the work for applications that connect to
the queue manager using MQCNO_STANDARD_BINDING.

AMQZLSA0 Queue manager agent.

AMQZMUF0 Utility Manager

AMQZMGR0 Process controller. This job is used to start and manage listeners and services.

AMQZMUR0 Utility manager. This job executes critical queue manager utilities, for example the
journal chain manager.

AMQFQPUB Queued publish/subscribe daemon.

AMQFCXBA Broker worker job.

RUNMQBRK Broker control job.

AMQRMPPA Channel process pooling job.

AMQCRSTA TCP/IP-invoked channel responder.

384 Administering IBM MQ

Table 21. IBM MQ tasks. (continued)

Job name Function

AMQCRS6B LU62 receiver channel and client connection (see note).

AMQRRMFA Repository manager for clusters.

AMQCLMAA Non-threaded TCP/IP listener.

AMQPCSEA PCF command processor that handles PCF and remote administration requests.

RUNMQTRM Trigger monitor.

RUNMQDLQ Dead letter queue handler.

RUNMQCHI The channel initiator.

RUNMQCHL Sender channel job that is started for each sender channel.

RUNMQLSR Threaded TCP/IP listener.

AMQRCMLA Channel MQSC and PCF command processor.

Note: The LU62 receiver job runs in the communications subsystem and takes its runtime properties from
the routing and communications entries that are used to start the job. See Initiated end (Receiver) for
more information.

Work management objects on IBM i
When IBM MQ is installed, various objects are supplied in the QMQM library to assist with work
management. These objects are the ones necessary for IBM MQ jobs to run in their own subsystem.

Sample job descriptions are provided for two of the IBM MQ batch jobs. If no specific job description is
provided for an IBM MQ job, it runs with the default job description QMQMJOBD.

The work management objects that are supplied when you install IBM MQ are listed in Table 22 on page
385 and the objects created for a queue manager are listed in Table 23 on page 386

Note: The work management objects can be found in the QMQM library and the queue manager objects
can be found in the queue manager library.

Table 22. Work management objects

Name Type Description

AMQZLAA0 *JOBD The job description that is used by the IBM MQ agent
processes

AMQZLSA0 *JOBD The isolated bindings queue manager agent

AMQZXMA0 *JOBD The job description that is used by IBM MQ execution
controllers

QMQM *SBSD The subsystem in which all IBM MQ jobs run

QMQM *JOBQ The job queue attached to the supplied subsystem

QMQMJOBD *JOBD The default IBM MQ job description, used if there is not a
specific job description for a job

QMQMMSG *MSGQ The default message queue for IBM MQ jobs.

QMQMRUN20 *CLS A class description for high priority IBM MQ jobs

QMQMRUN35 *CLS A class description for medium priority IBM MQ jobs

QMQMRUN50 *CLS A class description for low priority IBM MQ jobs

Administering IBM MQ 385

Table 23. Work management objects created for a queue manager

Name Type Description

AMQA000000 *JRNRCV Local journal receiver

AMQAJRN *JRN Local journal

AMQJRNINF *USRSPC User space that is updated with the latest journal receivers
required for startup and media recovery of a queue manager.
This user space can be queried by an application to determine
which journal receivers require archiving and which can be
safely deleted.

AMQAJRNMSG *MSGQ Local journal message queue

AMQCRC6B *PGM Program to start the LU6.2 connection

AMQRFOLD *FILE Migrated queue manager channel definition file

QMQMMSG *MSGQ Queue manager message queue

How IBM MQ uses work management objects on IBM i
This information describes the way in which IBM MQ uses the work management objects, and provides
configuration examples.

Attention: Do not alter the job queue entry settings in the QMQM subsytem to limit the number of
jobs allowed in the subsystem by priority. If you attempt to do this, you can stop essential IBM MQ
jobs from running after they are submitted and cause the queue manager startup to fail.

To understand how to configure work management, you must first understand how IBM MQ uses job
descriptions.

The job description used to start the job controls many attributes of the job. For example:

• The job queue on which the job is queued and on which subsystem the job runs.
• The routing data used to start the job and class that the job uses for its runtime parameters.
• The output queue that the job uses for print files.

The process of starting an IBM MQ job can be considered in three steps:

1. IBM MQ selects a job description.

IBM MQ uses the following technique to determine which job description to use for a batch job:

a. Look in the queue manager library for a job description with the same name as the job. See
Understanding IBM MQ for IBM i queue manager library names for further details about the queue
manager library.

b. Look in the queue manager library for the default job description QMQMJOBD.
c. Look in the QMQM library for a job description with the same name as the job.
d. Use the default job description, QMQMJOBD, in the QMQM library.

2. The job is submitted to the job queue.

Job descriptions supplied with IBM MQ have been set up, by default, to put jobs on to job queue
QMQM in library QMQM. The QMQM job queue is attached to the supplied QMQM subsystem, so by
default the jobs start running in the QMQM subsystem.

3. The job enters the subsystem and goes through the routing steps.

When the job enters the subsystem, the routing data specified on the job description is used to find
routing entries for the job.

386 Administering IBM MQ

The routing data must match one of the routing entries defined in the QMQM subsystem, and this
defines which of the supplied classes (QMQMRUN20, QMQMRUN35, or QMQMRUN50) is used by the
job.

Note: If IBM MQ jobs do not appear to be starting, make sure that the subsystem is running and the job
queue is not held,

If you have modified the IBM MQ work management objects, make sure everything is associated correctly.
For example, if you specify a job queue other than QMQM/QMQM on the job description, make sure that
an ADDJOBQE is performed for the subsystem, that is, QMQM.

You can create a job description for each job documented in Table 21 on page 384 using the following
worksheet as an example:

What is the queue manager library name? ___________
Does job description AMQZXMA0 exist in the queue manager library? Yes No
Does job description QMQMJOBD exist in the queue manager library? Yes No
Does job description AMQZXMA0 exist in the QMQM library? Yes No
Does job description QMQMJOBD exist in the QMQM library? Yes No

If you answer No to all these questions, create a global job description QMQMJOBD in the QMQM library.

The IBM MQ message queue
An IBM MQ message queue, QMQMMSG, is created in each queue manager library. Operating system
messages are sent to this queue when queue manager jobs end and IBM MQ sends messages to
the queue. For example, to report which journal receivers are needed at startup. Keep the number of
messages in this message queue at a manageable size to make it easier to monitor.

Default system examples for IBM i
These examples show how an unmodified IBM MQ installation works when some of the standard jobs are
submitted at queue manager startup time.

First, the AMQZXMA0 execution controller job starts.

1. Issue the STRMQM command for queue manager TESTQM.
2. IBM MQ searches the queue manager library QMTESTQM, firstly for job description AMQZXMA0, and

then job description QMQMJOBD.

Neither of these job descriptions exist, so IBM MQ looks for job description AMQZXMA0 in the product
library QMQM. This job description exists, so it is used to submit the job.

3. The job description uses the IBM MQ default job queue, so the job is submitted to job queue QMQM/
QMQM.

4. The routing data on the AMQZXMA0 job description is QMQMRUN20, so the system searches the
subsystem routing entries for one that matches that data.

By default, the routing entry with sequence number 9900 has comparison data that matches
QMQMRUN20, so the job is started with the class defined on that routing entry, which is also called
QMQMRUN20.

5. The QMQM/QMQMRUN20 class has run priority set to 20, so the AMQZXMA0 job runs in subsystem
QMQM with the same priority as most interactive jobs on the system.

Configuring work management examples on IBM i
Use this information to learn how you can change and create IBM MQ job descriptions to change the
runtime attributes of IBM MQ jobs.

The key to the flexibility of IBM MQ work management lies in the two-tier way that IBM MQ searches for
job descriptions:

Administering IBM MQ 387

• If you create or change job descriptions in a queue manager library, those changes override the global
job descriptions in QMQM, but the changes are local and affect that particular queue manager alone.

• If you create or change global job descriptions in the QMQM library, those job descriptions affect all
queue managers on the system, unless overridden locally for individual queue managers.

1. The following example increases the priority of channel control jobs for an individual queue manager.

To make the repository manager and channel initiator jobs, AMQRRMFA and RUNMQCHI, run as
quickly as possible for queue manager TESTQM, carry out the following steps:

a. Create local duplicates of the QMQM/QMQMJOBD job description with the names of the IBM MQ
processes that you want to control in the queue manager library. For example:

CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMTESTQM)
NEWOBJ(RUNMQCHI)
CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMTESTQM)
NEWOBJ(AMQRRMFA)

b. Change the routing data parameter on the job description to ensure that the jobs use the
QMQMRUN20 class.

CHGJOBD JOBD(QMTESTQM/RUNMQCHI) RTGDTA('QMQMRUN20')
CHGJOBD JOBD(QMTESTQM/AMQRRMFA) RTGDTA('QMQMRUN20')

The AMQRRMFA and RUNMQCHI jobs for queue manager TESTQM now:

• Use the new local job descriptions in the queue manager library
• Run with priority 20, because the QMQMRUN20 class is used when the jobs enter the subsystem.

2. The following example defines a new run priority class for the QMQM subsystem.

a. Create a duplicate class in the QMQM library, to allow other queue managers to access the class, by
issuing the following command:

CRTDUPOBJ OBJ(QMQMRUN20) FROMLIB(QMQM) OBJTYPE(*CLS) TOLIB(QMQM)
NEWOBJ(QMQMRUN10)

b. Change the class to have the new run priority by issuing the following command:

CHGCLS CLS(QMQM/QMQMRUN10) RUNPTY(10)

c. Add the new class definition to the subsystem by issuing the following command:

ADDRTGE SBSD(QMQM/QMQM) SEQNBR(8999) CMPVAL('QMQMRUN10') PGM(QSYS/QCMD)
CLS(QMQM/QMQMRUN10)

Note: You can specify any numeric value for the routing sequence number, but the values must be
in sequential order. This sequence number tells the subsystem the order in which routing entries
are to be searched for a routing data match.

d. Change the local or global job description to use the new priority class by issuing the following
command:

CHGJOBD JOBD(QMQMlibname/QMQMJOBD) RTGDTA('QMQMRUN10')

Now all the queue manager jobs associated with the QMlibraryname use a run priority of 10.
3. The following example runs a queue manager in its own subsystem

To make all the jobs for queue manager TESTQM run in the QBATCH subsystem, carry out the following
steps:

388 Administering IBM MQ

a. Create a local duplicate of the QMQM/QMQMJOBD job description in the queue manager library
with the command

CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMTESTQM)

b. Change the job queue parameter on the job description to ensure that the jobs use the QBATCH job
queue.

CHGJOBD JOBD(QMTESTQM/QMQMJOBD) JOBQ(*LIBL/QBATCH)

Note: The job queue is associated with the subsystem description. If you find that the jobs are
staying on the job queue, verify that the job queue definition is defined on the SBSD. Use the
DSPSBSD command for the subsystem and take option 6, Job queue entries.

All jobs for queue manager TESTQM now:

• Use the new local default job description in the queue manager library
• Are submitted to job queue QBATCH.

To ensure that jobs are routed and prioritized correctly:

• Either create routing entries for the IBM MQ jobs in subsystem QBATCH, or
• Rely on a catch-all routing entry that calls QCMD, irrespective of what routing data is used.

This option works only if the maximum active jobs option for job queue QBATCH is set to *NOMAX.
The system default is 1.

4. The following example creates another IBM MQ subsystem

a. Create a duplicate subsystem in the QMQM library by issuing the following command:

CRTDUPOBJ OBJ(QMQM) FROMLIB(QMQM) OBJTYPE(*SBSD) TOLIB(QMQM) NEWOBJ(QMQM2)

b. Remove the QMQM job queue by issuing the following command:

RMVJOBQE SBSD(QMQM/QMQM2) JOBQ(QMQM/QMQM)

c. Create a new job queue for the subsystem by issuing the following command:

CRTJOBQ JOBQ(QMQM/QMQM2) TEXT('Job queue for IBM MQ Queue Manager')

d. Add a job queue entry to the subsystem by issuing the following command:

ADDJOBQE SBSD(QMQM/QMQM2) JOBQ(QMQM/QMQM2) MAXACT(*NOMAX)

e. Create a duplicate QMQMJOBD in the queue manager library by issuing the following command:

CRTDUPOBJ OBJ(QMQMJOBD) FROMLIB(QMQM) OBJTYPE(*JOBD) TOLIB(QMlibraryname)

f. Change the job description to use the new job queue by issuing the following command:

CHGJOBD JOBD(QMlibraryname/QMQMJOBD) JOBQ(QMQM/QMQM2)

g. Start the subsystem by issuing the following command:

STRSBS SBSD(QMQM/QMQM2)

Note:

Administering IBM MQ 389

a. You can specify the subsystem in any library. If for any reason the product is reinstalled, or the
QMQM library is replaced, any changes you made are removed.

b. All the queue manager jobs associated with the QMlibraryname now run under subsystem QMQM2.

Availability, backup, recovery, and restart on IBM i
Use this information to understand how IBM MQ for IBM i uses the IBM i journaling support to help its
backup and restore strategy.

You must be familiar with standard IBM i backup and recovery methods, and with the use of journals and
their associated journal receivers on IBM i, before reading this section. For information on these topics,
see Backup and recovery.

To understand the backup and recovery strategy, you first need to understand how IBM MQ for IBM i
organizes its data in the IBM i file system and the integrated file system (IFS).

IBM MQ for IBM i holds its data in an individual library for each queue manager instance, and in stream
files in the IFS file system.

The queue manager specific libraries contain journals, journal receivers, and objects required to control
the work management of the queue manager. The IFS directories and files contain IBM MQ configuration
files, the descriptions of IBM MQ objects, and the data they contain.

Every change to these objects, that is recoverable across a system failure, is recorded in a journal before it
is applied to the appropriate object. This has the effect that such changes can be recovered by replaying
the information recorded in the journal.

You can configure IBM MQ for IBM i to use multiple queue manager instances on different servers to
provide increased queue manager availability and speed up recovery in the case of a server or queue
manager failure.

Queue manager journals on IBM i
Use this information to understand how IBM MQ for IBM i uses journals in its operation to control updates
to local objects.

Each queue manager library contains a journal for that queue manager, and the journal has the name QM
GRLIB/AMQ A JRN, where QM GRLIB is the name of the queue manager library, and A is a letter, A in the
case of a single instance queue manager, that is unique to the queue manager instance.

QM GRLIB takes the name QM, followed by the name of the queue manager in a unique form. For example,
a queue manager named TEST has a queue manager library named QMTEST. The queue manager library
can be specified when creating a queue manager using the CRTMQM command.

Journals have associated journal receivers that contain the information being journaled. The receivers are
objects to which information can only be appended and will fill up eventually.

Journal receivers use up valuable disk space with out-of-date information. However, you can place the
information in permanent storage to minimize this problem. One journal receiver is attached to the journal
at any particular time. If the journal receiver reaches its predetermined threshold size, it is detached and
replaced by a new journal receiver. You can specify the threshold of journal receivers when you create a
queue manager using CRTMQM and the THRESHOLD parameter.

The journal receivers associated with the local IBM MQ for IBM i journal exist in each queue manager
library, and adopt a naming convention as follows:

AMQ Arnnnnn

where
A

is a letter A-Z. It is A for single instance queue managers. It varies for different instances of a
multi-instance queue manager.

390 Administering IBM MQ

nnnnn
is decimal 00000 to 99999 that is incremented by 1 for the next journal in the sequence.

r
is decimal 0 to 9, that is incremented by 1 each time a receiver is restored.

The sequence of the journals is based on date. However, the naming of the next journal is based on the
following rules:

1. AMQArnnnnn goes to AMQAr(nnnnn+1), and nnnnn wraps when it reaches 99999. For example,
AMQA099999 goes to AMQA000000, and AMQA999999 goes to AMQA900000.

2. If a journal with a name generated by rule 1 already exists, the message CPI7OE3 is sent to the
QSYSOPR message queue and automatic receiver switching stops.

The currently-attached receiver continues to be used until you investigate the problem and manually
attach a new receiver.

3. If no new name is available in the sequence (that is, all possible journal names are on the system) you
need to do both of the following:

a. Delete journals no longer needed (see “Journal management on IBM i” on page 395).
b. Record the journal changes into the latest journal receiver using (RCDMQMIMG) and then repeat the

previous step. This allows the old journal receiver names to be reused.

The AMQAJRN journal uses the MNGRCV(*SYSTEM) option to enable the operating system to
automatically change journal receivers when the threshold is reached. For more information on how the
system manages receivers, see IBM i Backup and Recovery.

The journal receiver's default threshold value is 100,000 KB. You can set this to a larger value when
you create the queue manager. The initial value of the LogReceiverSize attribute is written to the
LogDefaults stanza of the mqs.ini file.

When a journal receiver extends beyond its specified threshold, the receiver is detached and a
new journal receiver is created, inheriting attributes from the previous receiver. Changes to the
LogReceiverSize or LogASP attributes after a queue manager has been created are ignored when
the system automatically attaches a new journal receiver

See Changing IBM MQ configuration information on Multiplatforms for further details on configuring the
system.

If you need to change the size of journal receivers after the queue manager has been created, create a
new journal receiver and set its owner to QMQM using the following commands:

CRTJRNRCV JRNRCV(QM GRLIB/AMQ Arnnnnn) THRESHOLD(xxxxxx) +
TEXT('MQM LOCAL JOURNAL RECEIVER')
CHGOBJOWN OBJ(QM GRLIB/AMQ Arnnnnn) OBJTYPE(*JRNRCV) NEWOWN(QMQM)

where
QMGRLIB

Is the name of your queue manager library
A

Is the instance identifier (usually A).
rnnnnn

Is the next journal receiver in the naming sequence described previously
xxxxxx

Is the new receiver threshold (in KB)

Note: The maximum size of the receiver is governed by the operating system. To check this value look
at the THRESHOLD keyword on the CRTJRNRCV command.

Administering IBM MQ 391

Now attach the new receiver to the AMQAJRN journal with the command:

CHGJRN JRN(QMGRLIB/AMQ A JRN) JRNRCV(QMGRLIB/AMQ Annnnnn)

See “Journal management on IBM i” on page 395 for details on how to manage these journal receivers.

Queue manager journal usage on IBM i
Use this information to understand how IBM MQ for IBM i uses journals in its operation to control updates
to local objects.

Persistent updates to message queues happen in two stages. The records representing the update are
first written to the journal, then the queue file is updated.

The journal receivers can therefore become more up to date than the queue files. To ensure that restart
processing begins from a consistent point, IBM MQ uses checkpoints.

A checkpoint is a point in time when the record described in the journal is the same as the record in
the queue. The checkpoint itself consists of the series of journal records needed to restart the queue
manager. For example, the state of all transactions (that is, units of work) active at the time of the
checkpoint.

Checkpoints are generated automatically by IBM MQ. They are taken when the queue manager starts and
shuts down, and after a certain number of operations are logged.

You can force a queue manager to take a checkpoint by issuing the RCDMQMIMG command against all
objects on a queue manager and displaying the results, as follows:

RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) MQMNAME(Q_MGR_NAME) DSPJRNDTA(*YES)

As the queues handle further messages, the checkpoint record becomes inconsistent with the current
state of the queues.

When IBM MQ is restarted, it locates the latest checkpoint record in the log. This information is held in the
checkpoint file that is updated at the end of every checkpoint. The checkpoint record represents the most
recent point of consistency between the log and the data. The data from this checkpoint is used to rebuild
the queues as they existed at the checkpoint time. When the queues are re-created, the log is then played
forward to bring the queues back to the state they were in before system failure or close down.

To understand how IBM MQ uses the journal, consider the case of a local queue called TESTQ in the
queue manager TEST. This is represented by the IFS file:

/QIBM/UserData/mqm/qmgrs/TEST/queues

If a specified message is put on this queue, and then retrieved from the queue, the actions that take place
are shown in Figure Figure 22 on page 392.

Figure 22. Sequence of events when updating MQM objects

392 Administering IBM MQ

The five points, A through E, shown in the diagram represent points in time that define the following
states:
A

The IFS file representation of the queue is consistent with the information contained in the journal.
B

A journal entry is written to the journal defining a Put operation on the queue.
C

The appropriate update is made to the queue.
D

A journal entry is written to the journal defining a Get operation from the queue.
E

The appropriate update is made to the queue.

The key to the recovery capabilities of IBM MQ for IBM i is that the user can save the IFS file
representation of TESTQ as at time A, and subsequently recover the IFS file representation of TESTQ
as at time E, by restoring the saved object and replaying the entries in the journal from time A onwards.

This strategy is used by IBM MQ for IBM i to recover persistent messages after system failure. IBM MQ
remembers a particular entry in the journal receivers, and ensures that on startup it replays the entries in
the journals from this point onwards. This startup entry is periodically recalculated so that IBM MQ only
has to perform the minimum necessary replay on the next startup.

IBM MQ provides individual recovery of objects. All persistent information relating to an object is recorded
in the local IBM MQ for IBM i journals. Any IBM MQ object that becomes damaged or corrupt can be
completely rebuilt from the information held in the journal.

For more information on how the system manages receivers, see “Availability, backup, recovery, and
restart on IBM i” on page 390.

Media images on IBM i
On IBM i, a media image is a complete copy of an IBM MQ object that is recorded in the journal. Some
corrupt or damaged objects can be automatically recovered from their media image.

An IBM MQ object of long duration can represent a large number of journal entries, going back to the point
at which it was created. To avoid this, IBM MQ for IBM i has the concept of a media image of an object.

This media image is a complete copy of the IBM MQ object recorded in the journal. If an image of an
object is taken, the object can be rebuilt by replaying journal entries from this image onwards. The entry
in the journal that represents the replay point for each IBM MQ object is referred to as its media recovery
entry. IBM MQ keeps track of the:

• Media recovery entry for each queue manager object.
• Oldest entry from within this set (see error message AMQ7462 in “Journal management on IBM i” on

page 395 for details.

Images of the *CTLG object and the *MQM object are taken regularly because these objects are crucial to
queue manager restart.

Images of other objects are taken when convenient. By default, images of all objects are taken when
a queue manager is shut down using the ENDMQM command with parameter ENDCCTJOB(*YES). This
operation can take a considerable amount of time for very large queue managers. If you need to shut
down quickly, specify parameter RCDMQMIMG(*NO) with ENDCCTJOB(*YES). In such cases, you are
recommended to record a complete media image in the journals after the queue manager has been
restarted, using the following command:

RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) MQMNAME(Q_MGR_NAME)

Administering IBM MQ 393

IBM MQ automatically records an image of an object, if it finds a convenient point at which an object
can be compactly described by a small entry in the journal. However, this might never happen for some
objects, for example, queues that consistently contain large numbers of messages.

Rather than allow the date of the oldest media recovery entry to continue for an unnecessarily long
period, use the IBM MQ command RCDMQMIMG, which enables you to take an image of selected objects
manually.

Recovery from media images
IBM MQ automatically recovers some objects from their media image if it is found that they are corrupt
or damaged. In particular, this applies to the special *MQM and *CTLG objects as part of the normal
queue manager startup. If any syncpoint transaction was incomplete at the time of the last shutdown of
the queue manager, any queue affected is also recovered automatically, in order to complete the startup
operation.

You must recover other objects manually, using the IBM MQ command RCRMQMOBJ. This command
replays the entries in the journal to re-create the IBM MQ object. Should an IBM MQ object become
damaged, the only valid actions are to delete it or re-create it by this method. Note, however, that
nonpersistent messages cannot be recovered in this fashion.

Checkpoints on IBM MQ for IBM i
Checkpoints are taken at various times to provide a known consistent start point for recovery.

The checkpoint thread within process AMQZMUC0 is responsible for taking the checkpoint at the following
points:

• Queue manager startup (STRMQM).
• Queue manager shutdown (ENDMQM).
• After a period of time has elapsed since the last checkpoint (the default period is 30 minutes) and a

minimum number of log records have been written since the previous checkpoint (the default value is
100).

• After a number of log records have been written. The default value is 10 000.
• After the journal threshold size has been exceeded and a new journal receiver has been automatically

created.
• When a full media image is taken with:

RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) MQMNAME(Q_MGR_NAME) DSPJRNDTA(*YES)

Backups of IBM MQ for IBM i data
Use this information to understand the two types of IBM MQ backup for each queue manager.

For each queue manager, there are two types of IBM MQ backup to consider:

• Data and journal backup.

To ensure that both sets of data are consistent, do this only after shutting down the queue manager.
• Journal backup.

You can do this while the queue manager is active.

For both methods, you need to find the names of the queue manager IFS directory and the queue
manager library. You can find these in the IBM MQ configuration file (mqs.ini). For more information, see
Changing IBM MQ configuration information on Multiplatforms.

Use the following procedures to do both types of backup:

394 Administering IBM MQ

Data and journal backup of a particular queue manager

Note: Do not use a save-while-active request when the queue manager is running. Such a request
cannot complete unless all commitment definitions with pending changes are committed or
rolled back. If this command is used when the queue manager is active, the channel connections
might not end normally. Always use the following procedure.

1. Create an empty journal receiver, using the command:

CHGJRN JRN(QMTEST/AMQAJRN) JRNRCV(*GEN)

2. Use the RCDMQMIMG command to record an MQM image for all IBM MQ objects, and then force a
checkpoint using the command:

RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) DSPJRNDTA(*YES) MQMNAME(TEST)

3. End channels and ensure that the queue manager is not running. If your queue manager is running,
stop it with the ENDMQM command.

4. Backup the queue manager library by issuing the following command:

SAVLIB LIB(QMTEST)

5. Back up the queue manager IFS directories by issuing the following command:

SAV DEV(...) OBJ(('/QIBM/UserData/mqm/qmgrs/test'))

Journal backup of a particular queue manager
Because all relevant information is held in the journals, as long as you perform a full save at some
time, partial backups can be performed by saving the journal receivers. These record all changes since
the time of the full backup and are performed by issuing the following commands:

1. Create an empty journal receiver, using the command:

CHGJRN JRN(QMTEST/AMQAJRN) JRNRCV(*GEN)

2. Use the RCDMQMIMG command to record an MQM image for all IBM MQ objects, and then force a
checkpoint using the command:

RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) DSPJRNDTA(*YES) MQMNAME(TEST)

3. Save the journal receivers using the command:

SAVOBJ OBJ(AMQ*) LIB(QMTEST) OBJTYPE(*JRNRCV)

A simple backup strategy is to perform a full backup of the IBM MQ libraries every week, and perform
a daily journal backup. This, of course, depends on how you have set up your backup strategy for your
enterprise.

Journal management on IBM i
As part of your backup strategy, take care of your journal receivers. It is useful to remove journal receivers
from the IBM MQ libraries for various reasons:

• To release space; this applies to all journal receivers
• To improve the performance when starting (STRMQM)
• To improve the performance of recreating objects (RCRMQMOBJ)

Administering IBM MQ 395

Before deleting a journal receiver, you must take care that you have a backup copy and that you no longer
need the journal receiver.

Journal receivers can be removed from the queue manager library after they have been detached from the
journals and saved, provided that they are available for restoration if needed for a recovery operation.

The concept of journal management is shown in Figure 23 on page 396.

Figure 23. Journaling on IBM i

It is important to know how far back in the journals IBM MQ is likely to need to go, in order to determine
when a journal receiver that has been backed up can be removed from the queue manager library, and
when the backup itself can be discarded.

IBM MQ issues two messages to the queue manager message queue (QMQMMSG in the queue manager
library) to help determine this time. These messages are issued when it starts, when it changes a local
journal receiver, and you use RCDMQIMG to force a checkpoint. The two messages are:
AMQ7460

Startup recovery point. This message defines the date and time of the startup entry from which IBM
MQ replays the journal in the event of a startup recovery pass. If the journal receiver that contains this
record is available in the IBM MQ libraries, this message also contains the name of the journal receiver
containing the record.

396 Administering IBM MQ

AMQ7462
Oldest media recovery entry. This message defines the date and time of the oldest entry to use to
re-create an object from its media image.

The journal receiver identified is the oldest one required. Any other IBM MQ journal receivers with
older creation dates are no longer needed. If only stars are displayed, you need to restore backups
from the date indicated to determine which is the oldest journal receiver.

When these messages are logged, IBM MQ also writes a user space object to the queue manager library
that contains only one entry: the name of the oldest journal receiver that needs to be kept on the system.
This user space is called AMQJRNINF, and the data is written in the format:

JJJJJJJJJJLLLLLLLLLLYYYYMMDDHHMMSSmmm

where:
JJJJJJJJJJ

Is the oldest receiver name that IBM MQ still needs.
LLLLLLLLLL

Is the journal receiver library name.
YYYY

Is the year of the oldest journal entry that IBM MQ needs.
MM

Is the month of the oldest journal entry that IBM MQ needs.
DD

Is the day of the oldest journal entry that IBM MQ needs.
HH

Is the hour of the oldest journal entry that IBM MQ needs.
SS

Is the seconds of the oldest journal entry that IBM MQ needs.
mmm

Is the milliseconds of the oldest journal entry that IBM MQ needs.
When the oldest journal receiver has been deleted from the system, this user space contains asterisks (*)
for the journal receiver name.

Note: Periodically performing RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) DSPJRNDTA(*YES) can save
startup time for IBM MQ and reduce the number of local journal receivers you need to save and restore for
recovery.

IBM MQ for IBM i does not refer to the journal receivers unless it is performing a recovery pass either for
startup, or for recreating an object. If it finds that a journal it requires is not present, it issues message
AMQ7432 to the queue manager message queue (QMQMMSG), reporting the time and date of the journal
entry it requires to complete the recovery pass.

If this happens, restore all journal receivers that were detached after this date from the backup, to allow
the recovery pass to succeed.

Keep the journal receiver that contains the startup entry, and any subsequent journal receivers, available
in the queue manager library.

Keep the journal receiver containing the oldest Media Recovery Entry, and any subsequent journal
receivers, available at all times, and either present in the queue manager library or backed-up.

When you force a checkpoint:

• If the journal receiver named in AMQ7460 is not advanced, this indicates that there is an incomplete
unit of work that needs to be committed or rolled back.

• If the journal receiver named in AMQ7462 is not advanced, this indicates that there are one or more
damaged objects.

Administering IBM MQ 397

Restoring a complete queue manager (data and journals) on IBM i
Use this information to restore one or more queue managers from a backup or from a remote machine.

If you need to recover one or more IBM MQ queue managers from a backup, perform the following steps.

1. Quiesce the IBM MQ queue managers.
2. Locate your latest backup set, consisting of your most recent full backup and subsequently backed up

journal receivers.
3. Perform a RSTLIB operation, from the full backup, to restore the IBM MQ data libraries to their state at

the time of the full backup, by issuing the following commands:

RSTLIB LIB(QMQRLIB1)
RSTLIB LIB(QMQRLIB2)

If a journal receiver was partially saved in one journal backup, and fully saved in a subsequent backup,
restore only the fully saved one. Restore journals individually, in chronological order.

4. Perform an RST operation to restore the IBM MQ IFS directories to the IFS file system, using the
following command:

RST DEV(...) OBJ(('/QIBM/UserData/mqm/qmgrs/testqm')) ...

5. Start the message queue manager. This replays all journal records written since the full backup and
restores all the IBM MQ objects to the consistent state at the time of the journal backup.

If you want to restore a complete queue manager on a different machine, use the following procedure to
restore everything from the queue manager library. (We use TEST as the sample queue manager name.)

1. CRTMQM TEST
2. DLTLIB LIB(QMTEST)
3. RSTLIB SAVLIB(QMTEST) DEV(*SAVF) SAVF(QMGRLIBSAV)
4. Delete the following IFS files:

/QIBM/UserData/mqm/qmgrs/TEST/QMQMCHKPT
/QIBM/UserData/mqm/qmgrs/TEST/qmanager/QMQMOBJCAT
/QIBM/UserData/mqm/qmgrs/TEST/qmanager/QMANAGER
/QIBM/UserData/mqm/qmgrs/TEST/queues/SYSTEM.AUTH.DATA.QUEUE/q
/QIBM/UserData/mqm/qmgrs/TEST/queues/SYSTEM.CHANNEL.INITQ/q
/QIBM/UserData/mqm/qmgrs/TEST/queues/SYSTEM.CLUSTER.COMMAND.QUEUE/q
/QIBM/UserData/mqm/qmgrs/TEST/queues/SYSTEM.CLUSTER.REPOSITORY.QUEUE/q
/QIBM/UserData/mqm/qmgrs/TEST/queues/SYSTEM.CLUSTER.TRANSMIT.QUEUE/q
/QIBM/UserData/mqm/qmgrs/TEST/queues/SYSTEM.PENDING.DATA.QUEUE/q
/QIBM/UserData/mqm/qmgrs/TEST/queues/SYSTEM.ADMIN.COMMAND.QUEUE/q

5. STRMQM TEST
6. RCRMQMOBJ OBJ(*ALL) OBJTYPE(*ALL) MQMNAME(TEST)

Restoring journal receivers for a particular queue manager on IBM i
Use this information to understand the different ways to restore journal receivers.

The most common action is to restore a backed-up journal receiver to a queue manager library, if a
receiver that has been removed is needed again for a subsequent recovery function.

This is a simple task, and requires the journal receivers to be restored using the standard IBM i RSTOBJ
command:

RSTOBJ OBJ(QMQMDATA/AMQA000005) OBJTYPE(*JRNRCV)

398 Administering IBM MQ

A series of journal receivers might need to be restored, rather than a single receiver. For example,
AMQA000007 is the oldest receiver in the IBM MQ libraries, and both AMQA000005 and AMQA000006 need
to be restored.

In this case, restore the receivers individually in reverse chronological order. This is not always necessary,
but is good practice. In severe situations, you might need to use the IBM i command WRKJRNA to
associate the restored journal receivers with the journal.

When restoring journals, the system automatically creates an attached journal receiver with a new name
in the journal receiver sequence. However, the new name generated might be the same as a journal
receiver you need to restore. Manual intervention is needed to overcome this problem; to create a new
name journal receiver in sequence, and new journal before restoring the journal receiver.

For example, consider the problem with saved journal AMQAJRN and the following journal receivers:

• AMQA000000
• AMQA100000
• AMQA200000
• AMQA300000
• AMQA400000
• AMQA500000
• AMQA600000
• AMQA700000
• AMQA800000
• AMQA900000

When restoring journal AMQAJRN to a queue manager library, the system automatically creates journal
receiver AMQA000000. This automatically generated receiver conflicts with one of the existing journal
receivers (AMQA000000) you want to restore, which you cannot restore.

The solution is:

1. Manually create the next journal receiver (see “Queue manager journals on IBM i” on page 390):

CRTJRNRCV JRNRCV(QMQRLIB/AMQA900001) THRESHOLD(XXXXX)

2. Manually create the journal with the journal receiver:

CRTJRN JRN(QMGRLIB/AMQAJRN) MNGRCV(*SYSTEM) +
JRNRCV(QMGRLIB/AMQA9000001) MSGQ(QMGRLIB/AMQAJRNMSG)

3. Restore the local journal receivers AMQA000000 to AMQA900000.

Multi-instance queue managers on IBM i
Multi-instance queue managers improve availability by automatically switching to a standby server if the
active server fails. The active and standby servers are multiple instances of the same queue manager;
they share the same queue manager data. If the active instance fails you need to transfer its journal to the
standby that takes over so that the queue manager can rebuild its queues.

Configure the IBM i systems you are running multi-instance queue managers on so that, if the active
queue manager instance fails, the journal it is using is available to the standby instance that takes over.
You can design your own configuration and administration tasks to make the journal from the active
instance available to the instance that takes over. If you do not want to lose messages, your design must
ensure the standby journal is consistent with the active journal at the point of failure. You can adapt your
design from one of the two configurations that are described with examples in subsequent topics that do
maintain consistency.

Administering IBM MQ 399

1. Mirror the journal from the system that is running the active queue manager instance to the systems
that are running standby instances.

2. Place the journal in an Independent Auxiliary Storage Pool (IASP) that is transferable from the system
running the active instance to a standby instance.

The first solution requires no additional hardware or software as it uses basic ASPs. The second solution
requires switchable IASPs which need IBM i clustering support that is available as a separately priced
IBM i License Product 5761-SS1 Option 41.

Reliability and availability on IBM i
Multi-instance queue managers aim to improve the availability of applications. Technological and physical
constraints mean you need different solutions to meet the demands of disaster recovery, backing up
queue managers and continuous operation.

In configuring for reliability and availability you trade off a large number of factors, resulting in four
distinct design points:
Disaster recovery

Optimized for recovery after a major disaster that destroys all your local assets.

Disaster recovery on IBM i is often based on geographic mirroring of IASP.

Backup
Optimized for recovery after a localized failure, commonly a human error or some unforeseen
technical problem.

IBM MQ provides backup queue managers to back up queue managers periodically. You could also
use asynchronous replication of queue manager journals to improve the currency of the backup.

Availability
Optimized for restoring operations quickly giving the appearance of a nearly uninterrupted service
following foreseeable technical failures such as a server or disk failure.

Recovery is typically measured in minutes, with detection sometimes taking longer than the recovery
process. A multi-instance queue manager assists you in configuring for availability.

Continuous operation
Optimized for providing an uninterrupted service.

Continuous operation solutions have to solve the detection problem, and nearly always involve
submitting the same work through more than one system and either using the first result, or if
correctness is a major consideration, comparing at least two outcomes.

A multi-instance queue manager assists you in configuring for availability. One instance of the queue
manager is active at a time. Switching over to a standby instance takes from a little more than ten seconds
to a fifteen minutes or more, depending on how the system is configured, loaded and tuned.

A multi-instance queue manager can give the appearance of a nearly uninterrupted service if used
with reconnectable IBM MQ MQI clients, which are able to continue processing without the application
program necessarily being aware of a queue manager outage; see the topic Automated client
reconnection.

Components of a high availability solution on IBM i
Construct a high availability solution using multi-instance queue managers by providing robust networked
storage for queue manager data, journal replication or robust IASP storage for queue manager journals,
and using reconnectable clients, of applications configured as restartable queue manager services.

A multi-instance queue manager reacts to the detection of queue manager failure by resuming the startup
of another queue manager instance on another server. To complete its startup, the instance needs access
to the shared queue manager data in networked storage, and to its copy of the local queue manager
journal.

To create a high availability solution, you need to manage the availability of the queue manager data, the
currency of the local queue manager journal, and either build reconnectable client applications, or deploy

400 Administering IBM MQ

your applications as queue manager services to restart automatically when the queue manager resumes.
Automatic client reconnect is not supported by IBM MQ classes for Java.

Queue manager data
Place queue manager data onto networked storage that is shared, highly available and reliable, possibly
by using RAID level 1 disks or greater. The file system needs to meet the requirements for a shared
file system for multi-instance queue managers; for more information about the requirements for shared
file systems, see Requirements for shared file systems. Network File System 4 (NFS4) is a protocol that
meets these requirements.

Queue manager journals
You also need to configure the IBM i journals used by the queue manager instances so that the standby
instance is able to restore its queue manager data to a consistent state. For uninterrupted service, this
means you must restore the journals to their state when the active instance failed. Unlike backup or
disaster recovery solutions, restoring journals to an earlier checkpoint is not sufficient.

You cannot physically share journals between multiple IBM i systems on networked storage. To restore
queue manager journals to the consistent state at the point of failure, you either need to transfer the
physical journal that was local to the active queue manager instance at the time of failure to the new
instance that has been activated, or a maintain mirrors of the journal on running standby instances. The
mirrored journal is a remote journal replica that has been kept exactly in sync with the local journal
belonging to the failed instance.

Three configurations are starting points for designing how you manage the journals for a multi-instance
queue manager,

1. Using synchronized journal replication (journal mirroring) from the active instance ASP, to the standby
instances ASPs.

2. Transferring an IASP you have configured to hold the queue manager journal from the active instance
to the standby instance that is taking over as the active instance.

3. Using synchronized secondary IASP mirrors.

See ASP options, for more information on putting queue manager data onto an iASP, in the IBM MQ IBM i
CRTMQM command.

Also see High availability in the IBM i information in IBM Documentation.

Applications
To build a client to automatically reconnect to the queue manager when the standby queue
manager resumes, connect your application to the queue manager using MQCONNX and specify
MQCNO_RECONNECT_Q_MGR in the MQCNO Options field. See, High availability sample programs for three
sample programs using reconnectable clients, and Application recovery for information about designing
client applications for recovery.

Creating a network share for queue manager data using NetServer on IBM i
Create a network share on an IBM i server for storing queue manager data. Set up connections from two
servers, which are going to host queue manager instances, to access the network share.

Before you begin
• You require three IBM i servers for this task. The network share is defined on one of the servers,

GAMMA. The other two servers, ALPHA and BETA, are to connect to GAMMA.
• Install IBM MQ on all three servers.
• Install the System i® Navigator; see System i Navigator.

Administering IBM MQ 401

About this task
• Create the queue manager directory on GAMMA and set the correct ownership and permissions for the

user profiles QMQM and QMQMADM. The directory and permission are easily created by installing IBM MQ
on GAMMA.

• Use System i Navigator to create a share to the queue manager data directory on GAMMA.
• Create directories on ALPHA and BETA that point to the share.

Procedure
1. On GAMMA, create the directory to host the queue manager data with the QMQM user profile as the

owner, and QMQMADM as the primary group.

Tip:

A quick and reliable way to create the directory with the correct permissions is to install IBM MQ on
GAMMA.

Later, if you do not want to run IBM MQ on GAMMA, uninstall IBM MQ. After uninstallation, the
directory /QIBM/UserData/mqm/qmgrs remains on GAMMA with the owner QMQM user profile, and
QMQMADM the primary group.

The task uses the /QIBM/UserData/mqm/qmgrs directory on GAMMA for the share.
2. Start the System i Navigator Add connection wizard and connect to the GAMMA system.

a) Double-click the System i Navigator icon on your Windows desktop.
b) Click Yes to create a connection.
c) Follow the instructions in the Add Connection wizard and create a connection from the IBM i

system to GAMMA.

The connection to GAMMA is added to My Connections.
3. Add a new file share on GAMMA.

a) In the System i Navigator window, click the File Shares folder in My Connections/GAMMA/
File Systems.

b) In the My Tasks window, click Manage IBM i NetServer shares.

A new window, IBM i NetServer - GAMMA, opens on your desktop and shows shared objects.
c) Right-click the Shared Objects folder> File > New > File.

A new window, IBM i NetServer File Share - GAMMA, opens.
d) Give the share a name, WMQ for example.
e) Set the access control to Read/Write.
f) Select the Path name by browsing to the /QIBM/UserData/mqm/qmgrs directory you created

earlier, and click OK.

The IBM i NetServer File Share - GAMMA window closes, and WMQ is listed in the shared objects
window.

4. Right click WMQ in the shared objects window. Click File > Permissions.

A window opens, Qmgrs Permissions - GAMMA, for the object /QIBM/UserData/mqm/qmgrs.

a) Check the following permissions for QMQM, if they are not already set:

Read
Write
Execute
Management
Existence
Alter

402 Administering IBM MQ

Reference
b) Check the following permissions for QMQMADM, if they are not already set:

Read
Write
Execute
Reference

c) Add other user profiles that you want to give permissions to /QIBM/UserData/mqm/qmgrs.

For example, you might give the default user profile (Public) Read and Execute permissions to /
QIBM/UserData/mqm/qmgrs.

5. Check that all the user profiles that are granted access to /QIBM/UserData/mqm/qmgrs on GAMMA
have the same password as they do on the servers that access GAMMA.

In particular, ensure that the QMQM user profiles on other servers, which are going to access the share,
have the same password as the QMQM user profile on GAMMA.

Tip: Click the My Connections/GAMMA/Users and Groups folder in the System i Navigator to set
the passwords. Alternatively, use the CHFUSRPRF and CHGPWD commands.

Results
Check you can access GAMMA from other servers using the share. If you are doing the other tasks,
check you can access GAMMA from ALPHA and BETA using the path /QNTC/GAMMA/WMQ. If the /QNTC/
GAMMA directory does not exist on ALPHA or BETA then you must create the directory. Depending on the
NetServer domain, you might have to IPL ALPHA or BETA before creating the directory.

CRTDIR DIR('/QNTC/GAMMA')

When you have checked that you have access to /QNTC/GAMMA/WMQ from ALPHA or BETA,
issuing the command, CRTMQM MQMNAME('QM1') MQMDIRP('/QNTC/GAMMA/WMQ') creates /QIBM/
UserData/mqm/qmgrs/QM1 on GAMMA.

What to do next
Create a multi-instance queue manager by following the steps in either of the tasks, “Creating a multi-
instance queue manager using journal mirroring and NetServer on IBM i” on page 413 or “Converting a
single instance queue manager to a multi-instance queue manager using NetServer and journal mirroring
on IBM i” on page 417.

Failover performance on IBM i
The time it takes to detect a queue manager instance has failed, and then to resume processing on a
standby can vary between tens of seconds to fifteen minutes or more depending on the configuration.
Performance needs to be a major consideration in designing and testing a high availability solution.

There are advantages and disadvantages to weigh up in deciding whether to configure a multi-instance
queue manager to use journal replication, or to use an IASP. Mirroring requires the queue manager to
write synchronously to a remote journal. From a hardware point of view, this need not affect performance,
but from a software perspective there is a greater pathlength involved in writing to a remote journal than
just to a local journal, and this might be expected to reduce the performance of a running queue manager
to some extent. However, when the standby queue manager takes over, the delay in synchronizing its local
journal from the remote journal maintained by the active instance before it failed, is typically small in
comparison to the time it takes for IBM i to detect and transfer the IASP to the server running the standby
instance of the queue manager. IASP transfer times can be as much as ten to fifteen minutes rather than
being completed in seconds. The IASP transfer time depends on the number of objects that need to be
varied-on when the IASP is transferred to the standby system and the size of the access paths, or indexes,
that need to be merged.

Administering IBM MQ 403

When the standby queue manager takes over, the delay in synchronizing its local journal from the remote
journal maintained by the active instance before it failed, is typically small in comparison to the time it
takes for IBM i to detect and transfer the independent ASP to the server running the standby instance of
the queue manager. Independent ASP transfer times can be as much as ten to fifteen minutes rather than
being completed in seconds. The independent ASP transfer time depends on the number of objects that
need to be varied-on when the independent ASP is transferred to the standby system and the size of the
access paths, or indices, that need to be merged.

However, transferring the journal is not the only factor influencing the time it takes for the standby
instance to fully resume. You also need to consider the time it takes for the network file system to
release the lock on queue manager data that signals to the standby instance to try to continue with its
start-up, and also the time it takes to recover queues from the journal so that the instance is able to start
processing messages again. These other sources of delay all add to the time it takes to start a standby
instance. The total time to switch over consists of the following components,
Failure detection time

The time it takes for NFS to release the lock on the queue manager data, and the standby instance to
continue its startup process.

Transfer time
In the case of an HA cluster, the time it takes IBM i to transfer the IASP from the system hosting
the active instance to the standby instance, and in the case of journal replication, the time it takes to
update the local journal at the standby with the data from the remote replica.

Restart time
The time it takes for the newly active queue manager instance to rebuild its queues from the latest
checkpoint in its restored journal and to resume processing messages.

Note:

If the standby instance that has taken over is configured to synchronously replicate to the previously
active instance, the startup could be delayed. The new activated instance might be unable to replicate
to its remote journal, if the remote journal is on the server that hosted the previously active instance,
and the server has failed.

The default time to wait for a synchronous response is one minute. You can configure the maximum
delay before the replication times out. Alternatively, you can configure standby instances to start
using asynchronous replication to the failed active instance. Later you switch the to synchronous
replication, when the failed instance is running on standby again. The same consideration applies to
using synchronous independent ASP mirrors.

You can make separate baseline measurements for these components to help you assess the overall
time to failover, and to factor into your decision which configuration approach to use. In making the best
configuration decision you also need to consider how other applications on the same server will failover,
and whether there are backup or disaster recovery processes that already use IASP.

IASP transfer times can be shortened by tuning your cluster configuration:

1. User profiles across systems in the cluster should have the same GID and UID to eliminate the need
for the vary-on process to change UIDs and GIDs.

2. Minimize the number of database objects in the system and basic user disk pools, as these need to be
merged to create the cross-reference table for the disk-pool group.

3. Further performance tips can be found in the IBM Redbook, Implementing PowerHA® for IBM i,
SG24-7405.

A configuration using basic ASPs, journal mirroring, and a small configuration should switch over in the
order of tens of seconds.

Overview of combining IBM i clustering capabilities with IBM MQ clustering
Running IBM MQ on IBM i, and exploiting the IBM i clustering capabilities can provide a more
comprehensive High Availability solution, than using only IBM MQ clustering.

To have this capability, you need to set up:

404 Administering IBM MQ

1. Clusters on your IBM i machine; see “IBM i clusters” on page 405
2. An independent auxiliary storage pool (IASP), into which you move the queue manager; see

“Independent auxiliary storage pools (IASPs)” on page 405
3. A cluster resource group (CRG); see “Device cluster resource groups” on page 405, in which you define

the:

• Recovery domain
• IASP
• Exit program; see “Device CRG exit program” on page 406

IBM i clusters
An IBM i cluster is a collection of instances, that is IBM i computers or partitions, that are logically linked
together.

The purpose of this grouping is to allow for each instance to be backed up, eliminating a single point of
failure and increasing application and data resiliency. With a cluster created, the various cluster resource
group (CRG) types can be configured to manage applications, data, and devices in the cluster.

See Creating a cluster and the Create Cluster (CRTCLU) command for further information.

Independent auxiliary storage pools (IASPs)
An IASP is a type of user ASP that serves as an extension of single-level storage. It is a piece of storage
that, due to its independence from the system storage, can be easily manipulated without having to IPL
the system.

An IASP can be easily switched to another operating system instance or replicated to a target IASP on
another operating system instance. Two methods can be used to switch an IASP between instances:

• The first method requires all the computers in the cluster, and the switchable disk tower containing the
IASP, to be connected using a High Speed Link (HSL) loop.

• The second method requires the operating system instances to be partitions on the same IBM
i computer where input/output processors (IOPs) can be switched between partitions. No special
hardware is needed to be able to replicate an IASP. The replication is performed using TCP/IP over the
network.

See the Configure Device ASP (CFGDEVASP) command for more information.

Device cluster resource groups
There are several types of cluster resource groups (CRGs). For more information about the different types
of CRGs available, see Cluster resource group.

This topic concentrates on a device CRG. A device CRG:

• Describes and manages device resources such as independent auxiliary storage pools (IASPs).
• Defines the recovery domain of the cluster nodes
• Assigns a device, and
• Assigns the exit program that will handle cluster events.

The recovery domain denotes which cluster node will be considered as the primary node. The rest of
the nodes are considered to be backups. The backup nodes are also ordered in the recovery domain,
specifying which node is the first backup, the second backup, and so on, depending on how many nodes
there are in the recovery domain.

In the event of a primary node failure, the exit program is run on all nodes in the recovery domain. The
exit program running on the first backup can then make the necessary initializations to make this node the
new primary node.

Administering IBM MQ 405

See Creating device CRGs and the Create Cluster Resource Group (CRTCRG) command for more
information.

Device CRG exit program
The operating system cluster resource service calls a device CRG exit program when an event occurs in
one of the nodes the recovery domain defines; for example, a failover or switchover event.

A failover event occurs when the primary node of the cluster fails and the CRGs are switched with all the
resources they manage, and a switchover event occurs when a specific CRG is manually switched from the
primary node to the backup node.

Either way, the exit program is in charge of initializing and starting all the programs that were running on
the previous primary node, which converts the first backup node into the new primary node.

For example, with IBM MQ, the exit program should be in charge of starting the IBM MQ subsystem
(QMQM), and queue managers. Queue managers should be configured to automatically start listeners and
services, such as trigger monitors.

A sample exit program, AMQSCRG4, is available on IBM i.

Switchable IASP configuration
IBM MQ can be set up to take advantage of the clustering capabilities of IBM i. To do this:

1. Create an IBM i cluster between the data center systems
2. Move the queue manager to an IASP.

“Moving, or removing, a queue manager to, or from, an independent auxiliary storage pool” on page
407 contains some sample code to help you carry out this operation.

3. You need to create a CRG defining the recovery domain, the IASP, and the exit program.

“Configuring a device cluster resource group” on page 406 contains some sample code to help you
carry out this operation.

Related concepts
“Independent ASPs and high availability” on page 426
Independent ASPs enable applications and data to be moved between servers. The flexibility of
independent ASPs means they are the basis for some IBM i high availability solutions. In considering
whether to use an ASP or independent ASP for the queue manager journal, you should consider other high
availability configuration based on independent ASPs.

Configuring a device cluster resource group
An example program to set up a device Cluster resource group (CRG).

About this task
In the following example, note that:

• [PRIMARY SITE NAME] and [BACKUP SITE NAME] could be any two distinct strings of eight characters
or fewer.

• [PRIMARY IP] and [BACKUP IP] are the IPs to be used for mirroring.

Procedure
1. Identify the name of the cluster.
2. Identify the CRG exit program name and library.
3. Determine the name of the primary node and backup nodes to be defined by this CRG.
4. Identify the IASP to be managed by this CRG, and make sure it has been created under the primary

node.

406 Administering IBM MQ

5. Create a device description in the backup nodes by using the command:

 CRTDEVASP DEVD([IASP NAME]) RSRCNAME([IASP NAME])

6. Add the takeover IP address to all the nodes by using the command:

ADDTCPIFC INTNETADR(' [TAKEOVER IP]') LIND([LINE DESC])
SUBNETMASK('[SUBNET MASK]') AUTOSTART(*NO)

7. Start the takeover IP address only in the primary node by using the command:

STRTCPIFC INTNETADR('[TAKEOVER IP')

8. Optional: If your IASP is switchable, call this command:

CRTCRG CLUSTER([CLUSTER NAME]) CRG([CRG NAME]) CRGTYPE(*DEV) EXITPGM([EXIT LIB]/[EXIT
NAME])
USRPRF([EXIT PROFILE]) RCYDMN(([PRIMARY NODE] *PRIMARY) ([BACKUP NAME] *BACKUP))
EXITPGMFMT(EXTP0200) CFGOBJ(([IAPS NAME] *DEVD *ONLINE '[TAKEOVER IP]')

9. Optional: If your IASP is to be mirrored, call this command:

CRTCRG CLUSTER([CLUSTER NAME]) CRG([CRG NAME]) CRGTYPE(*DEV) EXITPGM([EXIT LIB]/[EXIT NAME])
USRPRF([EXIT PROFILE]) RCYDMN(([PRIMARY NODE] *PRIMARY *LAST [PRIMARY SITE NAME] ('[PRIMARY
IP]'))
[BACKUP NAME] *BACKUP *LAST [BACKUP SITE NAME] ('[BACKUP IP]'))) EXITPGMFMT(EXTP0200)
CFGOBJ(([IAPS NAME] *DEVD *ONLINE '[TAKEOVER IP]'))

Moving, or removing, a queue manager to, or from, an independent auxiliary storage pool
An example program to move a queue manager to an independent auxiliary storage pool (IASP) and
commands to remove a queue manager from an IASP.

About this task
In the following example, note that:

• [MANAGER NAME] is the name of your queue manager.
• [IASP NAME] is the name of your IASP.
• [MANAGER LIBRARY] is the name of your queue manager library.
• [MANAGER DIRECTORY] is the name of your queue manager directory.

Procedure
1. Identify your primary node and your backup nodes.
2. Carry out the following procedure on your primary node:

a) Make sure your queue manager has ended.
b) Make sure your IASP is vary on by using the command

VRYCFG CFGOBJ([IASP NAME]) CFGTYPE(*DEV) STATUS(*ON)

c) Create the queue managers directory under the IASP.
There will be a directory under root with the name of your IASP, which is:

QSH CMD('mkdir -p /[IASP_NAME]/QIBM/UserData/mqm/qmgrs/')

d) Move the IFS objects of your manager to the queue managers directory you have just created under
the IASP using the following command:

QSH CMD('mv /QIBM/UserData/mqm/qmgrs/[MANAGER NAME]
/[IASP NAME]/QIBM/UserData/mqm/qmgrs')

Administering IBM MQ 407

e) Create a temporary save file named MGRLIB by using the command:

CRTSAVF QGPL/MGRLIB

f) Save your queue manager library to the MGRLIB save file, by using the following command:

SAVLIB LIB([MANGER LIBRARY]) DEV(*SAVF) SAVF(QGPL/MGRLIB)

g) Delete the queue manager library by using the following command, and ignore all the inquiry
messages:

DLTLIB [MANAGER LIBRARY]

h) Restore your queue manager library to the IASP by using the following command:

RSTLIB SAVLIB([MANAGER LIBRARY]) DEV(*SAVF) SAVF(QGPL/MGRLIB)
RSTASPDEV([IASP NAME])

i) Delete the temporary save file by using the following command:

 DLTF FILE(QGPL/MGRLIB)

j) Create a symbolic link to the queue manager IFS objects under the IASP, by using the following
command:

ADDLNK OBJ('/[IASP NAME]/QIBM/UserData/mqm/qmgrs/[MANAGER NAME]')
NEWLNK('/QIBM/UserData/mqm/qmgrs/[MANAGER NAME]')

k) Attach to the IASP by using the following command:

SETASPGRP [IASP NAME]

l) Start your queue manager by using the command:

STRMQM [MANAGER NAME]

3. Carry out the following procedure on your backup node, or nodes:
a) Create a temporary queue manager directory by using the following command:

QSH CMD('mkdir -p /[IASP NAME]/QIBM/UserData/mqm/qmgrs/[MANAGER NAME]')

b) Create a symbolic link to the queue manager temporary directory by using the following command:

ADDLNK OBJ('/[IASP NAME]/QIBM/UserData/mqm/qmgrs/[MANAGER NAME]')
NEWLNK('/QIBM/UserData/mqm/qmgrs/[MANAGER NAME]')

c) Delete the temporary directory by using the following command:

QSH CMD('rm -r /[IASP NAME]')

d) Add the following at the end of the file /QIBM/UserData/mqm/mqs.ini:

QueueManager:
Name=[MANAGER NAME]
Prefix=/QIBM/UserData/mqm
Library=[MANAGER LIBRARY]
Directory=[MANAGER DIRECTORY]

4. To remove a queue manager from an IASP, issue the following commands:
a) VRYCFG CFGOBJ([IASP NAME]) CFGTYPE(*DEV) STATUS(*ON)
b) SETASPGRP [IASP NAME]
c) ENDMQM [MANAGER NAME]

408 Administering IBM MQ

d) DLTMQM [MANAGER NAME]

Mirrored journal configuration for ASP on IBM i
Configure a robust multi-instance queue manager using synchronous replication between mirrored
journals.

A mirrored queue manager configuration uses journals that are created in basic or independent auxiliary
storage pools (ASP).

On IBM i, queue manager data is written to journals and to a file system. Journals contain the
master copy of queue manager data. Journals are shared between systems using either synchronous
or asynchronous journal replication. A mix of local and remote journals are required to restart a queue
manager instance. Queue manager restart reads journal records from the mix of local and remote journals
on the server, and the queue manager data on the shared network file system. The data in the file system
speeds up restarting the queue manager. Checkpoints are stored in the file system, marking points of
synchronization between the file system and the journals. Journal records stored before the checkpoint
are not required for typical queue manager restarts. However, the data in the file system might not be
up to date, and journal records after the checkpoint are used to complete the queue manager restart.
The data in the journals attached to the instance are kept up to date so that the restart can complete
successfully.

But even the journal records might not be up to date, if the remote journal on the standby server was
being asynchronously replicated, and the failure occurred before it was synchronized. In the event that
you decide to restart a queue manager using a remote journal that is not synchronized, the standby queue
manager instance might either reprocess messages that were deleted before the active instance failed, or
not process messages that were received before the active instance failed.

Another, rare possibility, is that the file system contains the most recent checkpoint record, and an
unsynchronized remote journal on the standby does not. In this case the queue manager does not restart
automatically. You have a choice of waiting until the remote journal is synchronized, or cold starting
the standby queue manager from the file system. Even though, in this case, the file system contains a
more recent checkpoint of the queue manager data than the remote journal, it might not contain all the
messages that were processed before the active instance failed. Some messages might be reprocessed,
and some not processed, after a cold restart that is out of synchronization with the journals.

With a multi-instance queue manager, the file system is also used to control which instance of a queue
manager is active, and which is the standby. The active instance acquires a lock to the queue manager
data. The standby waits to acquire the lock, and when it does, it becomes the active instance. The lock is
released by the active instance, if it ends normally. The lock is released by the file system if the file system
detects the active instance has failed, or cannot access the file system. The file system must meet the
requirements for detecting failure; see Requirements for shared file systems.

The architecture of multi-instance queue managers on IBM i provides automatic restart following server
or queue manager failure. It also supports restoration of queue manager data following failure of the file
system where the queue manager data is stored.

In Figure 24 on page 410, if ALPHA fails, you can manually restart QM1 on BETA, using the mirrored
journal. By adding the multi-instance queue manager capability to QM1, the standby instance of QM1
resumes automatically on BETA if the active instance on ALPHA fails. QM1 can also resume automatically
if it is the server ALPHA that fails, not just the active instance of QM1. Once BETA becomes the host of the
active queue manager instance, the standby instance can be started on ALPHA.

Figure 24 on page 410 shows a configuration that mirrors journals between two instances of a queue
manager using NetServer to store queue manager data. You might expand the pattern to include more
journals, and hence more instances. Follow the journal naming rules explained in the topic, “Queue
manager journals on IBM i” on page 390. Currently the number of running instances of a queue manager
is limited to two, one is active and one is in standby.

Administering IBM MQ 409

Figure 24. Mirror a queue manager journal

The local journal for QM1 on host ALPHA is called AMQAJRN (or more fully, QMQM1/AMQAJRN) and
on BETA the journal is QMQM1/AMQBJRN. Each local journal replicates to remote journals on all other
instances of the queue manager. If the queue manager is configured with two instances, a local journal is
replicated to one remote journal.

*SYNC or *ASYNC remote journal replication
IBM i journals are mirrored using either synchronous (*SYNC) or asynchronous (*ASYNC) journaling; see
Remote journal management.

The replication mode in Figure 24 on page 410 is *SYNC, not *ASYNC. *ASYNC is faster, but if a failure
occurs when the remote journal state is *ASYNCPEND, the local and remote journal are not consistent.
The remote journal must catch up with the local journal. If you choose *SYNC, then the local system waits
for the remote journal before returning from a call that requires a completed write. The local and remote
journals generally remain consistent with one another. Only if the *SYNC operation takes longer than a
designated time 1 , and remote journaling is deactivated, do the journals get out of synchronization. An
error is logged to the journal message queue and to QSYSOPR. The queue manager detects this message,
writes an error to the queue manager error log, and deactivates remote replication of the queue manager
journal. The active queue manager instance resumes without remote journaling to this journal. When the
remote server is available again, you must manually reactivate synchronous remote journal replication.
The journals are then resynchronized.

1 The designated time is 60 seconds on IBM i 5 and in the range 1 - 3600 seconds on IBM i 6.1 onwards.

410 Administering IBM MQ

A problem with the *SYNC / *SYNC configuration illustrated in Figure 24 on page 410 is how the standby
queue manager instance on BETA takes control. As soon as the queue manager instance on BETA writes
its first persistent message, it attempts to update the remote journal on ALPHA. If the cause of control
passing from ALPHA to BETA was the failure of ALPHA, and ALPHA is still down, remote journaling to
ALPHA fails. BETA waits for ALPHA to respond, and then deactivates remote journaling and resumes
processing messages with only local journaling. BETA has to wait a while to detect that ALPHA is down,
causing a period of inactivity.

The choice between setting remote journaling to *SYNC or *ASYNC is a trade-off. Table 24 on page
411 summarizes the trade-offs between using *SYNC and *ASYNC journaling between a pair of queue
managers:

Table 24. Remote journaling options

Standby *SYNC *ASYNCActive

*SYNC

1. Consistent switchover and failover
2. The standby instance does not

resume immediately after failover.
3. Remote journaling must be available

all the time
4. Queue manager performance

depends on remote journaling

1. Consistent switchover and failover
2. Remote journaling must be switched

to *SYNC when standby server
available

3. Remote journaling must remain
available after it has been restarted

4. Queue manager performance
depends on remote journaling

*ASYNC 1. Not a sensible combination

1. Some messages might be lost
or duplicated after a failover or
switchover

2. Standby instance need not be
available all the time for the active
instance to continue without delay.

3. Performance does not depend on
remote journaling

*SYNC / *SYNC
The active queue manager instance uses *SYNC journaling, and when the standby queue manager
instance starts, it immediately tries to use *SYNC journaling.

1. The remote journal is transactionally consistent with the local journal of the active queue manager.
If the queue manager is switched over to the standby instance, it can resume immediately. The
standby instance normally resumes without any loss or duplication of messages. Messages are
only lost or duplicated if remote journaling failed since the last checkpoint, and the previously
active queue manager cannot be restarted.

2. If the queue manager fails over to the standby instance, it might not be able to start immediately.
The standby queue manager instance is activated with *SYNC journaling. The cause of the failover
might prevent remote journaling to the server hosting the standby instance. The queue manager
waits until the problem is detected before processing any persistent messages. An error is logged
to the journal message queue and to QSYSOPR. The queue manager detects this message, writes
an error to the queue manager error log, and deactivates remote replication of the queue manager
journal. The active queue manager instance resumes without remote journaling to this journal.
When the remote server is available again, you must manually reactivate synchronous remote
journal replication. The journals are then resynchronized.

3. The server to which the remote journal is replicated must always be available to maintain the
remote journal. The remote journal is typically replicated to the same server that hosts the standby
queue manager. The server might become unavailable. An error is logged to the journal message
queue and to QSYSOPR. The queue manager detects this message, writes an error to the queue

Administering IBM MQ 411

manager error log, and deactivates remote replication of the queue manager journal. The active
queue manager instance resumes without remote journaling to this journal. When the remote
server is available again, you must manually reactivate synchronous remote journal replication.
The journals are then resynchronized.

4. Remote journaling is slower than local journaling, and substantially slower if the servers are
separated by a large distance. The queue manager must wait for remote journaling, which reduces
queue manager performance.

The *SYNC / *SYNC configuration between a pair of servers has the disadvantage of a delay in
resuming the standby instance after failover. The *SYNC / *ASYNC configuration does not have this
problem.

*SYNC / *SYNC does guarantee no message loss after switchover or failover, as long as a remote
journal is available. If you want to reduce the risk of message loss after failover or switchover you
have two choices. Either stop the active instance if the remote journal becomes inactive, or create
remote journals on more than one server.

*SYNC / *ASYNC
The active queue manager instance uses *SYNC journaling, and when the standby queue manager
instance starts, it uses *ASYNC journaling. Shortly after the server hosting the new standby instance
becomes available, the system operator must switch the remote journal on the active instance to
*SYNC. When the operator switches remote journaling from *ASYNC to *SYNC the active instance
pauses if the status of the remote journal is *ASYNCPEND. The active queue manager instance waits
until remaining journal entries are transferred to the remote journal. When the remote journal has
synchronized with the local journal, the new standby is transactionally consistent again with the new
active instance. From the perspective of the management of multi-instance queue managers, in an
*SYNC / *ASYNC configuration the IBM i system operator has an additional task. The operator must
switch remote journaling to *SYNC in addition to restarting the failed queue manager instance.

1. The remote journal is transactionally consistent with the local journal of the active queue manager.
If the active queue manager instance is switched over, or fails over to the standby instance, the
standby instance can then resume immediately. The standby instance normally resumes without
any loss or duplication of messages. Messages are only lost or duplicated if remote journaling
failed since the last checkpoint, and the previously active queue manager cannot be restarted.

2. The system operator must switch remote journal from *ASYNC to *SYNC shortly after the system
hosting the active instance becomes available again. The operator might wait for the remote
journal to catch up before switching the remote journal to *SYNC. Alternatively the operator might
switch the remote instance to *SYNC immediately, and force the active instance to wait until the
standby instance journal has caught up. When remote journaling is set to *SYNC, the standby
instance is generally transactionally consistent with the active instance. Messages are only lost or
duplicated if remote journaling failed since the last checkpoint, and the previously active queue
manager cannot be restarted.

3. When the configuration has been restored from a switchover or failover, the server on which the
remote journal is hosted must be available all the time.

Choose *SYNC / *ASYNC when you want the standby queue manager to resume quickly after a
failover. You must restore the remote journal setting to *SYNC on the new active instance manually.
The *SYNC / *ASYNC configuration matches the normal pattern of administering a pair of multi-
instance queue managers. After one instance has failed, there is a time before the standby instance is
restarted, during which the active instance cannot fail over.

*ASYNC / *ASYNC
Both the servers hosting the active and standby queue managers are configured to use *ASYNC
remote journaling.

1. When switchover or failover take place, the queue manager continues with the journal on the
new server. The journal might not be synchronized when the switchover or failover takes place.
Consequently messages might be lost or duplicated.

2. The active instance runs, even if the server hosting the standby queue manager is not be available.
The local journal is replicated asynchronously with the standby server when it is available.

412 Administering IBM MQ

3. The performance of the local queue manager is unaffected by remote journaling.

Choose *ASYNC / *ASYNC if performance is your principal requirement, and you are prepared to loose
or duplicate some messages after failover or switchover.

*ASYNC / *SYNC
There is no reason to use this combination of options.

Queue manager activation from a remote journal
Journals are either replicated synchronously or asynchronously. The remote journal might not be active,
or it might be catching up with the local journal. The remote journal might be catching up, even if it
is synchronously replicated, because it might have been recently activated. The rules that the queue
manager applies to the state of the remote journal it uses during start-up are as follows.

1. Standby startup fails if it must replay from the remote journal on the standby and the journal status is
*FAILED or *INACTPEND.

2. When activation of the standby begins, the remote journal status on the standby must be either
*ACTIVE or *INACTIVE. If the state is *INACTIVE, it is possible for activation to fail, if not all the
journal data has been replicated.

The failure occurs if the queue manager data on the network file system has a more recent checkpoint
record than present in the remote journal. The failure is unlikely to happen, as long as the remote
journal is activated well within the default 30 minute maximum interval between checkpoints. If the
standby queue manager does read a more recent checkpoint record from the file system, it does not
start.

You have a choice: Wait until the local journal on the active server can be restored, or cold start the
standby queue manager. If you choose to cold start, the queue manager starts with no journal data,
and relies on the consistency and completeness of the queue manager data in the file system.

Note: If you cold start a queue manager, you run the risk of losing or duplicating messages after the
last checkpoint. The message transactions were written to the journal, but some of the transactions
might not have been written to the queue manager data in the file system. When you cold start a queue
manager, a fresh journal is started, and transactions not written to the queue manager data in the file
system are lost.

3. The standby queue manager activation waits for the remote journal status on the standby to change
from *ASYNCPEND or *SYNCPEND to *ASYNC or *SYNC. Messages are written to the job log of the
execution controller periodically.

Note: In this case activation is waiting on the remote journal local to the standby queue manager
that is being activated. The queue manager also waits for a time before continuing without a remote
journal. It waits when it tries to write synchronously to its remote journal (or journals) and the journal
is not available.

4. Activation stops if the journal status changes to *FAILED or *INACTPEND.

The names and states of the local and remote journals to be used in the activation are written to the
queue manager error log.

Creating a multi-instance queue manager using journal mirroring and NetServer on IBM i
Create a multi-instance queue manager to run on two IBM i servers. The queue manager data is stored
on a third IBM i server using NetServer. The queue manager journal is mirrored between the two servers
using remote journaling. The ADDMQMJRN command is used to simplify creating the remote journals.

Before you begin
1. The task requires three IBM i servers. Install IBM MQ on two of them, ALPHA and BETA in the example.

the product must be at least at IBM WebSphere MQ 7.0.1 Fix Pack 1.
2. The third server is an IBM i server, connected by NetServer to ALPHA and BETA. It is used to share the

queue manager data. It does not have to have an IBM MQ installation. It is useful to install IBM MQ on
the server as a temporary step, to set up the queue manager directories and permissions.

Administering IBM MQ 413

3. Make sure that the QMQM user profile has the same password on all three servers.
4. Install IBM i NetServer; see i5/OS NetServer.

About this task
Perform the following steps to create the configuration shown in Figure 25 on page 416. The queue
manager data is connected using IBM i NetServer.

• Create connections from ALPHA and BETA to the directory share on GAMMA that is to store the queue
manager data. The task also sets up the necessary permissions, user profiles and passwords.

• Add Relational Database Entries (RDBE) to the IBM i systems that are going to run queue manager
instances. The RDBE entries are used to connect to the IBM i systems used for remote journaling.

• Create the queue manager QM1 on the IBM i server, ALPHA.
• Add the queue manager control information for QM1 on the other IBM i server, BETA.
• Create remote journals on both the IBM i servers for both queue manager instances. Each queue

manager writes to the local journal. The local journal is replicated to the remote journal. The command,
ADDMQMJRN simplifies adding the journals and the connections.

• Start the queue manager, permitting a standby instance.

Procedure
1. Do the task, “Creating a network share for queue manager data using NetServer on IBM i” on page

401.

As a result, ALPHA and BETA have a share, /QNTC/GAMMA/WMQ, that points to /QIBM/
UserData/mqm/qmgrs on GAMMA. The user profiles QMQM and QMQMADM have the necessary
permissions, and QMQM has matching passwords on all three systems.

2. Add Relational Database Entries (RDBE) to the IBM i systems that are going to host queue manager
instances.
a) On ALPHA create the connection to BETA.

ADDRDBDIRE RDB(BETA) RMTLOCNAME(BETA *IP) RMTAUTMTH(*USRIDPWD)

b) On BETA create the connections to ALPHA.

ADDRDBDIRE RDB(ALPHA) RMTLOCNAME(ALPHA *IP) RMTAUTMTH(*USRIDPWD)

3. Create the queue manager QM1 on ALPHA, saving the queue manager data on GAMMA.

CRTMQM MQMNAME(QM1) UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)
MQMDIRP(' /QNTC/GAMMA/WMQ ')

The path, /QNTC/GAMMA/WMQ , uses NetServer to create the queue manager data in /QIBM/
UserData/mqm/qmgrs.

4. Run ADDMQMJRN on ALPHA. The command adds a remote journal on BETA for QM1.

ADDMQMJRN MQMNAME(QM1) RMTJRNRDB(BETA)

QM1 creates journal entries in its local journal on ALPHA when the active instance of QM1 is on ALPHA.
The local journal on ALPHA is replicated to the remote journal on BETA.

5. Use the command, DSPF, to inspect the IBM MQ configuration data created by CRTMQM for QM1 on
ALPHA.

The information is needed in the next step.

414 Administering IBM MQ

In this example, the following configuration is created in /QIBM/UserData/mqm/mqs.ini on ALPHA
for QM1:

Name=QM1
Prefix=/QIBM/UserData/mqm
Library=QMQM1
Directory=QM1
DataPath= /QNTC/GAMMA/WMQ /QM1

6. Create a queue manager instance of QM1 on BETA using the ADDMQMINF command. Run the following
command on BETA to modify the queue manager control information in /QIBM/UserData/mqm/
mqs.ini on BETA.

ADDMQMINF MQMNAME(QM1)
PREFIX('/QIBM/UserData/mqm')
MQMDIR(QM1)
MQMLIB(QMQM1)
DATAPATH(' /QNTC/GAMMA/WMQ /QM1 ')

Tip: Copy and paste the configuration information. The queue manager stanza is the same on ALPHA
and BETA.

7. Run ADDMQMJRN on BETA. The command adds a local journal on BETA and a remote journal on ALPHA
for QM1.

ADDMQMJRN MQMNAME(QM1) RMTJRNRDB(ALPHA)

QM1 creates journal entries in its local journal on BETA when the active instance of QM1 is on BETA. The
local journal on BETA is replicated to the remote journal on ALPHA.

Note: As an alternative, you might want to set up remote journaling from BETA to ALPHA using
asynchronous journaling.

Use this command to set up asynchronous journaling from BETA to ALPHA, instead of the command in
step “7” on page 415.

 ADDMQMJRN MQMNAME (QM1) RMTJRNRDB (ALPHA) RMTJRNDLV (*ASYNC)

If the server or journaling on ALPHA is the source of the failure, BETA starts without waiting for new
journal entries to be replicated to ALPHA.

Switch the replication mode to *SYNC, using the CHGMQMJRN command, when ALPHA is online again.

Use the information in “Mirrored journal configuration for ASP on IBM i” on page 409 to decide
whether to mirror the journals synchronously, asynchronously, or a mixture of both. The default is to
replicate synchronously, with a 60 second wait period for a response from the remote journal.

8. Verify that the journals on ALPHA and BETA are enabled and the status of remote journal replication is
*ACTIVE.
a) On ALPHA:

WRKMQMJRN MQMNAME(QM1)

b) On BETA:

WRKMQMJRN MQMNAME(QM1)

9. Start the queue manager instances on ALPHA and BETA.
a) Start the first instance on ALPHA, making it the active instance. Enabling switching over to a

standby instance.

Administering IBM MQ 415

STRMQM MQMNAME(QM1) STANDBY(*YES)

b) Start the second instance on BETA, making it the standby instance.

STRMQM MQMNAME(QM1) STANDBY(*YES)

Results
Use WRKMQM to check queue manager status:

1. The status of the queue manager instance on ALPHA should be *ACTIVE.
2. The status of the queue manager instance on BETA should be *STANDBY.

Example

Figure 25. Mirrored journal configuration

What to do next
• Verify that the active and standby instances switch over automatically. You can run the sample high

availability sample programs to test the switch over; see High availability sample programs. The sample
programs are 'C' clients. You can run them from a Windows or Unix platform.

416 Administering IBM MQ

1. Start the high availability sample programs.
2. On ALPHA, end the queue manager requesting switch over:

ENDMQM MQMNAME(QM1) OPTION(*IMMED) ALSWITCH(*YES)

3. Check that the instance of QM1 on BETA is active.
4. Restart QM1 on ALPHA

STRMQM MQMNAME(QM1) STANDBY(*YES)

• Look at alternative high availability configurations:

1. Use NetServer to place the queue manager data on a Windows server.
2. Instead of using remote journaling to mirror the queue manager journal, store the journal on an

independent ASP. Use IBM i clustering to transfer the independent ASP from ALPHA to BETA.

Converting a single instance queue manager to a multi-instance queue manager using
NetServer and journal mirroring on IBM i
Convert a single instance queue manager to a multi-instance queue manager. Move the queue manager
data to a network share connected by NetServer. Mirror the queue manager journal to a second IBM i
server using remote journaling.

Before you begin
1. The task requires three IBM i servers. The existing IBM MQ installation, on the server ALPHA in the

example, must be at least at IBM WebSphere MQ 7.0.1 Fix Pack 1. ALPHA is running a queue manager
called QM1 in the example.

2. Install IBM MQ on the second IBM i server, BETA in the example.
3. The third server is an IBM i server, connected by NetServer to ALPHA and BETA. It is used to share the

queue manager data. It does not have to have an IBM MQ installation. It is useful to install IBM MQ on
the server as a temporary step, to set up the queue manager directories and permissions.

4. Make sure that the QMQM user profile has the same password on all three servers.
5. Install IBM i NetServer; see i5/OS NetServer.

About this task
Perform the following steps to convert a single instance queue manager to the multi-instance queue
manager shown in Figure 26 on page 421. The single instance queue manager is deleted in the task,
and then re-created, storing the queue manager data on the network share connected by NetServer. This
procedure is more reliable than moving the queue manager directories and files to the network share
using the CPY command.

• Create connections from ALPHA and BETA to the directory share on GAMMA that is to store the queue
manager data. The task also sets up the necessary permissions, user profiles and passwords.

• Add Relational Database Entries (RDBE) to the IBM i systems that are going to run queue manager
instances. The RDBE entries are used to connect to the IBM i systems used for remote journaling.

• Save the queue manager logs and definitions, stop the queue manager, and delete it.
• Re-create the queue manager, storing the queue manager data on the network share on GAMMA.
• Add the second instance of the queue manager to the other server.
• Create remote journals on both the IBM i servers for both queue manager instances. Each queue

manager writes to the local journal. The local journal is replicated to the remote journal. The command,
ADDMQMJRN simplifies adding the journals and the connections.

• Start the queue manager, permitting a standby instance.

Administering IBM MQ 417

Note:

In step “4” on page 418 of the task, you delete the single instance queue manager, QM1. Deleting the
queue manager deletes all the persistent messages on queues. For this reason, complete processing all
the messages stored by the queue manager, before converting the queue manager. If processing all the
messages is not possible, back up the queue manager library before step “4” on page 418. Restore the
queue manager library after step “5” on page 418.

Note:

In step “5” on page 418 of the task, you re-create QM1. Although the queue manager has the same name,
it has a different queue manager identifier. Queue manager clustering uses the queue manager identifier.
To delete and re-create a queue manager in a cluster, you must first remove the queue manager from the
cluster; see Removing a queue manager from a cluster: Alternative method or Removing a queue manager
from a cluster. When you have re-created the queue manager, add it to the cluster. Although it has the
same name as before, it appears to be a new queue manager to the other queue managers in the cluster.

Procedure
1. Do the task, “Creating a network share for queue manager data using NetServer on IBM i” on page

401.

As a result, ALPHA and BETA have a share, /QNTC/GAMMA/WMQ, that points to /QIBM/
UserData/mqm/qmgrs on GAMMA. The user profiles QMQM and QMQMADM have the necessary
permissions, and QMQM has matching passwords on all three systems.

2. Add Relational Database Entries (RDBE) to the IBM i systems that are going to host queue manager
instances.
a) On ALPHA create the connection to BETA.

ADDRDBDIRE RDB(BETA) RMTLOCNAME(BETA *IP) RMTAUTMTH(*USRIDPWD)

b) On BETA create the connections to ALPHA.

ADDRDBDIRE RDB(ALPHA) RMTLOCNAME(ALPHA *IP) RMTAUTMTH(*USRIDPWD)

3. Create the scripts that re-create the queue manager objects.

QSAVEQMGR LCLQMGRNAM(QM1) FILENAME('*CURLIB/QMQSC(QM1)')
OUTPUT(*REPLACE) MAKEAUTH(*YES) AUTHFN('*CURLIB/QMAUT(QM1)')

4. Stop the queue manager and delete it.

ENDMQM MQMNAME(QM1) OPTION(*IMMED) ENDCCTJOB(*YES) RCDMQMIMG(*YES) TIMEOUT(15)
DLTMQM MQMNAME(QM1)

5. Create the queue manager QM1 on ALPHA, saving the queue manager data on GAMMA.

CRTMQM MQMNAME(QM1) UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)
MQMDIRP(' /QNTC/GAMMA/WMQ ')

The path, /QNTC/GAMMA/WMQ , uses NetServer to create the queue manager data in /QIBM/
UserData/mqm/qmgrs.

6. Re-create the queue manager objects for QM1 from the saved definitions.

STRMQMMQSC SRCMBR(QM1) SRCFILE(*CURLIB/QMQSC) MQMNAME(QM1)

7. Apply the authorizations from the saved information.

418 Administering IBM MQ

a) Compile the saved authorization program.

CRTCLPGM PGM(*CURLIB/QM1) SRCFILE(*CURLIB/QMAUT)
SRCMBR(QM1) REPLACE(*YES)

b) Run the program to apply the authorizations.

CALL PGM(*CURLIB/QM1)

c) Refresh the security information for QM1.

RFRMQMAUT MQMNAME(QM1)

8. Run ADDMQMJRN on ALPHA. The command adds a remote journal on BETA for QM1.

ADDMQMJRN MQMNAME(QM1) RMTJRNRDB(BETA)

QM1 creates journal entries in its local journal on ALPHA when the active instance of QM1 is on ALPHA.
The local journal on ALPHA is replicated to the remote journal on BETA.

9. Use the command, DSPF, to inspect the IBM MQ configuration data created by CRTMQM for QM1 on
ALPHA.

The information is needed in the next step.

In this example, the following configuration is created in /QIBM/UserData/mqm/mqs.ini on
ALPHA for QM1:

Name=QM1
Prefix=/QIBM/UserData/mqm
Library=QMQM1
Directory=QM1
DataPath= /QNTC/GAMMA/WMQ /QM1

10. Create a queue manager instance of QM1 on BETA using the ADDMQMINF command. Run
the following command on BETA to modify the queue manager control information in /QIBM/
UserData/mqm/mqs.ini on BETA.

ADDMQMINF MQMNAME(QM1)
PREFIX('/QIBM/UserData/mqm')
MQMDIR(QM1)
MQMLIB(QMQM1)
DATAPATH(' /QNTC/GAMMA/WMQ /QM1 ')

Tip: Copy and paste the configuration information. The queue manager stanza is the same on ALPHA
and BETA.

11. Run ADDMQMJRN on BETA. The command adds a local journal on BETA and a remote journal on
ALPHA for QM1.

ADDMQMJRN MQMNAME(QM1) RMTJRNRDB(ALPHA)

QM1 creates journal entries in its local journal on BETA when the active instance of QM1 is on BETA.
The local journal on BETA is replicated to the remote journal on ALPHA.

Note: As an alternative, you might want to set up remote journaling from BETA to ALPHA using
asynchronous journaling.

Administering IBM MQ 419

Use this command to set up asynchronous journaling from BETA to ALPHA, instead of the command
in step “7” on page 415.

 ADDMQMJRN MQMNAME (QM1) RMTJRNRDB (ALPHA) RMTJRNDLV (*ASYNC)

If the server or journaling on ALPHA is the source of the failure, BETA starts without waiting for new
journal entries to be replicated to ALPHA.

Switch the replication mode to *SYNC, using the CHGMQMJRN command, when ALPHA is online again.

Use the information in “Mirrored journal configuration for ASP on IBM i” on page 409 to decide
whether to mirror the journals synchronously, asynchronously, or a mixture of both. The default is to
replicate synchronously, with a 60 second wait period for a response from the remote journal.

12. Verify that the journals on ALPHA and BETA are enabled and the status of remote journal replication
is *ACTIVE.
a) On ALPHA:

WRKMQMJRN MQMNAME(QM1)

b) On BETA:

WRKMQMJRN MQMNAME(QM1)

13. Start the queue manager instances on ALPHA and BETA.
a) Start the first instance on ALPHA, making it the active instance. Enabling switching over to a

standby instance.

STRMQM MQMNAME(QM1) STANDBY(*YES)

b) Start the second instance on BETA, making it the standby instance.

STRMQM MQMNAME(QM1) STANDBY(*YES)

Results
Use WRKMQM to check queue manager status:

1. The status of the queue manager instance on ALPHA should be *ACTIVE.
2. The status of the queue manager instance on BETA should be *STANDBY.

420 Administering IBM MQ

Example

Figure 26. Mirrored journal configuration

What to do next
• Verify that the active and standby instances switch over automatically. You can run the sample high

availability sample programs to test the switch over; see High availability sample programs. The sample
programs are 'C' clients. You can run them from a Windows or Unix platform.

1. Start the high availability sample programs.
2. On ALPHA, end the queue manager requesting switch over:

ENDMQM MQMNAME(QM1) OPTION(*IMMED) ALSWITCH(*YES)

3. Check that the instance of QM1 on BETA is active.
4. Restart QM1 on ALPHA

STRMQM MQMNAME(QM1) STANDBY(*YES)

• Look at alternative high availability configurations:

1. Use NetServer to place the queue manager data on a Windows server.

Administering IBM MQ 421

2. Instead of using remote journaling to mirror the queue manager journal, store the journal on an
independent ASP. Use IBM i clustering to transfer the independent ASP from ALPHA to BETA.

Switched independent ASP journal configuration on IBM i
You do not need to replicate an independent ASP journal to create a multi-instance queue manager
configuration. You do need to automate a means to transfer the independent ASP from the active queue
manager to the standby queue manager. There are alternative high availability solutions possible using an
independent ASP, not all of which require using a multi-instance queue manager.

When using an independent ASP you do not need to mirror the queue manager journal. If you have
installed cluster management, and the servers hosting the queue manager instances are in the same
cluster resource group, then the queue manager journal can be transferred automatically to another
server within a short distance of the active server, if the host running the active instance fails. You can
also transfer the journal manually, as part of a planned switch, or you can write a command procedure to
transfer the independent ASP programmatically.

Figure 27. Transfer a queue manager journal using an independent ASP

For multi-instance queue manager operation, queue manager data must be stored on an shared file
system The file system can be hosted on a variety of different platforms. You cannot store multi-instance
queue manager data on an ASP or independent ASP.

The shared file system performs two roles in the configuration: The same queue manager data is shared
betweem all instances of the queue manager. The file system must have a robust locking protocol
that ensures only one instance of the queue manager has access to queue manager data once it has
started. If the queue manager fails, or the communications to the file server breaks, then the file
system must release the lock to the queue manager data held by the active instance that is no longer
communicating with the file syste. The standby queue manager instance can then gain read/write access

422 Administering IBM MQ

to the queue manager data. The file system protocol must conform to a set of rules to work correctly with
multi-instance queue managers; see “Components of a high availability solution on IBM i” on page 400.

The locking mechanism serializes the start queue manager command and controls which instance of the
queue manager is active. Once a queue manager becomes active, it rebuilds its queues from the local
journal that you, or the HA cluster, has transferred to the standby server. Reconnectable clients that are
waiting for reconnection to the same queue manager get reconnected, and any inflight transactions are
backed out. Applications that are configured to start as queue manager services are started.

You need to ensure that the local journal from the failed active queue manager instance on the
independent ASP is transferred to the server that hosts the newly activated standby queue manager
instance, either by configuring the cluster resource manager, or transferring the independent ASP
manually. Using independent ASPs does not preclude configuring remote journals and mirroring, if you
decide to use independent ASP for backup and disaster recovery, and use remote journal mirroring for
multi-instance queue manager configuration.

If you have chosen to use an independent ASP, there are alternative highly available configurations
you might consider. The background to these solutions are described in “Independent ASPs and high
availability” on page 426.

1. Rather than use multi-instance queue managers, install and configure a single instance queue
manager entirely on an independent ASP, and use IBM i high availability services to fail the queue
manager over. You would probably need to augment the solution with a queue manager monitor to
detect whether the queue manager has failed independently of the server. This is the basis of the
solution provided in, Supportpac MC41: Configuring IBM MQ for iSeries for High Availability.

2. Use independent ASPs and cross site mirroring (XSM) to mirror the independent ASP rather than
switching the independent ASP on the local bus. This extends the geographic range of the independent
ASP solution to as far as the time taken to write log records over a long distance allows.

Creating a multi-instance queue manager using an independent ASP and NetServer on IBM i
Create a multi-instance queue manager to run on two IBM i servers. The queue manager data is stored
an IBM i server using NetServer. The queue manager journal is stored on an independent ASP. Use IBM i
clustering or a manual procedure to transfer the independent ASP containing the queue manager journal
to the other IBM i server.

Before you begin
1. The task requires three IBM i servers. Install IBM MQ on two of them, ALPHA and BETA in the example.

the product must be at least at IBM WebSphere MQ 7.0.1 Fix Pack 1.
2. The third server is an IBM i server, connected by NetServer to ALPHA and BETA. It is used to share the

queue manager data. It does not have to have an IBM MQ installation. It is useful to install IBM MQ on
the server as a temporary step, to set up the queue manager directories and permissions.

3. Make sure that the QMQM user profile has the same password on all three servers.
4. Install IBM i NetServer; see i5/OS NetServer.
5. Create procedures to transfer the independent ASP from the failed queue manager to the standby that

is taking over. You might find some of the techniques in SupportPac MC41: Configuring IBM MQ for
iSeries for High Availability helpful in designing your independent ASP transfer procedures.

About this task
Perform the following steps to create the configuration shown in Figure 28 on page 425. The queue
manager data is connected using IBM i NetServer.

• Create connections from ALPHA and BETA to the directory share on GAMMA that is to store the queue
manager data. The task also sets up the necessary permissions, user profiles and passwords.

• Create the queue manager QM1 on the IBM i server, ALPHA.
• Add the queue manager control information for QM1 on the other IBM i server, BETA.

Administering IBM MQ 423

• Start the queue manager, permitting a standby instance.

Procedure
1. Do the task, “Creating a network share for queue manager data using NetServer on IBM i” on page

401.

As a result, ALPHA and BETA have a share, /QNTC/GAMMA/WMQ, that points to /QIBM/
UserData/mqm/qmgrs on GAMMA. The user profiles QMQM and QMQMADM have the necessary
permissions, and QMQM has matching passwords on all three systems.

2. Create the queue manager QM1 on ALPHA, saving the queue manager data on GAMMA.

CRTMQM MQMNAME(QM1) UDLMSGQ(SYSTEM.DEAD.LETTER.QUEUE)
MQMDIRP(' /QNTC/GAMMA/WMQ ')

The path, /QNTC/GAMMA/WMQ , uses NetServer to create the queue manager data in /QIBM/
UserData/mqm/qmgrs.

3. Use the command, DSPF, to inspect the IBM MQ configuration data created by CRTMQM for QM1 on
ALPHA.

The information is needed in the next step.

In this example, the following configuration is created in /QIBM/UserData/mqm/mqs.ini on ALPHA
for QM1:

Name=QM1
Prefix=/QIBM/UserData/mqm
Library=QMQM1
Directory=QM1
DataPath= /QNTC/GAMMA/WMQ /QM1

4. Create a queue manager instance of QM1 on BETA using the ADDMQMINF command. Run the following
command on BETA to modify the queue manager control information in /QIBM/UserData/mqm/
mqs.ini on BETA.

ADDMQMINF MQMNAME(QM1)
PREFIX('/QIBM/UserData/mqm')
MQMDIR(QM1)
MQMLIB(QMQM1)
DATAPATH(' /QNTC/GAMMA/WMQ /QM1 ')

Tip: Copy and paste the configuration information. The queue manager stanza is the same on ALPHA
and BETA.

5. Start the queue manager instances on ALPHA and BETA.
a) Start the first instance on ALPHA, making it the active instance. Enabling switching over to a

standby instance.

STRMQM MQMNAME(QM1) STANDBY(*YES)

b) Start the second instance on BETA, making it the standby instance.

STRMQM MQMNAME(QM1) STANDBY(*YES)

Results
Use WRKMQM to check queue manager status:

1. The status of the queue manager instance on ALPHA should be *ACTIVE.
2. The status of the queue manager instance on BETA should be *STANDBY.

424 Administering IBM MQ

Example

Figure 28. Transfer a queue manager journal using an independent ASP

What to do next
• Verify that the active and standby instances switch over automatically. You can run the sample high

availability sample programs to test the switch over; see High availability sample programs. The sample
programs are 'C' clients. You can run them from a Windows or Unix platform.

1. Start the high availability sample programs.
2. On ALPHA, end the queue manager requesting switch over:

ENDMQM MQMNAME(QM1) OPTION(*IMMED) ALSWITCH(*YES)

3. Check that the instance of QM1 on BETA is active.
4. Restart QM1 on ALPHA

STRMQM MQMNAME(QM1) STANDBY(*YES)

• Look at alternative high availability configurations:

1. Use NetServer to place the queue manager data on an IBM i server.
2. Instead of using an independent ASP to transfer the queue manager journal to the standby server,

use remote journaling to mirror the journal onto the standby server.

Administering IBM MQ 425

Independent ASPs and high availability
Independent ASPs enable applications and data to be moved between servers. The flexibility of
independent ASPs means they are the basis for some IBM i high availability solutions. In considering
whether to use an ASP or independent ASP for the queue manager journal, you should consider other high
availability configuration based on independent ASPs.

Auxiliary storage pools (ASPs) are a building block of IBM i architecture. Disk units are grouped together
to form a single ASP. By placing objects in different ASPs you can protect data in one ASP from being
affected by disk failures in another ASP.

Every IBM i server has at least one basic ASP, known as the system ASP. It is designated as ASP1,
and sometimes known as *SYSBAS. You can configure up to 31 additional basic user ASPs that are
indistinguishable from the system ASP from the application's point of view, because they share the same
namespace. By using multiple basic ASPs to distribute applications over many disks you can improve
performance and reduce recovery time. Using multiple basic ASPs can also provide some degree of
isolation against disk failure, but it does not improve reliability overall.

Independent ASPs are a special type of ASP. They are often called independent disk pools. Independent
disk pools are key component of IBM i high availability. You can store data and applications that regard
themselves as independent from the current system to which they are connected on independent disk
storage units. You can configure switchable or non-switchable independent ASPs. From an availability
perspective you are generally only concerned with switchable independent ASPs, which can be
transferred automatically from server to server. As a result you can move the applications and data on the
independent ASP from server to server.

Unlike basic user ASPs, independent ASPs do not share the same namespace as the system ASP.
Applications that work with user ASPs require changes to work with an independent ASP. You need to
verify your software, and third-party software you use, works in an independent ASP environment.

When the independent ASP is attached to a different server the namespace of the independent ASP has
to be combined with the namespace of the system ASP. This process is called varying-on the independent
ASP. You can vary-on an independent ASP without IPLing the server. Clustering support is required to
transfer independent ASPs automatically from one server to another.

Building reliable solutions with independent ASPs
Journaling to an independent ASP, rather than journaling to an ASP and using journal replication, provides
an alternative means to provide the standby queue manager with a copy of the local journal from the
failed queue manager instance. To automatically transfer the independent ASP to another server you need
to have installed and configured clustering support. There are a number of high-availability solutions for
independent ASPs based on the cluster support, and low level disk mirroring, that you can combine with,
or substitute for, using multi-instance queue managers.

The following list describes the components that are needed to build a reliable solution based on
independent ASPs.

Journaling
Queue managers, and other applications, use local journals to write persistent data safely to disk to
protect against loss of data in memory due to server failure. This is sometimes termed point-in-time
consistency. It does not guarantee the consistency of multiple updates that take place over a period of
time.

Commitment control
By using global transactions, you can coordinate updates to messages and databases so that the data
written to the journal is consistent. It gives consistency over a period of time by using a two-phase
commit protocol.

Switched disk

Switched disks are managed by the device cluster resource group (CRG) in an HA cluster. CRG
switches independent ASPs automatically to a new server in the case of an unplanned outage. CRGs
are geographically limited to the extent of the local IO bus.

426 Administering IBM MQ

By configuring your local journal on a switchable independent ASP, you can transfer the journal to a
different server, and resume processing messages. No changes to persistent messages made without
syncpoint control, or committed with syncpoint control, are lost, unless the independent ASP fails.

If you use both journaling and commitment control on switchable independent ASPs, you can
transfer database journals and queue manager journals to a different server and resume processing
transactions with no loss of consistency or committed transactions.

Cross-site mirroring (XSM)
XSM mirrors the primary independent ASP to a geographically remote secondary independent ASP
across a TCP/IP network, and transfers control automatically in case of a failure. You have a choice
of configuring a synchronous or asynchronous mirror. Synchronous mirroring reduces the performance
of the queue manager because data is mirrored before the write operations on the production system
complete, but it does guarantee the secondary independent ASP is up to date. Whereas if you use
asynchronous mirroring you cannot guarantee that the secondary independent ASP is up to date.
Asynchronous mirroring does maintain the consistency of the secondary independent ASP.

There are three XSM technologies.
Geographic mirroring

Geographic mirroring is an extension of clustering, enabling you to switch independent ASPs
across a wide area. It has both synchronous and asynchronous modes. You can guarantee high
availability only in synchronous mode, but the separation of independent ASPs might impact
performance too much. You can combine geographic mirroring with switched disk to provide high
availability locally and disaster recovery remotely.

Metro mirroring
Metro mirroring is a device level service that provides fast local synchronous mirroring over longer
distances than the local bus. You can combine it with a multi-instance queue manager to give you
high availability of the queue manager, and by having two copies of the independent ASP, high
availability of the queue manager journal.

Global mirroring
Global mirroring is device level service that provides asynchronous mirroring, and is suitable for
backing up and disaster recovery over longer distances, but is not an normal choice for high
availability, because it only maintains point in time consistency rather than currency.

The key decision points you should consider are,
ASP or independent ASP?

You do not need to run a IBM i HA cluster to use multi-instance queue managers. You might choose
independent ASPs, if you are already using independent ASPs, or you have availability requirements
for other applications that require independent ASPs. It might be worth combining independent ASPs
with multi-instance queue managers to replace queue manager monitoring as a means of detecting
queue manager failure.

Availability?
What is the recovery time objective (RTO)? If you require the appearance of near uninterrupted
behavior, then which solution has the quickest recovery time?

Journal availability?
How do you eliminate the journal as a single point of failure. You might adopt a hardware solution,
using RAID 1 devices or better, or your might combine or use a software solution using replica journals
or disk mirroring.

Distance?
How far apart are the active and standby queue manager instances. Can your users tolerate the
performance degradation of replicating synchronously over distances greater than about 250 meters?

Skills?
There is work to be done to automate the administrative tasks involved in maintaining and exercising
the solution regularly. The skills required to do the automation are different for the solutions based on
ASPs and independent ASPs.

Administering IBM MQ 427

Deleting a multi-instance queue manager on IBM i
Before you delete a multi-instance queue manager, stop remote journaling, and remove queue manager
instances.

Before you begin
1. In this example, two instances of the QM1 queue manager are defined on the servers ALPHA and

BETA. ALPHA is the active instance and BETA is the standby. The queue manager data associated
with the queue manager QM1 is stored on the IBM i server GAMMA, using NetServer. See “Creating a
multi-instance queue manager using journal mirroring and NetServer on IBM i” on page 413.

2. ALPHA and BETA must be connected so that any remote journals that are defined can be deleted by
IBM MQ.

3. Verify that the /QNTC directory and server directory file share can be accessed, using the system
commands EDTF or WRKLNK

About this task
Before you delete a multi-instance queue manager from a server using the DLTMQM command, remove
any queue manager instances on other servers using the RMVMQMINF command.

When you remove a queue manager instance using the RMVMQMINF command, local and remote journals
prefixed with AMQ, and associated with the instance, are deleted. Configuration information about the
queue manager instance, local to the server, is also deleted.

Do not run the RMVMQMINF command on the server holding the remaining instance of the queue manager.
Doing so prevents DLTMQM from working correctly.

Delete the queue manager using the DLTMQM command. Queue manager data is removed from the
network share. Local and remote journals prefixed with AMQ and associated with the instance are deleted.
DLTMQM also deletes configuration information about the queue manager instance, local to the server.

In the example, there are only two queue manager instances. IBM MQ supports a running multi-instance
configuration that has one active queue manager instance and one standby instance. If you have created
additional queue manager instances to use in running configurations, remove them, using the RMVMQMINF
command, before deleting the remaining instance.

Procedure
1. Run the CHGMQMJRN RMTJRNSTS (*INACTIVE) command on each server to make remote

journaling between the queue manager instances inactive.
a) On ALPHA:

CHGMQMJRN MQMNAME('QM1')
RMTJRNRDB('BETA') RMTJRNSTS(*INACTIVE)

b) On BETA:

CHGMQMJRN MQMNAME('QM1')
RMTJRNRDB('ALPHA') RMTJRNSTS(*INACTIVE)

2. Run the ENDMQM command on ALPHA, the active queue manager instance, to stop both instances of
QM1.

ENDMQM MQMNAME(QM1) OPTION(*IMMED) INSTANCE(*ALL) ENDCCTJOB(*YES)

3. Run the RMVMQMINF command on ALPHA to remove the queue manager resources for the instance
from ALPHA and BETA.

428 Administering IBM MQ

RMVMQMINF MQMNAME(QM1)

RMVMQMINF removes the queue manager configuration information for QM1 from ALPHA. If the journal
name is prefixed by AMQ, it deletes the local journal associated with QM1 from ALPHA. If the journal
name is prefixed by AMQ and a remote journal has been created, it also removes the remote journal
from BETA.

4. Run the DLTMQM command on BETA to delete QM1.

DLTMQM MQMNAME(QM1)

DLTMQM deletes the queue manager data from the network share on GAMMA. It removes the queue
manager configuration information for QM1 from BETA. If the journal name is prefixed by AMQ, it
deletes the local journal associated with QM1 from BETA. If the journal name is prefixed by AMQ and a
remote journal has been created, it also removes the remote journal from ALPHA.

Results
DLTMQM and RMVMQMINF delete the local and remote journals created by CRTMQM and ADDMQJRN. The
commands also delete the journal receivers. The journals and journal receivers must follow the naming
convention of having names starting with AMQ. DLTMQM and RMVMQMINF remove the queue manager
objects, queue manager data, and the queue manager configuration information from mqs.ini.

What to do next
An alternative approach is to issue the following commands after deactivating journaling in step “1”
on page 428 and before ending the queue manager instances. Or, if you have not followed the naming
convention, you must delete the journals and journal receivers by name.

1. On ALPHA:

RMVMQMJRN MQMNAME('QM1') RMTJRNRDB('BETA')

2. On BETA:

RMVMQMJRN MQMNAME('QM1') RMTJRNRDB('ALPHA')

After deleting the journals, continue with the rest of the steps.

Backing up a multi-instance queue manager on IBM i
The procedure shows you how to back up queue manager objects on the local server and the queue
manager data on the network file server. Adapt the example to back up data for other queue managers.

Before you begin
In this example, the queue manager data associated with the queue manager QM1 is stored on the IBM
i server called GAMMA, using NetServer. See “Creating a multi-instance queue manager using journal
mirroring and NetServer on IBM i” on page 413. IBM MQ is installed on the servers, ALPHA and BETA. The
queue manager, QM1, is configured on ALPHA and BETA.

About this task
IBM i does not support saving data from a remote directory. Save the queue manager data on a remote
file system using the backup procedures local to the file system server. In this task, the network file
system is on an IBM i server, GAMMA. The queue manager data is backed up in a save file on GAMMA.

Administering IBM MQ 429

If the network file system was on Windows or Linux, you might store the queue manager data in a
compressed file, and then save it. If you have a back-up system, such as Tivoli Storage Manager, use it to
back up the queue manager data.

Procedure
1. Create a save file on ALPHA for the queue manager library associated with QM1.

Use the queue manager library name to name the save file.

CRTSAVF FILE(QGPL/QMQM1)

2. Save the queue manager library in the save file on ALPHA.

SAVLIB LIB(QMQM1) DEV(*SAVF) SAVF(QGPL/QMQM1)

3. Create a save file for the queue manager data directory on GAMMA.

Use the queue manager name to name the save file.

CRTSAVF FILE(QGPL/QMDQM1)

4. Save the copy of the queue manager data from the local directory on GAMMA.

SAV DEV('/QSYS.LIB/QGPL.LIB/QMDQM1.FILE') OBJ('/QIBM/Userdata/mqm/qmgrs/QM1')

Commands to set up multi-instance queue managers
IBM MQ has commands to simplify configuring journal replication, adding new queue manager instances,
and configuring queue managers to use independent ASP.

The journal commands to create and manage local and remote journals are,
ADDMQMJRN

With this command you can create named local and remote journals for a queue manager instance,
and configure whether replication is synchronous or asynchronous, what the synchronous timeout is,
and if the remote journal is to be activated immediately.

CHGMQMJRN
The command modifies the timeout, status and delivery parameters affecting replica journals.

RMVMQMJRN
Removes named remote journals from a queue manager instance.

WRKMQMJRN
Lists the status of local and remote journals for a local queue manager instance.

Add and manage additional queue manager instances using the following commands, which modify the
mqs.ini file.

ADDMQMINF
The command uses information you extracted from the mqs.ini file with DSPMQMINF command to
add a new queue manager instance on a different IBM i server.

RMVMQMINF
Remove a queue manager instance. Use this command either to remove an instance of an existing
queue manager, or to remove the configuration information for a queue manager that has been
deleted from a different server.

The CRTMQM command has three parameters to assist configuring a multi-instance queue manager,
MQMDIRP (*DFT| directory-prefix)

Use this parameter to select a mount point that is mapped to queue manager data on networked
storage.

430 Administering IBM MQ

ASP (*SYSTEM|*ASPDEV| auxiliary-storage-pool-number)
Specify *SYSTEM, or an auxiliary-storage-pool-number to place the queue manager journal on the
system or a basic user ASP. Select the *ASPDEV option, and also set a device name using the ASPDEV
parameter, to place the queue manager journal on an independent ASP.

ASPDEV (*ASP|device-name)
Specify a device-name of a primary or secondary independent ASP device. Selecting *ASP has the
same result as specifying ASP (*SYSTEM).

Performance and disk failover considerations on IBM i
Use different auxiliary storage pools to improve performance and reliability.

If you use a large number of persistent messages or large messages in your applications, the time spent
writing these message to disk becomes a significant factor in the performance of the system.

Ensure that you have sufficient disk activation to cope with this possibility, or consider a separate
Auxiliary Storage Pool (ASP) in which to hold your queue manager journal receivers.

You can specify which ASP your queue manager library and journals are stored on when you create your
queue manager using the ASP parameter of CRTMQM. By default, the queue manager library and journals
and IFS data are stored in the system ASP.

ASPs allow isolation of objects on one or more specific disk units. This can also reduce the loss of data
because of a disk media failure. In most cases, only the data that is stored on disk units in the affected
ASP is lost.

You are recommended to store the queue manager library and journal data in separate user ASPs to that
of the root IFS file system to provide failover and reduce disk contention.

For more information, see Backup and recovery in the IBM i documentation.

Using SAVLIB to save IBM MQ libraries on IBM i

You cannot use SAVLIB LIB(*ALLUSR) to save the IBM MQ libraries, because these libraries have
names beginning with Q.

You can use SAVLIB LIB(QM*) to save all the queue manager libraries, but only if you are using a save
device other than *SAVF. For DEV(*SAVF), you must use a SAVLIB command for each and every queue
manager library on your system.

Quiescing IBM MQ for IBM i
This section explains how to quiesce (end gracefully) IBM MQ for IBM i.

To quiesce IBM MQ for IBM i:

1. Sign on to a new interactive IBM MQ for IBM i session, ensuring that you are not accessing any objects.
2. Ensure that you have:

• *ALLOBJ authority , or object management authority for the QMQM library
• Sufficient authority to use the ENDSBS command

3. Advise all users that you are going to stop IBM MQ for IBM i.
4. How you then proceed depends on whether you want to shut down (quiesce) a single queue manager

(where others might exist) (see “Shutting down a single queue manager for IBM MQ for IBM i” on page
432) or all the queue managers (see “Shutting down all queue managers for IBM MQ for IBM i” on
page 433).

5. Shutdown the mqweb server by entering the following command in qshell:

/QIBM/ProdData/mqm/bin/endmqweb

Administering IBM MQ 431

ENDMQM parameter ENDCCTJOB(*YES)
The ENDMQM parameter ENDCCTJOB(*YES) works differently in IBM MQ for IBM i V6.0 and later
compared to previous versions.

On previous versions, when you specify ENDCCTJOB(*YES), MQ forcibly terminates your applications for
you.

On IBM MQ for IBM i V6.0 or later, when you specify ENDCCTJOB(*YES), your applications are not
terminated but are instead disconnected from the queue manager.

If you specify ENDCCTJOB(*YES) and you have applications that are not written to detect that a
queue manager is ending, the next time a new MQI call is issued, the call will return with a
MQRC_CONNECTION_BROKEN (2009) error.

As an alternative to using ENDCCTJOB(*YES), use the parameter ENDCCTJOB(*NO) and use WRKMQM
option 22 (Work with jobs) to manually end any application jobs that will prevent a queue manager
restart.

Shutting down a single queue manager for IBM MQ for IBM i
Use this information to understand the three types of shutdown.

In the procedures that follow, we use a sample queue manager name of QMgr1 and a sample subsystem
name of SUBX. Replace these names with your own values if necessary.

Planned shutdown
Planned shutdown of a queue manager on IBM i

1. Before shutdown, execute:

RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) MQMNAME(QMgr1) DSPJRNDTA(*YES)

2. To shut down the queue manager, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*CNTRLD)

If QMgr1 does not end, the channel or applications are probably busy.
3. If you must shut down QMgr1 immediately, execute the following:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

Unplanned shutdown
1. To shut down the queue manager, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)

If QMgr1 does not end, the channel or applications are probably busy.
2. If you need to shut down QMgr1 immediately, execute the following:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

Shut down under abnormal conditions
1. To shut down the queue manager, execute:

432 Administering IBM MQ

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)

If QMgr1 does not end, continue with step 3 providing that:

• QMgr1 is in its own subsystem, or
• You can end all queue managers that share the same subsystem as QMgr1. Use the unplanned

shutdown procedure for all such queue managers.
2. When you have taken all the steps in the procedure for all the queue managers sharing the subsystem

(SUBX in our examples), execute:

ENDSBS SUBX *IMMED

If this command fails to complete, shut down all queue managers, using the unplanned shutdown
procedure, and perform an IPL on your machine.

Warning: Do not use ENDJOBABN for IBM MQ jobs that fail to end as result of ENDJOB or ENDSBS,
unless you are prepared to perform an IPL on your machine immediately after.

3. Start the subsystem by executing:

STRSBS SUBX

4. Shut down the queue manager immediately, by executing:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(10)

5. Restart the queue manager by executing:

STRMQM MQMNAME(QMgr1)

If this fails, and you:

• Have restarted your machine by performing an IPL, or
• Have only a single queue manager

Tidy up IBM MQ shared memory by executing:

ENDMQM MQMNAME(*ALL) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

before repeating step 5.

If the queue manager restart takes more than a few seconds, IBM MQ adds status messages
intermittently to the job log detailing the startup progress.

If you still have problems restarting your queue manager, contact IBM support. Any further action you
might take could damage the queue manager, leaving IBM MQ unable to recover.

Shutting down all queue managers for IBM MQ for IBM i
Use this information to understand the three types of shutdown.

The procedures are almost the same as for a single queue manager, but using *ALL instead of the queue
manager name where possible, and otherwise using a command repeatedly using each queue manager
name in turn. Throughout the procedures, we use a sample queue manager name of QMgr1 and a sample
subsystem name of SUBX. Replace these with your own.

Administering IBM MQ 433

Planned shutdown
1. One hour before shutdown, execute:

RCDMQMIMG OBJ(*ALL) OBJTYPE(*ALL) MQMNAME(QMgr1) DSPJRNDTA(*YES)

Repeat this for every queue manager that you want to shut down.
2. To shut down the queue manager, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*CNTRLD)

Repeat this for every queue manager that you want to shut down; separate commands can run in
parallel.

If any queue manager does not end within a reasonable time (for example 10 minutes), proceed to
step 3.

3. To shut down all queue managers immediately, execute the following:

ENDMQM MQMNAME(*ALL) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

Unplanned shutdown
1. To shut down a queue manager, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)

Repeat this for every queue manager that you want to shut down; separate commands can run in
parallel.

If queue managers do not end, the channel or applications are probably busy.
2. If you need to shut down the queue managers immediately, execute the following:

ENDMQM MQMNAME(*ALL) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

Shut down under abnormal conditions
1. To shut down the queue managers, execute:

ENDMQM MQMNAME(QMgr1) OPTION(*IMMED)

Repeat this for every queue manager that you want to shut down; separate commands can run in
parallel.

2. End the subsystems (SUBX in our examples), by executing:

ENDSBS SUBX *IMMED

Repeat this for every subsystem that you want to shut down; separate commands can run in parallel.

If this command fails to complete, perform an IPL on your system.

Warning: Do not use ENDJOBABN for jobs that fail to end as result of ENDJOB or ENDSBS, unless you
are prepared to perform an IPL on your system immediately after.

3. Start the subsystems by executing:

434 Administering IBM MQ

STRSBS SUBX

Repeat this for every subsystem that you want to start.
4. Shut the queue managers down immediately, by executing:

ENDMQM MQMNAME(*ALL) OPTION(*IMMED)
ENDCCTJOB(*YES) TIMEOUT(15)

5. Restart the queue managers by executing:

STRMQM MQMNAME(QMgr1)

Repeat this for every queue manager that you want to start.

If any queue manager restart takes more than a few seconds IBM MQ will show status messages
intermittently detailing the startup progress.

If you still have problems restarting any queue manager, contact IBM support. Any further action you
might take could damage the queue managers, leaving MQSeries® or IBM MQ unable to recover.

Administering IBM MQ for z/OS
IBM MQ for z/OS can be controlled and managed by MQSC and PCF commands, by a set of utilities and
programs provided with the product, and by authorized applications.

For details of how to administer IBM MQ for z/OS and the different administrative tasks you might have to
undertake, see the following links.

You can also administer IBM MQ for z/OS using the IBM MQ Explorer running in a Linux shell. For more
information, see “Administration using the IBM MQ Explorer” on page 117.

Related concepts
IBM MQ for z/OS concepts
Related tasks
“Administering IBM MQ” on page 7
To administer your IBM MQ queue managers and associated resources, choose your preferred method
from a set of tasks that you can use to activate and manage those resources.
Planning your IBM MQ environment on z/OS
Configuring queue managers on z/OS

Issuing queue manager commands on z/OS
You can control most of the operational environment of IBM MQ by using control commands. You can
issue MQSC and PCF commands from the IBM MQ for z/OS console, the initialization input data sets, the
batch utility CSQUTIL, or authorized applications.

About this task
You use MQSC commands, in batch or interactive mode, to administer queue managers directly. You use
PCF commands to help you create applications that administer queue managers. MQSC commands are in
human-readable text form, whereas PCF commands let applications create requests and read the replies
without having to parse text strings. Like MQSC commands, applications issue PCF commands by sending
them as messages to the command input queue.

The following topics describe how you issue queue manager commands from the IBM MQ for z/OS
console, the initialization input data sets, the batch utility CSQUTIL, or from authorized applications.

Not all commands can be issued from all sources. See “Sources from which you can issue MQSC and PCF
commands on IBM MQ for z/OS” on page 436.

Administering IBM MQ 435

Related tasks
Preparing sample applications for the TSO environment on z/OS
Related information
Administering IBM MQ using MQSC commands

Sources from which you can issue MQSC and PCF commands on
IBM MQ for z/OS
You can issue MQSC and PCF commands from the IBM MQ for z/OS console, the initialization input data
sets, the batch utility CSQUTIL, or from authorized applications. Not all commands can be issued from all
these sources.

Which MQSC and PCF commands can control each IBM MQ object
Table 1 in "Command summary for IBM MQ for z/OS" maps which MQSC and PCF commands can be used
on IBM MQ for z/OS to alter, define, delete and display each IBM MQ object. See also MQSC commands
reference and “Using IBM MQ Programmable Command Formats” on page 26.

List of sources from which commands can be issued
If you are a suitably authorized user, you can issue IBM MQ commands from the following sources:

• The z/OS console or equivalent (such as SDSF/TSO).

See also “Using the operations and control panels on z/OS” on page 449.

Note: When using the z/OS console, you need to add /cpf to the start of a command, where cpf is the
command prefix for the queue manager subsystem.

• The initialization input data sets CSQINP1, CSQINP2, CSQINPT and CSQINPX.

See “Initialization commands for IBM MQ for z/OS” on page 447.
• The z/OS master get command routine, MGCRE (SVC 34).
• The IBM MQ batch utility programs such as CSQUTIL, which processes a list of commands in a

sequential data set.

See “Using the IBM MQ for z/OS utilities” on page 458.
• Suitably authorized applications, sending commands as messages to the SYSTEM.COMMAND.INPUT

queue.

The application can be any of the following:

– A batch region program
– A CICS application
– An IMS application
– A TSO application
– An application program or utility on another IBM MQ system

See “Writing programs to administer IBM MQ for z/OS” on page 466 and Preparing sample applications
for the TSO environment on z/OS.

Not all commands can be issued from all sources
Commands are classified according to where they can be issued from:
1

CSQINP1
2

CSQINP2

436 Administering IBM MQ

C
The z/OS console

R
The command server and command queue, by means of CSQUTIL, CSQINPT, CSQINPX, or authorized
applications.

Within the command descriptions in MQSC commands reference, these sources are identified by the use
of the characters 1, 2, C, and R in each command description. Table 2 in "Command summary for IBM MQ
for z/OS" summarizes the MQSC commands and the sources from which they can be issued.

Related tasks
Preparing sample applications for the TSO environment on z/OS
Related information
Administering IBM MQ using MQSC commands

Command summary for IBM MQ for z/OS
A summary of the main MQSC and PCF commands, and of the sources from which you can run MQSC
commands on IBM MQ for z/OS.

Table 25 on page 437 maps which MQSC and PCF commands can be used on IBM MQ for z/OS to alter,
define, delete and display each IBM MQ object.

Table 25. Summary of the main MQSC and PCF commands by object type

MQSC command ALTER DEFINE DISPLAY DELETE

PCF command Change Create/Copy Inquire Delete

AUTHINFO X X X X

CFSTATUS X

CFSTRUCT X X X X

CHANNEL X X X X

CHSTATUS X

NAMELIST X X X X

PROCESS X X X X

QALIAS M M M M

QCLUSTER M

QLOCAL M M M M

QMGR X X

QMODEL M M M M

QREMOTE M M M M

QUEUE P P X P

QSTATUS X

STGCLASS X X X X

Key to table symbols:

• M = MQSC only
• P = PCF only
• X = both

Administering IBM MQ 437

There are many other MQSC and PCF commands which allow you to manage other IBM MQ resources, and
carry out other actions in addition to those summarized in Table 25 on page 437.

Table 26 on page 438 shows every MQSC command, and where each command can be issued from.

• CSQINP1 initialization input data set
• CSQINP2 initialization input data set
• z/OS console (or equivalent)
• SYSTEM.COMMAND.INPUT queue and command server (from applications, CSQUTIL, or the CSQINPX

initialization input data set)

Table 26. Sources from which to run MQSC commands

Command CSQINP1 CSQINP2 z/OS console Command
input queue
and server

ALTER AUTHINFO X X X

ALTER BUFFPOOL X X X

ALTER CFSTRUCT X X X

ALTER CHANNEL X X X

ALTER NAMELIST X X X

ALTER PROCESS X X X

ALTER PSID X X

ALTER QALIAS X X X

ALTER QLOCAL X X X

ALTER QMGR X X X

ALTER QMODEL X X X

ALTER QREMOTE X X X

ALTER SECURITY X X X X

ALTER SMDS X X X

ALTER STGCLASS X X X

ALTER SUB X X

ALTER TOPIC X X X

ALTER TRACE X X X X

ARCHIVE LOG X X X X

BACKUP CFSTRUCT X X

CLEAR QLOCAL X X X

CLEAR TOPICSTR X X

DEFINE AUTHINFO X X X

DEFINE BUFFPOOL X

DEFINE CFSTRUCT X X X

DEFINE CHANNEL X X X

438 Administering IBM MQ

Table 26. Sources from which to run MQSC commands (continued)

Command CSQINP1 CSQINP2 z/OS console Command
input queue
and server

DEFINE LOG X X

DEFINE MAXSMSGS X X X

DEFINE NAMELIST X X X

DEFINE PROCESS X X X

DEFINE PSID X X X

DEFINE QALIAS X X X

DEFINE QLOCAL X X X

DEFINE QMODEL X X X

DEFINE QREMOTE X X X

DEFINE STGCLASS X X X

DEFINE SUB X X

DEFINE TOPIC X X X

DELETE AUTHINFO X X X

DELETE BUFFPOOL X X X

DELETE CFSTRUCT X X X

DELETE CHANNEL X X

DELETE NAMELIST X X X

DELETE PROCESS X X X

DELETE PSID X X

DELETE QALIAS X X X

DELETE QLOCAL X X X

DELETE QMODEL X X X

DELETE QREMOTE X X X

DELETE STGCLASS X X X

DELETE SUB X X

DELETE TOPIC X X X

DISPLAY ARCHIVE X X X X

DISPLAY AUTHINFO X X X

DISPLAY CFSTATUS X X

DISPLAY CFSTRUCT X X X

DISPLAY CHANNEL X X X

DISPLAY CHINIT X X

DISPLAY CHLAUTH X X X

Administering IBM MQ 439

Table 26. Sources from which to run MQSC commands (continued)

Command CSQINP1 CSQINP2 z/OS console Command
input queue
and server

DISPLAY CHSTATUS X X

DISPLAY CLUSQMGR X X

DISPLAY CMDSERV X X X X

DISPLAY CONN X X X

DISPLAY GROUP X X X

DISPLAY LOG X X X X

DISPLAY MAXSMSGS X X X

DISPLAY NAMELIST X X X

DISPLAY PROCESS X X X

DISPLAY PUBSUB X X X

DISPLAY QALIAS X X X

DISPLAY QCLUSTER X X X

DISPLAY QLOCAL X X X

DISPLAY QMGR X X X

DISPLAY QMODEL X X X

DISPLAY QREMOTE X X X

DISPLAY QSTATUS X X X

DISPLAY QUEUE X X X

DISPLAY SBSTATUS X X

DISPLAY SECURITY X X

DISPLAY SMDS X X X

DISPLAY SMDSCONN X X X

DISPLAY STGCLASS X X X

DISPLAY SUB X X

DISPLAY SYSTEM X X X X

DISPLAY TCLUSTER X X X

DISPLAY THREAD X X X

DISPLAY TOPIC X X X

DISPLAY TPSTATUS X X X

DISPLAY TRACE X X X X

DISPLAY USAGE X X X

MOVE QLOCAL X X X

PING CHANNEL X X

440 Administering IBM MQ

Table 26. Sources from which to run MQSC commands (continued)

Command CSQINP1 CSQINP2 z/OS console Command
input queue
and server

RECOVER BSDS X X

RECOVER CFSTRUCT X X

REFRESH CLUSTER X X

REFRESH QMGR X X X

REFRESH SECURITY X X

RESET CFSTRUCT X X

RESET CHANNEL X X

RESET CLUSTER X X

RESET QMGR X X X

RESET QSTATS X X X

RESET SMDS X X

RESET TPIPE X X

RESOLVE CHANNEL X X

RESOLVE INDOUBT X X X

RESUME QMGR X X

RVERIFY SECURITY X X X

SET ARCHIVE X X X X

SET CHLAUTH X X X

SET LOG X X X X

SET SYSTEM X X X X

START CHANNEL X X

START CHINIT X X X

START CMDSERV X X X

START LISTENER X X

START QMGR X

START SMDSCONN X X X

START TRACE X X X X

STOP CHANNEL X X

STOP CHINIT X X

STOP CMDSERV X X X

STOP LISTENER X X

STOP QMGR X X

STOP SMDSCONN X X X

Administering IBM MQ 441

Table 26. Sources from which to run MQSC commands (continued)

Command CSQINP1 CSQINP2 z/OS console Command
input queue
and server

STOP TRACE X X X X

SUSPEND QMGR X X

In MQSC commands, each command description identifies the sources from which that command can be
run.

Using MQSC to start and stop a queue manager on z/OS
An introduction to using control commands on IBM MQ for z/OS: After you have installed IBM MQ, use
MQSC commands to start and stop a queue manager.

Before you begin
After you have installed IBM MQ, it is defined as a formal z/OS subsystem. This message appears during
any initial program load (IPL) of z/OS:

CSQ3110I +CSQ1 CSQ3UR00 - SUBSYSTEM ssnm INITIALIZATION COMPLETE

where ssnm is the IBM MQ subsystem name.

From now on, you can start the queue manager for that subsystem from any z/OS console that has been
authorized to issue system control commands ; that is, a z/OS SYS command group. You must issue the
START command from the authorized console, you cannot issue it through JES or TSO.

If you are using queue sharing groups, you must start RRS first, and then Db2®, before you start the queue
manager.

About this task
When a queue manager stops under normal conditions, its last action is to take a termination checkpoint.
This checkpoint, and the logs, give the queue manager the information it needs to restart.

The following steps contain information about the START and STOP commands, and contain a brief
overview of start-up after an abnormal termination has occurred.

Procedure
1. Start a queue manager

You start a queue manager by issuing a START QMGR command. However, you cannot successfully use
the START command unless you have appropriate authority. See the Setting up security on z/OS for
information about IBM MQ security. The following code shows examples of the START command. Note
that you must prefix an MQSC command with a command prefix string (CPF).

+CSQ1 START QMGR

+CSQ1 START QMGR PARM(NEWLOG)

See START QMGR for information about the syntax of the START QMGR command.

You cannot run the queue manager as a batch job or start it using a z/OS command START. These
methods are likely to start an address space for IBM MQ that then ends abnormally. Nor can you start a
queue manager from the CSQUTIL utility program or a similar user application.

442 Administering IBM MQ

You can, however, start a queue manager from an APF-authorized program by passing a START QMGR
command to the z/OS MGCRE (SVC 34) service.

If you are using queue sharing groups, the associated Db2 systems and RRS must be active when you
start the queue manager.

Start options

When you start a queue manager, a system parameter module is loaded. You can specify the name
of the system parameter module in one of two ways:

• With the PARM parameter of the /cpf START QMGR command, for example

/cpf START QMGR PARM(CSQ1ZPRM)

• With a parameter in the startup procedure, for example, code the JCL EXEC statement as

//MQM EXEC PGM=CSQYASCP,PARM='ZPARM(CSQ1ZPRM)'

A system parameter module provides information specified when the queue manager was
customized.

You can use the QMGRPROD option to specify the product against which the queue manager usage
is to be recorded, and the AMSPROD option to specify the equivalent for AMS if that is used. See the
MQSC START QMGR command for details of the permitted values.

An example JCL EXEC statement follows:

//MQM EXEC PGM=CSQYASCP,PARM='QMGRPROD(MQ)'

See z/OS MVS Product Management for more information on measured usage and product
registration.

You can also use the ENVPARM option to substitute one or more parameters in the JCL procedure
for the queue manager.

For example, you can update your queue manager startup procedure, so that the DDname CSQINP2
is a variable. This means that you can change the CSQINP2 DDname without changing the startup
procedure. This is useful for implementing changes, providing back-outs for operators, and queue
manager operations.

Suppose your start-up procedure for queue manager CSQ1 looked like this:

//CSQ1MSTR PROC INP2=NORM
//MQMESA EXEC PGM=CSQYASCP
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQAUTH
// DD DISP=SHR,DSN=db2qual.SDSNLOAD
//BSDS1 DD DISP=SHR,DSN=myqual.BSDS01
//BSDS2 DD DISP=SHR,DSN=myqual.BSDS02
//CSQP0000 DD DISP=SHR,DSN=myqual.PSID00
//CSQP0001 DD DISP=SHR,DSN=myqual.PSID01
//CSQP0002 DD DISP=SHR,DSN=myqual.PSID02
//CSQP0003 DD DISP=SHR,DSN=myqual.PSID03
//CSQINP1 DD DISP=SHR,DSN=myqual.CSQINP(CSQ1INP1)
//CSQINP2 DD DISP=SHR,DSN=myqual.CSQINP(CSQ1&INP2.)
//CSQOUT1 DD SYSOUT=*
//CSQOUT2 DD SYSOUT=*

If you then start your queue manager with the following command:

+CSQ1 START QMGR

then the CSQINP2 used is a member called CSQ1NORM.

Administering IBM MQ 443

https://www.ibm.com/docs/en/zos/3.1.0?topic=management-abstract-mvs-product

However, suppose you are putting a new suite of programs into production so that the next time
you start queue manager CSQ1, the CSQINP2 definitions are to be taken from member CSQ1NEW.
To do this, you would start the queue manager with this command:

+CSQ1 START QMGR ENVPARM('INP2=NEW')

and CSQ1NEW would be used instead of CSQ1NORM. Note: z/OS limits the KEYWORD=value
specifications for symbolic parameters (as in INP2=NEW) to 255 characters.

Starting after an abnormal termination

IBM MQ automatically detects whether restart follows a normal shutdown or an abnormal
termination.

Starting a queue manager after it ends abnormally is different from starting it after the STOP
QMGR command has been issued. After STOP QMGR, the system finishes its work in an orderly
way and takes a termination checkpoint before stopping. When you restart the queue manager, it
uses information from the system checkpoint and recovery log to determine the system status at
shutdown.

However, if the queue manager ends abnormally, it terminates without being able to finish its work
or take a termination checkpoint. When you restart a queue manager after an abend, it refreshes
its knowledge of its status at termination using information in the log, and notifies you of the status
of various tasks. Normally, the restart process resolves all inconsistent states. But, in some cases,
you must take specific steps to resolve inconsistencies.

User messages on start-up

When you start a queue manager successfully, the queue manager produces a set of startup
messages.

2. Stop a queue manager.

Before stopping a queue manager, all IBM MQ-related write-to-operator-with-reply (WTOR) messages
must receive replies, for example, getting log requests. Each of the following commands terminates a
running queue manager.

+CSQ1 STOP QMGR

+CSQ1 STOP QMGR MODE(QUIESCE)

+CSQ1 STOP QMGR MODE(FORCE)

+CSQ1 STOP QMGR MODE(RESTART)

The command STOP QMGR defaults to STOP QMGR MODE(QUIESCE).

In QUIESCE mode, IBM MQ does not allow any new connection threads to be created, but allows
existing threads to continue; it terminates only when all threads have ended. Applications can request
to be notified in the event of the queue manager quiescing. Therefore, use the QUIESCE mode where
possible so that applications that have requested notification have the opportunity to disconnect. See
What happens during termination for details.

If the queue manager does not terminate in a reasonable time in response to a STOP QMGR
MODE(QUIESCE) command, use the DISPLAY CONN command to determine whether any connection
threads exist, and take the necessary steps to terminate the associated applications. If there are no
threads, issue a STOP QMGR MODE(FORCE) command.

The STOP QMGR MODE(QUIESCE) and STOP QMGR MODE(FORCE) commands deregister IBM MQ
from the MVS Automatic Restart Manager (ARM), preventing ARM from restarting the queue manager
automatically. The STOP QMGR MODE(RESTART) command works in the same way as the STOP QMGR
MODE(FORCE) command, except that it does not deregister IBM MQ from ARM. This means that the
queue manager is eligible for immediate automatic restart.

444 Administering IBM MQ

If the IBM MQ subsystem is not registered with ARM, the STOP QMGR MODE(RESTART) command is
rejected and the following message is sent to the z/OS console:

CSQY205I ARM element arm-element is not registered

If this message is not issued, the queue manager is restarted automatically. For more information
about ARM, see “Using the z/OS Automatic Restart Manager (ARM)” on page 525.

Only cancel the queue manager address space if STOP QMGR MODE(FORCE) does not terminate
the queue manager.

If a queue manager is stopped by either canceling the address space or by using the command
STOP QMGR MODE(FORCE), consistency is maintained with connected CICS or IMS systems.
Resynchronization of resources is started when a queue manager restarts and is completed when
the connection to the CICS or IMS system is established.

Note: When you stop your queue manager, you might find message IEF352I is issued. z/OS issues this
message if it detects that failing to mark the address space as unusable would lead to an integrity
exposure. You can ignore this message.

Stop messages

After issuing a STOP QMGR command, you get the messages CSQY009I and CSQY002I, for
example:

CSQY009I +CSQ1 ' STOP QMGR' COMMAND ACCEPTED FROM
USER(userid), STOP MODE(FORCE)
CSQY002I +CSQ1 QUEUE MANAGER STOPPING

Where userid is the user ID that issued the STOP QMGR command, and the MODE parameter
depends on that specified in the command.

When the STOP command has completed successfully, the following messages are displayed on
the z/OS console:

CSQ9022I +CSQ1 CSQYASCP ' STOP QMGR' NORMAL COMPLETION
CSQ3104I +CSQ1 CSQ3EC0X - TERMINATION COMPLETE

If you are using ARM, and you did not specify MODE(RESTART), the following message is also
displayed:

CSQY204I +CSQ1 ARM DEREGISTER for element arm-element type
arm-element-type successful

You cannot restart the queue manager until the following message has been displayed:

CSQ3100I +CSQ1 CSQ3EC0X - SUBSYSTEM ssnm READY FOR START COMMAND

Issuing commands from a z/OS console or equivalent
You can issue IBM MQ MQSC and PCF commands from a z/OS console or its equivalent. You can also issue
IBM MQ commands from anywhere where you can issue z/OS commands, such as SDSF or by a program
using the MGCRE macro. When using the z/OS console, you add /cpf to the start of a command.

Before you begin
Not all commands can be issued by the z/OS console. Within the command description topics (the
children of MQSC commands reference), each command that can be issued by the console is identified by
the character 'C'. Table 2 in "Command summary for IBM MQ for z/OS" summarizes the MQSC commands
and the sources from which they can be issued.

Administering IBM MQ 445

You cannot issue IBM MQ commands using the IMS/SSR command format from an IMS terminal. This
function is not supported by the IMS adapter.

The input field provided by SDSF might not be long enough for some commands, particularly those
commands for channels.

The maximum amount of data that can be displayed as a result of a command typed in at the console is
32 KB.

About this task
If you are a suitably authorized user, you can issue IBM MQ commands from the z/OS console or
equivalent (such as SDSF/TSO).

When using the z/OS console, you need to add /cpf to the start of a command, where cpf is the
command prefix for the queue manager subsystem.

The following steps refer to commands and attributes using their MQSC command names rather than their
PCF names.

Procedure
• Use command prefix strings

Each IBM MQ command must be prefixed with a command prefix string (CPF).

Because more than one IBM MQ subsystem can run under z/OS, the CPF is used to indicate which IBM
MQ subsystem processes the command.

For example, to start the queue manager for a subsystem called CSQ1, where CPF is ' +CSQ1 ', you
issue the following command from the operator console:

+CSQ1 START QMGR

This CPF must be defined in the subsystem name table (for the subsystem CSQ1), as described in
Defining command prefix strings (CPFs). In the examples, the string +CSQ1 is used as the command
prefix.

• Use the z/OS console to issue commands

You can type simple commands from the z/OS console, for example:

+CSQ1 DISPLAY QUEUE(TRANSMIT.QUEUE.PROD) TYPE(QLOCAL)

However, for complex commands or for sets of commands that you issue frequently, the other
methods of issuing commands are better.

• Receive command responses

Direct responses to commands are sent to the console that issued the command. IBM MQ supports
the Extended Console Support (EMCS) function available in z/OS, and therefore consoles with 4 byte
IDs can be used. Additionally, all commands except START QMGR and STOP QMGR support the use of
Command and Response Tokens (CARTs) when the command is issued by a program using the MGCRE
macro.

Related tasks
“Using the operations and control panels on z/OS” on page 449
You use these panels for defining, displaying, altering, or deleting IBM MQ objects. Use the panels for
day-to-day administration and for making small changes to objects.
Preparing sample applications for the TSO environment on z/OS

446 Administering IBM MQ

Initialization commands for IBM MQ for z/OS
Initialization commands can be used to control the queue manager startup.

Commands in the initialization input data sets are processed when IBM MQ is initialized on queue
manager startup. Three types of command can be issued from the initialization input data sets:

• Commands to define IBM MQ entities that cannot be defined elsewhere, for example DEFINE
BUFFPOOL.

These commands must reside in the data set identified by the DD name CSQINP1. They are processed
before the restart phase of initialization. They cannot be issued through the console, operations and
control panels, or an application program. The responses to these commands are written to the
sequential data set that you refer to in the CSQOUT1 statement of the started task procedure.

• Commands to define IBM MQ objects that are recoverable after restart. These definitions must be
specified in the data set identified by the DD name CSQINP2. They are stored in page set zero. CSQINP2
is processed after the restart phase of initialization. The responses to these commands are written to
the sequential data set that you refer to in the CSQOUT2 statement of the started task procedure.

• Commands to manipulate IBM MQ objects. These commands must also be specified in the data set
identified by the DD name CSQINP2. For example, the IBM MQ-supplied sample contains an ALTER
QMGR command to specify a dead-letter queue for the subsystem. The response to these commands is
written to the CSQOUT2 output data set.

Note: If IBM MQ objects are defined in CSQINP2, IBM MQ attempts to redefine them each time the queue
manager is started. If the objects already exist, the attempt to define them fails. If you need to define
your objects in CSQINP2, you can avoid this problem by using the REPLACE parameter of the DEFINE
commands, however, this overrides any changes that were made during the previous run of the queue
manager.

Sample initialization data set members are supplied with IBM MQ for z/OS. They are described in Sample
definitions supplied with IBM MQ.

Initialization commands for distributed queuing

You can also use the CSQINP2 initialization data set for the START CHINIT command. If you need a series
of other commands to define your distributed queuing environment (for example, starting listeners), IBM
MQ provides a third initialization input data set, called CSQINPX, that is processed as part of the channel
initiator started task procedure.

The MQSC commands contained in the data set are executed at the end of channel initiator initialization,
and output is written to the data set specified by the CSQOUTX DD statement. You might use the
CSQINPX initialization data set to start listeners for example.

A sample channel initiator initialization data set member is supplied with IBM MQ for z/OS. It is described
in Sample definitions supplied with IBM MQ.

Initialization commands for publish/Subscribe
If you need a series of commands to define your publish/subscribe environment (for example, when
defining subscriptions), IBM MQ provides a fourth initialization input data set, called CSQINPT.

The MQSC commands contained in the data set are executed at the end of publish/subscribe initialization,
and output is written to the data set specified by the CSQOUTT DD statement. You might use the CSQINPT
initialization data set to define subscriptions for example.

A sample publish/subscribe initialization data set member is supplied with IBM MQ for z/OS. It is
described in Sample definitions supplied with IBM MQ.

Administering IBM MQ 447

Private and global definitions on IBM MQ for z/OS
When you define an object on IBM MQ for z/OS, you can choose whether you want to share that definition
with other queue managers (a global definition), or whether the object definition is to be used by one
queue manager only (a private definition). This is called the object disposition.

Global definition

If your queue manager belongs to a queue sharing group, you can choose to share any object
definitions you make with the other members of the group. This means that you have to define an
object once only, reducing the total number of definitions required for the whole system.

Global object definitions are held in a shared repository (a Db2 shared database), and are available to
all the queue managers in the queue sharing group. These objects have a disposition of GROUP.

Private definition
If you want to create an object definition that is required by one queue manager only, or if your queue
manager is not a member of a queue sharing group, you can create object definitions that are not
shared with other members of a queue sharing group.

Private object definitions are held on page set zero of the defining queue manager. These objects have
a disposition of QMGR.

You can create private definitions for all types of IBM MQ objects except CF structures (that is, channels,
namelists, process definitions, queues, queue managers, storage class definitions, and authentication
information objects), and global definitions for all types of objects except queue managers.

IBM MQ automatically copies the definition of a group object to page set zero of each queue manager that
uses it. You can alter the copy of the definition temporarily if you want, and IBM MQ allows you to refresh
the page set copies from the repository copy if required.

IBM MQ always tries to refresh the page set copies from the repository copy at startup (for channel
commands, this is done when the channel initiator restarts), or if the group object is changed.

Note: The copy of the definition is refreshed from the definition of the group, only if the definition of the
group has changed after you created the copy of the definition.

This ensures that the page set copies reflect the version on the repository, including any changes that
were made when the queue manager was inactive. The copies are refreshed by generating DEFINE
REPLACE commands, therefore there are circumstances under which the refresh is not performed, for
example:

• If a copy of the queue is open, a refresh that changes the usage of the queue fails.
• If a copy of a queue has messages on it, a refresh that deletes that queue fails.
• If a copy of a queue would require ALTER with FORCE to change it.

In these circumstances, the refresh is not performed on that copy, but is performed on the copies on all
other queue managers.

If the queue manager is shut down and then restarted stand-alone, any local copies of objects are
deleted, unless for example, the queue has associated messages.

There is a third object disposition that applies to local queues only. This allows you to create shared
queues. The definition for a shared queue is held on the shared repository and is available to all the queue
managers in the queue sharing group. In addition, the messages on a shared queue are also available to
all the queue managers in the queue sharing group. This is described in Shared queues and queue sharing
groups. Shared queues have an object disposition of SHARED.

The following table summarizes the effect of the object disposition options for queue managers started
stand-alone, and as a member of a queue sharing group.

448 Administering IBM MQ

Disposition Stand-alone queue manager Member of a queue sharing group

QMGR Object definition held on page set
zero.

Object definition held on page set zero.

GROUP Not allowed. Object definition held in the shared
repository. Local copy held on page set zero
of each queue manager in the group.

SHARED Not allowed. Queue definition held in the shared
repository. Messages available to any queue
manager in the group.

Manipulating global definitions

If you want to change the definition of an object that is held in the shared repository, you need to specify
whether you want to change the version on the repository, or the local copy on page set zero. Use the
object disposition as part of the command to do this.

Directing commands to different queue managers on z/OS
You can use the command scope to control on which queue manager the command runs.

You can choose to execute a command on the queue manager where it is entered, or on a different queue
manager in the queue sharing group. You can also choose to issue a particular command in parallel on
all the queue managers in a queue sharing group. This is possible for both MQSC commands and PCF
commands.

This is determined by the command scope. The command scope is used with the object disposition to
determine which version of an object you want to work with.

For example, you might want to alter some of the attributes of an object, the definition of which is held in
the shared repository.

• You might want to change the version on one queue manager only, and not make any changes to the
version on the repository or those in use by other queue managers.

• You might want to change the version in the shared repository for future users, but leave existing copies
unchanged.

• You might want to change the version in the shared repository, but also want your changes to be
reflected immediately on all the queue managers in the queue sharing group that hold a copy of the
object on their page set zero.

Use the command scope to specify whether the command is executed on this queue manager, another
queue manager, or all queue managers. Use the object disposition to specify whether the object you are
manipulating is in the shared repository (a group object), or is a local copy on page set zero (a queue
manager object).

You do not have to specify the command scope and object disposition to work with a shared queue
because every queue manager in the queue sharing group handles the shared queue as a single queue.

Using the operations and control panels on z/OS
You use these panels for defining, displaying, altering, or deleting IBM MQ objects. Use the panels for
day-to-day administration and for making small changes to objects.

Before you begin
The IBM MQ for z/OS operations and controls panels (CSQOREXX) might not support all new function and
parameters added from version 7 onwards. For example, there are no panels for the direct manipulation

Administering IBM MQ 449

of topic objects or subscriptions. Use one of the following supported mechanisms to administer publish/
subscribe definitions and other system controls that are not directly available from other panels:

1. IBM MQ Explorer
2. z/OS console
3. Programmable Command Format (PCF) messages
4. COMMAND function of CSQUTIL
5. IBM MQ Console

Note that the generic Command action in the CSQOREXX panels allows you to issue any valid MQSC
command, including SMDS related commands. You can use all the commands that the COMMAND
function of CSQUTIL issues.

You cannot issue the IBM MQ commands directly from the command line in the panels.

To use the operations and control panels, you must have the correct security authorization; this is
described in the User IDs for command security and command resource security.

You cannot provide a user ID and password using CSQUTIL, or the CSQOREXX panels. Instead, if you
user ID has UPDATE authority to the BATCH profile in MQCONN, you can bypass the CHCKLOCL(REQUIRED
setting. See Using CHCKLOCL on locally bound applications for more information.

If you are setting up or changing many objects, use the COMMAND function of the CSQUTIL utility
program. See “Using the CSQUTIL utility for IBM MQ for z/OS” on page 460.

About this task
The operations and control panels support the controls for the channel initiator (for example, to start a
channel or a TCP/IP listener), for clustering, and for security. They also enable you to display information
about threads and page set usage.

The panels work by sending MQSC type IBM MQ commands to a queue manager, through the system
command input queue.

Example
This is the panel that displays when you start a panel session:

 IBM MQ for z/OS - Main Menu

 Complete fields. Then press Enter.

 Action 1 0. List with filter 4. Manage
 1. List or Display 5. Perform
 2. Define like 6. Start
 3. Alter 7. Stop
 8. Command
 Object type CHANNEL +
 Name *
 Disposition A Q=Qmgr, C=Copy, P=Private, G=Group,
 S=Shared, A=All

 Connect name MQ1C - local queue manager or group
 Target queue manager . . . MQ1C
 - connected or remote queue manager for command input
 Action queue manager . . . MQ1C - command scope in group
 Response wait time 30 5 - 999 seconds

 (C) Copyright IBM Corporation 1993, 2024. All rights reserved.

 Command ===>
 F1=Help F2=Split F3=Exit F4=Prompt F9=SwapNext F10=Messages
 F12=Cancel

From this panel you can perform actions such as these:

• Choose the local queue manager you want and whether you want the commands issued on that queue
manager, on a remote queue manager, or on another queue manager in the same queue sharing group
as the local queue manager. Over type the queue manager name if you need to change it.

• Select the action you want to perform by typing in the appropriate number in the Action field.
• Specify the object type that you want to work with. Press function key F1 for help about the object types

if you are not sure what they are.
• Specify the disposition of the object type that you want to work with.

450 Administering IBM MQ

• Display a list of objects of the type specified. Type in an asterisk (*) in the Name field and press Enter
to display a list of objects (of the type specified) that have already been defined on the action queue
manager. You can then select one or more objects to work with in sequence. All the actions are available
from the list.

Note: You are recommended to make choices that result in a list of objects being displayed, and then
work from that list. Use the Display action, because that is allowed for all object types.

Invocation and rules for the operations and control panels
You can control IBM MQ and issue control commands through the ISPF panels.

How to access the IBM MQ operations and control panels
If the ISPF/PDF primary options menu has been updated for IBM MQ, you can access the IBM MQ
operations and control panels from that menu. For details about updating the menu, see the Task 20: Set
up the operations and control panels.

You can access the IBM MQ operations and control panels from the TSO command processor panel
(typically option 6 on the ISPF/PDF primary options menu). The name of the exec that you run to do this
is CSQOREXX. It has two parameters; thlqual is the high-level qualifier for the IBM MQ libraries to be
used, and langletter is the letter identifying the national language libraries to be used (for example, E
for U.S. English). The parameters can be omitted if the IBM MQ libraries are permanently installed in your
ISPF setup. Alternatively, you can issue CSQOREXX from the TSO command line.

These panels are designed to be used by operators and administrators with a minimum of formal training.
Read these instructions with the panels running and try out the different tasks suggested.

Note: While using the panels, temporary dynamic queues with names of the form SYSTEM.CSQOREXX.*
are created.

Rules for the operations and control panels

See Rules for naming IBM MQ objects about the general rules for IBM MQ character strings and names.
However, there are some rules that apply only to the operations and control panels:

• Do not enclose strings, for example descriptions, in single or double quotation marks.
• If you include an apostrophe or quotation mark in a text field, you do not have to repeat it or add an

escape character. The characters are saved exactly as you type them; for example:

This is Maria's queue

The panel processor doubles them for you to pass them to IBM MQ. However, if it has to truncate your
data to do this, it does so.

• You can use uppercase or lowercase characters in most fields, and they are folded to uppercase
characters when you press Enter. The exceptions are:

– Storage class names and coupling facility structure names, which must start with uppercase A
through Z and be followed by uppercase A through Z or numeric characters.

– Certain fields that are not translated. These include:

- Application ID
- Description
- Environment data
- Object names (but if you use a lowercase object name, you might not be able to enter it at a z/OS

console)

Administering IBM MQ 451

- Remote system name
- Trigger data
- User data

• In names, leading blanks and leading underscores are ignored. Therefore, you cannot have object
names beginning with blanks or underscores.

• Underscores are used to show the extent of blank fields. When you press Enter, trailing underscores are
replaced by blanks.

• Many description and text fields are presented in multiple parts, each part being handled by IBM MQ
independently. This means that trailing blanks are retained and the text is not contiguous.

Blank fields

When you specify the Define action for an IBM MQ object, each field on the define panel contains a
value. See the general help (extended help) for the display panels for information about where IBM
MQ gets the values. If you type over a field with blanks, and blanks are not allowed, IBM MQ puts the
installation default value in the field or prompts you to enter the required value.

When you specify the Alter action for an IBM MQ object, each field on the alter panel contains the
current value for that field. If you type over a field with blanks, and blanks are not allowed, the value
of that field is unchanged.

Objects and actions on z/OS
The operations and control panels offer you many different types of object and a number of actions that
you can perform on them.

The actions are listed on the initial panel and enable you to manipulate the objects and display
information about them. These objects include all the IBM MQ objects, together with some extra ones.
The objects fall into the following categories.

• Queues, processes, authentication information objects, namelists, storage classes and CF structures
• Channels
• Cluster objects
• Queue manager and security
• Connections
• System

Refer to Actions for a cross-reference table of the actions which can be taken with the IBM MQ objects.

Queues, processes, authentication information objects, namelists, storage classes and CF structures

These are the basic IBM MQ objects. There can be many of each type. They can be listed, listed with
filter, defined, and deleted, and have attributes that can be displayed and altered, using the LIST or
DISPLAY, LIST with FILTER, DEFINE LIKE, MANAGE, and ALTER actions. (Objects are deleted using
the MANAGE action.)

This category consists of the following objects:

QLOCAL Local queue

QREMOTE Remote queue

QALIAS Alias queue for indirect reference to a queue

QMODEL Model queue for defining queues dynamically

QUEUE Any type of queue

QSTATUS Status of a local queue

452 Administering IBM MQ

PROCESS Information about an application to be started when a trigger event occurs

AUTHINFO Authentication information: definitions required to perform Certificate Revocation
List (CRL) checking using LDAP servers

NAMELIST List of names, such as queues or clusters

STGCLASS Storage class

CFSTRUCT coupling facility (CF) structure

CFSTATUS Status of a CF structure

Channels

Channels are used for distributed queuing. There can be many of each type, and they can be listed,
listed with filter, defined, deleted, displayed, and altered. They also have other functions available
using the START, STOP and PERFORM actions. PERFORM provides reset, ping, and resolve channel
functions.

This category consists of the following objects:

CHANNEL Any type of channel

SENDER Sender channel

SERVER Server channel

RECEIVER Receiver channel

REQUESTER Requester channel

CLUSRCVR Cluster-receiver channel

CLUSSDR Cluster-sender channel

SVRCONN Server-connection channel

CLNTCONN Client-connection channel

CHSTATUS Status of a channel connection

Cluster objects

Cluster objects are created automatically for queues and channels that belong to a cluster. The base
queue and channel definitions can be on another queue manager. There can be many of each type,
and names can be duplicated. They can be listed, listed with filter, and displayed. PERFORM, START,
and STOP are also available through the LIST actions.

This category consists of the following objects:

CLUSQ Cluster queue, created for a queue that belongs to a cluster

CLUSCHL Cluster channel, created for a channel that belongs to a cluster

CLUSQMGR Cluster queue manager, the same as a cluster channel but identified by its queue
manager name

Cluster channels and cluster queue managers do have the PERFORM, START and STOP actions, but
only indirectly through the DISPLAY action.

Queue manager and security

Queue manager and security objects have a single instance. They can be listed, and have attributes
that can be displayed and altered (using the LIST or DISPLAY, and ALTER actions), and have other
functions available using the PERFORM action.

This category consists of the following objects:

Administering IBM MQ 453

MANAGER Queue manager: the PERFORM action provides suspend and resume cluster
functions

SECURITY Security functions: the PERFORM action provides refresh and reverify functions

Connection

Connections can be listed, listed with filter and displayed.

This category consists only of the connection object, CONNECT.

System

A collection of other functions. This category consists of the following objects:

SYSTEM System functions

CONTROL Synonym for SYSTEM

The functions available are:

LIST or DISPLAY Display queue sharing group, distributed queuing, page set, or data set usage
information.

PERFORM Refresh or reset clustering

START Start the channel initiator or listeners

STOP Stop the channel initiator or listeners

Actions
The actions that you can perform for each type of object are shown in the following table:

Table 27. Valid operations and control panel actions for IBM MQ objects

Object Alter Define
like

Manage
(1)

List or
Display

List with
Filter

Perform Start Stop

AUTHINFO X X X X X

CFSTATUS X

CFSTRUCT X X X X X

CHANNEL X X X X X X X X

CHSTATUS X X

CLNTCONN X X X X X

CLUSCHL X X X(2) X(2) X(2)

CLUSQ X X

CLUSQMGR X X X(2) X(2) X(2)

CLUSRCVR X X X X X X X X

CLUSSDR X X X X X X X X

CONNECT X X

CONTROL X X X X

MANAGER X X X

NAMELIST X X X X X

454 Administering IBM MQ

Table 27. Valid operations and control panel actions for IBM MQ objects (continued)

Object Alter Define
like

Manage
(1)

List or
Display

List with
Filter

Perform Start Stop

PROCESS X X X X X

QALIAS X X X X X

QLOCAL X X X X X

QMODEL X X X X X

QREMOTE X X X X X

QSTATUS X X

QUEUE X X X X X

RECEIVER X X X X X X X X

REQUESTER X X X X X X X X

SECURITY X X X

SENDER X X X X X X X X

SERVER X X X X X X X X

SVRCONN X X X X X X X

STGCLASS X X X X X

SYSTEM X X X X

Note:

1. Provides Delete and other functions
2. Using the List or Display action

Object dispositions on z/OS
You can specify the disposition of the object with which you need to work. The disposition signifies where
the object definition is kept, and how the object behaves.

The disposition is significant only if you are working with any of the following object types:

• queues
• channels
• processes
• namelists
• storage classes
• authentication information objects

If you are working with other object types, the disposition is disregarded.

Permitted values are:
Q

QMGR. The object definitions are on the page set of the queue manager and are accessible only by the
queue manager.

C
COPY. The object definitions are on the page set of the queue manager and are accessible only by the
queue manager. They are local copies of objects defined as having a disposition of GROUP.

Administering IBM MQ 455

P
PRIVATE. The object definitions are on the page set of the queue manager and are accessible only by
the queue manager. The objects have been defined as having a disposition of QMGR or COPY.

G
GROUP. The object definitions are in the shared repository, and are accessible by all queue managers
in the queue sharing group.

S
SHARED. This disposition applies only to local queues. The queue definitions are in the shared
repository, and are accessible by all queue managers in the queue sharing group.

A
ALL. If the action queue manager is either the target queue manager, or *, objects of all dispositions
are included; otherwise, objects of QMGR and COPY dispositions only are included. This is the default.

Selecting a queue manager, defaults, and levels using the ISPF
control panel on z/OS
You can use the CSQOREXX exec in ISPF to control your queue managers.

While you are viewing the initial panel, you are not connected to any queue manager. However, as soon as
you press Enter, you are connected to the queue manager, or a queue manager in the queue sharing group
named in the Connect name field. You can leave this field blank; this means that you are using the default
queue manager for batch applications. This is defined in CSQBDEFV (see Task 19: Set up Batch, TSO, and
RRS adapters for information about this).

Use the Target queue manager field to specify the queue manager where the actions you request are
to be performed. If you leave this field blank, it defaults to the queue manager specified in the Connect
name field. You can specify a target queue manager that is not the one you connect to. In this case, you
would normally specify the name of a remote queue manager object that provides a queue manager alias
definition (the name is used as the ObjectQMgrName when opening the command input queue). To do
this, you must have suitable queues and channels set up to access the remote queue manager.

The Action queue manager field allows you to specify a queue manager that is in the same queue sharing
group as the queue manager specified in the Target queue manager field to be the queue manager where
the actions you request are to be performed. If you specify * in this field, the actions you request are
performed on all queue managers in the queue sharing group. If you leave this field blank, it defaults to
the value specified in the Target queue manager field. The Action queue manager field corresponds to
using the CMDSCOPE command modifier described in The MQSC commands.

Queue manager defaults

If you leave any queue manager fields blank, or choose to connect to a queue sharing group, a
secondary window opens when you press Enter. This window confirms the names of the queue
managers you will be using. Press Enter to continue. When you return to the initial panel after having
made some requests, you find fields completed with the actual names.

Queue manager levels

If the action queue manager is not at IBM MQ 8.0.0 or later, some fields are not displayed, and
some values cannot be entered. A few objects and actions are disallowed. In such cases, a secondary
window opens asking for you to confirm that you want to proceed.

456 Administering IBM MQ

Using the function keys and command line with the ISPF control
panels on z/OS
To use the panels, you must use the function keys or enter the equivalent commands in the ISPF control
panel command area.

• Function keys

– Processing your actions
– “Displaying IBM MQ user messages” on page 457
– Canceling your actions
– Getting help

• Using the command line

Function keys
The function keys have special settings for IBM MQ. (This means that you cannot use the ISPF default
values for the function keys; if you have previously used the KEYLIST OFF ISPF command anywhere,
you must type KEYLIST ON in the command area of any operations and control panel and then press
Enter to enable the IBM MQ settings.)

These function key settings can be displayed on the panels, as shown in “Using the operations and
control panels on z/OS” on page 449. If the settings are not shown, type PFSHOW in the command area
of any operations and control panel and then press Enter. To remove the display of the settings, use the
command PFSHOW OFF.

The function key settings in the operations and control panels conform to CUA standards. Although you
can change the key setting through normal ISPF procedures (such as the KEYLIST utility), you are not
recommended to do so.

Note: Using the PFSHOW and KEYLIST commands affects any other logical ISPF screens that you have,
and their settings remain when you leave the operations and control panels.

Processing your actions
Press Enter to carry out the action requested on a panel. The information from the panel is sent to the
queue manager for processing.

Each time you press Enter in the panels, IBM MQ generates one or more operator messages. If the
operation was successful, you get confirmation message CSQ9022I, otherwise you get some error
messages.

Displaying IBM MQ user messages
Press function key F10 in any panel to see the IBM MQ user messages.

Canceling your actions
On the initial panel, both F3 and F12 exit the operations and control panels and return you to ISPF. No
information is sent to the queue manager.

On any other panel, press function keys F3 or F12 to leave the current panel ignoring any data you
have typed since last pressing Enter. Again, no information is sent to the queue manager.

• F3 takes you straight back to the initial panel.
• F12 takes you back to the previous panel.

Getting help

Each panel has help panels associated with it. The help panels use the ISPF protocols:

• Press function key F1 on any panel to see general help (extended help) about the task.
• Press function key F1 with the cursor on any field to see specific help about that field.
• Press function key F5 from any field help panel to get the general help.

Administering IBM MQ 457

• Press function key F3 to return to the base panel, that is, the panel from which you pressed function
key F1.

• Press function key F6 from any help panel to get help about the function keys.

If the help information carries on into a second or subsequent pages, a More indicator is displayed in
the upper-right of the panel. Use these function keys to navigate through the help pages:

• F11 to get to the next help page (if there is one).
• F10 to get back to the previous help page (if there is one).

Using the command line

You never need to use the command line to issue the commands used by the operations and control
panels because they are available from function keys. The command line is provided to allow you to enter
normal ISPF commands (like PFSHOW).

The ISPF command PANELID ON displays the name of the current CSQOREXX panel.

The command line is initially displayed in the default position at the bottom of the panels, regardless of
what ISPF settings you have. You can use the SETTINGS ISPF command from any of the operations and
control panels to change the position of the command line. The settings are remembered for subsequent
sessions with the operations and control panels.

Using the IBM MQ for z/OS utilities
IBM MQ for z/OS provides a set of utility programs that you can use to help with system administration.

IBM MQ for z/OS supplies a set of utility programs to help you perform various administrative tasks,
including the following:

• Manage message security policies.
• Perform backup, restoration, and reorganization tasks.
• Issue commands and process object definitions.
• Generate data-conversion exits.
• Modify the bootstrap data set.
• List information about the logs.
• Print the logs.
• Set up Db2 tables and other Db2 utilities.
• Process messages on the dead-letter queue.

The message security policy utility
The message security policy utility (CSQ0UTIL) runs as a stand-alone utility to manage message security
policies. See The message security policy utility (CSQ0UTIL) for more information.

The CSQUTIL utility
This is a utility program provided to help you with backup, restore and reorganize tasks. See “Using the
CSQUTIL utility for IBM MQ for z/OS” on page 460.

The data conversion exit utility

The IBM MQ for z/OS data conversion exit utility (CSQUCVX) runs as a stand-alone utility to create data
conversion exit routines.

458 Administering IBM MQ

The change log inventory utility

The IBM MQ for z/OS change log inventory utility program (CSQJU003) runs as a stand-alone utility to
change the bootstrap data set (BSDS). You can use the utility to perform the following functions:

• Add or delete active or archive log data sets.
• Supply passwords for archive logs.

The print log map utility

The IBM MQ for z/OS print log map utility program (CSQJU004) runs as a stand-alone utility to list the
following information:

• Log data set name and log RBA association for both copies of all active and archive log data sets. If dual
logging is not active, there is only one copy of the data sets.

• Active log data sets available for new log data.
• Contents of the queue of checkpoint records in the bootstrap data set (BSDS).
• Contents of the archive log command history record.
• System and utility time stamps.

The log print utility
The log print utility program (CSQ1LOGP) is run as a stand-alone utility. You can run the utility specifying:

• A bootstrap data set (BSDS)
• Active logs (with no BSDS)
• Archive logs (with no BSDS)

The queue sharing group utility

The queue sharing group utility program (CSQ5PQSG) runs as a stand-alone utility to set up Db2 tables
and perform other Db2 tasks required for queue sharing groups.

The active log preformat utility

The active log preformat utility (CSQJUFMT) formats active log data sets before they are used by a queue
manager. If the active log data sets are preformatted by the utility, log write performance is improved on
the queue manager's first pass through the active logs.

The dead-letter queue handler utility

The dead-letter queue handler utility program (CSQUDLQH) runs as a stand-alone utility. It checks
messages that are on the dead-letter queue and processes them according to a set of rules that you
supply to the utility.

The queue load and unload utility
The queue load and unload utility copies or moves the contents of a queue, or its messages, to a file.
The utility was originally shipped as the QLOAD utility in IBM MQ Supportpac MO03. From IBM MQ 8.0 it
is integrated into the product as executable module CSQUDMSG in the SCSQLOAD library, with an alias of
QLOAD for compatibility. Sample JCL is provided as member CSQ4QLOD in SCSQPROC.

Administering IBM MQ 459

The equivalent utility for Multiplatforms is called dmpmqmsg. For details of the available options, including
the differences for z/OS, see dmpmqmsg (queue load and unload).

You can also reload messages as described in Restoring messages from a data set to a queue (LOAD) on
z/OS and Restoring messages from a data set to a queue (SLOAD) on z/OS.

Using the CSQUTIL utility for IBM MQ for z/OS
The CSQUTIL utility program is provided with IBM MQ for z/OS to help you perform backup, restoration,
and reorganization tasks, and to issue commands and process object definitions.

About this task
Use this utility program to invoke the following functions. For example, you can issue commands from
a sequential data set using the COMMAND function of the CSQUTIL utility. This function transfers the
commands, as messages, to the system-command input queue and waits for the response, which is
printed together with the original commands in SYSPRINT.

For more information about the CSQUTIL utility program, see IBM MQ utility program (CSQUTIL).

Procedure
• COMMAND

Use this function to issue MQSC commands, to record object definitions, and to make client-channel
definition files.

• COPY

Use this function to read the contents of a named IBM MQ for z/OS message queue or the contents of
all the queues of a named page set, and put them into a sequential file and retain the original queue.

• COPYPAGE

Use this function to copy whole page sets to larger page sets.
• EMPTY

Use this function to delete the contents of a named IBM MQ for z/OS message queue or the contents of
all the queues of a named page set, retaining the definitions of the queues.

• FORMAT

Use this function to format IBM MQ for z/OS page sets.
• Restoring messages from a data set to a queue (LOAD) on z/OS

Use this function to restore the contents of a named IBM MQ for z/OS message queue or the contents
of all the queues of a named page set from a sequential file created by the COPY function.

• PAGEINFO

Use this function to extract page set information from one or more page sets.
• RESETPAGE

Use this function to copy whole page sets to other page set data sets and reset the log information in
the copy.

• SCOPY

Use this function to copy the contents of a queue to a data set while the queue manager is offline.
• SDEFS

Use this function to produce a set of define commands for objects while the queue manager is offline.
• SLOAD

Use this function to restore messages from the destination data set of an earlier COPY or SCOPY
operation. SLOAD processes a single queue.

460 Administering IBM MQ

• SWITCH

Use this function to switch or query the transmission queue associated with cluster-sender channels.

Using the Command Facility on z/OS
Use the editor to enter or amend MQSC commands to be passed to the queue manager.

From the primary panel, CSQOPRIA, select option 8 Command, to start the Command Facility.

You are presented with an edit session of a sequential file, prefix.CSQUTIL.COMMANDS, used as input to
the CSQUTIL COMMAND function; see Issuing commands to IBM MQ.

You do not need to prefix commands with the command prefix string (CPF).

You can continue MQSC commands on subsequent lines by terminating the current line with the
continuation characters + or -. Alternatively, use line edit mode to provide long MQSC commands or
the values of long attribute values within the command.

line edit

To use line edit, move the cursor to the appropriate line in the edit panel and use F4 to display a single
line in a scrollable panel. A single line can be up to 32 760 bytes of data.

To leave line edit:

• F3 exit saves changes made to the line and exits
• F12 cancel returns to the edit panel discarding changes made to the line.

To discard changes made in the edit session, use F12 cancel to terminate the edit session leaving the
contents of the file unchanged. Commands are not executed.

Executing commands

When you have finished entering MQSC commands, terminate the edit session with F3 exit to save
the contents of the file and invoke CSQUTIL to pass the commands to the queue manager. The output
from command processing is held in file prefix.CSQUTIL.OUTPUT. An edit session opens automatically
on this file so that you can view the responses. Press F3 exit to exit this session and return to the main
menu.

Working with IBM MQ objects on z/OS
Many of the tasks described in this documentation involve manipulating IBM MQ objects. The object
types are queue managers, queues, process definitions, namelists, channels, client connection channels,
listeners, services, and authentication information objects.

• Defining simple queue objects
• Defining other types of objects
• Working with object definitions
• Working with namelists

Defining simple queue objects
To define a new object, use an existing definition as the basis for it. You can do this in one of three ways:

• By selecting an object that is a member of a list displayed as a result of options selected on the initial
panel. You then enter action type 2 (Define like) in the action field next to the selected object. Your
new object has the attributes of the selected object, except the disposition. You can then change any
attributes in your new object as you require.

• On the initial panel, select the Define like action type, enter the type of object that you are defining in
the Object type field, and enter the name of a specific existing object in the Name field. Your new object
has the same attributes as the object you named in the Name field, except the disposition. You can then
change any attributes in your new object definition as you require.

Administering IBM MQ 461

• By selecting the Define like action type, specifying an object type and then leaving the Name field
blank. You can then define your new object and it has the default attributes defined for your installation.
You can then change any attributes in your new object definition as you require.

Note: You do not enter the name of the object you are defining on the initial panel, but on the Define
panel you are presented with.

The following example demonstrates how to define a local queue using an existing queue as a template.

Defining a local queue

To define a local queue object from the operations and control panels, use an existing queue definition
as the basis for your new definition. There are several panels to complete. When you have completed
all the panels and you are satisfied that the attributes are correct, press Enter to send your definition
to the queue manager, which then creates the actual queue.

Use the Define like action either on the initial panel or against an object entry in a list displayed as a
result of options selected on the initial panel.

For example, starting from the initial panel, complete these fields:

Action 2 (Define like)

Object type QLOCAL

Name QUEUE.YOU.LIKE. This is the name of the queue that provides the attributes for
your new queue.

Press Enter to display the Define a Local Queue panel. The queue name field is blank so that you can
supply the name for the new queue. The description is that of the queue upon which you are basing
this new definition. Over type this field with your own description for the new queue.

The values in the other fields are those of the queue upon which you are basing this new queue,
except the disposition. You can over type these fields as you require. For example, type Y in the Put
enabled field (if it is not already Y) if suitably authorized applications can put messages on this queue.

You get field help by moving the cursor into a field and pressing function key F1. Field help provides
information about the values that can be used for each attribute.

When you have completed the first panel, press function key F8 to display the second panel.

Hints:

1. Do not press Enter at this stage, otherwise the queue will be created before you have a chance to
complete the remaining fields. (If you do press Enter prematurely, do not worry; you can always
alter your definition later on.)

2. Do not press function keys F3 or F12, or the data you typed will be lost.

Press function key F8 repeatedly to see and complete the remaining panels, including the trigger
definition, event control, and backout reporting panels.

When your local queue definition is complete

When your definition is complete, press Enter to send the information to the queue manager for
processing. The queue manager creates the queue according to the definition you have supplied. If
you do not want the queue to be created, press function key F3 to exit and cancel the definition.

Defining other types of objects
To define other types of object, use an existing definition as the base for your new definition as explained
in Defining a local queue.

Use the Define like action either on the initial panel or against an object entry in a list displayed as a
result of options selected on the initial panel.

462 Administering IBM MQ

For example, starting from the initial panel, complete these fields:

Action 2 (Define like)

Object type QALIAS, NAMELIST, PROCESS, CHANNEL, and other resource objects.

Name Leave blank or enter the name of an existing object of the same type.

Press Enter to display the corresponding DEFINE panels. Complete the fields as required and then press
Enter again to send the information to the queue manager.

Like defining a local queue, defining another type of object generally requires several panels to be
completed. Defining a namelist requires some additional work, as described in “Working with namelists”
on page 463.

Working with object definitions

When an object has been defined, you can specify an action in the Action field, to alter, display, or manage
it.

In each case, you can either:

• Select the object you want to work with from a list displayed as a result of options selected on the initial
panel. For example, having entered 1 in the Action field to display objects, Queue in the Object type
field, and * in the Name field, you are presented with a list of all queues defined in the system. You can
then select from this list the queue with which you need to work.

• Start from the initial panel, where you specify the object you are working with by completing the Object
type and Name fields.

Altering an object definition
To alter an object definition, specify action 3 and press Enter to see the ALTER panels. These panels
are very similar to the DEFINE panels. You can alter the values you want. When your changes are
complete, press Enter to send the information to the queue manager.

Displaying an object definition
If you want to see the details of an object without being able to change them, specify action 1 and
press Enter to see the DISPLAY panels. Again, these panels are similar to the DEFINE panels except
that you cannot change any of the fields. Change the object name to display details of another object.

Deleting an object
To delete an object, specify action 4 (Manage) and the Delete action is one of the actions presented
on the resulting menu. Select the Delete action.

You are asked to confirm your request. If you press function key F3 or F12, the request is canceled. If
you press Enter, the request is confirmed and passed to the queue manager. The object you specified
is then deleted.

Note: You cannot delete most types of channel object unless the channel initiator is started.

Working with namelists

When working with namelists, proceed as you would for other objects.

For the actions DEFINE LIKE or ALTER, press function key F11 to add names to the list or to change the
names in the list. This involves working with the ISPF editor and all the normal ISPF edit commands are
available. Enter each name in the namelist on a separate line.

When you use the ISPF editor in this way, the function key settings are the normal ISPF settings, and not
those used by the other operations and control panels.

If you need to specify lowercase names in the list, specify CAPS(OFF) on the editor panel command line.
When you do this, all the namelists that you edit in the future are in lowercase until you specify CAPS(ON).

Administering IBM MQ 463

When you have finished editing the namelist, press function key F3 to end the ISPF edit session. Then
press Enter to send the changes to the queue manager.

Attention: If you do not press Enter at this stage but press function key F3 instead, you lose any updates
that you have typed in.

Implementing the system using multiple cluster transmission
queues

It makes no difference if the channel is used in a single cluster, or an overlapping cluster. When the
channel is selected and started, the channel selects the transmission queue depending on the definitions.

Procedure
• If you are using the DEFCLXQ option, see “Using the automatic definition of queues and switching” on

page 464.
• If you are using a staged approach, see “Changing your cluster-sender channels using a phased

approach” on page 464.

Using the automatic definition of queues and switching
Use this option if you are planning on using the DEFCLXQ option. There will be a queue created for every
channel, and every new channel.

Procedure
1. Review the definition of the SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE and change the attributes if

required.
This queue is defined in member SCSQPROC(csq4insx).

2. Create the SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE model queue.
3. Apply security policies for this model queue, and the SYSTEM.CLUSTER.TRANSMIT.** queues.

For z/OS the channel initiator started task user ID needs:

• Control access to CLASS(MQADMIN) for

ssid.CONTEXT.SYSTEM.CLUSTER.TRANSMIT.channelname

• Update access to CLASS(MQQUEUE) for

ssid.SYSTEM.CLUSTER.TRANSMIT.channelname

Changing your cluster-sender channels using a phased approach
Use this option if you are planning on using a staged approach. This process allows you to move to the
new cluster-sender channels at various times to suit the needs of your enterprise.

Before you begin
• Identify your business applications, and which channels are used.
• For the queues you use, display the clusters they are in.
• Display the channels to show the connection names, the names of the remote queue managers, and

which clusters the channel supports.

464 Administering IBM MQ

About this task
• Create a transmission queue. On z/OS you might want to consider which page set you use for the queue.
• Set up security policy for the queue.
• Change any queue monitoring to include this queue name.
• Decide which channels are to use this transmission queue. The channels should have a similar name, so

generic characters ' * ' in the CLCHNAME identify the channel.
• When you are ready to use the new function, alter the transmission queue to specify the name of the

channels to use this transmission queue. For example CLUSTER1.TOPARIS, or CLUSTER1.* or *.TOPARIS
• Start the channels

Procedure
1. Use the DIS CLUSQMGR(xxxx) XMITQ command to display the cluster sender channels defined in

the cluster, where xxxx is the name of the remote queue manager.
2. Set up the security profile for the transmission queue and give the queue access to the channel

initiator.
3. Define the transmission queue to be used, and specify USAGE(XMITQ) INDXTYPE(CORRELID) SHARE

and CLCHNAME(value)
The channel initiator started task user ID needs the following access:

alter class(MQADMIN) ssid.CONTEXT.SYSTEM.CLUSTER.TRANSMIT.channel
update class(MQQUEUE ssid.SYSTEM.CLUSTER.TRANSMIT.channel

and the user ID using the SWITCH command needs the following access:

alter cl(MQADMIN) ssid.QUEUE.queuename

4. Stop and restart the channels.

The channel change occurs when the channel starts using an MQSC command, or you use CSQUTIL.
You can identify which channels need to be restarted using the SWITCH CHANNEL(*)STATUS of
CSQUTIL

If you have problems when the channel is started, stop the channel, resolve the problems, and restart
the channel.

Note that you can change the CLCHNAME attribute as often as you need to.

The value of CLCHNAME used is the one when the channel is started, so you can change the
CLCHNAME definition while the channel continues to use the definitions from the time that it started.
The channel uses the new definition when it is restarted.

Undoing a change to a transmission queue on z/OS
You need to have a process to backout a change if it the results are not as you expect.

What can go wrong?
If the new transmission queue is not what you expect:

1. Check the CLCHNAME is as you expect
2. Review the job log to check if the switch process has finished. If not, wait and check the new

transmission queue of the channel later.

If you are using multiple cluster transmission queues, it is important that you design the transmission
queues definitions explicitly and avoid complicated overlapping configuration. In this way, you can make
sure that if there are problems, you can go back to the original queues and configuration.

Administering IBM MQ 465

If you encounter problems during the move to using a different transmission queue, you must resolve any
problems before you can proceed with the change.

An existing change request must complete before a new change request can be made. For example, you:

1. Define a new transmission queue with a maximum depth of one and there are 10 messages waiting to
be sent.

2. Change the transmission queue to specify the channel name in the CLCHNAME parameter.
3. Stop and restart the channel. The attempt to move the messages fails and reports the problems.
4. Change the CLCHNAME parameter on the transmission queue to be blank.
5. Stop and restart the channel. The channel continues to try and complete the original request, so the

channel continues to use the new transmission queue.
6. Need to resolve the problems and restart the channel so the moving of messages completes

successfully.

Next time the channel is restarted it picks up any changes, so if you had set CLCHNAME to blanks, the
channel will not use the specified transmission queue.

In this example, changing the CLCHNAME on the transmission queue to blanks does not necessarily mean
that the channel uses the SYSTEM.CLUSTER.TRANSMIT queue, as there might be other transmission
queues whose CLCHNAME parameter match the channel name. For example, a generic name, or the
queue manager attribute DEFCLXQ might be set to channel, so the channel uses a dynamic queue instead
of the SYSTEM.CLUSTER.TRANSMIT queue.

Writing programs to administer IBM MQ for z/OS
You can write your own application programs to administer a queue manager. Use this topic to understand
the requirements for writing your own administration programs.

Start of General-use programming interface information

This set of topics contains hints and guidance to enable you to issue IBM MQ commands from an IBM
MQ application program.

Note: In this topic, the MQI calls are described using C-language notation. For typical invocations of
the calls in the COBOL, PL/I, and assembler languages, see Function calls.

Understanding how it all works

In outline, the procedure for issuing commands from an application program is as follows:

1. Build an IBM MQ command into a type of IBM MQ message called a request message. The
command can be in MQSC or PCF format.

2. Send (use MQPUT) this message to a special queue called the system-command input queue. The
IBM MQ command processor runs the command.

3. Retrieve (use MQGET) the results of the command as reply messages on the reply-to queue. These
messages contain the user messages that you need to determine whether your command was
successful and, if it was, what the results were.

Then it is up to your application program to process the results.

This set of topics contains:

Preparing queues for administration programs
Administration programs require a number of predefined queues for system command input and receiving
responses.

This section applies to commands in the MQSC format. For the equivalent in PCF, see “Using IBM MQ
Programmable Command Formats” on page 26.

466 Administering IBM MQ

Before you can issue any MQPUT or MQGET calls, you must first define, and then open, the queues you are
going to use.

Defining the system-command input queue

The system-command input queue is a local queue called SYSTEM.COMMAND.INPUT. The supplied
CSQINP2 initialization data set, thlqual.SCSQPROC(CSQ4INSG), contains a default definition for the
system-command input queue. For compatibility with IBM MQ on other platforms, an alias of this
queue, called SYSTEM.ADMIN.COMMAND.QUEUE is also supplied. See Sample definitions supplied
with IBM MQ for more information.

Defining a reply-to queue

You must define a reply-to queue to receive reply messages from the IBM MQ command processor.
It can be any queue with attributes that allow reply messages to be put on it. However, for normal
operation, specify these attributes:

• USAGE(NORMAL)
• NOTRIGGER (unless your application uses triggering)

Avoid using persistent messages for commands, but if you choose to do so, the reply-to queue must
not be a temporary dynamic queue.

The supplied CSQINP2 initialization data set, thlqual.SCSQPROC(CSQ4INSG), contains a definition for
a model queue called SYSTEM.COMMAND.REPLY.MODEL. You can use this model to create a dynamic
reply-to queue.

Note: Replies generated by the command processor can be up to 15 000 bytes in length.

If you use a permanent dynamic queue as a reply-to queue, your application should allow time for all
PUT and GET operations to complete before attempting to delete the queue, otherwise MQRC2055
(MQRC_Q_NOT_EMPTY) can be returned. If this occurs, try the queue deletion again after a few
seconds.

Opening the system-command input queue

Before you can open the system-command input queue, your application program must be connected
to your queue manager. Use the MQI call MQCONN or MQCONNX to do this.

Then use the MQI call MQOPEN to open the system-command input queue. To use this call:

1. Set the Options parameter to MQOO_OUTPUT
2. Set the MQOD object descriptor fields as follows:
ObjectType

MQOT_Q (the object is a queue)
ObjectName

SYSTEM.COMMAND.INPUT
ObjectQMgrName

If you want to send your request messages to your local queue manager, leave this field blank.
This means that your commands are processed locally.

If you want your IBM MQ commands to be processed on a remote queue manager, put its
name here. You must also have the correct queues and links set up, as described in Distributed
queuing and clusters.

Opening a reply-to queue

To retrieve the replies from an IBM MQ command, you must open a reply-to queue. One way of doing
this is to specify the model queue, SYSTEM.COMMAND.REPLY.MODEL in an MQOPEN call, to create a
permanent dynamic queue as the reply-to queue. To use this call:

Administering IBM MQ 467

1. Set the Options parameter to MQOO_INPUT_SHARED
2. Set the MQOD object descriptor fields as follows:
ObjectType

MQOT_Q (the object is a queue)
ObjectName

The name of the reply-to queue. If the queue name you specify is the name of a model queue
object, the queue manager creates a dynamic queue.

ObjectQMgrName
To receive replies on your local queue manager, leave this field blank.

DynamicQName
Specify the name of the dynamic queue to be created.

Using the command server
The command server is an IBM MQ component that works with the command processor component.
You can send formatted messages to the command server which interprets the messages, runs the
administration requests, and sends responses back to your administration application.

The command server reads request messages from the system-command input queue, verifies them,
and passes the valid ones as commands to the command processor. The command processor processes
the commands and puts any replies as reply messages on to the reply-to queue that you specify. The
first reply message contains the user message CSQN205I. See “Interpreting the reply messages from
the command server” on page 472 for more information. The command server also processes channel
initiator and queue sharing group commands, wherever they are issued from.

Identifying the queue manager that processes your commands

The queue manager that processes the commands you issue from an administration program is the
queue manager that owns the system-command input queue that the message is put onto.

Starting the command server

Normally, the command server is started automatically when the queue manager is started. It
becomes available as soon as the message CSQ9022I 'START QMGR' NORMAL COMPLETION is
returned from the START QMGR command. The command server is stopped when all the connected
tasks have been disconnected during the system termination phase.

You can control the command server yourself using the START CMDSERV and STOP CMDSERV
commands. To prevent the command server starting automatically when IBM MQ is restarted, you
can add a STOP CMDSERV command to your CSQINP1 or CSQINP2 initialization data sets. However,
this is not recommended as it prevents any channel initiator or queue sharing group commands being
processed.

The STOP CMDSERV command stops the command server as soon as it has finished processing the
current message, or immediately if no messages are being processed.

If the command server has been stopped by a STOP CMDSERV command in the program, no other
commands from the program can be processed. To restart the command server, you must issue a
START CMDSERV command from the z/OS console.

If you stop and restart the command server while the queue manager is running, all the messages that
are on the system-command input queue when the command server stops are processed when the
command server is restarted. However, if you stop and restart the queue manager after the command
server is stopped, only the persistent messages on the system-command input queue are processed
when the command server is restarted. All nonpersistent messages on the system-command input
queue are lost.

Sending commands to the command server

468 Administering IBM MQ

For each command, you build a message containing the command, then put it onto the system-
command input queue.

Building a message that includes IBM MQ commands

You can incorporate IBM MQ commands in an application program by building request messages that
include the required commands. For each such command you:

1. Create a buffer containing a character string representing the command.
2. Issue an MQPUT call specifying the buffer name in the buffer parameter of the call.

The simplest way to do this in C is to define a buffer using 'char'. For example:

char message_buffer[] = "ALTER QLOCAL(SALES) PUT(ENABLED)";

When you build a command, use a null-terminated character string. Do not specify a command prefix
string (CPF) at the start of a command defined in this way. This means that you do not have to alter
your command scripts if you want to run them on another queue manager. However, you must take
into account that a CPF is included in any response messages that are put onto the reply-to queue.

The command server folds all lowercase characters to uppercase unless they are inside quotation
marks.

Commands can be any length up to a maximum 32 762 characters.

Putting messages on the system-command input queue

Use the MQPUT call to put request messages containing commands on the system-command input
queue. In this call you specify the name of the reply-to queue that you have already opened.

To use the MQPUT call:

1. Set these MQPUT parameters:
Hconn

The connection handle returned by the MQCONN or MQCONNX call.
Hobj

The object handle returned by the MQOPEN call for the system-command input queue.
BufferLength

The length of the formatted command.
Buffer

The name of the buffer containing the command.
2. Set these MQMD fields:
MsgType

MQMT_REQUEST
Format

MQFMT_STRING or MQFMT_NONE

If you are not using the same code page as the queue manager, set CodedCharSetId as
appropriate and set MQFMT_STRING, so that the command server can convert the message.
Do not set MQFMT_ADMIN, as that causes your command to be interpreted as PCF.

ReplyToQ
Name of your reply-to queue.

ReplyToQMgr
If you want replies sent to your local queue manager, leave this field blank. If you want your
IBM MQ commands to be sent to a remote queue manager, put its name here. You must also
have the correct queues and links set up, as described in Distributed queuing and clusters.

Administering IBM MQ 469

3. Set any other MQMD fields, as required. You should normally use nonpersistent messages for
commands.

4. Set any PutMsgOpts options, as required.

If you specify MQPMO_SYNCPOINT (the default), you must follow the MQPUT call with a syncpoint
call.

Using MQPUT1 and the system-command input queue
If you want to put just one message on the system-command input queue, you can use the MQPUT1
call. This call combines the functions of an MQOPEN, followed by an MQPUT of one message, followed
by an MQCLOSE, all in one call. If you use this call, modify the parameters accordingly. See Putting one
message on a queue using the MQPUT1 call for details.

Retrieving replies to your commands
The command server sends a response to a reply queue for each request message it receives. Any
administration application must receive, and handle the reply messages.

When the command processor processes your commands, any reply messages are put onto the reply-
to queue specified in the MQPUT call. The command server sends the reply messages with the same
persistence as the command message it received.

Waiting for a reply

Use the MQGET call to retrieve a reply from your request message. One request message can produce
several reply messages. For details, see “Interpreting the reply messages from the command server”
on page 472.

You can specify a time interval that an MQGET call waits for a reply message to be generated. If you do
not get a reply, use the checklist beginning in topic “If you do not receive a reply” on page 472.

To use the MQGET call:

1. Set these parameters:
Hconn

The connection handle returned by the MQCONN or MQCONNX call.
Hobj

The object handle returned by the MQOPEN call for the reply-to queue.
Buffer

The name of the area to receive the reply.
BufferLength

The length of the buffer to receive the reply. This must be a minimum of 80 bytes.
2. To ensure that you only get the responses from the command that you issued, you must specify

the appropriate MsgId and CorrelId fields. These depend on the report options, MQMD_REPORT,
you specified in the MQPUT call:

MQRO_NONE
Binary zero, '00...00' (24 nulls).

MQRO_NEW_MSG_ID
Binary zero, '00...00' (24 nulls).

This is the default if none of these options has been specified.

MQRO_PASS_MSG_ID
The MsgId from the MQPUT.

MQRO_NONE
The MsgId from the MQPUT call.

470 Administering IBM MQ

MQRO_COPY_MSG_ID_TO_CORREL_ID
The MsgId from the MQPUT call.

This is the default if none of these options has been specified.

MQRO_PASS_CORREL_ID
The CorrelId from the MQPUT call.

For more details on report options, see Report options and message flags.
3. Set the following GetMsgOpts fields:
Options

MQGMO_WAIT

If you are not using the same code page as the queue manager, set MQGMO_CONVERT, and set
CodedCharSetId as appropriate in the MQMD.

WaitInterval
For replies from the local queue manager, try 5 seconds. Coded in milliseconds, this becomes
5 000. For replies from a remote queue manager, and channel control and status commands,
try 30 seconds. Coded in milliseconds, this becomes 30 000.

Discarded messages

If the command server finds that a request message is not valid, it discards this message and writes
the message CSQN205I to the named reply-to queue. If there is no reply-to queue, the CSQN205I
message is put onto the dead-letter queue. The return code in this message shows why the original
request message was not valid:

00D5020F It is not of type MQMT_REQUEST.

00D50210 It has zero length.

00D50212 It is longer than 32 762 bytes.

00D50211 It contains all blanks.

00D5483E It needed converting, but Format was not MQFMT_STRING.

Other See Command server codes

The command server reply message descriptor

For any reply message, the following MQMD message descriptor fields are set:

MsgType MQMT_REPLY

Feedback MQFB_NONE

Encoding MQENC_NATIVE

Priority As for the MQMD in the message you issued.

Persistenc
e

As for the MQMD in the message you issued.

CorrelId Depends on the MQPUT report options.

ReplyToQ None.

The command server sets the Options field of the MQPMO structure to MQPMO_NO_SYNCPOINT.
This means that you can retrieve the replies as they are created, rather than as a group at the next
syncpoint.

Administering IBM MQ 471

Interpreting the reply messages from the command server
Each request message correctly processed by IBM MQ produces at least two reply messages. Each reply
message contains a single IBM MQ user message.

The length of a reply depends on the command that was issued. The longest reply you can get is from a
DISPLAY NAMELIST command, and that can be up to 15 000 bytes in length.

The first user message, CSQN205I, always contains:

• A count of the replies (in decimal), which you can use as a counter in a loop to get the rest of the replies.
The count includes this first message.

• The return code from the command preprocessor.
• A reason code, which is the reason code from the command processor.

This message does not contain a CPF.

For example:

CSQN205I COUNT= 4, RETURN=0000000C, REASON=00000008

The COUNT field is 8 bytes long and is right-justified. It always starts at position 18, that is, immediately
after COUNT=. The RETURN field is 8 bytes long in character hexadecimal and is immediately after
RETURN= at position 35. The REASON field is 8 bytes long in character hexadecimal and is immediately
after REASON= at position 52.

If the RETURN= value is 00000000 and the REASON= value is 00000004, the set of reply messages is
incomplete. After retrieving the replies indicated by the CSQN205I message, issue a further MQGET call to
wait for a further set of replies. The first message in the next set of replies is again CSQN205I, indicating
how many replies there are, and whether there are still more to come.

See the IBM MQ for z/OS messages, completion, and reason codes documentation for more details about
the individual messages.

If you are using a non-English language feature, the text and layout of the replies are different from those
shown here. However, the size and position of the count and return codes in message CSQN205I are the
same.

If you do not receive a reply
There are a series of steps you can take if you do not receive a response to request to the command
server.

If you do not receive a reply to your request message, work through this checklist:

• Is the command server running?
• Is the WaitInterval long enough?
• Are the system-command input and reply-to queues correctly defined?
• Were the MQOPEN calls to these queues successful?
• Are both the system-command input and reply-to queues enabled for MQPUT and MQGET calls?
• Have you considered increasing the MAXDEPTH and MAXMSGL attributes of your queues?
• Are you are using the CorrelId and MsgId fields correctly?
• Is the queue manager still running?
• Was the command built correctly?
• Are all your remote links defined and operating correctly?
• Were the MQPUT calls correctly defined?
• Has the reply-to queue been defined as a temporary dynamic queue instead of a permanent dynamic

queue? (If the request message is persistent, you must use a permanent dynamic queue for the reply.)

472 Administering IBM MQ

When the command server generates replies but cannot write them to the reply-to queue that you
specify, it writes them to the dead-letter queue.

Passing commands using MGCRE
With appropriate authorization, an application program can make requests to multiple queue managers
using a z/OS service routine.

If you have the correct authorization, you can pass IBM MQ commands from your program to multiple
queue managers by the MGCRE (SVC 34) z/OS service. See the z/OS MVS Programming: Authorized
Assembler Services Guide for more information.

The value of the CPF identifies the particular queue manager to which the command is directed. For
information about CPFs, see User IDs for command security and command resource security and “Issuing
queue manager commands on z/OS” on page 435.

If you use MGCRE, you can use a Command and Response Token (CART) to get the direct responses to the
command.

Examples of commands and their replies
Use this topic as a series of examples of commands to the command server and the responses from the
command server.

Here are some examples of commands that could be built into IBM MQ messages, and the user messages
that are the replies. Unless otherwise stated, each line of the reply is a separate message.

• Messages from a DEFINE command
• Messages from a DELETE command
• Messages from DISPLAY commands
• Messages from commands with CMDSCOPE
• Messages from commands that generate commands with CMDSCOPE

Messages from a DEFINE command

The following command:

DEFINE QLOCAL(Q1)

produces these messages:

CSQN205I COUNT= 2, RETURN=00000000, REASON=00000000
CSQ9022I +CSQ1 CSQMMSGP ' DEFINE QLOCAL' NORMAL COMPLETION

These reply messages are produced on normal completion.

Messages from a DELETE command

The following command:

DELETE QLOCAL(Q2)

produces these messages:

Administering IBM MQ 473

https://www.ibm.com/docs/en/zos/3.1.0?topic=mvs-zos-programming-authorized-assembler-services-guide
https://www.ibm.com/docs/en/zos/3.1.0?topic=mvs-zos-programming-authorized-assembler-services-guide

CSQN205I COUNT= 4, RETURN=0000000C, REASON=00000008
CSQM125I +CSQ1 CSQMUQLC QLOCAL (Q2) QSGDISP(QMGR) WAS NOT FOUND
CSQM090E +CSQ1 CSQMUQLC FAILURE REASON CODE X'00D44002'
CSQ9023E +CSQ1 CSQMUQLC ' DELETE QLOCAL' ABNORMAL COMPLETION

These messages indicate that a local queue called Q2 does not exist.

Messages from DISPLAY commands

The following examples show the replies from some DISPLAY commands.

Finding out the name of the dead-letter queue

If you want to find out the name of the dead-letter queue for a queue manager, issue this
command from an application program:

DISPLAY QMGR DEADQ

The following three user messages are returned, from which you can extract the required name:

CSQN205I COUNT= 3, RETURN=00000000, REASON=00000000
CSQM409I +CSQ1 QMNAME(CSQ1) DEADQ(SYSTEM.DEAD.QUEUE)
CSQ9022I +CSQ1 CSQMDRTS ' DISPLAY QMGR' NORMAL COMPLETION

Messages from the DISPLAY QUEUE command

The following examples show how the results from a command depend on the attributes specified
in that command.

Example 1

You define a local queue using the command:

DEFINE QLOCAL(Q1) DESCR('A sample queue') GET(ENABLED) SHARE

If you issue the following command from an application program:

DISPLAY QUEUE(Q1) SHARE GET DESCR

these three user messages are returned:

CSQN205I COUNT= 3, RETURN=00000000, REASON=00000000
CSQM401I +CSQ1 QUEUE(Q1) TYPE(
QLOCAL) QSGDISP(QMGR)
DESCR(A sample queue
) SHARE GET(ENABLED)
CSQ9022I +CSQ1 CSQMDMSG ' DISPLAY QUEUE' NORMAL COMPLETION

Note: The second message, CSQM401I, is shown here occupying four lines.

474 Administering IBM MQ

Example 2

Two queues have names beginning with the letter A:

• A1 is a local queue with its PUT attribute set to DISABLED.
• A2 is a remote queue with its PUT attribute set to ENABLED.

If you issue the following command from an application program:

DISPLAY QUEUE(A*) PUT

these four user messages are returned:

CSQN205I COUNT= 4, RETURN=00000000, REASON=00000000
CSQM401I +CSQ1 QUEUE(A1) TYPE(
QLOCAL) QSGDISP(QMGR)
PUT(DISABLED)
CSQM406I +CSQ1 QUEUE(A2) TYPE(
QREMOTE) PUT(ENABLED)
CSQ9022I +CSQ1 CSQMDMSG ' DISPLAY QUEUE' NORMAL COMPLETION

Note: The second and third messages, CSQM401I and CSQM406I, are shown here occupying
three and two lines.

Messages from the DISPLAY NAMELIST command

You define a namelist using the command:

DEFINE NAMELIST(N1) NAMES(Q1,SAMPLE_QUEUE)

If you issue the following command from an application program:

DISPLAY NAMELIST(N1) NAMES NAMCOUNT

the following three user messages are returned:

CSQN205I COUNT= 3, RETURN=00000000, REASON=00000000
CSQM407I +CSQ1 NAMELIST(N1) QS
GDISP(QMGR) NAMCOUNT(2) NAMES(Q1
,SAMPLE_QUEUE)
CSQ9022I +CSQ1 CSQMDMSG ' DISPLAY NAMELIST' NORMAL COMPLETION

Note: The second message, CSQM407I, is shown here occupying three lines.

Messages from commands with CMDSCOPE

The following examples show the replies from commands that have been entered with the CMDSCOPE
attribute.

Messages from the ALTER PROCESS command

The following command:

Administering IBM MQ 475

ALT PRO(V4) CMDSCOPE(*)

produces the following messages:

CSQN205I COUNT= 2, RETURN=00000000, REASON=00000004
CSQN137I !MQ25 'ALT PRO' command accepted for CMDSCOPE(*), sent to 2
CSQN205I COUNT= 5, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'ALT PRO' command responses from MQ26
CSQM125I !MQ26 CSQMMSGP PROCESS(V4) QSGDISP(QMGR) WAS NOT FOUND
CSQM090E !MQ26 CSQMMSGP FAILURE REASON CODE X'00D44002'
CSQ9023E !MQ26 CSQMMSGP ' ALT PRO' ABNORMAL COMPLETION
CSQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'ALT PRO' command responses from MQ25
CSQ9022I !MQ25 CSQMMSGP ' ALT PRO' NORMAL COMPLETION
CSQN205I COUNT= 2, RETURN=0000000C, REASON=00000008
CSQN123E !MQ25 'ALT PRO' command for CMDSCOPE(*) abnormal completion

These messages tell you that the command was entered on queue manager MQ25 and sent to
two queue managers (MQ25 and MQ26). The command was successful on MQ25 but the process
definition did not exist on MQ26, so the command failed on that queue manager.

Messages from the DISPLAY PROCESS command

The following command:

DIS PRO(V*) CMDSCOPE(*)

produces the following messages:

CSQN205I COUNT= 2, RETURN=00000000, REASON=00000004
CSQN137I !MQ25 'DIS PRO' command accepted for CMDSCOPE(*), sent to 2
CSQN205I COUNT= 5, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'DIS PRO' command responses from MQ26
CSQM408I !MQ26 PROCESS(V2) QSGDISP(COPY)
CSQM408I !MQ26 PROCESS(V3) QSGDISP(QMGR)
CSQ9022I !MQ26 CSQMDRTS ' DIS PROCESS' NORMAL COMPLETION
CSQN205I COUNT= 7, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'DIS PRO' command responses from MQ25
CSQM408I !MQ25 PROCESS(V2) QSGDISP(COPY)
CSQM408I !MQ25 PROCESS(V2) QSGDISP(GROUP)
CSQM408I !MQ25 PROCESS(V3) QSGDISP(QMGR)
CSQM408I !MQ25 PROCESS(V4) QSGDISP(QMGR)
CSQ9022I !MQ25 CSQMDRTS ' DIS PROCESS' NORMAL COMPLETION
CSQN205I COUNT= 2, RETURN=00000000, REASON=00000000
CSQN122I !MQ25 'DIS PRO' command for CMDSCOPE(*) normal completion

These messages tell you that the command was entered on queue manager MQ25 and sent to
two queue managers (MQ25 and MQ26). Information is displayed about all the processes on each
queue manager with names starting with the letter V.

Messages from the DISPLAY CHSTATUS command

The following command:

DIS CHS(VT) CMDSCOPE(*)

produces the following messages:

476 Administering IBM MQ

CSQN205I COUNT= 2, RETURN=00000000, REASON=00000004
CSQN137I !MQ25 'DIS CHS' command accepted for CMDSCOPE(*), sent to 2
CSQN205I COUNT= 4, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'DIS CHS' command responses from MQ25
CSQM422I !MQ25 CHSTATUS(VT) CHLDISP(PRIVATE) CONNAME() CURRENT STATUS(STOPPED)
CSQ9022I !MQ25 CSQXDRTS ' DIS CHS' NORMAL COMPLETION
CSQN205I COUNT= 4, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'DIS CHS' command responses from MQ26
CSQM422I !MQ26 CHSTATUS(VT) CHLDISP(PRIVATE) CONNAME() CURRENT STATUS(STOPPED)
CSQ9022I !MQ26 CSQXDRTS ' DIS CHS' NORMAL COMPLETION
CSQN205I COUNT= 2, RETURN=00000000, REASON=00000000
CSQN122I !MQ25 'DIS CHS' command for CMDSCOPE(*) normal completion

These messages tell you that the command was entered on queue manager MQ25 and sent to two
queue managers (MQ25 and MQ26). Information is displayed about channel status on each queue
manager.

Messages from the STOP CHANNEL command

The following command:

STOP CHL(VT) CMDSCOPE(*)

produces these messages:

CSQN205I COUNT= 2, RETURN=00000000, REASON=00000004
CSQN137I !MQ25 'STOP CHL' command accepted for CMDSCOPE(*), sent to 2
CSQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'STOP CHL' command responses from MQ25
CSQM134I !MQ25 CSQMTCHL STOP CHL(VT) COMMAND ACCEPTED
SQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'STOP CHL' command responses from MQ26
CSQM134I !MQ26 CSQMTCHL STOP CHL(VT) COMMAND ACCEPTED
CSQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'STOP CHL' command responses from MQ26
CSQ9022I !MQ26 CSQXCRPS ' STOP CHL' NORMAL COMPLETION
CSQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'STOP CHL' command responses from MQ25
CSQ9022I !MQ25 CSQXCRPS ' STOP CHL' NORMAL COMPLETION
CSQN205I COUNT= 2, RETURN=00000000, REASON=00000000
CSQN122I !MQ25 'STOP CHL' command for CMDSCOPE(*) normal completion

These messages tell you that the command was entered on queue manager MQ25 and sent to two
queue managers (MQ25 and MQ26). Channel VT was stopped on each queue manager.

Messages from commands that generate commands with CMDSCOPE

The following command:

DEF PRO(V2) QSGDISP(GROUP)

produces these messages:

Administering IBM MQ 477

CSQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQM122I !MQ25 CSQMMSGP ' DEF PRO' COMPLETED FOR QSGDISP(GROUP)
CSQN138I !MQ25 'DEFINE PRO' command generated for CMDSCOPE(*), sent to 2
CSQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'DEFINE PRO' command responses from MQ25
CSQ9022I !MQ25 CSQMMSGP ' DEFINE PROCESS' NORMAL COMPLETION
CSQN205I COUNT= 3, RETURN=00000000, REASON=00000004
CSQN121I !MQ25 'DEFINE PRO' command responses from MQ26
CSQ9022I !MQ26 CSQMMSGP ' DEFINE PROCESS' NORMAL COMPLETION
CSQN205I COUNT= 2, RETURN=00000000, REASON=00000000
CSQN122I !MQ25 'DEFINE PRO' command for CMDSCOPE(*) normal completion

These messages tell you that the command was entered on queue manager MQ25. When the object
was created on the shared repository, another command was generated and sent to all the active
queue managers in the queue sharing group (MQ25 and MQ26).

Managing IBM MQ resources on z/OS
Use the links in this topic to find out how to manage the resources used by IBM MQ for z/OS, for example,
managing log files, data sets, page sets, buffer pools, and coupling facility structures.

Use the following links for details of the different administrative tasks you might have to complete while
using IBM MQ for z/OS:

• “Managing the logs” on page 479
• “Managing the bootstrap data set (BSDS)” on page 487
• “Managing page sets” on page 495
• “How to back up and recover page sets” on page 501
• “How to back up and restore queues using CSQUTIL” on page 505
• “Managing buffer pools” on page 505
• “Managing queue sharing groups and shared queues on z/OS” on page 506

Related concepts
IBM MQ for z/OS concepts
“Administering IBM MQ for z/OS” on page 435
IBM MQ for z/OS can be controlled and managed by MQSC and PCF commands, by a set of utilities and
programs provided with the product, and by authorized applications.
“Sources from which you can issue MQSC and PCF commands on IBM MQ for z/OS” on page 436
You can issue MQSC and PCF commands from the IBM MQ for z/OS console, the initialization input data
sets, the batch utility CSQUTIL, or from authorized applications. Not all commands can be issued from all
these sources.
“Recovery and restart on z/OS” on page 516
Use this topic to understand the recovery and restart mechanisms used by IBM MQ.
Related tasks
Planning your IBM MQ environment on z/OS
Configuring queue managers on z/OS
IBM MQ utilities on z/OS reference
Related reference
“Using the IBM MQ for z/OS utilities” on page 458
IBM MQ for z/OS provides a set of utility programs that you can use to help with system administration.
Programmable command formats reference

478 Administering IBM MQ

Managing the logs
Use this topic to understand how to manage your IBM MQ log files, including the log archiving process,
using log record compression, log record recovery, and printing log records.

This topic describes the tasks involved in managing the IBM MQ logs. It contains these sections:

Archiving logs with the ARCHIVE LOG command
An authorized operator can archive the current IBM MQ active log data sets whenever required using the
ARCHIVE LOG command.

When you issue the ARCHIVE LOG command, IBM MQ truncates the current active log data sets, then
runs an asynchronous offload process, and updates the BSDS with a record of the offload process.

The ARCHIVE LOG command has a MODE(QUIESCE) option. With this option, IBM MQ jobs and users are
quiesced after a commit point, and the resulting point of consistency is captured in the current active log
before it is offloaded.

Consider using the MODE(QUIESCE) option when planning a backup strategy for off site recovery. It
creates a system-wide point of consistency, which minimizes the number of data inconsistencies when
the archive log is used with the most current backup page set copy during recovery. For example:

ARCHIVE LOG MODE(QUIESCE)

If you issue the ARCHIVE LOG command without specifying a TIME parameter, the quiesce time period
defaults to the value of the QUIESCE parameter of the CSQ6ARVP macro. If the time required for the
ARCHIVE LOG MODE(QUIESCE) to complete is less than the time specified, the command completes
successfully; otherwise, the command fails when the time period expires. You can specify the time period
explicitly by using the TIME option, for example:

ARCHIVE LOG MODE(QUIESCE) TIME(60)

This command specifies a quiesce period of up to 60 seconds before ARCHIVE LOG processing occurs.

Attention: Using the TIME option when time is critical can significantly disrupt IBM MQ availability for all
jobs and users that use IBM MQ resources.

By default, the command is processed asynchronously from the time you submit the command. (To
process the command synchronously with other IBM MQ commands use the WAIT(YES) option with
QUIESCE, but be aware that the z/OS console is locked from IBM MQ command input for the entire
QUIESCE period.)

During the quiesce period:

• Jobs and users on the queue manager are allowed to go through commit processing, but are suspended
if they try to update any IBM MQ resource after the commit.

• Jobs and users that only read data can be affected, since they might be waiting for locks held by jobs or
users that were suspended.

• New tasks can start, but they cannot update data.

The output from the DISPLAY LOG command uses the message CSQV400I to indicate that a quiesce is in
effect.

For example:

CSQJ322I +CSQ1 DISPLAY LOG report ...
Parameter Initial value SET value
----------- ---------------------- ----------------------
INBUFF 60
OUTBUFF 400
MAXRTU 2
MAXARCH 2
TWOACTV YES

Administering IBM MQ 479

TWOARCH YES
TWOBSDS YES
OFFLOAD YES
MAXCNOFF 0
WRTHRSH 20
DEALLCT 0
COMPLOG NONE
ZHYWRITE NO
End of LOG report
CSQJ370I +CSQ1 LOG status report ...
Copy %Full zHyperWrite Encrypted DSName
 1 68 NO NO VICY.CSQ1.LOGCOPY1.DS01
 2 68 NO NO VICY.CSQ1.LOGCOPY2.DS01
Restarted at 2019-08-15 09:49:30 using RBA=000000000891B000
Latest RBA=000000000891CCF8
Offload task is AVAILABLE
Full logs to offload - 0 of 4
CSQV400I +CSQ1 ARCHIVE LOG QUIESCE CURRENTLY ACTIVE
CSQ9022I +CSQ1 CSQJC001 ' DISPLAY LOG' NORMAL COMPLETION

When all updates are quiesced, the quiesce history record in the BSDS is updated with the date and time
that the active log data sets were truncated, and with the last-written RBA in the current active log data
sets. IBM MQ truncates the current active log data sets, switches to the next available active log data
sets, and issues message CSQJ311I stating that the offload process started.

If updates cannot be quiesced before the quiesce period expires, IBM MQ issues message CSQJ317I, and
ARCHIVE LOG processing terminates. The current active log data sets are not truncated, nor switched to
the next available log data sets, and the offload process is not started.

Whether the quiesce was successful or not, all suspended users and jobs are then resumed, and IBM MQ
issues message CSQJ312I, stating that the quiesce is ended and update activity is resumed.

If ARCHIVE LOG is issued when the current active log is the last available active log data set, the
command is not processed, and IBM MQ issues the following message:
CSQJ319I - csect-name CURRENT ACTIVE LOG DATA SET IS THE LAST
AVAILABLE ACTIVE LOG DATA SET. ARCHIVE LOG PROCESSING
WILL BE TERMINATED

If ARCHIVE LOG is issued when another ARCHIVE LOG command is already in progress, the new
command is not processed, and IBM MQ issues the following message:
CSQJ318I - ARCHIVE LOG COMMAND ALREADY IN PROGRESS

For information about the messages issued during archiving, see Messages for IBM MQ for z/OS.

Restarting the log archive process after a failure
If there is a problem during the log archive process (for example, a problem with allocation or tape
mounts), the archiving of the active log might be suspended. You can cancel the archive process and
restart it by using the following command:

ARCHIVE LOG CANCEL OFFLOAD

This command cancels any offload processing currently in progress, and restarts the archive process. It
starts with the oldest log data set that has not been archived, and proceeds through all active log data
sets that need offloading. Any log archive operations that have been suspended are restarted.

Use this command only if you are sure that the current log archive task is no longer functioning, or if you
want to restart a previous attempt that failed. This is because the command might cause an abnormal
termination of the offload task, which might result in a dump.

Controlling archiving and logging
You can control compression, printing, archiving, recovery and logging with using the CSQ6LOGP,
CSQ6ARVP, and CSQ6SYSP macros. Note, that changes to private objects only are logged in IBM MQlogs.

480 Administering IBM MQ

Changes to GROUP objects (like shared inbound channels) are also logged, because the definitions are
propagated around the group and held locally.

Many aspects of archiving and logging are controlled by parameters set using the CSQ6LOGP, CSQ6ARVP
and CSQ6SYSP macros of the system parameter module when the queue manager is customized. See
Tailor your system parameter module for details of these macros.

Some of these parameters can be changed while a queue manager is running using the IBM MQ MQSC
SET LOG, SET SYSTEM and SET ARCHIVE commands. They are shown in Table 28 on page 481:

Table 28. Archiving and logging parameters that can be changed while a queue manager is running

SET command Parameters

LOG WRTHRSH, MAXARCH, DEALLCT, MAXRTU, COMPLOG

ARCHIVE All

SYSTEM LOGLOAD

You can display the settings of all the parameters using the MQSC DISPLAY LOG, DISPLAY ARCHIVE
and DISPLAY SYSTEM commands. These commands also show status information about archiving and
logging.

Controlling log compression
You can enable and disable the compression of log records using either

• The SET and DISPLAY LOG commands in MQSC; see The MQSC commands
• Invoking PCF interface. See “Introduction to IBM MQ Programmable Command Formats” on page 25
• Using the CSQ6LOGP macro in the system parameter module; see Using CSQ6LOGP

Printing log records
You can extract and print log records using the CSQ1LOGP utility. For instructions, see The log print utility.

Recovering logs

Normally, you do not need to back up and restore the IBM MQ logs, especially if you are using dual
logging. However, in rare circumstances, such as an I/O error on a log, you might need to recover the logs.
Use Access Method Services to delete and redefine the data set, and then copy the corresponding dual
log into it.

Discarding archive log data sets
You can discard your archive log data sets and choose to discard the logs automatically or manually.

You must keep enough log data to be able to perform unit of work recovery, page set media recovery if a
page set is lost, or CF structure media recovery if a CF structure is lost. Do not discard archive log data
sets that might be required for recovery; if you discard these archive log data sets you might not be able
to perform required recovery operations.

If you have confirmed that your archive log data sets can be discarded, you can do this in either of the
following ways:

• Automatic archive log data set deletion
• Manually deleting archive log data sets

Administering IBM MQ 481

Automatic archive log data set deletion

You can use a DASD or tape management system to delete archive log data sets automatically. The
retention period for IBM MQ archive log data sets is specified by the retention period field ARCRETN in the
CSQ6ARVP installation macro (see the Using CSQ6ARVP for more information).

The default for the retention period specifies that archive logs are to be kept for 9999 days (the
maximum).

Important: You can change the retention period but you must ensure that you can accommodate the
number of backup cycles that you have planned for.

.

IBM MQ uses the retention period value as the value for the JCL parameter RETPD when archive log data
sets are created.

The retention period set by the MVS™/DFP storage management subsystem (SMS) can be overridden by
this IBM MQ parameter. Typically, the retention period is set to the smaller value specified by either IBM
MQ or SMS. The storage administrator and IBM MQ administrator must agree on a retention period value
that is appropriate for IBM MQ.

Note: IBM MQ does not have an automated method to delete information about archive log data sets
from the BSDS, because some tape management systems provide external manual overrides of retention
periods. Therefore, information about an archive log data set can still be in the BSDS long after the data
set retention period has expired and the data set has been scratched by the tape management system.
Conversely, the maximum number of archive log data sets might have been exceeded and the data from
the BSDS might have been dropped before the data set has reached its expiration date.

If archive log data sets are deleted automatically, remember that the operation does not update the list of
archive logs in the BSDS. You can update the BSDS with the change log inventory utility, as described in
“Changing the BSDS” on page 489. The update is not essential. Recording old archive logs wastes space
in the BSDS, but does no other harm.

Manually deleting archive log data sets

You must keep all the log records as far back as the lowest RBA identified in messages CSQI024I and
CSQI025I. This RBA is obtained using the DISPLAY USAGE command that you issued when creating a
point of recovery using Method 1: Full backup.

Read Creating a point of recovery for non-shared resources before discarding any logs.

Locate and discard archive log data sets

Having established the minimum log RBA required for recovery, you can find archive log data sets that
contain only earlier log records by performing the following procedure:

1. Use the print log map utility to print the contents of the BSDS. For an example of the output, see
The print log map utility.

2. Find the sections of the output titled ARCHIVE LOG COPY n DATA SETS. If you use dual logging,
there are two sections. The columns labeled STARTRBA and ENDRBA show the range of RBAs
contained in each volume. Find the volumes with ranges that include the minimum RBA you found
with messages CSQI024I and CSQI025I. These are the earliest volumes you need to keep. If you
are using dual-logging, there are two such volumes.

If no volumes have an appropriate range, one of the following cases applies:

• The minimum RBA has not yet been archived, and you can discard all archive log volumes.
• The list of archive log volumes in the BSDS wrapped around when the number of volumes

exceeded the number allowed by the MAXARCH parameter of the CSQ6LOGP macro. If the BSDS
does not register an archive log volume, that volume cannot be used for recovery. Therefore,

482 Administering IBM MQ

consider adding information about existing volumes to the BSDS. For instructions, see “Changes
for archive logs” on page 491.

Also consider increasing the value of MAXARCH. For information, see the Using CSQ6LOGP.
3. Delete any archive log data set or volume with an ENDRBA value that is less than the STARTRBA

value of the earliest volume you want to keep. If you are using dual logging, delete both such
copies.

Because BSDS entries wrap around, the first few entries in the BSDS archive log section might be
more recent than the entries at the end. Look at the combination of date and time and compare
their ages. Do not assume that you can discard all entries before the entry for the archive log
containing the minimum LOGRBA.

Delete the data sets. If the archives are on tape, erase the tapes. If they are on DASD, run a z/OS
utility to delete each data set. Then, if you want the BSDS to list only existing archive volumes,
use the change log inventory utility (CSQJU003) to delete entries for the discarded volumes. See
“Changes for archive logs” on page 491 for an example.

The effect of log shunting
Long running transactions can cause unit of work log records which span log data sets. IBM MQ handles
this scenario by using log shunting, a technique which moves the log records to optimize the quantity of
log data retained, and queue manager restart time.

When a unit of work is considered to be long, a representation of each log record is written further down
the log. This is known as log shunting. It is described more fully in Log files.

The queue manager uses these shunted log records instead of the originals after a failure, to ensure unit
of work integrity. There are two benefits to this:

• the quantity of log data which must be retained for unit of work coordination is reduced
• less log data must be traversed at queue manager restart time, so the queue manager is restarted more

quickly

Shunted log records do not contain sufficient information for media recovery operations.

Data held in the log is used for two distinct purposes; media recovery and unit of work coordination. If a
media failure occurs which affects either a CF structure or page set, the queue manager can recover the
media to the point of failure by restoring a prior copy and updating this using data contained in the log.
Persistent activity performed in a unit of work is recorded on the log so that in the event of a failure, it can
either be backed out or locks can be recovered on changed resources. The quantity of log data you need
to retain to enable queue manager recovery is affected by these two elements.

For media recovery, you must retain sufficient log data to be able to perform media recovery from at least
the most recent media copy and to be able to back out. (Your site may stipulate the ability to recover from
older backups.) For unit of work integrity, you must retain the log data for your oldest in flight or indoubt
units of work.

To assist you with managing the system, the queue manager detects old units of work at each log
archive and reports them in messages CSQJ160 and CSQJ161. An internal task reads unit of work log
information for these old units of work and rewrites it in a more succinct form to the current position in
the log. Message CSQR026 indicates when this has happened. The MQSC command DISPLAY USAGE
TYPE(DATASET) can also help you to manage the retention of log data. The command reports the
following three pieces of recovery information:

1. How much of the log must be retained for unit of work recovery.
2. How much of the log must be retained for media recovery of page sets.
3. For a queue manager in a queue sharing group, how much of the log must be retained for media

recovery of CF structures.

For each of these pieces of information, an attempt is made to map the oldest log data required into a
data set. As new units of work start and stop, (1) would be expected to move to a more recent position
in the log. If it is not moving, the long running UOW messages warn you that there is an issue. (2) relates

Administering IBM MQ 483

to page set media recovery if the queue manager were to be shut down now and restarted. It does not
know about when you last backed up your page sets, or which backup you might have to use if there was
a page set failure. It normally moves to a more recent position in the log during checkpoint processing
as changes held in the buffer pools are written to the page sets. In (3), the queue manager does know
about CF structure backups taken either on this queue manager or on other queue managers in the queue
sharing group. However, CF structure recovery requires a merge of log data from all queue managers in
the queue sharing group which have interacted with the CF structure since the last backup. This means
that the log data is identified by a log record sequence number, (or LRSN), which is timestamp based
and so applicable across the entire queue sharing group rather than an RBA which would be different on
different queue managers in the queue sharing group. It normally moves to a more recent position in the
log as BACKUP CFSTRUCT commands are performed on either this or other queue managers in the queue
sharing group.

Resetting the queue manager's log
Use this topic to understand how to reset the queue manager's log.

You must not allow the queue manager log RBA to wrap around from the end of the log RBA range to 0,
as this leads to a queue manager outage and all persistent data will become unrecoverable. The end of
the log RBA is either a value of FFFFFFFFFFFF (if 6-byte RBAs as in use), or FFFFFFFFFFFFFFFF (if 8-byte
RBAs are in use).

The queue manager issues messages CSQI045I, CSQI046E, CSQI047E, CSQJ031D, and CSQJ032E to
indicate that the used log range is significant and that you should plan to take action to avoid an
unplanned outage.

The queue manager terminates with reason code 00D10257 when the RBA value reaches FFF800000000
(if 6-byte log RBAs are in use) or FFFFFFC000000000 (if 8-byte log RBAs are in use).

If 6-byte log RBAs are in use, consider converting the queue manager to use 8-byte log RBAs rather
than resetting the queue manager's log, following the process described in “Implementing the larger log
Relative Byte Address” on page 486. Converting a queue manager to use 8-byte log RBAs requires a
shorter outage than resetting the log, and increases the period of time before you have to reset the log.

Message CSQJ034I, issued during queue manager initialization, indicates the end of the log RBA range for
the queue manager as configured, and can be used to determine whether 6-byte or 8-byte log RBAs are in
use.

The procedure to follow to reset the queue manager's log is as follows:

1. Resolve any unresolved units of work. The number of unresolved units of work is displayed at queue
manager startup in message CSQR005I as the INDOUBT count. At each checkpoint, and at queue
manager shutdown, the queue manager automatically issues the command

DISPLAY CONN(*) TYPE(CONN) ALL WHERE(UOWSTATE EQ UNRESOLVED) to provide
information about unresolved units of work.

See How in-doubt units of recovery are resolved for information on resolving units of recovery. The
ultimate recourse is to use the RESOLVE INDOUBT MQSC command to manually resolve indoubt units
of recovery.

2. Shut down the queue manager cleanly.

You can use either STOP QMGR or STOP QMGR MODE(FORCE) as both these commands flush any
changed pages from bufferpools to the page sets.

3. If a queue manager is part of a queue sharing group, take CFSTRUCT backups on other queue
managers for all structures in the queue sharing group. This ensures that the most recent backups
are not in this queue manager's log, and that this queue manager's log is not required for CFSTRUCT
recovery.

4. Define new logs and BSDS using CSQJU003 (see The change log inventory utility for more information
on using the change log inventory utility).

5. Run CSQUTIL RESETPAGE against all the page sets for this queue manager (see Copying a page and
resetting the log for more information on using this function). Note that page set RBAs can be reset

484 Administering IBM MQ

independently, so multiple concurrent jobs (for example, one per page set) can be submitted to reduce
the elapsed time for this step.

6. Restart the queue manager

Warning messages
When IBM MQ detects that the end of the log is approaching, it issues console messages in the following
order, which indicate that a log reset should be planned. In this section the messages show 6-byte log
RBA values. The same console messages are issued when IBM MQ is running in 8-byte log RBA mode but
with different values; see “Warning thresholds” on page 486 for the 8-byte log RBA thresholds.

1. When IBM MQ detects that the end of the log is approaching in the near future, (approximately 94%
full) IBM MQ issues console message CSQI045I, as in the following example:

CSQI045I -CSQ7 CSQILCUR Log RBA has reached 0000F00000000000.
Plan a log reset

2. IBM MQ issues the following CSQI046E error console message when the end of the log is near
(approximately 97% full). This informs the IBM MQ administrator to take action soon.

CSQI046E -CSQ7 CSQILCUR Log RBA has reached 0000F80000000000.
Perform a log reset

3. After the CSQI046E message is issued, at the next log switch, IBM MQ issues the following CSQJ032E
console message with the word WARNING:

CSQJ032E -CSQ7 CSQJW307 WARNING - APPROACHING END OF
THE LOG RBA RANGE OF 0000FFFFFFFFFFFF. CURRENT LOG RBA IS 0000F80000022000.

4. After the CSQI046E and CSQJ032E console messages are issued, IBM MQ issues one more error
message, which does not require immediate IBM MQ administrator intervention. IBM MQ issues
console message CSQI047E (when the log is approximately 99% full):

CSQI047E -CSQ7 CSQILCUR Log RBA has reached 0000FF0000000000.
Stop queue manager and reset logs

5. When the log RBA reaches FF8000000000, IBM MQ increases the urgency of the situation and issues
console message CSQJ032E with the word CRITICAL:

CSQJ032E -CSQ7 CSQJW009 CRITICAL - APPROACHING END OF THE LOG RBA RANGE OF 0000FFFFFFFFFFFF.
CURRENT LOG RBA IS 0000FFF7FFFFDFFF.

6. If the queue manager is started when the log RBA is almost at the maximum, the following CSQJ031D
console message is issued. This stage requires the input of the IBM MQ administrator:.

CSQJ031D -CSQ7 CSQYSTRT THE LOG RBA RANGE MUST BE RESET.
REPLY 'Y' TO CONTINUE STARTUP OR 'N' TO SHUTDOWN

7. IBM MQ startup remains suspended until a reply is given to message CSQJ031D.

The purpose of these messages is to give the IBM MQ administrator time to plan for a system outage
to reset the logs. In an ideal configuration, there are at least two queue managers, possibly in a queue
sharing group (QSG), sharing the workload. When one is down for maintenance the other can continue to
receive work.

The severity of console messages that IBM MQ issues becomes greater as the RBA gets closer to the end.
Ideally your IBM MQ administrator should plan to reset the log RBA when the first console message is
seen.

If the warning and error console messages are ignored, IBM MQ terminates with reason code
5C6-00D10257 when the log RBA reaches FFF800000000, at which point IBM MQ determines that
the available range is too small for the queue manager to continue. When this point is reached, the only
option is to take an outage and either reset the log or extend the size of the log RBA.

Administering IBM MQ 485

Note: When the end of the log is reached it is not possible to resolve any in-flight units of work (UOW);
these are lost during the log reset process. Enough of the RBA range should be left to start the queue
manager and resolve any UOW. Because IBM MQ issues console messages several times to inform that
the end of the log is approaching, a log reset should be planned.

The preferred option to avoid losing any in-flight UOW is to extend the log RBA to use 8 bytes. This means
that a log RBA reset will not be necessary for a long period.

Warning thresholds
The following table lists the thresholds, based on the length of the log RBA.

Console message 6-byte log RBA 8-byte log RBA

CSQI045I 0000F00000000000 FFFF800000000000

CSQI046E 0000F80000000000 FFFFC00000000000

CSQI047E 0000FF8000000000 FFFFFC0000000000

CSQJ032E 0000FF8000000000

0000FF8000000000

FFFFFC0000000000

FFFFFC0000000000

CSQJ031D 0000FF8000000000 FFFFFC0000000000

Notes:

1. For message CSQJ032E, the first number applies to the WARNING text and the second number
applies to the CRITICAL text in the console message.

2. Message CSQJ031D is issued at IBM MQ initialization only.

Related concepts
“Implementing the larger log Relative Byte Address” on page 486
Before IBM MQ for z/OS 8.0, IBM MQ for z/OS used a 6 byte log RBA to identify the location of data within
the log. From IBM MQ for z/OS 8.0, the log RBA can be 8 bytes long, increasing the period of time before
you have to reset the log.

Implementing the larger log Relative Byte Address
Before IBM MQ for z/OS 8.0, IBM MQ for z/OS used a 6 byte log RBA to identify the location of data within
the log. From IBM MQ for z/OS 8.0, the log RBA can be 8 bytes long, increasing the period of time before
you have to reset the log.

Attention: You only have to carry out the following procedure to enable this feature if your queue
managers were created before IBM MQ 9.3.0, as queue managers created at IBM MQ 9.3.0 and
later already have this feature enabled.

See Planning to increase the maximum addressable log range for considerations when planning to enable
8 byte log RBA.

Perform these instructions, in the order shown, to enable 8 byte log RBA on a single IBM MQ for z/OS
queue manager. For queue managers in a queue sharing group, perform the steps on each queue manager
in turn.

1. Allocate new BSDS data sets with similar attributes to the current BSDS. You can tailor sample
CSQ4BSDS and delete any irrelevant statement, or you can use your existing JCL, but change the BSDS
name to something like ++HLQ++.NEW.BSDS01.

Notes:

a. Check the attributes of your new BSDS before submitting the job to allocate the new BSDS. The
only attribute that might change is the size of the BSDS.

486 Administering IBM MQ

b. The new BSDS contains more data that the current BSDS, therefore, you must ensure
that the new data sets are allocated with sufficient available space. The sample JCL in
thlqual.SCSQPROC(CSQ4BSDS) contains the recommended values when defining a new BSDS.

2. Shut down the queue manager cleanly.
3. Run the BSDS conversion utility (CSQJUCNV) to convert the existing BSDS to the new BSDS data sets.

This usually takes a few seconds to run.

Your existing BSDS will not be changed during this process, and you can use that for the initialization of
the queue manager in the case of an unsuccessful conversion.

4. Rename the current BSDS to become the old BSDS, and the new BSDS to become the current BSDS,
so that the new data sets are used when you next restart the queue manager. You can use the DFSMS
Access Method Services ALTER command, for example:

ALTER '++HLQ++.BSDS01' NEWNAME('++HLQ++.OLD.BSDS01')
ALTER '++HLQ++.NEW.BSDS01' NEWNAME('++HLQ++.BSDS01')

Ensure that you also issue commands to rename both the data and index portions of the VSAM cluster.
5. Restart the queue manager. It should start in the same amount of time as it would have done when

using 6 byte log RBA.

If the queue manager does not restart successfully due to a failure to access the converted BSDS,
attempt to identify the cause of the failure, resolve the problem and retry the operation. If required,
contact your IBM support center for assistance.

If necessary, the change can be backed out at this point by:

a. Renaming the current BSDS to become the new BSDS.
b. Renaming the old BSDS to become the current BSDS.
c. Restarting the queue manager.

6. Once the queue manager has been successfully restarted with the converted BSDS, do not attempt to
start the queue manager using the old BSDS.

7. Message CSQJ034I is issued during queue manager initialization to indicate the end of the log
RBA for the queue manager as configured. Confirm that the end of the log RBA range displayed is
FFFFFFFFFFFFFFFF. This indicates that 8 byte log RBA is in use.

Related tasks
Planning to increase the maximum addressable log range
Related reference
Larger log Relative Byte Address
The BSDS conversion utility (CSQJUCNV)

Managing the bootstrap data set (BSDS)
The bootstrap data set (BSDS) is used to reference log data sets, and log records. Use this topic to
understand how you can examine, change, and recover the BSDS.

For more information, see The bootstrap data set.

This topic describes the tasks involved in managing the bootstrap data set. It contains these sections:

• “Finding out what the BSDS contains” on page 488
• “Changing the BSDS” on page 489
• “Recovering the BSDS” on page 493

Administering IBM MQ 487

Finding out what the BSDS contains
You can use the print log map utility (CSQJU004) to examine the contents of the BSDS.

The print log map utility (CSQJU004) is a batch utility that lists the information stored in the BSDS. For
instructions on running it, see The print log map utility.

The BSDS contains:

• Time stamps
• Active log data set status

Time stamps in the BSDS

The output of the print log map utility shows the time stamps, which are used to record the date and
time of various system events, that are stored in the BSDS.

The following time stamps are included in the header section of the report:
SYSTEM TIMESTAMP

Reflects the date and time the BSDS was last updated. The BSDS time stamp can be updated
when:

• The queue manager starts.
• The write threshold is reached during log write activities. Depending on the number of output

buffers you have specified and the system activity rate, the BSDS might be updated several
times a second, or might not be updated for several seconds, minutes, or even hours. For
details of the write threshold, see the WRTHRSH parameter of the CSQ6LOGP macro in Using
CSQ6LOGP.

• IBM MQ drops into a single BSDS mode from its normal dual BSDS mode due to an error.
This can occur when a request to get, insert, point to, update, or delete a BSDS record is
unsuccessful. When this error occurs, IBM MQ updates the time stamp in the remaining BSDS to
force a time stamp mismatch with the disabled BSDS.

UTILITY TIMESTAMP
The date and time the contents of the BSDS were altered by the change log inventory utility
(CSQJU003).

The following time stamps are included in the active and archive log data sets portion of the report:
Active log date

The date the active log entry was created in the BSDS, that is, when the CSQJU003 NEWLOG was
done.

Active log time
The time the active log entry was created in the BSDS, that is, when the CSQJU003 NEWLOG was
done.

Archive log date
The date the archive log entry was created in the BSDS, that is, when the CSQJU003 NEWLOG was
done or the archive itself was done.

Archive log time
The time the archive log entry was created in the BSDS, that is, when the CSQJU003 NEWLOG was
done or the archive itself was done.

Active log data set status

The BSDS records the status of an active log data set as one of the following:
NEW

The data set has been defined but never used by IBM MQ, or the log was truncated to a point
before the data set was first used. In either case, the data set starting and ending RBA values are
reset to zero.

488 Administering IBM MQ

REUSABLE
Either the data set has been defined but never used by IBM MQ, or the data set has been
offloaded. In the print log map output, the start RBA value for the last REUSABLE data set is equal
to the start RBA value of the last archive log data set.

NOT REUSABLE
The data set contains records that have not been offloaded.

STOPPED
The offload processor encountered an error while reading a record, and that record could not be
obtained from the other copy of the active log.

TRUNCATED
Either:

• An I/O error occurred, and IBM MQ has stopped writing to this data set. The active log data set
is offloaded, beginning with the starting RBA and continuing up to the last valid record segment
in the truncated active log data set. The RBA of the last valid record segment is lower than the
ending RBA of the active log data set. Logging is switched to the next available active log data
set, and continues uninterrupted.

or

• An ARCHIVE LOG function has been called, which has truncated the active log.

The status appears in the output from the print log map utility.

Changing the BSDS
You do not have to take special steps to keep the BSDS updated with records of logging events because
IBM MQ does that automatically.

However, you might want to change the BSDS if you do any of the following:

• Add more active log data sets.
• Copy active log data sets to newly allocated data sets, for example, when providing larger active log

allocations.
• Move log data sets to other devices.
• Recover a damaged BSDS.
• Discard outdated archive log data sets.

You can change the BSDS by running the change log inventory utility (CSQJU003). Only run this utility
when the queue manager is inactive, or you might get inconsistent results. The action of the utility is
controlled by statements in the SYSIN data set. This section shows several examples. For complete
instructions, see The change log inventory utility.

You can copy an active log data set only when the queue manager is inactive because IBM MQ allocates
the active log data sets as exclusive (DISP=OLD) at queue manager startup.

Changes for active logs
Use this topic to understand how you can change the active logs using the BSDS.

You can add to, delete from, and record entries in the BSDS for active logs using the change log utility.
Examples only are shown here; replace the data set names shown with the ones you want to use. For
more details of the utility, see The change log inventory utility.

See these sections for more information:

• Adding record entries to the BSDS
• Deleting information about the active log data set from the BSDS
• Recording information about the log data set in the BSDS
• Increasing the size of the active log
• The use of CSQJUFMT

Administering IBM MQ 489

Adding record entries to the BSDS

If an active log has been flagged as "stopped", it is not reused for logging; however, it continues to
be used for reading. Use the access method services to define new active log data sets, then use the
change log inventory utility to register the new data sets in the BSDS. For example, use:

NEWLOG DSNAME=MQM111.LOGCOPY1.DS10,COPY1
NEWLOG DSNAME=MQM111.LOGCOPY2.DS10,COPY2

If you are copying the contents of an old active log data set to the new one, you can also give the RBA
range and the starting and ending time stamps on the NEWLOG function.

Deleting information about the active log data set from the BSDS

To delete information about an active log data set from the BSDS, you could use:

DELETE DSNAME=MQM111.LOGCOPY1.DS99
DELETE DSNAME=MQM111.LOGCOPY2.DS99

Recording information about the log data set in the BSDS

To record information about an existing active log data set in the BSDS, use:

NEWLOG DSNAME=MQM111.LOGCOPY1.DS10,COPY2,STARTIME=19930212205198,
ENDTIME=19930412205200,STARTRBA=6400,ENDRBA=94FF

You might need to insert a record containing this type of information in the BSDS because:

• The entry for the data set has been deleted, but is needed again.
• You are copying the contents of one active log data set to another data set.
• You are recovering the BSDS from a backup copy.

Increasing the size of the active log

There are two methods of achieving this process.

1. When the queue manager is active:

a. Define new larger log data sets using JCL.
b. Add the new log data sets to the active queue manager using the MQSC DEFINE LOG command.
c. Use the MQSC ARCHIVE LOG command to move the current active log, to be a new larger log.
d. Wait for the archive of the smaller active log data set to complete.
e. Shut down the queue manager, using the CSQJU003 utility to remove the old small active logs.
f. Restart the queue manager.

2. When the queue manager is inactive:

a. Stop the queue manager. This step is required because IBM MQ allocates all active log data sets
for its exclusive use when it is active.

b. Use Access Method Services ALTER with the NEWNAME option to rename your active log data
sets.

c. Use Access Method Services DEFINE to define larger active log data sets.

490 Administering IBM MQ

By reusing the old data set names, you do not have to run the change log inventory utility to
establish new names in the BSDSs. The old data set names and the correct RBA ranges are
already in the BSDSs.

d. Use Access Method Services REPRO to copy the old (renamed) data sets into their appropriate
new data sets.

Note: This step can take a long time, so your enterprise could be out of action for this period.
e. Start the queue manager.

If all your log data sets are the same size, your system will be operationally more consistent and
efficient. If the log data sets are not the same size, it is more difficult to track your system's logs, and
so space can be wasted.

The use of CSQJUFMT
Do not run a CSQJUFMT format when increasing the size of an active log.

If you run CSQJUFMT (in order to provide a performance advantage the first time the queue manager
writes to the new active log) you receive messages:

IEC070I 203-204,XS95GTLX,REPRO02,OUTPUT,B857,SPMG02, 358
IEC070I MG.W.MG4E.LOGCOPY1.DS02,MG.W.MG4E.LOGCOPY1.DS02.DATA,
IDC3302I ACTION ERROR ON MG.W.MG4E.LOGCOPY1.DS02
IDC3351I ** VSAM I/O RETURN CODE IS 28 - RPLFDBWD = X'2908001C'
IDC31467I MAXIMUM ERROR LIMIT REACHED.

IDC0005I NUMBER OF RECORDS PROCESSED WAS 0

In addition, if you use the Access Method Services REPRO, ensure that you define a new empty log.

If you use REPRO to copy the old (renamed) data set into its respective new data set, the default is
NOREPLACE.

This means that REPRO does not replace a record that is already on the designated data set. When
formatting is done on the data set, the RBA value is reset. The net result is a data set that is not empty
after formatting.

Changes for archive logs
Use this topic to understand how to change the archive logs.

You can add to, delete from, and change the password of, entries in the BSDS for archive logs. Examples
only are shown here; replace the data set names shown with the ones you want to use. For more details of
the utility, see The change log inventory utility.

• Adding an archive log
• Deleting an archive log
• Changing the password of an archive log

Adding an archive log

When the recovery of an object depends on reading an existing archive log data set, the BSDS must
contain information about that data set so that IBM MQ can find it. To register information about an
existing archive log data set in the BSDS, use:

NEWLOG DSNAME=CSQARC1.ARCHLOG1.E00021.T2205197.A0000015,COPY1VOL=CSQV04,
UNIT=TAPE,STARTRBA=3A190000,ENDRBA=3A1F0FFF,CATALOG=NO

Deleting an archive log

To delete an entire archive log data set on one or more volumes, use:

Administering IBM MQ 491

DELETE DSNAME=CSQARC1.ARCHLOG1.E00021.T2205197.A0000015,COPY1VOL=CSQV04

Changing the password of an archive log

If you change the password of an existing archive log data set, you must also change the information
in the BSDS.

1. List the BSDS, using the print log map utility.
2. Delete the entry for the archive log data set with the changed password, using the DELETE function

of the CSQJU003 utility (see topic The change log inventory utility).
3. Name the data set as for a new archive log data set. Use the NEWLOG function of the CSQJU003

utility (see topic The change log inventory utility), and give the new password, the starting and
ending RBAs, and the volume serial numbers (which can be found in the print log map utility
output, see The print log map utility).

To change the password for new archive log data sets, use:

ARCHIVE PASSWORD= password

To stop placing passwords on new archive log data sets, use:

ARCHIVE NOPASSWD

Note: Only use the ARCHIVE utility function if you do not have an external security manager.

Changing the high-level qualifier (HLQ) for the logs and BSDS
Use this topic to understand the procedure required to change the high-level qualifier (HLQ).

Before you begin
You must end the queue manager normally before copying any of the logs or data sets to the new data
sets. This is to ensure that the data is consistent and no recovery is needed during restart.

About this task
This task provides information about how to change the HLQ for the logs and BSDS. To do this, follow
these steps:

Procedure
1. Run the log print utility CSQJU004 to record the log data set information. This information is needed

later.
2. You can either:

a) run DSS backup and restore with rename on the log and BSDS data sets to be renamed, or
b) use AMS DEFINE and REPRO to create the HLQ data sets and copy the data from the old data sets.

3. Modify the MSTR and CHIN procedures to point to the new data sets.
4. Delete the old log information in the new copy of the BSDS using CSQJU003.
5. Define the new log data sets to the new BSDS using the NEWLOG function of CSQJU003.

Keep all information about each log the same, apart from the HLQ.

492 Administering IBM MQ

6. The new BSDS should reflect the same information that was recorded for the old logs in the old BSDS.
The HLQ should be the only thing that has changed.

What to do next
Compare the CSQJU004 output for the old and new BSDS to ensure that they look EXACTLY the same
(except for the HLQs) before starting the queue manager.

Note: Care must be taken when performing these operations. Incorrect actions might lead to
unrecoverable situations. Check the PRINT LOG MAP UTILITY output and make sure that all the
information needed for recovery or restart has been included.

Recovering the BSDS
If IBM MQ is operating in dual BSDS mode and one BSDS becomes damaged, forcing IBM MQ into single
BSDS mode, IBM MQ continues to operate without a problem (until the next restart).

To return the environment to dual BSDS mode:

1. Use Access Method Services to rename or delete the damaged BSDS and to define a new BSDS with
the same name as the damaged BSDS. Example control statements can be found in job CSQ4BREC in
thlqual.SCSQPROC.

2. Issue the IBM MQ command RECOVER BSDS to make a copy of the valid BSDS in the newly allocated
data set and to reinstate dual BSDS mode.

If IBM MQ is operating in single BSDS mode and the BSDS is damaged, or if IBM MQ is operating in dual
BSDS mode and both BSDSs are damaged, the queue manager stops and does not restart until the BSDS
data sets are repaired. In this case:

1. Locate the BSDS associated with the most recent archive log data set. The data set name of the most
recent archive log appears on the job log in the last occurrence of message CSQJ003I, which indicates
that offload processing has been completed successfully. In preparation for the rest of this procedure,
it is a good practice to keep a log of all successful archives noted by that message:

• If archive logs are on DASD, the BSDS is allocated on any available DASD. The BSDS name is like the
corresponding archive log data set name; change only the first letter of the last qualifier, from A to B,
as in this example:
Archive log name

CSQ.ARCHLOG1. A 0000001
BSDS copy name

CSQ.ARCHLOG1. B 0000001
• If archive logs are on tape, the BSDS is the first data set of the first archive log volume. The BSDS is

not repeated on later volumes.
2. If the most recent archive log data set has no copy of the BSDS (for example, because an error

occurred when offloading it), locate an earlier copy of the BSDS from earlier offload processing.
3. Rename damaged BSDSs using the Access Method Services ALTER command with the NEWNAME

option. If you want to delete a damaged BSDS, use the Access Method Services DELETE command. For
each damaged BSDS, use Access Method Services to define a new BSDS as a replacement data set.
Job CSQ4BREC in thlqual.SCSQPROC contains Access Method Services control statements to define a
new BSDS.

4. Use the Access Method Services REPRO command to copy the BSDS from the archive log to one of
the replacement BSDSs you defined in step “3” on page 493. Do not copy any data to the second
replacement BSDS, you do that in step “5” on page 495.

a. Print the contents of the replacement BSDS.

Use the print log map utility (CSQJU004) to print the contents of the replacement BSDS. This
enables you to review the contents of the replacement BSDS before continuing your recovery work.

b. Update the archive log data set inventory in the replacement BSDS.

Administering IBM MQ 493

Examine the output from the print log map utility and check that the replacement BSDS does not
contain a record of the archive log from which the BSDS was copied. If the replacement BSDS is an
old copy, its inventory might not contain all archive log data sets that were created more recently.
The BSDS inventory of the archive log data sets must be updated to reflect the current subsystem
inventory.

Use the change log inventory utility (CSQJU003) NEWLOG statement to update the replacement
BSDS, adding a record of the archive log from which the BSDS was copied. If the archive log data
set is password-protected, use the PASSWORD option of the NEWLOG function. Also, if the archive
log data set is cataloged, ensure that the CATALOG option of the NEWLOG function is properly set
to CATALOG=YES. Use the NEWLOG statement to add any additional archive log data sets that were
created later than the BSDS copy.

c. Update passwords in the replacement BSDS.

The BSDS contains passwords for the archive log data sets and for the active log data sets. To
ensure that the passwords in the replacement BSDS reflect the current passwords used by your
installation, use the change log inventory ARCHIVE utility function with the PASSWORD option.

d. Update the active log data set inventory in the replacement BSDS.

In unusual circumstances, your installation might have added, deleted, or renamed active log data
sets since the BSDS was copied. In this case, the replacement BSDS does not reflect the actual
number or names of the active log data sets your installation currently has in use.

If you need to delete an active log data set from the replacement BSDS log inventory, use the
change log inventory utility DELETE function.

If you need to add an active log data set to the replacement BSDS log inventory, use the change log
inventory utility NEWLOG function. Ensure that the RBA range is specified correctly on the NEWLOG
function. If the active log data set is password-protected, use the PASSWORD option.

If you need to rename an active log data set in the replacement BSDS log inventory, use the change
log inventory utility DELETE function, followed by the NEWLOG function. Ensure that the RBA range
is specified correctly on the NEWLOG function. If the active log data set is password-protected, use
the PASSWORD option.

e. Update the active log RBA ranges in the replacement BSDS.

Later, when the queue manager restarts, it compares the RBAs of the active log data sets listed
in the BSDS with the RBAs found in the actual active log data sets. If the RBAs do not agree, the
queue manager does not restart. The problem is magnified when an old copy of the BSDS is used.
To solve this problem, use the change log inventory utility (CSQJU003) to adjust the RBAs found in
the BSDS using the RBAs in the actual active log data sets. You do this by:

• Using the print log records utility (CSQ1LOGP) to print a summary report of the active log data set.
This shows the starting and ending RBAs.

• Comparing the actual RBA ranges with the RBA ranges you have just printed, when the RBAs of all
active log data sets are known.

If the RBA ranges are equal for all active log data sets, you can proceed to the next recovery step
without any additional work.

If the RBA ranges are not equal, adjust the values in the BSDS to reflect the actual values. For
each active log data set that needs to have the RBA range adjusted, use the change log inventory
utility DELETE function to delete the active log data set from the inventory in the replacement
BSDS. Then use the NEWLOG function to redefine the active log data set to the BSDS. If the active
log data sets are password-protected, use the PASSWORD option of the NEWLOG function.

f. If only two active log data sets are specified for each copy of the active log, IBM MQ can have
difficulty during queue manager restart. The problem can arise when one of the active log data sets
is full and has not been offloaded, while the second active log data set is close to filling. In this
case, add a new active log data set for each copy of the active log and define each new active log
data set in the replacement BSDS log inventory.

494 Administering IBM MQ

Use the Access Method Services DEFINE command to define a new active log data set for each
copy of the active log and use the change log inventory utility NEWLOG function to define the
new active log data sets in the replacement BSDS. You do not need to specify the RBA ranges
on the NEWLOG statement. However, if the active log data sets are password-protected, use the
PASSWORD option of the NEWLOG function. Example control statements to accomplish this task
can be found in job CSQ4LREC in thlqual.SCSQPROC.

5. Copy the updated BSDS to the second new BSDS data set. The BSDSs are now identical.

Use the print log map utility (CSQJU004) to print the contents of the second replacement BSDS at this
point.

6. See Active log problems for information about what to do if you have lost your current active log data
set.

7. Restart the queue manager using the newly constructed BSDS. IBM MQ determines the current RBA
and what active logs need to be archived.

Managing page sets
Use this topic to understand how to manage the page sets associated with a queue manager.

This topic describes how to add, copy, and generally manage the page sets associated with a queue
manager. It contains these sections:

• “How to change the high-level qualifier (HLQ) for the page sets” on page 495
• “How to add a page set to a queue manager” on page 496
• “What to do when one of your page sets becomes full” on page 496
• “How to balance loads on page sets” on page 496
• How to increase the size of a page set
• “How to reduce a page set” on page 500
• “How to reintroduce a page set” on page 500
• “How to back up and recover page sets” on page 501
• “How to delete page sets” on page 505
• “How to back up and restore queues using CSQUTIL” on page 505

See Page sets for a description of page sets, storage classes, buffers, and buffer pools, and some of the
performance considerations that apply.

How to change the high-level qualifier (HLQ) for the page sets
This task gives information on how to change the HLQ for the page sets. To perform this task, do the
following:

1. Define the new HLQ page sets.
2. If the size allocation is the same as the old page sets, copy the existing page set using REPRO to the

empty new HLQ page sets.
3. If you are increasing the size of the page sets, use the FORMAT function of CSQUTIL to format the

destination pages, and then the COPYPAGE function of CSQUTIL to copy all the messages from the
source page set to the destination page set.

For more information, see Formatting page sets (FORMAT), and Expanding a page set (COPYPAGE).
4. Change the CSQP00xx DD statement in the queue manager procedure to point to the new HLQ page

sets.

Restart the queue manager and verify the changes to the page sets.

Administering IBM MQ 495

How to add a page set to a queue manager

This description assumes that you have a queue manager that is already running. You might need to add a
page set if, for example, your queue manager has to cope with new applications using new queues.

To add a new page set, use the following procedure:

1. Define and format the new page set. You can use the sample JCL in thlqual.SCSQPROC(CSQ4PAGE) as
a basis. For more information, see Formatting page sets (FORMAT).

Take care not to format any page sets that are in use, unless this is what you intend. If so, use the
FORCE option of the FORMAT utility function.

2. Use the DEFINE PSID command with the DSN option to associate the page set with a buffer pool.
3. Add the appropriate storage class definitions for your page set by issuing DEFINE STGCLASS

commands.
4. Optionally, to document how your queue manager is configured:

a. Add the new page set to the started task procedure for your queue manager.
b. Add a definition for the new page set to your CSQINP1 initialization data set.
c. Add a definition for the new storage class to your CSQ4INYR initialization data set member.

For details of the DEFINE PSID and DEFINE STGCLASS commands, see DEFINE PSID and DEFINE
STGCLASS.

What to do when one of your page sets becomes full

You can find out about the utilization of page sets by using the IBM MQ command DISPLAY USAGE. For
example, the command:

DISPLAY USAGE PSID(03)

displays the current state of the page set 03. This tells you how many free pages this page set has.

If you have defined secondary extents for your page sets, they are dynamically expanded each time they
fill up. Eventually, all secondary extents are used, or no further disk space is available. If this happens, an
application receives the return code MQRC_STORAGE_MEDIUM_FULL.

If an application receives a return code of MQRC_STORAGE_MEDIUM_FULL from an MQI call, this is a
clear indication that there is not enough space remaining on the page set. If the problem persists or is
likely to recur, you must do something to solve it.

You can approach this problem in a number of ways:

• Balance the load between page sets by moving queues from one page set to another.
• Expand the page set. See “How to increase the size of a page set” on page 498 for instructions.
• Redefine the page set so that it can expand beyond 4 GB to a maximum size of 64 GB. See Defining a

page set to be larger than 4 GB for instructions.

How to balance loads on page sets

Load balancing on page sets means moving the messages associated with one or more queues from one
page set to another, less used, page set. Use this technique if it is not practical to expand the page set.

496 Administering IBM MQ

To identify which queues are using a page set, use the appropriate IBM MQ commands. For example, to
find out which queues are mapped to page set 02, first, find out which storage classes map to page set
02, by using the command:

DISPLAY STGCLASS(*) PSID(02)

Then use the following command to find out which queues use which storage class:

DISPLAY QUEUE(*) TYPE(QLOCAL) STGCLASS

Moving a non-shared queue

To move queues and their messages from one page set to another, use the MQSC MOVE QLOCAL
command (described in MOVE QLOCAL). When you have identified the queue or queues that you want
to move to a new page set, follow this procedure for each of these queues:

1. Ensure that the queue you want to move is not in use by any applications (that is, IPPROCS and
OPPROCS values from the DISPLAY QSTATUS command are zero) and that it has no uncommitted
messages (the UNCOM value from the DISPLAY QSTATUS command is NO).

Note: The only way to ensure that this state continues is to change the security authorization of
the queue temporarily. See Profiles for queue security for more information.

If you cannot do this, later stages in this procedure might fail if applications start to use the queue
despite precautionary steps such as setting PUT(DISABLED). However, messages can never be
lost by this procedure.

2. Prevent applications from putting messages on the queue being moved by altering the queue
definition to disable MQPUT s. Change the queue definition to PUT(DISABLED).

3. Define a temporary queue with the same attributes as the queue that is being moved, using the
command:

DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO_MOVE) PUT(ENABLED) GET(ENABLED)

Note: If this temporary queue already exists from a previous run, delete it before doing the
define.

4. Move the messages to the temporary queue using the following command:

MOVE QLOCAL(QUEUE_TO_MOVE) TOQLOCAL(TEMP_QUEUE)

5. Delete the queue you are moving, using the command:

DELETE QLOCAL(QUEUE_TO_MOVE)

6. Define a new storage class that maps to the required page set, for example:

DEFINE STGCLASS(NEW) PSID(nn)

Add the new storage class definition to the CSQINP2 data sets ready for the next queue manager
restart.

Administering IBM MQ 497

7. Redefine the queue that you are moving, by changing the storage class attribute:

DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) STGCLASS(NEW)

When the queue is redefined, it is based on the temporary queue created in step “3” on page 497.
8. Move the messages back to the new queue, using the command:

MOVE QLOCAL(TEMP) TOQLOCAL(QUEUE_TO_MOVE)

9. The queue created in step “3” on page 497 is no longer required. Use the following command to
delete it:

DELETE QL(TEMP_QUEUE)

10. If the queue being moved was defined in the CSQINP2 data sets, change the STGCLASS attribute
of the appropriate DEFINE QLOCAL command in the CSQINP2 data sets. Add the REPLACE
keyword so that the existing queue definition is replaced.

Figure 29 on page 498 shows an extract from a load balancing job.

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQ1')
//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR
// DD DSN=thlqual.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(MOVEQ)
/*
//MOVEQ DD *
ALTER QL(QUEUE_TO_MOVE) PUT(DISABLED)
DELETE QL(TEMP_QUEUE) PURGE
DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO_MOVE) PUT(ENABLED) GET(ENABLED)
MOVE QLOCAL(QUEUE_TO_MOVE) TOQLOCAL(TEMP_QUEUE)
DELETE QL(QUEUE_TO_MOVE)
DEFINE STGCLASS(NEW) PSID(2)
DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) STGCLASS(NEW)
MOVE QLOCAL(TEMP_QUEUE) TOQLOCAL(QUEUE_TO_MOVE)
DELETE QL(TEMP_QUEUE)
/*

Figure 29. Extract from a load balancing job for a page set

How to increase the size of a page set

You can initially allocate a page set larger than 4 GB, See Defining a page set to be larger than 4 GB

A page set can be defined to be automatically expanded as it becomes full by specifying
EXPAND(SYSTEM) or EXPAND(USER). If your page set was defined with EXPAND(NONE), you can expand
it in either of two ways:

• Alter its definition to allow automatic expansion. See Altering a page set to allow automatic expansion
• Create a new, larger page set and copy the messages from the old page set to the new one. See Moving

messages to a new, larger page set

498 Administering IBM MQ

Defining a page set to be larger than 4 GB

IBM MQ can use a page set up to 64 GB in size, provided the data set is defined with 'extended
addressability' to VSAM. Extended addressability is an attribute which is conferred by an SMS data
class.

Note: Page sets and active log data sets are eligible to reside in the extended addressing space (EAS)
part of an extended address volumes (EAV) and, from z/OS V1.12, an archive log dataset can also
reside in the EAS.

In the example shown in the following sample JCL, the management class 'EXTENDED' is defined
to SMS with 'Extended addressability'. If your existing page set is not currently defined as having
extended addressability, use the following method to migrate to an extended addressability format
data set.

1. Stop the queue manager.
2. Use Access Method Services to rename the existing page set.
3. Define a destination page set, the same size as the existing page set, but with

DATACLAS(EXTENDED).

Note: Extended-format data sets must be SMS managed. These are the mechanisms for
requesting extended format for VSAM data sets:

• Using a data class that has a DSNTYPE value of EXT and the subparameter R or P to indicate
required or preferred.

• Coding DSNTYPE=EXTREQ (extended format is required) or DSNTYPE=EXTPREF (extended
format is preferred) on the DD statement.

• Coding the LIKE= parameter on the DD statement to refer to an existing extended format data
set.

For more information, see Restrictions on Defining Extended-Format Data Sets.
4. Use the COPYPAGE function of CSQUTIL to copy all the messages from the source page set to the

destination page set. See Expanding a page set (COPYPAGE) for more details.
5. Restart the queue manager.
6. Alter the page set to use system expansion, to allow it to continue growing beyond its current

allocation.

The following JCL shows example Access Method Services commands:

//S1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
ALTER 'VICY.CSQ1.PAGE01' -
NEWNAME('VICY.CSQ1.PAGE01.OLD')
ALTER 'VICY.CSQ1.PAGE01.DATA' -
NEWNAME('VICY.CSQ1.PAGE01.DATA.OLD')
DEFINE CLUSTER (NAME('VICY.CSQ1.PAGE01') -
MODEL('VICY.CSQ1.PAGE01.OLD') -
DATACLAS(EXTENDED))
/*

Altering a page set to allow automatic expansion

Use the ALTER PSID command with the EXPAND(USER) or EXPAND(SYSTEM) options. See ALTER PSID
and Expanding a page set (COPYPAGE) for general information on expanding page sets.

Moving messages to a new, larger page set

This technique involves stopping and restarting the queue manager. This deletes any nonpersistent
messages that are not on shared queues at restart time. If you have nonpersistent messages that you
do not want to be deleted, use load balancing instead. For more details, see “How to balance loads on

Administering IBM MQ 499

https://www.ibm.com/docs/en/zos/2.4.0?topic=sets-restrictions-defining-extended-format-data

page sets” on page 496. In this description, the page set that you want to expand is referred to as the
source page set; the new, larger page set is referred to as the destination page set.

Follow these steps:

1. Stop the queue manager.
2. Define the destination page set, ensuring that it is larger than the source page set, with a larger

secondary extent value.
3. Use the FORMAT function of CSQUTIL to format the destination page set. See Formatting page sets

(FORMAT) for more details.
4. Use the COPYPAGE function of CSQUTIL to copy all the messages from the source page set to the

destination page set. See Expanding a page set (COPYPAGE) for more details.
5. Restart the queue manager using the destination page set by doing one of the following:

• Change the queue manager started task procedure to reference the destination page set.
• Use Access Method Services to delete the source page set and then rename the destination page

set, giving it the same name as that of the source page set.

Attention:

Before you delete any IBM MQ page set, be sure that you have made the required backup copies.

How to reduce a page set
Prevent all users, other than the IBM MQ administrator, from using the queue manager. For example; by
changing the access security settings.

If you have a large page set that is mostly empty (as shown by the DISPLAY USAGE command), you might
want to reduce its size. The procedure to do this involves using the COPY, FORMAT, and LOAD functions
of CSQUTIL (see IBM MQ utility program). This procedure does not work for page set zero (0), as it is not
practical to reduce the size of this page set; the only way to do so is by reinitializing your queue manager
(see “Reinitializing a queue manager” on page 523). The prerequisite of this procedure is to try and
remove all users from the system so that all UOWs are complete and the page sets are consistent.

1. Use the STOP QMGR command with the QUIESCE or FORCE attribute to stop the queue manager.
2. Run the SCOPY function of CSQUTIL with the PSID option, to copy all message data from the large

page set and save them in a sequential data set.
3. Define a new smaller page set data set to replace the large page set.
4. Run the FORMAT TYPE(NEW) function of CSQUTIL against the page set that you created in step “3” on

page 500.
5. Restart the queue manager using the page set created in step “3” on page 500.
6. Run the LOAD function of CSQUTIL to load back all the messages saved during step “2” on page 500.
7. Allow all users access to the queue manager.
8. Delete the old large page set.

How to reintroduce a page set
In certain scenarios it is useful to be able to bring an old page set online again to the queue manager.
Unless specific action is taken, when the old page set is brought online the queue manager will recognize
that the page set recovery RBA stored in the page set itself and in the checkpoint records is old, and will
therefore automatically start media recovery of the page set to bring it up to date.

Such media recovery can only be performed at queue manager restart, and is likely to take a considerable
length of time, especially if archive logs held on tape must be read. However, normally in this
circumstance, the page set has been offline for the intervening period and so the log contains no
information pertinent to the page set recovery.

The following three choices are available:

500 Administering IBM MQ

Allow full media recovery to be performed.

1. Stop the queue manager.
2. Ensure definitions are available for the page set in both the started task procedure for the queue

manager and in the CSQINP1 initialization data set.
3. Restart the queue manager.

Allow any messages on the page set to be destroyed.
This choice is useful where a page set has been offline for a long time (some months, for example) and
it has now been decided to reuse it for a different purpose.

1. Format the page set using the FORMAT function of CSQUTIL with the TYPE(NEW) option.
2. Add definitions for the page set to both the started task procedure for the queue manager and the

CSQINP1 initialization data set.
3. Restart the queue manager.

Using the TYPE(NEW) option for formatting clears the current contents of the page set and tells the
queue manager to ignore any historical information in the checkpoint about the page set.

Bring the page set online avoiding the media recovery process.
Use this technique only if you are sure that the page set has been offline since a clean shutdown of
the queue manager. This choice is most appropriate where the page set has been offline for a short
period, typically due to operational issues such as a backup running while the queue manager is being
started.

1. Format the page set using the FORMAT function of CSQUTIL with the TYPE(REPLACE) option.
2. Either add the page set back into the queue manager dynamically using the DEFINE PSID

command with the DSN option or allow it to be added at a queue manager restart.

Using the TYPE(REPLACE) option for formatting checks that the page set was cleanly closed by the
queue manager, and marks it so that media recovery will not be performed. No other changes are
made to the contents of the page set.

How to back up and recover page sets
There are different mechanisms available for back up and recovery. Use this topic to understand these
mechanisms.

This section describes the following topics:

• “Creating a point of recovery for non-shared resources” on page 501
• “Backing up page sets” on page 503
• “Recovering page sets” on page 503
• How to delete page sets

For information about how to create a point of recovery for shared resources, see “Recovering shared
queues” on page 509.

Creating a point of recovery for non-shared resources

IBM MQ can recover objects and non-shared persistent messages to their current state if both:

1. Copies of page sets from an earlier point exist.
2. All the IBM MQ logs are available to perform recovery from that point.

These represent a point of recovery for non-shared resources.

Administering IBM MQ 501

Both objects and messages are held on page sets. Multiple objects and messages from different queues
can exist on the same page set. For recovery purposes, objects and messages cannot be backed up in
isolation, so a page set must be backed up as a whole to ensure the correct recovery of the data.

The IBM MQ recovery log contains a record of all persistent messages and changes made to objects. If
IBM MQ fails (for example, due to an I/O error on a page set), you can recover the page set by restoring
the backup copy and restarting the queue manager. IBM MQ applies the log changes to the page set from
the point of the backup copy.

There are two ways of creating a point of recovery:
Full backup

Stop the queue manager, which forces all updates on to the page sets.

This allows you to restart from the point of recovery, using only the backed up page set data sets and
the logs from that point on.

Fuzzy backup
Take fuzzy backup copies of the page sets without stopping the queue manager.

If you use this method, and your associated logs later become damaged or lost, you cannot to use the
fuzzy page set backup copies to recover. This is because the fuzzy page set backup copies contain an
inconsistent view of the state of the queue manager and are dependent on the logs being available. If
the logs are not available, you need to return to the last set of backup page set copies taken while the
subsystem was inactive (Method 1) and accept the loss of data from that time.

Method 1: Full backup

This method involves shutting the queue manager down. This forces all updates on to the page sets so
that the page sets are in a consistent state.

1. Stop all the IBM MQ applications that are using the queue manager (allowing them to complete
first). This can be done by changing the access security or queue settings, for example.

2. When all activity has completed, display and resolve any in-doubt units of recovery. (Use the
commands DISPLAY CONN and RESOLVE INDOUBT, as described in DISPLAY CONN and RESOLVE
INDOUBT.)

This brings the page sets to a consistent state; if you do not do this, your page sets might not be
consistent, and you are effectively doing a fuzzy backup.

3. Issue the ARCHIVE LOG command to ensure that the latest log data is written out to the log data
sets.

4. Issue the STOP QMGR MODE(QUIESCE) command. Record the lowest RBA value in the CSQI024I
or CSQI025I messages (see CSQI024I and CSQI025I for more information). You should keep the
log data sets starting from the one indicated by the RBA value up to the current log data set.

5. Take backup copies of all the queue manager page sets (see “Backing up page sets” on page
503).

Method 2: Fuzzy backup

This method does not involve shutting the queue manager down. Therefore, updates might be in
virtual storage buffers during the backup process. This means that the page sets are not in a
consistent state, and can only be used for recovery with the logs.

1. Issue the DISPLAY USAGE TYPE(ALL) command, and record the RBA value in the CSQI024I or
CSQI025I messages (see CSQI024I and CSQI025I for more information).

2. Take backup copies of the page sets (see “Backing up page sets” on page 503).
3. Issue the ARCHIVE LOG command, to ensure that the latest log data is written out to the log data

sets. To restart from the point of recovery, you must keep the log data sets starting from the log
data set indicated by the RBA value up to the current log data set.

502 Administering IBM MQ

Backing up page sets
To recover a page set, IBM MQ needs to know how far back in the log to go. IBM MQ maintains a log RBA
number in page zero of each page set, called the recovery log sequence number (LSN). This number is the
starting RBA in the log from which IBM MQ can recover the page set. When you back up a page set, this
number is also copied.

If the copy is later used to recover the page set, IBM MQ must have access to all the log records from this
RBA value to the current RBA. That means you must keep enough of the log records to enable IBM MQ to
recover from the oldest backup copy of a page set you intend to keep.

Use ADRDSSU COPY function to copy the page sets.

For more information, see the COPY DATASET Command Syntax for Logical Data Set documentation .

For example:

//STEP2 EXEC PGM=ADRDSSU,REGION=6M
//SYSPRINT DD SYSOUT=H
//SYSIN DD *
 COPY -
 DATASET(INCLUDE(SCENDATA.MQPA.PAGESET.*)) -
 RENAMEU(SCENDATA.MQPA.PAGESET.**,SCENDATA.MQPA.BACKUP1.**) -
 SPHERE -
 REPUNC -
 FASTREPLICATION(PREF)-
 CANCELERROR -
 TOL(ENQF)
/*
//

If you copy the page set while the queue manager is running you must use a copy utility that copies page
zero of the page set first. If you do not do this you could corrupt the data in your page set.

If the process of dynamically expanding a page set is interrupted, for example by power to the system
being lost, you can still use ADRDSSU to take a backup of a page set.

If you perform an Access Method Services IDCAMS LISTCAT ENT('page set data set name')
ALLOC, you will see that the HI-ALLOC-RBA is higher than the HI-USED-RBA.

The next time this page set fills up it is extended again, if possible, and the pages between the high used
RBA and the highest allocated RBA are used, along with another new extent.

Backing up your object definitions

You should also back up copies of your object definitions. To do this, use the MAKEDEF feature of the
CSQUTIL COMMAND function (described in Issuing commands to IBM MQ (COMMAND)).

Back up your object definitions whenever you take a backup copy of your queue manager, and keep the
most current version.

Recovering page sets

If the queue manager has terminated due to a failure, the queue manager can normally be restarted
with all recovery being performed during restart. However, such recovery is not possible if any of your
page sets or log data sets are not available. The extent to which you can now recover depends on the
availability of backup copies of page sets and log data sets.

To restart from a point of recovery you must have:

• A backup copy of the page set that is to be recovered.
• If you used the "fuzzy" backup process described in “Method 2: Fuzzy backup” on page 502, the log

data set that included the recorded RBA value, the log data set that was made by the ARCHIVE LOG
command, and all the log data sets between these.

Administering IBM MQ 503

https://www.ibm.com/docs/en/zos/3.1.0?topic=ccd-copy-dataset-command-syntax-logical-data-set

• If you used full backup, but you do not have the log data sets following that made by the ARCHIVE LOG
command, you do not need to run the FORMAT TYPE(REPLACE) function of the CSQUTIL utility against
all your page sets.

To recover a page set to its current state, you must also have all the log data sets and records since the
ARCHIVE LOG command.

There are two methods for recovering a page set. To use either method, the queue manager must be
stopped.

Simple recovery

This is the simpler method, and is appropriate for most recovery situations.

1. Delete the page set you want to restore from backup.
2. Use the ADRDSSU COPY function to recover your page set from the backup copy..

Alternatively, you can rename your backup copy to the original name, or change the CSQP00xx DD
statement in your queue manager procedure to point to your backup page set. However, if you then
lose or corrupt the page set, you will no longer have a backup copy to restore from.

3. Restart the queue manager.
4. When the queue manager has restarted successfully, you can restart your applications
5. Reinstate your normal backup procedures for the restored page.

Advanced recovery

This method provides performance advantages if you have a large page set to recover, or if there has
been much activity on the page set since the last backup copy was taken. However, it requires more
manual intervention than the simple method, which might increase the risk of error and the time taken
to perform the recovery.

1. Delete and redefine the page set you want to restore from backup.
2. Use ADRDSSU to copy the backup copy of the page set into the new page set. Define your new

page set with a secondary extent value so that it can be expanded dynamically.

Alternatively, you can rename your backup copy to the original name, or change the CSQP00xx DD
statement in your queue manager procedure to point to your backup page set. However, if you then
lose or corrupt the page set, you will no longer have a backup copy to restore from.

3. Change the CSQINP1 definitions for your queue manager to make the buffer pool associated with
the page set being recovered as large as possible. By making the buffer pool large, you might be
able to keep all the changed pages resident in the buffer pool and reduce the amount of I/O to the
page set.

4. Restart the queue manager.
5. When the queue manager has restarted successfully, stop it (using quiesce) and then restart it

using the normal buffer pool definition for that page set. After this second restart completes
successfully, you can restart your applications

6. Reinstate your normal backup procedures for the restored page.

What happens when the queue manager is restarted

When the queue manager is restarted, it applies all changes made to the page set that are registered
in the log, beginning at the restart point for the page set. IBM MQ can recover multiple page sets in
this way. The page set is dynamically expanded, if required, during media recovery.

During restart, IBM MQ determines the log RBA to start from by taking the lowest value from the
following:

• Recovery LSN from the checkpoint log record for each page set.
• Recovery LSN from page zero in each page set.
• The RBA of the oldest incomplete unit of recovery in the system at the time the backup was taken.

504 Administering IBM MQ

All object definitions are stored on page set zero. Messages can be stored on any available page set.

Note: The queue manager cannot restart if page set zero is not available.

How to delete page sets
You delete a page set by using the DELETE PSID command; see DELETE PSID for details of this command.

You cannot delete a page set that is still referenced by any storage class. Use DISPLAY STGCLASS to find
out which storage classes reference a page set.

The data set is deallocated from IBM MQ but is not deleted. It remains available for future use, or can be
deleted using z/OS facilities.

Remove the page set from the started task procedure for your queue manager.

Remove the definition of the page set from your CSQINP1 initialization data set.

How to back up and restore queues using CSQUTIL
Use this topic as a reference for further information about back up and restore using CSQUTIL.

You can use the CSQUTIL utility functions for backing up and restoring queues. To back up a queue, use
the COPY or SCOPY function to copy the messages from a queue onto a data set. To restore the queue,
use the complementary function LOAD or SLOAD. For more information, see IBM MQ utility program.

Managing buffer pools
Use this topic if you want to change or delete your buffer pools.

This topic describes how to alter and delete buffer pools. It contains these sections:

• “How to change the number of buffers in a buffer pool” on page 505
• “How to delete a buffer pool” on page 506

Buffer pools are defined during queue manager initialization, using DEFINE BUFFPOOL commands issued
from the initialization input data set CSQINP1. Their attributes can be altered in response to business
requirements while the queue manager is running, using the processes detailed in this topic. The queue
manager records the current buffer pool attributes in checkpoint log records. These are automatically
restored on subsequent queue manager restart, unless the buffer pool definition in CSQINP1 includes the
REPLACE attribute.

Use the DISPLAY USAGE command to display the current buffer attributes.

You can also define buffer pools dynamically using the DEFINE PSID command with the DSN option.

If you change buffer pools dynamically, you should also update their definitions in the initialization data
set CSQINP1.

See Planning on z/OS for a description of page sets, storage classes, buffers, and buffer pools, and some
of the performance considerations that apply.

Note: Buffer pools use significant storage. When you increase the size of a buffer pool or define a new
buffer pool ensure that sufficient storage is available. For more information, see Address space storage.

How to change the number of buffers in a buffer pool

If a buffer pool is too small, the condition can result in message CSQP020E on the console, you can
allocate more buffers to it using the ALTER BUFFPOOL command as follows:

1. Determine how much space is available for new buffers by looking at the CSQY220I messages in the
log. The available space is reported in MB. As a buffer has a size of 4 KB, each MB of available space

Administering IBM MQ 505

allows you to allocate 256 buffers. Do not allocate all the free space to buffers, as some is required for
other tasks.

If the buffer pool uses fixed 4 KB pages, that is, its PAGECLAS attribute is FIXED4KB, ensure that there
is sufficient real storage available on the LPAR.

2. If the reported free space is inadequate, release some buffers from another buffer pool using the
command

ALTER BUFFPOOL(buf-pool-id) BUFFERS(integer)

where buf-pool-id is the buffer pool from which you want to reclaim space and integer is the new
number of buffers to be allocated to this buffer pool, which must be smaller than the original number
of buffers allocated to it.

3. Add buffers to the buffer pool you want to expand using the command

ALTER BUFFPOOL(buf-pool-id) BUFFERS(integer)

where buf-pool-id is the buffer pool to be expanded and integer is the new number of buffers to be
allocated to this buffer pool, which must be larger than the original number of buffers allocated to it.

How to delete a buffer pool
When a buffer pool is no longer used by any page sets, delete it to release the virtual storage allocated to
it.

You delete a buffer pool using the DELETE BUFFPOOL command. The command fails if any page sets are
using this buffer pool.

See “How to delete page sets” on page 505 for information about how to delete page sets.

Managing queue sharing groups and shared queues on z/OS
IBM MQ can use different types of shared resources, for example queue sharing groups, shared queues,
and the coupling facility. Use this topic to review the procedures needed to manage these shared
resources.

This section contains information about the following topics:

• “Managing queue sharing groups” on page 506
• “Managing shared queues” on page 509
• “Managing group objects” on page 514
• “Managing the coupling facility” on page 515

Managing queue sharing groups
You can add or remove a queue manager to a queue sharing group (QSG), and manage the associated Db2
tables.

This topic has sections about the following tasks:

• “Setting up a queue sharing group” on page 507
• “Adding a queue manager to a queue sharing group” on page 507
• “Removing a queue manager from a queue sharing group” on page 508
• “Removing a queue sharing group from the Db2 tables” on page 509
• “Validating the consistency of Db2 definitions” on page 509

506 Administering IBM MQ

Setting up a queue sharing group
Each queue sharing group has a name of up to four characters. The name must be unique in your network,
and must be different from any queue manager names.

Follow these steps to set up a queue sharing group:

1. If this is the first queue sharing group to use the Db2 data-sharing group, set up the Db2 environment.
2. Set up the coupling facility.
3. Add the queue sharing group to the Db2 tables. Use the ADD QSG function of the queue sharing group

utility (CSQ5PQSG). This program is described in The queue sharing group utility. A sample is provided
in thlqual.SCSQPROC(CSQ45AQS).

4. Add a queue manager to the queue sharing group by following the steps in “Adding a queue manager
to a queue sharing group” on page 507

5. Define application structures to IBM MQ by following the steps in “Adding a coupling facility structure”
on page 515.

6. If required, migrate non-shared queues to shared queues.
7. For availability, create shared channels into and out of the queue sharing group.

• For connections into the queue sharing group:

– Set up a VIPA socket or hardware router to distribute workload between the available queue
managers in the QSG.

– Define a receiver channel with QSGDISP(GROUP), to ensure the channel definition is available on
all queue managers in the QSG.

– Start a listener with INDISP(GROUP), on each queue manager, for MCA channel connections
into the QSG. Client connections into the QSG should still connect to a listener started with
INDISP(QMGR).

– Change applications to connect using the QSG name, rather than a specific queue manager name.
– Ensure that the channel authentication rules on all queue managers in the QSG are the same, to

allow applications to connect to any queue manager in the QSG.
• For connections out of the queue sharing group:

– Define a shared transmission queue.
– Define the outbound channel with QSGDISP(GROUP) and DEFCDISP(SHARED).

If you convert an existing channel to a shared channel, you might need to issue the RESET CHANNEL
command before starting the channel as the synchronization queue used by the channel will have
changed.

Adding a queue manager to a queue sharing group

A queue manager can be added to an existing queue sharing group.

Note that:

• The queue sharing group must exist before you can add queue managers to it.
• A queue manager can be a member of only one queue sharing group.

Follow these steps to add a queue manager to a queue sharing group:

1. Perform the tasks in implement ESM security controls for the queue sharing group to grant the
appropriate access to the queue manager and channel initiator user IDs.

2. If the queue sharing group has CF structures configured to offload data to SMDS, perform the tasks in
set up the SMDS environment.

3. Stop the queue manager.

Administering IBM MQ 507

4. Use the ADD QMGR function of the queue sharing group utility (CSQ5PQSG). This program is
described in the queue sharing group utility. A sample is provided in thlqual.SCSQPROC(CSQ45AQM).

5. Change your system parameter module to add queue sharing group data:

a. Modify CSQ6SYSP to specify the QSGDATA parameter. See using CSQ6SYSP for more information.
b. Assemble and link the system parameter module. You might want to use a different name for the

load module.
c. Change your startup process to use the new module.

6. Copy and tailor sample member thlqual.SCSQPROC(CSQ4INSS), which defines required CF
structures and SYSTEM queues. Add the customized member to the CSQINP2 DD in the queue
manager startup JCL.

7. Restart your queue manager using the queue sharing group system parameter module.
8. Optionally, migrate to security profiles prefixed by the queue sharing group name, instead of the

queue manager name.
9. If shared channels are used for connections into the QSG, create channel authentication rules that

mirror those on the other queue managers in the QSG, to allow applications to connect to any queue
manager in the QSG.

10. 10. Optionally, do either of the following to allow applications connected to the queue manager in the
QSG to put messages to queues hosted by other queue managers in the QSG:

• Turn on intra-group queuing by issuing the command ALTER QMGR IGQ(ENABLED).
• Define transmission queues and channels to the other queue managers in the QSG. Defining

transmission queues with the same name as the target queue managers avoids the need to define
remote queues and queue manager aliases.

Note: To add a queue manager to an existing queue sharing group containing queue managers running
earlier versions of IBM MQ, you must first apply the coexistence PTF for the highest version of IBM MQ in
the group to every earlier version queue manager in the group.

Removing a queue manager from a queue sharing group

You can only remove a queue manager from a queue sharing group if the queue manager's logs are not
needed by another process, and all SMDS owned by the queue manager are empty.

See Deleting shared message data sets and DELETE CFSTRUCT for more information.

The logs are needed if they contain:

• The latest backup of one of the coupling facility (CF) application structures used by the queue sharing
group

• Data needed by a future restore process, that is, the queue manager has used a recoverable structure
since the time described by the last backup exclusion interval value.

If either or both of these points apply, or an SMDS owned by the queue manager contains messages, the
queue manager cannot be removed. To determine which queue managers' logs are needed for a future
restore process, use the MQSC DISPLAY CFSTATUS command with the TYPE(BACKUP) option (for details
of this command, see DISPLAY CFSTATUS).

Use the following steps to remove a queue manager from a queue sharing group:

1. Stop any applications connected to the queue manager that put messages to shared queues.
2. Resolve any indoubt units of work involving this queue manager.
3. Determine if there are any messages in any SMDS owned by the queue manager by issuing the

command DISPLAY USAGE TYPE(SMDS).
4. If there are offloaded messages for any application structure, wait until those messages have

been retrieved from the queue. The number of offloaded messages reported by DISPLAY USAGE
TYPE(SMDS) should be zero before proceeding.

508 Administering IBM MQ

5. Shut the queue manager down cleanly using STOP QMGR MODE(QUIESCE).
6. Wait for an interval at least equivalent to the value of the EXCLINT parameter you will specify in the

BACKUP CFSTRUCT command in the next step.
7. On another queue manager, run a CF structure backup for each recoverable CF structure by using the

MQSC BACKUP CFSTRUCT command and specifying an EXCLINT value as required in the previous
step.

8. Confirm that the queue manager's logs are not needed to restore any CF structures, by inspecting the
output from the command DISPLAY CFSTATUS(*) TYPE(BACKUP).

9. Use the REMOVE QMGR function of the CSQ5PQSG utility to remove the queue manager from the
queue sharing group. This program is described in The queue sharing group utility. A sample is
provided in thlqual.SCSQPROC(CSQ45RQM).

10. Before restarting the queue manager, reset the QSGDATA system parameter to its default value, and
recreate the system parameter module. See Using CSQ6SYSP for information about how to tailor your
system parameters.

Note, that when removing the last queue manager in a queue sharing group, you must use the FORCE
option, rather than REMOVE. This removes the queue manager from the queue sharing group, while not
performing the consistency checks of the queue manager logs being required for recovery. You should
only perform this operation if you are deleting the queue sharing group.

Removing a queue sharing group from the Db2 tables

To remove a queue sharing group from the Db2 tables, use the REMOVE QSG function of the queue
sharing group utility (CSQ5PQSG). This program is described in The queue sharing group utility. A sample
is provided in thlqual.SCSQPROC(CSQ45RQS).

You can only remove a queue sharing group from the common Db2 data-sharing group tables after you
have removed all the queue managers from the queue sharing group (as described in “Removing a queue
manager from a queue sharing group” on page 508).

When the queue sharing group record is deleted from the queue sharing group administration table, all
objects and administrative information relating to that queue sharing group are deleted from other IBM
MQ Db2 tables. This includes shared queue and group object information.

Validating the consistency of Db2 definitions
Problems for shared queues within a queue sharing group can occur if the Db2 object definitions have, for
any reason, become inconsistent.

To validate the consistency of the Db2 object definitions for queue managers, CF structures, and shared
queues, use the VERIFY QSG function of the queue sharing group utility (CSQ5PQSG). This program is
described in The queue sharing group utility.

Managing shared queues
Use this topic to understand how to recover, move, and migrate shared queues.

This section describes the following tasks:

• “Recovering shared queues” on page 509
• “Moving shared queues” on page 510
• “Migrating non-shared queues to shared queues” on page 513
• Suspending a Db2 connection

Recovering shared queues

IBM MQ can recover persistent messages on shared queues if all:

Administering IBM MQ 509

• Backups of the CF structures containing the messages have been performed.
• All the logs for all queue managers in the queue sharing group are available, to perform recovery from

the point the backups are taken.
• Db2 is available and the structure backup table is more recent that the most recent CF structure

backup.

The messages on a shared queue are stored in a coupling facility (CF) structure. Persistent messages
can be put onto shared queues, and like persistent messages on non-shared queues, they are copied
to the queue manager log. The MQSC BACKUP CFSTRUCT and RECOVER CFSTRUCT commands are
provided to allow the recovery of a CF structure in the unlikely event of a coupling facility failure. In
such circumstances, any nonpersistent messages stored in the affected structure are lost, but persistent
messages can be recovered. Any further application activity using the structure is prevented until the
structure has been recovered.

To enable recovery, you must back up your coupling facility list structures frequently using the MQSC
BACKUP CFSTRUCT command. The messages in the CF structure are written onto the active log data set
of the queue manager making the backup. It writes a record of the backup to Db2: the name of the CF
structure being backed up, the name of the queue manager doing the backup, the RBA range for this
backup on that queue manager log, and the backup time. Back up CF list structures even if you are not
actively using shared queues, for example, if you have set up a queue sharing group intending to use it in
the future.

You can recover a CF structure by issuing an MQSC RECOVER CFSTRUCT command to the queue manager
that can perform the recovery; you can use any queue manager in the queue sharing group. You can
specify a single CF structure to be recovered, or you can recover several CF structures simultaneously.

As noted previously, it is important that you back up your CF list structures frequently, otherwise
recovering a CF structure can take a long time. Moreover, the recovery process cannot be canceled.

The definition of a shared queue is kept in a Db2 database and can therefore be recovered if necessary
using standard Db2 database procedures. See Shared queues and queue sharing groups for more
information.

Moving shared queues

This section describes how to perform load balancing by moving a shared queue from one coupling facility
structure to another. It also describes how to move a non-shared queue to a shared queue, and how to
move a shared queue to a non-shared queue.

When you move a queue, you need to define a temporary queue as part of the procedure. This is because
every queue must have a unique name, so you cannot have two queues of the same name, even if the
queues have different queue dispositions. IBM MQ tolerates having two queues with the same name (as
in step “2” on page 510), but you cannot use the queues.

• Moving a queue from one coupling facility structure to another
• Moving a non-shared queue to a shared queue
• Moving a shared queue to a non-shared queue

Moving a queue from one coupling facility structure to another

To move queues and their messages from one CF structure to another, use the MQSC MOVE QLOCAL
command. When you have identified the queue or queues that you want to move to a new CF
structure, use the following procedure to move each queue:

1. Ensure that the queue you want to move is not in use by any applications, that is, the queue
attributes IPPROCS and OPPROCS are zero on all queue managers in the queue sharing group.

2. Prevent applications from putting messages on the queue being moved by altering the queue
definition to disable MQPUT s. Change the queue definition to PUT(DISABLED).

3. Define a temporary queue with the same attributes as the queue that is being moved using the
following command:

510 Administering IBM MQ

DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO_MOVE) PUT(ENABLED) GET(ENABLED) QSGDISP(QMGR)

Note: If this temporary queue exists from a previous run, delete it before doing the define.
4. Move the messages to the temporary queue using the following command:

MOVE QLOCAL(QUEUE_TO_MOVE) TOQLOCAL(TEMP_QUEUE)

5. Delete the queue you are moving, using the command:

DELETE QLOCAL(QUEUE_TO_MOVE)

6. Redefine the queue that is being moved, changing the CFSTRUCT attribute, using the following
command:

DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) CFSTRUCT(NEW) QSGDISP(SHARED)

When the queue is redefined, it is based on the temporary queue created in step “3” on page 510.
7. Move the messages back to the new queue using the command:

MOVE QLOCAL(TEMP) TOQLOCAL(QUEUE_TO_MOVE)

8. The queue created in step “3” on page 510 is no longer required. Use the following command to
delete it:

DELETE QL(TEMP_QUEUE)

9. If the queue being moved was defined in the CSQINP2 data sets, change the CFSTRUCT attribute
of the appropriate DEFINE QLOCAL command in the CSQINP2 data sets. Add the REPLACE
keyword so that the existing queue definition is replaced.

Figure 30 on page 512 shows a sample job for moving a queue from one CF structure to another.

Administering IBM MQ 511

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQ1')
//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR
// DD DSN=thlqual.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(MOVEQ)
/*
//MOVEQ DD *
ALTER QL(QUEUE_TO_MOVE) PUT(DISABLED)
DELETE QL(TEMP_QUEUE) PURGE
DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO_MOVE) PUT(ENABLED) GET(ENABLED) QSGDISP(QMGR)
MOVE QLOCAL(QUEUE_TO_MOVE) TOQLOCAL(TEMP_QUEUE)
DELETE QL(QUEUE_TO_MOVE)
DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) CFSTRUCT(NEW) QSGDISP(SHARED)
MOVE QLOCAL(TEMP_QUEUE) TOQLOCAL(QUEUE_TO_MOVE)
DELETE QL(TEMP_QUEUE)
/*

Figure 30. Sample job for moving a queue from one CF structure to another

Moving a non-shared queue to a shared queue

The procedure for moving a non-shared queue to a shared queue is like the procedure for moving a
queue from one CF structure to another (see “Moving a queue from one coupling facility structure to
another” on page 510). Figure 31 on page 512 gives a sample job to do this.

Note: Remember that messages on shared queues are subject to certain restrictions on the maximum
message size, message persistence, and queue index type, so you might not be able to move some
non-shared queues to a shared queue.

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQ1')
//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR
// DD DSN=thlqual.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(MOVEQ)
/*
//MOVEQ DD *
ALTER QL(QUEUE_TO_MOVE) PUT(DISABLED)
DELETE QL(TEMP_QUEUE) PURGE
DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO_MOVE) PUT(ENABLED) GET(ENABLED)
MOVE QLOCAL(QUEUE_TO_MOVE) TOQLOCAL(TEMP_QUEUE)
DELETE QL(QUEUE_TO_MOVE)
DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) CFSTRUCT(NEW) QSGDISP(SHARED)
MOVE QLOCAL(TEMP_QUEUE) TOQLOCAL(QUEUE_TO_MOVE)
DELETE QL(TEMP_QUEUE)
/*

Figure 31. Sample job for moving a non-shared queue to a shared queue

Moving a shared queue to a non-shared queue

The procedure for moving a shared queue to a non-shared queue is like the procedure for moving a
queue from one CF structure to another (see “Moving a queue from one coupling facility structure to
another” on page 510).

Figure 32 on page 513 gives a sample job to do this.

512 Administering IBM MQ

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQ1')
//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR
// DD DSN=thlqual.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(MOVEQ)
/*
//MOVEQ DD *
ALTER QL(QUEUE_TO_MOVE) PUT(DISABLED)
DELETE QL(TEMP_QUEUE) PURGE
DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO_MOVE) PUT(ENABLED) GET(ENABLED) QSGDISP(QMGR)
MOVE QLOCAL(QUEUE_TO_MOVE) TOQLOCAL(TEMP_QUEUE)
DELETE QL(QUEUE_TO_MOVE)
DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) STGCLASS(NEW) QSGDISP(QMGR)
MOVE QLOCAL(TEMP_QUEUE) TOQLOCAL(QUEUE_TO_MOVE)
DELETE QL(TEMP_QUEUE)
/*

Figure 32. Sample job for moving a shared queue to a non-shared queue

Migrating non-shared queues to shared queues

There are two stages to migrating non-shared queues to shared queues:

• Migrating the first (or only) queue manager in the queue sharing group
• Migrating any other queue managers in the queue sharing group

Migrating the first (or only) queue manager in the queue sharing group

Figure 31 on page 512 shows an example job for moving a non-shared queue to a shared queue. Do
this for each queue that needs migrating.

Note:

1. Messages on shared queues are subject to certain restrictions on the maximum message size,
message persistence, and queue index type, so you might not be able to move some non-shared
queues to a shared queue.

2. You must use the correct index type for shared queues. If you migrate a transmission queue to be a
shared queue, the index type must be MSGID.

If the queue is empty, or you do not need to keep the messages that are on it, migrating the queue is
simpler. Figure 33 on page 513 shows an example job to use in these circumstances.

//UTILITY EXEC PGM=CSQUTIL,PARM=('CSQ1')
//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR
// DD DSN=thlqual.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(MOVEQ)
/*
//MOVEQ DD *
DELETE QL(TEMP_QUEUE) PURGE
DEFINE QL(TEMP_QUEUE) LIKE(QUEUE_TO_MOVE) PUT(ENABLED) GET(ENABLED)
DELETE QL(QUEUE_TO_MOVE)
DEFINE QL(QUEUE_TO_MOVE) LIKE(TEMP_QUEUE) CFSTRUCT(NEW) QSGDISP(SHARED)
DELETE QL(TEMP_QUEUE)
/*

Figure 33. Sample job for moving a non-shared queue without messages to a shared queue

Administering IBM MQ 513

Migrating any other queue managers in the queue sharing group

1. For each queue that does not have the same name as an existing shared queue, move the queue as
described in Figure 31 on page 512 or Figure 33 on page 513.

2. For queues that have the same name as an existing shared queue, move the messages to the
shared queue using the commands shown in Figure 34 on page 514.

MOVE QLOCAL(QUEUE_TO_MOVE) QSGDISP(QMGR) TOQLOCAL(QUEUE_TO_MOVE)
DELETE QLOCAL(QUEUE_TO_MOVE) QSGDISP(QMGR)

Figure 34. Moving messages from a non-shared queue to an existing shared queue

Suspending a connection to Db2

If you want to apply maintenance or service to the Db2 tables or package related to shared queues
without stopping your queue manager, you must temporarily disconnect queue managers in the data
sharing group (DSG) from Db2.

To do this:

1. Use the MQSC command SUSPEND QMGR FACILITY(Db2).
2. Do the binds.
3. Reconnect to Db2 using the MQSC command RESUME QMGR FACILITY(Db2)

Note that there are restrictions on the use of these commands.

Attention: While the Db2 connection is suspended, the following operations will not be available.
Therefore, you need to do this work during a time when your enterprise is at its least busy.

• Access to Shared queue objects for administration (define, delete,alter)
• Starting shared channels
• Storing messages in Db2
• Backup or recover CFSTRUCT

Managing group objects
Use this topic to understand how to work with group objects.

IBM MQ automatically copies the definition of a group object to page set zero of each queue manager that
uses it. You can alter the copy of the definition temporarily, and IBM MQ allows you to refresh the page set
copies from the repository copy. IBM MQ always tries to refresh the page set copies from the repository
copy on start-up (for channel objects, this is done when the channel initiator restarts). This ensures that
the page set copies reflect the version on the repository, including any changes that were made when the
queue manager was inactive.

There are circumstances under which the refresh is not performed, for example:

• If a copy of the queue is open, a refresh that would change the usage of the queue fails.
• If a copy of a queue has messages on it, a refresh that would delete that queue fails.

In these circumstances, the refresh is not performed on that copy, but is performed on the copies on all
other queue managers. Check for and correct any problems with copy objects after adding, changing, or
deleting a group object, and at queue manager or channel initiator restart.

514 Administering IBM MQ

Managing the coupling facility
Use this topic to understand how to add or remove coupling facility (CF) structures.

This section describes the following tasks:

• “Adding a coupling facility structure” on page 515
• “Removing a coupling facility structure” on page 515

Adding a coupling facility structure

To add a coupling facility structure, use the following procedure:

1. Define the CF structure in the CFRM policy data set. The information about setting up the coupling
facility in Set up the coupling facility describes the rules for naming coupling facility structures, and
how to define structures in the CFRM policy data set.

2. If you want to configure the structure to offload message data to SMDS, allocate and preformat data
sets. See creating a shared message data set for details.

3. Define the structure to IBM MQ using the DEFINE CFSTRUCT command.

Removing a coupling facility structure

To remove a coupling facility structure, use the following procedure:

1. Use the following command to get a list of all the queues using the coupling facility structure that you
want to delete:

DISPLAY QUEUE(*) QSGDISP(SHARED) CFSTRUCT(structure-name)

2. Delete all the queues that use the structure.
3. Delete the CF structure from IBM MQ using the DELETE CFSTRUCT command.
4. If the structure was configured to offload message data to SMDS, delete the SMDS.
5. Remove the structure definition from your CFRM policy data set and run the IXCMIAPU utility. (This

is the reverse of the customization task set up the coupling facility, described in Set up the coupling
facility.)

Tuning coupling facility list monitoring
Use this topic to understand coupling facility list monitoring

Coupling facility (CF) list monitoring is used to monitor the state of list structures containing IBM MQ
shared queues. When a message is added to a shared queue, and the queue's depth transitions from
zero to non-zero, the CF notifies all queue managers in the queue sharing group. When notified the
queue managers might perform a number of actions, including notifying trigger monitors that are using
TRIGGER(FIRST), or applications which are performing a get-wait.

By default, the CF notifies all queue managers in the queue sharing group at the same time. In certain
configurations this can cause problems, such as:

• Skewed workload distribution, where a large percentage of messages go to a particular queue manager
in the queue sharing group, often the queue manager running on the fastest LPAR, or which is closest to
the CF, or

• A large number of failed gets, resulting in wasted CPU time.

Administering IBM MQ 515

z/OS V2R3 introduces a new coupling facility resource manager (CFRM) attribute called
KEYRNOTIFYDELAY, which can be used with list structures containing shared queues (that is, application
structures, and not the admin structure), and which can, for certain workloads, minimize the effects of
workload skewing and empty MQGET calls, or empty MQGET calls.

KEYRNOTIFYDELAY can only be set on structures in a CF, running at CFLEVEL 22 or higher.

Its value must be one to seven decimal digits, in a range from 0 to 1,000,000 microseconds. If set to
a non-zero value and the depth of a queue transitions from zero to non-zero, the CF selects a single
queue manager from the queue sharing group, and notifies that queue manager before all the other queue
managers in the group.

The queue manager is selected in a round-robin manner. If the selected queue manager does not process
the message inside the time interval described by KEYRNOTIFYDELAY all the other queue managers in
the queue sharing group will also be notified.

More information on KEYRNOTIFYDELAY is available here: Understanding Keyrange Monitoring
Notification Delay.

Note that there are two similar CFRM attributes called LISTNOTIFYDELAY and SUBNOTIFYDELAY.
Neither of these has any measurable effect on IBM MQ workload.

Recovery and restart on z/OS
Use this topic to understand the recovery and restart mechanisms used by IBM MQ.

Restarting IBM MQ
After a queue manager terminates there are different restart procedures needed depending on how the
queue manager terminated. Use this topic to understand the different restart procedures that you can
use.

This topic contains information about how to restart your queue manager in the following circumstances:

• “Restarting after a normal shutdown” on page 516
• “Restarting after an abnormal termination” on page 516
• “Restarting if you have lost your page sets” on page 517
• “Restarting if you have lost your log data sets” on page 517
• Restarting if you have lost your CF structures

Restarting after a normal shutdown

If the queue manager was stopped with the STOP QMGR command, the system finishes its work in an
orderly way and takes a termination checkpoint before stopping. When you restart the queue manager,
it uses information from the system checkpoint and recovery log to determine the system status at
shutdown.

To restart the queue manager, issue the START QMGR command as described in “Using MQSC to start and
stop a queue manager on z/OS” on page 442.

Restarting after an abnormal termination

IBM MQ automatically detects whether restart follows a normal shutdown or an abnormal termination.

Starting the queue manager after it has terminated abnormally is different from starting it after the STOP
QMGR command has been issued. If the queue manager terminates abnormally, it terminates without
being able to finish its work or take a termination checkpoint.

516 Administering IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=values-understanding-keyrange-monitoring-notification-delay
https://www.ibm.com/docs/en/zos/3.1.0?topic=values-understanding-keyrange-monitoring-notification-delay

To restart the queue manager, issue the START QMGR command as described in “Using MQSC to start
and stop a queue manager on z/OS” on page 442. When you restart a queue manager after an abnormal
termination, it refreshes its knowledge of its status at termination using information in the log, and
notifies you of the status of various tasks.

Normally, the restart process resolves all inconsistent states. But, in some cases, you must take specific
steps to resolve inconsistencies. This is described in “Recovering units of work manually” on page 529.

Restarting if you have lost your page sets

If you have lost your page sets, you need to restore them from your backup copies before you can restart
the queue manager. This is described in “How to back up and recover page sets” on page 501.

The queue manager might take a long time to restart under these circumstances because of the length of
time needed for media recovery.

Restarting if you have lost your log data sets

If, after stopping a queue manager (using the STOP QMGR command), both copies of the log are lost or
damaged, you can restart the queue manager providing you have a consistent set of page sets (produced
using Method 1: Full backup).

Follow this procedure:

1. Define new page sets to correspond to each existing page set in your queue manager. See Task 15:
Define your page sets for information about page set definition.

Ensure that each new page set is larger than the corresponding source page set.
2. Use the FORMAT function of CSQUTIL to format the destination page set. See Formatting page sets for

more details.
3. Use the RESETPAGE function of CSQUTIL to copy the existing page sets or reset them in place, and

reset the log RBA in each page. See Copying a page set and resetting the log for more information
about this function.

4. Redefine your queue manager log data sets and BSDS using CSQJU003 (see The change log inventory
utility).

5. Restart the queue manager using the new page sets. To do this, you do one of the following:

• Change the queue manager started task procedure to reference the new page sets. See Task 6:
Create procedures for the IBM MQ queue manager for more information.

• Use Access Method Services to delete the old page sets and then rename the new page sets, giving
them the same names as the old page sets.

Attention: Before you delete any IBM MQ page set, ensure that you have made the required backup
copies.

If the queue manager is a member of a queue sharing group, GROUP and SHARED object definitions are
not normally affected by lost or damaged logs. However, if any shared-queue messages are involved in a
unit of work that was covered by the lost or damaged logs, the effect on such uncommitted messages is
unpredictable.

Note: If logs are damaged and the queue manager is a member of a queue sharing group, the ability to
recover shared persistent messages might be lost. Issue a BACKUP CFSTRUCT command immediately on
another active queue manager in the queue sharing group for all CF structures with the RECOVER(YES)
attribute.

Restarting if you have lost your CF structures
You do not need to restart if you lose your CF structures, because the queue manager does not terminate.

Administering IBM MQ 517

Alternative site recovery on z/OS
You can recover a single queue manager or a queue sharing group, or consider disk mirroring.

See the following sections for more details:

• Recovering a single queue manager at an alternative site
• Recovering a queue sharing group.

– CF structure media recovery
– Backing up the queue sharing group at the prime site
– Recovering a queue sharing group at the alternative site

• Using disk mirroring

Recovering a single queue manager at an alternative site
If a total loss of an IBM MQ computing center occurs, you can recover on another queue manager or
queue sharing group at a recovery site. (See “Recovering a queue sharing group at the alternative site” on
page 521 for the alternative site recovery procedure for a queue sharing group.)

To recover on another queue manager at a recovery site, you must regularly back up the page sets and
the logs. As with all data recovery operations, the objectives of disaster recovery are to lose as little data,
workload processing (updates), and time, as possible.

At the recovery site:

• The recovery queue managers must have the same names as the lost queue managers.
• The system parameter module (for example, CSQZPARM) used on each recovery queue manager must

contain the same parameters as the corresponding lost queue manager.

When you have done this, reestablish all your queue managers as described in the following procedure.
This can be used to perform disaster recovery at the recovery site for a single queue manager. It assumes
that all that is available are:

• Copies of the archive logs and BSDSs created by normal running at the primary site (the active logs will
have been lost along with the queue manager at the primary site).

• Copies of the page sets from the queue manager at the primary site that are the same age or older than
the most recent archive log copies available.

You can use dual logging for the active and archive logs, in which case you need to apply the BSDS
updates to both copies:

1. Define new page set data sets and load them with the data in the copies of the page sets from the
primary site.

2. Define new active log data sets.
3. Define a new BSDS data set and use Access Method Services REPRO to copy the most recent archived

BSDS into it.
4. Use the print log map utility CSQJU004 to print information from this most recent BSDS. At the time

this BSDS was archived, the most recent archived log you have would have just been truncated as an
active log, and does not appear as an archived log. Record the STARTRBA and ENDRBA of this log.

5. Use the change log inventory utility, CSQJU003, to register this latest archive log data set in the BSDS
that you have just restored, using the STARTRBA and ENDRBA recorded in Step “4” on page 518.

6. Use the DELETE option of CSQJU003 to remove all active log information from the BSDS.
7. Use the NEWLOG option of CSQJU003 to add active logs to the BSDS, do not specify STARTRBA or

ENDRBA.
8. Use CSQJU003 to add a restart control record to the BSDS. Specify CRESTART
CREATE,ENDRBA=highrba, where highrba is the high RBA of the most recent archive log available
(found in Step “4” on page 518), plus 1.

518 Administering IBM MQ

The BSDS now describes all active logs as being empty, all the archived logs you have available, and no
checkpoints beyond the end of your logs.

9. Restart the queue manager with the START QMGR command. During initialization, an operator reply
message such as the following is issued:

CSQJ245D +CSQ1 RESTART CONTROL INDICATES TRUNCATION AT RBA highrba.
REPLY Y TO CONTINUE, N TO CANCEL

Type Y to start the queue manager. The queue manager starts, and recovers data up to ENDRBA
specified in the CRESTART statement.

See IBM MQ utilities on z/OS reference for information about using CSQJU003 and CSQJU004.

The following example shows sample input statements for CSQJU003 for steps 6, 7, and 8:

* Step 6
DELETE DSNAME=MQM2.LOGCOPY1.DS01
DELETE DSNAME=MQM2.LOGCOPY1.DS02
DELETE DSNAME=MQM2.LOGCOPY1.DS03
DELETE DSNAME=MQM2.LOGCOPY1.DS04
DELETE DSNAME=MQM2.LOGCOPY2.DS01
DELETE DSNAME=MQM2.LOGCOPY2.DS02
DELETE DSNAME=MQM2.LOGCOPY2.DS03
DELETE DSNAME=MQM2.LOGCOPY2.DS04

* Step 7
NEWLOG DSNAME=MQM2.LOGCOPY1.DS01,COPY1
NEWLOG DSNAME=MQM2.LOGCOPY1.DS02,COPY1
NEWLOG DSNAME=MQM2.LOGCOPY1.DS03,COPY1
NEWLOG DSNAME=MQM2.LOGCOPY1.DS04,COPY1
NEWLOG DSNAME=MQM2.LOGCOPY2.DS01,COPY2
NEWLOG DSNAME=MQM2.LOGCOPY2.DS02,COPY2
NEWLOG DSNAME=MQM2.LOGCOPY2.DS03,COPY2
NEWLOG DSNAME=MQM2.LOGCOPY2.DS04,COPY2

* Step 8
CRESTART CREATE,ENDRBA=063000

The things you need to consider for restarting the channel initiator at the recovery site are like those faced
when using ARM to restart the channel initiator on a different z/OS image. See “Using ARM in an IBM MQ
network” on page 527 for more information. Your recovery strategy should also cover recovery of the
IBM MQ product libraries and the application programming environments that use IBM MQ (CICS , for
example).

Other functions of the change log inventory utility (CSQJU003) can also be used in disaster recovery
scenarios. The HIGHRBA function allows the update of the highest RBA written and highest RBA offloaded
values within the bootstrap data set. The CHECKPT function allows the addition of new checkpoint queue
records or the deletion of existing checkpoint queue records in the BSDS.

Attention: These functions might affect the integrity of your IBM MQ data. Only use them in disaster
recovery scenarios under the guidance of IBM service personnel.

Fast copy techniques

If copies of all the page sets and logs are made while the queue manager is frozen, the copies will be
a consistent set that can be used to restart the queue manager at an alternative site. They typically
enable a much faster restart of the queue manager, as there is little media recovery to be performed.

Use the SUSPEND QMGR LOG command to freeze the queue manager. This command flushes buffer
pools to the page sets, takes a checkpoint, and stops any further log write activity. Once log write
activity has been suspended, the queue manager is effectively frozen until you issue a RESUME QMGR
LOG command. While the queue manager is frozen, the page sets and logs can be copied.

By using copying tools such as FLASHCOPY or SNAPSHOT to rapidly copy the page sets and logs, the
time during which the queue manager is frozen can be reduced to a minimum.

Administering IBM MQ 519

Within a queue sharing group, however, the SUSPEND QMGR LOG command might not be such a good
solution. To be effective, the copies of the logs must all contain the same point in time for recovery,
which means that the SUSPEND QMGR LOG command must be issued on all queue managers within
the queue sharing group simultaneously, and therefore the entire queue sharing group will be frozen
for some time.

Recovering a queue sharing group

In the event of a prime site disaster, you can restart a queue sharing group at a remote site using backup
data sets from the prime site. To recover a queue sharing group you need to coordinate the recovery
across all the queue managers in the queue sharing group, and coordinate with other resources, primarily
Db2. This section describes these tasks in detail.

• CF structure media recovery
• Backing up the queue sharing group at the prime site
• Recovering a queue sharing group at the alternative site

CF structure media recovery

Media recovery of a CF structure used to hold persistent messages on a shared queue, relies on
having a backup of the media that can be forward recovered by the application of logged updates.
Take backups of your CF structures periodically using the MQSC BACKUP CFSTRUCT command. All
updates to shared queues (MQGETs and MQPUTs) are written on the log of the queue manager where
the update is performed. To perform media recovery of a CF structure you must apply logged updates
to that backup from the logs of all the queue managers that have used that CF structure. When you
use the MQSC RECOVER CFSTRUCT command, IBM MQ automatically merges the logs from relevant
queue managers, and applies the updates to the most recent backup.

The CF structure backup is written to the log of the queue manager that processed the BACKUP
CFSTRUCT command, so there are no additional data sets to be collected and transported to the
alternative site.

Backing up the queue sharing group at the prime site

At the prime site you need to establish a consistent set of backups on a regular basis, which can be
used in the event of a disaster to rebuild the queue sharing group at an alternative site. For a single
queue manager, recovery can be to an arbitrary point in time, typically the end of the logs available at
the remote site. However, where persistent messages have been stored on a shared queue, the logs of
all the queue managers in the queue sharing group must be merged to recover shared queues, as any
queue manager in the queue sharing group might have performed updates (MQPUT s or MQGET s) on
the queue.

For recovery of a queue sharing group, you need to establish a point in time that is within the log range
of the log data of all queue managers. However, as you can only forward recover media from the log,
this point in time must be after the BACKUP CFSTRUCT command has been issued and after any page
set backups have been performed. (Typically, the point in time for recovery might correspond to the
end of a business day or week.)

The following diagram shows time lines for two queue managers in a queue sharing group. For each
queue manager, fuzzy backups of page sets are taken (see Method 2: Fuzzy backup). On queue
manager A, a BACKUP CFSTRUCT command is issued. Subsequently, an ARCHIVE LOG command is
issued on each queue manager to truncate the active log, and copy it to media offline from the queue
manager, which can be transported to the alternative site. End of log identifies the time at which the
ARCHIVE LOG command was issued, and therefore marks the extent of log data typically available at
the alternative site. The point in time for recovery must lie between the end of any page set or CF
structure backups, and the earliest end of log available at the alternative site.

520 Administering IBM MQ

Figure 35. Point in time for recovery for 2 queue managers in a queue sharing group

IBM MQ records information associated with the CF structure backups in a table in Db2. Depending on
your requirements, you might want to coordinate the point in time for recovery of IBM MQ with that for
Db2, or it might be sufficient to take a copy of the IBM MQ CSQ.ADMIN_B_STRBACKUP table after the
BACKUP CFSTRUCT commands have finished.

To prepare for a recovery:

1. Create page set backups for each queue manager in the queue sharing group.
2. Issue a BACKUP CFSTRUCT command for each CF structure with the RECOVER(YES) attribute. You

can issue these commands from a single queue manager, or from different queue managers within
the queue sharing group to balance the workload.

3. Once all the backups have completed, issue an ARCHIVE LOG command to switch the active log
and create copies of the logs and BSDSs of each queue manager in the queue sharing group.

4. Transport the page set backups, the archived logs, the archived BSDS of all the queue managers in
the queue sharing group, and your chosen Db2 backup information, off-site.

Recovering a queue sharing group at the alternative site

Before you can recover the queue sharing group, you need to prepare the environment:

1. If you have old information in your coupling facility from practice startups when you installed the
queue sharing group, you need to clean this out first:

Note: If you do not have old information in the coupling facility, you can omit this step.

a. Enter the following z/OS command to display the CF structures for this queue sharing group:

D XCF,STRUCTURE,STRNAME= qsgname

b. For all structures that start with the queue sharing group name, use the z/OS command SETXCF
FORCE CONNECTION to force the connection off those structures:

SETXCF FORCE,CONNECTION,STRNAME= strname,CONNAME=ALL

c. Delete all the CF structures using the following command for each structure:

SETXCF FORCE,STRUCTURE,STRNAME= strname

2. Restore Db2 systems and data-sharing groups.

Administering IBM MQ 521

3. Recover the CSQ.ADMIN_B_STRBACKUP table so that it contains information about the most
recent structure backups taken at the prime site.

Note: It is important that the STRBACKUP table contains the most recent structure backup
information. Older structure backup information might require data sets that you have discarded
as a result of the information given by a recent DISPLAY USAGE TYPE(DATASET) command, which
would mean that your recovered CF structure would not contain accurate information.

4. Run the ADD QMGR command of the CSQ5PQSG utility for every queue manager in the queue
sharing group. This will restore the XCF group entry for each queue manager.

When you run the utility in this scenario, the following messages are normal:

CSQU566I Unable to get attributes for admin structure, CF not found
or not allocated
CSQU546E Unable to add QMGR queue_manager_name entry,
already exists in DB2 table CSQ.ADMIN_B_QMGR
CSQU148I CSQ5PQSG Utility completed, return code=4

To recover the queue managers in the queue sharing group:

1. Define new page set data sets and load them with the data in the copies of the page sets from the
primary site.

2. Define new active log data sets.
3. Define a new BSDS data set and use Access Method Services REPRO to copy the most recent

archived BSDS into it.
4. Use the print log map utility CSQJU004 to print information from this most recent BSDS. At

the time this BSDS was archived, the most recent archived log you have would have just been
truncated as an active log, and does not appear as an archived log. Record the STARTRBA,
STARTLRSN, ENDRBA, and ENDLRSN values of this log.

5. Use the change log inventory utility, CSQJU003, to register this latest archive log data set in the
BSDS that you have just restored, using the values recorded in Step “4” on page 522.

6. Use the DELETE option of CSQJU003 to remove all active log information from the BSDS.
7. Use the NEWLOG option of CSQJU003 to add active logs to the BSDS, do not specify STARTRBA or

ENDRBA.
8. Calculate the recoverylrsn for the queue sharing group. The recoverylrsn is the lowest of

the ENDLRSNs across all queue managers in the queue sharing group (as recorded in Step “4” on
page 522), minus 1. For example, if there are two queue managers in the queue sharing group,
and the ENDLRSN for one of them is B713 3C72 22C5, and for the other is B713 3D45 2123, the
recoverylrsn is B713 3C72 22C4.

9. Use CSQJU003 to add a restart control record to the BSDS. Specify:

CRESTART CREATE,ENDLRSN= recoverylrsn

where recoverylrsn is the value you recorded in Step “8” on page 522.

The BSDS now describes all active logs as being empty, all the archived logs you have available,
and no checkpoints beyond the end of your logs.

You must add the CRESTART record to the BSDS for each queue manager within the queue
sharing group.

10. Restart each queue manager in the queue sharing group with the START QMGR command. During
initialization, an operator reply message such as the following is issued:

CSQJ245D +CSQ1 RESTART CONTROL INDICATES TRUNCATION AT RBA highrba.
REPLY Y TO CONTINUE, N TO CANCEL

Reply Y to start the queue manager. The queue manager starts, and recovers data up to ENDRBA
specified in the CRESTART statement.

522 Administering IBM MQ

The first IBM MQ queue manager started can rebuild the admin structure partitions for other
members of the queue sharing group as well as its own, and it is no longer necessary to restart
each queue manager in the queue sharing group at this stage.

11. When the admin structure data for all queue managers has been rebuilt, issue a RECOVER
CFSTRUCT command for each CF application structure.

If you issue the RECOVER CFSTRUCT command for all structures on a single queue manager, the
log merge process is only performed once, so is quicker than issuing the command on a different
queue manager for each CF structure, where each queue manager has to perform the log merge
step.

When conditional restart processing is used in a queue sharing group, IBM MQ queue managers,
performing peer admin rebuild, check that peers BSDS contain the same CRESTART LRSN as their
own. This is to ensure the integrity of the rebuilt admin structure. It is therefore important to restart
other peers in the QSG, so they can process their own CRESTART information, before the next
unconditional restart of any member of the group.

Using disk mirroring
Many installations now use disk mirroring technologies such as IBM Metro Mirror (formerly PPRC) to make
synchronous copies of data sets at an alternative site. In such situations, many of the steps detailed
become unnecessary as the IBM MQ page sets and logs at the alternative site are effectively identical to
those at the prime site. Where such technologies are used, the steps to restart a queue sharing group at
an alternative site may be summarized as:

• Clear IBM MQ CF structures at the alternative site. (These often contain residual information from any
previous disaster recovery exercise).

• Restore Db2 systems and all tables in the database used by the IBM MQ queue sharing group.
• Restart queue managers. Before IBM WebSphere MQ 7.0.1, it is necessary to restart each queue

manager defined in the queue sharing group as each queue manage recovers its own partition of the
admin structure during queue manager restart. After each queue manager has been restarted, those
not on their home LPAR can be shut down again. The first IBM MQ queue manager started rebuilds the
admin structure partitions for other members of the queue sharing group as well as its own, and it is no
longer necessary to restart each queue manager in the queue sharing group.

• After the admin structure has been rebuilt, recover the application structures.

IBM MQ for z/OS supports use of zHyperWrite when writing to active logs mirrored using Metro Mirror.
zHyperWrite can help reduce the performance impact of using Metro Mirror; see Using Metro Mirror with
IBM MQ for more information.

Reinitializing a queue manager
If the queue manager has terminated abnormally you might not be able to restart it. This could be
because your page sets or logs have been lost, truncated, or corrupted. If this has happened, you might
have to reinitialize the queue manager (perform a cold start).

Attention
Only perform a cold start if you cannot restart the queue manager any other way. Performing a cold
start enables you to recover your queue manager and your object definitions; you will not be able to
recover your message data. Check that none of the other restart scenarios described in this topic work for
you before you do this.

When you have restarted, all your IBM MQ objects are defined and available for use, but there is no
message data.

Note: Do not reinitialize a queue manager while it is part of a cluster. You must first remove the queue
manager from the cluster (using RESET CLUSTER commands on the other queue managers in the cluster),
then reinitialize it, and finally reintroduce it to the cluster as a new queue manager.

Administering IBM MQ 523

This is because during reinitialization, the queue manager identifier (QMID) is changed, so any cluster
object with the old queue manager identifier must be removed from the cluster.

For further information see the following sections:

• Reinitializing a queue manager that is not in a queue sharing group
• Reinitializing queue managers in a queue sharing group

Reinitializing a queue manager that is not in a queue sharing group

To reinitialize a queue manager, follow this procedure:

1. Prepare the object definition statements that to be used when you restart the queue manager. To do
this, either:

• If page set zero is available, use the CSQUTIL SDEFS function (see Producing a list of IBM MQ define
commands). You must get definitions for all object types (authentication information objects, CF
structures, channels, namelists, processes, queues, and storage classes).

• If page set zero is not available, use the definitions from the last time you backed up your object
definitions.

2. Redefine your queue manager data sets (do not do this until you have completed step “1” on page
524).

See creating the bootstrap and log data sets and defining your page sets for more information.
3. Restart the queue manager using the newly defined and initialized log data sets, BSDS, and page sets.

Use the object definition input statements that you created in step “1” on page 524 as input in the
CSQINP2 initialization input data set.

Reinitializing queue managers in a queue sharing group

In a queue sharing group, reinitializing a queue manager is more complex. It might be necessary to
reinitialize one or more queue managers because of page set or log problems, but there might also
be problems with Db2 or the coupling facility to deal with. Because of this, there are a number of
alternatives:

Cold start
Reinitializing the entire queue sharing group involves forcing all the coupling facilities structures,
clearing all object definitions for the queue sharing group from Db2, deleting or redefining the logs
and BSDS, and formatting page sets for all the queue managers in the queue sharing group.

Shared definitions retained
Delete or redefine the logs and BSDS, format page sets for all queue managers in the queue sharing
group, and force all the coupling facilities structures. On restart, all messages will have been deleted.
The queue managers re-create COPY objects that correspond to GROUP objects that still exist in the
Db2 database. Any shared queues still exist and can be used.

Single queue manager reinitialized
Delete or redefine the logs and BSDS, and format page sets for the single queue manager (this deletes
all its private objects and messages). On restart, the queue manager re-creates COPY objects that
correspond to GROUP objects that still exist in the Db2 database. Any shared queues still exist, as do
the messages on them, and can be used.

Point in time recovery of a queue sharing group
This is the alternative site disaster recovery scenario.

Shared objects are recovered to the point in time achieved by Db2 recovery (described in A Db2
system fails). Each queue manager can be recovered to a point in time achievable from the backup
copies available at the alternative site.

524 Administering IBM MQ

Persistent messages can be used in queue sharing groups, and can be recovered using the MQSC
RECOVER CFSTRUCT command. Note that this command recovers to the time of failure. However,
there is no recovery of nonpersistent shared queue messages; they are lost unless you have made
backup copies independently using the COPY function of the CSQUTIL utility program.

It is not necessary to try to restore each queue manager to the same point in time because there
are no interdependencies between the local objects on different queue managers (which are what is
actually being recovered), and the queue manager resynchronization with Db2 on restart creates or
deletes COPY objects as necessary on a queue manager by queue manager basis.

Using the z/OS Automatic Restart Manager (ARM)
Use this topic to understand how you can use ARM to automatically restart your queue managers.

This section contains information about the following topics:

• “What is the ARM?” on page 525
• “ARM policies” on page 526
• “Using ARM in an IBM MQ network” on page 527

What is the ARM?
The z/OS Automatic Restart Manager (ARM) is a z/OS recovery function that can improve the availability of
your queue managers. When a job or task fails, or the system on which it is running fails, ARM can restart
the job or task without operator intervention.

If a queue manager or a channel initiator has failed, ARM restarts it on the same z/OS image. If z/OS, and
hence a whole group of related subsystems and applications have failed, ARM can restart all the failed
systems automatically, in a predefined order, on another z/OS image within the sysplex. This is called a
cross-system restart.

Restart the channel initiator by ARM only in exceptional circumstances. If the queue manager is restarted
by ARM, restart the channel initiator from the CSQINP2 initialization data set (see “Using ARM in an IBM
MQ network” on page 527).

You can use ARM to restart a queue manager on a different z/OS image within the sysplex in the event of
z/OS failure. The network implications of IBM MQ ARM restart on a different z/OS image are described in
“Using ARM in an IBM MQ network” on page 527.

To enable automatic restart:

• Set up an ARM couple data set.
• Define the automatic restart actions that you want z/OS to perform in an ARM policy.
• Start the ARM policy.

Also, IBM MQ must register with ARM at startup (this happens automatically).

Note: If you want to restart queue managers in different z/OS images automatically, you must define
every queue manager as a subsystem in each z/OS image on which that queue manager might be
restarted, with a sysplex wide unique four character subsystem name.

ARM couple data sets

Ensure that you define the couple data sets required for ARM, and that they are online and active
before you start any queue manager for which you want ARM support. IBM MQ automatic ARM
registration fails if the couple data sets are not available at queue manager startup. In this situation,
IBM MQ assumes that the absence of the couple data set means that you do not want ARM support,
and initialization continues.

See z/OS MVS Setting up a Sysplex for information about ARM couple data sets.

Administering IBM MQ 525

https://www.ibm.com/docs/en/zos/3.1.0?topic=mvs-zos-setting-up-sysplex

ARM policies
The Automatic Restart Manager policies are user-defined rules that control ARM functions that can
control any restarts of a queue manager.

ARM functions are controlled by a user-defined ARM policy. Each z/OS image running a queue manager
instance that is to be restarted by ARM must be connected to an ARM couple data set with an active ARM
policy.

IBM provides a default ARM policy. You can define new policies, or override the policy defaults by using
the administrative data utility (IXCMIAPU) provided with z/OS. z/OS MVS Setting up a Sysplex describes
this utility, and includes full details of how to define an ARM policy.

Figure 36 on page 526 shows an example of an ARM policy. This sample policy restarts any queue
manager within a sysplex, if either the queue manager failed, or a whole system failed.

//IXCMIAPU EXEC PGM=IXCMIAPU,REGION=2M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DATA TYPE(ARM)
DEFINE POLICY NAME(ARMPOL1) REPLACE(YES)
RESTART_GROUP(DEFAULT)
ELEMENT(*)
RESTART_ATTEMPTS(0) /* Jobs not to be restarted by ARM */
RESTART_GROUP(GROUP1)
ELEMENT(SYSMQMGRMQ*) /* These jobs to be restarted by ARM */
/*

Figure 36. Sample ARM policy

For more information see:

• Defining an ARM policy
• Activating an ARM policy
• Registering with ARM

Defining an ARM policy

Set up your ARM policy as follows:

• Define RESTART_GROUPs for each queue manager instance that also contain any CICS or IMS
subsystems that connect to that queue manager instance. If you use a subsystem naming convention,
you might be able to use the '?' and '*' wild-card characters in your element names to define
RESTART_GROUPs with minimum definition effort.

• Specify TERMTYPE(ELEMTERM) for your channel initiators to indicate that they will be restarted only if
the channel initiator has failed and the z/OS image has not failed.

• Specify TERMTYPE(ALLTERM) for your queue managers to indicate that they will be restarted if either
the queue manager has failed or the z/OS image has failed.

• Specify RESTART_METHOD(BOTH, PERSIST) for both queue managers and channel initiators. This tells
ARM to restart using the JCL it saved (after resolution of system symbols) during the last startup. It tells
ARM to do this irrespective of whether the individual element failed, or the z/OS image failed.

• Accept the default values for all the other ARM policy options.

Activating an ARM policy

To start your automatic restart management policy, issue the following z/OS command:

526 Administering IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=sysplex-administrative-data-utility

SETXCF START,POLICY,TYPE=ARM,POLNAME= mypol

When the policy is started, all systems connected to the ARM couple data set use the same active policy.

Use the SETXCF STOP command to disable automatic restarts.

Registering with ARM

IBM MQ registers automatically as an ARM element during queue manager startup (subject to ARM
availability). It deregisters during its shutdown phase, unless requested not to.

At startup, the queue manager determines whether ARM is available. If it is, IBM MQ registers using the
name SYSMQMGR ssid, where ssid is the four character queue manager name, and SYSMQMGR is the
element type.

The STOP QMGR MODE(QUIESCE) and STOP QMGR MODE(FORCE) commands deregister the queue
manager from ARM (if it was registered with ARM at startup). This prevents ARM restarting this queue
manager. The STOP QMGR MODE(RESTART) command does not deregister the queue manager from ARM,
so it is eligible for immediate automatic restart.

Each channel initiator address space determines whether ARM is available, and if so registers with the
element name SYSMQCH ssid, where ssid is the queue manager name, and SYSMQCH is the element type.

The channel initiator is always deregistered from ARM when it stops normally, and remains registered only
if it ends abnormally. The channel initiator is always deregistered if the queue manager fails.

Using ARM in an IBM MQ network
You can set up your queue manager so that the channel initiators and associated listeners are started
automatically when the queue manager is restarted.

To ensure fully automatic queue manager restart on the same z/OS image for both LU 6.2 and TCP/IP
communication protocols:

• Start your listeners automatically by adding the appropriate START LISTENER command to the
CSQINPX data set.

• Start your channel initiator automatically by adding the appropriate START CHINIT command to the
CSQINP2 data set.

For restarting a queue manager with TCP/IP or LU6.2, see

• “Restarting on a different z/OS image with TCP/IP” on page 527
• “Restarting on a different z/OS image with LU 6.2” on page 529

See Task 13: Customize the initialization input data sets for information about the CSQINP2 and CSQINPX
data sets.

Restarting on a different z/OS image with TCP/IP
If you are using TCP/IP as your communication protocol, and you are using virtual IP addresses, you can
configure these to recover on other z/OS images, allowing channels connecting to that queue manager
to reconnect without any changes. Otherwise, you can reallocate a TCP/IP address after moving a queue
manager to a different z/OS image only if you are using clusters or if you are connecting to a queue sharing
group using a WLM dynamic Domain Name System (DNS) logical group name.

• When using clustering
• When connecting to a queue sharing group

Administering IBM MQ 527

When using clustering

z/OS ARM responds to a system failure by restarting the queue manager on a different z/OS image in
the same sysplex; this system has a different TCP/IP address to the original z/OS image. The following
explains how you can use IBM MQ clusters to reassign a queue manager's TCP/IP address after it has
been moved by ARM restart to a different z/OS image.

When a client queue manager detects the queue manager failure (as a channel failure), it responds by
reallocating suitable messages on its cluster transmission queue to a different server queue manager
that hosts a different instance of the target cluster queue. However, it cannot reallocate messages
that are bound to the original server by affinity constraints, or messages that are in doubt because
the server queue manager failed during end-of-batch processing. To process these messages, do the
following:

1. Allocate a different cluster-receiver channel name and a different TCP/IP port to each z/OS queue
manager. Each queue manager needs a different port so that two systems can share a single
TCP/IP stack on a z/OS image. One of these is the queue manager originally running on that z/OS
image, and the other is the queue manager that ARM will restart on that z/OS image following
a system failure. Configure each port on each z/OS image, so that ARM can restart any queue
manager on any z/OS image.

2. Create a different channel initiator command input file (CSQINPX) for each queue manager and
z/OS image combination, to be referenced during channel initiator startup.

Each CSQINPX file must include a START LISTENER PORT(port) command specific to that queue
manager, and an ALTER CHANNEL command for a cluster-receiver channel specific to that
queue manager and z/OS image combination. The ALTER CHANNEL command needs to set the
connection name to the TCP/IP name of the z/OS image on which it is restarted. It must include the
port number specific to the restarted queue manager as part of the connection name.

The start-up JCL of each queue manager can have a fixed data set name for this CSQINPX file,
and each z/OS image must have a different version of each CSQINPX file on a non-shared DASD
volume.

If an ARM restart occurs, IBM MQ advertises the changed channel definition to the cluster repository,
which in turn publishes it to all the client queue managers that have expressed an interest in the
server queue manager.

The client queue manager treats the server queue manager failure as a channel failure, and tries to
restart the failed channel. When the client queue manager learns the new server connection-name,
the channel restart reconnects the client queue manager to the restarted server queue manager. The
client queue manager can then resynchronize its messages, resolve any in-doubt messages on the
client queue manager's transmission queue, and normal processing can continue.

When connecting to a queue sharing group

When connecting to a queue sharing group through a TCP/IP dynamic Domain Name System (DNS)
logical group name, the connection name in your channel definition specifies the logical group name
of your queue sharing group, not the host name or IP address of a physical machine. When this
channel starts, it connects to the dynamic DNS and is then connected to one of the queue managers in
the queue sharing group. This process is explained in Setting up communication for IBM MQ for z/OS
using queue sharing groups.

In the unlikely event of an image failure, one of the following occurs:

• The queue managers on the failing image de-register from the dynamic DNS running on your
sysplex. The channel responds to the connection failure by entering RETRYING state and then
connects to the dynamic DNS running on the sysplex. The dynamic DNS allocates the inbound
request to one of the remaining members of the queue sharing group that is still running on the
remaining images.

• If no other queue manager in the queue sharing group is active and ARM restarts the queue
manager and channel initiator on a different image, the group listener registers with dynamic DNS

528 Administering IBM MQ

from this new image. This means that the logical group name (from the connection name field of
the channel) connects to the dynamic DNS and is then connected to the same queue manager, now
running on a different image. No change was required to the channel definition.

For this type of recovery to occur, the following points must be noted:

• On z/OS, the dynamic DNS runs on one of the z/OS images in the sysplex. If this image were to
fail, the dynamic DNS needs to be configured so that there is a secondary name server active in
the sysplex, acting as an alternative to the primary name server. Information about primary and
secondary dynamic DNS servers can be found in the OS/390® SecureWay CS IP Configuration manual

• The TCP/IP group listener might have been started on a particular IP address that might not be
available on this z/OS image. If so, the listener might need to be started on a different IP address
on the new image. If you are using virtual IP addresses, you can configure these to recover on other
z/OS images so that no change to the START LISTENER command is required.

Restarting on a different z/OS image with LU 6.2
If you use only LU 6.2 communication protocols, carry out the following procedure to enable network
reconnect after automatic restart of a queue manager on a different z/OS image within the sysplex:

• Define each queue manager within the sysplex with a unique subsystem name.
• Define each channel initiator within the sysplex with a unique LUNAME. This is specified in both the

queue manager attributes and in the START LISTENER command.

Note: The LUNAME names an entry in the APPC side table, which in turn maps this to the actual
LUNAME.

• Set up a shared APPC side table, which is referenced by each z/OS image within the sysplex. This should
contain an entry for each channel initiator's LUNAME. See z/OS MVS Planning: APPC/MVS Management
for information about this.

• Set up an APPCPM xx member of SYS1.PARMLIB for each channel initiator within the sysplex to contain
an LUADD to activate the APPC side table entry for that channel initiator. These members should be
shared by each z/OS image. The appropriate SYS1.PARMLIB member is activated by a z/OS command
SET APPC= xx, which is issued automatically during ARM restart of the queue manager (and its channel
initiator) on a different z/OS image, as described in the following text.

• Use the LU62ARM queue manager attribute to specify the xx suffix of this SYS1.PARMLIB member for
each channel initiator. This causes the channel initiator to issue the required z/OS command SET APPC=
xx to activate its LUNAME.

Define your ARM policy so that it restarts the channel initiator only if it fails while its z/OS image stays up;
the user ID associated with the XCFAS address space must be authorized to issue the IBM MQ command
START CHINIT. Do not restart the channel initiator automatically if its z/OS image also fails, instead use
commands in the CSQINP2 and CSQINPX data sets to start the channel initiator and listeners.

Recovering units of work manually
You can manually recover units of work CICS, IMS, RRS, or other queue managers in a queue sharing
group. You can use queue manager commands to display the status of the units of work associated with
each connection to the queue manager.

This topic contains information about the following subjects:

• “Displaying connections and threads” on page 530
• “Recovering CICS units of recovery manually” on page 530
• “Recovering IMS units of recovery manually” on page 533
• “Recovering RRS units of recovery manually” on page 535
• “Recovering units of recovery on another queue manager in the queue sharing group” on page 535

Administering IBM MQ 529

https://publibz.boulder.ibm.com/epubs/pdf/f1af7020.pdf
https://www.ibm.com/docs/en/zos/3.1.0?topic=mvs-zos-planning-appcmvs-management

Displaying connections and threads

You can use the DISPLAY CONN command to get information about connections to queue managers and
their associated units of work. You can display active units of work to see what is currently happening,
or to see what needs to be terminated to allow the queue manager to shut down, and you can display
unresolved units of work to help with recovery.

Active units of work

To display only active units of work, use

DISPLAY CONN(*) WHERE(UOWSTATE EQ ACTIVE)

Unresolved units of work

An unresolved unit of work, also known as an "in-doubt thread", is one that is in the second pass of the
two-phase commit operation. Resources are held in IBM MQ on its behalf. To display unresolved units
of work, use

DISPLAY CONN(*) WHERE(UOWSTATE EQ UNRESOLVED)

External intervention is needed to resolve the status of unresolved units of work. This might only
involve starting the recovery coordinator (CICS, IMS, or RRS) or might involve more, as described in
the following sections.

Recovering CICS units of recovery manually
Use this topic to understand what happens when the CICS adapter restarts, and then explains how to deal
with any unresolved units of recovery that arise.

What happens when the CICS adapter restarts
Whenever a connection is broken, the adapter has to go through a restart phase during the reconnect
process. The restart phase resynchronizes resources. Resynchronization between CICS and IBM MQ
enables in-doubt units of work to be identified and resolved.

Resynchronization can be caused by:

• An explicit request from the distributed queuing component
• An implicit request when a connection is made to IBM MQ

If the resynchronization is caused by connecting to IBM MQ, the sequence of events is:

1. The connection process retrieves a list of in-doubt units of work (UOW) IDs from IBM MQ.
2. The UOW IDs are displayed on the console in CSQC313I messages.
3. The UOW IDs are passed to CICS.
4. CICS initiates a resynchronization task (CRSY) for each in-doubt UOW ID.
5. The result of the task for each in-doubt UOW is displayed on the console.

You need to check the messages that are displayed during the connect process:
CSQC313I

Shows that a UOW is in doubt.
CSQC400I

Identifies the UOW and is followed by one of these messages:

• CSQC402I or CSQC403I shows that the UOW was resolved successfully (committed or backed out).
• CSQC404E, CSQC405E, CSQC406E, or CSQC407E shows that the UOW was not resolved.

530 Administering IBM MQ

CSQC409I
Shows that all UOWs were resolved successfully.

CSQC408I
Shows that not all UOWs were resolved successfully.

CSQC314I
Warns that UOW IDs highlighted with a * are not resolved automatically. These UOWs must be
resolved explicitly by the distributed queuing component when it is restarted.

Figure 37 on page 531 shows an example set of restart messages displayed on the z/OS console.

CSQ9022I +CSQ1 CSQYASCP ' START QMGR' NORMAL COMPLETION
+CSQC323I VICIC1 CSQCQCON CONNECT received from TERMID=PB62 TRANID=CKCN
+CSQC303I VICIC1 CSQCCON CSQCSERV loaded. Entry point is 850E8918
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6F0E2178D25 is in doubt
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6F055B2AC25 is in doubt
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6EFFD60D425 is in doubt
+CSQC313I VICIC1 CSQCCON UOWID=VICIC1.A6E5A6F07AB56D22 is in doubt
+CSQC307I VICIC1 CSQCCON Successful connection to subsystem VC2
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=008BAD18) connect
successful
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=008BAA10) connect
successful
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=008BA708) connect
successful
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=008CAE88) connect
successful
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=008CAB80) connect
successful
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=008CA878) connect
successful
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=008CA570) connect
successful
+CSQC472I VICIC1 CSQCSERV Server subtask (TCB address=008CA268) connect
successful
+CSQC403I VICIC1 CSQCTRUE Resolved BACKOUT for
+CSQC400I VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6F0E2178D25
+CSQC403I VICIC1 CSQCTRUE Resolved BACKOUT for
+CSQC400I VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6F055B2AC25
+CSQC403I VICIC1 CSQCTRUE Resolved BACKOUT for
+CSQC400I VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6F07AB56D22
+CSQC403I VICIC1 CSQCTRUE Resolved BACKOUT for
+CSQC400I VICIC1 CSQCTRUE UOWID=VICIC1.A6E5A6EFFD60D425
+CSQC409I VICIC1 CSQCTRUE Resynchronization completed successfully

Figure 37. Example restart messages

The total number of CSQC313I messages should equal the total number of CSQC402I plus CSQC403I
messages. If the totals are not equal, there are UOWs that the connection process cannot resolve. Those
UOWs that cannot be resolved are caused by problems with CICS (for example, a cold start) or with
IBM MQ, or by distributing queuing. When these problems have been fixed, you can initiate another
resynchronization by disconnecting and then reconnecting.

Alternatively, you can resolve each outstanding UOW yourself using the RESOLVE INDOUBT command and
the UOW ID shown in message CSQC400I. You must then initiate a disconnect and a connect to clean
up the unit of recovery descriptors in CICS. You need to know the correct outcome of the UOW to resolve
UOWs manually.

All messages that are associated with unresolved UOWs are locked by IBM MQ and no Batch, TSO, or
CICS task can access them.

If CICS fails and an emergency restart is necessary, do not vary the GENERIC APPLID of the CICS system.
If you do and then reconnect to IBM MQ, data integrity with IBM MQ cannot be guaranteed. This is
because IBM MQ treats the new instance of CICS as a different CICS (because the APPLID is different).
In-doubt resolution is then based on the wrong CICS log.

Administering IBM MQ 531

How to resolve CICS units of recovery manually

If the adapter ends abnormally, CICS and IBM MQ build in-doubt lists either dynamically or during restart,
depending on which subsystem caused the abend.

Note: If you use the DFH$INDB sample program to show units of work, you might find that it does not
always show IBM MQ UOWs correctly.

When CICS connects to IBM MQ, there might be one or more units of recovery that have not been
resolved.

One of the following messages is sent to the console:

• CSQC404E
• CSQC405E
• CSQC406E
• CSQC407E
• CSQC408I

For details of what these messages mean, see the CICS adapter and Bridge messages messages.

CICS retains details of units of recovery that were not resolved during connection startup. An entry is
purged when it no longer appears on the list presented by IBM MQ.

Any units of recovery that CICS cannot resolve must be resolved manually using IBM MQ commands.
This manual procedure is rarely used within an installation, because it is required only where operational
errors or software problems have prevented automatic resolution. Any inconsistencies found during in-
doubt resolution must be investigated.

To resolve the units of recovery:

1. Obtain a list of the units of recovery from IBM MQ using the following command:

+CSQ1 DISPLAY CONN(*) WHERE(UOWSTATE EQ UNRESOLVED)

You receive the following message:

CSQM201I +CSQ1 CSQMDRTC DISPLAY CONN DETAILS
CONN(BC85772CBE3E0001)
EXTCONN(C3E2D8C3C7D9F0F94040404040404040)
TYPE(CONN)
CONNOPTS(
MQCNO_STANDARD_BINDING
)
UOWLOGDA(2005-02-04)
UOWLOGTI(10.17.44)
UOWSTDA(2005-02-04)
UOWSTTI(10.17.44)
UOWSTATE(UNRESOLVED)
NID(IYRCSQ1 .BC8571519B60222D)
EXTURID(BC8571519B60222D)
QMURID(0000002BDA50)
URTYPE(CICS)
USERID(MQTEST)
APPLTAG(IYRCSQ1)
ASID(0000)
APPLTYPE(CICS)
TRANSID(GP02)
TASKNO(0000096)
END CONN DETAILS

For CICS connections, the NID consists of the CICS applid and a unique number provided by CICS at
the time the syncpoint log entries are written. This unique number is stored in records written to both

532 Administering IBM MQ

the CICS system log and the IBM MQ log at syncpoint processing time. This value is referred to in CICS
as the recovery token.

2. Scan the CICS log for entries related to a particular unit of recovery.

Look for a PREPARE record for the task-related installation where the recovery token field (JCSRMTKN)
equals the value obtained from the network ID. The network ID is supplied by IBM MQ in the DISPLAY
CONN command output.

The PREPARE record in the CICS log for the units of recovery provides the CICS task number. All other
entries on the log for this CICS task can be located using this number.

You can use the CICS journal print utility DFHJUP when scanning the log. For details of using this
program, see the CICS Operations and Utilities Guide.

3. Scan the IBM MQ log for records with the NID related to a particular unit of recovery. Then use the
URID from this record to obtain the rest of the log records for this unit of recovery.

When scanning the IBM MQ log, note that the IBM MQ startup message CSQJ001I provides the start
RBA for this session.

The print log records program (CSQ1LOGP) can be used for that purpose.
4. If you need to, do in-doubt resolution in IBM MQ.

IBM MQ can be directed to take the recovery action for a unit of recovery using an IBM MQ RESOLVE
INDOUBT command.

To recover all threads associated with a specific connection-name, use the NID(*) option.

The command produces one of the following messages showing whether the thread is committed or
backed out:

CSQV414I +CSQ1 THREAD network-id COMMIT SCHEDULED
CSQV415I +CSQ1 THREAD network-id ABORT SCHEDULED

When performing in-doubt resolution, CICS and the adapter are not aware of the commands to IBM MQ to
commit or back out units of recovery, because only IBM MQ resources are affected. However, CICS keeps
details about the in-doubt threads that could not be resolved by IBM MQ. This information is purged
either when the list presented is empty, or when the list does not include a unit of recovery of which CICS
has details.

Recovering IMS units of recovery manually
Use this topic to understand what happens when the IMS adapter restarts, and then explains how to deal
with any unresolved units of recovery that arise.

What happens when the IMS adapter restarts

Whenever the connection to IBM MQ is restarted, either following a queue manager restart or an IMS /
START SUBSYS command, IMS initiates the following resynchronization process:

1. IMS presents the list of unit of work (UOW) IDs that it believes are in doubt to the IBM MQ IMS adapter
one at a time with a resolution parameter of Commit or Backout.

2. The IMS adapter passes the resolution request to IBM MQ and reports the result back to IMS.
3. Having processed all the IMS resolution requests, the IMS adapter gets from IBM MQ a list of all UOWs

that IBM MQ still holds in doubt that were initiated by the IMS system. These are reported to the IMS
master terminal in message CSQQ008I.

Note: While a UOW is in doubt, any associated IBM MQ message is locked by IBM MQ and is not available
to any application.

Administering IBM MQ 533

How to resolve IMS units of recovery manually

When IMS connects to IBM MQ, IBM MQ might have one, or more in-doubt units of recovery that have not
been resolved.

If IBM MQ has in-doubt units of recovery that IMS did not resolve, the following message is issued at the
IMS master terminal:

CSQQ008I nn units of recovery are still in doubt in queue manager qmgr-name

If this message is issued, IMS was either cold-started or it was started with an incomplete log tape. This
message can also be issued if IBM MQ or IMS terminates abnormally because of a software error or other
subsystem failure.

After receiving the CSQQ008I message:

• The connection remains active.
• IMS applications can still access IBM MQ resources.
• Some IBM MQ resources remain locked out.

If the in-doubt thread is not resolved, IMS message queues can start to build up. If the IMS queues fill to
capacity, IMS terminates. You must be aware of this potential difficulty, and you must monitor IMS until
the in-doubt units of recovery are fully resolved.

Recovery procedure

Use the following procedure to recover the IMS units of work:

1. Force the IMS log closed, using /SWI OLDS, and then archive the IMS log. Use the utility,
DFSERA10, to print the records from the previous IMS log tape. Type X'3730' log records indicate
a phase-2 commit request and type X'38' log records indicate an abort request. Record the
requested action for the last transaction in each dependent region.

2. Run the DL/I batch job to back out each PSB involved that has not reached a commit point. The
process might take some time because transactions are still being processed. It might also lock
up a number of records, which could affect the rest of the processing and the rest of the message
queues.

3. Produce a list of the in-doubt units of recovery from IBM MQ using the following command:

+CSQ1 DISPLAY CONN(*) WHERE(UOWSTATE EQ UNRESOLVED)

You receive the following message:

CSQM201I +CSQ1 CSQMDRTC DISPLAY CONN DETAILS
CONN(BC45A794C4290001)
EXTCONN(C3E2D8C3E2C5C3F24040404040404040)
TYPE(CONN)
CONNOPTS(
MQCNO_STANDARD_BINDING
)
UOWLOGDA(2005-02-15)
UOWLOGTI(16.39.43)
UOWSTDA(2005-02-15)
UOWSTTI(16.39.43)
UOWSTATE(UNRESOLVED)
NID(IM8F .BC45A794D3810344)
EXTURID(
0000052900000000
)
QMURID(00000354B76E)
URTYPE(IMS)
USERID(STCPI)
APPLTAG(IM8F)
ASID(0000)

534 Administering IBM MQ

APPLTYPE(IMS)
PSTID(0004)
PSBNAME(GP01MPP)

For IMS, the NID consists of the IMS connection name and a unique number provided by IMS. The
value is referred to in IMS as the recovery token. For more information, see the IMS documentation.

4. Compare the NIDs (IMSID plus OASN in hexadecimal) displayed in the DISPLAY THREAD
messages with the OASNs (4 bytes decimal) shown in the DFSERA10 output. Decide whether
to commit or back out.

5. Perform in-doubt resolution in IBM MQ with the RESOLVE INDOUBT command, as follows:

RESOLVE INDOUBT(connection-name)
ACTION(COMMIT|BACKOUT)
NID(network-id)

To recover all threads associated with connection-name, use the NID(*) option. The command results
in one of the following messages to indicate whether the thread is committed or backed out:

CSQV414I THREAD network-id COMMIT SCHEDULED
CSQV415I THREAD network-id BACKOUT SCHEDULED

When performing in-doubt resolution, IMS and the adapter are not aware of the commands to IBM MQ
to commit or back out in-doubt units of recovery because only IBM MQ resources are affected.

Recovering RRS units of recovery manually
Use this topic to understand the how to determine if there are in-doubt RRS units of recovery, and how to
manually resolve those units of recovery.

When RRS connects to IBM MQ, IBM MQ might have one, or more in-doubt units of recovery that have
not been resolved. If IBM MQ has in-doubt units of recovery that RRS did not resolve, one of the following
messages is issued at the z/OS console:

• CSQ3011I
• CSQ3013I
• CSQ3014I
• CSQ3016I

Both IBM MQ and RRS provide tools to display information about in-doubt units of recovery, and
techniques for manually resolving them.

In IBM MQ, use the DISPLAY CONN command to display information about in-doubt IBM MQ threads. The
output from the command includes RRS unit of recovery IDs for those IBM MQ threads that have RRS as a
coordinator. This can be used to determine the outcome of the unit of recovery.

Use the RESOLVE INDOUBT command to resolve the IBM MQ in-doubt thread manually. This command
can be used to either commit or back out the unit of recovery after you have determined what the correct
decision is.

Recovering units of recovery on another queue manager in the queue
sharing group
Use this topic to identify, and manually recover units of recovery on other queue managers in a queue
sharing group.

If a queue manager that is a member of a queue sharing group fails and cannot be restarted, other
queue managers in the group can perform peer recovery, and take over from it. However, the queue
manager might have in-doubt units of recovery that cannot be resolved by peer recovery because the final
disposition of that unit of recovery is known only to the failed queue manager. These units of recovery are
resolved when the queue manager is eventually restarted, but until then, they remain in doubt.

Administering IBM MQ 535

https://www.ibm.com/docs/en/ims/15.4.0

This means that certain resources (for example, messages) might be locked, making them unavailable
to other queue managers in the group. In this situation, you can use the DISPLAY THREAD command
to display these units of work on the inactive queue manager. If you want to resolve these units of
recovery manually to make the messages available to other queue managers in the group, you can use the
RESOLVE INDOUBT command.

When you issue the DISPLAY THREAD command to display units of recovery that are in doubt, you can use
the QMNAME keyword to specify the name of the inactive queue manager. For example, if you issue the
following command:

+CSQ1 DISPLAY THREAD(*) TYPE(INDOUBT) QMNAME(QM01)

You receive the following messages:

CSQV436I +CSQ1 INDOUBT THREADS FOR QM01 -
NAME THREAD-XREF URID NID
USER1 000000000000000000000000 CSQ:0001.0
USER2 000000000000000000000000 CSQ:0002.0
DISPLAY THREAD REPORT COMPLETE

If the queue manager specified is active, IBM MQ does not return information about in-doubt threads, but
issues the following message:

CSQV435I CANNOT USE QMNAME KEYWORD, QM01 IS ACTIVE

Use the IBM MQ command RESOLVE INDOUBT to resolve the in-doubt threads manually. Use the
QMNAME keyword to specify the name of the inactive queue manager in the command.

This command can be used to commit or back out the unit of recovery. The command resolves the shared
portion of the unit of recovery only; any local messages are unaffected and remain locked until the queue
manager restarts, or reconnects to CICS, IMS, or RRS batch.

IBM MQ and IMS
IBM MQ provides two components to interface with IMS, the IBM MQ - IMS adapter, and the IBM MQ -
IMS bridge. These components are commonly called the IMS adapter, and the IMS bridge.

Operating the IMS adapter
Use this topic to understand how to operate the IMS adapter, which connects IBM MQ to IMS systems.

Note: The IMS adapter does not incorporate any operations and control panels.

This topic contains the following sections:

• “Controlling IMS connections” on page 537
• “Connecting from the IMS control region” on page 537
• “Displaying in-doubt units of recovery” on page 539
• “Controlling IMS dependent region connections” on page 541
• “Disconnecting from IMS” on page 543
• “Controlling the IMS trigger monitor” on page 544

536 Administering IBM MQ

Controlling IMS connections
Use this topic to understand the IMS operator commands which control and monitor the connection to
IBM MQ.

IMS provides the following operator commands to control and monitor the connection to IBM MQ:
/CHANGE SUBSYS

Deletes an in-doubt unit of recovery from IMS.
/DISPLAY OASN SUBSYS

Displays outstanding recovery elements.
/DISPLAY SUBSYS

Displays connection status and thread activity.
/START SUBSYS

Connects the IMS control region to a queue manager.
/STOP SUBSYS

Disconnects IMS from a queue manager.
/TRACE

Controls the IMS trace.

For more information about these commands, see the IMS/ESA® Operator's Reference manual for the level
of IMS that you are using.

IMS command responses are sent to the terminal from which the command was issued. Authorization to
issue IMS commands is based on IMS security.

Connecting from the IMS control region
Use this topic to understand the mechanisms available to connect from IMS to IBM MQ.

IMS makes one connection from its control region to each queue manager that uses IMS. IMS must be
enabled to make the connection in one of these ways:

• Automatically during either:

– A cold start initialization.
– A warm start of IMS, if the IBM MQ connection was active when IMS was shut down.

• In response to the IMS command:

/START SUBSYS sysid

where sysid is the queue manager name.

The command can be issued regardless of whether the queue manager is active.

The connection is not made until the first IBM MQ API call to the queue manager is made. Until that time,
the IMS command /DIS SUBSYS shows the status as 'NOT CONN'.

The order in which you start IMS and the queue manager is not significant.

IMS cannot re-enable the connection to the queue manager automatically if the queue manager is
stopped with a STOP QMGR command, the IMS command /STOP SUBSYS, or an abnormal end. Therefore,
you must make the connection by using the IMS command /START SUBSYS.

If an IMS command is seen in the queue manager console log similar to this:

MODIFY IMS*,SS*

Administering IBM MQ 537

check the IMS master log and ensure that IBM MQ has RACF authority to issue IMS Adapter MODIFY
commands.

Initializing the adapter and connecting to the queue manager

The adapter is a set of modules loaded into the IMS control and dependent regions, using the IMS
external Subsystem Attach Facility.

This procedure initializes the adapter and connects to the queue manager:

1. Read the subsystem member (SSM) from IMS.PROCLIB. The SSM chosen is an IMS EXEC parameter.
There is one entry in the member for each queue manager to which IMS can connect. Each entry
contains control information about an IBM MQ adapter.

2. Load the IMS adapter.

Note: IMS loads one copy of the adapter modules for each IBM MQ instance that is defined in the SSM
member.

3. Attach the external subsystem task for IBM MQ.
4. Run the adapter with the CTL EXEC parameter (IMSID) as the connection name.

The process is the same whether the connection is part of initialization or a result of the IMS command /
START SUBSYS.

If the queue manager is active when IMS tries to make the connection, the following messages are sent:

• to the z/OS console:

DFS3613I ESS TCB INITIALIZATION COMPLETE

• to the IMS master terminal:

CSQQ000I IMS/TM imsid connected to queue manager ssnm

When IMS tries to make the connection and the queue manager is not active, the following messages are
sent to the IMS master terminal each time an application makes an MQI call:

CSQQ001I IMS/TM imsid not connected to queue manager ssnm.
Notify message accepted
DFS3607I MQM1 SUBSYSTEM ID EXIT FAILURE, FC = 0286, RC = 08,
JOBNAME = IMSEMPR1

If you get DFS3607I messages when you start the connection to IMS or on system startup, this indicates
that the queue manager is not available. To prevent a large number of messages being generated, you
must do one of the following:

1. Start the relevant queue manager.
2. Issue the IMS command:

/STOP SUBSYS

so that IMS does not expect to connect to the queue manager.

538 Administering IBM MQ

If you do neither, a DFS3607I message and the associated CSQQ001I message are issued each time a
job is scheduled in the region and each time a connection request to the queue manager is made by an
application.

Thread attachment

In an MPP or IFP region, IMS makes a thread connection when the first application program is scheduled
into that region, even if that application program does not make an IBM MQ call. In a BMP region, the
thread connection is made when the application makes its first IBM MQ call (MQCONN or MQCONNX). This
thread is retained for the duration of the region or until the connection is stopped.

For both the message driven and non-message driven regions, the recovery thread cross-reference
identifier, Thread-xref, associated with the thread is:

PSTid + PSBname

where:
PSTid

Partition specification table region identifier
PSBname

Program specification block name

You can use connection IDs as unique identifiers in IBM MQ commands, in which case IBM MQ
automatically inserts these IDs into any operator message that it generates.

Displaying in-doubt units of recovery
You can display in-doubt of units of recovery and attempt to recover them.

The operational steps used to list and recover in-doubt units of recovery in this topic are for relatively
simple cases only. If the queue manager ends abnormally while connected to IMS, IMS might commit or
back out work without IBM MQ being aware of it. When the queue manager restarts, that work is termed
in doubt. A decision must be made about the status of the work.

To display a list of in-doubt units of recovery, issue the command:

+CSQ1 DISPLAY CONN(*) WHERE(UOWSTATE EQ UNRESOLVED)

IBM MQ responds with a message like the following:

Administering IBM MQ 539

CSQM201I +CSQ1 CSQMDRTC DIS CONN DETAILS
CONN(BC0F6125F5A30001)
EXTCONN(C3E2D8C3C3E2D8F14040404040404040)
TYPE(CONN)
CONNOPTS(
MQCNO_STANDARD_BINDING
)
UOWLOGDA(2004-11-02)
UOWLOGTI(12.27.58)
UOWSTDA(2004-11-02)
UOWSTTI(12.27.58)
UOWSTATE(UNRESOLVED)
NID(CSQ1CHIN.BC0F5F1C86FC0766)
EXTURID(000000000000001F000000007472616E5F6964547565204E6F762020...)
QMURID(000000026232)
URTYPE(XA)
USERID()
APPLTAG(CSQ1CHIN)
ASID(0000)
APPLTYPE(CHINIT)
CHANNEL()
CONNAME()
END CONN DETAILS

For an explanation of the attributes in this message, see the description of the DISPLAY CONN command.

Recovering in-doubt units of recovery

To recover in-doubt units of recovery, issue this command:

+CSQ1 RESOLVE INDOUBT(connection-name) ACTION(COMMIT|BACKOUT)
NID(net-node.number)

where:
connection-name

The IMS system ID.
ACTION

Indicates whether to commit (COMMIT) or back out (BACKOUT) this unit of recovery.
net-node.number

The associated net-node.number.

When you have issued the RESOLVE INDOUBT command, one of the following messages is displayed:

CSQV414I +CSQ1 THREAD network-id COMMIT SCHEDULED

CSQV415I +CSQ1 THREAD network-id BACKOUT SCHEDULED

Resolving residual recovery entries

At given times, IMS builds a list of residual recovery entries (RREs). RREs are units of recovery about
which IBM MQ might be in doubt. They arise in several situations:

• If the queue manager is not active, IMS has RREs that cannot be resolved until the queue manager is
active. These RREs are not a problem.

540 Administering IBM MQ

• If the queue manager is active and connected to IMS, and if IMS backs out the work that IBM MQ
has committed, the IMS adapter issues message CSQQ010E. If the data in the two systems must be
consistent, there is a problem. For information about resolving this problem, see “Recovering IMS units
of recovery manually” on page 533.

• If the queue manager is active and connected to IMS, there might still be RREs even though
no messages have informed you of this problem. After the IBM MQ connection to IMS has been
established, you can issue the following IMS command to find out if there is a problem:

/DISPLAY OASN SUBSYS sysid

To purge the RRE, issue one of the following IMS commands:

/CHANGE SUBSYS sysid RESET
/CHANGE SUBSYS sysid RESET OASN nnnn

where nnnn is the originating application sequence number listed in response to your +CSQ1 DISPLAY
command. This is the schedule number of the program instance, giving its place in the sequence of
invocations of that program since the last IMS cold start. IMS cannot have two in-doubt units of recovery
with the same schedule number.

These commands reset the status of IMS ; they do not result in any communication with IBM MQ.

Controlling IMS dependent region connections
You can control, monitor, and, when necessary, terminate connections between IMS and IBM MQ.

Controlling IMS dependent region connections involves the following activities:

• Connecting from dependent regions
• Region error options
• Monitoring the activity on connections
• Disconnecting from dependent regions

Connecting from dependent regions

The IMS adapter used in the control region is also loaded into dependent regions. A connection is made
from each dependent region to IBM MQ. This connection is used to coordinate the commitment of IBM
MQ and IMS work. To initialize and make the connection, IMS does the following:

1. Reads the subsystem member (SSM) from IMS.PROCLIB.

A subsystem member can be specified on the dependent region EXEC parameter. If it is not specified,
the control region SSM is used. If the region is never likely to connect to IBM MQ, to avoid loading the
adapter, specify a member with no entries.

2. Loads the IBM MQ adapter.

For a batch message program, the load is not done until the application issues its first messaging
command. At that time, IMS tries to make the connection.

For a message-processing program region or IMS fast-path region, the attempt is made when the
region is initialized.

Administering IBM MQ 541

Region error options

If the queue manager is not active, or if resources are not available when the first messaging command is
sent from application programs, the action taken depends on the error option specified on the SSM entry.
The options are:
R

The appropriate return code is sent to the application.
Q

The application ends abnormally with abend code U3051. The input message is re-queued.
A

The application ends abnormally with abend code U3047. The input message is discarded.

Monitoring the activity on connections

A thread is established from a dependent region when an application makes its first successful IBM MQ
request. You can display information about connections and the applications currently using them by
issuing the following command from IBM MQ:

+CSQ1 DISPLAY CONN(*) ALL

The command produces a message like the following:

CONN(BC45A794C4290001)
EXTCONN(C3E2D8C3C3E2D8F14040404040404040)
TYPE(CONN)
CONNOPTS(
MQCNO_STANDARD_BINDING
)
UOWLOGDA(2004-12-15)
UOWLOGTI(16.39.43)
UOWSTDA(2004-12-15)
UOWSTTI(16.39.43)
UOWSTATE(ACTIVE)
NID()
EXTURID(
0000052900000000
)
QMURID(00000354B76E)
URTYPE(IMS)
USERID(STCPI)
APPLTAG(IM8F)
ASID(0049)
APPLTYPE(IMS)
PSTID(0004)
PSBNAME(GP01MPP)

For the control region, thread-xref is the special value CONTROL. For dependent regions, it is the PSTid
concatenated with the PSBname. auth-id is either the user field from the job card, or the ID from the
z/OS started procedures table.

For an explanation of the displayed list, see the description of message CSQV402I in the IBM MQ for z/OS
messages, completion, and reason codes documentation.

IMS provides a display command to monitor the connection to IBM MQ. It shows which program is active
on each dependent region connection, the LTERM user name, and the control region connection status.
The command is:

542 Administering IBM MQ

/DISPLAY SUBSYS name

The status of the connection between IMS and IBM MQ is shown as one of:

CONNECTED
NOT CONNECTED
CONNECT IN PROGRESS
STOPPED
STOP IN PROGRESS
INVALID SUBSYSTEM NAME= name
SUBSYSTEM name NOT DEFINED BUT RECOVERY OUTSTANDING

The thread status from each dependent region is one of the following:

CONN
CONN, ACTIVE (includes LTERM of user)

Disconnecting from dependent regions

To change values in the SSM member of IMS.PROCLIB, you disconnect a dependent region. To do this, you
must:

1. Issue the IMS command:

/STOP REGION

2. Update the SSM member.
3. Issue the IMS command:

/START REGION

Disconnecting from IMS
The connection is ended when either IMS or the queue manager terminates. Alternatively, the IMS master
terminal operator can explicitly break the connection.

To terminate the connection between IMS and IBM MQ, use the following IMS command:

/STOP SUBSYS sysid

The command sends the following message to the terminal that issued it, typically the master terminal
operator (MTO):

Administering IBM MQ 543

DFS058I STOP COMMAND IN PROGRESS

The IMS command:

/START SUBSYS sysid

is required to reestablish the connection.

Note: The IMS command /STOP SUBSYS is not completed if an IMS trigger monitor is running.

Controlling the IMS trigger monitor
You can use the CSQQTRMN transaction to stop, and start the IMS trigger monitor.

The IMS trigger monitor (the CSQQTRMN transaction) is described in the Setting up the IMS trigger
monitor.

To control the IMS trigger monitor see:

• Starting CSQQTRMN
• Stopping CSQQTRMN

Starting CSQQTRMN

1. Start a batch-oriented BMP that runs the program CSQQTRMN for each initiation queue you want to
monitor.

2. Modify your batch JCL to add a DDname of CSQQUT1 that points to a data set containing the following
information:

QMGRNAME=q_manager_name Comment: queue manager name
INITQUEUENAME=init_q_name Comment: initiation queue name
LTERM=lterm Comment: LTERM to remove error messages
CONSOLEMESSAGES=YES Comment: Send error messages to console

where:

q_manager_name The name of the queue manager (if this is blank, the default nominated in
CSQQDEFV is assumed)

init_q_name The name of the initiation queue to be monitored

lterm The IMS LTERM name for the destination of error messages (if this is blank,
the default value is MASTER).

CONSOLEMESSAGES=
YES

Requests that messages sent to the nominated IMS LTERM are also sent to
the z/OS console. If this parameter is omitted or misspelled, the default is
NOT to send messages to the console.

3. Add a DD name of CSQQUT2 if you want a printed report of the processing of CSQQUT1 input.

Note:

1. The data set CSQQUT1 is defined with LRECL=80. Other DCB information is taken from the data set.
The DCB for data set CSQQUT2 is RECFM=VBA and LRECL=125.

544 Administering IBM MQ

2. You can put only one keyword on each record. The keyword value is delimited by the first blank
following the keyword; this means that you can include comments. An asterisk in column 1 means that
the whole input record is a comment.

3. If you misspell either of the QMGRNAME or LTERM keywords, CSQQTRMN uses the default for that
keyword.

4. Ensure that the subsystem is started in IMS (by the /START SUBSYS command) before submitting
the trigger monitor BMP job. If it is not started, your trigger monitor job terminates with abend code
U3042.

Stopping CSQQTRMN

Once started, CSQQTRMN runs until either the connection between IBM MQ and IMS is broken due to one
of the following events:

• the queue manager ending
• IMS ending

or a z/OS STOP jobname command is entered.

Controlling the IMS bridge
Use this topic to understand the IMS commands that you can use to control the IMS bridge.

There are no IBM MQ commands to control the IBM MQ-IMS bridge. However, you can stop messages
being delivered to IMS in the following ways:

• For non-shared queues, by using the ALTER QLOCAL(xxx) GET(DISABLED) command for all bridge
queues.

• For clustered queues, by using the SUSPEND QMGR CLUSTER(xxx) command. This is effective only
when another queue manager is also hosting the clustered bridge queue.

• For clustered queues, by using the SUSPEND QMGR FACILITY(IMSBRIDGE) command. No further
messages are sent to IMS, but the responses for any outstanding transactions are received from IMS.

To start sending messages to IMS again, issue the RESUME QMGR FACILITY(IMSBRIDGE) command.

You can also use the MQSC command DISPLAY SYSTEM to display whether the bridge is suspended.

See MQSC commands for details of these commands.

For further information see:

• “Starting and stopping the IMS bridge” on page 545
• “Controlling IMS connections” on page 546
• Controlling bridge queues
• “Resynchronizing the IMS bridge” on page 547
• Working with tpipe names
• Deleting messages from IMS
• Deleting tpipes
• “IMS Transaction Expiration” on page 549

Starting and stopping the IMS bridge
Start the IBM MQ bridge by starting OTMA. Either use the IMS command:

/START OTMA

Administering IBM MQ 545

or start it automatically by specifying OTMA=YES in the IMS system parameters. If OTMA is already
started, the bridge starts automatically when queue manager startup has completed. An IBM MQ event
message is produced when OTMA is started.

Use the IMS command:

/STOP OTMA

to stop OTMA communication. When this command is issued, an IBM MQ event message is produced.

Controlling IMS connections
IMS provides these operator commands to control and monitor the connection to IBM MQ:
/DEQUEUE TMEMBER tmember TPIPE tpipe

Removes messages from a Tpipe. Specify PURGE to remove all messages or PURGE1 to remove the
first message only.

/DISPLAY OTMA
Displays summary information about the OTMA server and clients, and client status.

/DISPLAY TMEMBER name
Displays information about an OTMA client.

/DISPLAY TRACE TMEMBER name
Displays information about what is being traced.

/SECURE OTMA
Sets security options.

/START OTMA
Enables communications through OTMA.

/START TMEMBER tmember TPIPE tpipe
Starts the named Tpipe.

/STOP OTMA
Stops communications through OTMA.

/STOP TMEMBER tmember TPIPE tpipe
Stops the named Tpipe.

/TRACE
Controls the IMS trace.

For more information about these commands, see the IMS/ESA Operators Reference manual for the level
of IMS that you are using.

IMS command responses are sent to the terminal from which the command was issued. Authorization to
issue IMS commands is based on IMS security.

Controlling bridge queues

To stop communicating with the queue manager with XCF member name tmember through the bridge,
issue the following IMS command:

/STOP TMEMBER tmember TPIPE ALL

To resume communication, issue the following IMS command:

546 Administering IBM MQ

/START TMEMBER tmember TPIPE ALL

The Tpipes for a queue can be displayed using the MQ DISPLAY QUEUE command.

To stop communication with the queue manager on a single Tpipe, issue the following IMS command:

/STOP TMEMBER tmember TPIPE tpipe

One or two Tpipes are created for each active bridge queue, so issuing this command stops
communication with the IBM MQ queue. To resume communication, use the following IMS command :

/START TMEMBER tmember TPIPE tpipe

Alternatively, you can alter the attributes of the IBM MQ queue to make it get inhibited.

Resynchronizing the IMS bridge

The IMS bridge is automatically restarted whenever the queue manager, IMS, or OTMA are restarted.

The first task undertaken by the IMS bridge is to resynchronize with IMS. This involves IBM MQ and IMS
checking sequence numbers on every synchronized Tpipe. A synchronized Tpipe is used when persistent
messages are sent to IMS from an IBM MQ - IMS bridge queue using commit mode zero (commit-then-
send).

If the bridge cannot resynchronize with IMS, the IMS sense code is returned in message CSQ2023E and
the connection to OTMA is stopped. If the bridge cannot resynchronize with an individual IMS Tpipe, the
IMS sense code is returned in message CSQ2025E and the Tpipe is stopped. If a Tpipe has been cold
started, the recoverable sequence numbers are automatically reset to 1.

If the bridge discovers mismatched sequence numbers when resynchronizing with a Tpipe, message
CSQ2020E is issued. Use the IBM MQ command RESET TPIPE to initiate resynchronization with the IMS
Tpipe. You need to provide the XCF group and member name, and the name of the Tpipe; this information
is provided by the message.

You can also specify:

• A new recoverable sequence number to be set in the Tpipe for messages sent by IBM MQ, and to be
set as the partner's receive sequence number. If you do not specify this, the partner's receive sequence
number is set to the current IBM MQ send sequence number.

• A new recoverable sequence number to be set in the Tpipe for messages received by IBM MQ, and to
be set as the partner's send sequence number. If you do not specify this, the partner's send sequence
number is set to the current IBM MQ receive sequence number.

If there is an unresolved unit of recovery associated with the Tpipe, this is also notified in the message.
Use the IBM MQ command RESET TPIPE to specify whether to commit the unit of recovery, or back it out.
If you commit the unit of recovery, the batch of messages has already been sent to IMS, and is deleted
from the bridge queue. If you back the unit of recovery out, the messages are returned to the bridge
queue, to be later sent to IMS.

Commit mode 1 (send-then-commit) Tpipes are not synchronized.

Considerations for Commit mode 1 transactions

In IMS, commit mode 1 (CM1) transactions send their output replies before sync point.

Administering IBM MQ 547

A CM1 transaction might not be able to send its reply, for example because:

• The Tpipe on which the reply is to be sent is stopped
• OTMA is stopped
• The OTMA client (that is, the queue manager) has gone away
• The reply-to queue and dead-letter queue are unavailable

For these reasons, the IMS application sending the message pseudo-abends with code U0119. The
IMS transaction and program are not stopped in this case.

These reasons often prevent messages being sent into IMS, as well as replies being delivered from
IMS. A U0119 abend can occur if:

• The Tpipe, OTMA, or the queue manager is stopped while the message is in IMS
• IMS replies on a different Tpipe to the incoming message, and that Tpipe is stopped
• IMS replies to a different OTMA client, and that client is unavailable.

Whenever a U0119 abend occurs, both the incoming message to IMS and the reply messages to IBM
MQ are lost. If the output of a CM0 transaction cannot be delivered for any of these reasons, it is
queued on the Tpipe within IMS.

Working with tpipe names
Many of the commands used to control the IBM MQ - IMS bridge require the tpipe name. Use this topic to
understand how you can find further details of the tpipe name.

You need tpipe names for many of the commands that control the IBM MQ - IMS bridge. You can get the
tpipe names from DISPLAY QUEUE command and note the following points:

• tpipe names are assigned when a local queue is defined
• a local queue is given two tpipe names, one for sync and one for non-sync
• tpipe names will not be known to IMS until after some communication between IMS and IBM MQ
specific to that particular local queue takes place

• For a tpipe to be available for use by the IBM MQ - IMS bridge its associated queue must be assigned to
a Storage Class that has the correct XCF group and member name fields completed

Deleting messages from IMS

A message that is destined for IBM MQ through the IMS bridge can be deleted if the Tmember/Tpipe
is stopped. To delete one message for the queue manager with XCF member name tmember, issue the
following IMS command:

/DEQUEUE TMEMBER tmember TPIPE tpipe PURGE1

To delete all the messages on the Tpipe, issue the following IMS command:

/DEQUEUE TMEMBER tmember TPIPE tpipe PURGE

Deleting tpipes

You cannot delete IMS tpipes yourself. They are deleted by IMS at the following times:

• Synchronized tpipes are deleted when IMS is cold started.

548 Administering IBM MQ

• Non-synchronized tpipes are deleted when IMS is restarted.

IMS Transaction Expiration
An expiration time is associated with a transaction; any IBM MQ message can have an expiration
time associated with it. The expiration interval is passed from the application, to IBM MQ, using the
MQMD.Expiry field. The time is the duration of a message before it expires, expressed as a value in tenths
of a second. An attempt to perform the MQGET of a message, later than it has expired, results in the
message being removed from the queue and expiry processing performed. The expiration time decreases
as a message flows between queue managers on an IBM MQ network. When an IMS message is passed
across the IMS bridge to OTMA, the remaining message expiry time is passed to OTMA as a transaction
expiration time.

If a transaction has an expiration time specified, OTMA expires the input transactions in three different
places in IMS:

• input message receiving from XCF
• input message enqueuing time
• application GU time

No expiration is performed after the GU time.

The transaction EXPRTIME can be provided by:

• IMS transaction definition
• IMS OTMA message header
• IMS DFSINSX0 user exit
• IMS CREATE or UPDATE TRAN commands

IMS indicates that it has expired a transaction by abending a transaction with 0243, and issuing a
message. The message issued is either DFS555I in the non-shared-queues environment, or DFS2224I in
the shared-queues environment.

Operating Advanced Message Security on z/OS
The Advanced Message Security address space accepts commands using the z/OS MODIFY command.

Procedure
• Modify Advanced Message Security on z/OS.

To enter commands for the Advanced Message Security (AMS) address space, use the z/OS MODIFY
command.

For example:

F qmgrAMSM, cmd

where qmgr is the prefix of the started task name.

The following table describes the MODIFY commands that are accepted:

Table 29. Advanced Message Security address space MODIFY commands

Command Option Description

DISPLAY Display version information

Administering IBM MQ 549

Table 29. Advanced Message Security address space MODIFY commands (continued)

Command Option Description

REFRESH KEYRING
POLICY
ALL

Refresh the key ring certificates, security
policies, or both.

SMFAUDIT SUCCESS
FAILURE
ALL

Set whether SMF auditing is required when
AMS successfully protects or unprotects
messages, when AMS fails to protect or
unprotect messages, or both.

SMFTYPE 0 - 255 Set the SMF record type to be generated
when AMS protects or unprotects messages.
To disable SMF auditing specify a record type
of 0.

Note: To specify an option it must be separated by a comma. For example:

F qmgrAMSM,REFRESH KEYRING
F qmgrAMSM,SMFAUDIT ALL
F qmgrAMSM,SMFTYPE 180

• Refresh Advanced Message Security on z/OS.

Changes that are made effective by issuing the REFRESH command apply to applications that issue
MQOPEN after the REFRESH command has completed. Existing applications that have a queue open,
continue to use the options from when the application opened the queue. To use the new values, the
application has to close and reopen the queue.

• Start and stop AMS on z/OS.

You do not need to enter a command to start or stop the Advanced Message Security address space.
The AMS address space is started automatically when the queue manager is started if AMS has
been enabled with the SPLCAP parameter of CSQ6SYSP, and is stopped when the queue manager is
stopped.

Administering IBM MQ Internet Pass-Thru
This section describes how to administer IBM MQ Internet Pass-Thru (MQIPT).

Configure MQIPT by making changes to the mqipt.conf configuration file as described in Configuring
IBM MQ Internet Pass-Thru. To administer MQIPT, including refreshing MQIPT to bring configuration
changes into effect without restarting MQIPT, use the mqiptAdmin command. For information about
administering MQIPT using the mqiptAdmin command, see “Administering MQIPT by using the
command line” on page 553.

Starting and stopping MQIPT
You can start MQIPT either from the command line, or make it start automatically when the system is
started. You can stop MQIPT by using the mqiptAdmin command.

Starting MQIPT from the command line
MQIPT is installed into an installation directory, such as:

• C:\MQIPT on Windows systems, with executable scripts in C:\MQIPT\bin

• /opt/mqipt on AIX and Linux systems, with executable scripts in /opt/
mqipt/bin

550 Administering IBM MQ

MQIPT also uses a home directory, which contains the configuration file mqipt.conf and any files that
are output by MQIPT when it is running. The following subdirectories of the MQIPT home directory are
created automatically when MQIPT is invoked for the first time:

• An errors directory in which any First Failure Support Technology (FFST) and trace files are written
• A logs directory in which the connection log is kept

The user ID under which MQIPT runs must have permission to create these directories, or alternatively
the directories must already exist and the user ID must have permission to create, read, and write files
in them. Also, if you are using a Java security manager policy then the security policy must grant the
required permissions for these directories. For more information about Security Manager policy settings
refer to Java security manager.

You can use the installation directory as a home directory. If you use this directory, you must ensure that
the user ID under which MQIPT runs has the appropriate permissions, and that any Security Manager
policy is configured correctly.

To start MQIPT, use the mqipt command, which is located in the bin directory of the MQIPT installation
directory. For example, the following command starts an instance of MQIPT that uses the directory
C:\mqiptHome as the home directory:

mqipt C:\mqiptHome

For more information about the mqipt command, see mqipt (start MQIPT).

You can use the mqipt command to specify a name to be given to the MQIPT instance that is being
started. The name of the MQIPT instance is used to administer local instances of MQIPT with the
mqiptAdmin command without needing to use a command port. If this parameter is not specified, the
name of the MQIPT home directory is used as the name of the MQIPT instance.

Console messages show the status of MQIPT. If an error occurs, see Troubleshooting IBM MQ Internet
Pass-Thru. The following messages are an example of the output when MQIPT starts successfully:

5724-H72 (C) Copyright IBM Corp. 2000, 2024. All Rights Reserved
MQCPI001 IBM MQ Internet Pass-Thru V9.2.0.0 starting
MQCPI004 Reading configuration information from mqipt.conf
MQCPI152 MQIPT name is C:\mqiptHome
MQCPI021 Password checking has been enabled on the command port
MQCPI144 MQ Advanced capabilities not enabled
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1414 is starting and will forward messages to :
MQCPI034examplehost(1414)
MQCPI035using MQ protocols
MQCPI057trace level 5 enabled
MQCPI078 Route 1414 ready for connection requests

Starting MQIPT automatically
You can install MQIPT as a system service that starts automatically when the system is started. Use the
mqiptService command to install and uninstall the MQIPT service.

• On Windows systems, the mqiptService command installs MQIPT as a Windows
service.

• On AIX and Linux systems, the mqiptService command installs MQIPT as
a System V init service that starts when the system boots. On Linux systems which do not support
System V init, use another method, such as systemd, to manage MQIPT as a service.

When the MQIPT service is started, all active MQIPT routes start. When the service is stopped, all routes
are subjected to immediate shutdown.

You can only install one MQIPT service on a system, even if there is more than one installation of MQIPT
on the system.

Administering IBM MQ 551

For more information about the mqiptService command, see mqiptService (manage the MQIPT
service).

Stopping MQIPT
You can stop MQIPT by using the mqiptAdmin command with the -stop parameter.

For example, the following command stops an instance of MQIPT with the name mqipt1 that is running
locally under the same user ID as the mqiptAdmin command:

mqiptAdmin -stop -n ipt1

The mqiptAdmin command connects to the active instance of MQIPT to administer using one of the
following methods:

• by connecting to a local instance of MQIPT without using the command port.
• by making a network connection to a command port.

Remote shutdown must be enabled by setting the RemoteShutDown property to true before the
mqiptAdmin command can be used to stop MQIPT by sending a command to a command port.

For more information about administering MQIPT using the mqiptAdmin command, see “Administering
MQIPT by using the command line” on page 553.

Specifying the password encryption key
If the MQIPT configuration contains passwords that are encrypted using an encryption key other than the
default key, you must provide the password encryption key in a file that MQIPT can read when it starts.

The password encryption key file
Passwords that are encrypted to be stored and used by MQIPT can be encrypted using an encryption key
that you provide. If you do not provide an encryption key, the default encryption key is used. You do not
have to specify a password encryption key, however it is more secure to do so. If you do not specify your
own encryption key, the default encryption key is used.

If you provide a password encryption key, it must be stored in a file that can be accessed by the mqiptPW
command used to encrypt passwords and MQIPT. The only restrictions on the contents of the file are that
it must contain at least one character, and only one line of text.

Note: You must ensure that appropriate file permissions are set on the password encryption key file to
prevent any unauthorized users from reading the encryption key. Only the user that runs the mqiptPW
command and the user under which MQIPT runs need authority to read the password encryption key.

The same password encryption key is used to encrypt and decrypt all stored passwords for an instance of
MQIPT. Therefore, you need only a single password encryption key file for each MQIPT installation.

If the password encryption key for an MQIPT installation is changed, all encrypted passwords must be
re-encrypted using the new encryption key.

Starting MQIPT
The default name of the password encryption key file is MQIPT_HOME_DIR/mqipt_cred.key, where
MQIPT_HOME_DIR is the directory where the mqipt.conf configuration file is stored. If you are planning
to run MQIPT as a service that is automatically started, you must create the password encryption key file
with the default name.

If the password encryption key file is created with a name other than the default name, the name of the
file must be provided to MQIPT when it is started. The name of the password encryption key file can be
specified using any of the following methods, in order of preference:

1. the -sf parameter on the mqipt command used to start MQIPT.
2. the MQS_MQIPTCRED_KEYFILE environment variable.

552 Administering IBM MQ

3. the com.ibm.mq.ipt.cred.keyfile Java property.

If no password encryption key file name is provided, the default file name will be used, if the file exists. If
the default password encryption key file does not exist, the default password encryption key is used.

Administering MQIPT by using the command line
You can use the mqiptAdmin command on the command line to administer MQIPT.

You can use the mqiptAdmin command to perform the following administrative functions:

• List active local instances of MQIPT.
• Refresh an instance of MQIPT after you make changes to the configuration file.
• Stop an instance of MQIPT.

The mqiptAdmin command is located in the bin subdirectory of the MQIPT installation directory.

The mqiptAdmin command connects to the active instance of MQIPT to administer using one of the
following methods:

• by making a network connection to a command port.
• by connecting to a local instance of MQIPT without using the command port.

The mqiptAdmin command is compatible with previous versions of MQIPT, but you cannot use the
command to administer versions of MQIPT that are a higher version than the version of the mqiptAdmin
command. In an environment that includes different versions of MQIPT, you must use the latest version of
the mqiptAdmin command.

For more information about the syntax of the mqiptAdmin command, see mqiptAdmin (administer
MQIPT).

Local administration without a command port
Local instances of MQIPT can be administered without using a command port. Local administration allows
you to administer MQIPT by using the mqiptAdmin command only when it is run on the same system as
the MQIPT instance that you want to administer.

In order for mqiptAdmin to be authorized to administer a local instance of MQIPT without using the
command port, the MQIPT instance must be running on the same system and under the same user ID as
mqiptAdmin. Alternatively, on AIX and Linux, mqiptAdmin can be run as root.

Local administration is enabled by default. To disable local administration, use the LocalAdmin
configuration property. For more information about the LocalAdmin property, see LocalAdmin.

To administer local instances of MQIPT, you must give each instance a name. You can assign a name to
an instance of MQIPT by using the -n parameter when starting MQIPT with the mqipt command. If you
do not specify a name when starting MQIPT, the name of the home directory is used as the name of the
MQIPT instance. For example, the following command starts MQIPT and assigns the name ipt1 to the
instance:

mqipt /opt/mqipt1 -n ipt1

Once the instance has a name, you can administer that instance by specifying the name in the
mqiptAdmin command with the -n parameter. For example, the following command stops the local
instance of MQIPT with the name ipt1:

mqiptAdmin -stop -n ipt1

You can list all local active instance of MQIPT that the mqiptAdmin command is authorized to administer
without using a command port by using the mqiptAdmin command with the -list parameter. For

Administering IBM MQ 553

example, the following command lists all local active instances of MQIPT that the user that started the
mqiptAdmin command is authorized to administer:

mqiptAdmin -list

Administration using a command port
You can configure MQIPT with one command port that is unsecured and one command port that is
secured with TLS. You can use these command ports to administer MQIPT as any user that is on the same
system as the MQIPT instance that you want to administer, or from a remote system.

Previous versions of MQIPT only accepted administrative commands issued to the unsecured command
port.

Note: Connections to the unsecured command port are not encrypted, therefore data sent over the
network to the unsecured command port, including the MQIPT access password, can be visible to other
users on the network.

In order for MQIPT to listen on a command port for commands issued by the mqiptAdmin command, a
value must specified for either the CommandPort or SSLCommandPort properties in the global section of
the mqipt.conf configuration file.

Review the security considerations in Other security considerations before enabling either of the MQIPT
command ports. Consider enabling authentication for commands received by the command ports. For
more information about command port authentication, see “Command port authentication” on page
557.

To administer an instance of MQIPT using a command port, specify the network address of the host where
MQIPT is running, and the command port number, as parameters to the mqiptAdmin command. For
example, to refresh the MQIPT instance that is running on mqipt.example.com, and has the unsecured
command port configured to listen on port 1890, issue the following command:

mqiptAdmin -refresh -r mqipt.example.com:1890

If you do not specify the host name and port number, mqiptAdmin attempts to connect to localhost,
port 1881.

For more information about administering MQIPT by using the TLS command port, see “Administering
MQIPT using the TLS command port” on page 554.

Administering MQIPT using the TLS command port
MQIPT can be configured to use a TLS command port to listen for administrative commands issued by the
mqiptAdmin command. Using the TLS command port protects sensitive data such as the MQIPT access
password on the network between mqiptAdmin and MQIPT. Use this procedure to configure the TLS
command port and administer MQIPT using the TLS command port.

About this task
The TLS command port must be configured with a server certificate stored either in a PKCS #12 keystore,
or in cryptographic hardware that supports the PKCS #11 Cryptographic Token Interface. The command
port server certificate is sent to the mqiptAdmin command during the TLS handshake. This task assumes
that you request a new server certificate from a trusted Certificate Authority (CA), and that the certificate
is returned to you in a file. The mqiptAdmin command validates the command port certificate using the
CA certificate of the CA that signed the server certificate. The CA certificate must be stored in a PKCS #12
keystore that can be accessed by the mqiptAdmin command.

Client certificate authentication is not supported by the TLS command port. To enable authentication for
administrative commands issued to a command port, see “Command port authentication” on page 557.

554 Administering IBM MQ

This procedure describes how to manage the keystores and digital certificates that are required to use

the TLS command port by using the mqiptKeytool command. For more
information about managing keystores that MQIPT uses, see Managing MQIPT keystores.

Procedure
1. Follow these steps to configure the TLS command port for the instance of MQIPT.

a) Create a public and private key pair, and an associated TLS command port server certificate in a
PKCS #12 keystore.

To create the keystore that contains TLS command port server
certificate, enter the following command:

mqiptKeytool -genkeypair -keystore filename -storetype pkcs12 -storepass password
 -dname distinguished_name -alias label
 -keyalg key_algorithm -keysize key_size -sigalg sig_algorithm

where:
-keystore filename

Specifies the keystore name.
-storepass password

Specifies the keystore password.
-alias label

Specifies the certificate label.
-keyalg key_algorithm

Specifies the algorithm that is used to create the key pair.
-keysize key_size

Specifies the key size.
-sigalg algorithm

Specifies the algorithm that is used to sign the certificate.
-dname distinguished_name

Specifies the X.500 distinguished name enclosed in double quotation marks.
b) Create a certificate request for the CA signed TLS command port server certificate.

To create a certificate request, enter the following command:

mqiptKeytool -certreq -keystore filename -storetype pkcs12 -storepass password
 -alias label -file certreq_filename

where:
-keystore filename

Specifies the keystore name.
-storepass password

Specifies the keystore password.
-alias label

Specifies the certificate label.
-file certreq_filename

Specifies the file name for the certificate request.
c) Send the certificate request file created in step “1.b” on page 555 to your CA to be signed.
d) After the CA sends you the signed certificate, receive the signed certificate into the keystore.

To receive the signed certificate into the keystore, enter the following
command:

Administering IBM MQ 555

mqiptKeytool -importcert -keystore cert_filename -storetype pkcs12 -storepass password
 -file cert_filename

where cert_filename is the name of the file that contains the certificate, filename is the name of the
keystore, and password is the keystore password.

e) Encrypt the keystore password using the mqiptPW command.
Enter the following command:

mqiptPW -sf encryption_key_file

where encryption_key_file is the name of a file that contains the password encryption key for your
MQIPT installation. You do not need to specify the -sf parameter if your MQIPT installation is using
the default password encryption key. Type in the keystore password to encrypt when prompted.
For more information about the mqiptPW command, see Encrypting a key ring password.

f) Edit the mqipt.conf configuration file and specify the following properties to configure the TLS
command port:

i) Set the value of the SSLCommandPort property to the TLS command port number.
ii) Set the value of the SSLCommandPortKeyRing property to the file name of the keystore

created in step “1.a” on page 555.
iii) Set the value of the SSLCommandPortKeyRingPW to the string output by the mqiptPW

command in step “1.e” on page 556.
iv) Set the value of the SSLCommandPortSiteLabel property to the label name of the TLS

command port certificate, specified when creating the certificate request in step “1.b” on page
555.

v) If you want to restrict inbound connections to the TLS command port to those from a particular
network interface, set the value of the SSLCommandPortListenerAddress property to a
network address belonging to one of the network interfaces on the system where MQIPT is
running. For example, to restrict inbound connections to the TLS command port to those only
from the local machine, set the value of the SSLCommandPortListenerAddress property to
localhost.

g) Start or refresh MQIPT to enable the TLS command port.
MQIPT issues console messages such as the following to display the TLS command port
configuration that is in effect:

MQCPI155 Listening for control commands on port 1882 on local address * using TLS
MQCPI139secure socket protocols <NULL>
MQCPI031cipher suites <NULL>
MQCPI032key ring file c:\\iptHome\\ssl\\commandport.p12
MQCPI072and certificate label mqiptadmin

2. On the system where the mqiptAdmin command is used to administer MQIPT, follow these steps to
enable mqiptAdmin to connect to the TLS command port.
a) Import the CA certificate of the CA that signed the TLS command port certificate into a PKCS #12

keystore to be used as a trust store by the mqiptAdmin command.

To import the CA certificate, enter the following command:

mqiptKeytool -importcert -keystore filename -storetype pkcs12 -storepass password
 -file cert_filename -alias certlabel

where:
filename

Specifies the name of the keystore to create
password

Specifies the keystore password

556 Administering IBM MQ

certlabel
Specifies the label to be given to the CA certificate

cert_filename
Specifies the name of the file that contains the CA certificate

b) Encrypt the keystore password by using the mqiptPW command.
Enter the following command:

mqiptPW -sf encryption_key_file

where encryption_key_file is the name of the file that contains the password encryption key. The
password encryption key file can be different to the one used to encrypt passwords in the MQIPT
configuration. The default password encryption key is used if you do not specify an encryption key
file with the -sf parameter. Type in the keystore password to encrypt when prompted.
For more information about the mqiptPW command, see Encrypting a key ring password.

c) Create a properties file to be used by the mqiptAdmin command and specify the following
properties:

SSLClientCAKeyRing=key_ring_file_name
SSLClientCAKeyRingPW=key_ring_password
PasswordProtectionKeyFile=encryption_key_file

where:
key_ring_file_name

is the name of the keystore created in step “2.a” on page 556.
key_ring_password

is the encrypted password output by the mqiptPW command in step “2.b” on page 557.
encryption_key_file

is the name of the file that contains the password encryption key. You need to specify the
PasswordProtectionKeyFile property only if an encryption key file was used to encrypt the
keystore password in step “2.b” on page 557.

d) Issue the mqiptAdmin command to administer MQIPT, specifying the -s parameter to indicate
that a TLS connection is required, and the -p parameter to specify the name of the properties file
that was created in step “2.c” on page 557.
For example, enter the following command to refresh an instance of MQIPT by sending a refresh
command to the TLS command port:

mqiptAdmin -refresh -r hostname:port -s -p properties_file

The mqiptAdmin command issues a message such as the following to confirm that the connection
to MQIPT is protected with TLS:

MQCAI109 The connection to MQIPT is secured with TLSv1.2.

What to do next
To enable authentication for commands received by the TLS command port, follow the steps in
“Command port authentication” on page 557.

Command port authentication
MQIPT can be configured to authenticate commands received by the unsecured command port and TLS
command port using a password. Use this procedure to enable command port authentication.

About this task
The mqiptAdmin command prompts users to enter a password when the command connects to the
command port of an instance of MQIPT that has command port authentication enabled. MQIPT validates

Administering IBM MQ 557

the password entered in the mqiptAdmin command against the access password specified in the MQIPT
configuration.

The properties that you set for command port authentication apply to both the TLS command port and the
unsecured command port.

Procedure
1. Encrypt the MQIPT access password using the mqiptPW command.

Enter the following command:

mqiptPW -sf encryption_key_file

where encryption_key_file is the name of the file that contains the password encryption key for your
MQIPT installation. You do not need to specify the -sf parameter if your MQIPT installation is using
the default password encryption key. Type in the access password to encrypt when prompted.
For more information about encrypting passwords in the MQIPT configuration, see Encrypting stored
passwords.

2. Edit the mqipt.conf configuration file and specify the following properties:

AccessPW=encrypted_password
RemoteCommandAuthentication=auth_setting

where:
encrypted_password

is the encrypted password output by the mqiptPW command in step “1” on page 558.
auth_setting

is the authentication requirement. Command port authentication is enabled if this property is set
to one of the following values:
optional

A password is not required, but if a password is provided it must be valid. This option might be
useful during migration, for example.

required
A valid password must be provided with each command received by a command port.

For more information about these properties, see MQIPT global properties.
3. Start or refresh MQIPT to bring the changes into effect.

MQIPT issues a message indicating whether command port authentication is enabled. For example, if
MQIPT is configured to require a valid password to be entered each time the mqiptAdmin command is
run, then the following message is issued:

MQCPI021 Password checking has been enabled on the command port

Making backups
There are a number of MQIPT files that you should back up as part of your regular backup procedures.

Back up the following files on a regular basis:

• The configuration file, mqipt.conf
• The SSL/TLS key ring files specified by the following properties in mqipt.conf:

– SSLClientKeyRing
– SSLClientCAKeyRing
– SSLServerKeyRing
– SSLServerCAKeyRing
– SSLCommandPortKeyRing

558 Administering IBM MQ

• The SSL/TLS key ring password files specified by the following properties in mqipt.conf:

– SSLClientKeyRingPW
– SSLClientCAKeyRingPW
– SSLServerKeyRingPW
– SSLServerCAKeyRingPW

• The password encryption key file, if the MQIPT configuration contains passwords that are encrypted
with an encryption key other than the default key.

• The policy file specified by SecurityManagerPolicy, if that property has been set.
• The security exit files and certificate exit files specified by the following properties in mqipt.conf:

– SecurityExitName
– SSLExitName

• Connection log files in the log subdirectory of the MQIPT home directory, if these are needed for audit
purposes.

Performance tuning
You can tune the relative performance of each MQIPT route by using a combination of a thread pool and
an idle timeout specification.

Connection threads

Each MQIPT route is assigned a working pool of concurrently running threads that handle incoming
communication requests. At initialization, a pool of threads is created (of the size specified in the route's
MinConnectionThreads attribute), and a thread is assigned to handle the first incoming request. When
this request arrives, another thread is assigned, ready for the next incoming request. When all threads are
assigned for work, a new thread is created, added to the working pool, and assigned for work.

In this way, the pool grows until the maximum number of threads (specified in MaxConnectionThreads)
is reached. Threads are released back to the pool when a conversation ends, or the specified idle timeout
period has elapsed. When the maximum number of working threads is reached, the next incoming request
waits until a thread is released back to the working pool.

You can reduce the time that requests might have to wait by increasing the number of available threads.
However, you must balance this increase with the system resources that are available.

Idle timeout

By default, working threads are not terminated because of inactivity. When a thread has been assigned
to a conversation, it remains assigned to that conversation until it is closed normally, the route is
deactivated, or MQIPT is shut down. Optionally, you can specify an idle timeout interval (in minutes)
in the IdleTimeout property so that threads that have been inactive for the specified period of time are
recycled. Threads are recycled for use by placing them back into the working pool.

If IBM MQ activity is intermittent, set its heartbeat interval to a value less than that of the MQIPT timeout
so that threads are not constantly recycled.

Administering IBM MQ 559

560 Administering IBM MQ

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2024 561

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of IBM MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

562 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (https://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 563

564 Administering IBM MQ

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Administering
	Ways of administering IBM MQ queue managers and associated resources
	Administering IBM MQ for Multiplatforms using control commands
	Administering IBM MQ using MQSC commands
	MQSC command syntax
	MQSC: Special characters and generic values

	MQSC input file syntax
	Running MQSC commands interactively under runmqsc
	Setting the MQSC command prompt
	Enabling command recall and completion, and Emacs command keys, for runmqsc

	Running MQSC commands from text files under runmqsc
	Automatic configuration from an MQSC script at startup

	Automating IBM MQ administration using PCF commands
	Introduction to IBM MQ Programmable Command Formats
	Using IBM MQ Programmable Command Formats
	PCF command messages
	Sending and receiving PCF messages in a specified queue
	PCF responses in IBM MQ
	Standard responses
	Extended responses

	Authority checking for PCF commands in IBM MQ

	Using the MQAI to simplify the use of PCFs
	Hints and tips for using MQAI to configure IBM MQ
	Advanced MQAI topics
	Indexing in the MQAI
	Data conversion processing in the MQAI
	Use of the message descriptor in the MQAI

	Sample C program for creating a local queue (amqsaicq.c)
	Sample C program for displaying events using an event monitor (amqsaiem.c)
	Sample C program for inquiring about channel objects (amqsaicl.c)
	Sample C program for inquiring about queues and printing information (amqsailq.c)
	Data bags and the MQAI
	Creating and deleting data bags
	Putting and receiving data bags using the MQAI
	Types of data item available in the MQAI
	System items and the MQAI
	Adding data items to bags with the MQAI
	Adding an inquiry command to a bag
	Filtering and querying data items

	Inquiring within data bags
	Changing information within a bag
	Clearing a bag using the mqClearBag call
	Truncating a bag using the mqTruncateBag call
	Converting bags and buffers
	Counting data items
	Deleting data items
	Deleting data items from a bag using the mqDeleteItem call

	Sending administration commands to the qm command server using the mqExecute call

	Administration using the REST API
	Getting started with the administrative REST API
	Getting started with the REST API for MFT
	Using the administrative REST API

	Remote administration using the REST API
	REST API time stamps
	REST API error handling
	REST API discovery
	REST API national language support
	REST API versions

	Administration using the IBM MQ Console
	Getting started with the IBM MQ Console
	Quick tour of the IBM MQ Console
	IBM MQ Console: Working with local queue managers
	IBM MQ Console: Working with authentication information objects
	IBM MQ Console: Working with queue manager authority records
	IBM MQ Console: Working with channel authentication records
	IBM MQ Console: Working with listeners

	IBM MQ Console: Adding a remote queue manager
	Adding a remote queue manager to the IBM MQ Console by using the command line

	IBM MQ Console: Working with objects
	IBM MQ Console: Working with queues
	IBM MQ Console: Working with topics
	IBM MQ Console: Working with subscriptions
	IBM MQ Console: Working with queue manager channels
	IBM MQ Console: Working with application channels
	IBM MQ Console: Working with applications
	IBM MQ Console: Working with storage classes
	IBM MQ Console: Working with page sets and buffer pools

	IBM MQ Console settings

	Administration using the IBM MQ Explorer
	What you can do with the IBM MQ Explorer
	Deciding whether to use the IBM MQ Explorer

	Setting up the IBM MQ Explorer
	Prerequisite software and definitions for IBM MQ Explorer
	Security for IBM MQ Explorer
	Authorization to use the IBM MQ Explorer
	Security for connecting to remote queue managers from IBM MQ Explorer
	Using a security exit with the IBM MQ Explorer
	Using the IBM MQ Explorer to connect to a remote queue manager using TLS-enabled MQI channels
	Connecting through another queue manager with IBM MQ Explorer

	Showing and hiding queue managers and clusters in IBM MQ Explorer
	Cluster membership and IBM MQ Explorer
	Data conversion for IBM MQ Explorer

	Using the IBM MQ Taskbar application (Windows only)
	The IBM MQ alert monitor application (Windows only)

	Working with local IBM MQ objects
	Working with queue managers
	Starting a queue manager
	Stopping a queue manager
	Ending a queue manager within a target time

	Stopping a queue manager manually
	Stopping a queue manager manually on Windows
	Stopping a queue manager manually on AIX and Linux

	Restarting a queue manager
	Displaying and altering queue manager attributes
	Deleting a queue manager

	Stopping MQI channels
	Working with local queues
	Defining a local queue with DEFINE QLOCAL
	Displaying default object attributes with DISPLAY QUEUE
	Copying a local queue definition with DEFINE QLOCAL
	Changing local queue attributes with ALTER QLOCAL or DEFINE QLOCAL
	Clearing a local queue with CLEAR QLOCAL
	Deleting a local queue with DELETE QLOCAL
	Browsing queues with the sample program
	Enabling large queues
	Modifying IBM MQ queue files
	Changing the size of an IBM MQ queue file
	Calculating how much data an IBM MQ queue file can store

	Working with remote queues
	Remote queue definitions can be used as aliases

	Working with alias queues
	Working with model queues
	Working with dead-letter queues
	Processing messages on an IBM MQ dead-letter queue
	Invoking the dead-letter queue handler
	The sample DLQ handler amqsdlq
	The DLQ handler rules table
	DLQ control data
	DLQ rules (patterns and actions)
	DLQ rules table conventions
	How the DLQ rules table is processed
	An example DLQ handler rules table

	Invoking the dead-letter queue handler on IBM i
	The DLQ handler rules table on IBM i
	DLQ rules (patterns and actions) on IBM i
	DLQ pattern-matching keywords on IBM i
	DLQ action keywords on IBM i

	DLQ rules table conventions on IBM i
	How the DLQ rules table is processed on IBM i
	An example DLQ handler rules table on IBM i

	Ensuring that all DLQ messages are processed

	Working with administrative topics
	Defining an administrative topic
	Displaying administrative topic object attributes
	Changing administrative topic attributes
	Copying an administrative topic definition
	Deleting an administrative topic definition

	Working with subscriptions
	Defining an administrative subscription
	Displaying attributes of subscriptions
	Changing local subscription attributes
	Copying a local subscription definition
	Deleting a local subscription
	Checking messages on a subscription

	Working with services
	Defining a service object
	Managing services
	Defining additional environment variables in the service.env file
	Using replaceable inserts on service definitions
	Using a server service object
	Using a command service object

	Managing objects for triggering
	Using the dmpmqmsg utility between two systems
	Examples of using the dmpmqmsg utility

	Working with remote IBM MQ objects
	Configuring queue managers for remote administration
	Managing the command server for remote administration
	Issuing MQSC commands on a remote queue manager
	Data conversion between coded character sets
	The ccsid_part2.tbl file

	Administering Managed File Transfer
	Starting an MFT agent
	Starting an MFT agent as a Windows service
	Starting an MFT agent at AIX and Linux system startup
	Starting an MFT agent on z/OS

	Listing MFT agents
	Stopping an MFT agent
	Stopping an MFT agent on z/OS

	Starting a new file transfer
	Using transfer definition files

	Creating a scheduled file transfer
	Working with pending file transfers
	Triggering a file transfer
	Monitoring file transfers that are in progress
	Configuring IBM MQ Explorer to monitor a remote coordination queue manager

	Viewing the status of file transfers in the Transfer Log
	Configuring the Transfer Log

	Monitoring MFT resources
	MFT resource monitoring concepts
	Configuring MFT monitor tasks to start commands and scripts
	Creating a task definition XML manually according to the schema
	Creating a task definition document by modifying a generated document

	Monitoring a directory and using variable substitution
	Example: Configuring an MFT resource
	Customizing MFT resource monitor tasks with variable substitution
	Examples: Variable substitution for resource monitor definitions
	Monitoring a queue and using variable substitution
	Configuring monitor retry behavior for message-to-file transfers
	Using a trigger file
	Logging MFT resource monitors
	Starting an MFT resource monitor
	Stopping an MFT resource monitor
	Backing up and restoring MFT resource monitors
	Clearing resource monitor history

	Working with file transfer templates
	Creating a file transfer template using IBM MQ Explorer
	Backing up a file transfer template definition

	Transferring data from files to messages
	Configuring an agent to perform file-to-message transfers
	Example: Transferring a single file to a single message
	Example: Splitting a single file into multiple messages by length
	Example: Splitting a text file into multiple messages using a regular expression delimiter
	Example: Splitting a text file with a regular expression delimiter and including the delimiter in the messages
	Example: Setting IBM MQ message properties on a file-to-message transfer
	Example: Setting user-defined properties on a file-to-message transfer
	Example: adding a user-defined message property for a file-to-message transfer

	Failure of a file-to-message transfer

	Transferring data from messages to files
	Configuring an agent to perform message-to-file transfers
	Example: Transferring from a queue to a single file
	Example: Transferring a group of messages from a queue to a single file
	Example: Inserting a text delimiter before the data from each message
	Example: Inserting a binary delimiter after the data from each message
	Monitoring a queue and using variable substitution
	Example: Failing a message-to-file transfer using IBM MQ message properties

	The protocol bridge
	Defining properties for protocol file servers using the ProtocolBridgeProperties.xml file
	Looking up protocol file server properties: ProtocolBridgePropertiesExit2
	Using the sample user exit to look up protocol file server properties
	Looking up protocol file server properties: ProtocolBridgePropertiesExit

	Mapping credentials for a file server
	Mapping credentials for a file server by using the ProtocolBridgeCredentials.xml file
	Mapping credentials for a file server by using exit classes
	Using the sample protocol bridge credential user exit

	Example: How to configure a protocol bridge agent to use private key credentials with a UNIX SFTP server
	Configuring a protocol bridge for an FTPS server
	Scenarios and examples for limiting the number of file transfers to individual file servers

	The Connect:Direct bridge
	Transferring a file to a Connect:Direct node
	Transferring a file from a Connect:Direct node
	Transferring a data set to a Connect:Direct node on z/OS
	Transferring multiple files to a Connect:Direct node
	Transferring multiple files from a Connect:Direct node
	Transferring multiple files to Connect:Direct by using wildcards
	Recovery and restart for transfers to and from Connect:Direct nodes
	Submitting a user-defined Connect:Direct process from a file transfer request
	Specifying the Connect:Direct process to start by using the ConnectDirectProcessDefinition.xml file
	Using intrinsic symbolic variables in Connect:Direct processes that are called by Managed File Transfer

	Using Connect:Direct processes to submit Managed File Transfer transfer requests
	Creating and submitting a Connect:Direct process that calls Managed File Transfer by using the Connect:Direct Requester

	Working with MFT from IBM Integration Bus
	MFT recovery and restart
	Setting a timeout for recovery of stalled transfers
	Transfer recovery timeout concepts
	Setting the transfer recovery timeout for all transfers for one source agent
	Setting the transfer recovery timeout for individual transfers

	Administering MQ Telemetry
	Configuring a queue manager for telemetry on Linux and AIX
	Configuring a queue manager for telemetry on Windows
	Configuring distributed queuing to send messages to MQTT clients
	MQTT client identification, authorization, and authentication
	MQTT client identity and authorization
	Authorizing MQTT clients to access IBM MQ objects
	No access control
	Coarse-grained access control
	Medium-grained access control
	Fine-grained access control

	MQTT client authentication using a password
	MQTT client authentication using TLS
	Telemetry channel configuration for MQTT client authentication using TLS

	Telemetry channel authentication using TLS
	Telemetry channel configuration for channel authentication using TLS
	Example MQTT channel configuration using TLS authentication

	System requirements for using SHA-2 cipher suites with MQTT channels

	Publication privacy on telemetry channels
	TLS configuration of MQTT Java clients and telemetry channels
	Telemetry channel JAAS configuration

	Administering an AMQP client
	AMQP Service does not start automatically on queue manager startup
	Viewing IBM MQ objects in use by AMQP clients
	AMQP client identification, authorization, and authentication
	AMQP client identity and authorization
	AMQP client authentication using a password

	Publication privacy on channels
	Configuring AMQP clients with TLS
	Disconnecting AMQP clients from the queue manager

	Administering multicast
	Getting started with multicast
	IBM MQ Multicast topic topology
	Controlling the size of multicast messages
	Enabling data conversion for Multicast messaging
	Multicast application monitoring
	Multicast message reliability
	Advanced multicast tasks
	Bridging between multicast and non-multicast publish/subscribe domains
	Configuring the .ini files for Multicast
	Multicast interoperability with IBM MQ Low Latency Messaging

	Administering IBM MQ for IBM i
	Managing IBM MQ for IBM i using CL commands
	Before you start using the IBM MQ for IBM i using CL commands
	Creating IBM MQ for IBM i objects
	Creating a local queue using the CRTMQMQ command
	Creating a local queue using the WRKMQMQ command
	Altering queue manager attributes

	Working with local queues on IBM i
	Working with alias queues on IBM i
	Working with model queues on IBM i
	Working with triggering on IBM i
	Communicating between two IBM MQsystems on IBM i
	Sample resource definitions on IBM i

	Alternative ways of administering IBM MQ for IBM i
	Local and remote administration on IBM i
	Administering using MQSC commands on IBM i
	Administration using PCF commands on IBM i
	Using the IBM MQ Explorer with IBM MQ for IBM i
	Managing the command server for remote administration on IBM i
	Running web console commands

	Work management for IBM i
	IBM MQ tasks for IBM i
	Work management objects on IBM i
	How IBM MQ uses work management objects on IBM i
	Default system examples for IBM i
	Configuring work management examples on IBM i

	Availability, backup, recovery, and restart on IBM i
	Queue manager journals on IBM i
	Queue manager journal usage on IBM i
	Media images on IBM i
	Checkpoints on IBM MQ for IBM i

	Backups of IBM MQ for IBM i data
	Journal management on IBM i
	Restoring a complete queue manager (data and journals) on IBM i
	Restoring journal receivers for a particular queue manager on IBM i

	Multi-instance queue managers on IBM i
	Reliability and availability on IBM i
	Components of a high availability solution on IBM i
	Creating a network share for queue manager data using NetServer on IBM i

	Failover performance on IBM i
	Overview of combining IBM i clustering capabilities with IBM MQ clustering
	Configuring a device cluster resource group
	Moving, or removing, a queue manager to, or from, an independent auxiliary storage pool

	Mirrored journal configuration for ASP on IBM i
	Creating a multi-instance queue manager using journal mirroring and NetServer on IBM i
	Converting a single instance queue manager to a multi-instance queue manager using NetServer and journal mirroring on IBM i

	Switched independent ASP journal configuration on IBM i
	Creating a multi-instance queue manager using an independent ASP and NetServer on IBM i
	Independent ASPs and high availability

	Deleting a multi-instance queue manager on IBM i
	Backing up a multi-instance queue manager on IBM i
	Commands to set up multi-instance queue managers

	Performance and disk failover considerations on IBM i
	Using SAVLIB to save IBM MQ libraries on IBM i

	Quiescing IBM MQ for IBM i
	Shutting down a single queue manager for IBM MQ for IBM i
	Shutting down all queue managers for IBM MQ for IBM i

	Administering IBM MQ for z/OS
	Issuing queue manager commands on z/OS
	Sources from which you can issue MQSC and PCF commands on IBM MQ for z/OS
	Command summary for IBM MQ for z/OS
	Using MQSC to start and stop a queue manager on z/OS
	Issuing commands from a z/OS console or equivalent
	Initialization commands for IBM MQ for z/OS
	Private and global definitions on IBM MQ for z/OS
	Directing commands to different queue managers on z/OS

	Using the operations and control panels on z/OS
	Invocation and rules for the operations and control panels
	Objects and actions on z/OS
	Object dispositions on z/OS
	Selecting a queue manager, defaults, and levels using the ISPF control panel on z/OS
	Using the function keys and command line with the ISPF control panels on z/OS

	Using the IBM MQ for z/OS utilities
	Using the CSQUTIL utility for IBM MQ for z/OS

	Using the Command Facility on z/OS
	Working with IBM MQ objects on z/OS
	Implementing the system using multiple cluster transmission queues
	Using the automatic definition of queues and switching
	Changing your cluster-sender channels using a phased approach
	Undoing a change to a transmission queue on z/OS

	Writing programs to administer IBM MQ for z/OS
	Preparing queues for administration programs
	Using the command server
	Retrieving replies to your commands
	Interpreting the reply messages from the command server
	If you do not receive a reply
	Passing commands using MGCRE
	Examples of commands and their replies

	Managing IBM MQ resources on z/OS
	Managing the logs
	Archiving logs with the ARCHIVE LOG command
	Controlling archiving and logging
	Discarding archive log data sets
	The effect of log shunting
	Resetting the queue manager's log
	Implementing the larger log Relative Byte Address

	Managing the bootstrap data set (BSDS)
	Finding out what the BSDS contains
	Changing the BSDS
	Changes for active logs
	Changes for archive logs
	Changing the high-level qualifier (HLQ) for the logs and BSDS

	Recovering the BSDS

	Managing page sets
	How to back up and recover page sets
	How to back up and restore queues using CSQUTIL
	Managing buffer pools
	Managing queue sharing groups and shared queues on z/OS
	Managing queue sharing groups
	Managing shared queues
	Managing group objects
	Managing the coupling facility
	Tuning coupling facility list monitoring

	Recovery and restart on z/OS
	Restarting IBM MQ
	Alternative site recovery on z/OS
	Reinitializing a queue manager

	Using the z/OS Automatic Restart Manager (ARM)
	ARM policies
	Using ARM in an IBM MQ network

	Recovering units of work manually
	Recovering CICS units of recovery manually
	Recovering IMS units of recovery manually
	Recovering RRS units of recovery manually
	Recovering units of recovery on another queue manager in the queue sharing group

	IBM MQ and IMS
	Operating the IMS adapter
	Controlling IMS connections
	Connecting from the IMS control region
	Displaying in-doubt units of recovery
	Controlling IMS dependent region connections
	Disconnecting from IMS
	Controlling the IMS trigger monitor

	Controlling the IMS bridge

	Operating Advanced Message Security on z/OS

	Administering IBM MQ Internet Pass-Thru
	Starting and stopping MQIPT
	Specifying the password encryption key

	Administering MQIPT by using the command line
	Administering MQIPT using the TLS command port
	Command port authentication

	Making backups
	Performance tuning

	Notices
	Programming interface information
	Trademarks

