
9.3

Securing IBM MQ

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
697.

This edition applies to version 9 release 3 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Securing IBM MQ... 7
Security overview...7

Identification and authentication...7
Non-repudiation... 8
Authorization.. 9
Auditing...9
Confidentiality.. 10
Data integrity.. 10
Cryptographic concepts... 11
Cryptographic security protocols: TLS...18
IBM MQ security mechanisms... 24

Planning for your security requirements...85
Planning identification and authentication..86
Planning authorization... 89
Planning confidentiality... 104
Planning data integrity... 112
Planning auditing..112
Planning security by topology..113
Firewalls and Internet pass-thru... 127
IBM MQ for z/OS security implementation checklist.. 127

Setting up security...130
Setting up security on AIX, Linux, and Windows...130
Setting up security on IBM i...156
Setting up security on z/OS..184
Setting up IBM MQ MQI client security... 264
Setting up communications for SSL or TLS on IBM i... 266
Setting up communications for SSL or TLS on AIX, Linux, and Windows...267
Setting up communications for SSL or TLS on z/OS..268
Working with SSL/TLS.. 268

Identifying and authenticating users.. 336
Privileged users.. 336
Identifying and authenticating users using the MQCSP structure..337
Implementing identification and authentication in security exits..339
Identity mapping in message exits..340
Identity mapping in the API exit and API-crossing exit..340
Working with authentication tokens..341
Working with revoked certificates... 351
Using the Pluggable Authentication Method (PAM).. 362

Authorizing access to objects..363
Determining which user is used for authorization.. 363
Controlling access to objects by using the OAM on AIX, Linux, and Windows.................................364
Granting required access to resources..375
Authority to administer IBM MQ on AIX, Linux, and Windows... 411
Authority to work with IBM MQ objects on AIX, Linux, and Windows..413
Implementing access control in security exits..418
Implementing access control in message exits.. 420
Implementing access control in the API exit and API-crossing exit.. 420
Streaming queues security.. 420

LDAP authorization.. 423
Setting authorizations.. 424
Displaying authorizations...425
Other considerations when using LDAP authorization..426

 iii

Switching between OS and LDAP authorization models...427
LDAP administration.. 428

Confidentiality of messages.. 429
Enabling CipherSpecs.. 429
Resetting SSL and TLS secret keys.. 473
Implementing confidentiality in user exit programs...475

Confidentiality for data at rest on IBM MQ for z/OS with data set encryption.......................................476
Overview of steps to encrypt an IBM MQ for z/OS data set..477
Example of how to encrypt queue manager active logs... 477
Considerations for z/OS data set encryption in a queue sharing group... 480
Backwards migration considerations when using z/OS data set encryption 481

Data integrity of messages.. 484
Auditing..484
Keeping clusters secure.. 485

Stopping unauthorized queue managers sending messages... 485
Stopping unauthorized queue managers putting messages on your queues.................................. 485
Authorizing putting messages on remote cluster queues.. 486
Preventing queue managers joining a cluster... 487
Forcing unwanted queue managers to leave a cluster... 488
Preventing queue managers receiving messages... 489
SSL/TLS and clusters... 489

Publish/subscribe security..491
Example publish/subscribe security setup... 499
Subscription security... 511
Publish/subscribe security between queue managers...513

IBM MQ Console and REST API security...516
Configuring users and roles... 517
Changing the certificate provided by the IBM MQ Console to your browser....................................529
Using client certificate authentication with the REST API and IBM MQ Console............................ 532
Using HTTP basic authentication with the REST API..536
Using token-based authentication with the REST API ...537
Embedding the IBM MQ Console in an IFrame .. 538
Configuring CORS for the REST API...540
Configuring host header validation for the IBM MQ Console and REST API.................................... 541
Auditing.. 542
Security considerations for the IBM MQ Console and REST API on z/OS 543

Managing keys and certificates on AIX, Linux, and Windows.. 547
runmqckm and runmqakm commands on AIX, Linux, and Windows...548
runmqckm and runmqakm options on AIX, Linux, and Windows...560
runmqakm error codes on AIX, Linux, and Windows..563

Protecting passwords in IBM MQ component configuration files.. 571
The limits to protection through password encryption...578

Protection of database authentication details..578
Securing Managed File Transfer.. 579

Encrypting stored credentials in MFT..580
MFT and IBM MQ connection authentication..583
MFT sandboxes.. 589
Configuring SSL or TLS encryption for MFT... 595
Connecting to a queue manager in client mode with channel authentication................................. 596
Configuring SSL or TLS between the Connect:Direct bridge agent and the Connect:Direct node...597

Securing AMQP clients.. 600
Restricting AMQP client takeover.. 602
Configuring JAAS for AMQP channels... 602

Advanced Message Security..604
Overview of Advanced Message Security ... 604
Advanced Message Security installation overview... 645
Auditing for AMS on z/OS...645
Using keystores and certificates with AMS... 647

iv

Administering Advanced Message Security security policies...674

Notices..697
Programming interface information..698
Trademarks.. 698

 v

vi

Securing IBM MQ

Security is an important consideration for both developers of IBM MQ applications, and for IBM MQ
system administrators. As an absolute minimum, you should ensure that all hardware and software inside
the secure zone and on operator workstations are within their support lifecycle, are up-to-date with
mandatory software updates, and have security updates promptly applied.
Related reference
IBM Security Vulnerability Management

IBM Z and LinuxOne Security Portal

Security overview
This collection of topics introduces the IBM MQ security concepts.

Security concepts and mechanisms, as they apply to any computer system, are presented first, followed
by a discussion of those security mechanisms as they are implemented in IBM MQ.

The commonly accepted aspects of security are as follows:

• “Identification and authentication” on page 7
• “Authorization” on page 9
• “Auditing” on page 9
• “Confidentiality” on page 10
• “Data integrity” on page 10

Security mechanisms are technical tools and techniques that are used to implement security services. A
mechanism might operate by itself, or with others, to provide a particular service. Examples of common
security mechanisms are as follows:

• “Cryptography” on page 11
• “Message digests and digital signatures” on page 13
• “Digital certificates” on page 13
• “Public Key Infrastructure (PKI)” on page 17

When you are planning an IBM MQ implementation, consider which security mechanisms you require to
implement those aspects of security that are important to you. For information about what to consider
after you have read these topics, see “Planning for your security requirements” on page 85.

Identification and authentication
Identification is the ability to identify uniquely a user of a system or an application that is running in the
system. Authentication is the ability to prove that a user or application is genuinely who that person or
what that application claims to be.

For example, consider a user who logs on to a system by entering a user ID and password. The system
uses the user ID to identify the user. The system authenticates the user at the time of logon by checking
that the supplied password is correct.

Identification and authentication in IBM MQ
When an application connects to IBM MQ, a user identity is always associated with the connection. The
user identity is initially the Operating System user ID that is associated with the application process. This
identity is often sufficient for locally bound applications that are hosted on the same system as the queue
manager. However, the queue manager can also authenticate and modify the identity that is associated
with the connection in several ways. Authenticating the identity that is associated with a connection is

© Copyright IBM Corp. 2007, 2024 7

https://www.ibm.com/trust/security-psirt
https://www.ibm.com/it-infrastructure/z/capabilities/system-integrity

important when client applications that cannot necessarily be trusted connect to a queue manager over a
network.

The identity that is associated with an application connection to an IBM MQ queue manager can be
established by using any of the following mechanisms:

• When an application connects to a queue manager, it can provide a user ID and password. The queue
manager validates the credentials based on its configuration. For example, the user ID and password
can be passed to the queue manager's Operating System, or and LDAP server, to be authenticated.

• From IBM MQ 9.3.4, an application can also supply an authentication token that it obtains
from an external authentication server. For more information about authentication tokens, see “Working
with authentication tokens” on page 341.

• A client channel can be configured to use TLS mutual authentication, if it is configured with a valid
digital certificate. TLS authentication can be combined with a channel authentication (CHLAUTH) rule
to associate an appropriate user ID with the connection. For more information, see “How TLS provides
identification, authentication, confidentiality, and integrity” on page 20,

• Channel authentication (CHLAUTH) rules can override the identity based on information about the
connection. For example, a channel authentication rule can set the user ID associated with a connection
based on the IP address of the client.

• Custom exit code can set an identity based on any criteria that you choose.

Identity and authentication are also applicable to channels between two queue managers. These
channels are known as message channels. When a message channel starts, the message channel agent
(MCA) at each end of the channel can authenticate its partner. This technique is known as mutual
authentication. For the sending MCA, it provides assurance that the partner it is about to send messages
to is genuine. Similarly, the receiving MCA is assured that it is about to receive messages from a genuine
partner.

When an identity has been established, and authenticated if required, it is used by IBM MQ in several
ways:

• Importantly, by default, any subsequent “Authorization” on page 9 checks are made using this
identity. For example, if an application attempts to put a message on a queue, the queue manager
confirms that the identity that is associated with the application has 'put' authorization on the queue
object.

• In addition, every message can contain message context information. This information is held in the
message descriptor (MQMD). The queue manager can automatically generate the message context
when an application puts the message to a queue. Alternatively, the application can supply the message
context if the user ID associated with the application is authorized to do so. This context information
in a message gives the application that receives the message information about the originator of the
message. It contains, for example, the name of the application that put the message and the user ID
associated with the application.

Non-repudiation
The overall goal of the non-repudiation service is to be able to prove that a particular message is
associated with a particular individual.

The non-repudiation service can be viewed as an extension to the identification and authentication
service. In general, non-repudiation applies when data is transmitted electronically; for example, an order
to a stock broker to buy or sell stock, or an order to a bank to transfer funds from one account to another.

The non-repudiation service can contain more than one component, where each component provides a
different function. If the sender of a message ever denies sending it, the non-repudiation service with
proof of origin can provide the receiver with undeniable evidence that the message was sent by that
particular individual. If the receiver of a message ever denies receiving it, the non-repudiation service with
proof of delivery can provide the sender with undeniable evidence that the message was received by that
particular individual.

8 Securing IBM MQ

In practice, proof with virtually 100% certainty, or undeniable evidence, is a difficult goal. In the real
world, nothing is fully secure. Managing security is more concerned with managing risk to a level that is
acceptable to the business. In such an environment, a more realistic expectation of the non-repudiation
service is to be able to provide evidence that is admissible, and supports your case, in a court of law.

Non-repudiation is a relevant security service in an IBM MQ environment because IBM MQ is a means
of transmitting data electronically. For example, you might require contemporaneous evidence that a
particular message was sent or received by an application associated with a particular individual.

IBM MQ with Advanced Message Security does not provide a non-repudiation service as part of its base
function. However, this product documentation does contain suggestions on how you might provide your
own non-repudiation service within an IBM MQ environment by writing your own exit programs.

Authorization
Authorization protects critical resources in a system by limiting access only to authorized users and their
applications. It prevents the unauthorized use of a resource or the use of a resource in an unauthorized
manner.

Authorization in IBM MQ
You can use authorization to limit what particular individuals or applications can do in your IBM MQ
environment.

Here are some examples of authorization in an IBM MQ environment:

• Allowing only an authorized administrator to issue commands to manage IBM MQ resources.
• Allowing an application to connect to a queue manager only if the user ID associated with the

application is authorized to do so.
• Allowing an application to open only those queues that are necessary for its function.
• Allowing an application to subscribe only to those topics that are necessary for its function.
• Allowing an application to perform only those operations on a queue that are necessary for its function.

For example, an application might need only to browse messages on a particular queue, and not to put
or get messages.

For more information about how to set up authorization, see “Planning authorization” on page 89 and
the associated sub-topics.

Auditing
Auditing is the process of recording and checking events to detect whether any unexpected or
unauthorized activity has taken place, or whether any attempt has been made to perform such activity.

Auditing in IBM MQ
IBM MQ can issue event messages to record that unusual activity has taken place.

Here are some examples of auditing in an IBM MQ environment:

• An application attempts to open a queue that it is not authorized to open. An instrumentation event
message is issued. By inspecting the event message, you discover that this attempt occurred and can
decide what action is necessary.

• An application attempts to open a channel, but the attempt fails because the TLS connection is not
allowed. An instrumentation event message is issued. By inspecting the event message, you discover
that this attempt occurred and can decide what action is necessary.

Securing IBM MQ 9

Confidentiality
The confidentiality service protects sensitive information from unauthorized disclosure.

When sensitive data is stored locally, access control mechanisms might be sufficient to protect it on the
assumption that the data cannot be read if it cannot be accessed. If a greater level of security is required,
the data can be encrypted.

Encrypt sensitive data when it is transmitted over a communications network, especially over an insecure
network such as the Internet. In a networking environment, access control mechanisms are not effective
against attempts to intercept the data, such as wiretapping.

Confidentiality in IBM MQ
You can implement confidentiality in IBM MQ by encrypting messages.

Confidentiality can be ensured in an IBM MQ environment as follows:

• After a sending MCA gets a message from a transmission queue, IBM MQ uses TLS to encrypt the
message before it is sent over the network to the receiving MCA. At the other end of the channel, the
message is decrypted before the receiving MCA puts it on its destination queue.

• While messages are stored on a local queue, the access control mechanisms provided by IBM MQ
might be considered sufficient to protect their contents against unauthorized disclosure. However, for a
greater level of security, you can use Advanced Message Security to encrypt the messages stored in the
queues.

• Messages stored on local queues can be encrypted at rest using z/OS® data set
encryption.

See the section, confidentiality for data at rest on IBM MQ for z/OS with data set encryption. for more
information.

Data integrity
The data integrity service detects whether there has been unauthorized modification of data.

There are two ways in which data might be altered: accidentally, through hardware and transmission
errors, or because of a deliberate attack. Many hardware products and transmission protocols have
mechanisms to detect and correct hardware and transmission errors. The purpose of the data integrity
service is to detect a deliberate attack.

The data integrity service aims only to detect whether data has been modified. It does not aim to restore
data to its original state if it has been modified.

Access control mechanisms can contribute to data integrity insofar as data cannot be modified if access
is denied. But, as with confidentiality, access control mechanisms are not effective in a networking
environment.

Data integrity in IBM MQ
Data integrity can be ensured in an IBM MQ environment as follows:

• You can use TLS to detect whether the contents of a message have been deliberately modified while
it was being transmitted over a network. In TLS, the message digest algorithm provides detection of
modified messages in transit.

All IBM MQ CipherSpecs provide a message digest algorithm, except for TLS_RSA_WITH_NULL_NULL,
which does not provide message data integrity.

IBM MQ detects modified messages upon receiving them; on receiving a modified message, IBM MQ an
AMQ9661 error message is written to the error log and the channel stops.

• While messages are stored on a local queue, the access control mechanisms provided by IBM MQ might
be considered sufficient to prevent deliberate modification of the contents of the messages.

10 Securing IBM MQ

However, for a greater level of security, you can use Advanced Message Security to detect whether the
contents of a message have been deliberately modified between the time the message was put on the
queue and the time it was retrieved from the queue.

If a modified message is detected, the application attempting to receive the message receives a
MQRC_SECURITY_ERROR (2063) return code. If the application is using an MQGET call, the message is
also moved to the SYSTEM.PROTECTION.ERROR.QUEUE queue.

Cryptographic concepts
This collection of topics describes the concepts of cryptography applicable to IBM MQ.

The term entity is used to refer to a queue manager, an IBM MQ MQI client, an individual user, or any other
system capable of exchanging messages.

Cryptography
Cryptography is the process of converting between readable text, called plaintext, and an unreadable
form, called ciphertext.

This occurs as follows:

1. The sender converts the plaintext message to ciphertext. This part of the process is called encryption
(sometimes encipherment).

2. The ciphertext is transmitted to the receiver.
3. The receiver converts the ciphertext message back to its plaintext form. This part of the process is

called decryption (sometimes decipherment).

The conversion involves a sequence of mathematical operations that change the appearance of the
message during transmission but do not affect the content. Cryptographic techniques can ensure
confidentiality and protect messages against unauthorized viewing (eavesdropping), because an
encrypted message is not understandable. Digital signatures, which provide an assurance of message
integrity, use encryption techniques. See “Digital signatures in SSL/TLS” on page 22 for more
information.

Cryptographic techniques involve a general algorithm, made specific by the use of keys. There are two
classes of algorithm:

• Those that require both parties to use the same secret key. Algorithms that use a shared key are known
as symmetric algorithms. Figure 1 on page 12 illustrates symmetric key cryptography.

• Those that use one key for encryption and a different key for decryption. One of these must be kept
secret but the other can be public. Algorithms that use public and private key pairs are known as
asymmetric algorithms. Figure 2 on page 12 illustrates asymmetric key cryptography, which is also
known as public key cryptography.

The encryption and decryption algorithms used can be public but the shared secret key and the private
key must be kept secret.

Securing IBM MQ 11

Figure 1. Symmetric key cryptography

Figure 2. Asymmetric key cryptography

Figure 2 on page 12 shows plaintext encrypted with the receiver's public key and decrypted with the
receiver's private key. Only the intended receiver holds the private key for decrypting the ciphertext.
Note that the sender can also encrypt messages with a private key, which allows anyone that holds the
sender's public key to decrypt the message, with the assurance that the message must have come from
the sender.

With asymmetric algorithms, messages are encrypted with either the public or the private key but can be
decrypted only with the other key. Only the private key is secret, the public key can be known by anyone.
With symmetric algorithms, the shared key must be known only to the two parties. This is called the
key distribution problem. Asymmetric algorithms are slower but have the advantage that there is no key
distribution problem.

Other terminology associated with cryptography is:
Strength

The strength of encryption is determined by the key size. Asymmetric algorithms require large keys,
for example:

1024 bits Low-strength asymmetric key

2048 bits Medium-strength asymmetric key

4096 bits High-strength asymmetric key

Symmetric keys are smaller: 256 bit keys give you strong encryption.

12 Securing IBM MQ

Block cipher algorithm
These algorithms encrypt data by blocks. For example, the RC2 algorithm from RSA Data Security Inc.
uses blocks 8 bytes long. Block algorithms are typically slower than stream algorithms.

Stream cipher algorithm
These algorithms operate on each byte of data. Stream algorithms are typically faster than block
algorithms.

Message digests and digital signatures
A message digest is a fixed size numeric representation of the contents of a message. The message digest
is computed by a hash function and can be encrypted, forming a digital signature.

The hash function used to compute a message digest must meet two criteria:

• It must be one way. It must not be possible to reverse the function to find the message corresponding
to a particular message digest, other than by testing all possible messages.

• It must be computationally infeasible to find two messages that hash to the same digest.

The message digest is sent with the message itself. The receiver can generate a digest for the message
and compare it with the digest of the sender. The integrity of the message is verified when the two
message digests are the same. Any tampering with the message during transmission almost certainly
results in a different message digest.

A message digest created using a secret symmetric key is known as a Message Authentication Code
(MAC), because it can provide assurance that the message has not been modified.

The sender can also generate a message digest and then encrypt the digest using the private key of an
asymmetric key pair, forming a digital signature. The signature must then be decrypted by the receiver,
before comparing it with a locally generated digest.

Related concepts
“Digital signatures in SSL/TLS” on page 22
A digital signature is formed by encrypting a representation of a message. The encryption uses the private
key of the signatory and, for efficiency, usually operates on a message digest rather than the message
itself.

Digital certificates
Digital certificates protect against impersonation, certifying that a public key belongs to a specified entity.
They are issued by a Certificate Authority.

Digital certificates provide protection against impersonation, because a digital certificate binds a public
key to its owner, whether that owner is an individual, a queue manager, or some other entity. Digital
certificates are also known as public key certificates, because they give you assurances about the
ownership of a public key when you use an asymmetric key scheme. A digital certificate contains the
public key for an entity and is a statement that the public key belongs to that entity:

• When the certificate is for an individual entity, the certificate is called a personal certificate or user
certificate.

• When the certificate is for a Certificate Authority, the certificate is called a CA certificate or signer
certificate.

If public keys are sent directly by their owner to another entity, there is a risk that the message could
be intercepted and the public key substituted by another. This is known as a man in the middle attack.
The solution to this problem is to exchange public keys through a trusted third party, giving you a strong
assurance that the public key really belongs to the entity with which you are communicating. Instead of
sending your public key directly, you ask the trusted third party to incorporate it into a digital certificate.
The trusted third party that issues digital certificates is called a Certificate Authority (CA), as described in
“Certificate Authorities” on page 14.

Securing IBM MQ 13

What is in a digital certificate
Digital certificates contain specific pieces of information, as determined by the X.509 standard.

Digital certificates used by IBM MQ comply with the X.509 standard, which specifies the information that
is required and the format for sending it. X.509 is the Authentication framework part of the X.500 series of
standards.

Digital certificates contain at least the following information about the entity being certified:

• The owner's public key
• The owner's Distinguished Name
• The Distinguished Name of the CA that issued the certificate
• The date from which the certificate is valid
• The expiry date of the certificate
• The version number of the certificate data format as defined in X.509. The current version of the X.509

standard is Version 3, and most certificates conform to that version.
• A serial number. This is a unique identifier assigned by the CA which issued the certificate. The serial

number is unique within the CA which issued the certificate: no two certificates signed by the same CA
certificate have the same serial number.

An X.509 Version 2 certificate also contains an Issuer Identifier and a Subject Identifier, and an X.509
Version 3 certificate can contain a number of extensions. Some certificate extensions, such as the Basic
Constraint extension, are standard, but others are implementation-specific. An extension can be critical,
in which case a system must be able to recognize the field; if it does not recognize the field, it must reject
the certificate. If an extension is not critical, the system can ignore it if it does not recognize it.

The digital signature in a personal certificate is generated using the private key of the CA which signed
that certificate. Anyone who needs to verify the personal certificate can use the CA's public key to do so.
The CA's certificate contains its public key.

Digital certificates do not contain your private key. You must keep your private key secret.

Requirements for personal certificates
IBM MQ supports digital certificates that comply with the X.509 standard. It requires the client
authentication option.

Because IBM MQ is a peer to peer system, it is viewed as client authentication in SSL/TLS terminology.
Therefore, any personal certificate used for SSL/TLS authentication needs to allow a key usage of client
authentication. Not all server certificates have this option enabled, so the certificate provider might need
to enable client authentication on the root CA for the secure certificate.

In addition to the standards which specify the data format for a digital certificate, there are also standards
for determining whether a certificate is valid. These standards have been updated over time in order to
prevent certain types of security breach. For example, older X.509 version 1 and 2 certificates did not
indicate whether the certificate could be legitimately used to sign other certificates. It was therefore
possible for a malicious user to obtain a personal certificate from a legitimate source and create new
certificates designed to impersonate other users.

When using X.509 version 3 certificates, the BasicConstraints and KeyUsage certificate extensions are
used to specify which certificates can legitimately sign other certificates. The IETF RFC 5280 standard
specifies a series of certificate validation rules which compliant application software must implement in
order to prevent impersonation attacks. A set of certificate rules is known as a certificate validation policy.

For more information about certificate validation policies in IBM MQ, see “Certificate validation policies in
IBM MQ” on page 45.

Certificate Authorities
A Certificate Authority (CA) is a trusted third party that issues digital certificates to provide you with an
assurance that the public key of an entity truly belongs to that entity.

The roles of a CA are:

14 Securing IBM MQ

• On receiving a request for a digital certificate, to verify the identity of the requestor before building,
signing and returning the personal certificate

• To provide the CA's own public key in its CA certificate
• To publish lists of certificates that are no longer trusted in a Certificate Revocation List (CRL). For more

information, see “Working with revoked certificates” on page 351
• To provide access to certificate revocation status by operating an OCSP responder server

Distinguished Names
The Distinguished Name (DN) uniquely identifies an entity in an X.509 certificate.

Attention: Only the attributes in the following table can be used in an SSLPEER filter. Certificate
DNs can contain other attributes, but filtering is not allowed on these attributes.

Table 1. Attribute types found in the DN that can be used in an SSLPEER filter

Attribute type Description

SERIALNUMBER Certificate serial number

MAIL Email address

E Email address (Deprecated in preference to MAIL)

UID or USERID User identifier

CN Common Name

T Title

OU Organizational Unit name

DC Domain component

O Organization name

STREET Street / First line of address

L Locality name

ST (or SP or S) State or Province name

PC Postal code / zip code

C Country

UNSTRUCTUREDNAME Host name

UNSTRUCTUREDADDRESS IP address

DNQ Distinguished name qualifier

The X.509 standard defines other attributes that do not typically form part of the DN but can provide
optional extensions to the digital certificate.

The X.509 standard provides for a DN to be specified in a string format. For example:

CN=John Smith, OU=Test, O=IBM, C=GB

The Common Name (CN) can describe an individual user or any other entity, for example a web server.

The DN can contain multiple OU and DC attributes. Only one instance of each of the other attributes is
permitted. The order of the OU entries is significant: the order specifies a hierarchy of Organizational Unit
names, with the highest-level unit first. The order of the DC entries is also significant.

IBM MQ tolerates certain malformed DNs. For more information, see IBM MQ rules for SSLPEER values.

Securing IBM MQ 15

Related concepts
“What is in a digital certificate” on page 14
Digital certificates contain specific pieces of information, as determined by the X.509 standard.

Obtaining personal certificates from a certificate authority
You can obtain a certificate from a trusted external certificate authority (CA).

You obtain a digital certificate by sending information to a CA, in the form of a certificate request. The
X.509 standard defines a format for this information, but some CAs have their own format. Certificate
requests are typically generated by the certificate management tool your system uses; for example:

• The strmqikm command (iKeyman tool) on Multiplatforms, and the runmqckm and
runmqakm commands on AIX®, Linux®, and Windows.

• RACF® on z/OS.

The information contains your Distinguished Name and your public key. When your certificate
management tool generates your certificate request, it also generates your private key, which you must
keep secure. Never distribute your private key.

When the CA receives your request, the authority verifies your identity before building the certificate and
returning it to you as a personal certificate.

Figure 3 on page 16 illustrates the process of obtaining a digital certificate from a CA.

Figure 3. Obtaining a digital certificate

In the diagram:

• User identification includes your Subject Distinguished Name.
• Certification Authority identification includes the Distinguished Name of the CA that is issuing the

certificate.

Digital certificates contain additional fields other than those shown in the diagram. For more information
about the other fields in a digital certificate, see “What is in a digital certificate” on page 14.

How certificate chains work
When you receive the certificate for another entity, you might need to use a certificate chain to obtain the
root CA certificate.

The certificate chain, also known as the certification path, is a list of certificates used to authenticate an
entity. The chain, or path, begins with the certificate of that entity, and each certificate in the chain is
signed by the entity identified by the next certificate in the chain. The chain terminates with a root CA
certificate. The root CA certificate is always signed by the certificate authority (CA) itself. The signatures of
all certificates in the chain must be verified until the root CA certificate is reached.

16 Securing IBM MQ

Figure 4 on page 17 illustrates a certification path from the certificate owner to the root CA, where the
chain of trust begins.

Figure 4. Chain of trust

Each certificate can contain one or more extensions. A certificate belonging to a CA typically contains a
BasicConstraints extension with the isCA flag set to indicate that it is allowed to sign other certificates.

When certificates are no longer valid
Digital certificates can expire or be revoked.

Digital certificates are issued for a fixed period and are not valid after their expiry date.

Certificates can be revoked for various reasons, including:

• The owner has moved to a different organization.
• The private key is no longer secret.

IBM MQ can check whether a certificate is revoked by sending a request to an Online Certificate Status
Protocol (OCSP) responder (on AIX, Linux, and Windows only). Alternatively, they can access a Certificate
Revocation List (CRL) on an LDAP server. The OCSP revocation and CRL information is published by a
Certificate Authority. For more information, see “Working with revoked certificates” on page 351.

Public Key Infrastructure (PKI)
A Public Key Infrastructure (PKI) is a system of facilities, policies, and services that supports the use of
public key cryptography for authenticating the parties involved in a transaction.

There is no single standard that defines the components of a Public Key Infrastructure, but a PKI typically
comprises certificate authorities (CAs) and Registration Authorities (RAs). CAs provide the following
services::

• Issuing digital certificates
• Validating digital certificates
• Revoking digital certificates

Securing IBM MQ 17

• Distributing public keys

The X.509 standards provide the basis for the industry standard Public Key Infrastructure.

Refer to “Digital certificates” on page 13 for more information about digital certificates and certificate
authorities (CAs). RAs verify the information provided when digital certificates are requested. If the RA
verifies that information, the CA can issue a digital certificate to the requester.

A PKI might also provide tools for managing digital certificates and public keys. A PKI is sometimes
described as a trust hierarchy for managing digital certificates, but most definitions include additional
services. Some definitions include encryption and digital signature services, but these services are not
essential to the operation of a PKI.

Cryptographic security protocols: TLS
Cryptographic protocols provide secure connections, enabling two parties to communicate with privacy
and data integrity. The Transport Layer Security (TLS) protocol evolved from that of the Secure Sockets
Layer (SSL). IBM MQ supports TLS.

The primary goals of both protocols is to provide confidentiality, (sometimes referred to as privacy), data
integrity, identification, and authentication using digital certificates.

Although the two protocols are similar, the differences are sufficiently significant that SSL 3.0 and the
various versions of TLS do not interoperate.

Related concepts
“TLS security protocols in IBM MQ ” on page 24
IBM MQ supports the Transport Layer Security (TLS) protocol to provide link level security for message
channels and MQI channels.

Transport Layer Security (TLS) concepts
The TLS protocol enables two parties to identify and authenticate each other and communicate with
confidentiality and data integrity. The TLS protocol evolved from the Netscape SSL 3.0 protocol but TLS
and SSL do not interoperate.

The TLS protocol provides communications security over the internet, and allow client/server applications
to communicate in a way that is confidential and reliable. The protocols have two layers: a Record
Protocol and a Handshake Protocol, and these are layered above a transport protocol such as TCP/IP.
They both use asymmetric and symmetric cryptography techniques.

A TLS connection is initiated by an application, which becomes the TLS client. The application which
receives the connection becomes the TLS server. Every new session begins with a handshake, as defined
by the TLS protocols.

A full list of CipherSpecs supported by IBM MQ is provided at “Enabling CipherSpecs” on page 429.

For more information about the SSL protocol, see the information provided at https://
developer.mozilla.org/docs/Mozilla/Projects/NSS. For more information about the TLS protocol, see the
information provided by the TLS Working Group on the website of the Internet Engineering Task Force at
https://www.ietf.org

An overview of the SSL/TLS handshake
The SSL/TLS handshake enables the TLS client and server to establish the secret keys with which they
communicate.

This section provides a summary of the steps that enable the TLS client and server to communicate with
each other.

• Agree on the version of the protocol to use.
• Select cryptographic algorithms.
• Authenticate each other by exchanging and validating digital certificates.

18 Securing IBM MQ

https://developer.mozilla.org/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/docs/Mozilla/Projects/NSS
https://www.ietf.org

• Use asymmetric encryption techniques to generate a shared secret key, which avoids the key
distribution problem. TLS then uses the shared key for the symmetric encryption of messages, which is
faster than asymmetric encryption.

For more information about cryptographic algorithms and digital certificates, refer to the related
information.

In overview, the steps involved in the TLS handshake are as follows:

1. The TLS client sends a "client hello" message that lists cryptographic information such as the TLS
version and, in the client's order of preference, the CipherSuites supported by the client. The message
also contains a random byte string that is used in subsequent computations. The protocol allows for
the "client hello" to include the data compression methods supported by the client.

2. The TLS server responds with a "server hello" message that contains the CipherSuite chosen by the
server from the list provided by the client, the session ID, and another random byte string. The server
also sends its digital certificate. If the server requires a digital certificate for client authentication, the
server sends a "client certificate request" that includes a list of the types of certificates supported and
the Distinguished Names of acceptable Certification Authorities (CAs).

3. The TLS client verifies the server's digital certificate. For more information, see “How TLS provides
identification, authentication, confidentiality, and integrity” on page 20.

4. The TLS client sends the random byte string that enables both the client and the server to compute
the secret key to be used for encrypting subsequent message data. The random byte string itself is
encrypted with the server's public key.

5. If the TLS server sent a "client certificate request", the client sends a random byte string encrypted
with the client's private key, together with the client's digital certificate, or a "no digital certificate
alert". This alert is only a warning, but with some implementations the handshake fails if client
authentication is mandatory.

6. The TLS server verifies the client's certificate. For more information, see “How TLS provides
identification, authentication, confidentiality, and integrity” on page 20.

7. The TLS client sends the server a "finished" message, which is encrypted with the secret key,
indicating that the client part of the handshake is complete.

8. The TLS server sends the client a "finished" message, which is encrypted with the secret key,
indicating that the server part of the handshake is complete.

9. For the duration of the TLS session, the server and client can now exchange messages that are
symmetrically encrypted with the shared secret key.

Figure 5 on page 20 illustrates the TLS handshake.

Securing IBM MQ 19

Figure 5. Overview of the TLS handshake

How TLS provides identification, authentication, confidentiality, and integrity
During both client and server authentication there is a step that requires data to be encrypted with one of
the keys in an asymmetric key pair and decrypted with the other key of the pair. A message digest is used
to provide integrity.

For an overview of the steps involved in the TLS handshake, see “An overview of the SSL/TLS handshake”
on page 18.

How TLS provides authentication
For server authentication, the client uses the server's public key to encrypt the data that is used to
compute the secret key. The server can generate the secret key only if it can decrypt that data with the
correct private key. The random byte string itself is encrypted with the server's public key (step “4” on
page 19 in the overview).

For client authentication, the server uses the public key in the client certificate to decrypt the data the
client sends during step “5” on page 19 of the handshake. The exchange of finished messages that are
encrypted with the secret key (steps “7” on page 19 and “8” on page 19 in the overview) confirms that
authentication is complete.

If any of the authentication steps fail, the handshake fails and the session terminates.

The exchange of digital certificates during the TLS handshake is part of the authentication process. For
more information about how certificates provide protection against impersonation, refer to the related
information. The certificates required are as follows, where CA X issues the certificate to the TLS client,
and CA Y issues the certificate to the TLS server:

For server authentication only, the TLS server needs:

• The personal certificate issued to the server by CA Y
• The server's private key

and the TLS client needs:

• The CA certificate for CA Y

If the TLS server requires client authentication, the server verifies the client's identity by verifying the
client's digital certificate with the public key for the CA that issued the personal certificate to the client, in
this case CA X. For both server and client authentication, the server needs:

• The personal certificate issued to the server by CA Y

20 Securing IBM MQ

• The server's private key
• The CA certificate for CA X

and the client needs:

• The personal certificate issued to the client by CA X
• The client's private key
• The CA certificate for CA Y

Both the TLS server and client might need other CA certificates to form a certificate chain to the root CA
certificate. For more information about certificate chains, refer to the related information.

What happens during certificate verification
As noted in steps “3” on page 19 and “6” on page 19 of the overview, the TLS client verifies the server's
certificate, and the TLS server verifies the client's certificate. There are four aspects to this verification:

1. The digital signature is checked (see “Digital signatures in SSL/TLS” on page 22).
2. The certificate chain is checked; you should have intermediate CA certificates (see “How certificate

chains work” on page 16).
3. The expiry and activation dates and the validity period are checked.
4. The revocation status of the certificate is checked (see “Working with revoked certificates” on page

351).

Secret key reset
During a TLS handshake a secret key is generated to encrypt data between the TLS client and server.
The secret key is used in a mathematical formula that is applied to the data to transform plaintext into
unreadable ciphertext, and ciphertext into plaintext.

The secret key is generated from the random text sent as part of the handshake and is used to encrypt
plaintext into ciphertext. The secret key is also used in the MAC (Message Authentication Code) algorithm,
which is used to determine whether a message has been altered. See “Message digests and digital
signatures” on page 13 for more information.

If the secret key is discovered, the plaintext of a message could be deciphered from the ciphertext, or
the message digest could be calculated, allowing messages to be altered without detection. Even for a
complex algorithm, the plaintext can eventually be discovered by applying every possible mathematical
transformation to the ciphertext. To minimize the amount of data that can be deciphered or altered if
the secret key is broken, the secret key can be renegotiated periodically. When the secret key has been
renegotiated, the previous secret key can no longer be used to decrypt data encrypted with the new
secret key.

How TLS provides confidentiality
TLS uses a combination of symmetric and asymmetric encryption to ensure message privacy. During the
TLS handshake, the TLS client and server agree an encryption algorithm and a shared secret key to be
used for one session only. All messages transmitted between the TLS client and server are encrypted
using that algorithm and key, ensuring that the message remains private even if it is intercepted. Because
TLS uses asymmetric encryption when transporting the shared secret key, there is no key distribution
problem. For more information about encryption techniques, refer to “Cryptography” on page 11.

How TLS provides integrity
TLS provides data integrity by calculating a message digest. For more information, refer to “Data integrity
of messages” on page 484.

Use of TLS does ensure data integrity, provided that the CipherSpec in your channel definition uses a hash
algorithm as described in the table in “Enabling CipherSpecs” on page 429.

Securing IBM MQ 21

In particular, if data integrity is a concern, you should avoid choosing a CipherSpec whose hash algorithm
is listed as "None". Use of MD5 is also strongly discouraged as this is now very old and no longer secure
for most practical purposes.

CipherSpecs and CipherSuites
Cryptographic security protocols must agree on the algorithms used by a secure connection. CipherSpecs
and CipherSuites define specific combinations of algorithms.

A CipherSpec identifies a combination of encryption algorithm and Message Authentication Code (MAC)
algorithm. Both ends of a TLS connection must agree on the same CipherSpec to be able to communicate.

IBM MQ supports TLS1.3 and TLS1.2 protocols and CipherSpecs. However, you can enable deprecated
CipherSpecs, if you need to do so.

See “Enabling CipherSpecs” on page 429 for information on:

• CipherSpecs supported by IBM MQ
• How you enable deprecated SSL 3.0 and TLS 1.0 CipherSpecs

Important: When dealing with IBM MQ channels, you use a CipherSpec. When dealing with Java
channels, JMS channels, or MQTT channels you specify a CipherSuite.

For more information about CipherSpecs, see “Enabling CipherSpecs” on page 429.

A CipherSuite is a suite of cryptographic algorithms used by a TLS connection. A suite comprises three
distinct algorithms:

• The key exchange and authentication algorithm, used during the handshake
• The encryption algorithm, used to encipher the data
• The MAC (Message Authentication Code) algorithm, used to generate the message digest

There are several options for each component of the suite, but only certain combinations are valid when
specified for a TLS connection. The name of a valid CipherSuite defines the combination of algorithms
used. For example, the CipherSuite TLS_RSA_WITH_AES_128_CBC_SHA specifies:

• The RSA key exchange and authentication algorithm
• The AES encryption algorithm, using a 128-bit key and cipher block chaining (CBC) mode
• The SHA-1 Message Authentication Code (MAC)

Digital signatures in SSL/TLS
A digital signature is formed by encrypting a representation of a message. The encryption uses the private
key of the signatory and, for efficiency, usually operates on a message digest rather than the message
itself.

Digital signatures vary with the data being signed, unlike handwritten signatures, which do not depend
on the content of the document being signed. If two different messages are signed digitally by the same
entity, the two signatures differ, but both signatures can be verified with the same public key, that is, the
public key of the entity that signed the messages.

The steps of the digital signature process are as follows:

1. The sender computes a message digest and then encrypts the digest using the sender's private key,
forming the digital signature.

2. The sender transmits the digital signature with the message.
3. The receiver decrypts the digital signature using the sender's public key, regenerating the sender's

message digest.
4. The receiver computes a message digest from the message data received and verifies that the two

digests are the same.

Figure 6 on page 23 illustrates this process.

22 Securing IBM MQ

Figure 6. The digital signature process

If the digital signature is verified, the receiver knows that:

• The message has not been modified during transmission.
• The message was sent by the entity that claims to have sent it.

Digital signatures are part of integrity and authentication services. Digital signatures also provide proof
of origin. Only the sender knows the private key, which provides strong evidence that the sender is the
originator of the message.

Note: You can also encrypt the message itself, which protects the confidentiality of the information in the
message.

Federal Information Processing Standards
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is an important body concerned with IT
systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

A significant one of these standards is FIPS 140-2, which requires the use of strong cryptographic
algorithms. FIPS 140-2 also specifies requirements for hashing algorithms to be used to protect packets
against modification in transit.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

IBM MQ provides FIPS 140-2 support when it has been configured to do so.

Over time, analysts develop attacks against existing encryption and hashing algorithms. New algorithms
are adopted to resist those attacks. FIPS 140-2 is periodically updated to take account of these changes.

Related concepts
“National Security Agency (NSA) Suite B Cryptography” on page 24

Securing IBM MQ 23

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

The government of the Unites States of America produces technical advice on IT systems and security,
including data encryption. The US National Security Agency (NSA) recommends a set of interoperable
cryptographic algorithms in its Suite B standard.

National Security Agency (NSA) Suite B Cryptography
The government of the Unites States of America produces technical advice on IT systems and security,
including data encryption. The US National Security Agency (NSA) recommends a set of interoperable
cryptographic algorithms in its Suite B standard.

The Suite B standard specifies a mode of operation in which only a specific set of secure cryptographic
algorithms are used. The Suite B standard specifies:

• The encryption algorithm (AES)
• The key exchange algorithm (Elliptic Curve Diffie-Hellman, also known as ECDH)
• The digital signature algorithm (Elliptic Curve Digital Signature Algorithm, also known as ECDSA)
• The hashing algorithms (SHA-256 or SHA-384)

Additionally, the IETF RFC 6460 standard specifies Suite B compliant profiles which define the detailed
application configuration and behavior necessary to comply with the Suite B standard. It defines two
profiles:

1. A Suite B compliant profile for use with TLS 1.2. When configured for Suite B compliant operation, only
the restricted set of cryptographic algorithms listed are used.

2. A transitional profile for use with TLS 1.0 or TLS 1.1. This profile enables interoperability with non-
Suite B compliant servers. When configured for Suite B transitional operation, additional encryption
and hashing algorithms may be used.

The Suite B standard is conceptually similar to FIPS 140-2, because it restricts the set of enabled
cryptographic algorithms in order to provide an assured level of security.

On AIX, Linux, and Windows systems, IBM MQ, can be configured to conform to the Suite B compliant TLS
1.2 profile, but does not support the Suite B transitional profile. For further information, see “NSA Suite B
Cryptography in IBM MQ” on page 42.

Related reference
“Federal Information Processing Standards” on page 23
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is an important body concerned with IT
systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

IBM MQ security mechanisms
This collection of topics describes specific mechanisms in IBM MQ that implement the various security
concepts.

TLS security protocols in IBM MQ
IBM MQ supports the Transport Layer Security (TLS) protocol to provide link level security for message
channels and MQI channels.

Message channels and MQI channels can use the TLS protocol to provide link level security. A caller MCA
is a TLS client and a responder MCA is a TLS server.

IBM MQ supports Versions 1.2 and 1.3 of the TLS protocol. Earlier versions of TLS, as well as SSL, are not
enabled by default, but can be if needed. You can specify the cryptographic algorithms that are used by
the TLS protocol by supplying a CipherSpec as part of the channel definition.

See “Enabling CipherSpecs” on page 429 for a list of the CipherSpecs supported by IBM MQ and
“Deprecated CipherSpecs” on page 444 for those that are deprecated.

24 Securing IBM MQ

You can use the SECPROT and SSLCIPH parameters to display the security protocol and CipherSpec in use
on a channel.

At each end of a message channel, and at the server end of an MQI channel, the MCA acts on behalf
of the queue manager to which it is connected. During the TLS handshake, the MCA sends the digital
certificate of the queue manager to its partner MCA at the other end of the channel. The IBM MQ code at
the client end of an MQI channel acts on behalf of the user of the IBM MQ client application. During the
TLS handshake, the IBM MQ code sends the user's digital certificate to the MCA at the server end of the
MQI channel.

Queue managers and IBM MQ client users are not required to have personal digital certificates associated
with them when they are acting as TLS clients, unless SSLCAUTH(REQUIRED) is specified at the server
side of the channel.

Digital certificates are stored in a key repository. The queue manager attribute SSLKeyRepository
specifies the location of the key repository that holds the queue manager's digital certificate. On an IBM
MQ client system, the MQSSLKEYR environment variable specifies the location of the key repository that
holds the user's digital certificate. Alternatively, an IBM MQ client application can specify its location in
the KeyRepository field of the TLS configuration options structure, MQSCO, on an MQCONNX call. See
the related topics for more information about key repositories and how to specify where they are located.

Support for TLS

IBM MQ provides support for TLS 1.2 and TLS 1.3 on all platforms. For more information about the TLS
protocol, refer to the information in the subtopics.
Java and JMS clients

These clients use the JVM to provide TLS support.
AIX, Linux, and Windows

TLS support is installed with IBM MQ.
IBM i

TLS support is integral to the IBM i operating system.
z/OS

TLS support is integral to the z/OS operating system. The TLS support on z/OS is known as System
SSL.

For information about any prerequisites for IBM MQ TLS support, see System Requirements for IBM MQ.

Related concepts
“Cryptographic security protocols: TLS” on page 18
Cryptographic protocols provide secure connections, enabling two parties to communicate with privacy
and data integrity. The Transport Layer Security (TLS) protocol evolved from that of the Secure Sockets
Layer (SSL). IBM MQ supports TLS.

The SSL/TLS key repository
A mutually authenticated TLS connection requires a key repository at each end of the connection. The key
repository includes digital certificates and private keys.

This information uses the general term key repository to describe the store for digital certificates and their
associated private keys. The key repository is referred to by different names on different platforms and
environments that support TLS:

• On IBM i: certificate store
• On Java and JMS: keystore and truststore

• On AIX, Linux, and Windows: key database file

• On z/OS: keyring

Securing IBM MQ 25

https://www.ibm.com/support/pages/system-requirements-ibm-mq

For more information, see “Digital certificates” on page 13 and “Transport Layer Security (TLS) concepts”
on page 18.

A mutually authenticated TLS connection requires a key repository at each end of the connection. The key
repository can contain the following certificates and requests:

• A number of CA certificates from various Certification Authorities that allow the queue manager or client
to verify certificates that it receives from its partner at the remote end of the connection. Individual
certificates might be in a certificate chain.

• One or more personal certificates received from a Certification Authority. You associate a separate
personal certificate with each queue manager or IBM MQ MQI client. Personal certificates are essential
on a TLS client if mutual authentication is required. If mutual authentication is not required, personal
certificates are not needed on the client. The key repository might also contain the private key
corresponding to each personal certificate.

• Certificate requests which are waiting to be signed by a trusted CA certificate.

For more information about protecting your key repository, see “Protecting IBM MQ key repositories” on
page 27.

The location of the key repository depends on the platform you are using:

IBM i
The key repository is a certificate store. The default system certificate store is located at /QIBM/
UserData/ICSS/Cert/Server/Default in the integrated file system (IFS). IBM MQ stores the
password for the certificate store in a password stash file. For example, the stash file for queue
manager QM1 is /QIBM/UserData/mqm/qmgrs/QM1/ssl/Stash.sth.

Alternatively, you can specify that the IBM i system certificate store is to be used instead. To do this
change the value of the queue manager SSLKEYR attribute to *SYSTEM. This value indicates that the
queue manager must use the system certificate store, and the queue manager is registered for use as
an application with Digital Certificate Manager (DCM).

The certificate store also contains the private key for the queue manager.

AIX, Linux, and Windows systems
The key repository is a key database file. For example, on AIX and Linux, the
default key database file for queue manager QM1 is /var/mqm/qmgrs/QM1/ssl/key.kdb.
If IBM MQ is installed in the default location, the equivalent path on Windows is
C:\ProgramData\IBM\MQ\Qmgrs\QM1\ssl\key.kdb.

To access a key database file IBM MQ must be supplied the password for
the key database. This can be done either directly or through a password stash file. If a password
stash file is used, it must be in the same directory and have the same file stem as the key database,
and must end with the suffix .sth, for example, /var/mqm/qmgrs/QM1/ssl/key.sth.

Note: PKCS #11 cryptographic hardware cards can contain the certificates and keys that are
otherwise held in a key database file. When certificates and keys are held on PKCS #11 cards, IBM MQ
still requires access to both a key database file and a password stash file.

On AIX, Linux, and Windows systems, the key database also contains the private key for the personal
certificate associated with the queue manager or IBM MQ MQI client.

z/OS
Certificates are held in a keyring in z/OS.

Other external security managers (ESMs) also use keyrings for storing certificates.

Private keys are managed by RACF.

26 Securing IBM MQ

Protecting IBM MQ key repositories
The key repository for IBM MQ is a file. Ensure that only the intended user can access the key repository
file. This prevents an intruder or other unauthorized user copying the key repository file to another
system, and then setting up an identical user ID on that system to impersonate the intended user.

The permissions on the files depend on the user's umask and which tool is used. On Windows, IBM MQ
accounts require permission BypassTraverseChecking which means the permissions of the folders in
the file path have no effect.

Check the file permissions of key repository files and make sure that the files and containing folder are not
world readable, preferably not even group readable.

Making the keystore read-only is good practice, on whichever system you use, with only the administrator
being permitted to enable write operations in order to perform maintenance.

In practice, you must protect all the keystores, whatever the location and whether they are password
protected or not; protect the key repositories.

Digital certificate labels, understanding the requirements
When setting up TLS to use digital certificates, there might be specific label requirements that you must
follow, depending on the platform used and the method you use to connect.

What is the certificate label?
A certificate label is a unique identifier representing a digital certificate stored in a key repository,
and provides a convenient human-readable name with which to refer to a particular certificate when
performing key management functions. You assign the certificate label when adding a certificate to a key
repository for the first time.

The certificate label is separate from the certificate's Subject Distinguished Name or Subject
Common Name fields. Note that Subject Distinguished Name and Subject Common Name are
fields within the certificate itself. These are defined when the certificate is created and cannot be
changed. If necessary, however, you can change the label associated with a digital certificate.

Certificate label syntax
A certificate label can contain letters, numbers, and punctuation with the following conditions:

• The certificate label can contain up to 64 characters.

• The certificate label can contain up to 32 characters.
• The certificate label can contain spaces.
• Labels are case sensitive.
• On systems that use EBCDIC katakana, you cannot use lowercase characters.

Additional requirements for certificate label values are specified in the following sections.

How is the certificate label used?
IBM MQ uses certificate labels to locate a personal certificate that is sent during the TLS handshake. This
eliminates ambiguity when more than one personal certificate exists in the key repository.

You can set the certificate label to a value of your choice. If you do not set a value, a default label is
used that follows a naming convention depending on the platform that you are using. For details, see the
sections that follow, about particular platforms.

Notes:

1. You cannot set the certificate label yourself on Java or JMS systems.

Securing IBM MQ 27

2. Auto-defined channels created by a channel automatic definition (CHAD) exit cannot set the certificate
label, because the TLS handshake has occurred by the time the channel is created. Setting the
certificate label in a CHAD exit for inbound channels has no effect.

In this context, a TLS client refers to the connection partner initiating the handshake, which might be an
IBM MQ client or another queue manager.

During the TLS handshake, the TLS client always obtains and validates a digital certificate from the server.
With the IBM MQ implementation, the TLS server always requests a certificate from the client and the
client always provides a certificate to the server if one is found. If the client is unable to locate a personal
certificate, the client sends a no certificate response to the server.

The TLS server always validates the client certificate if one is sent. If the client does not send a certificate,
authentication fails if the end of the channel that is acting as the TLS server is defined with either the
SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set.

Note that inbound channels (including receiver, requester, cluster-receiver, unqualified server, and server-
connection channels) only send the configured certificate if the IBM MQ version of the remote peer fully
supports certificate label configuration, and the channel is using a TLS CipherSpec.

An unqualified server channel is one that does not have the CONNAME field set.

In all other cases, the queue manager CERTLABL parameter determines the certificate sent. In particular,
the following only ever receive the certificate configured by the CERTLABL parameter of the queue
manager, regardless of the channel-specific label setting:

• Java and JMS clients supporting Server Name Indication (SNI), that is, certificates on a channel by
channel basis.

• Versions of IBM MQ prior to IBM MQ 8.0.
• Managed .NET clients

Additionally, the certificate used by a channel must be appropriate for the channel CipherSpec - see
“Digital certificates and CipherSpec compatibility in IBM MQ” on page 46 for further information.

IBM MQ 8.0 and later supports the use of multiple certificates on the same queue manager, using a
per-channel certificate label, specified using the CERTLABL attribute on the channel definition. Inbound
channels to the queue manager (for example, server connection or receiver) rely on detecting the channel
name using TLS Server Name Indication (SNI), in order to present the correct certificate from the queue
manager. For more information about using multiple certificates on a queue manager, see “How IBM MQ
provides multiple certificates capability ” on page 30.

If a channel connects to the destination queue manager through IBM MQ Internet Pass-Thru (MQIPT),
and the MQIPT route has both SSLServer and SSLClient set, there are two separate TLS sessions
between the endpoints. In versions earlier than IBM MQ 9.2.5, the SNI data does not flow across the
session break. This prevents a per-channel certificate from being used on the destination queue manager,
for the TLS connection between MQIPT and the queue manager. From IBM MQ 9.2.5, MQIPT can be
configured to allow multiple certificates to be used by the destination queue manager by either setting the
SNI to the channel name, or by passing through the SNI received on the inbound connection to the route.
For more information about multiple certificate support and MQIPT, see IBM MQ multiple certificate
support with MQIPT.

For more information about connecting a queue manager using one-way authentication, that is, when the
TLS client does not send a certificate, see Connecting two queue managers using one-way authentication.

Multiplatforms systems

On Multiplatforms, the TLS server sends a certificate to the client.

For queue managers and clients respectively, the following sources are searched in sequence for a
non-empty value. The first non-empty value determines the certificate label. The certificate label must

28 Securing IBM MQ

exist in the key repository. If no matching certificate in the correct case and format is found that matches
a label, an error occurs and the TLS handshake fails.

Queue managers

1. Channel certificate label attribute CERTLABL.
2. Queue manager certificate label attribute CERTLABL.
3. A default, which is in the format: ibmwebspheremq with the name of the queue manager

appended, all in lowercase. For example, for a queue manager named QM1, the default certificate
label is ibmwebspheremqqm1.

IBM MQ clients

1. Certificate label attribute CERTLABL in the CLNTCONN channel definition.
2. MQSCO structure CertificateLabel attribute.
3. Environment variable MQCERTLABL.
4. Client .ini file (in its SSL section) CertificateLabel attribute
5. A default, which is in the format: ibmwebspheremq with the user ID that the client application is

running as appended, all in lowercase. For example, for a user ID of USER1, the default certificate
label is ibmwebspheremquser1.

z/OS systems

IBM MQ Clients are not supported on z/OS. However, a z/OS queue manager can act in the role of a TLS
client when initiating a connection, or a TLS server when accepting a connection request. Certificate label
requirements for z/OS queue managers apply in both of these roles, and differ from the requirements on
Multiplatforms.

For queue managers and clients respectively, the following sources are searched in sequence for a
non-empty value. The first non-empty value determines the certificate label. The certificate label must
exist in the key repository. If no matching certificate in the correct case and format is found that matches
a label, an error occurs and the TLS handshake fails.

1. Channel certificate label attribute, CERTLABL.
2. If shared, the queue sharing group certificate label attribute, CERTQSGL.

If not shared, the queue manager certificate label attribute, CERTLABL.
3. A default, which is in the format: ibmWebSphereMQ with the name of the queue manager or queue

sharing group appended. Note that this string is case-sensitive and must be written as shown. For
example, for a queue manager named QM1, the default certificate label is ibmWebSphereMQQM1.

4. If there is not a certificate found with the format in option “3” on page 29, IBM MQ attempts to use the
certificate marked as default in the key ring.

For information on how to display the key repository, see “Locating the key repository for a queue
manager on z/OS” on page 326.

IBM MQ Java and IBM MQ JMS clients
IBM MQ Java and IBM MQ JMS clients use the facilities of their Java Secure Socket Extension (JSSE)
provider to select a personal certificate during the TLS handshake and are not therefore subject to
certificate label requirements.

The default behavior is that the JSSE client iterates through the certificates in the key repository, selecting
the first acceptable personal certificate found. However, this behavior is only a default, and is dependent
on the implementation of the JSSE provider.

In addition, the JSSE interface is highly customizable through configuration and direct access at runtime
by the application. Consult the documentation supplied by your JSSE provider for specific details.

Securing IBM MQ 29

For troubleshooting, or to better understand the handshake performed by the IBM MQ Java client
application in combination with your specific JSSE provider, you can enable debugging by setting
javax.net.debug=ssl in the JVM environment.

You can set the variable within the application, through configuration, or by entering
-Djavax.net.debug=ssl on the command line.

How IBM MQ provides multiple certificates capability
Server Name Indication (SNI) is an extension to the TLS protocol that allows a client to indicate what
service it requires. In IBM MQ terminology this equates to a channel.

The SNI extension is used by IBM MQ to allow multiple certificates to be specified across different
channels using the CERTLABL parameter on the channel definition.

The SNI address used by IBM MQ is based upon the channel name that is being requested, followed by a
suffix of .chl.mq.ibm.com.

IBM MQ channel names are mapped to be valid SNI names as follows:

• Upper case letters A to Z are folded to lower case
• Digits 0 to 9 are left unchanged
• All other characters, including lower case letters a to z, are converted into their two digit hexadecimal

ASCII character code (in lower case), followed by a hyphen.

– Lower case letters a to z map to hexadecimal 61- to 7a- respectively
– percent (%) maps to hexadecimal 25-
– hyphen (-) maps to hexadecimal 2d-
– dot (.) maps to hexadecimal 2e-
– forward slash (/) maps to hexadecimal 2f-
– underscore (_) maps to hexadecimal 5f-

On EBCDIC platforms, the channel name is converted to ASCII before this mapping is applied.

As an example, channel name TO.QMGR1 maps to an SNI address of to2e-qmgr1.chl.mq.ibm.com.

By contrast, the lower case channel name to.qmgr1 maps onto SNI address of
74-6f-2e-71-6d-67-72-1.chl.mq.ibm.com.

Note: In environments where the generated SNI URL must conform to URL formatting specifications, for
example when a client is connecting to a queue manager running in Red Hat® OpenShift® across a Red Hat
OpenShift Route, the channel name must not end with a lower case letter.

The OutboundSNI property of the SSL stanza allows you to select whether the SNI should be set to the
target IBM MQ channel name to the remote system when initiating a TLS connection, or to the hostname.
For more information about the OutboundSNI property, see SSL stanza of the qm.ini file and SSL stanza
of the client configuration file.

Multiple certificates requires that the SNI is set to the IBM MQ channel name. If a hostname, custom,
or no SNI is used to connect to an IBM MQ channel with a certificate label configured, the connecting
application is rejected with an MQRC_SSL_INITIALIZATION_ERROR, and an AMQ9673 message is
printed in the remote queue manager error logs.

If a channel connects to the destination queue manager through IBM MQ Internet Pass-Thru
(MQIPT), MQIPT must be configured to either set the SNI to the channel name, or to pass through the
SNI received on the inbound connection to the route, to allow multiple certificates to be used by the
destination queue manager. For more information about multiple certificate support and MQIPT, see IBM
MQ multiple certificate support with MQIPT.

For more information on how this property is used, see Connecting to a queue manager deployed in a Red
Hat OpenShift cluster.

30 Securing IBM MQ

Refreshing the queue manager's key repository
When you change the contents of a key repository, existing queue manager processes do not pick up
the new contents until a REFRESH SECURITY TYPE(SSL) command is issued or the queue manager is
restarted.

For more information about the REFRESH SECURITY TYPE(SSL) command, see REFRESH SECURITY.

If the queue manager creates a new channel process (using amqrmppa or runmqchl) after changing the
contents of the keystore, the new process starts using the new certificates immediately, while existing
processes continue to use their cached copy of the keystore. See “When changes to certificates or the
certificate store become effective on AIX, Linux, and Windows” on page 300 for more details.

Note, that multiple running channels could be using different versions of the key repository until you issue
a REFRESH SECURITY TYPE(SSL) command.

You can also refresh a key repository using PCF commands or the IBM MQ Explorer. For more information,
see the MQCMD_REFRESH_SECURITY command and the topic Refreshing TLS Security in the IBM MQ
Explorer section of this product documentation.

Related concepts
“Refreshing a client's view of the SSL/TLS key repository contents and SSl/TLS settings” on page 31
To update the client application with the refreshed contents of the key repository, you must stop and
restart the client application.

Refreshing a client's view of the SSL/TLS key repository contents and SSl/TLS settings
To update the client application with the refreshed contents of the key repository, you must stop and
restart the client application.

You cannot refresh security on an IBM MQ client; there is no equivalent of the REFRESH SECURITY
TYPE(SSL) command for clients (see REFRESH SECURITY) for more information.

You must stop and restart the application, whenever you change the security certificate, to update the
client application with the refreshed contents of the key repository.

If restarting the channel refreshes the configurations, and if your application has reconnection logic, it is
possible for you to refresh security at the client by issuing the STOP CHL STATUS(INACTIVE) command.

Related concepts
“Refreshing the queue manager's key repository” on page 31
When you change the contents of a key repository, existing queue manager processes do not pick up
the new contents until a REFRESH SECURITY TYPE(SSL) command is issued or the queue manager is
restarted.

MQCSP password protection
Authentication credentials that are specified in the MQCSP structure can be either protected by using the
IBM MQ MQCSP password protection feature, or encrypted by using TLS encryption.

IBM MQ client applications can supply a user ID and password when they connect to a queue manager.

From IBM MQ 9.3.4, applications can also supply an authentication token as an alternative
method of authentication. These credentials are sent to the queue manager in an MQCSP structure.

If the channel is using TLS encryption, credentials in the MQCSP are encrypted according to the TLS
cipher specification. From IBM MQ 8.0, if the channel is not using TLS encryption, IBM MQ can protect
these credentials before they are sent over the network, to avoid sending credentials over a network in
plain text. The IBM MQ feature that protects these credentials is called MQCSP password protection.

If MQCSP password protection is used, the following data in the MQCSP structure is protected:

• The password, if the MQCSP.AuthenticationType field is set to MQCSP_AUTH_USER_ID_AND_PW.

• The authentication token, if the MQCSP.AuthenticationType field is set to
MQCSP_AUTH_ID_TOKEN.

Securing IBM MQ 31

Important: MQCSP password protection is useful for test and development purposes as using MQCSP
password protection is simpler than setting up TLS encryption, but not as secure. For production
purposes, use TLS encryption in preference to IBM MQ password protection, especially when the network
between the client and queue manager is untrusted, as TLS encryption is more secure.

If you are concerned about what encryption is being used, and how much protection it offers, you need to
use full TLS encryption. With TLS, the algorithms are publicly known, and you can select the appropriate
one for your enterprise by using the SSLCIPH channel attribute.

For more information about the MQCSP structure, see MQCSP structure.

Credentials in the MQCSP structure are protected by using IBM MQ password protection if all the
following conditions are met:

• Both ends of the connection are using IBM MQ 8.0, or later.
• The channel is not using TLS encryption. A channel is not using TLS encryption if the channel has a

blank SSLCIPH attribute, or the SSLCIPH attribute is set to a cipher specification that does not provide
encryption. Null ciphers, for example, NULL_SHA, do not provide encryption.

• The MQCSP.AuthenticationType field is set to MQCSP_AUTH_USER_ID_AND_PWD or
MQCSP_AUTH_ID_TOKEN. For more information about the MQCSP.AuthenticationType field, see
AuthenticationType.

• If the client is IBM MQ Explorer and user identification compatibility mode is not enabled. This mode is
not the default mode that is used by IBM MQ Explorer to send a user ID and password. This condition is
applicable only to IBM MQ Explorer.

If any of these conditions are not met, the credentials are not protected with MQCSP password
protection. If the value of the PasswordProtection attribute prohibits credentials from being
sent in plain text, and the channel is not using TLS encryption, the connection fails and an
MQRC_PASSWORD_PROTECTION_ERROR (2594) reason code is returned.

The PasswordProtection configuration setting
The PasswordProtection attribute in the Channels stanza of the client and queue manager
configuration files can prevent credentials from being sent in plain text.

Note: This attribute is only relevant for connections that do not use TLS encryption. Credentials are
encrypted by using TLS instead of being protected with MQCSP password protection if the connection
uses TLS encryption.

The attribute can be set to one of the following values. The default value is compatible.
compatible

Credentials are sent in plain text if either the queue manager or client is running a version of IBM MQ
earlier than IBM MQ 8.0. That is, credentials can be sent over a network in plain text for compatibility
with versions of IBM MQ that do not support MQCSP password protection.
Credentials are protected by MQCSP password protection if both the queue manager and the client
are running a version of IBM MQ at IBM MQ 8.0 or later.
The connection fails before the credentials are sent if both the queue manager and the client are
running a version of IBM MQ at IBM MQ 8.0 or later, and the MQCSP.AuthenticationType field is
not set to MQCSP_AUTH_USER_ID_AND_PW or MQCSP_AUTH_ID_TOKEN.

always
Credentials must not be sent over a network unprotected.
Credentials are protected by MQCSP password protection if both the queue manager and the client
are running a version of IBM MQ at IBM MQ 8.0 or later.
The connection fails before the credentials are sent in the following cases:

• The MQCSP.AuthenticationType field is not set to MQCSP_AUTH_USER_ID_AND_PW or
MQCSP_AUTH_ID_TOKEN.

• Either the queue manager or the client is running a version of IBM MQ earlier than IBM MQ 8.0.

32 Securing IBM MQ

optional
Credentials are protected by MQCSP password protection if both the queue manager and the client
are running a version of IBM MQ at IBM MQ 8.0 or later, and the MQCSP.AuthenticationType
field is set to MQCSP_AUTH_USER_ID_AND_PW or MQCSP_AUTH_ID_TOKEN. Otherwise, credentials
are sent in plain text.

warn
Any client is allowed to send plain text credentials. If plain text credentials are received, warning
message AMQ9297W is written to the queue manager error logs.
This option can be specified only in the queue manager configuration file.

For Java and JMS clients, the behavior of the PasswordProtection attribute changes depending on
whether the client uses compatibility mode or MQCSP mode:

• If Java and JMS clients are operating in compatibility mode, an MQCSP structure is not used to send the
user ID and password when the client connects. Therefore, the behavior of the PasswordProtection
attribute is the same as the behavior described for clients that are running a version of IBM MQ earlier
than IBM MQ 8.0.

• If Java and JMS clients are operating in MQCSP mode, the behavior of the PasswordProtection
attribute is the behavior as described.

For more information about connection authentication with Java and JMS clients, see “Connection
authentication with the Java client” on page 82.

MQCSP password protection and MQIPT

If a client connects to a queue manager through IBM MQ Internet Pass-Thru (MQIPT), the MQIPT route
might be configured to add or remove TLS encryption. That is, the MQIPT route might be configured
with SSLServer=true and SSLClient=false, or SSLServer=true and SSLClient=false. In this
situation, the client and the queue manager might fail to agree a password protection algorithm as one
end of the channel is using TLS encryption, and the other is not. This causes the connection to fail with
reason code MQRC_PASSWORD_PROTECTION_ERROR (2594).

From IBM MQ 9.3.1, MQIPT can add or remove protection for credentials in MQCSP structures, in order
to maintain compatibility between the client and queue manager for MQIPT routes that add or remove
TLS encryption. MQCSP password protection in MQIPT is configured by using the PasswordProtection
route property.

The default value of the PasswordProtection property is required. This value means that MQIPT is
able to add, but not remove, MQCSP password protection. Connections to a MQIPT route that adds TLS
encryption might fail with reason code MQRC_PASSWORD_PROTECTION_ERROR (2594) with this value
of PasswordProtection. To resolve this issue, set the value of the PasswordProtection property to
compatible in the MQIPT route configuration.

For more information about the PasswordProtection property in MQIPT, see PasswordProtection.

Digital Certificate Manager (DCM)
Use the DCM to manage digital certificates and private keys on IBM i.

The Digital Certificate Manager (DCM) enables you to manage digital certificates and to use them in
secure applications on the IBM i server. With Digital Certificate Manager, you can request and process
digital certificates from Certificate Authorities (CAs) or other third-parties. You can also act as a local
Certificate Authority to create and manage digital certificates for your users.

DCM also supports using Certificate Revocation Lists (CRLs) to provide a stronger certificate and
application validation process. You can use DCM to define the location where a specific Certificate
Authority CRL resides on an LDAP server so that IBM MQ can verify that a specific certificate has not
been revoked.

DCM supports and can automatically detect certificates in a variety of formats. When DCM detects a PKCS
#12 encoded certificate, or a PKCS #7 certificate that contains encrypted data, it automatically prompts

Securing IBM MQ 33

the user to enter the password that was used to encrypt the certificate. DCM does not prompt for PKCS #7
certificates that do not contain encrypted data.

DCM provides a browser-based user interface that you can use to manage digital certificates for your
applications and users. The user interface is divided into two main frames: a navigation frame and a task
frame.

You use the navigation frame to select the tasks to manage certificates or the applications that use them.
Some individual tasks are shown directly in the main navigation frame, but most tasks in the navigation
frame are organized into categories. For example, Manage Certificates is a task category that contains
various individual guided tasks, such as View certificate, Renew certificate, and Import certificate. If an
item in the navigation frame is a category that contains more than one task, an arrow is displayed to the
left of it. The arrow indicates that when you select the category link, an expanded list of tasks displays,
enabling you to choose which task to perform.

For important information about DCM, see the following IBM Redbooks® publications:

• IBM i Wired Network Security: OS/400 V5R1 DCM and Cryptographic Enhancements, SG24-6168.
Specifically, see the appendixes for essential information about setting up your IBM i system as a local
CA.

• AS/400 Internet Security: Developing a Digital Certificate Infrastructure, SG24-5659. Specifically, see
Chapter 5. Digital Certificate Manager for AS/400 , which explains the AS/400 DCM.

Federal Information Processing Standards (FIPS)
This topic introduces the Federal Information Processing Standards (FIPS) Cryptomodule Validation
Program of the US National Institute of Standards and Technology and the cryptographic functions which
can be used on TLS channels.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

This information applies to the following platforms:

• AIX, Linux, and Windows

• z/OS

For more information about the FIPS 140-2 compliance of an IBM MQ TLS connection
on AIX, Linux, and Windows, see “Federal Information Processing Standards (FIPS) for AIX, Linux, and
Windows” on page 35.

For more information about the FIPS 140-2 compliance of an IBM MQ TLS connection on
z/OS, see “Federal Information Processing Standards (FIPS) for z/OS” on page 37.

If cryptographic hardware is present, the cryptographic modules used by IBM MQ can be configured to be
those provided by the hardware manufacturer. If this is done, the configuration is only FIPS-compliant if
those cryptographic modules are FIPS-certified.

Over time, the Federal Information Processing Standards are updated to reflect new attacks against
encryption algorithms and protocols. For example, some CipherSpecs may cease to be FIPS certified.
When such changes occur, IBM MQ is also updated to implement the latest standard. As a result, you
might see changes in behavior after applying maintenance.

Related concepts
“Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client” on page 265
Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.
“Using runmqckm, runmqakm, and strmqikm to manage digital certificates” on page 286

34 Securing IBM MQ

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

On AIX, Linux, and Windows systems, manage keys and digital certificates with the strmqikm (iKeyman)
GUI, or from the command line using runmqckm (iKeycmd) or runmqakm (GSKCapiCmd).
Related tasks
Enabling TLS in IBM MQ classes for Java
Using Transport Layer Security (TLS) with IBM MQ classes for JMS
Related reference
TLS properties of JMS objects
“Federal Information Processing Standards” on page 23
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is an important body concerned with IT
systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows
When cryptography is required on an SSL/TLS channel on AIX, Linux, and Windows systems, IBM MQ uses
a cryptography package called IBM Crypto for C (ICC). On the AIX, Linux, and Windows platforms, the
ICC software has passed the Federal Information Processing Standards (FIPS) Cryptomodule Validation
Program of the US National Institute of Standards and Technology, at level 140-2.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

The FIPS 140-2 compliance of an IBM MQ TLS connection on AIX, Linux, and Windows systems is as
follows:

• For all IBM MQ message channels (except CLNTCONN channel types), the connection is FIPS-compliant
if the following conditions are met:

– The installed GSKit ICC version has been certified FIPS 140-2 compliant on the installed operating
system version and hardware architecture.

– The queue manager's SSLFIPS attribute has been set to YES.
– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

– Access to all key repositories is provided using a stash file and not the queue manager's KEYRPWD
attribute.

• For all IBM MQ MQI client applications , the connection uses GSKit and is FIPS-compliant if the
following conditions are met:

– The installed GSKit ICC version has been certified FIPS 140-2 compliant on the installed operating
system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the related
topic for the MQI client.

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

– Access to all key repositories is provided using a stash file and not the key repository password
mechanism.

• For IBM MQ classes for Java applications using client mode, the connection uses the JRE's TLS
implementations and is FIPS-compliant if the following conditions are met:

– The Java Runtime Environment used to run the application is FIPS-compliant on the installed
operating system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the related
topic for the Java client.

Securing IBM MQ 35

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

• For IBM MQ classes for JMS applications using client mode, the connection uses the JRE's TLS
implementations and is FIPS-compliant if the following conditions are met:

– The Java Runtime Environment used to run the application is FIPS-compliant on the installed
operating system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the related
topic for the JMS client.

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

• For unmanaged .NET client applications, the connection uses GSKit and is FIPS-compliant if the
following conditions are met:

– The installed GSKit ICC version has been certified FIPS 140-2 compliant on the installed operating
system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the related
topic for the .NET client.

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

– Access to all key repositories is provided using a stash file and not the key repository password
mechanism.

• For unmanaged XMS .NET client applications, the connection uses GSKit and is FIPS-compliant if the
following conditions are met:

– The installed GSKit ICC version has been certified FIPS 140-2 compliant on the installed operating
system version and hardware architecture.

– You have specified that only FIPS-certified cryptography is to be used, as described in the XMS .NET
documentation.

– All key repositories have been created and manipulated using only FIPS-compliant software, such as
runmqakm with the -fips option.

– Access to all key repositories is provided using a stash file and not the key repository password
mechanism.

All supported platforms are FIPS 140-2 certified except as noted in the readme file included with each fix
pack or refresh pack.

For TLS connections using GSKit, the component which is FIPS 140-2 certified is named ICC. It is the
version of this component which determines GSKit FIPS compliance on any given platform. To determine
the ICC version currently installed, run the dspmqver -p 64 -v command.

Here is an example extract of the dspmqver -p 64 -v output relating to ICC:
ICC
============
@(#)CompanyName: IBM Corporation
@(#)LegalTrademarks: IBM
@(#)FileDescription: IBM Crypto for C-language
@(#)FileVersion: 8.0.0.0
@(#)LegalCopyright: Licensed Materials - Property of IBM
@(#) ICC
@(#) (C) Copyright IBM Corp. 2002, 2024.
@(#) All Rights Reserved. US Government Users
@(#) Restricted Rights - Use, duplication or disclosure
@(#) restricted by GSA ADP Schedule Contract with IBM Corp.
@(#)ProductName: icc_8.0 (GoldCoast Build) 100415
@(#)ProductVersion: 8.0.0.0
@(#)ProductInfo: 10/04/15.03:32:19.10/04/15.18:41:51
@(#)CMVCInfo:

The NIST certification statement for GSKit ICC 8 (included in GSKit 8) can be found at the following
address: Cryptographic Module Validation Program.

36 Securing IBM MQ

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/1994

If cryptographic hardware is present, the cryptographic modules used by IBM MQ can be configured to be
those provided by the hardware manufacturer. If this is done, the configuration is only FIPS-compliant if
those cryptographic modules are FIPS-certified.

Triple DES restrictions enforced when operating in compliance with FIPS 140-2
When IBM MQ is configured to operate in compliance with FIPS 140-2, additional restrictions are
enforced in relation to Triple DES (3DES) CipherSpecs. These restrictions enable compliance with the
US NIST SP800-67 recommendation.

1. All parts of the Triple DES key must be unique.
2. No part of the Triple DES key can be a Weak, Semi-Weak, or Possibly-Weak key according to the

definitions in NIST SP800-67.
3. No more than 32 GB of data can be transmitted over the connection before a secret key reset must

occur. By default, IBM MQ does not reset the secret session key so this reset must be configured.
Failure to enable secret key reset when using a Triple DES CipherSpec and FIPS 140-2 compliance
results in the connection closing with error AMQ9288 after the maximum byte count is exceeded. For
information about how to configure secret key reset, see “Resetting SSL and TLS secret keys” on page
473.

IBM MQ generates Triple DES session keys which already comply with rules 1 and 2. However, to satisfy
the third restriction you must enable secret key reset when using Triple DES CipherSpecs in a FIPS 140-2
configuration. Alternatively, you can avoid using Triple DES.

Related concepts
“Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client” on page 265
Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.
“Using runmqckm, runmqakm, and strmqikm to manage digital certificates” on page 286
On AIX, Linux, and Windows systems, manage keys and digital certificates with the strmqikm (iKeyman)
GUI, or from the command line using runmqckm (iKeycmd) or runmqakm (GSKCapiCmd).
Related tasks
Enabling TLS in IBM MQ classes for Java
Using Transport Layer Security (TLS) with IBM MQ classes for JMS
Related reference
TLS properties of JMS objects
“Federal Information Processing Standards” on page 23
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is an important body concerned with IT
systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

Federal Information Processing Standards (FIPS) for z/OS
When cryptography is required on an SSL/TLS channel on z/OS , IBM MQ uses a service called System
SSL. The objective of System SSL is to provide the capability to execute securely in a mode designed to
adhere to the Federal Information Processing Standards (FIPS) Cryptomodule Validation Program of the
US National Institute of Standards and Technology, at level 140-2.

When implementing FIPS 140-2 compliant connections with IBM MQ TLS connections there are a number
of points to consider:

• To enable IBM MQ message channels for FIPS-compliance, ensure the following conditions are met:

– System SSL Security Level 3 FMID is installed and configured (see Planning to install IBM MQ).
– System SSL modules are validated.
– The queue manager's SSLFIPS attribute has been set to YES.

Securing IBM MQ 37

When executing in FIPS mode, System SSL exploits CP Assist for Cryptographic Function (CPACF) when
available. Cryptographic functions performed by ICSF-supported hardware when running in non-FIPS
mode continue to be exploited when executing in FIPS mode, with the exception of RSA signature
generation which must be performed in software.

Table 2. Differences between FIPS mode and non-FIPS mode algorithm support.

Non-FIPS FIPS

Algorithm Key sizes Hardware Key sizes Hardware

RC2 40 and 128

RC4 40 and 128

DES 56 x

TDES 168 x 168 x

AES 128 and 256 x 128 and 256 x

MD5 48

SHA-1 160 x 160 x

SHA-2 224, 256, 384 and
512

x 224, 256, 384 and
512

x

RSA 512-4096 x 1024-4096 x

DSA 512-1024 1024

DH 512-2048 2048

In FIPS mode, System SSL can only use certificates that use the algorithms and key sizes shown in Table
1. During X.509 certificate validation if an algorithm that is incompatible with FIPS mode is encountered,
then the certificate cannot be used and is treated as not valid.

For IBM MQ classes applications using client mode within WebSphere® Application Server , refer to
Federal Information Processing Standard support.

For information on System SSL module configuration, see System SSL Module Verification Setup.

Related reference
“Federal Information Processing Standards” on page 23
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is an important body concerned with IT
systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

Verifying the TLS configuration of your queue manager with mqcertck
The MQCERTCK command is a tool to look for common mistakes in the TLS configuration of your queue
manager, and provides some suggestions for resolving problems.

Introduction
The mqcertck command checks the:

• Existence and permissions of the key repository of the queue manager, referenced in the queue
manager SSLKEYR attribute.

• Existence and validity of the certificate for the queue manager certificate, referenced in the queue
manager CERTLABL attribute.

• Existence and validity of any certificates referenced in the CERTLABL attributes of the TLS enabled
channel.

38 Securing IBM MQ

https://www.ibm.com/docs/en/was-nd/9.0.5?topic=securing-federal-information-processing-standard-support
https://www.ibm.com/docs/en/zos/2.5.0?topic=2-system-ssl-module-verification-setup

• Key repository and certificates of the client applications, including checking the certificates are
authorized with the queue manager.

Note: The mqcertck command is not available on z/OS or IBM i.

Usage
To use the mqcertck command, run the command mqcertck, together with its required parameters, and
any optional parameters you require, from a command line.

See mqcertck for a description of the command and the parameters the command takes.

Example
You have just finished setting up your queue manager QM1 to allow TLS connections from clients
connecting to the SVRCONN channel of your queue manager.

You are using the multiple certificates feature and so both your queue manager and channel have a
certificate label specified in their CERTLABL attributes. While creating the channel you made a mistake in
the CERTLABL attribute of the channel, so when a client attempts to connect, the queue manager returns
a 2393 return code of MQRC_SSL_INITIALIZATION_ERROR.

Before activating the queue manager, you use the mqcertck command to verify the TLS configuration of
the queue manager.

You run the command mqcertck QM1 and receive the following output:

5724-H72 (C) Copyright IBM Corp. 1994, 2024.
+--
| IBM MQ TLS Configuration Test tool
+--
| Problem identified:
| No certificate could be found for the channel
| MQCERTCK.CHANNEL
| This tool looked in the Queue Manager's key repository
| located at: 'C:\MQ Data\qmgrs\QM1\ssl\key.kdb'
| for a certificate with label 'chacert',
| which is the certificate specified in the channel's
| CERTLABL attribute, but was unable to find one.
|
| Possible resolution:
| A valid certificate with the label chacert
| needs to be added to the key repository.
|
| Alternatively, alter the channel definition to remove
| the CERTLABL value. This can be done by executing the
| following command in runmqsc:
| ALTER CHANNEL(<Name>) CHLTYPE(<TYPE>) CERTLABL(' ')
+--
| mqcertck has ended. See above for any problems found.
| If there are problems then resolve these and run this
| tool again.
|
+--

This output prompts you to check your channel definition for the server connection channel
MQCERTCK.CHANNEL. Here, you see the error you made, and can correct the error before running the
mqcertck command again to verify that you have resolved the problem.

Verifying client connections
The mqcertck command has the ability to verify client key repositories, as well as the TLS configuration
of the queue manager. To do this, mqcertck needs to be able to access the key repository of the client
from the machine running the queue manager.

When running the mqcertck command, if you supply the -clientkeyr parameter with the location
of the client key repository (excluding the extension) mqcertck checks this key repository against the
queue manager.

Securing IBM MQ 39

If you know which channel the client will be using to connect to the queue manager, you can specify this
with the -clientchannel flag.

If the client is using mutual authentication to connect to the queue manager you can use the
-clientusername or -clientlabel parameter, to tell the mqcertck command which certificate to
use in the client key repository.

If you are using the default certificate, and not supplying a certificate label to the client application, you
can use -clientusername and the username parameters which run this application.

During the operation of the mqcertck command, the command generates the certificate label
ibmwebspheremqXXXX where XXXX is the value passed in the -clientusername parameter.

In order to fully verify the client key repository, the mqcertck command creates a dummy connection
using GSKit. To do this, the command needs to have a port available that it can bind to during its client
tests. The default port used is 5857, however, if this is already in use you can specify a different port to be
used during the client tests.

Note: Although the mqcertck command binds to a port, no external communications are used by
mqcertck, and all tests are performed locally.

SSL/TLS on the IBM MQ MQI client
IBM MQ supports TLS on clients. You can tailor the use of TLS in various ways.

IBM MQ provides TLS support for IBM MQ MQI clients on AIX, Linux, and Windows systems. If you are
using IBM MQ classes for Java, see Using IBM MQ classes for Java and if you are using IBM MQ classes
for JMS, see Using IBM MQ classes for JMS. The rest of this section does not apply to the Java or JMS
environments.

You can specify the key repository for an IBM MQ MQI client either with the MQSSLKEYR value in your
IBM MQ client configuration file, or when your application makes an MQCONNX call. You have three
options for specifying that a channel uses TLS:

• Using a channel definition table
• Using the SSL configuration options structure, MQSCO, on an MQCONNX call
• Using the Active Directory (on Windows systems)

You cannot use the MQSERVER environment variable to specify that a channel uses TLS.

You can continue to run your existing IBM MQ MQI client applications without TLS, as long as TLS is not
specified at the other end of the channel.

If changes are made on a client machine to the contents of the TLS Key Repository, the location of the TLS
Key Repository, the Authentication Information, or the Cryptographic hardware parameters, you need to
end all the TLS connections in order to reflect these changes in the client-connection channels that the
application is using to connect to the queue manager. Once all the connections have ended, restart the
TLS channels. All the new TLS settings are used. These settings are analogous to those refreshed by the
REFRESH SECURITY TYPE(SSL) command on queue manager systems.

When your IBM MQ MQI client runs on a AIX, Linux, and Windows system with cryptographic hardware,
you configure that hardware with the MQSSLCRYP environment variable. This variable is equivalent to
the SSLCRYP parameter on the ALTER QMGR MQSC command. Refer to ALTER QMGR for a description of
the SSLCRYP parameter on the ALTER QMGR MQSC command. If you use the GSK_PCS11 version of the
SSLCRYP parameter, the PKCS #11 token label must be specified entirely in lower-case.

TLS secret key reset and FIPS are supported on IBM MQ MQI clients. For more information, see
“Resetting SSL and TLS secret keys” on page 473 and “Federal Information Processing Standards (FIPS)
for AIX, Linux, and Windows” on page 35.

See “Setting up IBM MQ MQI client security” on page 264 for more information about the TLS support for
IBM MQ MQI clients.

Related tasks
IBM MQ MQI client configuration file, mqclient.ini

40 Securing IBM MQ

Specifying that an MQI channel uses SSL/TLS
For an MQI channel to use TLS, the value of the SSLCipherSpec attribute of the client-connection channel
must be the name of a CipherSpec that is supported by IBM MQ on the client platform.

You can define a client-connection channel with a value for this attribute in the following ways. They are
listed in order of decreasing precedence.

1. When a PreConnect exit provides a channel definition structure to use.

A PreConnect exit can provide the name of a CipherSpec in the SSLCipherSpec field of a channel
definition structure, MQCD. This structure is returned in the ppMQCDArrayPtr field of the MQNXP exit
parameter structure used by the PreConnect exit.

2. When an IBM MQ MQI client application issues an MQCONNX call.

The application can specify the name of a CipherSpec in the SSLCipherSpec field of a channel definition
structure, MQCD. This structure is referenced by the connect options structure, MQCNO, which is a
parameter on the MQCONNX call.

3. Using a client channel definition table (CCDT).

One or more entries in a client channel definition table can specify the name of a CipherSpec. For
example, if you create an entry by using the DEFINE CHANNEL MQSC command, you can use the
SSLCIPH parameter on the command to specify the name of a CipherSpec.

4. Using Active Directory on Windows.

On Windows systems, you can use the setmqscp control command to publish the client-connection
channel definitions in Active Directory. One or more of these definitions can specify the name of a
CipherSpec.

For example, if a client application provides a client-connection channel definition in an MQCD structure
on an MQCONNX call, this definition is used in preference to any entries in a client channel definition table
that can be accessed by the IBM MQ client.

You cannot use the MQSERVER environment variable to provide the channel definition at the client end of
an MQI channel that uses TLS.

To check whether a client certificate has flowed, display the channel status at the server end of a channel
for the presence of a peer name parameter value.

Related concepts
“Specifying a CipherSpec for an IBM MQ MQI client” on page 452
You have three options for specifying a CipherSpec for an IBM MQ MQI client.

CipherSpecs and CipherSuites in IBM MQ
IBM MQ supports TLS1.3 and TLS 1.2 CipherSpecs, and RSA and Diffie-Hellman algorithms. However, you
can enable deprecated CipherSpecs, if you need to do so.

See “Enabling CipherSpecs” on page 429 for information on:

• CipherSpecs supported by IBM MQ.
• How you enable deprecated SSL 3.0 and TLS 1.0 CipherSpecs.

IBM MQ supports the RSA and Diffie-Hellman key exchange and authentication algorithms. The size
of the key used during the TLS handshake can depend on the digital certificate you use, but some
CipherSpecs include a specification of the handshake key size. Larger handshake key sizes provide
stronger authentication. With smaller key sizes, the handshake is faster.

Related concepts
“CipherSpecs and CipherSuites” on page 22

Securing IBM MQ 41

Cryptographic security protocols must agree on the algorithms used by a secure connection. CipherSpecs
and CipherSuites define specific combinations of algorithms.

NSA Suite B Cryptography in IBM MQ
This topic provides information about how to configure IBM MQ for AIX, Linux, and Windows to conform to
the Suite B compliant TLS 1.2 profile.

Over time, the NSA Cryptography Suite B Standard is updated to reflect new attacks against encryption
algorithms and protocols. For example, some CipherSpecs might cease to be Suite B certified. When
such changes occur, IBM MQ is also updated to implement the latest standard. As a result, you might
see changes in behavior after applying maintenance. The IBM MQ readme file lists the version of Suite
B enforced by each product maintenance level. If you configure IBM MQ to enforce Suite B compliance,
always consult the readme file when planning to apply maintenance. See IBM MQ, WebSphere MQ, and
MQSeries® product readmes.

On AIX, Linux, and Windows systems, IBM MQ can be configured to conform to the Suite B compliant TLS
1.2 profile at the security levels shown in Table 1.

Table 3. Suite B security levels with allowed CipherSpecs and digital signature algorithms

Security level Allowed CipherSpecs
Allowed digital signature
algorithms

128-bit ECDHE_ECDSA_AES_128_GCM_SHA256
ECDHE_ECDSA_AES_256_GCM_SHA384

ECDSA with SHA-256
ECDSA with SHA-384

192-bit ECDHE_ECDSA_AES_256_GCM_SHA384 ECDSA with SHA-384

Both 1 ECDHE_ECDSA_AES_128_GCM_SHA256
ECDHE_ECDSA_AES_256_GCM_SHA384

ECDSA with SHA-256
ECDSA with SHA-384

1. It is possible to configure both the 128-bit and 192-bit security levels concurrently. Since the Suite B
configuration determines the minimum acceptable cryptographic algorithms, configuring both security
levels is equivalent to configuring only the 128-bit security level. The cryptographic algorithms of the
192-bit security level are stronger than the minimum required for the 128-bit security level, so they
are permitted for the 128-bit security level even if the 192-bit security level is not enabled.

Note: The naming conventions used for the Security level do not necessarily represent the elliptic curve
size or the key size of the AES encryption algorithm.

CipherSpec conformation to Suite B
Although the default behavior of IBM MQ is not to comply with the Suite B standard, IBM MQ can be
configured to conform to either, or both security levels on AIX, Linux, and Windows systems. Following
the successful configuration of IBM MQ to use Suite B, any attempt to start an outbound channel using
a CipherSpec not conforming to Suite B results in the error AMQ9282. This activity also results in the
MQI client returning the reason code MQRC_CIPHER_SPEC_NOT_SUITE_B. Similarly, attempting to start
an inbound channel using a CipherSpec not conforming to the Suite B configuration results in the error
AMQ9616.

For more information about IBM MQ CipherSpecs, see “Enabling CipherSpecs” on page 429

Suite B and digital certificates
Suite B restricts the digital signature algorithms which can be used to sign digital certificates. Suite B
also restricts the type of public key which certificates can contain. Therefore IBM MQ must be configured
to use certificates whose digital signature algorithm and public key type are allowed by the configured
Suite B security level of the remote partner. Digital certificates which do not comply with the security level
requirements are rejected and the connection fails with error AMQ9633 or AMQ9285.

42 Securing IBM MQ

https://www.ibm.com/support/pages/node/317955
https://www.ibm.com/support/pages/node/317955

For the 128-bit Suite B security level, the public key of the certificate subject is required to use either the
NIST P-256 elliptic curve or the NIST P-384 elliptic curve and to be signed with either the NIST P-256
elliptic curve or the NIST P-384 elliptic curve. At the 192-bit Suite B security level, the public key of the
certificate subject is required to use the NIST P-384 elliptic curve and to be signed with the NIST P-384
elliptic curve.

To obtain a certificate suitable for Suite B compliant operation, use the runmqakm command and specify
the -sig_alg parameter to request a suitable digital signature algorithm. The EC_ecdsa_with_SHA256
and EC_ecdsa_with_SHA384 -sig_alg parameter values correspond to elliptic curve keys signed by
the allowed Suite B digital signature algorithms.

For more information about the runmqakm command, see runmqckm and runmqakm options.

Note: The runmqckm and strmqikm commands do not support the creation of digital certificates for
Suite B compliant operation.

Creating and requesting digital certificates
To create a self-signed digital certificate for Suite B testing, see “Creating a self-signed personal
certificate on AIX, Linux, and Windows” on page 301

To request a CA-signed digital certificate for Suite B production use, see “Requesting a personal
certificate on AIX, Linux, and Windows” on page 303.

Note: The certificate authority being used must generate digital certificates which satisfy the
requirements described in IETF RFC 6460.

FIPS 140-2 and Suite B
Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

The Suite B standard is conceptually similar to FIPS 140-2, as it restricts the set of enabled cryptographic
algorithms in order to provide an assured level of security. The Suite B CipherSpecs currently supported
can be used when IBM MQ is configured for FIPS 140-2 compliant operation. It is therefore possible
to configure IBM MQ for both FIPS and Suite B compliance simultaneously, in which case both sets of
restrictions apply.

The following diagram illustrates the relationship between these subsets:

Configuring IBM MQ for Suite B compliant operation
For information about how to configure IBM MQ on AIX, Linux, and Windows for Suite B compliant
operation, see “Configuring IBM MQ for Suite B” on page 44.

IBM MQ does not support Suite B compliant operation on the IBM i and z/OS platforms. The IBM MQ Java
and JMS clients also do not support Suite B compliant operation.

Related concepts
“Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client” on page 265

Securing IBM MQ 43

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.

Configuring IBM MQ for Suite B
IBM MQ can be configured to operate in compliance with the NSA Suite B standard on AIX, Linux, and
Windows platforms.

Suite B restricts the set of enabled cryptographic algorithms in order to provide an assured level of
security. IBM MQ can be configured to operate in compliance with Suite B to provide an enhanced level
of security. For further information on Suite B, see “National Security Agency (NSA) Suite B Cryptography”
on page 24. For more information about Suite B configuration and its effect on TLS channels, see “NSA
Suite B Cryptography in IBM MQ” on page 42.

Queue manager
For a queue manager, use the command ALTER QMGR with the parameter SUITEB to set the values
appropriate for your required level of security. For more information see ALTER QMGR.

You can also use the PCF MQCMD_CHANGE_Q_MGR command with the MQIA_SUITE_B_STRENGTH
parameter to configure the queue manager for Suite B compliant operation.

Note: If you alter a queue manager's Suite B settings, you must restart the MQXR service for those
settings to take effect.

MQI client
By default, MQI clients do not enforce Suite B compliance. You can enable the MQI client for Suite B
compliance by executing one of the following options:

1. By setting the EncryptionPolicySuiteB field in the MQSCO structure on an MQCONNX call to one or
more of the following values:

• MQ_SUITE_B_NONE
• MQ_SUITE_B_128_BIT
• MQ_SUITE_B_192_BIT

Using MQ_SUITE_B_NONE with any other value is invalid.

For more information about the MQSCO structure, see MQSCO - SSL configuration options.
2. By setting the MQSUITEB environment variable to one or more of the following values:

• NONE
• 128_BIT
• 192_BIT

You can specify multiple values using a comma separated list. Using the value NONE with any other
value is invalid.

3. By setting the EncryptionPolicySuiteB attribute in the SSL stanza of the client configuration file
to one or more of the following values:

• NONE
• 128_BIT
• 192_BIT

You can specify multiple values using a comma separated list. Using NONE with any other value is
invalid.

Note: The MQI client settings are listed in order of priority. The MSCO structure on the MQCONNX call
overrides the setting on the MQSUITEB environment variable, which overrides the attribute in the SSL
stanza.

44 Securing IBM MQ

.NET
For .NET unmanaged clients, the property MQC.ENCRYPTION_POLICY_SUITE_B indicates the type of
Suite B security required.

For information about the using Suite B in IBM MQ classes for .NET, see MQEnvironment .NET class.

AMQP
The Suite B attribute settings for a queue manager apply to AMQP channels on that queue manager. If you
modify the queue manager Suite B settings, you must restart the AMQP service for the changes to take
effect.

Certificate validation policies in IBM MQ
The certificate validation policy determines how strictly the certificate chain validation conforms to
industry security standards.

The certificate validation policy depends upon the platform and environment as follows:

• For Java and JMS applications on all platforms, the certificate validation policy depends on the JSSE
component of the Java runtime environment. For more information about the certificate validation
policy, see the documentation for your JRE.

• For AIX, Linux, and Windows systems, the certificate validation policy is supplied by GSKit
and can be configured. Two different certificate validation policies are supported:

– A legacy certificate validation policy, used for maximum backwards compatibility and interoperability
with old digital certificates that do not comply with the current IETF certificate validation standards.
This policy is known as the Basic policy.

– A strict, standards-compliant certificate validation policy which enforces the RFC 5280 standard. This
policy is known as the Standard policy.

• For IBM i systems, the certificate validation policy depends on the secure sockets library
provided by the operating system. For more information about the certificate validation policy, see the
documentation for the operating system.

• For z/OS systems, the certificate validation policy depends on the System SSL component
provided by the operating system. For more information about the certificate validation policy, see the
documentation for the operating system.

For information about how to configure the certificate validation policy, see “Configuring certificate
validation policies in IBM MQ” on page 45. For more information about the differences between the
Basic and Standard certificate validation policies, see Certificate validation and trust policy design on AIX,
Linux, and Windows.

Configuring certificate validation policies in IBM MQ
There are several different ways in which you can specify which TLS certificate validation policy is used to
validate digital certificates received from remote partner systems.

About this task
The certificate validation policy determines how strictly the certificate chain validation conforms to
industry security standards. The certificate validation policy depends upon the platform and environment.
For more information about certificate validation policies, see “Certificate validation policies in IBM MQ”
on page 45.

Procedure
• To set the certificate validation policy on the queue manager, use the queue manager attribute

CERTVPOL.
For more information about setting this attribute, see ALTER QMGR (alter queue manager settings).

Securing IBM MQ 45

• To set the certificate validation policy on the client, use of the following methods.
If more than one method is used to set the policy, the client uses the settings in the following priority
order:

1. Use the CertificateValPolicy field in the client MQSCO structure. Set the field to one of the
following values:
MQ_CERT_VAL_POLICY_ANY

Apply each of the certificate validation policies supported by the secure sockets library. Accept
the certificate chain if any of the policies considers the certificate chain valid.

MQ_CERT_VAL_POLICY_RFC5280
Apply only the RFC5280 compliant certificate validation policy. This setting provides stricter
validation than the ANY setting, but rejects some older digital certificates.

For more information about using this field, see MQSCO - SSL configuration options.
2. Use the client environment variable MQCERTVPOL. To set this environment variable, use one of the

following commands:

– For AIX and Linux systems:

export MQCERTVPOL= value

– For Windows systems:

SET MQCERTVPOL= value

– For IBM i systems:

ADDENVVAR ENVVAR(MQCERTVPOL) VALUE(value)

3. Use the CertificateValPolicy attribute of the SSL stanza in the client configuration file.. Set
this attribute to one of the following values:
ANY

Use any certificate validation policy supported by the underlying secure sockets library. This
setting is the default setting.

RFC5280
Use only certificate validation which complies with the RFC 5280 standard.

For more information about using this attribute, see SSL stanza of the client configuration file.

Digital certificates and CipherSpec compatibility in IBM MQ
This topic provides information on how to choose appropriate CipherSpecs and digital certificates for your
security policy, by outlining the relationship between CipherSpecs and digital certificates in IBM MQ.

Only a subset of the supported CipherSpecs can be used with all of the supported types of digital
certificate. It is therefore necessary to choose an appropriate CipherSpec for your digital certificate.
Similarly, if your organization's security policy requires that you use a particular CipherSpec then you must
obtain an appropriate digital certificate for that CipherSpec.

The MD5 digital signature algorithm and TLS 1.2
Digital certificates signed using the MD5 algorithm are rejected when the TLS 1.2 protocol is used. This
is because the MD5 algorithm is now considered weak by many cryptographic analysts and its use is
generally discouraged. To use newer CipherSpecs based on the TLS 1.2 protocol, ensure that the digital
certificates do not use the MD5 algorithm in their digital signatures. Older CipherSpecs which use the
TLS 1.0 protocols are not subject to this restriction and can continue to use certificates with MD5 digital
signatures.

46 Securing IBM MQ

To view the digital signature algorithm for a particular certificate, you can use the runmqakm command:

runmqakm -cert -details -db key.kdb -pw password -label cert_label

where cert_label is the certificate label of the digital signature algorithm to to display. See Digital
certificate labels for details.

Note: Although the runmqckm (iKeycmd) and the strmqikm (iKeyman) GUI can be used to view a
selection of digital signature algorithms, the runmqakm tool provides a wider range.

Running the runmqakm command produces output displaying the use of the signature algorithm
specified:

Label : ibmmqexample
Key Size : 1024
Version : X509 V3
Serial : 4e4e93f1
Issuer : CN=Old Certificate Authority,OU=Test,O=Example,C=US
Subject : CN=Example Queue Manager,OU=Test,O=Example,C=US
Not Before : August 19, 2011 5:48:49 PM GMT+01:00
Not After : August 18, 2012 5:48:49 PM GMT+01:00
Public Key
 30 81 9F 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01
 05 00 03 81 8D 00 30 81 89 02 81 81 00 98 5A 7A
 F0 18 21 EE E4 8A 6E DE C8 01 4B 3A 1E 41 90 3D
 CE 01 3F E6 32 30 6C 23 59 F0 FE 78 6D C2 80 EF
 BC 83 54 7A EB 60 80 62 6B F1 52 FE 51 9D C1 61
 80 A5 1C D4 F0 76 C7 15 6D 1F 0D 4D 31 3E DC C6
 A9 20 84 6E 14 A1 46 7D 4C F5 79 4D 37 54 0A 3B
 A9 74 ED E7 8B 0F 80 31 63 1A 0B 20 A5 99 EE 0A
 30 A6 B6 8F 03 97 F6 99 DB 6A 58 89 7F 27 34 DE
 55 08 29 D8 A9 6B 46 E6 02 17 C3 13 D3 02 03 01
 00 01
Public Key Type : RSA (1.2.840.113549.1.1.1)
Fingerprint : SHA1 :
 09 4E 4F F2 1B CB C1 F4 4F 15 C9 2A F7 32 0A 82
 DA 45 92 9F
Fingerprint : MD5 :
 44 54 81 7C 58 68 08 3A 5D 75 96 40 D5 8C 7A CB
Fingerprint : SHA256 :
 3B 47 C6 E7 7B B0 FF 85 34 E7 48 BE 11 F2 D4 35
 B7 9A 79 53 2B 07 F5 E7 65 E8 F7 84 E0 2E 82 55
Signature Algorithm : MD5WithRSASignature (1.2.840.113549.1.1.4)
Value
 3B B9 56 E6 F2 77 94 69 5B 3F 17 EA 7B 19 D0 A2
 D7 10 38 F1 88 A4 44 1B 92 35 6F 3B ED 99 9B 3A
 A5 A4 FC 72 25 5A A9 E3 B1 96 88 FC 1E 9F 9B F1
 C5 E8 8E CF C4 8F 48 7B 0E A6 BB 13 AE 2B BD D8
 63 2C 03 38 EF DC 01 E1 1F 7A 6F FB 2F 65 74 D0
 FD 99 94 BA B2 3A D5 B4 89 6C C1 2B 43 6D E2 39
 66 6A 65 CB C3 C4 E2 CC F5 49 39 A3 8B 93 5A DD
 B0 21 0B A8 B2 59 5B 24 59 50 44 89 DC 78 19 51
Trust Status : Enabled

The Signature Algorithm line shows that the MD5WithRSASignature algorithm is used. This
algorithm is based upon MD5 and so this digital certificate cannot be used with the TLS 1.2 CipherSpecs.

Interoperability of Elliptic Curve and RSA CipherSpecs
Not all CipherSpecs can be used with all digital certificates. CipherSpecs are denoted by the CipherSpec
name prefix. Each type of CipherSpec imposes different restrictions upon the type of digital certificate
which can be used. These restrictions apply to all IBM MQ TLS connections, but are particularly relevant
to users of Elliptic Curve cryptography.

The following table summarizes the relationships between CipherSpecs and digital certificates:

Securing IBM MQ 47

Table 4. Relationships between CipherSpecs and digital certificates

Type
CipherSpec Name

Prefix Description

Required
public

key type

Digital
signature
encryptio

n
algorithm

Secret
key

establish
ment

method

1 ECDHE_ECDSA_ CipherSpecs which use Elliptic
Curve public keys, Elliptic Curve
secret keys, and Elliptic Curve
digital signature algorithms.

Elliptic
Curve

ECDSA ECDHE

2 ECDHE_RSA_ CipherSpecs which use RSA
public keys, Elliptic Curve secret
keys, and RSA digital signature

algorithms.

RSA RSA ECDHE

3 (All TLS 1.3
CipherSpecs)

CipherSpecs which use Elliptic
Curve or RSA public keys, Elliptic

Curve secret keys, and Elliptic
Curve or RSA digital signature

algorithms.

Elliptic
Curve or

RSA

ECDSA or
RSA

ECDHE or
RSA

4 (All others) CipherSpecs which use RSA
public keys and RSA digital

signature algorithms.

RSA RSA RSA

Note: Type 1 and 2 CipherSpecs are not supported by IBM MQ queue managers and MQI clients on the
IBM i platform.

The required public key type column shows the type of public key which the personal certificate must
have when using each type of CipherSpec. The personal certificate is the end-entity certificate which
identifies the queue manager or client to its remote partner.

You must ensure that the certificate that is named in the certificate label is appropriate for the channel
CipherSpec. That is, if you configure a channel with a CipherSpec that requires an Elliptic Curve (EC)
certificate, you cannot name an RSA certificate in the certificate label. If you configure a channel with a
CipherSpec that requires an RSA certificate, you cannot name an EC certificate in the certificate label.

Assuming that you have correctly configured IBM MQ, you can have:

• A single queue manager with a mixture of RSA and EC certificates.
• Different channels on the same queue manager using either an RSA or EC certificate.

The digital signature encryption algorithm refers to the encryption algorithm used to validate the peer.
The encryption algorithm is used along with a hash algorithm such as MD5, SHA-1 or SHA-256 to
compute the digital signature. There are various digital signature algorithms which can be used, for
example, RSA with MD5 or ECDSA with SHA-256. In the table, ECDSA refers to the set of digital signature
algorithms which use ECDSA; RSA refers to the set of digital signature algorithms which use RSA. Any
supported digital signature algorithm in the set may be used, provided it is based upon the stated
encryption algorithm.

Type 1 CipherSpecs require that the personal certificate must have an Elliptic Curve public key. When
these CipherSpecs are used, Elliptic Curve Diffie Hellman Ephemeral key agreement is used to establish
the secret key for the connection.

Type 2 CipherSpecs require that the personal certificate has an RSA public key. When these CipherSpecs
are used, Elliptic Curve Diffie Hellman Ephemeral key agreement is used to establish the secret key for
the connection.

Type 3 CipherSpecs require that the personal certificate must have an RSA public key. When these
CipherSpecs are used, RSA key exchange is used to establish the secret key for the connection.

48 Securing IBM MQ

This list of restrictions is not exhaustive: depending on the configuration, there might be additional
restrictions which can further affect the ability to interoperate. For example, if IBM MQ is configured to
comply with the FIPS 140-2 or NSA Suite B standards then this will also limit the range of allowable
configurations. Refer to the following section for more information.

If you need to use different types of CipherSpec on the same queue manager or client application,
configure an appropriate certificate label and CipherSpec combination on the client definition.

The three types of CipherSpec do not interoperate directly: this is a limitation of the current TLS
standards. For example, suppose you have chosen to use the ECDHE_ECDSA_AES_128_CBC_SHA256
CipherSpec for a receiver channel named TO.QM1 on a queue manager named QM1, then the receiver
should have a personal certificate with an Elliptic Curve key and an ECDSA-based digital signature. If the
receiver channel does not meet these requirements, the channel fails to start.

Other channels connecting to queue manager QM1 can use other CipherSpecs, provided that each
channel uses a certificate of the correct type for the CipherSpec of that channel. For example, suppose
that QM1 uses a sender channel named TO.QM2 to send messages to another queue manager named
QM2. The channel TO.QM2 could use the Type 3 CipherSpec TLS_RSA_WITH_AES_256_CBC_SHA256
provided both ends of the channel use certificates containing RSA public keys. The certificate label
channel attribute can be used to configure a different certificate for each channel.

When planning your IBM MQ networks, consider carefully which channels require TLS, and ensure that the
type of certificates used for each channel are appropriate for use with the CipherSpec on that channel.

To view the digital signature algorithm and public key type for a digital certificate you can use the
runmqakm command:

runmqakm -cert -details -db key.kdb -pw password -label cert_label

where cert_label is the label of the certificate whose digital signature algorithm you need to display. See
Digital certificate labels for details.

Running the runmqakm command will produce output displaying the Public Key Type:

Label : ibmmqexample
Key Size : 384
Version : X509 V3
Serial : 9ad5eeef5d756f41
Issuer : CN=Example Certificate Authority,OU=Test,O=Example,C=US
Subject : CN=Example Queue Manager,OU=Test,O=Example,C=US
Not Before : 21 August 2011 13:10:24 GMT+01:00
Not After : 21 August 2012 13:10:24 GMT+01:00
Public Key
 30 76 30 10 06 07 2A 86 48 CE 3D 02 01 06 05 2B
 81 04 00 22 03 62 00 04 3E 6F A9 06 B6 C3 A0 11
 F8 D6 22 78 FE EF 0A FE 34 52 C0 8E AB 5E 81 73
 D0 97 3B AB D6 80 08 E7 31 E9 18 3F 6B DE 06 A7
 15 D6 9D 5B 6F 56 3B 7F 72 BB 6F 1E C9 45 1C 46
 60 BE F2 DC 1B AD AC EC 64 4C 0E 06 65 6E ED 93
 B8 F5 95 E0 F9 2A 05 D6 21 02 BD FB 06 63 A1 CC
 66 C6 8A 0A 5C 3F F7 D3
Public Key Type : EC_ecPublicKey (1.2.840.10045.2.1)
Fingerprint : SHA1 :
 3C 34 58 04 5B 63 5F 5C C9 7A E7 67 08 2B 84 43
 3D 43 7A 79
Fingerprint : MD5 :
 49 13 13 E1 B2 AC 18 9A 31 41 DC 8C B4 D6 06 68
Fingerprint : SHA256 :
 6F 76 78 68 F3 70 F1 53 CE 39 31 D9 05 C5 C5 9F
 F2 B8 EE 21 49 16 1D 90 64 6D AC EB 0C A7 74 17
Signature Algorithm : EC_ecdsa_with_SHA384 (1.2.840.10045.4.3.3)
Value
 30 65 02 30 0A B0 2F 72 39 9E 24 5A 22 FE AC 95
 0D 0C 6D 6C 2F B3 E7 81 F6 C1 36 1B 9A B0 6F 07
 59 2A A1 4C 02 13 7E DD 06 D6 FE 4B E4 03 BC B1
 AC 49 54 1E 02 31 00 90 0E 46 2B 04 37 EE 2C 5F
 1B 9C 69 E5 99 60 84 84 10 71 1A DA 63 88 33 E2
 22 CC E6 1A 4E F4 61 CC 51 F9 EE A0 8E F4 DC B5
 0B B9 72 58 C3 C7 A4
Trust Status : Enabled

Securing IBM MQ 49

The Public Key Type line in this case shows that the certificate has an Elliptic Curve public key. The
Signature Algorithm line in this case shows that the EC_ecdsa_with_SHA384 algorithm is in use: this
is based upon the ECDSA algorithm. This certificate is therefore only suitable for use with Type 1
CipherSpecs.

You can also use the runmqckm command with the same parameters. Also the strmqikm GUI can be
used to view digital signature algorithms if you open the key repository and double-click the label of the
certificate. However, you should use the runmqakm tool to view digital certificates because it supports a
wider range of algorithms.

TLS 1.3 CipherSpecs
TLS 1.3 CipherSpecs support both ECDSA and RSA certificates.

Elliptic Curve CipherSpecs and NSA Suite B
When IBM MQ is configured to conform to the Suite B compliant TLS 1.2 profile, the permitted
CipherSpecs and digital signature algorithms are restricted as described in “NSA Suite B Cryptography
in IBM MQ” on page 42. Additionally, the range of acceptable Elliptic Curve keys is reduced according to
the configured security levels.

At the 128-bit Suite B security level, the certificate subject's public key is required to use either the NIST
P-256 or NIST P-384 elliptic curve and to be signed with either the NIST P-256 elliptic curve or the NIST
P-384 elliptic curve. The runmqakm command can be used to request digital certificates for this security
level using a -sig_alg parameter of EC_ecdsa_with_SHA256, or EC_ecdsa_with_SHA384.

At the 192-bit Suite B security level, the certificate subject's public key is required to use the NIST P-384
elliptic curve and to be signed with the NIST P-384 elliptic curve. The runmqakm command can be used
to request digital certificates for this security level using a -sig_alg parameter of EC_ecdsa_with_SHA384.

The supported NIST elliptic curves are as follows:

Table 5. Supported NIST elliptic curves

NIST FIPS 186-3 curve name RFC 4492 curve name Elliptic Curve key size (bits)

P-256 secp256r1 256

P-384 secp384r1 384

P-521 secp521r1 521

Note: The NIST P-521 elliptic curve cannot be used for Suite B compliant operation.

Related concepts
“Enabling CipherSpecs” on page 429
Enable a CipherSpec by using the SSLCIPH parameter in either the DEFINE CHANNEL or ALTER
CHANNEL MQSC command.
“Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client” on page 265
Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.
“NSA Suite B Cryptography in IBM MQ” on page 42
This topic provides information about how to configure IBM MQ for AIX, Linux, and Windows to conform to
the Suite B compliant TLS 1.2 profile.
“National Security Agency (NSA) Suite B Cryptography” on page 24

50 Securing IBM MQ

The government of the Unites States of America produces technical advice on IT systems and security,
including data encryption. The US National Security Agency (NSA) recommends a set of interoperable
cryptographic algorithms in its Suite B standard.

Channel authentication records
To exercise more precise control over the access granted to connecting systems at a channel level, you
can use channel authentication records.

You might find that clients attempt to connect to your queue manager using a blank user ID or a high-level
user ID that would allow the client to perform undesirable actions. You can block access to these clients
using channel authentication records. Alternatively, a client might assert a user ID that is valid on the
client platform but is unknown or of an invalid format on the server platform. You can use a channel
authentication record to map the asserted user ID to a valid user ID.

You might find a client application that connects to your queue manager and behaves badly in some way.
To protect the server from the issues this application is causing, it needs to be temporarily blocked using
the IP address the client application is on until such time as the firewall rules are updated or the client
application is corrected. You can use a channel authentication record to block the IP address from which
the client application connects.

If you have set up an administration tool such as the IBM MQ Explorer, and a channel for that specific
use, you might want to ensure that only specific client computers can use it. You can use a channel
authentication record to allow the channel to be used only from certain IP addresses.

If you are just getting started with some sample applications running as clients, see Preparing and
running the sample programs for an example of setting up the queue manager securely using channel
authentication records.

To get channel authentication records to control inbound channels, use the MQSC command ALTER QMGR
CHLAUTH(ENABLED).

CHLAUTH rules are applied for a channel MCA that is created in response to a new inbound connection.
For a channel MCA created in response to the channel being started locally, no CHLAUTH rules are applied.

Table 6. Where CHLAUTH rules are applied for different channel pairs

Channel type MCA where CHLAUTH rules are applied

SDR-RCVR RCVR

RQSTR-SVR (Started at SVR) RQSTR

RQSTR-SVR (Started at RQSTR) SVR

RQSTR-SDR (Started at SDR) RQSTR

RQSTR-SDR (Started at RQSTR) SDR for initial connection. RQSTR for callback
connection.

Channel authentication records can be created to perform the following functions:

• To block connections from specific IP addresses.
• To block connections from specific user IDs.
• To set an MCAUSER value to be used for any channel connecting from a specific IP address.
• To set an MCAUSER value to be used for any channel asserting a specific user ID.
• To set an MCAUSER value to be used for any channel having a specific SSL or TLS Distinguished Name

(DN).
• To set an MCAUSER value to be used for any channel connecting from a specific queue manager.
• To block connections claiming to be from a certain queue manager unless the connection is from a

specific IP address.

Securing IBM MQ 51

• To block connections presenting a certain SSL or TLS certificate unless the connection is from a specific
IP address.

These uses are explained further in the following sections.

You create, modify, or remove channel authentication records using the MQSC command SET CHLAUTH
or the PCF command Set Channel Authentication Record.

Note: Large numbers of channel authentication records can have a negative impact on a queue manager's
performance.

Blocking IP addresses
It is normally the role of a firewall to prevent access from certain IP addresses. However, there might be
occasions where you experience connection attempts from an IP address that should not have access to
your IBM MQ system and must temporarily block the address before the firewall can be updated. These
connection attempts might not be coming from IBM MQ channels; these connection attempts might be
coming from other socket applications that are misconfigured to target your IBM MQ listener. Block IP
addresses by setting a channel authentication record of type BLOCKADDR. You can specify one or more
single addresses, ranges of addresses, or patterns including wildcards.

Whenever an inbound connection is refused because the IP address is blocked in this manner, an
event message MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_ADDRESS
is issued, provided that channel events are enabled and the queue manager is running. Additionally, the
connection is held open for 30 seconds prior to returning the error to ensure the listener is not flooded
with repeated attempts to connect that are blocked.

To block IP addresses only on specific channels, or to avoid the delay before the error is reported, set a
channel authentication record of type ADDRESSMAP with the USERSRC(NOACCESS) parameter.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_NOACCESS is issued,
provided that channel events are enabled and the queue manager is running.

See “Blocking specific IP addresses” on page 395 for an example.

Blocking user IDs
To prevent certain user IDs from connecting over a client channel, set a channel authentication record
of type BLOCKUSER. This type of channel authentication record applies only to client channels, not to
message channels. You can specify one or more individual user IDs to be blocked, but you cannot use
wildcards.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_USERID is issued,
provided that channel events are enabled.

See “Blocking specific user IDs” on page 396 for an example.

You can also block any access for specified user IDs on certain channels by setting a channel
authentication record of type USERMAP with the USERSRC(NOACCESS) parameter.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_NOACCESS is issued,
provided that channel events are enabled and the queue manager is running.

See “Blocking access for a client user ID” on page 399 for an example.

Blocking queue manager names
To specify that any channel connecting from a specified queue manager is to have no access, set a
channel authentication record of type QMGRMAP with the USERSRC(NOACCESS) parameter. You can
specify a single queue manager name or a pattern including wildcards. There is no equivalent of the
BLOCKUSER function to block access from queue managers.

52 Securing IBM MQ

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_NOACCESS is issued,
provided that channel events are enabled and the queue manager is running.

See “Blocking access from a remote queue manager” on page 399 for an example.

Blocking SSL or TLS DNs
To specify that any user presenting an SSL or TLS personal certificate containing a specified DN is to
have no access, set a channel authentication record of type SSLPEERMAP with the USERSRC(NOACCESS)
parameter. You can specify a single distinguished name or a pattern including wildcards. There is no
equivalent of the BLOCKUSER function to block access for DNs.

Whenever an inbound connection is refused for this reason, an event message
MQRC_CHANNEL_BLOCKED with reason qualifier MQRQ_CHANNEL_BLOCKED_NOACCESS is issued,
provided that channel events are enabled and the queue manager is running.

See “Blocking access for an SSL or TLS Distinguished Name” on page 400 for an example.

Mapping IP addresses to user IDs to be used
To specify that any channel connecting from a specified IP address is to use a specific MCAUSER, set
a channel authentication record of type ADDRESSMAP. You can specify a single address, a range of
addresses, or a pattern including wildcards.

If you use a port forwarder, DMZ session break, or any other setup that changes the IP address presented
to the queue manager, then mapping IP addresses is not necessarily suitable for your use.

See “Mapping an IP address to an MCAUSER user ID” on page 400 for an example.

Mapping queue manager names to user IDs to be used
To specify that any channel connecting from a specified queue manager is to use a specific MCAUSER, set
a channel authentication record of type QMGRMAP. You can specify a single queue manager name or a
pattern including wildcards.

See “Mapping a remote queue manager to an MCAUSER user ID” on page 397 for an example.

Mapping user IDs asserted by a client to user IDs to be used
To specify that if a certain user ID is used by a connection from an IBM MQ MQI client, a different,
specified MCAUSER is to be used, set a channel authentication record of type USERMAP. User ID mapping
does not use wildcards.

See “Mapping a client user ID to an MCAUSER user ID” on page 398 for an example.

Mapping SSL or TLS DNs to user IDs to be used
To specify that any user presenting an SSL/TLS personal certificate containing a specified DN is to use
a specific MCAUSER, set a channel authentication record of type SSLPEERMAP. You can specify a single
distinguished name or a pattern including wildcards.

See “Mapping an SSL or TLS Distinguished Name to an MCAUSER user ID” on page 398 for an example.

Mapping queue managers, clients, or SSL or TLS DNs according to IP address
In some circumstances it might be possible for a third party to spoof a queue manager name. An SSL
or TLS certificate or key database file might also be stolen and reused. To protect against these threats,
you can specify that a connection from a certain queue manager or client, or using a certain DN must be
connecting from a specified IP address. Set a channel authentication record of type USERMAP, QMGRMAP
or SSLPEERMAP and specify the permitted IP address, or pattern of IP addresses, using the ADDRESS
parameter.

See “Mapping a remote queue manager to an MCAUSER user ID” on page 397 for an example.

Securing IBM MQ 53

Interaction between channel authentication records
It is possible that a channel attempting to make a connection matches more than one channel
authentication record, and that these have contradictory effects. For example, a channel might assert
a user ID which is blocked by a BLOCKUSER channel authentication record, but with an SSL or TLS
certificate that matches an SSLPEERMAP record that sets a different user ID. In addition, if channel
authentication records use wildcards, a single IP address, queue manager name, or SSL or TLS DN
might match several patterns. For example, the IP address 192.0.2.6 matches the patterns 192.0.2.0-24,
192.0.2.*, and 192.0.*.6. The action taken is determined as follows.

• The channel authentication record used is selected as follows:

– A channel authentication record explicitly matching the channel name takes priority over a channel
authentication record matching the channel name by using a wildcard.

– A channel authentication record using an SSL or TLS DN takes priority over a record using a user ID,
queue manager name, or IP address.

– A channel authentication record using a user ID or queue manager name takes priority over a record
using an IP address.

• If a matching channel authentication record is found and it specifies an MCAUSER, this MCAUSER is
assigned to the channel.

• If a matching channel authentication record is found and it specifies that the channel has no access, an
MCAUSER value of *NOACCESS is assigned to the channel. This value can later be changed by a security
exit program.

• If no matching channel authentication record is found, or a matching channel authentication record is
found and it specifies that the user ID of the channel is to be used, the MCAUSER field is inspected.

– If the MCAUSER field is blank, the client user ID is assigned to the channel.
– If the MCAUSER field is not blank, it is assigned to the channel.

• Any security exit program is run. This exit program might set the channel user ID or determine that
access is to be blocked.

• If the connection is blocked or the MCAUSER is set to *NOACCESS, the channel ends.
• If the connection is not blocked, for any channel except a client channel, the channel user ID

determined in the previous steps is checked against the list of blocked users.

– If the user ID is in the list of blocked users, the channel ends.
– If the user ID is not in the list of blocked users, the channel runs.

Where a number of channel authentication records match a channel name, IP address, host name, queue
manager name, or SSL or TLS DN, the most specific match is used. The match considered to be:

• The most specific is a name without wildcard characters, for example:

– A channel name of A.B.C
– An IP address of 192.0.2.6
– A host name of hursley.ibm.com
– A queue manager name of 192.0.2.6

• The most generic is a single asterisk (*) that matches, for example:

– All channel names
– All IP addresses
– All host names
– All queue manager names

• A pattern with an asterisk at the start of a string is more generic than a defined value at the start of a
string:

– For channels, *.B.C is more generic than A.*

54 Securing IBM MQ

– For IP addresses, *.0.2.6 is more generic than 192.*
– For host names, *.ibm.com is more generic than hursley.*
– For queue manager names, *QUEUEMANAGER is more generic than QUEUEMANAGER*

• A pattern with an asterisk at a specific place in a string is more generic than a defined value at the same
place in a string, and similarly for each subsequent place in a string:

– For channels, A.*.C is more generic than A.B.*
– For IP addresses, 192.*.2.6 is more generic than 192.0.*.
– For host names, hursley.*.com is more generic than hursley.ibm.*
– For queue manager names, Q*MANAGER is more generic than QUEUE*

• Where two or more patterns have an asterisk at a specific place in a string, the one with fewer nodes
following the asterisk is more generic:

– For channels, A.* is more generic than A.*.C
– For IP addresses, 192.* is more generic than 192.*.2.*.
– For host names, hurlsey.* is more generic than hursley.*.com
– For queue manager names, Q* is more generic than Q*MGR

• Additionally, for an IP address:

– A range indicated with a hyphen (-), is more specific than an asterisk. Thus 192.0.2.0-24 is more
specific than 192.0.2.*.

– A range that is a subset of another is more specific than the larger range. Thus 192.0.2.5-15 is more
specific than 192.0.2.0-24.

– Overlapping ranges are not permitted. For example, you cannot have channel authentication records
for both 192.0.2.0-15 and 192.0.2.10-20.

– A pattern cannot have fewer than the required number of parts, unless the pattern ends with a single
trailing asterisk. For example 192.0.2 is invalid, but 192.0.2.* is valid.

– A trailing asterisk must be separated from the rest of the address by the appropriate part separator (a
dot (.) for IPv4, a colon (:) for IPv6). For example, 192.0* is not valid because the asterisk is not in a
part of its own.

– A pattern can contain additional asterisks, provided that no asterisk is adjacent to the trailing
asterisk. For example, 192.*.2.* is valid, but 192.0.*.* is not valid.

– An IPv6 address pattern cannot contain a double colon and a trailing asterisk, because the
resulting address would be ambiguous. For example, 2001::* could expand to 2001:0000:*,
2001:0000:0000:* and so on

• For an SSL or TLS Distinguished Name (DN), the precedence order of substrings is as follows:

Table 7. Precedence order of substrings

Order DN substring Name

1 SERIALNUMBER= Certificate serial number

2 MAIL= Email address

3 E= Email address (Deprecated in
preference to MAIL)

4 UID=, USERID= User identifier

5 CN= Common name

6 T= Title

7 OU= Organizational unit

Securing IBM MQ 55

Table 7. Precedence order of substrings (continued)

Order DN substring Name

8 DC= Domain component

9 O= Organization

10 STREET= Street / First line of address

11 L= Locality

12 ST=, SP=, S= State or province name

13 PC= Postal code / zip code

14 C= Country

15 UNSTRUCTUREDNAME= Host name

16 UNSTRUCTUREDADDRESS= IP address

17 DNQ= Distinguished name qualifier

Thus, if an SSL or TLS certificate is presented with a DN containing the substrings O=IBM and C=UK,
IBM MQ uses a channel authentication record for O=IBM in preference to one for C=UK, if both are
present.

A DN can contain multiple OUs, which must be specified in hierarchical order with the large
organizational units specified first. If two DNs are equal in all respects except for their OU values,
the more specific DN is determined as follows:

1. If they have different numbers of OU attributes then the DN with the most OU values is more
specific. This is because the DN with more Organizational Units fully qualifies the DN in more detail
and provides more matching criteria. Even if its top-level OU is a wildcard (OU=*), the DN with more
OUs is still regarded as more specific overall.

2. If they have the same number of OU attributes then the corresponding pairs of OU values are
compared in sequence left-to-right, where the left-most OU is the highest-level (least specific),
according to the following rules.

a. An OU with no wildcard values is the most specific because it can only match exactly one string.
b. An OU with a single wildcard at either the beginning or end (for example, OU=ABC* or OU=*ABC)

is next most specific.
c. An OU with two wildcards for example, OU=*ABC*) is next most specific.
d. An OU consisting only of an asterisk (OU=*) is the least specific.

3. If the string comparison is tied between two attribute values of the same specificity then whichever
attribute string is longer is more specific.

4. If the string comparison is tied between two attribute values of the same specificity and length then
the result is determined by a case-insensitive string comparison of the portion of the DN excluding
any wildcards.

If two DNs are equal in all respects except for their DC values, the same matching rules apply as for
OUs except that in DC values the left-most DC is the lowest-level (most specific) and the comparison
ordering differs accordingly.

Displaying channel authentication records
To display channel authentication records, use the MQSC command DISPLAY CHLAUTH or the PCF
command Inquire Channel Authentication Records. You can choose to return all records that
match the supplied channel name, or you can choose an explicit match. The explicit match tells you which
channel authentication record would be used if a channel attempted to make a connection from a specific

56 Securing IBM MQ

IP address, from a specific queue manager or using a specific user ID, and, optionally, presenting an
SSL/TLS personal certificate containing a specified DN.
Related concepts
“Security for remote messaging” on page 100
This section deals with remote messaging aspects of security.

Interaction of CHLAUTH and CONNAUTH
How channel authentication records (CHLAUTH) and connection authentication (CONNAUTH) interact in
IBM MQ, in the case of a single conversation on a channel.

Different types of bindings
IBM MQ supports two methods for an application to connect:
Local bindings

Applies when the application and queue manager are on the same operating image. CHLAUTH is not
relevant to this type of application connection.

Client bindings
Applies when the application and queue manager use the network to communicate. The application
and queue manager can be running on the same machine, or they can be on different machines. In
IBM MQ, a client connection is handled in the form of a server-connection (SVRCONN) channel and, in
this situation, both CONNAUTH and CHLAUTH are applicable.

Binding steps of the receiving end of a channel
When an application connects to a queue manager, a substantial amount of checking is performed to
ensure that both ends of the channel understand what is supported by the other end. The receiving end
of the channel does some extra checking, involving CHLAUTH and CONNAUTH, to ensure that the client is
allowed to connect, and this process might also include a security exit as this can affect the result. This
channel connecting phase is also referred to as the binding phase.

Securing IBM MQ 57

The following diagram lists the steps that a SVRCONN channel goes through when the server end (at the
queue manager) starts:

Al
l C

on
ve

rs
at

io
ns

Pr

im
ar

y
Co

nv
er

sa
tio

n

Step 1: Receive a c t onnection reques

Step 3: R onnection ead data from c

Step 4: Look up channel definition

Security exit
ex e chang

Step 16: Connection completes

Channel processing
K o steps ey t

CHLAUTH processing
Channel exit
CONNA essing UTH proc
Object authorization

Step 5: Call security exit (if defined)
with exit r XR_ T_SEC eason: MQ INI

Step 9: Call security exit (if defined)
with exit r XR_SEC_PARMS eason: MQ

Step 6: Receiv onstruct one as e MQCSP (or c
long as both user+password are supplied by client)

Step 7: Adopt MQCSP user
(if ChlauthEarlyAdop CTX=YES) t=Y and ADOPT

Step 11: Adopt the MQCSP user
(if ChlauthEarly CTX=YES) Adopt=N and ADOPT

Step 10: Authenticate the user

Step 14: Validate CONNAUTH CHCKCLNT
requirements

Step 13: V e CHLA CLNT requirements alidat UTH CHCK

Step 15: Check object authorization

Step 2: Check address is allowed to connect?
(BLOCKADDR)

Step 8: CHL UTH mapping A
(S , QMGRMAP, USERMAP, ADDRESSMAP) SLPEERMAP

Step 12: Check user is not blocked
(BLOCKUSER)

58 Securing IBM MQ

Step 1: Receive a connection request
The channel initiator or listener receives a connection request from somewhere on the network.

Step 2: Is the address allowed to connect?
Before any data is read, IBM MQ checks the IP address of the partner against the CHLAUTH rules, to
see if the address is in the BLOCKADDR rule. If the address is not found, and so not blocked, the flow
proceeds to the next step.

Step 3: Read data from the channel
IBM MQ now reads the data into a buffer, and starts to process the sent information.

Step 4: Look up the channel definition
In the first data flow, IBM MQ sends, among other things, the name of the channel that the sending
end is trying to start. The receiving queue manager can then look up the channel definition, which has
all the settings that are specified for the channel.

Step 5: Call security exit (if defined)
If the channel has a security exit (SCYEXIT) defined, this is called with the exit reason
(MQCXP.ExitReason) set to MQXR_INIT_SEC.

Step 6: Receive MQCSP
If necessary, construct one if the client supplied authentication credentials.
If the client is a Java or JMS application running in compatibility mode, the client does not pass an
MQCSP structure to the queue manager. Instead, if the application supplied a user ID and password,
an MQCSP structure is constructed here.

Step 7: Adopt MQCSP user (if ChlauthEarlyAdopt is Y and ADOPTCTX=YES)
The credentials that are supplied by the client are authenticated.
If CONNAUTH is using LDAP to map an asserted distinguished name to a short user ID, the mapping
happens in this step.
If authentication is successful, the user ID is adopted by the channel and is used by the CHLAUTH
mapping step.

Note: From IBM MQ 9.0.4 the ChlauthEarlyAdopt= Y parameter is automatically added to the
channels stanza of the qm.ini file for new queue managers.

Step 8: CHLAUTH mapping
The CHLAUTH cache is inspected again to look for the mapping rules SSLPEERMAP, USERMAP,
QMGRMAP, and ADDRESSMAP.
The rule that matches the incoming channel most specifically is used. If the rule has
USERSRC(CHANNEL) or (MAP), the channel continues on binding.
If the CHLAUTH rules evaluate to a rule with USERSRC(NOACCESS), the application is blocked from
connecting to the channel, unless the credentials are subsequently overridden with a valid credentials
in Step 9.

Step 9: Call security exit (if defined)
If the channel has a security exit (SCYEXIT) defined, this is called with the exit reason
(MQCXP.ExitReason) set to MQXR_SEC_PARMS.
A pointer to MQCSP will be present in the SecurityParms field of the MQCXP structure.
The MQCSP structure has pointers to the user ID (MQCSP.CSPUserIdPtr) and password

(MQCSP.CSPPasswordPtr). From IBM MQ 9.3.4, the MQCSP structure also contains
a pointer to the authentication token (MQCSP.TokenPtr).
It is possible to change the user ID and password, and authentication token, in the exit. The following
example shows how a security exit would print the user ID and password values to an audit log:

if (pMQCXP -> ExitReason == MQXR_SEC_PARMS)
{
 /* It is not a good idea for security reasons to print out the user ID */
 /* and password but the following is shown for demonstration reasons */
 printf("User ID: %.*s Password: %.*s\n",
 pMQCXP -> SecurityParms -> CSPUserIdLength,
 pMQCXP -> SecurityParms -> CSPUserIdPtr,

Securing IBM MQ 59

 pMQCXP -> SecurityParms -> CSPPasswordLength,
 pMQCXP -> SecurityParms -> CSPPasswordPtr);

The exit can tell IBM MQ to close the channel, by returning MQXCC_CLOSE_CHANNEL in
the MQCXP.Exitresponse field. Otherwise, channel processing continues to the connection
authentication phase.

Note: If the asserted user is changed by the security exit, CHLAUTH mapping rules are not re-applied
to the new user.

Step 10: Authenticate the user
The authentication phase happens if CONNAUTH is enabled on the queue manager.
To check this, issue the MQSC command 'DISPLAY QMGR CONNAUTH'.

The following example shows the output of the command DISPLAY QMGR CONNAUTH
from a queue manager running on IBM MQ for z/OS.

 CSQM201I !MQ25 CSQMDRTC DISPLAY QMGR DETAILS
 QMNAME(MQ25)
 CONNAUTH(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)
 END QMGR DETAILS
 CSQ9022I !MQ25 CSQMDRTC ' DISPLAY QMGR' NORMAL COMPLETION

The following example shows the output of the command 'DISPLAY QMGR CONNAUTH'
from a queue manager running on IBM MQ for Multiplatforms.

 1 : DISPLAY QMGR CONNAUTH
AMQ8408: Display Queue Manager details.
 QMNAME(DEMO)
 CONNAUTH(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)

The CONNAUTH value is the name of an AUTHINFO IBM MQ object.
As operating system authentication (AUTHTYPE(IDPWOS)) is valid on both IBM MQ for Multiplatforms
and IBM MQ for z/OS, the examples use operating system authentication.

The following example shows the default AUTHINFO object with AUTHTYPE(IDPWOS)
from a queue manager running on IBM MQ for z/OS.

 CSQM293I !MQ25 CSQMDRTC 1 AUTHINFO FOUND MATCHING REQUEST CRITERIA
 CSQM201I !MQ25 CSQMDRTC DISPLAY AUTHINFO DETAILS
 AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)
 AUTHTYPE(IDPWOS)
 QSGDISP(QMGR)
 ADOPTCTX(NO)
 CHCKCLNT(NONE)
 CHCKLOCL(OPTIONAL)
 FAILDLAY(1)
 DESCR()
 ALTDATE(2018-06-04)
 ALTTIME(10.43.04)
 END AUTHINFO DETAILS
 CSQ9022I !MQ25 CSQMDRTC ' DISPLAY AUTHINFO' NORMAL COMPLETION

The following example shows the default AUTHINFO object with AUTHTYPE(IDPWOS)
from a queue manager running on IBM MQ for Multiplatforms.

 1 : display authinfo(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)
AMQ8566: Display authentication information details.
 AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS)
 AUTHTYPE(IDPWOS) ADOPTCTX(NO)
 DESCR() CHCKCLNT(REQDADM)
 CHCKLOCL(OPTIONAL) FAILDLAY(1)
 ALTDATE(2015-06-08) ALTTIME(16.35.16)

60 Securing IBM MQ

The AUTHINFO TYPE(IDPWOS) object has an attribute called CHCKCLNT. If the value is changed to
REQUIRED all client applications have to supply valid credentials.
If the user was authenticated in Step 7, then another authentication check is not performed unless:

• The user ID, password, or authentication token in the SecurityParms field of the MQCXP structure
was changed by a security exit in Step 9.

• The client application has connected with options requesting reconnectable functionality.

Step 11: Adopt the context of the MQCSP user (If ChlauthEarlyAdopt=N and ADOPTCTX=YES)
You can set the ADOPTCTX attribute, which controls whether the channel runs under MCAUSER, or the
user ID the application has supplied.
If the user ID asserted in the MQCSP, or SecurityParms field of the MQXCP structure, has been
successfully authenticated and ADOPTCTX is YES, then the context of the user resulting from steps
7 and 8 is adopted as the context to use for this application, unless the user ID, password, or
authentication token in the SecurityParms field of the MQCXP structure was changed by a security
exit in step 9.
This asserted user ID is the user ID that is checked for authorization to use IBM MQ resources.
For example, you do not have an MCAUSER set on the SVRCONN channel, and your client is running
under 'johndoe' on your Linux machine. Your application specifies user 'fred' in the MQCSP, so the
channel starts running with 'johndoe' as the active MCAUSER. After the CONNAUTH check, the user
'fred' is adopted, and the channel runs with 'fred' as the active MCAUSER.

Step 12: Check the user is not blocked (BLOCKUSER)
If the CONNAUTH checking is successful, the CHLAUTH cache is then inspected again to check if the
active MCAUSER is blocked by a BLOCKUSER rule. If the user is blocked, the channel ends.

Step 13: Validate CHLAUTH CHCKCLNT requirements
If the CHLAUTH rule that was selected in step 8 additionally specifies a CHCKCLNT value of
REQUIRED or REQDADM then validation is done to ensure that a valid CONNAUTH userid was
provided to meet the requirement.

• If CHCKCLNT(REQUIRED) is set a user must have been authenticated in step 7 or 10. Otherwise the
connection is rejected.

• If CHCKCLNT(REQDADM) is set a user must have been authenticated in step 7 or 10 if this
connection is determined to be privileged. Otherwise the connection is rejected.

• If CHCKCLNT(ASQMGR) is set then this step is skipped.

Notes:

1. If CHCKCLNT(REQUIRED) or CHCKCLNT(REQDADM) is set, but CONNAUTH is not enabled on the
queue manager, the connection fails with a MQRC_SECURITY_ERROR (2063) return code due to
the conflict in configuration.

2. The user is not re-authenticated in this step.

Step 14: Validate CONNAUTH CHCKCLNT requirements.
The authentication phase happens if CONNAUTH is enabled on the queue manager.
The CONNAUTH CHCKCLNT value is checked to determine what requirements are set for incoming
connections:

• If CHCKCLNT(NONE) is set then this step is skipped
• If CHCKCLNT(OPTIONAL) is set then this step is skipped.
• If CHCKCLNT(REQUIRED) is set then a user must have been authenticated in step 7 or 10.

Otherwise the connection is rejected.
• If CHCKCLNT(REQDADM) is set a user must have been authenticated in step 7 or 10 if this

connection is determined to be privileged. Otherwise the connection is rejected.

Note: The user is not re-authenticated in this step.

Securing IBM MQ 61

Step 15: Check object authorization
A check is made to ensure that the active MCAUSER has the appropriate authority to connect to the
queue manager.

See Object Authority Manager, for more information.

See “Object authority manager on IBM i” on page 156, for more information.
Step 16: The connection completes

If the preceding steps complete successfully, the connection completes.

Related concepts
CONNAUTH
A queue manager can be configured to authenticate credentials that are supplied by an application when
it connects.
Related reference
SET CHLAUTH
ALTER AUTHINFO

Resolving CHLAUTH access issues
Steps and examples to resolve certain access issues when using channel authentication records
(CHLAUTH).

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

About this task
There are three default rules for CHLAUTH processing:

• NO ACCESS to all channels by any MQ-admin* users
• NO ACCESS to all SYSTEM.* channels by all users
• ALLOW access to SYSTEM.ADMIN.SVRCONN channel (non MQ-admin users)

The first two rules block access to all channels. The third rule is more specific, and therefore takes
precedence over the other two, if the channel is the SYSTEM.ADMIN.SVRCONN channel, thus allowing
access on that channel.

CHLAUTH rules are used to determine if a channel can be started, and they allow mapping, through
MCAUSER to another user ID. If the channel cannot be started, the following errors commonly occur:

• RC 2035 MQRC_NOT_AUTHORIZED

• RC 2059 MQRC_Q_MGR_NOT_AVAILABLE

• AMQ4036 Access not permitted

• AMQ9776: Channel was blocked by userid

• AMQ9777: Channel was blocked

• MQJE001: An MQException occurred: Completion Code 2, Reason 2035

• MQJE036: Queue manager rejected connection attempt

You should block access strictly, then add more CHLAUTH rules to control who can access and start
channels.

As a temporary measure, and to troubleshoot the errors listed, complete any of the following steps.

62 Securing IBM MQ

Procedure
• Disable CHLAUTH rules

As a temporary measure, and also to troubleshoot the errors above, you can disable CHLAUTH rules.
The rules can be re-enabled at any time, and if disabling the CHLAUTH rules resolves the connection
issue, you know that this was the cause.

To disable CHLAUTH rules run the following MQSC command:

ALTER QMGR CHLAUTH (DISABLED)

Note that you can also set CHLAUTH to WARN, which allows access and logs the result of the rule.
• Modify or remove CHLAUTH rules

You can also delete or modify the CHLAUTH rule, or rules, causing your problem.

To modify a CHLAUTH rule, you use the SET CHLAUTH command with the ACTION (REPLACE). For
example, to modify the default rule which causes no access to all channels by any MQ-admin users to
WARN, instead of being blocked, run the following MQSC command:

SET CHLAUTH (*) TYPE (BLOCKUSER) USERLIST (*MQADMIN) WARN(YES)
ACTION (REPLACE)

To delete a CHLAUTH rule, you use the SET CHLAUTH command with the ACTION (REMOVE). For
example, to delete the default rule which causes no access to all channels by any MQ-admin users, run
the following MQSC command:

SET CHLAUTH (*) TYPE (BLOCKUSER) USERLIST (*MQADMIN) ACTION (REMOVE)

• Test access using MATCH (RUNCHECK)

You can test the result of your CHLAUTH rules, using the MATCH (RUNCHECK) option of the CHLAUTH
rule. The MATCH (RUNCHECK) option returns the record that is matched by a specific inbound channel
at run time, if that channel connects into this queue manager. You must provide:

– The channel name
– ADDRESS attribute
– SSLPEER attribute, only if the inbound channel uses SSL or TLS
– QMNAME, if the inbound channel is a queue manager channel, or
– CLNTUSER attribute, if the inbound channel is a client channel

The following example runs an MQSC command to check what CHLAUTH rule, with the default rules in
place, results in an MQ-admin user johndoe accessing a channel named CHAN1:

DISPLAY CHLAUTH (CHAN1) MATCH (RUNCHECK) CLNTUSER ('johndoe') ADDRESS
('192.168.1.138')

AMQ8878: Display channel authentication record details.
CHLAUTH(*) TYPE(BLOCKUSER)
USERLIST(*MQADMIN)

For user johndoe, the channel does not run, the user will be blocked due to the BLOCKUSER rule for
*MQADMIN users.

The following example runs an MQSC command to check what CHLAUTH rule, with the default rules in
place, results in user alice who is not an MQ-admin user, accessing a channel named CHAN1:

DISPLAY CHLAUTH (CHAN1) MATCH (RUNCHECK) CLNTUSER ('alice') ADDRESS
('192.168.1.138')

AMQ9783: Channel will run using MCAUSER('alice').

Securing IBM MQ 63

For user alice, the channel runs, and the channel passes alice in as the MCAUSER. The MCAUSER is
the user ID used to check IBM MQ object authorities.

Related reference
SET CHLAUTH
DISPLAYCHLAUTH

Creating new CHLAUTH rules for users
Some common scenarios for users, and example CHLAUTH rules to accomplish these.

Before you begin
Note: The steps in this task require you to run MQSC commands. How you do this varies by platform. See
Administering IBM MQ using MQSC commands.

About this task
There are three default rules for CHLAUTH processing:

• NO ACCESS to all channels by any MQ-admin* users
• NO ACCESS to all SYSTEM.* channels by all users
• ALLOW access to SYSTEM.ADMIN.SVRCONN channel (non MQ-admin users)

The first two rules block access to all channels. The third rule is more specific, and therefore takes
precedence over the other two, if the channel is the SYSTEM.ADMIN.SVRCONN channel, thus allowing
access on that channel.

To create new CHLAUTH rules for users, configure one or more of the following scenarios.

Procedure
• Control access for specific MQ-admin users

a) Set up a server connection channel that is to be exclusively used for an administrative perspective,
that is, to connect from IBM MQ Explorer.

You have a specific channel for this usage, and defined IP address, or addresses, from where you
want connections to be accepted, and access blocked for the 'mqm' ID, if the connection is not
from one of the specified IP addresses.

b) Make a SVRCONN channel for IBM MQ Explorer and MQ-admin users called ADMIN.CHAN.
Run the following MQSC command:

DEFINE CHANNEL (ADMIN.CHAN) CHLTYPE (SVRCONN) TRPTYPE (TCP)

c) For testing, ensure that you have a user defined that is in the MQ-admin group, and one that is not.

For this scenario, mqadm is in the MQ-admin group, and alice is not.
d) Confirm that the default CHLAUTH rules are in place.
e) Add three rules to allow a specific user to access ADMIN.CHAN as MQ-admin from certain IP

addresses:

– Set NOACCESS from any address
– Set BLOCKUSER for this channel to only block user nobody, which overrides the *MQADMIN

BLOCKUSER
– ALLOW access to user mqadm on a specific subnet of addresses, and MAP to mqadm user

authority

To do this, run the following MQSC commands:

SET CHLAUTH (ADMIN.CHAN) TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS)

64 Securing IBM MQ

SET CHLAUTH('ADMIN.CHAN') TYPE(BLOCKUSER) +
DESCR('Rule to override *MQADMIN blockuser on this channel') +
USERLIST('nobody') ACTION(replace)
SET CHLAUTH('ADMIN.CHAN') TYPE(USERMAP) +
CLNTUSER('mqadm') USERSRC(MAP) MCAUSER('mqadm') +
ADDRESS('192.168.1.*') +
DESCR('Allow mqadm as mqadm on local subnet') ACTION(ADD)

At this point, the user mqadm can access and start the ADMIN.CHAN channel, from the specified IP
address range.

f) Optional: You can run the MQSC command MATCH (RUNCHECK) at any time to see the results of
each of these commands:

DISPLAY CHLAUTH (ADMIN.CHAN) MATCH (RUNCHECK) CLNTUSER ('mqadm') ADDRESS
('192.168.1.138')
AMQ8878: Display channel authentication record details.
CHLAUTH(ADMIN.CHAN) TYPE(USERMAP)
ADDRESS(192.168.1.*) CLNTUSER(mqadm)
MCAUSER(mqadm)

DISPLAY CHLAUTH (ADMIN.CHAN) MATCH (RUNCHECK) CLNTUSER ('alice') ADDRESS
('192.168.1.138')
AMQ8878: Display channel authentication record details.
CHLAUTH(ADMIN.CHAN) TYPE(ADDRESSMAP)
ADDRESS(*) USERSRC(NOACCESS)

At this point, only the users that have a CHLAUTH record are allowed to access using the
ADMIN.CHAN.

• Control access for a specific user and IBM MQ client application

For this scenario, the default CHLAUTH rules are adequate, assuming IBM MQ authority should be set
for a specific user, to provide the correct IBM MQ authority (using setmqaut).

In this scenario, the authorities are set for a user mqapp1, who is not an MQ-admin user.

a) Use the following MQSC command to make a SVRCONN channel, APP1.CHAN, to be used by a
particular application and a specific user.

DEFINE CHANNEL (APP1.CHAN) CHLTYPE (SVRCONN) TRPTYPE (TCP)

b) With the default CHLAUTH rules in place, user mqapp1 can start the APP1.CHAN channel.

The user ID coming from the IBM MQ client application is used for IBM MQ object authority
checking. In this case, assuming the mqapp1 user is running the IBM MQ client app, this is used
for IBM MQ object authority checking. Therefore, if mqapp1 has access to the IBM MQ objects the
application needs, all is fine; if not you will get authority errors.

You can further increase security by creating specific CHLAUTH rules for the mqapp1 user Id but,
under the default rules, no member of the MQ-admin group can access this channel.

Run the following MQSC commands:

SET CHLAUTH (APP1.CHAN) TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS)
SET CHLAUTH('APP1.CHAN') TYPE(USERMAP) +
CLNTUSER('mqapp1') USERSRC(MAP) MCAUSER('mqapp1') +
DESCR('Allow mqapp1 as mqapp1 on local subnet') ACTION(ADD)

• Control access for a specific user by using the certificate distinguished name (DN) of that user

For this scenario, the user must have a certificate that is flowed to the queue manager. The DN is
then matched against the SSLPEER setting of the CHLAUTH rule, and the SSLPEER can use wildcard
characters.

Securing IBM MQ 65

If matched, the user can also be mapped to a different MCAUSER for purposes of checking the IBM MQ
object authorities. Mapping the MCAUSER can minimize the number of users that need to be managed
in the IBM MQ object authority manager (OAM).

a) You have a TLS channel with certificates in use, and you require rules to:

– Block all users for a particular channel
– Allow only users with a particular SSLPEER who use the client of that user for IBM MQ OAM

access.

Run the following MQSC commands:

.
block all users on any IP address.
SET CHLAUTH('SSL1.SVRCONN') TYPE(ADDRESSMAP) ADDRESS('*')
USERSRC(NOACCESS) DESCR(''block all'') WARN(NO) ACTION(ADD)
.
override - no MQM admin rule (allow mqm group /mqm admin users to
connect.
SET CHLAUTH('SSL1.SVRCONN') TYPE(BLOCKUSER) USERLIST('nobody')
DESCR('override no mqm admin rule') WARN(NO) ACTION(ADD)
.
allow particular SSLPEER, use client id coming in from channel
SET CHLAUTH('SSL1.SVRCONN') TYPE(SSLPEERMAP)
SSLPEER('CN=JOHNDOE,O=IBM,C=US') USERSRC(CHANNEL) ACTION(ADD)

The client user ID connecting on the channel is used for the IBM MQ OAM authority of IBM MQ
objects; therefore the user Id must have appropriate IBM MQ authorities.

b) Optional: Map to a different IBM MQ user ID.

Rerun the previous MQSC command, substituting USERSRC(MAP) MCAUSER('mquser1') for
USERSRC(CHANNEL).

• Map a particular user to the mqm user

This is an addition or modification to Control access for specific MQ-admin users.

Use MQSC commands to add the following CHLAUTH rule to map particular users to the mqm user, or
an MQ-admin user Id, that has IBM MQ object authority setup in the IBM MQ OAM.

SET CHLAUTH('ADMIN.CHAN') TYPE(USERMAP) +
CLNTUSER ('johndoe') USERSRC(MAP) MCAUSER ('mqm') +
ADDRESS('192.168.1-100.*') +
DESCR ('Allow johndoe as MQ-admin on local subnet') ACTION (ADD)

This allows and maps the johndoe user over to the mqm user for the particular channel ADMIN.CHAN.

Related concepts
“Creating new CHLAUTH rules for channels” on page 66
To help you create your own CHLAUTH rules, here are some common scenarios for channels, and example
CHLAUTH rules to accomplish these.
Related tasks
“Resolving CHLAUTH access issues” on page 62
Steps and examples to resolve certain access issues when using channel authentication records
(CHLAUTH).
Related reference
SET CHLAUTH
DISPLAYCHLAUTH

Creating new CHLAUTH rules for channels
To help you create your own CHLAUTH rules, here are some common scenarios for channels, and example
CHLAUTH rules to accomplish these.

This topic contains the following scenarios:

66 Securing IBM MQ

• “Only allow access to a particular channel from a specific IP address range.” on page 67
• “For a specific channel, block all users, but allow specific users to connect.” on page 67
• “Using CHLAUTH for receiver and sender channels” on page 68

Only allow access to a particular channel from a specific IP address range.
For this scenario you want to:

• Set No access to the channel from anywhere
• Allow access from a specific IP address or address range

runmqsc:
SET CHLAUTH('APP2.CHAN') TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS)
WARN(NO) ACTION(ADD)
SET CHLAUTH('APP2.CHAN') TYPE(ADDRESSMAP) ADDRESS('9.95.100.1-5')
USERSRC(MAP) MCAUSER('mqapp2') ACTION(ADD)

This allows only the APP2.CHAN channel to be started when the connection comes from the specific IP
address range specified.

The user connecting as MCAUSER is mapped to mqapp2, and therefore gets the IBM MQ OAM authority
for that user.

For a specific channel, block all users, but allow specific users to connect.
There are three default rules for CHLAUTH processing:

• NO ACCESS to all channels by any MQ-admin* users
• NO ACCESS to all SYSTEM.* channels by all users
• ALLOW access to SYSTEM.ADMIN.SVRCONN channel (non MQ-admin users)

The first two rules block access to all channels. The third rule is more specific, and therefore takes
precedence over the other two, if the channel is the SYSTEM.ADMIN.SVRCONN channel, thus allowing
access on that channel.

For this scenario, the access to the channel MY.SVRCONN has the default CHLAUTH rules in place.

You need to add the following:

block all users
SET CHLAUTH('MY.SVRCONN') TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS)
DESCR(''block all'') WARN(NO) ACTION(ADD)

override - no MQM admin rule
SET CHLAUTH('MY.SVRCONN') TYPE(BLOCKUSER) USERLIST('nobody') DESCR('override
no mqm admin rule') WARN(NO) ACTION(ADD)

allow johndoe userid
SET CHLAUTH('MY.SVRCONN') TYPE(USERMAP) CLNTUSER('johndoe')
USERSRC(CHANNEL) DESCR('allow johndoe userid') ACTION(ADD)

This first part of the code blocks anyone from connecting on MY.SVRCONN, then the code allows only the
MY.SVRCONN channel to be started when the connection comes from the specific user Id johndoe.

The user connecting on the channel johndoe is used for the IBM MQ OAM authority of IBM MQ objects.
Therefore, the user Id must have the appropriate IBM MQ authorities.

You can map to a different IBM MQ user Id if you want to, by using:

USERSRC(MAP) MCAUSER('mquser1')

instead of USERSRC(CHANNEL).

Securing IBM MQ 67

Using CHLAUTH for receiver and sender channels
You can use CHLAUTH rules to add extra security to receiver and sender channels, to restrict access to
the receiver channel. Note, that if you are adding or making changes to CHLAUTH rules, the updated
CHLAUTH rules only apply when starting the channel, so if the channels are already running, you need to
stop and restart them, for the CHLAUTH updates to apply.

CHLAUTH rules can be used on any channel, but there are some restrictions. For example, USERMAP
rules apply to SVRCONN channels only.

This example allows a connection from a particular IP address only, to start the TO.MYSVR1 channel:

First you could lock down the channel by disallowing all
for channel 'TO.MYSVR1', RCVR channel
SET CHLAUTH('TO.MYSVR1') TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS)
DESCR('Back-stop rule')

Then you could allow this channel to be started
SET CHLAUTH('TO.MYSVR1') TYPE(ADDRESSMAP) ADDRESS('192.168.1.134') USERSRC(MAP)
MCAUSER('mqapp') ACTION(ADD)

This example allows the connection from a particular queue manager only:

Lock down all access:
SET CHLAUTH('TO.MYSVR1') TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS)
DESCR('Back-stop rule')

Then allow access from queue manager MYSVR2 and from a particular ipaddress:
SET CHLAUTH('TO.MYSVR1') TYPE(QMGRMAP) QMNAME('MYSVR2') USERSRC(MAP)
MCAUSER('mqapp') ADDRESS('192.168.1.134') ACTION(ADD)

Related tasks
“Resolving CHLAUTH access issues” on page 62
Steps and examples to resolve certain access issues when using channel authentication records
(CHLAUTH).
“Creating new CHLAUTH rules for users” on page 64
Some common scenarios for users, and example CHLAUTH rules to accomplish these.
Related reference
SET CHLAUTH
DISPLAYCHLAUTH

Creating a CHLAUTH back-stop rule
When thinking about the control of inbound connections into your queue manager you have two options.
Either you can try to list all the connections that are not allowed, or you can start by saying all connections
are not allowed, and then try to list all the connections that are allowed. This second option is described
here.

About this task
The reason for using the second option is, that if you try to list all the connections that are not allowed,
and everything not listed is therefore allowed in, the result of missing one off the list is that a connection
that should not have been allowed is able to connect, causing a potential security breach.

Conversely, if instead, you start by saying every connection is not allowed, and then list those that are,
the result of missing one off this list is not a security breach. If your enterprise requires additional
connections to be added, this is a relatively simple task, but there is no potential security breach.

The first thing to do is create a back-stop rule, which is a rule that catches any connections not otherwise
matched by more specific rules. This rule has the effect of stopping any remote connections from being
able to attach to your queue manager at all.

68 Securing IBM MQ

However, if you are concerned about this approach, you can set up the back-stop rule in warning mode;
see step “2” on page 69

Procedure
1. To create a back-stop rule that stops remote connections attaching to your queue`manager, issue the

following command:

SET CHLAUTH('*') TYPE(ADDRESSMAP) ADDRESS('*')
USERSRC(NOACCESS) DESCR('Back-stop rule')

Now that you have closed the door on all remote connections, you can start to put more specific rules
in place to allow certain connections in. For example:

SET CHLAUTH('APPL1.SVRCONN') TYPE(ADDRESSMAP) ADDRESS('9.20.1-3.*') USERSRC(CHANNEL)
SET CHLAUTH('SYSTEM.ADMIN.*') TYPE(SSLPEERMAP) SSLPEER('O=IBM') USERSRC(CHANNEL)
SET CHLAUTH('TO.QM2') TYPE(QMGRMAP) QMNAME('QM1') USERSRC(MAP) MCAUSER('QM1USER')
SET CHLAUTH('*.SVRCONN') TYPE(USERMAP) CLNTUSER('johndoe') MCAUSER('johndoe@yourdomain')
SET CHLAUTH('*') TYPE(SSLPEERMAP) SSLPEER('CN="John Doe"') ADDRESS('9.*') MCAUSER('johndoe')

2. If you want to create the back-stop rule in warning mode, issue the following command:

SET CHLAUTH('*') TYPE(ADDRESSMAP) ADDRESS('*')
USERSRC(NOACCESS) DESCR('Back-stop rule') WARN(YES)

Now you can continue, and make all your positive rules. When you believe you have created all the
rules you need, turn on channel events by issuing the following command:

ALTER QMGR CHLEV(EXCEPTION)

and monitor the SYSTEM.ADMIN.CHANNEL.EVENT queue for events with Reason set to
MQRC_CHANNEL_BLOCKED_WARNING.

These events detail the connections that have matched your back-stop rule, but because the
command is running in warning mode, have not actually been blocked for the moment.

Review each of these events and determine whether this connection should have a positive rule in
place to allow it in, or whether it has correctly been matched against the back-stop rule. You can run
in this mode, reviewing the events as they are created, until you are happy that you have seen all the
inbound channels, and have appropriate positive rules in place for them all.

At this point, you can change the back-stop rule to start really blocking connections that it matches by
issuing the following command:

SET CHLAUTH('*') TYPE(ADDRESSMAP) ADDRESS('*')
USERSRC(NOACCESS) DESCR('Back-stop rule') WARN(NO)
ACTION(REPLACE)

Creating a non-privileged IBM MQ administrator
How you create a non-privileged IBM MQ administrator using CHLAUTH.

About this task
In the context of this task, the terms:
privileged user

Means a user that has authorization to perform an operation without being explicitly granted access to
do that operation. The users in the mqm group are examples of these privileged users.

IBM MQ administrator
Means a user who has a need to issue administrative commands against IBM MQ, such as DEFINE
QLOCAL or START CHANNEL.

The following steps create a non-privileged IBM MQ administrator.

Securing IBM MQ 69

Procedure
1. Create a user ID on the queue manager machine using the appropriate commands for the platform, or

platforms, your enterprise uses.
The user name alice is used in this example.

2. Grant this new user authority to issue all IBM MQ administrative commands by carrying out the
following procedure:
a) Start up the IBM MQ Explorer using a privileged user.
b) Navigate to the Role Based Wizard by selecting the appropriate queue manager, then Object
Authorities and Add Role Based Authorities.

c) In the wizard panel that pops up, enter the user ID you created in the first step, or if you prefer
to work with groups, enter the group name for the user or set of users that you want to make into
non-privileged IBM MQ administrators.

d) Set up the wizard for full administrative access.
e) If you want to allow your non-privileged IBM MQ administrator to be able to browse messages on

queues, also select that check box.
f) Review the commands in the preview panel at the bottom of the wizard.

You can cut and paste these commands to build your own scripts.

One reason you might prefer to do this with your own script is to reduce the amount of access you
give to this user. Perhaps rather than granting access to all objects, you might prefer to only grant
access to a certain group of objects.

Pressing OK on the wizard issues the commands as they are shown.
g) You need to set up some CHLAUTH rules to allow remote access for this user ID, if the requirement

for a non-privileged IBM MQ administrator is to be for remote access as well.
Assuming that your enterprise is using the guidance in “Creating a CHLAUTH back-stop rule” on
page 68, all you need to do is add an enabling rule.
The rule you create rather depends on how you choose to authenticate your remote IBM MQ
administrators.

If you are using weak TCP/IP authentication, you might set up a CHLAUTH rule which looks like the
following:

 SET CHLAUTH(admin-channel-name) TYPE(ADDRESSMAP)
ADDRESS('1.2.3.4') USERSRC(MAP) MCAUSER('alice')
DESCR('Admin Channel - Weak TCP/IP authentication')

9. If you are using TLS authentication, you might set up a CHLAUTH rule which looks like the
following:

SET CHLAUTH(admin-channel-name) TYPE(SSLPEERMAP)
SSLPEER('CN=Alice') ADDRESS('1.2.3.4') USERSRC(MAP) MCAUSER('alice')
DESCR('Admin Channel - TLS authentication'

Now, when a user connects into the admin-channel-name (and matches the CHLAUTH rules)
they are able to issue commands under the user ID alice on the queue manager, and so privileged
remote access is not required.

Connection authentication
Connection authentication allows applications to supply authentication credentials when they connect to
a queue manager. The queue manager validates the credentials. The user ID supplied in the credentials
can also be adopted for use in authorization checks for resources that the application accesses.

Applications can supply a user ID and password for authentication when they connect to a queue
manager.

70 Securing IBM MQ

From IBM MQ 9.3.4, IBM MQ client applications can also supply an authentication token as
an alternative method of authentication.

The queue manager can be configured to validate the credentials that are supplied by the application.

A user ID and password that is supplied by an application is checked by using the user repository in the
queue manager configuration. For more information about the repository that is used for checking user
IDs and passwords, see User repositories.

Authentication tokens are validated by using the certificates and symmetric keys in the
queue manager's token authentication keystore to validate the token's signature. For more information
about authenticating users with authentication tokens, see “Working with authentication tokens” on page
341.

In the diagram, two applications are making connections with a queue manager, one application as a
client and one using local bindings. Applications might use various APIs to connect to the queue manager,
but all have the ability to provide a user ID and a password. The user ID that the application is running
under, User2 and User4 in the diagram, which is the usual operating system user ID presented to IBM
MQ, might be different from the user ID provided by the application, User1 and User3.

The queue manager receives configuration commands (in the diagram, IBM MQ Explorer is being used)
and manages the opening of resources and checks the authority to access those resources. There are
many different resources in IBM MQ that an application might require authority to access. The diagram
illustrates opening a queue for output, but the same principles apply to other resources as well.

Related concepts
“Connection authentication: Configuration” on page 72
A queue manager can be configured to authenticate credentials that are supplied by an application when
it connects.
“Connection authentication: Application changes” on page 76
“Connection authentication: User repositories” on page 77

Securing IBM MQ 71

For each of your queue managers, you can choose different types of authentication information object for
authenticating user IDs and passwords.

Connection authentication: Configuration
A queue manager can be configured to authenticate credentials that are supplied by an application when
it connects.

Turning on connection authentication on a queue manager
On a queue manager object, the CONNAUTH attribute can be set to the name of an authentication
information (AUTHINFO) object. The AUTHTYPE attribute of an AUTHINFO object specifies the type of
the object. AUTHINFO objects that are used for connection authentication can be one of the following two
types:
IDPWOS

The queue manager uses the local operating system to authenticate the user ID and password that is
supplied by a connecting application.

From IBM MQ 9.3.4, this type of AUTHINFO object also
allows a queue manager that runs on AIX or Linux to validate authentication tokens. In addition
to the AUTHINFO object that is used to configure connection authentication, the queue manager must
be configured to accept authentication tokens with the AuthInfo stanza of the qm.ini file. For more
information about configuring a queue manager to accept authentication tokens, see “Configuring a
queue manager to accept authentication tokens” on page 345.

IDPWLDAP
The queue manager uses an LDAP server to authenticate the user ID and password that is supplied by
a connecting application.

Note: You cannot specify any other type of authentication information object in the queue manager's
CONNAUTH attribute.

AUTHINFO objects of type IDPWOS and IDPWLDAP are similar in several of their attributes. The attributes
described here are common to both types of objects.

The following example MQSC commands turn on connection authentication with the following operations:

1. Define an AUTHINFO object named USE.PW.
2. Alter the queue manager CONNAUTH attribute to refer to this AUTHINFO object.
3. Issue the REFRESH SECURITY command to refresh the queue manager's connection authentication

configuration. The REFRESH SECURITY command must be issued before the queue manager
recognizes any changes to the connection authentication configuration.

DEFINE AUTHINFO(USE.PW) +
AUTHTYPE(IDPWOS) +
FAILDLAY(10) +
CHCKLOCL(OPTIONAL) +
CHCKCLNT(REQUIRED)

ALTER QMGR CONNAUTH(USE.PW)

REFRESH SECURITY TYPE(CONNAUTH)

To control whether credentials are checked for connections that are made by locally bound applications,
use the AUTHINFO attribute CHCKLOCL (check local connections). To control whether credentials are
checked for connections that are made by client applications, use the AUTHINFO attribute CHCKCLNT
(check client connections).

CHCKLOCL accepts the values of NONE and OPTIONAL, and CHCKCLNT allows the value of NONE for the
authentication requirements to be configured:
NONE

Authentication credentials that are supplied by applications are not checked.

72 Securing IBM MQ

OPTIONAL
Ensures that any credentials that are provided by an application are valid. However, it is not
mandatory for applications to provide authentication credentials. This option might be useful during
migration, for example.

Important: OPTIONAL is the minimum value that you can set if you also want to set a more restrictive
option in channel authentication (CHLAUTH) rules.

If you select NONE and the client connection matches a CHLAUTH record with CHCKCLNT set to
REQUIRED (or REQDADM on platforms other than z/OS), the connection fails. You receive message
AMQ9793 on platforms other than z/OS, and message CSQX793E on z/OS.

For more information about using channel authentication rules to set more restrictive CHCKCLNT
options for some client connections, see “Configuration granularity” on page 73.

REQUIRED
Requires that all applications provide valid credentials. See also the following note.

REQDADM
Privileged users must supply valid credentials, but non-privileged users are treated as with the

OPTIONAL setting. See also the following note. (This setting is not allowed on z/OS
systems.)

Note:

Setting CHCKLOCL to REQUIRED or REQDADM means that you cannot locally administer the queue
manager by using runmqsc (error AMQ8135: Not authorized) unless the user specifies the -u parameter
to specify the user ID in the runmqsc command. With that parameter set, runmqsc prompts for the
user's password at the console.

Similarly, a user that runs IBM MQ Explorer on the local system will see error AMQ4036 when attempting
to connect to the queue manager. To specify a user ID and password, right-click the local queue manager
object and select Connection Details > Properties... from the menu. In the Userid section, enter the user
ID and password to be used, then click OK.

Similar considerations apply to remote connections with CHCKCLNT.

The queue manager CONNAUTH attribute is blank for queue managers that are migrated from versions
earlier than IBM MQ 8.0, but is set to SYSTEM.DEFAULT.AUTHINFO.IDPWOS for newly created queue
managers. This default AUTHINFO definition has CHCKCLNT set to REQDADM by default.

Therefore, any existing clients that use a privileged user ID to connect must provide valid credentials.

Warning: The credentials in an MQCSP structure for a client application are sometimes sent across the
network in plain text. To ensure that client credentials are protected, see “MQCSP password protection”
on page 31.

Configuration granularity
The AUTHINFO object's CHCKLOCL and CHCKCLNT attributes set authentication requirements for all
connections to the queue manager. In addition to these attributes, the CHCKCLNT attribute on channel
authentication (CHLAUTH) rules allow more stringent authentication requirements to be set for specific
client connections that match the CHLAUTH rule.

You can set the overall CHCKCLNT value to OPTIONAL, for example, on the AUTHINFO object, and then
upgrade it to be more stringent for certain channels by setting CHCKCLNT to REQUIRED or REQDADM on
the CHLAUTH rule. By default, CHLAUTH rules are defined with CHCKCLNT(ASQMGR), so this granularity
does not have to be used. For example, these MQSC commands define one CHLAUTH rule that overrides
the AUTHINFO object's CHCKCLNT attribute, and one CHLAUTH rule that does not:

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx) +
CHCKCLNT(OPTIONAL)

SET CHLAUTH('*') TYPE(ADDRESSMAP) +
ADDRESS('*') USERSRC(CHANNEL) +
CHCKCLNT(REQUIRED)

Securing IBM MQ 73

SET CHLAUTH('*') TYPE(SSLPEERMAP) +
SSLPEER('CN=*') USERSRC(CHANNEL)

For more information about CHLAUTH rules, see “Channel authentication records” on page 51.

Error notification

An error is recorded in the following situations:

• An application does not supply authentication credentials when they are required.
• An application supplies invalid authentication credentials. This situation is treated as an error even if the

configuration states that it is optional for applications to supply credentials.

Note: When CHCKLOCL or CHCKCLNT is set to NONE, invalid credentials that are supplied by applications
are not detected.

Failed authentications are held for the number of seconds specified by the FAILDLAY attribute before the
error is returned to the application. This delay provides some protection from an application repeatedly
trying to connect.

The error is recorded in several ways:
Application

An MQRC_NOT_AUTHORIZED (2035) reason code is returned to the application.
Administrator

An IBM MQ administrator sees the event reported in the error log. The error message shows that the
connection is rejected because the credentials are invalid, rather than because, for example, the user
does not have connection authority.

Monitoring tool
A monitoring tool can also be notified of the failure, if you turn on authority events, by an event
message on the SYSTEM.ADMIN.QMGR.EVENT queue. To turn on authority events, issue the following
MQSC command:

ALTER QMGR AUTHOREV(ENABLED)

74 Securing IBM MQ

This "Not Authorized" event is a Type 1 connect event, and provides the same fields as other Type
1 events, with an extra field, the MQCSP user ID that was provided. If the application supplied a
password, it is not included in the event message. This means that there are two user IDs in the event
message:

• The user ID that the application is running under.
• The user ID in the credentials that the application presented.

For more information about this event message, see Not Authorized (type 1).

Adopting users for authorization

You can configure the queue manager to adopt the credentials that are presented by the application
as the context for the connection. Adopting the credentials means that the user ID supplied in the
authentication credentials is used for authorization checks, shown on administrative displays, and
appears in messages. The ADOPTCTX attribute on the AUTHINFO object controls whether credentials
are adopted as the context for the application. For example, the following MQSC commands define
an AUTHINFO object that is named USE.PWD that is used for connection authentication, and set the
ADOPTCTX attribute to YES:

DEFINE AUTHINFO(USE.PWD) +
AUTHTYPE(xxxxxx) +
CHCKLOCL(OPTIONAL) +
CHCKCLNT(REQUIRED) +
ADOPTCTX(YES)

ALTER QMGR CONNAUTH(USE.PWD)

The following values can be specified for the ADOPTCTX attribute:
ADOPTCTX(YES)

The credentials that are supplied by the application are adopted as the application context for the
duration of the connection. All authorization checks for an application are made with the user ID in the
credentials that were authenticated.

Attention: When using ADOPTCTX(YES) and local operating system user IDs, you must ensure
that the user ID being adopted meets the requirements for user IDs in IBM MQ. For more
information, see “User IDs” on page 88.

Securing IBM MQ 75

ADOPTCTX(NO)
Credentials that are supplied by an application are used only for authentication at connection time.
The user ID that the application is running under continues to be used for future authorization checks.
You might find this option useful when migrating, or if you plan to use other mechanisms, such as
channel authentication records, to assign the message channel agent user identifier (MCAUSER).

Interaction with Channel Authentication
Channel authentication rules can be used to change the user ID that is used as the context for an
application connection, based on the user ID received from the client. For an example of using a channel
authentication rule to change the user ID associated with a connection, see “Mapping a client user ID to
an MCAUSER user ID” on page 398.

The order in which connection authentication and channel authentication rules are processed is a
significant factor in determining the security context for IBM MQ client application connections. The
ChlauthEarlyAdopt parameter in the channels stanza of the qm.ini file controls the order in which
the queue manager adopts the context from credentials that are supplied by the application, and applies
channel authentication rules. For more information about ChlauthEarlyAdopt, see Attributes of the
channels stanza.

Attention: When you use the ADOPTCTX(YES) parameter on the authentication information
object, the context that is adopted from the credentials that are supplied by the application can be
changed by channel authentication rules only if the ChlauthEarlyAdopt parameter is set to Y.

For more information about the interaction of connection authentication and channel authentication,
and the order in which checks take place when a client application connects to a queue manager, see
“Interaction of CHLAUTH and CONNAUTH” on page 57.

Related concepts
“Connection authentication” on page 70
Connection authentication allows applications to supply authentication credentials when they connect to
a queue manager. The queue manager validates the credentials. The user ID supplied in the credentials
can also be adopted for use in authorization checks for resources that the application accesses.
“Connection authentication: Application changes” on page 76
“Connection authentication: User repositories” on page 77
For each of your queue managers, you can choose different types of authentication information object for
authenticating user IDs and passwords.

Connection authentication: Application changes
An application that uses the message queue interface (MQI) can provide a user ID and password in
the connection security parameters (MQCSP) structure when MQCONNX is called. In other application
programming interfaces, the MQCSP structure is typically constructed on behalf of the application by the
IBM MQ libraries.

From IBM MQ 9.3.4, client applications that connect to a queue manager that runs on AIX or
Linux systems can also send an authentication token in the MQCSP structure as an alternative means of
identification.

The user ID and password, or authentication token, are passed for checking to the object authority
manager (OAM) supplied with the queue manager, or the authorization service component supplied with
the queue manager on z/OS systems. You do not have to write your own custom interface.

If the application is running as a client, the user ID and password, or authentication token, is also passed
to the client-side and server-side security exits for processing. They can also be used to set the message
channel agent user identifier (MCAUSER) attribute of a channel instance.

Warning: The credentials in an MQCSP structure for a client application are sometimes sent across the
network in plain text. To ensure that client application credentials are protected, see “MQCSP password
protection” on page 31.

76 Securing IBM MQ

By using the XAOPEN string to provide a user ID and password, you can avoid having to change the
application code.

Note:

From IBM WebSphere MQ 6.0, the security exit allows the MQCSP to be set. Therefore, clients at this level
or later do not have to be upgraded.

However, in versions of IBM MQ prior to IBM MQ 8.0, MQCSP placed no restrictions on the user ID and
password that were provided by the application. When using these values with features provided by IBM
MQ there are limits which apply to the use of these features, but if you are only passing them to your own
exits, those limits do not apply.

Related concepts
“Connection authentication” on page 70
Connection authentication allows applications to supply authentication credentials when they connect to
a queue manager. The queue manager validates the credentials. The user ID supplied in the credentials
can also be adopted for use in authorization checks for resources that the application accesses.
“Connection authentication: Configuration” on page 72
A queue manager can be configured to authenticate credentials that are supplied by an application when
it connects.
“Connection authentication: User repositories” on page 77
For each of your queue managers, you can choose different types of authentication information object for
authenticating user IDs and passwords.

Connection authentication: User repositories
For each of your queue managers, you can choose different types of authentication information object for
authenticating user IDs and passwords.

Figure 7. Types of authentication information objects

DEFINE AUTHINFO(USE.OS) AUTHTYPE(IDPWOS)
DEFINE AUTHINFO(USE.LDAP) +
AUTHTYPE(IDPWLDAP) +
CONNAME('ldap1(389),ldap2(389)') +

Securing IBM MQ 77

LDAPUSER('CN=QMGR1') +
LDAPPWD('passw0rd') SECCOMM(YES)

There are two types of authentication information object, as represented in the diagram:

• IDPWOS is used to indicate that the queue manager uses the local operating system to authentication
the user ID and password. If you choose to use the local operating system, you need to set the common
attributes, as described in the preceding topics.

• IDPWLDAP is used to indicate that the queue manager uses an LDAP server to authenticate the user ID
and password. If you choose to use an LDAP server, more information is provided in this topic.

Only one type of authentication information object can be chosen for each queue manager to use, by
naming the appropriate object in the queue manager's CONNAUTH attribute.

Using an LDAP server for authentication.
Set the CONNAME field to the address of the LDAP server for the queue manager. You can provide more
addresses for the LDAP server in a comma-separated list, which can help with redundancy if the LDAP
server does not provide this facility itself.

Set the required LDAP server ID and password in the LDAPUSER and LDAPPWD fields so that the queue
manager can access the LDAP server and look up information about user records.

Secure connection to an LDAP Server
Unlike channels, there is no SSLCIPH parameter to turn on the use of TLS for communication with the
LDAP server. In this case IBM MQ is acting as a client to the LDAP server so much of the configuration is
done at the LDAP server. Some existing parameters in IBM MQ are used to configure how that connection
works.

Set the SECCOMM field to control whether connectivity to the LDAP server uses TLS.

In addition to this attribute, the queue manager attributes SSLFIPS and SUITEB restrict the set of cipher
specs that are chosen. The certificate that is used to identify the queue manager to the LDAP server is the
queue manager certificate, either ibmwebspheremq qmgr-name or the value of the CERTLABL attribute.
See Digital certificate labels for details.

LDAP User Repository
When using an LDAP user repository, there is some more configuration to be done on the queue manager
other than just to tell the queue manager where to find the LDAP server.

User IDs defined in an LDAP server have a hierarchical structure that uniquely identifies them. Therefore,
an application can connect to the queue manager and present its user ID as the fully qualified hierarchical
user ID.

However, to simplify the information that an application must provide, it is possible to configure the queue
manager to assume that the first part of the hierarchy is common to all IDs, and to automatically add this
before the shortened ID provided by the application. The queue manager can then present a complete ID
to the LDAP server.

Set BASEDNU to the initial point that the LDAP search looks for the ID in the LDAP hierarchy. When you
set BASEDNU, you must ensure that only one result is returned when you search for the ID in the LDAP
hierarchy.

78 Securing IBM MQ

Figure 8. An example LDAP hierarchy

For example, in Figure 8 on page 79 BASEDNU can be set to "ou=users,o=ibm,c=UK" or ",o=ibm,c=UK".
However, because a distinguished name that contains "cn=useradm" exists in both the "o=ibm" branch
and the "o=Company" branch, BASEDNU cannot be set to "c=UK". For performance and security reasons,
use the highest point in your LDAP hierarchy that from which you can reference all of the userids that you
need. In this example, that is "ou=users,o=ibm,c=UK".

Your application might submit to the queue manager the user ID without providing the LDAP attribute
name, CN= for example. If you set USRFIELD to the LDAP attribute name, this value is added as a prefix
to the user ID that comes from the application. This might be a useful migratory aid when you move from
operating system user IDs to LDAP user IDs, as the application can then present the same string in both
cases and you can avoid changing the application.

Therefore, the complete user ID presented to the LDAP server looks like this:

USRFIELD = ID_from_application BASEDNU

Related concepts
“Connection authentication” on page 70
Connection authentication allows applications to supply authentication credentials when they connect to
a queue manager. The queue manager validates the credentials. The user ID supplied in the credentials
can also be adopted for use in authorization checks for resources that the application accesses.
“Connection authentication: Configuration” on page 72
A queue manager can be configured to authenticate credentials that are supplied by an application when
it connects.
“Connection authentication: Application changes” on page 76

Client side security exit to insert user ID and password (mqccred)
If you have any client applications that are required to send a user ID or password but you are unable to
change the source yet, there is a security exit shipped with IBM MQ 8.0 called mqccred that you can use.
mqccred provides a user ID and password on behalf of the client application, from a .ini file. This user
ID and password are sent to the queue manager which, if configured to do so, will authenticate them.

Overview
mqccred is a security exit that runs on the same machine as your client application. It allows user ID
and password information to be supplied on behalf of the client application, where that information is not
being supplied by the application itself. The user ID and password information is supplied in a structure
known as the Connection Security Parameters (MQCSP) and will be authenticated by the queue manager
if connection authentication is configured.

Securing IBM MQ 79

User ID and password information is retrieved from a .ini file on the client machine. The passwords
in the file are protected by obfuscation using the runmqccred command, and also by ensuring the
file permissions on the .ini file are set such that only the user ID running the client application (and
therefore the exit) are able to read it.

Location
mqccred is installed:
Windows platforms

In the installation_directory\Tools\c\Samples\mqccred\ directory
AIX and Linux platforms

In the installation_directory/samp/mqccred directory

Notes: The exit:

1. Acts purely as a security channel exit, and needs to be the only such exit defined on a channel.
2. Is usually named through the Client Channel Definition Table (CCDT), but a Java client can have the

exit mentioned in the JNDI objects directly, or the exit might be configured for applications that
manually construct the MQCD structure.

3. You must copy the mqccred and mqccred_r programs to the var/mqm/exits directory.

For example, on a 64 bit AIX or Linux system, issue the command:

cp installation_directory/samp/mqccred/lib64/* /var/mqm/exits

See A step by step example of how to test mqccred for more information.
4. Is capable of running on previous versions of IBM MQ, as far back as IBM WebSphere MQ 7.0.1.

Setting up user IDs and passwords
The .ini file contains stanzas for each queue manager, with a global setting for unspecified queue
managers. Each stanza contains the name of the queue manager, a user ID, and either a plain text or
obfuscated password.

You must edit the .ini file by hand, using whichever editor you want, and add the plain text password
attribute to the stanzas. Run the provided, runmqccred program, which takes the .ini file and replaces
the Password attribute with the OPW attribute, an obfuscated form of the password.

See runmqccred for a description of the command and its parameters.

The mqccred.ini file contains your user ID and password information.

A template .ini file is provided in the same directory as the exit to provide a starting point for your
enterprise.

By default, this file will be looked for in $HOME/.mqs/mqccred.ini. If you would like to locate it
elsewhere, you can use the environment variable MQCCRED to point at it:

MQCCRED=C:\mydir\mqccred.ini

If you use MQCCRED, the variable must include the full name of the configuration file, including any .ini
filetype. Since this file contains passwords (even if obfuscated), you are expected to protect the file using
operating system privileges to ensure unauthorized people cannot read it. If you do not have the correct
file permission, the exit will not run successfully.

If the application has already supplied an MQCSP structure, the exit normally respects this and will not
insert any information from the .ini file. However, you can override this by using the Force attribute in
the stanza.

Setting Force to the value TRUE removes the application-supplied user ID and password, and replaces
those with the ini file version.

80 Securing IBM MQ

https://www.ibm.com/mysupport/s/question/0D50z000062kvWHCAY/can-you-provide-a-stepbystep-example-of-how-to-test-the-mqccred-security-exit-provided-with-mq-v8-to-pass-the-user-id-and-password-for-a-mq-client-program

You can also set the Force attribute in the global section of the file to set the default value of that file.

The default value for Force is FALSE.

You can provide a user ID and password for all queue managers, or for each individual queue manager.
This is an example of an mqccred.ini file:

comments are permitted
AllQueueManagers:
User=abc
OPW=%^&aervrgtsr

QueueManager:
Name=QMA
User=user1
OPW=H&^dbgfh

Force=TRUE

QueueManager:
Name=QMB
User=user2
password=passw0rd

Notes:

1. The individual queue manager definitions take precedence over the global setting.
2. Attributes are case insensitive.

Constraints
When this exit is in use, the local user ID of the person running the application does not flow from the
client to the server. The only identity information available is from the ini file contents.

Therefore, you must configure the queue manager to either use ADOPTCTX(YES), or map the inbound
connection request to an appropriate user ID through one of the available mechanisms, for example,
“Channel authentication records” on page 51.

Important: If you add new passwords, or update old ones, the runmqccred command only processes
any plain text passwords, leaving your obfuscated ones untouched.

Debugging
The exit writes to the standard IBM MQ trace when that is enabled.

To assist in debugging configuration issues, the exit can also write directly to stdout.

No channel security exit data (SCYDATA) configuration is normally required for the channel. However,
you can specify:
ERROR

Only print information abut error conditions, such as not being able to find the configuration file.
DEBUG

Displays these error conditions, and some additional trace statements.
NOCHECKS

Bypasses the constraints on file permissions, and the further constraint that the .ini file should not
contain any unprotected passwords.

You can put one or more of these elements into the SCYDATA field, separated by commas, in any order.
For example, SCYDATA=(NOCHECKS,DEBUG).

Note that the items are case-sensitive, and must be entered in uppercase.

Securing IBM MQ 81

Using mqccred
Once you have your file set up, you can invoke the channel exit by updating your client-connection
channel definition to include the SCYEXIT('mqccred(ChlExit)') attribute:

DEFINE CHANNEL(channelname) CHLTYPE(clntconn) +
CONNAME(remote machine) +
QMNAME(remote qmgr) +
SCYEXIT('mqccred(ChlExit)') +
REPLACE

Related reference
SCYDATA
SCYEXIT
runmqccred

Connection authentication with the Java client
Connection authentication is a feature in IBM MQ that enables you to configure queue managers so that
the queue manager can authenticate applications using a provided user ID and password. When the
application is a Java application that is using client transport, connection authentication can be run in
compatibility mode or MQCSP authentication mode.

The user ID and password to be authenticated is specified by the application using one of the following
methods:

• In an IBM MQ classes for Java application, in the MQEnvironment class, or the properties Hashtable
that is passed to the com.ibm.mq.MQQueueManager constructor.

• In an IBM MQ classes for JMS application, as arguments to the createConnection(String
username, String Password) or createContext(String username, String password)
method.

MQCSP authentication mode
In this mode, the client-side user ID that the application runs under is sent to the queue manager, as well
as the user ID and password to be authenticated. The IBM MQ classes for Java and IBM MQ classes for
JMS send the user ID and password to be authenticated to the queue manager in an MQCSP structure.

The user ID and password are available to a server-connection security exit within the MQCSP structure.
The MQCSP structure address can be found in the SecurityParms field of the MQCXP structure for the
channel.

MQCSP authentication mode has the following benefits:

• The maximum length of the user ID to be authenticated is 1024 characters.
• The maximum length of the password for authentication is 256 characters.
• Authorization checks for access to use IBM MQ resources can be performed using the client-side user

ID that the application runs under, when the authentication information object that is used to control
connection authentication on the queue manager is configured with ADOPTCTX(NO).

Compatibility mode
Before IBM MQ 8.0, the Java client could send a user ID and password across the client-connection
channel to the server-connection channel, and have them provided to a security exit in the
RemoteUserIdentifier and RemotePassword fields of the MQCD structure. In compatibility mode,
this behavior is retained.

You might use this mode in combination with connection authentication, and migrate away from any
security exits that were previously used to do the same job.

This mode has the following restrictions:

82 Securing IBM MQ

• The length of the user ID and password must be 12 characters or less. User IDs longer than 12
characters are truncated to 12 characters. This might cause the connection to fail with reason code
MQRC_NOT_AUTHORIZED.

• The client-side user ID that the application runs under is not sent to the queue manager. You must
either set ADOPTCTX(YES) on the authentication information object that is used to control connection
authentication on the queue manager, or use another method, such as a channel authentication rule
based on a TLS certificate, to set the channel MCA user ID that is checked for authorization to use IBM
MQ resources.

Default authentication mode
The default authentication mode that is used by an IBM MQ classes for Java or IBM MQ classes for JMS
client application varies depending on whether the application specifies a user ID and a password.

• From IBM MQ 9.2.1, if a user ID and password is specified, MQCSP authentication is used
by default.

• In versions earlier than IBM MQ 9.2.1, if a user ID and password is specified, the default mode is as
follows:

– MQCSP authentication is used by default by applications that use IBM MQ classes for Java.
– Compatibility mode is used by default by applications that use IBM MQ classes for JMS.

• If a user ID, but no password is specified, compatibility mode is used by default.
• If no user ID is specified, compatibility mode is always used.

In cases where a user ID is specified, a specific authentication mode can be chosen by the application for
each individual connection, or set globally before the application is started, as described in “Choosing the
authentication mode” on page 83.

Note: Applications that use the IBM MQ classes for JMS might be affected by the change
to the default authentication mode in IBM MQ 9.3.0. After upgrading the IBM MQ classes for JMS to IBM
MQ 9.3.0, applications that previously used compatibility mode by default will use MQCSP authentication
instead. This might cause applications that previously connected successfully to a queue manager to
fail to connect with a JMSException containing reason code 2035 (MQRC_NOT_AUTHORIZED). If this
occurs, use one of the methods described in “Choosing the authentication mode” on page 83 to specify
that the application uses compatibility mode.

Java applications that connect to the queue manager using local bindings always use MQCSP
authentication mode.

Choosing the authentication mode
The authentication mode that is used by Java client applications that specify a user ID when connecting
to the queue manager can be specified by using one of the following methods. These methods are
listed in decreasing order of precedence. If the authentication mode is not specified using any of these
methods, then the default authentication mode is used.

Note: The use of these methods to select the authentication mode has been clarified in
IBM MQ 9.3.0. In some cases, the authentication mode used by a Java client application might change
when the IBM MQ classes for Java or IBM MQ classes for JMS are upgraded to IBM MQ 9.3.0. This might
cause applications that previously connected successfully to a queue manager to fail to connect with a
JMSException containing reason code 2035 (MQRC_NOT_AUTHORIZED). If this occurs, use one of the
following methods to select the authentication mode that is required.

• Specify the authentication mode for each individual connection by setting the appropriate property in
the application before connecting to the queue manager.

– When using IBM MQ classes for Java, set the property
MQConstants.USE_MQCSP_AUTHENTICATION_PROPERTY in the properties Hashtable that is passed
to the com.ibm.mq.MQQueueManager constructor.

Securing IBM MQ 83

– When using IBM MQ classes for JMS, set the property
JmsConstants.USER_AUTHENTICATION_MQCSP on the appropriate connection factory before
creating the connection.

Set the value of these properties to one of the following values:
true

Use MQCSP authentication mode when authenticating with a queue manager.
false

Use compatibility mode when authenticating with a queue manager.
• Specify the authentication mode for all client connections made by an application by setting the

com.ibm.mq.cfg.jmqi.useMQCSPauthentication Java system property when starting the application. Set
the value of the property to one of the following values:
Y

Use MQCSP authentication mode when authenticating with a queue manager.
N

Use compatibility mode when authenticating with a queue manager.

For example, the following command sets the property to select compatibility mode and starts a Java
application:

java -Dcom.ibm.mq.cfg.jmqi.useMQCSPauthentication=N application_name

• Specify the authentication mode for all client connections made by applications started in the same
environment by setting the com.ibm.mq.jmqi.useMQCSPauthentication environment variable in the
environment where the application is started. Set the value of the environment variable to one of the
following values:
Y

Use MQCSP authentication mode when authenticating with a queue manager.
N

Use compatibility mode when authenticating with a queue manager.
• Specify the authentication mode for all applications that use a specific IBM MQ MQI client client

configuration file by specifying the useMQCSPauthentication attribute in the JMQI stanza of the
client configuration file. Set the value of the attribute to one of the following values:
YES

Use MQCSP authentication mode when authenticating with a queue manager.
NO

Use compatibility mode when authenticating with a queue manager.
For more information about the useMQCSPauthentication attribute, see JMQI stanza of the client
configuration file.

Choosing authentication mode in IBM MQ Explorer
The IBM MQ Explorer is a Java application, so these two modes, compatibility mode and MQCSP
authentication mode, are applicable to it as well.

From IBM MQ 9.1.0, MQCSP authentication mode is the default. Before IBM MQ 9.1, compatibility mode
is the default.

On panels where user identification is provided, there is a check box to enable or disable compatibility
mode:

• From IBM MQ 9.1.0, by default, this check box is not selected. To use compatibility mode, select this
check box.

• Before IBM MQ 9.1.0, by default, this check box is enabled. To use MQCSP authentication, clear the
check box.

84 Securing IBM MQ

Related concepts
“Connection authentication” on page 70
Connection authentication allows applications to supply authentication credentials when they connect to
a queue manager. The queue manager validates the credentials. The user ID supplied in the credentials
can also be adopted for use in authorization checks for resources that the application accesses.
“Connection authentication: Application changes” on page 76
“Connection authentication: User repositories” on page 77
For each of your queue managers, you can choose different types of authentication information object for
authenticating user IDs and passwords.

Message security in IBM MQ
Message security in IBM MQ infrastructure is provided by Advanced Message Security.

Advanced Message Security (AMS) expands IBM MQ security services to provide data signing and
encryption at the message level. The expanded services guarantees that message data has not been
modified between when it is originally placed on a queue and when it is retrieved. In addition, AMS
verifies that a sender of message data is authorized to place signed messages on a target queue.

Related concepts
“Advanced Message Security” on page 604
Advanced Message Security (AMS) is a component of IBM MQ that provides a high level of protection for
sensitive data flowing through the IBM MQ network, while not impacting the end applications.

Planning for your security requirements
This collection of topics explains what you need to consider when planning security in an IBM MQ
environment.

You can use IBM MQ for a wide variety of applications on a range of platforms. The security requirements
are likely to be different for each application. For some, security will be a critical consideration.

IBM MQ provides a range of link-level security services, including support for Transport Layer Security
(TLS).

You must consider certain aspects of security when planning to install IBM MQ:

• On Multiplatforms, if you ignore these aspects and do nothing, you cannot use IBM MQ.

• On z/OS, the effect of ignoring these aspects is that your IBM MQ resources are
unprotected. That is, all users can access and change all IBM MQ resources.

Authority to administer IBM MQ
IBM MQ administrators need authority to:

• Issue commands to administer IBM MQ
• Use the IBM MQ Explorer

• Use IBM i administrative panels and commands.

• Use the operations and control panels on z/OS

• Use the IBM MQ utility program, CSQUTIL, on z/OS

• Access the queue manager data sets on z/OS

For more information, see:

• “Authority to administer IBM MQ on AIX, Linux, and Windows” on page 411

Securing IBM MQ 85

• “Authority to administer IBM MQ on IBM i” on page 90

• “Authority to administer IBM MQ on z/OS” on page 91

Authority to work with IBM MQ objects
Applications can access the following IBM MQ objects by issuing MQI calls:

• Queue managers
• Queues
• Processes
• Namelists
• Topics

Applications can also use Programmable Command Format (PCF) commands to access these IBM MQ
objects, and to access channels and authentication information objects as well. These objects can be
protected by IBM MQ so that the user IDs associated with the applications need authority to access them.

For more information, see “Authorization for applications to use IBM MQ” on page 93.

Channel security
The user IDs associated with message channel agents (MCAs) need authority to access various IBM MQ
resources. For example, an MCA must be able to connect to a queue manager. If it is a sending MCA,
it must be able to open the transmission queue for the channel. If it is a receiving MCA, it must be
able to open destination queues. The user IDs associated with applications which need to administer
channels, channel initiators, and listeners need authority to use the relevant PCF commands. However,
most applications do not need such access.

For more information, see “Channel authorization” on page 113.

Additional considerations
You need to consider the following aspects of security only if you are using certain IBM MQ function or
base product extensions:

• “Security for queue manager clusters” on page 125
• “Security for IBM MQ Publish/Subscribe” on page 126
• “Security for IBM MQ Internet Pass-Thru” on page 127

Planning identification and authentication
Decide what user IDs to use, and how and at what levels you want to apply authentication controls.

You must decide how you will identify the users of your IBM MQ applications, bearing in mind that
different operating systems support user IDs of different lengths. You can use channel authentication
records to map from one user ID to another, or to specify a user ID based on some attribute of the
connection. IBM MQ channels using TLS use digital certificates as a mechanism for identification and
authentication. Each digital certificate has a subject distinguished name which can be mapped onto
specific identities using channel authentication records. Additionally, CA certificates in the key repository
determine which digital certificates may be used to authenticate to IBM MQ. For more information see:

• “Mapping a remote queue manager to an MCAUSER user ID” on page 397
• “Mapping a client user ID to an MCAUSER user ID” on page 398
• “Mapping an SSL or TLS Distinguished Name to an MCAUSER user ID” on page 398
• “Mapping an IP address to an MCAUSER user ID” on page 400

86 Securing IBM MQ

Planning authentication for a client application
You can apply authentication controls at four levels: at the communications level, in security exits, with
channel authentication records, and in terms of the identification that is passed to a security exit.

There are four levels of security to consider. The diagram shows an IBM MQ MQI client that is connected
to a server. Security is applied at four levels, as described in the following text. MCA is a Message Channel
Agent.

Figure 9. Security in a client/server connection

1. Communications level

See arrow 1. To implement security at the communications level, use TLS. For more information, see
“Cryptographic security protocols: TLS” on page 18

2. Channel authentication records

See arrows 2 & 3. Authentication can be controlled by using the IP address or TLS distinguished names
at the security level. A user ID can also be blocked or an asserted user ID can be mapped to a valid
user ID. A full description is given in “Channel authentication records” on page 51.

3. Connection authentication

See arrow 3. The client sends a user ID and a password, or an authentication token. For more
information, see “Connection authentication: Configuration” on page 72.

4. Channel security exits

See arrow 2. The channel security exits for client to server communication can work in the same way
as for server to server communication. A protocol independent pair of exits can be written to provide
mutual authentication of both the client and the server. A full description is given in Channel security
exit programs.

5. Identification that is passed to a channel security exit

See arrow 3. In client to server communication, the channel security exits do not have to operate as
a pair. The exit on the IBM MQ client side can be omitted. In this case, the user ID is placed in the
channel descriptor (MQCD) and the server-side security exit can alter it, if required.

IBM MQ MQI clients also send extra information to assist identification.

• The user ID that is passed to the server is the currently logged-on user ID on the client.
• The security ID of the currently logged-on user.

Securing IBM MQ 87

The values of the user ID and, if available, the security ID, can be used by the server security exit to
establish the identity of the IBM MQ MQI client.

From IBM MQ 8.0, you can send passwords that are included in the MQCSP structure.

From IBM MQ 9.3.4, IBM MQ MQI clients connecting to IBM MQ
queue managers running on AIX or Linux systems can also send authentication tokens in the MQCSP
structure.

Warning: In some cases, the password or authentication token in an MQCSP structure for a client
application is sent across the network in plain text. To ensure that client application passwords and
authentication tokens are protected appropriately, see “MQCSP password protection” on page 31.

User IDs
When you create user IDs for client applications, the user IDs must not be longer than the maximum
permitted length. You must not use the reserved user IDs UNKNOWN and NOBODY. If the server that
the client connects to is an IBM MQ for Windows server, you must escape the use of the at sign, @. The
permitted length of user IDs is dependent on the platform that is used for the server:

• On z/OS, AIX and Linux, the maximum length of a user ID is 12
characters.

• On IBM i, the maximum length of a user ID is 10 characters.

• On Windows, if both the IBM MQ MQI client and the IBM MQ server are on Windows,
and the server has access to the domain on which the client user ID is defined, the maximum length
of a user ID is 20 characters. However, if the IBM MQ server is not a Windows server, the user ID is
truncated to 12 characters.

• If you use the MQCSP structure to pass credentials, the maximum length of a user ID is 1024
characters. The MQCSP structure user ID cannot be used to circumvent the maximum userid length
used by IBM MQ for authorization. For more information about the MQCSP structure, see “Identifying
and authenticating users using the MQCSP structure” on page 337.

On AIX and Linux systems the default is that user IDs are used to authenticate, and groups are used
for authorization. However, you can configure these systems to authorize against user Ids. For more
information, see “OAM user-based permissions on AIX and Linux” on page 364. Windows systems can
use both user IDs for both authentication and authorization and groups for authorization.

If you create service accounts, without paying attention to groups, and authorize all the user IDs
differently, every user can access the information of every other user.

Restricted user IDs
The user IDs UNKNOWN and group NOBODY have special meanings to IBM MQ. Creating a user ID in the
operating system called UNKNOWN or a group called NOBODY could have unintended results.

User IDs when connecting to an IBM MQ for Windows server

An IBM MQ for Windows server does not support the connection of an IBM MQ MQI client if the client
is running under a user ID that contains the @ character, for example, abc@d. The return code to the
MQCONN call at the client is MQRC_NOT_AUTHORIZED.

However, you can specify the user ID using two @ characters, for example, abc@@d. Using the
id@domain format is the preferred practice, to ensure that the user ID is resolved in the correct domain
consistently; thus abc@@d@domain.

88 Securing IBM MQ

Planning authorization
Plan the users who will have administrative authority and plan how to authorize users of applications to
appropriately use IBM MQ objects, including those connecting from an IBM MQ MQI client.

Individuals or applications must be granted access in order to use IBM MQ. What access they require
depend on the roles they undertake and the tasks which they need to perform. Authorization in IBM MQ
can be subdivided into two main categories:

• Authorization to perform administrative operations
• Authorization for applications to use IBM MQ

Both classes of operation are controlled by the same component and an individual can be granted
authority to perform both categories of operation.

The following topics give further information about specific areas of authorization that you must consider:

Authority to administer IBM MQ
IBM MQ administrators need authority to perform various functions. This authority is obtained in different
ways on different platforms.

IBM MQ administrators need authority to:

• Issue commands to administer IBM MQ.

• Use the IBM MQ Explorer.

• Use the operations and control panels on z/OS.

• Use the IBM MQ utility program, CSQUTIL, on z/OS.

• Access the queue manager data sets on z/OS.

For more information, see the topic appropriate to your operating system.

Authority to administer IBM MQ on AIX, Linux, and Windows systems
An IBM MQ administrator is a member of the mqm group. This group has access to all IBM MQ resources
and can issue IBM MQ control commands. An administrator can grant specific authorities to other users.

To be an IBM MQ administrator on AIX, Linux, and Windows systems, a user must be a member of the
mqm group. This group is created automatically when you install IBM MQ. To allow users to issue control
commands, you must add them to the mqm group. This includes the root user on AIX and Linux.

Users who are not member of the mqm group can be granted administrative privileges, but they are not
able to issue IBM MQ control commands, and they are authorized to execute only the commands for
which they have been granted access.

Additionally, on Windows systems, the SYSTEM and Administrator accounts have full access to IBM MQ
resources.

All members of the mqm group have access to all IBM MQ resources on the system, including being able
to administer any queue manager running on the system. This access can be revoked only by removing a
user from the mqm group. On Windows systems, members of the Administrators group also have access
to all IBM MQ resources.

Administrators can use the control command runmqsc to issue IBM MQ Script (MQSC) commands.
When runmqsc is used in indirect mode to send MQSC commands to a remote queue manager, each
MQSC command is encapsulated within an Escape PCF command. Administrators must have the required
authorities for the MQSC commands to be processed by the remote queue manager.

The IBM MQ Explorer issues PCF commands to perform administration tasks. Administrators require no
additional authorities to use the IBM MQ Explorer to administer a queue manager on the local system.
When the IBM MQ Explorer is used to administer a queue manager on another system, administrators
must have the required authorities for the PCF commands to be processed by the remote queue manager.

Securing IBM MQ 89

For more information about the authority checks carried out when PCF and MQSC commands are
processed, see the following topics:

• For commands that operate on queue managers, queues, channels, processes, namelists, and
authentication information objects, see “Authorization for applications to use IBM MQ” on page 93.

• For commands that operate on channels, channel initiators, listeners, and clusters, see Channel
security.

• For MQSC commands that are processed by the command server on IBM MQ for z/OS, see
“Command security and command resource security on z/OS” on page 91.

For more information about the authority you need to administer IBM MQ for AIX, Linux, and Windows
systems, see the related information.

Authority to administer IBM MQ on IBM i
To be an IBM MQ administrator on IBM i, you must be a member of the QMQMADM group. This group
has properties similar to those of the mqm group on AIX, Linux, and Windows systems. In particular, the
QMQMADM group is created when you install IBM MQ for IBM i, and members of the QMQMADM group
have access to all IBM MQ resources on the system. You also have access to all IBM MQ resources if you
have *ALLOBJ authority.

Administrators can use CL commands to administer IBM MQ. One of these commands is GRTMQMAUT,
which is used to grant authorities to other users. Another command, STRMQMMQSC, enables an
administrator to issue MQSC commands to a local queue manager.

There are two groups of CL command provided by IBM MQ for IBM i:
Group 1

To issue a command in this category, a user must be a member of the QMQMADM group or have
*ALLOBJ authority. GRTMQMAUT and STRMQMMQSC belong to this category, for example.

Group 2
To issue a command in this category, a user does not need to be a member of the QMQMADM group or
have *ALLOBJ authority. Instead, two levels of authority are required:

• The user requires IBM i authority to use the command. This authority is granted by using the
GRTOBJAUT command.

• The user requires IBM MQ authority to access any IBM MQ object associated with the command.
This authority is granted by using the GRTMQMAUT command.

The following examples show commands in this group:

• CRTMQMQ, Create MQM Queue
• CHGMQMPRC, Change MQM Process
• DLTMQMNL, Delete MQM Namelist
• DSPMQMAUTI, Display MQM Authentication Information
• CRTMQMCHL, Create MQM channel

For more information about this group of commands, see “Authorization for applications to use IBM
MQ” on page 93.

For a complete list of group 1 and group 2 commands, see “Access authorities for IBM MQ objects on IBM
i” on page 157

For more information about the authority you need to administer IBM MQ on IBM i, see Administering IBM
i .

90 Securing IBM MQ

Authority to administer IBM MQ on z/OS
This collection of topics describes various aspects of the authority you need to administer IBM MQ for
z/OS.

Authority checks on z/OS
IBM MQ for z/OS uses the System Authorization Facility (SAF) to route requests for authority checks to
an external security manager (ESM) such as the z/OS Security Server Resource Access Control Facility
(RACF). IBM MQ does no authority checks of its own.

It is assumed that you are using RACF as your ESM. If you are using a different ESM, you might need to
interpret the information provided for RACF in a way that is relevant to your ESM.

You can specify whether you want authority checks turned on or off for each queue manager individually
or for every queue manager in a queue sharing group. This level of control is called subsystem security.
If you turn subsystem security off for a particular queue manager, no authority checks are carried out for
that queue manager.

If you turn subsystem security on for a particular queue manager, authority checks can be performed at
two levels:
Queue sharing group level security

Authority checks use RACF profiles that are shared by all queue managers in the queue sharing group.
This means that there are fewer profiles to define and maintain, making security administration easier.

Queue manager level security
Authority checks use RACF profiles specific to the queue manager.

You can use a combination of queue sharing group and queue manager level security. For example, you
can arrange for profiles specific to a queue manager to override those of the queue sharing group to which
it belongs.

Subsystem security, queue sharing group level security, and queue manager level security are turned on
or off by defining switch profiles. A switch profile is a normal RACF profile that has a special meaning to
IBM MQ.

Command security and command resource security on z/OS
Command security relates to the authority to issue a command; command resource authority relates to
the authority to perform an operation on a resource. Both are implemented y using RACF classes.

Authority checks are carried out when an IBM MQ administrator issues an MQSC command. This is called
command security.

To implement command security, you must define certain RACF profiles and give the necessary groups
and user IDs access to these profiles at the required levels. The name of a profile for command security
contains the name of an MQSC command.

Some MQSC commands perform an operation on an IBM MQ resource, such as the DEFINE QLOCAL
command to create a local queue. When an administrator issues an MQSC command, authority checks are
carried out to determine whether the requested operation can be performed on the resource specified in
the command. This is called command resource security.

To implement command resource security, you must define certain RACF profiles and give the necessary
groups and user IDs access to these profiles at the required levels. The name of a profile for command
resource security contains the name of an IBM MQ resource and its type (QUEUE, PROCESS, NAMELIST,
TOPIC, AUTHINFO, or CHANNEL).

Command security and command resource security are independent. For example, when an administrator
issues the command:

DEFINE QLOCAL(MOON.EUROPA)

the following authority checks are performed:

Securing IBM MQ 91

• Command security checks that the administrator is authorized to issue the DEFINE QLOCAL command.
• Command resource security checks that the administrator is authorized to perform an operation on the

local queue called MOON.EUROPA.

Command security and command resource security can be turned on or off by defining switch profiles.

MQSC commands and the system command input queue on z/OS
Use this topic to understand how the command server processes MQSC commands directed to the
system command input queue on z/OS.

Command security and command resource security are also used when the command server retrieves
a message containing an MQSC command from the system command input queue. The user ID that is
used for the authority checks is the one found in the UserIdentifier field in the message descriptor of the
message containing the MQSC command. This user ID must have the required authorities on the queue
manager where the command is processed. For more information about the UserIdentifier field and how it
is set, see Message context.

Messages containing MQSC commands are sent to the system command input queue in the following
circumstances:

• The operations and control panels send MQSC commands to the system command input queue of the
target queue manager. The MQSC commands correspond to the actions you choose on the panels. The
UserIdentifier field in each message is set to the TSO user ID of the administrator.

• The COMMAND function of the IBM MQ utility program, CSQUTIL, sends the MQSC commands in the
input data set to the system command input queue of the target queue manager. The COPY and EMPTY
functions send DISPLAY QUEUE and DISPLAY STGCLASS commands. The UserIdentifier field in each
message is set to the job user ID.

• The MQSC commands in the CSQINPX data sets are sent to the system command input queue of the
queue manager to which the channel initiator is connected. The UserIdentifier field in each message is
set to the channel initiator address space user ID.

No authority checks are performed when MQSC commands are issued from the CSQINP1 and CSQINP2
data sets. You can control who is allowed to update these data sets using RACF data set protection.

• Within a queue sharing group, a channel initiator might send START CHANNEL commands to the system
command input queue of the queue manager to which it is connected. A command is sent when an
outbound channel that uses a shared transmission queue is started by triggering. The UserIdentifier
field in each message is set to the channel initiator address space user ID.

• An application can send MQSC commands to a system command input queue. By default, the
UserIdentifier field in each message is set to the user ID associated with the application.

• On AIX, Linux, and Windows systems, the runmqsc control command can be used in indirect mode
to send MQSC commands to the system command input queue of a queue manager on z/OS. The
UserIdentifier field in each message is set to the user ID of the administrator who issued the runmqsc
command.

Access to the queue manager data sets on z/OS
IBM MQ for z/OS administrators need authority to access the queue manager data sets. Use this topic to
understand which data sets need RACF protection.

These data sets include:

• The data sets referred to by CSQINP1, CSQINP2, and CSQINPT in the started task procedure of the
queue manager.

• The queue manager's page sets, active log data sets, archive log data sets, and bootstrap data sets
(BSDSs)

• The data sets referred to by CSQXLIB and CSQINPX in the channel initiator's started task procedure

You must protect the data sets so that no unauthorized user can start a queue manager or gain access to
any queue manager data. To do this, use RACF data set protection.

92 Securing IBM MQ

Authorization for applications to use IBM MQ
When applications access objects, the user IDs associated with the applications need appropriate
authority.

Applications can access the following IBM MQ objects by issuing MQI calls:

• Queue managers
• Queues
• Processes
• Namelists
• Topics

Applications can also use PCF commands to administer IBM MQ objects. When the PCF command is
processed, it uses the authority context of the user ID that put the PCF message.

Applications, in this context, include those written by users and vendors, and those supplied with IBM MQ
for z/OS. The applications supplied with IBM MQ for z/OS include:

• The operations and control panels
• The IBM MQ utility program, CSQUTIL
• The dead letter queue handler utility, CSQUDLQH

Applications that use IBM MQ classes for Java, IBM MQ classes for JMS, IBM MQ classes for .NET, or the
Message Service Clients for C/C++ and .NET use the MQI indirectly.

MCAs also issue MQI calls and the user IDs associated with the MCAs need authority to access these IBM
MQ objects. For more information about these user IDs and the authorities they require, see “Channel
authorization” on page 113.

On z/OS, applications can also use MQSC commands to access these IBM MQ objects but command
security and command resource security provide the authority checks in these circumstances.

For more information, see “Command security and command resource security on z/OS”
on page 91 and “MQSC commands and the system command input queue on z/OS” on page 92.

On IBM i, a user that issues a CL command in Group 2 might require authority to access an IBM MQ object
associated with the command. For more information, see “When authority checks are performed” on page
93.

When authority checks are performed
Authority checks are performed when an application attempts to access a queue manager, queue,
process, or namelist.

On IBM i, authority checks might also be performed when a user issues a CL command in Group 2 that
accesses any of these IBM MQ objects. The checks are performed in the following circumstances:
When an application connects to a queue manager using an MQCONN or MQCONNX call

The queue manager asks the operating system for the user ID associated with the application. The
queue manager then checks that the user ID is authorized to connect to it and retains the user ID for
future checks.

Users do not have to sign on to IBM MQ. IBM MQ assumes that users are signed on to the underlying
operating system and are been authenticated by it.

When an application opens an IBM MQ object using an MQOPEN or MQPUT1 call
All authority checks are performed when an object is opened, not when it is accessed later. For
example, authority checks are performed when an application opens a queue. They are not performed
when the application puts messages on the queue or gets messages from the queue.

When an application opens an object, it specifies the types of operation it needs to perform on the
object. For example, an application might open a queue to browse the messages on it, get messages

Securing IBM MQ 93

from it, but not to put messages on it. For each type of operation, the queue manager checks that the
user ID associated with the application has the authority to perform that operation.

When an application opens a queue, the authority checks are performed against the object named
in the ObjectName field of the object descriptor. The ObjectName field is used on the MQOPEN or
MQPUT1 calls. If the object is an alias queue or a remote queue definition, the authority checks are
performed against the object itself. They are not performed on the queue to which the alias queue or
the remote queue definition resolves. This means that the user does not need permission to access it.
Limit the authority to create queues to privileged users. If you do not, users might bypass the normal
access control simply by creating an alias.

An application can reference a remote queue explicitly. It sets the ObjectName and
ObjectQMgrName fields in the object descriptor to the names of the remote queue and the remote
queue manager. The authority checks are performed against the transmission queue with the same
name as the remote queue manager:

• On z/OS, a check is made on the RACF queue profile that matches the remote queue
manager name, and is performed whether or not this transmission queue is locally defined.

• On Multiplatforms, a check is made against the RQMNAME profile that matches the
remote queue manager name, if clustering is being used.

An application can reference a cluster queue explicitly by setting the ObjectName field in the object
descriptor to the name of the cluster queue. The authority checks are performed against the cluster
transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE.

The authority to a dynamic queue is based on the model queue from which it is derived, but is not
necessarily the same; see note 1.

The user ID that the queue manager uses for the authority checks is obtained from the operating
system. The user ID is obtained when the application connects to the queue manager. A suitably
authorized application can issue an MQOPEN call specifying an alternative user ID; access control
checks are then made on the alternative user ID. Using an alternate user ID does not change the user
ID associated with the application, only the one used for access control checks.

When an application subscribes to a topic using an MQSUB call
When an application subscribes to a topic, it specifies the type of operation that it needs to perform. It
is either creating a subscription, altering an existing subscription, or resuming an existing subscription
without changing it. For each type of operation, the queue manager checks that the user ID that is
associated with the application has the authority to perform the operation.

When an application subscribes to a topic, the authority checks are performed against topic objects
that are found in the topic tree. The topic objects are at, or above, the point in the topic tree at which
the application subscribed. The authority checks might involve checks on more than one topic object.
The user ID that the queue manager uses for the authority checks is obtained from the operating
system. The user ID is obtained when the application connects to the queue manager.

The queue manager performs authority checks on subscriber queues but not on managed queues.

When an application deletes a permanent dynamic queue using an MQCLOSE call
The object handle specified on the MQCLOSE call is not necessarily the same one returned by the
MQOPEN call that created the permanent dynamic queue. If it is different, the queue manager checks
the user ID associated with the application that issued the MQCLOSE call. It checks that the user ID is
authorized to delete the queue.

When an application that closes a subscription to remove it did not create it, the appropriate authority
is required to remove it.

When a PCF command that operates on an IBM MQ object is processed by the command server
This rule includes the case where a PCF command operates on an authentication information object.

The user ID that is used for the authority checks is the one found in the UserIdentifier field in
the message descriptor of the PCF command. This user ID must have the required authorities on the
queue manager where the command is processed. The equivalent MQSC command encapsulated

94 Securing IBM MQ

within an Escape PCF command is treated in the same way. For more information about the
UserIdentifier field, and how it is set, see “Message context” on page 95.

On IBM i, when a user issues a CL command in Group 2 that operates on an IBM MQ
object

This rule includes the case where a CL command in Group 2 operates on an authentication
information object.

Checks are performed to determine whether the user has the authority to operate on an IBM MQ
object associated with the command. The checks are performed unless the user is a member of the
QMQMADM group or has *ALLOBJ authority. The authority required depends on the type of operation
that the command performs on the object. For example, the command CHGMQMQ, Change MQM
Queue, requires the authority to change the attributes of the queue specified by the command. In
contrast, the command DSPMQMQ, Display MQM Queue, requires the authority to display the attributes
of the queue specified by the command.

Many commands operate on more than one object. For example, to issue the command DLTMQMQ,
Delete MQM Queue, the following authorities are required:

• The authority to connect to the queue manager specified by the command
• The authority to delete the queue specified by the command

Some commands operate on no object at all. In this case, the user requires only IBM i authority to
issue one of these commands. STRMQMLSR, Start MQM Listener, is an example of such a command.

Alternate user authority
When an application opens an object or subscribes to a topic, the application can supply a user ID on the
MQOPEN, MQPUT1, or MQSUB call. It can ask the queue manager to use this user ID for authority checks
instead of the one associated with the application.

The application succeeds in opening the object only if both the following conditions are met:

• The user ID associated with the application has the authority to supply a different user ID for authority
checks. The application is said to have alternate user authority.

• The user ID supplied by the application has the authority to open the object for the types of operation
requested, or to subscribe to the topic.

Message context
Message context information allows the application that retrieves a message to find out about the
originator of the message. The information is held in fields in the message descriptor and the fields
are divided into three logical parts

These parts are as follows:
identity context

These fields contain information about the user of the application that put the message on the queue.
origin context

These fields contain information about the application itself and when the message was put on the
queue.

user context
These fields contain message properties that applications can use to select messages that the queue
manager should deliver.

When an application puts a message on a queue, the application can ask the queue manager to generate
the context information in the message. This is the default action. Alternatively, it can specify that the
context fields are to contain no information. The user ID associated with an application requires no
special authority to do either of these.

An application can set the identity context fields in a message, allowing the queue manager to generate
the origin context, or it can set all the context fields. An application can also pass the identity context
fields from a message it has retrieved to a message it is putting on a queue, or it can pass all the context

Securing IBM MQ 95

fields. However, the user ID associated with an application requires authority to set or pass context
information. An application specifies that it intends to set or pass context information when it opens the
queue on which it is about to put messages, and its authority is checked at this time.

Here is a brief description of each of the context fields:
Identity context

UserIdentifier
The user ID associated with the application that put the message. If the queue manager sets this
field, it is set to the user ID obtained from the operating system when the application connects to
the queue manager.

AccountingToken
Information that can be used to charge for the work done as a result of the message.

ApplIdentityData
If the user ID associated with an application has authority to set the identity context fields, or to
set all the context fields, the application can set this field to any value related to identity. If the
queue manager sets this field, it is set to blank.

Origin context
PutApplType

The type of the application that put the message; a CICS® transaction, for example.
PutApplName

The name of the application that put the message.
PutDate

The date when the message was put.
PutTime

The time when the message was put.
ApplOriginData

If the user ID associated with an application has authority to set all the context fields, the
application can set this field to any value related to origin. If the queue manager sets this field, it is
set to blank.

User context

The following values are supported for MQINQMP or MQSETMP:
MQPD_USER _CONTEXT

The property is associated with the user context.

No special authorization is required to be able to set a property associated with the user context
using the MQSETMP call.

On a V7.0 or subsequent queue manager, a property associated with the user context is saved as
described for MQOO_SAVE_ALL_CONTEXT. An MQPUT with MQOO_PASS_ALL_CONTEXT specified
causes the property to be copied from the saved context into the new message.

MQPD_NO_CONTEXT

The property is not associated with a message context.

An unrecognized value is rejected with MQRC_PD_ERROR. The initial value of this field is
MQPD_NO_CONTEXT.

For a detailed description of each of the context fields, see MQMD - Message descriptor. For more
information about how to use message context, see Message context.

96 Securing IBM MQ

Authority to work with IBM MQ objects on IBM i ,
AIX, Linux, and Windows systems
The authorization service component provided with IBM MQ is called the object authority manager (OAM).
It provides access control via authentication and authorization checks.
Authentication.

The authentication check performed by the OAM provided with IBM MQ is basic, and is only
performed in specific circumstances. It is not intended to meet the strict requirements expected
in a highly secure environment.

The OAM performs its authentication check when an application connects to a queue manager, and
the following conditions are true:

• If an MQCSP structure has been supplied by the connecting application, and
• The AuthenticationType attribute in the MQCSP structure is given the value

MQCSP_AUTH_USER_ID_AND_PWD, and
• The CHCKLOCL or CHKCCLNT value on the configured AUTHINFO object is not 'NONE'

The authentication steps in the OAM validate the password using operating system services, which
might have been configured to perform additional checks, such as ensuring the username has not had
too many incorrect password test attempts.

It is possible for alternative authentication mechanisms to be used if you write a new authorization
service component, or obtain one from a vendor.

Authorization.
The authorization checks are comprehensive, and are intended to meet most normal requirements.

Authorization checks are performed when an application issues an MQI call to access a queue
manager, queue, process, topic, or namelist. They are also performed at other times, for example,
when a command is being performed by the Command Server.

On IBM i , AIX, Linux, and Windows systems, the authorization service provides the access
control when an application issues an MQI call to access an IBM MQ object that is a queue manager,
queue, process, topic, or namelist. This includes checks for alternative user authority and the authority to
set or pass context information.

On Windows , the OAM gives members of the Administrators group the authority to access
all IBM MQ objects, even when UAC is enabled. Additionally, on Windows systems, the SYSTEM account
has full access to IBM MQ resources.

The authorization service also provides authority checks when a PCF command operates on one of these
IBM MQ objects or an authentication information object. The equivalent MQSC command encapsulated
within an Escape PCF command is treated in the same way.

On IBM i , unless the user is a member of the QMQMADM group or has *ALLOBJ authority,
the authorization service also provides authority checks when a user issues a CL command in Group 2 that
operates on any of these IBM MQ objects or an authentication information object.

The authorization service is an installable service, which means that it is implemented by one or more
installable service components. Each component is invoked using a documented interface. This enables
users and vendors to provide components to augment or replace those provided by the IBM MQ products.

The authorization service component provided with IBM MQ is called the object authority manager (OAM).
The OAM is automatically enabled for each queue manager you create.

The OAM maintains an access control list (ACL) for each IBM MQ object it is controlling access to. On AIX
and Linux systems, only group IDs can appear in an ACL. This means that all members of a group have

the same authorities. On IBM i and on Windows systems, both user IDs and group IDs can
appear in an ACL. This means that authorities can be granted to individual users and groups.

Securing IBM MQ 97

A 12 character limitation applies to both the group and the user ID. UNIX platforms generally restrict the
length of a user ID to 12 characters. AIX and Linux have raised this limit but IBM MQ continues to observe
a 12 character restriction on all UNIX platforms. If you use a user ID of greater than 12 characters, IBM
MQ replaces it with the value "UNKNOWN". Do not define a user ID with a value of "UNKNOWN".

The OAM can authenticate a user and change appropriate identity context fields. You enable this by
specifying a connection security parameters structure (MQCSP) on an MQCONNX call. The structure is
passed to the OAM Authenticate User function (MQZ_AUTHENTICATE_USER), which sets appropriate
identity context fields. If an MQCONNX connection from an IBM MQ client, the information in the MQCSP
is flowed to the queue manager to which the client is connecting over the client-connection and server-
connection channel. If security exits are defined on that channel, the MQCSP is passed into each security
exit and can be altered by the exit. Security exits can also create the MQCSP. For more details of the use of
security exits in this context, see Channel security exit programs.

Warning: In some cases, the password in an MQCSP structure for a client application will be sent across
a network in plain text. To ensure that client application passwords are protected appropriately, see IBM
MQCSP password protection.

On AIX, Linux, and Windows systems, the control command setmqaut grants and revokes authorities and
is used to maintain the ACLs. For example, the command:

setmqaut -m JUPITER -t queue -n MOON.EUROPA -g VOYAGER +browse +get

allows the members of the group VOYAGER to browse messages on the queue MOON.EUROPA that is
owned by the queue manager JUPITER. It allows the members to get messages from the queue as well.
To revoke these authorities later, enter the following command:

setmqaut -m JUPITER -t queue -n MOON.EUROPA -g VOYAGER -browse -get

The command:

setmqaut -m JUPITER -t queue -n MOON.* -g VOYAGER +put

allows the members of the group VOYAGER to put messages on any queue with a name that commences
with the characters MOON.. MOON.* is the name of a generic profile. A generic profile allows you to grant
authorities for a set of objects using a single setmqaut command.

The control command dspmqaut is available to display the current authorities that a user or group has
for a specified object. The control command dmpmqaut is also available to display the current authorities
associated with generic profiles.

 On IBM i, an administrator uses the CL command GRTMQMAUT to grant authorities and the
CL command RVKMQMAUT to revoke authorities. Generic profiles can be used as well. For example, the
CL command:

GRTMQMAUT MQMNAME(JUPITER) OBJTYPE(*Q) OBJ('MOON.*') USER(VOYAGER) AUT(*PUT)

provides the same function as the previous example of a setmqaut command; it allows the members
of the group VOYAGER to put messages on any queue with a name that commences with the characters
MOON.

 The CL command DSPMQMAUT displays the current authorities that user or group has for a
specified object. The CL commands WRKMQMAUT and WRKMQMAUTD are also available to work with the
current authorities associated with objects and generic profiles.

If you do not want any authority checks, for example, in a test environment, you can disable the OAM.

98 Securing IBM MQ

Using PCF to access OAM commands
On IBM i, AIX, Linux, and Windows systems, you can use PCF commands to access OAM administration
commands.

The PCF commands and their equivalent OAM commands are as follows:

Table 8. PCF commands and their equivalent OAM commands

PCF command OAM command

Inquire Authority Records dmpmqaut

Inquire Entity Authority dspmqaut

Set Authority Record setmqaut

Delete Authority Record setmqaut with -remove option

The setmqaut and dmpmqaut commands are restricted to members of the mqm group. The equivalent
PCF commands can be executed by users in any group who have been granted dsp and chg authorities on
the queue manager.

For more information about using these commands, see Introduction to Programmable Command
Formats.

Authority to work with IBM MQ objects on z/OS
On z/OS, there are seven categories of authority check associated with calls to the MQI. You must define
certain RACF profiles and give appropriate access to these profiles. Use the RESLEVEL profile to control
how many users IDs are checked.

The seven categories of authority check associated with calls to the MQI:
Connection security

The authority checks that are performed when an application connects to a queue manager
Queue security

The authority checks that are performed when an application opens a queue or deletes a permanent
dynamic queue

Process security
The authority checks that are performed when an application opens a process object

Namelist security
The authority checks that are performed when an application opens a namelist object

Alternate user security
The authority checks that are performed when an application requests alternate user authority when
opening an object

Context security
The authority checks that are performed when an application opens a queue and specifies that it
intends to set or pass the context information in the messages it puts on the queue

Topic security
The authority checks that are performed when an application opens a topic

Each category of authority check is implemented in the same way that command security and command
resource security are implemented. You must define certain RACF profiles and give the necessary groups
and user IDs access to these profiles at the required levels. For queue security, the level of access
determines the types of operation the application can perform on a queue. For context security, the level
of access determines whether the application can:

• Pass all the context fields
• Pass all the context fields and set the identity context fields
• Pass and set all the context fields

Securing IBM MQ 99

Each category of authority check can be turned on or off by defining switch profiles.

All the categories, except connection security, are known collectively as API-resource security.

By default, when an API-resource security check is performed as a result of an MQI call from an
application using a batch connection, only one user ID is checked. When a check is performed as a result
of an MQI call from a CICS or IMS application, or from the channel initiator, two user IDs are checked.

By defining a RESLEVEL profile, however, you can control whether zero, one, or two users IDs are checked.
The number of user IDs that are checked is determined by the user ID associated with the type of
connection when an application connects to the queue manager and the access level that user ID has to
the RESLEVEL profile. The user ID associated with each type of connection is:

• The user ID of the connecting task for batch connections
• The CICS address space user ID for CICS connections
• The IMS region address space user ID for IMS connections
• The channel initiator address space user ID for channel initiator connections

For more information about the authority to work with IBM MQ objects on z/OS, see “Authority to
administer IBM MQ on z/OS” on page 91.

Security for remote messaging
This section deals with remote messaging aspects of security.

You must provide users with authority to use the IBM MQ facilities. This is organized according to actions
to be taken with respect to objects and definitions. For example:

• Queue managers can be started and stopped by authorized users
• Applications must connect to the queue manager and have authority to use queues
• Message channels must be created and controlled by authorized users
• Objects are kept in libraries and access to these libraries can be restricted

The message channel agent at a remote site must check that the message being delivered originated from
a user with authority to do so at this remote site. In addition, as MCAs can be started remotely, it might be
necessary to verify that the remote processes trying to start your MCAs are authorized to do so. There are
four possible ways for you to deal with this:

1. Make appropriate use of the PutAuthority attribute of your RCVR, RQSTR, or CLUSRCVR channel
definition to control which user is used for authorization checks at the time incoming messages are put
to your queues. See the DEFINE CHANNEL command description in the MQSC Command Reference.

2. Implement channel authentication records to reject unwanted connection attempts, or to set an
MCAUSER value based on the following: the remote IP address, the remote user ID, the TLS Subject
Distinguished Name (DN) provided, or the remote queue manager name.

3. Implement user exit security checking to ensure that the corresponding message channel is
authorized. The security of the installation hosting the corresponding channel ensures that all users
are properly authorized, so that you do not need to check individual messages.

4. Implement user exit message processing to ensure that individual messages are vetted for
authorization.

Security of IBM MQ for IBM i objects
This section deals with remote messaging aspects of security.

You must provide users with authority to make use of the IBM MQ for IBM i facilities. This authority is
organized according to actions to be taken with respect to objects and definitions. For example:

• Queue managers can be started and stopped by authorized users
• Applications need to connect to the queue manager, and have authority to make use of queues
• Message channels need to be created and controlled by authorized users

100 Securing IBM MQ

The message channel agent at a remote site must check that the message being delivered has derived
from a user with authority to isue the message at this remote site. In addition, as MCAs can be started
remotely, it might be necessary to verify that the remote processes trying to start your MCAs are
authorized to do so. There are four possible ways for you to deal with this:

• Decree in the channel definition that messages must contain acceptable context authority, otherwise
they are discarded.

• Implement channel authentication records to reject unwanted connection attempts, or to set an
MCAUSER value based on one of the following: the remote IP address, the remote user ID, the TLS
Distinguished Name (DN) provided, or the remote queue manager name.

• Implement user exit security checking to ensure that the corresponding message channel is authorized.
The security of the installation hosting the corresponding channel ensures that all users are properly
authorized, so that you do not need to check individual messages.

• Implement user exit message processing to ensure that individual messages are vetted for
authorization.

Here are some facts about the way IBM MQ for IBM i operates security:

• Users are identified and authenticated by IBM i.
• Queue manager services invoked by applications are run with the authority of the queue manager user

profile, but in the user's process.
• Queue manager services invoked by user commands are run with the authority of the queue manager

user profile.

Security of objects on AIX and Linux
Administration users must be part of the mqm group on your system (including root) if this ID is going to
use IBM MQ administration commands.

You should always run amqcrsta as the "mqm" user ID.

User IDs on AIX and Linux
The queue manager converts all uppercase or mixed case user identifiers into lowercase. The queue
manager then inserts the user identifiers into the context part of a message, or checks their authorization.
Authorizations are therefore based only on lowercase identifiers.

Security of objects on Windows systems
Administration users must be part of both the mqm group and the administrators group on Windows
systems if this ID is going to use IBM MQ administration commands.

User IDs on Windows systems
On Windows systems, if there is no message exit installed, the queue manager converts any uppercase
or mixed case user identifiers into lowercase. The queue manager then inserts the user identifiers into
the context part of a message, or checks their authorization. Authorizations are therefore based only on
lowercase identifiers.

User IDs across systems
Platforms other than AIX, Linux, and Windows systems use uppercase characters for user IDs in
messages. To allow AIX, Linux, and Windows systems to use lowercase user IDs in messages, the
message channel agent (MCA) must carry out the appropriate conversions of alphabetic characters.

To allow AIX, Linux, and Windows systems to use lowercase user IDs in messages, the following
conversions are carried out by the message channel agent (MCA) on these platforms:
At the sending end

The alphabetic characters in all user IDs are converted to uppercase characters, if there is no
message exit installed.

Securing IBM MQ 101

At the receiving end
The alphabetic characters in all user IDs are converted to lowercase characters, if there is no message
exit installed.

The automatic conversions are not carried out if you provide a message exit on AIX, Linux, and Windows
for any other reason.

Using a custom authorization service
IBM MQ supplies an installable authorization service. You can choose to install an alternative service.

The authorization service component supplied with IBM MQ is called the Object Authority Manager (OAM).
If the OAM does not supply the authorization facilities you need, you can write your own authorization
service component. The installable service functions that must be implemented by an authorization
service component are described at Installable services interface reference information.

Access control for clients
Access control is based on user IDs. There can be many user IDs to administer, and user IDs can be
in different formats. You can set the server-connection channel property MCAUSER to a special user ID
value for use by clients.

Access control in IBM MQ is based on user IDs. The user ID of the process making MQI calls is normally
used. For MQ MQI clients, the server-connection MCA makes MQI calls on behalf of MQ MQI clients.
You can select an alternative user ID for the server-connection MCA to use for making MQI calls. The
alternative user ID can be associated either with the client workstation, or with anything you choose to
organize and control the access of clients. The user ID needs to have the necessary authorities allocated
to it on the server to issue MQI calls. Choosing an alternative user ID is preferable to allowing clients to
make MQI calls with the authority of the server-connection MCA.

Table 9. The user ID used by a server-connection channel

User ID When used

The user ID that is set by a security exit Used unless blocked by a CHLAUTH
TYPE(BLOCKUSER) rule. See the following section,
“Setting the user ID in a security exit” on page 103
for more information.

The user ID that is set by a CHLAUTH rule Used unless over-ridden by a security exit.
See Channel Authentication Records for more
information.

The user ID that is defined in the MCAUSER
attribute in the SVRCONN channel definition

Used unless over-ridden by a security exit or a
CHLAUTH rule.

The user ID that is flowed from the client machine Used when no user ID is set by any other means.

The user ID that started the server-connection
channel

Used when no user ID is set by any other means
and no client user ID is flowed. See the following
section, “The user ID that runs the channel
program” on page 103 for more information.

Because the server-connection MCA makes MQI calls on behalf of remote users, it is important to
consider the security implications of the server-connection MCA issuing MQI calls on behalf of remote
clients and how to administer the access of a potentially large number of users.

• One approach is for the server-connection MCA to issue MQI calls on its own authority. But beware, it is
normally undesirable for the server-connection MCA, with its powerful access capabilities, to issue MQI
calls on behalf of client users.

102 Securing IBM MQ

• Another approach is to use the user ID that flows from the client. The server-connection MCA can
issue MQI calls using the access capabilities of the client user ID. This approach presents a number of
questions to consider:

1. There are different formats for the user ID on different platforms. This sometimes causes problems if
the format of the user ID on the client differs from the acceptable formats on the server.

2. There are potentially many clients, with different, and changing user IDs. The IDs need to be defined
and managed on the server.

3. Is the user ID to be trusted? Any user ID can be flowed from a client, not necessarily the ID of the
logged on user. For example, the client might flow an ID with full mqm authority that was intentionally
only defined on the server for security reasons.

• The preferred approach is to define client identification tokens at the server, and so limit the capabilities
of client connected applications. This is typically done by setting the server-connection channel
property MCAUSER to a special user ID value to be used by clients, and defining few IDs for use by
clients with different level of authorization on the server.

Setting the user ID in a security exit
For IBM MQ MQI clients, the process that issues the MQI calls is the server-connection MCA. The
user ID used by the server-connection MCA is contained in either the MCAUserIdentifier or
LongMCAUserIdentifier fields of the MQCD. The contents of these fields are set by:

• Any values set by security exits
• The user ID from the client
• MCAUSER (in the server-connection channel definition)

The security exit can override the values that are visible to it, when it is invoked.

• If the server-connection channel MCAUSER attribute is set to nonblank, the MCAUSER value is used.
• If the server-connection channel MCAUSER attribute is blank, the user ID received from the client is

used.
• If the server-connection channel MCAUSER attribute is blank, and no user ID is received from the client

then the user ID that started the server-connection channel is used.

The IBM MQ client does not flow the asserted user ID to the server when a client-side security exit is in
use.

The user ID that runs the channel program
When the user ID fields are derived from the user ID that started the server-connection channel, the
following value is used:

• For z/OS, the user ID assigned to the channel initiator started task by the z/OS started
procedures table.

• For TCP/IP (non- z/OS), the user ID from the inetd.conf entry, or the user ID that started the listener.
• For SNA (non- z/OS), the user ID from the SNA Server entry or (if there is none) the incoming attach

request, or the user ID that started the listener.
• For NetBIOS or SPX, the user ID that started the listener.

If any server-connection channel definitions exist that have the MCAUSER attribute set to blank, clients
can use this channel definition to connect to the queue manager with access authority determined by
the user ID supplied by the client. This might be a security exposure if the system on which the queue
manager is running allows unauthorized network connections. The IBM MQ default server-connection
channel (SYSTEM.DEF.SVRCONN) has the MCAUSER attribute set to blank. To prevent unauthorized
access, update the MCAUSER attribute of the default definition with a user ID that has no access to
IBM MQ MQ objects.

Securing IBM MQ 103

Case of user IDs
When you define a channel with runmqsc, the MCAUSER attribute is changed to uppercase unless the
user ID is contained within single quotation marks.

For servers on AIX, Linux, and Windows, the content of the MCAUserIdentifier field that
is received from the client is changed to lowercase.

For servers on IBM i, the content of the LongMCAUserIdentifier field that is received
from the client is changed to uppercase.

For servers on AIX and Linux systems, the content of the
LongMCAUserIdentifier field that is received from the client is changed to lowercase.

By default, the user ID that is passed when an IBM MQ JMS binding application is used, is the user ID for
the JVM the application is running on.

It is also possible to pass a user ID via the createQueueConnection method.

Planning confidentiality
Plan how to keep your data confidential.

You can implement confidentiality at the application level or at link level. You might choose to use TLS,
in which case you must plan your usage of digital certificates. You can also use channel exit programs if
standard facilities do not satisfy your requirements.
Related concepts
“Comparing link level security and application level security” on page 104
This topic contains information about various aspects of link level security and application level security,
and compares the two levels of security.
“Channel exit programs” on page 109
Channel exit programs are programs that are called at defined places in the processing sequence of an
MCA. Users and vendors can write their own channel exit programs. Some are supplied by IBM.
“Protecting channels with SSL/TLS” on page 115
TLS support in IBM MQ uses the queue manager authentication information object, and various MQSC
commands. You must also consider your use of digital certificates.

Comparing link level security and application level security
This topic contains information about various aspects of link level security and application level security,
and compares the two levels of security.

Link level and application level security are illustrated in Figure 10 on page 105.

104 Securing IBM MQ

Figure 10. Link level security and application level security

Protecting messages in queues
Link level security can protect messages while they are transferred from one queue manager to another.
It is particularly important when messages are transmitted over an insecure network. It cannot, however,
protect messages while they are stored in queues at either a source queue manager, a destination queue
manager, or an intermediate queue manager.

z/OS data set encryption can provide some protection of messages stored on queues, but
only for data at rest on a local queue manager. See the section, confidentiality for data at rest on IBM MQ
for z/OS with data set encryption. for more information.

Application level security, by comparison, can protect messages while they are stored in queues and
applies even when distributed queuing is not used. This is the major difference between link level security
and application level security and is illustrated in Figure 10 on page 105.

Queue managers not running in controlled and trusted environments
If a queue manager is running in a controlled and trusted environment, the access control mechanisms
provided by IBM MQ might be considered sufficient to protect the messages stored on its queues.
This is particularly true if only local queuing is involved and messages never leave the queue manager.
Application level security in this case might be considered unnecessary.

Application level security might also be considered unnecessary if messages are transferred to another
queue manager that is also running in a controlled and trusted environment, or are received from such a
queue manager. The need for application level security becomes greater when messages are transferred
to, or received from, a queue manager that is not running in a controlled and trusted environment.

Differences in cost
Application level security might cost more than link level security in terms of administration and
performance.

The cost of administration is likely to be greater because there are potentially more constraints to
configure and maintain. For example, you might need to ensure that a particular user sends only certain

Securing IBM MQ 105

types of message and sends messages only to certain destinations. Conversely, you might need to ensure
that a particular user receives only certain types of message and receives messages only from certain
sources. Instead of managing the link level security services on a single message channel, you might
need to be configuring and maintaining rules for every pair of users who exchange messages across that
channel.

There might be an effect on performance if security services are invoked every time an application puts or
gets a message.

Organizations tend to consider link level security first because it might be easier to implement. They
consider application level security if they discover that link level security does not satisfy all their
requirements.

Availability of components
Generally, in a distributed environment, a security service requires a component on at least two systems.
For example, a message might be encrypted on one system and decrypted on another. This applies to
both link level security and application level security.

In a heterogeneous environment, with different platforms in use, each with different levels of security
function, the required components of a security service might not be available for every platform on which
they are needed and in a form that is easy to use. This is probably more of an issue for application level
security than for link level security, particularly if you intend to provide your own application level security
by buying in components from various sources.

Messages in a dead letter queue
If a message is protected by application level security, there might be a problem if, for any reason, the
message does not reach its destination and is put on a dead letter queue. If you cannot work out how
to process the message from the information in the message descriptor and the dead letter header, you
might need to inspect the contents of the application data. You cannot do this if the application data is
encrypted and only the intended recipient can decrypt it.

What application level security cannot do
Application level security is not a complete solution. Even if you implement application level security, you
might still require some link level security services. For example:

• When a channel starts, the mutual authentication of the two MCAs might still be a requirement. This can
be done only by a link level security service.

• Application level security cannot protect the transmission queue header, MQXQH, which includes the
embedded message descriptor. Nor can it protect the data in IBM MQ channel protocol flows other than
message data. Only link level security can provide this protection.

• If application level security services are invoked at the server end of an MQI channel, the services
cannot protect the parameters of MQI calls that are sent over the channel. In particular, the application
data in an MQPUT, MQPUT1, or MQGET call is unprotected. Only link level security can provide the
protection in this case.

Link level security
Link level security refers to those security services that are invoked, directly or indirectly, by an MCA, the
communications subsystem, or a combination of the two working together.

Link level security is illustrated in Figure 10 on page 105.

Here are some examples of link level security services:

• The MCA at each end of a message channel can authenticate its partner. This is done when the channel
starts and a communications connection has been established, but before any messages start to flow.
If authentication fails at either end, the channel is closed and no messages are transferred. This is an
example of an identification and authentication service.

106 Securing IBM MQ

• A message can be encrypted at the sending end of a channel and decrypted at the receiving end. This is
an example of a confidentiality service.

• A message can be checked at the receiving end of a channel to determine whether its contents have
been deliberately modified while it was being transmitted over the network. This is an example of a data
integrity service.

Link level security provided by IBM MQ
The primary means of provision of confidentiality and data integrity in IBM MQ is by the use of TLS.
For more information about the use of TLS in IBM MQ, see “TLS security protocols in IBM MQ ” on
page 24. For authentication, IBM MQ provides the facility to use channel authentication records. Channel
authentication records offer precise control over the access granted to connecting systems, at the level of
individual channels or groups of channels. For more information, see “Channel authentication records” on
page 51.

Providing your own link level security
You can provide your own link level security services. Writing your own channel exit programs is the main
way to provide your own link level security services.

Channel exit programs are introduced in “Channel exit programs” on page 109. The same topic also
describes the channel exit program that is supplied with IBM MQ for Windows (the SSPI channel exit
program). This channel exit program is supplied in source format so that you can modify the source code
to suit your requirements. If this channel exit program, or channel exit programs available from other
vendors, do not meet your requirements, you can design and write your own. This topic suggests ways in
which channel exit programs can provide security services. For information about how to write a channel
exit program, see Writing channel-exit programs.

Link level security using a security exit
Security exits normally work in pairs; one at each end of a channel. They are called immediately after the
initial data negotiation has completed on channel startup.

Security exits can be used to provide identification and authentication, access control, and confidentiality.

Link level security using a message exit
A message exit can be used only on a message channel, not on an MQI channel. It has access to both
the transmission queue header, MQXQH, which includes the embedded message descriptor, and the
application data in a message. It can modify the contents of the message and change its length.

A message exit can be used for any purpose that requires access to the whole message rather than a
portion of it.

Message exits can be used to provide identification and authentication, access control, confidentiality,
data integrity, and non-repudiation, and for reasons other than security.

Link level security using send and receive exits
Send and receive exits can be used on both message and MQI channels. They are called for all types of
data that flow on a channel, and for flows in both directions.

Send and receive exits have access to each transmission segment. They can modify its contents and
change its length.

On a message channel, if an MCA needs to split a message and send it in more than one transmission
segment, a send exit is called for each transmission segment containing a portion of the message and,
at the receiving end, a receive exit is called for each transmission segment. The same occurs on an MQI
channel if the input or output parameters of an MQI call are too large to be sent in a single transmission
segment.

On an MQI channel, byte 10 of a transmission segment identifies the MQI call, and indicates whether
the transmission segment contains the input or output parameters of the call. Send and receive exits can
examine this byte to determine whether the MQI call contains application data that might need to be
protected.

Securing IBM MQ 107

When a send exit is called for the first time, to acquire and initialize any resources it needs, it can ask the
MCA to reserve a specified amount of space in the buffer that holds a transmission segment. When it is
called later to process a transmission segment, it can use this space to add an encrypted key or a digital
signature, for example. The corresponding receive exit at the other end of the channel can remove the
data added by the send exit, and use it to process the transmission segment.

Send and receive exits are best suited for purposes in which they do not need to understand the structure
of the data they are handling and can therefore treat each transmission segment as a binary object.

Send and receive exits can be used to provide confidentiality and data integrity, and for uses other than
security.

Related tasks
Identifying the API call in a send or receive exit program

Application level security
Application level security refers to those security services that are invoked at the interface between an
application and a queue manager to which it is connected.

These services are invoked when the application issues MQI calls to the queue manager. The services
might be invoked, directly or indirectly, by the application, the queue manager, another product that
supports IBM MQ, or a combination of any of these working together. Application level security is
illustrated in Figure 10 on page 105.

Application level security is also known as end-to-end security or message level security.

Here are some examples of application level security services:

• When an application puts a message on a queue, the message descriptor contains a user ID associated
with the application. However, there is no data present, such as an encrypted password, that can be
used to authenticate the user ID. A security service can add this data. When the message is eventually
retrieved by the receiving application, another component of the service can authenticate the user
ID using the data that has travelled with the message. This is an example of an identification and
authentication service.

• A message can be encrypted when it is put on a queue by an application and decrypted when it is
retrieved by the receiving application. This is an example of a confidentiality service.

• A message can be checked when it is retrieved by the receiving application. This check determines
whether its contents have been deliberately modified since it was first put on a queue by the sending
application. This is an example of a data integrity service.

Planning for Advanced Message Security
Advanced Message Security (AMS) is a component of IBM MQ that provides a high level of protection for
sensitive data flowing through the IBM MQ network, while not impacting the end applications.

If you are moving highly sensitive or valuable information, especially confidential or payment-related
information such as patient records or credit card details, you must pay special attention to information
security. Ensuring that information moving around the enterprise retains its integrity and is protected
from unauthorized access is an ongoing challenge and responsibility. You are also likely to be required to
comply with security regulations, at the risk of penalties for non-compliance.

You can develop your own security extensions to IBM MQ. However, such solutions require specialist
skills and can be complicated and expensive to maintain. Advanced Message Security helps address
these challenges when moving information around the enterprise between virtually every type of
commercial IT system.

Advanced Message Security extends the security features of IBM MQ in the following ways:

• It provides application-level, end-to-end data protection for your point to point messaging
infrastructure, using either encryption or digital signing of messages.

• It provides comprehensive security without writing complex security code or modifying or recompiling
existing applications.

108 Securing IBM MQ

• It uses Public Key Infrastructure (PKI) technology to provide authentication, authorization,
confidentiality, and data integrity services for messages.

• It provides administration of security policies for mainframe and distributed servers.
• It supports both IBM MQ servers and clients.
• It integrates with Managed File Transfer to provide an end-to-end secure messaging solution.

For more information, see “Advanced Message Security” on page 604.

Providing your own application level security
You can provide your own application level security services. To help you implement application level
security, IBM MQ provides two exits, the API exit and the API-crossing exit.

The API exit and the API-crossing exit can provide identification and authentication, access control,
confidentiality, data integrity, and non-repudiation services, and other functions not related to security.

If the API exit or API-crossing exit is not supported in your system environment, you might want to
consider other ways of providing your own application level security. One way is to develop a higher level
API that encapsulates the MQI. Programmers then use this API, instead of the MQI, to write IBM MQ
applications.

The most common reasons for using a higher level API are:

• To hide the more advanced features of the MQI from programmers.
• To enforce standards in the use of the MQI.
• To add function to the MQI. This additional function can be security services.

Some vendor products use this technique to provide application level security for IBM MQ.

If you are planning to provide security services in this way, note the following regarding data conversion:

• If a security token, such as a digital signature, has been added to the application data in a message, any
code performing data conversion must be aware of the presence of this token.

• A security token might have been derived from a binary image of the application data. Therefore, any
checking of the token must be done before converting the data.

• If the application data in a message has been encrypted, it must be decrypted before data conversion.

Channel exit programs
Channel exit programs are programs that are called at defined places in the processing sequence of an
MCA. Users and vendors can write their own channel exit programs. Some are supplied by IBM.

There are several types of channel exit program, but only four have a role in providing link level security:

• Security exit
• Message exit
• Send exit
• Receive exit

These four types of channel exit program are illustrated in Figure 11 on page 110 and are described in the
following topics.

Securing IBM MQ 109

Figure 11. Security, message, send, and receive exits on a message channel

Related concepts
Channel-exit programs for messaging channels

Security exit overview
Security exits normally work in pairs. They are called before messages flow and their purpose is to allow
an MCA to authenticate its partner.

Security exits normally work in pairs; one at each end of a channel. They are called immediately after
the initial data negotiation has completed on channel startup, but before any messages start to flow. The
primary purpose of the security exit is to enable the MCA at each end of a channel to authenticate its
partner. However, there is nothing to prevent a security exit from performing other function, even function
that has nothing to do with security.

Security exits can communicate with each other by sending security messages. The format of a security
message is not defined and is determined by the user. One possible outcome of the exchange of security
messages is that one of the security exits might decide not to proceed any further. In that case, the
channel is closed and messages do not flow. If there is a security exit at only one end of a channel, the
exit is still called and can elect whether to continue or to close the channel.

Security exits can be called on both message and MQI channels. The name of a security exit is specified
as a parameter in the channel definition at each end of a channel.

For more information about security exits, see “Link level security using a security exit” on page 107.

Message exit
Message exits operate only on message channels and normally work in pairs. A message exit can operate
on the whole message and make various changes to it.

Message exits at the sending and receiving ends of a channel normally work in pairs. A message exit at
the sending end of a channel is called after the MCA has got a message from the transmission queue. At
the receiving end of a channel, a message exit is called before the MCA puts a message on its destination
queue.

A message exit has access to both the transmission queue header, MQXQH, which includes the embedded
message descriptor, and the application data in a message. A message exit can modify the contents of the
message and change its length. A change of length might be the result of compressing, decompressing,
encrypting, or decrypting the message. It might also be the result of adding data to the message, or
removing data from it.

110 Securing IBM MQ

Message exits can be used for any purpose that requires access to the whole message, rather than a
portion of it, and not necessarily for security.

A message exit can determine that the message it is currently processing should not proceed any further
towards its destination. The MCA then puts the message on the dead letter queue. A message exit can
also close the channel.

Message exits can be called only on message channels, not on MQI channels. This is because the purpose
of an MQI channel is to enable the input and output parameters of MQI calls to flow between the IBM MQ
MQI client application and the queue manager.

The name of a message exit is specified as a parameter in the channel definition at each end of a channel.
You can also specify a list of message exits to be run in succession.

For more information about message exits, see “Link level security using a message exit” on page 107.

Send and receive exits
Send and receive exits typically work in pairs. They operate on transmission segments and are best used
where the structure of the data they are processing is not relevant.

A send exit at one end of a channel and a receive exit at the other end normally work in pairs. A send exit is
called just before an MCA issues a communications send to send data over a communications connection.
A receive exit is called just after an MCA has regained control following a communications receive and has
received data from a communications connection. If sharing conversations is in use, over an MQI channel,
a different instance of a send and receive exit is called for each conversation.

The IBM MQ channel protocol flows between two MCAs on a message channel contain control information
as well as message data. Similarly, on an MQI channel, the flows contain control information as well as
the parameters of MQI calls. Send and receive exits are called for all types of data.

Message data flows in only one direction on a message channel but, on an MQI channel, the input
parameters of an MQI call flow in one direction and the output parameters flow in the other. On both
message and MQI channels, control information flows in both directions. As a result, send and receive
exits can be called at both ends of a channel.

The unit of data that is transmitted in a single flow between two MCAs is called a transmission segment.
Send and receive exits have access to each transmission segment. They can modify its contents and
change its length. A send exit, however, must not change the first 8 bytes of a transmission segment.
These 8 bytes form part of the IBM MQ channel protocol header. There are also restrictions on how much
a send exit can increase the length of a transmission segment. In particular, a send exit cannot increase
its length beyond the maximum that was negotiated between the two MCAs at channel startup.

On a message channel, if a message is too large to be sent in a single transmission segment, the sending
MCA splits the message and sends it in more than one transmission segment. As a consequence, a send
exit is called for each transmission segment containing a portion of the message and, at the receiving end,
a receive exit is called for each transmission segment. The receiving MCA reconstitutes the message from
the transmission segments after they have been processed by the receive exit.

Similarly, on an MQI channel, the input or output parameters of an MQI call are sent in more than one
transmission segment if they are too large. This might occur, for example, on an MQPUT, MQPUT1, or
MQGET call if the application data is sufficiently large.

Taking these considerations into account, it is more appropriate to use send and receive exits for
purposes in which they do not need to understand the structure of the data they are handling and can
therefore treat each transmission segment as a binary object.

A send or a receive exit can close a channel.

The names of a send exit and a receive exit are specified as parameters in the channel definition at each
end of a channel. You can also specify a list of send exits to be run in succession. Similarly, you can
specify a list of receive exits.

For more information about send and receive exits, see “Link level security using send and receive exits”
on page 107.

Securing IBM MQ 111

Planning data integrity
Plan how to preserve the integrity of your data.

You can implement data integrity at the application level or at link level.

At the application level, you can use API exit programs if standard facilities do not satisfy your
requirements. You might choose to use Advanced Message Security (AMS) to digitally sign messages
in order to protect against unauthorized modification.

At the link level, you might choose to use TLS, in which case you must plan your usage of digital
certificates. You can also use channel exit programs if standard facilities do not satisfy your requirements.

Related concepts
“Protecting channels with SSL/TLS” on page 115
TLS support in IBM MQ uses the queue manager authentication information object, and various MQSC
commands. You must also consider your use of digital certificates.
“Data integrity” on page 10
The data integrity service detects whether there has been unauthorized modification of data.
“Planning for Advanced Message Security” on page 108
Advanced Message Security (AMS) is a component of IBM MQ that provides a high level of protection for
sensitive data flowing through the IBM MQ network, while not impacting the end applications.
Related reference
API exit reference
Channel-exit calls and data structures

Planning auditing
Decide what data you need to audit, and how you will capture and process audit information. Consider
how to check that your system is correctly configured.

There are several aspects to activity monitoring. The aspects you must consider are often defined by
auditor requirements, and these requirements are often driven by regulatory standards such as HIPAA
(Health Insurance Portability and Accountability Act) or SOX (Sarbanes-Oxley). IBM MQ provides features
intended to help with compliance to such standards.

Consider whether you are interested only in exceptions or whether you are interested in all system
behavior.

Some aspects of auditing can also be considered as operational monitoring; one distinction for auditing is
that you are often looking at historic data, not just looking at real-time alerts. Monitoring is covered in the
section Monitoring and performance.

What data to audit
Consider what types of data or activity you need to audit, as described in the following sections:
Changes made to IBM MQ using the IBM MQ interfaces

Configure IBM MQ to issue instrumentation events, specifically command events and configuration
events.

Changes made to IBM MQ outside its control
Some changes can affect how IBM MQ behaves, but cannot be directly monitored by IBM MQ.
Examples of such changes include changes to the configuration files mqs.ini, qm.ini, and
mqclient.ini, the creation and deletion of queue managers, installation of binary files such as
user exit programs, and changes to file permissions. To monitor these activities, you must use tools
running at the level of the operating system. Different tools are available and appropriate for different
operating systems. You might also have logs created by associated tools such as sudo.

Operational control of IBM MQ
You might have to use operating system tools to audit activities such as the starting and stopping of
queue managers. In some cases, IBM MQ can be configured to issue instrumentation events.

112 Securing IBM MQ

Application activity within IBM MQ
To audit the actions of applications, for example opening of queues and putting and getting of
messages, configure IBM MQ to issue appropriate events.

Intruder alerts
To audit attempted breaches of security, configure your system to issue authorization events. Channel
events might also be useful to show activity, particularly if a channel ends unexpectedly.

Planning the capture, display, and archiving of audit data
Many of the elements you need are reported as IBM MQ event messages. You must choose tools that
can read and format these messages. If you are interested in long-term storage and analysis you must
move them to an auxiliary storage mechanism such as a database. If you do not process these messages,
they remain on the event queue, possibly filling the queue. You might decide to implement a tool that
automatically takes action based on some events; for example, to issue an alert when a security failure
happens.

Verifying that your system is correctly configured
A set of tests are supplied with the IBM MQ Explorer. Use these to check your object definitions for
problems.

Also, check periodically that the system configuration is as you expect. Although command and
configuration events can report when something is changed, it is also useful to dump the configuration
and compare it to a known good copy.

Planning security by topology
This section covers security in specific situations, namely for channels, queue manager clusters, publish/
subscribe and multicast applications, and when using a firewall.

See the following subtopics for more information:

Channel authorization
When you send or receive a message through a channel, you need to provide access to various IBM MQ
resources. Message Channel Agents (MCAs) are essentially IBM MQ applications that move messages
between queue managers, and as such require access to various IBM MQ resources to operate correctly.

To receive messages at PUT time for MCAs, you can use either the user ID associated with the MCA, or the
user ID associated with the message.

At CONNECT time you can map the asserted user ID to an alternative user, by using CHLAUTH channel
authentication records.

In IBM MQ, channels can be protected by TLS support.

The user IDs associated with sending and receiving channels, excluding the sender channel where the
MCAUSER attribute is unused, require access to the following resources:

• The user ID associated with a sending channel requires access to the queue manager, the transmission
queue, the dead-letter queue, and access to any other resources that are required by channel exits.

• The MCAUSER user ID of a receiver channel needs +setall authority. The reason is that the receiver
channel has to create the full MQMD, including all context fields, using the data it received from the
remote sender channel. The queue manager therefore requires that the user performing this activity has
the +setall authority. This +setall authority must be granted to the user for:

– All queues that the receiver channel validly puts messages to.
– The queue manager object. For more information, see Authorizations for context.

• The MCAUSER user ID of a receiver channel where the originator requested a COA report message
needs +passid authority on the transmission queue that returns the report message. Without this
authority, AMQ8077 error messages are logged.

Securing IBM MQ 113

• With the user ID associated with the receiving channel, you can open the target queues to put messages
onto the queues. This involves the Message queuing Interface (MQI), so additional access control
checks might need to be made if you are not using the IBM MQ Object Authority Manager (OAM).
You can specify whether the authorization checks are made against the user ID associated with the
MCA (as described in this topic), or against the user ID associated with the message (from the MQMD
UserIdentifier field).

For the channel types to which it applies, the PUTAUT parameter of a channel definition specifies which
user ID is used for these checks.

– The channel defaults to using the queue manager's service account, which has full administrative
rights and requires no special authorizations.

– In the case of server-connection channels, administrative connections are blocked by default by
CHLAUTH rules and require explicit provisioning.

– Channels of type receiver, requester, and cluster-receiver allow local administration by any adjacent
queue manager, unless the administrator takes steps to restrict this access.

– It is not necessary to grant dsp and ctrlx authority for the MCAUSER user ID of a receiver channel.
– Before IBM MQ 8.0.0 Fix Pack 4, if you use a user ID that lacks IBM MQ administrative privileges,

then you must grant dsp and ctrlx authority for the channel to that user ID for the channel to work.

From IBM MQ 8.0.0 Fix Pack 4, there are no authority checks when a channel resynchronizes itself
and corrects sequence numbers.

However, issuing a RESET CHANNEL command manually does still require +dsp and +ctrlx at all
releases.

Attention: When a channel reset is needed for message batch confirmation, IBM MQ attempts
to query the channel, which does require +dsp authority.

– The MCAUSER attribute is unused for the SDR channel type.
– If you use the user ID associated with the message, it is likely that the user ID is from a remote

system. This remote system user ID must be recognized by the target system. The following
commands are examples of the type of command that you can issue to grant authority to a user
ID from a remote system:

-setmqaut -m QMgrName -t qmgr -g GroupName +connect +inq +setall

-setmqaut -m QMgrName -t chl -n Profile -g GroupName +dsp +ctrlx

where Profile is a channel.

-setmqaut -m QMgrName -t q -n Profile -g GroupName +put +setall

where Profile is a dead-letter queue, if set.

-setmqaut -m QMgrName -t q -n Profile -g GroupName +put +setall

where Profile is a list of authorized queues.

Attention: Exercise caution when authorizing a user ID to place messages onto the Command
Queue or other sensitive system queues.

The user ID associated with the MCA depends on the type of MCA. There are two types of MCA:
Caller MCA

MCAs that initiate a channel. Caller MCAs can be started as individual processes, as threads of the
channel initiator, or as threads of a process pool. The user ID used is the user ID associated with the
parent process (the channel initiator), or the user ID associated with the process that starts the MCA.

114 Securing IBM MQ

Responder MCA
Responder MCAs are MCAs that are started as a result of a request by a caller MCA. Responder MCAs
can be started as individual processes, as threads of the listener, or as threads of a process pool. The
user ID can be any one of the following types (in this order of preference):

1. On APPC, the caller MCA can indicate the user ID to be used for the responder MCA. This is called
the network user ID and applies only to channels started as individual processes. Set the network
user ID by using the USERID parameter of the channel definition.

2. If the USERID parameter is not used, the channel definition of the responder MCA can specify the
user ID that the MCA must use. Set the user ID by using the MCAUSER parameter of the channel
definition.

3. If the user ID has not been set by either of the previous (two) methods, the user ID of the process
that starts the MCA or the user ID of the parent process (the listener) is used.

Related concepts
“Channel authentication records” on page 51
To exercise more precise control over the access granted to connecting systems at a channel level, you
can use channel authentication records.
Related reference
Channel authentication record properties

Protecting channel initiator definitions
Only members of the mqm group can manipulate channel initiators.

IBM MQ channel initiators are not IBM MQ objects; access to them is not controlled by the OAM. IBM
MQ does not allow users or applications to manipulate these objects, unless their user ID is a member of
the mqm group. If you have an application that issues the PCF command StartChannelInitiator, the
user ID specified in the message descriptor of the PCF message must be a member of the mqm group on
the target queue manager.

A user ID must also be a member of the mqm group on the target machine to issue the equivalent MQSC
commands through the Escape PCF command or using runmqsc in indirect mode.

Transmission queues
Queue managers automatically put remote messages on a transmission queue; no special authority is
required for this.

However, if you need to put a message directly on a transmission queue, this requires special
authorization; see Table 12 on page 132.

Channel exits
If channel authentication records are not suitable, you can use channel exits for added security. A security
exit forms a secure connection between two security exit programs. One program is for the sending
message channel agent (MCA), and one is for the receiving MCA.

See “Channel exit programs” on page 109 for more information about channel exits.

Protecting channels with SSL/TLS
TLS support in IBM MQ uses the queue manager authentication information object, and various MQSC
commands. You must also consider your use of digital certificates.

Digital certificates and key repositories
It is good practice to set the queue manager certificate label attribute (CERTLABL) to the name of the
personal certificate to be used for the majority of channels, and override it for exceptions, by setting the
certificate label on those channels that require different certificates.

Securing IBM MQ 115

If you need many channels with certificates that differ from the default certificate set on the queue
manager, you should consider dividing the channels between several queue managers or use an MQIPT
proxy in front of the queue manager to present a different certificate.

You can use a different certificate for every channel, but if you store too many certificates in a key
repository, you might expect performance to be affected when starting TLS channels. Try to keep the
number of certificates in a key repository to less than about 50 and consider 100 to be a maximum as
GSKit performance decreases sharply with larger key repositories.

Allowing multiple certificates on the same queue manager increases the chances that multiple CA
certificates will be used on the same queue manager. This increases the odds of certificate Subject
Distinguished Name namespace clashes for certificates issued by separate certificate authorities.

While professional certificate authorities are likely to be more careful, in-house certificate authorities
often lack clear naming conventions and you could end up with unintended matches between one CA and
another.

You should check the certificate Issuer Distinguished Name in addition to the Subject Distinguished
Name. To do this, use a channel authentication SSLPEERMAP record and set both the SSLPEER and
SSLCERTI fields to match the Subject DN and Issuer DN respectively.

Self-signed and CA-signed certificates
It is important to plan your use of digital certificates, both when you are developing and testing your
application, and for its use in production. You can use CA-signed certificates or self-signed certificates,
depending on the usage of your queue managers and client applications.

CA-signed certificates
For production systems, obtain your certificates from a trusted certificate authority (CA). When you
obtain a certificate from an external CA, you pay for the service.

Self-signed certificates
While you are developing your application you can use self-signed certificates or certificates issued by
a local CA, depending on platform:

On AIX, Linux, and Windows systems, you can use self-signed certificates. See “Creating
a self-signed personal certificate on AIX, Linux, and Windows” on page 301for instructions.

On IBM i systems, you can use certificates signed by the local CA. See “Requesting a
server certificate on IBM i” on page 279 for instructions.

On z/OS, you can use either self-signed or local CA-signed certificates. See “Creating a
self-signed personal certificate on z/OS” on page 328 or “Requesting a personal certificate on z/OS”
on page 328 for instructions.

Self-signed certificates are not suitable for production use, for the following reasons:

• Self-signed certificates cannot be revoked, which might allow an attacker to spoof an identity after
a private key has been compromised. CAs can revoke a compromised certificate, which prevents its
further use. CA-signed certificates are therefore safer to use in a production environment, though
self-signed certificates are more convenient for a test system.

• Self-signed certificates never expire. This is both convenient and safe in a test environment, but in a
production environment it leaves them open to eventual security breaches. The risk is compounded by
the fact that self-signed certificates cannot be revoked.

• A self-signed certificate is used both as a personal certificate and as a root (or trust anchor) CA
certificate. A user with a self-signed personal certificate might be able to use it to sign other personal
certificates. In general, this is not true of personal certificates issued by a CA, and represents a
significant exposure.

116 Securing IBM MQ

CipherSpecs and digital certificates
Only a subset of the supported CipherSpecs can be used with all of the supported types of digital
certificate. It is therefore necessary to choose an appropriate CipherSpec for your digital certificates.
Similarly, if your organization's security policy requires that a particular CipherSpec be used, then you
must obtain suitable digital certificates.

For more information on the relationship between CipherSpecs and digital certificates, refer to “Digital
certificates and CipherSpec compatibility in IBM MQ” on page 46

Certificate validation policies
The IETF RFC 5280 standard specifies a series of certificate validation rules which compliant application
software must implement in order to prevent impersonation attacks. A set of certificate validation rules is
known as a certificate validation policy. For more information about certificate validation policies in IBM
MQ, see “Certificate validation policies in IBM MQ” on page 45.

Planning for certificate revocation checking
Allowing multiple certificates from different certificate authorities potentially causes unnecessary
additional certificate revocation checking.

In particular, if you have explicitly configured the use of a revocation server from a particular CA,
for example by using an AUTHINFO object or Authentication information record (MQAIR) structure, a
revocation check fails when presented with a certificate from a different CA.

You should avoid explicit certificate revocation server configuration. Instead, you should enable implicit
checking where each certificate contains its own revocation server location in a certificate extension, for
example, CRL Distribution Point, or OCSP AuthorityInfoAccess.

For more information, see OCSPCheckExtensions and CDPCheckExtensions.

Commands and attributes for TLS support
The Transport Layer Security (TLS) protocol provides channel security, with protection against
eavesdropping, tampering, and impersonation. IBM MQ support for TLS enables you to specify, on the
channel definition, that a particular channel uses TLS security. You can also specify details of the type of
security you want, such as the encryption algorithm you want to use.

• The following MQSC commands support TLS:
ALTER AUTHINFO

Modifies the attributes of an authentication information object.
DEFINE AUTHINFO

Creates an authentication information object.
DELETE AUTHINFO

Deletes an authentication information object.
DISPLAY AUTHINFO

Displays the attributes for a specific authentication information object.
• The following queue manager parameters support TLS:

CERTLABL
Defines a personal certificate label to use.

KEYRPWD
On AIX, Linux, and Windows systems, defines the password IBM MQ uses to access the key
repository. This field is encrypted using the password protection system.

SSLCRLNL
The SSLCRLNL attribute specifies a namelist of authentication information objects which are used to
provide certificate revocation locations to allow enhanced TLS certificate checking.

Securing IBM MQ 117

SSLCRYP
On AIX, Linux, and Windows systems, sets the SSLCryptoHardware queue manager attribute.
This attribute is the name of the parameter string that you can use to configure the cryptographic
hardware you have on your system.

SSLEV
Determines whether a TLS event message is reported if a channel using TLS fails to establish a TLS
connection.

SSLFIPS
Specifies whether only FIPS-certified algorithms are to be used if cryptography is carried out in
IBM MQ , rather than in cryptographic hardware. If cryptographic hardware is configured, the
cryptographic modules provided by the hardware product are used, and these might be FIPS-
certified to a particular level. This depends on the hardware product in use.

SSLKEYR
On AIX, Linux, and Windows systems, associates a key repository with a queue manager. The IBM
Global Security Kit (GSKit) enables you to use TLS security on AIX, Linux, and Windows systems.

SSLRKEYC
The number of bytes to be sent and received within a TLS conversation before the secret key is
renegotiated. The number of bytes includes control information sent by the MCA.

• The following channel parameters support TLS:
CERTLABL

Defines a personal certificate label to use.
SSLCAUTH

Defines whether IBM MQ requires and validates a certificate from the TLS client.
SSLCIPH

Specifies the encryption strength and function (CipherSpec), for example
TLS_RSA_WITH_AES_128_CBC_SHA. The CipherSpec must match at both ends of channel.

SSLPEER
Specifies the distinguished name (unique identifier) of allowed partners.

This section describes the setmqaut, dspmqaut, dmpmqaut, rcrmqobj, rcdmqimg, and dspmqfls
commands to support the authentication information object. It also describes the runmqckm (iKeycmd)
and runmqakm commands for managing certificates on AIX, Linux, and Windows. See the following
sections:

• setmqaut
• dspmqaut
• dmpmqaut
• rcrmqobj
• rcdmqimg
• dspmqfls
• Managing keys and certificates

For an overview of channel security using TLS, see

• “TLS security protocols in IBM MQ ” on page 24

For details of MQSC commands associated with TLS, see

• ALTER AUTHINFO
• DEFINE AUTHINFO
• DELETE AUTHINFO
• DISPLAY AUTHINFO

For details of PCF commands associated with TLS, see

118 Securing IBM MQ

• Change, Copy, and Create Authentication Information Object
• Delete Authentication Information Object
• Inquire Authentication Information Object

 IBM MQ for z/OS server connection channel
The IBM MQ for z/OS SVRCONN channel is not secure without implementing channel authentication, or
adding a security exit using TLS. SVRCONN channels do not have a security exit defined by default.

Security concerns
SVRCONN channels are not secure as initially defined, SYSTEM.DEF.SVRCONN for example. To secure a
SVRCONN channel you must set up channel authentication using the SET CHLAUTH command, or install a
security exit and implement TLS.

You must use a publicly available sample security exit, write a security exit yourself, or purchase a
security exit.

There are several samples available that you can use as a good starting point for writing your own
SVRCONN channel security exit.

In IBM MQ for z/OS, the member CSQ4BCX3 in your hlq.SCSQC37S library is a security exit sample
written in the C language. Sample CSQ4BCX3 is also shipped pre-compiled in your hlq.SCSQAUTH library.

You can implement the CSQ4BCX3 sample exit by copying the compiled member
hlq.SCSQAUTH(CSQ4BCX3) into a load library that is allocated to the CSQXLIB DD in your CHIN Proc.
Note that the CHIN requires the load library to be set as "Program Controlled".

Alter your SVRCONN channel to set CSQ4BCX3 as the security exit.

When a client connects using that SVRCONN channel, CSQ4BCX3 will authenticate using the
RemoteUserIdentifier and RemotePassword pair from MQCD or, from IBM MQ for z/OS 9.1.4, the
CSPUserIdPtr and CSPPasswordPtr pair from the MQCSP. If authentication is successful it will copy
RemoteUserIdentifier into MCAUserIdentifier, changing the identity context of the thread.

For Long Term Support and Continuous Delivery before IBM MQ for z/OS 9.1.4, when a client connects
using that SVRCONN channel, CSQ4BCX3 will authenticate using the RemoteUserIdentifier and
RemotePassword pair from MQCD. If authentication is successful it will copy RemoteUserIdentifier
into MCAUserIdentifier, changing the identity context of the thread.

If you are writing an IBM MQ Java client you can use pop-ups to query the user and set
MQEnvironment.userID and MQEnvironment.password. These values will be passed when the connection
is made.

Now that you have a functional security exit, there is the additional concern that the userid and password
are being transmitted in plain text across the network when the connection is made, as are the contents
of any subsequent IBM MQ messages. You can use TLS to encrypt this initial connection information as
well as the contents of any IBM MQ messages.

Example
To secure the IBM MQ Explorer SVRCONN channel SYSTEM.ADMIN.SVRCONN complete the following
steps:

1. Copy hlq.SCSQAUTH(CSQ4BCX3) into a load library that is allocated to the CSQXLIB DD in the CHINIT
Proc.

2. Verify that load library is Program Controlled.
3. Alter the SYSTEM ADMIN.SVRCONN to use security exit CSQ4BCX3.
4. In IBM MQ Explorer, right-click the z/OS Queue Manager name, select Connection Details >

Properties > Userid and enter your z/OS user ID.
5. Connect to the z/OS Queue Manager by entering a password.

Securing IBM MQ 119

Additional information
For exit CSQ4BCX3 to run in a Program Controlled environment, everything loaded into the CHIN address
space must be loaded from a Program Controlled library, for example, all libraries in STEPLIB and any
libraries named on CSQXLIB DD. To set a load library as Program Controlled issue RACF commands. In the
following example the load library name is MY.TEST.LOADLIB.

RALTER PROGRAM * ADDMEM('MY.TEST.LOADLIB'//NOPADCHK)
SETROPTS WHEN(PROGRAM)REFRESH

To alter the SVRCONN channel to implement CSQ4BCX3, issue the following IBM MQ command:

ALTER CHANNEL(SYSTEM ADMIN.SVRCONN) CHLTYPE(SVRCONN) SCYEXIT(CSQ4BCX3)

In the example above, the SVRCONN channel name being used is SYSTEM ADMIN.SVRCONN.

See “Channel exit programs” on page 109 for more information about channel exits.

Related tasks
Writing channel exit programs on z/OS

SNA LU 6.2 security services
SNA LU 6.2 offers session level cryptography, session level authentication, and conversation level
authentication.

Note: This collection of topics assumes that you have a basic understanding of Systems Network
Architecture (SNA). The other documentation referred to in this section contains a brief introduction
to the relevant concepts and terminology. If you require a more comprehensive technical introduction to
SNA, see Systems Network Architecture Technical Overview, GC30-3073.

SNA LU 6.2 provides three security services:

• Session level cryptography
• Session level authentication
• Conversation level authentication

For session level cryptography and session level authentication, SNA uses the Data Encryption Standard
(DES) algorithm. The DES algorithm is a block cipher algorithm, which uses a symmetric key for encrypting
and decrypting data. Both the block and the key are 8 bytes in length.

Session level cryptography
Session level cryptography encrypts and decrypts session data using the DES algorithm. It can therefore
be used to provide a link level confidentiality service on SNA LU 6.2 channels.

Logical units (LUs) can provide mandatory (or required) data cryptography, selective data cryptography, or
no data cryptography.

On a mandatory cryptographic session, an LU encrypts all outbound data request units and decrypts all
inbound data request units.

On a selective cryptographic session, an LU encrypts only the data request units specified by the sending
transaction program (TP). The sending LU signals that the data is encrypted by setting an indicator in the
request header. By checking this indicator, the receiving LU can tell which request units to decrypt before
passing them on to the receiving TP.

In an SNA network, IBM MQ MCAs are transaction programs. MCAs do not request encryption for any data
that they send. Selective data cryptography is not an option therefore; only mandatory data cryptography
or no data cryptography is possible on a session.

For information about how to implement mandatory data cryptography, see the documentation for your
SNA subsystem. Refer to the same documentation for information about stronger forms of encryption that
might be available for use on your platform, such as Triple DES 24-byte encryption on z/OS.

120 Securing IBM MQ

For more general information about session level cryptography, see Systems Network Architecture LU 6.2
Reference: Peer Protocols, SC31-6808.

Session level authentication
Session level authentication is a session level security protocol that enables two LUs to authenticate each
other while they are activating a session. It is also known as LU-LU verification.

Because an LU is effectively the "gateway" into a system from the network, you might consider this
level of authentication to be sufficient in certain circumstances. For example, if your queue manager
needs to exchange messages with a remote queue manager that is running in a controlled and trusted
environment, you might be prepared to trust the identities of the remaining components of the remote
system after the LU has been authenticated.

Session level authentication is achieved by each LU verifying its partner's password. The password is
called an LU-LU password because one password is established between each pair of LUs. The way that
an LU-LU password is established is implementation dependent and outside the scope of SNA.

Figure 12 on page 121 illustrates the flows for session level authentication.

Figure 12. Flows for session level authentication

The protocol for session level authentication is as follows. The numbers in the procedure correspond to
the numbers in Figure 12 on page 121.

1. The primary LU generates a random data value (RD1) and sends it to the secondary LU in the BIND
request.

2. When the secondary LU receives the BIND request with the random data, it encrypts the data using
the DES algorithm with its copy of the LU-LU password as the key. The secondary LU then generates a

Securing IBM MQ 121

second random data value (RD2) and sends it, with the encrypted data (ERD1), to the primary LU in the
BIND response.

3. When the primary LU receives the BIND response, it computes its own version of the encrypted data
from the random data it generated originally. It does this by using the DES algorithm with its copy of
the LU-LU password as the key. It then compares its version with the encrypted data that it received in
the BIND response. If the two values are the same, the primary LU knows that the secondary LU has
the same password as it does and the secondary LU is authenticated. If the two values do not match,
the primary LU terminates the session.

The primary LU then encrypts the random data that it received in the BIND response and sends the
encrypted data (ERD2) to the secondary LU in a Function Management Header 12 (FMH-12).

4. When the secondary LU receives the FMH-12, it computes its own version of the encrypted data from
the random data it generated. It then compares its version with the encrypted data that it received in
the FMH-12. If the two values are the same, the primary LU is authenticated. If the two values do not
match, the secondary LU terminates the session.

In an enhanced version of the protocol, which provides better protection against man in the middle
attacks, the secondary LU computes a DES Message Authentication Code (MAC) from RD1, RD2, and the
fully qualified name of the secondary LU, using its copy of the LU-LU password as the key. The secondary
LU sends the MAC to the primary LU in the BIND response instead of ERD1.

The primary LU authenticates the secondary LU by computing its own version of the MAC, which it
compares with the MAC received in the BIND response. The primary LU then computes a second MAC
from RD1 and RD2, and sends the MAC to the secondary LU in the FMH-12 instead of ERD2.

The secondary LU authenticates the primary LU by computing its own version of the second MAC, which it
compares with the MAC received in the FMH-12.

For information about how to configure session level authentication, see the documentation for your
SNA subsystem. For more general information about session level authentication, see Systems Network
Architecture LU 6.2 Reference: Peer Protocols, SC31-6808.

Conversation level authentication
When a local TP attempts to allocate a conversation with a partner TP, the local LU sends an attach
request to the partner LU, asking it to attach the partner TP. Under certain circumstances, the attach
request can contain security information, which the partner LU can use to authenticate the local TP. This is
known as conversation level authentication, or end user verification.

The following topics describe how IBM MQ provides support for conversation level authentication.

For more information about conversation level authentication, see Systems Network Architecture LU 6.2
Reference: Peer Protocols, SC31-6808.

For information specific to z/OS, see z/OS MVS Planning: APPC/MVS Management.

For more information about CPI-C, see Using CPI Communications.

For more information about APPC/MVS TP Conversation Callable Services, see APPC/MVS TP
Conversation Callable Services.

Support for conversation level authentication on Multiplatforms
Use this topic to gain an overview of how conversation level authentication works on Multiplatforms.

The support for conversation level authentication on Multiplatforms is illustrated in Figure 13 on page
123. The numbers in the diagram correspond to the numbers in the description that follows.

122 Securing IBM MQ

https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-planning-appcmvs-management
https://www.ibm.com/docs/en/zos/2.5.0?topic=programming-using-cpi-communications#cpic
https://www.ibm.com/docs/en/zos/2.5.0?topic=reference-appcmvs-tp-conversation-callable-services
https://www.ibm.com/docs/en/zos/2.5.0?topic=reference-appcmvs-tp-conversation-callable-services

Figure 13. IBM MQ support for conversation level authentication

On Multiplatforms, an MCA uses Common Programming Interface Communications (CPI-C) calls to
communicate with a partner MCA across an SNA network. In the channel definition at the caller end
of a channel, the value of the CONNAME parameter is a symbolic destination name, which identifies a
CPI-C side information entry (1). This entry specifies:

• The name of the partner LU
• The name of the partner TP, which is a responder MCA
• The name of the mode to be used for the conversation

A side information entry can also specify the following security information:

• A security type.

The commonly implemented security types are CM_SECURITY_NONE, CM_SECURITY_PROGRAM, and
CM_SECURITY_SAME, but others are defined in the CPI-C specification.

• A user ID.
• A password.

A caller MCA prepares to allocate a conversation with a responder MCA by issuing the CPI-C call CMINIT,
using the value of CONNAME as one of the parameters on the call. The CMINIT call identifies, for the
benefit of the local LU, the side information entry that the MCA intends to use for the conversation. The
local LU uses the values in this entry to initialize the characteristics of the conversation (2).

The caller MCA then checks the values of the USERID and PASSWORD parameters in the channel
definition (3). If USERID is set, the caller MCA issues the following CPI-C calls (4):

Securing IBM MQ 123

• CMSCST, to set the security type for the conversation to CM_SECURITY_PROGRAM.
• CMSCSU, to set the user ID for the conversation to the value of USERID.
• CMSCSP, to set the password for the conversation to the value of PASSWORD. CMSCSP is not called

unless PASSWORD is set.

The security type, user ID, and password set by these calls override any values acquired previously from
the side information entry.

The caller MCA then issues the CPI-C call CMALLC to allocate the conversation (5). In response to this
call, the local LU sends an attach request (Function Management Header 5, or FMH-5) to the partner LU
(6).

If the partner LU will accept a user ID and a password, the values of USERID and PASSWORD are included
in the attach request. If the partner LU will not accept a user ID and a password, the values are not
included in the attach request. The local LU discovers whether the partner LU will accept a user ID and a
password as part of an exchange of information when the LUs bind to form a session.

In a later version of the attach request, a password substitute can flow between the LUs instead of a clear
password. A password substitute is a DES Message Authentication Code (MAC), or an SHA-1 message
digest, formed from the password. Password substitutes can be used only if both LUs support them.

When the partner LU receives an incoming attach request containing a user ID and a password, it might
use the user ID and password for the purposes of identification and authentication. By referring to access
control lists, the partner LU might also determine whether the user ID has the authority to allocate a
conversation and attach the responder MCA.

In addition, the responder MCA might run under the user ID included in the attach request. In this case,
the user ID becomes the default user ID for the responder MCA and is used for authority checks when the
MCA attempts to connect to the queue manager. It might also be used for authority checks subsequently
when the MCA attempts to access the queue manager's resources.

The way in which a user ID and a password in an attach request can be used for identification,
authentication, and access control is implementation dependent. For information specific to your SNA
subsystem, refer to the appropriate documentation.

If USERID is not set, the caller MCA does not call CMSCST, CMSCSU, and CMSCSP. In this case, the
security information that flows in an attach request is determined solely by what is specified in the side
information entry and what the partner LU will accept.

Conversation level authentication and IBM MQ for z/OS
Use this topic to gain an overview of how conversation level authentication works, on z/OS.

On IBM MQ for z/OS, MCAs do not use CPI-C. Instead, they use APPC/MVS TP Conversation Callable
Services, an implementation of Advanced Program-to-Program Communication (APPC), which has some
CPI-C features. When a caller MCA allocates a conversation, a security type of SAME is specified on the
call. Therefore, because an APPC/MVS LU supports persistent verification only for inbound conversations,
not for outbound conversations, there are two possibilities:

• If the partner LU trusts the APPC/MVS LU and will accept an already verified user ID, the APPC/MVS LU
sends an attach request containing:

– The channel initiator address space user ID
– A security profile name, which, if RACF is used, is the name of the current connect group of the

channel initiator address space user ID
– An already verified indicator

• If the partner LU does not trust the APPC/MVS LU and will not accept an already verified user ID, the
APPC/MVS LU sends an attach request containing no security information.

On IBM MQ for z/OS, the USERID and PASSWORD parameters on the DEFINE CHANNEL command cannot
be used for a message channel and are valid only at the client connection end of an MQI channel.
Therefore, an attach request from an APPC/MVS LU never contains values specified by these parameters.

124 Securing IBM MQ

Security for queue manager clusters
Though queue manager clusters can be convenient to use, you must pay special attention to their
security.

A queue manager cluster is a network of queue managers that are logically associated in some way. A
queue manager that is a member of a cluster is called a cluster queue manager.

A queue that belongs to a cluster queue manager can be made known to other queue managers in the
cluster. Such a queue is called a cluster queue. Any queue manager in a cluster can send messages to
cluster queues without needing any of the following:

• An explicit remote queue definition for each cluster queue
• Explicitly defined channels to and from each remote queue manager
• A separate transmission queue for each outbound channel

You can create a cluster in which two or more queue managers are clones. This means that they have
instances of the same local queues, including any local queues declared as cluster queues, and can
support instances of the same server applications.

When an application connected to a cluster queue manager sends a message to a cluster queue that has
an instance on each of the cloned queue managers, IBM MQ decides which queue manager to send it to.
When many applications send messages to the cluster queue, IBM MQ balances the workload across each
of the queue managers that have an instance of the queue. If one of the systems hosting a cloned queue
manager fails, IBM MQ continues to balance the workload across the remaining queue managers until the
system that failed is restarted.

If you are using queue manager clusters, you need to consider the following security issues:

• Allowing only selected queue managers to send messages to your queue manager
• Allowing only selected users of a remote queue manager to send messages to a queue on your queue

manager
• Allowing applications connected to your queue manager to send messages only to selected remote

queues

These considerations are relevant even if you are not using clusters, but they become more important if
you are using clusters.

If an application can send messages to one cluster queue, it can send messages to any other cluster
queue without needing additional remote queue definitions, transmission queues, or channels. It
therefore becomes more important to consider whether you need to restrict access to the cluster queues
on your queue manager, and to restrict the cluster queues to which your applications can send messages.

There are some additional security considerations, which are relevant only if you are using queue
manager clusters:

• Allowing only selected queue managers to join a cluster
• Forcing unwanted queue managers to leave a cluster

For more information about all these considerations, see Keeping clusters secure. For
considerations specific to IBM MQ for z/OS, see “Security in queue manager clusters on z/OS” on page
259.

Related tasks
“Preventing queue managers receiving messages” on page 489

Securing IBM MQ 125

You can prevent a cluster queue manager from receiving messages it is unauthorized to receive by using
exit programs.

Security for IBM MQ Publish/Subscribe
There are additional security considerations if you are using IBM MQ Publish/Subscribe.

In a publish/subscribe system, there are two types of application: publisher and subscriber. Publishers
supply information in the form of IBM MQ messages. When a publisher publishes a message, it specifies a
topic, which identifies the subject of the information inside the message.

Subscribers are the consumers of the information that is published. A subscriber specifies the topics it is
interested in by subscribing to them.

The queue manager is an application supplied with IBM MQ Publish/Subscribe. It receives published
messages from publishers and subscription requests from subscribers, and routes the published
messages to the subscribers. A subscriber is sent messages only on those topics to which it has
subscribed.

For more information, see Publish/subscribe security.

Multicast security
Use this information to understand why security processes might be needed with IBM MQ Multicast.

IBM MQ Multicast does not have in-built security. Security checks are handled in the queue manager at
MQOPEN time and the MQMD field setting is handled by the client. Some applications in the network
might not be IBM MQ applications (For example, LLM applications, see Multicast interoperability with
IBM MQ Low Latency Messaging for more information), therefore you might need to implement your own
security procedures because receiving applications cannot be certain of the validity of context fields.

There are three security processes to consider:
Access control

Access control in IBM MQ is based on user IDs. For more information on this subject, see “Access
control for clients” on page 102.

Network security
An isolated network might be a viable security option to prevent fake messages. It is possible
for an application on the multicast group address to publish malicious messages using native
communication functions, which are indistinguishable from MQ messages because they come from
an application on the same multicast group address.

It is also possible for a client on the multicast group address to receive messages that were intended
for other clients on the same multicast group address.

Isolating the multicast network ensures that only valid clients and applications have access. This
security precaution can prevent malicious messages from coming in, and confidential information
from going out.

For information about multicast group network addresses, see: Setting the appropriate network for
multicast traffic

Digital signatures
A digital signature is formed by encrypting a representation of a message. The encryption uses the
private key of the signatory and, for efficiency, usually operates on a message digest rather than the
message itself. Digitally signing a message before an MQPUT is a good security precaution, but this
process might have a detrimental effect on performance if there is a large volume of messages.

Digital signatures vary with the data being signed. If two different messages are signed digitally by the
same entity, the two signatures differ, but both signatures can be verified with the same public key,
that is, the public key of the entity that signed the messages.

126 Securing IBM MQ

As mentioned previously in this section, it might be possible for an application on the multicast
group address to publish malicious messages using native communication functions, which are
indistinguishable from MQ messages. Digital signatures provide proof of origin, and only the sender
knows the private key, which provides strong evidence that the sender is the originator of the
message.

For more information on this subject, see “Cryptographic concepts” on page 11.

Firewalls and Internet pass-thru
You would normally use a firewall to prevent access from hostile IP addresses, for example in a Denial of
Service attack. However, you might need to temporarily block IP addresses within IBM MQ, perhaps while
you wait for a security administrator to update the firewall rules.

To block one or more IP addresses, create a channel authentication record of type BLOCKADDR or
ADDRESSMAP. For more information, see “Blocking specific IP addresses” on page 395.

Security for IBM MQ Internet Pass-Thru
IBM MQ Internet Pass-Thru can simplify communication through a firewall, but this has security
implications.

IBM MQ Internet Pass-Thru (MQIPT) is an optional component of IBM MQ that can be used to implement
messaging solutions between remote sites across the internet.

MQIPT enables two queue managers to exchange messages, or an IBM MQ client application to connect
to a queue manager, over the Internet without requiring a direct TCP/IP connection. This is useful if a
firewall prohibits a direct TCP/IP connection between two systems. It makes the passage of IBM MQ
channel protocol flows into and out of a firewall simpler and more manageable by tunnelling the flows
inside HTTP or by acting as a proxy. Using Transport Layer Security (TLS), it can also be used to encrypt
and decrypt messages that are sent over the Internet.

When your IBM MQ system communicates with MQIPT, unless you are using SSL proxy mode in MQIPT,
ensure that the CipherSpec used by IBM MQ matches the CipherSuite used by MQIPT:

• When MQIPT is acting as the TLS server and IBM MQ is connecting as the TLS client, the CipherSpec
used by IBM MQ must correspond to a CipherSuite that is enabled in the relevant MQIPT key ring.

• When MQIPT is acting as the TLS client and is connecting to an IBM MQ TLS server, the MQIPT
CipherSuite must match the CipherSpec defined on the receiving IBM MQ channel.

If you migrate from MQIPT to the integrated IBM MQ TLS support, transfer the digital certificates from the
MQIPT key ring using either mqiptKeyman or mqiptKeycmd.

For more information, see IBM MQ Internet Pass-Thru.

IBM MQ for z/OS security implementation checklist
This topic gives a step-by-step procedure you can use to work out and define the security implementation
for each of your IBM MQ queue managers.

RACF provides definitions for the IBM MQ security classes in its supplied static Class Descriptor Table
(CDT). As you work through the checklist, you can determine which of these classes your setup requires.
You must ensure that they are activated as described in “RACF security classes” on page 185.

Refer to other sections for details, in particular “Profiles used to control access to IBM MQ resources” on
page 194.

If you require security checking, follow this checklist to implement it:

1. Activate the RACF MQADMIN (uppercase profiles) or MXADMIN (mixed case profiles) class.

• Do you want security at queue sharing group level, queue manager level, or a combination of both?

See, “Profiles to control queue sharing group or queue manager level security” on page 189.

Securing IBM MQ 127

2. Do you need connection security?

• Yes: Activate the MQCONN class. Define appropriate connection profiles at either queue manager
level or queue sharing group level in the MQCONN class. Then permit the appropriate users or
groups access to these profiles.

Note: Only users of the MQCONN API request or CICS or IMS address space user IDs need to have
access to the corresponding connection profile.

• No: Define an hlq.NO.CONNECT.CHECKS profile at either queue manager level or queue sharing
group level in the MQADMIN or MXADMIN class.

3. Do you need security checking on commands?

• Yes: Activate the MQCMDS class. Define appropriate command profiles at either queue manager
level or queue sharing group level in the MQCMDS class. Then permit the appropriate users or
groups access to these profiles.

If you are using a queue sharing group, you might need to include the user IDs used by the queue
manager itself and the channel initiator. See “Setting up IBM MQ for z/OS resource security” on
page 250.

• No: Define an hlq.NO.CMD.CHECKS profile for the required queue manager or queue sharing group
in the MQADMIN or MXADMIN class.

4. Do you need security on the resources used in commands?

• Yes: Ensure the MQADMIN or MXADMIN class is active. Define appropriate profiles for protecting
resources on commands at either queue manager level or queue sharing group level in the
MQADMIN or MXADMIN class. Then permit the appropriate users or groups access to these
profiles. Set the CMDUSER parameter in CSQ6SYSP to the default user ID to be used for command
security checks.

If you are using a queue sharing group, you might need to include the user IDs used by the queue
manager itself and the channel initiator. See “Setting up IBM MQ for z/OS resource security” on
page 250.

• No: Define an hlq.NO.CMD.RESC.CHECKS profile for the required queue manager or queue sharing
group in the MQADMIN or MXADMIN class.

5. Do you need queue security?

• Yes: Activate the MQQUEUE or MXQUEUE class. Define appropriate queue profiles for the required
queue manager or queue sharing group in the MQQUEUE or MXQUEUEclass. Then permit the
appropriate users or groups access to these profiles.

• No: Define an hlq.NO.QUEUE.CHECKS profile for the required queue manager or queue sharing
group in the MQADMIN or MXADMIN class.

6. Do you need process security?

• Yes: Activate the MQPROC or MXPROC class. Define appropriate process profiles at either queue
manager or queue sharing group level and permit the appropriate users or groups access to these
profiles.

• No: Define an hlq.NO.PROCESS.CHECKS profile for the appropriate queue manager or queue
sharing group in the MQADMIN or MXADMIN class.

7. Do you need namelist security?

• Yes: Activate the MQNLIST or MXNLISTclass. Define appropriate namelist profiles at either queue
manager level or queue sharing group level in the MQNLIST or MXNLIST class. Then permit the
appropriate users or groups access to these profiles.

• No: Define an hlq.NO.NLIST.CHECKS profile for the required queue manager or queue sharing group
in the MQADMIN or MXADMIN class.

8. Do you need topic security?

128 Securing IBM MQ

• Yes: Activate the MXTOPIC class. Define appropriate topic profiles at either queue manager level
or queue sharing group level in the MXTOPIC class. Then permit the appropriate users or groups
access to these profiles.

• No: Define an hlq.NO.TOPIC.CHECKS profile for the required queue manager or queue sharing
group in the MQADMIN or MXADMIN class.

9. Do any users need to protect the use of the MQOPEN or MQPUT1 options relating to the use of context?

• Yes: Ensure the MQADMIN or MXADMIN class is active. Define hlq.CONTEXT.queuename profiles at
the queue, queue manager, or queue sharing group level in the MQADMIN or MXADMIN class. Then
permit the appropriate users or groups access to these profiles.

• No: Define an hlq.NO.CONTEXT.CHECKS profile for the required queue manager or queue sharing
group in the MQADMIN or MXADMIN class.

10. Do you need to protect the use of alternative user IDs?

• Yes: Ensure the MQADMIN or MXADMIN class is active. Define the appropriate
hlq.ALTERNATE.USER. alternateuserid profiles for the required queue manager or queue
sharing group and permit the required users or groups access to these profiles.

• No: Define the profile hlq.NO.ALTERNATE.USER.CHECKS for the required queue manager or queue
sharing group in the MQADMIN or MXADMIN class.

11. Do you need to tailor which user IDs are to be used for resource security checks through RESLEVEL?

• Yes: Ensure the MQADMIN or MXADMIN class is active. Define an hlq.RESLEVEL profile at either
queue manager level or queue sharing group level in the MQADMIN or MXADMIN class. Then permit
the required users or groups access to the profile.

• No: Ensure that no generic profiles exist in the MQADMIN or MXADMIN class that can apply to
hlq.RESLEVEL. Define an hlq.RESLEVEL profile for the required queue manager or queue sharing
group and ensure that no users or groups have access to it.

12. Do you need to 'timeout' unused user IDs from IBM MQ ?

• Yes: Determine what timeout values you would like to use and issue the MQSC ALTER SECURITY
command to change the TIMEOUT and INTERVAL parameters.

• No: Issue the MQSC ALTER SECURITY command to set the INTERVAL value to zero.

Note: Update the CSQINP1 initialization input data set used by your subsystem so that the MQSC
ALTER SECURITY command is issued automatically when the queue manager is started.

13. Do you use distributed queuing?

• Yes: Use channel authentication records. For more information, see “Channel authentication
records” on page 51.

• You can also determine the appropriate MCAUSER attribute value for each channel, or provide
suitable channel security exits.

14. Do you want to use Transport Layer Security (TLS)?

• Yes: To specify that any user presenting an TLS personal certificate containing a specified DN is to
use a specific MCAUSER, set a channel authentication record of type SSLPEERMAP. You can specify
a single distinguished name or a pattern including wildcards.

• Plan your TLS infrastructure. Install the System SSL feature of z/OS. In RACF, set up your certificate
name filters (CNFs), if you are using them, and your digital certificates. Set up your SSL key ring.
Ensure that the SSLKEYR queue manager attribute is nonblank and points to your SSL key ring. Also
ensure that the value of SSLTASKS is at least 2.

• No: Ensure that SSLKEYR is blank, and SSLTASKS is zero.

For further details about TLS, see “TLS security protocols in IBM MQ ” on page 24.
15. Do you use clients?

• Yes: Use channel authentication records.

Securing IBM MQ 129

• You can also determine the appropriate MCAUSER attribute value for each server-connection
channel, or provide suitable channel security exits if required.

16. Check your switch settings.

IBM MQ issues messages when the queue manager is started that display your security settings. Use
these messages to determine whether your switches are set correctly.

17. Do you send passwords from client applications?

• Yes: Ensure that the z/OS feature is installed and Integrated Cryptographic Service Facility (ICSF) is
started for the best protection.

• No: You can ignore the error message reporting that ICSF has not started.

For further information about ICSF see “Using the Integrated Cryptographic Service Facility (ICSF)”
on page 258

Setting up security
This collection of topics contains information specific to different operating systems, and to the use of
clients.

Setting up security on AIX, Linux, and Windows
Security considerations specific to AIX, Linux, and Windows systems.

IBM MQ queue managers transfer information that is potentially valuable, so you need to use an authority
system to ensure that unauthorized users cannot access your queue managers. Consider the following
types of security controls:
Who can administer IBM MQ

You can define the set of users who can issue commands to administer IBM MQ.
Who can use IBM MQ objects

You can define which users (usually applications) can use MQI calls and PCF commands to do the
following:

• Who can connect to a queue manager.
• Who can access objects (queues, process definitions, namelists, channels, client connection

channels, listeners, services, and authentication information objects), and what type of access they
have to those objects.

• Who can access IBM MQ messages.
• Who can access the context information associated with a message.

Channel security
You need to ensure that channels used to send messages to remote systems can access the required
resources.

You can use standard operating facilities to grant access to program libraries, MQI link libraries, and
commands. However, the directory containing queues and other queue manager data is private to IBM
MQ; do not use standard operating system commands to grant or revoke authorizations to MQI resources.

How authorizations work on AIX, Linux, and Windows
The authorization specification tables in the topics in this section define precisely how the authorizations
work and the restrictions that apply.

The tables apply to these situations:

• Applications that issue MQI calls
• Administration programs that issue MQSC commands as escape PCFs
• Administration programs that issue PCF commands

130 Securing IBM MQ

In this section, the information is presented as a set of tables that specify the following:
Action to be performed

MQI option, MQSC command, or PCF command.
Access control object

Queue, process, queue manager, namelist, authentication information, channel, client connection
channel, listener, or service.

Authorization required
Expressed as an MQZAO_ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in the authorization list
for the setmqaut command for the particular entity. For example, MQZAO_BROWSE corresponds to the
keyword +browse, MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall, and so on. These
constants are defined in the header file cmqzc.h, supplied with the product.

Authorizations for MQI calls
MQCONN, MQOPEN, MQPUT1, and MQCLOSE might require authorization checks. The tables in this topic
summarize the authorizations needed for each call.

An application is allowed to issue specific MQI calls and options only if the user identifier under which it is
running (or whose authorizations it is able to assume) has been granted the relevant authorization.

Four MQI calls might require authorization checks: MQCONN, MQOPEN, MQPUT1, and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the object being opened, and not
on the name, or names, resulting after a name has been resolved. For example, an application might
be granted authority to open an alias queue without having authority to open the base queue to which
the alias resolves. The rule is that the check is carried out on the first definition encountered during the
process of resolving a name that is not a queue manager alias, unless the queue manager alias definition
is opened directly; that is, its name is displayed in the ObjectName field of the object descriptor.
Authority is always needed for the object being opened. In some cases additional queue-independent
authority, obtained through an authorization for the queue manager object, is required.

Table 10 on page 131, Table 11 on page 132, Table 12 on page 132, and Table 13 on page 133
summarize the authorizations needed for each call. In the tables Not applicable means that authorization
checking is not relevant to this operation; No check means that no authorization checking is performed.

Note: You will find no mention of namelists, channels, client connection channels, listeners, services,
or authentication information objects in these tables. This is because none of the authorizations apply
to these objects, except for MQOO_INQUIRE, for which the same authorizations apply as for the other
objects.

The special authorization MQZAO_ALL_MQI includes all the authorizations in the tables that are relevant
to the object type, except MQZAO_DELETE and MQZAO_DISPLAY, which are classed as administration
authorizations.

In order to modify any of the message context options, you must have the appropriate
authorizations to issue the call. For example, in order to use MQOO_SET_IDENTITY_CONTEXT or
MQPMO_SET_IDENTITY_CONTEXT, you must have +setid permission.

Table 10. Security authorization needed for MQCONN calls

Authorization required
for:

Queue object (“1” on
page 133)

Process object Queue manager object

MQCONN Not applicable Not applicable MQZAO_CONNECT

Securing IBM MQ 131

Table 11. Security authorization needed for MQOPEN calls

Authorization required
for:

Queue object (“1” on
page 133)

Process object Queue manager object

MQOO_INQUIRE MQZAO_INQUIRE MQZAO_INQUIRE MQZAO_INQUIRE

MQOO_BROWSE MQZAO_BROWSE Not applicable No check

MQOO_INPUT_* MQZAO_INPUT Not applicable No check

MQOO_SAVE_
ALL_CONTEXT (“2” on
page 133)

MQZAO_INPUT Not applicable Not applicable

MQOO_OUTPUT (Normal
queue) (“3” on page
133)

MQZAO_OUTPUT Not applicable Not applicable

MQOO_PASS_
IDENTITY_CONTEXT (“4”
on page 133)

MQZAO_PASS_
IDENTITY_CONTEXT

Not applicable No check

MQOO_PASS_ALL_
CONTEXT (“4” on page
133, “5” on page 133)

MQZAO_PASS
_ALL_CONTEXT

Not applicable No check

MQOO_SET_
IDENTITY_CONTEXT (“4”
on page 133, “5” on page
133)

MQZAO_SET_
IDENTITY_CONTEXT

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (“6”
on page 133)

MQOO_SET_
ALL_CONTEXT (“4” on
page 133, “7” on page
133)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (“6” on
page 133)

MQOO_OUTPUT
(Transmission queue)
(“8” on page 133)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (“6” on
page 133)

MQOO_SET MQZAO_SET Not applicable No check

MQOO_ALTERNATE_
USER_AUTHORITY

(“9” on page 133) (“9” on page 133) MQZAO_ALTERNATE_
USER_AUTHORITY (“9”
on page 133, “10” on
page 133)

Table 12. Security authorization needed for MQPUT1 calls

Authorization required
for:

Queue object (“1” on
page 133)

Process object Queue manager object

MQPMO_PASS_
IDENTITY_CONTEXT

MQZAO_PASS_
IDENTITY_CONTEXT
(“11” on page 133)

Not applicable No check

MQPMO_PASS_ALL
_CONTEXT

MQZAO_PASS_
ALL_CONTEXT (“11” on
page 133)

Not applicable No check

MQPMO_SET_
IDENTITY_CONTEXT

MQZAO_SET_
IDENTITY_CONTEXT
(“11” on page 133)

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (“6”
on page 133)

132 Securing IBM MQ

Table 12. Security authorization needed for MQPUT1 calls (continued)

Authorization required
for:

Queue object (“1” on
page 133)

Process object Queue manager object

MQPMO_SET_
ALL_CONTEXT

MQZAO_SET_
ALL_CONTEXT (“11” on
page 133)

Not applicable MQZAO_SET_
ALL_CONTEXT (“6” on
page 133)

(Transmission queue)
(“8” on page 133)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (“6” on
page 133)

MQPMO_ALTERNATE_
USER_AUTHORITY

(“12” on page 134) Not applicable MQZAO_ALTERNATE_
USER_AUTHORITY (“10”
on page 133)

Table 13. Security authorization needed for MQCLOSE calls

Authorization required
for:

Queue object (“1” on
page 133)

Process object Queue manager object

MQCO_DELETE MQZAO_DELETE (“13” on
page 134)

Not applicable Not applicable

MQCO_DELETE _PURGE MQZAO_DELETE (“13” on
page 134)

Not applicable Not applicable

Notes for the tables:

1. If opening a model queue:

• MQZAO_DISPLAY authority is needed for the model queue, in addition to the authority to open the
model queue for the type of access for which you are opening.

• MQZAO_CREATE authority is not needed to create the dynamic queue.
• The user identifier used to open the model queue is automatically granted all the queue-specific

authorities (equivalent to MQZAO_ALL) for the dynamic queue created.
2. MQOO_INPUT_* must also be specified. This is valid for a local, model, or alias queue.
3. This check is performed for all output cases, except transmission queues (see note “8” on page

133).
4. MQOO_OUTPUT must also be specified.
5. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.
6. This authority is required for both the queue manager object and the particular queue.
7. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and

MQOO_SET_IDENTITY_CONTEXT are also implied by this option.
8. This check is performed for a local or model queue that has a Usage queue attribute of

MQUS_TRANSMISSION, and is being opened directly for output. It does not apply if a remote queue
is being opened (either by specifying the names of the remote queue manager and remote queue, or
by specifying the name of a local definition of the remote queue).

9. At least one of MQOO_INQUIRE (for any object type), or MQOO_BROWSE, MQOO_INPUT_*,
MQOO_OUTPUT, or MQOO_SET (for queues) must also be specified. The check carried out is as for the
other options specified, using the supplied alternate-user identifier for the specific-named object
authority, and the current application authority for the MQZAO_ALTERNATE_USER_IDENTIFIER
check.

10. This authorization allows any AlternateUserId to be specified.
11. An MQZAO_OUTPUT check is also carried out if the queue does not have a Usage queue attribute of

MQUS_TRANSMISSION.

Securing IBM MQ 133

12. The check carried out is as for the other options specified, using the supplied alternate-user
identifier for the specific-named queue authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

13. The check is carried out only if both of the following statements are true:

• A permanent dynamic queue is being closed and deleted.
• The queue was not created by the MQOPEN call that returned the object handle being used.

Otherwise, there is no check.

Authorizations for MQSC commands in escape PCFs
This information summarizes the authorizations needed for each MQSC command contained in Escape
PCF.

Not applicable means that this operation is not relevant to this object type.

The user ID under which the program that submits the command is running must also have the following
authorities:

• MQZAO_CONNECT authority to the queue manager
• MQZAO_DISPLAY authority on the queue manager in order to perform PCF commands
• Authority to issue the MQSC command within the text of the Escape PCF command

ALTER object

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager MQZAO_CHANGE

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

CLEAR object

Object Authorization required

Queue MQZAO_CLEAR

Topic MQZAO_CLEAR

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

134 Securing IBM MQ

Object Authorization required

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Communication information Not applicable

DEFINE object NOREPLACE (“1” on page 138)

Object Authorization required

Queue MQZAO_CREATE (“2” on page 138)

Topic MQZAO_CREATE (“2” on page 138)

Process MQZAO_CREATE (“2” on page 138)

Queue manager Not applicable

Namelist MQZAO_CREATE (“2” on page 138)

Authentication information MQZAO_CREATE (“2” on page 138)

Channel MQZAO_CREATE (“2” on page 138)

Client connection channel MQZAO_CREATE (“2” on page 138)

Listener MQZAO_CREATE (“2” on page 138)

Service MQZAO_CREATE (“2” on page 138)

Communication information MQZAO_CREATE (“2” on page 138)

DEFINE object REPLACE (“1” on page 138, “3” on page 138)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

DELETE object

Object Authorization required

Queue MQZAO_DELETE

Topic MQZAO_DELETE

Securing IBM MQ 135

Object Authorization required

Process MQZAO_DELETE

Queue manager Not applicable

Namelist MQZAO_DELETE

Authentication information MQZAO_DELETE

Channel MQZAO_DELETE

Client connection channel MQZAO_DELETE

Listener MQZAO_DELETE

Service MQZAO_DELETE

Communication information MQZAO_DELETE

DISPLAY object

Object Authorization required

Queue MQZAO_DISPLAY

Topic MQZAO_DISPLAY

Process MQZAO_DISPLAY

Queue manager MQZAO_DISPLAY

Namelist MQZAO_DISPLAY

Authentication information MQZAO_DISPLAY

Channel MQZAO_DISPLAY

Client connection channel MQZAO_DISPLAY

Listener MQZAO_DISPLAY

Service MQZAO_DISPLAY

Communication information MQZAO_DISPLAY

START object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

136 Securing IBM MQ

Object Authorization required

Communication information Not applicable

STOP object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Communication information Not applicable

Channel Commands

Command Object Authorization required

PING CHANNEL Channel MQZAO_CONTROL

RESET CHANNEL Channel MQZAO_CONTROL_EXTENDED

RESOLVE CHANNEL Channel MQZAO_CONTROL_EXTENDED

Subscription Commands

Command Object Authorization required

ALTER SUB Topic MQZAO_CONTROL

DEFINE SUB Topic MQZAO_CONTROL

DELETE SUB Topic MQZAO_CONTROL

DISPLAY SUB Topic MQZAO_DISPLAY

Security Commands

Command Object Authorization required

SET AUTHREC Queue manager MQZAO_CHANGE

DELETE AUTHREC Queue manager MQZAO_CHANGE

DISPLAY AUTHREC Queue manager MQZAO_DISPLAY

DISPLAY AUTHSERV Queue manager MQZAO_DISPLAY

DISPLAY ENTAUTH Queue manager MQZAO_DISPLAY

SET CHLAUTH Queue manager MQZAO_CHANGE

Securing IBM MQ 137

Command Object Authorization required

DISPLAY CHLAUTH Queue manager MQZAO_DISPLAY

REFRESH SECURITY Queue manager MQZAO_CHANGE

Status Displays

Command Object Authorization required

DISPLAY CHSTATUS Queue manager MQZAO_DISPLAY

Note that +inq authority (or
equivalently MQZAO_INQUIRE)
is required on the transmission
queue if the channel type is
CLUSSDR.

DISPLAY LSSTATUS Queue manager MQZAO_DISPLAY

DISPLAY PUBSUB Queue manager MQZAO_DISPLAY

DISPLAY SBSTATUS Queue manager MQZAO_DISPLAY

DISPLAY SVSTATUS Queue manager MQZAO_DISPLAY

DISPLAY TPSTATUS Queue manager MQZAO_DISPLAY

Cluster Commands

Command Object Authorization required

DISPLAY CLUSQMGR Queue manager MQZAO_DISPLAY

REFRESH CLUSTER 'mqm' group membership required

RESET CLUSTER 'mqm' group membership required

SUSPEND QMGR 'mqm' group membership required

RESUME QMGR 'mqm' group membership required

Other Administrative Commands

Command Object Authorization required

PING QMGR Queue manager MQZAO_DISPLAY

REFRESH QMGR Queue manager MQZAO_CHANGE

RESET QMGR Queue manager MQZAO_CHANGE

DISPLAY CONN Queue manager MQZAO_DISPLAY

STOP CONN Queue manager MQZAO_CHANGE

Note:

1. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the LIKE object if one is
specified, or on the appropriate SYSTEM.DEFAULT.xxx object if LIKE is omitted.

2. The MQZAO_CREATE authority is not specific to a particular object or object type. Create authority is
granted for all objects for a specified queue manager, by specifying an object type of QMGR on the
setmqaut command.

3. This applies if the object to be replaced already exists. If it does not, the check is as for DEFINE object
NOREPLACE.

138 Securing IBM MQ

Related information
Clustering: Using REFRESH CLUSTER best practices

Authorizations for PCF commands
This section summarizes the authorizations needed for each PCF command.

No check means that no authorization checking is carried out; Not applicable means that this operation is
not relevant to this object type.

The user ID under which the program that submits the command is running must also have the following
authorities:

• MQZAO_CONNECT authority to the queue manager
• MQZAO_DISPLAY authority on the queue manager in order to perform PCF commands

The special authorization MQZAO_ALL_ADMIN includes all the authorizations in the following list that are
relevant to the object type, except MQZAO_CREATE, which is not specific to a particular object or object
type.

Change object

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager MQZAO_CHANGE

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

Clear object

Object Authorization required

Queue MQZAO_CLEAR

Topic MQZAO_CLEAR

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Securing IBM MQ 139

Object Authorization required

Communication information Not applicable

Copy object (without replace) (1)

Object Authorization required

Queue MQZAO_CREATE (2)

Topic MQZAO_CREATE (2)

Process MQZAO_CREATE (2)

Queue manager Not applicable

Namelist MQZAO_CREATE (2)

Authentication information MQZAO_CREATE (2)

Channel MQZAO_CREATE (2)

Client connection channel MQZAO_CREATE (2)

Listener MQZAO_CREATE (2)

Service MQZAO_CREATE (2)

Communication information MQZAO_CREATE (“2” on page 145)

Copy object (with replace) (1, 4)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

Create object (without replace) (3)

Object Authorization required

Queue MQZAO_CREATE (2)

Topic MQZAO_CREATE (2)

Process MQZAO_CREATE (2)

Queue manager Not applicable

Namelist MQZAO_CREATE (2)

140 Securing IBM MQ

Object Authorization required

Authentication information MQZAO_CREATE (2)

Channel MQZAO_CREATE (2)

Client connection channel MQZAO_CREATE (2)

Listener MQZAO_CREATE (2)

Service MQZAO_CREATE (2)

Communication information MQZAO_CREATE (2)

Create object (with replace) (3, 4)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Communication information MQZAO_CHANGE

Delete object

Object Authorization required

Queue MQZAO_DELETE

Topic MQZAO_DELETE

Process MQZAO_DELETE

Queue manager Not applicable

Namelist MQZAO_DELETE

Authentication information MQZAO_DELETE

Channel MQZAO_DELETE

Client connection channel MQZAO_DELETE

Listener MQZAO_DELETE

Service MQZAO_DELETE

Communication information MQZAO_DELETE

Securing IBM MQ 141

Inquire object

Object Authorization required

Queue MQZAO_DISPLAY

Topic MQZAO_DISPLAY

Process MQZAO_DISPLAY

Queue manager MQZAO_DISPLAY

Namelist MQZAO_DISPLAY

Authentication information MQZAO_DISPLAY

Channel MQZAO_DISPLAY

Client connection channel MQZAO_DISPLAY

Listener MQZAO_DISPLAY

Service MQZAO_DISPLAY

Communication information MQZAO_DISPLAY

Inquire object names

Object Authorization required

Queue No check

Topic No check

Process No check

Queue manager No check

Namelist No check

Authentication information No check

Channel No check

Client connection channel No check

Listener No check

Service No check

Communication information No check

Start object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

142 Securing IBM MQ

Object Authorization required

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Communication information Not applicable

Stop object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Communication information Not applicable

Channel Commands

Command Object Authorization required

Ping Channel Channel MQZAO_CONTROL

Reset Channel Channel MQZAO_CONTROL_EXTENDED

Resolve Channel Channel MQZAO_CONTROL_EXTENDED

Subscription Commands

Command Object Authorization required

Change Subscription Topic MQZAO_CONTROL

Create Subscription Topic MQZAO_CONTROL

Delete Subscription Topic MQZAO_CONTROL

Inquire Subscription Topic MQZAO_DISPLAY

Security Commands

Command Object Authorization required

Set Authority Record Queue manager MQZAO_CHANGE

Delete Authority Record Queue manager MQZAO_CHANGE

Inquire Authority Records Queue manager MQZAO_DISPLAY

Securing IBM MQ 143

Command Object Authorization required

Inquire Authority Service Queue manager MQZAO_DISPLAY

Inquire Entity Authority Queue manager MQZAO_DISPLAY

Set Channel Authentication
Record

Queue manager MQZAO_CHANGE

Inquire Channel Authentication
Records

Queue manager MQZAO_DISPLAY

Refresh Security Queue manager MQZAO_CHANGE

Status Displays

Command Object Authorization required

Inquire Channel Status Queue manager MQZAO_DISPLAY

Note that +inq authority (or
equivalently MQZAO_INQUIRE)
is required on the transmission
queue if the channel type is
CLUSSDR.

Inquire Channel Listener Status Queue manager MQZAO_DISPLAY

Inquire Pub/Sub Status Queue manager MQZAO_DISPLAY

Inquire Subscription Status Queue manager MQZAO_DISPLAY

Inquire Service Status Queue manager MQZAO_DISPLAY

Inquire Topic Status Queue manager MQZAO_DISPLAY

Cluster Commands

Command Object Authorization required

Inquire Cluster Queue Manager Queue manager MQZAO_DISPLAY

Refresh Cluster 'mqm' group membership
required

'mqm' group membership
required

Reset Cluster 'mqm' group membership
required

'mqm' group membership
required

Suspend Queue Manager
Cluster

'mqm' group membership
required

'mqm' group membership
required

Resume Queue Manager Cluster 'mqm' group membership
required

'mqm' group membership
required

Other Administrative Commands

Command Object Authorization required

Ping Queue Manager Queue manager MQZAO_DISPLAY

Refresh Queue Manager Queue manager MQZAO_CHANGE

Reset Queue Manager Queue manager MQZAO_CHANGE

Reset Queue Statistics Queue MQZAO_DISPLAY and
MQZAO_CHANGE

144 Securing IBM MQ

Command Object Authorization required

Inquire Connection Queue manager MQZAO_DISPLAY

Stop Connection Queue manager MQZAO_CHANGE

Note:

1. For Copy commands, MQZAO_DISPLAY authority is also needed for the From object.
2. The MQZAO_CREATE authority is not specific to a particular object or object type. Create authority is

granted for all objects for a specified queue manager, by specifying an object type of QMGR on the
setmqaut command.

3. For Create commands, MQZAO_DISPLAY authority is also needed for the appropriate
SYSTEM.DEFAULT.* object.

4. This applies if the object to be replaced already exists. If it does not, the check is as for Copy or Create
without replace.

Creating and managing groups on AIX
On AIX, providing you are not using NIS or NIS+, use SMITTY to work with groups.

About this task
On AIX, you can use SMITTY to create a group, add a user to a group, display a list of the users who are in
the group, and remove a user from a group.

Procedure
1. From SMITTY, select Security and Users and press Enter.
2. Select Groups and press Enter.
3. To create a group, complete the following steps:

a) Select Add a Group and press Enter.
b) Enter the name of the group and the names of any users that you want to add to the group,

separated by commas.
c) Press Enter to create the group.

4. To add a user to a group, complete the following steps:
a) Select Change / Show Characteristics of Groups and press Enter.
b) Enter the name of the group to show a list of the members of the group.
c) Add the names of the users that you want to add to the group, separated by commas.
d) Press Enter to add the names to the group.

5. To display who is in a group, complete the following steps:
a) Select Change / Show Characteristics of Groups and press Enter.
b) Enter the name of the group to show a list of the members of the group.

6. To remove a user from a group, complete the following steps:
a) Select Change / Show Characteristics of Groups and press Enter.
b) Enter the name of the group to show a list of the members of the group.
c) Delete the name of the user that you want to remove from the group.
d) Press Enter to remove the name from the group.

Securing IBM MQ 145

Creating and managing groups on Linux
On Linux, providing you are not using NIS or NIS+, use the /etc/group file to work with groups.

About this task
On Linux, group information is held in the /etc/group file. You can use commands to create a group, add
a user to a group, display a list of the users who are in the group, and remove a user from a group.

Procedure
1. To create a new group, use the groupadd command.

Type the following command:

groupadd -g group-ID group-name

where group-ID is the numeric identifier of the group, and group-name is the name of the group.
2. To add a member to a supplementary group, use the usermod command to list the supplementary

groups that the user is currently a member of, and the supplementary groups that the user is to
become a member of.
For example, if the user is already a member of the group groupa, and is to become a member of
groupb, use the following command:

usermod -G groupa,groupb user-name

where user-name is the user name.
3. To display who is a member of a group, use the getent command.

Type the following command:

getent group group-name

where group-name is the name of the group.
4. To remove a member from a supplementary group, use the usermod command to list the

supplementary groups that you want the user to remain a member of.
For example, if the user's primary group is users and the user is also a member of the groups mqm,
groupa and groupb, to remove the user from the mqm group, use the following command:

usermod -G groupa,groupb user-name

where user-name is the user name.

Creating and managing groups on Windows
On Windows, you use the Computer Management feature to administer groups on a workstation or
member server machine.

About this task
For domain controllers, users and groups are administered through Active Directory. For more details on
using Active Directory refer to the appropriate operating system instructions.

Any changes you make to a principal's group membership are not recognized until the queue manager is
restarted, or you issue the MQSC command REFRESH SECURITY (or the PCF equivalent).

Use the Windows Computer Management panel to work with user and groups. Any changes made to the
current logged on user might not be effective until the user logs in again.

146 Securing IBM MQ

Creating a group on Windows
Create a group by using the control panel.

Procedure
1. Open the control panel
2. Double-click Administrative Tools.

The Administrative Tools panel opens.
3. Double-click Computer Management.

The Computer Management panel opens.
4. Expand Local Users and Groups.
5. Right-click Groups, and select New Group....

The New Group panel is displayed.
6. Type an appropriate name in the Group name field, then click Create.
7. Click Close.

Adding a user to a group on Windows
Add a user to a group by using the control panel.

Procedure
1. Open the control panel
2. Double-click Administrative Tools.

The Administrative Tools panel opens.
3. Double-click Computer Management.

The Computer Management panel opens.
4. From the Computer Management panel, expand Local Users and Groups.
5. Select Users
6. Double-click the user that you want to add to a group.

The user properties panel is displayed.
7. Select the Member Of tab.
8. Select the group that you want to add the user to. If the group you want is not visible:

a) Click Add....
The Select Groups panel is displayed.

b) Click Locations....
The Locations panel is displayed.

c) Select the location of the group you want to add the user to from the list and click OK.
d) Type the group name in the field provided.

Alternatively, click Advanced... and then Find Now to list the groups available in the currently
selected location. From here, select the group you want to add the user to and click OK.

e) Click OK.
The user properties panel is displayed, showing the group you added.

f) Select the group.
9. Click OK.

The Computer Management panel is displayed.

Securing IBM MQ 147

Displaying who is in a group on Windows
Display the members of a group by using the control panel.

Procedure
1. Open the control panel
2. Double-click Administrative Tools.

The Administrative Tools panel opens.
3. Double-click Computer Management.

The Computer Management panel opens.
4. From the Computer Management panel, expand Local Users and Groups.
5. Select Groups.
6. Double-click a group. The group properties panel is displayed.

The group properties panel is displayed.

Results
The group members are displayed.

Removing a user from a group on Windows
Remove a user from a group by using the control panel.

Procedure
1. Open the control panel
2. Double-click Administrative Tools.

The Administrative Tools panel opens.
3. Double-click Computer Management.

The Computer Management panel opens.
4. From the Computer Management panel, expand Local Users and Groups.
5. Select Users.
6. Double-click the user that you want to add to a group.

The user properties panel is displayed.
7. Select the Member Of tab.
8. Select the group that you want to remove the user from, then click Remove.
9. Click OK.

The Computer Management panel is displayed.

Results
You have now removed the user from the group.

Special considerations for security on Windows
Some security functions behave differently on different versions of Windows.

IBM MQ security relies on calls to the operating system API for information about user authorizations and
group memberships. Some functions do not behave identically on the Windows systems. This collection of
topics includes descriptions of how those differences might affect IBM MQ security when you are running
IBM MQ in a Windows environment.

148 Securing IBM MQ

Local and domain user accounts for the IBM MQ Windows service
When IBM MQ is running, it must check that only authorized users can access queue managers or queues.
This requires a special user account that IBM MQ can use to query information about the any user
attempting such access.

• “Configuring special user accounts with the Prepare IBM MQ Wizard” on page 149
• “Using IBM MQ with Active Directory” on page 149
• “User rights required for an IBM MQ Windows service” on page 150

Configuring special user accounts with the Prepare IBM MQ Wizard
The Prepare IBM MQ Wizard creates a special user account so that the Windows service can be shared by
processes that need to use it (see Configuring IBM MQ with the PPrepare IBM MQ Wizard).

A Windows service is shared between client processes for an IBM MQ installation. One service is created
for each installation. Each service is named MQ_InstallationName, and has a display name of IBM
MQ(InstallationName).

Because each service must be shared between non-interactive and interactive logon sessions, you must
launch each under a special user account. You can use one special user account for all the services, or
create different special user accounts. Each special user account must have the user right to Logon as
a service, for more information see Table 14 on page 150. If the user ID does not have the authority
to run the service, the service does not start and it returns an error in the Windows system event log.
Typically, you will have run the Prepare IBM MQ Wizard, and set up the user ID correctly. However, if you
have configured the user ID manually, is it possible that you might have a problem that you will need to
resolve.

When you install IBM MQ and run the Prepare IBM MQ Wizard for the first time, it creates a local user
account for the service called MUSR_MQADMIN with the required settings and permissions, including
Logon as a service.

For subsequent installations, the Prepare IBM MQ Wizard creates a user account named
MUSR_MQADMINx, where x is the next available number representing a user ID that does not exist.
The password for MUSR_MQADMINx is randomly generated when the account is created, and used to
configure the logon environment for the service. The generated password does not expire.

This IBM MQ account is not affected by any account policies that are set up on the system to require that
account passwords are changed after a certain period.

The password is not known outside this one-time processing and is stored by the Windows operating
system in a secure part of the registry.

Using IBM MQ with Active Directory
In some network configurations, where user accounts are defined on domain controllers that are using
the Active Directory directory service, the local user account that IBM MQ is running under might not have
the authority that it requires to query the group membership of other domain user accounts. When you
install IBM MQ, the Prepare IBM MQ Wizard identifies whether this is the case by carrying out tests and
asking you questions about the network configuration.

If the local user account that IBM MQ is running under does not have the required authority, the Prepare
IBM MQ Wizard prompts you for the account details of a domain user account with particular user rights.
For information about how to create and set up a Windows domain account, see Creating and setting up
Windows domain accounts for IBM MQ. For the user rights that the domain user account requires, see
Table 14 on page 150.

When you have entered valid account details for the domain user account into the Prepare IBM MQ
Wizard, the wizard configures an IBM MQ Windows service to run under the new account. The account
details are held in the secure part of the Registry and cannot be read by users.

Securing IBM MQ 149

When the service is running, an IBM MQ Windows service is launched and remains running for as long
as the service is running. An IBM MQ administrator who logs on to the server after the Windows service
is launched can use the IBM MQ Explorer to administer queue managers on the server. This connects
the IBM MQ Explorer to the existing Windows service process. These two actions need different levels of
permission before they can work:

• The launch process requires a launch permission.
• The IBM MQ administrator requires Access permission.

User rights required for an IBM MQ Windows service
The following table lists the user rights required for the local and domain user accounts under which the
Windows service for an IBM MQ installation runs.

Table 14. User rights required for an IBM MQ Windows service

Permission Description

Log on as batch job Enables an IBM MQ Windows service to run under
this user account.

Log on as service Enables users to set the IBM MQ Windows service
to log on using the configured account.

Shut down the system Allows the IBM MQ Windows service to restart the
server if configured to do so when recovery of a
service fails.

Increase quotas Required for operating system
CreateProcessAsUser call.

Act as part of the operating system Required for operating system LogonUser call.

Bypass traverse checking Required for operating system LogonUser call.

Replace a process level token Required for operating system LogonUser call.

Note: Debug programs rights might be needed in environments running ASP and IIS applications.

Your domain user account must have these Windows user rights set as effective user rights as listed
in the Local Security Policy application. If they are not, set them using either the Local Security Policy
application locally on the server, or by using the Domain Security Application domain wide.

Windows Server security permissions
Installation of IBM MQ behaves differently on Windows Server, depending on whether a local user or
domain user performs the installation.

If a local user installs IBM MQ, the Prepare IBM MQ Wizard detects that the local user created for the IBM
MQ Windows service can retrieve the group membership information of the installing user. The Prepare
IBM MQ Wizard asks the user questions about the network configuration to determine whether there are
other user accounts defined on domain controllers running on Windows 2000 or later. If so, the IBM MQ
Windows service needs to run under a domain user account with particular settings and authorities. The
Prepare IBM MQ Wizard prompts the user for the account details of this user as described in Configuring
IBM MQ with the Prepare IBM MQ Wizard.

If a domain user installs IBM MQ, the Prepare IBM MQ Wizard detects that the local user created for the
IBM MQ Windows service cannot retrieve the group membership information of the installing user. In this
case, the Prepare IBM MQ Wizard always prompts the user for the account details of the domain user
account for the IBM MQ Windows service to use.

When the IBM MQ Windows service needs to use a domain user account, IBM MQ cannot operate
correctly until this has been configured using the Prepare IBM MQ Wizard. The Prepare IBM MQ Wizard

150 Securing IBM MQ

does not allow the user to continue with other tasks, until the Windows service has been configured with a
suitable account.

For more information, see Creating and setting up domain accounts for IBM MQ.

Changing the user name associated with the IBM MQ service
You can change the user name associated with the IBM MQ service by creating a new account and
entering its details using the Prepare IBM MQ Wizard.

About this task
When you install IBM MQ and run the Prepare IBM MQ Wizard for the first time, it creates a local
user account for the service called MUSR_MQADMIN. For subsequent installations, the Prepare IBM
MQ Wizard creates a user account named MUSR_MQADMINx, where x is the next available number
representing a user ID that does not exist.

You might need to change the user name associated with the IBM MQ service from MUSR_MQADMIN or
MUSR_MQADMINx to something else. For example, you might need to do this if your queue manager is
associated with Db2®, which does not accept user names of more than 8 characters.

Procedure
1. Create a new user account (for example NEW_NAME)
2. Use the Prepare IBM MQ Wizard to enter the details of the new user account.

Related tasks
Configuring IBM MQ with the Prepare IBM MQ Wizard

Changing the password of the IBM MQ Windows service local user account
You can change the password of the IBM MQ Windows service local user account by using the Computer
Management panel.

About this task
To change the password of the IBM MQ Windows service local user account, perform the following steps:

Procedure
1. Identify the user the service is running under.
2. Stop the IBM MQ service from the Computer Management panel.
3. Change the required password in the same way that you would change the password of an individual.
4. Go to the properties for the IBM MQ service from the Computer Management panel.
5. Select the Log On page.
6. Confirm that the account name specified matches the user for which the password was modified.
7. Type the password into the Password and Confirm password fields and click OK.

Changing the password for an IBM MQ Windows service for an installation running under a
domain user account
As an alternative to using the Prepare IBM MQ Wizard to enter the account details of the domain user
account, you can use the Computer Management panel to alter the Log On details for the installation
specific IBM MQ Service.

About this task
If the IBM MQ Windows service for an installation is running under a domain user account, you can
change the password for the account as follows:

Securing IBM MQ 151

Procedure
1. Change the password for the domain account on the domain controller. You might need to ask your

domain administrator to do this for you.
2. Complete the following the steps to modify the Log On page for the IBM MQ service.

a) Identify the user that the service is running under.
b) Stop the IBM MQ service from the Computer Management panel.
c) Change the required password in the same way that you would change the password of an

individual.
d) Go to the properties for the IBM MQ service from the Computer Management panel.
e) Select the Log On page.
f) Confirm that the account name specified matches the user for which the password was modified.
g) Type the password into the Password and Confirm password fields and click OK.

The user account that IBM MQ Windows service runs under executes any MQSC commands that are
issued by user interface applications, or performed automatically on system startup, shutdown, or
service recovery. This user account must therefore have IBM MQ administration rights. By default it
is added to the local mqm group on the server. If this membership is removed, the IBM MQ Windows
service does not work. For more information about user rights, see “User rights required for an IBM MQ
Windows service” on page 150.

If a security problem arises with the user account that the IBM MQ Windows service runs under, error
messages and descriptions appear in the system event log.

Related tasks
Configuring IBM MQ with the Prepare IBM MQ Wizard

Considerations when promoting Windows servers to domain controllers
When promoting a Windows server to a domain controller, you should consider whether the security
setting relating to user and group permissions is appropriate. When changing the state of a Windows
machine between server and domain controller, you should take into consideration that this can affect the
operation of IBM MQ because IBM MQ uses a locally-defined mqm group.

Security settings relating to domain user and group permissions
IBM MQ relies on group membership information to implement its security policy, which means that it is
important that the user ID that is performing IBM MQ operations can determine the group memberships
of other users.

When you promote a Windows server to a domain controller, you are presented with an option for the
security setting relating to user and group permissions. This option controls whether arbitrary users are
able to retrieve group memberships from the active directory. If a domain controller is set up so that local
accounts do have the authority to query the group membership of the domain user accounts, the default
user ID created by IBM MQ during the installation process can obtain group memberships for other users
as required. However, if a domain controller is set up so that local accounts do not have the authority
to query the group membership of the domain user accounts, this prevents IBM MQ from completing its
checks that users who are defined on the domain are authorized to access queue managers or queues,
and access fails. If you are using Windows on a domain controller that has been set up in this way, a
special domain user account with the required permissions must be used.

In this case, you need to know:

• How security permissions for your version of Windows behave.
• How to allow domain mqm group members to read group membership.
• How to configure an IBM MQ Windows service to run under a domain user.

For more information, see Configuring user accounts for IBM MQ.

152 Securing IBM MQ

IBM MQ access to the local mqm group
When Windows servers are promoted to, or demoted from, domain controllers, IBM MQ loses access to
the local mqm group.

When a server is promoted to be a domain controller, the scope changes from local to domain local.
When the machine is demoted to server, all domain local groups are removed. This means that changing
a machine from server to domain controller and back to server loses access to a local mqm group. The
symptom is an error indicating the lack of a local mqm group, for example:

>crtmqm qm0
AMQ8066:Local mqm group not found.

To remedy this problem, re-create the local mqm group using the standard Windows management tools.
Because all group membership information is lost, you must reinstate privileged IBM MQ users in the
newly-created local mqm group. If the machine is a domain member, you must also add the domain mqm
group to the local mqm group to grant privileged domain IBM MQ user IDs the required level of authority.

Restrictions on nested groups on Windows
There are restrictions on the use of nested groups. These result partly from the domain functional level
and partly from IBM MQ restrictions.

Active Directory can support different group types within a Domain context depending on the Domain
functional level. By default, Windows 2003 domains are in the " Windows 2000 mixed" functional level.
(Windows Server 2008 and Windows Server 2012 follow the Windows 2003 domain model.) The domain
functional level determines the supported group types and level of nesting allowed when configuring user
IDs in a domain environment. Refer to Active Directory documentation for details on the Group Scope and
inclusion criteria.

In addition to Active Directory requirements, further restrictions are imposed on IDs used by IBM MQ. The
network APIs used by IBM MQ do not support all the configurations that are supported by the domain
functional level. As a result, IBM MQ is not able to query the group memberships of any Domain IDs
present in a Domain Local group which is then nested in a local group. Furthermore, multiple nesting of
global and universal groups is not supported. However, immediately nested global or universal groups are
supported.

Authorizing users to use IBM MQ remotely
If you need to create and start queue managers when connected to IBM MQ remotely, you must have the
Create global objects user access.

About this task
Note: Administrators have the Create global objects user access by default, so if you are an
administrator you can create and start queue managers when connected remotely without altering your
user rights.

If you are connecting to a Windows machine using either Terminal Services or a Remote Desktop
Connection and you have problems creating, starting or deleting a queue manager this might be because
you do not have the user access Create global objects.

The Create global objects user access limits the users authorized to create objects in the global
namespace. In order for an application to create a global object, it must either be running in the global
namespace, or the user under which the application is running must have the Create global objects
user access applied to it.

When you connect remotely to a Windows machine using either Terminal Services or Remote Desktop
Connection, applications run in their own local namespace. If you attempt to create or delete a queue
manager using IBM MQ Explorer or the crtmqm or dltmqm command, or to start a queue manager using
the strmqm command, it results in an authorization failure. This creates an IBM MQ FDC with Probe ID
XY132002.

Securing IBM MQ 153

Starting a queue manager using the IBM MQ Explorer, or using the amqmdain qmgr start command
works correctly because these commands do not directly start the queue manager. Instead the
commands send the request to start the queue manager to a separate process running in the global
namespace.

If the various methods of administering IBM MQ do not work when you use terminal services, try setting
the Create global objects user right.

Procedure
1. Open the Administrative Tools panel:

Windows Server 2008 and Windows Server 2012
Access this panel using Control Panel > System and Maintenance > Administrative Tools.

Windows 8.1
Access this panel using Administrative Tools > Computer Management

2. Double-click Local Security Policy.
3. Expand Local Policies.
4. Click User Rights Assignment.
5. Add the new user or group to the Create global objects policy.

The SSPI channel exit program on Windows
IBM MQ for Windows supplies a security exit program, which can be used on both message and
MQI channels. The exit is supplied as source and object code, and provides one-way and two-way
authentication.

The security exit uses the Security Support Provider Interface (SSPI), which provides the integrated
security facilities of Windows platforms.

The security exit provides the following identification and authentication services:

One way authentication
This uses Windows NT LAN Manager (NTLM) authentication support. NTLM allows servers to
authenticate their clients. It does not allow a client to authenticate a server, or one server to
authenticate another. NTLM was designed for a network environment in which servers are assumed to
be genuine. NTLM is supported on all Windows platforms that are supported by IBM WebSphere MQ
7.0.

This service is typically used on an MQI channel to enable a server queue manager to authenticate
an IBM MQ MQI client application. A client application is identified by the user ID associated with the
process that is running.

To perform the authentication, the security exit at the client end of a channel acquires an
authentication token from NTLM and sends the token in a security message to its partner at the
other end of the channel. The partner security exit passes the token to NTLM, which checks that the
token is authentic. If the partner security exit is not satisfied with the authenticity of the token, it
instructs the MCA to close the channel.

Two way, or mutual, authentication
This uses Kerberos authentication services. The Kerberos protocol does not assume that servers in
a network environment are genuine. Servers can authenticate clients and other servers, and clients
can authenticate servers. Kerberos is supported on all Windows platforms that are supported by IBM
WebSphere MQ 7.0.

This service can be used on both message and MQI channels. On a message channel, it provides
mutual authentication of the two queue managers. On an MQI channel, it enables the server queue
manager and the IBM MQ MQI client application to authenticate each other. A queue manager is
identified by its name prefixed by the string ibmMQSeries/. A client application is identified by the
user ID associated with the process that is running.

154 Securing IBM MQ

To perform the mutual authentication, the initiating security exit acquires an authentication token
from the Kerberos security server and sends the token in a security message to its partner. The
partner security exit passes the token to the Kerberos server, which checks that it is authentic. The
Kerberos security server generates a second token, which the partner sends in a security message
to the initiating security exit. The initiating security exit then asks the Kerberos server to check that
the second token is authentic. During this exchange, if either security exit is not satisfied with the
authenticity of the token sent by the other, it instructs the MCA to close the channel.

The security exit is supplied in both source and object format. You can use the source code as a starting
point for writing your own channel exit programs or you can use the object module as supplied. The object
module has two entry points, one for one way authentication using NTLM authentication support and the
other for two way authentication using Kerberos authentication services.

For more information about how the SSPI channel exit program works, and for instructions on how to
implement it, see Using the SSPI security exit on Windows systems.

Applying security template files on Windows
Applying a template might affect the security settings applied to IBM MQ files and directories. If you use
the highly secure template, apply it before installing IBM MQ.

Windows supports text-based security template files that you can use to apply uniform security settings
to one or more computers with the Security Configuration and Analysis MMC snap-in. In particular,
Windows supplies several templates that include a range of security settings with the aim of providing
specific levels of security. These templates include Compatible, Secure, and Highly Secure.

Applying one of these templates might affect the security settings applied to IBM MQ files and directories.
If you want to use the Highly Secure template, configure your machine before you install IBM MQ.

If you apply the highly secure template to a machine on which IBM MQ is already installed, all the
permissions you have set on the IBM MQ files and directories are removed. Because these permissions
are removed, you lose Administrator, mqm, and, when applicable, Everyone group access from the error
directories.

Configuring extra authority for Windows applications connecting to IBM MQ
The account under which IBM MQ processes run might need extra authorization before SYNCHRONIZE
access to application processes can be granted.

About this task
You might experience problems if you have Windows applications, for example ASP pages, connecting to
IBM MQ that are configured to run at a security level higher than usual.

IBM MQ requires SYNCHRONIZE access to application processes in order to coordinate certain actions.
When a server application first attempts to connect to a queue manager IBM MQ modifies the process
to grant SYNCHRONIZE authority for IBM MQ administrators. However, the account under which IBM MQ
processes run might need additional authorization before the requested access can be granted.

To configure additional authority to the user ID under which IBM MQ processes are running, complete the
following steps:

Procedure
1. Start the Local Security Policy tool, click Security Settings->Local Policies->User Right Assignments,

the click Debug Programs.
2. Double-click Debug Programs, then add your IBM MQ user ID to the list

If the system is in a Windows domain and the effective policy setting is still not set, even though the
local policy setting is set, the user ID must be authorized in the same way at domain level, using the
Domain Security Policy tool.

Securing IBM MQ 155

Setting up security on IBM i
Security on IBM i is implemented using the IBM MQ Object Authority Manager (OAM) and IBM i object
level security.

Security considerations that must be made when determining access authority to IBM MQ objects.

You need to consider the following points when setting up authorities to the users in your enterprise:

1. Grant and revoke authorities to the IBM MQ for IBM i commands using the IBM i GRTOBJAUT and
RVKOBJAUT commands.

In the QMQM library, certain noncommand (*cmd) objects are set to have *PUBLIC authority to *USE.
Do not change the authorities of these objects or use an authorization list to provide authority. Any
incorrect authority might compromise IBM MQ functionality.

2. During installation of IBM MQ for IBM i, the following special user profiles are created:
QMQM

Is used primarily for internal product-only functions. However, it can be used to run trusted
applications using MQCNO_FASTPATH_BINDINGS. See Connecting to a queue manager using the
MQCONNX call.

QMQMADM
Is used as a group profile for administrators of IBM MQ. The group profile gives access to CL
commands and IBM MQ resources.

When using SBMJOB to submit programs that call IBM MQ commands, USER must not be set explicitly
to QMQMADM. Instead, set USER to QMQM or another user profile that has QMQMADM specified as a
group.

3. If you are sending channel commands to remote queue managers, ensure that your user profile is a
member of the group QMQMADM on the target system. For a list of PCF and MQSC channel commands,
see IBM MQ for IBM i CL commands.

4. The group set associated with a user is cached when the group authorizations are computed by the
OAM.

Any changes made to a user's group memberships after the group set has been cached are not
recognized until you restart the queue manager or execute RFRMQMAUT to refresh security.

5. Limit the number of users who have authority to work with commands that are particularly sensitive.
These commands include:

• Create Message Queue Manager (CRTMQM)
• Delete Message Queue Manager (DLTMQM)
• Start Message Queue Manager (STRMQM)
• End Message Queue Manager (ENDMQM)
• Start Command Server (STRMQMCSVR)
• End Command Server (ENDMQMCSVR)

6. Channel definitions contain a security exit program specification. Channel creation and modification
requires special considerations. Details of security exits are given in “Security exit overview” on page
110.

7. The channel exit and trigger monitor programs can be substituted. The security of such replacements
is the responsibility of the programmer.

Object authority manager on IBM i
The object authority manager (OAM) manages users' authorizations to manipulate IBM MQ objects,
including queues and process definitions. It also provides a command interface through which you can
grant or revoke access authority to an object for a specific group of users. The decision to allow access to
a resource is made by the OAM, and the queue manager follows that decision. If the OAM cannot make a
decision, the queue manager prevents access to that resource.

156 Securing IBM MQ

Through the OAM you can control:

• Access to IBM MQ objects through the MQI. When an application program attempts to access an
object, the OAM checks that the user profile making the request has the authorization for the operation
requested.

In particular, this means that queues, and the messages on queues, can be protected from unauthorized
access.

• Permission to use PCF and MQSC commands.

Different groups of users can have different access authority to the same object. For example, for a
specific queue, one group could perform both put and get operations; another group might be allowed
only to browse the queue (MQGET with browse option). Similarly, some groups might have get and put
authority to a queue, but not be allowed to alter or delete the queue.

IBM MQ for IBM i commands and perform operations on IBM MQ for IBM i objects

IBM MQ authorities on IBM i
To access IBM MQ objects, you need authority to issue the command and to access the object referenced.
Administrators have access to all IBM MQ resources.

Access to IBM MQ objects is controlled by authorities to:

1. Issue the IBM MQ command
2. Access the IBM MQ objects referenced by the command

All IBM MQ for IBM i CL commands are shipped with an owner of QMQM, and the administration profile
(QMQMADM) has *USE rights with the *PUBLIC access set to *EXCLUDE.

Note: The QSRDUPER program is used by the IBM MQ for IBM i licensed program installer to duplicate
Command (*CMD) objects in QSYS. In IBM i V5R4 and later, the QSRDUPER program was changed so
that the default behavior is to create a proxy command rather than a duplicate of the original command.
A proxy command redirects command execution to another command and has an attribute of PRX.
If a proxy command by the same name as the command being copied exists in library QSYS, private
authorities to the proxy command are not granted to the command in the product library. Attempts to
prompt or run the proxy command in QSYS check the authority of the target command in the product
library. Any changes in authority to *CMD objects therefore need to be done in the product library (QMQM)
and those in QSYS do not need to be modified. For example:

GRTOBJAUT OBJ(QMQM/DSPMQMQ) OBJTYPE(*CMD) USER(MQUSER) AUT(*USE)

Changes to the authority structure of some of the product's CL commands allows public use of these
commands, if you have the required OAM authority to the IBM MQ objects to make these changes.

To be an IBM MQ administrator on IBM i, you must be a member of the QMQMADM group. This group has
properties like the properties of the mqm group on AIX, Linux, and Windows systems. In particular, the
QMQMADM group is created when you install IBM MQ for IBM i, and members of the QMQMADM group
have access to all IBM MQ resources on the system. You also have access to all IBM MQ resources if you
have *ALLOBJ authority.

Administrators can use CL commands to administer IBM MQ. One of these commands is GRTMQMAUT,
which is used to grant authorities to other users. Another command, STRMQMMQSC, enables an
administrator to issue MQSC commands to a local queue manager.

Related concepts
“Authority to administer IBM MQ on IBM i” on page 90

Access authorities for IBM MQ objects on IBM i
Access authorities required for running IBM MQ CL commands.

IBM MQ for IBM i categorizes the product's CL commands into two groups:

Securing IBM MQ 157

Group 1
Users must be in the QMQMADM user group, or have *ALLOBJ authority, to process these commands.
Users having either of these authorities can process all commands in all categories without requiring
any extra authority.

Note: These authorities override any OAM authority.

These commands can be grouped as follows:

• Command Server Commands

– ENDMQMCSVR, End IBM MQ Command Server
– STRMQMCSVR, Start IBM MQ Command Server

• Dead-Letter Queue Handler Command

– STRMQMDLQ, Start IBM MQ Dead-Letter Queue Handler
• Listener Command

– ENDMQMLSR, End IBM MQ listener
– STRMQMLSR, Start non-object listener

• Media Recovery Commands

– RCDMQMIMG, Record IBM MQ Object Image
– RCRMQMOBJ, Re-create IBM MQ Object
– WRKMQMTRN, Work with IBM MQ Q Transactions

• Queue Manager Commands

– CRTMQM, Create Message Queue Manager
– DLTMQM, Delete Message Queue Manager
– ENDMQM, End Message Queue Manager
– STRMQM, Start Message Queue Manager

• Security Commands

– GRTMQMAUT, Grant IBM MQ Object Authority
– RVKMQMAUT, Revoke IBM MQ Object Authority

• Trace Command

– TRCMQM, Trace IBM MQ Job
• Transaction Commands

– RSVMQMTRN, Resolve IBM MQ Transaction
• Trigger Monitor Commands

– STRMQMTRM, Start Trigger Monitor
• IBM MQSC Commands

– RUNMQSC, Run IBM MQSC Commands
– STRMQMMQSC, Start IBM MQSC Commands

Group 2
The rest of the commands, for which two levels of authority are required:

1. IBM i authority to run the command. An IBM MQ administrator sets this using the GRTOBJAUT
command to override the *PUBLIC(*EXCLUDE) restriction for a user or group of users.

For example:

GRTOBJAUT OBJ(QMQM/DSPMQMQ) OBJTYPE(*CMD) USER(MQUSER) AUT(*USE)

158 Securing IBM MQ

2. IBM MQ authority to manipulate the IBM MQ objects associated with the command, or commands,
given the correct IBM i authority in Step 1.

This authority is controlled by the user having the appropriate OAM authority for the required
action, set by an IBM MQ administrator using the GRTMQMAUT command

For example:

GRTMQMAUT *connect authority to the queue manager + *admchg authority to
 the queue

The commands can be grouped as follows:

• Channel Commands

– CHGMQMCHL, Change IBM MQ Channel

This requires *connect authority to the queue manager and *admchg authority to the channel.
– CPYMQMCHL, Copy IBM MQ Channel

This requires *connect and *admcrt authority to the queue manager, *admdsp authority to the
default channel type to be copied, and *admcrt authority to the channel object class.

For example, copying a Sender channel, needs *admdsp authority to SYSTEM.DEF.SENDER
channel

– CRTMQMCHL, Create IBM MQ Channel

This requires *connect and *admcrt authority to the queue manager, *admdsp authority to the
default channel type to be created and *admcrt authority to the channel object class.

For example, creating a Sender channel, needs *admdsp authority to SYSTEM.DEF.SENDER
channel

– DLTMQMCHL, Delete IBM MQ Channel

This requires *connect authority to the queue manager and *admdlt authority to the channel.
– RSVMQMCHL, Resolve IBM MQ Channel

This requires *connect authority to the queue manager and *ctrlx authority to the channel.
• Display commands

To process the DSP commands you must grant the user *connect and *admdsp authority to the
queue manager, together with any specific option listed:

– DSPMQM, Display Message Queue Manager
– DSPMQMAUT, Display IBM MQ Object Authority
– DSPMQMAUTI, Display IBM MQ Authentication Information - *admdsp to the authentication

information object
– DSPMQMCHL, Display IBM MQ Channel - *admdsp to the channel
– DSPMQMCSVR, Display IBM MQ Command Server
– DSPMQMNL, Display IBM MQ Namelist - *admdsp to the namelist
– DSPMQMOBJN, Display IBM MQ Object Names
– DSPMQMPRC, Display IBM MQ Process - *admdsp to the process
– DSPMQMQ, Display IBM MQ Queue - *admdsp to the queue
– DSPMQMTOP, Display IBM MQ Topic - *admdsp to the topic

• Work with commands

To process the WRK commands and display the options panel you must grant the user *connect
and *admdsp authority to the queue manager, together with any specific option listed:

– WRKMQM, Work with Message Queue Managers

Securing IBM MQ 159

– WRKMQMAUT, Work with IBM MQ Object Authority
– WRKMQMAUTD, Work with IBM MQ Object Authority Data
– WRKMQMAUTI, Work with IBM MQ Authentication Information

- *admchg for the Change IBM MQ Authentication Information Object command.
- *admcrt for the Create and Copy IBM MQ Authentication Information Object command.
- *admdlt for the Delete IBM MQ Authentication Information Object command.
- *admdsp for the Display IBM MQ Authentication Information Object command.

– WRKMQMCHL, Work with IBM MQ Channel

This requires the following authorities:

- *admchg for the Change IBM MQ Channel command.
- *admclr for the Clear IBM MQ Channel command.
- *admcrt for the Create and Copy IBM MQ Channel command.
- *admdlt for the Delete IBM MQ Channel command.
- *admdsp for the Display IBM MQ Channel command.
- *ctrl for the Start IBM MQ Channel command.
- *ctrl for the End IBM MQ Channel command.
- *ctrl for the Ping IBM MQ Channel command.
- *ctrlx for the Reset IBM MQ Channel command.
- *ctrlx for the Resolve IBM MQ Channel command.

– WRKMQMCHST, Work with IBM MQ Channel Status

This requires *admdsp authority to the channel.
– WRKMQMCL, Work with IBM MQ Clusters
– WRKMQMCLQ, Work with IBM MQ Cluster Queues
– WRKMQMCLQM, Work with IBM MQ Cluster Queue Manager
– WRKMQMLSR, Work with IBM MQ Listener
– WRKMQMMSG, Work with IBM MQ Messages

This requires *browse authority to the queue
– WRKMQMNL, Work with IBM MQ Namelists

This requires the following authorities:

- *admchg for the Change IBM MQ Namelist command.
- *admcrt for the Create and Copy IBM MQ Namelist command.
- *admdlt for the Delete IBM MQ Namelist command.
- *admdsp for the Display IBM MQ Namelist command.

– WRKMQMPRC, Work with IBM MQ Processes

This requires the following authorities:

- *admchg for the Change IBM MQ Process command.
- *admcrt for the Create and Copy IBM MQ Process command.
- *admdlt for the Delete IBM MQ Process command.
- *admdsp for the Display IBM MQ Process command.

– WRKMQMQ, Work with IBM MQ queues

This requires the following authorities:

- *admchg for the Change IBM MQ Queue command.

160 Securing IBM MQ

- *admclr for the Clear IBM MQ Queue command.
- *admcrt for the Create and Copy IBM MQ Queue command.
- *admdlt for the Delete IBM MQ Queue command.
- *admdsp for the Display IBM MQ Queue command.

– WRKMQMQSTS, Work with IBM MQ Queue Status
– WRKMQMTOP, Work with IBM MQ Topics

This requires the following authorities

- *admchg for the Change IBM MQ Topic command.
- *admcrt for the Create and Copy IBM MQ Topic command.
- *admdlt for the Delete IBM MQ Topic command.
- *admdsp for the Display IBM MQ Topic command.

– WRKMQMSUB, Work with IBM MQ Subscriptions
• Other Channel commands

To process the channel commands you must grant the user the specific authorities listed:

– ENDMQMCHL, End IBM MQ Channel

This requires *connect authority to the queue manager and *allmqi authority to the
transmission queue associated with the channel.

– ENDMQMLSR, End IBM MQ Listener

This requires *connect authority to the queue manager and *ctrl authority to the named
listener object.

– PNGMQMCHL, Ping IBM MQ Channel

This requires *connect and *inq authority to the queue manager and *ctrl authority to the
channel object.

– RSTMQMCHL, Reset IBM MQ Channel

This requires *connect authority to the queue manager.
– STRMQMCHL, Start IBM MQ Channel

This requires *connect authority to the queue manager and *ctrl authority to the channel
object.

– STRMQMCHLI, Start IBM MQ Channel Initiator

This requires *connect and *inq authority to the queue manager, and *allmqi authority to the
initiation queue associated with the transmission queue of the channel.

– STRMQMLSR, Start IBM MQ Listener

This requires *connect authority to the queue manager and *ctrl authority to the named listener
object.

• Other commands:

To process the following commands you must grant the user the specific authorities listed:

– CCTMQM, Connect to Message Queue Manager

This requires no IBM MQ object authority.
– CHGMQM, Change Message Queue Manager

This requires *connect and *admchg authority to the queue manager.
– CHGMQMAUTI, Change IBM MQ Authentication Information

This requires *connect authority to the queue manager and *admchg and *admdsp authority to
the authentication information object.

Securing IBM MQ 161

– CHGMQMNL, Change IBM MQ Namelist

This requires *connect authority to the queue manager and *admchg authority to the namelist.
– CHGMQMPRC, Change IBM MQ Process

This requires *connect authority to the queue manager and *admchg authority to the process.
– CHGMQMQ, Change IBM MQ Queue

This requires *connect authority to the queue manager and *admchg authority to the queue.
– CLRMQMQ, Clear IBM MQ Queue

This requires *connect authority to the queue manager and *admclr authority to the queue.
– CPYMQMAUTI, Copy IBM MQ Authentication Information

This requires *connect authority to the queue manager and *admdsp authority to the
authentication information object and *admcrt authority to the authentication information object
class.

– CPYMQMNL, Copy IBM MQ Namelist

This requires *connect and *admcrt authority to the queue manager.
– CPYMQMPRC, Copy IBM MQ Process

This requires *connect and *admcrt authority to the queue manager.
– CPYMQMQ, Copy IBM MQ Queue

This requires *connect and *admcrt authority to the queue manager.
– CRTMQMAUTI, Create IBM MQ Authentication Information

This requires *connect authority to the queue manager and *admdsp authority to the
authentication information object and *admcrt authority to the authentication information object
class.

– CRTMQMNL, Create IBM MQ Namelist

This requires *connect and *admcrt authority to the queue manager and *admdsp authority to
the default namelist.

– CRTMQMPRC, Create IBM MQ Process

This requires *connect and *admcrt authority to the queue manager and *admdsp authority to
the default process.

– CRTMQMQ, Create IBM MQ Queue

This requires *connect and *admcrt authority to the queue manager and *admdsp authority to
the default queue.

– CVTMQMDTA, Convert IBM MQ Data Type Command

This requires no IBM MQ object authority.
– DLTMQMAUTI, Delete IBM MQ Authentication Information

This requires *connect authority to the queue manager and *ctrlx authority to the
authentication information object.

– DLTMQMNL, Delete IBM MQ Namelist

This requires *connect authority to the queue manager and *admdlt authority to the namelist.
– DLTMQMPRC, Delete IBM MQ Process

This requires *connect authority to the queue manager and *admdlt authority to the process.
– DLTMQMQ, Delete IBM MQ Queue

This requires *connect authority to the queue manager and *admdlt authority to the queue.
– DSCMQM, Disconnect from Message Queue Manager

162 Securing IBM MQ

This requires no IBM MQ object authority.
– RFRMQMAUT, Refresh Security

This requires *connect authority to the queue manager.
– RFRMQMCL, Refresh Cluster

This requires *connect authority to the queue manager.
– RSMMQMCLQM, Resume Cluster Queue Manager

This requires *connect authority to the queue manager.
– RSTMQMCL, Reset Cluster

This requires *connect authority to the queue manager.
– SPDMQMCLQM, Suspend Cluster Queue Manager

This requires *connect authority to the queue manager.

Access authorizations on IBM i
Use this information to understand the access authorization commands.

Authorizations defined by the AUT keyword on the GRTMQMAUT and RVKMQMAUT commands can be
categorized as follows:

• Authorizations related to MQI calls
• Authorization-related administration commands
• Context authorizations
• General authorizations, that is, for MQI calls, for commands, or both

The following tables list the different authorities, using the AUT parameter for MQI calls, Context calls,
MQSC and PCF commands, and generic operations.

Table 15. Authorizations for MQI calls

AUT Description

*ALTUSR Allow another user's authority to be used for MQOPEN and MQPUT1 calls.

*BROWSE Retrieve a message from a queue by issuing an MQGET call with the BROWSE
option.

*CONNECT Connect the application to the specified queue manager by issuing an MQCONN
call.

*GET Retrieve a message from a queue by issuing an MQGET call.

*INQ Make an inquiry on a specific queue by issuing an MQINQ call.

*PUB Open a topic to publish a message using an MQPUT call.

*PUT Put a message on a specific queue by issuing an MQPUT call.

*RESUME Resume a subscription using an MQSUB call.

*SET Set attributes on a queue from the MQI by issuing an MQSET call. If you open a
queue for multiple options, you must be authorized for each of them.

*SUB Create, Alter or Resume a subscription to a topic using an MQSUB call.

Securing IBM MQ 163

Table 16. Authorizations for context calls

AUT Description

*PASSALL Pass all context on the specified queue. All the context fields are copied from the
original request.

*PASSID Pass identity context on the specified queue. The identity context is the same as
that of the request.

*SETALL Set all context on the specified queue. This is used by special system utilities.

*SETID Set identity context on the specified queue. This is used by special system utilities.

Table 17. Authorizations for MQSC and PCF calls

AUT Description

*ADMCHG Change the attributes of the specified object.

*ADMCLR Clear the specified object (PCF Clear object command only).

*ADMCRT Create objects of the specified type.

*ADMDLT Delete the specified object.

*ADMDSP Display the attributes of the specified object.

Table 18. Authorizations for generic operations

AUT Description

*ALL Use all operations applicable to the object. all authority is equivalent to the union
of the authorities alladm, allmqi, and system appropriate to the object type.

*ALLADM Perform all administration operations applicable to the object.

*ALLMQI Use all MQI calls applicable to the object.

*CTRL Control startup and shutdown of channels, listeners, and services.

*CTRLX Reset sequence number and resolve indoubt channels.

Using the access authorization commands on IBM i
Use this information to learn about the access authorization commands, and use the command examples.

Using the GRTMQMAUT command
If you have the required authorization, you can use the GRTMQMAUT command to grant authorization
of a user profile or user group to access a particular object. The following examples illustrate how the
GRTMQMAUT command is used:

1.
GRTMQMAUT OBJ(RED.LOCAL.QUEUE) OBJTYPE(*LCLQ) USER(GROUPA) +
 AUT(*BROWSE *PUT) MQMNAME('saturn.queue.manager')

In this example:

• RED.LOCAL.QUEUE is the object name.
• *LCLQ (local queue) is the object type.
• GROUPA is the name of a user profile on the system for which authorizations are to change. This

profile can be used as a group profile for other users.
• *BROWSE and *PUT are the authorizations being granted to the specified queue.

164 Securing IBM MQ

*BROWSE adds authorization to browse messages on the queue (to issue MQGET with the browse
option).

*PUT adds authorization to put (MQPUT) messages on the queue.
• saturn.queue.manager is the queue manager name.

2. The following command grants to users JACK and JILL all applicable authorizations, to all process
definitions, for the default queue manager.

GRTMQMAUT OBJ(*ALL) OBJTYPE(*PRC) USER(JACK JILL) AUT(*ALL)

3. The following command grants user GEORGE authority to put a message on the queue ORDERS, on the
queue manager TRENT.

GRTMQMAUT OBJ(TRENT) OBJTYPE(*MQM) USER(GEORGE) AUT(*CONNECT) MQMNAME (TRENT)
GRTMQMAUT OBJ(ORDERS) OBJTYPE(*Q) USER(GEORGE) AUT(*PUT) MQMNAME (TRENT)

Using the RVKMQMAUT command
If you have the required authorization, you can use the RVKMQMAUT command to remove previously
granted authorization of a user profile or user group to access a particular object. The following examples
illustrate how the RVKMQMAUT command is used:

1.
RVKMQMAUT OBJ(RED.LOCAL.QUEUE) OBJTYPE(*LCLQ) USER(GROUPA) +
AUT(*PUT) MQMNAME('saturn.queue.manager')

The authority to put messages to the specified queue, that was granted in the previous example, is
removed for GROUPA.

2.
RVKMQMAUT OBJ(PAY*) OBJTYPE(*Q) USER(*PUBLIC) AUT(*GET) +
MQMNAME(PAYROLLQM)

Authority to get messages from any queue with a name starting with the characters PAY, owned by
queue manager PAYROLLQM, is removed from all users of the system unless they, or a group to which
they belong, have been separately authorized.

Using the DSPMQMAUT command
The display MQM authority (DSPMQMAUT) command shows, for the specified object and user, the list of
authorizations that the user has for the object. The following example illustrates how the command is
used:

DSPMQMAUT OBJ(ADMINNL) OBJTYPE(*NMLIST) USER(JOE) OUTPUT(*PRINT) +
MQMNAME(ADMINQM)

Using the RFRMQMAUT command
The refresh MQM security (RFRMQMAUT) command enables you to update the OAM's authorization group
information immediately, reflecting changes made at the operating system level, without needing to stop
and restart the queue manager. The following example illustrates how the command is used:

RFRMQMAUT MQMNAME(ADMINQM)

Securing IBM MQ 165

Authorization specification tables on IBM i
Use this information to determine what authorization is required to use particular API calls, and particular
options of those calls, on queue objects, process objects, and queue manager objects.

The authorization specification tables starting in Table 19 on page 166 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these situations:

• Applications that issue MQI calls
• Administration programs that issue MQSC commands as escape PCFs
• Administration programs that issue PCF commands

In this section, the information is presented as a set of tables that specify the following data:
Action to be performed

MQI option, MQSC command, or PCF command.
Access control object

Queue, process definition, queue manager, namelist, channel, client connection channel, listener,
service, or authentication information object.

Authorization required
Expressed as an MQZAO_ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in the authorization list
for the GRTMQMAUT and RVKMQMAUT commands for the particular entity. For example, MQZAO_BROWSE
corresponds to the keyword *BROWSE ; similarly, the keyword MQZAO_SET_ALL_CONTEXT corresponds
to the keyword *SETALL, and so on. These constants are defined in the header file cmqzc.h, which is
supplied with the product.

MQI authorizations
An application is allowed to issue specific MQI calls and options only if the user identifier under which it is
running (or whose authorizations it is able to assume) has been granted the relevant authorization.

Four MQI calls require authorization checks: MQCONN, MQOPEN, MQPUT1, and MQCLOSE.

For MQOPEN and MQPUT1, the authority check is made on the name of the object being opened, and
not on the name, or names, resulting after a name has been resolved. For example, an application can
be granted authority to open an alias queue without having authority to open the base queue to which
the alias resolves. The rule is that the check is carried out on the first definition encountered during the
process of name resolution that is not a queue manager alias, unless the queue manager alias definition
is opened directly; that is, its name appears in the ObjectName field of the object descriptor. Authority
is always needed for the particular object being opened; in some cases additional queue-independent
authority, obtained through an authorization for the queue manager object, is required.

Table 19 on page 166, Table 20 on page 167, Table 21 on page 167, and Table 22 on page 168
summarize the authorizations needed for each call.

Note: These tables do not mention namelists, channels, client connection channels, listeners, services,
or authentication information objects. This is because none of the authorizations apply to these objects,
except for MQOO_INQUIRE, for which the same authorizations apply as for the other objects.

Table 19. Security authorization needed for MQCONN calls

Authorization required
for:

Queue object (“1” on
page 168)

Process object Queue manager object

MQCONN option Not applicable Not applicable MQZAO_CONNECT

166 Securing IBM MQ

Table 20. Security authorization needed for MQOPEN calls

Authorization required
for:

Queue object (“1” on
page 168)

Process object Queue manager object

MQOO_INQUIRE MQZAO_INQUIRE (“2”
on page 168)

MQZAO_INQUIRE (“2”
on page 168)

MQZAO_INQUIRE (“2”
on page 168)

MQOO_BROWSE MQZAO_BROWSE Not applicable No check

MQOO_INPUT_* MQZAO_INPUT Not applicable No check

MQOO_SAVE_
ALL_CONTEXT (“3” on
page 168)

MQZAO_INPUT Not applicable Not applicable

MQOO_OUTPUT (Normal
queue) (“4” on page
168)

MQZAO_OUTPUT Not applicable Not applicable

MQOO_PASS_
IDENTITY_CONTEXT (“5”
on page 168)

MQZAO_PASS_
IDENTITY_CONTEXT

Not applicable No check

MQOO_PASS_ALL_
CONTEXT (“5” on page
168, “6” on page 168)

MQZAO_PASS
_ALL_CONTEXT

Not applicable No check

MQOO_SET_
IDENTITY_CONTEXT (“5”
on page 168, “6” on page
168)

MQZAO_SET_
IDENTITY_CONTEXT

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (“7”
on page 168)

MQOO_SET_
ALL_CONTEXT (“5” on
page 168, “8” on page
168)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (“7” on
page 168)

MQOO_OUTPUT
(Transmission queue)
(“9” on page 168)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (“7” on
page 168)

MQOO_SET MQZAO_SET Not applicable No check

MQOO_ALTERNATE_
USER_AUTHORITY

(“10” on page 168) (“10” on page 168) MQZAO_ALTERNATE_
USER_AUTHORITY (“10”
on page 168, “11” on
page 169)

Table 21. Security authorization needed for MQPUT1 calls

Authorization required
for:

Queue object (“1” on
page 168)

Process object Queue manager object

MQPMO_PASS_
IDENTITY_CONTEXT

MQZAO_PASS_
IDENTITY_CONTEXT
(“12” on page 169)

Not applicable No check

MQPMO_PASS_ALL
_CONTEXT

MQZAO_PASS_
ALL_CONTEXT (“12” on
page 169)

Not applicable No check

Securing IBM MQ 167

Table 21. Security authorization needed for MQPUT1 calls (continued)

Authorization required
for:

Queue object (“1” on
page 168)

Process object Queue manager object

MQPMO_SET_
IDENTITY_CONTEXT

MQZAO_SET_
IDENTITY_CONTEXT
(“12” on page 169)

Not applicable MQZAO_SET_
IDENTITY_CONTEXT (“7”
on page 168)

MQPMO_SET_
ALL_CONTEXT

MQZAO_SET_
ALL_CONTEXT (“12” on
page 169)

Not applicable MQZAO_SET_
ALL_CONTEXT (“7” on
page 168)

(Transmission queue)
(“9” on page 168)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (“7” on
page 168)

MQPMO_ALTERNATE_
USER_AUTHORITY

(“13” on page 169) Not applicable MQZAO_ALTERNATE_
USER_AUTHORITY (“11”
on page 169)

Table 22. Security authorization needed for MQCLOSE calls

Authorization required
for:

Queue object (“1” on
page 168)

Process object Queue manager object

MQCO_DELETE MQZAO_DELETE (“14” on
page 169)

Not applicable Not applicable

MQCO_DELETE _PURGE MQZAO_DELETE (“14” on
page 169)

Not applicable Not applicable

Notes for the tables:

1. If a model queue is being opened:

• MQZAO_DISPLAY authority is needed for the model queue, in addition to the authority to open the
model queue for the type of access for which you are opening.

• MQZAO_CREATE authority is not needed to create the dynamic queue.
• The user identifier used to open the model queue is automatically granted all the queue-specific

authorities (equivalent to MQZAO_ALL) for the dynamic queue created.
2. Either the queue, process, namelist, or queue manager object is checked, depending on the type of

object being opened.
3. MQOO_INPUT_* must also be specified. This option is valid for a local, model, or alias queue.
4. This check is performed for all output cases, except the case specified in note “9” on page 168.
5. MQOO_OUTPUT must also be specified.
6. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.
7. This authority is required for both the queue manager object and the particular queue.
8. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and

MQOO_SET_IDENTITY_CONTEXT are also implied by this option.
9. This check is performed for a local or model queue that has a Usage queue attribute of

MQUS_TRANSMISSION, and is being opened directly for output. It does not apply if a remote queue
is being opened (either by specifying the names of the remote queue manager and remote queue, or
by specifying the name of a local definition of the remote queue).

10. At least one of MQOO_INQUIRE (for any object type), or (for queues) MQOO_BROWSE,
MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must also be specified. The check carried
out is as for the other options specified, using the supplied alternate-user identifier

168 Securing IBM MQ

for the specific-named object authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

11. This authorization allows any AlternateUserId to be specified.
12. An MQZAO_OUTPUT check is also carried out if the queue does not have a Usage queue attribute of

MQUS_TRANSMISSION.
13. The check carried out is as for the other options specified, using the supplied alternate-

user identifier for the named queue authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

14. The check is carried out only if both of the following statements are true:

• A permanent dynamic queue is being closed and deleted.
• The queue was not created by the MQOPEN that returned the object handle being used.

Otherwise, there is no check.

General notes:

1. The special authorization MQZAO_ALL_MQI includes all the following authorizations that are relevant
to the object type:

• MQZAO_CONNECT
• MQZAO_INQUIRE
• MQZAO_SET
• MQZAO_BROWSE
• MQZAO_INPUT
• MQZAO_OUTPUT
• MQZAO_PASS_IDENTITY_CONTEXT
• MQZAO_PASS_ALL_CONTEXT
• MQZAO_SET_IDENTITY_CONTEXT
• MQZAO_SET_ALL_CONTEXT
• MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note “14” on page 169) and MQZAO_DISPLAY are classed as administration
authorizations. They are not therefore included in MQZAO_ALL_MQI.

3. No check means that no authorization checking is carried out.
4. Not applicable means that authorization checking is not relevant to this operation. For example, you

cannot issue an MQPUT call to a process object.

Authorizations for MQSC commands in escape PCFs on IBM i
These authorizations allow a user to issue administration commands as an escape PCF message. These
methods allow a program to send an administration command as a message to a queue manager, for
execution on behalf of that user.

This section summarizes the authorizations needed for each MQSC command contained in Escape PCF.

Not applicable means that authorization checking is not relevant to this operation.

The user ID under which the program that submits the command is running must also have the following
authorities:

• MQZAO_CONNECT authority to the queue manager
• DISPLAY authority on the queue manager in order to perform PCF commands
• Authority to issue the MQSC commands within the text of the Escape PCF command

Securing IBM MQ 169

ALTER object

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager MQZAO_CHANGE

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

CLEAR object

Object Authorization required

Queue MQZAO_CLEAR

Topic MQZAO_CLEAR

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

DEFINE object NOREPLACE (“1” on page 173)

Object Authorization required

Queue MQZAO_CREATE (“2” on page 173)

Topic MQZAO_CREATE (“2” on page 173)

Process MQZAO_CREATE (“2” on page 173)

Queue manager Not applicable

Namelist MQZAO_CREATE (“2” on page 173)

Authentication information MQZAO_CREATE (“2” on page 173)

Channel MQZAO_CREATE (“2” on page 173)

Client connection channel MQZAO_CREATE (“2” on page 173)

Listener MQZAO_CREATE (“2” on page 173)

170 Securing IBM MQ

Object Authorization required

Service MQZAO_CREATE (“2” on page 173)

DEFINE object REPLACE (“1” on page 173, “3” on page 174)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

DELETE object

Object Authorization required

Queue MQZAO_DELETE

Topic MQZAO_DELETE

Process MQZAO_DELETE

Queue manager Not applicable

Namelist MQZAO_DELETE

Authentication information MQZAO_DELETE

Channel MQZAO_DELETE

Client connection channel MQZAO_DELETE

Listener MQZAO_DELETE

Service MQZAO_DELETE

DISPLAY object

Object Authorization required

Queue MQZAO_DISPLAY

Topic MQZAO_DISPLAY

Process MQZAO_DISPLAY

Queue manager MQZAO_DISPLAY

Namelist MQZAO_DISPLAY

Authentication information MQZAO_DISPLAY

Channel MQZAO_DISPLAY

Securing IBM MQ 171

Object Authorization required

Client connection channel MQZAO_DISPLAY

Listener

Service

PING CHANNEL

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

RESET CHANNEL

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL_EXTENDED

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

RESOLVE CHANNEL

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

172 Securing IBM MQ

Object Authorization required

Authentication information Not applicable

Channel MQZAO_CONTROL_EXTENDED

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

START object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

STOP object

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener MQZAO_CONTROL

Service MQZAO_CONTROL

Note:

1. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the LIKE object if one is
specified, or on the appropriate SYSTEM.DEFAULT.xxx object if LIKE is omitted.

2. The MQZAO_CREATE authority is not specific to a particular object or object type. Create authority is
granted for all objects for a specified queue manager, by specifying an object type of QMGR on the
GRTMQMAUT command.

Securing IBM MQ 173

3. This option applies if the object to be replaced already exists. If it does not, the check is as for DEFINE
object NOREPLACE.

Authorizations for PCF commands on IBM i
These authorizations allow a user to issue administration commands as PCF commands. These methods
allow a program to send an administration command as a message to a queue manager, for execution on
behalf of that user.

This section summarizes the authorizations needed for each PCF command.

No check means that no authorization checking is carried out; Not applicable means that authorization
checking is not relevant to this operation.

The user ID under which the program that submits the command is running must also have the following
authorities:

• MQZAO_CONNECT authority to the queue manager
• DISPLAY authority on the queue manager in order to perform PCF commands

The special authorization MQZAO_ALL_ADMIN includes the following authorizations:

• MQZAO_CHANGE
• MQZAO_CLEAR
• MQZAO_DELETE
• MQZAO_DISPLAY
• MQZAO_CONTROL
• MQZAO_CONTROL_EXTENDED

MQZAO_CREATE is not included as it is not specific to a particular object or object type

Change object

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager MQZAO_CHANGE

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Clear object

Object Authorization required

Queue MQZAO_CLEAR

Topic MQZAO_CLEAR

Process Not applicable

Queue manager Not applicable

174 Securing IBM MQ

Object Authorization required

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Copy object (without replace) (“1” on page 179)

Object Authorization required

Queue MQZAO_CREATE (“2” on page 179)

Topic MQZAO_CREATE (“2” on page 179)

Process MQZAO_CREATE (“2” on page 179)

Queue manager Not applicable

NamelistMQZAO_CREATE MQZAO_CREATE (“2” on page 179)

Authentication information MQZAO_CREATE (“2” on page 179)

Channel MQZAO_CREATE (“2” on page 179)

Client connection channel MQZAO_CREATE (“2” on page 179)

Listener MQZAO_CREATE (“2” on page 179)

Service MQZAO_CREATE (“2” on page 179)

Copy object (with replace) (“1” on page 179, “4” on page 179)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Create object (without replace) (“3” on page 179)

Object Authorization required

Queue MQZAO_CREATE (“2” on page 179)

Topic MQZAO_CREATE (“2” on page 179)

Securing IBM MQ 175

Object Authorization required

Process MQZAO_CREATE (“2” on page 179)

Queue manager Not applicable

Namelist MQZAO_CREATE (“2” on page 179)

Authentication information MQZAO_CREATE (“2” on page 179)

Channel MQZAO_CREATE (“2” on page 179)

Client connection channel MQZAO_CREATE (“2” on page 179)

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Create object (with replace) (“3” on page 179, “4” on page 179)

Object Authorization required

Queue MQZAO_CHANGE

Topic MQZAO_CHANGE

Process MQZAO_CHANGE

Queue manager Not applicable

Namelist MQZAO_CHANGE

Authentication information MQZAO_CHANGE

Channel MQZAO_CHANGE

Client connection channel MQZAO_CHANGE

Listener MQZAO_CHANGE

Service MQZAO_CHANGE

Delete object

Object Authorization required

Queue MQZAO_DELETE

Topic MQZAO_DELETE

Process MQZAO_DELETE

Queue manager MQZAO_DELETE

Namelist MQZAO_DELETE

Authentication information MQZAO_DELETE

Channel MQZAO_DELETE

Client connection channel MQZAO_DELETE

Listener MQZAO_DELETE

Service MQZAO_DELETE

176 Securing IBM MQ

Inquire object

Object Authorization required

Queue MQZAO_DISPLAY

Topic MQZAO_DISPLAY

Process MQZAO_DISPLAY

Queue manager MQZAO_DISPLAY

Namelist MQZAO_DISPLAY

Authentication information MQZAO_DISPLAY

Channel MQZAO_DISPLAY

Client connection channel MQZAO_DISPLAY

Listener MQZAO_DISPLAY

Service MQZAO_DISPLAY

Inquire object names

Object Authorization required

Queue No check

Topic No check

Process No check

Queue manager No check

Namelist No check

Authentication information No check

Channel No check

Client connection channel No check

Listener No check

Service No check

Ping Channel

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener Not applicable

Securing IBM MQ 177

Object Authorization required

Service Not applicable

Reset Channel

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL_EXTENDED

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Reset Queue Statistics

Object Authorization required

Queue MQZAO_DISPLAY and MQZAO_CHANGE

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel Not applicable

Client connection channel Not applicable

Listener

Service

Resolve Channel

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL_EXTENDED

178 Securing IBM MQ

Object Authorization required

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Start Channel

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Stop Channel

Object Authorization required

Queue Not applicable

Topic Not applicable

Process Not applicable

Queue manager Not applicable

Namelist Not applicable

Authentication information Not applicable

Channel MQZAO_CONTROL

Client connection channel Not applicable

Listener Not applicable

Service Not applicable

Note:

1. For Copy commands, MQZAO_DISPLAY authority is also needed for the From object.
2. The MQZAO_CREATE authority is not specific to a particular object or object type. Create authority is

granted for all objects for a specified queue manager, by specifying an object type of QMGR on the
GRTMQMAUT command.

3. For Create commands, MQZAO_DISPLAY authority is also needed for the appropriate
SYSTEM.DEFAULT.* object.

4. This option applies if the object to be replaced already exists. If it does not, the check is as for Copy or
Create without replace.

Securing IBM MQ 179

Generic OAM profiles on IBM i
Object authority manager (OAM) generic profiles enable you to set the authority a user has to many
objects at once, rather than having to issue separate GRTMQMAUT commands against each individual
object when it is created. Using generic profiles in the GRTMQMAUT command enables you to set a generic
authority for all future objects created that fit that profile.

The rest of this section describes the use of generic profiles in more detail:

• “Using wildcard characters” on page 180
• “Profile priorities” on page 180

Using wildcard characters
What makes a profile generic is the use of special characters (wildcard characters) in the profile name.
For example, the question mark (?) wildcard character matches any single character in a name. So, if you
specify ABC.?EF, the authorization you give to that profile applies to any objects created with the names
ABC.DEF, ABC.CEF, ABC.BEF, and so on.

The wildcard characters available are:
?

Use the question mark (?) instead of any single character. For example, AB.?D would apply to the
objects AB.CD, AB.ED, and AB.FD.

*
Use the asterisk (*) as:

• A qualifier in a profile name to match any one qualifier in an object name. A qualifier is the part of an
object name delimited by a period. For example, in ABC.DEF.GHI, the qualifiers are ABC, DEF, and
GHI.

For example, ABC.*.JKL would apply to the objects ABC.DEF.JKL, and ABC.GHI.JKL. (Note that
it would not apply to ABC.JKL ; * used in this context always indicates one qualifier.)

• A character within a qualifier in a profile name to match zero or more characters within the qualifier
in an object name.

For example, ABC.DE*.JKL would apply to the objects ABC.DE.JKL, ABC.DEF.JKL, and
ABC.DEGH.JKL.

**
Use the double asterisk (**) once in a profile name as:

• The entire profile name to match all object names. For example, if you use the keyword OBJTYPE
(*PRC) to identify processes, then use ** as the profile name, you change the authorizations for all
processes.

• As either the beginning, middle, or ending qualifier in a profile name to match zero or more qualifiers
in an object name. For example, **.ABC identifies all objects with the final qualifier ABC.

Profile priorities
An important point to understand when using generic profiles is the priority that profiles are given when
deciding what authorities to apply to an object being created. For example, suppose that you have issued
the commands:

GRTMQMAUT OBJ(AB.*) OBJTYPE(*Q) USER(FRED) AUT(*PUT) MQMNAME(MYQMGR)
GRTMQMAUT OBJ(AB.C*) OBJTYPE(*Q) USER(FRED) AUT(*GET) MQMNAME(MYQMGR)

The first gives put authority to all queues for the principal FRED with names that match the profile AB.*;
the second gives get authority to the same types of queue that match the profile AB.C*.

180 Securing IBM MQ

Suppose that you now create a queue called AB.CD. According to the rules for wildcard matching, either
GRTMQMAUT could apply to that queue. So, does it have put or get authority?

To find the answer, you apply the rule that, whenever multiple profiles can apply to an object, only the
most specific applies. The way that you apply this rule is by comparing the profile names from left to
right. Wherever they differ, a non-generic character is more specific than a generic character. So, in the
previous example, the queue AB.CD has get authority (AB.C* is more specific than AB.*).

When you are comparing generic characters, the order of specificity is:

1. ?
2. *
3. **

Specifying the installed authorization service on IBM i
You can specify which authorization service component to use.

The parameter Service Component name on GRTMQMAUT and RVKMQMAUT allows you to specify the
name of the installed authorization service component.

Selecting F24 on the initial panel, followed by F9=All parameters on the next panel of either command,
allows you to specify either the installed authorization component (*DFT) or the name of the required
authorization service component specified in the Service stanza of the queue manager's qm.ini file.

DSPMQMAUT also has this extra parameter. This parameter allows you to search all the installed
authorization components (*DFT), or the specified authorization-service component name, for the
specified object name, object type, and user

Working with and without authority profiles on IBM i
Use this information to learn how to work with authority profiles and how to work without authority
profiles.

You can work with authority profiles, as explained in “Working with authority profiles” on page 181, or
without them, as explained here:

To work without authority profiles, use *NONE as an Authority parameter on GRTMQMAUT to create profiles
without authority. This leaves any existing profiles unchanged.

On RVKMQMAUT, use *REMOVE as an Authority parameter to remove an existing authority profile.

Working with authority profiles
There are two commands associated with authority profiling:

• WRKMQMAUT
• WRKMQMAUTD

You can access these commands directly from the command line, or from the WRKMQM panel by:

1. Typing in the queue manager name and pressing the Enter key to access the WRKMQM results panel.
2. Selecting F23=More options on this panel.

Option 24 selects the results panel for the WRKMQMAUT command and option 25 selects the WRKMQMAUTI
command, which is used with the SSL bindings layer.

WRKMQMAUT
This command allows you to work with the authority data held in the authority queue.

Note: To run this command you must have *connect and *admdsp authority to the queue manager.
However, to create or delete a profile, you need QMQMADM authority.

Securing IBM MQ 181

If you output the information to the screen, a list of authority profile names, together with their types, is
displayed. If you print the output, you receive a detailed list of all the authority data, the registered users,
and their authorities.

Entering an object or profile name on this panel, and pressing ENTER takes you to the results panel for
WRKMQMAUT .

If you select 4=Delete, you go to a new panel from which you can confirm that you want to delete all the
user names registered to the generic authority profile name you specify. This option runs RVKMQMAUT with
the option *REMOVE for all the users, and applies only to generic profile names.

If you select 12=Work with profile you go to the WRKMQMAUTD command results panel, as explained
in “WRKMQMAUTD” on page 182.

WRKMQMAUTD
This command allows you to display all the users registered with a particular authority profile name
and object type. To run this command you must have *connect and *admdsp authority to the queue
manager. However, to grant, run, create, or delete a profile you need QMQMADM authority.

Selecting F24=More keys from the initial input panel, followed by option F9=All Parameters displays
the Service Component Name as for GRTMQMAUT and RVKMQMAUT.

Note: The F11=Display Object Authorizations key toggles between the following types of
authorities:

• Object authorizations
• Context authorizations
• MQI authorizations

The options on the screen are:
2=Grant

Takes you to the GRTMQMAUT panel to add to the current authorities.
3=Revoke

Takes you to the RVKMQMAUT panel to remove some of the current definitions
4=Delete

Takes you to a panel that allows you to delete the authority data for specified users. This runs
RVKMQMAUT with the option *REMOVE.

5=Display
Takes you to the existing DSPMQMAUT command

F6=Create
Takes you to the GRTMQMAUT panel that allows you to create a profile authority record.

Object Authority Manager guidelines on IBM i
Additional hints and tips for using the object authority manager (OAM)

Limit access to sensitive operations
Some operations are sensitive; limit them to privileged users. For example,

• Accessing some special queues, such as transmission queues or the command queue
SYSTEM.ADMIN.COMMAND.QUEUE

• Running programs that use full MQI context options
• Creating and copying application queues

182 Securing IBM MQ

Queue manager directories
The directories and libraries containing queues and other queue manager data are private to the product.
Do not use standard operating system commands to grant or revoke authorizations to MQI resources.

Queues
The authority to a dynamic queue is based on, but is not necessarily the same as, that of the model queue
from which it is derived.

For alias queues and remote queues, the authorization is that of the object itself, not the queue to which
the alias or remote queue resolves. It is possible to authorize a user profile to access an alias queue that
resolves to a local queue to which the user profile has no access permissions.

Limit the authority to create queues to privileged users. If you do not, users can bypass the normal access
control by creating an alias.

Alternate-user authority
Alternate-user authority controls whether one user profile can use the authority of another user profile
when accessing an IBM MQ object. This technique is essential where a server receives requests from a
program and the server wants to ensure that the program has the required authority for the request. The
server might have the required authority, but it needs to know whether the program has the authority for
the actions it has requested.

For example:

• A server program running under user profile PAYSERV retrieves a request message from a queue that
was put on the queue by user profile USER1.

• When the server program gets the request message, it processes the request and puts the reply back
into the reply-to queue specified with the request message.

• Instead of using its own user profile (PAYSERV) to authorize opening the reply-to queue, the server
can specify some other user profile, in this case, USER1. In this example, you can use alternate-user
authority to control whether PAYSERV is allowed to specify USER1 as an alternate-user profile when it
opens the reply-to queue.

The alternate-user profile is specified on the AlternateUserId field of the object descriptor.

Note: You can use alternate-user profiles on any IBM MQ object. Use of an alternate-user profile does not
affect the user profile used by any other resource managers.

Context authority
Context is information that applies to a particular message and is contained in the message descriptor,
MQMD, which is part of the message.

For descriptions of the message descriptor fields relating to context, see MQMD - Message descriptor.

For information about the context options, see Message context.

Remote security considerations
For remote security, consider:
Put authority

For security across queue managers, you can specify the put authority that is used when a channel
receives a message sent from another queue manager.

This parameter is valid only for RCVR, RQSTR, or CLUSRCVR channel types. Specify the channel
attribute PUTAUT as follows:

Securing IBM MQ 183

DEF
Default user profile. This is the QMQM user profile under which the message channel agent is
running.

CTX
The user profile in the message context.

Transmission queues
Queue managers automatically put remote messages on a transmission queue; no special authority is
required. However, putting a message directly on a transmission queue requires special authorization.

Channel exits
Channel exits can be used for added security.

Channel authentication records
Use to exercise more precise control over the access granted to connecting systems at a channel
level.

For more information about remote security, see “Channel authorization” on page 113.

Protecting channels with SSL/TLS
The Transport Layer Security (TLS) protocol provide channel security, with protection against
eavesdropping, tampering, and impersonation. IBM MQ support for TLS enables you to specify, on the
channel definition, that a particular channel uses TLS security. You can also specify details of the security
you want, such as the encryption algorithm you want to use.

TLS support in IBM MQ uses the queue manager authentication information object and various CL and
MQSC commands and queue manager and channel parameters that define the TLS support required in
detail.

The following CL commands support TLS:
WRKMQMAUTI

Work with the attributes of an authentication information object.
CHGMQMAUTI

Modify the attributes of an authentication information object.
CRTMQMAUTI

Create an authentication information object.
CPYMQMAUTI

Create an authentication information object by copying an existing one.
DLTMQMAUTI

Delete an authentication information object.
DSPMQMAUTI

Displays the attributes for a specific authentication information object.

For an overview of channel security using TLS, see

• Protecting channels with TLS

For details of PCF commands associated with TLS, see

• Change, Copy, and Create Authentication Information Object
• Delete Authentication Information Object
• Inquire Authentication Information Object

Setting up security on z/OS
Security considerations specific to z/OS.

Security in IBM MQ for z/OS is controlled using RACF or an equivalent external security manager (ESM).

The following instructions assume that you are using RACF.

184 Securing IBM MQ

Related concepts
Security scenario: two queue managers on z/OS
Security scenario: queue sharing group on z/OS

RACF security classes
RACF classes are used to hold the profiles required for IBM MQ security checking. Many of the member
classes have equivalent group classes. You must activate the classes and enable them to accept generic
profiles.

Each RACF class holds one or more profiles used at some point in the checking sequence, as shown in
Table 23 on page 185.

Table 23. RACF classes used by IBM MQ

Member class Group class Contents

MQADMIN GMQADMIN Profiles that are used mainly for administrative functions. For
example:

• Profiles for IBM MQ security switches.
• The RESLEVEL security profile.
• Profiles for alternate user security.
• Profiles for context security.
• Profiles for command resource security.

This class can hold only uppercase RACF profiles.

MXADMIN GMXADMIN Profiles that are used mainly for administrative functions. For
example:

• Profiles for IBM MQ security switches.
• The RESLEVEL security profile.
• Profiles for alternate user security.
• Profiles for context security.
• Profiles for command resource security.

This class can hold both uppercase and mixed-case RACF
profiles.

MQCONN Profiles used for connection security.

MQCMDS Profiles used for command security.

MQQUEUE GMQQUEUE Uppercase profiles used in queue resource security.

MXQUEUE GMXQUEUE Mixed-case and uppercase profiles used in queue resource
security.

MQPROC GMQPROC Uppercase profiles used in process resource security.

MXPROC GMXPROC Mixed-case and uppercase profiles used in process resource
security.

MQNLIST GMQNLIST Uppercase profiles used in namelist resource security.

MXNLIST GMXNLIST Mixed-case and uppercase profiles used in namelist resource
security.

MXTOPIC GMXTOPIC Mixed-case and uppercase profiles used in topic security.

Securing IBM MQ 185

Some classes have a related group class that enables you to put together groups of resources that have
similar access requirements. For details about the difference between the member and group classes and
when to use a member or group class, see the z/OS Security Server RACF Security Administrator's Guide.

The classes must be activated before security checks can be made. To activate all the IBM MQ classes,
you can use this RACF command:

SETROPTS CLASSACT(MQADMIN,MXADMIN,MQQUEUE,MXQUEUE,MQPROC,MXPROC,
 MQNLIST,MXNLIST,MXTOPIC,MQCONN,MQCMDS)

You should also ensure that you set up the classes so that they can accept generic profiles. You also do
this with the RACF command SETROPTS, for example:

SETROPTS GENERIC(MQADMIN,MXADMIN,MQQUEUE,MXQUEUE,MQPROC,MXPROC,
 MQNLIST,MXNLIST,MXTOPIC,MQCONN,MQCMDS)

RACF profiles
All RACF profiles used by IBM MQ contain a prefix, which is either the queue manager name or the queue
sharing group name. Be careful when you use the percent sign as a wildcard.

All RACF profiles used by IBM MQ contain a prefix. For queue sharing group level security, this is the
queue sharing group name. For queue manager level security, the prefix is the queue manager name. If
you are using a mixture of queue manager and queue sharing group level security, you will use profiles
with both types of prefix. Queue sharing group and queue manager level security are described in Security
controls and options in IBM MQ for z/OS.

For example, if you want to protect a queue called QUEUE_FOR_SUBSCRIBER_LIST in queue sharing
group QSG1 at queue sharing group level, the appropriate profile would be defined to RACF as:

RDEFINE MQQUEUE QSG1.QUEUE_FOR_SUBSCRIBER_LIST

If you want to protect a queue called QUEUE_FOR_LOST_CARD_LIST, that belongs to queue manager
STCD at queue manager level, the appropriate profile would be defined to RACF as:

RDEFINE MQQUEUE STCD.QUEUE_FOR_LOST_CARD_LIST

This means that different queue managers and queue sharing groups can share the same RACF database
and yet have different security options.

Do not use generic queue manager names in profiles to avoid unanticipated user access.

IBM MQ allows the use of the percent sign (%) in object names. However, RACF uses the % character as
a single-character wildcard. This means that when you define an object name with a % character in its
name, you must consider this when you define the corresponding profile.

For example, for the queue CREDIT_CARD_%_RATE_INQUIRY, on queue manager CRDP, the profile would
be defined to RACF as follows:

RDEFINE MQQUEUE CRDP.CREDIT_CARD_%_RATE_INQUIRY

This queue cannot be protected by a generic profile, such as, CRDP.**.

IBM MQ allows the use of mixed-case characters in object names. You can protect these objects by
defining:

186 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-security-administrators-guide

1. Mixed-case profiles in the appropriate mixed-case RACF classes, or
2. Generic profiles in the appropriate uppercase RACF classes.

To use mixed-case profiles and mixed-case RACF classes you must follow the steps described in
“Migrating a z/OS queue manager to mixed-case security” on page 263.

There are some profiles, or parts of profiles, that remain uppercase only as the values are provided by
IBM MQ. These are:

• Switch profiles.
• All high-level qualifiers (HLQ) including subsystem and queue sharing group identifiers.
• Profiles for SYSTEM objects.
• Profiles for Default objects.
• The MQCMDS class, so all command profiles are uppercase only.
• The MQCONN class, so all connection profiles are uppercase only.
• RESLEVEL profiles.
• The 'object' qualification in command resource profiles; for example, hlq.QUEUE.queuename. The

resource name only is mixed case.
• Dynamic queue profiles hlq.CSQOREXX.*, hlq.CSQUTIL.*, and CSQXCMD.*.
• The 'CONTEXT' part of hlq.CONTEXT.resourcename.
• The 'ALTERNATE.USER' part of hlq.ALTERNATE.USER.userid.

For example, you can define a profile to grant access to a queue called PAYROLL.Dept1 on queue
manager QM01 in one of the following ways.

• If you are using mixed-case profiles, you can define a profile in the IBM MQ RACF class MXQUEUE using
the following command:

RDEFINE MXQUEUE MQ01.PAYROLL.Dept1

• If you are using uppercase profiles, you can define a profile in the IBM MQ RACF class MQQUEUE using
the following command:

RDEFINE MQQUEUE MQ01.PAYROLL.*

The first example, using mixed-case profiles, gives you more granular control over granting authority to
access the resource.

Switch profiles
To control the security checking performed by IBM MQ, you use switch profiles. A switch profile is a
normal RACF profile that has a special meaning to IBM MQ. The access list in switch profiles is not used
by IBM MQ.

IBM MQ maintains an internal switch for each switch type shown in tables Switch profiles for subsystem
level security, Switch profiles for queue sharing group or queue manager level security,and Switch profiles
for resource checking. Switch profiles can be maintained at queue sharing group level, or at queue
manager level, or at a combination of both. Using a single set of queue sharing group security switch
profiles, you can control security on all the queue managers within a queue sharing group.

When a security switch is set on, the security checks associated with the switch are performed. When a
security switch is set off, the security checks associated with the switch are bypassed. The default is that
all security switches are set on.

Securing IBM MQ 187

Switches and classes
When you start a queue manager or refresh security, IBM MQ sets switches according to the state of
various RACF classes.

When a queue manager is started (or when the MQADMIN or MXADMIN class is refreshed by the IBM MQ
REFRESH SECURITY command), IBM MQ first checks the status of RACF and the appropriate class:

• The MQADMIN class if you are using uppercase profiles
• The MXADMIN class if you are using mixed case profile.

It sets the subsystem security switch off if any of these conditions is true:

• RACF is inactive or not installed.
• The MQADMIN or MXADMIN class is not defined (these classes are always defined for RACF because

they are included in the class descriptor table (CDT)).
• The MQADMIN or MXADMIN class has not been activated.

If both RACF and the MQADMIN or MXADMIN class are active, IBM MQ checks the MQADMIN or
MXADMIN class to see whether any of the switch profiles have been defined. It first checks the profiles
described in “Profiles to control subsystem security” on page 189. If subsystem security is not required,
IBM MQ sets the internal subsystem security switch off, and performs no further checks.

The profiles determine whether the corresponding IBM MQ switch is set on or off.

• If the switch is off, that type of security is deactivated.
• If any IBM MQ switch is set on, IBM MQ checks the status of the RACF class associated with the type

of security corresponding to the IBM MQ switch. If the class is not installed or not active, the IBM MQ
switch is set off. For example, process security checks are not carried out if the MQPROC or MXPROC
class has not been activated. The class not being active is equivalent to defining NO.PROCESS.CHECKS
profile for every queue manager and queue sharing group that uses this RACF database.

How switches work
To set off a security switch, define a NO.* switch profile for it. You can override a NO.* profile set at the
queue sharing group level by defining a YES.* profile for a queue manager.

To set off a security switch, you need to define a NO.* switch profile for it. The existence of a NO.* profile
means that security checks are not performed for that type of resource, unless you choose to override a
queue sharing group level setting on a particular queue manager. This is described in “Overriding queue
sharing group level settings” on page 188.

If your queue manager is not a member of a queue sharing group, you do not need to define any queue
sharing group level profiles or any override profiles. However, you must remember to define these profiles
if the queue manager joins a queue sharing group at a later date.

Each NO.* switch profile that IBM MQ detects turns off the checking for that type of resource. Switch
profiles are activated during startup of the queue manager. If you change the switch profiles while any
affected queue managers are running, you can get IBM MQ to recognize the changes by issuing the IBM
MQ REFRESH SECURITY command.

The switch profiles must always be defined in the MQADMIN or MXADMIN class. Do not define them in the
GMQADMIN or GMXADMIN class. Tables Switch profiles for subsystem level security and Switch profiles
for resource checking show the valid switch profiles and the security type they control.

Overriding queue sharing group level settings
You can override queue sharing group level security settings for a particular queue manager that is a
member of that group. If you want to perform queue manager checks on an individual queue manager
that are not performed on other queue managers in the group, use the (qmgr-name.YES.*) switch profiles.

Conversely, if you do not want to perform a certain check on one particular queue manager within a queue
sharing group, define a (qmgr-name.NO.*) profile for that particular resource type on the queue manager,

188 Securing IBM MQ

and do not define a profile for the queue sharing group. (IBM MQ only checks for a queue sharing group
level profile if it does not find a queue manager level profile.)

Profiles to control subsystem security
IBM MQ checks whether subsystem security checks are required for the subsystem, for the queue
manager, and for the queue sharing group.

The first security check made by IBM MQ is used to determine whether security checks are required for
the whole IBM MQ subsystem. If you specify that you do not want subsystem security, no further checks
are made.

The following switch profiles are checked to determine whether subsystem security is required. Figure 14
on page 189 shows the order in which they are checked.

Table 24. Switch profiles for subsystem level security

Switch profile name Type of resource or checking that is controlled

qmgr-name.NO.SUBSYS.SECURITY Subsystem security for this queue manager

qsg-name.NO.SUBSYS.SECURITY Subsystem security for this queue sharing group

qmgr-name.YES.SUBSYS.SECURITY Subsystem security override for this queue manager

If your queue manager is not a member of a queue sharing group, IBM MQ checks for the qmgr-
name.NO.SUBSYS.SECURITY switch profile only.

Figure 14. Checking for subsystem security

Profiles to control queue sharing group or queue manager level security
If subsystem security checking is required, IBM MQ checks whether security checking is required at
queue sharing group or queue manager level.

When IBM MQ has determined that security checking is required, it then determines whether checking is
required at queue sharing group or queue manager level, or both. These checks are not performed if your
queue manager is not a member of a queue sharing group.

The following switch profiles are checked to determine the level required. Figure 15 on page 190 and
Figure 16 on page 191 show the order in which they are checked.

Securing IBM MQ 189

Table 25. Switch profiles for queue sharing group or queue manager level security

Switch profile name Type of resource or checking that is controlled

qmgr-name.NO.QMGR.CHECKS No queue manager level checks for this queue manager

qsg-name.NO.QMGR.CHECKS No queue manager level checks for this queue sharing group

qmgr-name.YES.QMGR.CHECKS Queue manager level checks override for this queue manager

qmgr-name.NO.QSG.CHECKS No queue sharing group level checks for this queue manager

qsg-name.NO.QSG.CHECKS No queue sharing group level checks for this queue sharing
group

qmgr-name.YES.QSG.CHECKS Queue sharing group level checks override for this queue
manager

If subsystem security is active, you cannot switch off both queue sharing group and queue manager level
security. If you try to do so, IBM MQ sets security checking on at both levels.

Figure 15. Checking for queue manager level security

190 Securing IBM MQ

Figure 16. Checking for queue sharing group level security

Valid combinations of security switches
Only certain combinations of switches are valid. If you use a combination of switch settings that is not
valid, message CSQH026I is issued and security checking is set on at both queue sharing group and
queue manager level.

Table 26 on page 191, Table 27 on page 191, Table 28 on page 192, and Table 29 on page 192 show the
sets of combinations of switch settings that are valid for each type of security level.

Table 26. Valid security switch combinations for queue manager level security

Combinations

qmgr-name.NO.QSG.CHECKS

qsg-name.NO.QSG.CHECKS

qmgr-name.NO.QSG.CHECKS
qsg-name.NO.QMGR.CHECKS
qmgr-name.YES.QMGR.CHECKS

qsg-name.NO.QSG.CHECKS
qsg-name.NO.QMGR.CHECKS
qmgr-name.YES.QMGR.CHECKS

Table 27. Valid security switch combinations for queue sharing group level security

Combinations

qmgr-name.NO.QMGR.CHECKS

qsg-name.NO.QMGR.CHECKS

qmgr-name.NO.QMGR.CHECKS
qsg-name.NO.QSG.CHECKS
qmgr-name.YES.QSG.CHECKS

Securing IBM MQ 191

Table 27. Valid security switch combinations for queue sharing group level security (continued)

Combinations

qsg-name.NO.QMGR.CHECKS
qsg-name.NO.QSG.CHECKS
qmgr-name.YES.QSG.CHECKS

Table 28. Valid security switch combinations for queue manager and queue sharing group level security

Combinations

qsg-name.NO.QMGR.CHECKS
qmgr-name.YES.QMGR.CHECKS
No QSG.* profiles defined

No QMGR.* profiles defined
qsg-name.NO.QSG.CHECKS
qmgr-name.YES.QSG.CHECKS

qsg-name.NO.QMGR.CHECKS
qmgr-name.YES.QMGR.CHECKS
qsg-name.NO.QSG.CHECKS
qmgr-name.YES.QSG.CHECKS

No profiles for either switch defined

Table 29. Other valid security switch combinations that switch both levels of checking on.

Combinations

qmgr-name.NO.QMGR.CHECKS
qmgr-name.NO.QSG.CHECKS

qsg-name.NO.QMGR.CHECKS
qsg-name.NO.QSG.CHECKS

qmgr-name.NO.QMGR.CHECKS
qsg-name.NO.QSG.CHECKS

qsg-name.NO.QMGR.CHECKS
qmgr-name.NO.QSG.CHECKS

Resource level checks
A number of switch profiles are used to control access to resources. Some stop checking being performed
on either a queue manager or a queue sharing group. These can be overridden by profiles that enable
checking for specific queue managers.

Table 30 on page 193 shows the switch profiles used to control access to IBM MQ resources.

If your queue manager is part of a queue sharing group and you have both queue manager and queue
sharing group security active, you can use a YES.* switch profile to override queue sharing group level
profiles and specifically turn on security for a particular queue manager.

Some profiles apply to both queue managers and queue sharing groups. These are prefixed by the string
hlq and you should substitute the name of your queue sharing group or queue manager, as applicable.

192 Securing IBM MQ

Profile names shown prefixed by qmgr-name are queue manager override profiles; you should substitute
the name of your queue manager.

Table 30. Switch profiles for resource checking

Type of resource
checking that is
controlled

Switch profile name Override profile for a particular queue
manager

Connection security hlq.NO.CONNECT.CHECKS qmgr-name.YES.CONNECT.CHECKS

Queue security hlq.NO.QUEUE.CHECKS qmgr-name.YES.QUEUE.CHECKS

Process security hlq.NO.PROCESS.CHECKS qmgr-name.YES.PROCESS.CHECKS

Namelist security hlq.NO.NLIST.CHECKS qmgr-name.YES.NLIST.CHECKS

Context security hlq.NO.CONTEXT.CHECKS qmgr-name.YES.CONTEXT.CHECKS

Alternate user
security

hlq.NO.ALTERNATE.USER.CHECKS qmgr-name.YES.ALTERNATE.USER.CHECKS

Command security hlq.NO.CMD.CHECKS qmgr-name.YES.CMD.CHECKS

Command resource
security

hlq.NO.CMD.RESC.CHECKS qmgr-name.YES.CMD.RESC.CHECKS

Topic security hlq.NO.TOPIC.CHECKS qmgr-name.YES.TOPIC.CHECKS

Note: Generic switch profiles such as hlq.NO.** are ignored by IBM MQ

For example, if you want to perform process security checks on queue manager QM01, which is a member
of queue sharing group QSG3 but you do not want to perform process security checks on any of the other
queue managers in the group, define the following switch profiles:

QSG3.NO.PROCESS.CHECKS
QM01.YES.PROCESS.CHECKS

If you want to have queue security checks performed on all the queue managers in the queue sharing
group, except QM02, define the following switch profile:

QM02.NO.QUEUE.CHECKS

(There is no need to define a profile for the queue sharing group because the checks are automatically
enabled if there is no profile defined.)

An example of defining switches
Different IBM MQ subsystems have different security requirements, which can be implemented using
different switch profiles.

Four IBM MQ subsystems have been defined:

• MQP1 (a production system)
• MQP2 (a production system)
• MQD1 (a development system)
• MQT1 (a test system)

All four queue managers are members of queue sharing group QS01. All IBM MQ RACF classes have been
defined and activated.

These subsystems have different security requirements:

Securing IBM MQ 193

• The production systems require full IBM MQ security checking to be active at queue sharing group level
on both systems.

This is done by specifying the following profile:

RDEFINE MQADMIN QS01.NO.QMGR.CHECKS

This sets queue sharing group level checking for all the queue managers in the queue sharing group. You
do not need to define any other switch profiles for the production queue managers because you want to
check everything for these systems.

• Test queue manager MQT1 also requires full security checking. However, because you might want to
change this later, security can be defined at queue manager level so that you can change the security
settings for this queue manager without affecting the other members of the queue sharing group.

This is done by defining the NO.QSG.CHECKS profile for MQT1 as follows:

RDEFINE MQADMIN MQT1.NO.QSG.CHECKS

• Development queue manager MQD1 has different security requirements from the rest of the queue
sharing group. It requires only connection and queue security to be active.

This is done by defining a MQD1.YES.QMGR.CHECKS profile for this queue manager, and then defining
the following profiles to switch off security checking for the resources that do not need to be checked:

RDEFINE MQADMIN MQD1.NO.CMD.CHECKS
RDEFINE MQADMIN MQD1.NO.CMD.RESC.CHECKS
RDEFINE MQADMIN MQD1.NO.PROCESS.CHECKS
RDEFINE MQADMIN MQD1.NO.NLIST.CHECKS
RDEFINE MQADMIN MQD1.NO.CONTEXT.CHECKS
RDEFINE MQADMIN MQD1.NO.ALTERNATE.USER.CHECKS

When the queue manager is active, you can display the current security settings by issuing the DISPLAY
SECURITY MQSC command.

You can also change the switch settings when the queue manager is running by defining or deleting the
appropriate switch profile in the MQADMIN class. To make the changes to the switch settings active, you
must issue the REFRESH SECURITY command for the MQADMIN class.

See “Refreshing queue manager security on z/OS” on page 245 for more details about using the DISPLAY
SECURITY and REFRESH SECURITY commands.

Profiles used to control access to IBM MQ resources
You must define RACF profiles to control access to IBM MQ resources, in addition to the switch profiles
that might have been defined. This collection of topics contains information about the RACF profiles for
the different types of IBM MQ resource.

If you do not have a resource profile defined for a particular security check, and a user issues a request
that would involve making that check, IBM MQ denies access. You do not have to define profiles for
security types relating to any security switches that you have deactivated.

Profiles for connection security
If connection security is active, you must define profiles in the MQCONN class and permit the necessary
groups or user IDs access to those profiles, so that they can connect to IBM MQ.

To enable a connection to be made, you must grant users RACF READ access to the appropriate profile.
(If no queue manager level profile exists, and your queue manager is a member of a queue sharing group,
checks might be made against queue sharing group level profiles, if the security is set up to do this.)

A connection profile qualified with a queue manager name controls access to a specific queue manager
and users given access to this profile can connect to that queue manager. A connection profile qualified
with queue sharing group name controls access to all queue managers within the queue sharing group for

194 Securing IBM MQ

that connection type. For example, a user with access to QS01.BATCH can use a batch connection to any
queue manager in queue sharing group QS01 that has not got a queue manager level profile defined.

Note:

1. For information about the user IDs checked for different security requests, see “User IDs for security
checking on z/OS” on page 234.

2. Resource level security (RESLEVEL) checks are also made at connection time. For details, see “The
RESLEVEL security profile” on page 229.

IBM MQ security recognizes the following different types of connection:

• Batch (and batch-type) connections, these include:

– z/OS batch jobs
– TSO applications
– z/OS UNIX System Services sign-ons
– Db2 stored procedures

• CICS connections
• IMS connections from control and application processing regions
• The IBM MQ channel initiator

Connection security profiles for batch connections
Profiles for checking batch-type connections are composed of the queue manager or queue sharing group
name followed by the word BATCH. Give the user ID associated with the connecting address space READ
access to the connection profile.

Profiles for checking batch and batch-type connections take the form:

hlq.BATCH

where hlq can be either the qmgr-name (queue manager name) or qsg-name (queue sharing group
name). If you are using both queue manager and queue sharing group level security, IBM MQ checks for
a profile prefixed by the queue manager name. If it does not find one, it looks for a profile prefixed by the
queue sharing group name. If it fails to find either profile, the connection request fails.

For batch or batch-type connection requests, you must permit the user ID associated with the connecting
address space to access the connection profile. For example, the following RACF command allows users
in the CONNTQM1 group to connect to the queue manager TQM1; these user IDs will be permitted to use
any batch or batch-type connection.

RDEFINE MQCONN TQM1.BATCH UACC(NONE)
PERMIT TQM1.BATCH CLASS(MQCONN) ID(CONNTQM1) ACCESS(READ)

Using CHCKLOCL on locally bound applications
CHCKLOCL only applies to connections that are made through BATCH connections and does not apply to
connections made from CICS or IMS. Connections made through the channel initiator are controlled by
CHCKCLNT.

Overview
If you want to configure your z/OS queue manager to mandate user ID and password checking for some,
but not all, of your locally bound applications, you need to do some additional configuration.

The reason for this is that once CHCKLOCL (REQUIRED) is configured, legacy batch applications that use
the MQCONN API call can no longer connect to the queue manager.

Securing IBM MQ 195

For z/OS only, a more granular mechanism based on the connection security of an address space can
be used to downgrade the global CHCKLOCL(REQUIRED) configuration to CHCKLOCL(OPTIONAL) for
specifically defined user IDs. The mechanism used, is described in the following text, together with an
example.

In order to allow more granularity on CHCKLOCL (REQUIRED) than just EVERYONE, you modify CHCKLOCL
in the same manner as you modify the access level of the user ID associated with the connecting address
space to the hlq.batch connection profiles in the MQCONN class.

If the address space user ID only has READ access, which is the minimum you require to be able to
connect at all, the CHCKLOCL configuration applies as written.

If the address space user ID has UPDATE access (or above) then the CHCKLOCL configuration operates in
OPTIONAL mode. That is, you do not have to provide a user ID and password, but if you do, the user ID
and password must be a valid pair.

Connection security already configured for your z/OS queue manager

If you have connection security configured for your z/OS queue manager and you want CHCKLOCL
(REQUIRED) to apply to WAS locally bound applications, and no others, carry out the following steps:

1. Start with CHCKLOCL (OPTIONAL) as your configuration. This means that any user ID and passwords
that are supplied are checked for validity, but not mandated.

2. List all the users that have access to the connection security profiles by issuing the command:

RLIST MQCONN MQ23.BATCH AUTHUSER

This command displays, for example:

CLASS NAME
----- ----
MQCONN MQ23.BATCH

USER ACCESS ACCESS COUNT
---- ------ ------ -----
JOHNDOE READ 000009
JDOE1 READ 000003
WASUSER READ 000000

3. For each user ID listed as having READ access, change the access to

UPDATE:- PERMIT MQ23.BATCH CLASS(MQCONN) ID(JOHNDOE) ACCESS(UPDATE)

4. Update the IBM MQ configuration to CHCKLOCL (REQUIRED).

The combination of UPDATE access to MQ23.BATCH and the current setting means that you are using
CHCKLOCL (OPTIONAL).

5. Now, apply the CHCKLOCL (REQUIRED) behavior to one specific user ID, for example WASUSER, so that
all the connections coming from that region must provide a user ID and password.

Do this by reversing the change you made previously, by issuing the command:

PERMIT MQ23.BATCH CLASS(MQCONN) ID(WASUSER) ACCESS(READ)

Connection security is not configured for your z/OS queue manager

In this situation, you must:

1. Create connection profiles for hlq.BATCH in the MQCONN class, by issuing the command:

RDEFINE MQCONN MQ23.BATCH UACC(NONE)

196 Securing IBM MQ

2. Authorize all user IDs that create batch connections to the queue manager, so that they have UPDATE
access to this profile. Doing this bypasses the CHCKLOCL (REQUIRED) requirement for the user ID and
password at the time of connection.

Do this by issuing the command:

PERMIT MQ23.BATCH CLASS(MQCONN)ID(JOHNDOE) ACCESS(UPDATE)

These include user IDs:

a. Used for CSQUTIL, ISPF panels, and other locally bound tools.
b. Associated with batch like connections to the queue manager. Consider for example, Advanced

Message Security, IBM Integration Bus, Db2 stored procedures, z/OS UNIX System Services and
TSO users, and Java applications

3. Delete the switch profile for the queue manager by issuing the command:

hlq.NO.CONNECT.CHECKS

4. Now, apply the CHCKLOCL (REQUIRED) behavior to one specific user ID, for example WASUSER, so that
all the connections coming from that region must provide a user ID and password.

Do this by reversing the change you made previously, by issuing the command:

PERMIT MQ23.BATCH CLASS(MQCONN) ID(WASUSER) ACCESS(READ)

Connection security profiles for CICS connections
Profiles for checking CICS connections are composed of the queue manager or queue sharing group name
followed by the word CICS . Give the user ID associated with the CICS address space READ access to the
connection profile.

Profiles for checking connections from CICS take the form:

hlq.CICS

where hlq can be either qmgr-name (queue manager name) or qsg-name (queue sharing group name).
If you are using both queue manager and queue sharing group level security, IBM MQ checks for a profile
prefixed by the queue manager name. If it does not find one, it looks for a profile prefixed by the queue
sharing group name. If it fails to find either profile, the connection request fails

For connection requests by CICS, you need only permit the CICS address space user ID access to the
connection profile.

For example, the following RACF commands allow the CICS address space user ID KCBCICS to connect to
the queue manager TQM1:

RDEFINE MQCONN TQM1.CICS UACC(NONE)
PERMIT TQM1.CICS CLASS(MQCONN) ID(KCBCICS) ACCESS(READ)

Connection security profiles for IMS connections
Profiles for checking IMS connections are composed of the queue manager or queue sharing group name
followed by the word IMS . Give the IMS control and dependent region user IDs READ access to the
connection profile.

Profiles for checking connections from IMS take the form:

Securing IBM MQ 197

hlq.IMS

where hlq can be either qmgr-name (queue manager name) or qsg-name (queue sharing group name).
If you are using both queue manager and queue sharing group level security, IBM MQ checks for a profile
prefixed by the queue manager name. If it does not find one, it looks for a profile prefixed by the queue
sharing group name. If it fails to find either profile, the connection request fails

For connection requests by IMS, permit access to the connection profile for the IMS control and
dependent region user IDs.

For example, the following RACF commands allow:

• The IMS region user ID, IMSREG, to connect to the queue manager TQM1.
• Users in group BMPGRP to submit BMP jobs.

RDEFINE MQCONN TQM1.IMS UACC(NONE)
PERMIT TQM1.IMS CLASS(MQCONN) ID(IMSREG,BMPGRP) ACCESS(READ)

Connection security profiles for the channel initiator
Profiles for checking connections from the channel initiator are composed of the queue manager or queue
sharing group name followed by the word CHIN. Give the user ID used by the channel initiator started task
address space READ access to the connection profile.

Profiles for checking connections from the channel initiator take the form:

hlq.CHIN

where hlq can be either qmgr-name (queue manager name) or qsg-name (queue sharing group name).
If you are using both queue manager and queue sharing group level security, IBM MQ checks for a profile
prefixed by the queue manager name. If it does not find one, it looks for a profile prefixed by the queue
sharing group name. If it fails to find either profile, the connection request fails

For connection requests by the channel initiator, define access to the connection profile for the user ID
used by the channel initiator started task address space.

For example, the following RACF commands allow the channel initiator address space running with user
ID DQCTRL to connect to the queue manager TQM1:

RDEFINE MQCONN TQM1.CHIN UACC(NONE)
PERMIT TQM1.CHIN CLASS(MQCONN) ID(DQCTRL) ACCESS(READ)

Profiles for queue security
If queue security is active, you must define profiles in the appropriate classes and permit the necessary
groups or user IDs access to these profiles. Queue security profiles are named after the queue manager or
queue sharing group, and the queue to be opened.

If queue security is active, you must:

• Define profiles in the MQQUEUE or GMQQUEUE classes if using uppercase profiles.
• Define profiles in the MXQUEUE or GMXQUEUE classes if using mixed case profiles.

198 Securing IBM MQ

• Permit the necessary groups or user IDs access to these profiles, so that they can issue IBM MQ API
requests that use queues.

Profiles for queue security take the form:

hlq.queuename

where hlq can be either qmgr-name (queue manager name) or qsg-name (queue sharing group name),
and queuename is the name of the queue being opened, as specified in the object descriptor on the
MQOPEN or MQPUT1 call.

A profile prefixed by the queue manager name controls access to a single queue on that queue manager.
A profile prefixed by the queue sharing group name controls access to access to one or more queues with
that queue name on all queue managers within the queue sharing group, or access to a shared queue by
any queue manager within the group. This access can be overridden on an individual queue manager by
defining a queue manager level profile for that queue on that queue manager.

If your queue manager is a member of a queue sharing group and you are using both queue manager and
queue sharing group level security, IBM MQ checks for a profile prefixed by the queue manager name first.
If it does not find one, it looks for a profile prefixed by the queue sharing group name.

If you are using shared queues, you are recommended to use queue sharing group level security.

For details of how queue security operates when the queue name is that of an alias or a model queue, see
“Considerations for alias queues” on page 201 and “Considerations for model queues” on page 201 .

The RACF access required to open a queue depends on the MQOPEN or MQPUT1 options specified. If more
than one of the MQOO_* and MQPMO_* options is coded, the queue security check is performed for the
highest RACF authority required.

Table 31. Access levels for queue security using the MQOPEN or MQPUT1 calls

MQOPEN or MQPUT1 option RACF access level required to hlq.queuename

MQOO_BROWSE READ

MQOO_INQUIRE READ

MQOO_BIND_* UPDATE

MQOO_INPUT_* UPDATE

MQOO_OUTPUT or MQPUT1 UPDATE

MQOO_PASS_ALL_CONTEXT
MQPMO_PASS_ALL_CONTEXT

UPDATE

MQOO_PASS_IDENTITY_CONTEXT
MQPMO_PASS_IDENTITY_CONTEXT

UPDATE

MQOO_SAVE_ALL_CONTEXT UPDATE

MQOO_SET_IDENTITY_CONTEXT
MQPMO_SET_IDENTITY_CONTEXT

UPDATE

MQOO_SET_ALL_CONTEXT
MQPMO_SET_ALL_CONTEXT

UPDATE

MQOO_SET ALTER

For example, on IBM MQ queue manager QM77, all user IDs in the RACF group PAYGRP are to be given
access to get messages from or put messages to all queues with names beginning with 'PAY.'. You can do
this using these RACF commands:

Securing IBM MQ 199

RDEFINE MQQUEUE QM77.PAY.** UACC(NONE)
PERMIT QM77.PAY.** CLASS(MQQUEUE) ID(PAYGRP) ACCESS(UPDATE)

Also, all user IDs in the PAYGRP group must have access to put messages on queues that do not follow
the PAY naming convention. For example:

REQUEST_QUEUE_FOR_PAYROLL
SALARY.INCREASE.SERVER
REPLIES.FROM.SALARY.MODEL

You can do this by defining profiles for these queues in the GMQQUEUE class and giving access to that
class as follows:

RDEFINE GMQQUEUE PAYROLL.EXTRAS UACC(NONE)
 ADDMEM(QM77.REQUEST_QUEUE_FOR_PAYROLL,
 QM77.SALARY.INCREASE.SERVER,
 QM77.REPLIES.FROM.SALARY.MODEL)
PERMIT PAYROLL.EXTRAS CLASS(GMQQUEUE) ID(PAYGRP) ACCESS(UPDATE)

Note:

1. If the RACF access level that an application has to a queue security profile is changed, the changes
only take effect for any new object handles obtained (that is, new MQOPEN s) for that queue. Those
handles already in existence at the time of the change retain their existing access to the queue. If
an application is required to use its changed access level to the queue rather than its existing access
level, it must close and reopen the queue for each object handle that requires the change.

2. In the example, the queue manager name QM77 could also be the name of a queue sharing group.

Other types of security checks might also occur at the time the queue is opened depending on the open
options specified and the types of security that are active. See also “Profiles for context security” on page
214 and “Profiles for alternate user security” on page 213. For a summary table showing the open options
and the security authorization needed when queue, context, and alternate user security are all active, see
Table 36 on page 206.

If you are using publish/subscribe you must consider the following. When an MQSUB request is processed
a security check is performed to ensure that the user ID making the request has the required access to
put messages to the target IBM MQ queue as well as the required access to subscribe to the IBM MQ
topic.

Table 32. Access levels for queue security using the MQSUB call

MQSUB option RACF access level required to hlq.queuename

MQSO_ALTER, MQSO_CREATE, and
MQSO_RESUME

UPDATE

Note:

1. The hlq.queuename is the destination queue for publications. When this is a managed queue, you
need access to the appropriate model queue to be used for the managed queue and the dynamic
queue that are created.

2. You can use a technique like this for the destination queue you provide on an MQSUB API call if
you want to distinguish between the users making the subscriptions, and the users retrieving the
publications from the destination queue.

200 Securing IBM MQ

Considerations for alias queues
When you issue an MQOPEN or MQPUT1 call for an alias queue, IBM MQ makes a resource check against
the queue name specified in the object descriptor (MQOD) on the call. It does not check if the user is
allowed access to the target queue name.

For example, an alias queue called PAYROLL.REQUEST resolves to a target queue of PAY.REQUEST. If
queue security is active, you need only be authorized to access the queue PAYROLL.REQUEST. No check is
made to see if you are authorized to access the queue PAY.REQUEST.

Using alias queues to distinguish between MQGET and MQPUT requests
The range of MQI calls available in one access level can cause a problem if you want to restrict access to
a queue to allow only the MQPUT call or only the MQGET call. A queue can be protected by defining two
aliases that resolve to that queue: one that enables applications to get messages from the queue, and one
that enable applications to put messages on the queue.

The following text gives you an example of how you can define your queues to IBM MQ:

DEFINE QLOCAL(MUST_USE_ALIAS_TO_ACCESS) GET(ENABLED)
 PUT(ENABLED)

DEFINE QALIAS(USE_THIS_ONE_FOR_GETS) GET(ENABLED)
 PUT(DISABLED) TARGET(MUST_USE_ALIAS_TO_ACCESS)

DEFINE QALIAS(USE_THIS_ONE_FOR_PUTS) GET(DISABLED)
 PUT(ENABLED) TARGET(MUST_USE_ALIAS_TO_ACCESS)

You must also make the following RACF definitions:

RDEFINE MQQUEUE hlq.MUST_USE_ALIAS_TO_ACCESS UACC(NONE)
RDEFINE MQQUEUE hlq.USE_THIS_ONE_FOR_GETS UACC(NONE)
RDEFINE MQQUEUE hlq.USE_THIS_ONE_FOR_PUTS UACC(NONE)

Then you ensure that no users have access to the queue hlq.MUST_USE_ALIAS_TO_ACCESS, and give the
appropriate users or groups access to the alias. You can do this using the following RACF commands:

PERMIT hlq.USE_THIS_ONE_FOR_GETS CLASS(MQQUEUE)
 ID(GETUSER,GETGRP) ACCESS(UPDATE)
PERMIT hlq.USE_THIS_ONE_FOR_PUTS CLASS(MQQUEUE)
 ID(PUTUSER,PUTGRP) ACCESS(UPDATE)

This means user ID GETUSER and user IDs in the group GETGRP are only allowed to get messages
on MUST_USE_ALIAS_TO_ACCESS through the alias queue USE_THIS_ONE_FOR_GETS; and user ID
PUTUSER and user IDs in the group PUTGRP are only allowed to put messages through the alias queue
USE_THIS_ONE_FOR_PUTS.

Note:

1. If you want to use a technique like this, you must inform your application developers, so that they can
design their programs appropriately.

2. You can use a technique like this for the destination queue you provide on an MQSUB API request
if you want to distinguish between the users making the subscriptions and the users 'getting' the
publications from the destination queue.

Considerations for model queues
To open a model queue, you must be able to open both the model queue itself and the dynamic queue
to which it resolves. Define generic RACF profiles for dynamic queues, including dynamic queues used by
IBM MQ utilities.

When you open a model queue, IBM MQ security makes two queue security checks:

1. Are you authorized to access the model queue?

Securing IBM MQ 201

2. Are you authorized to access the dynamic queue to which the model queue resolves?

If the dynamic queue name contains a trailing asterisk (*) character, this * is replaced by a character
string generated by IBM MQ, to create a dynamic queue with a unique name. However, because the whole
name, including this generated string, is used for checking authority, you should define generic profiles for
these queues.

For example, an MQOPEN call uses a model queue name of CREDIT.CHECK.REPLY.MODEL and a dynamic
queue name of CREDIT.REPLY.* on queue manager (or queue sharing group) MQSP.

To do this, you must issue the following RACF commands to define the necessary queue profiles:

RDEFINE MQQUEUE MQSP.CREDIT.CHECK.REPLY.MODEL
RDEFINE MQQUEUE MQSP.CREDIT.REPLY.**

You must also issue the corresponding RACF PERMIT commands to allow the user access to these
profiles.

A typical dynamic queue name created by an MQOPEN is something like
CREDIT.REPLY.A346EF00367849A0. The precise value of the last qualifier is unpredictable; this is why
you should use generic profiles for such queue names.

A number of IBM MQ utilities put messages on dynamic queues. You should define profiles for the
following dynamic queue names, and provide RACF UPDATE access to the relevant user IDs (see “User
IDs for security checking on z/OS” on page 234 for the correct user IDs):

SYSTEM.CSQUTIL.* (used by CSQUTIL)
SYSTEM.CSQOREXX.* (used by the operations and control panels)
SYSTEM.CSQXCMD.* (used by the channel initiator when processing CSQINPX)
CSQ4SAMP.* (used by the IBM MQ supplied samples)

You might also consider defining a profile to control use of the dynamic queue name used by default
in the application programming copy members. The IBM MQ-supplied copybooks contain a default
DynamicQName, which is CSQ.*. This enables an appropriate RACF profile to be established.

Note: Do not allow application programmers to specify a single * for the dynamic queue name. If you
do, you must define an hlq.** profile in the MQQUEUE class, and you would have to give it wide-ranging
access. This means that this profile could also be used for other non-dynamic queues that do not have a
more specific RACF profile. Your users could, therefore, gain access to queues you do not want them to
access.

Close options on permanent dynamic queues
If an application opens a permanent dynamic queue that was created by another application and then
attempts to delete that queue with an MQCLOSE option, some extra security checks are applied when the
attempt is made.

Table 33. Access levels for close options on permanent dynamic queues

MQCLOSE option RACF access level required to hlq.queuename

MQCO_DELETE ALTER

MQCO_DELETE_PURGE ALTER

Security and remote queues
When a message is put on a remote queue, the queue security that is implemented by the local queue
manager depends on how the remote queue is specified when it is opened.

The following rules are applied:

202 Securing IBM MQ

1. If the remote queue has been defined on the local queue manager through the IBM MQ DEFINE
QREMOTE command, the queue that is checked is the name of the remote queue. For example, if a
remote queue is defined on queue manager MQS1 as follows:

DEFINE QREMOTE(BANK7.CREDIT.REFERENCE)
 RNAME(CREDIT.SCORING.REQUEST)
 RQMNAME(BNK7)
 XMITQ(BANK1.TO.BANK7)

In this case, a profile for BANK7.CREDIT.REFERENCE must be defined in the MQQUEUE class.
2. If the ObjectQMgrName for the request does not resolve to the local queue manager, a security check

is carried out against the resolved (remote) queue manager name except in the case of a cluster queue
where the check is made against the cluster queue name.

For example, the transmission queue BANK1.TO.BANK7 is defined on queue manager MQS1. An
MQPUT1 request is then issued on MQS1 specifying ObjectName as BANK1.INTERBANK.TRANSFERS
and an ObjectQMgrName of BANK1.TO.BANK7. In this case, the user performing the request must have
access to BANK1.TO.BANK7.

3. If you make an MQPUT request to a queue and specify ObjectQMgrName as the name of an alias of the
local queue manager, only the queue name is checked for security, not that of the queue manager.

When the message gets to the remote queue manager it might be subject to additional security
processing. For more information, see “Security for remote messaging” on page 100.

Dead-letter queue security
Special considerations apply to the dead-letter queue, because many users must be able to put messages
on it, but access to retrieve messages must be tightly restricted. You can achieve this by applying different
RACF authorities to the dead-letter queue and an alias queue.

Undelivered messages can be put on a special queue called the dead-letter queue. If you have sensitive
data that could possibly end up on this queue, you must consider the security implications of this because
you do not want unauthorized users to retrieve this data.

Each of the following must be allowed to put messages onto the dead-letter queue:

• Application programs.
• The channel initiator address space and any MCA user IDs. (If the RESLEVEL profile is not present, or is

defined so that channel user IDs are checked, the channel user ID also needs authority to put messages
on the dead-letter queue.)

• CKTI, the CICS-supplied CICS task initiator.
• CSQQTRMN, the IBM MQ-supplied IMS trigger monitor.

The only application that can retrieve messages from the dead-letter queue should be a 'special'
application that processes these messages. However, a problem arises if you give applications RACF
UPDATE authority to the dead-letter queue for MQPUT s because they can then automatically retrieve
messages from the queue using MQGET calls. You cannot disable the dead-letter queue for get operations
because, if you do, not even the 'special' applications could retrieve the messages.

One solution to this problem is set up a two-level access to the dead-letter queue. CKTI, message channel
agent transactions or the channel initiator address space, and 'special' applications have direct access;
other applications can only access the dead-letter queue through an alias queue. This alias is defined to
allow applications to put messages on the dead-letter queue, but not to get messages from it.

This is how it might work:

1. Define the real dead-letter queue with attributes PUT(ENABLED) and GET(ENABLED), as shown in the
sample thlqual.SCSQPROC(CSQ4INYG).

2. Give RACF UPDATE authority for the dead-letter queue to the following user IDs:

• User IDs that the CKTI and the MCAs or channel initiator address space run under.

Securing IBM MQ 203

• The user IDs associated with the 'special' dead-letter queue processing application.
3. Define an alias queue that resolves to the real dead-letter queue, but give the alias queue these

attributes: PUT(ENABLED) and GET(DISABLED). Give the alias queue a name with the same stem
as the dead-letter queue name but append the characters ".PUT" to this stem. For example, if the
dead-letter queue name is hlq.DEAD.QUEUE, the alias queue name would be hlq.DEAD.QUEUE.PUT.

4. To put a message on the dead-letter queue, an application uses the alias queue. This is what your
application must do:

• Retrieve the name of the real dead-letter queue. To do this, it opens the queue manager object using
MQOPEN and then issues an MQINQ to get the dead-letter queue name.

• Build the name of the alias queue by appending the characters '.PUT' to this name, in this case,
hlq.DEAD.QUEUE.PUT.

• Open the alias queue, hlq.DEAD.QUEUE.PUT.
• Put the message on the real dead-letter queue by issuing an MQPUT against the alias queue.

5. Give the user ID associated with the application RACF UPDATE authority to the alias, but no access
(authority NONE) to the real dead-letter queue. This means that:

• The application can put messages onto the dead-letter queue using the alias queue.
• The application cannot get messages from the dead-letter queue using the alias queue because the

alias queue is disabled for get operations.

The application cannot get any messages from the real dead-letter queue either because it does have
the correct RACF authority.

Table 34 on page 204 summarizes the RACF authority required for the various participants in this
solution.

Table 34. RACF authority to the dead-letter queue and its alias

Associated user IDs Real dead-letter queue
(hlq.DEAD.QUEUE)

Alias dead-letter queue
(hlq.DEAD.QUEUE.PUT)

MCA or channel initiator address
space and CKTI UPDATE NONE

'Special' application (for dead-
letter queue processing) UPDATE NONE

User-written application user IDs NONE UPDATE

If you use this method, the application cannot determine the maximum message length (MAXMSGL) of
the dead-letter queue. This is because the MAXMSGL attribute cannot be retrieved from an alias queue.
Therefore, your application should assume that the maximum message length is 100 MB, the maximum
size IBM MQ for z/OS supports. The real dead-letter queue should also be defined with a MAXMSGL
attribute of 100 MB.

Note: User-written application programs do not normally use alternate user authority to put messages on
the dead-letter queue. This reduces the number of user IDs that have access to the dead-letter queue.

System queue security
You must set up RACF access to allow certain user IDs access to particular system queues.

Many of the system queues are accessed by the ancillary parts of IBM MQ:

• The CSQUTIL utility
• The message security policy utility (CSQ0UTIL)
• The operations and control panels
• The channel initiator address space (including the Queued Pub/Sub Daemon)
• The mqweb server, used by the IBM MQ Console and REST API.

204 Securing IBM MQ

The user IDs under which these run must be given RACF access to these queues, as shown in Table 35 on
page 205.

Table 35. Access required to the SYSTEM queues by IBM MQ

SYSTEM queue CSQUTIL CSQ0UTIL mqweb
server

Operations
and control

panels

Channel
initiator for
distributed

queuing

SYSTEM.ADMIN.CHANNEL.EVENT - - - - UPDATE

SYSTEM.ADMIN.COMMAND.QUEUE - - UPDATE - -

SYSTEM.BROKER.ADMIN.STREAM - - - - ALTER

SYSTEM.BROKER.CONTROL.QUEUE - - - - ALTER

SYSTEM.BROKER.DEFAULT.STREAM - - - - ALTER

SYSTEM.BROKER.INTER.BROKER.COMM
UNICATIONS - - - - UPDATE

SYSTEM.CHANNEL.INITQ - - - - UPDATE

SYSTEM.CHANNEL.SYNCQ - - - - UPDATE

SYSTEM.CLUSTER.COMMAND.QUEUE - - - - ALTER

SYSTEM.CLUSTER.REPOSITORY.QUEUE - - - - UPDATE

SYSTEM.CLUSTER.TRANSMIT.QUEUE - - - - ALTER

SYSTEM.COMMAND.INPUT UPDATE - - UPDATE UPDATE

SYSTEM.COMMAND.REPLY.* - - - - UPDATE

SYSTEM.COMMAND.REPLY.MODEL UPDATE - - UPDATE UPDATE

SYSTEM.CSQOREXX.* - - - UPDATE -

SYSTEM.CSQUTIL.* UPDATE - - - -

SYSTEM.CSQXCMD.* - - - - UPDATE

SYSTEM.HIERARCHY.STATE - - - - UPDATE

SYSTEM.INTER.QMGR.CONTROL - - - - UPDATE

SYSTEM.INTER.QMGR.PUBS - - - - UPDATE

SYSTEM.INTER.QMGR.FANREQ - - - - UPDATE

SYSTEM.PROTECTION.ERROR.QUEUE - - - - UPDATE

SYSTEM.PROTECTION.POLICY.QUEUE
-

UPDATE
“1” on

page 206
- - READ

SYSTEM.QSG.CHANNEL.SYNCQ - - - - UPDATE

SYSTEM.QSG.TRANSMIT.QUEUE - - - - UPDATE

SYSTEM.REST.REPLY.QUEUE - - UPDATE - -

SYSTEM.BLUEMIX.REGISTRATION.QUEU
E - - - - UPDATE

Notes:

Securing IBM MQ 205

1. The Advanced Message Security address space user also requires READ access to this queue.

API-resource security access quick reference
A summary of the MQOPEN, MQPUT1, MQSUB, and MQCLOSE options and the access required by the
different resource security types.

Table 36. MQOPEN, MQPUT1, MQSUB, and MQCLOSE options and the security authorization required. Callouts
shown like this (1) refer to the notes following this table.

Minimum RACF access level required

RACF class: MXTOPIC

MQQUEUE or
MXQUEUE
(1)

MQADMIN or
MXADMIN

MQADMIN or
MXADMIN

RACF profile: (15 or 16) (2) (3) (4)

MQOPEN option

MQOO_INQUIRE READ (5) No check No check

MQOO_BROWSE READ No check No check

MQOO_INPUT_* UPDATE No check No check

MQOO_SAVE_ALL_CONTEXT (6) UPDATE No check No check

MQOO_OUTPUT (USAGE=NORMAL) (7) UPDATE No check No check

MQOO_PASS_IDENTITY_CONTEXT (8) UPDATE READ No check

MQOO_PASS_ALL_CONTEXT (8) (9) UPDATE READ No check

MQOO_SET_IDENTITY_CONTEXT (8) (9) UPDATE UPDATE No check

MQOO_SET_ALL_CONTEXT (8) (10) UPDATE CONTROL No check

MQOO_OUTPUT (USAGE (XMITQ) (11) UPDATE CONTROL No check

MQOO_OUTPUT (topic object) UPDATE (16)

MQOO_OUTPUT (alias queue to topic object) UPDATE (16) UPDATE

MQOO_SET ALTER No check No check

MQOO_ALTERNATE_USER_AUTHORITY (12) (12) UPDATE

MQPUT1 option

Put on a normal queue (7) UPDATE No check No check

MQPMO_PASS_IDENTITY_CONTEXT UPDATE READ No check

MQPMO_PASS_ALL_CONTEXT UPDATE READ No check

MQPMO_SET_IDENTITY_CONTEXT UPDATE UPDATE No check

MQPMO_SET_ALL_CONTEXT UPDATE CONTROL No check

MQOO_OUTPUT

Put on a transmission queue (11)
UPDATE CONTROL No check

MQOO_OUTPUT (topic object) UPDATE (16)

MQOO_OUTPUT (alias queue to topic object) UPDATE (16) UPDATE

MQPMO_ALTERNATE_USER_AUTHORITY (13) (13) UPDATE

206 Securing IBM MQ

Table 36. MQOPEN, MQPUT1, MQSUB, and MQCLOSE options and the security authorization required. Callouts
shown like this (1) refer to the notes following this table. (continued)

Minimum RACF access level required

RACF class: MXTOPIC

MQQUEUE or
MXQUEUE
(1)

MQADMIN or
MXADMIN

MQADMIN or
MXADMIN

RACF profile: (15 or 16) (2) (3) (4)

MQCLOSE option

MQCO_DELETE (14) ALTER No check No check

MQCO_DELETE_PURGE (14) ALTER No check No check

MQCO_REMOVE_SUB ALTER (15)

MQSUB option

MQSO_CREATE ALTER (15) (17) (18)

MQSO_ALTER ALTER (15) (17) (18)

MQSO_RESUME READ (15) (17) No check

MQSO_ALTERNATE_USER_AUTHORITY UPDATE

MQSO_SET_IDENTITY_CONTEXT (18)

Note:

1. This option is not restricted to queues. Use the MQNLIST or MXNLIST class for namelists, and the
MQPROC or MXPROC class for processes.

2. Use RACF profile: hlq.resourcename
3. Use RACF profile: hlq.CONTEXT.queuename
4. Use RACF profile: hlq.ALTERNATE.USER. alternateuserid

alternateuserid is the user identifier that is specified in the AlternateUserId field of the
object descriptor. Note that up to 12 characters of the AlternateUserId field are used for this
check, unlike other checks where only the first 8 characters of a user identifier are used.

5. No check is made when opening the queue manager for inquiries.
6. MQOO_INPUT_* must be specified as well. This is valid for a local, model or alias queue.
7. This check is done for a local or model queue that has a Usage queue attribute of MQUS_NORMAL,

and also for an alias or remote queue (that is defined to the connected queue manager.) If
the queue is a remote queue that is opened specifying an ObjectQMgrName (not the name of
the connected queue manager) explicitly, the check is carried out against the queue with the
same name as ObjectQMgrName (which must be a local queue with a Usage queue attribute of
MQUS_TRANSMISSION).

8. MQOO_OUTPUT must be specified as well.
9. MQOO_PASS_IDENTITY_CONTEXT is implied as well by this option.

10. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT and
MQOO_SET_IDENTITY_CONTEXT are implied as well by this option.

11. This check is done for a local or model queue that has a Usage queue attribute of
MQUS_TRANSMISSION, and is being opened directly for output. It does not apply if a remote queue
is being opened.

12. At least one of MQOO_INQUIRE, MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT or MQOO_SET
must be specified as well. The check carried out is the same as that for the other options specified.

13. The check carried out is the same as that for the other options specified.

Securing IBM MQ 207

14. This applies only for permanent dynamic queues that have been opened directly, that is, not opened
through a model queue. No security is required to delete a temporary dynamic queue.

15. Use RACF profile hlq.SUBSCRIBE.topicname.
16. Use RACF profile hlq.PUBLISH.topicname.
17. If on the MQSUB request you specified a destination queue for the publications to be sent to, then a

security check is carried out against that queue to ensure that you have put authority to that queue.
18. If on the MQSUB request, with MQSO_CREATE or MQSO_ALTER options specified, you want

to set any of the identity context fields in the MQSD structure, you also need to specify the
MQSO_SET_IDENTITY_CONTEXT option and you also need the appropriate authority to the context
profile for the destination queue.

Profiles for topic security
If topic security is active, you must define profiles in the appropriate classes and permit the necessary
groups or user IDs access to those profiles.

The concept of topic security within a topic tree is described in Publish/subscribe security.

If topic security is active, you must perform the following actions:

• Define profiles in the MXTOPIC or GMXTOPIC classes.
• Permit the necessary groups or user IDs access to these profiles, so that they can issue IBM MQ API

requests that use topics.

Profiles for topic security take the form:

hlq.SUBSCRIBE.topicname
hlq.PUBLISH.topicname

where

• hlq is either qmgr-name (queue manager name) or qsg-name (queue sharing group name).
• topicname is the name of the topic administration node in the topic tree, associated either with the

topic being subscribed to through an MQSUB call, or being published to through an MQOPEN call.

A profile prefixed by the queue manager name controls access to a single topic on that queue manager.
A profile prefixed by the queue sharing group name controls access to one or more topics with that
topic name on all queue managers within the queue sharing group. This access can be overridden on an
individual queue manager by defining a queue manager level profile for that topic on that queue manager.

If your queue manager is a member of a queue sharing group and you are using both queue manager and
queue sharing group level security, IBM MQ checks for a profile prefixed by the queue manager name first.
If it does not find one, it looks for a profile prefixed by the queue sharing group name.

Subscribe
To subscribe to a topic, you need access to both the topic you are trying to subscribe to, and the
destination queue for the publications.

When you issue an MQSUB request, the following security checks take place:

• Whether you have the appropriate level of access to subscribe to that topic, and also that the
destination queue (if specified) is opened for output

• Whether you have the appropriate level of access to that destination queue.

Table 37. Access level required for topic security to subscribe

MQSUB option RACF access required to hlq.SUBSCRIBE.topicname
profile in MXTOPIC class

MQSO_CREATE and MQSO_ALTER ALTER

208 Securing IBM MQ

Table 37. Access level required for topic security to subscribe (continued)

MQSUB option RACF access required to hlq.SUBSCRIBE.topicname
profile in MXTOPIC class

MQSO_RESUME READ

Table 38. Additional authority required to subscribe using a non-managed destination queue

MQSUB option RACF access required to hlq.CONTEXT.queuename
profile in MQADMIN or MXADMIN class

MQSO_CREATE, MQSO_ALTER, and
MQSO_RESUME

UPDATE

RACF access required to hlq.queuename profile in
MQQUEUE or MXQUEUE class

MQSO_CREATE and MQSO_ALTER UPDATE

RACF access required to
hlq.ALTERNATE.USER.alternateuserid profile in
MQADMIN or MXADMIN class

MQSO_ALTERNATE_USER_AUTHORITY UPDATE

Considerations for managed queues for subscriptions
A security check is carried out to see if you are allowed to subscribe to the topic. However, no security
checks are carried out when the managed queue is created, or to determine if you have access to put
messages to this destination queue.

You cannot close delete a managed queue.

The model queues used are: SYSTEM.DURABLE.MODEL.QUEUE and SYSTEM.NDURABLE.MODEL.QUEUE.

The managed queues created from these model queues
are of the form SYSTEM.MANAGED.DURABLE.A346EF00367849A0 and
SYSTEM.MANAGED.NDURABLE.A346EF0036785EA0 where the last qualifier is unpredictable.

Do not give any user access to these queues. The queues can be protected using generic profiles of the
form SYSTEM.MANAGED.DURABLE.* and SYSTEM.MANAGED.NDURABLE.* with no authorities granted.

Messages can be retrieved from these queues using the handle returned on the MQSUB request.

If you explicitly issue an MQCLOSE call for a subscription with the MQCO_REMOVE_SUB option specified,
and you did not create the subscription you are closing under this handle, a security check is performed at
the time of closure to ensure that you have the correct authority to perform the operation.

Table 39. Access level required to profiles for topic security for closure of a subscribe operation

MQCLOSE option RACF access required to hlq.SUBSCRIBE.topicname
profile in MXTOPIC class

MQCO_REMOVE_SUB ALTER

Publish
To publish on a topic you need access to the topic and, if you are using alias queues, to the alias queue as
well.

Securing IBM MQ 209

Table 40. Access level required for topic security to publish

MQOPEN or MQPUT1 option RACF access required to hlq.PUBLISH.topicname
profile in MXTOPIC class

MQOO_OUTPUT or MQPUT1 UPDATE

Table 41. Access level required to open an alias queue that resolves to a topic

MQOPEN or MQPUT1 option RACF access required to hlq.queuename profile in
MQQUEUE or MXQUEUE class for the alias queue

MQOO_OUTPUT or MQPUT1 UPDATE

For details of how topic security operates when an alias queue that resolves to a topic name is opened for
publish, see “Considerations for alias queues that resolve to topics for a publish operation” on page 210.

When you consider alias queues used for destination queues for PUT or GET restrictions, see
“Considerations for alias queues” on page 201.

If the RACF access level that an application has to a topic security profile is changed, the changes take
effect only for any new object handles obtained (that is, a new MQSUB or MQOPEN) for that topic. Those
handles already in existence at the time of the change retain their existing access to the topic. Also,
existing subscribers retain their access to any subscriptions that they have already made.

Considerations for alias queues that resolve to topics for a publish operation
When you issue an MQOPEN or MQPUT1 call for an alias queue that resolves to a topic, IBM MQ makes
two resource checks:

• The first one against the alias queue name specified in the object descriptor (MQOD) on the MQOPEN or
MQPUT1 call.

• The second against the topic to which the alias queue resolves

You must be aware that this behavior is different from the behavior you get when alias queues resolve to
other queues. You need the correct access to both profiles in order for the publish action to proceed.

System topic security
The following system topics are accessed by the channel initiator address space.

The user IDs under which this runs must be given RACF access to these queues, as shown in Table 42 on
page 210.

Table 42. Access required to the SYSTEM topics

SYSTEM topic Profile Channel initiator for distributed
queuing

SYSTEM.BROKER.ADMIN.STRE
AM

hlq.PUBLISH.topicname UPDATE

SYSTEM.BROKER.ADMIN.STRE
AM

hlq.SUBSCRIBE.topicname ALTER

Profiles for processes
If process security is active, you must define profiles in the appropriate classes and permit the necessary
groups or user IDs access to those profiles.

If process security is active, you must:

• Define profiles in the MQPROC or GMQPROC classes if using uppercase profiles.

210 Securing IBM MQ

• Define profiles in the MXPROC or GMXPROC classes if using mixed case profiles.
• Permit the necessary groups or user IDs access to these profiles, so that they can issue IBM MQ API

requests that use processes.

Profiles for processes take the form:

hlq.processname

where hlq can be either qmgr-name (queue manager name) or qsg-name (queue sharing group name),
and processname is the name of the process being opened.

A profile prefixed by the queue manager name controls access to a single process definition on that queue
manager. A profile prefixed by the queue sharing group name controls access to one or more process
definitions with that name on all queue managers within the queue sharing group. This access can be
overridden on an individual queue manager by defining a queue manager level profile for that process
definition on that queue manager.

If your queue manager is a member of a queue sharing group and you are using both queue manager and
queue sharing group level security, IBM MQ checks for a profile prefixed by the queue manager name first.
If it does not find one, it looks for a profile prefixed by the queue sharing group name.

The following table shows the access required for opening a process.

Table 43. Access levels for process security

MQOPEN option RACF access level required to hlq.processname

MQOO_INQUIRE READ

For example, on queue manager MQS9, the RACF group INQVPRC must be able to inquire (MQINQ) on all
processes starting with the letter V. The RACF definitions for this would be:

RDEFINE MQPROC MQS9.V* UACC(NONE)
PERMIT MQS9.V* CLASS(MQPROC) ID(INQVPRC) ACCESS(READ)

Alternate user security might also be active, depending on the open options specified when a process
definition object is opened.

Profiles for namelists
If namelist security is active, you define profiles in the appropriate classes and give the necessary groups
or user IDs access to these profiles.

If namelist security is active, you must:

• Define profiles in the MQNLIST or GMQNLIST classes if using uppercase profiles.
• Define profiles in the MXNLIST or GMXNLIST classes if using mixed case profiles.
• Permit the necessary groups or user IDs access to these profiles.

Profiles for namelists take the form:

hlq.namelistname

where hlq can be either qmgr-name (queue manager name) or qsg-name (queue sharing group name),
and namelistname is the name of the namelist being opened.

A profile prefixed by the queue manager name controls access to a single namelist on that queue
manager. A profile prefixed by the queue sharing group name controls access to access to one or more
namelists with that name on all queue managers within the queue sharing group. This access can be

Securing IBM MQ 211

overridden on an individual queue manager by defining a queue manager level profile for that namelist on
that queue manager.

If your queue manager is a member of a queue sharing group and you are using both queue manager and
queue sharing group level security, IBM MQ checks for a profile prefixed by the queue manager name first.
If it does not find one, it looks for a profile prefixed by the queue sharing group name.

The following table shows the access required for opening a namelist.

Table 44. Access levels for namelist security

MQOPEN option RACF access level required to hlq.namelistname

MQOO_INQUIRE READ

For example, on queue manager (or queue sharing group) PQM3, the RACF group DEPT571 must be able
to inquire (MQINQ) on these namelists:

• All namelists starting with "DEPT571".
• PRINTER/DESTINATIONS/DEPT571
• AGENCY/REQUEST/QUEUES
• WAREHOUSE.BROADCAST

The RACF definitions to do this are:

RDEFINE MQNLIST PQM3.DEPT571.** UACC(NONE)
PERMIT PQM3.DEPT571.** CLASS(MQNLIST) ID(DEPT571) ACCESS(READ)

RDEFINE GMQNLIST NLISTS.FOR.DEPT571 UACC(NONE)
 ADDMEM(PQM3.PRINTER/DESTINATIONS/DEPT571,
 PQM3.AGENCY/REQUEST/QUEUES,
 PQM3.WAREHOUSE.BROADCAST)
PERMIT NLISTS.FOR.DEPT571 CLASS(GMQNLIST) ID(DEPT571) ACCESS(READ)

Alternate user security might be active, depending on the options specified when a namelist object is
opened.

System namelist security
Many of the system namelists are accessed by the ancillary parts of IBM MQ:

• The CSQUTIL utility
• The operations and control panels
• The channel initiator address space (including the Queued Publish/Subscribe Daemon)

The user IDs under which these run must be given RACF access to these namelists, as shown in Table 45
on page 212.

Table 45. Access required to the SYSTEM namelists by IBM MQ

SYSTEM namelist CSQUTIL Operations and
control panels

Channel initiator
for distributed

queuing

SYSTEM.QPUBSUB.QUEUE.NAMELIST - - READ

SYSTEM.QPUBSUB.SUBPOINT.NAMELIST - - READ

212 Securing IBM MQ

Profiles for alternate user security
If alternate user security is active, you must define profiles in the appropriate classes and permit the
necessary groups or user IDs access to those profiles.

For more information about AlternateUserId, see AlternateUserID (MQCHAR12).

If alternate user security is active, you must:

• Define profiles in the MQADMIN or GMQADMIN classes if you are using uppercase profiles.
• Define profiles in the MXADMIN or GMXADMIN classes if you are using mixed case profiles.

Permit the necessary groups or user IDs access to these profiles, so that they can use the
ALTERNATE_USER_AUTHORITY options when the object is opened.

Profiles for alternate user security can be specified at subsystem level or at queue sharing group level and
take the following form:

hlq.ALTERNATE.USER.alternateuserid

Where hlq can be either qmgr-name (queue manager name) or qsg-name (queue sharing group name),
and alternateuserid is the value of the AlternateUserId field in the object descriptor.

A profile prefixed by the queue manager name controls use of an alternative user ID on that queue
manager. A profile prefixed by the queue sharing group name controls use of an alternative user ID on
all queue managers within the queue sharing group. This alternative user ID can be used on any queue
manager within the queue sharing group by a user that has the correct access. This access can be
overridden on an individual queue manager by defining a queue manager level profile for that alternative
user ID on that queue manager.

If your queue manager is a member of a queue sharing group and you are using both queue manager and
queue sharing group level security, IBM MQ checks for a profile prefixed by the queue manager name first.
If it does not find one, it looks for a profile prefixed by the queue sharing group name.

The following table shows the access when specifying an alternative user option.

Table 46. Access levels for alternate user security

MQOPEN, MQSUB, or MQPUT1 option RACF access level required

MQOO_ALTERNATE_USER_AUTHORITY
MQSO_ALTERNATE_USER_AUTHORITY
MQPMO_ALTERNATE_USER_AUTHORITY

UPDATE

In addition to alternate user security checks, other security checks for queue, process, namelist, and
context security can also be made. The alternative user ID, if provided, is only used for security checks
on queue, process definition, or namelist resources. For alternate user and context security checks, the
user ID requesting that the check is used. For details about how user IDs are handled, see “User IDs for
security checking on z/OS” on page 234. For a summary table showing the open options and the security
checks required when queue, context and alternate user security are all active, see Table 36 on page 206.

An alternative user profile gives the requesting user ID access to resources associated with the user ID
specified in the alternative user ID. For example, the payroll server running under user ID PAYSERV on
queue manager QMPY processes requests from personnel user IDs, all of which start with PS. To cause
the work performed by the payroll server to be carried out under the user ID of the requesting user,
alternative user authority is used. The payroll server knows which user ID to specify as the alternative
user ID because the requesting programs generate messages using the MQPMO_DEFAULT_CONTEXT put
message option. See “User IDs for security checking on z/OS” on page 234 for more details about from
where alternative user IDs are obtained.

The following example RACF definitions enable the server program to specify alternative user IDs starting
with the characters PS:

Securing IBM MQ 213

RDEFINE MQADMIN QMPY.ALTERNATE.USER.PS* UACC(NONE)
PERMIT QMPY.ALTERNATE.USER.PS* CLASS(MQADMIN) ID(PAYSERV) ACCESS(UPDATE)

Note:

1. The AlternateUserId fields in the object descriptor and subscription descriptor are 12 bytes long.
All 12 bytes are used in the profile checks, but only the first 8 bytes are used as the user ID by IBM
MQ. If this user ID truncation is not desirable, application programs making the request must translate
any alternative user ID over 8 bytes into something more appropriate.

2. If you specify MQOO_ALTERNATE_USER_AUTHORITY, MQSO_ALTERNATE_USER_AUTHORITY, or
MQPMO_ALTERNATE_USER_AUTHORITY and you do not specify an AlternateUserId field in the
object descriptor, a user ID of blanks is used. For the purposes of the alternate user security check
the user ID used for the AlternateUserId qualifier is -BLANK-. For example RDEF MQADMIN
hlq.ALTERNATE.USER.-BLANK-.

If the user is allowed to access this profile, all further checks are made with a user ID of blanks. For
details of blank user IDs, see “Blank user IDs and UACC levels” on page 242.

The administration of alternative user IDs is easier if you have a naming convention for user IDs that
enables you to use generic alternative user profiles. If they do not, you can use the RACF RACVAR feature.
For details about using RACVAR, see the z/OS Security Server RACF documentation..

When a message is put to a queue that has been opened with alternative user authority and the context of
the message has been generated by the queue manager, the MQMD_USER_IDENTIFIER field is set to the
alternative user ID.

Profiles for context security
If context security is active, to control access to the message context information you must define profiles
in the appropriate classes and permit the necessary groups or user IDs access to those profiles. The
message context is contained within the message descriptor (MQMD).

Using profiles for context security
If context security is active, to permit users to access context information for messages on a particular
queue, or when publishing to a particular topic, you must define a profile in one of the following classes:

• The MQADMIN class if using uppercase profiles.
• The MXADMIN class if using mixed-case profiles.

Profiles for context security can be specified at subsystem level or at queue sharing group level and take
the following form:

hlq.CONTEXT.queuename
hlq.CONTEXT.topicname

where hlq can be either the queue manager name or the queue sharing group name, and queuename and
topicname can be either the full or generic name of the queue or topic you want to define the context
profile for.

A profile prefixed by the queue manager name, and with ** specified as the queue or topic name, allows
control for context security on all queues and topics belonging to that queue manager. This can be
overridden on an individual queue or topic by defining a specific profile for context on that queue or topic.

A profile prefixed by the queue sharing group name, and with ** specified as the queue or topic name,
allows control for context on all queues and topics belonging to the queue managers within the queue
sharing group. This can be overridden on an individual queue manager by defining a queue manager level
profile for context on that queue manager, by specifying a profile prefixed by the queue manager name. It
can also be overridden on an individual queue or topic by specifying a profile suffixed with the queue or
topic name.

214 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=zos-security-server-racf

If your queue manager is a member of a queue sharing group and you are using both queue manager and
queue sharing group level security, IBM MQ checks for a profile prefixed by the queue manager name first.
If it does not find one, it looks for a profile prefixed by the queue sharing group name.

You must permit the necessary groups or user IDs access to this profile. The following table shows the
access level required, depending on the specification of the context options when the queue is opened.

Table 47. Access levels for context security

MQOPEN or MQPUT1 option RACF access level required
to hlq.CONTEXT.queuename or
hlq.CONTEXT.topicname

MQPMO_NO_CONTEXT No context security check

MQPMO_DEFAULT_CONTEXT No context security check

MQOO_SAVE_ALL_CONTEXT No context security check

MQOO_PASS_IDENTITY_CONTEXT
MQPMO_PASS_IDENTITY_CONTEXT

READ

MQOO_PASS_ALL_CONTEXT
MQPMO_PASS_ALL_CONTEXT

READ

MQOO_SET_IDENTITY_CONTEXT
MQPMO_SET_IDENTITY_CONTEXT

UPDATE

MQOO_SET_ALL_CONTEXT MQPMO_SET_ALL_CONTEXT CONTROL

MQOO_OUTPUT or MQPUT1 (USAGE(XMITQ)) CONTROL

MQSUB option

MQSO_SET_IDENTITY_CONTEXT (Note 2) UPDATE

Note:

1. The user IDs used for distributed queuing require CONTROL access to hlq.CONTEXT.queuename to
put messages on the destination queue. See “User IDs used by the channel initiator” on page 237 for
information about the user IDs used.

2. If on the MQSUB request, with MQSO_CREATE or MQSO_ALTER options specified, you want
to set any of the identity context fields in the MQSD structure, you need to specify the
MQSO_SET_IDENTITY_CONTEXT option. You require also, the appropriate authority to the context
profile for the destination queue.

If you put commands on the system-command input queue, use the default context put message option
to associate the correct user ID with the command.

For example, the IBM MQ-supplied utility program CSQUTIL can be used to offload and reload
messages in queues. When offloaded messages are restored to a queue, the CSQUTIL utility uses the
MQOO_SET_ALL_CONTEXT option to return the messages to their original state. In addition to the queue
security required by this open option, context authority is also required. For example, if this authority is
required by the group BACKGRP on queue manager MQS1, this would be defined by:

RDEFINE MQADMIN MQS1.CONTEXT.** UACC(NONE)
PERMIT MQS1.CONTEXT.** CLASS(MQADMIN) ID(BACKGRP) ACCESS(CONTROL)

Depending on the options specified, and the types of security performed, other types of security checks
might also occur when the queue is opened. These include queue security (see “Profiles for queue
security” on page 198), and alternate user security (see “Profiles for alternate user security” on page

Securing IBM MQ 215

213). For a summary table showing the open options and the security checks required when queue,
context and alternate user security are all active, see Table 36 on page 206.

System queue context security
Many of the system queues are accessed by the ancillary parts of IBM MQ, for example the channel
initiator address space, and the mqweb server used by the IBM MQ Console and REST API.

The user IDs under which these run under must be given RACF access to these queues, as shown in Table
48 on page 216.

Table 48. Access required to the SYSTEM queues for context operations

SYSTEM queue Channel initiator for
distributed queuing

mqweb server

SYSTEM.ADMIN.COMMAND.QUEUE - CONTROL

SYSTEM.BROKER.CONTROL.QUEUE CONTROL -

SYSTEM.BROKER.INTER.BROKER.CO
MMUNICATIONS

CONTROL -

SYSTEM.CHANNEL.SYNCQ CONTROL -

SYSTEM.CLUSTER.COMMAND.QUEUE CONTROL -

SYSTEM.CLUSTER.TRANSMIT.QUEUE CONTROL -

Profiles for command security
To enable security checking for commands, add profiles to the MQCMDS class. The profile names are
based on the MQSC commands but control both MQSC and PCF commands. Profiles can apply to a queue
manager or a queue sharing group.

If you want security checking for commands (so you have not defined the command security switch
profile hlq.NO.CMD.CHECKS) you must add profiles to the MQCMDS class.

The same security profiles control both MQSC and PCF commands. The names of the RACF profiles for
command security checking are based on the MQSC command names themselves. These profiles take the
form:

hlq.verb.pkw

Where hlq can be either qmgr-name (queue manager name) or qsg-name (queue sharing group name),
verb is the verb part of the command name, for example ALTER, and pkw is the object type, for example
QLOCAL for a local queue.

Thus, the profile name for the ALTER QLOCAL command in subsystem CSQ1 is:

CSQ1.ALTER.QLOCAL

You can use generic profiles to protect sets of commands so that you have fewer profiles to maintain
and, therefore, fewer access lists. Consider creating a generic profile that applies to all commands not
protected by a more specific profile. Define this profile with UACC(NONE) and grant ALTER access only
to the RACF groups containing administrators. You might then create a generic profile applicable to all
DISPLAY commands and grant widespread access to it. Between these extremes, you might identify
groups of users needing access to certain sets of commands, in which case you can create profiles for
those sets and grant access to RACF groups representing those classes of user. Avoid giving users access
to commands they do not require: Apply the principle of least privilege, so that users only have access to
the commands that are required for their jobs.

216 Securing IBM MQ

A profile prefixed by the queue manager name controls the use of the command on that queue manager.
A profile prefixed by the queue sharing group name controls the use of the command on all queue
managers within the queue sharing group. This access can be overridden on an individual queue manager
by defining a queue manager level profile for that command on that queue manager.

If your queue manager is a member of a queue sharing group and you are using both queue manager and
queue sharing group level security, IBM MQ checks for a profile prefixed by the queue manager name. If it
does not find one, it looks for a profile prefixed by the queue sharing group name.

By setting up command profiles at queue manager level, a user can be restricted from issuing commands
on a particular queue manager. Alternatively, you can define one profile for a queue sharing group for
each command verb, and all security checks take place against that profile instead of individual queue
managers.

If both subsystem security and queue sharing group security are active and a local profile is not found, a
command security check is performed to see if the user has access to a queue sharing group profile.

If you use the CMDSCOPE attribute to route a command to other queue managers in a queue sharing
group, security is checked on each queue manager where the command is run, but not necessarily on the
queue manager where the command is entered.

Table 49 on page 217 shows, for each IBM MQ MQSC command, the profiles required for command
security checking to be carried out, and the corresponding access level for each profile in the MQCMDS
class.

Table 50 on page 222 shows, for each IBM MQ PCF command, the profiles required for command security
checking to be carried out, and the corresponding access level for each profile in the MQCMDS class.

Table 49. MQSC commands, profiles, and their access levels

Command Command profile for
MQCMDS

Access
level for
MQCMDS

Command resource profile
for MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

ALTER AUTHINFO hlq.ALTER.AUTHINFO ALTER hlq.AUTHINFO.resourcenam
e

ALTER

ALTER BUFFPOOL hlq.ALTER.BUFFPOOL ALTER No check -

ALTER CFSTRUCT hlq.ALTER.CFSTRUCT ALTER No check -

ALTER CHANNEL hlq.ALTER.CHANNEL ALTER hlq.CHANNEL.channel ALTER

ALTER NAMELIST hlq.ALTER.NAMELIST ALTER hlq.NAMELIST.namelist ALTER

ALTER PROCESS hlq.ALTER.PROCESS ALTER hlq.PROCESS.process ALTER

ALTER PSID hlq.ALTER.PSID ALTER No check -

ALTER QALIAS hlq.ALTER.QALIAS ALTER hlq.QUEUE.queue ALTER

ALTER QLOCAL“5” on
page 222

hlq.ALTER.QLOCAL ALTER hlq.QUEUE.queue ALTER

ALTER QMGR hlq.ALTER.QMGR ALTER No check -

ALTER QMODEL“5” on
page 222

hlq.ALTER.QMODEL ALTER hlq.QUEUE.queue ALTER

ALTER QREMOTE hlq.ALTER.QREMOTE ALTER hlq.QUEUE.queue ALTER

ALTER SECURITY hlq.ALTER.SECURITY ALTER No check -

ALTER SMDS hlq.ALTER.SMDS ALTER No check -

Securing IBM MQ 217

Table 49. MQSC commands, profiles, and their access levels (continued)

Command Command profile for
MQCMDS

Access
level for
MQCMDS

Command resource profile
for MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

ALTER STGCLASS hlq.ALTER.STGCLASS ALTER No check -

ALTER SUB hlq.ALTER.SUB ALTER No check -

ALTER TOPIC hlq.ALTER.TOPIC ALTER hlq.TOPIC.topic ALTER

ALTER TRACE hlq.ALTER.TRACE ALTER No check -

ARCHIVE LOG hlq.ARCHIVE.LOG CONTROL No check -

BACKUP CFSTRUCT hlq.BACKUP.CFSTRUCT CONTROL No check -

CLEAR QLOCAL hlq.CLEAR.QLOCAL ALTER hlq.QUEUE.queue ALTER

CLEAR TOPICSTR “3”
on page 222

hlq.CLEAR.TOPICSTR ALTER hlq.TOPIC.topic ALTER

DEFINE AUTHINFO hlq.DEFINE.AUTHINFO ALTER hlq.AUTHINFO.resourcenam
e

ALTER

DEFINE BUFFPOOL hlq.DEFINE.BUFFPOOL ALTER No check -

DEFINE CFSTRUCT hlq.DEFINE.CFSTRUCT ALTER No check -

DEFINE CHANNEL hlq.DEFINE.CHANNEL ALTER hlq.CHANNEL.channel ALTER

DEFINE LOG hlq.DEFINE.LOG ALTER No check -

DEFINE MAXSMSGS hlq.DEFINE.MAXSMSGS ALTER No check -

DEFINE NAMELIST hlq.DEFINE.NAMELIST ALTER hlq.NAMELIST.namelist ALTER

DEFINE PROCESS hlq.DEFINE.PROCESS ALTER hlq.PROCESS.process ALTER

DEFINE PSID hlq.DEFINE.PSID ALTER No check -

DEFINE QALIAS hlq.DEFINE.QALIAS ALTER hlq.QUEUE.queue ALTER

DEFINE QLOCAL“5”
on page 222

hlq.DEFINE.QLOCAL ALTER hlq.QUEUE.queue ALTER

DEFINE QMODEL“5”
on page 222

hlq.DEFINE.QMODEL ALTER hlq.QUEUE.queue ALTER

DEFINE QREMOTE hlq.DEFINE.QREMOTE ALTER hlq.QUEUE.queue ALTER

DEFINE STGCLASS hlq.DEFINE.STGCLASS ALTER No check -

DEFINE SUB hlq.DEFINE.SUB ALTER No check -

DEFINE TOPIC hlq.DEFINE.TOPIC ALTER hlq.TOPIC.topic ALTER

DELETE AUTHINFO hlq.DELETE.AUTHINFO ALTER hlq.AUTHINFO.resourcenam
e

ALTER

DELETE BUFFPOOL hlq.DELETE.BUFFPOOL ALTER No check -

DELETE CFSTRUCT hlq.DELETE.CFSTRUCT ALTER No check -

DELETE CHANNEL hlq.DELETE.CHANNEL ALTER hlq.CHANNEL.channel ALTER

218 Securing IBM MQ

Table 49. MQSC commands, profiles, and their access levels (continued)

Command Command profile for
MQCMDS

Access
level for
MQCMDS

Command resource profile
for MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

DELETE NAMELIST hlq.DELETE.NAMELIST ALTER hlq.NAMELIST.namelist ALTER

DELETE PROCESS hlq.DELETE.PROCESS ALTER hlq.PROCESS.process ALTER

DELETE PSID hlq.DELETE.PSID ALTER No check -

DELETE QALIAS hlq.DELETE.QALIAS ALTER hlq.QUEUE.queue ALTER

DELETE QLOCAL hlq.DELETE.QLOCAL ALTER hlq.QUEUE.queue ALTER

DELETE QMODEL hlq.DELETE.QMODEL ALTER hlq.QUEUE.queue ALTER

DELETE QREMOTE hlq.DELETE.QREMOTE ALTER hlq.QUEUE.queue ALTER

DELETE STGCLASS hlq.DELETE.STGCLASS ALTER No check -

DELETE SUB hlq.DELETE.SUB ALTER No check -

DELETE TOPIC hlq.DELETE.TOPIC ALTER hlq.TOPIC.topic ALTER

DISPLAY ARCHIVE
“1” on page 221

hlq.DISPLAY.ARCHIVE READ No check -

DISPLAY AUTHINFO hlq.DISPLAY.AUTHINFO READ No check -

DISPLAY CFSTATUS hlq.DISPLAY.CFSTATUS READ No check -

DISPLAY CFSTRUCT hlq.DISPLAY.CFSTRUCT READ No check -

DISPLAY CHANNEL hlq.DISPLAY.CHANNEL READ No check -

DISPLAY CHINIT hlq.DISPLAY.CHINIT READ No check -

DISPLAY CHLAUTH hlq.DISPLAY.CHLAUTH READ No check -

DISPLAY CHSTATUS hlq.DISPLAY.CHSTATUS READ No check -

DISPLAY CLUSQMGR hlq.DISPLAY.CLUSQMGR READ No check -

DISPLAY CMDSERV hlq.DISPLAY.CMDSERV READ No check -

DISPLAY CONN “1” on
page 221

hlq.DISPLAY.CONN READ No check -

DISPLAY GROUP hlq.DISPLAY.GROUP READ No check -

DISPLAY LOG “1” on
page 221

hlq.DISPLAY.LOG READ No check -

DISPLAY MAXSMSGS hlq.DISPLAY.MAXSMSGS READ No check -

DISPLAY NAMELIST hlq.DISPLAY.NAMELIST READ No check -

DISPLAY PROCESS hlq.DISPLAY.PROCESS READ No check -

DISPLAY PUBSUB hlq.DISPLAY.PUBSUB READ No check -

DISPLAY QALIAS hlq.DISPLAY.QALIAS READ No check -

DISPLAY QCLUSTER hlq.DISPLAY.QCLUSTER READ No check -

DISPLAY QLOCAL hlq.DISPLAY.QLOCAL READ No check -

Securing IBM MQ 219

Table 49. MQSC commands, profiles, and their access levels (continued)

Command Command profile for
MQCMDS

Access
level for
MQCMDS

Command resource profile
for MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

DISPLAY QMGR hlq.DISPLAY.QMGR READ No check -

DISPLAY QMODEL hlq.DISPLAY.QMODEL READ No check -

DISPLAY QREMOTE hlq.DISPLAY.QREMOTE READ No check -

DISPLAY QSTATUS hlq.DISPLAY.QSTATUS READ No check -

DISPLAY QUEUE hlq.DISPLAY.QUEUE READ No check -

DISPLAY SBSTATUS hlq.DISPLAY.SBSTATUS READ No check -

DISPLAY SMDS hlq.DISPLAY.SMDS READ No check -

DISPLAY SMDSCONN hlq.DISPLAY.SMDSCONN READ No check -

DISPLAY SUB hlq.DISPLAY.SUB READ No check -

DISPLAY SECURITY hlq.DISPLAY.SECURITY READ No check -

DISPLAY STGCLASS hlq.DISPLAY.STGCLASS READ No check -

DISPLAY SYSTEM “1”
on page 221

hlq.DISPLAY.SYSTEM READ No check -

DISPLAY THREAD hlq.DISPLAY.THREAD READ No check -

DISPLAY TPSTATUS hlq.DISPLAY.TPSTATUS READ No check -

DISPLAY TOPIC hlq.DISPLAY.TOPIC READ No check -

DISPLAY TPSTATUS hlq.DISPLAY.TPSTATUS READ No check -

DISPLAY TRACE hlq.DISPLAY.TRACE READ No check -

DISPLAY USAGE “1”
on page 221

hlq.DISPLAY.USAGE READ No check -

MOVE QLOCAL hlq.MOVE.QLOCAL ALTER hlq.QUEUE.from-queue
hlq.QUEUE.to-queue

ALTER

PING CHANNEL hlq.PING.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

RECOVER BSDS hlq.RECOVER.BSDS CONTROL No check -

RECOVER CFSTRUCT hlq.RECOVER.CFSTRUCT CONTROL No check -

REFRESH CLUSTER hlq.REFRESH.CLUSTER ALTER No check -

REFRESH QMGR hlq.REFRESH.QMGR ALTER No check -

REFRESH SECURITY hlq.REFRESH.SECURITY ALTER No check -

RESET CFSTRUCT hlq.RESET.CFSTRUCT CONTROL No check -

RESET CHANNEL hlq.RESET.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

RESET CLUSTER hlq.RESET.CLUSTER CONTROL No check -

RESET QMGR hlq.RESET.QMGR CONTROL No check -

RESET QSTATS hlq.RESET.QSTATS CONTROL hlq.QUEUE.queue CONTROL

220 Securing IBM MQ

Table 49. MQSC commands, profiles, and their access levels (continued)

Command Command profile for
MQCMDS

Access
level for
MQCMDS

Command resource profile
for MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

RESET SMDS hlq.RESET.SMDS CONTROL No check -

RESET TPIPE hlq.RESET.TPIPE CONTROL No check -

RESOLVE CHANNEL hlq.RESOLVE.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

RESOLVE INDOUBT hlq.RESOLVE.INDOUBT CONTROL No check -

RESUME QMGR hlq.RESUME.QMGR CONTROL No check -

RVERIFY SECURITY hlq.RVERIFY.SECURITY ALTER No check -

SET ARCHIVE hlq.SET.ARCHIVE CONTROL No check -

SET CHLAUTH hlq.SET.CHLAUTH CONTROL No check -

SET LOG hlq.SET.LOG CONTROL No check -

SET SYSTEM hlq.SET.SYSTEM CONTROL No check -

START CHANNEL hlq.START.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

START CHINIT “4” on
page 222

hlq.START.CHINIT CONTROL No check -

START CMDSERV hlq.START.CMDSERV CONTROL No check -

START LISTENER hlq.START.LISTENER CONTROL No check -

START QMGR None “2” on page 221 - - -

START SMDSCONN hlq.START.SMDSCONN CONTROL No check -

START TRACE hlq.START.TRACE CONTROL No check -

STOP CHANNEL hlq.STOP.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

STOP CHINIT hlq.STOP.CHINIT CONTROL No check -

STOP CMDSERV hlq.STOP.CMDSERV CONTROL No check -

STOP LISTENER hlq.STOP.LISTENER CONTROL No check -

STOP QMGR hlq.STOP.QMGR CONTROL No check -

STOP SMDSCONN hlq.STOP.SMDSCONN CONTROL No check -

STOP TRACE hlq.STOP.TRACE CONTROL No check -

SUSPEND QMGR hlq.SUSPEND.QMGR CONTROL No check -

Notes:

1. These commands might be issued internally by the queue manager; no authority is checked in these
cases.

2. IBM MQ does not check the authority of the user who issues the START QMGR command. However,
you can use RACF, or your alternative security facilities to control access to the START xxxxMSTR
command that is issued as a result of the START QMGR command.

Securing IBM MQ 221

This is done by controlling access to the MVS.START.STC.xxxxMSTR profile in the RACF operator
commands (OPERCMDS) class. For details of this procedure, see Granting the user access to the RACF
OPERCMDS class in z/OS MVS Planning: Operations. If you use this technique, and an unauthorized
user tries to start the queue manager, it terminates with a reason code of 00F30216.

3. The hlq.TOPIC.topic resource refers to the Topic object derived from the TOPICSTR. For more
details, see “Publish/subscribe security” on page 491

4. In IBM MQ for z/OS, the resource name MVS.START.STC.CSQ1CHIN has an additional JOBNAME
qualifier appended. This can cause problems when starting the channel initiator.

To resolve the problem replace MVS.START.STC. ssid CHIN with a profile for a resource named
MVS.START.STC. ssid CHIN .* or MVS.START.STC. ssid CHIN. ssid CHIN where ssid is the subsystem ID
for the queue manager. This requires RACF UPDATE authority. For more details, see MVS™ Commands,
RACF Access Authorities, and Resource Names in z/OS MVS Planning: Operations.

The START for ssid MSTR does not include the JOBNAME= parameter. For consistency, you might want
to update the profile for MVS.START.STC.ssidMSTR to MVS.START.STC.ssidMSTR.*.

5. Setting the queue attribute STREAMQ to a non blank value also requires ALTER access
level to MQADMIN or MXADMIN for hlq.ALTER.streamQ.

Table 50. PCF commands, profiles, and their access levels

Command Command profile for
MQCMDS

Access level
for MQCMDS

Command resource profile for
MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

Backup CF Structure hlq.BACKUP.CFSTRUCT CONTROL No check -

Change Authentication
Information Object

hlq.ALTER.AUTHINFO ALTER hlq.AUTHINFO.resourcename ALTER

Change CF Structure hlq.ALTER.CFSTRUCT ALTER No check -

Change Channel hlq.ALTER.CHANNEL ALTER hlq.CHANNEL.channel ALTER

Change Namelist hlq.ALTER.NAMELIST ALTER hlq.NAMELIST.namelist ALTER

Change Process hlq.ALTER.PROCESS ALTER hlq.PROCESS.process ALTER

Change Queue“2” on
page 226

hlq.ALTER.QUEUE ALTER hlq.QUEUE.queue ALTER

Change Queue Manager hlq.ALTER.QMGR ALTER No check -

Change Security hlq.ALTER.SECURITY ALTER No check -

Change SMDS hlq.ALTER.SMDS ALTER No check -

Change Storage Class hlq.ALTER.STGCLASS ALTER No check -

Change Subscription hlq.ALTER.SUB ALTER No check -

Change Topic hlq.ALTER.TOPIC ALTER hlq.TOPIC.topic ALTER

Clear Queue hlq.CLEAR.QLOCAL ALTER hlq.QUEUE.queue ALTER

Clear Topic String “1” on
page 225

hlq.CLEAR.TOPICSTR ALTER hlq.TOPIC.topic ALTER

Copy Authentication
Information Object

hlq.DEFINE.AUTHINFO ALTER hlq.AUTHINFO.resourcename ALTER

Copy CF Structure hlq.DEFINE.CFSTRUCT ALTER No check -

Copy Channel hlq.DEFINE.CHANNEL ALTER hlq.CHANNEL.channel ALTER

Copy Namelist hlq.DEFINE.NAMELIST ALTER hlq.NAMELIST.namelist ALTER

222 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-granting-user-access-opercmds-class
https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-granting-user-access-opercmds-class
https://www.ibm.com/docs/en/zos/3.1.0?topic=security-mvs-commands-racf-access-authorities-resource-names
https://www.ibm.com/docs/en/zos/3.1.0?topic=security-mvs-commands-racf-access-authorities-resource-names

Table 50. PCF commands, profiles, and their access levels (continued)

Command Command profile for
MQCMDS

Access level
for MQCMDS

Command resource profile for
MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

Copy Process hlq.DEFINE.PROCESS ALTER hlq.PROCESS.process ALTER

Copy Queue hlq.DEFINE.QUEUE ALTER hlq.QUEUE.queue ALTER

Copy Subscription hlq.DEFINE.SUB ALTER No check -

Copy Storage Class hlq.DEFINE.STGCLASS ALTER No check -

Copy Topic hlq.DEFINE.TOPIC ALTER hlq.TOPIC.topic ALTER

Create Authentication
Information Object

hlq.DEFINE.AUTHINFO ALTER hlq.AUTHINFO.resourcename ALTER

Create CF Structure hlq.DEFINE.CFSTRUCT ALTER No check -

Create Channel hlq.DEFINE.CHANNEL ALTER hlq.CHANNEL.channel ALTER

Create Namelist hlq.DEFINE.NAMELIST ALTER hlq.NAMELIST.namelist ALTER

Create Process hlq.DEFINE.PROCESS ALTER hlq.PROCESS.process ALTER

Create Queue“2” on
page 226

hlq.DEFINE.QUEUE ALTER hlq.QUEUE.queue ALTER

Create Storage Class hlq.DEFINE.STGCLASS ALTER No check -

Create Subscription hlq.DEFINE.SUB ALTER No check -

Create Topic hlq.DEFINE.TOPIC ALTER hlq.TOPIC.topic ALTER

Delete Authentication
Information Object

hlq.DELETE.AUTHINFO ALTER hlq.AUTHINFO.resourcename ALTER

Delete CF Structure hlq.DELETE.CFSTRUCT ALTER No check -

Delete Channel hlq.DELETE.CHANNEL ALTER hlq.CHANNEL.channel ALTER

Delete Namelist hlq.DELETE.NAMELIST ALTER hlq.NAMELIST.namelist ALTER

Delete Process hlq.DELETE.PROCESS ALTER hlq.PROCESS.process ALTER

Delete Queue hlq.DELETE.QUEUE ALTER hlq.QUEUE.queue ALTER

Delete Storage Class hlq.DELETE.STGCLASS ALTER No check -

Delete Subscription hlq.DELETE.SUB ALTER No check -

Delete Topic hlq.DELETE.TOPIC ALTER hlq.TOPIC.topic ALTER

Inquire Archive hlq.DISPLAY.ARCHIVE READ No check -

Inquire Authentication
Information Object

hlq.DISPLAY.AUTHINFO READ No check -

Inquire Authentication
Information Object
Names

hlq.DISPLAY.AUTHINFO READ No check -

Inquire CF Structure hlq.DISPLAY.CFSTRUCT READ No check -

Inquire CF Structure
Names

hlq.DISPLAY.CFSTRUCT READ No check -

Inquire CF Structure
Status

hlq.DISPLAY.CFSTATUS READ No check -

Securing IBM MQ 223

Table 50. PCF commands, profiles, and their access levels (continued)

Command Command profile for
MQCMDS

Access level
for MQCMDS

Command resource profile for
MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

Inquire Channel hlq.DISPLAY.CHANNEL READ No check -

Inquire Channel
Authentication Records

hlq.DISPLAY.CHLAUTH READ No check -

Inquire Channel Initiator hlq.DISPLAY.CHINIT READ No check -

Inquire Channel Names hlq.DISPLAY.CHANNEL READ No check -

Inquire Channel Status hlq.DISPLAY.CHSTATUS READ No check -

Inquire Cluster Queue
Manager

hlq.DISPLAY.CLUSQMGR READ No check -

Inquire Connection hlq.DISPLAY.CONNPCF READ No check -

Inquire Group hlq.DISPLAY.GROUP READ No check -

Inquire Log hlq.DISPLAY.LOG READ No check -

Inquire Namelist hlq.DISPLAY.NAMELIST READ No check -

Inquire Namelist Names hlq.DISPLAY.NAMELIST READ No check -

Inquire Process hlq.DISPLAY.PROCESS READ No check -

Inquire Process Names hlq.DISPLAY.PROCESS READ No check -

Inquire Pub/Sub Status hlq.DISPLAY.PUBSUB READ No check -

Inquire Queue hlq.DISPLAY.QUEUE READ No check -

Inquire Queue Manager hlq.DISPLAY.QMGR READ No check -

Inquire Queue Names hlq.DISPLAY.QUEUE READ No check -

Inquire Queue Status hlq.DISPLAY.QSTATUS READ No check -

Inquire Security hlq.DISPLAY.SECURITY READ No check -

Inquire SMDS hlq.DISPLAY.SMDS READ No check -

Inquire SMDSCONN hlq.DISPLAY.SMDSCONN READ No check -

Inquire Storage Class hlq.DISPLAY.STGCLASS READ No check -

Inquire Storage Class
Names

hlq.DISPLAY.STGCLASS READ No check -

Inquire Subscription hlq.INQUIRE.SUB READ No check -

Inquire Subscription
Status

hlq.INQUIRE.SBSTATUS READ No check -

Inquire System hlq.DISPLAY.SYSTEM READ No check -

Inquire Topic hlq.DISPLAY.TOPIC READ No check -

Inquire Topic Names hlq.DISPLAY.TOPIC READ No check -

Inquire Topic Status hlq.DISPLAY.TPSTATUS READ No check -

Inquire Usage hlq.DISPLAY.USAGE READ No check -

Move Queue hlq.MOVE.QLOCAL ALTER hlq.QUEUE.from-queue
hlq.QUEUE.to-queue

ALTER

224 Securing IBM MQ

Table 50. PCF commands, profiles, and their access levels (continued)

Command Command profile for
MQCMDS

Access level
for MQCMDS

Command resource profile for
MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

Ping Channel hlq.PING.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Recover CF Structure hlq.RECOVER.CFSTRUCT CONTROL No check -

Refresh Cluster hlq.REFRESH.CLUSTER ALTER No check -

Refresh Queue Manager hlq.REFRESH.QMGR ALTER No check -

Refresh Security hlq.REFRESH.SECURITY ALTER No check -

Reset CF Structure hlq.RESET.CFSTRUCT CONTROL No check -

Reset Channel hlq.RESET.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Reset Cluster hlq.RESET.CLUSTER CONTROL No check -

Reset Queue Manager hlq.RESET.QMGR CONTROL No check -

Reset Queue Statistics hlq.RESET.QSTATS CONTROL hlq.QUEUE.queue CONTROL

Reset SMDS hlq.RESET.SMDS CONTROL No check -

Resolve Channel hlq.RESOLVE.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Resume Queue Manager hlq.RESUME.QMGR CONTROL No check -

Resume Queue Manager
Cluster

hlq.RESUME.QMGR CONTROL No check -

Reverify Security hlq.RVERIFY.SECURITY ALTER No check -

Set Archive hlq.SET.ARCHIVE CONTROL No check -

Set Channel
Authentication Record

hlq.SET.CHLAUTH CONTROL No check -

Set Log hlq.SET.LOG CONTROL No check -

Set System hlq.SET.SYSTEM CONTROL No check -

Start Channel hlq.START.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Start Channel Initiator hlq.START.CHINIT CONTROL No check -

Start Channel Listener hlq.START.LISTENER CONTROL No check -

Start SMDS Connection hlq.START.SMDSCONN CONTROL No check -

Stop Channel hlq.STOP.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Stop Channel Initiator hlq.STOP.CHINIT CONTROL No check -

Stop Channel Listener hlq.STOP.LISTENER CONTROL No check -

Stop SMDS Connection hlq.STOP.SMDSCONN CONTROL No check -

Suspend Queue Manager hlq.SUSPEND.QMGR CONTROL No check -

Suspend Queue Manager
Cluster

hlq.SUSPEND.QMGR CONTROL No check -

Notes:

1. The hlq.TOPIC.topic resource refers to the Topic object derived from the TOPICSTR. For more
details, see “Publish/subscribe security” on page 491

Securing IBM MQ 225

2. Setting the queue attribute STREAMQ to a non blank value also requires ALTER access
level to MQADMIN or MXADMIN for hlq.ALTER.streamQ.

See “IBM MQ Console - required command security profiles” on page 226 for details of the IBM MQ PCF
profiles required, when using the IBM MQ Console.

IBM MQ Console - required command security profiles
Operations performed in the IBM MQ Console by a user in the MQWebAdmin, or MQWebAdminRO, role take
place under the security context of the mqweb server started task user ID. If you want to use the IBM MQ
Console, the mqweb server started task user ID needs authorization to issue certain PCF commands.

Table 51 on page 226 shows, for each IBM MQ PCF command, the command security profiles required,
and the corresponding access level for each profile in the MQCMDS class needed by the IBM MQ Console.

Table 51. IBM MQ Console PCF commands, profiles, and their access levels

Command Command profile for
MQCMDS

Access level
for MQCMDS

Command resource profile for
MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

Change Authentication
Information Object

hlq.ALTER.AUTHINFO ALTER hlq.AUTHINFO.resourcename ALTER

Change Channel hlq.ALTER.CHANNEL ALTER hlq.CHANNEL.channel ALTER

Change Queue hlq.ALTER.QUEUE ALTER hlq.QUEUE.queue ALTER

Change Queue Manager hlq.ALTER.QMGR ALTER No check -

Change Topic hlq.ALTER.TOPIC ALTER hlq.TOPIC.topic ALTER

Clear Queue hlq.CLEAR.QLOCAL ALTER hlq.QUEUE.queue ALTER

Create Authentication
Information Object

hlq.DEFINE.AUTHINFO ALTER hlq.AUTHINFO.resourcename ALTER

Create Channel hlq.DEFINE.CHANNEL ALTER hlq.CHANNEL.channel ALTER

Create Queue hlq.DEFINE.QUEUE ALTER hlq.QUEUE.queue ALTER

Create Subscription hlq.DEFINE.SUB ALTER No check -

Create Topic hlq.DEFINE.TOPIC ALTER hlq.TOPIC.topic ALTER

Delete Authentication
Information Object

hlq.DELETE.AUTHINFO ALTER hlq.AUTHINFO.resourcename ALTER

Delete Channel hlq.DELETE.CHANNEL ALTER hlq.CHANNEL.channel ALTER

Delete Queue hlq.DELETE.QUEUE ALTER hlq.QUEUE.queue ALTER

Delete Subscription hlq.DELETE.SUB ALTER No check -

Delete Topic hlq.DELETE.TOPIC ALTER hlq.TOPIC.topic ALTER

Inquire Authentication
Information Object

hlq.DISPLAY.AUTHINFO READ No check -

Inquire Authentication
Information Object
Names

hlq.DISPLAY.AUTHINFO READ No check -

Inquire Channel hlq.DISPLAY.CHANNEL READ No check -

Inquire Channel
Authentication Records

hlq.DISPLAY.CHLAUTH READ No check -

Inquire Channel Initiator hlq.DISPLAY.CHINIT READ No check -

226 Securing IBM MQ

Table 51. IBM MQ Console PCF commands, profiles, and their access levels (continued)

Command Command profile for
MQCMDS

Access level
for MQCMDS

Command resource profile for
MQADMIN or MXADMIN

Access level
for
MQADMIN
or
MXADMIN

Inquire Channel Names hlq.DISPLAY.CHANNEL READ No check -

Inquire Channel Status hlq.DISPLAY.CHSTATUS READ No check -

Inquire Queue hlq.DISPLAY.QUEUE READ No check -

Inquire Queue Manager hlq.DISPLAY.QMGR READ No check -

Inquire Queue Names hlq.DISPLAY.QUEUE READ No check -

Inquire Queue Status hlq.DISPLAY.QSTATUS READ No check -

Inquire Subscription hlq.INQUIRE.SUB READ No check -

Inquire Subscription
Status

hlq.INQUIRE.SBSTATUS READ No check -

Inquire Topic hlq.DISPLAY.TOPIC READ No check -

Inquire Topic Names hlq.DISPLAY.TOPIC READ No check -

Inquire Topic Status hlq.DISPLAY.TPSTATUS READ No check -

Ping Channel hlq.PING.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Refresh Cluster hlq.REFRESH.CLUSTER ALTER No check -

Refresh Security hlq.REFRESH.SECURITY ALTER No check -

Reset Channel hlq.RESET.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Resolve Channel hlq.RESOLVE.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Set Channel
Authentication Record

hlq.SET.CHLAUTH CONTROL No check -

Start Channel hlq.START.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Stop Channel hlq.STOP.CHANNEL CONTROL hlq.CHANNEL.channel CONTROL

Profiles for command resource security
If you have not defined the command resource security switch profile, because you want security
checking for resources associated with commands, you must add resource profiles for each resource
to the appropriate class. The same security profiles control both MQSC and PCF commands.

If you have not defined the command resource security switch profile, hlq.NO.CMD.RESC.CHECKS,
because you want security checking for resources associated with commands, you must:

• Add a resource profile in the MQADMIN class, if using uppercase profiles, for each resource.
• Add a resource profile in the MXADMIN class, if using mixed case profiles, for each resource.

The same security profiles control both MQSC and PCF commands.

Profiles for command resource security checking take the form:

hlq.type.resourcename

where hlq can be either qmgr-name (queue manager name) or qsg-name (queue sharing group name).

A profile prefixed by the queue manager name controls access to the resources associated with
commands on that queue manager. A profile prefixed by the queue sharing group name controls access

Securing IBM MQ 227

to the resources associated with commands on all queue managers within the queue sharing group. This
access can be overridden on an individual queue manager by defining a queue manager level profile for
that command resource on that queue manager.

If your queue manager is a member of a queue sharing group and you are using both queue manager and
queue sharing group level security, IBM MQ checks for a profile prefixed by the queue manager name first.
If it does not find one, it looks for a profile prefixed by the queue sharing group name.

For example, the RACF profile name for command resource security checking against the model queue
CREDIT.WORTHY in subsystem CSQ1 is:

CSQ1.QUEUE.CREDIT.WORTHY

Because the profiles for all types of command resource are held in the MQADMIN class, the "type" part
of the profile name is needed in the profile to distinguish between resources of different types that
have the same name. The "type" part of the profile name can be CHANNEL, QUEUE, TOPIC, PROCESS,
or NAMELIST. For example, a user might be authorized to define hlq.QUEUE.PAYROLL.ONE, but not
authorized to define hlq.PROCESS.PAYROLL.ONE

If the resource type is a queue, and the profile is a queue sharing group level profile, it controls access
to one or more local queues within the queue sharing group, or access to a single shared queue from any
queue manager in the queue sharing group.

MQSC commands, profiles, and their access levels shows, for each IBM MQ MQSC command, the profiles
required for command security checking to be carried out, and the corresponding access level for each
profile in the MQCMDS class.

PCF commands, profiles, and their access levels shows, for each IBM MQ PCF command, the profiles
required for command security checking to be carried out, and the corresponding access level for each
profile in the MQCMDS class.

Command resource security checking for alias queues and remote queues
Alias queue and remote queues both provide indirection to another queue. Additional points apply when
you consider security checking for these queues.

Alias queues
When you define an alias queue, command resource security checks are only performed against the name
of the alias queue, not against the name of the target queue to which the alias resolves.

Alias queues can resolve to both local and remote queues. If you do not want to permit users access to
certain local or remote queues, you must do both of the following:

1. Do not allow the users access to these local and remote queues.
2. Restrict the users from being able to define aliases for these queues. That is, prevent them from being

able to issue DEFINE QALIAS and ALTER QALIAS commands.

Remote queues
When you define a remote queue, command resource security checks are performed only against the
name of the remote queue. No checks are performed against the names of the queues specified in the
RNAME or XMITQ attributes in the remote queue object definition.

228 Securing IBM MQ

The RESLEVEL security profile
You can define a special profile in the MQADMIN or MXADMIN class to control the number of user IDs
checked for API-resource security. This profile is called the RESLEVEL profile. How this profile affects
API-resource security depends on how you access IBM MQ.

When an application tries to connect to IBM MQ, IBM MQ checks the access that the user ID associated
with the connection has to a profile in the MQADMIN or MXADMIN class called:

hlq.RESLEVEL

Where hlq can be either ssid (subsystem ID) or qsg (queue sharing group ID).

The user IDs associated with each connection type are:

• The user ID of the connecting task for batch connections
• The CICS address space user ID for CICS connections
• The IMS region address space user ID for IMS connections
• The channel initiator address space user ID for channel initiator connections

Attention: RESLEVEL is a very powerful option; it can cause the bypassing of all resource security
checks for a particular connection.

If you do not have a RESLEVEL profile defined, you must be careful that no other profile in the
MQADMIN class matches hlq.RESLEVEL. For example, if you have a profile in MQADMIN called
hlq.** and no hlq.RESLEVEL profile, beware of the consequences of the hlq.** profile because it is
used for the RESLEVEL check.

Define an hlq.RESLEVEL profile and set the UACC to NONE, rather than have no RESLEVEL profile
at all. Have as few users or groups in the access list as possible. For details about how to audit
RESLEVEL access, see “Auditing considerations on z/OS” on page 253.

If you are using queue manager level security only, IBM MQ performs RESLEVEL checks against the
qmgr-name.RESLEVEL profile. If you are using queue sharing group level security only, IBM MQ
performs RESLEVEL checks against the qsg-name.RESLEVEL profile. If you are using a combination
of both queue manager and queue sharing group level security, IBM MQ first checks for the existence of a
RESLEVEL profile at queue manager level. If it does not find one, it checks for a RESLEVEL profile at queue
sharing group level.

If it cannot find a RESLEVEL profile, IBM MQ enables checking of both the job and task (or alternate user)
ID for a CICS or an IMS connection. For a batch connection, IBM MQ enables checking of the job (or
alternate) user ID. For the channel initiator, IBM MQ enables checking of the channel user ID and the MCA
(or alternate) user ID.

If there is a RESLEVEL profile, the level of checking depends on the environment and access level for the
profile.

Remember that if your queue manager is a member of a queue sharing group and you do not define this
profile at queue manager level, there might be one defined at queue sharing group level that will affect
the level of checking.To activate the checking of two user IDs, you define a RESLEVEL profile (prefixed
with either the queue manager name of the queue sharing group name) with a UACC(NONE) and ensure
that the relevant users do not have access granted against this profile.

When you consider the access that the channel initiator's user ID has to RESLEVEL, remember that the
connection established by the channel initiator is also the connection used by the channels. A setting
that causes the bypassing of all resource security checks for the channel initiator's user ID effectively
bypasses security checks for all channels. If the channel initiator's user ID access to RESLEVEL is
something other than NONE, then only one user ID (for an access level of READ or UPDATE) or no user IDs
(for an access level of CONTROL or ALTER) is checked for access. If you grant the channel initiator's user
ID an access level other than NONE to RESLEVEL, be sure that you understand the effect of this setting on
the security checks done for channels.

Securing IBM MQ 229

Using the RESLEVEL profile means that normal security audit records are not taken. For example, if you
put UAUDIT on a user, the access to the hlq.RESLEVEL profile in MQADMIN is not audited.

If you use the RACF WARNING option on the hlq.RESLEVEL profile, no RACF warning messages are
produced for profiles in the RESLEVEL class.

Security checking for report messages such as CODs are controlled by the RESLEVEL profile associated
with the originating application. For example, if a batch job's userid has CONTROL or ALTER authority to
a RESLEVEL profile, then all resource checking performed by the batch job are bypassed, including the
security check of report messages.

If you change the RESLEVEL profile, users must disconnect and connect again before the change takes
place. (This includes stopping and restarting the channel initiator if the access that the distributed
queuing address space user ID has to the RESLEVEL profile is changed.)

To switch RESLEVEL auditing off, use the RESAUDIT system parameter.

RESLEVEL and batch connections
By default, when an IBM MQ resource is being accessed through batch and batch-type connections, the
user must be authorized to access that resource for the particular operation. You can bypass the security
check by setting up an appropriate RESLEVEL definition.

Whether the user is checked or not is based on the user ID used at connect time, the same user ID used
for the connection check.

For example, you can set up RESLEVEL so that when a user you trust accesses certain resources through
a batch connection, no API-resource security checks are done; but when a user you do not trust tries to
access the same resources, security checks are carried out as normal. You should set up RESLEVEL
checking to bypass API-resource security checks only when you sufficiently trust the user and the
programs run by that user.

The following table shows the checks made for batch connections.

Table 52. Checks made at different RACF access levels for batch connections

RACF access level Level of checking

NONE Resource checks performed

READ Resource checks performed

UPDATE Resource checks performed

CONTROL No check.

ALTER No check.

RESLEVEL and system functions
The application of RESLEVEL to the operation and control panels, and to CSQUTIL.

The operation and control panels and the CSQUTIL utility are batch-type applications that make requests
to the queue manager's command server, and so they are subject to the considerations described in
“RESLEVEL and batch connections” on page 230. You can use RESLEVEL to bypass security checking for
the SYSTEM.COMMAND.INPUT and SYSTEM.COMMAND.REPLY.MODEL queues that they use, but not for
the dynamic queues SYSTEM.CSQXCMD.*, SYSTEM.CSQOREXX.*, and SYSTEM.CSQUTIL.*.

The command server is an integral part of the queue manager and so does not have connection or
RESLEVEL checking associated with it. To maintain security, therefore, the command server must confirm
that the user ID of the requesting application has authority to open the queue being used for replies.
For the operations and control panels, this is SYSTEM.CSQOREXX.*. For CSQUTIL, it is SYSTEM.CSQUTIL.*.
Users must be authorized to use these queues, as described in “System queue security” on page 204, in
addition to any RESLEVEL authorization they are given.

230 Securing IBM MQ

For other applications using the command server, it is the queue they name as their reply-to queue.
Such other applications might deceive the command server into placing messages on unauthorized
queues by passing (in the message context) a more trusted user ID than its own to the command
server. To prevent this, use a CONTEXT profile to protect the identity context of messages placed on
SYSTEM.COMMAND.INPUT.

RESLEVEL and CICS connections
By default, when an API-resource security check is made on a CICS connection, two user IDs are
checked. You can change which user IDs are checked by setting up a RESLEVEL profile.

The first user ID checked is that of the CICS address space. This is the user ID on the job card of the CICS
job, or the user ID assigned to the CICS started task by the z/OS STARTED class or the started procedures
table. (It is not the CICS DFLTUSER.)

The second user ID checked is the user ID associated with the CICS transaction.

If one of these user IDs does not have access to the resource, the request fails with a completion code
of MQRC_NOT_AUTHORIZED. Both the CICS address space user ID and the user ID of the person running
the CICS transaction must have access to the resource at the correct level.

How RESLEVEL can affect the checks made
Depending on how you set up your RESLEVEL profile, you can change which user IDs are checked when
access to a resource is requested. See Table 53 on page 231 for more information.

The user IDs checked depend on the user ID used at connection time, that is, the CICS address space
user ID. This control enables you to bypass API-resource security checking for IBM MQ requests coming
from one system (for example, a test system, TESTCICS,) but to implement them for another (for example,
a production system, PRODCICS).

Note: If you set up your CICS address space user ID with the "trusted" attribute in the STARTED class
or the RACF started procedures table ICHRIN03, this overrides any user ID checks for the CICS address
space established by the RESLEVEL profile for your queue manager (that is, the queue manager does not
perform the security checks for the CICS address space). For more information, see Securing CICS.

The following table shows the checks made for CICS connections.

Table 53. Checks made at different RACF access levels for CICS connections

RACF access level Level of checking

NONE IBM MQ checks the CICS address space user ID and the transaction
user ID.

READ IBM MQ checks the CICS address space user ID only.

UPDATE If the transaction is defined to CICS with RESSEC(YES), IBM MQ checks
the CICS address space user ID and the transaction user ID.

UPDATE If the transaction is defined to CICS with RESSEC(NO), IBM MQ checks
the CICS address space user ID only.

CONTROL or ALTER IBM MQ does not check any user IDs.

RESLEVEL and IMS connections
By default, when an API-resource security check is made for an IMS connection, two user IDs are
checked. You can change which user IDs are checked by setting up a RESLEVEL profile.

By default, when an API-resource security check is made for an IMS connection, two user IDs are
checked to see if access is allowed to the resource.

Securing IBM MQ 231

https://www.ibm.com/docs/en/cics-ts/6.1?topic=cics-how-it-works-securing-racf

The first user ID checked is that of the address space of the IMS region. This is taken from either the USER
field from the job card or the user ID assigned to the region from the z/OS STARTED class or the started
procedures table (SPT).

The second user ID checked is associated with the work being done in the dependent region. It is
determined according to the type of the dependent region as shown in How the second user ID is
determined for the IMS(tm) connection.

If either the first or second IMS user ID does not have access to the resource, the request fails with a
completion code of MQRC_NOT_AUTHORIZED.

The setting of IBM MQ RESLEVEL profiles cannot alter the user ID under which IMS transactions are
scheduled from the IBM-supplied MQ-IMS trigger monitor program CSQQTRMN. This user ID is the
PSBNAME of that trigger monitor, which by default is CSQQTRMN.

How RESLEVEL can affect the checks made
Depending on how you set up your RESLEVEL profile, you can change which user IDs are checked when
access to a resource is requested. The possible checks are:

• Check the IMS region address space user ID and the second user ID or alternate user ID.
• Check IMS region address space user ID only.
• Do not check any user IDs.

The following table shows the checks made for IMS connections.

Table 54. Checks made at different RACF access levels for IMS connections

RACF access level Level of checking

NONE Check the IMS address space user ID and the IMS second user ID or
alternate user ID.

READ Check the IMS address space user ID.

UPDATE Check the IMS address space user ID.

CONTROL No check.

ALTER No check.

RESLEVEL and the channel initiator connection
By default, when an API-resource security check is made by the channel initiator, two user IDs are
checked. You can change which user IDs are checked by setting up a RESLEVEL profile.

By default, when an API-resource security check is made by the channel initiator, two user IDs are
checked to see if access is allowed to the resource.

The user IDs checked can be that specified by the MCAUSER channel attribute, that received from the
network, that of the channel initiator address space, or the alternate user ID for the message descriptor.
Which user IDs are checked depends on the communication protocol you are using and the setting
of the PUTAUT channel attribute. See “User IDs used by the channel initiator” on page 237 for more
information.

If one of these user IDs does not have access to the resource, the request fails with a completion code of
MQRC_NOT_AUTHORIZED.

How RESLEVEL can affect the checks made
Depending on how you set up your RESLEVEL profile, you can change which user IDs are checked when
access to a resource is requested, and how many are checked.

The following table shows the checks made for the channel initiator's connection, and for all channels
since they use this connection.

232 Securing IBM MQ

Table 55. Checks made at different RACF access levels for channel initiator connections

RACF access level Level of checking

NONE Check two user IDs.

READ Check one user ID.

UPDATE Check one user ID.

CONTROL No check.

ALTER No check.

Note: See “User IDs used by the channel initiator” on page 237 for a definition of the user IDs checked

RESLEVEL and intra-group queuing
By default, when an API-resource security check is made by the intra-group queuing agent, two user IDs
are checked to see if access is allowed to the resource. You can change which user IDs are checked by
setting up an RESLEVEL profile.

The user IDs checked can be the user ID determined by the IGQUSER attribute of the receiving queue
manager, the user ID of the queue manager within the queue sharing group that put the message on to
the SYSTEM.QSG.TRANSMIT.QUEUE, or the alternate user ID specified in the UserIdentifier field of
the message descriptor of the message. See “User IDs used by the intra-group queuing agent” on page
241 for more information.

Because the intra-group queuing agent is an internal queue manager task, it does not issue an explicit
connect request and runs under the user ID of the queue manager. The intra-group queuing agent starts
at queue manager initialization. During the initialization of the intra-group queuing agent, IBM MQ checks
the access that the user ID associated with the queue manager has to a profile in the MQADMIN class
called:

hlq.RESLEVEL

This check is always performed unless the hlq.NO.SUBSYS.SECURITY switch has been set.

If there is no RESLEVEL profile, IBM MQ enables checking for two user IDs. If there is a RESLEVEL profile,
the level of checking depends on the access level granted to the user ID of the queue manager for
the profile. Checks made at different RACF(r) access levels for the intra-group queuing agent shows the
checks made for the intra-group queuing agent.

Table 56. Checks made at different RACF access levels for the intra-group queuing agent

RACF access level Level of checking

NONE Check two user IDs.

READ Check one user ID.

UPDATE Check one user ID.

CONTROL No check.

ALTER No check.

Note: See “User IDs used by the intra-group queuing agent” on page 241 for a definition of the user IDs
checked

If the permissions granted to the RESLEVEL profile for the queue manager's user ID are changed, the
intra-group queuing agent must be stopped and restarted to pick up the new permissions. Because there
is no way to independently stop and restart the intra-group queuing agent, the queue manager must be
stopped and restarted to achieve this.

Securing IBM MQ 233

RESLEVEL and the user IDs checked
Example of setting a RESLEVEL profile and granting access to it.

User ID checking against profile name for batch connections through User IDs checked against profile
name for LU 6.2 and TCP/IP server-connection channels show how RESLEVEL affects which user IDs are
checked for different MQI requests.

For example, you have a queue manager called QM66 with the following requirements:

• User WS21B is to be exempt from resource security.
• CICS started task WXNCICS running under address space user ID CICSWXN is to perform full resource

checking only for transactions defined with RESSEC(YES).

To define the appropriate RESLEVEL profile, issue the following RACF command:

RDEFINE MQADMIN QM66.RESLEVEL UACC(NONE)

Then give the users access to this profile, using the following commands:

PERMIT QM66.RESLEVEL CLASS(MQADMIN) ID(WS21B) ACCESS(CONTROL)
PERMIT QM66.RESLEVEL CLASS(MQADMIN) ID(CICSWXN) ACCESS(UPDATE)

If you make these changes while the user IDs are connected to queue manager QM66, the users must
disconnect and connect again before the change takes place.

If subsystem security is not active when a user connects but, while this user is still connected, subsystem
security becomes active, full resource security checking is applied to the user. The user must reconnect to
get the correct RESLEVEL processing.

User IDs for security checking on z/OS
IBM MQ initiates security checks based on user IDs associated with users, terminals, applications, and
other resources. This collection of topics lists which user IDs are used for each type of security check.

User IDs for connection security
The user ID used for connection security depends on the type of connection.

Connection type User ID contents

Batch connection The user ID of the connecting task. For example:

• The TSO user ID
• The user ID assigned to a batch job by the USER JCL parameter
• The user ID assigned to a started task by the STARTED class or

the started procedures table

CICS connection The CICS address space user ID.

IMS connection The IMS region address space user ID.

Channel initiator connection The channel initiator address space user ID.

234 Securing IBM MQ

User IDs for command and command resource security
The user ID used for command security or command resource security depends on where the command
is issued from.

Issued from... User ID contents

CSQINP1, CSQINP2, or
CSQINPT

No check is made.

System command input
queue

The user ID found in the UserIdentifier of the message descriptor of
the message that contains the command. If the message does not contain a
UserIdentifier, a user ID of blanks is passed to the security manager.

Console The user ID signed onto the console. If the console is not signed on, the
default user ID set by the CMDUSER system parameter in CSQ6SYSP.

To issue commands from a console, the console must have the z/OS SYS
AUTHORITY attribute.

SDSF/TSO console TSO or job user ID.

Operations and control
panels

TSO user ID.

If you are going to use the operations and control panels, you must have
the appropriate authority to issue the commands corresponding to the
actions that you choose. In addition, you must have READ access to all the
hlq.DISPLAY. object profiles in the MQCMDS class because the panels use the
various DISPLAY commands to gather the information that they present.

MGCRE If MGCRE is used with UTOKEN, the user ID in the UTOKEN.

If MGCRE is issued without the UTOKEN, the TSO or job user ID is used.

CSQ0UTIL Job user ID.

CSQUTIL Job user ID.

CSQINPX User ID of the channel initiator address space.

User IDs for resource security (MQOPEN, MQSUB, and MQPUT1)
This information shows the contents of the user IDs for normal and alternate user IDs for each type of
connection. The number of checks is defined by the RESLEVEL profile. The user ID checked is that used
for MQOPEN, MQSUB, or MQPUT1 calls.

Note: All user ID fields are checked exactly as they are received. No conversions take place, and, for
example, three user ID fields containing "Bob", "BOB", and "bob" are not equivalent.

User IDs checked for batch connections
The user ID checked for a batch connection depends on how the task is run and whether an alternate user
ID has been specified.

Table 57. User ID checking against profile name for batch connections

Alternate user
ID specified on
open?

hlq.ALTERNATE.USER.userid
profile

hlq.CONTEXT.queuename
profile

hlq.resourcename
profile

No - JOB JOB

Yes JOB JOB ALT

Key:

Securing IBM MQ 235

ALT
Alternate user ID.

JOB

• The user ID of a TSO or z/OS UNIX System Services sign-on.
• The user ID assigned to a batch job.
• The user ID assigned to a started task by the STARTED class or the started procedures table.
• The user ID associated with the executing Db2 stored procedure

A Batch job is performing an MQPUT1 to a queue called Q1 with RESLEVEL set to READ and alternate user
ID checking turned off.

Checks made at different RACF(r) access levels for batch connections and User ID checking against profile
name for batch connections show that the job user ID is checked against profile hlq.Q1.

User IDs checked for CICS connections
The user IDs checked for CICS connections depend on whether one or two checks are to be carried out,
and whether an alternate user ID is specified.

Table 58. User ID checking against profile name for CICS-type user IDs

Alternate user ID
specified on open?

hlq.ALTERNATE.USER.userid
profile

hlq.CONTEXT.queuename
profile

hlq.resourcename
profile

No, 1 check - ADS ADS

No, 2 checks - ADS+TXN ADS+TXN

Yes, 1 check ADS ADS ADS

Yes, 2 checks ADS+TXN ADS+TXN ADS+ALT

Key:
ALT

Alternate user ID
ADS

The user ID associated with the CICS batch job or, if CICS is running as a started task, through the
STARTED class or the started procedures table.

TXN
The user ID associated with the CICS transaction. This is normally the user ID of the terminal user
who started the transaction. It can be the CICS DFLTUSER, a PRESET security terminal, or a manually
signed-on user.

Determine the user IDs checked for the following conditions:

• The RACF access level to the RESLEVEL profile, for a CICS address space user ID, is set to NONE.
• An MQOPEN call is made against a queue with MQOO_OUTPUT and MQOO_PASS_IDENTITY_CONTEXT.

First, see how many CICS user IDs are checked based on the CICS address space user ID access to the
RESLEVEL profile. From Table 53 on page 231 in topic “RESLEVEL and CICS connections” on page 231,
two user IDs are checked if the RESLEVEL profile is set to NONE. Then, from Table 58 on page 236 on,
these checks are carried out:

• The hlq.ALTERNATE.USER.userid profile is not checked.
• The hlq.CONTEXT.queuename profile is checked with both the CICS address space user ID and the CICS

transaction user ID.
• The hlq.resourcename profile is checked with both the CICS address space user ID and the CICS

transaction user ID.

This means that four security checks are made for this MQOPEN call.

236 Securing IBM MQ

User IDs checked for IMS connections
The user IDs checked for IMS connections depend on whether one or two checks are to be performed,
and whether an alternate user ID is specified. If a second user ID is checked, it depends on the type of
dependent region and on which user IDs are available.

Table 59. User ID checking against profile name for IMS-type user IDs

Alternate user ID
specified on open?

hlq.ALTERNATE.USER.userid
profile

hlq.CONTEXT.queuenam
e profile

hlq.resourcename
profile

No, 1 check - REG REG

No, 2 checks - REG+SEC REG+SEC

Yes, 1 check REG REG REG

Yes, 2 checks REG+SEC REG+SEC REG+ALT

Key:
ALT

Alternate user ID.
REG

The user ID is normally set through the STARTED class or the started procedures table or, if IMS is
running, from a submitted job, by the USER JCL parameter.

SEC
The second user ID is associated with the work being done in a dependent region. It is determined
according to Table 60 on page 237.

Table 60. How the second user ID is determined for the IMS connection

Types of dependent region Hierarchy for determining the second user ID

• BMP message driven and successful GET
UNIQUE issued.

• IFP and GET UNIQUE issued.
• MPP.

User ID associated with the IMS transaction if the
user is signed on.

LTERM name if available.

PSBNAME.

• BMP message driven and successful GET
UNIQUE not issued.

• BMP not message driven.
• IFP and GET UNIQUE not issued.

User ID associated with the IMS dependent region
address space if this is not all blanks or all zeros.

PSBNAME.

User IDs used by the channel initiator
This collection of topics describes the user IDs used and checked for receiving channels and for client
MQI requests issued over server-connection channels. Information is provided for TCP/IP and for LU6.2

You can use the PUTAUT parameter of the receiving channel definition to determine the type of security
checking used. To get consistent security checking throughout your IBM MQ network, you can use the
ONLYMCA and ALTMCA options.

You can use the DISPLAY CHSTATUS command to determine the user identifier used by the MCA.

Securing IBM MQ 237

Receiving channels using TCP/IP
The user IDs checked depend on the PUTAUT option of the channel and on whether one or two checks are
to be performed.

Table 61. User IDs checked against profile name for TCP/IP channels

PUTAUT option
specified on
receiver or
requester channel

hlq.ALTERNATE.USER.useri
d profile

hlq.CONTEXT.queuename
profile

hlq.resourcename profile

DEF, 1 check - CHL CHL

DEF, 2 checks - CHL + MCA CHL + MCA

CTX, 1 check CHL CHL CHL

CTX, 2 checks CHL + MCA CHL + MCA CHL + ALT

ONLYMCA, 1 check - MCA MCA

ONLYMCA, 2 checks - MCA MCA

ALTMCA, 1 check MCA MCA MCA

ALTMCA, 2 checks MCA MCA MCA + ALT

Key:
MCA (MCA user ID)

The user ID specified for the MCAUSER channel attribute at the receiver; if blank, the channel initiator
address space user ID of the receiver or requester side is used.

CHL (Channel user ID)
On TCP/IP, security is not supported by the communication system for the channel. If Transport Layer
Security (TLS) is being used and a digital certificate has been flowed from the partner, the user ID
associated with this certificate (if installed), or the user ID associated with a matching filter found by
using RACF Certificate Name Filtering (CNF), is used. If no associated user ID is found, or if TLS is not
being used, the user ID of the channel initiator address space of the receiver or requester end is used
as the channel user ID on channels defined with the PUTAUT parameter set to DEF or CTX.

Note: The use of RACF Certificate Name Filtering (CNF) allows you to assign the same RACF user
ID to multiple remote users, for example all the users in the same organization unit, who would
naturally all have the same security authority. This means that the server does not have to have a
copy of the certificate of every possible remote user across the world, and greatly simplifies certificate
management and distribution.

If the PUTAUT parameter is set to ONLYMCA or ALTMCA for the channel, the channel user ID is
ignored and the MCA user ID of the receiver or requester is used. This also applies to TCP/IP channels
using TLS.

ALT (Alternate user ID)
The user ID from the context information (that is, the UserIdentifier field) within the message
descriptor of the message. This user ID is moved into the AlternateUserID field in the object
descriptor before an MQOPEN or MQPUT1 call is issued for the target destination queue.

238 Securing IBM MQ

Receiving channels using LU 6.2
The user IDs checked depend on the PUTAUT option of the channel and on whether one or two checks are
to be performed.

Table 62. User IDs checked against profile name for LU 6.2 channels

PUTAUT option
specified on
receiver or
requester channel

hlq.ALTERNATE.USER.userid
profile

hlq.CONTEXT.queuenam
e profile

hlq.resourcename
profile

DEF, 1 check - CHL CHL

DEF, 2 checks - CHL + MCA CHL + MCA

CTX, 1 check CHL CHL CHL

CTX, 2 checks CHL + MCA CHL + MCA CHL + ALT

ONLYMCA, 1 check - MCA MCA

ONLYMCA, 2 checks - MCA MCA

ALTMCA, 1 check MCA MCA MCA

ALTMCA, 2 checks MCA MCA MCA + ALT

Key:
MCA (MCA user ID)

The user ID specified for the MCAUSER channel attribute at the receiver; if blank, the channel initiator
address space user ID of the receiver or requester side is used.

CHL (Channel user ID)
Requester-server channels

If the channel is started from the requester, there is no opportunity to receive a network user ID
(the channel user ID).

If the PUTAUT parameter is set to DEF or CTX on the requester channel, the channel user ID is
that of the channel initiator address space of the requester because no user ID is received from
the network.

If the PUTAUT parameter is set to ONLYMCA or ALTMCA, the channel user ID is ignored and the
MCA user ID of the requester is used.

Other channel types
If the PUTAUT parameter is set to DEF or CTX on the receiver or requester channel, the channel
user ID is the user ID received from the communications system when the channel is initiated.

• If the sending channel is on z/OS, the channel user ID received is the channel initiator address
space user ID of the sender.

• If the sending channel is on a different platform (for example, AIX), the channel user ID received
is typically provided by the USERID parameter of the channel definition.

If the user ID received is blank, or no user ID is received, a channel user ID of blanks is used.

ALT (Alternate user ID)
The user ID from the context information (that is, the UserIdentifier field) within the message
descriptor of the message. This user ID is moved into the AlternateUserID field in the object
descriptor before an MQOPEN or MQPUT1 call is issued for the target destination queue.

Securing IBM MQ 239

Client MQI requests
Various user IDs can be used, depending on which user IDs and environment variables have been set.
These user IDs are checked against various profiles, depending on the PUTAUT option used and whether
an alternate user ID is specified.

This section describes the user IDs checked for client MQI requests issued over server-connection
channels for TCP/IP and LU 6.2. The MCA user ID and channel user ID are as for the TCP/IP and LU 6.2
channels described in the previous sections.

For server-connection channels, the user ID received from the client is used if the MCAUSER attribute is
blank.

See “Access control for clients” on page 102 for more information.

For client MQOPEN, MQSUB, and MQPUT1 requests, use the following rules to determine the profile that is
checked:

• If the request specifies alternate-user authority, a check is made against the hlq.ALTERNATE.USER.
userid profile.

• If the request specifies context authority, a check is made against the hlq.CONTEXT. queuename profile.
• For all MQOPEN, MQSUB, and MQPUT1 requests, a check is made against the hlq.resourcename profile.

When you have determined which profiles are checked, use the following table to determine which user
IDs are checked against these profiles.

Table 63. User IDs checked against profile name for LU 6.2 and TCP/IP server-connection channels

PUTAUT
option
specified
on server-
connection
channel

Alternate
user ID

specified on
open?

hlq.ALTERNATE.USER.userid
profile

hlq.CONTEXT.queuename
profile

hlq.resourcename
profile

DEF, 1
check

No - CHL CHL

DEF, 1
check

Yes CHL CHL CHL

DEF, 2
checks

No - CHL + MCA CHL + MCA

DEF, 2
checks

Yes CHL + MCA CHL + MCA CHL + ALT

ONLYMCA,
1 check

No - MCA MCA

ONLYMCA,
1 check

Yes MCA MCA MCA

ONLYMCA,
2 checks

No - MCA MCA

ONLYMCA,
2 checks

Yes MCA MCA MCA + ALT

Key:
MCA (MCA user ID)

The user ID specified for the MCAUSER channel attribute at the server-connection; if blank, the
channel initiator address space user ID is used.

240 Securing IBM MQ

CHL (Channel user ID)
On TCP/IP, security is not supported by the communication system for the channel. If Transport Layer
Security (TLS) is being used and a digital certificate has been flowed from the partner, the user ID
associated with this certificate (if installed), or the user ID associated with a matching filter found by
using RACF Certificate Name Filtering (CNF), is used. If no associated user ID is found, or if TLS is
not being used, the user ID of the channel initiator address space is used as the channel user ID on
channels defined with the PUTAUT parameter set to DEF or CTX.

Note: The use of RACF Certificate Name Filtering (CNF) allows you to assign the same RACF user
ID to multiple remote users, for example all the users in the same organization unit, who would
naturally all have the same security authority. This means that the server does not have to have a
copy of the certificate of every possible remote user across the world, and greatly simplifies certificate
management and distribution.

If the PUTAUT parameter is set to ONLYMCA or ALTMCA for the channel, the channel user ID is
ignored and the MCA user ID of the server-connection channel is used. This also applies to TCP/IP
channels using TLS.

ALT (Alternate user ID)
The user ID from the context information (that is, the UserIdentifier field) within the message
descriptor of the message. This user ID is moved into the AlternateUserID field in the object or
subscription descriptor before an MQOPEN, MQSUB or MQPUT1 call is issued on behalf of the client
application.

Channel initiator example
An example of how user IDs are checked against RACF profiles.

A user performs an MQPUT1 operation to a queue on queue manager QM01 that resolves to a queue called
QB on queue manager QM02. The message is sent on a TCP/IP channel called QM01.TO.QM02. RESLEVEL
is set to NONE, and the open is performed with alternate user ID and context checking. The receiver
channel definition has PUTAUT(CTX) and the MCA user ID is set. Which user IDs are used on the receiving
channel to put the message to queue QB?

Answer: Table 55 on page 233 shows that two user IDs are checked because RESLEVEL is set to NONE.

Table 61 on page 238 shows that, with PUTAUT set to CTX and 2 checks, the following user IDs are
checked:

• The channel initiator user ID and the MCAUSER user ID are checked against the
hlq.ALTERNATE.USER.userid profile.

• The channel initiator user ID and the MCAUSER user ID are checked against the
hlq.CONTEXT.queuename profile.

• The channel initiator user ID and the alternate user ID specified in the message descriptor (MQMD) are
checked against the hlq.Q2 profile.

User IDs used by the intra-group queuing agent
The user IDs that are checked when the intra-group queuing agent opens destination queues are
determined by the values of the IGQAUT and IGQUSER queue manager attributes.

The possible user IDs are:

Intra-group queuing user ID (IGQ)
The user ID determined by the IGQUSER attribute of the receiving queue manager. If this is set to
blanks, the user ID of the receiving queue manager is used. However, because the receiving queue
manager has authority to access all queues defined to it, security checks are not performed for the
receiving queue manager's user ID. In this case:

• If only one user ID is to be checked and the user ID is that of the receiving queue manager, no
security checks take place. This can occur when IGQAUT is set to ONLYIGQ or ALTIGQ.

Securing IBM MQ 241

• If two user IDs are to be checked and one of the user IDs is that of the receiving queue manager,
security checks take place for the other user ID only. This can occur when IGQAUT is set to DEF,
CTX, or ALTIGQ.

• If two user IDs are to be checked and both user IDs are that of the receiving queue manager, no
security checks take place. This can occur when IGQAUT is set to ONLYIGQ.

Sending queue manager user ID (SND)
The user ID of the queue manager within the queue sharing group that put the message on to the
SYSTEM.QSG.TRANSMIT.QUEUE.

Alternate user ID (ALT)
The user ID specified in the UserIdentifier field in the message descriptor of the message.

Table 64. User IDs checked against profile name for intra-group queuing

IGQAUT option
specified on
receiving queue
manager

hlq.ALTERNATE.USER.userid
profile

hlq.CONTEXT.queuenam
e profile

hlq.resourcename profile

DEF, 1 check - SND SND

DEF, 2 checks - SND +IGQ SND +IGQ

CTX, 1 check SND SND SND

CTX, 2 checks SND + IGQ SND +IGQ SND + ALT

ONLYIGQ, 1 check - IGQ IGQ

ONLYIGQ, 2 checks - IGQ IGQ

ALTIGQ, 1 check - IGQ IGQ

ALTIGQ, 2 checks IGQ IGQ IGQ + ALT

Key:
ALT

Alternate user ID.
IGQ

IGQ user ID.
SND

Sending queue manager user ID.

Blank user IDs and UACC levels
If a blank user ID occurs, a RACF undefined user is signed on. Do not grant wide-ranging access to the
undefined user.

Blank user IDs can exist when a user is manipulating messages using context or alternate-user security,
or when IBM MQ is passed a blank user ID. For example, a blank user ID is used when a message is
written to the system-command input queue without context.

Note: A user ID of " * " (that is, an asterisk character followed by seven spaces) is treated as an undefined
user ID.

IBM MQ passes the blank user ID to RACF and a RACF undefined user is signed on. All security checks
then use the universal access (UACC) for the relevant profile. Depending on how you have set your access
levels, the UACC might give the undefined user a wide-ranging access.

For example, if you issue this RACF command from TSO:

RDEFINE MQQUEUE Q.AVAILABLE.TO.EVERYONE UACC(UPDATE)

242 Securing IBM MQ

you define a profile that enables both z/OS-defined user IDs (that have not been put in the access list) and
the RACF undefined user ID to put messages on, and get messages from, that queue.

To protect against blank user IDs you must plan your access levels carefully, and limit the number
of people who can use context and alternate-user security. You must prevent people using the RACF
undefined user ID from getting access to resources that they must not access. However, at the same
time, you must allow access to people with defined user IDs. To do this, you can specify a user ID of
asterisk (*) in a RACF command PERMIT, giving access to resources for all defined user IDs. Therefore all
undefined user IDs (such as " * ") are denied access. For example, these RACF commands prevent the
RACF undefined user ID from gaining access to the queue to put or get messages:

RDEFINE MQQUEUE Q.AVAILABLE.TO.RACF.DEFINED.USERS.ONLY UACC(NONE)
PERMIT Q.AVAILABLE.TO.RACF.DEFINED.USERS.ONLY CLASS(MQQUEUE) ACCESS(UPDATE) ID(*)

z/OS user IDs and Multi-Factor Authentication (MFA)
IBM Multi-Factor Authentication for z/OS allows z/OS security administrators to enhance SAF
authentication, by requiring identified users to use multiple authentication factors (for example, both
a password and a cryptographic token) to sign on to a z/OS system. IBM MFA also provides support for
time-based one time password generation technologies such as RSA SecureId.

For the most part, IBM MQ is unaware of how users have "logged on" to the CICS or batch systems that
are driving IBM MQ work, the signed on user ID credential is associated with the z/OS task or address
space and IBM MQ uses this for checking authorization to resources. User IDs enabled for MFA can be
used for authorization to IBM MQ resources and authentication through pass tickets used with the CICS
and IMS bridges.

Important: Special considerations apply however, when using applications, such as the IBM MQ
Explorer, which pass a user ID and password credentials on an MQCONNX API call with the
MQCSP_AUTH_USER_ID_AND_PWD option. IBM MQ has no facility to pass an additional credential on
this API request.

Limitations and potential workarounds are described in the following text.

IBM MQ Explorer
The IBM MQ Explorer cannot be used to log on to a z/OS system with a userid for which MFA is enabled
because there is no facility for passing a second authentication factor from the IBM MQ Explorer to z/OS.

Additionally, there are two different mechanisms used by the IBM MQ Explorer to re-use a user ID and
password credential, that need special attention when one time use passwords are in effect:

1. IBM MQ Explorer has the capability to store passwords in an obfuscated format on the local machine
for login at a later time. This capability must be disabled by having explorer prompt for a password
each time a connection is made to the z/OS queue manager.

To do this, use the following procedure:

a. Select Queue Managers.
b. From the list displayed, choose the queue manager you require and right click that queue manager.
c. Select Connection Details from the menu list that appears.
d. Select Properties from the next menu list and choose the Userid tab.

Ensure that you select the prompt for password radio button.
2. Various operations in the IBM MQ Explorer, such as browsing messages on queues, testing

subscriptions, and so on, start a new thread which authenticates to IBM MQ using the credential
first used at logon. Since the password credential cannot be re-used, you cannot use these operations.

There are two possible workarounds at the MFA configuration level for these issues:

• Use the application ID exclusion of MFA to exclude the IBM MQ tasks from MFA processing altogether.

Securing IBM MQ 243

To do this, issue the following commands:

1. RDEFINE MFADEF MFABYPASS.USERID.chinuser

where chinuser is the channel initiator address space level user Id (associated with the channel
initiator through the STC class)

2. PERMIT MFABYPASS.USERID.chinuser CLASS MFADEF ACCESS(READ) ID(explorer user)

For more information on this approach, see Bypassing IBM MFA for applications.
• Use Out-of-band support on MFA, which was introduced with IBM MFA 1.2. With this approach,

you pre-authenticate to the IBM MFA web server, and in addition to your user ID and password,
specify additional authentication as determined through the policy. IBM MFA server generates a cache
token credential that you then specify on the IBM MQ Explorer authentication dialogue. The security
administrator can allow this credential to be replayed for a reasonable period of time, so enabling
normal IBM MQ Explorer use.

For more information on this approach see Introduction to IBM MFA.

IBM MQ for z/OS security management
IBM MQ uses an in-storage table to hold information relating to each user and the access requests made
by each user. To manage this table efficiently and to reduce the number of requests made from IBM MQ to
the external security manager (ESM), a number of controls are available.

These controls are available through both the operations and control panels and IBM MQ commands.

User ID reverification
If the RACF definition of a user who is using IBM MQ resources has been changed, for example by
connecting the user to a new group, you can tell the queue manager to sign this user on again the next
time it tries to access an IBM MQ resource. You can do this by using the IBM MQ command RVERIFY
SECURITY.

• User HX0804 is getting and putting messages to the PAYROLL queues on queue manager PRD1.
However HX0804 now requires access to some of the PENSION queues on the same queue manager
(PRD1).

• The data security administrator connects user HX0804 to the RACF group that allows access to the
PENSION queues.

• So that HX0804 can access the PENSION queues immediately (that is, without shutting down queue
manager PRD1 or waiting for HX0804 to time out) you must use the IBM MQ command:

RVERIFY SECURITY(HX0804)

Note: If you turn off user ID timeout for long periods of time (days or even weeks) while the queue
manager is running, you must remember to run the RVERIFY SECURITY command for any users that have
been revoked or deleted in that time.

User ID timeouts
You can make IBM MQ sign a user off a queue manager after a period of inactivity.

When a user accesses an IBM MQ resource, the queue manager tries to sign this user on to the queue
manager (if subsystem security is active). This means that the user is authenticated to the ESM. This user
remains signed on to IBM MQ until either the queue manager is shut down, or until the user ID is timed
out (the authentication lapses) or reverified (reauthenticated).

When a user is timed out, the user ID is signed off within the queue manager and any security-related
information retained for this user is discarded. The signing on and off of the user within the queue
manager is not apparent to the application program or to the user.

244 Securing IBM MQ

https://www.ibm.com/docs/en/zma/2.3.0?topic=mfa-bypassing-applications
https://www.ibm.com/docs/en/zma/2.3.0?topic=guide-introduction-mfa

Users are eligible for timeout when they have not used any IBM MQ resources for a predetermined
amount of time. This time period is set by the MQSC ALTER SECURITY command.

Two values can be specified in the ALTER SECURITY command:
TIMEOUT

The time period in minutes that an unused user ID and its associated resources can remain within the
IBM MQ queue manager.

INTERVAL
The time period in minutes between checks for user IDs and their associated resources, to determine
whether the TIMEOUT has expired.

For example, if the TIMEOUT value is 30 and the INTERVAL value is 10, every 10 minutes IBM MQ checks
user IDs and their associated resources to determine whether any have not been used for 30 minutes. If a
timed-out user ID is found, that user ID is signed off within the queue manager. If any timed-out resource
information associated with non-timed-out user IDs is found, that resource information is discarded. If
you do not want to time out user IDs, set the INTERVAL value to zero. However, if the INTERVAL value is
zero, storage occupied by user IDs and their associated resources is not freed until you issue a REFRESH
SECURITY or RVERIFY SECURITY command.

Tuning this value can be important if you have many one-off users. If you set small interval and timeout
values, resources that are no longer required are freed.

Note: If you use values for INTERVAL or TIMEOUT other than the defaults, you must reenter the command
at every queue manager startup. You can do this automatically by putting the ALTER SECURITY
command in the CSQINP1 data set for that queue manager.

Refreshing queue manager security on z/OS
IBM MQ for z/OS caches RACF data to improve performance. When you change certain security classes,
you must refresh this cached information. Refresh security infrequently, for performance reasons. You can
also choose to refresh only TLS security information.

When a queue is opened for the first time (or for the first time since a security refresh) IBM MQ performs
a RACF check to obtain the user's access rights and places this information in the cache. The cached data
includes user IDs and resources on which security checking has been performed. If the queue is opened
again by the same user, the presence of the cached data means that IBM MQ does not have to issue RACF
checks, which improves performance. The action of a security refresh is to discard any cached security
information and so force IBM MQ to make a new check against RACF. Whenever you add, change or
delete a RACF resource profile that is held in the MQADMIN, MXADMIN, MQPROC, MXPROC, MQQUEUE,
MXQUEUE, MQNLIST, MXNLIST, or MXTOPIC class, you must tell the queue managers that use this class
to refresh the security information that they hold. To do this, issue the following commands:

• The RACF SETROPTS RACLIST(classname) REFRESH command to refresh at the RACF level.
• The IBM MQ REFRESH SECURITY command to refresh the security information held by the queue

manager. This command needs to be issued by each queue manager that accesses the profiles that
have changed. If you have a queue sharing group, you can use the command scope attribute to direct
the command to all the queue managers in the group.

Note: If you have connected a new user to an existing group, you need to run the IBM MQ RVERIFY
SECURITY(userid) command. The REFRESH SECURITY(*) command does not let the queue manager
sign this user on again, the next time it tries to access an IBM MQ resource.

If you are using generic profiles in any of the IBM MQ classes, you must also issue normal RACF
refresh commands if you change, add, or delete any generic profiles. For example, SETROPTS
GENERIC(classname) REFRESH.

However, if a RACF resource profile is added, changed or deleted, and the resource to which it applies has
not yet been accessed (so no information is cached), IBM MQ uses the new RACF information without a
REFRESH SECURITY command being issued.

If RACF auditing is turned on, (for example, by using the RACF RALTER AUDIT(access-attempt
(audit_access_level)) command), no caching takes place, and therefore IBM MQ refers directly to the

Securing IBM MQ 245

RACF dataspace for every check. Changes are therefore picked up immediately and REFRESH SECURITY
is not necessary to access the changes. You can confirm whether RACF auditing is on by using the RACF
RLIST command. For example, you could issue the command

RLIST MQQUEUE (qmgr.SYSTEM.COMMAND.INPUT) GEN

and receive the results

CLASS NAME
----- ----
MQQUEUE QP*.SYSTEM.COMMAND.*.** (G)
 AUDITING

 FAILURES(READ)

This indicates that auditing is set on. For more information, see the z/OS Security Server RACF Auditor's
Guide and the z/OS Security Server RACF Command Language Reference.

Figure 17 on page 246 summarizes the situations in which security information is cached and in which
cached information is used.

Figure 17. Logic flow for IBM MQ security caching

If you change your security settings by adding or deleting switch profiles in the MQADMIN or MXADMIN
classes, use one of these commands to pick up these changes dynamically:

REFRESH SECURITY(*)
REFRESH SECURITY(MQADMIN)
REFRESH SECURITY(MXADMIN)

246 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-auditors-guide
https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-auditors-guide
https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-command-language-reference

This means you can activate new security types, or deactivate them without having to restart the queue
manager.

For performance reasons, these are the only classes affected by the REFRESH SECURITY command. You
do not need to use REFRESH SECURITY if you change a profile in either the MQCONN or MQCMDS classes.

Note: A refresh of the MQADMIN or MXADMIN class is not required if you change a RESLEVEL security
profile.

For performance reasons, use REFRESH SECURITY as infrequently as possible, ideally at off-peak times.
You can minimize the number of security refreshes by connecting users to RACF groups that are already in
the access list for IBM MQ profiles, rather than putting individual users in the access lists. In this way, you
change the user rather than the resource profile. You can also RVERIFY SECURITY the appropriate user
instead of refreshing security.

As an example of REFRESH SECURITY, suppose you define the new profiles to protect access to queues
starting with INSURANCE.LIFE on queue manager PRMQ. You use these RACF commands:

RDEFINE MQQUEUE PRMQ.INSURANCE.LIFE.** UACC(NONE)
PERMIT PRMQ.INSURANCE.LIFE.** ID(LIFEGRP) ACCESS(UPDATE)

You must issue the following command to tell RACF to refresh the security information that it holds, for
example:

SETROPTS RACLIST(MQQUEUE) REFRESH

Because these profiles are generic, you must tell RACF to refresh the generic profiles for MQQUEUE. For
example:

SETROPTS GENERIC(MQQUEUE) REFRESH

Then you must use this command to tell queue manager PRMQ that the queue profiles have changed:

REFRESH SECURITY(MQQUEUE)

Refreshing SSL/TLS security
To refresh the cached view of the TLS Key Repository, issue the REFRESH SECURITY command with the
option TYPE(SSL). This enables you to update some of your TLS settings without having to restart your
channel initiator.

Displaying security status
To display the status of the security switches, and other security controls, issue the MQSC DISPLAY
SECURITY command.

The following figure shows typical output of the DISPLAY SECURITY ALL command.

Securing IBM MQ 247

CSQH015I +CSQ1 Security timeout = 54 MINUTES
CSQH016I +CSQ1 Security interval = 12 MINUTES
CSQH030I +CSQ1 Security switches ...
CSQH034I +CSQ1 SUBSYSTEM: ON, 'SQ05.NO.SUBSYS.SECURITY' not found
CSQH032I +CSQ1 QMGR: ON, 'CSQ1.YES.QMGR.CHECKS' found
CSQH031I +CSQ1 QSG: OFF, 'SQ05.NO.QSG.CHECKS' found
CSQH031I +CSQ1 CONNECTION: OFF, 'CSQ1.NO.CONNECT.CHECKS' found
CSQH034I +CSQ1 COMMAND: ON, 'CSQ1.NO.COMMAND.CHECKS' not found
CSQH031I +CSQ1 CONTEXT: OFF, 'CSQ1.NO.CONTEXT.CHECKS' found
CSQH034I +CSQ1 ALTERNATE USER: ON, 'CSQ1.NO.ALTERNATE.USER.CHECKS' not found
CSQH034I +CSQ1 PROCESS: ON, 'CSQ1.NO.PROCESS.CHECKS' not found
CSQH034I +CSQ1 NAMELIST: ON, 'CSQ1.NO.NLIST.CHECKS' not found
CSQH034I +CSQ1 QUEUE: ON, 'CSQ1.NO.QUEUE.CHECKS' not found
CSQH034I +CSQ1 TOPIC: ON, 'CSQ1.NO.TOPIC.CHECKS' not found
CSQH031I +CSQ1 COMMAND RESOURCES: OFF, 'CSQ1.NO.CMD.RESC.CHECKS' found
CSQ9022I +CSQ1 CSQHPDTC ' DISPLAY SECURITY' NORMAL COMPLETION

Figure 18. Typical output from the DISPLAY SECURITY command

The example shows that the queue manager that replied to the command has subsystem, command,
alternate user, process, namelist, and queue security active at queue manager level but not at queue
sharing group level. Connection, command resource, and context security are not active. It also shows
that user ID timeouts are active, and that every 12 minutes the queue manager checks for user IDs that
have not been used in this queue manager for 54 minutes and removes them.

Note: This command shows the current security status. It does not necessarily reflect the current status
of the switch profiles defined to RACF, or the status of the RACF classes. For example, the switch profiles
might have been changed since the last restart of this queue manager or REFRESH SECURITY command.

Security installation tasks for z/OS
After installing and customizing IBM MQ, authorize started task procedures to RACF, authorize access to
various resources, and set up RACF definitions. Optionally, configure your system for TLS.

When IBM MQ is first installed and customized, you must perform these security-related tasks:

1. Set up IBM MQ data set and system security by:

• Authorizing the queue manager started-task procedure xxxxMSTR and the distributed queuing
started-task procedure xxxxCHIN to run under RACF.

• Authorizing access to queue manager data sets.
• Authorizing access to resources for those user IDs that will use the queue manager and utility

programs.
• Authorizing access for those queue managers that will use the coupling facility list structures.
• Authorizing access for those queue managers that will use Db2.

2. Set up RACF definitions for IBM MQ security.
3. If you want to use Transport Layer Security (TLS), prepare your system to use certificates and keys.

Setting up IBM MQ for z/OS data set security
There are many types of IBM MQ user. Use RACF to control their access to system data sets.

The possible users of IBM MQ data sets include the following entities:

• The queue manager itself.
• The channel initiator
• IBM MQ administrators, who need to create IBM MQ data sets, run utility programs, and similar tasks.
• Application programmers who need to use the IBM MQ-supplied copybooks, include data sets, macros,

and similar resources.
• Applications involving one or more of:

248 Securing IBM MQ

– Batch jobs
– TSO users
– CICS regions
– IMS regions

• Data sets CSQOUTX and CSQSNAP
• Dynamic queues SYSTEM.CSQXCMD.*

For all these potential users, protect the IBM MQ data sets with RACF.

You must also control access to all your 'CSQINP' data sets.

RACF authorization of started-task procedures
Some IBM MQ data sets are for the exclusive use of the queue manager. If you protect your IBM MQ data
sets using RACF, you must also authorize the queue manager started-task procedure xxxxMSTR, and the
distributed queuing started-task procedure xxxxCHIN, using RACF. To do this, use the STARTED class.
Alternatively, you can use the started procedures table (ICHRIN03), but then you must perform an IPL of
your z/OS system before the changes take effect.

For more information, see the z/OS Security Server RACF System Programmer's Guide.

The RACF user ID identified must have the required access to the data sets in the started-task procedure.
For example, if you associate a queue manager started task procedure called CSQ1MSTR with the RACF
user ID QMGRCSQ1, the user ID QMGRCSQ1 must have access to the z/OS resources accessed by the
CSQ1 queue manager.

Also, the content of the GROUP field in the user ID of the queue manager must be the same as the content
of the GROUP field in the STARTED profile for that queue manager. If the content in each GROUP field
does not match then the appropriate user ID is prevented from entering the system. This situation causes
IBM MQ to run with an undefined user ID and consequently close due to a security violation.

The RACF user IDs associated with the queue manager and channel initiator started task procedures must
not have the TRUSTED attribute set.

Authorizing access to data sets
The IBM MQ data sets should be protected so that no unauthorized user can run a queue manager
instance, or gain access to any queue manager data. To do this, use normal z/OS RACF data set
protection.

Table 65 on page 249 summarizes the RACF access that the queue manager started task procedure must
have to the different data sets.

Table 65. RACF access to data sets associated with a queue manager

RACF access Data sets

READ • thlqual.SCSQAUTH and thlqual.SCSQANLx (where x is the language
letter for your national language).

• The data sets referred to by CSQINP1, CSQINP2 and CSQXLIB in the queue
manager's started task procedure.

• SMDS data sets owned by other queue managers in the group.
• Log, BSDS and archive log data sets for other queue managers in the group.

UPDATE • All page sets and log and BSDS data sets.
• SMDS data sets owned by a queue manager
• SMDS data sets owned by other queue managers in the group, for the

structures that the queue manager performs the RECOVER CFSTRUCT
command.

Securing IBM MQ 249

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-system-programmers-guide

Table 65. RACF access to data sets associated with a queue manager (continued)

RACF access Data sets

ALTER • All archive log data sets.

Table 66 on page 250 summarizes the RACF access that the started task procedure for distributed
queuing must have to the different data sets.

Table 66. RACF access to data sets associated with distributed queuing

RACF access Data sets

READ • thlqual.SCSQAUTH, thlqual.SCSQANLx (where x is the language letter for your
national language), and thlqual.SCSQMVR1.

• LE library data sets.
• The data sets referred to by CSQXLIB and CSQINPX in the channel initiator

started task procedure.

UPDATE • Data sets CSQOUTX and CSQSNAP

For more information, see the z/OS Security Server RACF Security Administrator's Guide.

Encrypting data sets
The IBM MQ data sets can be encrypted with z/OS data set encryption, so that the data is protected, or for
regulatory reasons.

You can protect all page sets, active log, archive log, and bootstrap (BSDS) data sets with z/OS data set
encryption.

Attention: You cannot protect shared message data sets (SMDS) with z/OS data set encryption by
IBM MQ for z/OS 9.1.4 or earlier.

See the section, confidentiality for data at rest on IBM MQ for z/OS with data set encryption. for more
information.

Setting up IBM MQ for z/OS resource security
There are many types of IBM MQ user. Use RACF to control their access to IBM MQ resources.

The possible users of IBM MQ resources, such as queues and channels include the following entities:

• The queue manager itself.
• The channel initiator
• IBM MQ administrators, who need to create IBM MQ data sets, run utility programs, and similar tasks
• Application programmers who need to use the IBM MQ-supplied copybooks, include data sets, macros,

and similar resources.
• Applications involving one or more of:

– Batch jobs
– TSO users
– CICS regions
– IMS regions

• Data sets CSQOUTX and CSQSNAP
• Dynamic queues SYSTEM.CSQXCMD.*

For all these potential users, protect the IBM MQ resources with RACF. In particular, note that the channel
initiator needs access to various resources, as described in “Security considerations for the channel

250 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-security-administrators-guide

initiator on z/OS” on page 257, and so the user ID under which it runs must be authorized to access these
resources.

If you are using a queue sharing group, the queue manager might issue various commands internally, so
the user ID it uses must be authorized to issue such commands. The commands are:

• DEFINE, ALTER, and DELETE for every object that has QSGDISP(GROUP)
• START and STOP CHANNEL for every channel used with CHLDISP(SHARED)

Configuring your z/OS system to use TLS
Use this topic as example of how to configure IBM MQ for z/OS with Transport Layer Security (TLS) using
RACF commands.

If you want to use TLS for channel security, there are a number of tasks you need to perform on
your system. (For details on using RACF commands for certificates and key repositories (key rings), see
Working with TLS on z/OS .)

1. Create a key ring in RACF to hold all the keys and certificates for your system, using the RACF
RACDCERT command. For example:

RACDCERT ID(CHINUSER) ADDRING(QM1RING)

The ID must be either the channel initiator address space user ID or the user ID you want to own the
key ring if it is to be a shared key ring.

2. Create a digital certificate for each queue manager, using the RACF RACDCERT command.

The label of the certificate must be either the value of the IBM MQ CERTLABL attribute, if it is set, or
the default ibmWebSphereMQ with the name of the queue manager or queue sharing group appended.
See Digital certificate labels for details. In this example it is ibmWebSphereMQQM1.

For example:

RACDCERT ID(USERID) GENCERT
SUBJECTSDN(CN('username') O('IBM') OU('departmentname') C('England'))
WITHLABEL('ibmWebSphereMQQM1')

3. Connect the certificate in RACF to the key ring, using the RACF RACDCERT command. For example:

RACDCERT CONNECT(ID(USERID) LABEL('ibmWebSphereMQQM1') RING(QM1RING))
CONNECT ID(CHINUSER)

You also need to connect any relevant signer certificates (from a certificate authority) to the key
ring. That is, all certificate authorities for the TLS certificate of this queue manager and all certificate
authorities for all TLS certificates that this queue manager communicates with. For example:

RACDCERT ID(CHINUSER)
CONNECT(CERTAUTH LABEL('My CA') RING(QM1RING) USAGE(CERTAUTH))

4. On each of your queue managers, use the IBM MQ ALTER QMGR command to specify the key
repository that the queue manager needs to point to. For example, if the key ring is owned by the
channel initiator address space:

Securing IBM MQ 251

ALTER QMGR SSLKEYR(QM1RING)

or if you are using a shared key ring:

ALTER QMGR SSLKEYR(userid/QM1RING)

where userid is the user ID that owns the shared key ring.
5. Certificate Revocation Lists (CRLs) allow the certificate authorities to revoke certificates that can no

longer be trusted. CRLs are stored in LDAP servers. To access this list on the LDAP server, you first
need to create an AUTHINFO object of AUTHTYPE CRLLDAP, using the IBM MQ DEFINE AUTHINFO
command. For example:

DEFINE AUTHINFO(LDAP1)
AUTHTYPE(CRLLDAP)
CONNAME(ldap.server(389))
LDAPUSER('')
LDAPPWD('')

In this example, the certificate revocation list is stored in a public area of the LDAP server, so the
LDAPUSER and LDAPPWD fields are not necessary.

Next, put your AUTHINFO object into a namelist, using the IBM MQ DEFINE NAMELIST command. For
example:

DEFINE NAMELIST(LDAPNL) NAMES(LDAP1)

Finally, associate the namelist with each queue manager, using the IBM MQ ALTER QMGR command.
For example:

ALTER QMGR SSLCRLNL(LDAPNL)

6. Set up your queue manager to run TLS calls, using the IBM MQ ALTER QMGR command. This defines
server subtasks that handle SSL calls only, which leaves the normal dispatchers to continue processing
as normal without being affected by any SSL calls. You must have at least two of these subtasks. For
example:

ALTER QMGR SSLTASKS(8)

This change only takes effect when the channel initiator is restarted.
7. Specify the cipher specification to be used for each channel, using the IBM MQ DEFINE CHANNEL or

ALTER CHANNEL command. For example:

ALTER CHANNEL(LDAPCHL)
CHLTYPE(SDR)
SSLCIPH(TLS_RSA_WITH_AES_128_CBC_SHA256)

252 Securing IBM MQ

Both ends of the channel must specify the same cipher specification.

Managing channel authentication records in a QSG
Channel authentication records apply to the queue manager that they are created on, they are not shared
throughout the queue sharing group (QSG). Therefore if all the queue managers in the queue sharing
group are required to have the same rules, some management needs to be carried out to keep all the
rules the consistent.

1. Always add the CMDSCOPE(*) option to all SET CHLAUTH commands. This will send the command to
all running queue managers in the queue sharing group

2. Use the DISPLAY CHLAUTH command with the CMDSCOPE(*) option and then analyze the responses
to see if the records are the same from all queue managers. When an inconsistency is found a SET
CHLAUTH command can be issued containing the same rule with CMDSCOPE(*) or CMDSCOPE(qmgr-
name).

3. Add a member to the queue manager's CSQINP2 concatenation (see Initialization commands for
details) that has the full set of rules. These will be read as part of the queue manager's initialization
process. If the SET CHLAUTH command uses ACTION(ADD) the rule will only be added if it didn't
exist. Using ACTION(REPLACE) will replace an existing rule if it already exists or add it if it does not.
The same member could then be placed in the CSQINP2 concatenation of all queue managers in the
queue sharing group.

4. Use the CSQUTIL utility (see Issuing commands to IBM MQ (COMMAND) for details) to extract the
rules from one queue manager using either the MAKEDEF or MAKEREP option. Then replay the output
using CSQUTIL into the target queue manager.

Related concepts
Channel authentication records
To exercise more precise control over the access granted to connecting systems at a channel level, you
can use channel authentication records.

Auditing considerations on z/OS
The normal RACF auditing controls are available for conducting a security audit of a queue manager. IBM
MQ does not gather any security statistics of its own. The only statistics are those that can be created by
auditing.

RACF auditing can be based upon:

• User IDs
• Resource classes
• Profiles

For more details, see the z/OS Security Server RACF Auditor's Guide.

Note: Auditing degrades performance; the more auditing you implement, the more performance is
degraded. This is also a consideration for the use of the RACF WARNING option.

Auditing RESLEVEL
Use the RESAUDIT system parameter to control the production of RESLEVEL audit records. RACF
GENERAL audit records are produced.

Produce RESLEVEL audit records by setting the RESAUDIT system parameter to YES. If the RESAUDIT
parameter is set to NO, audit records are not produced. For more details about setting this parameter, see
Using CSQ6SYSP.

If RESAUDIT is set to YES, no normal RACF audit records are taken when the RESLEVEL check is made
to see what access an address space user ID has to the hlq.RESLEVEL profile. Instead, IBM MQ requests
that RACF create a GENERAL audit record (event number 27). These checks are only carried out at
connect time, so the performance cost is minimal.

Securing IBM MQ 253

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-auditors-guide

Attention: RACFRW is no longer the suggested utility for processing RACF audit records. You
should use the RACF SMF data unload utility as this is the preferred reporting method.

You can report the IBM MQ general audit records using the RACF report writer (RACFRW). You could use
the following RACFRW commands to report the RESLEVEL access:

RACFRW
SELECT PROCESS
EVENT GENERAL
LIST
END

A sample report from RACFRW, excluding the Date, Time, and SYSID fields, is shown in Figure 19 on
page 254.

 RACF REPORT - LISTING OF PROCESS RECORDS PAGE 4
 E
 V Q
 E U
*JOB/USER *STEP/ --TERMINAL-- N A
 NAME GROUP ID LVL T L

 WS21B MQMGRP IGJZM000 0 27 0 JOBID=(WS21B 05.111 09:44:57),USERDATA=()
 TRUSTED USER AUTH=(NONE),REASON=(NONE)
 SESSION=TSOLOGON,TERMINAL=IGJZM000,
 LOGSTR='CSQH RESLEVEL CHECK PERFORMED AGAINST
PROFILE(QM66.RESLEVEL),
 CLASS(MQADMIN), ACCESS EQUATES TO
(CONTROL)',RESULT=SUCCESS,MQADMIN

Figure 19. Sample output from RACFRW showing RESLEVEL general audit records

From checking the LOGSTR data in this sample output, you can see that TSO user WS21B has CONTROL
access to QM66.RESLEVEL. This means that all resource security checks are bypassed when user WS21B
access QM66 resources.

For more information about using RACFRW, see The RACF report writer in the z/OS Security Server RACF
Auditor's Guide.

Customizing security
If you want to change the way IBM MQ security operates, you must do this through the SAF exit
(ICHRFR00), or exits in your external security manager.

To find out more about RACF exits, see the z/OS Security Server RACROUTE Macro Reference
documentation.

Note: Because IBM MQ optimizes calls to the ESM, RACROUTE requests might not be made on, for
example, every open for a particular queue by a particular user.

Security violation messages on z/OS
A security violation is indicated by the return code MQRC_NOT_AUTHORIZED in an application program or
by a message in the job log.

A return code of MQRC_NOT_AUTHORIZED can be returned to an application program for the following
reasons:

• A user is not allowed to connect to the queue manager. In this case, you get an ICH408I message in the
Batch/TSO, CICS, or IMS job log.

• A user sign-on to the queue manager has failed because, for example, the job user ID is not valid or
appropriate, or the task user ID or alternate user ID is not valid. One or more of these user IDs might

254 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=guide-racf-smf-data-unload-utility#racfsmf
https://www.ibm.com/docs/en/zos/3.1.0?topic=guide-racf-report-writer
https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-racroute-macro-reference

not be valid because they have been revoked or deleted. In this case, you get an ICHxxxx message and
possibly an IRRxxxx message in the queue manager job log giving the reason for the sign-on failure. For
example:

ICH408I USER(NOTDFND) GROUP() NAME(???)
 LOGON/JOB INITIATION - USER AT TERMINAL NOT RACF-DEFINED
IRR012I VERIFICATION FAILED. USER PROFILE NOT FOUND

• An alternate user has been requested, but the job or task user ID does not have access to the alternate
user ID. For this failure, you get a violation message in the job log of the relevant queue manager.

• A context option has been used or is implied by opening a transmission queue for output, but the job
user ID or, where applicable, the task or alternate user ID does not have access to the context option. In
this case, a violation message is put in the job log of the relevant queue manager.

• An unauthorized user has attempted to access a secured queue manager object, for example, a queue.
In this case, an ICH408I message for the violation is put in the job log of the relevant queue manager.
This violation might be due to the job or, when applicable, the task or alternate user ID.

Violation messages for command security and command resource security can also be found in the job
log of the queue manager.

If the ICH408I violation message shows the queue manager jobname rather than a user ID, this is
normally the result of a blank alternate user ID being specified. For example:

ICH408I JOB(MQS1MSTR) STEP(MQS1MSTR)
 MQS1.PAYROLL.REQUEST CL(MQQUEUE)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)

You can find out who is allowed to use blank alternate user IDs by checking the access list of the
MQADMIN profile hlq.ALTERNATE.USER.-BLANK-.

An ICH408I violation message can also be generated by:

• A command being sent to the system-command input queue without context. User-written programs
that write to the system-command input queue should always use a context option. For more
information, see “Profiles for context security” on page 214.

• When the job accessing the IBM MQ resource does not have a user ID associated with it, or when an
IBM MQ adapter cannot extract the user ID from the adapter environment.

Violation messages might also be issued if you are using both queue sharing group and queue manager
level security. You might get messages indicating that no profile has been found at queue manager level,
but still be granted access because of a queue sharing group level profile.

ICH408I JOB(MQS1MSTR) STEP(MQS1MSTR)
 MQS1.PAYROLL.REQUEST CL(MQQUEUE)
 PROFILE NOT FOUND - REQUIRED FOR AUTHORITY CHECKING
 ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)

See the z/OS for Security Server RACF Messages and Codes documentation for more information on
ICH408I messages.

Securing IBM MQ 255

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-messages-codes

What to do if access is allowed or disallowed incorrectly
In addition to the information detailed in the z/OS documentation, use this checklist if access to a
resource appears to be incorrectly controlled.

See the z/OS Security Server RACF Security Administrator's Guide for the detailed steps if access is
allowed or disallowed.

• Are the switch profiles correctly set?

– Is RACF active?
– Are the IBM MQ RACF classes installed and active?

Use the RACF command, SETROPTS LIST, to check this.
– Use the IBM MQ DISPLAY SECURITY command to display the current switch status from the queue

manager.
– Check the switch profiles in the MQADMIN class.

Use the RACF commands, SEARCH and RLIST, for this.
– Recheck the RACF switch profiles by issuing the IBM MQ REFRESH SECURITY(MQADMIN) command.

• Has the RACF resource profile changed? For example, has universal access on the profile changed or
has the access list of the profile changed?

– Is the profile generic?

If it is, issue the RACF command, SETROPTS GENERIC(classname) REFRESH.
– Have you refreshed the security on this queue manager?

If required, issue the RACF command SETROPTS RACLIST(classname) REFRESH.

If required, issue the IBM MQ REFRESH SECURITY(*) command.
• Has the RACF definition of the user changed? For example, has the user been connected to a new group

or has the user access authority been revoked?

– Have you reverified the user by issuing the IBM MQ RVERIFY SECURITY(userid) command?
• Are security checks being bypassed due to RESLEVEL?

– Check the connecting user ID's access to the RESLEVEL profile. Use the RACF audit records to
determine what the RESLEVEL is set to.

– For channels, remember that the access level that the channel initiator's userid has to RESLEVEL is
inherited by all channels, so an access level, such as ALTER, that causes all checks to be bypassed
causes security checks to be bypassed for all channels.

– If you are running from CICS, check the transaction's RESSEC setting.
– If RESLEVEL has been changed while a user is connected, they must disconnect and reconnect before

the new RESLEVEL setting takes effect.
• Are you using queue sharing groups?

– If you are using both queue sharing group and queue manager level security, check that you have
defined all the correct profiles. If queue manager profile is not defined, a message is sent to the log
stating that the profile was not found.

– Have you used a combination of switch settings that is not valid so that full security checking has
been set on?

– Do you need to define security switches to override some of the queue sharing group settings for your
queue manager?

– Is a queue manager level profile taking precedence over a queue sharing group level profile?

256 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-security-administrators-guide

Security considerations for the channel initiator on z/OS
If you are using resource security in a distributed queuing environment, the Channel initiator address
space needs appropriate access to various IBM MQ resources. You can use the Integrated Cryptographic
Support Facility (ICSF) to seed the password protection algorithm.

See the z/OS Cryptographic Services documentation for more information on ICSF.

Using resource security
If you are using resource security, consider the following points if you are using distributed queuing:
System queues

The channel initiator address space needs RACF UPDATE access to the system queues listed at
“System queue security” on page 204, and to all the user destination queues and the dead-letter
queue (but see “Dead-letter queue security” on page 203).

Transmission queues
The channel initiator address space needs ALTER access to all the user transmission queues.

Context security
The channel user ID (and the MCA user ID if one has been specified) need RACF CONTROL access to
the hlq.CONTEXT.queuename profiles in the MQADMIN class. Depending on the RESLEVEL profile, the
channel user ID might also need CONTROL access to these profiles.

All channels need CONTROL access to the MQADMIN hlq.CONTEXT. dead-letter-queue profile. All
channels (whether initiating or responding) can generate reports, and consequently they need
CONTROL access to the hlq.CONTEXT.reply-q profile.

SENDER, CLUSSDR, and SERVER channels need CONTROL access to the hlq.CONTEXT.xmit-queue-
name profiles since messages can be put onto the transmission queue to wake up the channel to end
gracefully.

Note: If the channel user ID, or a RACF group to which the channel user ID is connected, has
CONTROL or ALTER access to the hlq.RESLEVEL, then there are no resource checks for the channel
initiator or any of its channels.

See “Profiles for context security” on page 214 “RESLEVEL and the channel initiator connection” on
page 232 and “User IDs for security checking on z/OS” on page 234 for more information.

CSQINPX
If you are using the CSQINPX input data set, the channel initiator also needs READ access to
CSQINPX, and UPDATE access to data set CSQOUTX and dynamic queues SYSTEM.CSQXCMD.*.

Connection security
The channel initiator address space connection requests use a connection type of CHIN, for which
appropriate access security must be set, see “Connection security profiles for the channel initiator”
on page 198.

Data sets
The channel initiator address space needs appropriate access to queue manager data sets, see
“Authorizing access to data sets” on page 249.

Commands
The distributed queuing commands (for example, DEFINE CHANNEL, START CHINIT, START
LISTENER, and other channel commands) must have appropriate command security set, see Table
49 on page 217.

If you are using a queue sharing group, the channel initiator might issue various commands internally,
so the user ID it uses must be authorized to issue such commands. These commands are START and
STOP CHANNEL for every channel used with CHLDISP(SHARED).

If the PSMODE of the queue manager is not DISABLED, the channel initiator must have READ access
to the DISPLAY PUBSUB command.

Securing IBM MQ 257

https://www.ibm.com/docs/en/zos/3.1.0?topic=zos-cryptographic-services

Channel security
Channels, particularly receivers and server-connections, need appropriate security to be set up; see
“User IDs for security checking on z/OS” on page 234 for more information.

You can also use the Transport Layer Security (TLS) protocol to provide security on channels. See “TLS
security protocols in IBM MQ ” on page 24 for more information about using TLS with IBM MQ.

See also “Access control for clients” on page 102 for information about server-connection security.

User IDs
The user IDs described in “User IDs used by the channel initiator” on page 237 and “User IDs used by
the intra-group queuing agent” on page 241 need the following access:

• RACF UPDATE access to the appropriate destination queues and the dead-letter queue
• RACF CONTROL access to the hlq.CONTEXT.queuename profile if context checking is performed

at the receiver
• Appropriate access to the hlq.ALTERNATE.USER.userid profiles they might need to use.
• For clients, the appropriate RACF access to the resources to be used.

APPC security
Set appropriate APPC security if you are using the LU 6.2 transmission protocol. (Use the APPCLU
RACF class for example.) For information about setting up security for APPC, see the following
documentation:

• z/OS MVS Planning: APPC Management
• z/OS MVS Programming: Writing Servers for APPC/MVS

Outbound transmissions use the "SECURITY(SAME)" APPC option. As a result, the user ID of the
channel initiator address space and its default profile (RACF GROUP) are flowed across the network
to the receiver with an indicator that the user ID has already been verified (ALREADYV).

If the receiving side is also z/OS, the user ID and profile are verified by APPC and the user ID is
presented to the receiver channel and used as the channel user ID.

In an environment where the queue manager is using APPC to communicate with another queue
manager on the same or another z/OS system, you need to ensure that either:

• The VTAM definition for the communicating LU specifies SETACPT(ALREADYV)
• There is a RACF APPCLU profile for the connection between LUs that specifies

CONVSEC(ALREADYV)

Changing security settings
If the RACF access level that either the channel user ID or MCA user ID has to a destination
queue is changed, this change takes effect only for new object handles (that is, new MQOPEN s)
for the destination queue. The times when MCAs open and close queues is variable; if a channel is
already running when such an access change is made, the MCA can continue to put messages on the
destination queue using the existing security access of the user IDs rather than the updated security
access. Stopping and restarting the channels to enforce the updated access level avoids this scenario.

Automatic restart
If you are using the z/OS Automatic Restart Manager (ARM) to restart the channel initiator, the user
ID associated with the XCFAS address space must be authorized to issue the IBM MQ START CHINIT
command.

Using the Integrated Cryptographic Service Facility (ICSF)
The channel initiator can use ICSF to generate a random number when seeding the password protection
algorithm to obfuscate passwords flowing over client channels if TLS is not being used. The process of
generating a random number is called entropy.

If you have the z/OS feature installed but have not started ICSF, you see message CSQX213E and the
channel initiator uses STCK for entropy.

258 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=mvs-zos-planning-appcmvs-management
https://www.ibm.com/docs/en/zos/3.1.0?topic=mvs-zos-programming-writing-transaction-programs-appcmvs

Message CSQX213E warns you that the password protection algorithm is not as secure as it could be.
However, you can continue your process; there is no other impact on runtime.

If you do not have the z/OS feature installed, the channel initiator automatically uses STCK.

Notes:

1. Using ICSF for entropy generates more random sequences than using STCK.
2. If you start ICSF you must restart the channel initiator.
3. ICSF is required for certain CipherSpecs. If you attempt to use one of these CipherSpecs and you do

not have ICSF installed, you receive message CSQX629E.

Security in queue manager clusters on z/OS
Security considerations for clusters are the same for queue managers and channels that are not
clustered. The channel initiator needs access to some additional system queues, and some additional
commands need appropriate security set.

You can use the MCA user ID, channel authentication records, TLS, and security exits to authenticate
cluster channels (as with conventional channels). The channel authentication records or security exit
relating to the cluster-receiver channel must check that the remote queue manager is permitted access
to the server queue manager's cluster queues. You can start to use IBM MQ cluster support without
changing your existing queue access security. You must, however, allow other queue managers in the
cluster to write to the SYSTEM.CLUSTER.COMMAND.QUEUE if they are to join the cluster.

IBM MQ cluster support does not provide a mechanism to limit a member of a cluster to the client role
only. As a result, you must be sure that you trust any queue managers that you allow into the cluster. If
any queue manager in the cluster creates a queue with a particular name, it can receive messages for that
queue, regardless of whether the application putting messages to that queue intended this or not.

To restrict the membership of a cluster, take the same action that you would take to prevent
queue managers connecting to receiver channels. You restrict the membership of a cluster by
using channel authentication records or by writing a security exit program on the receiver channel.
You can also write an exit program to prevent unauthorized queue managers from writing to the
SYSTEM.CLUSTER.COMMAND.QUEUE.

Note: It is not advisable to permit applications to open the SYSTEM.CLUSTER.TRANSMIT.QUEUE directly.
It is also not advisable to permit an application to open any other transmission queue directly.

If you are using resource security, consider the following points in addition to the considerations
contained in “Security considerations for the channel initiator on z/OS” on page 257:
System queues

The channel initiator needs RACF ALTER access to the following system queues:

• SYSTEM.CLUSTER.COMMAND QUEUE
• SYSTEM.CLUSTER.TRANSMIT.QUEUE.

and UPDATE access to SYSTEM.CLUSTER.REPOSITORY.QUEUE

It also needs READ access to any namelists used for clustering.

Commands
Set appropriate command security (as described in Table 49 on page 217) for the cluster support
commands (REFRESH and RESET CLUSTER, SUSPEND, and RESUME QMGR.

Security considerations for using IBM MQ with CICS
All the CICS versions supported by IBM MQ 9.0.0, and later, use the CICS supplied version of the adapter
and bridge.

For details of security considerations, see:

• Security for the CICS-MQ adapter.

Securing IBM MQ 259

https://www.ibm.com/docs/en/cics-ts/6.1?topic=cics-security-mq-adapter

• Security for the CICS-MQ bridge.

Security considerations for using IBM MQ with IMS
Use this topic to plan your security requirements when you use IBM MQ with IMS.

Using the OPERCMDS class
If you are using RACF to protect resources in the OPERCMDS class, ensure that the userid associated
with your IBM MQ queue manager address space has authority to issue the MODIFY command to any IMS
system to which it can connect.

Security considerations for the IMS bridge
There are four aspects that you must consider when deciding your security requirements for the IMS
bridge, these are:

• What security authorization is needed to connect IBM MQ to IMS
• How much security checking is performed on applications using the bridge to access IMS
• Which IMS resources these applications are allowed to use
• What authority is to be used for messages that are put and got by the bridge

When you define your security requirements for the IMS bridge you must consider the following:

• Messages passing across the bridge might have originated from applications on platforms that do not
offer strong security features

• Messages passing across the bridge might have originated from applications that are not controlled by
the same enterprise or organization

Security considerations for connecting to IMS
Grant the user ID of the IBM MQ queue manager address space access to the OTMA group.

The IMS bridge is an OTMA client. The connection to IMS operates under the user ID of the IBM MQ queue
manager address space. This is normally defined as a member of the started task group. This user ID
must be granted access to the OTMA group (unless the /SECURE OTMA setting is NONE).

To do this, define the following profile in the FACILITY class:

IMSXCF.xcfgname.mqxcfmname

Where xcfgname is the XCF group name and mqxcfmname is the XCF member name of IBM MQ.

You must give your IBM MQ queue manager user ID read access to this profile.

Note:

1. If you change the authorities in the FACILITY class, you must issue the RACF command SETROPTS
RACLIST(FACILITY) REFRESH to activate the changes.

2. If profile hlq.NO.SUBSYS.SECURITY exists in the MQADMIN class, no user ID is passed to IMS and the
connection fails unless the /SECURE OTMA setting is NONE.

Application access control for the IMS bridge
Define a RACF profile in the FACILITY class for each IMS system. Grant an appropriate level of access to
the IBM MQ queue manager user ID.

For each IMS system that the IMS bridge connects to, you can define the following RACF profile in the
FACILITY class to determine how much security checking is performed for each message passed to the
IMS system.

260 Securing IBM MQ

https://www.ibm.com/docs/en/cics-ts/6.1?topic=cics-security-mq-bridge

IMSXCF.xcfgname.imsxcfmname

Where xcfgname is the XCF group name and imsxcfmname is the XCF member name for IMS. (You need
to define a separate profile for each IMS system.)

The access level you allow for the IBM MQ queue manager user ID in this profile is returned to IBM MQ
when the IMS bridge connects to IMS, and indicates the level of security that is required on subsequent
transactions. For subsequent transactions, IBM MQ requests the appropriate services from RACF and,
where the user ID is authorized, passes the message to IMS.

OTMA does not support the IMS /SIGN command; however, IBM MQ allows you to set the access checking
for each message to enable implementation of the necessary level of control.

The following access level information can be returned:
NONE or NO PROFILE FOUND

These values indicate that maximum security is required, that is, authentication is required for every
transaction. A check is made to verify that the user ID specified in the UserIdentifier field of the MQMD
structure, and the password or PassTicket in the Authenticator field of the MQIIH structure are known
to RACF, and are a valid combination. A UTOKEN is created with a password or PassTicket, and passed
to IMS ; the UTOKEN is not cached.

Note: If profile hlq.NO.SUBSYS.SECURITY exists in the MQADMIN class, this level of security
overrides whatever is defined in the profile.

READ
This value indicates that the same authentication is to be performed as for NONE under the following
circumstances:

• The first time that a specific user ID is encountered
• When the user ID has been encountered before but the cached UTOKEN was not created with a

password or PassTicket

IBM MQ requests a UTOKEN if required, and passes it to IMS.

Note: If a request to reverify security has been acted on, all cached information is lost and a UTOKEN
is requested the first time each user ID is later encountered.

UPDATE
A check is made that the user ID in the UserIdentifier field of the MQMD structure is known to RACF.

A UTOKEN is built and passed to IMS ; the UTOKEN is cached.

CONTROL/ALTER
These values indicate that no security UTOKENs need to be provided for any user IDs for this IMS
system. (You would probably only use this option for development and test systems.)

Attention: Note that the user ID contained in the UserIdentifier field of the MQMD structure is
still passed for CONTROL/ALTER.

Note:

1. This access is defined when IBM MQ connects to IMS, and lasts for the duration of the connection.
To change the security level, the access to the security profile must be changed and then the bridge
stopped and restarted (for example, by stopping and restarting OTMA).

2. If you change the authorities in the FACILITY class, you must issue the RACF command SETROPTS
RACLIST(FACILITY) REFRESH to activate the changes.

3. You can use a password or a PassTicket, but you must remember that the IMS bridge does not encrypt
data. For information about using PassTickets, see “Using RACF PassTickets in the IMS header” on
page 263.

Securing IBM MQ 261

4. Some of these results might be affected by security settings in IMS, using the /SECURE OTMA
command.

5. Cached UTOKEN information is held for the duration defined by the INTERVAL and TIMEOUT
parameters of the IBM MQ ALTER SECURITY command.

6. The RACF WARNING option has no effect on the IMSXCF.xcfgname.imsxcfmname profile. Its use does
not affect the level of access granted, and no RACF WARNING messages are produced.

Security checking on IMS
Messages that pass across the bridge contain security information. The security checks made depend on
the setting of the IMS command /SECURE OTMA.

Each IBM MQ message that passes across the bridge contains the following security information:

• A user ID contained in the UserIdentifier field of the MQMD structure
• The security scope contained in the SecurityScope field of the MQIIH structure (if the MQIIH structure is

present)
• A UTOKEN (unless the IBM MQ sub system has CONTROL or ALTER access to the relevant
IMSXCF.xcfgname.imsxcfmname profile)

The security checks made depend on the setting of the IMS command /SECURE OTMA, as follows:
/SECURE OTMA NONE

No security checks are made for the transaction.
/SECURE OTMA CHECK

The UserIdentifier field of the MQMD structure is passed to IMS for transaction or command authority
checking.

An ACEE (Accessor Environment Element) is built in the IMS control region.

/SECURE OTMA FULL
The UserIdentifier field of the MQMD structure is passed to IMS for transaction or command authority
checking.

An ACEE is built in the IMS dependent region as well as the IMS control region.

/SECURE OTMA PROFILE
The UserIdentifier field of the MQMD structure is passed to IMS for transaction or command authority
checking

The SecurityScope field in the MQIIH structure is used to determine whether to build an ACEE in the
IMS dependent region as well as the control region.

Note:

1. If you change the authorities in the TIMS or CIMS class, or the associated group classes GIMS or DIMS,
you must issue the following IMS commands to activate the changes:

• /MODIFY PREPARE RACF
• /MODIFY COMMIT

2. If you do not use /SECURE OTMA PROFILE, any value specified in the SecurityScope field of the
MQIIH structure is ignored.

Security checking done by the IMS bridge
Different authorities are used depending on the action being performed.

When the bridge puts or gets a message, the following authorities are used:
Getting a message from the bridge queue

No security checks are performed.
Putting an exception, or COA report message

Uses the authority of the user ID in the UserIdentifier field of the MQMD structure.

262 Securing IBM MQ

Putting a reply message
Uses the authority of the user ID in the UserIdentifier field of the MQMD structure of the original
message

Putting a message to the dead-letter queue
No security checks are performed.

Note:

1. If you change the IBM MQ class profiles, you must issue the IBM MQ REFRESH SECURITY(*) command
to activate the changes.

2. If you change the authority of a user, you must issue the MQSC RVERIFY SECURITY command to
activate the change.

Using RACF PassTickets in the IMS header
You can use a PassTicket in place of a password in the IMS header.

If you want to use a PassTicket instead of a password in the IMS header (MQIIH), specify the application
name against which the PassTicket is validated in the PASSTKTA attribute of the STGCLASS definition of
the IMS bridge queue to which the message is to be routed.

If the PASSTKTA value is left blank, you must arrange to have a PassTicket generated. The application
name in this case must be of the form MVSxxxx, where xxxx is the SMFID of the z/OS system on which the
target queue manager runs.

A PassTicket is built from a user ID, the target application name, and a secret key. It is an 8-byte value
containing uppercase alphabetic and numeric characters. It can be used only once, and is valid for a 20
minute period. If a PassTicket is generated by a local RACF system, RACF only checks that the profile
exists and not that the user has authority against the profile. If the PassTicket was generated on a remote
system, RACF validates the access of the user ID to the profile. For full information about PassTickets, see
the z/OS Security Server RACF Security Administrator's Guide.

PassTickets in IMS headers are given to RACF by IBM MQ, not IMS.

Migrating a z/OS queue manager to mixed-case security
Follow these steps to migrate a queue manager to mixed-case security. You review the level of security
product you are using and activate the new IBM MQ external security manager classes. Run the REFRESH
SECURITY command to activate the mixed-case profiles.

Before you begin
1. Ensure all IBM MQ external security manager classes are activated.
2. Ensure your queue manager is started.

About this task
Follow these steps to convert a queue manager to mixed-case security.

Procedure
1. Copy all your existing profiles and access levels from the uppercase classes to the equivalent mixed-

case external security manager class.
a) MQADMIN to MXADMIN.
b) MQPROC to MXPROC.
c) MQNLIST to MXNLIST.
d) MQQUEUE to MXQUEUE.

2. Change the value of the SCYCASE queue manager attribute to MIXED by issuing the following
command.

Securing IBM MQ 263

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-security-administrators-guide

ALTER QMGR SCYCASE(MIXED)

3. Activate the security profiles by issuing the following command.

REFRESH SECURITY(*) TYPE(CLASSES)

4. Test that your security profiles are working correctly.

What to do next
Review your object definitions and create new mixed-case profiles as appropriate, using the REFRESH
SECURITY command as required to activate the profiles.

Setting up IBM MQ MQI client security
You must consider IBM MQ MQI client security, so that the client applications do not have unrestricted
access to resources on the server.

When running a client application, do not run the application using a user ID that has more access rights
than necessary; for example, a user in the mqm group or even the mqm user itself.

By running an application as a user with too many access rights, you run the risk of the application
accessing and changing parts of the queue manager, either by accident or maliciously.

There are two aspects to security between a client application and its queue manager server:
authentication and access control.

• Authentication can be used to ensure that the client application, running as a specific user, is who they
say they are. By using authentication you can prevent an attacker from gaining access to your queue
manager by impersonating one of your applications.

From IBM MQ 8.0, authentication is provided by one of two options:

– The connection authentication feature.

For more information on connection authentication, see “Connection authentication” on page 70.
– Using mutual authentication within TLS.

For more information on TLS, see “Working with SSL/TLS” on page 268.
• Access control can be used to give or remove access rights for a specific user or group of users. By

running a client application with a specifically created user (or user in a specific group) you can then
use access controls to ensure the application cannot access parts of your queue manager that the
application is not supposed to.

When setting up access control you must consider channel authentication rules and the MCAUSER field
on a channel. Both of these features have the ability to change which user ID is being used for verifying
access control rights.

For more information on access control, see “Authorizing access to objects” on page 363.

If you have set up a client application to connect to a specific channel with a restricted ID, but the
channel has an administrator ID set in its MCAUSER field then, provided the client application connects
successfully, the administrator ID is used for access control checks. Therefore, the client application will
have full access rights to your queue manager.

For more information on the MCAUSER attribute, see “Mapping a client user ID to an MCAUSER user ID”
on page 398.

Channel authentication rules can also be used as a method for controlling access to a queue manager, by
setting up specific rules and criteria for a connection to be accepted.

For more information on channel authentication rules see: “Channel authentication records” on page 51.

264 Securing IBM MQ

Specifying that only FIPS-certified CipherSpecs are used at run time on the
MQI client
Create your key repositories using FIPS-compliant software, then specify that the channel must use
FIPS-certified CipherSpecs.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

In order to be FIPS-compliant at run time, the key repositories must have been created and managed
using only FIPS-compliant software such as runmqakm with the -fips option.

You can specify that a TLS channel must use only FIPS-certified CipherSpecs in three ways, listed in order
of precedence:

1. Set the FipsRequired field in the MQSCO structure to MQSSL_FIPS_YES.
2. Set the environment variable MQSSLFIPS to YES.
3. Set the SSLFipsRequired attribute in the SSL stanza of the client configuration file to YES.

By default, FIPS-certified CipherSpecs is not required.

These values have the same meanings as the equivalent parameter values on ALTER QMGR SSLFIPS
(see ALTER QMGR (alter queue manager settings)). If the client process currently has no active TLS
connections, and a FipsRequired value is validly specified on an SSL MQCONNX, all subsequent TLS
connections associated with this process must use only the CipherSpecs associated with this value. This
applies until this and all other TLS connections have stopped, at which stage a subsequent MQCONNX can
provide a new value for FipsRequired.

If cryptographic hardware is present, the cryptographic modules used by IBM MQ can be configured to be
those modules provided by the hardware product, and these might be FIPS-certified to a particular level.
The configurable modules and whether they are FIPS-certified depends on the hardware product in use.

Where possible, if FIPS-only CipherSpecs is configured then the MQI client rejects connections which
specify a non-FIPS CipherSpec with MQRC_SSL_INITIALIZATION_ERROR. IBM MQ does not guarantee
to reject all such connections and it is your responsibility to determine whether your IBM MQ
configuration is FIPS-compliant.

Related concepts
“Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows” on page 35
When cryptography is required on an SSL/TLS channel on AIX, Linux, and Windows systems, IBM MQ uses
a cryptography package called IBM Crypto for C (ICC). On the AIX, Linux, and Windows platforms, the
ICC software has passed the Federal Information Processing Standards (FIPS) Cryptomodule Validation
Program of the US National Institute of Standards and Technology, at level 140-2.

Running TLS client applications with multiple installations of GSKit
V8.0 on AIX
TLS client applications on AIX might experience MQRC_CHANNEL_CONFIG_ERROR and error AMQ6175
when running on AIX systems with multiple GSKit V8.0 installations.

When running client applications on an AIX system with multiple GSKit V8.0 installations, the client
connect calls can return MQRC_CHANNEL_CONFIG_ERROR when using TLS. The /var/mqm/errors logs
record error AMQ6175 and AMQ9220 for the failing client application, for example:

09/08/11 11:16:13 - Process(24412.1) User(user) Program(example)
Host(machine.example.ibm.com) Installation(Installation1)
VRMF(7.1.0.0)
AMQ6175: The system could not dynamically load the shared library
'/usr/mqm/gskit8/lib64/libgsk8ssl_64.so'. The system returned

Securing IBM MQ 265

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

error number '8' and error message 'Symbol resolution failed
for /usr/mqm/gskit8/lib64/libgsk8ssl_64.so because:
Symbol VALUE_EC_NamedCurve_secp256r1__9GSKASNOID (number 16) is not
exported from dependent module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
Symbol VALUE_EC_NamedCurve_secp384r1__9GSKASNOID (number 17) is not exported from
dependent module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
Symbol VALUE_EC_NamedCurve_secp521r1__9GSKASNOID (number 18) is not exported from
dependent module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
Symbol VALUE_EC_ecPublicKey__9GSKASNOID (number 19) is not exported from dependent
module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
Symbol VALUE_EC_ecdsa_with_SHA1__9GSKASNOID (number 20) is not exported from
dependent module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.
Symbol VALUE_EC_ecdsa__9GSKASNOID (number 21) is not exported from dependent
module /db2data/db2inst1/sqllib/lib64/libgsk8cms_64.so.'.

EXPLANATION:
This message applies to AIX systems. The shared library
'/usr/mqm/gskit8/lib64/libgsk8ssl_64.so' failed
to load correctly due to a problem with the library.
ACTION:
Check the file access permissions and that the file has not been corrupted.
----- amqxufnx.c : 1284 ---
09/08/11 11:16:13 - Process(24412.1) User(user) Program(example)
Host(machine.example.ibm.com) Installation(Installation1)
VRMF(7.1.0.0)
AMQ9220: The GSKit communications program could not be loaded.

EXPLANATION:
The attempt to load the GSKit library or procedure
'/usr/mqm/gskit8/lib64/libgsk8ssl_64.so' failed with error code
536895861.
ACTION:
Either the library must be installed on the system or the environment changed
to allow the program to locate it.
----- amqcgska.c : 836 --

A common cause of this error is that the setting of the LIBPATH or LD_LIBRARY_PATH environment
variable has caused the IBM MQ client to load a mixed set of libraries from two different GSKit V8.0
installations. Executing an IBM MQ client application in a Db2 environment can cause this error.

To avoid this error, include the IBM MQ library directories at the front of the library path so that the
IBM MQ libraries take precedence. This can be achieved using the setmqenv command with the -k
parameter, for example:

. /usr/mqm/bin/setmqenv -s -k

For more information about the use of the setmqenv command, refer to setmqenv (set IBM MQ
environment)

Setting up communications for SSL or TLS on IBM i
Secure communications that use the SSL or TLS cryptographic security protocols involve setting up the
communication channels and managing the digital certificates that you will use for authentication.

To set up your SSL or TLS installation you must define your channels to use SSL or TLS. You must also
create and manage your digital certificates. On some operating systems, you can perform the tests with
self-signed certificates. However, on IBM i, you must use personal certificates signed by a local CA.

For full information about creating and managing certificates, see “Working with SSL/TLS on IBM i” on
page 269.

This collection of topics introduces some of the tasks involved in setting up SSL or TLS communications,
and provides step-by-step guidance on completing those tasks

You might also want to test SSL or TLS client authentication, which are optional parts of the SSL and TLS
protocols. During the SSL or TLS handshake, the SSL or TLS client always obtains and validates a digital
certificate from the server. With the IBM MQ implementation, the SSL or TLS server always requests a
certificate from the client.

On IBM i, the SSL or TLS client sends a certificate only if it has one labeled in the correct IBM MQ format:

266 Securing IBM MQ

• For a queue manager, ibmwebspheremq followed by the name of your queue manager changed to
lowercase. For example, for QM1, ibmwebspheremqqm1.

• For an IBM MQ C Client for IBM i, ibmwebspheremq followed by your logon user ID changed to
lowercase, for example ibmwebspheremqmyuserid.

IBM MQ uses the ibmwebspheremq prefix on a label to avoid confusion with certificates for other
products. Ensure that you specify the entire certificate label in lowercase.

The SSL or TLS server always validates the client certificate if one is sent. If the SSL or TLS client does
not send a certificate, authentication fails only if the end of the channel acting as the SSL or TLS server is
defined with either the SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set. For
more information, see Connecting two queue managers using SSL or TLS.

Setting up communications for SSL or TLS on AIX, Linux, and
Windows

Secure communications that use the SSL or TLS cryptographic security protocols involve setting up the
communication channels and managing the digital certificates that you will use for authentication.

To set up your SSL or TLS installation you must define your channels to use SSL or TLS. You must also
create and manage your digital certificates. On AIX, Linux, and Windows systems, you can perform the
tests with self-signed certificates.

Attention: It is not possible to use a mixture of Elliptic Curve-signed certificates and RSA-signed
certificates on queue managers that you want to join together using TLS enabled channels.

Queue managers using TLS enabled channels must all use RSA-signed certificates, or all use
EC-signed certificates, not a mixture of both.

See “Digital certificates and CipherSpec compatibility in IBM MQ” on page 46 for more
information.

Self-signed certificates cannot be revoked, which could allow an attacker to spoof an identity after a
private key has been compromised. CAs can revoke a compromised certificate, which prevents its further
use. CA-signed certificates are therefore safer to use in a production environment, though self-signed
certificates are more convenient for a test system.

For full information about creating and managing certificates, see “Working with SSL/TLS on AIX, Linux,
and Windows” on page 286.

This collection of topics introduces some of the tasks involved in setting up SSL communications, and
provides step-by-step guidance on completing those tasks.

You might also want to test SSL or TLS client authentication, which are an optional part of the protocols.
During the SSL or TLS handshake, the SSL or TLS client always obtains and validates a digital certificate
from the server. With the IBM MQ implementation, the SSL or TLS server always requests a certificate
from the client.

On AIX, Linux, and Windows, the SSL or TLS client sends a certificate only if it has one labeled in the
correct IBM MQ format:

• For a queue manager, the format is ibmwebspheremq followed by the name of your queue manager
changed to lowercase. For example, for QM1, ibmwebspheremqqm1

• For an IBM MQ client, ibmwebspheremq followed by your logon user ID changed to lowercase, for
example ibmwebspheremqmyuserid.

IBM MQ uses the ibmwebspheremq prefix on a label to avoid confusion with certificates for other
products. Ensure that you specify the entire certificate label in lowercase.

The SSL or TLS server always validates the client certificate if one is sent. If the client does not send a
certificate, authentication fails only if the end of the channel acting as the SSL or TLS server is defined
with either the SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set. For more
information, see Connecting two queue managers using SSL or TLS.

Securing IBM MQ 267

Setting up communications for SSL or TLS on z/OS
Secure communications that use the SSL or TLS cryptographic security protocols involve setting up the
communication channels and managing the digital certificates that you will use for authentication.

To set up your SSL or TLS installation you must define your channels to use SSL or TLS. You must
also create and manage your digital certificates. On z/OS you can perform the tests with self-signed
certificates, or with personal certificates signed by a local certificate authority (CA).

Self-signed certificates cannot be revoked, which could allow an attacker to spoof an identity after a
private key has been compromised. CAs can revoke a compromised certificate, which prevents its further
use. CA-signed certificates are therefore safer to use in a production environment, though self-signed
certificates are more convenient for a test system.

For full information about creating and managing certificates, see “Working with SSL/TLS on z/OS” on
page 324.

See the CERTLABL and CERTQSGL parameters of the ALTER QMGR command and the CERLABL
parameter of the DEFINE CHANNEL command for more information.

The order of precedence is:

• Channel CERTLABL parameter
• QMGR CERTQSGL parameter if the channel is shared.

For a sender channel, that means the transmission queue (XMITQ) is shared. For a receiver channel,
that means the channel started through the shared listener, that is the listener with INDISP(GROUP).

• QMGR CERTLABL
• The default label of ibmWebSphereMQ followed by the name of the queue sharing group for shared

channels, or the name of the queue manager.

This collection of topics introduces some of the tasks involved in setting up SSL or TLS communications,
and provides step-by-step guidance on completing those tasks.

You might also want to test SSL or TLS client authentication, which are an optional part of the protocols.
During the SSL or TLS handshake, the SSL or TLS client always obtains and validates a digital certificate
from the server. With the IBM MQ implementation, the SSL or TLS server always requests a certificate
from the client.

If the channel is shared, the channel first tries to find a certificate for the queue sharing group. If it does
not find a certificate for a queue sharing group, it tries to find a certificate for the queue manager.

On z/OS, IBM MQ uses the ibmWebSphereMQ prefix on a label to avoid confusion with certificates for
other products.

The SSL or TLS server always validates the client certificate if one is sent. If the SSL or TLS client does
not send a certificate, authentication fails only if the end of the channel acting as the SSL or TLS server is
defined with either the SSLCAUTH parameter set to REQUIRED or an SSLPEER parameter value set. For
more information, see Connecting two queue managers using SSL or TLS.

Working with SSL/TLS
These topics give instructions for performing single tasks related to using TLS with IBM MQ.

Many of them are used as steps in the higher-level tasks described in the following sections:

• “Identifying and authenticating users” on page 336
• “Authorizing access to objects” on page 363
• “Confidentiality of messages” on page 429
• “Data integrity of messages” on page 484
• “Keeping clusters secure” on page 485

268 Securing IBM MQ

Working with SSL/TLS on IBM i
This collection of topics gives instructions for individual tasks working with Transport Layer Security (TLS)
in IBM MQ for IBM i.

For IBM i the TLS support is integral to the operating system. Ensure that you have installed the
prerequisites listed in Hardware and software requirements on IBM i.

On IBM i, you manage keys and digital certificates with the Digital Certificate Manager (DCM) tool.

Accessing DCM
Follow these instructions to access the DCM interface.

About this task
Perform the following steps in a web browser that supports frames.

Procedure
1. Go to either http://machine.domain:2001 or https://machine.domain:2010, where

machine is the name of your computer.
2. Type a valid user profile and password when requested to.

Ensure that your user profile has *ALLOBJ and *SECADM special authorities to enable you to create
new certificate stores. If you do not have the special authorities, you can only manage your personal
certificates or view the object signatures for the objects for which you are authorized. If you are
authorized to use an object signing application, you can also sign objects from DCM.

3. On the Internet Configurations page, click Digital Certificate Manager.
The Digital Certificate Manager page is displayed.

Assigning a certificate to a queue manager on IBM i
Use DCM to assign a certificate to a queue manager.

Use traditional IBM i digital certificate management to assign a certificate to a queue manager. This
means that you can specify that a queue manager uses the system certificate store, and that the queue
manager is registered for use as an application with Digital Certificate Manager. To do this, change the
value of the queue manager SSLKEYR attribute to *SYSTEM.

When the SSLKEYR parameter is changed to *SYSTEM, IBM MQ registers the queue manager as a server
application with a unique application label of QIBM_WEBSPHERE_MQ_QMGRNAME and a label with a
description of Qmgrname (WMQ). Note that channel CERTLABL attributes are not used if you use the
*SYSTEM certificate store. The queue manager then appears as a server application in Digital Certificate
Manager, and you can assign to this application any server or client certificate in the system store.

Because the queue manager is registered as an application, advanced features of DCM such as defining
CA trust lists can be carried out.

If the SSLKEYR parameter is changed to a value other than *SYSTEM, IBM MQ deregisters the queue
manager as an application with Digital Certificate Manager. If a queue manager is deleted, it is also
deregistered from DCM. A user with sufficient *SECADM authority can also manually add or remove
applications from DCM.

Setting up a key repository on IBM i
A key repository must be set up at both ends of the connection. The default certificate stores can be used
or you can create your own.

A TLS connection requires a key repository at each end of the connection. Each queue manager and IBM
MQ MQI client must have access to a key repository. If you want to access the key repository using a file
name and password (that is, not using the *SYSTEM option) ensure that the QMQM user profile has the
following authorities:

• Execute authority for the directory containing the key repository

Securing IBM MQ 269

• Read authority for the file containing the key repository

See “The SSL/TLS key repository” on page 25 for more information. Note that channel CERTLABL
attributes are not used if you use the *SYSTEM certificate store.

On IBM i, digital certificates are stored in a certificate store that is managed with DCM. These digital
certificates have labels, which associate a certificate with a queue manager or an IBM MQ MQI client. TLS
uses the certificates for authentication purposes.

The label is either the value of the CERTLABL attribute, if it is set, or the default ibmwebspheremq with
the name of the queue manager or IBM MQ MQI client user logon ID appended, all in lowercase. See
Digital certificate labels for details.

The queue manager or IBM MQ MQI client certificate store name comprises a path and stem name.
The default path is /QIBM/UserData/ICSS/Cert/Server/ and the default stem name is Default.
On IBM i, the default certificate store, /QIBM/UserData/ICSS/Cert/Server/Default.kdb, is also
known as *SYSTEM. Optionally, you can define your own path and stem name.

If you define your own path or file name, set the permissions to the file to tightly control access to it.

“Changing the key repository location for a queue manager on IBM i” on page 273 tells you about
specifying the certificate store name. You can specify the certificate store name either before or after
creating the certificate store.

Note: The operations you can perform with DCM might be limited by the authority of your user profile. For
example, you require *ALLOBJ and *SECADM authorities to create a CA certificate.

Encrypting key repository passwords on IBM i
Several IBM MQ components need access to a key repository that contains digital certificates or
symmetric keys. A key repository is secured with a password as it contains sensitive information. The
key repository password must be stored in a location where IBM MQ can read it when the key repository
is accessed. The password must also be encrypted to reduce the likelihood of unauthorized access to the
key repository.

The following IBM MQ components and features support two different methods to store key repository
passwords:

• The queue manager TLS key repository.
• IBM MQ MQI clients that use TLS.

• The Native HA configuration in the NativeHALocalInstance stanza of the qm.ini file.

• The token authentication configuration in the AuthToken stanza of the qm.ini file.

Key repository passwords for use by these components can be encrypted and stored by using one of the
following methods:
The IBM MQ password protection system.

Each IBM MQ component provides a command to encrypt the key repository password. The encrypted
command that the command outputs is stored in a file.

For the queue manager TLS key repository, the password is encrypted when the SSLKEYRPWD queue
manager attribute is set.

The password is encrypted with the AES-128 algorithm. The details of this algorithm are publicly
known and it is considered secure.

The password is stored in a proprietary format that is not understood by other software that might
access the key repository.

A password that is encrypted by one IBM MQ component cannot be used by a different IBM MQ
component.

270 Securing IBM MQ

A unique encryption key can be provided when the key repository password is encrypted. A unique
encryption key prevents anyone who does not have access to the encryption key from being able to
decrypt the password.

The plain text key repository password is needed to manage the certificates that are in the key
repository. In addition to encrypting the key repository password by using the IBM MQ password
protection system, you must also store the key repository password in a secure location where it can
be accessed for this purpose.

For more information about the IBM MQ password protection system, see “Protecting passwords in
IBM MQ component configuration files” on page 571.

A key repository stash file.

The runmqakm and runmqckm commands can store the key repository password in a stash file. See
also Administering using MQSC commands on IBM i.

The password is encrypted with a proprietary method that is specific to IBM MQ's cryptographic
provider, GSKit.

A unique encryption key cannot be provided.

The encrypted password is stored in a stash file in the same directory as the key repository file.

Anyone with read access to both the key repository and the stash file can access and manage the
contents of the key repository.

Regardless of the method that you choose to encrypt the key repository password, ensure that you
are aware of the limitations of encrypting stored passwords. For more information, see “The limits to
protection through password encryption” on page 578.

Related concepts
“Supplying the key repository password for a queue manager on IBM i” on page 273
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.
“Supplying the key repository password for an IBM MQ MQI client on IBM i” on page 275
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.
“Working with SSL/TLS on IBM i” on page 269
This collection of topics gives instructions for individual tasks working with Transport Layer Security (TLS)
in IBM MQ for IBM i.

Creating a certificate store on IBM i
If you do not want to use the default certificate store, follow this procedure to create your own.

About this task
Create a new certificate store only if you do not want to use the IBM i default certificate store.

To specify that the IBM i system certificate store is to be used, change the value of the queue manager's
SSLKEYR attribute to *SYSTEM. This value indicates that the queue manager uses the system certificate
store, and the queue manager is registered for use as an application with Digital Certificate Manager
(DCM).

Procedure
1. Access the DCM interface, as described in “Accessing DCM” on page 269
2. In the navigation panel, click Create New Certificate Store.

The Create New Certificate Store page is displayed in the task frame.
3. In the task frame, select Other System Certificate Store and click Continue.

Securing IBM MQ 271

The Create a Certificate in New Certificate Store page is displayed in the task frame.
4. Select No - Do not create a certificate in the certificate store and click Continue.

The Certificate Store Name and Password page is displayed in the task frame.
5. In the Certificate store path and filename field, type an IFS path and file name, for example /QIBM/
UserData/mqm/qmgrs/qm1/key.kdb

6. Type a password in the Password field and type it again in the Confirm Password field. Click
Continue.
Make a note of the password (which is case sensitive) because you need it when you stash the
repository key.

7. To exit from DCM, close your browser window.

What to do next
When you have created the certificate store using DCM, ensure you stash the password, as described in
“Stashing the certificate store password on IBM i systems” on page 272
Related tasks
“Importing a certificate into a key repository on IBM i” on page 282
Follow this procedure to import a certificate.

Stashing the certificate store password on IBM i systems
Stash the certificate store password by using CL commands.

The following instructions apply to stashing the certificate store password on IBM i for a queue manager.
Alternatively, for an IBM MQ MQI client, if you are not using the *SYSTEM certificate store (that is, the
MQSSLKEYR environment is set to a value other than *SYSTEM), follow the procedure described in the
“Stash the certificate store password” on page 285 section of “IBM MQ SSL Client utility (amqrsslc) for
IBM i” on page 284.

If you have specified that the *SYSTEM certificate store is to be used (by changing the value of the
SSLKEYR attribute of the queue manager to *SYSTEM) you must not follow these steps.

When you have created the certificate store using DCM, use the following commands to stash the
password:

STRMQM MQMNAME('queue_manager_name')
CHGMQM MQMNAME('queue_manager_name') SSLKEYRPWD('password')

The password is case sensitive. It must be entered in single quotation marks exactly as you entered it in
step 6 of “Creating a certificate store on IBM i” on page 271.

Note: If you are not using the default system certificate store, and you do not stash the password,
attempts to start TLS channels fail because they cannot obtain the password required to access the
certificate store.

Password protection

When a key repository password is specified, IBM MQ encrypts the password using the IBM MQ Password
Protection system. To encrypt the password an initial key is used; if this is not supplied to the queue
manager, a default key is used instead.

Prior to supplying the key repository password, you should set a unique initial key for the queue manager.
You can do this by using the INITKEY attribute of the ALTER QMGR MQSC command:

ALTER QMGR INITKEY('value')

272 Securing IBM MQ

Locating the key repository for a queue manager on IBM i
Use this procedure to obtain the location of your queue manager's certificate store.

Procedure
1. Display your queue manager's attributes, using the following command:

DSPMQM MQMNAME('queue manager name')

2. Examine the command output for the path and stem name of the certificate store.
For example: /QIBM/UserData/ICSS/Cert/Server/Default, where /QIBM/UserData/ICSS/
Cert/Server is the path and Default is the stem name.

Changing the key repository location for a queue manager on IBM i
Change the location of your queue manager's certificate store using either CHGMQM or ALTER QMGR.

Procedure
Use either the CHGMQM command or the ALTER QMGR MQSC command to set your queue manager's key
repository attribute.
a) Using CHGMQM: CHGMQM MQMNAME('qm1') SSLKEYR('/QIBM/UserData/ICSS/Cert/Server/
MyKey.kdb')

b) Using ALTER QMGR: ALTER QMGR SSLKEYR('/QIBM/UserData/ICSS/Cert/Server/
MyKey.kdb')

In either case, the certificate store has the fully qualified file name: /QIBM/UserData/ICSS/Cert/
Server/MyKey.kdb

What to do next
When you change the location of a queue manager's certificate store, certificates are not transferred from
the old location. If the CA certificates preinstalled when you create the certificate store are insufficient,
you must populate the new certificate store with certificates, as described in “Importing a certificate
into a key repository on IBM i” on page 282. You must also stash the password for the new location, as
described in “Stashing the certificate store password on IBM i systems” on page 272.

Supplying the key repository password for a queue manager on IBM i
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.

IBM MQ provides two mechanisms to supply the key repository password to a queue manager:

• “The KEYRPWD attribute” on page 273
• “The key repository stash file” on page 274

If you do not use a key repository stash file, the key repository password is encrypted by using the IBM
MQ password protection system. For more information about the methods of protecting the key repository
password, see “Encrypting key repository passwords on IBM i” on page 270.

See also Administering using MQSC commands on IBM i.

The KEYRPWD attribute
To supply a key repository password directly to the queue manager, run the following MQSC command,
replacing password with your key repository password.

ALTER QMGR KEYRPWD('password')

Securing IBM MQ 273

Attention: Ensure that you surround the password with single quotation marks, otherwise IBM MQ
converts the characters to uppercase.

When a key repository password is specified by using this method, the password is encrypted by using the
IBM MQ password protection system before it is stored.

An encryption key, which is known as the initial key, is used to encrypt the password. Set the queue
manager to use a unique initial key to securely protect the password. If you do not supply an initial key,
the default key is used.

Ensure that the queue manager is configured with a unique initial key before you set the key repository
password. You can modify the initial key by using the INITKEY attribute on the ALTER QMGR command.
For example:

ALTER QMGR INITKEY('mykey')

Warning: Modifying the initial key after setting the key repository password does not cause the
key repository password to be encrypted with the new initial key. Changing the initial key without
also resetting the key repository password results in IBM MQ being unable to decrypt the key
repository password and, therefore, unable to access the key repository.

For more information about the KEYRPWD attribute, see KEYRPWD.

The key repository stash file
If a key repository password is not supplied to the queue manager by using the KEYRPWD attribute, IBM
MQ assumes that a stash file exists in the same directory as the key repository. The stash file has the
same stem name as the key repository, but has the .sth extension.

A key repository stash file is created at the same time as the key repository, or later, as a separate
runmqakm command.

Attention: The format of the stash file is specific to IBM MQ's cryptographic provider GSKit, and is
not available on platforms that use a different cryptographic provider.

To create a stash file when the key repository is created, specify the -stash parameter. For example:

runmqakm -keydb -create -db key.kdb -pw passw0rd -stash

where passw0rd is the key repository password.

To create a stash file later, run the following command:

runmqakm -keydb -stashpw -db key.kdb -pw passw0rd

where passw0rd is the key repository password.

Related concepts
“Encrypting key repository passwords on IBM i” on page 270
Several IBM MQ components need access to a key repository that contains digital certificates or
symmetric keys. A key repository is secured with a password as it contains sensitive information. The
key repository password must be stored in a location where IBM MQ can read it when the key repository
is accessed. The password must also be encrypted to reduce the likelihood of unauthorized access to the
key repository.
“Supplying the key repository password for an IBM MQ MQI client on IBM i” on page 275

274 Securing IBM MQ

As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.

Supplying the key repository password for an IBM MQ MQI client on IBM i
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.

IBM MQ provides four mechanisms to supply the key repository password to a IBM MQ MQI client:

• “The KeyRepoPassword fields of MQSCO ” on page 275
• “The MQKEYRPWD environment variable” on page 275
• “The SSLKeyRepositoryPassword attribute of the client configuration file” on page 276
• “The key repository stash file” on page 276

If you do not use a key repository stash file, you can supply the key repository password as a plain
text string, or a string that is encrypted by using the IBM MQ password protection system. For more
information about the methods of protecting the key repository password, see “Encrypting key repository
passwords on IBM i” on page 270.

The KeyRepoPassword fields of MQSCO
To supply a key repository password by using the MQSCO structure, you must use a combination of the
following three variable string fields:
KeyRepoPasswordLength

The length of the password.
KeyRepoPasswordPtr

A pointer to the location in memory that contains the password.
KeyRepoPasswordOffset

The location of the password in memory, represented as number of bytes from the start of the MQSCO
structure.

Note: You can supply only one of KeyRepoPasswordPtr or KeyRepoPasswordOffset.

For example:

char * pwd = "passw0rd";
MQSCO SslConnOptions = {MQSCO_DEFAULT};

SslConnOptions.KeyRepoPasswordPtr = pwd;
SslConnOptions.KeyRepoPasswordLength = (MQLONG)strlen(SslConnOptions.KeyRepoPasswordPtr);
SslConnOptions.Version = MQSCO_VERSION_6;

Attention: If you supply the password by using this method, encrypt the password before it
is supplied to the IBM MQ client application. For more information, see “Encrypting the key
repository password” on page 276.

For more information about the MQCSO structure, see MQSCO - SSL/TLS configuration options.

The MQKEYRPWD environment variable
If a key repository password is not supplied to the client by using the MQSCO structure, you can specify
the key repository password by using the MQKEYRPWD environment variable. For example:

export MQKEYRPWD=passw0rd

or

set MQKEYRPWD=passw0rd

Securing IBM MQ 275

where passw0rd is your password.

Attention: If you supply the password by using this method, encrypt the password before you set
the value of the environment variable. For more information, see “Encrypting the key repository
password” on page 276.

The SSLKeyRepositoryPassword attribute of the client configuration file
If a key repository password is not supplied to the client by using one of the other methods, you can
specify the key repository password by using the SSLKeyRepositoryPassword attribute in the SSL
stanza of the client configuration file. For example:

SSL:
 SSLKeyRepositoryPassword=passw0rd

Attention: If you supply the password by using this method, encrypt the password before setting
the value of the SSLKeyRepositoryPassword attribute. For more information, see “Encrypting
the key repository password” on page 276.

Ford more information about the SSL stanza of the client configuration file, see SSL stanza of the client
configuration file.

The key repository stash file
If the key repository password is not supplied to the client by using one of the other methods, IBM MQ
assumes that a stash file exists in the same directory as the key repository. The stash file has the same
stem name as the key repository, but has the .sth extension.

A key repository stash file is created at the same time as the key repository, or later, using a separate
runmqakm command.

Attention: The format of the stash file is specific to IBM MQ's cryptographic provider GSKit, and is
not available on platforms that use a different cryptographic provider.

To create a stash file when the key repository is created, specify the -stash parameter. For example:

runmqakm -keydb -create -db key.kdb -pw passw0rd -stash

where passw0rd is the key repository password.

To create a stash file later, run the following command:

runmqakm -keydb -stashpw -db key.kdb -pw passw0rd

where passw0rd is the key repository password.

Encrypting the key repository password
If you supply the key repository password by using any method other than a stash file, encrypt
the password by using the IBM MQ password protection system. To encrypt the password, run the
runmqicred command. Enter the key repository password when prompted. The command outputs the
encrypted password. The encrypted password can be supplied to the IBM MQ MQI client instead of the
plain text password by using any of the methods described.

An encryption key, which is known as the initial key, is used to encrypt the password. When you encrypt
the password, use a unique initial key to securely protect the password. To supply your own initial key, use
the -sf parameter to the runmqicred command. If you do not supply an initial key, the default key is
used.

For more information, see runmqicred (protect IBM MQ client passwords).

If you supply your own initial key when the key repository password is encrypted, and provide the
encrypted password to the IBM MQ MQI client, you must also ensure that you supply the same initial key

276 Securing IBM MQ

to the IBM MQ MQI client. For more information about how to provide the initial key to an IBM MQ MQI
client, see “Supplying an initial key for an IBM MQ MQI client on IBM i” on page 277.

Related concepts
“Encrypting key repository passwords on IBM i” on page 270
Several IBM MQ components need access to a key repository that contains digital certificates or
symmetric keys. A key repository is secured with a password as it contains sensitive information. The
key repository password must be stored in a location where IBM MQ can read it when the key repository
is accessed. The password must also be encrypted to reduce the likelihood of unauthorized access to the
key repository.
“Supplying the key repository password for a queue manager on IBM i” on page 273
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.

Supplying an initial key for an IBM MQ MQI client on IBM i
If you supply variables to an IBM MQ MQI client that have been encrypted using the IBM MQ Password
Protection System, you might need to supply the corresponding initial key that was used to encrypt the
value.

If you did not specify an initial key when encrypting the value, you do not need to provide any initial key
value to the IBM MQ client. However, if you used a unique initial key you can provide the initial key to the
IBM MQ client using the following methods:

• “Supplying the initial key using the MQCSP structure” on page 277
• “Supplying the initial key using the MQS_MQI_KEYFILE environment variable” on page 277
• “Supplying the initial key using the client configuration file” on page 278

Supplying the initial key using the MQCSP structure
To supply the initial key using the MQCSP structure, you must use a combination of the following three
variable string fields:
InitialKeyLength

The length of the initial key
InitialKeyPtr

A pointer to the location in memory containing the initial key
InitialKeyOffset

The location of the initial key in memory, represented as number of bytes from the start of the MQCSP
structure.

Note: You can supply only one of InitialKeyPtr or InitialKeyOffset.

For example:

char * initialKey = "myInitialKey";
MQCSP cspOptions = {MQCSP_DEFAULT};

cspOptions.InitialKeyPtr = initialKey;
cspOptions.InitialKeyLength = (MQLONG)strlen(cspOptions.InitialKeyPtr);
cspOptions.Version = MQCSP_VERSION_2;

Supplying the initial key using the MQS_MQI_KEYFILE environment variable
If an initial key is not supplied to the client using the MQCSP structure, IBM MQ checks the
MQS_MQI_KEYFILE environment variable. You should set this environment variable to the location of
a file containing a single line of text, consisting of the initial key you want to use.

Securing IBM MQ 277

For example, if a file called mykey.key exists in the root directory, and contains the initial key, you should
set the environment variable as follows:

export MQS_MQI_KEYFILE=/mykey.key

or

set MQS_MQI_KEYFILE=C:\mykey.key

Supplying the initial key using the client configuration file
If an initial key is not supplied to the client using a previous mechanism, IBM MQ checks the
MQIInitialKeyFile attribute of the Security stanza of the mqclient.ini file. You should set this
attribute to the location of a file containing a single line of text, consisting of the initial key you want to
use.

For example, if a file called mykey.key exists in the root directory, and contains the initial key, the client
configuration file should contain the following:

Security:
 MQIInitialKeyFile=/mykey.key

Related concepts
“Encrypting key repository passwords on IBM i” on page 270
Several IBM MQ components need access to a key repository that contains digital certificates or
symmetric keys. A key repository is secured with a password as it contains sensitive information. The
key repository password must be stored in a location where IBM MQ can read it when the key repository
is accessed. The password must also be encrypted to reduce the likelihood of unauthorized access to the
key repository.
“Working with SSL/TLS on IBM i” on page 269
This collection of topics gives instructions for individual tasks working with Transport Layer Security (TLS)
in IBM MQ for IBM i.

Creating a certificate authority and certificate for testing on IBM i
Use this procedure to create a local CA certificate to sign certificate requests, and to create and install the
CA certificate.

Before you begin
The instructions in this topic assume that a local certificate authority (CA) does not exist. If a local CA
does exist, go to “Requesting a server certificate on IBM i” on page 279.

About this task
The CA certificates that are provided when you install TLS are signed by the issuing CA. On IBM i, you can
generate a local certificate authority that can sign server certificates for testing TLS communications on
your system. Follow these steps in a Web browser to create a local CA certificate:

Procedure
1. Access the DCM interface, as described in “Accessing DCM” on page 269.
2. In the navigation panel, click Create a Certificate Authority.

The Create a Certificate Authority page is displayed in the task frame.
3. Type a password in the Certificate store password field and type it again in the Confirm password

field.
4. Type a name in the Certificate Authority (CA) name field, for example TLS Test Certificate
Authority.

278 Securing IBM MQ

5. Type appropriate values in the Common Name and Organization fields, and select a country. For the
remaining optional fields, type the values you require.

6. Type a validity period for the local CA in the Validity period field.
The default value is 1095 days.

7. Click Continue.
The CA is created, and DCM creates a certificate store and a CA certificate for your local CA.

8. Click Install certificate.
The download manager dialog box is displayed.

9. Type the full path name for the temporary file in which you want to store the CA certificate and click
Save.

10. When download is complete, click Open.
The Certificate window is displayed.

11. Click Install certificate.
The Certificate Import wizard is displayed.

12. Click Next.
13. Select Automatically select the certificate store based on the type of certificate and click Next.
14. Click Finish.

A confirmation window is displayed.
15. Click OK.
16. In the Certificate window, click OK.
17. Click Continue.

The Certificate Authority Policy page is displayed in the task frame.
18. In the Allow creation of user certificates field, select Yes.
19. In the Validity period field, type the validity period of certificates that are issued by your local CA.

The default value is 365 days.
20. Click Continue.

The Create a Certificate in New Certificate Store page is displayed in the task frame.
21. Check that none of the applications are selected.
22. Click Continue to complete the setup of the local CA.

Requesting a server certificate on IBM i
Digital certificates protect against impersonation, certifying that a public key belongs to a specified entity.
A new server certificate can be requested from a certificate authority using the Digital Certificate Manager
(DCM).

About this task
Perform the following steps in a Web browser:

Procedure
1. Access the DCM interface, as described in “Accessing DCM” on page 269.
2. In the navigation panel, click Select a Certificate Store.

The Select a Certificate Store page is displayed in the task frame.
3. Select the certificate store you want to use and click Continue.
4. Optional: If you selected *SYSTEM in step 3, enter the system store password and click Continue.
5. Optional: If you selected Other System Certificate Store in step 3, in the Certificate store path and

filename field, type the IFS path and file name you set when you created your certificate store. Also
type a password in the Certificate Store Password field. Then click Continue

6. In the navigation panel, click Create Certificate.

Securing IBM MQ 279

7. In the task frame, select the Server or client certificate radio button and click Continue.
The Select a Certificate Authority (CA) page is displayed in the task frame.

8. If you have a local CA on your workstation you choose either the local CA or a commercial CA to sign
the certificate. Select the radio button for the CA you want and click Continue.
The Create a Certificate page is displayed in the task frame.

9. Optional: For a queue manager, in the Certificate label field, enter the certificate label.
The label is either the value of the CERTLABL attribute, if it is set, or the default ibmwebspheremq
with the name of the queue manager appended, all in lowercase. See Digital certificate labels for
details.
For example, for queue manager QM1, type ibmwebspheremqqm1 to use the default value.

10. Optional: For an IBM MQ MQI client, in the Certificate label field, type ibmwebspheremq followed
by your logon user ID folded to lowercase.
For example, type ibmwebspheremqmyuserID

11. Type appropriate values in the Common Name and Organization fields, and select a country. For the
remaining optional fields, type the values you require.

Results
If you selected a commercial CA to sign your certificate, DCM creates a certificate request in PEM
(Privacy-Enhanced Mail) format. Forward the request to your chosen CA.

If you selected the local CA to sign your certificate, DCM informs you that the certificate has been created
in the certificate store and can be used.

Requesting a server certificate for IBM Key Manager on IBM i
Follow this procedure to create a certificate signed by your local certificate authority (CA), or to apply for a
server certificate signed by a commercial CA for import into the IBM Key Management (iKeyman) utility.

About this task
A user certificate must be used when the Digital Certificate Manager (DCM) serves as the certificate
manager for IBM MQ on multiple platforms. For personal certificates distributed to other platforms and
for import into the iKeyman utility, perform the following steps in a Web browser:

Procedure
1. Access the DCM interface, as described in “Accessing DCM” on page 269.
2. In the navigation pane, click Create Certificate.

The Create Certificate page is displayed in the task frame.
3. On the Create Certificate panel, select the User certificate radio button and click Continue.

The Create User Certificate page is displayed.
4. On the Create User Certificate panel, complete the required fields under Certificate Information for

Organization name, State or province, Country or region. Optionally, put values in the Organization
unit and Locality or city fields. Click Continue.
The Common name is automatically set to the user ID with which you are logged on to the iSeries
system.

5. On the next Create User Certificate panel, click Install certificate and click Continue.
A message is displayed stating, Your personal certificate has been installed. You
should keep a backup copy of this certificate.

6. Click OK.
7. Depending on the internet browser you used to access DCM, do the following steps:

a) For Microsoft Edge choose: Tools>Internet Options>Content tab>Certificates button>Personal
tab>. Select the certificate and click Export.

280 Securing IBM MQ

b) For Mozilla Firefox choose: Tools>Options>Advanced>Encryption tab>View Certificates
button>Your Certificates tab>. Select the certificate and click Backup. Select the path and
filename and click OK.

8. Transfer the exported certificate to the remote system using FTP in binary format.
9. Add the exported certificate from step 7 to the iKeyman utility in the key database.

a) If the certificate was saved using Microsoft Edge, use the instructions described in Importing from a
Microsoft .pfx file.

b) If the certificate was saved using Mozilla Firefox, use the instructions described in Importing a
personal certificate into a key repository.

During the import, ensure that the label name of the personal certificate and the signer certificate are
changed to what IBM MQ is expecting. The label must be either the value of the IBM MQ CERTLABL
attribute, if it is set, or the default ibmwebspheremq with the name of the queue manager appended,
all in lowercase. See Digital certificate labels for details.

Adding server certificates to a key repository on IBM i
Follow this procedure to add a requested certificate to the key repository.

About this task
After the CA sends you a new server certificate, you add it to the certificate store from which you
generated the request. If the CA sends the certificate as part of an email message, copy the certificate
into a separate file.

Note:

• You do not need to perform this procedure if the server certificate is signed by your local CA.
• Before you import a server certificate in PKCS #12 format into DCM, you must first import the

corresponding CA certificate.

Use the following procedure to receive a server certificate into the queue manager certificate store:

Procedure
1. Access the DCM interface, as described in “Accessing DCM” on page 269.
2. In the Manage Certificates task category in the navigation panel, click Import Certificate.

The Import Certificate page displays in the task frame.
3. Select the radio button for your certificate type and click Continue.

Either the Import Server or Client Certificate page or the Import Certificate Authority (CA) Certificate
page displays in the task frame.

4. In the Import File field, type the file name of the certificate you want to import and click Continue.
DCM automatically determines the format of the file.

5. If the certificate is a Server or client certificate, type the password in the task frame and click
Continue.
DCM informs you that the certificate has been imported.

Exporting a certificate from a key repository on IBM i
Exporting a certificate exports both the public and private key. This action should be taken with extreme
caution, since passing on a private key would completely compromise your security.

Before you begin
When you share a user's certificate with another user, you exchange public keys. This process is described
in Task 5. Sharing Certificates in the Sharing Certificates section of “Quick Start Guide for AMS on AIX
and Linux” on page 619. When you export a certificate as described here, you export both the public
and private key. This action should be taken with extreme caution, since passing on a private key would
completely compromise your security.

Securing IBM MQ 281

About this task
Perform the following steps on the computer from which you want to export the certificate:

Procedure
1. Access the DCM interface, as described in “Accessing DCM” on page 269.
2. In the navigation panel, click Select a Certificate Store.

The Select a Certificate Store page is displayed in the task frame.
3. Select the certificate store you want to use and click Continue.
4. Optional: If you selected *SYSTEM in step 3, enter the system store password and click Continue.
5. Optional: If you selected Other System Certificate Store in step 3, in the Certificate store path and

filename field, type the IFS path and file name you set when you created your certificate store and
type a password in the Certificate Store Password field. Then click Continue

6. In the Manage Certificates task category in the navigation panel, click Export Certificate.
The Export a Certificate page is displayed in the task frame.

7. Select the radio button for your certificate type and click Continue.
Either the Export Server or Client Certificate page or the Export Certificate Authority (CA) Certificate
page is displayed in the task frame.

8. Select the certificate you want to export.
9. Select the radio button to specify whether you want to export the certificate to a file or directly into

another certificate store.
10. If you selected to export a server or client certificate to a file, provide the following information:

• The path and file name of the location where you want to store the exported certificate.
• For a personal certificate, the password that is used to encrypt the exported certificate and the

target release. For CA certificates, you do not need to specify the password.
11. If you selected to export a certificate directly into another certificate store, specify the target

certificate store and its password.
12. Click Continue.

Importing a certificate into a key repository on IBM i
Follow this procedure to import a certificate.

Before you begin
Before you import a personal certificate in PKCS #12 format into DCM, you must first import the
corresponding CA certificate.

About this task
Perform these steps on the machine to which you want to import the certificate.

Procedure
1. Access the DCM interface, as described in “Accessing DCM” on page 269.
2. In the navigation panel, click Select a Certificate Store.

The Select a Certificate Store page is displayed in the task frame.
3. Select the certificate store you want to use and click Continue.
4. Optional: If you selected *SYSTEM in step 3, enter the system store password and click Continue.
5. Optional: If you selected Other System Certificate Store in step 3, in the Certificate store path and

filename field, type the IFS path and file name you set when you created your certificate store and
type a password in the Certificate Store Password field. Then click Continue

6. In the Manage Certificates task category in the navigation panel, click Import Certificate.

282 Securing IBM MQ

The Import Certificate page is displayed in the task frame.
7. Select the radio button for your certificate type and click Continue.

Either the Import Server or Client Certificate page or the Import Certificate Authority (CA) Certificate
page is displayed in the task frame.

8. In the Import File field, type the file name of the certificate you want to import and click Continue.
DCM automatically determines the format of the file.

9. If the certificate is a Server or client certificate, type the password in the task frame and click
Continue. DCM informs you that the certificate has been imported.

Removing certificates in IBM i
Use this procedure to remove personal certificates.

Procedure
1. Access the DCM interface, as described in “Accessing DCM” on page 269.
2. In the navigation panel, click Select a Certificate Store.

The Select a Certificate Store page is displayed in the task frame.
3. Select the Other System Certificate Store check box and click Continue.

The Certificate Store and Password page is displayed.
4. In the Certificate store path and filename field, type the IFS path and file name you set when you

created the certificate store.
5. Type a password in the Certificate Store Password field. Click Continue.

The Current Certificate Store page is displayed in the task frame.
6. In the Manage Certificates task category in the navigation panel, click Delete Certificate.

The Confirm Delete Certificate page is displayed in the task frame.
7. Select the certificate you want to delete. Click Delete.
8. Click Yes to confirm that you want to delete the certificate. Otherwise, click No.

DCM informs you if it has deleted the certificate.

Using the *SYSTEM certificate store for one-way authentication on IBM i
Follow these instructions to set up one-way authentication.

Before you begin
• Create a queue manager, channels, and transmission queues.
• Create a server or client certificate on the server queue manager.
• Transfer the CA certificate to the client queue manager and imported it into the key repository.
• Start a listener on the server and client queue managers.

About this task
To use one-way authentication, using a computer running IBM i as the TLS server, set the SSL Key
Repository (SSLKEYR) parameter to *SYSTEM. This setting registers the IBM MQ queue manager as an
application. You can then assign a certificate to the queue manager to enable one-way authentication.

You can also use private keystores to implement one-way authentication by creating a dummy certificate
for the client queue manager in the key repository.

Procedure
1. Perform the following steps on the server and client queue managers:

a) Alter the queue manager to set the SSLKEYR parameter by issuing the command CHGMQM
MQMNAME(SSL) SSLKEYR(*SYSTEM).

Securing IBM MQ 283

b) Stash the password for the default key repository by issuing the command CHGMQM
MQMNAME(SSL) SSLKEYRPWD('xxxxxxx').
The password must be in single quotation marks.

c) Alter the channels to have the correct CipherSpec in the SSLCIPHER parameter.
d) Refresh TLS security by issuing the command RFRMQMAUT QMNAME(QMGRNAME) TYPE(*SSL).

2. Assign the certificate to the server queue manager using DCM, as follows:
a) Access the DCM interface, as described in “Accessing DCM” on page 269.
b) In the navigation panel, click Select a Certificate Store.

The Select a Certificate Store page is displayed in the task frame.
c) Select the *SYSTEM certificate store and click Continue.
d) In the left panel, expand Manage Applications.
e) Select the View Application definition to check that the queue manager has been registered as an

application.
SSL (WMQ) is listed in the table.

f) Select Update Certificate Assignment.
g) Select Server and click Continue.
h) Select QMGRNAME (WMQ) and click Update certificate assignment.
i) Select the certificate and click Assign New Certificate. A window opens stating that the certificate

has been assigned to the application.

IBM MQ SSL Client utility (amqrsslc) for IBM i
The IBM MQ SSL Client utility (amqrsslc) for IBM i is used by the IBM MQ MQI client on IBM i systems to
register or unregister the client user profile, or stash the certificate store password. The utility can only be
run by a user with a profile with *ALLOBJ special authority or a member of QMQMADM that has options to
create or delete application registrations in the Digital Certificate Manager (DCM).

Syntax diagram

amqrsslc -s PathOfKeyDatabase

-sf InitialKeyFile

-r
current user

UserProfile

-u
current user

UserProfile

Register the client user profile
If the IBM MQ MQI client is using the *SYSTEM certificate store, you must register the client user profile
(logon user) for use as an application with Digital Certificate Manager (DCM).

If you want to register the client user profile, run the amqrsslc program with the -r option with
UserProfile. The user profile used when calling amqrsslc must have *USE authority. Providing UserProfile
with the -r option registers the UserProfile as a server application with a unique application label of
QIBM_WEBSPHERE_MQ_UserProfile and a label with a description of UserProfile (WMQ). This server
application then is displayed in the DCM, and you can assign to this application any server or client
certificate in the system store.

284 Securing IBM MQ

Note: If a user profile is not specified with -r option, then the user profile of the user running the
amqrsslc tool is registered.

The following code uses amqrsslc to register a user profile. In the first example, the specified user
profile is registered; in the second it is the profile of the logged in user:

CALL PGM(QMQM/AMQRSSLC) PARM('-r' UserProfile)
CALL PGM(QMQM/AMQRSSLC) PARM('-r')

Unregister the client user profile
To unregister the client profile, run the amqrsslc program with the -u option with UserProfile. The user
profile used when calling amqrsslc must have *USE authority. Providing the UserProfile with the -u
option unregisters UserProfile with label QIBM_WEBSPHERE_MQ_UserProfile from the DCM.

Note: If a user profile is not specified with -u option, then the user profile of the user running the
amqrsslc tool is unregistered.

The following code uses amqrsslc to unregister a user profile. In the first example, the specified user
profile is unregistered; in the second it is the profile of the logged in user:

CALL PGM(QMQM/AMQRSSLC) PARM('-u' UserProfile)
CALL PGM(QMQM/AMQRSSLC) PARM('-u')

Stash the certificate store password
If the IBM MQ MQI client is not using the *SYSTEM certificate store and using another certificate store
(that is, MQSSLKEYR is set to value other than *SYSTEM), then the password of the key database can be
stashed so that it does not need to be specified by the client application when it runs.

Use the -s option to stash the password of the key database. Specify the full path and name
of the key database. If the file extension is not supplied, it is assumed to be .kdb.

In the following code, the fully qualified file name of the certificate store is /Path/Of/KeyDatabase/
MyKey.kdb:

CALL PGM(QMQM/AMQRSSLC) PARM('-s' '/Path/Of/KeyDatabase/MyKey')

Running this code results in a request for the password of this key database. This password is stashed in a
file with the same name as key database with an .sth extension.

Additionally, the initial key to encrypt the password can be specified. The initial key should
be stored in a file as a single line of text and then the location of that file is supplied to the program
through the -sf flag. If no initial key file is supplied a default key is used to encrypt the password.

The stash file is stored on the same path as the key database. The code example generates a stash file
of /Path/Of/KeyDatabase/MyKey.sth.

QMQM is the user owner and QMQMADM the group owner for this file. QMQM and QMQMADM have read,
write permission, and other profiles have only read permission.

When changes to certificates or the certificate store become effective on IBM i
When you change the certificates in a certificate store, or the location of the certificate store, the changes
take effect depending on the type of channel and how the channel is running.

Changes to the certificates in the certificate store and to the key repository attribute become effective in
the following situations:

• When a new outbound single channel process first runs a TLS channel.
• When a new inbound TCP/IP single channel process first receives a request to start a TLS channel.

Securing IBM MQ 285

• When the MQSC command REFRESH SECURITY TYPE(SSL) is issued to refresh the IBM MQ TLS
environment.

• For client application processes, when the last TLS connection in the process is closed. The next TLS
connection picks up the certificate changes.

• For channels that run as threads of a process pooling process (amqrmppa), when the process pooling
process is started or restarted and first runs a TLS channel. If the process pooling process has already
run a TLS channel, and you want the change to become effective immediately, run the MQSC command
REFRESH SECURITY TYPE(SSL).

• For channels that run as threads of the channel initiator, when the channel initiator is started or
restarted and first runs a TLS channel. If the channel initiator process has already run a TLS channel,
and you want the change to become effective immediately, run the MQSC command REFRESH
SECURITY TYPE(SSL).

• For channels that run as threads of a TCP/IP listener, when the listener is started or restarted and first
receives a request to start a TLS channel. If the listener has already run a TLS channel, and you want the
change to become effective immediately, run the MQSC command REFRESH SECURITY TYPE(SSL).

Configuring cryptographic hardware on IBM i
Use this procedure to configure the Cryptographic Coprocessor on IBM i

Before you begin
Ensure your user profile has *ALLOBJ and *SECADM special authorities to enable you to configure the
coprocessor hardware.

Procedure
1. Go to either http://machine.domain:2001 or https://machine.domain:2010, where

machine is the name of your computer.
A dialog box is displayed, requesting a user name and a password.

2. Type a valid IBM i user profile and password.
3. Go to Cryptography and follow the appropriate links for further information.

What to do next
For more specific information about configuring the 4767 Cryptographic Coprocessor, see 4767
Cryptographic Coprocessor.

Working with SSL/TLS on AIX, Linux, and Windows
On AIX, Linux, and Windows systems, Transport Layer Security (TLS) support is installed with IBM MQ.

For more detailed information about certificate validation policies, see Certificate validation and trust
policy design.

Using runmqckm, runmqakm, and strmqikm to manage digital certificates
On AIX, Linux, and Windows systems, manage keys and digital certificates with the strmqikm (iKeyman)
GUI, or from the command line using runmqckm (iKeycmd) or runmqakm (GSKCapiCmd).

Note: CMS keystore support for IBM MQ Java applications, AMQP and MQTT is
deprecated from IBM MQ 9.3.4. If you are using a CMS keystore with IBM MQ Java applications, AMQP
and MQTT, you should migrate to the PKCS#12 key repository support released in IBM MQ 9.3.0.

The runmqckm, strmqikm, mqiptKeycmd and mqiptKeyman tools are also deprecated. The runmqakm
command from IBM MQ and the keytool command from the JRE are available as alternatives.

Attention: Both the runmqckm and strmqikm commands rely on the IBM MQ Java Runtime
Environment (JRE). From IBM MQ 9.1, if the JRE is not installed, you receive message AMQ9183.

286 Securing IBM MQ

• For AIX and Linux systems:

– Use the strmqikm (iKeyman) command to start the iKeyman GUI.
– Use the runmqckm command to perform tasks with the command line interface.
– Use the runmqakm (GSKCapiCmd) command to perform tasks with the runmqakm command line

interface. The command syntax for runmqakm is the same as the syntax for runmqckm.

If you need to manage TLS certificates in a way that is FIPS compliant, use the runmqakm command
instead of the runmqckm or strmqikm commands.

See Managing keys and certificates for a full description of the command line interfaces for the
runmqckm and runmqakm commands.

If you are using certificates or keys stored on PKCS #11 cryptographic hardware, note that runmqckm
and iKeyman are 64-bit programs. External modules required for PKCS #11 support will be loaded into
a 64-bit process, therefore you must have a 64-bit PKCS #11 library installed for the administration of
cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only exceptions, as the
iKeyman and runmqckm programs are 32-bit on those platforms.

See GSKit: PKCS#11 and IBM MQ JRE addressing mode for further information.

Before you run the strmqikm command to start the iKeyman GUI, ensure you are working on a machine
that is able to run the X Window System and that you do the following:

– Set the DISPLAY environment variable, for example:

export DISPLAY=mypc:0

– Ensure that your PATH environment variable contains /usr/bin and /bin. This is also required for
the runmqckm and runmqakm commands. For example:

export PATH=$PATH:/usr/bin:/bin

• For Windows systems:

– Use the strmqikm command to start the iKeyman GUI.
– Use the runmqckm command to perform tasks with the command line interface.

If you need to manage TLS certificates in a way that is FIPS compliant, use the runmqakm command
instead of the runmqckm or strmqikm commands.

– Use the runmqakm -keydb command with the stashpw or stash option.

When using the runmqakm -keydb command in this way, for example:

runmqakm -keydb -create -db key.kdb -pw secretpwd -stash

the resultant .sth file does not have read permission enabled for the mqm group.

Only the creator can read the file. After creating a stash file using the runmqakm command, check
the file permissions, and grant permission to the service account running the queue manager, or to a
group such as local mqm.

To request TLS tracing on AIX, Linux, and Windows systems, see strmqtrc.

Related reference
“runmqckm and runmqakm commands on AIX, Linux, and Windows” on page 548

Securing IBM MQ 287

This section describes the runmqckm and runmqakm commands according to the object of the command.

Setting up a key repository on AIX, Linux, and Windows
You can set up a key repository by the using strmqikm (iKeyman) GUI, or from the command line using
runmqckm (iKeycmd) or runmqakm (GSKCapiCmd) commands.

Before you begin
The key repository is secured with a password as it contains sensitive information. Before you create the
keystore, review the options that IBM MQ provides to securely store the key repository password. For
more information, see “Encrypting key repository passwords on AIX, Linux, and Windows” on page 290.

Note: CMS keystore support for IBM MQ Java applications, AMQP and MQTT is
deprecated from IBM MQ 9.3.4. If you are using a CMS keystore with IBM MQ Java applications, AMQP
and MQTT, you should migrate to the PKCS#12 key repository support released in IBM MQ 9.3.0.

The runmqckm, strmqikm, mqiptKeycmd and mqiptKeyman tools are also deprecated. The runmqakm
command from IBM MQ and the keytool command from the JRE are available as alternatives.

About this task
A TLS connection requires a key repository at each end of the connection. Each IBM MQ queue manager
and IBM MQ MQI client must have access to a key repository. For more information, see “The SSL/TLS key
repository” on page 25.

On AIX, Linux, and Windows systems, digital certificates are stored in a key database file that is
managed by using the strmqikm user interface, or by using the runmqckm or runmqakm commands.
These digital certificates have labels. A specific label associates a personal certificate with a queue
manager or IBM MQ MQI client. TLS uses that certificate for authentication purposes. On AIX, Linux, and
Windows systems, IBM MQ uses either the value of the CERTLABL attribute, if it is set, or the default
ibmwebspheremq with the name of the queue manager or IBM MQ MQI client user logon ID appended,
all in lowercase. See Digital certificate labels for details.

The key database file name comprises a path and stem name:

• On AIX and Linux systems, the default path for a queue manager (set when you created the queue
manager) is /var/mqm/qmgrs/queue_manager_name/ssl.

On Windows systems, the default path is
MQ_INSTALLATION_PATH\Qmgrs\queue_manager_name\ssl, where MQ_INSTALLATION_PATH
is the directory in which IBM MQ is installed. For example, C:\Program
Files\IBM\MQ\Qmgrs\QM1\ssl.

The default filename is key.kdb. Optionally, you can use your own path and filename.

If you choose your own path or file name, set the permissions to the file to tightly control access to it.

• For an IBM MQ client, there is no default path or file name. Tightly control access to this
file.

Do not create key repositories on a file system that does not support file level locks, for example NFS
version 2 on Linux systems.

See “Changing the key repository location for a queue manager on AIX, Linux, and Windows” on page
294 for information about checking and specifying the key database file name. You can specify the key
database file name either before or after creating the key database file.

The user ID from which you run the strmqikm or runmqckm commands must have write permission
for the directory in which the key database file is created or updated. For a queue manager using the
default ssl directory, the user ID from which you run strmqikm or runmqckm must be a member of the
mqm group. For an IBM MQ MQI client, if you run strmqikm or runmqckm from a user ID different from
that under which the client runs, you must alter the file permissions to enable the IBM MQ MQI client
to access the key database file at run time. For more information, see “Accessing and securing your key

288 Securing IBM MQ

database files on Windows” on page 292 or “Accessing and securing your key database files on AIX and
Linux systems” on page 292.

In strmqikm or runmqckm for GSKit 7.0, new key databases are automatically populated with a set of
pre-defined certificate authority (CA) certificates. In strmqikm or runmqckm for GSKit 8.0, key databases
are not automatically populated, making the initial setup more secure because you include only the CA
certificates that you want, in your key database file.

Note: Because this change in behavior for GSKit 8.0 results in CA certificates no longer being
automatically added to the repository, you must manually add your preferred CA certificates. This change
of behavior provides you with more granular control over the CA certificates used. See “Adding default CA
certificates into an empty key repository on AIX, Linux, and Windows with GSKit 8.0” on page 293.

You create the key database either by using the command line, or by using the strmqikm (iKeyman) user
interface.

Note: If you must manage TLS certificates in a way that is FIPS-compliant, use the runmqakm command.
The strmqikm user interface does not provide a FIPS-compliant option.

Procedure
Create a key database by using the command line.

1. Run either of the following commands:

• Using runmqckm:

runmqckm -keydb -create -db filename -pw password -type cms | p12 -stash

• Using runmqakm:

runmqakm -keydb -create -db filename -pw password -type cms | p12
-stash -fips -strong

where:
-db filename

Specifies the fully qualified file name of a CMS key database.
-pw password

Specifies the password for the CMS or PKCS#12 key database.

-type cms | p12
Specifies the type of database. (For IBM MQ, it must be cms or pkcs12).

-stash
Optional. Saves the key database password to a file. Specify this

option to store the key database password in a stash file. You do not need to store the password
in a stash file if you encrypt the password using the IBM MQ password protection system.

-fips
Specifies that the command is run in FIPS mode. When in FIPS mode, the ICC component uses
algorithms that are FIPS 140-2 validated. If the ICC component does not initialize in FIPS mode,
the runmqakm command fails.

-strong
Checks that the password entered satisfies the minimum requirements for password strength.
The minimum requirements for a password are as follows:

• The password must be a minimum length of 14 characters.

Securing IBM MQ 289

• The password must contain a minimum of one lowercase character, one uppercase character,
and one digit or special character. Special characters include the asterisk (*), the dollar sign ($),
the number sign (#), and the percent sign (%). A space is classified as a special character.

• Each character can occur a maximum of three times in a password.
• A maximum of two consecutive characters in the password can be identical.
• All characters are in the standard ASCII printable character set, within the range 0x20 - 0x7E.

Alternatively, create a key database by using the strmqikm (iKeyman) user interface.
2. On AIX and Linux systems, log in as the root user. On Windows systems, log in as Administrator or as

a member of the MQM group.
3. Start the user interface by running the strmqikm command.
4. From the Key Database File menu, click New.

The New window opens.
5. Click Key database type and select CMS (Certificate Management

System) or PKCS#12.
6. In the File Name field, type a file name.

This field already contains the text key.kdb or key.p12. If your stem
name is key, leave this field unchanged. If you specified a different stem name, replace key with
your stem name. .

7. In the Location field, type the path.
For example:

• For a queue manager: /var/mqm/qmgrs/QM1/ssl (on AIX and Linux systems) or
C:\ProgramData\IBM\MQ\qmgrs\QM1\ssl (on Windows systems).

The path must match the value of the SSLKeyRepository attribute of the queue manager.
• For an IBM MQ client: /var/mqm/ssl (on AIX and Linux systems) or C:\mqm\ssl (on Windows

systems).
8. Click OK.

The Password Prompt window is displayed.
9. Type a password in the Password field, then type it again in the Confirm Password field.

10.
Optional: To save the key database password to a file, select the Stash the password to a file check
box.
Specify this option to store the key database password in a stash file. You do not need to store the
password in a stash file if you encrypt the password using the IBM MQ password protection system.

11. Click OK.
The Personal Certificates window is displayed.

12. Set the access permissions as described in “Accessing and securing your key database files on
Windows” on page 292 or “Accessing and securing your key database files on AIX and Linux systems”
on page 292.

13.
If you are not using a stash file, provide the keystore password to the queue manager or client
application by following the instructions in “Supplying the key repository password for a queue
manager on AIX, Linux, and Windows” on page 295 or “Supplying the key repository password for an
IBM MQ MQI client on AIX, Linux, and Windows” on page 297.

Encrypting key repository passwords on AIX, Linux, and Windows
Several IBM MQ components need access to a key repository that contains digital certificates or
symmetric keys. A key repository is secured with a password as it contains sensitive information. The
key repository password must be stored in a location where IBM MQ can read it when the key repository

290 Securing IBM MQ

is accessed. The password must also be encrypted to reduce the likelihood of unauthorized access to the
key repository.

The following IBM MQ components and features support two different methods to store key repository
passwords:

• The queue manager TLS key repository.
• IBM MQ MQI clients that use TLS.

• The Native HA configuration in the NativeHALocalInstance stanza of the qm.ini file.

• The token authentication configuration in the AuthToken stanza of the qm.ini file.

Key repository passwords for use by these components can be encrypted and stored by using one of the
following methods:
The IBM MQ password protection system.

Each IBM MQ component provides a command to encrypt the key repository password. The encrypted
command that the command outputs is stored in a file.

For the queue manager TLS key repository, the password is encrypted when the SSLKEYRPWD queue
manager attribute is set.

The password is encrypted with the AES-128 algorithm. The details of this algorithm are publicly
known and it is considered secure.

The password is stored in a proprietary format that is not understood by other software that might
access the key repository.

A password that is encrypted by one IBM MQ component cannot be used by a different IBM MQ
component.

A unique encryption key can be provided when the key repository password is encrypted. A unique
encryption key prevents anyone who does not have access to the encryption key from being able to
decrypt the password.

The plain text key repository password is needed to manage the certificates that are in the key
repository. In addition to encrypting the key repository password by using the IBM MQ password
protection system, you must also store the key repository password in a secure location where it can
be accessed for this purpose.

For more information about the IBM MQ password protection system, see “Protecting passwords in
IBM MQ component configuration files” on page 571.

A key repository stash file.

The runmqakm and runmqckm commands can store the key repository password in a stash file.

The password is encrypted with a proprietary method that is specific to IBM MQ's cryptographic
provider, GSKit.

A unique encryption key cannot be provided.

The encrypted password is stored in a stash file in the same directory as the key repository file.

Anyone with read access to both the key repository and the stash file can access and manage the
contents of the key repository.

Regardless of the method that you choose to encrypt the key repository password, ensure that you
are aware of the limitations of encrypting stored passwords. For more information, see “The limits to
protection through password encryption” on page 578.

Related concepts
“Supplying the key repository password for a queue manager on AIX, Linux, and Windows” on page 295

Securing IBM MQ 291

As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.
“Supplying the key repository password for an IBM MQ MQI client on AIX, Linux, and Windows” on page
297
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.
“Working with SSL/TLS on AIX, Linux, and Windows” on page 286
On AIX, Linux, and Windows systems, Transport Layer Security (TLS) support is installed with IBM MQ.

Accessing and securing your key database files on Windows
The key database files might not have appropriate access permissions. You must set appropriate access
to these files.

Set access control to the files key.p12, key.kdb, key.sth, key.crl, and
key.rdb, where key is the stem name of your key database, to grant authority to a restricted set of users.

If you have used a different key repository extension other than .p12 or .kdb,
you must ensure also that the permissions of this file are set.

Consider granting access as follows:
full authority

BUILTIN\Administrators, NT AUTHORITY\SYSTEM, and the user who created the database files.
read authority

For a queue manager, the local mqm group only. This assumes that the MCA is running under a user ID
in the mqm group.
For a client, the user ID under which the client process is running.

Accessing and securing your key database files on AIX and Linux systems
The key database files might not have appropriate access permissions. You must set appropriate access
to these files.

For a queue manager, set permissions on the key database files so that queue manager and channel
processes can read them when necessary, but other users cannot read or modify them. Normally, the
mqm user needs read permissions. If you have created the key database file by logging in as the mqm
user, then the permissions are probably sufficient; if you were not the mqm user, but another user in the
mqm group, you probably need to grant read permissions to other users in the mqm group.

Similarly for a client, set permissions on the key database files so that client application processes can
read them when necessary, but other users cannot read or modify them. Normally, the user under which
the client process runs needs read permissions. If you have created the key database file by logging in as
that user, then the permissions are probably sufficient; if you were not the client process user, but another
user in that group, you probably need to grant read permissions to other users in the group.

Set the permissions on the files key.p12, key.kdb, key.sth, key.crl, and
key.rdb, where key is the stem name of your key database, to read and write for the file owner, and to
read for the mqm or client user group (-rw-r-----).

If you have used a different key repository extension other than .p12 or .kdb,
you must ensure also that the permissions of this file are set.

292 Securing IBM MQ

Adding default CA certificates into an empty key repository on AIX, Linux, and Windows with
GSKit 8.0
Follow this procedure to add one or more of the default CA certificates to an empty key repository with
GSKit 8.0.

In GSKit 7.0, the behavior when creating a new key repository was to automatically add in a set of default
CA certificates for commonly-used Certificate Authorities. For GSKit 8.0, this behavior has changed so
that CA certificates are no longer automatically added to the repository. The user is now required to
manually add CA certificates into the key repository.

Using strmqikm
Perform the following steps on the machine on which you want to add the CA certificate:

1. Start the GUI using the strmqikm command (on AIX, Linux, and Windows).
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management

System) or PKCS#12.
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file displays in the File Name field.
8. In the Key database content field, select Signer Certificates.
9. Click Populate. The Add CA's Certificate window opens.

10. The CA certificates that are available to be added to the repository are displayed in a hierarchical tree
structure. Select the top level entry for the organization whose CA certificates you want to trust to
view the complete list of valid CA certificates.

11. Select the CA certificates you want to trust from the list and click OK. The certificates are added to
the key repository.

Using the command line
Use the following commands to list, then add CA certificates using runmqckm:

• Issue the following command to list the default CA certificates along with the organizations which issue
them:

runmqckm -cert -listsigners

• Issue the following command to add all of the CA certificates for the organization specified in the label
field:

runmqckm -cert -populate -db filename -pw password -label label

where:

-db filename is the fully qualified path name of the key database.

-pw password is the password for the key database.

-label label is the label attached to the certificate.

Note: Adding a CA certificate to a key repository results in IBM MQ trusting all personal certificates signed
by that CA certificate. Consider carefully which Certificate Authorities you want to trust and only add the

Securing IBM MQ 293

set of CA certificates needed to authenticate your clients and managers. It is not recommended to add
the full set of default CA certificates unless this is a definitive requirement for your security policy.

Locating the key repository for a queue manager on AIX, Linux, and
Windows
Use this procedure to obtain the location of your queue manager's key database file

Procedure
1. Display your queue manager's attributes, using either of the following MQSC commands:

DISPLAY QMGR ALL
DISPLAY QMGR SSLKEYR

You can also display your queue manager's attributes using the IBM MQ Explorer or PCF commands.
2. Examine the command output for the path and stem name of the key database file.

For example,

a. on AIX and Linux: /var/mqm/qmgrs/QM1/ssl/key, where /var/mqm/qmgrs/QM1/ssl is the
path and key is the stem name

b. on Windows: MQ_INSTALLATION_PATH\qmgrs\QM1\ssl\key, where
MQ_INSTALLATION_PATH\qmgrs\QM1\ssl is the path and key is the stem name.
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Note: From IBM MQ 9.3.0 the SSLKEYR field supports both a full filename
(including extension) and a stem name (without extension). If a stem name is set, IBM MQ
automatically appends .kdb and uses that key repository.

Changing the key repository location for a queue manager on AIX, Linux,
and Windows
You can change the location of your queue manager's key database file by various means including the
MQSC command ALTER QMGR.

You can change the location of your queue manager's key database file by using the MQSC command
ALTER QMGR to set your queue manager's key repository attribute. For example, on AIX and Linux:

ALTER QMGR SSLKEYR('/var/mqm/qmgrs/QM1/ssl/MyKey.kdb')

On Windows:

ALTER QMGR SSLKEYR('C:\Program Files\IBM\MQ\Qmgrs\QM1\ssl\Mykey.kdb')

The key database file has the fully qualified file name: C:\Program
Files\IBM\MQ\Qmgrs\QM1\ssl\Mykey.kdb

Attention: On Windows and Linux, if TLS AMQP channels are used, the suffix of the key repository
file must be one of the following:

• .kdb, for a CMS key repository
• .p12 or .pkcs12, for a PKCS #12 key repository.

You can also alter your queue manager's attributes using the IBM MQ Explorer or PCF commands.

When you change the location of a queue manager's key database file, certificates are not transferred
from the old location. If the key database file you are now accessing is a new key database file, you

294 Securing IBM MQ

must populate it with the CA and personal certificates you need, as described in “Importing a personal
certificate into a key repository on AIX, Linux, and Windows” on page 313.

Supplying the key repository password for a queue manager on
AIX, Linux, and Windows
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.

IBM MQ provides two mechanisms to supply the key repository password to a queue manager:

• “The KEYRPWD attribute” on page 295
• “The key repository stash file” on page 295

If you do not use a key repository stash file, the key repository password is encrypted by using the IBM
MQ password protection system. For more information about the methods of protecting the key repository
password, see “Encrypting key repository passwords on AIX, Linux, and Windows” on page 290.

The KEYRPWD attribute
To supply a key repository password directly to the queue manager, run the following MQSC command,
replacing password with your key repository password:

ALTER QMGR KEYRPWD('password')

Attention: Ensure that you surround the password with single quotation marks, otherwise IBM MQ
converts the characters to uppercase.

When a key repository password is specified by using this method, the password is encrypted by using the
IBM MQ password protection system before it is stored.

An encryption key, which is known as the initial key, is used to encrypt the password. Set the queue
manager to use a unique initial key to securely protect the password. If you do not supply an initial key,
the default key is used.

Ensure that the queue manager is configured with a unique initial key before you set the key repository
password. You can modify the initial key by using the INITKEY attribute on the ALTER QMGR command.
For example:

ALTER QMGR INITKEY('mykey')

Warning: Modifying the initial key after setting the key repository password does not cause the
key repository password to be encrypted with the new initial key. Changing the initial key without
also resetting the key repository password results in IBM MQ being unable to decrypt the key
repository password and, therefore, unable to access the key repository.

For more information about the KEYRPWD attribute, see KEYRPWD.

The key repository stash file
If a key repository password is not supplied to the queue manager by using the KEYRPWD attribute, IBM
MQ assumes that a stash file exists in the same directory as the key repository. The stash file has the
same stem name as the key repository, but has the .sth extension.

A key repository stash file is created at the same time as the key repository, or later, as a separate
runmqakm command.

Attention: The format of the stash file is specific to IBM MQ's cryptographic provider GSKit, and is
not available on platforms that use a different cryptographic provider.

Securing IBM MQ 295

To create a stash file when the key repository is created, specify the -stash parameter. For example:

runmqakm -keydb -create -db key.kdb -pw passw0rd -stash

where passw0rd is the key repository password.

To create a stash file later, run the following command:

runmqakm -keydb -stashpw -db key.kdb -pw passw0rd

where passw0rd is the key repository password.

Related concepts
“Encrypting key repository passwords on AIX, Linux, and Windows” on page 290
Several IBM MQ components need access to a key repository that contains digital certificates or
symmetric keys. A key repository is secured with a password as it contains sensitive information. The
key repository password must be stored in a location where IBM MQ can read it when the key repository
is accessed. The password must also be encrypted to reduce the likelihood of unauthorized access to the
key repository.
“Supplying the key repository password for an IBM MQ MQI client on AIX, Linux, and Windows” on page
297
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.

Locating the key repository for an IBM MQ MQI client on AIX, Linux, and
Windows
The location of the key repository is given by the MQSSLKEYR variable, or specified in the MQCONNX call.

Examine the MQSSLKEYR environment variable to find the location of the key database file for your IBM
MQ MQI client. For example:

echo $MQSSLKEYR

Also check your application, because the key database file name can also be set in an MQCONNX call,
as described in“Specifying the key repository location for an IBM MQ MQI client on AIX, Linux, and
Windows” on page 296. The value set in an MQCONNX call overrides the value of MQSSLKEYR.

Specifying the key repository location for an IBM MQ MQI client on AIX,
Linux, and Windows
There is no default key repository for an IBM MQ MQI client. You can specify its location in either of
two ways. Ensure that the key database file can be accessed only by intended users or administrators to
prevent unauthorized copying to other systems.

You can specify the location of the key database file for your IBM MQ MQI client in two ways:

• Setting the MQSSLKEYR environment variable. For example, on AIX and Linux:

export MQSSLKEYR=/var/mqm/ssl/key.kdb

On Windows:

set MQSSLKEYR=C:\Program Files\IBM\MQ\ssl\key.kdb

• Providing the path and stem name of the key database file in the KeyRepository field of the MQSCO
structure when an application makes an MQCONNX call. For more information about using the MQSCO
structure in MQCONNX, see Overview for MQSCO.

296 Securing IBM MQ

Supplying the key repository password for an IBM MQ MQI client
on AIX, Linux, and Windows
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.

IBM MQ provides four mechanisms to supply the key repository password to a IBM MQ MQI client:

• “The KeyRepoPassword fields of MQSCO ” on page 297
• “The MQKEYRPWD environment variable” on page 297
• “The SSLKeyRepositoryPassword attribute of the client configuration file” on page 298
• “The key repository stash file” on page 298

If you do not use a key repository stash file, you can supply the key repository password as a plain
text string, or a string that is encrypted by using the IBM MQ password protection system. For more
information about the methods of protecting the key repository password, see “Encrypting key repository
passwords on AIX, Linux, and Windows” on page 290.

The KeyRepoPassword fields of MQSCO
To supply a key repository password by using the MQSCO structure, you must use a combination of the
following three variable string fields:
KeyRepoPasswordLength

The length of the password.
KeyRepoPasswordPtr

A pointer to the location in memory that contains the password.
KeyRepoPasswordOffset

The location of the password in memory, represented as number of bytes from the start of the MQSCO
structure.

Note: You can supply only one of KeyRepoPasswordPtr or KeyRepoPasswordOffset.

For example:

char * pwd = "passw0rd";
MQSCO SslConnOptions = {MQSCO_DEFAULT};

SslConnOptions.KeyRepoPasswordPtr = pwd;
SslConnOptions.KeyRepoPasswordLength = (MQLONG)strlen(SslConnOptions.KeyRepoPasswordPtr);
SslConnOptions.Version = MQSCO_VERSION_6;

Attention: If you supply the password by using this method, encrypt the password before it
is supplied to the IBM MQ client application. For more information, see “Encrypting the key
repository password” on page 298.

For more information about the MQCSO structure, see MQSCO - SSL/TLS configuration options.

The MQKEYRPWD environment variable
If a key repository password is not supplied to the client by using the MQSCO structure, you can specify
the key repository password by using the MQKEYRPWD environment variable. For example:

export MQKEYRPWD=passw0rd

or

set MQKEYRPWD=passw0rd

where passw0rd is your password.

Securing IBM MQ 297

Attention: If you supply the password by using this method, encrypt the password before you set
the value of the environment variable. For more information, see “Encrypting the key repository
password” on page 298.

The SSLKeyRepositoryPassword attribute of the client configuration file
If a key repository password is not supplied to the client by using one of the other methods, you can
specify the key repository password by using the SSLKeyRepositoryPassword attribute in the SSL
stanza of the client configuration file. For example:

SSL:
 SSLKeyRepositoryPassword=passw0rd

Attention: If you supply the password by using this method, encrypt the password before setting
the value of the SSLKeyRepositoryPassword attribute. For more information, see “Encrypting
the key repository password” on page 298.

Ford more information about the SSL stanza of the client configuration file, see SSL stanza of the client
configuration file.

The key repository stash file
If the key repository password is not supplied to the client by using one of the other methods, IBM MQ
assumes that a stash file exists in the same directory as the key repository. The stash file has the same
stem name as the key repository, but has the .sth extension.

A key repository stash file is created at the same time as the key repository, or later, using a separate
runmqakm command.

Attention: The format of the stash file is specific to IBM MQ's cryptographic provider GSKit, and is
not available on platforms that use a different cryptographic provider.

To create a stash file when the key repository is created, specify the -stash parameter. For example:

runmqakm -keydb -create -db key.kdb -pw passw0rd -stash

where passw0rd is the key repository password.

To create a stash file later, run the following command:

runmqakm -keydb -stashpw -db key.kdb -pw passw0rd

where passw0rd is the key repository password.

Encrypting the key repository password
If you supply the key repository password by using any method other than a stash file, encrypt
the password by using the IBM MQ password protection system. To encrypt the password, run the
runmqicred command. Enter the key repository password when prompted. The command outputs the
encrypted password. The encrypted password can be supplied to the IBM MQ MQI client instead of the
plain text password by using any of the methods described.

An encryption key, which is known as the initial key, is used to encrypt the password. When you encrypt
the password, use a unique initial key to securely protect the password. To supply your own initial key, use
the -sf parameter to the runmqicred command. If you do not supply an initial key, the default key is
used.

For more information, see runmqicred (protect IBM MQ client passwords).

If you supply your own initial key when the key repository password is encrypted, and provide the
encrypted password to the IBM MQ MQI client, you must also ensure that you supply the same initial key
to the IBM MQ MQI client. For more information about how to provide the initial key to an IBM MQ MQI
client, see “Supplying an initial key for an IBM MQ MQI client on AIX, Linux, and Windows” on page 299.

298 Securing IBM MQ

Related concepts
“Encrypting key repository passwords on AIX, Linux, and Windows” on page 290
Several IBM MQ components need access to a key repository that contains digital certificates or
symmetric keys. A key repository is secured with a password as it contains sensitive information. The
key repository password must be stored in a location where IBM MQ can read it when the key repository
is accessed. The password must also be encrypted to reduce the likelihood of unauthorized access to the
key repository.
“Supplying the key repository password for a queue manager on AIX, Linux, and Windows” on page 295
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.

Supplying an initial key for an IBM MQ MQI client on AIX, Linux,
and Windows
If you supply variables to an IBM MQ MQI client that have been encrypted using the IBM MQ Password
Protection System, you might need to supply the corresponding initial key that was used to encrypt the
value.

If you did not specify an initial key when encrypting the value, you do not need to provide any initial key
value to the IBM MQ client. However, if you used a unique initial key you can provide the initial key to the
IBM MQ client using the following methods:

• “Supplying the initial key using the MQCSP structure” on page 299
• “Supplying the initial key using the MQS_MQI_KEYFILE environment variable” on page 299
• “Supplying the initial key using the client configuration file” on page 300

Supplying the initial key using the MQCSP structure
To supply the initial key using the MQCSP structure, you must use a combination of the following three
variable string fields:
InitialKeyLength

The length of the initial key
InitialKeyPtr

A pointer to the location in memory containing the initial key
InitialKeyOffset

The location of the initial key in memory, represented as number of bytes from the start of the MQCSP
structure.

Note: You can supply only one of InitialKeyPtr or InitialKeyOffset.

For example:

char * initialKey = "myInitialKey";
MQCSP cspOptions = {MQCSP_DEFAULT};

cspOptions.InitialKeyPtr = initialKey;
cspOptions.InitialKeyLength = (MQLONG)strlen(cspOptions.InitialKeyPtr);
cspOptions.Version = MQCSP_VERSION_2;

Supplying the initial key using the MQS_MQI_KEYFILE environment variable
If an initial key is not supplied to the client using the MQCSP structure, IBM MQ checks the
MQS_MQI_KEYFILE environment variable. You should set this environment variable to the location of
a file containing a single line of text, consisting of the initial key you want to use.

Securing IBM MQ 299

For example, if a file called mykey.key exists in the root directory, and contains the initial key, you should
set the environment variable as follows:

export MQS_MQI_KEYFILE=/mykey.key

or

set MQS_MQI_KEYFILE=C:\mykey.key

Supplying the initial key using the client configuration file
If an initial key is not supplied to the client using a previous mechanism, IBM MQ checks the
MQIInitialKeyFile attribute of the Security stanza of the mqclient.ini file. You should set this
attribute to the location of a file containing a single line of text, consisting of the initial key you want to
use.

For example, if a file called mykey.key exists in the root directory, and contains the initial key, the client
configuration file should contain the following:

Security:
 MQIInitialKeyFile=/mykey.key

Related concepts
“Supplying the key repository password for an IBM MQ MQI client on AIX, Linux, and Windows” on page
297
As the key repository contains sensitive information, it is secured with a password. To be able to
access the key repository contents to perform TLS operations, IBM MQ must be able to retrieve the
key repository password.
“Working with SSL/TLS” on page 268
These topics give instructions for performing single tasks related to using TLS with IBM MQ.

When changes to certificates or the certificate store become effective on
AIX, Linux, and Windows
When you change the certificates in a certificate store, or the location of the certificate store, the changes
take effect depending on the type of channel and how the channel is running.

Changes to the certificates in the key database file and to the key repository attribute become effective in
the following situations:

• When a new outbound single channel process first runs a TLS channel.
• When a new inbound TCP/IP single channel process first receives a request to start a TLS channel.
• When the MQSC command REFRESH SECURITY TYPE(SSL) is issued to refresh the TLS environment.
• For client application processes, when the last TLS connection in the process is closed. The next TLS

connection will pick up the certificate changes.
• For channels that run as threads of a process pooling process (amqrmppa), when the process pooling

process is started or restarted and first runs a TLS channel. If the process pooling process has already
run a TLS channel, and you want the change to become effective immediately, run the MQSC command
REFRESH SECURITY TYPE(SSL).

• For channels that run as threads of the channel initiator, when the channel initiator is started or
restarted and first runs a TLS channel. If the channel initiator process has already run a TLS channel,
and you want the change to become effective immediately, run the MQSC command REFRESH
SECURITY TYPE(SSL).

• For channels that run as threads of a TCP/IP listener, when the listener is started or restarted and first
receives a request to start a TLS channel. If the listener has already run a TLS channel, and you want the
change to become effective immediately, run the MQSC command REFRESH SECURITY TYPE(SSL).

You can also refresh the IBM MQ TLS environment using the IBM MQ Explorer or PCF commands.

300 Securing IBM MQ

Creating a self-signed personal certificate on AIX, Linux, and Windows
You can create a self-signed certificate by using the strmqikm (iKeyman) GUI, or from the command line
using runmqckm (iKeycmd) or runmqakm (GSKCapiCmd).

Note: IBM MQ does not support SHA-3 or SHA-5 algorithms. You can use the digital signature algorithm
names SHA384WithRSA and SHA512WithRSA because both algorithms are members of the SHA-2 family.

The digital signature algorithm names SHA3WithRSA and SHA5WithRSA are deprecated
because they are an abbreviated form of SHA384WithRSA and SHA512WithRSA respectively.

For more information about why you might want to use self-signed certificates, see Using self-signed
certificates for mutual authentication of two queue managers.

Not all digital certificates can be used with all CipherSpecs. Ensure that you create a certificate that is
compatible with the CipherSpecs you need to use. IBM MQ supports three different types of CipherSpec.
For details, see “Interoperability of Elliptic Curve and RSA CipherSpecs” on page 47 in the “Digital
certificates and CipherSpec compatibility in IBM MQ” on page 46 topic.

To use the Type 1 CipherSpecs (those with names beginning ECDHE_ECDSA_) you must use the
runmqakm command to create the certificate and you must specify an Elliptic Curve ECDSA signature
algorithm parameter; for example, -sig_alg EC_ecdsa_with_SHA384.

See “runmqckm and runmqakm options on AIX, Linux, and Windows” on page 560 for a list of the options
available with the -sig_alg hashing algorithm.

If you are using the:

• GUI, see “Using the strmqikm user interface” on page 301
• Command line, see “Using the command line” on page 302

Using the strmqikm user interface
You can create a personal certificate by using the strmqikm (iKeyman) GUI.

About this task
strmqikm does not provide a FIPS-compliant option. If you need to manage TLS certificates in a way that
is FIPS-compliant, use the runmqakm command.

Procedure
Complete the following steps to create a personal certificate for your queue manager or IBM MQ MQI
client by using the graphical user interface:

1. Start the GUI by using the strmqikm command.
2. From the Key Database File menu, click Open.

The Open window displays.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to generate the request; for example, key.kdb.
6. Click OK.

The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK.

The name of your key database file is shown in the File Name field.
8. From the Create menu, click New Self-Signed Certificate. The Create New Self-Signed Certificate

window is displayed.
9. In the Key Label field, enter the certificate label.

Securing IBM MQ 301

The label is either the value of the CERTLABL attribute, if it is set, or the default ibmwebspheremq
with the name of the queue manager or IBM MQ MQI client logon user ID appended, all in lowercase.
See Digital certificate labels for details.

10. Type or select a value for any field in the Distinguished name field, or any of the Subject alternative
name fields.

11. For the remaining fields, either accept the default values, or type or select new values.
For more information about Distinguished Names, see “Distinguished Names” on page 15.

12. Click OK.
The Personal Certificates list shows the label of the self-signed personal certificate you created.

Using the command line
You can create a personal certificate from the command line using the runmqckm (iKeycmd) or runmqakm
(GSKCapiCmd) commands. If you need to manage SSL or TLS certificates in a way that is FIPS-compliant,
use the runmqakm command.

Procedure
Create a self-signed personal certificate by using either the runmqckm or runmqakm (GSKCapiCmd)
command.

• Using runmqckm:

runmqckm -cert -create -db filename -pw password -label label
 -dn distinguished_name -size key_size
 -x509version version -expire days -sig_alg algorithm

Instead of -dn distinguished_name, you can use -san_dnsname DNS_names, -san_emailaddr
email_addresses, or -san_ipaddr IP_addresses.

• Using runmqakm:

runmqakm -cert -create -db filename -pw password -label label
 -dn distinguished_name -size key_size
 -x509version version -expire days -fips -sig_alg algorithm

where:
-db filename

Specifies the fully qualified file name of a CMS key database.
-pw password

Specifies the password for the CMS key database.
-label label

Specifies the key label attached to the certificate. The label is either the value of the CERTLABL
attribute, if it is set, or the default ibmwebspheremq with the name of the queue manager or the IBM
MQ MQI client logon user ID appended, all in lowercase. See “Digital certificate labels, understanding
the requirements” on page 27 for details.

-dn distinguished_name
Specifies the X.500 distinguished name enclosed in double quotation marks. At least one attribute is
required. You can supply multiple OU and DC attributes.

Note: the runmqckm and runmqakm tools refer to the postal code attribute as POSTALCODE, not
PC. Always specify POSTALCODE in the -dn parameter when you use these certificate management
commands to request certificates with a postal code.

-size key_size
Specifies the key size. If you are using runmqckm, the value can be 512 or 1024. If you are using
runmqakm, the value can be 512, 1024, or 2048.

x509version version
The version of X.509 certificate to create. The value can be 1, 2, or 3. The default is 3.

302 Securing IBM MQ

-file filename
Specifies the file name for the certificate request.

-expire days
The expiration time in days of the certificate. The default is 365 days for a certificate.

-fips
Specifies that the command is run in FIPS mode. Only the FIPS ICC component is used and this
component must be successfully initialized in FIPS mode. When in FIPS mode, the ICC component
uses algorithms that have been FIPS 140-2 validated. If the ICC component does not initialize in FIPS
mode, the runmqakm command fails.

-sig_alg
For runmqckm, specifies the asymmetric signature algorithm used for the creation of
the entry's key pair. The value can be, MD2_WITH_RSA, MD2WithRSA, MD5_WITH_RSA,
MD5WithRSA, SHA1WithDSA, SHA1WithECDSA, SHA1WithRSA, SHA2/ECDSA, SHA224WithECDSA,
SHA256_WITH_RSA, SHA256WithECDSA, SHA256WithRSA, SHA2WithECDSA, SHA3/ECDSA,
SHA384_WITH_RSA, SHA384WithECDSA, SHA384WithRSA, SHA3WithECDSA, SHA5/ECDSA,
SHA512_WITH_RSA, SHA512WithECDSA, SHA512WithRSA, SHA5WithECDSA, SHA_WITH_DSA,
SHA_WITH_RSA, SHAWithDSA, SHAWithRSA. The default value is SHA1WithRSA.

-sig_alg
For runmqakm, specifies the hashing algorithm used during the creation
of a certificate request. This hashing algorithm is used to create the
signature associated with the newly created certificate request. The value
can be md5, MD5_WITH_RSA, MD5WithRSA, SHA_WITH_DSA, SHA_WITH_RSA, sha1,
SHA1WithDSA, SHA1WithECDSA, SHA1WithRSA, sha224, SHA224_WITH_RSA, SHA224WithDSA,
SHA224WithECDSA, SHA224WithRSA, sha256, SHA256_WITH_RSA, SHA256WithDSA,
SHA256WithECDSA, SHA256WithRSA, SHA2WithRSA, sha384, SHA384_WITH_RSA,
SHA384WithECDSA, SHA384WithRSA, sha512, SHA512_WITH_RSA, SHA512WithECDSA,
SHA512WithRSA, SHAWithDSA, SHAWithRSA, EC_ecdsa_with_SHA1, EC_ecdsa_with_SHA224,
EC_ecdsa_with_SHA256, EC_ecdsa_with_SHA384, or EC_ecdsa_with_SHA512. The default
value is SHA1WithRSA.

-san_dnsname DNS_names
Specifies a comma-delimited or space-delimited list of DNS names for the entry being created.

-san_emailaddr email_addresses
Specifies a comma-delimited or space-delimited list of email addresses for the entry being created.

-san_ipaddr IP_addresses
Specifies a comma-delimited or space-delimited list of IP addresses for the entry being created.

Requesting a personal certificate on AIX, Linux, and Windows
You can request a personal certificate by using the strmqikm (iKeyman) GUI, or from the command line
using the runmqckm (iKeycmd) or runmqakm (GSKCapiCmd) commands. If you need to manage SSL or
TLS certificates in a way that is FIPS-compliant, use the runmqakm command.

About this task
You can request a personal certificate using the strmqikm GUI, or from the command line, subject to the
following considerations:

• IBM MQ does not support SHA-3 or SHA-5 algorithms. You can use the digital signature algorithm
names SHA384WithRSA and SHA512WithRSA because both algorithms are members of the SHA-2
family.

• The digital signature algorithm names SHA3WithRSA and SHA5WithRSA are deprecated
because they are an abbreviated form of SHA384WithRSA and SHA512WithRSA respectively.

• Not all digital certificates can be used with all CipherSpecs. Ensure that you request a certificate
that is compatible with the CipherSpecs you need to use. IBM MQ supports three different types of

Securing IBM MQ 303

CipherSpec. For details, see “Interoperability of Elliptic Curve and RSA CipherSpecs” on page 47 in the
“Digital certificates and CipherSpec compatibility in IBM MQ” on page 46 topic.

• To use the Type 1 CipherSpecs (with names beginning ECDHE_ECDSA_) you must use the runmqakm
command to request the certificate and you must specify an Elliptic Curve ECDSA signature algorithm
parameter; for example, -sig_alg EC_ecdsa_with_SHA384.

See “runmqckm and runmqakm options on AIX, Linux, and Windows” on page 560 for a list of the
options available with the -sig_alg hashing algorithm.

• Only the runmqakm command provides a FIPS-compliant option.
• If you are using cryptographic hardware, see “Requesting a personal certificate for your PKCS #11

hardware” on page 322.

If you are using the:

• GUI, see “Using the strmqikm user interface” on page 304
• Command line, see “Using the command line” on page 305

Using the strmqikm user interface
You can request a personal certificate by using the strmqikm (iKeyman) GUI. If you need to manage SSL
or TLS certificates in a way that is FIPS-compliant, use the runmqakm command.

About this task
strmqikm does not provide a FIPS-compliant option. If you need to manage TLS certificates in a way that
is FIPS-compliant, use the runmqakm command.

Procedure
Complete the following steps to apply for a personal certificate, by using the iKeyman user interface:

1. Start the user interface by using the strmqikm command.
2. From the Key Database File menu, click Open.

The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to generate the request; for example, key.kdb.
6. Click Open.

The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK.

The name of your key database file is shown in the File Name field.
8. From the Create menu, click New Certificate Request. The Create New Key and Certificate

Request window opens.
9. In the Key Label field, enter the certificate label.

The label is either the value of the CERTLABL attribute, if it is set, or the default ibmwebspheremq
with the name of the queue manager or IBM MQ MQI client logon user ID appended, all in lowercase.
See Digital certificate labels for details.

10. Type or select a value for any field in the Distinguished name field, or any of the Subject alternative
name fields. For the remaining fields, either accept the default values, or type or select new values.
For more information about Distinguished Names, see “Distinguished Names” on page 15.

11. In the Enter the name of a file in which to store the certificate request field, either accept the
default certreq.arm, or type a new value with a full path.

12. Click OK.
A confirmation window is displayed.

13. Click OK.

304 Securing IBM MQ

The Personal Certificate Requests list shows the label of the new personal certificate request you
created. The certificate request is stored in the file you chose in step “11” on page 304.

14. Request the new personal certificate either by sending the file to a certificate authority (CA), or by
copying the file into the request form on the website for the CA.

Using the command line
You can request a personal certificate from the command line using the runmqckm (iKeycmd) or
runmqakm (GSKCapiCmd) commands. If you need to manage SSL or TLS certificates in a way that is
FIPS-compliant, use the runmqakm command.

Procedure
Request a personal certificate by using either the runmqckm or runmqakm (GSKCapiCmd) command.

• Using runmqckm:

runmqckm -certreq -create -db filename -pw
password -label label
 -dn distinguished_name -size key_size
 -file filename -sig_alg algorithm

Instead of -dn distinguished_name, you can use -san_dsname DNS_names, -san_emailaddr
email_addresses, or -san_ipaddr IP_addresses.

• Using runmqakm:

runmqakm -certreq -create -db filename -pw
password -label label
 -dn distinguished_name -size key_size
 -file filename -fips -sig_alg algorithm

where:
-db filename

Specifies the fully qualified file name of a CMS key database.
-pw password

Specifies the password for the CMS key database.
-label label

Specifies the key label attached to the certificate. The label is either the value of the CERTLABL
attribute, if it is set, or the default ibmwebspheremq with the name of the queue manager or the IBM
MQ MQI client logon user ID appended, all in lowercase. See “Digital certificate labels, understanding
the requirements” on page 27 for details.

-dn distinguished_name
Specifies the X.500 distinguished name enclosed in double quotation marks. At least one attribute is
required. You can supply multiple OU and DC attributes.

Note: the runmqckm and runmqakm tools refer to the postal code attribute as POSTALCODE, not
PC. Always specify POSTALCODE in the -dn parameter when you use these certificate management
commands to request certificates with a postal code.

-size key_size
Specifies the key size. If you are using runmqckm, the value can be 512 or 1024. If you are using
runmqakm, the value can be 512, 1024, or 2048.

-file filename
Specifies the file name for the certificate request.

-fips
Specifies that the command is run in FIPS mode. When in FIPS mode, the ICC component uses
algorithms that are FIPS 140-2 validated. If the ICC component does not initialize in FIPS mode, the
runmqakm command fails.

Securing IBM MQ 305

-sig_alg
For runmqckm, specifies the asymmetric signature algorithm used for the creation of
the entry's key pair. The value can be, MD2_WITH_RSA, MD2WithRSA, MD5_WITH_RSA,
MD5WithRSA, SHA1WithDSA, SHA1WithECDSA, SHA1WithRSA, SHA2/ECDSA, SHA224WithECDSA,
SHA256_WITH_RSA, SHA256WithECDSA, SHA256WithRSA, SHA2WithECDSA, SHA3/ECDSA,
SHA384_WITH_RSA, SHA384WithECDSA, SHA384WithRSA, SHA3WithECDSA, SHA5/ECDSA,
SHA512_WITH_RSA, SHA512WithECDSA, SHA512WithRSA, SHA5WithECDSA, SHA_WITH_DSA,
SHA_WITH_RSA, SHAWithDSA, SHAWithRSA. The default value is SHA1WithRSA.

-sig_alg
For runmqakm, specifies the hashing algorithm used during the creation
of a certificate request. This hashing algorithm is used to create the
signature associated with the newly created certificate request. The value
can be md5, MD5_WITH_RSA, MD5WithRSA, SHA_WITH_DSA, SHA_WITH_RSA, sha1,
SHA1WithDSA, SHA1WithECDSA, SHA1WithRSA, sha224, SHA224_WITH_RSA, SHA224WithDSA,
SHA224WithECDSA, SHA224WithRSA, sha256, SHA256_WITH_RSA, SHA256WithDSA,
SHA256WithECDSA, SHA256WithRSA, SHA2WithRSA, sha384, SHA384_WITH_RSA,
SHA384WithECDSA, SHA384WithRSA, sha512, SHA512_WITH_RSA, SHA512WithECDSA,
SHA512WithRSA, SHAWithDSA, SHAWithRSA, EC_ecdsa_with_SHA1, EC_ecdsa_with_SHA224,
EC_ecdsa_with_SHA256, EC_ecdsa_with_SHA384, or EC_ecdsa_with_SHA512. The default
value is SHA1WithRSA.

-san_dnsname DNS_names
Specifies a comma-delimited or space-delimited list of DNS names for the entry being created.

-san_emailaddr email_addresses
Specifies a comma-delimited or space-delimited list of email addresses for the entry being created.

-san_ipaddr IP_addresses
Specifies a comma-delimited or space-delimited list of IP addresses for the entry being created.

What to do next
Submit a certificate request to a CA. See “Receiving personal certificates into a key repository on AIX,
Linux, and Windows” on page 308 for further information.

Renewing an existing personal certificate on AIX, Linux, and Windows
You can renew a personal certificate by using the strmqikm (iKeyman) GUI, or from the command line
using the runmqckm (iKeycmd) or runmqakm (GSKCapiCmd) commands.

About this task
If you have a requirement to use larger key sizes for your personal certificates, you cannot renew an
existing certificate. You must replace your existing key by following the steps described in “Requesting
a personal certificate on AIX, Linux, and Windows” on page 303 to create a new certificate request that
uses the key sizes you require.

A personal certificate has an expiry date, after which the certificate can no longer be used. This task
explains how to renew an existing personal certificate before it expires.

Using the strmqikm user interface

About this task
strmqikm does not provide a FIPS-compliant option. If you need to manage TLS certificates in a way that
is FIPS-compliant, use the runmqakm command.

Procedure
Complete the following steps to apply for a personal certificate, by using the strmqikm user interface:

1. Start the user interface by using the strmqikm command on AIX, Linux, and Windows.

306 Securing IBM MQ

2. From the Key Database File menu, click Open.
The Open window opens.

3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to generate the request; for example, key.kdb.
6. Click Open.

The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK.

The name of your key database file is shown in the File Name field.
8. Select Personal Certificates from the drop down selection menu, and select the certificate from the

list that you want to renew.
9. Click the Re-create Request... button.

A window opens for you to enter the file name and file location information.
10. In the file name field, either accept the default certreq.arm, or type a new value, including the full

file path.
11. Click OK. The certificate request is stored in the file you selected in step “9” on page 307.
12. Request the new personal certificate either by sending the file to a certificate authority (CA), or by

copying the file into the request form on the website for the CA.

Using the command line

Procedure
Use the following commands to request a personal certificate by using either the runmqckm or runmqakm
command:

• Using runmqckm:

runmqckm -certreq -recreate -db filename -pw
password -label label
-target filename

• Using runmqakm:

runmqakm -certreq -recreate -db filename -pw
password -label label
-target filename

where:
-db filename

Specifies the fully qualified file name of a CMS key database.
-pw password

Specifies the password for the CMS key database.
-target filename

Specifies the file name for the certificate request.

What to do next
Once you have received the signed personal certificate from the certificate authority, you can add it to
your key database using the steps described in “Receiving personal certificates into a key repository on
AIX, Linux, and Windows” on page 308.

Securing IBM MQ 307

Receiving personal certificates into a key repository on AIX, Linux, and
Windows
Use this procedure to receive a personal certificate into the key database file. The key repository must be
the same repository where you created the certificate request.

After the CA sends you a new personal certificate, you add it to the key database file from which you
generated the new certificate request . If the CA sends the certificate as part of an email message, copy
the certificate into a separate file.

Using strmqikm
If you need to manage TLS certificates in a way that is FIPS compliant, use the runmqakm command.
strmqikm does not provide a FIPS-compliant option.

Ensure that the certificate file to be imported has write permission for the current user, and then use the
following procedure for either a queue manager or an IBM MQ MQI client to receive a personal certificate
into the key database file:

1. Start the GUI using the strmqikm command.
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for example key.kdb.
6. Click Open, and then click OK. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field. Select the Personal Certificates view.
8. Click Receive. The Receive Certificate from a File window opens.
9. Type the certificate file name and location for the new personal certificate, or click Browse to select

the name and location.
10. Click OK. If you already have a personal certificate in your key database, a window opens, asking if

you want to set the key you are adding as the default key in the database.
11. Click Yes or No. The Enter a Label window opens.
12. Click OK. The Personal Certificates field shows the label of the new personal certificate you added.

Using the command line
To add a personal certificate to a key database file, use either of the following commands:

• Using runmqckm:

runmqckm -cert -receive -file filename -db filename -pw password
 -format ascii

• Using runmqakm:

runmqakm -cert -receive -file filename -db filename -pw password -fips

where:
-file filename

Specifies the fully qualified file name of the personal certificate.
-db filename

Specifies the fully qualified file name of a CMS key database.
-pw password

Specifies the password for the CMS key database.

308 Securing IBM MQ

-format ascii
Specifies the format of the certificate. The value can be ascii for Base64-encoded ASCII or binary
for Binary DER data. The default is ascii.

-fips
Specifies that the command is run in FIPS mode. When in FIPS mode, the ICC component uses
algorithms that have been FIPS 140-2 validated. If the ICC component does not initialize in FIPS
mode, the runmqakm command fails.

If you are using cryptographic hardware, refer to “Receiving a personal certificate into your PKCS #11
hardware” on page 323.

Extracting a CA certificate from a key repository on AIX, Linux, and
Windows
Follow this procedure to extract a CA certificate.

Using strmqikm
If you need to manage TLS certificates in a way that is FIPS compliant, use the runmqakm command.
strmqikm (iKeyman) does not provide a FIPS-compliant option.

Perform the following steps on the machine from which you want to extract the CA certificate:

1. Start the GUI using the strmqikm command.
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to extract, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field.
8. In the Key database content field, select Signer Certificates and select the certificate you want to

extract.
9. Click Extract. The Extract a Certificate to a File window opens.

10. Select the Data type of the certificate, for example Base64-encoded ASCII data for a file with
the .arm extension.

11. Type the certificate file name and location where you want to store the certificate, or click Browse to
select the name and location.

12. Click OK. The certificate is written to the file you specified.

Using the command line
Use the following commands to extract a CA certificate using the runmqckm command or the runmqakm
command:

runmqckm -cert -extract -db filename -pw password -label label
 -target filename -format ascii

or

runmqakm -cert -extract -db filename -pw password -label label
 -target filename -format ascii -fips

where:

-db filename is the fully qualified path name of a CMS key database.

Securing IBM MQ 309

-pw password is the password for the CMS key database.

-label label is the label attached to the certificate.

-target filename is the name of the destination file.

-format ascii is the format of the certificate. The value can be ascii for Base64-
encoded ASCII or binary for Binary DER data. The default is ascii.

-fips specifies that the command is run in FIPS mode. When in FIPS
mode, the ICC component uses algorithms that have been FIPS 140-2
validated. If the ICC component does not initialize in FIPS mode, the
runmqakm command fails.

Extracting the public part of a self-signed certificate from a key repository
on AIX, Linux, and Windows
Follow this procedure to extract the public part of a self-signed certificate.

Using strmqikm
If you need to manage TLS certificates in a way that is FIPS compliant, use the runmqakm command.
strmqikm (iKeyman) does not provide a FIPS-compliant option.

Perform the following steps on the machine from which you want to extract the public part of a self-
signed certificate:

1. Start the GUI using the strmqikm command.
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to extract the certificate, for example key.kdb.
6. Click OK. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field.
8. In the Key database content field, select Personal Certificates and select the certificate.
9. Click Extract certificate. The Extract a Certificate to a File window opens.

10. Select the Data type of the certificate, for example Base64-encoded ASCII data for a file with
the .arm extension.

11. Type the certificate file name and location where you want to store the certificate, or click Browse to
select the name and location.

12. Click OK. The certificate is written to the file you specified. Note that when you extract (rather than
export) a certificate, only the public part of the certificate is included, so a password is not required.

Using the command line
Use the following commands to extract the public part of a self-signed certificate using runmqckm or
runmqakm:

• Using runmqckm:

runmqckm -cert -extract -db filename -pw password -label label -target filename
 -format ascii

• Using runmqakm:

310 Securing IBM MQ

runmqakm -cert -extract -db filename -pw password -label label
 -target filename -format ascii -fips

where:

-db filename is the fully qualified path name of a CMS key database.

-pw password is the password for the CMS key database.

-label label is the label attached to the certificate.

-target filename is the name of the destination file.

-format ascii is the format of the certificate. The value can be ascii for Base64-
encoded ASCII or binary for Binary DER data. The default is ascii.

-fips specifies that the command is run in FIPS mode. When in FIPS
mode, the ICC component uses algorithms that have been FIPS 140-2
validated. If the ICC component does not initialize in FIPS mode, the
runmqakm command fails.

Adding a CA certificate, or the public part of a self-signed certificate, into a
key repository on AIX, Linux, and Windows
Follow this procedure to add a CA certificate or the public part of a self-signed certificate to the key
repository.

If the certificate that you want to add is in a certificate chain, you must also add all the certificates that
are above it in the chain. You must add the certificates in strictly descending order starting from the root,
followed by the CA certificate immediately below it in the chain, and so on.

Where the following instructions refer to a CA certificate, they also apply to the public part of a self-signed
certificate.

Note: You must ensure that the certificate is in ASCII (UTF-8) or binary (DER) encoding, because IBM
Global Secure Toolkit (GSKit) does not support certificates with other types of encoding.

Using strmqikm
If you need to manage TLS certificates in a way that is FIPS compliant, use the runmqakm command.
strmqikm does not provide a FIPS-compliant option.

Perform the following steps on the machine on which you want to add the CA certificate:

1. Start the GUI using the strmqikm command.
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for example key.kdb.
6. Click OK. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file displays in the File Name field.
8. In the Key database content field, select Signer Certificates.
9. Click Add. The Add CA's Certificate from a File window opens.

10. Type the certificate file name and location where the certificate is stored, or click Browse to select
the name and location.

11. Click OK. The Enter a Label window opens.
12. In the Enter a Label window, type the name of the certificate.

Securing IBM MQ 311

13. Click OK. The certificate is added to the key database.

Using the command line
To add a CA certificate to a key database, use either of the following commands:

• Using runmqckm:

runmqckm -cert -add -db filename -pw password -label label
 -file filename -format ascii

• Using runmqakm:

runmqakm -cert -add -db filename -pw password -label label
 -file filename -format ascii -fips

where:
-db filename

Specifies the fully qualified file name of the CMS key database.
-pw password

Specifies the password for the CMS key database.
-label label

Specifies the label attached to the certificate.
-file filename

Specifies the name of the file containing the certificate.
-format ascii

Specifies the format of the certificate. The value can be ascii for Base64-encoded ASCII or binary
for Binary DER data. The default is ascii.

-fips
Specifies that the command is run in FIPS mode. When in FIPS mode, the ICC component uses
algorithms that have been FIPS 140-2 validated. If the ICC component does not initialize in FIPS
mode, the runmqakm command fails.

Exporting a personal certificate from a key repository on AIX, Linux, and
Windows
Follow this procedure to exporting a personal certificate.

Using strmqikm
If you need to manage TLS certificates in a way that is FIPS compliant, use the runmqakm command.
strmqikm (iKeyman) does not provide a FIPS-compliant option.

Perform the following steps on the machine from which you want to export the personal certificate:

1. Start the GUI using the strmqikm command.
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to export the certificate, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field.
8. In the Key database content field, select Personal Certificates and select the certificate you want to

export.
9. Click Export/Import. The Export/Import key window opens.

312 Securing IBM MQ

10. Select Export Key.
11. Select the Key file type of the certificate you want to export, for example PKCS12.
12. Type the file name and location to which you want to export the certificate, or click Browse to select

the name and location.
13. Click OK. The Password Prompt window opens. Note that when you export (rather than extract) a

certificate, both the public and private parts of the certificate are included. This is why the exported
file is protected by a password. When you extract a certificate, only the public part of the certificate is
included, so a password is not required.

14. Type a password in the Password field, and type it again in the Confirm Password field.
15. Click OK. The certificate is exported to the file you specified.

Using the command line
Export a personal certificate using the runmqckm command or the runmqakm command:

runmqckm -cert -export -db filename -pw password -label label -type cms
 -target filename -target_pw password -target_type pkcs12

or

runmqakm -cert -export -db filename -pw password -label label -type cms
 -target filename -target_pw password -target_type pkcs12
 -encryption strong | weak -fips

where:

-db filename is the fully qualified path name of the CMS key database.

-encryption is the strength of encryption used in certificate export command. The
value can be strong or weak. The default is strong.

-fips specifies that the command is run in FIPS mode. When in FIPS
mode, the ICC component uses algorithms that have been FIPS 140-2
validated. If the ICC component does not initialize in FIPS mode, the
runmqakm command fails.

-pw password is the password for the CMS key database.

-label label is the label attached to the certificate.

-type cms is the type of the database.

-target filename is the fully qualified path name of the destination file.

-target_pw password is the password for encrypting the certificate.

-target_type pkcs12 is the type of the certificate.

Importing a personal certificate into a key repository on AIX, Linux, and
Windows
Follow this procedure to import a personal certificate

Before importing a personal certificate in PKCS #12 format into the key database file, you must first add
the full valid chain of issuing CA certificates to the key database file (see “Adding a CA certificate, or the
public part of a self-signed certificate, into a key repository on AIX, Linux, and Windows” on page 311).

PKCS #12 files should be considered temporary and deleted after use.

Securing IBM MQ 313

Using strmqikm
If you need to manage TLS certificates in a way that is FIPS-compliant, use the runmqakm command.
strmqikm does not provide a FIPS-compliant option.

Perform the following steps on the machine to which you want to import the personal certificate:

1. Start the GUI using the strmqikm command.
2. From the Key Database File menu, click Open. The Open window displays.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file to which you want to add the certificate, for example key.kdb.
6. Click Open. The Password Prompt window displays.
7. Type the password you set when you created the key database and click OK. The name of your key

database file displays in the File Name field.
8. In the Key database content field, select Personal Certificates.
9. If there are certificates in the Personal Certificates view, follow these steps:

a. Click Export/Import. The Export/Import key window is displayed.
b. Select Import Key.

10. If there are no certificates in the Personal Certificates view, click Import.
11. Select the Key file type of the certificate you want to import, for example PKCS12.
12. Type the certificate file name and location where the certificate is stored, or click Browse to select

the name and location.
13. Click OK. The Password Prompt window displays.
14. In the Password field, type the password used when the certificate was exported.
15. Click OK. The Change Labels window is displayed. You can change the labels of certificates being

imported if, for example, a certificate with the same label already exists in the target key database.
Changing certificate labels has no effect on certificate chain validation. To associate the certificate
with a particular queue manager or IBM MQ MQI client, IBM MQ uses either the value of the
CERTLABL attribute, if it is set, or the default ibmwebspheremq with the name of the queue manager
or IBM MQ MQI client user logon ID appended, all in lowercase. See Digital certificate labels for
details.

16. To change a label, select the required label from the Select a label to change list. The label is copied
into the Enter a new label entry field. Replace the label text with that of the new label and click
Apply.

17. The text in the Enter a new label entry field is copied back into the Select a label to change field,
replacing the originally selected label and so relabelling the corresponding certificate.

18. When you have changed all the labels that needed to be changed, click OK. The Change Labels
window closes, and the original IBM Key Management window reappears with the Personal
Certificates and Signer Certificates fields updated with the correctly labeled certificates.

19. The certificate is imported to the target key database.

Using the command line
To import a personal certificate using runmqckm, use the following command:

runmqckm -cert -import -file filename -pw password -type pkcs12 -target filename
-target_pw password -target_type cms -label label

314 Securing IBM MQ

To import a personal certificate using runmqakm, use the following command:

runmqakm -cert -import -file filename -pw password -type pkcs12 -target filename
-target_pw password -target_type cms -label label -fips

where:

-file filename is the fully qualified file name of the file containing the PKCS #12
certificate.

-pw password is the password for the PKCS #12 certificate.

-type pkcs12 is the type of the file.

-target filename is the name of the destination CMS key database.

-target_pw password is the password for the CMS key database.

-target_type cms is the type of the database specified by -target

-label label is the label of the certificate to import from the source key database.

-new_label label is the label that the certificate will be assigned in the target database.
If you omit -new_label option, the default is to use the same as the
-label option.

-fips specifies that the command is run in FIPS mode. When in FIPS
mode, the ICC component uses algorithms that have been FIPS 140-2
validated. If the ICC component does not initialize in FIPS mode, the
runmqakm command fails.

runmqckm does not provide a command to change certificate labels directly. Use the following steps to
change a certificate label:

1. Export the certificate to a PKCS #12 file using the -cert -export command. Specify the existing
certificate label for the -label option.

2. Remove the existing copy of the certificate from the original key database using the -cert -delete
command.

3. Import the certificate from the PKCS #12 file using the -cert -import command. Specify the old
label for the -label option and the required new label for the -new_label option. The certificate will
be imported back into the key database with the required label.

Importing a personal certificate from a Microsoft.pfx file
Follow this procedure to import from a Microsoft.pfx file on AIX, Linux, and Windows.

A .pfx file can contain two certificates relating to the same key. One is a personal or site certificate
(containing both a public and private key). The other is a CA (signer) certificate (containing only a public
key). These certificates cannot coexist in the same CMS key database file, so only one of them can be
imported. Also, the "friendly name" or label is attached to only the signer certificate.

The personal certificate is identified by a system generated Unique User Identifier (UUID). This section
shows the import of a personal certificate from a pfx file while labeling it with the friendly name previously
assigned to the CA (signer) certificate. The issuing CA (signer) certificates should already be added to the
target key database. Note that PKCS#12 files should be considered temporary and deleted after use.

Follow these steps to import a personal certificate from a source pfx key database:

1. Start the GUI using the strmqikm command. The IBM Key Management window is displayed.
2. From the Key Database File menu, click Open. The Open window is displayed.
3. Select a key database type of PKCS12.
4. You are recommended to take a backup of the pfx database before performing this step. Select

the pfx key database that you want to import. Click Open. The Password Prompt window is displayed.

Securing IBM MQ 315

5. Enter the key database password and click OK. The IBM Key Management window is displayed. The
title bar shows the name of the selected pfx key database file, indicating that the file is open and
ready.

6. Select Signer Certificates from the list. The "friendly name" of the required certificate is displayed as
a label in the Signer Certificates panel.

7. Select the label entry and click Delete to remove the signer certificate. The Confirm window is
displayed.

8. Click Yes. The selected label is no longer displayed in the Signer Certificates panel.
9. Repeat steps 6, 7, and 8 for all the signer certificates.

10. From the Key Database File menu, click Open. The Open window is displayed.
11. Select the target key CMS database which the pfx file is being imported into. Click Open. The

Password Prompt window is displayed.
12. Enter the key database password and click OK. The IBM Key Management window is displayed. The

title bar shows the name of the selected key database file, indicating that the file is open and ready.
13. Select Personal Certificates from the list.
14. If there are certificates in the Personal Certificates view, follow these steps:

a. Click Export/Import key. The Export/Import key window is displayed.
b. Select Import from Choose Action Type.

15. If there are no certificates in the Personal Certificates view, click Import.
16. Select the PKCS12 file.
17. Enter the name of the pfx file as used in Step 4. Click OK. The Password Prompt window is displayed.
18. Specify the same password that you specified when you deleted the signer certificate. Click OK.
19. The Change Labels window is displayed (as there should be only a single certificate available for

import). The label of the certificate should be a UUID which has a format xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx.

20. To change the label select the UUID from the Select a label to change: panel. The label will be
replicated into the Enter a new label: field. Replace the label text with that of the friendly name
that was deleted in Step 7 and click Apply. The friendly name must be either the value of the IBM
MQ CERTLABL attribute, if it is set, or the default ibmwebspheremq with the name of the queue
manager or IBM MQ MQI client user logon ID appended, all in lowercase. See Digital certificate labels
for details.

21. Click OK. The Change Labels window is now removed and the original IBM Key Management window
reappears with the Personal Certificates and Signer Certificates panels updated with the correctly
labeled personal certificate.

22. The pfx personal certificate is now imported to the (target) database.

It is not possible to change a certificate label using runmqckm or runmqakm.

Using the command line
To import a personal certificate using runmqckm, use the following command:

runmqckm -cert -import -file filename -pw password -type pkcs12 -target filename
-target_pw password -target_type cms -label label -pfx

To import a personal certificate using runmqakm, use the following command:

runmqakm -cert -import -file filename -pw password -type pkcs12 -target filename
-target_pw password -target_type cms -label label -fips -pfx

where:

316 Securing IBM MQ

-file filename is the fully qualified file name of the file containing the PKCS #12
certificate.

-pw password is the password for the PKCS #12 certificate.

-type pkcs12 is the type of the file.

-target filename is the name of the destination CMS key database.

-target_pw password is the password for the CMS key database.

-target_type cms is the type of the database specified by -target

-label label is the label of the certificate to import from the source key database.

-new_label label is the label that the certificate will be assigned in the target database.
If you omit -new_label option, the default is to use the same as the
-label option.

-fips specifies that the command is run in FIPS mode. When in FIPS
mode, the ICC component uses algorithms that have been FIPS 140-2
validated. If the ICC component does not initialize in FIPS mode, the
runmqakm command fails.

-pfx indicates PFX file format.

runmqckm does not provide a command to change certificate labels directly. Use the following steps to
change a certificate label:

1. Export the certificate to a PKCS #12 file using the -cert -export command. Specify the existing
certificate label for the -label option.

2. Remove the existing copy of the certificate from the original key database using the -cert -delete
command.

3. Import the certificate from the PKCS #12 file using the -cert -import command. Specify the old
label for the -label option and the required new label for the -new_label option. The certificate will
be imported back into the key database with the required label.

Importing a personal certificate from a PKCS #7 file
The strmqikm (iKeyman) and runmqckm (iKeycmd) tools do not support PKCS #7 (.p7b) files. Use the
runmqakm tool to import certificates from a PKCS #7 file on AIX, Linux, and Windows.

Use the following command to add a CA certificate from a PKCS #7 file:

runmqakm -cert -add -db filename -pw password -type cms -file filename
-label label

-db filename is the fully qualified file name of the CMS key database.

-pw password is the password for the key database.

-type cms is the type of the key database.

-file filename is the name of the PKCS #7 file.

-label label is the label that the certificate is assigned in the target database. The
first certificate takes the label given. All other certificates, if present, are
labeled with their subject name.

Use the following command to import a personal certificate from a PKCS #7 file:

runmqakm -cert -import -db filename -pw password -type pkcs7 -target filename
-target_pw password -target_type cms -label label -new_label label

Securing IBM MQ 317

-db filename is the fully qualified file name of the file containing the PKCS #7
certificate.

-pw password is the password for the PKCS #7 certificate.

-type pkcs7 is the type of the file.

-target filename is the name of the destination key database.

-target_pw password is the password for the destination key database.

-target_type cms is the type of the database specified by -target

-label label is the label of the certificate that is to be imported.

-new_label label is the label that the certificate will be assigned in the target database. If
you omit the -new_label option, the default is to use the same as the
-label option.

Deleting a certificate from a key repository on AIX, Linux, and Windows
Use this procedure to remove personal or CA certificates.

Using strmqikm
If you need to manage TLS certificates in a way that is FIPS compliant, use the runmqakm command.
strmqikm (iKeyman) does not provide a FIPS-compliant option.

1. Start the GUI using the strmqikm command.
2. From the Key Database File menu, click Open. The Open window opens.
3. Click Key database type and select CMS (Certificate Management System).
4. Click Browse to navigate to the directory that contains the key database files.
5. Select the key database file from which you want to delete the certificate, for example key.kdb.
6. Click Open. The Password Prompt window opens.
7. Type the password you set when you created the key database and click OK. The name of your key

database file is displayed in the File Name field.
8. From the drop down list, select Personal Certificates or Signer Certificates
9. Select the certificate you want to delete.

10. If you do not already have a copy of the certificate and you want to save it, click Export/Import and
export it (see “Exporting a personal certificate from a key repository on AIX, Linux, and Windows” on
page 312).

11. With the certificate selected, click Delete. The Confirm window opens.
12. Click Yes. The Personal Certificates field no longer shows the label of the certificate you deleted.

Using the command line
Use the following commands to delete a certificate using the runmqckm command or the runmqakm
command:

Using runmqckm:

runmqckm -cert -delete -db filename -pw password -label label

Using runmqakm:

runmqakm -cert -delete -db filename -pw password -label label -fips

318 Securing IBM MQ

where:

-db filename is the fully qualified file name of a CMS key database.

-pw password is the password for the CMS key database.

-label label is the label attached to the personal certificate.

-fips specifies that the command is run in FIPS mode. When in FIPS
mode, the ICC component uses algorithms that have been FIPS 140-2
validated. If the ICC component does not initialize in FIPS mode, the
runmqakm command fails.

Generating strong passwords for key repository protection on AIX, Linux,
and Windows
You can generate strong passwords for key repository protection using the runmqakm (GSKCapiCmd)
command.

You can use the runmqakm command with the following parameters to generate a strong password:

runmqakm -random -create -length 14 -strong -fips

When using the generated password on the -pw parameter of subsequent certificate administration
commands, always place double quotation marks around the password. On AIX and Linux systems, you
must also use a backslash character to escape the following characters if they appear in the password
string:

! \ " '

When entering the password in response to a prompt from runmqckm, runmqakm or the strmqikm GUI
then it is not necessary to quote or escape the password. It is not necessary because the operating
system shell does not affect data entry in these cases.

Configuring for cryptographic hardware on AIX, Linux, and Windows
You can configure cryptographic hardware for a queue manager or client in a number of ways.

You can configure cryptographic hardware for a queue manager on AIX, Linux, and Windows using either
of the following methods:

• Use the ALTER QMGR MQSC command with the SSLCRYP parameter, as described in ALTER QMGR.
• Use IBM MQ Explorer to configure the cryptographic hardware on your AIX, Linux, and Windows system.

For more information, refer to the online help.

You can configure cryptographic hardware for an IBM MQ client on AIX, Linux, and Windows using one of
the following methods:

• Set the MQSSLCRYP environment variable. The permitted values for MQSSLCRYP are the same as for the
SSLCRYP parameter, as described in ALTER QMGR. To set this environment variable, use one of these
commands:

– On AIX and Linux systems:

export MQSSLCRYP=string

– On Windows systems:

SET MQSSLCRYP=string

Securing IBM MQ 319

where string represents the parameter string to be used to configure the cryptographic hardware
present on the system.

If you use the GSK_PKCS11 version of the SSLCRYP parameter, the PKCS #11 token label must match
the label that you configured your hardware with.

• Set the SSLCryptoHardware attribute in the SSL stanza of the IBM MQ client configuration file. The
permitted values are the same as for the SSLCRYP parameter, as described in ALTER QMGR.

If you use the GSK_PKCS11 version of the SSLCRYP parameter, the PKCS #11 token label must match
the label that you configured your hardware with.

• Set the CryptoHardware field of the SSL configuration options structure, MQSCO, on an MQCONNX
call. For more information, see Overview for MQSCO.

Attention: When supplying configuration for the cryptographic hardware through the
MQSSLCRYP environment variable, or the SSLCryptoHardware attribute, you should protect the
password prior to storing. For more information, see “IBM MQ clients that use cryptographic
hardware” on page 575.

If you have configured cryptographic hardware which uses the PKCS #11 interface using any of these
methods, you must store the personal certificate for use on your channels in the key database file for
the cryptographic token you have configured. This is described in “Managing certificates on PKCS #11
hardware” on page 320.

Managing certificates on PKCS #11 hardware
You can manage digital certificates on cryptographic hardware that supports the PKCS #11 interface.

About this task
You must create a key database to prepare the IBM MQ environment, even if you do not intend to
store certificate authority (CA) certificates in it, but will store all your certificates on your cryptographic
hardware. A key database is necessary for the queue manager to reference in its SSLKEYR field, or for the
client application to reference in the MQSSLKEYR environment variable. This key database is also required
if you are creating a certificate request.

You create the key database either by using the command line, or by using the strmqikm (iKeyman) user
interface.

Procedure
Create a key database by using the command line.

1. Run either of the following commands:

• Using runmqckm:

runmqckm -keydb -create -db filename -pw password -type type -stash

• Using runmqakm:

runmqakm -keydb -create -db filename -pw password -type type

where:
-db filename

Specifies the fully qualified file name of a CMS key database.
-pw password

Specifies the password for the CMS or PKCS#12 key database.

320 Securing IBM MQ

-type type
Specifies the type of database. (For IBM MQ, it must be cms or pkcs12).

-stash
Optional. Saves the key database password to a file.

Alternatively, create a key database by using the strmqikm (iKeyman) user interface.
2. On AIX and Linux systems, log in as the root user. On Windows systems, log in as Administrator or as

a member of the MQM group.
3. Open the Java security properties file, java.security.

• On AIX and Linux systems, the Java security properties file is located in the java/
jre64/jre/lib/security subdirectory of the IBM MQ installation directory.

• On Windows systems, the Java security properties file is located in the java\jre\lib\security
subdirectory of the IBM MQ installation directory.

If it's not already present in the file, add the IBMPKCS11Impl security provider. For example, by
adding the following line:

security.provider.12=com.ibm.crypto.pkcs11impl.provider.IBMPKCS11Impl

4. Start the user interface by running the strmqikm command.
5. Click Key Database File > Open.
6. Click Key database type and select PKCS11Direct.
7. In the File Name field, type the name of the module for managing your cryptographic hardware; for

example, PKCS11_API.so.

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

8. In the Location field, enter the path.

• On AIX and Linux systems, this might be /usr/lib/pksc11, for example.
• On Windows systems, type the library name. cryptoki, for example.

9. Click OK.
The Open Cryptographic Token window is displayed.

10. Select the cryptographic device token label that you want to use to store the certificates.
11. In the Cryptographic Token Password field, type the password that you set when you configured the

cryptographic hardware.
12. If your cryptographic hardware has the capacity to hold the signer certificates required to receive or

import a personal certificate, clear both secondary key database check boxes and continue from step
“17” on page 322.

If you require a secondary CMS or PKCS#12 key database to hold
the signer certificates, select either Open existing secondary key database file or Create new
secondary key database file.

13. In the File Name field, type a file name.

This field already contains the text key.kdb. If your stem name is key, leave this field unchanged. If
you specified a different stem name, replace key with your stem name.

14. In the Location field, type the path. For example:

• For a queue manager: /var/mqm/qmgrs/QM1/ssl
• For an IBM MQ MQI client: /var/mqm/ssl

15. Click OK.

Securing IBM MQ 321

The Password Prompt window is displayed.
16. Enter a password.

If you selected Open existing secondary key database file in step “12” on page 321, type a
password in the Password field.

If you selected Create new secondary key database file in step “12” on page 321, complete the
following sub steps:

a) Type a password in the Password field, then type it again in the Confirm Password field.

b)
If you want to stash the password to a file, select Stash the password to a file. If you do not
stash the password, you must supply the key database password to the queue manager using
the KEYRPWD attribute, or to the IBM MQ MQI client using one of the methods described in
“Supplying the key repository password for an IBM MQ MQI client on AIX, Linux, and Windows” on
page 297.

c)
Click OK.

If you chose to stash the password to a file, a window opens, confirming that the password is in file
key.sth (unless you specified a different stem name).

17. Click OK.
The Key database content frame is displayed.

Requesting a personal certificate for your PKCS #11 hardware
Use this procedure for either a queue manager or an IBM MQ MQI client to request a personal certificate
for your cryptographic hardware.

About this task
This task describes how you use the strmqikm user interface to request a personal certificate. If you are
using the command line interface, see “Using the command line” on page 305.

Note: IBM MQ does not support SHA-3 or SHA-5 algorithms. You can use the digital signature algorithm
names SHA384WithRSA and SHA512WithRSA because both algorithms are members of the SHA-2 family.

The digital signature algorithm names SHA3WithRSA and SHA5WithRSA are deprecated
because they are an abbreviated form of SHA384WithRSA and SHA512WithRSA respectively.

Procedure
To request a personal certificate from the strmqikm (iKeyman) user interface, complete the following
steps:
1. Complete the steps to work with your cryptographic hardware. See “Managing certificates on PKCS

#11 hardware” on page 320.
2. From the Create menu, click New Certificate Request.

The Create New Key and Certificate Request window opens.
3. In the Key Label field, enter the certificate label.

The label is either the value of the CERTLABL attribute, if it is set, or the default ibmwebspheremq
with the name of the queue manager or IBM MQ MQI client logon user ID appended, all in lowercase.
See Digital certificate labels for details.

4. Select the Key Size and Signature Algorithm that you require.
5. Enter values for Common Name and Organization, and select a Country. For the remaining optional

fields, either accept the default values, or type or select new values.
Note that you can supply only one name in the Organizational Unit field. For more information about
these fields, see “Distinguished Names” on page 15.

322 Securing IBM MQ

6. In the Enter the name of a file in which to store the certificate request field, either accept the
default certreq.arm, or type a new value with a full path.

7. Click OK.
A confirmation window opens.

8. Click OK.
The Personal Certificate Requests list shows the label of the new personal certificate request you
created. The certificate request is stored in the file you chose in step “6” on page 323.

9. Request the new personal certificate either by sending the file to a certificate authority (CA), or by
copying the file into the request form on the website for the CA.

Receiving a personal certificate into your PKCS #11 hardware
Use this procedure for either a queue manager or an IBM MQ MQI client to receive a personal certificate
to your cryptographic hardware.

Before you begin
Add the CA certificate of the CA that signed the personal certificate. Add it into either the cryptographic
hardware or the secondary CMS key database. Do this before you receive the signed certificate into the
cryptographic hardware. To add a CA certificate to a key ring, follow the procedure in “Adding a CA
certificate, or the public part of a self-signed certificate, into a key repository on AIX, Linux, and Windows”
on page 311.

Procedure
• To receive a personal certificate using the strmqikm (iKeyman) user interface, complete the following

steps:
a) Complete the steps to work with your cryptographic hardware. See “Managing certificates on PKCS

#11 hardware” on page 320.
b) Click Receive. The Receive Certificate from a File window opens.
c) Type the certificate file name and location for the new personal certificate, or click Browse to select

the name and location.
d) Click OK. If you already have a personal certificate in your key database a window opens, asking if

you want to set the key you are adding as the default key in the database.
e) Click Yes or No. The Enter a Label window opens.
f) Click OK. The Personal Certificates list shows the label of the new personal certificate you added.

This label is formed by adding the cryptographic token label before the label you supplied.
• To receive a personal certificate using the runmqakm (GSKCapiCmd) command, complete the following

steps:
a) Open a command window that is configured for your environment.
b) Receive the personal certificate by using the runmqakm (GSKCapiCmd) command:

 runmqakm -cert -receive -file filename -crypto module_name
 -tokenlabel hardware_token -pw hardware_password
 -format cert_format -fips
 -secondaryDB filename -secondaryDBpw password

where:
-file filename

Specifies the fully qualified file name of the file containing the personal certificate.
-crypto module_name

Specifies the fully qualified name of the PKCS #11 library supplied with the cryptographic
hardware.

Securing IBM MQ 323

-tokenlabel hardware_token
Specifies the PKCS #11 cryptographic device token label.

-pw hardware_password
Specifies the password for access to the cryptographic hardware.

-format cert_format
Specifies the format of the certificate. The value can be ascii for Base64-encoded ASCII or
binary for binary DER data. The default is ASCII.

-fips
Specifies that the command is run in FIPS mode. When in FIPS mode, the ICC component
uses algorithms that are FIPS 140-2 validated. If the ICC component does not initialize in FIPS
mode, the runmqakm command fails.

-secondaryDB filename
Specifies the fully qualified file name of the CMS key database.

-secondaryDBpw password
Specifies the password for the CMS key database.

Working with SSL/TLS on IBM MQ Appliance
IBM MQ Appliance has Transport Layer Security (TLS) support.

The IBM MQ Appliance has distinct commands for managing certificates. For detailed information about
certificate management, see the IBM MQ Appliance documentation, TLS certificate management

Working with SSL/TLS on z/OS
This information describes how you set up and work with Transport Layer Security (TLS) on z/OS.

Each topic includes examples of performing each task using RACF. You can perform similar tasks using
the other external security managers.

On z/OS, you must also set the number of server subtasks that each queue manager uses for processing
TLS calls, as described in “Setting the SSLTASKS parameter on z/OS” on page 325.

z/OS TLS support is integral to the operating system, and is known as System SSL. System SSL is part
of the Cryptographic Services Base element of z/OS. The Cryptographic Services Base members are
installed in the pdsname. SIEALNKE partitioned data set (PDS). When you install System SSL, ensure that
you choose the appropriate options to provide the CipherSpecs that you require.

Additional user ID requirements for TLS on z/OS
This information describes the additional requirements your user ID needs to set up and work with TLS on
z/OS.

Ensure that you have all the appropriate High Impact or Pervasive (HIPER) updates on your system.

Ensure that you have set up the following prerequisites:

• The ssidCHIN user ID is defined correctly in RACF, and that the ssidCHIN user ID has READ access to
the following profiles:

– IRR.DIGTCERT.LIST
– IRR.DIGTCERT.LISTRING

These variables are defined in the RACF FACILITY Class.
• The ssidCHIN user ID is the owner of the key ring.
• The personal certificate of the queue manager, if created by the RACDCERT command, is created with a

certificate type user ID that is also the same as the ssidCHIN user ID.
• The channel initiator is recycled, or the command REFRESH SECURITY TYPE(SSL) is issued, to pick

up any changes you make to the key ring.

324 Securing IBM MQ

• The IBM MQ Channel Initiator procedure has access to the system SSL runtime library
pdsname.SIEALNKE through the link list, LPA, or a STEPLIB DD statement. This library must be APF-
authorized.

• The user ID under whose authority the channel initiator is running is configured to use z/OS UNIX
System Services (z/OS UNIX), as described in the z/OS UNIX System Services Planning documentation.

Users who do not want the channel initiator to invoke z/OS UNIX using the guest/default UID and OMVS
segment, need only model a new OMVS segment based on the default segment as the channel initiator
requires no special permissions, and does not run within UNIX as a superuser.

Setting the SSLTASKS parameter on z/OS
Use the ALTER QMGR command to set the number of server subtasks for processing TLS calls

To use TLS channels, ensure that there are at least two server subtasks by setting the SSLTASKS
parameter, using the ALTER QMGR command. For example:

ALTER QMGR SSLTASKS(5)

To avoid problems with storage allocation, do not set the SSLTASKS attribute to a value greater than eight
in an environment where there is no Certificate Revocation List (CRL) checking.

If CRL checking is used, an SSLTASK is held by the channel concerned for the duration of that check.
This could be for a significant elapsed time while the relevant LDAP server is contacted, because each
SSLTASK is a z/OS task control block.

You must restart the channel initiator if you change the value of the SSLTASKS attribute.

Setting up a key repository on z/OS
Set up a key repository at both ends of the connection. Associate each key repository with its queue
manager.

A TLS connection requires a key repository at each end of the connection. Each queue manager must have
access to a key repository. Use the SSLKEYR parameter on the ALTER QMGR command to associate a key
repository with a queue manager. See “The SSL/TLS key repository” on page 25 for more information.

On z/OS, digital certificates are stored in a key ring that is managed by your External Security Manager
(ESM) . These digital certificates have labels, which associate the certificate with a queue manager. TLS
uses these certificates for authentication purposes. All the examples that follow use RACF commands.
Equivalent commands exist for other ESM programs.

On z/OS, IBM MQ uses either the value of the CERTLABL attribute, if it is set, or the default
ibmWebSphereMQ with the name of the queue manager appended. See Digital certificate labels for
details.

The key repository name for a queue manager is the name of a key ring in your RACF database. You can
specify the key ring name either before or after creating the key ring.

Use the following procedure to create a new key ring for a queue manager:

1. Ensure that you have the appropriate authority to issue the RACDCERT command (see Controlling the
use of the RACDCERT command for more details).

2. Issue the following command:

RACDCERT ID(userid1) ADDRING(ring-name)

where:

• userid1 is the user ID of the channel initiator address space, or the user ID that is going to own the
key ring (if the key ring is shared).

Securing IBM MQ 325

https://www.ibm.com/docs/en/zos/3.1.0?topic=certificates-controlling-use-racdcert-command
https://www.ibm.com/docs/en/zos/3.1.0?topic=certificates-controlling-use-racdcert-command

• ring-name is the name you want to give to your key ring. The length of this name can be up to
237 characters. This name is case-sensitive. Specify ring-name in uppercase characters to avoid
problems.

Making CA certificates available to a queue manager on z/OS
After you have created your key ring, connect any relevant CA certificates to it.

If you have the CA certificate in a data set, you must first add the certificate to the RACF database by
using the following command:

RACDCERT ID(userid1) ADD(input-data-set-name) WITHLABEL('My CA')

Then to connect a CA certificate for My CA to your key ring, use the following command:

RACDCERT ID(userid1)
CONNECT(CERTAUTH LABEL('My CA') RING(ring-name) USAGE(CERTAUTH))

where userid1 is either the channel initiator user ID or the owner of a shared key ring.

For more information about CA certificates, refer to “Digital certificates” on page 13.

Locating the key repository for a queue manager on z/OS
Use this procedure to obtain the location of your queue manager's key ring.

1. Display your queue manager's attributes, using either of the following MQSC commands:

DISPLAY QMGR ALL
DISPLAY QMGR SSLKEYR

2. Examine the command output for the location of the key ring.

Specifying the key repository location for a queue manager on z/OS
To specify the location of your queue manager's key ring, use the ALTER QMGR MQSC command to set
your queue manager's key repository attribute.

For example:

ALTER QMGR SSLKEYR(CSQ1RING)

if the key ring is owned by the channel initiator address space, or:

ALTER QMGR SSLKEYR(userid1/CSQ1RING)

if it is a shared key ring, where userid1 is the user ID that owns the key ring.

Giving the channel initiator the correct access rights on z/OS
The channel initiator (CHINIT) needs access to the key repository and to certain security profiles.

Granting the CHINIT access to read the key repository
If the key repository is owned by the CHINIT user ID, this user ID needs read access to the
IRR.DIGTCERT.LISTRING profile in the FACILITY class, and update access otherwise. Grant access by
using the PERMIT command with ACCESS(UPDATE) or ACCESS(READ) as appropriate:

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(userid) ACCESS(UPDATE)

where userid is the user ID of the channel initiator address space.

326 Securing IBM MQ

Granting the CHINIT read access to the appropriate CSF* profiles
For hardware support provided through the Integrated Cryptographic Service Facility (ICSF) to be used,
ensure your CHINIT user ID has read access to the appropriate CSF* profiles in the CSFSERV class by
using the following command:

PERMIT csf-resource CLASS(CSFSERV) ID(userid) ACCESS(READ)

where csf-resource is the name of the CSF* profile and userid is the user ID of the channel initiator
address space.

Repeat this command for each of the following CSF* profiles:

• CSFDSG
• CSFDSV
• CSFPKD
• CSFPKE
• CSFPKI

Your CHINIT user ID might also need read access to other CSF* profiles. For example, if you are using the
ECDHE_RSA_AES_256_GCM_SHA384 Cipher Spec, your CHINIT user ID also needs read access to the
following CSF* profiles:

• CSF1DVK
• CSF1GAV
• CSF1GKP
• CSF1SKE
• CSF1TRC
• CSF1TRD

For more information, see RACF CSFSERV resource requirements.

If your certificate keys are stored in ICSF and your installation has established access control over keys
stored in ICSF, ensure your CHINIT user ID has read access to the profile in the CSFKEYS class by using
the following command:

PERMIT IRR.DIGTCERT. userid.* CLASS(CSFKEYS) ID(userid) ACCESS(READ)

where userid is the user ID of the channel initiator address space.

Using the Integrated Cryptographic Service Facility (ICSF)
The channel initiator can use ICSF to generate a random number when seeding the password protection
algorithm to obfuscate passwords flowing over client channels if TLS is not being used.

For further information, see “Using the Integrated Cryptographic Service Facility (ICSF)” on page 258

When changes to certificates or the key repository become effective on z/OS
Changes become effective when the channel initiator starts or the repository is refreshed.

Specifically, changes to the certificates in the key ring and to the key repository attribute become effective
on either of the following occasions:

• When the channel initiator is started or restarted.
• When the REFRESH SECURITY TYPE(SSL) command is issued to refresh the contents of the key

repository.

Securing IBM MQ 327

https://www.ibm.com/docs/en/zos/3.1.0?topic=ssl-racf-csfserv-resource-requirements

Creating a self-signed personal certificate on z/OS
Use this procedure to create a self-signed personal certificate.

1. Generate a certificate and a public and private key pair using the following command:

RACDCERT ID(userid2) GENCERT
SUBJECTSDN(CN('common-name')
 T('title')
 OU('organizational-unit')
 O('organization')
 L('locality')
 SP('state-or-province')
 C('country'))
WITHLABEL('label-name')

2. Connect the certificate to your key ring using the following command:

RACDCERT ID(userid1)
CONNECT(ID(userid2) LABEL('label-name') RING(ring-name) USAGE(PERSONAL))

where:

• userid1 is the user ID of the channel initiator address space or owner of the shared key ring.
• userid2 is the user ID associated with the certificate and must be the user ID of the channel initiator

address space.

userid1 and userid2 can be the same ID.
• ring-name is the name you gave the key ring in “Setting up a key repository on z/OS” on page 325.
• label-name must be either the value of the IBM MQ CERTLABL attribute, if it is set, or the default
ibmWebSphereMQ with the name of the queue manager appended. See Digital certificate labels for
details.

Requesting a personal certificate on z/OS
Apply for a personal certificate using RACF.

To apply for a personal certificate, use RACF as follows:

1. Create a self-signed personal certificate, as in “Creating a self-signed personal certificate on z/OS” on
page 328. This certificate provides the request with the attribute values for the Distinguished Name.

2. Create a PKCS #10 Base64-encoded certificate request written to a data set, using the following
command:

RACDCERT ID(userid2) GENREQ(LABEL(' label_name ')) DSN(' output_data_set_name ')

where

• userid2 is the user ID associated with the certificate and must be the user ID of the channel initiator
address space

• label_name is the label used when creating the self-signed certificate

See “Digital certificate labels, understanding the requirements” on page 27 for details.
3. Send the data set to a Certificate Authority (CA) to request a new personal certificate.
4. When the signed certificate is returned to you by the Certificate Authority, add the certificate back

into the RACF database, using the original label, as described in “Adding personal certificates to a key
repository on z/OS” on page 329.

Creating a RACF signed personal certificate
RACF can function as a certificate authority and issue its own CA certificate.

This section uses the term signer certificate to denote a CA certificate issued by RACF.

328 Securing IBM MQ

The private key for the signer certificate must be in the RACF database before you carry out the following
procedure:

1. Use the following command to generate a personal certificate signed by RACF, using the signer
certificate contained in your RACF database:

RACDCERT ID(userid2) GENCERT
SUBJECTSDN(CN('common-name')
 T('title')
 OU('organizational-unit')
 O('organization')
 L('locality')
 SP('state-or-province')
 C('country'))
WITHLABEL('label-name')
SIGNWITH(CERTAUTH LABEL('signer-label'))

2. Connect the certificate to your key ring using the following command:

RACDCERT ID(userid1)
CONNECT(ID(userid2) LABEL('label-name') RING(ring-name) USAGE(PERSONAL))

where:

• userid1 is the user ID of the channel initiator address space or owner of the shared key ring.
• userid2 is the user ID associated with the certificate and must be the user ID of the channel initiator

address space.

userid1 and userid2 can be the same ID.
• ring-name is the name you gave the key ring in “Setting up a key repository on z/OS” on page 325.
• label-name must be either the value of the IBM MQ CERTLABL attribute, if it is set, or the default
ibmWebSphereMQ with the name of the queue manager or queue sharing group appended. See Digital
certificate labels for details.

• signer-label is the label of your own signer certificate.

Adding personal certificates to a key repository on z/OS
Use this procedure to add or import a personal certificate to a key ring.

After the certificate authority sends you a new personal certificate, add it to the key ring using the
following procedure:

1. Add the certificate to the RACF database using the following command:

RACDCERT ID(userid2) ADD(input-data-set-name) WITHLABEL(' label-name ')

2. Connect the certificate to your key ring using the following command:

RACDCERT ID(userid1)
CONNECT(ID(userid2) LABEL(' label-name ') RING(ring-name) USAGE(PERSONAL))

where:

• userid1 is the user ID of the channel initiator address space or owner of the shared key ring.
• userid2 is the user ID associated with the certificate and must be the user ID of the channel initiator

address space.
• ring-name is the name you gave the key ring in “Setting up a key repository on z/OS” on page 325.
• input-data-set-name is the name of the data set containing the CA signed certificate. The data set must

be cataloged and must not be a PDS or a member of a PDS. The record format (RECFM) expected by
RACDCERT is VB. RACDCERT dynamically allocates and opens the data set, and reads the certificate
from it as binary data.

Securing IBM MQ 329

• label-name is the label name that was used when you created the original request. It must be either the
value of the IBM MQ CERTLABL attribute, if it is set, or the default ibmWebSphereMQ with the name of
the queue manager or queue sharing group appended. See Digital certificate labels for details.

Exporting a personal certificate from a key repository on z/OS
Export the certificate using the RACDCERT command.

On the system from which you want to export the certificate, use the following command:

RACDCERT ID(userid2) EXPORT(LABEL('label-name'))
DSN(output-data-set-name) FORMAT(CERTB64)

where:

• userid2 is the user ID under which the certificate was added to the key ring.
• label-name is the label of the certificate you want to extract.
• output-data-set-name is the data set into which the certificate is placed.
• CERTB64 is a DER encoded X.509 certificate that is in Base64 format. You can choose an alternative

format, for example:
CERTDER

DER encoded X.509 certificate in binary format
PKCS12B64

PKCS #12 certificate in Base64 format
PKCS12DER

PKCS #12 certificate in binary format

Deleting a personal certificate from a key repository on z/OS
Delete a personal certificate using the RACDCERT command.

Before deleting a personal certificate, you might want to save a copy of it. To copy your personal
certificate to a data set before deleting it, follow the procedure in “Exporting a personal certificate from a
key repository on z/OS” on page 330. Then use the following command to delete your personal certificate:

RACDCERT ID(userid2) DELETE(LABEL(' label-name '))

where:

• userid2 is the user ID under which the certificate was added to the key ring.
• label-name is the name of the certificate you want to delete.

Renaming a personal certificate in a key repository on z/OS
Rename a certificate using the RACDCERT command.

If you do not want a certificate with a specific label to be found, but do not want to delete it, you can
rename it temporarily using the following command:

RACDCERT ID(userid2) LABEL(' label-name ') NEWLABEL(' new-label-name ')

where:

• userid2 is the user ID under which the certificate was added to the key ring.
• label-name is the name of the certificate you want to rename.
• new-label-name is the new name of the certificate.

This can be useful when testing TLS client authentication.

330 Securing IBM MQ

Associating a user ID with a digital certificate on z/OS
IBM MQ can use a user ID associated with a RACF certificate as a channel user ID. Associate a user ID
with a certificate by installing it under that user ID, or using a Certificate Name Filter.

The method described in this topic is an alternative to the platform-independent method for associating a
user ID with a digital certificate, which uses channel authentication records. For more information about
channel authentication records, see “Channel authentication records” on page 51.

When an entity at one end of a TLS channel receives a certificate from a remote connection, the entity
asks RACF if there is a user ID associated with that certificate. The entity uses that user ID as the channel
user ID. If there is no user ID associated with the certificate, the entity uses the user ID under which the
channel initiator is running.

Associate a user ID with a certificate in either of the following ways:

• Install that certificate into the RACF database under the user ID with which you want to associate it, as
described in “Adding personal certificates to a key repository on z/OS” on page 329.

• Use a Certificate Name Filter (CNF) to map the Distinguished Name of the subject or issuer of the
certificate to the user ID, as described in “Setting up a certificate name filter on z/OS” on page 331.

Setting up a certificate name filter on z/OS
Use the RACDCERT command to define a certificate name filter (CNF), which maps a Distinguished Name
to a user ID.

Perform the following steps to set up a CNF.

1. Enable CNF functions using the following command. You require update authority on the class
DIGTNMAP to do this.

SETROPTS CLASSACT(DIGTNMAP) RACLIST(DIGTNMAP)

2. Define the CNF. For example:

RACDCERT ID(USER1) MAP WITHLABEL('filter1') TRUST
SDNFILTER('O=IBM.C=UK') IDNFILTER('O=ExampleCA.L=Internet')

where USER1 is the user ID to be used when:

• The DN of the subject has an Organization of IBM and a Country of UK.
• The DN of the issuer has an Organization of ExampleCA and a Locality of Internet.

3. Refresh the CNF mappings:

SETROPTS RACLIST(DIGTNMAP) REFRESH

Note:

1. If the actual certificate is stored in the RACF database, the user ID under which it is installed is used in
preference to the user ID associated with any CNF. If the certificate is not stored in the RACF database,
the user ID associated with the most specific matching CNF is used. Matches of the subject DN are
considered more specific than matches of the issuer DN.

2. Changes to CNFs do not apply until you refresh the CNF mappings.
3. A DN matches the DN filter in a CNF only if the DN filter is identical to the least significant portion of

the DN. The least significant portion of the DN comprises the attributes that are usually listed at the
right-most end of the DN, but which appear at the beginning of the certificate.

For example, consider the SDNFILTER 'O=IBM.C=UK'. A subject DN of 'CN=QM1.O=IBM.C=UK'
matches that filter, but a subject DN of 'CN=QM1.O=IBM.L=Hursley.C=UK' does not match that
filter.

Securing IBM MQ 331

The least significant portion of some certificates can contain fields that do not match the DN filter.
Consider excluding these certificates by specifying a DN pattern in the SSLPEER pattern on the DEFINE
CHANNEL command.

4. If the most specific matching CNF is defined to RACF as NOTRUST, the entity uses the user ID under
which the channel initiator is running.

5. RACF uses the '.' character as a separator. IBM MQ uses either a comma or a semicolon.

You can define CNFs to ensure that the entity never sets the channel user ID to the default, which is the
user ID under which the channel initiator is running. For each CA certificate in the key ring associated with
the entity, define a CNF with an IDNFILTER that exactly matches the subject DN of that CA certificate. This
ensures that all certificates that the entity might use match at least one of these CNFs. This is because all
such certificates must either be connected to the key ring associated with the entity, or must be issued by
a CA for which a certificate is connected to the key ring associated with the entity.

Refer to the z/OS Security Server RACF Security Administrator's Guide for more information about the
commands you use to manipulate CNFs.

Defining a sender channel and transmission queue on QMA on z/OS
Use the DEFINE CHANNEL and DEFINE QLOCAL commands to set up the required objects.

Procedure
On QMA, issue commands like the following example:

DEFINE CHANNEL(TO.QMB) CHLTYPE(SDR) TRPTYPE(TCP) CONNAME(QMB.MACH.COM) XMITQ(QMB)
SSLCIPH(TLS_RSA_WITH_AES_128_CBC_SHA256) DESCR('Sender channel using TLS from QMA to QMB')

DEFINE QLOCAL(QMB) USAGE(XMITQ)

Results
A sender channel, TO.QMB, and a transmission queue, QMB, are created.

Defining a receiver channel on QMB on z/OS
Use the DEFINE CHANNEL command to set up the required object.

Procedure
On QMB, issue a command like the following example:

DEFINE CHANNEL(TO.QMB) CHLTYPE(RCVR) TRPTYPE(TCP) SSLCIPH(TLS_RSA_WITH_AES_128_CBC_SHA256)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using TLS to QMB')

Results
A receiver channel, TO.QMB, is created.

Starting the sender channel on QMA on z/OS
If necessary, start a listener program and refresh security. Then start the channel using the START
CHANNEL command.

Procedure
1. Optional: If you have not already done so, start a listener program on QMB.

The listener program listens for incoming network requests and starts the receiver channel when it is
needed. For information about how to start a listener, see Starting a channel listener.

332 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-security-administrators-guide

2. Optional: If any SSL/TLS channels have run previously, issue the command REFRESH SECURITY
TYPE(SSL).
This ensures that all the changes made to the key repository are available.

3. Start the channel on QMA, using the command START CHANNEL(TO.QMB).

Results
The sender channel is started.

Exchanging self-signed certificates on z/OS
Exchange the certificates you previously extracted. If you use FTP, use the correct format.

Procedure
Transfer the CA part of the QM1 certificate to the QM2 system and vice versa, for example, by FTP.

If you transfer the certificates using FTP, you must do so in the correct format.

Transfer the following certificate types in binary format:

• DER encoded binary X.509
• PKCS #7 (CA certificates)
• PKCS #12 (personal certificates)

Transfer the following certificate types in ASCII format:

• PEM (privacy-enhanced mail)
• Base64 encoded X.509

Defining a sender channel and transmission queue on QM1 on z/OS
Use the DEFINE CHANNEL and DEFINE QLOCAL commands to set up the required objects.

Procedure
On QM1, issue commands like the following example:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) CONNAME(QM1.MACH.COM) XMITQ(QM2)
SSLCIPH(TLS_RSA_WITH_AES_128_CBC_SHA) DESCR('Sender channel using TLS from QM1 to QM2')

DEFINE QLOCAL(QM2) USAGE(XMITQ)

The CipherSpecs at each end of the channel must be the same.

Only the SSLCIPH parameter is mandatory if you want your channel to use TLS. See “CipherSpecs
and CipherSuites in IBM MQ” on page 41 for information about the permitted values for the SSLCIPH
parameter.

Results
A sender channel, QM1.TO.QM2, and a transmission queue, QM2, are created.

Defining a receiver channel on QM2 on z/OS
Use the DEFINE CHANNEL command to set up the required object.

Procedure
On QM2, issue a command like the following example:

Securing IBM MQ 333

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) SSLCIPH(TLS_RSA_WITH_AES_128_CBC_SHA256)
SSLCAUTH(REQUIRED) DESCR('Receiver channel using TLS from QM1 to QM2')

The channel must have the same name as the sender channel you defined in “Defining a sender channel
and transmission queue on QM1 on z/OS” on page 333, and use the same CipherSpec.

Starting the sender channel on QM1 on z/OS
If necessary, start a listener program and refresh security. Then start the channel using the START
CHANNEL command.

Procedure
1. Optional: If you have not already done so, start a listener program on QM2.

The listener program listens for incoming network requests and starts the receiver channel when it is
needed. For information about how to start a listener, see Starting a channel listener

2. Optional: If any SSL/TLS channels have run previously, issue the command REFRESH SECURITY
TYPE(SSL).
This ensures that all the changes made to the key repository are available.

3. On QM1, start the channel, using the command START CHANNEL(QM1.TO.QM2).

Results
The sender channel is started.

Refreshing the SSL or TLS environment on z/OS
Refresh the TLS environment on queue manager QMA using the REFRESH SECURITY command.

Procedure
On QMA, enter the following command:

REFRESH SECURITY TYPE(SSL)

This ensures that all the changes made to the key repository are available.

Allowing anonymous connections on a receiver channel on z/OS
Use the ALTER CHANNEL command to make SSL or TLS client authentication optional.

Procedure
On QMB, enter the following command:

ALTER CHANNEL(TO.QMB) CHLTYPE(RCVR) SSLCAUTH(OPTIONAL)

Starting the sender channel on QM1 on z/OS
If necessary, start the channel initiator, start a listener program, and refresh security. Then start the
channel using the START CHANNEL command.

Procedure
1. Optional: if you have not already done so, start the channel initiator.
2. Optional: If you have not already done so, start a listener program on QM2.

The listener program listens for incoming network requests and starts the receiver channel when it is
needed. For information about how to start a listener, see Starting a channel listener

334 Securing IBM MQ

3. Optional: If the channel initiator was already running or any SSL/TLS channels have run previously,
issue the command REFRESH SECURITY TYPE(SSL).
This ensures that all the changes made to the key repository are available.

4. On QM1, start the channel, using the command START CHANNEL(QM1.TO.QM2).

Results
The sender channel is started.

Starting the sender channel on QMA on z/OS
If necessary, start the channel initiator, start a listener program, and refresh security. Then start the
channel using the START CHANNEL command.

Procedure
1. Optional: If you have not already done so, start the channel initiator.
2. Optional: If you have not already done so, start a listener program on QMB.

The listener program listens for incoming network requests and starts the receiver channel when it is
needed. For information about how to start a listener, see Starting a channel listener.

3. Optional: If the channel initiator was already running or if any SSL/TLS channels have run previously,
issue the command REFRESH SECURITY TYPE(SSL).
This ensures that all the changes made to the key repository are available.

4. Start the channel on QMA, using the command START CHANNEL(TO.QMB).

Results
The sender channel is started.

Modifying elliptic curve key length on z/OS
How you modify the GSK_CLIENT_ECURVE_LIST environment variable, to set the list of elliptic curves or
supported groups that are specified by the client, as a string consisting of one or more 4-character values
in order of preference for use.

Important: You must apply the fix in z/OS APAR OA61783 to permit certain elliptic curves to be made
effective by the operating system, when using TLS 1.0, TLS 1.1 and/or TLS 1.2 negotiated connections.

You can set this TLS environment variable in the channel initiator startup JCL, using the CEEOPTS DD
statement:

CEEOPTS DD DSN=<dataset-name>,DISP=SHR

In the dataset referenced above, specify the list that you want to use, for example:

ENVAR("GSK_CLIENT_ECURVE_LIST=002300240025")

Important: Do not use this CEEOPTS statement with in-stream data, as this prevents the environment
variable from being set for all TLS tasks using that statement.

Ensure you reference a sequential dataset, or partitioned dataset member, to allow this to work when
using an SSLTASKS value greater than one.

You can also use the server analogue equivalent of GSK_CLIENT_ECURVE_LIST, which is
GSK_SERVER_ALLOWED_KEX_ECURVES. See Limiting key exchange elliptic curves for more information.

In addition, see Table 5 in Cipher suite definitions for a list of valid 4-character elliptic curve and
supported groups specifications.

The default specification is 00210023002400250019. If TLS V1.3 is enabled, 0029 (x25519) is
appended to the end of the default list.

Securing IBM MQ 335

https://www.ibm.com/support/pages/apar/OA61783
https://www.ibm.com/docs/en/zos/2.5.0?topic=considerations-limiting-key-exchange-elliptic-curves
https://www.ibm.com/docs/en/zos/2.5.0?topic=programming-cipher-suite-definitions

Identifying and authenticating users
You can identify and authenticate users by using X.509 certificates, the MQCSP structure, or in several
types of user exit program.

Using X.509 certificates
You can identify and authenticate users by using X.509 certificates with the SET CHLAUTH command
and SSLPEER parameter. The SSLPEER parameter specifies a filter to use to compare with the Subject
Distinguished Name of the certificate from the peer queue manager or client at the other end of the
channel.

For more information about using the SET CHLAUTH command and SSLPEER parameter, see SET
CHLAUTH.

Digital certificates can be revoked by Certificate Authorities. You can check the revocation status of
certificates using OCSP, or CRLs on LDAP servers, depending on platform. For more information, see
“Working with revoked certificates” on page 351.

Using the MQCSP structure
The MQCSP connection security parameters structure is specified on an MQCONNX call. This structure
can contain credentials that are supplied by the application. The application can supply a user ID and
password in the MQCSP structure. From IBM MQ 9.3.4, applications can also supply an authentication
token. If necessary, the MQCSP can be altered in a security exit.

Warning: The credentials in an MQCSP structure are sometimes sent across the network in plain text. To
ensure that client application credentials are protected, see “MQCSP password protection” on page 31.

For more information, see “Identifying and authenticating users using the MQCSP structure” on page 337
and “Working with authentication tokens” on page 341.

On AIX and Linux, the user ID and password that is specified in the MQCSP
structure can be authenticated by using either the operating system or Pluggable Authentication Method
(PAM). PAM provides a general mechanism for user authentication that hides the details from services.
For more information, see “Using the Pluggable Authentication Method (PAM)” on page 362.

Implementing identification and authentication in exits
You can identify and authenticate users by using several types of user exit program. For more information,
see “Implementing identification and authentication in security exits” on page 339, “Identity mapping in
message exits” on page 340, and “Identity mapping in the API exit and API-crossing exit” on page 340.

Privileged users
A privileged user is one that has full administrative authorities for IBM MQ.

In addition to the users listed in the following table, there are certain objects and authorizations for which
extra care must be taken when granting access, to ensure integrity and security of the queue manager.
Extra scrutiny must be applied when granting any of the following authorizations:

• Any authorizations to SYSTEM objects
• Administration authorizations to create, alter and delete objects.

On z/OS, this authorization is command security and command resource security authority
to issue DEFINE, ALTER and DELETE commands.

On all other platforms, these authorizations are administration authorizations such as
+crt, +chg and +dlt.

• Administration authorization to clear queues.

336 Securing IBM MQ

On z/OS, this authorization is command security and command resource security authority
to issue CLEAR commands.

On all other platforms, this authorization is +clr.
• Administration authorizations to stop channels, backout or commit messages.

On z/OS, this authorization is command security and command resource security authority
to issue commands such as RESET CHANNEL, START CHANNEL and STOP CHANNEL.

On all other platforms, these authorizations are +ctrl and +ctrlx.
• Alternate user MQI authorization that allows applications to escalate privileges for authorization checks.

On z/OS, this authorization is any authority granted to the alternate user security profiles.

On all other platforms, this authorization is +altusr.
• Context authorizations that allow applications to change the security context of messages.

On z/OS, this authorization is any authority granted to the context security profiles.

On all other platforms, these authorizations are +setall and +setid.

As a general principal, messaging applications should only be granted the basic MQI authorizations to
the queues or topics that are needed. MCA channels that execute under a non-privileged MCAUSER and
certain other special types of applications, such as dead-letter queue handlers may require additional
authorizations not normally granted to applications to operate correctly.

Table 67. Privileged users by platform

Platform Privileged users

Windows systems • SYSTEM
• Members of the mqm group
• Members of the Administrators group

AIX and Linux systems • Members of the mqm group

IBM i systems • The profiles qmqm and qmqmadm
• All members of the qmqmadm group
• Any user defined with the *ALLOBJ setting

z/OS The user ID that the channel initiator, queue
manager and advanced message security address
spaces are running under. These user IDs do not
automatically have full administrative authorities
for IBM MQ, but are considered privileged due to
the level of access that is typically granted to these
user IDs.

Identifying and authenticating users using the MQCSP structure
You can specify the MQCSP connection security parameters structure on an MQCONNX call. The MQCSP
structure is the primary way for applications that use the message queue interface (MQI) to control the
credentials that are used for authentication.

The MQCSP structure contains credentials, which the authorization service can use to identify and
authenticate the user.

Securing IBM MQ 337

The MQCSP structure can be modified by client or server-side security exits, even if the application does
not explicitly provide the MQCSP structure. An example of application that does not explicitly provide an
MQCSP structure is an application that uses IBM MQ classes for JMS. For an example of a client-side
security exit that inserts a user ID and password in the MQCSP structure, see “Client side security exit to
insert user ID and password (mqccred)” on page 79.

The MQCSP structure contains a user ID and password, or an authentication token. The
following restrictions apply to credentials supplied in the MQCSP structure:

• An application or exit must supply either a user ID and password, or an authentication token, but not
both.

• Only authentication tokens that meet specific formats and requirements can be used to access IBM MQ.
For more information about the requirements for authentication tokens in IBM MQ, see “Requirements
for authentication tokens” on page 343.

• If the identity in the authentication token is to be adopted as the context for the application, the
token must provide a suitable user claim, and the claim value must be a valid IBM MQ user ID. For
example, the username must comply with maximum length and special character restrictions. For more
information about adopting a user ID, see “Relationship between MQCSP and ADOPTCTX settings” on
page 338.

For more information about the MQCSP structure, see MQCSP - Security parameters.

Warning: The credentials in an MQCSP structure for a client application are sometimes sent across the
network in plain text. To ensure that client application credentials are protected, see “MQCSP password
protection” on page 31.

Relationship between MQCSP and ADOPTCTX settings
IBM MQ always authenticates credentials that are passed in the MQCSP structure if the connection
authentication feature is enabled. After the credentials are authenticated successfully, IBM MQ can adopt
the user ID for subsequent authorization checks on operations performed by the connected application.
The user ID in the MQCSP credentials is adopted if the authentication information (AUTHINFO) object that
is referenced by the queue manager's CONNAUTH attribute is defined with ADOPTCTX(YES).

IBM MQ has a limit on the length of user IDs that it can use for authorization checks. For more information
about these limits, see “User IDs” on page 88. When a user ID passed in the MQCSP structure is adopted,
IBM MQ behaves differently, depending on other configuration options:

• When using LDAP connection authentication, IBM MQ adopts the user ID that is in the short username
attribute of the user's LDAP record. The short username attribute is set using the SHORTUSR attribute of
the AUTHINFO object.

For example, if SHORTUSR is set to 'CN', and the LDAP record lists the user as
'CN=Test,SN=MQ,O=IBM,C=UK', the user ID Test is used.

• When using OS connection authentication or PAM authentication, if ADOPTCTX is YES, the user ID
passed in the MQCSP structure is truncated in order to meet the 12 character user ID limit of IBM MQ
when adopted as the connection context.

If ChlAuthEarlyAdopt is enabled, the truncation happens after the user credentials have been
authenticated.

If ChlAuthEarlyAdopt is not enabled, the truncation happens before adoption. On Windows, if the
user is supplied in the format user@domain, this means that the truncation can result in a domain
specification that is not valid when the user is less than 12 characters.

For example if a user `ibmmq@windowsdomain` is provided through the MQCSP, it is truncated to
`ibmmq@window` in this scenario. This results in the following error:
AMQ8074W: Authorization failed as the SID 'SID' does not match the entity 'ibmmq@window'

On this basis, if you pass a user ID longer than 12 characters, such as a Windows domain user ID in the
form user@domain, through the MQCSP you should configure ChlAuthEarlyAdopt=Y in the qm.ini
file to avoid this error.

338 Securing IBM MQ

Alternatively, use ADOPTCTX(NO) on the CONNAUTH AUTHINFO configuration, and use an alternate
approach such as a CHLAUTH USERMAP rule, a security exit, or the channel object MCAUSER setting to
set the user ID for the channel.

Implementing identification and authentication in security exits
You can use a security exit to implement one-way or mutual authentication.

The primary purpose of a security exit is to enable the MCA at each end of a channel to authenticate its
partner. At each end of a message channel, and at the server end of an MQI channel, an MCA typically
acts on behalf of the queue manager to which it is connected. At the client end of an MQI channel, an
MCA typically acts on behalf of the user of the IBM MQ MQI client application. In this situation, mutual
authentication actually takes place between two queue managers, or between a queue manager and the
user of an IBM MQ MQI client application.

The supplied security exit (the SSPI channel exit) illustrates how mutual authentication can be
implemented by exchanging authentication tokens that are generated, and then checked, by a trusted
authentication server such as Kerberos. For more details, see “The SSPI channel exit program on
Windows” on page 154.

Mutual authentication can also be implemented by using Public Key Infrastructure (PKI) technology. Each
security exit generates some random data, signs it using the private key of the queue manager or user it
is representing, and sends the signed data to its partner in a security message. The partner security exit
performs the authentication by checking the digital signature using the public key of the queue manager
or user. Before exchanging digital signatures, the security exits might need to agree the algorithm for
generating a message digest, if more than one algorithm is available for use.

When a security exit sends the signed data to its partner, it also needs to send some means of identifying
the queue manager or user it is representing. This might be a Distinguished Name, or even a digital
certificate. If a digital certificate is sent, the partner security exit can validate the certificate by working
through the certificate chain to the root CA certificate. This provides assurance of the ownership of the
public key that is used to check the digital signature.

The partner security exit can validate a digital certificate only if it has access to a key repository that
contains the remaining certificates in the certificate chain. If a digital certificate for the queue manager or
user is not sent, one must be available in the key repository to which the partner security exit has access.
The partner security exit cannot check the digital signature unless it can find the signer's public key.

Transport Layer Security (TLS) uses PKI techniques like the ones just described. For more information
about how the Secure Sockets Layer performs authentication, see “Transport Layer Security (TLS)
concepts” on page 18.

If a trusted authentication server or PKI support is not available, other techniques can be used. A
common technique, which can be implemented in security exits, uses a symmetric key algorithm.

One of the security exits, exit A, generates a random number and sends it in a security message to
its partner security exit, exit B. Exit B encrypts the number using its copy of a key which is known
only to the two security exits. Exit B sends the encrypted number to exit A in a security message with
a second random number that exit B has generated. Exit A verifies that the first random number has
been encrypted correctly, encrypts the second random number using its copy of the key, and sends the
encrypted number to exit B in a security message. Exit B then verifies that the second random number has
been encrypted correctly. During this exchange, if either security exit is not satisfied with the authenticity
of other, it can instruct the MCA to close the channel.

An advantage of this technique is that no key or password is sent over the communications connection
during the exchange. A disadvantage is that it does not provide a solution to the problem of how to
distribute the shared key in a secure way. One solution to this problem is described in “Implementing
confidentiality in user exit programs” on page 475. A similar technique is used in SNA for the mutual
authentication of two LUs when they bind to form a session. The technique is described in “Session level
authentication” on page 121.

All the preceding techniques for mutual authentication can be adapted to provide one-way
authentication.

Securing IBM MQ 339

Identity mapping in message exits
You can use message exits to process information to authenticate a user ID, though it might be better to
implement authentication at the application level.

When an application puts a message on a queue, the UserIdentifier field in the message descriptor
contains a user ID associated with the application. However, there is no data present that can be used
to authenticate the user ID. This data can be added by a message exit at the sending end of a channel
and checked by a message exit at the receiving end of the channel. The authenticating data can be an
encrypted password or a digital signature, for example.

This service might be more effective if it is implemented at the application level. The basic requirement is
for the user of the application that receives the message to be able to identify and authenticate the user
of the application that sent the message. It is therefore natural to consider implementing this service at
the application level. For more information, see “Identity mapping in the API exit and API-crossing exit”
on page 340.

Identity mapping in the API exit and API-crossing exit
An application that receives a message must be able to identify and authenticate the user of the
application that sent the message. This service is typically best implemented at the application level.
API exits can implement the service in a number of ways.

At the level of an individual message, identification and authentication is a service that involves two users,
the sender and the receiver of the message. The basic requirement is for the user of the application that
receives the message to be able to identify and authenticate the user of the application that sent the
message. Note that the requirement is for one way, not two way, authentication.

Depending on how it is implemented, the users and their applications might need to interface, or even
interact, with the service. In addition, when and how the service is used might depend on where the users
and their applications are located, and on the nature of the applications themselves. It is therefore natural
to consider implementing the service at the application level rather than at the link level.

If you consider implementing this service at the link level, you might need to resolve issues such as the
following:

• On a message channel, how do you apply the service only to those messages that require it?
• How do you enable users and their applications to interface, or interact, with the service, if this is a

requirement?
• In a multi-hop situation, where a message is sent over more than one message channel on the way to its

destination, where do you invoke the components of the service?

Here are some examples of how the identification and authentication service can be implemented at the
application level. The term API exit means either an API exit or an API-crossing exit.

• When an application puts a message on a queue, an API exit can acquire an authentication token from a
trusted authentication server such as Kerberos. The API exit can add this token to the application data
in the message. When the message is retrieved by the receiving application, a second API exit can ask
the authentication server to authenticate the sender by checking the token.

• When an application puts a message on a queue, an API exit can append the following items to the
application data in the message:

– The digital certificate of the sender
– The digital signature of the sender

If different algorithms for generating a message digest are available for use, the API exit can include the
name of the algorithm it has used.

When the message is retrieved by the receiving application, a second API exit can perform the following
checks:

– The API exit can validate the digital certificate by working through the certificate chain to the root CA
certificate. To do this, the API exit must have access to a key repository that contains the remaining

340 Securing IBM MQ

certificates in the certificate chain. This check provide assurance that the sender, identified by the
Distinguished Name, is the genuine owner of the public key contained in the certificate.

– The API exit can check the digital signature using the public key contained in the certificate. This
check authenticates the sender.

The Distinguished Name of the sender can be sent instead of the whole digital certificate. In this case,
the key repository must contain the sender's certificate so that the second API exit can find the public
key of the sender. Another possibility is to send all the certificates in the certificate chain.

• When an application puts a message on a queue, the UserIdentifier field in the message descriptor
contains a user ID associated with the application. The user ID can be used to identify the sender.
To enable authentication, an API exit can append some data, such as an encrypted password, to the
application data in the message. When the message is retrieved by the receiving application, a second
API exit can authenticate the user ID by using the data that has travelled with the message.

This technique might be considered sufficient for messages that originate in a controlled and trusted
environment, and in circumstances where a trusted authentication server or PKI support is not
available.

Working with authentication tokens
From IBM MQ 9.3.4 client applications can provide tokens to authenticate with a queue manager. The
user ID in the token can also be used for authorization to access IBM MQ resources.

JWTs (JSON Web Tokens) adopt a claims-based identity model. The identity and access control are
abstracted into ideas of claims and token issuers.

• A claim is a name value pair that contains information about a user and establishes who the user is, not
what they can do.

• The token issuer is a trusted third party or a server that is issues a token for a user based only on the
identity of the user. The token issuer is not concerned with what the user can do.

A token is a simple structure that contains claims and can easily be transferred between parties over
the internet. Using tokens for authentication has the benefit of centralized identity management. You can
use one trusted token issuer so your applications can authenticate with many services without separately
registering with each service. Tokens provide increased security as credentials are not sent to each
service, only to the trusted issuer.

A JWT is defined through the proposed internet standard RFC7519.

How tokens work with IBM MQ
Tokens that are used with IBM MQ must be valid JWTs that have been signed with an algorithm that IBM
MQ supports. The JWT must be signed according to the JSON Web Signature (JWS) standard. Tokens that
use JSON Web Encryption (JWE) and JSON Web Key (JWK) JOSE technologies cannot be used with IBM
MQ. For more information, see “Requirements for authentication tokens” on page 343.

The application that supplies the authentication token can run on any platform that supports IBM MQ

clients. The application must be written in C or, from IBM MQ 9.3.5, in Java, and connect
to the queue manager using client bindings. However, the queue manager must run on AIX or Linux. The
queue manager must be configured to accept authentication tokens. A key repository must contain the
trusted token issuer's public key certificate or symmetric key, depending on which algorithm is used to
sign the token.

The token issuer is the trusted party that has the delegated security access, meaning they verify the
identity of the application user. The queue manager checks that an authentication token is valid and that
the authenticated user is authorized to access IBM MQ objects. The queue manager can, but does not
need to know of the users before they first connect in with a token. The IBM MQ administrator must set
up authentication and authorization for the applications that connect to the queue manager, and set the
requirements for what the tokens must contain.

Securing IBM MQ 341

https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519

The client application can dynamically request a token from the issuer that it uses for authentication

when it connects to IBM MQ. The application then uses the MQCSP structure or, from IBM
MQ 9.3.5, the equivalent in the chosen API, to pass the token to the queue manager when it connects.

If the application cannot be changed to request an authentication token and present the token to the
queue manger when it connects, a security exit can alternatively be used to provide a token in the MQCSP
structure.

If the token meets the requirements for authentication tokens, and token signature is valid, the
connection is established. The queue manager can also use the user ID contained in the token for
authorization checks to access IBM MQ resources if the optional user claim is contained in the token.
The user claim is the claim within the token that contains the user ID that the queue manager adopts
for authorization checks. This name of the user claim is specified with the UserClaim attribute in the
AuthToken stanza of the qm.ini file.

For more information, see “Using authentication tokens in an application” on page 349 and MQCSP -
Security parameters.

Token Issuer Queue Manager

Client
Application

Provides public key certificate/symmetric key

Provides credentials

Issues signed token If token contains user claim
can be used for authorization

Uses token to authenticate

The diagram shows a basic example of the expected flow for use of tokens with IBM MQ. The expected
lifecycle is as follows:

• The token is issued to an application by the trusted issuer. For more information, see Requirements for
authentication tokens.

• The application passes the token into the queue manager when connecting. For more information, see
Using authentication tokens in an application.

• The queue manager validates the token signature against the trusted issuer public key or symmetric key
in the key repository. To set up the queue manager, follow the steps in Configuring a queue manager to
accept authentication tokens.

• If the authentication token contains a valid user claim, the user in the token can be adopted for
authorization checks to access IBM MQ resources . For more information, see Adopting users for
authorization.

• The IBM MQ administrator manages trusted token issuer certificates. When the certificate expires, a
new certificate must be obtained from the token issuer and added to the key repository.

• If you configured your queue manager and the application is connecting but encounter issues with the
token, see Troubleshooting authentication token problems and Token authentication error codes.

342 Securing IBM MQ

IBM MQ works with any token issuer that provides tokens that conform to the JWT and JWS standards.

If you are not already using tokens but want to understand what is involved in standing up a token server,
see the Getting started guide for the free and open source Keycloak project.

Related reference
AuthToken stanza of the qm.ini file

Requirements for authentication tokens
Validation requirements, structure, and algorithms for authentication tokens used with IBM MQ.

Requirements
Authentication tokens that are used with IBM MQ must meet the following requirements.

• The token length must not exceed the maximum length of 8192 characters. For more information, see
TokenLength (MQLONG) for MQCSP.

• The token structure and encoding is valid as defined by the JSON Web Token (JWT) specification in
RFC7519, and the JSON Web Signature (JWS) specification in RFC7515.

• The required token header parameters that are specified in Table 68 on page 344 are present and the
values of the parameters are valid.

• The required payload claims specified in Table 69 on page 344 are present and the values of the claims
are valid.

• The token is signed with an algorithm in Table 70 on page 345 that IBM MQ supports.
• The value of the expiry (exp) claim is later than the current time.
• If the not before (nbf) claim is present, the value is before the current time.
• If a user claim is present, the value must meet the requirements for “User IDs in authentication tokens”

on page 345.

Token structure
IBM MQ accepts JWTs that conform to the RFC7519 standard. The JWT must be signed and encoded
according to the JWS standard that is defined in RFC7515.

IBM MQ expects the JWS secured token to contain the following three components:
JOSE header

A JSON object that contains parameters that describe the type of token and the cryptographic
algorithms that are used to secure its contents.

The following header example declares that the encoded object is a JWT, and that the header and the
payload are secured by using the HMAC SHA-256 algorithm.

{
 "typ":"JWT",
 "alg":"HS256"
}

JWS payload

A JSON object that contains claims as specified in the JWT standard. Each member of the JSON
object is a claim. Claims can assert the identity of the token issuer, or the user ID of the bearer.

{
 "exp": 1685529153,
 "nbf": 1685528150,
 "AppUser": "MyUserName"
 }

Securing IBM MQ 343

https://www.keycloak.org/getting-started/getting-started-zip
https://www.keycloak.org/
https://www.rfc-editor.org/rfc/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/rfc/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515

JWS signature

Used to validate that the token is issued by a trusted issuer.

These components are represented in the JWS secured token as base64url-encoded strings separated by
a period ('.').

An authentication token that conforms to the JWS standard is signed to allow the token's authenticity to
be validated, but it is not encrypted. Therefore, it can be read, and possibly reused, by anyone who has
access to the token. Configure the connection to the queue manager to ensure that the authentication
is protected by using encryption when it is sent over the network, for example, by using TLS. For more
information about the options to protect credentials that are supplied by an application, see MQCSP
password protection.

IBM MQ supports the following parameters and claims in the header and the payload of authentication
tokens. Any additional parameters or claims in a token are ignored. If a token contains more than one
parameter or claim with the same name, the last parameter or claim with the duplicate name is used.

Table 68. Token header parameter descriptions

Token part Parameter
name

Data type Required Description

Header typ String Yes The token type. The value of this
parameter must be "JWT".

alg String Yes The algorithm used to secure the header
and the payload. The value of this
parameter must be one of the algorithms
in Table 70 on page 345.

Table 69. Token payload claims descriptions

Token part Parameter
name

Data type Required Description

Payload exp Integer Yes The token expiry time, expressed as the
number of seconds since 1 January 1979,
00:00 Coordinated Universal Time. The
token is not accepted after this time.

nbf Integer No The time, expressed as the number of
seconds since 1 January 1979, 00:00
Coordinated Universal Time before which
the token is not accepted.

User claim
name
specified
the in the
UserClai
m field of
the
AuthToke
n stanza in
the
qm.ini
file.

String Required only if
the user claim
in the token is
used for
authorization.

The name of the claim that contains the
user ID that is adopted for authorization
checks.
For example, if your token has the user
claim "AppUser": "MyUserName", then
you must specify UserClaim=AppUser
in the AuthToken stanza of the qm.ini
file.

For a good example of an encoded and decoded token, see the debugger page on the jwt.io website.

344 Securing IBM MQ

https://jwt.io/

Algorithms
IBM MQ supports a subset of algorithms that are included in the JSON Web Algorithms (JWA)
specification for JWS secured tokens.

Table 70. JSON Web Algorithms (JWA) supported by IBM MQ for JWS secured tokens

alg parameter value Digital Signature or MAC Algorithm

HS256 HMAC using SHA-256

HS384 HMAC using SHA-384

HS512 HMAC using SHA-512

RS256 RSASSA-PKCS1-v1_5 using SHA-256

RS384 RSASSA-PKCS1-v1_5 using SHA-384

RS512 RSASSA-PKCS1-v1_5 using SHA-512

Asymmetric key certificate requirements
If a token is signed with an asymmetric key, the public key certificate from the token issuer must be
in the key repository that the queue manager uses for token authentication. When the authentication
token is received, the certificate must be within its validity period. No checks are made to ensure that the
certificate from the token issuer has not been revoked.

User IDs in authentication tokens
If the queue manager is configured to adopt the user ID that is contained in the user claim of an
authentication token as the context for the application, the user ID that is adopted must meet the
following requirements:

• It can contain up to 12 characters.
• It must start with one of the following characters:

A-Z a-z
• It can contain any of the following characters:

0-9 A-Z a-z + , - . : = _
• It must not be one of the reserved user IDs UNKNOWN and NOBODY.

Related tasks
Configuring a queue manager to accept AuthTokens
Related reference
AuthToken stanza of the qm.ini file

Configuring a queue manager to accept
authentication tokens
Configure your IBM MQ queue manager to authenticate users and applications with authentication
tokens.

Before you begin
Read about how tokens work with IBM MQ in Working with authentication tokens.

Before you configure your queue manager, check that the AUTHINFO object that is referenced in the
queue manager CONNAUTH attribute is of type IDPWOS. Token authentication is only available when the
queue manager is configured for OS user ID and password checking.

Securing IBM MQ 345

https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7515

Check that the SecurityPolicy attribute of the Service stanza is not set to Group. Token
authentication is not available if SecurityPolicy is explicitly set to Group. If SecurityPolicy is
set to Group, change the value of the SecurityPolicy attribute to UserExternal or remove it from
the Service stanza, then restart the queue manager.

About this task
From IBM MQ 9.3.4 applications can authenticate with the queue manager by using tokens. IBM MQ
accepts JSON Web Tokens (JWTs) from trusted issuers that follow the proposed internet standard
RFC7519. You can use tokens to authenticate an identity, which then can be adopted for future
authorization checks.

Configure your queue manager to accept tokens by saving the trusted issuer's public key certificate or
symmetric key to the queue manager's key repository. Add the AuthToken stanza to the qm.ini file and
refresh the security configuration so the queue manager picks up the new configuration.

Procedure
1. Create the key repository.

a) Create a key repository for the public key certificate or symmetric key that is received from the
trusted issuer. You can use either a CMS key repository with the file extension .kdb or a PKCS#12
key repository with the file extension .p12.
Issue the following command to create a CMS key repository:

runmqakm -keydb -create -db /var/mqm/qmgrs/qm1/tokenissuer/key.kdb -pw MyKeystorePassword
-type cms

If the runmqakm command returns an error, see runmqakm error codes. If the command completes
successfully, use the ls command to list the contents of the directory:

ls -l /var/mqm/qmgrs/qm1/tokenissuer

The following files are displayed:

-rw------- 1 adminuser mqm 88 Feb 22 07:50 key.crl
-rw------- 1 adminuser mqm 88 Feb 22 07:50 key.kdb
-rw------- 1 adminuser mqm 88 Feb 22 07:50 key.rdb

b) If necessary, change group ownership for the key repository files you created so that the mqm
group can be given read access. Initially, only the admin user who ran the command has access to
the created files.

chgrp mqm /var/mqm/qmgrs/qm1/tokenissuer/key.*

c) Change the mode of the key repository files to add read permissions for group mqm. For example,
the following command adds read/write permissions for the file owner, and read only permission
for the group.

chmod 640 /var/mqm/qmgrs/qm1/tokenissuer/key.*

2. Encrypt the key repository password with the runqmcred command and save the encrypted string to a
file.
a) Create a file to contain the initial key that is used to encrypt the key repository password.

The file must contain the initial key as a single line of text. The maximum length of the initial key is
256 bytes. If you have already set an initial key for the queue manager by using the INITKEY queue
manager attribute, copy the value of the INITKEY attribute into the new file. If you have not already
set an initial key for the queue manager, create a new, unique encryption key and add it to the initial
key file.

Note: For more information, see INITKEY. If you do not specify the initial key, a default one is used.
It is more secure to use your own initial key.

346 Securing IBM MQ

https://www.rfc-editor.org/rfc/rfc7519

Note: Grant the minimum necessary permissions on the initial key file to keep the contents of the
file secure. The initial key file is only used to encrypt the key repository password. Therefore, only
administrators who use the initial key to encrypt passwords need access to the read the initial key
file.

b) If the queue manager initial key is not already set, set the value of the queue manager INITKEY
attribute to the initial key that you created in step “2.a” on page 346. Use the ALTER QMGR
command to set the queue manager initial key. For example:

ALTER QMGR INITKEY('myEncrypt10nK3y')

c) Issue the runqmcred command to encrypt the key repository password. Use the -sf parameter to
specify the path to the file that contains the initial key.

runqmcred -sf initial.key

When prompted, enter the key repository password. The encrypted password is output by the
command.

5724-H72 (C) Copyright IBM Corp. 1994, 2024.
Enter password:

<QM>!2!b5rb01sMzFzc1ClZeQMryruWFM3HSm8DKyEaZK7qzWY=!TrWdU57DCDXM0Qah99I/Lg==

Copy the string on the last line and save it to a file.
3. Use one of the following methods to add the token issuer's public key certificate or symmetric key to

the key repository.

• To add the RSA public key certificate to the key repository, issue the following command:

runmqakm -cert -add -db /var/mqm/qmgrs/qm1/tokenissuer/key.kdb -pw MyKeystorePassword
-label keylabel
 -file keyfile

• To add a base64 encoded symmetric key to the key repository, issue the following command:

runmqakm -secretkey -add -db /var/mqm/qmgrs/qm1/tokenissuer/key.kdb -pw MyKeystorePassword
-label keylabel
 -file keyfile -format ascii

Where keylabel is the label to be attached to the certificate or secret key, and keyfile is the name of the
file that contains the certificate or the base64 encoded secret key.

4. Add the AuthToken stanza and the following attributes to the qm.ini file:

• The path to the key repository, specified by using the KeyStore attribute.
• The file that contains the password for the key repository, specified by using the KeyStorePwdFile

attribute.
• The label of the certificate or symmetric key that you added in step “3” on page 347, specified by

using the CertLabel attribute.

For example:

AuthToken:
 KeyStore=/var/mqm/qmgrs/qm1/tokenissuer/key.kdb
 KeyStorePwdFile=/var/mqm/qmgrs/qm1/tokenissuer/key.pw
 CertLabel=rsakey

Where key.kdb is the name of the key repository that you created in step “1.a” on page 346, and
key.pw is the file that contains the encrypted password for the key repository that you created in step
“2.c” on page 347.
For more information about the AuthToken stanza, see AuthToken stanza of the qm.ini file.

5. If the queue manager is configured to adopt the user ID that is contained in the token user claim for
use in subsequent authorization checks, add the UserClaim attribute to the AuthToken stanza.

Securing IBM MQ 347

To determine whether the queue manager is configured to adopt the user ID in the token, issue the
following MQSC command:

DISPLAY AUTHINFO(authinfo_name) ADOPTCTX

Where authinfo_name is the value of the queue manager CONNAUTH attribute. If the value of the
ADOPTCTX attribute is YES, the queue manager is configured to adopt the user ID in the token, and the
UserClaim attribute must be specified in the AuthToken stanza.
Set the value of the UserClaim attribute to the name of the token claim that contains the user ID
to be adopted. For example, if the token contains the claim "AppUser": "MyUserName", add the
following line to the AuthToken stanza:

UserClaim=AppUser

6. Refresh the queue manager's security configuration so it picks up the token configuration from the
qm.ini file. Issue the following command to start the runmqsc command:

runmqsc qm1

then issue the following MQSC command:

REFRESH SECURITY TYPE(CONNAUTH)

What to do next
Work with your developers to help them understand how they can use tokens in applications to
authenticate with the queue manager.
Related concepts
Troubleshooting authentication token problems
Related tasks
Using authentication tokens in an application
Related reference
AuthToken stanza of the qm.ini file

Obtaining an authentication token from your chosen token issuer
Write your application to obtain an authentication token from your chosen token issuer when it connects
to an IBM MQ queue manager.

Before you begin
Refer to the information in “Using authentication tokens in an application” on page 349.

Procedure
• How you obtain an authentication token, and the exact contents of the token, varies between different

token issuers.
Write your application to interact with your chosen token issuer to request and obtain the
authentication token.
The authentication token must conform to the IBM MQ requirements for authentication tokens. For
more information about these requirements, see “Requirements for authentication tokens” on page
343.
If you intend to adopt a user ID that is contained in a token claim as the context for the application, the
authentication token must also meet the following requirements:

– The authentication token must contain a claim that matches the user claim name in the queue
manager's token authentication configuration.

348 Securing IBM MQ

– The value of the user claim must meet the requirements for user IDs in authentication tokens. For
more information, see “User IDs in authentication tokens” on page 345.

Results
You have now obtained a correctly formatted JWT which can be presented to IBM MQ for validation.
Related tasks
Configuring a queue manager to accept AuthTokens
Related reference
AuthToken stanza of the qm.ini file
MQCSP - Security parameters

Using authentication tokens in an application
Write your application to supply an authentication token when it connects to an IBM MQ queue manager.

Before you begin
From IBM MQ 9.3.4, applications can supply an authentication token when they connect to a queue
manager.

The application must meet the following requirements:

• It must be written in C or Java (using the IBM MQ classes for JMS/ Jakarta Messaging)
• It must connect to the queue manager as an IBM MQ client. That is, the application must connect to the

queue manager over a network, instead of using local bindings.
• It must connect to a queue manager that runs on AIX or Linux.

If the application does not meet these requirements, the connection fails and reason code
MQRC_FUNCTION_NOT_SUPPORTED (2298) is returned to the application.

The application that supplies the authentication token can run on any platform that supports IBM MQ MQI
clients.

Clients that use automatic client reconnection cannot supply an authentication token when they
connect. If an application supplies an authentication token, and specifies the MQCNO_RECONNECT
or MQCNO_RECONNECT_Q_MGR option in the MQCNO structure, the connection fails and reason code
MQRC_RECONNECT_INCOMPATIBLE (2547) is returned to the application. For more information about
automatic client reconnection, see Automatic client reconnection.

If you cannot write the application to supply an authentication token due to these requirements, you
can alternatively migrate your application to use authentication tokens by using a client security exit.
The client security exit can be written to set the authentication token in the MQCSP structure. For more
information about security exits, see Security exits on a client connection.

From IBM MQ 9.3.5, JMS client applications can directly provide a token when connecting
(see “Obtaining an authentication token from your chosen token issuer” on page 348). In IBM MQ 9.3.4,
Java applications can indirectly provide a token by way of an exit program. For more information, see Java
class MQCSP.

About this task
Note: An authentication token that conforms to the JSON Web Signature (JWS) standard is signed to
allow the token's authenticity to be validated, but it is not encrypted. Therefore, it can be read, and
possibly reused, by anyone who has access to the token. Configure the connection to the queue manager
to ensure that the authentication token is protected by using encryption when it is sent over the network,
for example, by using TLS. For more information about the options to protect credentials that are supplied
by an application, see “MQCSP password protection” on page 31.

Before modifying applications to connect using a token ensure:

Securing IBM MQ 349

https://www.rfc-editor.org/rfc/rfc7519

• The queue manager has been configured to accept authentication tokens by following the steps in
“Configuring a queue manager to accept authentication tokens” on page 345

• Your application can obtain a valid token as required from your authentication server, see “Obtaining an
authentication token from your chosen token issuer” on page 348.

To supply an authentication token when the application connects to an IBM MQ queue manager, include
the following process.

Procedure
• To supply an authentication token from a C (MQI) application:

The application must connect using MQCONNX (rather than MQCONN) and supply an MQCSP
structure:

– The AuthenticationType field must be set to MQCSP_AUTH_ID_TOKEN.
– The version of the structure must be set to MQCSP_VERSION_3.
– The TokenPtr or TokenOffset field must reference your authentication token.
– The TokenLength field must be set to the length of the authentication token.

Example C code to connect to a queue manager using MQCSP Version 3 and authentication token:

MQCNO cno = {MQCNO_DEFAULT}; /* Connection options */
MQCSP csp = {MQCSP_DEFAULT}; /* Security parameters */

char token[MQ_CSP_TOKEN_LENGTH +1] = {0}; /* Authentication token string */

/* Set the connection options */
cno.SecurityParmsPtr = &csp;
cno.Version = MQCNO_VERSION_5;

/* Set the security parameters */
csp.Version = MQCSP_VERSION_3;
csp.AuthenticationType = MQCSP_AUTH_ID_TOKEN;
csp.TokenPtr = token;
csp.TokenLength = (MQLONG) strlen(token);

/* Connect to the queue manager */
MQCONNX(qmName, /* Queue manager name */
 &cno, /* Connection options */
 &hCon, /* Connection handle */
 &compCode, /* Completion code */
 &reason); /* Reason code */

• To supply an authentication token from a Java application:
Applications using the IBM MQ classes for JMS/Jakarta Messaging can provide a token through any of
the createContextor createConnection methods, which take a username and password.
To provide an authentication token, the :

– UserID must be set to either null or an empty string, that is, without spaces , ""
– The token is provided as the Password string.

This applies to all IBM MQ implementations of the ConnectionFactory interface.

Either the explicit parameter forms, for example, createContext(String userID, String password)
can be used, or the implicit parameter versions, for example, createContext().

In the latter case, the empty userID and Token Password must have first been provided as
properties on the connection factory.

Example Java code to connect to a queue manager using an authentication token:

// Obtain token from authentication provider here:

String myToken = "xxxxxxxxxxxxxxxx";

// Acquire instance of an MQ connection Factory:

350 Securing IBM MQ

JmsFactoryFactory ff = JmsFactoryFactory.getInstance(WMQConstants.WMQ_PROVIDER);

JmsConnectionFactory cf = ff.createConnectionFactory();

// Configure any required CF properties here - e.g. MQ Channel details

// Connect to (and authenticate with) the queue manager:

context = cf.createContext(null, myToken); // NOTE - null userID indicates token being
provided

If the connection fails with reason code MQRC_NOT_AUTHORIZED (2035) or
MQRC_SECURITY_ERROR (2063), check the queue manager error log for an error message that
contains more information about the cause of the failure. For more help with diagnosing problems
with authentication tokens, see Troubleshooting authentication token problems.

Results
The application is now connected to the queue manager. It remains connected until it disconnects, even
if the token that was used to authenticate expires. If the application disconnects from the queue manager
and needs to reconnect, it might need to obtain a new authentication token with a later expiry time before
it can reconnect.
Related tasks
Configuring a queue manager to accept AuthTokens
Related reference
AuthToken stanza of the qm.ini file
MQCSP - Security parameters

Working with revoked certificates
Digital certificates can be revoked by Certificate Authorities. You can check the revocation status of
certificates using OCSP, or CRLs on LDAP servers, depending on platform.

During the TLS handshake, the communicating partners authenticate each other with digital certificates.
Authentication can include a check that the certificate received can still be trusted. Certificate Authorities
(CAs) revoke certificates for various reasons, including:

• The owner has moved to a different organization
• The private key is no longer secret

CAs publish revoked personal certificates in a Certificate Revocation List (CRL). CA certificates that have
been revoked are published in an Authority Revocation List (ARL).

On AIX, Linux, and Windows platforms, IBM MQ SSL support checks for revoked certificates
using OCSP (Online Certificate Status Protocol) or using CRLs and ARLs on LDAP (Lightweight Directory
Access Protocol) servers. OCSP is the preferred method.

IBM MQ classes for Java and IBM MQ classes for JMS cannot use the OCSP information in a client channel
definition table file. However, you can configure OCSP as described in Using Online Certificate Protocol.

On IBM i and z/OS platforms, IBM MQ SSL support checks for revoked
certificates using CRLs and ARLs on LDAP servers only.

For more information about Certificate Authorities, see “Digital certificates” on page 13.

Securing IBM MQ 351

OCSP/CRL checking
Online Certificate Status Protocol (OCSP)/Certificate Revocation List (CRL) checking is performed against
remote incoming certificates. The process checks the whole chain involved from the personal certificate
of the remote system right through to its root certificate.

Using openSSL to verify OCSP validation
If your enterprise uses openSSL to validate OCSP, and then you attempt to use a GSKit TLS connection,
you receive an UNKNOWN status warning.

This is because all certificates in the chain, apart from the root, are checked by GSKit for revocation
status. GSKit operation is in accordance with RFC 5280 and this is described in the GSKit Trust Policy. The
GSKit algorithm tries all available sources for revocation information, as described in RFC 5280 and the
GSKit Trust Policy.

How does the OCSP/CRL checking work in IBM MQ?
IBM MQ supports two mechanisms for controlling behavior when checking certificates against named
OCSP or CRL endpoints, either in the certificate extension or, as defined in the AUTHINFO objects:

• The OCSPCheckExtensions, CDPCheckExtensions, and OCSPAuthentication attributes of the
SSL stanza of the qm.ini file, and

• Using the SSLCRLNL parameter of the queue manager and the AUTHINFO OCSP and CRLLDAP
configurations. See ALTER AUTHINFO and ALTER QMGR for more information.

Attention:

The ALTER AUTHINFO command with AUTHTYPE(OCSP) does not apply for use on IBM i or
z/OS queue managers. However, it can be specified on those platforms to be copied to the client
channel definition table (CCDT) for client use.

The OCSPCheckExtensions and CDPCheckExtensions SSL stanza attributes control whether IBM MQ
will verify a certificate against the OCSP or CRL server detailed inside the AIA extension of the certificate.

If not enabled, the OCSP or CRL server in the certificate extension is not contacted.

If OCSP or CRL servers are detailed through AUTHINFO objects, and referenced using the SSLCRLNL QMGR
attribute then, during certificate revocation processing, IBM MQ attempts to contact these servers.

Important: Only one OCSP AUTHINFO object can be defined in the SSLCRLNL namelist.

If:

OCSPCheckExtensions=NO and CDPCheckExtensions=NO are set, and
No OCSP or CRL servers are defined in AUTHINFO objects

no certificate revocation checking is performed.

When verifying a certificate for its revocation status, IBM MQ contacts the OCSP or CRL servers named in
the following order, if enabled:

1. The OCSP server detailed in an AUTHTYPE(OCSP) object, and referenced in the SSLCRLNL QMGR
attribute.

2. OCSP servers detailed in the AIA extension of the certificates, if OCSPCheckExtensions=YES.
3. CRL servers detailed in the CRLDistributionPoints extension of the certificates, if
CDPCheckExtensions =YES.

4. Any CRL servers detailed in AUTHINFO(CRLLDAP) objects and referenced in the SSLCRLNL QMGR
attribute.

While verifying a certificate, if a step results in the OCSP server or CRL server returning a definitive
REVOKED or VALID response to a query for the certificate, no further checks are performed and the status
of the certificate as presented is used to determine whether to trust it or not.

352 Securing IBM MQ

If an OCSP server or CRL server returns a result of UNKNOWN, processing continues until an OCSP or CRL
server returns a definitive result, or all options are exhausted.

The behavior of whether a certificate is considered revoked, if its status cannot be determined, is different
for OCSP and CRL servers:

• For CRL servers, if no CRL can be obtained, the certificate is considered NOT_REVOKED
• For OCSP servers, if no revocation status can be obtained from a named OCSP server then the behavior

is controlled through the OCSPAuthentication attribute in the SSL Stanza of the qm.ini file.

You can configure this attribute to either, block a connection, allow a connection, or allow a connection
with a warning message.

You can use the SSLHTTPProxyName=string attribute in the SSL stanza of the qm.ini and mqclient.ini files
for the OCSP checks if needed. The string is either the host name, or network address of the HTTP Proxy
server that is to be used by GSKit for OCSP checks.

From IBM MQ 9.1.5 you can set the OCSPTimeout value in the SSL stanza of the qm.ini or
mqclient.ini files that sets the number of seconds to wait for an OCSP responder when performing a
revocation check.

Revoked certificates and OCSP
IBM MQ determines which Online Certificate Status Protocol (OCSP) responder to use, and handles the
response received. You might have to take steps to make the OCSP responder accessible.

Note: This information applies only to IBM MQ on AIX, Linux, and Windows systems.

To check the revocation status of a digital certificate using OCSP, IBM MQ can use two methods to
determines which OCSP responder to contact:

• By using the AuthorityInfoAccess (AIA) certificate extension in the certificate to be checked.
• By using a URL specified in an authentication information object or specified by a client application.

A URL specified in an authentication information object or by a client application takes priority over a URL
in an AIA certificate extension.

If the URL of the OCSP responder lies behind a firewall, reconfigure the firewall so the OCSP responder
can be accessed or set up an OCSP proxy server. Specify the name of the proxy server by using the
SSLHTTPProxyName variable in the SSL stanza. On client systems, you can also specify the name of
the proxy server by using the environment variable MQSSLPROXY. For more details, see the related
information.

If you are not concerned whether TLS certificates are revoked, perhaps because you are running in a test
environment, you can set OCSPCheckExtensions to NO in the SSL stanza. If you set this variable, any AIA
certificate extension is ignored. This solution is unlikely to be acceptable in a production environment,
where you probably do not want to allow access from users presenting revoked certificates.

The call to access the OCSP responder can result in one of the following three outcomes:
Good

The certificate is valid.
Revoked

The certificate is revoked.
Unknown

This outcome can arise for one of three reasons:

• IBM MQ cannot access the OCSP responder.
• The OCSP responder has sent a response, but IBM MQ cannot verify the digital signature of the

response.
• The OCSP responder has sent a response that indicates that it has no revocation data for the

certificate.

Securing IBM MQ 353

If IBM MQ receives an OCSP outcome of Unknown, its behavior depends on the setting of the
OCSPAuthentication attribute. For queue managers, this attribute is held in one of the following
locations:

• In the SSL stanza of the qm.ini file on AIX and Linux.

• In the Windows registry.

This attribute can be set using the IBM MQ Explorer. For clients, the attribute is held in the SSL stanza
of the client configuration file.

If an outcome of Unknown is received and OCSPAuthentication is set to REQUIRED (the default value),
IBM MQ rejects the connection and issues an error message of type AMQ9716. If queue manager
SSL event messages are enabled, an SSL event message of type MQRC_CHANNEL_SSL_ERROR with
ReasonQualifier set to MQRQ_SSL_HANDSHAKE_ERROR is generated.

If an outcome of Unknown is received and OCSPAuthentication is set to OPTIONAL, IBM MQ allows
the SSL channel to start and no warnings or SSL event messages are generated.

If an outcome of Unknown is received and OCSPAuthentication is set to WARN, the SSL channel starts
but IBM MQ issues a warning message of type AMQ9717 in the error log. If queue manager SSL
event messages are enabled, an SSL event message of type MQRC_CHANNEL_SSL_WARNING with
ReasonQualifier set to MQRQ_SSL_UNKNOWN_REVOCATION is generated.

Digital signing of OCSP responses
An OCSP responder can sign its responses in one of three ways. Your responder will inform you which
method is used.

• The OCSP response can be digitally signed using the same CA certificate that issued the certificate that
you are checking. In this case, you do not need to set up any additional certificate; the steps you have
already taken to establish TLS connectivity are sufficient to verify the OCSP response.

• The OCSP response can be digitally signed using another certificate signed by the same certificate
authority (CA) that issued the certificate you are checking. The signing certificate is sent together with
the OCSP response in this case. The certificate flowed from the OCSP responder must have an Extended
Key Usage Extension set to id-kp-OCSPSigning so that it can be trusted for this purpose. Because
the OCSP response is sent with the certificate which signed it (and that certificate is signed by a CA that
is already trusted for TLS connectivity), no additional certificate setup is required.

• The OCSP response can be digitally signed using another certificate that is not directly related to the
certificate you are checking. In this case, the OCSP response is signed by a certificate issued by the
OCSP responder itself. You must add a copy of the OCSP responder certificate to the key database of the
client or queue manager that performs the OCSP checking. see “Adding a CA certificate, or the public
part of a self-signed certificate, into a key repository on AIX, Linux, and Windows” on page 311. When
a CA certificate is added, by default it is added as a trusted root, which is the required setting in this
context. If this certificate is not added, IBM MQ cannot verify the digital signature on the OCSP response
and the OCSP check results in an Unknown outcome, which might cause IBM MQ to close the channel,
depending on the value of OCSPAuthentication.

Online Certificate Status Protocol (OCSP) in Java and JMS client applications
Due to a limitation of the Java API, IBM MQ can use Online Certificate Status Protocol (OCSP) certificate
revocation checking for TLS secure sockets only when OCSP is enabled for the entire Java virtual machine
(JVM) process. There are two ways to enable OCSP for all secure sockets in the JVM:

• Edit the JRE java.security file to include the OCSP configuration settings that are shown in Table 1 and
restart the application.

• Use the java.security.Security.setProperty() API, subject to any Java Security Manager policy in effect.

As a minimum, you must specify one of the ocsp.enable and ocsp.responderURL values.

354 Securing IBM MQ

Property Name Description

ocsp.enable This property's value is either true or false. If true, OCSP
checking is enabled when doing certificate revocation checking; if
false or not set, OCSP checking is disabled.

ocsp.responderURL This property's value is a URL that identifies the location of the OCSP
responder. Here is an example; ocsp.responderURL=http://
ocsp.example.net:80. By default, the location of the OCSP
responder is determined implicitly from the certificate that is being
validated. The property is used when the Authority Information
Access extension (defined in RFC 3280) is absent from the certificate
or when it requires overriding.

ocsp.responderCertSubjectName This property's value is the subject name of the
OCSP responder's certificate. Here is an example;
ocsp.responderCertSubjectName="CN=OCSP Responder,
O=XYZ Corp". By default, the certificate of the OCSP responder
is that of the issuer of the certificate that is being validated. This
property identifies the certificate of the OCSP responder when the
default does not apply. Its value is a string distinguished name
(defined in RFC 2253) which identifies a certificate in the set of
certificates that are supplied during cert path validation. In cases
where the subject name alone is not sufficient to uniquely identify
the certificate, then both the ocsp.responderCertIssuerName
and ocsp.responderCertSerialNumber properties must
be used instead. When this property is set,
then the properties ocsp.responderCertIssuerName and
ocsp.responderCertSerialNumber are ignored.

ocsp.responderCertIssuerName This property's value is the issuer name of the
OCSP responder's certificate. Here is an example;
ocsp.responderCertIssuerName="CN=Enterprise CA,
O=XYZ Corp". By default, the certificate of the OCSP responder
is that of the issuer of the certificate that is being validated. This
property identifies the certificate of the OCSP responder when
the default does not apply. Its value is a string distinguished
name (defined in RFC 2253) which identifies a certificate in the
set of certificates that are supplied during cert path validation.
When this property is set then the ocsp.responderCertSerialNumber
property must also be set. This property is ignored when the
ocsp.responderCertSubjectName property is set.

ocsp.responderCertSerialNumber This property's value is the serial number of the
OCSP responder's certificate. Here is an example;
ocsp.responderCertSerialNumber=2A:FF:00. By default, the
certificate of the OCSP responder is that of the issuer of the
certificate that is being validated. This property identifies the
certificate of the OCSP responder when the default does not
apply. This value is a string of hexadecimal digits (colon or space
separators might be present) which identifies a certificate in the
set of certificates that are supplied during cert path validation.
When this property is set then the ocsp.responderCertIssuerName
property must also be set. This property is ignored when the
ocsp.responderCertSubjectName property is set.

Before you enable OCSP in this way, there are a number of considerations:

• Setting the OCSP configuration affects all secure sockets in the JVM process. In some cases this
configuration might have undesirable side-effects when the JVM is shared with other application code

Securing IBM MQ 355

that uses TLS secure sockets. Ensure that the chosen OCSP configuration is suitable for all of the
applications that are running in the same JVM.

• Applying maintenance to your JRE might overwrite the java.security file. Take care when you apply Java
interim fixes and product maintenance to avoid overwriting the java.security file. It might be necessary
to reapply your java.security changes after you apply maintenance. For this reason, you might consider
setting the OCSP configuration by using the java.security.Security.setProperty() API instead.

• Enabling OCSP checking has an effect only if revocation checking is also enabled. Revocation checking
is enabled by the PKIXParameters.setRevocationEnabled() method.

• If you are using the AMS Java Interceptor described in Enabling OCSP checking in native interceptors,
take care to avoid using a java.security OCSP configuration that conflicts with the AMS OCSP
configuration in the keystore configuration file.

Working with Certificate Revocation Lists and Authority Revocation Lists
IBM MQ support for CRLs and ARLs varies by platform.

CRL and ARL support on each platform is as follows:

• On z/OS, System SSL supports CRLs and ARLs stored in LDAP servers by the Tivoli Public Key
Infrastructure product.

• On other platforms, the CRL and ARL support complies with PKIX X.509 V2 CRL profile
recommendations.

IBM MQ maintains a cache of CRLs and ARLs that have been accessed in the preceding 12 hours.

When a queue manager or IBM MQ MQI client receives a certificate, it checks the CRL to confirm that
the certificate is still valid. IBM MQ first checks in the cache, if there is a cache. If the CRL is not in the
cache, IBM MQ interrogates the LDAP CRL server locations in the order they occur in the namelist of
authentication information objects specified by the SSLCRLNL attribute, until IBM MQ finds an available
CRL. If the namelist is not specified, or is specified with a blank value, CRLs are not checked.

Setting up LDAP servers
Configure the LDAP Directory Information Tree structure to reflect the hierarchy of Distinguished Names
of CAs. Do this using LDAP Data Interchange Format files.

Configure the LDAP Directory Information Tree (DIT) structure to use the hierarchy corresponding to the
Distinguished Names of the CAs that issue the certificates and CRLs. You can set up the DIT structure
with a file that uses the LDAP Data Interchange Format (LDIF). You can also use LDIF files to update a
directory.

LDIF files are ASCII text files that contain the information required to define objects within an LDAP
directory. LDIF files contain one or more entries, each of which comprises a Distinguished Name, at least
one object class definition and, optionally, multiple attribute definitions.

The certificateRevocationList;binary attribute contains a list, in binary form, of revoked user
certificates. The authorityRevocationList;binary attribute contains a binary list of CA certificates
that have been revoked. For use with IBM MQ TLS, the binary data for these attributes must conform to
DER (Definite Encoding Rules) format. For more information about LDIF files, refer to the documentation
provided with your LDAP server.

Figure 20 on page 357 shows a sample LDIF file that you might create as input to your LDAP server to
load the CRLs and ARLs issued by CA1, which is an imaginary Certificate Authority with the Distinguished
Name "CN=CA1, OU=Test, O=IBM, C=GB", set up by the Test organization within IBM.

356 Securing IBM MQ

dn: o=IBM, c=GB
o: IBM
objectclass: top
objectclass: organization

dn: ou=Test, o=IBM, c=GB
ou: Test
objectclass: organizationalUnit

dn: cn=CA1, ou=Test, o=IBM, c=GB
cn: CA1
objectclass: cRLDistributionPoint
objectclass: certificateAuthority
authorityRevocationList;binary:: (DER format data)
certificateRevocationList;binary:: (DER format data)
caCertificate;binary:: (DER format data)

Figure 20. Sample LDIF file for a Certificate Authority. This might vary from implementation to
implementation.

Figure 21 on page 357 shows the DIT structure that your LDAP server creates when you load the sample
LDIF file shown in Figure 20 on page 357 together with a similar file for CA2, an imaginary Certificate
Authority set up by the PKI organization, also within IBM.

Figure 21. Example of an LDAP Directory Information Tree structure

IBM MQ checks both CRLs and ARLs.

Note: Ensure that the access control list for your LDAP server allows authorized users to read, search, and
compare the entries that hold the CRLs and ARLs. IBM MQ accesses the LDAP server using the LDAPUSER
and LDAPPWD properties of the AUTHINFO object.

Configuring and updating LDAP servers
Use this procedure to configure or update your LDAP server.

1. Obtain the CRLs and ARLs in DER format from your Certification Authority, or Authorities.
2. Using a text editor or the tool provided with your LDAP server, create one or more LDIF files that

contain the Distinguished Name of the CA and the required object class definitions. Copy the DER
format data into the LDIF file as the values of either the certificateRevocationList;binary
attribute for CRLs, the authorityRevocationList;binary attribute for ARLs , or both.

3. Start your LDAP server.
4. Add the entries from the LDIF file or files you created at step “2” on page 357.

After you have configured your LDAP CRL server, check that it is set up correctly. First, try using a
certificate that is not revoked on the channel, and check that the channel starts correctly. Then use a
certificate that is revoked, and check that the channel fails to start.

Securing IBM MQ 357

Obtain updated CRLs from the Certification Authorities frequently. Consider doing this on your LDAP
servers every 12 hours.

Accessing CRLs and ARLs with a queue manager
A queue manager is associated with one or more authentication information objects, which hold the

address of an LDAP CRL server. IBM MQ on IBM i behaves differently from other platforms.

Note that in this section, information about Certificate Revocation Lists (CRLs) also applies to Authority
Revocation Lists (ARLs).

You tell the queue manager how to access CRLs by supplying the queue manager with authentication
information objects, each of which holds the address of an LDAP CRL server. The authentication
information objects are held in a namelist, which is specified in the SSLCRLNL queue manager attribute.

In the following example, MQSC is used to specify the parameters:

1. Define authentication information objects using the DEFINE AUTHINFO MQSC command, with the

AUTHTYPE parameter set to CRLLDAP. On IBM i, you can also use the CRTMQMAUTI CL
command.

The value CRLLDAP for the AUTHTYPE parameter indicates that CRLs are accessed on LDAP servers.
Each authentication information object with type CRLLDAP that you create holds the address of an
LDAP server. When you have more than one authentication information object, the LDAP servers to
which they point must contain identical information. This provides continuity of service if one or more
LDAP servers fail.

Additionally, on z/OS only, all LDAP servers must be accessed using the same user ID
and password. The user ID and password used are those specified in the first AUTHINFO object in the
namelist.

On all platforms, the user ID and password are sent to the LDAP server unencrypted.
2. Using the DEFINE NAMELIST MQSC command, define a namelist for the names of your authentication

information objects. On z/OS, ensure that the NLTYPE namelist attribute is set to
AUTHINFO.

3. Using the ALTER QMGR MQSC command, supply the namelist to the queue manager. For example:

ALTER QMGR SSLCRLNL(sslcrlnlname)

where sslcrlnlname is your namelist of authentication information objects.

This command sets a queue manager attribute called SSLCRLNL. The queue manager's initial value for
this attribute is blank.

On IBM i, you can specify authentication information objects, but the queue manager uses
neither authentication information objects nor a namelist of authentication information objects. Only IBM
MQ clients that use a client connection table generated by an IBM i queue manager use the authentication
information specified for that IBM i queue manager. The SSLCRLNL queue manager attribute on IBM i
determines what authentication information such clients use. See “Accessing CRLs and ARLs on IBM i” on
page 358 for information about telling an IBM i queue manager how to access CRLs.

You can add up to 10 connections to alternative LDAP servers to the namelist, to ensure continuity of
service if one or more LDAP servers fail. Note that the LDAP servers must contain identical information.

Accessing CRLs and ARLs on IBM i
Use this procedure to access CRLs or ARLs on IBM i.

Note that in this section, information about Certificate Revocation Lists (CRLs) also applies to Authority
Revocation Lists (ARLs).

Follow these steps to set up a CRL location for a specific certificate on IBM i:

358 Securing IBM MQ

1. Access the DCM interface, as described in “Accessing DCM” on page 269.
2. In the Manage CRL locations task category in the navigation panel, click Add CRL location. The

Manage CRL Locations page is displayed in the task frame.
3. In the CRL Location Name field, type a CRL location name, for example LDAP Server #1
4. In the LDAP Server field, type the LDAP server name.
5. In the Use Secure Sockets Layer (SSL) field, select Yes if you want to connect to the LDAP server

using TLS. Otherwise, select No.
6. In the Port Number field, type a port number for the LDAP server, for example 389.
7. If your LDAP server does not allow anonymous users to query the directory, type a login distinguished

name for the server in the login distinguished name field.
8. Click OK. DCM informs you that it has created the CRL location.
9. In the navigation panel, click Select a Certificate Store. The Select a Certificate Store page is

displayed in the task frame.
10. Select the Other System Certificate Store check box and click Continue. The Certificate Store and

Password page is displayed.
11. In the Certificate store path and filename field, type the IFS path and file name you set when

“Creating a certificate store on IBM i” on page 271.
12. Type a password in the Certificate Store Password field. Click Continue. The Current Certificate

Store page is displayed in the task frame.
13. In the Manage Certificates task category in the navigation panel, click Update CRL location

assignment. The CRL Location Assignment page is displayed in the task frame.
14. Select the radio button for the CA certificate to which you want to assign the CRL location. Click

Update CRL Location Assignment. The Update CRL Location Assignment page is displayed in the
task frame.

15. Select the radio button for the CRL location which you want to assign to the certificate. Click Update
Assignment. DCM informs you that it has updated the assignment.

Note that DCM allows you to assign a different LDAP server by Certificate Authority.

Accessing CRLs and ARLs using IBM MQ Explorer
You can use IBM MQ Explorer to tell a queue manager how to access CRLs.

Note that in this section, information about Certificate Revocation Lists (CRLs) also applies to Authority
Revocation Lists (ARLs).

Use the following procedure to set up an LDAP connection to a CRL:

1. Ensure that you have started your queue manager.
2. Right-click the Authentication Information folder and click New -> Authentication Information. In

the property sheet that opens:

a. On the first page Create Authentication Information, enter a name for the CRL(LDAP) object.
b. On the General page of Change Properties, select the connection type. Optionally you can enter a

description.
c. Select the CRL(LDAP) page of Change Properties.
d. Enter the LDAP server name as either the network name or the IP address.
e. If the server requires login details, provide a user ID and if necessary a password.
f. Click OK.

3. Right-click the Namelists folder and click New -> Namelist. In the property sheet that opens:

a. Type a name for the namelist.
b. Add the name of the CRL(LDAP) object (from step “2.a” on page 359) to the list.
c. Click OK.

Securing IBM MQ 359

4. Right-click the queue manager, select Properties, and select the SSL page:

a. Select the Check certificates received by this queue manager against Certification Revocation
Lists check box.

b. Type the name of the namelist (from step “3.a” on page 359) in the CRL Namelist field.

Accessing CRLs and ARLs with an IBM MQ MQI client
You have three options for specifying the LDAP servers that hold CRLs for checking by an IBM MQ MQI
client.

Note that in this section, information about Certificate Revocation Lists (CRLs) also applies to Authority
Revocation Lists (ARLs).

The three ways of specifying the LDAP servers are as follows:

• Using a channel definition table
• Using the SSL configuration options structure, MQSCO, on an MQCONNX call
• Using the Active Directory (on Windows systems with Active Directory support)

For more details, refer to the related information.

You can include up to 10 connections to alternative LDAP servers to ensure continuity of service if one or
more LDAP servers fail. Note that the LDAP servers must contain identical information.

You cannot access LDAP CRLs from an IBM MQ MQI client channel running on Linux (zSeries platform).

Location of an OCSP responder, and of LDAP servers that hold CRLs
On an IBM MQ MQI client system, you can specify the location of an OCSP responder, and of Lightweight
Directory Access Protocol (LDAP) servers that hold certificate revocation lists (CRLs).

You can specify these locations in three ways, described here in order of decreasing precedence.

For IBM i, see Accessing CRLs and ARLs on IBM i.

When an IBM MQ MQI client application issues an MQCONNX call
You can specify an OCSP responder or an LDAP server holding CRLs on an MQCONNX call.

On an MQCONNX call, the connect options structure, MQCNO, can reference an SSL configuration options
structure, MQSCO. In turn, the MQSCO structure can reference one or more authentication information
record structures, MQAIR. Each MQAIR structure contains all the information an IBM MQ MQI client
requires to access an OCSP responder or an LDAP server holding CRLs. For example, one of the fields in
an MQAIR structure is the URL at which a responder can be contacted. For more information about the
MQAIR structure, see MQAIR - Authentication information record.

Using a client channel definition table (ccdt) to access an OCSP responder or LDAP
servers
So that an IBM MQ MQI client can access an OCSP responder or LDAP servers that hold CRLs, include the
attributes of one or more authentication information objects in a client channel definition table.

On a server queue manager, you can define one or more authentication information objects. The
attributes of an authentication object contain all the information that is required to access an OCSP
responder (on platforms where OCSP is supported) or an LDAP server that holds CRLs. One of the
attributes specifies the OCSP responder URL, another specifies the host address, or IP address of a
system on which an LDAP server runs.

An authentication information object with AUTHTYPE(OCSP) does not apply
for use on IBM i or z/OS queue managers, but it can be specified on those platforms to be copied to the
client channel definition table (CCDT) for client use.

360 Securing IBM MQ

To enable an IBM MQ MQI client to access an OCSP responder or LDAP servers that hold CRLs, the
attributes of one or more authentication information objects can be included in a client channel definition
table. You can include such attributes in one of the following ways:

On server platforms AIX, Linux, IBM i, and Windows

You can define a namelist that contains the names of one or more authentication information objects.
You can then set the queue manager attribute, SSLCRLNL, to the name of this namelist.

If you are using CRLs, more than one LDAP server can be configured to provide higher availability. The
intention is that each LDAP server holds the same CRLs. If one LDAP server is unavailable when it is
required, an IBM MQ MQI client can attempt to access another.

The attributes of the authentication information objects identified by the namelist are referred to
collectively here as the certificate revocation location. When you set the queue manager attribute,
SSLCRLNL, to the name of the namelist, the certificate revocation location is copied into the client
channel definition table associated with the queue manager. If the CCDT can be accessed from a
client system as a shared file, or if the CCDT is then copied to a client system, the IBM MQ MQI client
on that system can use the certificate revocation location in the CCDT to access an OCSP responder or
LDAP servers that hold CRLs.

If the certificate revocation location of the queue manager is changed later, the change is reflected
in the CCDT associated with the queue manager. If the queue manager attribute, SSLCRLNL, is set to
blank, the certificate revocation location is removed from the CCDT. These changes are not reflected
in any copy of the table on a client system.

If you require the certificate revocation location at the client and server ends of an MQI channel to
be different, and the server queue manager is the one that is used to create the certificate revocation
location, you can do it as follows:

1. On the server queue manager, create the certificate revocation location for use on the client
system.

2. Copy the CCDT containing the certificate revocation location to the client system.
3. On the server queue manager, change the certificate revocation location to what is required at the

server end of the MQI channel.
4. On the client machine, you can use the runmqsc command with the -n parameter.

On client platforms AIX, Linux, IBM i, and Windows

You can build a CCDT on the client machine by using the runmqsc command with the -n parameter
and DEFINE AUTHINFO objects in the CCDT file. The order that the objects are defined in is the order
in which they are used in the file. Any name that you might use in a DEFINE AUTHINFO object is not
retained in the file. Only positional numbers are used when you DISPLAY the AUTHINFO objects in a
CCDT file.

Note: If you specify the -n parameter, you must not specify any other parameter.

Using Active Directory on Windows

On Windows systems, you can use the setmqcrl control command to publish the current CRL
information in Active Directory.

Command setmqcrl does not publish OCSP information.

For information about this command and its syntax, see setmqcrl.

Securing IBM MQ 361

Accessing CRLs and ARLs with IBM MQ classes for Java and IBM MQ classes for JMS
IBM MQ classes for Java and IBM MQ classes for JMS access CRLs differently from other platforms.

For information about working with CRLs and ARLs with IBM MQ classes for Java, see Using certificate
revocation lists

For information about working with CRLs and ARLs with IBM MQ classes for JMS, see SSLCERTSTORES
object property

Manipulating authentication information objects
You can manipulate authentication information objects using MQSC or PCF commands, or the IBM MQ
Explorer.

The following MQSC commands act on authentication information objects:

• DEFINE AUTHINFO
• ALTER AUTHINFO
• DELETE AUTHINFO
• DISPLAY AUTHINFO

For a complete description of these commands, see MQSC commands.

The following Programmable Command Format (PCF) commands act on authentication information
objects:

• Create Authentication Information
• Copy Authentication Information
• Change Authentication Information
• Delete Authentication Information
• Inquire Authentication Information
• Inquire Authentication Information Names

For a complete description of these commands, see Definitions of the Programmable Command Formats.

On platforms where it is available, you can also use the IBM MQ Explorer.

Using the Pluggable Authentication Method (PAM)
You can use PAM only on AIX and Linux platforms. A typical AIX or Linux system has PAM modules that
implement the traditional authentication mechanism; however, there might be more. As well as the basic
task of validating passwords, PAM modules can also be invoked to carry out additional rules.

Configuration files define which authentication method is to be used for each application . Example
applications include the standard terminal login, ftp, and telnet.

The advantage of PAM is that the application does not need to know, or care about, how the user ID is
actually being authenticated. As long as the application can provide a correct form of authentication data
to PAM, the mechanism behind it is transparent.

The form of authentication data depends upon the system being used. For example, IBM MQ obtains a
password through parameters, such as the MQCSP structure used in the MQCONNX API call.

Important: You cannot set the AUTHENMD attribute until you install IBM MQ 8.0.0 Fix Pack 3, and then
restart the queue manager, using a -e CMDLEVEL=level of 802 (on the strmqm command) to set the
command level you require.

Configuring your system to use PAM
The service name used by IBM MQ, when invoking PAM, is ibmmq.

362 Securing IBM MQ

Note that an IBM MQ installation attempts to maintain a default PAM configuration, that permits
connections from operating system users, based on known defaults for the different operating systems.

However, your system administrator must verify that rules defined in the /etc/pam.conf, or /etc/
pam.d/ibmmq, files are still appropriate.

Authorizing access to objects
This section contains information about using the object authority manager and channel exit programs to
control access to objects.

On AIX, Linux, and Windows systems. you control access to objects by using the object
authority manager (OAM). This collection of topics contains information about using the command
interface to the OAM.

This section also contains a checklist you can use to determine what tasks to perform to apply security
to your system on all platforms, and considerations for granting users the authority to administer IBM MQ
and to work with IBM MQ objects.

If the supplied security mechanisms do not meet your needs, you can develop your own channel exit
programs.

Determining which user is used for authorization
Authorities to access resources are granted to groups that the user is a member of or, in certain modes,
directly to the user associated with the connection. During the connection process, and in particular for
remote (client) connections, this identity could be changed by the queue manager's configuration. This
page lists the different features of IBM MQ and their configuration options that could impact a connecting
application's identity and the order of precedence in which these features take effect.

Features that can modify which user is adopted
The different features that can set which user should be authorized are as follows:
Application asserted user

When a remote connection is started by IBM MQ, the operating system user that the process is
running as is sent to the receiving queue manager. This user is sent to ensure that if no further
configuration exists that modifies the user, there is a user that can be used for authorization checking.
It is not recommended to use this user as the basis for authorization as it allows connections to
assert their identity without any server-side validation. This might even include the administrative
user ('mqm').

Channel MCAUSER setting
Applications connecting through network bindings do so by using an IBM MQ channel definition.
Channel definitions support the MCAUSER attribute, which can be used to specify a different user to be
used for authorization instead of the user asserted by the connecting applications.

Connection authentication ADOPTCTX
Applications can specify a user and password to be sent to a queue manager for authentication
purposes. These credentials are authenticated using the configuration that is specified for the
Connection Authentication feature. The ADOPTCTX option for Connection Authentication controls
whether a user should be used for authorization after it has been successfully validated. If set to YES,
then the user that is supplied for authentication is adopted for authorization checks.

From IBM MQ 9.3.4, a token can be supplied for authentication, if ADOPTCTX is set to
YES, then a user is adopted from the claims that the token contains.

Channel authentication record MCAUSER
During connection processing the queue manager will attempt to find a channel authentication
record that matches the connection. If a channel authentication record is matched, and its USERSRC
attribute value is set to MAP, then IBM MQ changes the user used for authorizations to the value of the
MCAUSER attribute.

Securing IBM MQ 363

Security exits
Security exits are custom functions that can be written and called during the IBM MQ security
processing. When the function is called it is supplied with a copy of the MQCD structure that includes
several fields relating to the connections user that will be used for authorization checks. Security exits
can modify these fields to change the user that will be authorized.

Order of precedence
The following table shows the order of precedence for each security feature described in “Features that
can modify which user is adopted” on page 363 when IBM MQ is selecting a user to authorize. The order
is from lowest to highest, that is, a security feature setting a user at the first row is overridden by any of
the other rows.

Table 71. Order of precedence for security features

Order Feature

1 (lowest) Application Asserted ID

2 Channel definition MCAUSER attribute

3 Connection authentication with ADOPTCTX(YES)

4 Channel authentication records with
USERSRC(MAP)

5 (highest) Security exit

Implications of early adopt
Connection authentication and channel authentication records provide a configuration option that
controls when connection authentication user adoption is performed. This setting is referred to as
early adopt. If early adopt is enabled, connection authentication identity adoption happens before
channel authentication records are processed (meaning the channel authentication records override any
CONNAUTH adoption).

If disabled, the order is reversed – that is, channel authentication records are processed before
CONNAUTH adoption. In this situation, connection authentication adoption has a higher effective priority
that channel authentication records.

The default setting for early adopt is enabled.

Controlling access to objects by using the OAM on AIX, Linux, and
Windows

The object authority manager (OAM) provides a command interface for granting and revoking authority to
IBM MQ objects.

You must be suitably authorized to use these commands, as described in “Authority to administer IBM MQ
on AIX, Linux, and Windows” on page 411. User IDs that are authorized to administer IBM MQ have super
user authority to the queue manager, which means that you do not have to grant them further permission
to issue any MQI requests or commands.

OAM user-based permissions on AIX and Linux
From IBM MQ 8.0, on UNIX and Linux systems, the object authority manager (OAM) can use user-based
authorization as well as group-based authorization.

Before IBM MQ 8.0, access control lists (ACLs) on UNIX and Linux are based on groups only. From IBM
MQ 8.0, ACLs are based on both user IDs and groups, and you can use either the user-based model or the
group-based model for authorization by setting the SecurityPolicy attribute to the appropriate value

364 Securing IBM MQ

as described in Configuring installable services and Configuring authorization service stanzas on AIX and
Linux.

Changes in behavior for IBM MQ 8.0 and later
From IBM MQ 8.0, when running with the user-based policy, some commands return different information
from earlier versions of the product:

• The dmpmqaut and dmpmqcfg commands show user-based records, as do the PCF equivalent
operations.

• The OAM plug-in for IBM MQ Explorer shows user-based records and allows user-based modifications.
• The OAM Inquire function returns results that show that it is user-capable.

Using the -p attribute on the setmqaut command does not grant access to all users in the same primary
group, when user-based authorizations are enabled in the qm.ini file as described in Service stanza of
the qm.ini file.

If you start to employ user-based authorization and have many users, there will probably be more records
that are stored on the AUTH queue than with the group-based model, and the authorization process might
take a little longer than previously as there are more records to verify. This increase is not expected to be
significant. If required, you can use a mixture of user and group permissions.

Migration considerations
If you change the model from group to user for an existing queue manager, there is no immediate effect.
The authorizations that have already been made continue to apply. Any user that connects to the queue
manager receives the same privileges as before: the combination of all the groups to which their ID
belongs. When new setmqaut commands are issued for user IDs, they take immediate effect.

If you create a new queue manager with the user policy, this queue manager has permissions only for the
user who creates it (which is normally, but not necessarily, the mqm user ID). There are also permissions
that are automatically granted to the mqm group. However, if you do not have mqm as the primary group,
then the mqm group is not included in the initial set of authorizations.

If you move from a user to group policy, the user-based authorizations are not automatically deleted.
However, they are no longer used during the permissions check. Before reverting the policy, save the
current configuration, change the policy, restart the queue manager, and then replay the script. Because
it is now a group-based queue manager, the effect is that user ID rules are stored based on the primary
group.

Related concepts
Object authority manager (OAM)
“Principals and groups on AIX, Linux, and Windows” on page 415
Principals can belong to groups. By granting resource access to groups rather than to individuals, you can
reduce the amount of administration required. Access Control Lists (ACLs) are based on both groups and
user IDs.
Related reference
Service stanza of the qm.ini file
crtmqm (create queue manager) command

Giving access to an IBM MQ object on AIX, Linux, and Windows
Use the setmqaut control command, the SET AUTHREC MQSC command, or the MQCMD_SET_AUTH_REC
PCF command to give users, and groups of users, access to IBM MQ objects. Note that on IBM MQ
Appliance you can use only the SET AUTHREC command.

For a full definition of the setmqaut control command and its syntax, see setmqaut.

For a full definition of the SET AUTHREC MQSC command and its syntax, see SET AUTHREC.

Securing IBM MQ 365

For a full definition of the MQCMD_SET_AUTH_REC PCF command and its syntax, see Set Authority Record.

The queue manager must be running to use this command. When you have changed access for a principal,
the changes are reflected immediately by the OAM.

To give users access to an object, you need to specify:

• The name of the queue manager that owns the objects you are working with; if you do not specify the
name of a queue manager, the default queue manager is assumed.

• The name and type of the object (to identify the object uniquely). You specify the name as a profile ; this
is either the explicit name of the object, or a generic name, including wildcard characters. For a detailed
description of generic profiles, and the use of wildcard characters within them, see “Using OAM generic
profiles on AIX, Linux, and Windows” on page 367.

• One or more principals and group names to which the authority applies.

If a user ID contains spaces, enclose it in quotation marks when you use this command. On Windows
systems, you can qualify a user ID with a domain name. If the actual user ID contains an at sign (@)
symbol, replace it with @@ to show that it is part of the user ID, not the delimiter between the user ID
and the domain name.

• A list of authorizations. Each item in the list specifies a type of access that is to be granted to that object
(or revoked from it). Each authorization in the list is specified as a keyword, prefixed with a plus sign (+)
or a minus sign (-). Use a plus sign to add the specified authorization, and a minus sign to remove the
authorization. There must be no spaces between the + or - sign and the keyword.

You can specify any number of authorizations in a single command. For example, the list of
authorizations to permit a user or group to put messages on a queue and to browse them, but to
revoke access to get messages is:

+browse -get +put

Examples of using the setmqaut command
The following examples show how to use the setmqaut command to grant and revoke permission to use
an object:

setmqaut -m saturn.queue.manager -t queue -n RED.LOCAL.QUEUE
 -g groupa +browse -get +put

In this example:

• saturn.queue.manager is the queue manager name
• queue is the object type
• RED.LOCAL.QUEUE is the object name
• groupa is the identifier of the group with authorizations that are to change
• +browse -get +put is the authorization list for the specified queue

– +browse adds authorization to browse messages on the queue (to issue MQGET with the browse
option)

– -get removes authorization to get (MQGET) messages from the queue
– +put adds authorization to put (MQPUT) messages on the queue

The following command revokes put authority on the queue MyQueue from principal fvuser and from
groups groupa and groupb. On AIX and Linux systems, this command also revokes put authority for all
principals in the same primary group as fvuser.

setmqaut -m saturn.queue.manager -t queue -n MyQueue -p fvuser
 -g groupa -g groupb -put

366 Securing IBM MQ

Using the setmqaut command with a different authorization service
If you are using your own authorization service instead of the OAM, you can specify the name of
this service on the setmqaut command to direct the command to this service. You must specify this
parameter if you have multiple installable components running at the same time; if you do not, the update
is made to the first installable component for the authorization service. By default, this is the supplied
OAM.

Usage notes for SET AUTHREC
The list of authorizations to add and the list of authorizations to remove must not overlap. For example,
you cannot add display authority and remove display authority with the same command. This rule applies
even if the authorities are expressed using different options. For example, the following command fails
because DSP authority overlaps with ALLADM authority:

SET AUTHREC PROFILE(*) OBJTYPE(QUEUE) PRINCIPAL(PRINC01) AUTHADD(DSP) AUTHRMV(ALLADM)

The exception to this overlap behavior is with the ALL authority. The following command first adds ALL
authorities then removes the SETID authority:

SET AUTHREC PROFILE(*) OBJTYPE(QUEUE) PRINCIPAL(PRINC01) AUTHADD(ALL) AUTHRMV(SETID)

The following command first removes ALL authorities then adds the DSP authority:

SET AUTHREC PROFILE(*) OBJTYPE(QUEUE) PRINCIPAL(PRINC01) AUTHADD(DSP) AUTHRMV(ALL)

Regardless of the order in which they are provided on the command, the ALL are processed first.

Using OAM generic profiles on AIX, Linux, and Windows
Use OAM generic profiles to set, in a single operation, a user's privileges for many objects; rather than
having to issue separate setmqaut commands, or SET AUTHREC commands, against each individual
object when it is created. Note that on IBM MQ Appliance you can use only the SET AUTHREC command.

Using generic profiles in the setmqaut or SET AUTHREC commands, enables you to set a generic authority
for all objects that fit that profile.

This collection of topics describes the use of generic profiles in more detail.

Using wildcard characters in OAM profiles
What makes a profile generic is the use of special characters (wildcard characters) in the profile name.
For example, the question mark (?) wildcard character matches any single character in a name. So, if
you specify ABC.?EF, the authorization you give to that profile applies to any objects with the names
ABC.DEF, ABC.CEF, ABC.BEF, and so on.

The wildcard characters available are:
?

Use the question mark (?) instead of any single character. For example, AB.?D applies to the objects
AB.CD, AB.ED, and AB.FD.

*
Use the asterisk (*) as:

• A qualifier in a profile name to match any one qualifier in an object name. A qualifier is the part of an
object name delimited by a period. For example, in ABC.DEF.GHI, the qualifiers are ABC, DEF, and
GHI.

For example, ABC.*.JKL applies to the objects ABC.DEF.JKL, and ABC.GHI.JKL. (Note that it
does not apply to ABC.JKL ; * used in this context always indicates one qualifier.)

Securing IBM MQ 367

• A character within a qualifier in a profile name to match zero or more characters within the qualifier
in an object name.

For example, ABC.DE*.JKL applies to the objects ABC.DE.JKL, ABC.DEF.JKL, and
ABC.DEGH.JKL.

**
Use the double asterisk (**) once in a profile name as:

• The entire profile name to match all object names. For example if you use -t prcs to identify
processes, then use ** as the profile name, you change the authorizations for all processes.

• As either the beginning, middle, or ending qualifier in a profile name to match zero or more qualifiers
in an object name. For example, **.ABC identifies all objects with the final qualifier ABC.

You can only use the double asterisk ** as a complete qualifier:

**.DEF
 ABC.**
 A*.**

but not as

A**

otherwise, you receive message AMQ7226E: The profile name is invalid.

Note: When using wildcard characters on AIX and Linux systems, you must enclose the profile name in
single quotation marks.

Profile priorities
An important point to understand when using generic profiles is the priority that profiles are given when
deciding what authorities to apply to an object being created. For example, suppose that you have issued
the commands:

setmqaut -n AB.* -t q +put -p fred
setmqaut -n AB.C* -t q +get -p fred

The first gives put authority to all queues for the principal fred with names that match the profile AB.*; the
second gives get authority to the same types of queue that match the profile AB.C*.

Suppose that you now create a queue called AB.CD. According to the rules for wildcard matching, either
setmqaut could apply to that queue. So, does it have put or get authority?

To find the answer, you apply the rule that, whenever multiple profiles can apply to an object, only the
most specific applies. The way that you apply this rule is by comparing the profile names from left to
right. Wherever they differ, a non-generic character is more specific then a generic character. So, in this
example, the queue AB.CD has get authority (AB.C* is more specific than AB.*).

When you are comparing generic characters, the order of specificity is:

1. ?
2. *
3. **

Dumping profile settings
For a full definition of the dmpmqaut control command and its syntax, see dmpmqaut.

For a full definition of the DISPLAY AUTHREC MQSC command and its syntax, see DISPLAY AUTHREC.

For a full definition of the MQCMD_INQUIRE_AUTH_RECS PCF command and its syntax, see Inquire
Authority Records.

368 Securing IBM MQ

The following examples show the use of the dmpmqaut control command to dump authority records for
generic profiles:

1. This example dumps all authority records with a profile that matches queue a.b.c for principal user1.

dmpmqaut -m qm1 -n a.b.c -t q -p user1

The resulting dump looks something like this:

profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

Note: Although users on AIX and Linux can use the -p option for the dmpmqaut command, they must
use -g groupname instead when defining authorizations.

2. This example dumps all authority records with a profile that matches queue a.b.c.

dmpmqaut -m qmgr1 -n a.b.c -t q

The resulting dump looks something like this:

profile: a.b.c
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq
- - - - - - - - - - - - - - - - -
profile: a.**
object type: queue
entity: group1
type: group
authority: get

3. This example dumps all authority records for profile a.b.*, of type queue.

dmpmqaut -m qmgr1 -n a.b.* -t q

The resulting dump looks something like this:

profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

4. This example dumps all authority records for queue manager qmX.

dmpmqaut -m qmX

The resulting dump looks something like this:

profile: q1
object type: queue
entity: Administrator
type: principal
authority: all

Securing IBM MQ 369

- - - - - - - - - - - - - - - - -
profile: q*
object type: queue
entity: user1
type: principal
authority: get, browse
- - - - - - - - - - - - - - - - -
profile: name.*
object type: namelist
entity: user2
type: principal
authority: get
- - - - - - - - - - - - - - - - -
profile: pr1
object type: process
entity: group1
type: group
authority: get

5. This example dumps all profile names and object types for queue manager qmX.

dmpmqaut -m qmX -l

The resulting dump looks something like this:

profile: q1, type: queue
profile: q*, type: queue
profile: name.*, type: namelist
profile: pr1, type: process

Note: For IBM MQ for Windows only, all principals displayed include domain information, for example:

profile: a.b.*
object type: queue
entity: user1@domain1
type: principal
authority: get, browse, put, inq

Using wildcard characters in OAM profiles on AIX, Linux, and Windows
Use wildcard characters in an object authority manager (OAM) profile name to make that profile
applicable to more than one object.

What makes a profile generic is the use of special characters (wildcard characters) in the profile name.
For example, the question mark (?) wildcard character matches any single character in a name. So, if
you specify ABC.?EF, the authorization you give to that profile applies to any objects with the names
ABC.DEF, ABC.CEF, ABC.BEF, and so on.

The wildcard characters available are:
?

Use the question mark (?) instead of any single character. For example, AB.?D applies to the objects
AB.CD, AB.ED, and AB.FD.

*
Use the asterisk (*) as:

• A qualifier in a profile name to match any one qualifier in an object name. A qualifier is the part of an
object name delimited by a period. For example, in ABC.DEF.GHI, the qualifiers are ABC, DEF, and
GHI.

For example, ABC.*.JKL applies to the objects ABC.DEF.JKL, and ABC.GHI.JKL. (Note that it
does not apply to ABC.JKL ; * used in this context always indicates one qualifier.)

• A character within a qualifier in a profile name to match zero or more characters within the qualifier
in an object name.

For example, ABC.DE*.JKL applies to the objects ABC.DE.JKL, ABC.DEF.JKL, and
ABC.DEGH.JKL.

370 Securing IBM MQ

**
Use the double asterisk (**) once in a profile name as:

• The entire profile name to match all object names. For example if you use -t prcs to identify
processes, then use ** as the profile name, you change the authorizations for all processes.

• As either the beginning, middle, or ending qualifier in a profile name to match zero or more qualifiers
in an object name. For example, **.ABC identifies all objects with the final qualifier ABC.

Note: When using wildcard characters on AIX and Linux systems, you must enclose the profile name in
single quotation marks.

Profile priorities on AIX, Linux, and Windows
More than one generic profile can apply to a single object. Where this is the case, the most specific rule
applies.

An important point to understand when using generic profiles is the priority that profiles are given when
deciding what authorities to apply to an object being created. For example, suppose that you have issued
the commands:

setmqaut -n AB.* -t q +put -p fred
setmqaut -n AB.C* -t q +get -p fred

The first gives put authority to all queues for the principal fred with names that match the profile AB.*; the
second gives get authority to the same types of queue that match the profile AB.C*.

Suppose that you now create a queue called AB.CD. According to the rules for wildcard matching, either
setmqaut could apply to that queue. So, does it have put or get authority?

To find the answer, you apply the rule that, whenever multiple profiles can apply to an object, only the
most specific applies. The way that you apply this rule is by comparing the profile names from left to
right. Wherever they differ, a non-generic character is more specific then a generic character. So, in this
example, the queue AB.CD has get authority (AB.C* is more specific than AB.*).

When you are comparing generic characters, the order of specificity is:

1. ?
2. *
3. **

See SET AUTHREC for the equivalent information when using this MQSC command.

Dumping profile settings on AIX, Linux, and Windows
Use the dmpmqaut control command, the DISPLAY AUTHREC MQSC command, or the
MQCMD_INQUIRE_AUTH_RECS PCF command to dump the current authorizations associated with a
specified profile. Note that on IBM MQ Appliance you can use only the DISPLAY AUTHREC command.

For a full definition of the dmpmqaut control command and its syntax, see dmpmqaut.

For a full definition of the DISPLAY AUTHREC MQSC command and its syntax, see DISPLAY AUTHREC.

For a full definition of the MQCMD_INQUIRE_AUTH_RECS PCF command and its syntax, see Inquire
Authority Records.

The following examples show the use of the dmpmqaut control command to dump authority records for
generic profiles:

1. This example dumps all authority records with a profile that matches queue a.b.c for principal user1.

dmpmqaut -m qm1 -n a.b.c -t q -p user1

The resulting dump looks something like this example:

Securing IBM MQ 371

profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

Note: AIX and Linux users cannot use the -p option; they must use -g groupname instead.
2. This example dumps all authority records with a profile that matches queue a.b.c.

dmpmqaut -m qmgr1 -n a.b.c -t q

The resulting dump looks something like this example:

profile: a.b.c
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq
- - - - - - - - - - - - - - - - -
profile: a.**
object type: queue
entity: group1
type: group
authority: get

3. This example dumps all authority records for profile a.b.*, of type queue.

dmpmqaut -m qmgr1 -n a.b.* -t q

The resulting dump looks something like this example:

profile: a.b.*
object type: queue
entity: user1
type: principal
authority: get, browse, put, inq

4. This example dumps all authority records for queue manager qmX.

dmpmqaut -m qmX

The resulting dump looks something like this example:

profile: q1
object type: queue
entity: Administrator
type: principal
authority: all
- - - - - - - - - - - - - - - - -
profile: q*
object type: queue
entity: user1
type: principal
authority: get, browse
- - - - - - - - - - - - - - - - -
profile: name.*
object type: namelist
entity: user2
type: principal
authority: get
- - - - - - - - - - - - - - - - -

372 Securing IBM MQ

profile: pr1
object type: process
entity: group1
type: group
authority: get

5. This example dumps all profile names and object types for queue manager qmX.

dmpmqaut -m qmX -l

The resulting dump looks something like this example:

profile: q1, type: queue
profile: q*, type: queue
profile: name.*, type: namelist
profile: pr1, type: process

Note: For IBM MQ for Windows only, all principals displayed include domain information, for example:

profile: a.b.*
object type: queue
entity: user1@domain1
type: principal
authority: get, browse, put, inq

Displaying access settings on AIX, Linux, and Windows
Use the dspmqaut control command, the DISPLAY AUTHREC MQSC command, or the
MQCMD_INQUIRE_ENTITY_AUTH PCF command to view the authorizations that a specific principal or
group has for a particular object. Note that on IBM MQ Appliance you can use only the DISPLAY
AUTHREC command.

The queue manager must be running to use this command. When you change access for a principal, the
changes are reflected immediately by the OAM. Authorization can be displayed for only one group or
principal at a time.

For a full definition of the dmpmqaut control command and its syntax, see dmpmqaut.

For a full definition of the DISPLAY AUTHREC MQSC command and its syntax, see DISPLAY AUTHREC.

For a full definition of the MQCMD_INQUIRE_AUTH_RECS PCF command and its syntax, see Inquire
Authority Records.

The following example shows the use of the dspmqaut control command to display the authorizations
that the group GpAdmin has to a process definition named Annuities that is on queue manager
QueueMan1.

dspmqaut -m QueueMan1 -t process -n Annuities -g GpAdmin

Changing and revoking access to an IBM MQ object on AIX, Linux,
and Windows
To change the level of access that a user or group has to an object, use the setmqaut control command,

the DELETE AUTHREC MQSC command, or the MQCMD_DELETE_AUTH_REC PCF command.
Note that on IBM MQ Appliance you can use only the DELETE AUTHREC command.

The process of removing the user from a group is described in:

• “Creating and managing groups on Windows” on page 146

• “Creating and managing groups on AIX” on page 145

Securing IBM MQ 373

• “Creating and managing groups on Linux” on page 146

.

The user ID that creates an IBM MQ object is granted full control authorities to that object. If you
remove this user ID from the local mqm group (or the Administrators group on Windows systems) these
authorities are not revoked. Use the setmqaut control command or the MQCMD_DELETE_AUTH_REC PCF
command to revoke access to an object for the user ID that created it, after removing it from the mqm or
Administrators group.

For a full definition of the setmqaut control command and its syntax, see setmqaut.

For a full definition of the DELETE AUTHREC MQSC command and its syntax, see DELETE AUTHREC.

For a full definition of the MQCMD_DELETE_AUTH_REC PCF command and its syntax, see Delete Authority
Record.

On Windows, from IBM MQ 8.0, you can delete the OAM entries corresponding to a
particular Windows user account at any time using the -u SID parameter of setmqaut.

Prior to IBM MQ 8.0, you had to delete the OAM entries corresponding to a particular Windows user
account before deleting the user profile. It was impossible to remove the OAM entries after removing the
user account.

Preventing security access checks on AIX, Linux, and Windows
systems
Note: This topic describes functionality that is not recommended to be enabled. To turn off security
checking you can disable the object authority manager (OAM). This might be suitable for a test
environment. When disabled, the queue manager is no longer be able to perform authorization or
connection authentication checks. TLS, Channel Authentication records, and security exits can still be
used. Having disabled or removed the OAM, you cannot add an OAM to an existing queue manager.

If you decide that you do not want to perform security checks (for example, in a test environment), you
can disable the OAM in one of two ways:

• Before you create a queue manager, set the operating system environment variable MQSNOAUT.

For information about the implications of setting the MQSNOAUT environment variable, and how you set
MQSNOAUT on AIX, Linux, and Windows, see Environment variables descriptions.

• Edit the queue manager configuration file to remove the service.

Warning: When an OAM is removed, it cannot be put back on an existing queue manager. This is
because the OAM needs to be in place at object creation time. To use the IBM MQ OAM again after
it has been removed, rebuild the queue manager.

If you use the setmqaut, or dspmqaut command while the OAM is disabled, note the following points:

• The OAM does not validate the specified principal, or group, meaning that the command can accept
invalid values.

• The OAM does not perform security checks and indicates that all principals and groups are authorized to
perform all applicable object operations.

• Any credentials passed to the OAM for authentication checks are not validated.

Related concepts
Installable services and components for AIX, Linux, and Windows
Related tasks
Configuring installable services
Related reference
Installable services reference information

374 Securing IBM MQ

Granting required access to resources
Use this topic to determine what tasks to perform to apply security to your IBM MQ system.

About this task
During this task, you decide what actions are necessary to apply the appropriate level of security to
the elements of your IBM MQ installation. Each individual task you are referred to gives step-by-step
instructions for all platforms.

Procedure
1. Do you need to limit access to your queue manager to certain users?

a) No: Take no further action.
b) Yes: Go to the next question.

2. Do these users need partial administrative access on a subset of queue manager resources?
a) No: Go to the next question.
b) Yes: See “Granting partial administrative access on a subset of queue manager resources” on page

375.
3. Do these users need full administrative access on a subset of queue manager resources?

a) No: Go to the next question.
b) Yes: See “Granting full administrative access on a subset of queue manager resources” on page

384.
4. Do these users need read only access to all queue manager resources?

a) No: Go to the next question.
b) Yes: See “Granting read-only access to all resources on a queue manager” on page 390.

5. Do these users need full administrative access on all queue manager resources?
a) No: Go to the next question.
b) Yes: See “Granting full administrative access to all resources on a queue manager” on page 391.

6. Do you need user applications to connect to your queue manager?
a) No: Disable connectivity, as described in “Removing connectivity to the queue manager” on page

393

b) Yes: See “Allowing user applications to connect to your queue manager” on page 393.

Granting partial administrative access on a subset of
queue manager resources
You need to give certain users partial administrative access to some, but not all, queue manager
resources. Use this table to determine the actions you need to take.

Table 72. Granting partial administrative access to a subset of queue manager resources

The users need to administer objects of this type Perform this action

Queues Grant partial administrative access to the required
queues, as described in “Granting limited
administrative access to some queues” on page
376

Topics Grant partial administrative access to the
required topics, as described in “Granting limited
administrative access to some topics” on page 377

Securing IBM MQ 375

Table 72. Granting partial administrative access to a subset of queue manager resources (continued)

The users need to administer objects of this type Perform this action

Channels Grant partial administrative access to the required
channels, as described in “Granting limited
administrative access to some channels” on page
378

The queue manager Grant partial administrative access to the queue
manager, as described in “Granting limited
administrative access to a queue manager” on
page 380

Processes Grant partial administrative access to the required
processes, as described in “Granting limited
administrative access to some processes” on page
381

Namelists Grant partial administrative access to the required
namelists, as described in “Granting limited
administrative access to some namelists” on page
382

Services Grant partial administrative access to the required
services, as described in “Granting limited
administrative access to some services” on page
383

Granting limited administrative access to some queues
Grant partial administrative access to some queues on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some queues for some actions, use the appropriate commands
for your operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName ReqdAction

•
For IBM i, issue the following command:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*Q) USER(GroupName) AUT(ReqdAction) MQMNAME('
QMgrName ')

• For z/OS, issue the following commands to grant access to a specified queue:

RDEFINE MQADMIN QMgrName.QUEUE. ObjectProfile UACC(NONE)
PERMIT QMgrName.QUEUE. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

376 Securing IBM MQ

To specify which MQSC commands the user can perform on the queue, issue the following commands
for each MQSC command:

RDEFINE MQCMDS QMgrName. ReqdAction. QType UACC(NONE)
PERMIT QMgrName. ReqdAction. QType CLASS(MQCMDS) ID(GroupName) ACCESS(ALTER)

To permit the user to use the DISPLAY QUEUE command, issue the following commands:

RDEFINE MQCMDS QMgrName.DISPLAY. QType UACC(NONE)
PERMIT QMgrName.DISPLAY. QType CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

ReqdAction
The action you are allowing the group to take:

– On AIX, Linux, and Windows systems, any combination of the following
authorizations: +chg, +clr, +dlt, +dsp. The authorization +alladm is equivalent to +chg +clr +dlt
+dsp.

– On IBM i, any combination of the following authorizations: *ADMCHG, *ADMCLR,
*ADMDLT, *ADMDSP. The authorization *ALLADM is equivalent to all these individual
authorizations.

– On z/OS, one of the values ALTER, CLEAR, DELETE, or MOVE.

Note: Granting +crt for queues indirectly makes the user or group an administrator. Do not use +crt
authority to grant limited administrative access to some queues.

QType

For the DISPLAY command, one of the values QUEUE, QLOCAL, QALIAS, QMODEL, QREMOTE, or
QCLUSTER.

For other values of ReqdAction, one of the values QLOCAL, QALIAS, QMODEL, or QREMOTE.

Granting limited administrative access to some topics
Grant partial administrative access to some topics on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some topics for some actions, use the appropriate commands
for your operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•

Securing IBM MQ 377

For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t topic -g GroupName ReqdAction

•
For IBM i, issue the following command:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*TOPIC) USER(GroupName) AUT(ReqdAction) MQMNAME('
QMgrName ')

• For z/OS, issue the following commands:

RDEFINE MQADMIN QMgrName.TOPIC. ObjectProfile UACC(NONE)
PERMIT QMgrName.TOPIC. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

These commands grant access to the specified topic. To determine which MQSC commands the user
can perform on the topic, issue the following commands for each MQSC command:

RDEFINE MQCMDS QMgrName. ReqdAction.TOPIC UACC(NONE)
PERMIT QMgrName. ReqdAction.TOPIC CLASS(MQCMDS) ID(GroupName) ACCESS(ALTER)

To permit the user to use the DISPLAY TOPIC command, issue the following commands:

RDEFINE MQCMDS QMgrName.DISPLAY.TOPIC UACC(NONE)
PERMIT QMgrName.DISPLAY.TOPIC CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

ReqdAction
The action you are allowing the group to take:

– On AIX, Linux, and Windows systems, any combination of the following
authorizations: +chg, +clr, +crt, +dlt, +dsp. +ctrl. The authorization +alladm is equivalent to
+chg +clr +dlt +dsp.

– On IBM i, any combination of the following authorizations: *ADMCHG, *ADMCLR,
*ADMCRT, *ADMDLT, *ADMDSP, *CTRL. The authorization *ALLADM is equivalent to all these
individual authorizations.

– On z/OS, one of the values ALTER, CLEAR, DEFINE, DELETE, or MOVE.

Granting limited administrative access to some channels
Grant partial administrative access to some channels on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some channels for some actions, use the appropriate commands
for your operating system.

378 Securing IBM MQ

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t channel -g GroupName ReqdAction

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*CHL) USER(GroupName) AUT(ReqdAction) MQMNAME('
QMgrName ')

• On z/OS:

RDEFINE MQADMIN QMgrName.CHANNEL. ObjectProfile UACC(NONE)
PERMIT QMgrName.CHANNEL. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

These commands grant access to the specified channel. To determine which MQSC commands the
user can perform on the channel, issue the following commands for each MQSC command:

RDEFINE MQCMDS QMgrName. ReqdAction.CHANNEL UACC(NONE)
PERMIT QMgrName. ReqdAction.CHANNEL CLASS(MQCMDS) ID(GroupName) ACCESS(ALTER)

To permit the user to use the DISPLAY CHANNEL command, issue the following commands:

RDEFINE MQCMDS QMgrName.DISPLAY.CHANNEL UACC(NONE)
PERMIT QMgrName.DISPLAY.CHANNEL CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

ReqdAction
The action you are allowing the group to take:

– On AIX, Linux, and Windows, any combination of the following authorizations:
+chg, +clr, +crt, +dlt, +dsp. +ctrl, +ctrlx. The authorization +alladm is equivalent to +chg +clr
+dlt +dsp.

– On IBM i, any combination of the following authorizations: *ADMCHG, *ADMCLR,
*ADMCRT, *ADMDLT, *ADMDSP, *CTRL, *CTRLx. The authorization *ALLADM is equivalent to all
these individual authorizations.

– On z/OS, one of the values ALTER, CLEAR, DEFINE, DELETE, or MOVE.

Securing IBM MQ 379

Granting limited administrative access to a queue manager
Grant partial administrative access to a queue manager, to each group of users with a business need for it.

About this task
To grant limited administrative access to perform some actions on the queue manager, use the
appropriate commands for your operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t qmgr -g GroupName ReqdAction

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*MQM) USER(GroupName) AUT(ReqdAction) MQMNAME('
QMgrName ')

•
On z/OS:

To determine which MQSC commands you can perform on the queue manager, issue the following
commands for each MQSC command:

RDEFINE MQCMDS QMgrName. ReqdAction.QMGR UACC(NONE)
PERMIT QMgrName. ReqdAction.QMGR CLASS(MQCMDS) ID(GroupName) ACCESS(ALTER)

To permit the user to use the DISPLAY QMGR command, issue the following commands:

RDEFINE MQCMDS QMgrName.DISPLAY.QMGR UACC(NONE)
PERMIT QMgrName.DISPLAY.QMGR CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager.
ObjectProfile

The name of the object or generic profile for which to change authorizations.
GroupName

The name of the group to be granted access.
ReqdAction

The action you are allowing the group to take:

– On AIX, Linux, and Windows, any combination of the following authorizations:
+chg, +clr, +crt, +dlt, +dsp. The authorization +alladm is equivalent to +chg +clr +dlt +dsp.

Although +set is an MQI authorization and not normally considered administrative, granting +set
on the queue manager can indirectly lead to full administrative authority. Do not grant +set to
ordinary users and applications.

380 Securing IBM MQ

– On IBM i, any combination of the following authorizations: *ADMCHG, *ADMCLR,
*ADMCRT, *ADMDLT, *ADMDSP. The authorization *ALLADM is equivalent to all these individual
authorizations.

Granting limited administrative access to some processes
Grant partial administrative access to some processes on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some processes for some actions, use the appropriate
commands for your operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t process -g GroupName ReqdAction

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*PRC) USER(GroupName) AUT(ReqdAction) MQMNAME('
QMgrName ')

• On z/OS:

RDEFINE MQADMIN QMgrName.PROCESS. ObjectProfile UACC(NONE)
PERMIT QMgrName.PROCESS. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

These commands grant access to the specified channel. To determine which MQSC commands the
user can perform on the channel, issue the following commands for each MQSC command:

RDEFINE MQCMDS QMgrName. ReqdAction.PROCESS UACC(NONE)
PERMIT QMgrName. ReqdAction.PROCESS CLASS(MQCMDS) ID(GroupName) ACCESS(ALTER)

To permit the user to use the DISPLAY PROCESS command, issue the following commands:

RDEFINE MQCMDS QMgrName.DISPLAY.PROCESS UACC(NONE)
PERMIT QMgrName.DISPLAY.PROCESS CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Securing IBM MQ 381

ReqdAction
The action you are allowing the group to take:

– On AIX, Linux, and Windows, any combination of the following authorizations:
+chg, +clr, +crt, +dlt, +dsp. The authorization +alladm is equivalent to +chg +clr +dlt +dsp.

– On IBM i, any combination of the following authorizations: *ADMCHG, *ADMCLR,
*ADMCRT, *ADMDLT, *ADMDSP. The authorization *ALLADM is equivalent to all these individual
authorizations.

– On z/OS, one of the values ALTER, CLEAR, DEFINE, DELETE, or MOVE.

Granting limited administrative access to some namelists
Grant partial administrative access to some namelists on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some namelists for some actions, use the appropriate
commands for your operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t namelist -g GroupName ReqdAction

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*NMLIST) USER(GroupName) AUT(ReqdAction) MQMNAME('
QMgrName ')

• On z/OS:

RDEFINE MQADMIN QMgrName.NAMELIST. ObjectProfile UACC(NONE)
PERMIT QMgrName.NAMELIST. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

These commands grant access to the specified namelist. To determine which MQSC commands the
user can perform on the namelist, issue the following commands for each MQSC command:

RDEFINE MQCMDS QMgrName. ReqdAction.NAMELIST UACC(NONE)
PERMIT QMgrName. ReqdAction.NAMELIST CLASS(MQCMDS) ID(GroupName) ACCESS(ALTER)

To permit the user to use the DISPLAY NAMELIST command, issue the following commands:

RDEFINE MQCMDS QMgrName.DISPLAY.NAMELIST UACC(NONE)
PERMIT QMgrName.DISPLAY.NAMELIST CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

382 Securing IBM MQ

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

ReqdAction
The action you are allowing the group to take:

– On AIX, Linux, and Windows, any combination of the following authorizations:
+chg, +clr, +crt, +dlt, +ctrl, +ctrlx, +dsp. The authorization +alladm is equivalent to +chg +clr
+dlt +dsp.

– On IBM i, any combination of the following authorizations: *ADMCHG, *ADMCLR,
*ADMCRT, *ADMDLT, *ADMDSP, *CTRL, *CTRLX. The authorization *ALLADM is equivalent to all
these individual authorizations.

– On z/OS, one of the values ALTER, CLEAR, DEFINE, DELETE, or MOVE.

Granting limited administrative access to some services
Grant partial administrative access to some services on a queue manager, to each group of users with a
business need for it.

About this task
To grant limited administrative access to some services for some actions, use the appropriate commands

for your operating system. Note that service objects do not exist on z/OS.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t service -g GroupName ReqdAction

• On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*SVC) USER(GroupName) AUT(ReqdAction) MQMNAME('
QMgrName ')

• On z/OS:

These commands grant access to the specified service. To determine which MQSC commands the user
can perform on the service, issue the following commands for each MQSC command:

RDEFINE MQCMDS QMgrName. ReqdAction.SERVICE UACC(NONE)
PERMIT QMgrName. ReqdAction.SERVICE CLASS(MQCMDS) ID(GroupName) ACCESS(ALTER)

To permit the user to use the DISPLAY SERVICE command, issue the following commands:

RDEFINE MQCMDS QMgrName.DISPLAY.SERVICE UACC(NONE)
PERMIT QMgrName.DISPLAY.SERVICE CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:

Securing IBM MQ 383

QMgrName
The name of the queue manager.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

ReqdAction
The action you are allowing the group to take:

– On AIX, Linux, and Windows systems, any combination of the following
authorizations: +chg, +clr, +crt, +dlt, +ctrl, +ctrlx, +dsp. The authorization +alladm is equivalent
to +chg +clr +dlt +dsp.

– On IBM i, any combination of the following authorizations: *ADMCHG, *ADMCLR,
*ADMCRT, *ADMDLT, *ADMDSP, *CTRL, *CTRLX. The authorization *ALLADM is equivalent to all
these individual authorizations.

Granting full administrative access on a subset of queue manager resources
You need to give certain users full administrative access to some, but not all, queue manager resources.
Use these tables to determine the actions you need to take.

Table 73. Granting full administrative access to a subset of queue manager resources

The users need to administer objects of this type Perform this action

Queues Grant full administrative access to the
required queues, as described in “Granting full
administrative access to some queues” on page
385

Topics Grant full administrative access to the required
topics, as described in “Granting full administrative
access to some topics” on page 385

Channels Grant full administrative access to the required
channels, as described in “Granting full
administrative access to some channels” on page
386

The queue manager Grant full administrative access to the queue
manager, as described in “Granting full
administrative access to a queue manager” on
page 387

Processes Grant full administrative access to the required
processes, as described in “Granting full
administrative access to some processes” on page
388

Namelists Grant full administrative access to the required
namelists, as described in “Granting full
administrative access to some namelists” on page
388

Services Grant full administrative access to the required
services, as described in “Granting full
administrative access to some services” on page
389

384 Securing IBM MQ

Granting full administrative access to some queues
Grant full administrative access to some queues on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some queues, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +alladm

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*Q) USER(GroupName) AUT(*ALLADM) MQMNAME(' QMgrName
')

•
On z/OS:

RDEFINE MQADMIN QMgrName.QUEUE. ObjectProfile UACC(NONE)
PERMIT QMgrName.QUEUE. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to some topics
Grant full administrative access to some topics on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some topics for some actions, use the appropriate commands for
your operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Securing IBM MQ 385

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t topic -g GroupName +alladm

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*TOPIC) USER(GroupName) AUT(ALLADM) MQMNAME('
QMgrName ')

•
On z/OS:

RDEFINE MQADMIN QMgrName.TOPIC. ObjectProfile UACC(NONE)
PERMIT QMgrName.TOPIC. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to some channels
Grant full administrative access to some channels on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some channels, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t channel -g GroupName +alladm

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*CHL) USER(GroupName) AUT(ALLADM) MQMNAME('
QMgrName ')

386 Securing IBM MQ

•
On z/OS:

RDEFINE MQADMIN QMgrName.CHANNEL. ObjectProfile UACC(NONE)
PERMIT QMgrName.CHANNEL. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to a queue manager
Grant full administrative access to a queue manager, to each group of users with a business need for it.

About this task
To grant full administrative access to the queue manager, use the appropriate commands for your
operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -t qmgr -g GroupName +alladm

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*MQM) USER(GroupName) AUT(*ALLADM) MQMNAME('
QMgrName ')

•
On z/OS:

RDEFINE MQADMIN QMgrName.QMGR UACC(NONE)
PERMIT QMgrName.QMGR CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

Securing IBM MQ 387

GroupName
The name of the group to be granted access.

Granting full administrative access to some processes
Grant full administrative access to some processes on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some processes, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t process -g GroupName +alladm

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*PRC) USER(GroupName) AUT(*ALLADM) MQMNAME('
QMgrName ')

•
On z/OS:

RDEFINE MQADMIN QMgrName.CHANNEL. ObjectProfile UACC(NONE)
PERMIT QMgrName.PROCESS. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to some namelists
Grant full administrative access to some namelists on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some namelists, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

388 Securing IBM MQ

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t namelist -g GroupName +alladm

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*NMLIST) USER(GroupName) AUT(*ALLADM) MQMNAME('
QMgrName ')

•
On z/OS:

RDEFINE MQADMIN QMgrName.NAMELIST. ObjectProfile UACC(NONE)
PERMIT QMgrName.NAMELIST. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting full administrative access to some services
Grant full administrative access to some services on a queue manager, to each group of users with a
business need for it.

About this task
To grant full administrative access to some services, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -n ObjectProfile -t service -g GroupName +alladm

•
On IBM i:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*SVC) USER(GroupName) AUT(*ALLADM) MQMNAME('
QMgrName ')

Securing IBM MQ 389

•
On z/OS:

RDEFINE MQADMIN QMgrName.SERVICE. ObjectProfile UACC(NONE)
PERMIT QMgrName.SERVICE. ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting read-only access to all resources on a queue manager
Grant read-only access to all the resources on a queue manager, to each user or group of users with a
business need for it.

About this task
Use the Add Role Based Authorities wizard or the appropriate commands for your operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

After you have changed any authorization details perform a security refresh using the REFRESH
SECURITY command.

Procedure
• Using the wizard:

a) In the IBM MQ Explorer Navigator pane, right-click the queue manager and click Object Authorities
> Add Role Based Authorities
The Add Role Based Authorities wizard opens.

•
For AIX, Linux, and Windows systems, issue the following commands:

setmqaut -m QMgrName -n ** -t queue -g GroupName +browse +dsp
setmqaut -m QMgrName -n SYSTEM.ADMIN.COMMAND.QUEUE -t queue -g GroupName +dsp +inq +put
setmqaut -m QMgrName -n SYSTEM.MQEXPLORER.REPLY.MODEL -t queue -g GroupName +dsp +inq +get
+put
setmqaut -m QMgrName -n ** -t topic -g GroupName +dsp
setmqaut -m QMgrName -n ** -t channel -g GroupName +dsp
setmqaut -m QMgrName -n ** -t clntconn -g GroupName +dsp
setmqaut -m QMgrName -n ** -t authinfo -g GroupName +dsp
setmqaut -m QMgrName -n ** -t listener -g GroupName +dsp
setmqaut -m QMgrName -n ** -t namelist -g GroupName +dsp
setmqaut -m QMgrName -n ** -t process -g GroupName +dsp
setmqaut -m QMgrName -n ** -t service -g GroupName +dsp
setmqaut -m QMgrName -t qmgr -g GroupName +dsp +inq +connect

The specific authorities to SYSTEM.ADMIN.COMMAND.QUEUE and
SYSTEM.MQEXPLORER.REPLY.MODEL are necessary only if you want to use the IBM MQ Explorer.

•
For IBM i, issue the following commands:

390 Securing IBM MQ

GRTMQMAUT OBJ(*ALL) OBJTYPE(*Q) USER('GroupName') AUT(*ADMDSP *BROWSE) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*TOPIC) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*CHL) USER('GroupName') AUT(*ADMDSP *INQ) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*CLTCN) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*AUTHINFO) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*LSR) USER('GroupName') AUT(*ADMDSP)MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*NMLIST) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*PRC) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ(*ALL) OBJTYPE(*SVC) USER('GroupName') AUT(*ADMDSP) MQMNAME('QMgrName')
GRTMQMAUT OBJ('object-name') OBJTYPE(*MQM) USER('GroupName') AUT(*ADMDSP *CONNECT *INQ)
MQMNAME('QMgrName')

•
For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.** UACC(NONE)
PERMIT QMgrName.** CLASS(MQQUEUE) ID(GroupName) ACCESS(READ)
RDEFINE MXTOPIC QMgrName.** UACC(NONE)
PERMIT QMgrName.** CLASS(MXTOPIC) ID(GroupName) ACCESS(READ)
RDEFINE MQPROC QMgrName.** UACC(NONE)
PERMIT QMgrName.** CLASS(MQPROC) ID(GroupName) ACCESS(READ)
RDEFINE MQNLIST QMgrName.** UACC(NONE)
PERMIT QMgrName.** CLASS(MQNLIST) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.BATCH UACC(NONE)
PERMIT QMgrName.BATCH CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.CICS UACC(NONE)
PERMIT QMgrName.CICS CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.IMS UACC(NONE)
PERMIT QMgrName.IMS CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.CHIN UACC(NONE)
PERMIT QMgrName.CHIN CLASS(MQCONN) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.
GroupName

The name of the group to be granted access.

Granting full administrative access to all resources on a queue manager
Grant full administrative access to all the resources on a queue manager, to each user or group of users
with a business need for it.

About this task
You can use the Add Role Based Authorities wizard or the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Notes:

1. If you are using runmqsc to administer the queue manager instead of the IBM MQ Explorer, you must
grant authority to inquire, get, and browse the SYSTEM.MQSC.REPLY.QUEUE, and you do not need to
grant any authorities on the SYSTEM.MQEXPLORER.REPLY.MODEL queue.

2. When giving a user access to all resources on a queue manager there are some commands that the
user cannot run, unless that user has read access to the qm.ini file. This is due to restrictions on non
mqm users being able to read the qm.ini file.

The user cannot issue the following commands unless you have granted that user read access to the
qm.ini file:

Securing IBM MQ 391

• Defining a channel that is configured to use TLS
• Defining a channel using auto-configuration insertion variables defined in qm.ini

Procedure
• If you are using the wizard, in the IBM MQ Explorer Navigator pane, right-click the queue manager and

click Object Authorities > Add Role Based Authorities.
The Add Role Based Authorities wizard opens.

•
For AIX and Linux systems, issue the following commands:

setmqaut -m QMgrName -n '**' -t queue -g GroupName +alladm +browse
setmqaut -m QMgrName -n @class -t queue -g GroupName +crt
setmqaut -m QMgrName -n SYSTEM.ADMIN.COMMAND.QUEUE -t queue -g GroupName +dsp +inq +put
setmqaut -m QMgrName -n SYSTEM.MQEXPLORER.REPLY.MODEL -t queue -g GroupName +dsp +inq +get +put
setmqaut -m QMgrName -n '**' -t topic -g GroupName +alladm
setmqaut -m QMgrName -n @class -t topic -g GroupName +crt
setmqaut -m QMgrName -n '**' -t channel -g GroupName +alladm
setmqaut -m QMgrName -n @class -t channel -g GroupName +crt
setmqaut -m QMgrName -n '**' -t clntconn -g GroupName +alladm
setmqaut -m QMgrName -n @class -t clntconn -g GroupName +crt
setmqaut -m QMgrName -n '**' -t authinfo -g GroupName +alladm
setmqaut -m QMgrName -n @class -t authinfo -g GroupName +crt
setmqaut -m QMgrName -n '**' -t listener -g GroupName +alladm
setmqaut -m QMgrName -n @class -t listener -g GroupName +crt
setmqaut -m QMgrName -n '**' -t namelist -g GroupName +alladm
setmqaut -m QMgrName -n @class -t namelist -g GroupName +crt
setmqaut -m QMgrName -n '**' -t process -g GroupName +alladm
setmqaut -m QMgrName -n @class -t process -g GroupName +crt
setmqaut -m QMgrName -n '**' -t service -g GroupName +alladm
setmqaut -m QMgrName -n @class -t service -g GroupName +crt
setmqaut -m QMgrName -t qmgr -g GroupName +alladm +connect

See setmqaut for more information on @class

•
For Windows systems, issue the same commands as for AIX and Linux systems, but using the profile
name @CLASS instead of @class.

•
For IBM i, issue the following command:

GRTMQMAUT OBJ(*ALL) OBJTYPE(*ALL) USER(' GroupName ') AUT(*ALLADM) MQMNAME(' QMgrName ')

•
For z/OS, issue the following commands:

RDEFINE MQADMIN QMgrName.*.** UACC(NONE)
PERMIT QMgrName.*.** CLASS(MQADMIN) ID(GroupName) ACCESS(ALTER)

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.
GroupName

The name of the group to be granted access.

392 Securing IBM MQ

Removing connectivity to the queue manager
If you do not want user applications to connect to your queue manager, remove their authority to connect
to it.

About this task
Revoke the authority of all users to connect to the queue manager by using the appropriate command for
your operating system.

On Multiplatforms, you can also use the DELETE AUTHREC command.

Note: On IBM MQ Appliance you can use only the DELETE AUTHREC command.

Procedure

•
For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -t qmgr -g GroupName -connect

•
For IBM i, issue the following command:

RVKMQMAUT OBJ ('QMgrName') OBJTYPE(*MQM) USER(*ALL) AUT(*CONNECT)

•
For z/OS, issue the following commands:

RDEFINE MQCONN QMgrName.BATCH UACC(NONE)
RDEFINE MQCONN QMgrName.CHIN UACC(NONE)
RDEFINE MQCONN QMgrName.CICS UACC(NONE)
RDEFINE MQCONN QMgrName.IMS UACC(NONE)

Do not issue any PERMIT commands.

The variable names have the following meanings:
QMgrName

The name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.
GroupName

The name of the group to be denied access.

Allowing user applications to connect to your queue manager
You want to allow user application to connect to your queue manager. Use the tables in this topic to
determine what actions to take.

First, determine whether client applications will connect to your queue manager.

If none of the applications that will connect to your queue manager are client applications, disable remote
access as described in “Disabling remote access to the queue manager” on page 401.

If one or more of the applications that will connect to your queue manager are client applications, secure
remote connectivity as described in “Securing remote connectivity to the queue manager” on page 394.

In both cases, set up connection security as described in “Setting up connection security” on page 401

If you want to control access to resources for each user connecting to the queue manager, see the
following table. If the statement in the first column is true, take the action listed in the second column.

Securing IBM MQ 393

Statement Take this action

You have applications that make use of queues See “Controlling user access to queues” on page
402

You have applications that make use of topics See “Controlling user access to topics” on page
407.

You have applications that inquire on the queue
manager object

See “Granting authority to inquire on a queue
manager” on page 409.

You have applications that use process objects See “Granting authority to access processes” on
page 410

You have applications that make use of namelists See “Granting authority to access namelists” on
page 410

Securing remote connectivity to the queue manager
You can secure remote connectivity to the queue manager using TLS, a security exit, channel
authentication records, or a combination of these methods.

About this task
You connect a client to the queue manager by using a client-connection channel on the client workstation
and a server-connection channel on the server. Secure such connections in one of the following ways.

Procedure
1. Using TLS with channel authentication records:

a) Prevent any Distinguished Name (DN) from opening a channel, by using an SSLPEERMAP channel
authentication record to map all DNs to USERSRC(NOACCESS).

b) Allow specific DNs or sets of DNs to open a channel by using an SSLPEERMAP channel
authentication record to map them to USERSRC(CHANNEL).

2. Using TLS with a security exit:
a) Set MCAUSER on the server-connection channel to a user identifier with no privileges.
b) Write a security exit to assign an MCAUSER value depending on the value of TLS DN it receives in

the SSLPeerNamePtr and SSLPeerNameLength fields passed to the exit in the MQCD structure.
3. Using TLS with fixed channel definition values:

a) Set SSLPEER on the server-connection channel to a specific value or narrow range of values.
b) Set MCAUSER on the server-connection channel to the user ID the channel should run with.

4. Using channel authentication records on channels that do not use TLS:
a) Prevent any IP address from opening channels, by using an address-mapping channel

authentication record with ADDRESS(*) and USERSRC(NOACCESS).
b) Allow specific IP addresses to open channels, by using address-mapping channel authentication

records for those addresses with USERSRC(CHANNEL).
5. Using a security exit:

a) Write a security exit to authorize connections based on any property you choose, for example, the
originating IP address.

6. It is also possible to use channel authentication records with a security exit, or to use all three
methods, if your particular circumstances require it.

394 Securing IBM MQ

Blocking specific IP addresses
You can prevent a specific channel accepting an inbound connection from an IP address, or prevent the
whole queue manager from allowing access from an IP address, by using a channel authentication record.

Before you begin
Enable channel authentication records by running the following command:

ALTER QMGR CHLAUTH(ENABLED)

About this task
To disallow specific channels from accepting an inbound connection and ensure that connections are only
accepted when using the correct channel name, one type of rule can be used to block IP addresses.
To disallow an IP address access to the whole queue manager, you would normally use a firewall to
permanently block it. However, another type of rule can be used to allow you to block a few addresses
temporarily, for example while you are waiting for the firewall to be updated.

Procedure
• To block IP addresses from using a specific channel, set a channel authentication record by using the

MQSC command SET CHLAUTH, or the PCF command Set Channel Authentication Record.

SET CHLAUTH(generic-channel-name) TYPE(ADDRESSMAP) ADDRESS(generic-ip-address)
USERSRC(NOACCESS)

There are three parts to the command:
SET CHLAUTH (generic-channel-name)

You use this part of the command to control whether you want to block a connection for the entire
queue manager, single channel or range of channels. What you put in here determines which areas
are covered.
For example:

– SET CHLAUTH('*') - blocks every channel on a queue manager, that is, the entire queue
manager

– SET CHLAUTH('SYSTEM.*') - blocks every channel that begins with SYSTEM.
– SET CHLAUTH('SYSTEM.DEF.SVRCONN') - blocks the channel SYSTEM.DEF.SVRCONN

Type of CHLAUTH rule
Use this part of the command to specify the type of command and determines whether you want to
supply a single address or list of addresses.
For example:

– TYPE(ADDRESSMAP) - Use ADDRESSMAP if you want to supply a single address or wildcard
address. For example, ADDRESS('192.168.*') blocks any connections coming from an IP
address starting in 192.168.

For more information about filtering IP addresses with patterns, see Generic IP addresses.
– TYPE(BLOCKADDR) - Use BLOCKADDR if you want to supply a list of address to block.

Additional parameters
These parameters are dependent upon the type of rule you used in the second part of the
command:

– For TYPE(ADDRESSMAP) you use ADDRESS
– For TYPE(BLOCKADDR) you use ADDRLIST

Related reference
SET CHLAUTH

Securing IBM MQ 395

Temporarily blocking specific IP addresses if the queue manager is not running
You might want to block particular IP addresses, or ranges of addresses, when the queue manager is not
running and you cannot therefore issue MQSC commands. You can temporarily block IP addresses on an
exceptional basis by modifying the blockaddr.ini file.

About this task
The blockaddr.ini file contains a copy of the BLOCKADDR definitions that are used by the queue
manager. This file is read by the listener if the listener is started before the queue manager. In these
circumstances, the listener uses any values that you have manually added to the blockaddr.ini file.

However, be aware that when the queue manager is started, it writes the set of BLOCKADDR definitions to
the blockaddr.ini file, over-writing any manual editing you might have done. Similarly, every time you
add or delete a BLOCKADDR definition by using the SET CHLAUTH command, the blockaddr.ini file
is updated. You can therefore make permanent changes to the BLOCKADDR definitions only by using the
SET CHLAUTH command when the queue manager is running.

Procedure
1. Open the blockaddr.ini file in a text editor.

The file is located in the data directory of the queue manager.
2. Add IP addresses as simple keyword-value pairs, where the keyword is Addr.

For information about filtering IP addresses with patterns, see Generic IP addresses.
For example:

Addr = 192.0.2.0
Addr = 192.0.*
Addr = 192.0.2.1-8

Related tasks
“Blocking specific IP addresses” on page 395
You can prevent a specific channel accepting an inbound connection from an IP address, or prevent the
whole queue manager from allowing access from an IP address, by using a channel authentication record.
Related reference
SET CHLAUTH

Blocking specific user IDs
You can prevent specific users from using a channel by specifying user IDs that, if asserted, cause the
channel to end. Do this by setting a channel authentication record.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH(' generic-channel-name ') TYPE(BLOCKUSER) USERLIST(userID1, userID2)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.

396 Securing IBM MQ

The user list provided on a TYPE(BLOCKUSER) only applies to SVRCONN channels and not queue
manager to queue manager channels.
userID1 and userID2 are each the ID of a user that is to be prevented from using the channel. You
can also specify the special value *MQADMIN to refer to privileged administrative users. For more
information about privileged users, see “Privileged users” on page 336. For more information about
*MQADMIN, see SET CHLAUTH.

Related reference
SET CHLAUTH

Mapping a remote queue manager to an MCAUSER user ID
You can use a channel authentication record to set the MCAUSER attribute of a channel, according to the
queue manager from which the channel is connecting.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

About this task
Optionally, you can restrict the IP addresses to which the rule applies.

Note that this technique does not apply to server-connection channels. If you specify the name of a
server-connection channel in the following commands, it has no effect.

Procedure
• Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command

Set Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH(' generic-channel-name ') TYPE (QMGRMAP) QMNAME(generic-partner-qmgr-name
) USERSRC(MAP) MCAUSER(user)

generic-channel-name is either the name of a channel to which you want to control access, or a
pattern including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-partner-qmgr-name is either the name of the queue manager, or a pattern including the
asterisk (*) symbol as a wildcard that matches the queue manager name.
user is the user ID to be used for all connections from the specified queue manager.

• To restrict this command to certain IP addresses, include the ADDRESS parameter, as follows:

SET CHLAUTH(' generic-channel-name ') TYPE (QMGRMAP) QMNAME(generic-partner-qmgr-name
) USERSRC(MAP) MCAUSER(user) ADDRESS(
generic-ip-address)

generic-channel-name is either the name of a channel to which you want to control access, or a
pattern including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-ip-address is either a single address, or a pattern including the asterisk (*) symbol as a
wildcard or the hyphen (-) to indicate a range, that matches the address. For more information
about generic IP addresses, see Generic IP addresses.

Related reference
SET CHLAUTH

Securing IBM MQ 397

Mapping a client user ID to an MCAUSER user ID
You can use a channel authentication record to change the MCAUSER attribute of a server-connection
channel, according to the user ID received from a client.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

About this task
Note that this technique applies only to server-connection channels. It has no effect on other channel
types.

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record . For example, you can issue the MQSC command:

SET CHLAUTH(' generic-channel-name ') TYPE (USERMAP) CLNTUSER(client-user-name) USERSRC(MAP)
MCAUSER(
user)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
client-user-name is the user ID associated with the clients connection, the value could be asserted by
the client application, altered by connection authentication using early adopt or set via a channel exit.
user is the user ID to be used instead of the client user name.

Related reference
SET CHLAUTH
Attributes of the channels stanza (ChlauthEarlyAdopt)

Mapping an SSL or TLS Distinguished Name to an MCAUSER user ID
You can use a channel authentication record to set the MCAUSER attribute of a channel, according to the
Distinguished Name (DN) received.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE (SSLPEERMAP)
SSLPEER(generic-ssl-peer-name) SSLCERTI(generic-issuer-name)
USERSRC(MAP) MCAUSER(user)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-ssl-peer-name is a string following the standard IBM MQ rules for SSLPEER values. See IBM
MQ rules for SSLPEER values.
user is the user ID to be used for all connections using the specified DN.

398 Securing IBM MQ

generic-issuer-name refers to the Issuer DN of the certificate to match. This parameter is optional but
you should use it, to avoid spuriously matching the wrong certificate, if multiple certificate authorities
are in use.

Related reference
SET CHLAUTH

Blocking access from a remote queue manager
You can use a channel authentication record to prevent a remote queue manager from starting channels.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

About this task
Note that this technique does not apply to server-connection channels. If you specify the name of a
server-connection channel in the following command, it has no effect.

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH(' generic-channel-name ') TYPE(QMGRMAP) QMNAME(' generic-partner-qmgr-name ')
USERSRC(NOACCESS)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-partner-qmgr-name is either the name of the queue manager, or a pattern including the
asterisk (*) symbol as a wildcard that matches the queue manager name.

Related reference
SET CHLAUTH

Blocking access for a client user ID
You can use a channel authentication record to prevent a client user ID from establishing a channel
connection.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

About this task
Note that this technique applies only to server-connection channels. It has no effect on other channel
types.

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH(' generic-channel-name ') TYPE(USERMAP) CLNTUSER(' client-user-name ')
USERSRC(NOACCESS)

Securing IBM MQ 399

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
client-user-name is the user ID associated with the clients connection, the value could be asserted by
the client application, altered by connection authentication using early adopt or set via a channel exit.

Related reference
SET CHLAUTH

Blocking access for an SSL or TLS Distinguished Name
You can use a channel authentication record to prevent a TLS Distinguished Name (DN) from starting
channels.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH('generic-channel-name') TYPE(SSLPEERMAP)
SSLPEER('generic-ssl-peer-name') SSLCERTI(generic-issuer-name)
USERSRC(NOACCESS)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.
generic-ssl-peer-name is a string following the standard IBM MQ rules for SSLPEER values. See IBM
MQ rules for SSLPEER values.
generic-issuer-name refers to the Issuer DN of the certificate to match. This parameter is optional but
you should use it, to avoid spuriously matching the wrong certificate, if multiple certificate authorities
are in use.

Related reference
SET CHLAUTH

Mapping an IP address to an MCAUSER user ID
You can use a channel authentication record to set the MCAUSER attribute of a channel, according to the
IP address from which the connection is received.

Before you begin
Ensure that channel authentication records are enabled as follows:

ALTER QMGR CHLAUTH(ENABLED)

Procedure
Set a channel authentication record using the MQSC command SET CHLAUTH, or the PCF command Set
Channel Authentication Record. For example, you can issue the MQSC command:

SET CHLAUTH(' generic-channel-name ') TYPE(ADDRESSMAP) ADDRESS(' generic-ip-address ')
USERSRC(MAP) MCAUSER(user)

generic-channel-name is either the name of a channel to which you want to control access, or a pattern
including the asterisk (*) symbol as a wildcard that matches the channel name.

400 Securing IBM MQ

user is the user ID to be used for all connections using the specified DN.
generic-ip-address is either the address from which the connection is being made, or a pattern
including the asterisk (*) as a wildcard or the hyphen (-) to indicate a range, that matches the address.

Related reference
SET CHLAUTH

Disabling remote access to the queue manager
If you do not want client applications to connect to your queue manager, disable remote access to it.

About this task
Prevent client applications connecting to the queue manager in one of the following ways:

Procedure
• Delete all server-connection channels using the MQSC command DELETE CHANNEL.
• Set the message channel agent user identifier (MCAUSER) of the channel to a user ID with no access

rights, using the MQSC command ALTER CHANNEL.

Setting up connection security
Grant the authority to connect to the queue manager to each user or group of users with a business need
to do so.

About this task
To set up connection security, use the appropriate commands for your operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
On AIX, Linux, and Windows:

setmqaut -m QMgrName -t qmgr -g GroupName +connect

•
On IBM i:

GRTMQMAUT OBJ('QMgrName') OBJTYPE(*MQM) USER('GroupName') AUT(*CONNECT)

•
On z/OS:

RDEFINE MQCONN QMgrName.BATCH UACC(NONE)
PERMIT QMgrName.BATCH CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.CICS UACC(NONE)
PERMIT QMgrName.CICS CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.IMS UACC(NONE)
PERMIT QMgrName.IMS CLASS(MQCONN) ID(GroupName) ACCESS(READ)
RDEFINE MQCONN QMgrName.CHIN UACC(NONE)
PERMIT QMgrName.CHIN CLASS(MQCONN) ID(GroupName) ACCESS(READ)

These commands give authority to connect for batch, CICS, IMS and the channel initiator (CHIN). If
you do not use a particular type of connection, omit the relevant commands.
The variable names have the following meanings:

Securing IBM MQ 401

QMgrName
The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Related concepts
“Connection security profiles for the channel initiator” on page 198
Profiles for checking connections from the channel initiator are composed of the queue manager or queue
sharing group name followed by the word CHIN. Give the user ID used by the channel initiator started task
address space READ access to the connection profile.

Controlling user access to queues
You want to control application access to queues. Use this topic to determine what actions to take.

For each true statement in the first column, take the action indicated in the second column.

Statement Action

The application gets messages from a queue See “Granting authority to get messages from
queues” on page 402

The application sets context See “Granting authority to set context” on page
403

The application passes context See “Granting authority to pass context” on page
404

The application puts messages on a clustered
queue

See “Authorizing putting messages on remote
cluster queues” on page 486

The application puts messages on a local queue See “Granting authority to put messages to a local
queue” on page 405

The application puts messages on a model queue See “Granting authority to put messages to a
model queue” on page 406

The application puts messages on a remote queue See “Granting authority to put messages to a
remote cluster queue” on page 406

Granting authority to get messages from queues
Grant the authority to get messages from a queue or set of queues, to each group of users with a business
need for it.

About this task
To grant the authority to get messages from some queues, use the appropriate commands for your
operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +get

• For IBM i, issue the following command:

402 Securing IBM MQ

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*Q) USER(GroupName) AUT(*GET) MQMNAME(' QMgrName ')

• For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQADMIN) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to set context
Grant the authority to set context on a message that is being put, to each group of users with a business
need for it.

About this task
To grant the authority to set context on some queues, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue one of the following commands:

• To set identity context only:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +setid

• To set all context:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +setall

Note: To use setid or setall authority, authorizations must be granted on both the appropriate
queue object and also on the queue manager object.

• For IBM i, issue one of the following commands:

• To set identity context only:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*Q) USER(GroupName) AUT(*SETID) MQMNAME('
QMgrName ')

• To set all context:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*Q) USER(GroupName) AUT(*SETALL) MQMNAME('
QMgrName ')

• For z/OS, issue one of the following sets of commands:

• To set identity context only:

Securing IBM MQ 403

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)

• To set all context:

RDEFINE MQQUEUE QMgrName. ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(CONTROL)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to pass context
Grant the authority to pass context from a retrieved message to one that is being put, to each group of
users with a business need for it.

About this task
To grant the authority to pass context on some queues, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure

•
For AIX, Linux, and Windows systems, issue one of the following commands:

• To pass identity context only:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +passid

• To pass all context:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +passall

•
For IBM i, issue one of the following commands:

• To pass identity context only:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*Q) USER(GroupName) AUT(*PASSID) MQMNAME('
QMgrName ')

• To pass all context:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*Q) USER(GroupName) AUT(*PASSALL) MQMNAME('
QMgrName ')

404 Securing IBM MQ

•
For z/OS, issue the following commands to pass identity context or all context:

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to put messages to a local queue
Grant the authority to put messages to a local queue or set of queues, to each group of users with a
business need for it.

About this task
To grant the authority to put messages to some local queues, use the appropriate commands for your
operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +put

• For IBM i, issue the following command:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*Q) USER(GroupName) AUT(*PUT) MQMNAME(' QMgrName ')

• For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Securing IBM MQ 405

Granting authority to put messages to a model queue
Grant the authority to put messages to a model queue or set of model queues, to each group of users with
a business need for it.

About this task
Model queues are used to create dynamic queues. You must therefore grant authority to both the model
and dynamic queues. To grant these authorities, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue the following commands:

setmqaut -m QMgrName -n ModelQueueName -t queue -g GroupName +put
setmqaut -m QMgrName -n ObjectProfile -t queue -g GroupName +put

• For IBM i, issue the following commands:

GRTMQMAUT OBJ(' ModelQueueName ') OBJTYPE(*Q) USER(GroupName) AUT(*PUT) MQMNAME(' QMgrName ')
GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*Q) USER(GroupName) AUT(*PUT) MQMNAME(' QMgrName ')

• For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.ModelQueueName UACC(NONE)
PERMIT QMgrName.ModelQueueName CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)
RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQQUEUE) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ModelQueueName
The name of the model queue on which dynamic queues are based.

ObjectProfile
The name of the dynamic queue or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to put messages to a remote cluster queue
Grant the authority to put messages to a remote cluster queue or set of queues, to each group of users
with a business need for it.

About this task
To put a message on a remote cluster queue, you can either put it on a local definition of a remote queue,
or a fully qualified remote queue. If you are using a local definition of a remote queue, you need authority
to put to the local object: see “Granting authority to put messages to a local queue” on page 405. If
you are using a fully qualified remote queue, you need authority to put to the remote queue. Grant this
authority using the appropriate commands for your operating system.

The default behavior is to perform access control against the SYSTEM.CLUSTER.TRANSMIT.QUEUE. Note
that this behavior applies, even if you are using multiple transmission queues.

406 Securing IBM MQ

The specific behavior described in this topic applies only when you have configured the
ClusterQueueAccessControl attribute in the qm.ini file to be RQMName, as described in the
Security stanza topic, and restarted the queue manager.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -t rqmname -n
ObjectProfile -g GroupName +put

Note that you can use the rqmname object for remote cluster queues only.
• For IBM i, issue the following command:

GRTMQMAUT OBJTYPE(*RMTMQMNAME) OBJ('
ObjectProfile') USER(GroupName) AUT(*PUT) MQMNAME('
QMgrName')

Note that you can use the RMTMQMNAME object for remote cluster queues only.
• For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.QUEUE.ObjectProfile CLASS(MQQUEUE)
ID(GroupName) ACCESS(UPDATE)

Note that you can use the name of the remote queue manager (or queue sharing group) for remote
cluster queues only.

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the remote queue manager or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Controlling user access to topics
You need to control the access of applications to topics. Use this topic to determine what actions to take.

For each true statement in the first column, take the action indicated in the second column.

Table 74. Controlling user access to topics

Statement Action

The application publishes messages to a topic See “Granting authority to publish messages to a
topic” on page 408

The application subscribes to a topic See “Granting authority to subscribe to topics” on
page 408

Securing IBM MQ 407

Granting authority to publish messages to a topic
Grant the authority to publish messages to a topic or set of topics, to each group of users with a business
need for it.

About this task
To grant the authority to publish messages to some topics, use the appropriate commands for your
operating system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t topic -g GroupName +pub

• For IBM i, issue the following command:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*TOPIC) USER(GroupName) AUT(*PUB) MQMNAME('
QMgrName ')

• For z/OS, issue the following commands:

RDEFINE MQTOPIC QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQTOPIC) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to subscribe to topics
Grant the authority to subscribe to a topic or set of topics, to each group of users with a business need for
it.

About this task
To grant the authority to subscribe to some topics, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t topic -g GroupName +sub

• For IBM i, issue the following command:

408 Securing IBM MQ

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*TOPIC) USER(GroupName) AUT(*SUB) MQMNAME('
QMgrName ')

• For z/OS, issue the following commands:

RDEFINE MQTOPIC QMgrName.SUBSCRIBE.ObjectProfile UACC(NONE)
PERMIT QMgrName.SUBSCRIBE.ObjectProfile CLASS(MQTOPIC) ID(GroupName) ACCESS(UPDATE)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to inquire on a queue manager
Grant the authority to inquire on a queue manager, to each group of users with a business need for it.

About this task
To grant the authority to inquire on a queue manager, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t qmgr -g GroupName +inq

• For IBM i, issue the following command:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*MQM) USER(GroupName) AUT(*INQ) MQMNAME(' QMgrName
')

• For z/OS, issue the following commands:

RDEFINE MQCMDS QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

These commands grant access to the specified queue manager. To permit the user to use the MQINQ
command, issue the following commands:

RDEFINE MQCMDS QMgrName.MQINQ.QMGR UACC(NONE)
PERMIT QMgrName.MQINQ.QMGR CLASS(MQCMDS) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

Securing IBM MQ 409

GroupName
The name of the group to be granted access.

Granting authority to access processes
Grant the authority to access a process or set of processes, to each group of users with a business need
for it.

About this task
To grant the authority to access some processes, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue the following command:

setmqaut -m QMgrName -n ObjectProfile -t process -g GroupName +all

• For IBM i, issue the following command:

GRTMQMAUT OBJ(' ObjectProfile ') OBJTYPE(*PRC) USER(GroupName) AUT(*ALL) MQMNAME(' QMgrName
')

• For z/OS, issue the following commands:

RDEFINE MQPROC QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile CLASS(MQPROC) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Granting authority to access namelists
Grant the authority to access a namelist or set of namelists, to each group of users with a business need
for it.

About this task
To grant the authority to access some namelists, use the appropriate commands for your operating
system.

On Multiplatforms platforms, you can also use the SET AUTHREC command.

Note: On IBM MQ Appliance you can use only the SET AUTHREC command.

Procedure
• For AIX, Linux, and Windows systems, issue the following command:

410 Securing IBM MQ

setmqaut -m QMgrName -n
ObjectProfile -t namelist -g GroupName
+all

• For IBM i, issue the following command:

GRTMQMAUT OBJ('ObjectProfile
') OBJTYPE(*NMLIST) USER(GroupName) AUT(*ALL) MQMNAME('
QMgrName')

• For z/OS, issue the following commands:

RDEFINE MQNLIST
QMgrName.ObjectProfile UACC(NONE)
PERMIT QMgrName.ObjectProfile
CLASS(MQNLIST) ID(GroupName) ACCESS(READ)

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

ObjectProfile
The name of the object or generic profile for which to change authorizations.

GroupName
The name of the group to be granted access.

Authority to administer IBM MQ on AIX, Linux, and Windows
IBM MQ administrators can use all IBM MQ commands and grant authorities for other users. When
administrators issue commands to remote queue managers, they must have the required authority on the
remote queue manager. Further considerations apply to Windows systems.

IBM MQ administrators have authority to use all IBM MQ commands (including the commands to grant
IBM MQ authorities for other users).

To be an IBM MQ administrator, you must be a member of a special group that is called the mqm group.

Alternatively, on Windows only, local accounts can administer IBM MQ if they are members
of the Administrators group on Windows systems.

Attention: You can add your Azure AD user to the mqm group by using an administrator command.
For example, use the command net localgroup mqm AzureAD\<your userID> /add. Then
run IBM MQ administration commands or use IBM MQ Explorer.

The mqm group is created automatically when IBM MQ is installed. You can add further users to the group
to allow them to perform administration. All members of this group have access to all resources. This
access can be revoked only by removing a user from the mqm group and issuing the REFRESH SECURITY
command.

Administrators can use control commands to administer IBM MQ. One of these control commands is
setmqaut, which is used to grant authorities to other users to enable them to access or control IBM
MQ resources. The PCF commands for managing authority records are available to non-administrators
who are granted dsp and chg authorities on the queue manager. For more information about managing
authorities by using PCF commands, see Programmable Command Formats.

Administrators must have the required authorities for the MQSC commands to be processed by the
remote queue manager. The IBM MQ Explorer issues PCF commands to perform administration tasks.
Administrators require no additional authorities to use the IBM MQ Explorer to administer a queue
manager on the local system. When the IBM MQ Explorer is used to administer a queue manager

Securing IBM MQ 411

on another system, administrators must have the required authorities for the PCF commands to be
processed by the remote queue manager.

Attention: From IBM MQ 8.0, you do not have to be an administrator to use the control command
runmqsc, that issues IBM MQ Script (MQSC) commands.

When runmqsc is used in indirect mode to send MQSC commands to a remote queue manager,
each MQSC command is encapsulated within an Escape PCF command.

For more information about authority checks when PCF and MQSC commands are processed, see the
following topics:

• For PCF commands that operate on queue managers, queues, processes, namelists, and authentication
information objects, see Authority to work with IBM MQ objects. Refer to this section for the equivalent
MQSC commands encapsulated within Escape PCF commands.

• For PCF commands that operate on channels, channel initiators, listeners, and clusters, see Channel
security.

• For PCF commands that operate on authority records, see Authority checking for PCF commands

• For MQSC commands that are processed by the command server on IBM MQ for z/OS, see
Command security and command resource security on z/OS .

Additionally, on Windows systems, the SYSTEM account has full access to IBM MQ resources.

On AIX and Linux platforms, a special user ID of mqm is also created, for use by the product only. It must
never be available to non-privileged users. All IBM MQ objects are owned by user ID mqm.

On Windows systems, members of the Administrators group can also administer any queue manager, as
can the SYSTEM account. You can also create a domain mqm group on the domain controller that contains
all privileged user IDs active within the domain, and add it to the local mqm group. Some commands, for
example crtmqm, manipulate authorities on IBM MQ objects and so need authority to work with these
objects (as described in the following sections). Members of the mqm group have authority to work with
all objects, but there might be circumstances on Windows systems when authority is denied if you have
a local user and a domain-authenticated user with the same name. This is described in “Principals and
groups on AIX, Linux, and Windows” on page 415.

Windows versions with a User Account Control (UAC) feature restricts the actions users can perform on
certain operating system facilities, even if they are members of the Administrators group. If your userid is
in the Administrators group but not the mqm group you must use an elevated command prompt to issue
IBM MQ admin commands such as crtmqm, otherwise the error AMQ7077: You are not authorized
to perform the requested operation is generated. To open an elevated command prompt,
right-click the start menu item, or icon, for the command prompt, and select Run as administrator.

You do not need to be a member of the mqm group to take the following actions:

• Issue commands from an application program that issues PCF commands, or MQSC commands within
an Escape PCF command, unless the commands manipulate channel initiators. (These commands are
described in “Protecting channel initiator definitions” on page 115).

• Issue MQI calls from an application program (unless you want to use the fast path bindings on the
MQCONNX call).

• Use the crtmqcvx command to create a fragment of code that performs data conversion on data type
structures.

• Use the dspmq command to display queue managers.
• Use the dspmqtrc command to display IBM MQ formatted trace output.

A 12 character limitation applies to both group and user IDs.

UNIX and Linux platforms generally restrict the length of a user ID to 12 characters. AIX 5.3 has raised
this limit but IBM MQ continues to observe a 12 character restriction on all UNIX and Linux platforms.
If you use a user ID of greater than 12 characters, IBM MQ replaces it with the value UNKNOWN. Do not
define a user ID with a value of UNKNOWN.

412 Securing IBM MQ

Managing the mqm group on AIX, Linux, and Windows
Users in the mqm group are granted full administrative privileges over IBM MQ. For this reason, you
should not enroll applications and ordinary users in the mqm group. The mqm group should contain the
accounts of the IBM MQ administrators only.

These tasks are described in:

• Creating and managing groups on Windows

• Creating and managing groups on AIX

• Creating and managing groups on Linux

If your domain controller runs on Windows 2000 or Windows 2003 or later, your domain
administrator might have to set up a special account for IBM MQ to use. For more information, see
Configuring IBM MQ with the Prepare IBM MQ Wizard and Creating and setting up Windows domain
accounts for IBM MQ.

Authority to work with IBM MQ objects on AIX, Linux, and Windows
All objects are protected by IBM MQ, and principals must be given appropriate authority to access them.
Different principals need different access rights to different objects.

Queue managers, queues, process definitions, namelists, channels, client connection channels, listeners,
services, and authentication information objects are all accessed from applications that use MQI calls
or PCF commands. These resources are all protected by IBM MQ, and applications need to be given
permission to access them. The entity making the request might be a user, an application program that
issues an MQI call, or an administration program that issues a PCF command. The identifier of the
requester is referred to as the principal.

Different groups of principals can be granted different types of access authority to the same object.
For example, for a specific queue, one group might be allowed to perform both put and get operations;
another group might be allowed only to browse the queue (MQGET with browse option). Similarly, some
groups might have put and get authority to a queue, but not be allowed to alter attributes of the queue or
delete it.

Some operations are particularly sensitive and should be limited to privileged users. For example:

• Accessing some special queues, such as transmission queues or the command queue
SYSTEM.ADMIN.COMMAND.QUEUE

• Running programs that use full MQI context options
• Creating and deleting application queues

Full access permission to an object is automatically given to the user ID that created the object and to all
members of the mqm group (and to the members of the local Administrators group on Windows systems).

Related concepts
“Authority to administer IBM MQ on AIX, Linux, and Windows” on page 411
IBM MQ administrators can use all IBM MQ commands and grant authorities for other users. When
administrators issue commands to remote queue managers, they must have the required authority on the
remote queue manager. Further considerations apply to Windows systems.

When security checks are made on AIX, Linux, and Windows
Security checks are typically made on connecting to a queue manager, opening or closing objects, and
putting or getting messages.

The security checks made for a typical application are as follows:

Securing IBM MQ 413

Connecting to the queue manager (MQCONN or MQCONNX calls)
This is the first time that the application is associated with a particular queue manager. The
queue manager interrogates the operating environment to discover the user ID associated with the
application. IBM MQ then verifies that the user ID is authorized to connect to the queue manager and
retains the user ID for future checks.

Users do not have to sign on to IBM MQ; IBM MQ assumes that users have signed on to the underlying
operating system and have been authenticated by that.

Opening the object (MQOPEN or MQPUT1 calls)
IBM MQ objects are accessed by opening the object and issuing commands against it. All resource
checks are performed when the object is opened, rather than when it is actually accessed. This means
that the MQOPEN request must specify the type of access required (for example, whether the user
wants only to browse the object or perform an update like putting messages onto a queue).

IBM MQ checks the resource that is named in the MQOPEN request. For an alias or remote queue
object, the authorization used is that of the object itself, not the queue to which the alias or remote
queue resolves. This means that the user does not need permission to access it. Limit the authority
to create queues to privileged users. If you do not, users might bypass the normal access control
simply by creating an alias. If a remote queue is referred to explicitly with both the queue and queue
manager names, the transmission queue associated with the remote queue manager is checked.

The authority to a dynamic queue is based on that of the model queue from which it is derived, but is
not necessarily the same. This is described in Note “1” on page 133.

The user ID used by the queue manager for access checks is the user ID obtained from the operating
environment of the application connected to the queue manager. A suitably authorized application can
issue an MQOPEN call specifying an alternative user ID; access control checks are then made on the
alternative user ID. This does not change the user ID associated with the application, only that used
for access control checks.

Putting and getting messages (MQPUT or MQGET calls)
No access control checks are performed.

Closing the object (MQCLOSE)
No access control checks are performed, unless the MQCLOSE results in a dynamic queue being
deleted. In this case, there is a check that the user ID is authorized to delete the queue.

Subscribing to a topic (MQSUB)
When an application subscribes to a topic, it specifies the type of operation that it needs to perform.
It is either creating a new subscription, altering an existing subscription, or resuming an existing
subscription without changing it. For each type of operation, the queue manager checks that the user
ID that is associated with the application has the authority to perform the operation.
When an application subscribes to a topic, the authority checks are performed against the topic
objects that are found in the topic tree at or above the point in the topic tree at which the application
subscribed. The authority checks might involve checks on more than one topic object.
The user ID that the queue manager uses for the authority checks is the user ID obtained from the
operating system when the application connects to the queue manager.
The queue manager performs authority checks on subscriber queues but not on managed queues.

How access control is implemented by IBM MQ on AIX, Linux, and
Windows
IBM MQ uses the security services provided by the underlying operating system, using the object
authority manager. IBM MQ supplies commands to create and maintain access control lists.

An access control interface called the Authorization Service Interface is part of IBM MQ. IBM MQ supplies
an implementation of an access control manager (conforming to the Authorization Service Interface)
known as the object authority manager (OAM). This is automatically installed and enabled for each queue
manager you create, unless you specify otherwise (as described in “Preventing security access checks on

414 Securing IBM MQ

AIX, Linux, and Windows systems” on page 374). The OAM can be replaced by any user or vendor written
component that conforms to the Authorization Service Interface.

The OAM exploits the security features of the underlying operating system, using operating system user
and group IDs. Users can access IBM MQ objects only if they have the correct authority. “Controlling
access to objects by using the OAM on AIX, Linux, and Windows” on page 364 describes how to grant and
revoke this authority.

The OAM maintains an access control list (ACL) for each resource that it controls. Authorization data is
stored on a local queue called SYSTEM.AUTH.DATA.QUEUE. Access to this queue is restricted to users in
the mqm group, and additionally on Windows, to users in the Administrators group, and users logged in
with the SYSTEM ID. User access to the queue cannot be changed.

IBM MQ supplies commands to create and maintain access control lists. For more information on these
commands, see “Controlling access to objects by using the OAM on AIX, Linux, and Windows” on page
364.

IBM MQ passes the OAM a request containing a principal, a resource name, and an access type. The OAM
grants or rejects access based on the ACL that it maintains. IBM MQ follows the decision of the OAM; if the
OAM cannot make a decision, IBM MQ does not allow access.

Identifying the user ID on AIX, Linux, and Windows
The object authority manager identifies the principal that is requesting access to a resource. The user ID
used as the principal varies according to context.

The object authority manager (OAM) must be able to identify who is requesting access to a particular
resource. IBM MQ uses the term principal to refer to this identifier. The principal is established when the
application first connects to the queue manager; it is determined by the queue manager from the user ID
associated with the connecting application. (If the application issues XA calls without connecting to the
queue manager, then the user ID associated with the application that issues the xa_open call is used for
authority checks by the queue manager.)

On AIX and Linux systems, the authorization routines checks either the real (logged-in) user ID, or the
effective user ID associated with the application. The user ID checked can be dependent on the bind type,
for details see Installable services.

IBM MQ propagates the user ID received from the system in the message header (MQMD structure) of
each message as identification of the user. This identifier is part of the message context information and is
described in “Context authority on AIX, Linux, and Windows” on page 418. Applications cannot alter this
information unless they have been authorized to change context information.

Principals and groups on AIX, Linux, and Windows
Principals can belong to groups. By granting resource access to groups rather than to individuals, you can
reduce the amount of administration required. Access Control Lists (ACLs) are based on both groups and
user IDs.

For example, you might define a group consisting of users who want to run a particular application. Other
users can be given access to all the resources they require by adding their user ID to the appropriate
group.

This process of defining and managing groups is described for particular platforms:

• Creating and managing groups on AIX

• Creating and managing groups on Linux

• Creating and managing groups on Windows

A principal can belong to more than one group (its group set). It has the aggregate of all the authorities
granted to each group in its group set. These authorities are cached, so any changes you make to the
group membership of the principal are not recognized until the queue manager is restarted, unless you
issue the MQSC command REFRESH SECURITY (or its PCF equivalent).

Securing IBM MQ 415

AIX and Linux systems
From IBM MQ 8.0, access control lists (ACLs) are based on both user IDs and groups and you can
use either for authorization by setting the SecurityPolicy attribute to the appropriate value as
described in Service stanza of the qm.ini file and Configuring authorization service stanzas on AIX and
Linux.

From IBM MQ 8.0, you can use the user-based model for authorization, and this allows you to use both
users and groups. However, when you specify a user in the setmqaut command, the new permissions
apply to that user alone, and not any groups to which that user belongs. For more information, see
“OAM user-based permissions on AIX and Linux” on page 364.

When you use the group-based model for authorization, the primary group to which the user ID
belongs is included in the ACL. The individual user ID is not included and authority is granted to all
members of that group. Because of this, be aware that you can inadvertently change the authority of a
principal by changing the authority of another principal in the same group.

All users are nominally assigned to the default user group nobody and by default, no authorizations
are given to this group. You can change the authorization in the nobody group to grant access to IBM
MQ resources to users without specific authorizations.

From IBM MQ 9.3.0, you can use the UserExternal option of the SecurityPolicy
attribute to create a non-operating system user name. If you create a non-operating system user
name, that user is considered to belong to no groups, except the nobody group. For more information
about this option, see crtmqm and Service stanza of the qm.ini file.

Do not define a user ID with the value UNKNOWN. The value UNKNOWN is used when a user ID is too
long, so arbitrary user IDs would use the access authorities of UNKNOWN.

See “Setting authorizations” on page 424 for information on using LDAP.

User IDs can contain up to 12 characters and group names up to 12 characters.

Windows systems
ACLs are based on both user IDs and groups. Checks are the same as for AIX and Linux. You can have
different users on different domains with the same user ID. IBM MQ permits user IDs to be qualified
by a domain name so that these users can be given different levels of access.

The group name can optionally include a domain name, specified in the following formats:

GroupName@domain domain_name\group_name

Global groups are checked by the OAM in two cases only:

1. The queue manager security stanza includes the setting: GroupModel=GlobalGroups. See
Securing.

2. The queue manager is using an alternative security access group. See crtmqm .

User IDs can contain up to 20 characters, domain names up to 15 characters, and group names up to
64 characters.

The OAM first checks the local security database, then the database of the primary domain, and finally
the database of any trusted domains. The first user ID encountered is used by the OAM for checking.
Each of these user IDs might have different group memberships on a particular computer.

Some control commands (for example, crtmqm) change authorities on IBM MQ objects using the
object authority manager (OAM). The OAM searches the security databases in the order given in
the preceding paragraph to determine the authority rights for a particular user ID. As a result, the
authority determined by the OAM might override the fact that a user ID is a member of the local mqm
group. For example, if you issue the crtmqm command from a user ID authenticated by a domain
controller that has membership of the local mqm group through a global group, the command fails if
the system has a local user with the same name who is not in the local mqm group.

416 Securing IBM MQ

For more information about setting the SecurityPolicy attribute on Windows, see Installable
services and Configuring authorization service stanzas on Windows.

Windows security identifiers (SIDs)
IBM MQ on Windows uses the SID where it is available. If a Windows SID is not supplied with an
authorization request, IBM MQ identifies the user based on the user name alone, but this might result in
the wrong authority being granted.

On Windows systems, the security identifier (SID) is used to supplement the user ID. The SID contains
information that identifies the full user account details on the Windows security account manager (SAM)
database where the user is defined. When a message is created on IBM MQ for Windows, IBM MQ stores
the SID in the message descriptor. When IBM MQ on Windows performs authorization checks, it uses the
SID to query the full information from the SAM database. (The SAM database in which the user is defined
must be accessible for this query to succeed.)

By default, if a Windows SID is not supplied with an authorization request, IBM MQ identifies the user
based on the user name alone. It does this by searching the security databases in the following order:

1. The local security database
2. The security database of the primary domain
3. The security database of trusted domains

If the user name is not unique, incorrect IBM MQ authority might be granted. To prevent this problem,
include an SID in each authorization request; the SID is used by IBM MQ to establish user credentials.

To specify that all authorization requests must include an SID, use regedit. Set the SecurityPolicy to
NTSIDsRequired.

Alternate-user authority on AIX, Linux, and Windows
You can specify that a user ID can use the authority of another user when accessing an IBM MQ object.
This is called alternate-user authority, and you can use it on any IBM MQ object.

Alternate-user authority is essential where a server receives requests from a program and wants to
ensure that the program has the required authority for the request. The server might have the required
authority, but it needs to know whether the program has the authority for the actions it has requested.

For example, assume that a server program running under user ID PAYSERV retrieves a request message
from a queue that was put on the queue by user ID USER1. When the server program gets the request
message, it processes the request and puts the reply back into the reply-to queue specified with the
request message. Instead of using its own user ID (PAYSERV) to authorize opening the reply-to queue, the
server can specify a different user ID, in this case, USER1. In this example, you can use alternate-user
authority to control whether PAYSERV is allowed to specify USER1 as an alternate-user ID when it opens
the reply-to queue.

The alternate-user ID is specified on the AlternateUserId field of the object descriptor.

Solving certain group membership problems on Linux
Some systems are slow to return group information through the normal series of getgrent operating
system API calls and if your enterprise has thousands of groups to search, looking for which groups
the mqm user is in, the slow response can cause an internal queue manager timeout. To circumvent this
problem there is an alternative operating system API.

To use the alternative API that is faster, and returns all groups from one call, set the environment variable
MQS_GETGROUPLIST_API.

You might have received an RC2035 error when granting connect access to the secondary group of the
user and enabling the MQS_GETGROUPLIST_API variable alleviates the problem.

IBM MQ then uses the getgrouplist API instead of the getgrent API.

To enable getgrouplist:

Securing IBM MQ 417

1. Stop the queue manager
2. Issue the command export MQS_GETGROUPLIST_API=1
3. Restart the queue manager

Retry the scenario that failed and if your problem has been solved, you might consider modifying
the .bashrc / .profile file for the user mqm to add this environment variable, or add the environment
variable into the script you use to start the queue manager.

If your system merges user or group information for the operating system from multiple repositories such
as NIS or LDAP, then ensure the group or user ID is consistent across all repositories including the local
one, as these are used to install and set operating system level permissions.

Context authority on AIX, Linux, and Windows
Context is information that applies to a particular message and is contained in the message descriptor,
MQMD, which is part of the message. Applications can specify the context data when either an MQOPEN or
MQPUT call is made.

The context information comes in two sections:
Identity section

Who the message came from. It consists of the UserIdentifier, AccountingToken, and
ApplIdentityData fields.

Origin section
Where the message came from, and when it was put onto the queue. It consists of the PutApplType,
PutApplName, PutDate, PutTime, and ApplOriginData fields.

Applications can specify the context data when either an MQOPEN or MQPUT call is made. This data might
be generated by the application, passed on from another message, or generated by the queue manager by
default. For example, context data can be used by server programs to check the identity of the requester,
testing whether the message came from an application running under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an alternative user. You use
context authorization to control whether the user can specify any of the context options on any MQOPEN or
MQPUT1 call.

See Controlling context information for information about the context options, and MQMD - Message
descriptor for descriptions of the message descriptor fields relating to context.

Implementing access control in security exits
You can implement access control in a security exit by use of the MCAUserIdentifier or the object
authority manager.

MCAUserIdentifier
Every instance of a channel that is current has an associated channel definition structure, MQCD. The
initial values of the fields in MQCD are determined by the channel definition that is created by an IBM MQ
administrator. In particular, the initial value of one of the fields, MCAUserIdentifier, is determined by the
value of the MCAUSER parameter on the DEFINE CHANNEL command, or by the equivalent to MCAUSER if
the channel definition is created in another way.

The MQCD structure is passed to a channel exit program when it is called by an MCA. When a security exit
is called by an MCA, the security exit can change the value of MCAUserIdentifier, replacing any value that
was specified in the channel definition.

On Multiplatforms, unless the value of MCAUserIdentifier is blank, the queue manager uses
the value of MCAUserIdentifier as the user ID for authority checks when an MCA attempts to access the
queue manager's resources after it has connected to the queue manager. If the value of MCAUserIdentifier
is blank, the queue manager uses the default user ID of the MCA instead. This applies to RCVR, RQSTR,

418 Securing IBM MQ

CLUSRCVR and SVRCONN channels. For sending MCAs, the default user ID is always used for authority
checks, even if the value of MCAUserIdentifier is not blank.

On z/OS, the queue manager might use the value of MCAUserIdentifier for authority checks,
provided it is not blank. For receiving MCAs and server connection MCAs, whether the queue manager
uses the value of MCAUserIdentifier for authority checks depends on:

• The value of the PUTAUT parameter in the channel definition
• The RACF profile used for the checks
• The access level of the channel initiator address space user ID to the RESLEVEL profile

For sending MCAs, it depends on:

• Whether the sending MCA is a caller or a responder
• The access level of the channel initiator address space user ID to the RESLEVEL profile

The user ID that a security exit stores in MCAUserIdentifier can be acquired in various ways. Here are
some examples:

• Provided there is no security exit at the client end of an MQI channel, a user ID associated with the
IBM MQ client application flows from the client connection MCA to the server connection MCA when
the client application issues an MQCONN call. The server connection MCA stores this user ID in the
RemoteUserIdentifier field in the channel definition structure, MQCD. If the value of MCAUserIdentifier is
blank at this time, the MCA stores the same user ID in MCAUserIdentifier. If the MCA does not store the
user ID in MCAUserIdentifier, a security exit can do it later by setting MCAUserIdentifier to the value of
RemoteUserIdentifier.

If the user ID that flows from the client system is entering a new security domain and is not valid on the
server system, the security exit can substitute the user ID for one that is valid and store the substituted
user ID in MCAUserIdentifier.

• The user ID can be sent by the partner security exit in a security message.

On a message channel, a security exit called by the sending MCA can send the user ID under which
the sending MCA is running. A security exit called by the receiving MCA can then store the user ID in
MCAUserIdentifier. Similarly, on an MQI channel, a security exit at the client end of the channel can send
the user ID associated with the IBM MQ MQI client application. A security exit at the server end of the
channel can then store the user ID in MCAUserIdentifier. As in the previous example, if the user ID is not
valid on the target system, the security exit can substitute the user ID for one that is valid and store the
substituted user ID in MCAUserIdentifier.

If a digital certificate is received as part of the identification and authentication service, a security exit
can map the Distinguished Name in the certificate to a user ID that is valid on the target system. It can
then store the user ID in MCAUserIdentifier.

• If TLS is used on the channel, the partner's Distinguished Name (DN) is passed to the exit in the
SSLPeerNamePtr field of the MQCD, and the DN of the issuer of that certificate is passed to the exit in
the SSLRemCertIssNamePtr field of the MQCXP.

For more information about the MCAUserIdentifier field, the channel definition structure, MQCD, and
the channel exit parameter structure, MQCXP, see Channel-exit calls and data structures. For more
information about the user ID that flows from a client system on an MQI channel, see Access control.

Note: Security exit applications constructed prior to the release of IBM WebSphere MQ 7.1 might require
updating. For more information see Channel security exit programs.

IBM MQ object authority manager user authentication
On IBM MQ MQI client connections, security exits can be used to modify or create the MQCSP structure
used in object authority manager (OAM) user authentication. This is described in Channel-exit programs
for messaging channels

Securing IBM MQ 419

Implementing access control in message exits
You might need to use a message exit to substitute one user ID with another.

Consider a client application that sends a message to a server application. The server application can
extract the user ID from the UserIdentifier field in the message descriptor and, provided it has alternate
user authority, ask the queue manager to use this user ID for authority checks when it accesses IBM MQ
resources on behalf of the client.

If the PUTAUT parameter is set to CTX (or ALTMCA on z/OS) in the channel definition, the user ID in
the UserIdentifier field of each incoming message is used for authority checks when the MCA opens the
destination queue.

In certain circumstances, when a report message is generated, it is put using the authority of the user
ID in the UserIdentifier field of the message causing the report. In particular, confirm-on-delivery (COD)
reports and expiration reports are always put with this authority.

Because of these situations, it might be necessary to substitute one user ID for another in the
UserIdentifier field as a message enters a new security domain. This can be done by a message exit
at the receiving end of the channel. Alternatively, you can ensure that the user ID in the UserIdentifier field
of an incoming message is defined in the new security domain.

If an incoming message contains a digital certificate for the user of the application that sent the message,
a message exit can validate the certificate and map the Distinguished Name in the certificate to a user ID
that is valid on the receiving system. It can then set the UserIdentifier field in the message descriptor to
this user ID.

If it is necessary for a message exit to change the value of the UserIdentifier field in an incoming message,
it might be appropriate for the message exit to authenticate the sender of the message at the same time.
For more details, see “Identity mapping in message exits” on page 340.

Implementing access control in the API exit and API-crossing exit
An API or API-crossing exit can provide access controls to supplement those provided by IBM MQ.
In particular, the exit can provide access control at the message level. The exit can ensure that an
application puts on a queue, or gets from a queue, only those messages that satisfy certain criteria.

Consider the following examples:

• A message contains information about an order. When an application attempts to put a message on
a queue, an API or API-crossing exit can check that the total value of the order is less than some
prescribed limit.

• Messages arrive on a destination queue from remote queue managers. When an application attempts to
get a message from the queue, an API or API-crossing exit can check that the sender of the message is
authorized to send a message to the queue.

Streaming queues security
The streaming queues feature allows an administrator to configure a local (or model) queue with a
secondary queue, where duplicate messages are placed, whenever a message is put to the original queue.
There are two aspects to consider regarding queue streaming authorities.

Authority to configure a queue for streaming duplicate messages
If you want to enable message streaming of duplicate messages from one queue to a secondary queue,
you must have permission to do so. Permission to configure the STREAMQ attribute of a queue requires
that you have the following authorities:

1. CHG authority of the queue they are altering the STREAMQ attribute for
2. CHG authority of the queue you want duplication messages to be put to

420 Securing IBM MQ

The combination of these two authority checks at configuration time ensures that a user, who only has
CHG authority on the original queue, cannot cause messages to be put to another queue on which they
have no permissions.

Authority to open the queue or queues and put messages
When an application opens a queue that has been configured with a secondary queue, through its
STREAMQ attribute, an authority check is made that the application user has PUT authority on the original
queue.

Note: No additional authority check is made for the application user on the secondary queue, which is
similar to the authority model used for alias queues.

Applications consuming messages from either the original or the secondary queue require GET or
BROWSE authority, only on the queue they are consuming from.

No additional authority checks are made at put or get time.

Example
The following example shows the correct authorities being set to allow user admin to configure an
original queue, INQUIRIES.QUEUE, to stream its duplicate messages to local queue ANALYTICS.QUEUE,
but preventing admin from duplicating messages to PURCHASES.QUEUE:

SET AUTHREC PROFILE(INQUIRIES.QUEUE) PRINCIPAL('admin') AUTHADD(CHG)
SET AUTHREC PROFILE(ANALYTICS.QUEUE) PRINCIPAL('admin') AUTHADD(CHG)
SET AUTHREC PROFILE(PURCHASES.QUEUE) PRINCIPAL('admin') AUTHRMV(CHG)

User admin is then able to issue the following command:

ALTER QLOCAL(INQUIRIES.QUEUE) STREAMQ(ANALYTICS.QUEUE)

but if the same user issues the following command:

ALTER QLOCAL(INQUIRIES.QUEUE) STREAMQ(PURCHASES.QUEUE)

to configure INQUIRIES.QUEUE to put duplicate messages to PURCHASES.QUEUE, they receive the
following error:
AMQ8135E Not Authorized

With INQUIRIES.QUEUE configured to duplicate messages to ANALYTICS.QUEUE, the following authority
records are used to allow an application running as user appuser to put messages to INQUIRIES.QUEUE,
and duplicate messages to ANALYTICS.QUEUE:

SET AUTHREC PROFILE(INQUIRIES.QUEUE) PRINCIPAL('appuser') AUTHADD(PUT)

Note: appuser does not require an authority record on ANALYTICS.QUEUE. Duplicate messages are put
to the queue by the queue manager.

Related concepts
Streaming queues

Securing IBM MQ 421

Streaming queues security on z/OS
The streaming queues feature allows an administrator to configure a local (or model) queue with a
secondary queue, where duplicate messages are placed, whenever a message is put to the original queue.
There are two aspects to consider regarding queue streaming authorities.

Authority to configure a queue for streaming duplicate messages
If you want to enable message streaming of duplicate messages from one queue to a secondary queue,
you must have permission to do so. Permission to configure the STREAMQ attribute of a queue requires
that you have the following profiles setup:

1. ALTER access level to MQADMIN or MXADMIN for the queue they are altering the STREAMQ attribute
for

2. ALTER access level to MQADMIN or MXADMIN for the queue you want to stream messages to

The combination of these security checks at configuration time ensures that a user, who only has ALTER
access on the original queue, cannot cause messages to be put to another queue on which they have no
permissions.

Authority to open the queue or queues and put messages
When an application opens a queue that has been configured with a secondary queue, through its
STREAMQ attribute, an authority check is made that the application user has UPDATE authority on the
original queue.

Note: No additional authority check is made for the application user on the secondary queue, which is
similar to the authority model used for alias queues.

Applications consuming messages from either the original or the secondary queue require UPDATE or
READ authority, only on the queue they are consuming from.

No additional authority checks are made at put or get time.

Example
The following example shows the correct profiles being set to allow user ADMIN to configure an original
queue, INQUIRIES.QUEUE, to stream messages to local queue ANALYTICS.QUEUE using RACF:

RDEFINE MQCMDS <QMGR>.ALTER.QLOCAL UACC(NONE) OWNER(<OWNER>)
PERMIT <QMGR>.ALTER.QLOCAL CLASS(MQCMDS) ID(ADMIN) ACCESS(ALTER)

RDEFINE MQADMIN <QMGR>.QUEUE.INQUIRIES.QUEUE UACC(NONE) OWNER(<OWNER>)
PERMIT <QMGR>.QUEUE.INQUIRIES.QUEUE CLASS(MQADMIN) ID(ADMIN) ACCESS(ALTER)

RDEFINE MQADMIN <QMGR>.QUEUE.ANALYTICS.QUEUE UACC(NONE) OWNER(<OWNER>)
PERMIT <QMGR>.QUEUE.ANALYTICS.QUEUE CLASS(MQADMIN) ID(ADMIN) ACCESS(ALTER)

User ADMIN is then able to issue the following command:

ALTER QLOCAL(INQUIRIES.QUEUE) STREAMQ(ANALYTICS.QUEUE)

but if the same user issues the following command without setting up the correct security profiles:

ALTER QLOCAL(INQUIRIES.QUEUE) STREAMQ(PURCHASES.QUEUE)

to configure INQUIRIES.QUEUE to put duplicate messages to PURCHASES.QUEUE, they receive the
following error:
CSQM166I <QMGR> CSQMAQLC QLOCAL(INQUIRIES.QUEUE) NOT AUTHORIZED

Related concepts
Streaming queues

422 Securing IBM MQ

LDAP authorization
You can use LDAP authorization to remove the need for a local user ID.

Availability of LDAP authorization on supported platforms
LDAP authorization is available on Multiplatforms:

Attention:

From IBM MQ 9.0 general availability, this functionality is available on all queue managers,
whether new or migrated from an earlier release.

Overview of LDAP authorization
With LDAP authorization, commands that handle authorization configuration, such as setmqaut
and DISPLAY AUTHREC, can process Distinguished Names. Previously, users were authenticated by
comparing their credentials with the maximum available characters that exist for users and groups on the
local operating system.

Attention: If you have run the DEFINE AUTHINFO command, you must restart the queue
manager. If you do not restart the queue manager, the setmqaut command does not return the
correct result.

If a user provides a user ID, rather than a Distinguished Name, the user ID is processed. For example,
when there is an incoming message on a channel with PUTAUT(CTX), the characters in the user ID are
mapped to an LDAP Distinguished Name, and the appropriate authorization checks are made.

Other commands such as DISPLAY CONN, continue to work with and show the actual value for the user
ID, even though that user ID might not actually exist on the local OS.

When LDAP authorization is in place, the queue manager always uses the
user model of security on AIX and Linux platforms, regardless of the SecurityPolicy attribute in the
qm.ini file. So setting permissions for an individual user affects only that user, and not anyone else who
belongs to any of that user's groups.

As with the OS model, a user still has the combined authority that has been assigned to both the
individual and to all of the groups (if any) to which the user belongs.

For example, assume that the following records have been defined in an LDAP repository.

• In the inetOrgPerson class:

dn="cn=JohnDoe, ou=users, o=yourcompany, c=yourcountry"
 email=JohnDoe1@yourcompany.com [longer than 12 characters]
 shortu=jodoe
 Phone=1234567

• In the groupOfNames class:

dn="cn=Application Group A, ou=groups, o=yourcompany, c=yourcountry"
 longname=ApplicationGroupA [longer than 12 characters]
 members="cn=JaneDoe, ou=users, o=yourcompany, c=yourcountry",
 "cn=JohnDoe, ou=users, o=yourcompany, c=yourcountry"

For authentication purposes, a queue manager using this LDAP server must have been defined so that its
CONNAUTH value points at an AUTHINFO object of type IDPWLDAP, and whose relevant name-resolution
attributes are probably set as follows:

USRFIELD(email) SHORTUSR(shortu)
BASEDNU(ou=users,o=yourcompany,c=yourcountry) CLASSUSR(inetOrgPerson)

Securing IBM MQ 423

Given this configuration for authentication, an application can complete the CSPUserID field, used within
the MQCNO call, with either of the following sets of values:

" cn=JohnDoe ", " JohnDoe1@yourcompany.com ", " email=JohnDoe1@yourcompany.com "

or

" cn=JohnDoe, ou=users, o=ibm, c=uk ", " shortu=jodoe "

In either case, the system can use the supplied values to authenticate the OS context of " jodoe".

Setting authorizations
How you use the short name or USRFIELD to set authorizations.

The approach of working with multiple formats, described in “LDAP authorization” on page 423, continues
into the authorization commands, with a further extension that either the shortname or the USRFIELD
can be used in an unadorned fashion.

The character string specifies a particular attribute in the LDAP record when naming users (principals) for
authorization.

Important: The character string must not contain the = character, because this character cannot be used
in an operating system user ID.

If you pass a principal name to the OAM for authorization that is potentially a shortname, the character
string must fit into 12 characters. The mapping algorithm first tries to resolve it to a DN using the
SHORTUSR attribute in its LDAP query.

If that fails with an UNKNOWN_ENTITY error, or if the given string cannot possibly be a shortname, a
further attempt is made using the USRFIELD attribute to construct the LDAP query.

Attention: If you have run the DEFINE AUTHINFO command, you must restart the queue manager.
If you do not restart the queue manager, the setmqaut command does not return the correct
result.

For processing user authorizations, the following setmqaut command settings are all equivalent.

Table 75. User authorization settings

Command Note

setmqaut -m QM -t qmgr -p jodoe
+connect

This is a flat, unqualified name, resolved through
SHORTUSR.

setmqaut -m QM -t qmgr
-pJohnDoe1@yourcompany.com +connect

Also a flat, unqualified name, resolving via
USRFIELD to the same entity.

setmqaut -m QM -t qmgr
-p email=JohnDoe1@yourcompany.com
+connect

Using a named attribute.

setmqaut -m QM -t qmgr -p
"phone=1234567" +connect

Using another named attribute which does not
have to be any of those configured on the
AUTHINFO object.

You can use the SET AUTHREC MQSC command as an alternative to the setmqaut command:

SET AUTHREC OBJTYPE(QMGR) PRINCIPAL('JohnDoe1@yourcompany.com') AUTHADD(connect)

424 Securing IBM MQ

or the Set Authority Record (MQCMD_SET_AUTH_REC) PCF command with the
MQCACF_PRINCIPAL_ENTITY_NAMES element containing the string:

 "cn=JohnDoe,ou=users,o=yourcompany,c=yourcountry"

When processing groups, there is no ambiguity about shortname processing, as there is no requirement
to fit any form of a group name into 12-characters. Therefore, there is no equivalent of the SHORTUSR
attribute for groups.

That means that the syntax examples described in Table 76 on page 425 are valid, assuming that you
have configured the AUTHINFO object with the extended attributes, and set to:

GRPFIELD(longname)
BASEDNG(ou=groups,o=yourcompany,c=yourcountry) CLASSGRP(groupOfNames)

Table 76. Group authorization settings

Command Note

setmqaut -m QM -t qmgr -g
ApplicationGroupA +connect

Using GRPFIELD to resolve

setmqaut -m QM -t qmgr -g
longname=ApplicationGroupA +connect

Naming a single attribute

setmqaut -m QM -t qmgr -g
"cn=Application Group
A,ou=groups,o=yourcompany,c=yourcountr
y" +connect

Using the full DN

You can use the SET AUTHREC MQSC command as an alternative to the preceding setmqaut command:

SET AUTHREC OBJTYPE(QMGR) GROUP('ApplicationGroupA')
 AUTHADD(connect)

or the Set Authority Record (MQCMD_SET_AUTH_REC) PCF command with the
MQCACF_GROUP_ENTITY_NAMES element containing the string:

 "ApplicationGroupA"

Important:

Whichever format you use to refer to a name, whether for user or group, it must be possible to derive a
unique DN.

So, for example, you must not have two distinct records that both have "shortu=jodoe".

If a single unique DN cannot be determined, the OAM returns MQRC_UNKNOWN_ENTITY.

Displaying authorizations
Various methods of displaying authorization of users or groups.

dspmqaut command
The simplest method for displaying the authorizations available for a user or group is to use the dspmqaut
command.

You can use a query on any of the syntax variations for identifying a user or group. Note that the command
output repeats the identity in the format given on the command line. The output does not report on the
full resolved DN.

Securing IBM MQ 425

For example:

dspmqaut -m QM -t qmgr -p johndoe
Entity johndoe has the following authorizations for object QM:
 connect

or

dspmqaut -m QM -t qmgr -p email=JohnDoe1@yourcompany.com
Entity email=JohnDoe1@yourcompany.com has the following authorizations for object QM:
 connect

dmpmqaut and dmpmqcfg commands
The dmpmqaut command, and its MQSC or PCF equivalents, can specify the principal or group in any
of the supported formats, like the setmqaut tables described in “Setting authorizations” on page 424.
However, unlike dspmqaut, the dmpmqaut command always reports the full DN.

dmpmqaut -m QM -t qmgr -p jodoe

profile: self
object type:qmgr
entity:cn=JohnDoe, ou=users, o=yourcompany, c=yourcountry
entity type: principal
authority: connect

Similarly, the dmpmqcfg command, which does not have any filtering on the selected records, always
shows the full DN in a format that can be replayed later.

dmpmqcfg -m QM -x authrec

SET AUTHREC PROFILE(SELF) +
 PRINCIPAL('cn=JohnDoe, ou=users, o=yourcompany, c=yourcountry') +
 OBJTYPE(QMGR)
 AUTHADD(CONNECT)

Other considerations when using LDAP authorization
A brief description of changes to the Message Queue Interface (MQI) and other MQSC and PCF commands
that you need to be aware of when using LDAP authorization from IBM MQ 9.0.0.

ADOPTCTX
There is no requirement for applications to provide authentication information, or for the ADOPTCTX
attribute to be set to YES.

If an application does not explicitly authenticate, or if ADOPTCTX is set to NO for the active CONNAUTH
object, the identity context associated with the application is taken from the operating system user ID.

When authorizations need to be applied, that context is mapped to an LDAP identity using the same rules
as for the setmqaut commands.

Input parameters to MQI calls
MQOPEN, MQPUT1, and MQSUB have structures that allow an alternative user ID to be specified.

If those fields are used, the 12-character user ID is mapped to a DN using the same rules as on the
setmqaut, dmpmqaut, and dspmqaut commands.

MQPUT and MQPUT1 also allow suitably authorized programs to set the MQMD UserIdentifier field. The
value of this field is not policed during the PUT process, and can be set to any value.

426 Securing IBM MQ

As usual, however, the UserIdentifier value can be used for authorization at later stages of the
message processing, for example when PUTAUT(CTX) is defined on a receiving channel.

At that point, the identifier will be checked for authorization using the configuration of that receiving
queue manager - which can be LDAP or OS-based.

Output parameters to MQI calls
Wherever a user ID is provided to a program in an MQI structure, it is the 12-character short name version
associated with the connection.

For example, the MQAXC.UserId value for API Exits is the short name returned from the LDAP mapping.

Other administrative MQSC and PCF commands
Commands that show user information in object status such as DISPLAY CONN USERID return the
12-character short name associated with the context. The full DN is not shown.

Commands that allow assertion of identities, such as the CHLAUTH mapping rules or MCAUSER values
for channels, can take values up to the maximum length defined for those attributes (currently 64
characters).

There is no change to the syntax. When authorization is required for that identity, it is internally mapped to
a DN using the same rules as for the setmqaut, dmpmqaut, and dspmqaut commands.

This means that the MCAUSER value on a channel definition might not display as the same string as
DISPLAY CHSTATUS but they do refer to the same identity.

For example:

DEFINE CHL(SV1) CHLTYPE(SVRCONN) MCAUSER('cn=JohnDoe')
DEFINE CHL(SV2) CHLTYPE(SVRCONN) MCAUSER('jodoe')
DEFINE CHL(SV3) CHLTYPE(SVRCONN) MCAUSER('JohnDoe1@yourcompany.com')

Then DISPLAY CHSTATUS(*) ALL shows the SHORTUSR value, MCAUSER(jodoe) for all connections.

Switching between OS and LDAP authorization models
How you switch between the different authorization methods on different platforms.

The CONNAUTH attribute of the queue manager points at an AUTHINFO object. When the object is of type
IDPWLDAP, an LDAP repository is used for authentication.

You can now apply an authorization method to that same object, which allows you to continue with
OS-based authorization, or to work with LDAP authorization

IBM i, AIX and Linux

The queue manager can be switched at any time between OS and LDAP models. You can change the
configuration and make that configuration active by using the REFRESH SECURITY TYPE (CONNAUTH)
command.

For example, if this object has already been configured with the connection information for
authentication:

ALTER AUTHINFO(MYLDAP) AUTHTYPE(IDPWLDAP) +
 AUTHORMD(SEARCHGRP) +
 BASEDNG('ou=groups,o=ibm,c=uk') +
 ˂other attributes>
ALTER QMGR CONNAUTH(MYLDAP)
REFRESH SECURITY

Securing IBM MQ 427

Windows

If an authority configuration change involves switching between OS and LDAP models, the queue manager
must be restarted for the change to take effect. Otherwise, you can make the change active by using the
REFRESH SECURITY TYPE (CONNAUTH) command.

Processing rules
When switching from OS to LDAP authorization, any existing OS authority rules that have been set,
become inactive and invisible.

Commands such as dmpmqaut do not display those OS rules. Similarly, when switching back from LDAP to
OS, any defined LDAP authorizations become inactive and invisible, restoring the original OS rules.

If you want to back up the definitions of a queue manager for any reason, using the dmpmqcfg command,
then that backup will contain only the rules that are defined for the authorization method in effect at the
time of the back up.

LDAP administration
An overview of how each platform administers LDAP.

When using LDAP authorization, membership of the mqm group (or equivalent) in the operating system is
not that important. Being a member of that group only controls whether certain command-line commands
can be processed.

In particular, you must be in that group to issue the strmqm and endmqm commands.

Once the queue manager is running, there are now limits on the fully-privileged account. Apart from
the user ID of the person who issues the strmqm command, other users belonging to the OS mqm (or
equivalent) group do not get special privileges.

Authorizations of other users are based on which LDAP groups they belong to. An unqualified use of the
mqm group name in commands such as setmqaut is not allowed to map to any LDAP group.

AIX and Linux

Once the queue manager is running, the only automatically fully-privileged account is the real user who
started the queue manager.

The mqm ID still exists and is used as the owner of OS resources, such as files, because mqm is the
effective ID under which the queue manager is running. However, the mqm user will not automatically be
able to do administrative tasks controlled by the OAM.

Windows

On Windows, the automatically fully-privileged accounts are the OS user that started the queue manager,
and also the user running the core queue manager processes, such as MUSR_MQADMIN if the queue
manager was started as a Windows service.

When running in LDAP authorization mode, Windows behaves very similarly to the AIX and Linux
platforms. It deals with 12 character short names, and full DNs.

IBM i

428 Securing IBM MQ

On IBM i, the automatically-privileged accounts are the one that starts the queue manager and the QMQM
ID.

You need both IDs, because the user ID that starts the queue manager is required only to start the
system. Once running, the queue manager processes have QMQM authority only.

Sample script to provide MQADMIN privileges

As it is useful to have a group able to do full administration on a queue manager, a sample script is
shipped on AIX and Linux platforms as:

MQ_INSTALLATION_PATH/samp/bin/amqauthg.sh

This sample takes two parameters:

• A queue manager name
• An LDAP group name

The sample processes setmqaut commands, granting full authority for all objects. This is the same script
that is generated by the IBM MQ Explorer OAM Wizard for administrative roles. For example, the code
starts:

setmqaut -t q -m qmgr -n "**" +alladm -g
 groupname

Confidentiality of messages
Encrypting messages ensures that the contents of messages remains confidential. There are various
methods of encrypting messages in IBM MQ depending on your needs.

If you need application-level, end-to-end data protection for your point to point messaging infrastructure,
you can use Advanced Message Security to encrypt the messages, or write your own API exit or API-
crossing exit.

The most secure solution is to provide end-to-end encryption, by encrypting a message from the point
it is put by an application, to the point where it is got by the consuming application. This can be done
using “Planning for Advanced Message Security” on page 108 (AMS) , or by writing your own API exit
or API-crossing exit; see “Implementing confidentiality in user exit programs” on page 475 for more
information.

If you need to encrypt messages only while they are being transported over a network, you can use TLS;
see “TLS security protocols in IBM MQ ” on page 24 for more information, or you can write your own
security exit, message exit, or send and receive exit programs to perform encryption.

If you need to encrypt messages at rest on a queue manager, you can use z/OS data set
encryption on that queue manager; see “Confidentiality for data at rest on IBM MQ for z/OS with data set
encryption” on page 476 for more information.

Related tasks
Connecting two queue managers using TLS
Connecting a client to a queue manager securely

Enabling CipherSpecs
Enable a CipherSpec by using the SSLCIPH parameter in either the DEFINE CHANNEL or ALTER
CHANNEL MQSC command.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.

Securing IBM MQ 429

Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

Some of the CipherSpecs that you can use with IBM MQ are FIPS compliant. Some of the FIPS compliant
CipherSpecs are also Suite B compliant although others, such as TLS_RSA_WITH_AES_256_CBC_SHA,
are not.

All Suite B compliant CipherSpecs are also FIPS compliant. All Suite B compliant CipherSpecs fall into
two groups: 128 bit (for example, ECDHE_ECDSA_AES_128_GCM_SHA256) and 192 bit (for example,
ECDHE_ECDSA_AES_256_GCM_SHA384),

The following diagram illustrates the relationship between these subsets:

From IBM MQ 9.2.0, the product supports the TLS 1.3 security protocol on all platforms.

The CipherSpecs that you can use for each of these platforms are listed in Table 77 on page 431. For
information about using these CipherSpecs, see “Using TLS 1.3 in IBM MQ” on page 433 and “IBM MQ
MQI client and TLS 1.3” on page 434.

For ease of configuration and future migration, IBM MQ also provides a set of alias CipherSpecs. Migrating
existing security configurations to use an alias CipherSpec means that you can adapt to cipher additions
and deprecations without needing to make further invasive configuration changes in the future. These
alias CipherSpecs are listed in the Alias CipherSpecs section in Table 77 on page 431. For more
information about migrating to use an alias CipherSpec, see Migrating existing security configurations
to use an alias CipherSpec.

You can configure the default CipherSpecs as described in “Default CipherSpec values enabled in IBM
MQ” on page 434. You can also provide an alternative set of CipherSpecs that are enabled for use with
channels on:

• IBM MQ for Multiplatforms, as described in “Providing a custom list of ordered and
enabled CipherSpecs on IBM MQ for Multiplatforms” on page 443.

• IBM MQ for z/OS, as described in “Providing a custom list of ordered and enabled
CipherSpecs on IBM MQ for z/OS” on page 444.

Deprecated CipherSpecs that you can re-enable to use with IBM MQ if necessary are listed in
“Deprecated CipherSpecs” on page 444. For information about enabling the deprecated CipherSpecs, see
“Enabling deprecated CipherSpecs on IBM MQ for Multiplatforms” on page 447 or “Enabling deprecated
CipherSpecs on z/OS” on page 448.

CipherSpecs that you can use with IBM MQ TLS support
CipherSpecs that you can use with the IBM MQ queue manager automatically are listed in the following
table. When you request a personal certificate, you specify a key size for the public and private key
pair. The key size that is used during the TLS handshake is the size stored in the certificate unless it is
determined by the CipherSpec, as noted in the table.

430 Securing IBM MQ

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

Table 77. CipherSpecs you can use with IBM MQ TLS support

Platfor
m
support
“1” on
page 433

CipherSpec name Hex
code

Protoco
l used

MAC
algorithm

Encryptio
n
algorithm
(encryptio
n bits)

FIPS
“2” on
page
433

Suite
B

Alias CipherSpecs

All ANY_TLS13_OR_HIGHER “3” on page 433
“4” on page 433

N/A Negotia
ted

Negotiate
d

Negotiate
d

Nego
tiated

Nego
tiated

All ANY_TLS13 “4” on page 433 “5” on page 433 N/A TLS 1.3 Negotiate
d

Negotiate
d

Nego
tiated

Nego
tiated

All ANY_TLS12_OR_HIGHER “4” on page 433
“6” on page 433

N/A Negotia
ted

Negotiate
d

Negotiate
d

Nego
tiated

Nego
tiated

All
ANY_TLS12 “7” on page 433 N/A TLS 1.2 Negotiate

d
Negotiate
d

Nego
tiated

Nego
tiated

All ANY “8” on page 433 N/A Negotia
ted

Negotiate
d

Negotiate
d

Nego
tiated

Nego
tiated

CipherSpecs for TLS 1.3

All TLS_AES_128_GCM_SHA256 1301 TLS 1.3 GCM AES-128
with GCM
(128)

Yes No

All TLS_AES_256_GCM_SHA384 1302 TLS 1.3 GCM AES-256
with GCM
(256)

Yes No

All TLS_CHACHA20_POLY1305_SHA256 1303 TLS 1.3 POLY1305 CHACHA2
0 (256)

No No

TLS_AES_128_CCM_SHA256 1304 TLS 1.3 CBC-MAC AES-128
with CTR
(128)

Yes No

TLS_AES_128_CCM_8_SHA256 “10” on
page 433

1305 TLS 1.3 CBC-MAC AES-128
with CTR
(128)

Yes No

CipherSpecs for TLS 1.2

All TLS_RSA_WITH_AES_128_CBC_SHA25
6“9” on page 433

003C TLS 1.2 SHA-256 AES (128) Yes No

All TLS_RSA_WITH_AES_256_CBC_SHA25
6 “9” on page 433 “11” on page 433

003D TLS 1.2 SHA-256 AES (256) Yes No

All TLS_RSA_WITH_AES_128_GCM_SHA25
6 “9” on page 433 “12” on page 433

009C TLS 1.2 SHA-256
and AEAD
GCM

AES (128) Yes No

All TLS_RSA_WITH_AES_256_GCM_SHA38
4“9” on page 433 “11” on page 433 “12” on page
433

009D TLS 1.2 SHA-384
and AEAD
GCM

AES (256) Yes No

All ECDHE_ECDSA_AES_128_CBC_SHA256
“9” on page 433

C023 TLS 1.2 SHA-256 AES (128) Yes No

Securing IBM MQ 431

Table 77. CipherSpecs you can use with IBM MQ TLS support (continued)

Platfor
m
support
“1” on
page 433

CipherSpec name Hex
code

Protoco
l used

MAC
algorithm

Encryptio
n
algorithm
(encryptio
n bits)

FIPS
“2” on
page
433

Suite
B

All ECDHE_ECDSA_AES_256_CBC_SHA384
“9” on page 433 “11” on page 433

C024 TLS 1.2 SHA-384 AES (256) Yes No

All ECDHE_RSA_AES_128_CBC_SHA256 “9”
on page 433

C027 TLS 1.2 SHA-256 AES (128) Yes No

All ECDHE_RSA_AES_256_CBC_SHA384 “9”
on page 433 “11” on page 433

C028 TLS 1.2 SHA-384 AES (256) Yes No

ECDHE_ECDSA_AES_128_GCM_SHA256
“11” on page 433 “12” on page 433

C02B TLS 1.2 SHA-256
and AEAD
GCM

AES
(SHA384)

Yes 128
bit

ECDHE_ECDSA_AES_256_GCM_SHA384
“11” on page 433 “12” on page 433

C02C TLS 1.2 SHA-384
and AEAD
GCM

AES
(SHA384)

Yes 192
bit

All ECDHE_RSA_AES_128_GCM_SHA256
“12” on page 433

C02F TLS 1.2 SHA-256
and AEAD
GCM

AES (128) Yes No

All ECDHE_RSA_AES_256_GCM_SHA384
“11” on page 433 “12” on page 433

C030 TLS 1.2 AEAD
AES-128
GCM

AES
(SHA384)

Yes No

432 Securing IBM MQ

Table 77. CipherSpecs you can use with IBM MQ TLS support (continued)

Platfor
m
support
“1” on
page 433

CipherSpec name Hex
code

Protoco
l used

MAC
algorithm

Encryptio
n
algorithm
(encryptio
n bits)

FIPS
“2” on
page
433

Suite
B

Notes:

1. For a list of platforms covered by each platform icon, see Icons used in the product documentation.
2. Specifies whether the CipherSpec is FIPS-certified on a FIPS-certified platform. See Federal Information

Processing Standards (FIPS) for an explanation of FIPS.

3. The ANY_TLS13_OR_HIGHER alias CipherSpec negotiates the highest level of security that
the remote end will allow but will only connect using a TLS 1.3 or higher protocol.

4. To use TLS 1.3, or the ANY CipherSpec, on IBM i the underlying operating system version
must support TLS 1.3. See System TLS support for TLSv1.3 for more information.

5. The ANY_TLS13 alias CipherSpec represents a subset of acceptable CipherSpecs that use
the TLS 1.3 protocol, as listed in this table for each platform.

6. The ANY_TLS12_OR_HIGHER alias CipherSpec negotiates the highest level of security that
the remote end will allow but will only connect using a TLS 1.2 or higher protocol.

7. The ANY_TLS12 CipherSpec represents a subset of acceptable CipherSpecs that use the TLS 1.2 protocol,
as listed in this table for each platform.

8. The ANY alias CipherSpec negotiates the highest level of security that the remote end will
allow.

9. These CipherSpecs are not enabled on IBM i 7.4 systems that have System Value
QSSLCSLCTL set to *OPSSYS.

10. These CipherSpecs use an 8-octet Integrity Check Value (ICV) instead of a 16-octet ICV.
11. This CipherSpec cannot be used to secure a connection from the IBM MQ Explorer to a queue manager

unless the appropriate unrestricted policy files are applied to the JRE used by the Explorer.

12. Following a recommendation by GSKit, TLS 1.2 GCM CipherSpecs have a restriction which
means that after 2ˆ24.5 TLS records are sent, using the same session key, the connection is terminated
with message AMQ9288E. This GCM restriction is active, regardless of the FIPS mode being used.

To prevent this error from happening, avoid using TLS 1.2 GCM Ciphers, enable secret
key reset, or start your IBM MQ queue manager or client with the environment variable
GSK_ENFORCE_GCM_RESTRICTION=GSK_FALSE set. For GSKit libraries, you must set this environment
variable on both sides of the connection, and apply it to both client to queue manager connections and
queue manager to queue manager connections. Note that this setting affects unmanaged .NET clients, but
not Java or managed .NET clients. For more information, see AES-GCM cipher restriction.

This restriction does not apply to IBM MQ for z/OS.

Using TLS 1.3 in IBM MQ
From IBM MQ 9.2.0, the product supports TLS 1.3 on all platforms. Before IBM MQ 9.2.0, TLS 1.3 support
was available on AIX, Linux, and Windows for Continuous Delivery from IBM MQ 9.1.4.

Queue managers that are created at IBM MQ 9.2.0 or later support TLS 1.3 by default. Queue managers
migrated from earlier versions of IBM MQ need to have TLS 1.3 enabled. You can enable TLS 1.3 on
migrated queue managers by setting the AllowTLSV13=TRUE property:

Securing IBM MQ 433

https://www.ibm.com/support/pages/system-tls-support-transport-layer-security-version-13-tlsv13

• For IBM MQ for Multiplatforms queue managers, edit the qm.ini file and add the
AllowTLSV13=TRUE property under the SSL stanza (link to

SSL:
 AllowTLSV13=TRUE

• For IBM MQ for z/OS queue managers, edit the QMINI data set specified in the queue
manager startup JCL and add the AllowTLSV13=TRUE property under the TransportSecurity stanza

TransportSecurity:
 AllowTLSV13=TRUE

When TLS 1.3 is enabled, and in accordance with the TLS 1.3 specification, any attempt to communicate
with a weak CipherSpec, regardless of whether they are enabled in IBM MQ or not, is rejected. The
CipherSpecs that TLS 1.3 considers weak are CipherSpecs that meet one or more of the following criteria:

• Uses the SSL 3.0 protocol.
• Uses RC4 or RC2 as the Encryption algorithm.
• Has a encryption key size (bit) equal to or less than 112.

These restrictions are flagged with Note [3] in Table 1 of Deprecated CipherSpecs.

If you need to continue using such CipherSpecs, then you must disable TLS 1.3 mode:

• Edit the queue manager's qm.ini file and change the setting of the AllowTLSV13
property to:

SSL:
 AllowTLSV13=FALSE

• Edit the QMINI data set of the queue manager and change the setting of the
AllowTLSV13 property to:

TransportSecurity:
 AllowTLSV13=FALSE

IBM MQ MQI client and TLS 1.3

When using the IBM MQ MQI client, the value of AllowTLSV13 is inferred unless it is explicitly specified
in the SSL stanza of the mqclient.ini file that is being used by the application.

• If any weak CipherSpecs are enabled, AllowTLSV13 is set to FALSE and no TLS 1.3 CipherSpecs can
be used.

• Otherwise, AllowTLSV13 is set to TRUE and the new TLS 1.3 CipherSpecs and alias CipherSpecs can
be used.

Default CipherSpec values enabled in IBM MQ
In default configuration for a new IBM MQ queue manager, IBM MQ provides support for the TLS 1.2 and
TLS 1.3 protocols and various cryptographic algorithms using CipherSpecs. For compatibility purposes,
IBM MQ can also be configured to use SSL 3.0 and TLS 1.0 protocols and a number of cryptographic
algorithms that are known to be weak or susceptible to security vulnerabilities. The list of CipherSpecs
that are enabled in default configuration may change by applying maintenance.

It is possible to configure IBM MQ to restrict or permit the use of CipherSpecs using the following
controls:

• Only permit FIPS 140-2 compliant CipherSpecs using SSLFIPS.

434 Securing IBM MQ

https://tools.ietf.org/html/rfc8446

• Only permit NSA Suite B compliant CipherSpecs using SUITEB.

• Permit a custom list of CipherSpecs using AllowedCipherSpecs.

• Permit a custom list of CipherSpecs using the AMQ_ALLOWED_CIPHERS environment
variable.

• Permit the use of deprecated CipherSpecs using AllowWeakCipher or the
AMQ_SSL_WEAK_CIPHER_ENABLE environment variable.

• Permit the use of deprecated CipherSpecs using DD statements in the CHINIT JCL.

Note: If you specify a custom list of CipherSpecs using AllowedCipherSpecs or
AMQ_ALLOWED_CIPHERS this overrides enablement of any deprecated CipherSpecs. Note that when
using either NSA Suite B or FIPS 140-2 restrictions in combination with a custom CipherSpec list, you
must ensure the custom list only contains CipherSpecs permitted by the Suite B or FIPS 140-2 settings.

Related concepts
“Digital certificates and CipherSpec compatibility in IBM MQ” on page 46
This topic provides information on how to choose appropriate CipherSpecs and digital certificates for your
security policy, by outlining the relationship between CipherSpecs and digital certificates in IBM MQ.
“CipherSpecs and CipherSuites” on page 22
Cryptographic security protocols must agree on the algorithms used by a secure connection. CipherSpecs
and CipherSuites define specific combinations of algorithms.
“Configuring IBM MQ for Suite B” on page 44
IBM MQ can be configured to operate in compliance with the NSA Suite B standard on AIX, Linux, and
Windows platforms.
“Federal Information Processing Standards (FIPS)” on page 34
This topic introduces the Federal Information Processing Standards (FIPS) Cryptomodule Validation
Program of the US National Institute of Standards and Technology and the cryptographic functions which
can be used on TLS channels.
Related tasks
Migrating existing security configurations to use an alias CipherSpe
Related reference
DEFINE CHANNEL
ALTER CHANNEL
Change, Copy, and Create Channel

AES-GCM cipher restriction
A guide to the restrictions that are imposed on AES-GCM ciphers when used for TLS Cryptography. These
restrictions are imposed by the IETF and NIST organizations and require that the same session key must
not be used to securely transfer more than 224.5 TLS records when using AES-GCM ciphers.

For more information about these restrictions, see RFC 9325 Section 4.4 Limits on Key Usage and RFC
8446 section 5.5.

IBM MQ does not implement cryptographic functionality directly. Instead, several different cryptographic
libraries are used to provide TLS and Advanced Message Security functionality. On Windows, Linux, and
AIX operating systems, the cryptographic library that IBM MQ uses is GSKit. For applications, the C and
unmanaged .NET libraries use GSKit for cryptographic functionality. The implementation of the AES-GCM
encryption algorithms by GSKit includes the restrictions that are specified by the standards group. Also,
these restrictions are enabled by default. As such, IBM MQ TLS communication, when using AES-GCM
ciphers, terminates if more than 224.5 TLS records are transmitted using the same session key.

Note: This restriction is not present on IBM i, IBM Z or IBM MQ for HPE NonStop platforms or Java/JMS,
managed .NET applications because different cryptographic libraries are used, and these libraries have
not implemented the same restriction.

Securing IBM MQ 435

https://www.rfc-editor.org/rfc/rfc9325#name-limits-on-key-usage
https://datatracker.ietf.org/doc/html/rfc8446#section-5.5
https://datatracker.ietf.org/doc/html/rfc8446#section-5.5

If an IBM MQ channel remains running for long enough that more than 224.5 TLS records are transmitted
using the same session key, the underlying cryptographic library terminates the connection. This
causes the channel to terminate and an AMQ9288E error message is generated. Applications that have
their communication terminated in this way receive an MQRC_CONNECTION_BROKEN return code from
whichever IBM MQ operation was being performed.

The termination of the connection can be performed at either end of the communication, but only on ends
that are using GSKit for cryptographic functionality.

Advice for mitigating the restriction
Some options for how to prevent or handle communications that are terminated due to this restriction are
as follows:
Use reconnectable clients

Applications can be configured to automatically attempt a reconnection, should a connection fail.
This includes connections that are terminated due to the GCM restriction. When configured for
reconnection, the client application is restored automatically at any point of failure and any handles to
open objects are restored. This is done without returning to the application code.

For more information, see Automatic client reconnection.

Set a secret key reset value
IBM MQ can be configured to request a session key reset after a configurable number of bytes has
been transferred over a channel. Upon reaching this limit, IBM MQ requests that the cryptographic
layer performs a session key reset, resulting in a new session key.

It is important to note that the value specified is the number of bytes transferred, which relates to the
size of the messages being sent by IBM MQ. The restriction is on the number of TLS records that are
sent. There is not a direct mapping between message bytes and TLS records as a TLS record can send
a maximum number of bytes dependent on the Maximum Transmission Unit (MTU) of the network.
Any messages that are sent that are larger than this value are transmitted as multiple TLS records.
The MTU value varies between networks. Also, there are other reasons why a TLS record might need
to be sent outside of transmitting IBM MQ message data, for example IBM MQ Heartbeat checks, TLS
alerts, other IBM MQ protocol messages. These additional TLS records count toward the maximum
number of TLS records but are not counted in the IBM MQ secret key reset value.

Regularly resetting a session key using secret key reset can prevent the channel from being
terminated due to the AES-GCM restriction.

For more information, see Resetting SSL and TLS secret keys.

Use TLS 1.3 cipherspecs
While the AES-GCM restriction is still present when using the TLS 1.3 protocol, the TLS 1.3
protocol supports automatically performing a session key reset without the need to interrupt TLS
communications. This allows GSKit to manage resetting the session key when it is necessary without
IBM MQ needing to request a secret key reset.

For more information, see Using TLS 1.3 in IBM MQ in “Enabling CipherSpecs” on page 429.

Disable the AES-GCM restriction
If needed, the restriction can be disabled by setting the environment variable
GSK_ENFORCE_GCM_RESTRICTION=GSK_FALSE to disable the AES-GCM restriction. Doing so allows
any number of TLS records to be sent using the same session key. If choosing this mitigation,
the environment variable must be set on each end of communication that uses GSKit for secure
communications.

Warning: This option is not recommended as, after more than 224.5 TLS records have been
sent, it is possible for attackers to perform analysis on the sent records to determine the
session key in use. Once the session key has been determined, all existing and future
communication using that session key is compromised.

436 Securing IBM MQ

CipherSpec order in TLS handshake
The order of CipherSpecs is used when choosing between multiple possible CipherSpecs, for example
when using one of the ANY* CipherSpecs.

During a TLS handshake, a client and server exchange the CipherSpecs and protocols that they support in
order of their preference. A common CipherSpec that both sides prioritize is chosen and used for the TLS
communication. When choosing a CipherSpec protocol, version is also considered, for example if a server
lists TLS 1.2 CipherSpecs before TLS 1.3 CipherSpecs it will still prioritize TLS 1.3 so long as the client can
support it and has a common TLS 1.3 CipherSpec that can be used.

From IBM MQ 9.2.0, when IBM MQ is configured for TLS it sets the CipherSpecs into the order shown in
the following table, from most preferred to least preferred.

Note: If a CipherSpec is not enabled through the AllowedCipherSpecs attribute, it will not be
configured for use during a TLS Handshake.

In the case that the AllowedCipherSpecs attribute is not specified, a default list of enabled ciphers,
indicated by the following table, is used.

Table 78. CipherSpecs order from IBM MQ 9.2.0

Platform CipherSpec Protocol Hexadecimal code Enabled by
default

All TLS_CHACHA20_P
OLY1305_SHA256

TLS 1.3 1303 Yes

All TLS_AES_256_GC
M_SHA384

TLS 1.3 1302 Yes

All TLS_AES_128_GC
M_SHA256

TLS 1.3 1301 Yes

TLS_AES_128_CC
M_SHA256

TLS 1.3 1304 Yes

TLS_AES_128_CC
M_8_SHA256

TLS 1.3 1305 Yes

All TLS_RSA_WITH_A
ES_256_GCM_SHA
384

TLS 1.2 009D Yes

ECDHE_ECDSA_AE
S_256_GCM_SHA3
84

TLS 1.2 C02C Yes

All ECDHE_RSA_AES_
256_GCM_SHA384

TLS 1.2 C030 Yes

All TLS_RSA_WITH_A
ES_256_CBC_SHA
256

TLS 1.2 003D Yes

All ECDHE_ECDSA_AE
S_256_CBC_SHA3
84

TLS 1.2 C024 Yes

All ECDHE_RSA_AES_
256_CBC_SHA384

TLS 1.2 C028 Yes

All TLS_RSA_WITH_A
ES_128_GCM_SHA
256

TLS 1.2 009C Yes

Securing IBM MQ 437

Table 78. CipherSpecs order from IBM MQ 9.2.0 (continued)

Platform CipherSpec Protocol Hexadecimal code Enabled by
default

ECDHE_ECDSA_AE
S_128_GCM_SHA2
56

TLS 1.2 C02B Yes

All ECDHE_RSA_AES_
128_GCM_SHA256

TLS 1.2 C02F Yes

All TLS_RSA_WITH_A
ES_128_CBC_SHA
256

TLS 1.2 003C Yes

All ECDHE_ECDSA_AE
S_128_CBC_SHA2
56

TLS 1.2 C023 Yes

All ECDHE_RSA_AES_
128_CBC_SHA256

TLS 1.2 C027 Yes

ECDHE_ECDSA_3D
ES_EDE_CBC_SHA
256

TLS 1.2 C008 No

ECDHE_RSA_3DES
_EDE_CBC_SHA25
6

TLS 1.2 C012 No

TLS_RSA_WITH_R
C4_128_SHA256

TLS 1.2 0005 No

ECDHE_ECDSA_RC
4_128_SHA256

TLS 1.2 C007 No

ECDHE_RSA_RC4_
128_SHA256

TLS 1.2 C011 No

All TLS_RSA_WITH_N
ULL_SHA256

TLS 1.2 003B No

ECDHE_ECDSA_N
ULL_SHA256

TLS 1.2 C006 No

ECDHE_RSA_NULL
_SHA256

TLS 1.2 C010 No

TLS_RSA_WITH_N
ULL_NULL

TLS 1.2 0000 No

TLS_RSA_WITH_A
ES_256_CBC_SHA

TLS 1.0 0035 No

TLS_RSA_WITH_A
ES_128_CBC_SHA

TLS 1.0 002F No

AES_SHA_US TLS 1.0 002E No

438 Securing IBM MQ

Table 78. CipherSpecs order from IBM MQ 9.2.0 (continued)

Platform CipherSpec Protocol Hexadecimal code Enabled by
default

All TLS_RSA_WITH_3
DES_EDE_CBC_SH
A

TLS 1.0 000A No

All TLS_RSA_WITH_R
C4_128_SHA

TLS 1.0 0005 No

TLS_RSA_WITH_R
C4_128_MD5

TLS 1.0 0004 No

All TLS_RSA_WITH_D
ES_CBC_SHA

TLS 1.0 0009 No

TLS_RSA_EXPORT
_WITH_RC4_40_M
D5

TLS 1.0 0003 No

TLS_RSA_EXPORT
_WITH_RC2_40_M
D5

TLS 1.0 0006 No

TLS_RSA_WITH_N
ULL_SHA

TLS 1.0 0002 No

TLS_RSA_WITH_N
ULL_MD5

TLS 1.0 0001 No

All TRIPLE_DES_SHA_
US

SSL v3 000A No

All RC4_SHA_US SSL v3 0005 No

All RC4_MD5_US SSL v3 0004 No

All DES_SHA_EXPORT SSL v3 0009 No

All RC4_MD5_EXPORT SSL v3 0003 No

All RC2_MD5_EXPORT SSL v3 0006 No

All NULL_SHA SSL v3 0002 No

All NULL_MD5 SSL v3 0001 No

FIPS_WITH_3DES_
EDE_CBC_SHA

SSL v3 FEFF No

RC4_56_SHA_EXP
ORT1024

SSL v3 0064 No

DES_SHA_EXPORT
1024

SSL v3 0062 No

FIPS_WITH_DES_C
BC_SHA

SSL v3 FEFE No

This list was constructed by ordering the protocols with the default list supplied by the cryptographic
library used by IBM MQ on z/OS and is consistent across z/OS and distributed platforms.

Securing IBM MQ 439

Changing the order
If a different order is desired, then a new order of CipherSpecs can be supplied using the

AllowedCipherSpecs attribute of the SSL stanza on IBM MQ for Multiplatforms , or the
TransportSecurity stanza on IBM MQ for z/OS, with the following rules:

• Higher protocol versions are always used, regardless of their position in the list.
• Any disabled CipherSpecs are re-enabled if supplied in the list.
• The TLS server's list order has a higher priority than the TLS client.
• When TLS 1.3 is enabled, certain CipherSpecs are not supported.

For example, on IBM MQ for Multiplatforms, if the following is configured on the queue manager:

SSL:
AllowedCipherSpecs=TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_256_CBC_SHA

and on IBM MQ for z/OS, if the following is configured on the queue manager:

TransportSecurity:
AllowedCipherSpecs=TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_256_CBC_SHA

then:

• A client connecting with ANY_TLS12 will likely use the TLS 1.2 CipherSpec
TLS_RSA_WITH_AES_128_GCM_SHA256.

• A client connecting with ANY_TLS12_OR_HIGHER will likely use the TLS 1.3 CipherSpec
TLS_AES_128_GCM_SHA256 (assuming the client supports TLS 1.3).

• A client connecting with the TLS 1.0 CipherSpec TLS_RSA_WITH_AES_256_CBC_SHA will use that
CipherSpec.

Previous versions of IBM MQ
Before IBM MQ 9.2.0, the following order of CipherSpecs was used:

Table 79. CipherSpecs order before IBM MQ 9.2.0

Platform CipherSpec Protocol Enabled by default

TLS_RSA_WITH_AES_1
28_CBC_SHA

TLS 1.0 No

AES_SHA_US TLS 1.0 No

TLS_RSA_WITH_AES_2
56_CBC_SHA

TLS 1.0 No

All RC4_SHA_US SSL v3 No

All TLS_RSA_WITH_RC4_1
28_SHA

TLS 1.0 No

All RC4_MD5_US SSL v3 No

TLS_RSA_WITH_RC4_1
28_MD5

TLS 1.0 No

440 Securing IBM MQ

Table 79. CipherSpecs order before IBM MQ 9.2.0 (continued)

Platform CipherSpec Protocol Enabled by default

All TRIPLE_DES_SHA_US SSL v3 No

All TLS_RSA_WITH_3DES_
EDE_CBC_SHA

TLS 1.0 No

DES_SHA_EXPORT1024 SSL v3 No

All RC4_56_SHA_EXPORT1
024

SSL v3 No

All RC4_MD5_EXPORT SSL v3 No

TLS_RSA_EXPORT_WIT
H_RC4_40_MD5

TLS 1.0 No

All RC2_MD5_EXPORT SSL v3 No

TLS_RSA_EXPORT_WIT
H_RC2_40_MD5

TLS 1.0 No

All DES_SHA_EXPORT SSL v3 No

All TLS_RSA_WITH_DES_C
BC_SHA

TLS 1.0 No

All NULL_SHA SSL v3 No

TLS_RSA_WITH_NULL_
SHA

TLS 1.0 No

All NULL_MD5 SSL v3 No

TLS_RSA_WITH_NULL_
MD5

TLS 1.0 No

FIPS_WITH_DES_CBC_S
HA

SSL v3 No

FIPS_WITH_3DES_EDE_
CBC_SHA

SSL v3 No

All TLS_RSA_WITH_AES_1
28_CBC_SHA256

TLS 1.2 Yes

All TLS_RSA_WITH_AES_2
56_CBC_SHA256

TLS 1.2 Yes

All TLS_RSA_WITH_NULL_
SHA256

TLS 1.2 No

All TLS_RSA_WITH_AES_1
28_GCM_SHA256

TLS 1.2 Yes

All TLS_RSA_WITH_AES_2
56_GCM_SHA384

TLS 1.2 Yes

ECDHE_ECDSA_RC4_12
8_SHA256

TLS 1.2 No

ECDHE_ECDSA_3DES_E
DE_CBC_SHA256

TLS 1.2 No

Securing IBM MQ 441

Table 79. CipherSpecs order before IBM MQ 9.2.0 (continued)

Platform CipherSpec Protocol Enabled by default

ECDHE_RSA_RC4_128_
SHA256

TLS 1.2 No

ECDHE_RSA_3DES_EDE
_CBC_SHA256

TLS 1.2 No

All ECDHE_ECDSA_AES_12
8_CBC_SHA256

TLS 1.2 Yes

All ECDHE_ECDSA_AES_25
6_CBC_SHA384

TLS 1.2 Yes

All ECDHE_RSA_AES_128_
CBC_SHA256

TLS 1.2 Yes

All ECDHE_RSA_AES_256_
CBC_SHA384

TLS 1.2 Yes

ECDHE_ECDSA_AES_12
8_GCM_SHA256

TLS 1.2 Yes

ECDHE_ECDSA_AES_25
6_GCM_SHA384

TLS 1.2 Yes

All ECDHE_RSA_AES_128_
GCM_SHA256

TLS 1.2 Yes

All ECDHE_RSA_AES_256_
GCM_SHA384

TLS 1.2 Yes

ECDHE_RSA_NULL_SHA
256

TLS 1.2 No

ECDHE_ECDSA_NULL_S
HA256

TLS 1.2 No

TLS_RSA_WITH_NULL_
NULL

TLS 1.2 No

TLS_RSA_WITH_RC4_1
28_SHA256

TLS 1.2 No

TLS_AES_128_GCM_SH
A256

TLS 1.3 Yes

TLS_AES_256_GCM_SH
A384

TLS 1.3 Yes

TLS_CHACHA20_POLY1
305_SHA256

TLS 1.3 Yes

TLS_AES_128_CCM_SH
A256

TLS 1.3 Yes

TLS_AES_128_CCM_8_S
HA256

TLS 1.3 Yes

Important: As of 23rd July 2020, the following AllowedCipherSpecs attribute only enables CipherSpecs
that are currently enabled by default. However, you should verify the CipherSpecs enabled by the
following AllowedCipherSpecs attribute with current data, to ensure that CipherSpecs that have been
deprecated since this date are not inadvertently re-enabled.

442 Securing IBM MQ

If you need to return to this order of CipherSpecs, you can do so by using the following
AllowedCipherSpecs SSL/TransportSecurity stanza attribute value:

AllowedCipherSpecs=TLS_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_256_CBC_SHA256,
TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_RSA_WITH_AES_256_GCM_SHA384,ECDHE_ECDSA_AES_128_CBC_SHA256,
ECDHE_ECDSA_AES_256_CBC_SHA384,ECDHE_RSA_AES_128_CBC_SHA256,ECDHE_RSA_AES_256_CBC_SHA384,
ECDHE_ECDSA_AES_128_GCM_SHA256,ECDHE_ECDSA_AES_256_GCM_SHA384,ECDHE_RSA_AES_128_GCM_SHA256,
ECDHE_RSA_AES_256_GCM_SHA384

Providing a custom list of ordered and enabled CipherSpecs on IBM MQ for
Multiplatforms

You can provide an alternative set of CipherSpecs that are enabled, and in your order of preference, for

use with IBM MQ channels, either using the AMQ_ALLOWED_CIPHERS environment variable
or the AllowedCipherSpecs SSL stanza attribute of the .ini file. You might want to use this setting for
either of the following reasons:

• To restrict IBM MQ listeners from accepting incoming channel start requests, unless they use one of the
named CipherSpecs.

• To change the order of priority of CipherSpecs that are used in a TLS handshake.

This functionality can be used to control the CipherSpecs that are included in the ANY* CipherSpecs.

The AMQ_ALLOWED_CIPHERS environment variable or AllowedCipherSpecs SSL stanza attribute
accepts:

• A single CipherSpec name.
• A comma separated list of CipherSpec names to re-enable.
• The special value of ALL, representing all CipherSpecs.

Note: You should not enable ALL CipherSpecs, as this will enable SSL 3.0 and TLS 1.0 protocols and a
large number of weak cryptographic algorithms.

If this setting is configured, it overrides the default CipherSpec list and causes IBM MQ to ignore weak
cipher deprecation settings (see below):

• IBM MQ listeners only accept SSL/TLS proposals that use one of the named CipherSpecs.
• IBM MQ channels only allow a blank SSLCIPH value, or one of the named CipherSpecs.
• runmqsc tab completion of SSLCIPH values restricts the completion values to one of the name

CipherSpecs.

For example, if you only want to allow channels to be defined/altered and listeners to accept
ECDHE_RSA_AES_128_GCM_SHA256 or ECDHE_ECDSA_AES_256_GCM_SHA384 you could set the
following in the qm.ini file:

SSL:
 AllowedCipherSpecs=ECDHE_RSA_AES_128_GCM_SHA256, ECDHE_ECDSA_AES_256_GCM_SHA384

Additionally, the CipherSpecs in this list will be used to determine the priority of
the CipherSpecs used during a TLS handshake. For example, if you specify a list of
TLS_RSA_WITH_AES_128_CBC_SHA256, TLS_RSA_WITH_AES_256_CBC_SHA256 it is likely that,
during the handshake, the TLS_RSA_WITH_AES_128_CBC_SHA256 CipherSpec will be chosen over
the TLS_RSA_WITH_AES_256_CBC_SHA256 CipherSpec if a client connects specifying both of these
CipherSpecs, that is, a client connecting with ANY_TLS12.

Note that ciphers used by AMQP or MQTT channels can be restricted using java.security file settings.

Securing IBM MQ 443

Providing a custom list of ordered and enabled CipherSpecs on IBM MQ for z/OS

It is possible for you to provide an alternative set of CipherSpecs that are enabled, and in your order of
preference, for use with IBM MQ channels, using the AllowedCipherSpecs TransportSecurity stanza
attribute of The QMINI data set. You might want to do this for either of the following reasons:

• To restrict IBM MQ listeners from accepting incoming channel start requests, unless they use one of the
named CipherSpecs.

• To change the order of priority of CipherSpecs that are used in a TLS handshake.

You can use this functionality to control the CipherSpecs that are included in the ANY* CipherSpecs. The
AllowedCipherSpecs attribute accepts:

• A single CipherSpec name.
• A comma separated list of CipherSpec names to re-enable.
• The special value of ALL, representing all CipherSpecs.

Note: You should not enable ALL CipherSpecs, as this will enable SSL 3.0 and TLS 1.0 protocols and
a large number of weak cryptographic algorithms. If you do configure this setting, it overrides the
default CipherSpec list and causes IBM MQ to ignore weak cipher deprecation settings; see “Enabling
deprecated CipherSpecs on z/OS” on page 448.

IBM MQ listeners only accept SSL/TLS proposals that use one of the named CipherSpecs and IBM MQ
channels only allow a blank SSLCIPH value, or one of the named CipherSpecs.

For example, if you only want to allow channels to be defined/altered and listeners to accept
ECDHE_RSA_AES_128_GCM_SHA256 or ECDHE_RSA_AES_256_GCM_SHA384 you could set the
following:

TransportSecurity:
 AllowedCipherSpecs=ECDHE_RSA_AES_128_GCM_SHA256,
 ECDHE_RSA_AES_256_GCM_SHA384

Additionally, the CipherSpecs in this list are used to determine the priority of the
CipherSpecs used during a TLS handshake. For example, if you specify a list of
TLS_RSA_WITH_AES_128_CBC_SHA256, TLS_RSA_WITH_AES_256_CBC_SHA256 it is likely that, during
the handshake, the TLS_RSA_WITH_AES_128_CBC_SHA256 CipherSpec will be chosen over the
TLS_RSA_WITH_AES_256_CBC_SHA256 CipherSpec if a client connects specifying both of these
CipherSpecs, that is, a client connecting with ANY_TLS12.

Deprecated CipherSpecs
A list of deprecated CipherSpecs that you are able to use with IBM MQ if necessary.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

For information about enabling deprecated CipherSpecs, see “Enabling deprecated CipherSpecs on IBM
MQ for Multiplatforms” on page 447 or “Enabling deprecated CipherSpecs on z/OS” on page 448.

Deprecated CipherSpecs that you can use with IBM MQ TLS support are listed in the following table.

444 Securing IBM MQ

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

Table 80. Deprecated CipherSpecs you can re-enable for use with IBM MQ

Platfor
m
suppor
t “1” on
page 447

CipherSpec name Hex
code

Protoc
ol used

Data
integrity

Encrypti
on
algorith
m
(encrypti
on bits)

FIPS
“2” on
page
447

Suit
e B

Updat
e when
deprec
ated

CipherSpecs for SSL 3.0

AES_SHA_US “3” on page 447 002F SSL 3.0 SHA-1 AES
(128)

No No 9.0.0.0

All DES_SHA_EXPORT “3” on page 447 “4” on
page 447 “5” on page 447

0009 SSL 3.0 SHA-1 DES (56) No No 9.0.0.0

DES_SHA_EXPORT1024 “3” on page 447
“6” on page 447

0062 SSL 3.0 SHA-1 DES (56) No No 9.0.0.0

FIPS_WITH_DES_CBC_SHA “3” on
page 447

FEFE SSL 3.0 SHA-1 DES (56) No“7
” on
page
447

No 9.0.0.0

FIPS_WITH_3DES_EDE_CBC_SHA
“3” on page 447

FEFF SSL 3.0 SHA-1 3DES
(168)

No“8
” on
page
447

No 9.0.0.1
and
9.0.1

All NULL_MD5 “3” on page 447 0001 SSL 3.0 MD5 None No No 9.0.0.1

All NULL_SHA “3” on page 447 0002 SSL 3.0 SHA-1 None No No 9.0.0.1

All RC2_MD5_EXPORT “3” on page 447 “4” on
page 447 “5” on page 447

0006 SSL 3.0 MD5 RC2 (40) No No 9.0.0.0

All RC4_MD5_EXPORT “4” on page 447 “3” on

page 447
0003 SSL 3.0 MD5 RC4 (40) No No 9.0.0.0

All RC4_MD5_US “3” on page 447 0004 SSL 3.0 MD5 RC4
(128)

No No 9.0.0.0

All RC4_SHA_US “3” on page 447 “5” on page
447

0005 SSL 3.0 SHA-1 RC4
(128)

No No 9.0.0.0

RC4_56_SHA_EXPORT1024 “3” on
page 447 “6” on page 447

0064 SSL 3.0 SHA-1 RC4 (56) No No 9.0.0.0

All TRIPLE_DES_SHA_US “3” on page 447
“5” on page 447

000A SSL 3.0 SHA-1 3DES
(168)

No No 9.0.0.1
and
9.0.1

CipherSpecs for TLS 1.0

TLS_RSA_EXPORT_WITH_RC2_40_
MD5 “3” on page 447

0006 TLS 1.0 MD5 RC2 (40) No No 9.0.0.0

TLS_RSA_EXPORT_WITH_RC4_40_
MD5“3” on page 447 “4” on page 447

0003 TLS 1.0 MD5 RC4 (40) No No 9.0.0.0

All TLS_RSA_WITH_DES_CBC_SHA “3”
on page 447

0009 TLS 1.0 SHA-1 DES (56) No“9
” on
page
447

No 9.0.0.0

Securing IBM MQ 445

Table 80. Deprecated CipherSpecs you can re-enable for use with IBM MQ (continued)

Platfor
m
suppor
t “1” on
page 447

CipherSpec name Hex
code

Protoc
ol used

Data
integrity

Encrypti
on
algorith
m
(encrypti
on bits)

FIPS
“2” on
page
447

Suit
e B

Updat
e when
deprec
ated

TLS_RSA_WITH_NULL_MD5 “3” on
page 447

0001 TLS 1.0 MD5 None No No 9.0.0.1

TLS_RSA_WITH_NULL_SHA “3” on
page 447

0002 TLS 1.0 SHA-1 None No No 9.0.0.1

TLS_RSA_WITH_RC4_128_MD5 “3”
on page 447

0004 TLS 1.0 MD5 RC4
(128)

No No 9.0.0.0

TLS_RSA_WITH_AES_128_CBC_SH
A “10” on page 447

002F TLS 1.0 SHA-1 AES
(128)

Yes No 9.0.5

TLS_RSA_WITH_AES_256_CBC_SH
A “6” on page 447 “10” on page 447

0035 TLS 1.0 SHA-1 AES
(256)

Yes No 9.0.5

All TLS_RSA_WITH_3DES_EDE_CBC_S
HA

000A TLS 1.0 SHA-1 3DES
(168)

Yes No 9.0.0.1
and
9.0.1

CipherSpecs for TLS 1.2

ECDHE_ECDSA_NULL_SHA256 “3” on
page 447

C006 TLS 1.2 SHA-1 None No No 9.0.0.1

ECDHE_ECDSA_RC4_128_SHA256
“3” on page 447

C007 TLS 1.2 SHA-1 RC4
(128)

No No 9.0.0.0

ECDHE_RSA_NULL_SHA256 “3” on
page 447

C010 TLS 1.2 SHA-1 None No No 9.0.0.1

ECDHE_RSA_RC4_128_SHA256 “3”
on page 447

C011 TLS 1.2 SHA-1 RC4
(128)

No No 9.0.0.0

TLS_RSA_WITH_NULL_NULL “3” on
page 447

0000 TLS 1.2 None None No No 9.0.0.1

All TLS_RSA_WITH_NULL_SHA256 “3”
on page 447

003B TLS 1.2 SHA-256 None No No 9.0.0.1

TLS_RSA_WITH_RC4_128_SHA256
“3” on page 447

0005 TLS 1.2 SHA-1 RC4
(128)

No No 9.0.0.0

ECDHE_ECDSA_3DES_EDE_CBC_SH
A256

C0008 TLS 1.2 SHA-1 3DES
(168)

Yes No 9.0.0.1
and
9.0.1

ECDHE_RSA_3DES_EDE_CBC_SHA2
56

C012 TLS 1.2 SHA-1 3DES
(168)

Yes No 9.0.0.1
and
9.0.1

446 Securing IBM MQ

Table 80. Deprecated CipherSpecs you can re-enable for use with IBM MQ (continued)

Platfor
m
suppor
t “1” on
page 447

CipherSpec name Hex
code

Protoc
ol used

Data
integrity

Encrypti
on
algorith
m
(encrypti
on bits)

FIPS
“2” on
page
447

Suit
e B

Updat
e when
deprec
ated

Notes:

1. For a list of platforms covered by each platform icon, see Icons used in the product documentation.
2. Specifies whether the CipherSpec is FIPS-certified on a FIPS-certified platform. See Federal Information

Processing Standards (FIPS) for an explanation of FIPS.

3. These CipherSpecs are disabled when TLS 1.3 is enabled (through the AllowTLSV13 property
in the qm.ini).

Queue managers created at IBM MQ for z/OS 9.2.0 or later enable TLS 1.3 by default, which
disables these CipherSpecs. You can enable these CipherSpecs, if required, by turning off TLS V1.3. This is
done by adding AllowTLSV13=FALSE to the TransportSecurity stanza of the QMINI data set in the queue
manager JCL. Queue managers migrated to IBM MQ for z/OS 9.2.0 from an earlier version don't have TLS
1.3 enabled by default, and therefore have these CipherSpecs enabled.

4. The maximum handshake key size is 512 bits. If either of the certificates exchanged during the SSL
handshake has a key size greater than 512 bits, a temporary 512-bit key is generated for use during the
handshake.

5. These CipherSpecs are no longer supported by IBM MQ classes for Java or IBM MQ classes for JMS.
For more information, see SSL/TLS CipherSpecs and CipherSuites in IBM MQ classes for Java or SSL/TLS
CipherSpecs and CipherSuites in IBM MQ classes for JMS.

6. The handshake key size is 1024 bits.

7. This CipherSpec was FIPS 140-2 certified before 19 May 2007. The name
FIPS_WITH_DES_CBC_SHA is historical and reflects the fact that this CipherSpec was previously (but
is no longer) FIPS-compliant. This CipherSpec is deprecated and its use is not recommended.

8. The name FIPS_WITH_3DES_EDE_CBC_SHA is historical and reflects the fact that this
CipherSpec was previously (but is no longer) FIPS-compliant. The use of this CipherSpec is deprecated.

9. This CipherSpec was FIPS 140-2 certified before 19 May 2007.

10. Re-enabling just these CipherSpecs does not require the use of the CSQXWEAK DD
statement.

Enabling deprecated CipherSpecs on IBM MQ for Multiplatforms

By default, you are not allowed to specify a deprecated CipherSpec on a channel definition. If you attempt
to specify a deprecated CipherSpec on IBM MQ for Multiplatforms, you receive message AMQ8242:
SSLCIPH definition wrong, and PCF returns MQRCCF_SSL_CIPHER_SPEC_ERROR.

You cannot start a channel with a deprecated CipherSpec. If you attempt to do so with a
deprecated CipherSpec, the system returns MQCC_FAILED (2), together with a Reason of
MQRC_SSL_INITIALIZATION_ERROR (2393) to the client.

You can re-enable one or more of the deprecated CipherSpecs for defining channels, at runtime on the
server, by setting the environment variable AMQ_SSL_WEAK_CIPHER_ENABLE.

The AMQ_SSL_WEAK_CIPHER_ENABLE environment variable accepts:

• A single CipherSpec name, or

Securing IBM MQ 447

• A comma separated list of CipherSpec names to re-enable, or
• The special value of ALL, representing all CipherSpecs.

Attention: Although ALL is a valid option, you should use it only in a specific situation that your
enterprise requires, as re-enabling ALL CipherSpecs enables SSL 3.0 and TLS 1.0 protocols, as
well as a large number of weak cryptographic algorithms.

For example, if you want to re-enable ECDHE_RSA_RC4_128_SHA256, set the following environment
variable:

 export AMQ_SSL_WEAK_CIPHER_ENABLE=ECDHE_RSA_RC4_128_SHA256

or, alternatively change the SSL stanza in the qm.ini file, by setting:

SSL:
 AllowTLSV1=Y
 AllowWeakCipherSpec=ECDHE_RSA_RC4_128_SHA256

Enabling deprecated CipherSpecs on z/OS

By default, you are not allowed to specify a deprecated CipherSpec on a channel definition. If you attempt
to specify a deprecated CipherSpec on z/OS, you receive message CSQM102E, message CSQX616E, or
CSQX674E.

Follow the instructions listed in this section if you receive any one of these messages, and your enterprise
needs to re-enable the use of weak CipherSpecs.

Attention: In the following instructions, for the dummy definition (DD) statements to take effect,
SSLTASKS must be a non-zero value. If this requires a change to SSLTASKS you must recycle the
channel initiator.

On IBM MQ for z/OS, the current method of controlling weak or broken CipherSpecs is as follows:

• If you want to re-enable the use of weak CipherSpecs, you do so by adding a dummy data definition
(DD) statement named CSQXWEAK to the channel initiator JCL. If specified on its own, this only enables
weak CipherSpecs associated with the TLS 1.2 protocol; for example:

//CSQXWEAK DD DUMMY

Note: Not all deprecated CipherSpecs require the use of this DD statement, see note 10 in the
preceding table.

• If you want to re-enable the use of SSLv3 CipherSpecs, you do so by also adding a dummy DD statement
named CSQXSSL3 to the channel initiator JCL. All SSLv3 CipherSpecs are considered Weak, so you
must also specify CSQXWEAK:

//CSQXSSL3 DD DUMMY

• If you want to re-enable the deprecated TLS V1 CipherSpecs, you do so by adding a dummy DD
statement named TLS10ON (turn TLS V1.0 ON) to the channel initiator JCL. If specified on its own, this
enables Strong CipherSpecs associated with the TLS 1.0 protocol:

//TLS10ON DD DUMMY

If specified with CSQXWEAK this also enables Weak CipherSpecs associated with TLS 1.0.
• If you want to explicitly turn off the deprecated TLS V1 CipherSpecs, you do so by adding a dummy DD

statement named TLS10OFF (turn TLS V1.0 OFF) to the channel initiator JCL; for example:

//TLS10OFF DD DUMMY

448 Securing IBM MQ

If you want to only negotiate with the listener using the cipher specifications listed on the System SSL
default cipher specification list, you need to define the following DD statement in the CHINIT JCL:

JCL: //GSKDCIPS DD DUMMY

Important: For IBM MQ for z/OS 9.2.0 and later, the previously listed DD cards and the value of
AllowTLSV13 are taken into account when displaying messages during channel initiator startup to
indicate which protocols are enabled and which are not. So, even if one of the previously listed DD cards is
specified, it could mean that, due to a combination of these settings, a certain protocol cannot be enabled
with another protocol. For example, protocol SSL 3.0 is not allowed if TLS 1.3 is enabled.

There are alternative mechanisms that can be used to forcibly re-enable weak CipherSpecs, and SSLv3
support, if the Data Definition change is unsuitable. Contact IBM Service for further information.

Related concepts
“Digital certificates and CipherSpec compatibility in IBM MQ” on page 46
This topic provides information on how to choose appropriate CipherSpecs and digital certificates for your
security policy, by outlining the relationship between CipherSpecs and digital certificates in IBM MQ.
Related reference
DEFINE CHANNEL
ALTER CHANNEL

Relationship between alias CipherSpec settings
This information describes the expected behavior with different combinations of alias CipherSpecs in
client and server configurations. Here, a client refers to the entity initiating communication, for example
a client application or a queue manager sender channel, and server refers to the entity receiving the
communication from the client, for example a server-connection channel or a receiver channel.

Minimum protocol versus fixed protocol CipherSpecs
IBM MQ supports two different types of CipherSpecs:
Minimum protocol

Minimum protocol CipherSpecs are those that do not set an upper bound, for example ANY,
ANY_TLS12_OR_HIGHER or ANY_TLS13_OR_HIGHER.

Fixed protocol
Fixed protocol CipherSpecs are those that identify a specific protocol, for example ANY_TLS12 and
ANY_TLS13, or a specific algorithm such as ECDHE_ECDSA_3DES_EDE_CBC_SHA256.

From IBM MQ 9.2.0, minimum and fixed protocol CipherSpecs are supported on all platforms.

To maximize simplicity of configuration whilst maintaining security, the use of minimum protocol
CipherSpecs is recommended on both sides of the channel. This allows your communications to
automatically support and use a higher TLS protocol version when both sides support a new version
without the need for changing either side's configuration.

Using a minimum protocol CipherSpec on the initiating side, but a fixed protocol CipherSpec on the
receiving side could result in the connection being rejected, and

• Messages AMQ9631 and AMQ9641 being issued.

• Messages CSQX631E and CSQX641E being issued.

The following tables show the relationship between different alias CipherSpec settings and the expected
outcome. Table 81 on page 450 shows the expected behavior when TLS 1.3 is not enabled on either the
client, server, or both. Table 82 on page 450 shows the expected behavior when TLS 1.3 is enabled on
both the client and server. In both cases, the CipherSpecs for the client are shown in the Y axis of the
table, and the CipherSpecs for the server are shown in the X axis of the table.

Securing IBM MQ 449

Note: In the following tables, cells marked Likely to fail indicate the potential for conflict when you specify
a minimum protocol CipherSpec for one part of a connection, and a specific (fixed protocol) CipherSpec
for another part.

For example, suppose the client and server are set to use ANY CipherSpec, and the server channel is set
to use a specific CipherSpec:

• If the strongest supported CipherSpec for both the client and server matches the specific CipherSpec
configured on the channel, the TLS handshake resolves successfully.

• If, however, there is a stronger CipherSpec that both the client and Server support, the TLS handshake
resolves to using this, even though it does not match the CipherSpec specified on the channel, and the
TLS handshake fails.

Table 81. Expected behavior when TLS 1.3 is not enabled on either the client, server, or both

Server

Client Specific TLS 1.2
CipherSpec

ANY ANY_ TLS12 ANY_TLS12_
OR_HIGHER

Specific TLS 1.2
CipherSpec

Connects Connects Connects Connects

ANY Likely to fail Connects Connects Connects

ANY_ TLS12 Likely to fail Connects Connects Connects

ANY_TLS12_
OR_HIGHER

Likely to fail Connects Connects Connects

Table 82. Expected behavior when TLS 1.3 is enabled on both the client and server

Server

Client Specific TLS
1.2
CipherSpec

Specific TLS
1.3
CipherSpec

ANY ANY_TLS
12

ANY_TLS
13

ANY_TLS12_

OR_HIGHER

ANY_TLS13_

OR_HIGHER

Specific TLS
1.2
CipherSpec

Connects Fails Connects Connects Fails Connects Fails

Specific TLS
1.3
CipherSpec

Fails Connects Connects Fails Connects Connects Connects

ANY Fails Likely to fail Connects Fails Connects Connects Connects

ANY_TLS12 Likely to fail Fails Connects Connects Fails Connects Fails

ANY_TLS13 Fails Likely to fail Connects Fails Connects Connects Connects

ANY_TLS12_

OR_HIGHER

Fails Likely to fail Connects Fails Connects Connects Connects

ANY_TLS13_

OR_HIGHER

Fails Likely to fail Connects Fails Connects Connects Connects

Related concepts
“Digital certificates and CipherSpec compatibility in IBM MQ” on page 46

450 Securing IBM MQ

This topic provides information on how to choose appropriate CipherSpecs and digital certificates for your
security policy, by outlining the relationship between CipherSpecs and digital certificates in IBM MQ.
“CipherSpecs and CipherSuites” on page 22
Cryptographic security protocols must agree on the algorithms used by a secure connection. CipherSpecs
and CipherSuites define specific combinations of algorithms.
“Enabling CipherSpecs” on page 429
Enable a CipherSpec by using the SSLCIPH parameter in either the DEFINE CHANNEL or ALTER
CHANNEL MQSC command.
Related tasks
Migrating existing security configurations to use the ANY_TLS12_OR_HIGHER CipherSpec

Obtaining information about CipherSpecs using IBM MQ Explorer
You can use IBM MQ Explorer to display descriptions of CipherSpecs.

Use the following procedure to obtain information about the CipherSpecs in “Enabling CipherSpecs” on
page 429:

1. Open IBM MQ Explorer and expand the Queue Managers folder.
2. Ensure that you have started your queue manager.
3. Select the queue manager you want to work with and click Channels.
4. Right-click the channel you want to work with and select Properties.
5. Select the SSL property page.
6. Select from the list the CipherSpec you want to work with. A description is displayed in the window

below the list.

Alternatives for specifying CipherSpecs
For those platforms where the operating system provides the TLS support, your system might support
new CipherSpecs that are not included in “Enabling CipherSpecs” on page 429.

You can specify a new CipherSpec with the SSLCIPH parameter, but the value you supply depends on
your platform. In all cases the specification must correspond to an TLS CipherSpec that is both valid and
supported by the version of TLS your system is running.

Note: This section does not apply to AIX, Linux, and Windows systems, because the CipherSpecs are
provided with the IBM MQ product, so new CipherSpecs do not become available after shipment.

IBM i
A two-character string representing a hexadecimal value.

For more information about the permitted values, see point three in the Usage Notes section of Set
character information for a secure session.

Attention: You should not specify hexadecimal cipher values in SSLCIPH, because it is unclear
from the value which cipher will be used, and the choice of which protocol to be used is
indeterminate. Using hexadecimal cipher values can lead to CipherSpec mismatch errors.

You can use either the CHGMQMCHL or the CRTMQMCHL command to specify the value, for example:

CRTMQMCHL CHLNAME(' channel name ') SSLCIPH(' hexadecimal value ')

You can also use the ALTER QMGR MQSC command to set the SSLCIPH parameter.

z/OS
A four-character string representing a hexadecimal value. The hexadecimal codes correspond to the
values defined in the TLS protocol.

Securing IBM MQ 451

https://www.ibm.com/docs/en/i/7.3?topic=ssw_ibm_i_73/apis/gsk_attribute_set_buffer.htm
https://www.ibm.com/docs/en/i/7.3?topic=ssw_ibm_i_73/apis/gsk_attribute_set_buffer.htm

For more information, refer to Cipher Suite Definitions where there is a list of all the supported TLS
1.0, TLS 1.2, and TLS 1.3 cipher specifications in the form of 4-digit hexadecimal codes.

Note: In order to use a weak CipherSpec, or a CipherSpec belonging to a deprecated
protocol, such as SSL V3.0 or TLS 1.0, you must specify the relevant DD card in the channel initiator
startup JCL. See “Deprecated CipherSpecs” on page 444 for more information.

Considerations for IBM MQ clusters
With IBM MQ clusters it is safest to use the CipherSpec names in “Enabling CipherSpecs” on page 429. If
you use an alternative specification, be aware that the specification might not be valid on other platforms.
For more information, refer to “SSL/TLS and clusters” on page 489.

Specifying a CipherSpec for an IBM MQ MQI client
You have three options for specifying a CipherSpec for an IBM MQ MQI client.

These options are as follows:

• Using a channel definition table
• Using the SSLCipherSpec field in the MQCD structure, at MQCD_VERSION_7 or higher, on an MQCONNX

call.
• Using the Active Directory (on Windows systems with Active Directory support)

Specifying a CipherSuite with IBM MQ classes for Java and IBM MQ classes
for JMS
IBM MQ classes for Java and IBM MQ classes for JMS specify CipherSuites differently from other
platforms.

For information about specifying a CipherSuite with IBM MQ classes for Java, see Transport Layer Security
(TLS) support for Java

For information about specifying a CipherSuite with IBM MQ classes for JMS, see Using Transport Layer
Security (TLS) with IBM MQ classes for JMS

Specifying a CipherSpec for IBM MQ.NET
For IBM MQ.NET you can specify the CipherSpec either by using the MQEnvironment class or by using the
MQC.SSL_CIPHER_SPEC_PROPERTY in the hash table of connection properties.

For information about specifying a CipherSpec for the .NET unmanaged client, see Enabling TLS for the
unmanaged .NET client

For information about specifying a CipherSpec for the .NET managed client, see CipherSpec support for
the managed .NET client

Use of AT-TLS with IBM MQ for z/OS
Application Transparent Transport Layer Security (AT-TLS) provides TLS support for z/OS applications
without those applications having to implement TLS support, or even be aware that TLS is being used.
AT-TLS is only available on z/OS.

AT-TLS can be used with all versions of IBM MQ for z/OS.

Before making use of AT-TLS with IBM MQ for z/OS, make sure you understand the “Restrictions” on page
456 involved.

To use Application Transparent Transport Layer Security you define policy statements containing a set
of rules which are used by z/OS Communications Server to decide which TCP/IP connections have TLS
transparently enabled.

452 Securing IBM MQ

https://www.ibm.com/docs/en/zos/2.5.0?topic=programming-cipher-suite-definitions
https://www.ibm.com/docs/en/zos/3.1.0?topic=reference-application-transparent-transport-layer-security-tls

IBM MQ for z/OS has its own TLS implementation, which requires that channels have the SSLCIPH
parameter configured with a supported CipherSpec.

When deciding to enable TLS on a channel the IBM MQ administrator can decide to either use AT-TLS
or IBM MQ TLS. The decision is often made based on whether AT-TLS is used for other middleware, or
because of performance implications. For a basic comparison of the performance of AT-TLS and IBM MQ
TLS see MP16: Capacity Planning and Tuning for IBM MQ for z/OS.

Scenarios
Use of AT-TLS with IBM MQ is supported in the following scenarios:

Scenario 1

Between two IBM MQ for z/OS queue managers where both sides of the channel use AT-TLS. That is,
neither channel specifies the SSLCIPH attribute. This approach can be used with any message channel.

Implementation of this scenario consists of defining two AT-TLS policies, one for each side of the channel.
These policies are the same as those used with either Scenario 3 or Scenario 4.

For example, if the channel was being changed from using a single, named CipherSpec to using AT-TLS,
the outbound channel would use the policy from “Configuring AT-TLS on an outbound channel to an IBM
MQ for Multiplatforms queue manager using a single, named CipherSpec” on page 456 and the inbound
channel would use the policy from “Configuring AT-TLS on an inbound channel from an IBM MQ for
Multiplatforms queue manager using a single, named CipherSpec” on page 465.

If the channel was being changed from using an alias CipherSpec to using AT-TLS, the outbound channel
would use the policy from “Configuring AT-TLS on an outbound channel to an IBM MQ for Multiplatforms
queue manager using alias CipherSpecs” on page 461 and the inbound channel would use the policy from
“Configuring AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue manager using an
alias CipherSpec” on page 469.

Scenario 2

Between an IBM MQ for z/OS queue manager and an IBM MQ Java client application running on z/OS
where both sides of the channel use AT-TLS. That is, neither the server-connection channel, nor the
client-connection channel specify the SSLCIPH attribute.

Securing IBM MQ 453

https://ibm-messaging.github.io/mqperf/mp16.pdf

Implementation of this scenario consists of defining two AT-TLS policies, one for each side of the channel.
These policies are the same as those used with either Scenario 3 or Scenario 4.

For example, if the channel was being changed from using a single, named CipherSpec to using AT-TLS
the client-connection channel would use the policy from “Configuring AT-TLS on an outbound channel to
an IBM MQ for Multiplatforms queue manager using a single, named CipherSpec” on page 456 and the
server-connection channel would use the policy from “Configuring AT-TLS on an inbound channel from an
IBM MQ for Multiplatforms queue manager using a single, named CipherSpec” on page 465.

If the channel was being changed from using an alias CipherSpec to using AT-TLS the client-connection
channel would use the policy from “Configuring AT-TLS on an outbound channel to an IBM MQ for
Multiplatforms queue manager using alias CipherSpecs” on page 461 and the server-connection channel
would use the policy from “Configuring AT-TLS on an inbound channel from an IBM MQ for Multiplatforms
queue manager using an alias CipherSpec” on page 469.

Scenario 3

Between an IBM MQ for z/OS queue manager and a queue manager running on IBM MQ for
Multiplatforms, where the IBM MQ for z/OS queue manager uses AT-TLS and the IBM MQ for
Multiplatforms queue manager uses IBM MQ TLS. This applies to all message channel types other than
cluster-sender and cluster-receiver.

See “Configuring AT-TLS on an outbound channel to an IBM MQ for Multiplatforms queue manager using a
single, named CipherSpec” on page 456 for an example AT-TLS configuration for outbound channels from
the IBM MQ for z/OS queue manager to the IBM MQ for Multiplatforms queue manager, and “Configuring
AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue manager using a single, named
CipherSpec” on page 465 for an example AT-TLS configuration for inbound channels from the IBM MQ for
Multiplatforms queue manager to the IBM MQ for z/OS queue manager.

The same AT-TLS configuration can be used when both queue managers are on z/OS, but the queue
manager on the right hand side has not been configured to use AT-TLS.

Scenario 4

Between an IBM MQ for z/OS queue manager and a queue manager running on IBM MQ for
Multiplatforms, where the IBM MQ for z/OS queue manager uses AT-TLS and the IBM MQ for
Multiplatforms queue manager uses IBM MQ TLS, by specifying the SSLCIPH attribute with an alias
CipherSpec. This applies to all message channel types other than cluster-sender and cluster-receiver.

454 Securing IBM MQ

See “Configuring AT-TLS on an outbound channel to an IBM MQ for Multiplatforms queue manager using
alias CipherSpecs” on page 461 for an example AT-TLS configuration for outbound channels from the IBM
MQ for z/OS queue manager to the IBM MQ for Multiplatforms queue manager, and “Configuring AT-TLS
on an inbound channel from an IBM MQ for Multiplatforms queue manager using an alias CipherSpec”
on page 469, and “Configuring AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue
manager using an alias CipherSpec” on page 469 for an example AT-TLS configuration for inbound
channels from the IBM MQ for Multiplatforms queue manager to the IBM MQ for z/OS queue manager.

The same AT-TLS configuration can be used when both queue managers are on z/OS, but the queue
manager on the right hand side has not been configured to use AT-TLS.

Scenario 5

Between an IBM MQ for z/OS queue manager and a client application running on IBM MQ for
Multiplatforms, where the IBM MQ for z/OS queue manager uses AT-TLS and the client application uses
IBM MQ TLS by specifying the SSLCIPH attribute with a single, named CipherSpec.

This scenario requires a single AT-TLS policy which meets the same requirements as those used by
an inbound message channel; see “Configuring AT-TLS on an inbound channel from an IBM MQ for
Multiplatforms queue manager using a single, named CipherSpec” on page 465.

The same AT-TLS configuration can be used when the client application is a Java application, and is also
running on z/OS, but has not been configured to use AT-TLS.

Scenario 6

Between an IBM MQ for z/OS queue manager and a client application running on IBM MQ for
Multiplatforms, where the IBM MQ for z/OS queue manager uses AT-TLS and the client application uses
IBM MQ TLS by specifying the SSLCIPH attribute with an alias CipherSpec.

This scenario requires a single AT-TLS policy which meets the same requirements as those used by
an inbound message channel; see “Configuring AT-TLS on an inbound channel from an IBM MQ for
Multiplatforms queue manager using an alias CipherSpec” on page 469.

The same AT-TLS configuration can be used when the client application is a Java application, and is also
running on z/OS, but has not been configured to use AT-TLS.

Securing IBM MQ 455

Restrictions
IBM MQ for z/OS is not AT-TLS aware, therefore there are several restrictions that apply with the
preceding scenarios:

• AT-TLS in combination with IBM MQ TLS does not work with cluster-sender and cluster-receiver
channels.

• IBM MQ for z/OS queue managers are not aware that they are using AT-TLS and do not receive any
certificate information from their partner queue manager or client. Therefore, the following attributes
have no effect on the z/OS side of a channel using AT-TLS:

– The SSLCAUTH, and SSLPEER channel attributes
– The SSLRKEYC queue manager attribute
– The SSLPEERMAP attributes of CHLAUTH rules

• Use of TLS secret key renegotiation requires that both sides of the channel use IBM MQ TLS. Therefore,
an IBM MQ for Multiplatforms queue manager, or client, should not have TLS secret key renegotiation
enabled if connecting to an IBM MQ for z/OS queue manager using AT-TLS.

To disable TLS secret key renegotiation for a queue manager set the queue manager SSLRKEYC
parameter to 0. For a client, set the relevant parameter to 0 depending on client type. For details
on how to do this, see “Resetting SSL and TLS secret keys” on page 473.

AT-TLS configuration statements
AT-TLS is configured using a set of statements. The ones used in the scenarios documented in this topic
are:
TTLSRule

Specifies a set of criteria for matching a TCP/IP connection to a TLS configuration. This in turn refers to
the other statement types.

TTLSGroupAction
Specifies whether the referencing TTLSRule is enabled or not.

TTLSEnvironmentAction
Specifies the detailed configuration for the referencing TTLSRule and references a number of other
statements.

TTLSKeyringParms
References the key-ring that is to be used by AT-TLS.

TTLSCipherParms
Defines the cipher suites that are to be used.

TTLSEnvironmentAdvancedParms
Defines which TLS or SSL protocols are enabled.

Attention: There are other AT-TLS policy statements with AT-TLS which are not documented here,
and could be used with IBM MQ depending on need. However, IBM MQ has only been tested with
the policies described in this topic.

Configuring AT-TLS on an outbound channel to an IBM MQ for Multiplatforms queue
manager using a single, named CipherSpec
How you set up AT-TLS on an outbound channel from an IBM MQ for z/OS queue manager to an IBM
MQ for Multiplatforms queue manager. In this case, the channel on the z/OS queue manager is a sender
channel which does not have the SSLCIPH attribute set, and the channel on the non-z/OS queue manager
is a receiver channel with the SSLCIPH attribute set to a single, named CipherSpec.

See “Configuring AT-TLS on an outbound channel to an IBM MQ for Multiplatforms queue manager using
alias CipherSpecs” on page 461 for an example using an alias CipherSpec.

456 Securing IBM MQ

https://www.ibm.com/docs/en/zos/2.5.0?topic=statements-ttlsrule-statement
https://www.ibm.com/docs/en/zos/2.5.0?topic=statements-ttlsgroupaction-statement
https://www.ibm.com/docs/en/zos/2.5.0?topic=statements-ttlsenvironmentaction-statement
https://www.ibm.com/docs/en/zos/2.5.0?topic=statements-ttlskeyringparms-statement
https://www.ibm.com/docs/en/zos/2.5.0?topic=statements-ttlscipherparms-statement
https://www.ibm.com/docs/en/zos/2.5.0?topic=statements-ttlsenvironmentadvancedparms-statement
https://www.ibm.com/docs/en/zos/2.5.0?topic=applications-tls-policy-statements

In this example an existing sender – receiver channel pair, which uses the TLS 1.3
TLS_AES_256_GCM_SHA384 CipherSpec is going to be adjusted so that the sender channel uses AT-TLS
instead of IBM MQ TLS.

Other TLS protocols and CipherSpecs can be used by making minor adjustments to the configuration.
Other message channel types, apart from cluster-sender and cluster-receiver channels, could be used
with no change to the AT-TLS configuration.

Procedure

Step 1: Stop the channel

Step 2: Create and apply an AT-TLS policy

You need to create the following AT-TLS statements for this scenario:

1. A TTLSRule statement to match outbound connections from the channel initiator address space to the
IP address and port number of the target receiver channel. These values should match the information
used in the CONNAME of the sender channel. Here, further filtering has been included to match a
specific channel initiator job name.

TTLSRule CSQ1-TO-REMOTE
{
 LocalAddr ALL
 RemoteAddr 123.456.78.9
 RemotePortRange 1414
 Jobname CSQ1CHIN
 Direction OUTBOUND
 TTLSGroupActionRef CSQ1-GROUP-ACTION
 TTLSEnvironmentActionRef CSQ1-OUTBOUND-ENVIRONMENT-ACTION
}

The preceding rule matches against connections going to IP address 123.456.78.9 on port 1414 from
the CSQ1CHIN job.

More advanced filtering options are described at TTLSRule.
2. A TTLSGroupAction statement enabling the rule. The TTLSRule references the TTLSGroupAction

using the TTLSGroupActionRef property.

TTLSGroupAction CSQ1-GROUP-ACTION
{
 TTLSEnabled ON
}

3. A TTLSEnvironmentAction statement associated with the TTLSRule by the
TTLSEnvironmentActionRef property. A TTLSEnvironmentAction configures the TLS
Environment and specifies which key ring to use.

Securing IBM MQ 457

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsrule-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsrule-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsgroupaction-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsenvironmentaction-statement

TTLSEnvironmentAction CSQ1-OUTBOUND-ENVIRONMENT-ACTION
{
 HandshakeRole CLIENT
 TTLSKeyringParmsRef CSQ1-KEYRING
 TTLSCipherParmsRef CSQ1-CIPHERPARM
 TTLSEnvironmentAdvancedParmsRef CSQ1-ENVIRONMENT-ADVANCED
}

4. A TTLSKeyringParms statement associated with the TTLSEnvironmentAction by the
TTLSKeyringParmsRef property and defines the key ring used by AT-TLS.

The key ring should contain certificates trusted by the remote non-z/OS queue manager. This key ring
can be defined in the same way as a key ring used by the channel initiator; see “Configuring your z/OS
system to use TLS” on page 251.

TTLSKeyringParms CSQ1-KEYRING
{
 Keyring MQCHIN/CSQ1RING
}

5. A TTLSCipherParms statement associated with the TTLSEnvironmentAction by the
TTLSCipherParmsRef property.

This statement must contain a single cipher suite name which must be the equivalent of the IBM MQ
CipherSpec name used on the target receiver channel.

Note: AT-TLS cipher suite names do not necessarily match IBM MQ CipherSpec names. However, it is
possible to find the AT-TLS cipher suite name that matches an IBM MQ CipherSpec name by finding
the IBM MQ CipherSpec name in the following table and cross-referencing the hexadecimal code
column with the expanded character column from Table 2 in the TTLSCipherParms statement topic.

Table 83. CipherSpecs on z/OS from IBM MQ for z/OS 9.2.0

CipherSpec Protocol Hexadecimal code Enabled by default

TLS_CHACHA20_POLY1
305_SHA256

TLS 1.3 1303 Yes

TLS_AES_256_GCM_SH
A384

TLS 1.3 1302 Yes

TLS_AES_128_GCM_SH
A256

TLS 1.3 1301 Yes

TLS_RSA_WITH_AES_2
56_GCM_SHA384

TLS 1.2 009D Yes

ECDHE_RSA_AES_256
_GCM_SHA384

TLS 1.2 C030 Yes

TLS_RSA_WITH_AES_2
56_CBC_SHA256

TLS 1.2 003D Yes

ECDHE_ECDSA_AES_2
56_CBC_SHA384

TLS 1.2 C024 Yes

ECDHE_RSA_AES_256
_CBC_SHA384

TLS 1.2 C028 Yes

TLS_RSA_WITH_AES_1
28_GCM_SHA256

TLS 1.2 009C Yes

ECDHE_RSA_AES_128
_GCM_SHA256

TLS 1.2 C02F Yes

458 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlskeyringparms-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlscipherparms-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlscipherparms-statement

Table 83. CipherSpecs on z/OS from IBM MQ for z/OS 9.2.0 (continued)

CipherSpec Protocol Hexadecimal code Enabled by default

TLS_RSA_WITH_AES_1
28_CBC_SHA256

TLS 1.2 003C Yes

ECDHE_ECDSA_AES_1
28_CBC_SHA256

TLS 1.2 C023 Yes

ECDHE_RSA_AES_128
_CBC_SHA256

TLS 1.2 C027 Yes

TLS_RSA_WITH_NULL_
SHA256

TLS 1.2 003B No

TLS_RSA_WITH_AES_2
56_CBC_SHA

TLS 1.0 0035 No

TLS_RSA_WITH_AES_1
28_CBC_SHA

TLS 1.0 002F No

TLS_RSA_WITH_3DES_
EDE_CBC_SHA

TLS 1.0 000A No

TLS_RSA_WITH_RC4_1
28_SHA

TLS 1.0 0005 No

TLS_RSA_WITH_DES_C
BC_SHA

TLS 1.0 0009 No

TRIPLE_DES_SHA_US SSL v3 000A No

RC4_SHA_US SSL v3 0005 No

RC4_MD5_US SSL v3 0004 No

DES_SHA_EXPORT SSL v3 0009 N

RC4_MD5_EXPORT SSL v3 0003 No

RC2_MD5_EXPORT SSL v3 0006 No

NULL_SHA SSL v3 0002 No

NULL_MD5 SSL v3 0001 No

TTLSCipherParms CSQ1-CIPHERPARM
{
 V3CipherSuites TLS_AES_256_GCM_SHA384
}

6. A TTLSEnvironmentAdvancedParms statement is associated with the TTLSEnvironmentAction by
the TTLSEnvironmentAdvancedParmsRef property.

This statement can be used to specify which SSL and TLS protocols are enabled. With IBM MQ
you should enable only the single protocol that matches the cipher suite name used on the
TTLSCipherParms statement.

Securing IBM MQ 459

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsenvironmentadvancedparms-statement

TTLSEnvironmentAdvancedParms CSQ1-ENVIRONMENT-ADVANCED
{
 SSLv3 OFF
 TLSv1 OFF
 TLSv1.1 OFF
 SecondaryMap OFF
 TLSv1.2 OFF
 TLSv1.3 ON
}

The complete set of statements are as follows and should be applied to the policy agent:

TTLSRule CSQ1-TO-REMOTE
{
 LocalAddr ALL
 RemoteAddr 123.456.78.9
 RemotePortRange 1414
 Jobname CSQ1CHIN
 Direction OUTBOUND
 TTLSGroupActionRef CSQ1-GROUP-ACTION
 TTLSEnvironmentActionRef CSQ1-OUTBOUND-ENVIRONMENT-ACTION
}

TTLSGroupAction CSQ1-GROUP-ACTION
{
 TTLSEnabled ON
}

TTLSEnvironmentAction CSQ1-OUTBOUND-ENVIRONMENT-ACTION
{
 HandshakeRole CLIENT
 TTLSKeyringParmsRef CSQ1-KEYRING
 TTLSCipherParmsRef CSQ1-CIPHERPARM
 TTLSEnvironmentAdvancedParmsRef CSQ1-ENVIRONMENT-ADVANCED
}

TTLSKeyringParms CSQ1-KEYRING
{
 Keyring MQCHIN/CSQ1RING
}

TTLSCipherParms CSQ1-CIPHERPARM
{
 V3CipherSuites TLS_AES_256_GCM_SHA384
}

TTLSEnvironmentAdvancedParms CSQ1-ENVIRONMENT-ADVANCED
{
 SSLv3 OFF
 TLSv1 OFF
 TLSv1.1 OFF
 SecondaryMap OFF
 TLSv1.2 OFF
 TLSv1.3 ON
}

Step 3: Remove SSLCIPH from the z/OS channel

Remove the CipherSpec from the z/OS channel using the following command:

ALTER CHANNEL(channel-name) CHLTYPE(SDR) SSLCIPH(' ')

Step 4: Start the channel

Once the channel has started it will be using a combination of AT-TLS and IBM MQ TLS.

Attention: The preceding AT-TLS statements are only a minimal configuration. There are other
AT-TLS policy statements with AT-TLS which are not documented here, and could be used with
IBM MQ depending on need. However, IBM MQ has only been tested with the policies described.

460 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=applications-tls-policy-statements

Configuring AT-TLS on an outbound channel to an IBM MQ for Multiplatforms queue
manager using alias CipherSpecs
How you set up AT-TLS on an outbound channel from an IBM MQ for z/OS queue manager to an IBM
MQ for Multiplatforms queue manager. In this case, the channel on the z/OS queue manager is a sender
channel which does not have the SSLCIPH attribute set, and the channel on the non-z/OS queue manager
is a receiver channel with the SSLCIPH attribute set to an alias CipherSpec

In this example an existing sender – receiver channel pair, which uses the ANY_TLS13 alias CipherSpec is
going to be adjusted so that the sender channel uses AT-TLS instead of IBM MQ TLS.

Other TLS protocols and CiperSpecs can be used by making minor adjustments to the configuration. Other
message channel types, apart from cluster-sender and cluster-receiver channels, could be used with no
change to the AT-TLS configuration.

Procedure

Step 1: Stop the channel

Step 2: Create and apply an AT-TLS policy

You need to create the following AT-TLS statements for this scenario:

1. A TTLSRule statement to match outbound connections from the channel initiator address space to the
IP address and port number of the target receiver channel. These values should match the information
used in the CONNAME of the sender channel. Here, further filtering has been included to match a
specific channel initiator job name.

TTLSRule CSQ1-TO-REMOTE
{
 LocalAddr ALL
 RemoteAddr 123.456.78.9
 RemotePortRange 1414
 Jobname CSQ1CHIN
 Direction OUTBOUND
 TTLSGroupActionRef CSQ1-GROUP-ACTION
 TTLSEnvironmentActionRef CSQ1-OUTBOUND-ENVIRONMENT-ACTION
}

The preceding rule matches against connections going to IP address 123.456.78.9 on port 1414 from
the CSQ1CHIN job.

More advanced filtering options are described at TTLSRule.
2. A TTLSGroupAction statement enabling the rule. The TTLSRule references the TTLSGroupAction

using the TTLSGroupActionRef property.

TTLSGroupAction CSQ1-GROUP-ACTION
{
 TTLSEnabled ON
}

Securing IBM MQ 461

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsrule-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsrule-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsgroupaction-statement

3. A TTLSEnvironmentAction statement associated with the TTLSRule by the
TTLSEnvironmentActionRef property. A TTLSEnvironmentAction configures the TLS
Environment and specifies which key ring to use.

TTLSEnvironmentAction CSQ1-OUTBOUND-ENVIRONMENT-ACTION
{
 HandshakeRole CLIENT
 TTLSKeyringParmsRef CSQ1-KEYRING
 TTLSCipherParmsRef CSQ1-CIPHERPARM
 TTLSEnvironmentAdvancedParmsRef CSQ1-ENVIRONMENT-ADVANCED
}

4. A TTLSKeyringParms statement associated with the TTLSEnvironmentAction by the
TTLSKeyringParmsRef property and defines the key ring used by AT-TLS.

The key ring should contain certificates trusted by the remote non-z/OS queue manager. This key ring
can be defined in the same way as a key ring used by the channel initiator; see “Configuring your z/OS
system to use TLS” on page 251.

TTLSKeyringParms CSQ1-KEYRING
{
 Keyring MQCHIN/CSQ1RING
}

5. A TTLSCipherParms statement associated with the TTLSEnvironmentAction by the
TTLSCipherParmsRef property.

This statement must contain one or more cipher suite names, at least one of which should be
compatible with the set of CipherSpecs implied by the alias CipherSpec used on the target receiver
channel.

Note: AT-TLS cipher suite names do not necessarily match IBM MQ CipherSpec names. However, it is
possible to find the AT-TLS cipher suite name that matches an IBM MQ CipherSpec name by finding
the IBM MQ CipherSpec name in the following table and cross-referencing the hexadecimal code
column with the expanded character column from Table 2 in the TTLSCipherParms topic.

Table 84. CipherSpecs on z/OS from IBM MQ for z/OS 9.2.0

CipherSpec Protocol Hexadecimal code Enabled by default

TLS_CHACHA20_POLY1
305_SHA256

TLS 1.3 1303 Yes

TLS_AES_256_GCM_SH
A384

TLS 1.3 1302 Yes

TLS_AES_128_GCM_SH
A256

TLS 1.3 1301 Yes

TLS_RSA_WITH_AES_2
56_GCM_SHA384

TLS 1.2 009D Yes

ECDHE_RSA_AES_256
_GCM_SHA384

TLS 1.2 C030 Yes

TLS_RSA_WITH_AES_2
56_CBC_SHA256

TLS 1.2 003D Yes

ECDHE_ECDSA_AES_2
56_CBC_SHA384

TLS 1.2 C024 Yes

ECDHE_RSA_AES_256
_CBC_SHA384

TLS 1.2 C028 Yes

462 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsenvironmentaction-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlskeyringparms-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlscipherparms-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlscipherparms-statement

Table 84. CipherSpecs on z/OS from IBM MQ for z/OS 9.2.0 (continued)

CipherSpec Protocol Hexadecimal code Enabled by default

TLS_RSA_WITH_AES_1
28_GCM_SHA256

TLS 1.2 009C Yes

ECDHE_RSA_AES_128
_GCM_SHA256

TLS 1.2 C02F Yes

TLS_RSA_WITH_AES_1
28_CBC_SHA256

TLS 1.2 003C Yes

ECDHE_ECDSA_AES_1
28_CBC_SHA256

TLS 1.2 C023 Yes

ECDHE_RSA_AES_128
_CBC_SHA256

TLS 1.2 C027 Yes

TLS_RSA_WITH_NULL_
SHA256

TLS 1.2 003B No

TLS_RSA_WITH_AES_2
56_CBC_SHA

TLS 1.0 0035 No

TLS_RSA_WITH_AES_1
28_CBC_SHA

TLS 1.0 002F No

TLS_RSA_WITH_3DES_
EDE_CBC_SHA

TLS 1.0 000A No

TLS_RSA_WITH_RC4_1
28_SHA

TLS 1.0 0005 No

TLS_RSA_WITH_DES_C
BC_SHA

TLS 1.0 0009 No

TRIPLE_DES_SHA_US SSL v3 000A No

RC4_SHA_US SSL v3 0005 No

RC4_MD5_US SSL v3 0004 No

DES_SHA_EXPORT SSL v3 0009 N

RC4_MD5_EXPORT SSL v3 0003 No

RC2_MD5_EXPORT SSL v3 0006 No

NULL_SHA SSL v3 0002 No

NULL_MD5 SSL v3 0001 No

TTLSCipherParms CSQ1-CIPHERPARM
{
 V3CipherSuites TLS_CHACHA20_POLY1305_SHA256
 V3CipherSuites TLS_AES_256_GCM_SHA384
 V3CipherSuites TLS_AES_128_GCM_SHA256
}

Attention: If both the queue manager and AT-TLS policy support TLS 1.3, only alias
CipherSpecs that contain at least one TLS 1.3 CipherSpec allow the channel to start. For
example, using ANY_TLS12 results in the channel failing to start, even if TTLSCipherParms
contains TLS 1.2 CipherSpecs, but using ANY_TLS12_OR_HIGHER or ANY_TLS13 allows the
channel to start. See “Relationship between alias CipherSpec settings” on page 449 for an
explanation.

Securing IBM MQ 463

6. A TTLSEnvironmentAdvancedParms statement is associated with the TTLSEnvironmentAction by
the TTLSEnvironmentAdvancedParmsRef property.

This statement can be used to specify which SSL and TLS protocols are enabled, and should be
consistent with the cipher suites in the TTLSCipherParms statement.

TTLSEnvironmentAdvancedParms CSQ1-ENVIRONMENT-ADVANCED
{
 SSLv3 OFF
 TLSv1 OFF
 TLSv1.1 OFF
 SecondaryMap OFF
 TLSv1.2 OFF
 TLSv1.3 ON
}

The complete set of statements are as follows and should be applied to the policy agent :

TTLSRule CSQ1-TO-REMOTE
{
 LocalAddr ALL
 RemoteAddr 123.456.78.9
 RemotePortRange 1414
 Jobname CSQ1CHIN
 Direction OUTBOUND
 TTLSGroupActionRef CSQ1-GROUP-ACTION
 TTLSEnvironmentActionRef CSQ1-OUTBOUND-ENVIRONMENT-ACTION
}

TTLSGroupAction CSQ1-GROUP-ACTION
{
 TTLSEnabled ON
}

TTLSEnvironmentAction CSQ1-OUTBOUND-ENVIRONMENT-ACTION
{
 HandshakeRole CLIENT
 TTLSKeyringParmsRef CSQ1-KEYRING
 TTLSCipherParmsRef CSQ1-CIPHERPARM
 TTLSEnvironmentAdvancedParmsRef CSQ1-ENVIRONMENT-ADVANCED
}

TTLSKeyringParms CSQ1-KEYRING
{
 Keyring MQCHIN/CSQ1RING
}

TTLSCipherParms CSQ1-CIPHERPARM
{
 V3CipherSuites TLS_CHACHA20_POLY1305_SHA256
 V3CipherSuites TLS_AES_256_GCM_SHA384
 V3CipherSuites TLS_AES_128_GCM_SHA256

}

TTLSEnvironmentAdvancedParms CSQ1-ENVIRONMENT-ADVANCED
{
 SSLv3 OFF
 TLSv1 OFF
 TLSv1.1 OFF
 SecondaryMap OFF
 TLSv1.2 OFF
 TLSv1.3 ON
}

Step 3: Remove SSLCIPH from the z/OS channel

Remove the CipherSpec from the z/OS channel using the following command:

ALTER CHANNEL(channel-name) CHLTYPE(SDR) SSLCIPH(' ')

Step 4: Start the channel

464 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsenvironmentadvancedparms-statement

Once the channel has started it will be using a combination of AT-TLS and IBM MQ TLS.

Attention: The preceding AT-TLS statements are only a minimal configuration. There are other
AT-TLS policy statements with AT-TLS which are not documented here, and could be used with
IBM MQ depending on need. However, IBM MQ has only been tested with the policies described.

Configuring AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue
manager using a single, named CipherSpec
How you set up AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue manager to
an IBM MQ for z/OS queue manager. In this case, the channel on the z/OS queue manager is a receiver
channel which does not have the SSLCIPH attribute set, and the channel on the non-z/OS queue manager
is a sender channel with the SSLCIPH attribute set to a single, named CipherSpec.

See “Configuring AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue manager using
an alias CipherSpec” on page 469 for an example using an alias CipherSpec.

In this example an existing sender – receiver channel pair, which uses the TLS 1.3
TLS_AES_256_GCM_SHA384 CipherSpec is going to be adjusted so that the receiver channel uses AT-TLS
instead of IBM MQ TLS.

Other TLS protocols and CipherSpecs can be used by making minor adjustments to the configuration.
Other message channel types, apart from cluster-sender and cluster-receiver channels, could be used
with no change to the AT-TLS configuration.

Procedure

Step 1: Stop the channel

Step 2: Create and apply an AT-TLS policy

You need to create the following AT-TLS statements for this scenario:

1. A TTLSRule statement to match inbound connections to the channel initiator address space from the
IP address of the sender channel. Here, further filtering has been included to match a specific channel
initiator job name.

TTLSRule REMOTE-TO-CSQ1
{
 LocalAddr ALL
 LocalPortRange 1414
 RemoteAddr 123.456.78.9
 Jobname CSQ1CHIN
 Direction INBOUND
 TTLSGroupActionRef CSQ1-GROUP-ACTION
 TTLSEnvironmentActionRef CSQ1-INBOUND-ENVIRONMENT-ACTION
}

The preceding rule matches against connections coming into the CSQ1CHIN job on local port 1414
from remote IP address 123.456.78.9.

More advanced filtering options are described at TTLSRule.

Securing IBM MQ 465

https://www.ibm.com/docs/en/zos/3.1.0?topic=applications-tls-policy-statements
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsrule-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsrule-statement

2. A TTLSGroupAction statement enabling the rule. The TTLSRule references the TTLSGroupAction
using the TTLSGroupActionRef property.

TTLSGroupAction CSQ1-GROUP-ACTION
{
 TTLSEnabled ON
}

3. A TTLSEnvironmentAction statement is associated with the TTLSRule by the
TTLSEnvironmentActionRef property. A TTLSEnvironmentAction configures the TLS
Environment and specifies which key ring to use.

TTLSEnvironmentAction CSQ1-INBOUND-ENVIRONMENT-ACTION
{
 HandshakeRole SERVER
 TTLSKeyringParmsRef CSQ1-KEYRING
 TTLSCipherParmsRef CSQ1-CIPHERPARM
 TTLSEnvironmentAdvancedParmsRef CSQ1-ENVIRONMENT-ADVANCED
}

AT-TLS provides the capability to provide mutual authentication, which is the equivalent of using
the SSLCAUTH channel attribute. This is done by having an TTLSEnvironmentAction statement
with a HandshakeRole value of ServerWithClientAuth for the inbound TTLSEnvironmentAction
statement.

4. A TTLSKeyringParms statement is associated with the TTLSEnvironmentAction by the
TTLSKeyringParmsRef property and defines the key ring used by AT-TLS.

The key ring should contain certificates trusted by the remote non-z/OS queue manager. This key ring
can be defined in the same way as a key ring used by the channel initiator; see “Configuring your z/OS
system to use TLS” on page 251.

TTLSKeyringParms CSQ1-KEYRING
{
 Keyring MQCHIN/CSQ1RING
}

5. A TTLSCipherParms statement associated with the TTLSEnvironmentAction by the
TTLSCipherParmsRef property.

This statement must contain a single cipher suite name which must be the equivalent of the IBM MQ
CipherSpec name used on the remote sender channel.

Note: AT-TLS cipher suite names do not necessarily match IBM MQ CipherSpec names. However, it is
possible to find the AT-TLS cipher suite name that matches an IBM MQ CipherSpec name by finding
the IBM MQ CipherSpec name in the following table and cross-referencing the hexadecimal code
column with the expanded character column from Table 2 in the TTLSCipherParms statement topic.

Table 85. CipherSpecs on z/OS from IBM MQ for z/OS 9.2.0

CipherSpec Protocol Hexadecimal code Enabled by default

TLS_CHACHA20_POLY1
305_SHA256

TLS 1.3 1303 Yes

TLS_AES_256_GCM_SH
A384

TLS 1.3 1302 Yes

TLS_AES_128_GCM_SH
A256

TLS 1.3 1301 Yes

TLS_RSA_WITH_AES_2
56_GCM_SHA384

TLS 1.2 009D Yes

466 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsgroupaction-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsenvironmentaction-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlskeyringparms-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlscipherparms-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlscipherparms-statement

Table 85. CipherSpecs on z/OS from IBM MQ for z/OS 9.2.0 (continued)

CipherSpec Protocol Hexadecimal code Enabled by default

ECDHE_RSA_AES_256
_GCM_SHA384

TLS 1.2 C030 Yes

TLS_RSA_WITH_AES_2
56_CBC_SHA256

TLS 1.2 003D Yes

ECDHE_ECDSA_AES_2
56_CBC_SHA384

TLS 1.2 C024 Yes

ECDHE_RSA_AES_256
_CBC_SHA384

TLS 1.2 C028 Yes

TLS_RSA_WITH_AES_1
28_GCM_SHA256

TLS 1.2 009C Yes

ECDHE_RSA_AES_128
_GCM_SHA256

TLS 1.2 C02F Yes

TLS_RSA_WITH_AES_1
28_CBC_SHA256

TLS 1.2 003C Yes

ECDHE_ECDSA_AES_1
28_CBC_SHA256

TLS 1.2 C023 Yes

ECDHE_RSA_AES_128
_CBC_SHA256

TLS 1.2 C027 Yes

TLS_RSA_WITH_NULL_
SHA256

TLS 1.2 003B No

TLS_RSA_WITH_AES_2
56_CBC_SHA

TLS 1.0 0035 No

TLS_RSA_WITH_AES_1
28_CBC_SHA

TLS 1.0 002F No

TLS_RSA_WITH_3DES_
EDE_CBC_SHA

TLS 1.0 000A No

TLS_RSA_WITH_RC4_1
28_SHA

TLS 1.0 0005 No

TLS_RSA_WITH_DES_C
BC_SHA

TLS 1.0 0009 No

TRIPLE_DES_SHA_US SSL v3 000A No

RC4_SHA_US SSL v3 0005 No

RC4_MD5_US SSL v3 0004 No

DES_SHA_EXPORT SSL v3 0009 N

RC4_MD5_EXPORT SSL v3 0003 No

RC2_MD5_EXPORT SSL v3 0006 No

NULL_SHA SSL v3 0002 No

NULL_MD5 SSL v3 0001 No

Securing IBM MQ 467

TTLSCipherParms CSQ1-CIPHERPARM
{
 V3CipherSuites TLS_AES_256_GCM_SHA384
}

6. A TTLSEnvironmentAdvancedParms statement is associated with the TTLSEnvironmentAction by
the TTLSEnvironmentAdvancedParmsRef property.

This statement can be used to specify which SSL and TLS protocols are enabled. With IBM MQ
you should enable only the single protocol that matches the cipher suite name used on the
TTLSCipherParms statement.

TTLSEnvironmentAdvancedParms CSQ1-ENVIRONMENT-ADVANCED
{
 SSLv3 OFF
 TLSv1 OFF
 TLSv1.1 OFF
 SecondaryMap OFF
 TLSv1.2 OFF
 TLSv1.3 ON
}

The complete set of statements are as follows and should be applied to the policy agent :

TTLSRule REMOTE-TO-CSQ1
{
 LocalAddr ALL
 LocalPortRange 1414
 RemoteAddr 123.456.78.9
 Jobname CSQ1CHIN
 Direction INBOUND
 TTLSGroupActionRef CSQ1-GROUP-ACTION
 TTLSEnvironmentActionRef CSQ1-INBOUND-ENVIRONMENT-ACTION
}

TTLSGroupAction CSQ1-GROUP-ACTION
{
 TTLSEnabled ON
}

TTLSEnvironmentAction CSQ1-INBOUND-ENVIRONMENT-ACTION
{
 HandshakeRole SERVER
 TTLSKeyringParmsRef CSQ1-KEYRING
 TTLSCipherParmsRef CSQ1-CIPHERPARM
 TTLSEnvironmentAdvancedParmsRef CSQ1-ENVIRONMENT-ADVANCED
}

TTLSKeyringParms CSQ1-KEYRING
{
 Keyring MQCHIN/CSQ1RING
}

TTLSCipherParms CSQ1-CIPHERPARM
{
 V3CipherSuites TLS_AES_256_GCM_SHA384
}

TTLSEnvironmentAdvancedParms CSQ1-ENVIRONMENT-ADVANCED
{
 SSLv3 OFF
 TLSv1 OFF
 TLSv1.1 OFF
 SecondaryMap OFF
 TLSv1.2 OFF
 TLSv1.3 ON
}

Step 3: Remove SSLCIPH from the z/OS channel

468 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsenvironmentadvancedparms-statement

Remove the CipherSpec from the z/OS channel using the following command:

ALTER CHANNEL(channel-name) CHLTYPE(RCVR) SSLCIPH(' ')

Step 4: Start the channel

Once the channel has started it will be using a combination of AT-TLS and IBM MQ TLS.

Attention: The preceding AT-TLS statements are only a minimal configuration. There are other
AT-TLS policy statements with AT-TLS which are not documented here, and could be used with
IBM MQ depending on need. However, IBM MQ has only been tested with the policies described.

Configuring AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue
manager using an alias CipherSpec
How you set up AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue manager to
an IBM MQ for z/OS queue manager. In this case, the channel on the z/OS queue manager is a receiver
channel which does not have the SSLCIPH attribute set, and the channel on the non-z/OS queue manager
is a sender channel with the SSLCIPH attribute set to an alias CipherSpec.

In this example an existing sender – receiver channel pair, which uses any TLS 1.3 CipherSpec is going to
be adjusted so that the receiver channel uses AT-TLS instead of IBM MQ TLS.

Other TLS protocols and CiperSpecs can be used by making minor adjustments to the configuration. Other
message channel types, apart from cluster-sender and cluster-receiver channels, could be used with no
change to the AT-TLS configuration.

Procedure

Step 1: Stop the channel

Step 2: Create and apply an AT-TLS policy

You need to create the following AT-TLS statements for this scenario:

1. A TTLSRule statement to match inbound connections to the channel initiator address space from the
IP address of the sender channel. Here, further filtering has been included to match a specific channel
initiator job name.

TTLSRule REMOTE-TO-CSQ1
{
 LocalAddr ALL
 LocalPortRange 1414
 RemoteAddr 123.456.78.9
 Jobname CSQ1CHIN
 Direction INBOUND
 TTLSGroupActionRef CSQ1-GROUP-ACTION
 TTLSEnvironmentActionRef CSQ1-INBOUND-ENVIRONMENT-ACTION
}

Securing IBM MQ 469

https://www.ibm.com/docs/en/zos/3.1.0?topic=applications-tls-policy-statements
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsrule-statement

The preceding rule matches against connections coming into the CSQ1CHIN job on local port 1414
from remote IP address 123.456.78.9.

More advanced filtering options are described at TTLSRule.
2. A TTLSGroupAction statement enabling the rule. The TTLSRule references the TTLSGroupAction

using the TTLSGroupActionRef property.

TTLSGroupAction CSQ1-GROUP-ACTION
{
 TTLSEnabled ON
}

3. A TTLSEnvironmentAction statement is associated with the TTLSRule by the
TTLSEnvironmentActionRef property. A TTLSEnvironmentAction configures the TLS
Environment and specifies which key ring to use.

TTLSEnvironmentAction CSQ1-INBOUND-ENVIRONMENT-ACTION
{
 HandshakeRole SERVER
 TTLSKeyringParmsRef CSQ1-KEYRING
 TTLSCipherParmsRef CSQ1-CIPHERPARM
 TTLSEnvironmentAdvancedParmsRef CSQ1-ENVIRONMENT-ADVANCED
}

AT-TLS provides the capability to provide mutual authentication, which is the equivalent of using
the SSLCAUTH channel attribute. This is done by having an TTLSEnvironmentAction statement
with a HandshakeRole value of ServerWithClientAuth for the inbound TTLSEnvironmentAction
statement.

4. A TTLSKeyringParms statement is associated with the TTLSEnvironmentAction by the
TTLSKeyringParmsRef property and defines the key ring used by AT-TLS.

The key ring should contain certificates trusted by the remote non-z/OS queue manager. This key ring
can be defined in the same way as a key ring used by the channel initiator; see “Configuring your z/OS
system to use TLS” on page 251.

TTLSKeyringParms CSQ1-KEYRING
{
 Keyring MQCHIN/CSQ1RING
}

5. A TTLSCipherParms statement associated with the TTLSEnvironmentAction by the
TTLSCipherParmsRef property.

This statement must contain at least one cipher suite name which is included in the alias CipherSpec
set on the remote sender channel.

Note: AT-TLS cipher suite names do not necessarily match IBM MQ CipherSpec names. However, it is
possible to find the AT-TLS cipher suite name that matches an IBM MQ CipherSpec name by finding
the IBM MQ CipherSpec name in the following table and cross-referencing the hexadecimal code
column with the expanded character column from Table 2 in the TTLSCipherParms statement topic.

Table 86. CipherSpecs on z/OS from IBM MQ for z/OS 9.2.0

CipherSpec Protocol Hexadecimal code Enabled by default

TLS_CHACHA20_POLY1
305_SHA256

TLS 1.3 1303 Yes

TLS_AES_256_GCM_SH
A384

TLS 1.3 1302 Yes

470 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsrule-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsgroupaction-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsenvironmentaction-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlskeyringparms-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlscipherparms-statement
https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlscipherparms-statement

Table 86. CipherSpecs on z/OS from IBM MQ for z/OS 9.2.0 (continued)

CipherSpec Protocol Hexadecimal code Enabled by default

TLS_AES_128_GCM_SH
A256

TLS 1.3 1301 Yes

TLS_RSA_WITH_AES_2
56_GCM_SHA384

TLS 1.2 009D Yes

ECDHE_RSA_AES_256
_GCM_SHA384

TLS 1.2 C030 Yes

TLS_RSA_WITH_AES_2
56_CBC_SHA256

TLS 1.2 003D Yes

ECDHE_ECDSA_AES_2
56_CBC_SHA384

TLS 1.2 C024 Yes

ECDHE_RSA_AES_256
_CBC_SHA384

TLS 1.2 C028 Yes

TLS_RSA_WITH_AES_1
28_GCM_SHA256

TLS 1.2 009C Yes

ECDHE_RSA_AES_128
_GCM_SHA256

TLS 1.2 C02F Yes

TLS_RSA_WITH_AES_1
28_CBC_SHA256

TLS 1.2 003C Yes

ECDHE_ECDSA_AES_1
28_CBC_SHA256

TLS 1.2 C023 Yes

ECDHE_RSA_AES_128
_CBC_SHA256

TLS 1.2 C027 Yes

TLS_RSA_WITH_NULL_
SHA256

TLS 1.2 003B No

TLS_RSA_WITH_AES_2
56_CBC_SHA

TLS 1.0 0035 No

TLS_RSA_WITH_AES_1
28_CBC_SHA

TLS 1.0 002F No

TLS_RSA_WITH_3DES_
EDE_CBC_SHA

TLS 1.0 000A No

TLS_RSA_WITH_RC4_1
28_SHA

TLS 1.0 0005 No

TLS_RSA_WITH_DES_C
BC_SHA

TLS 1.0 0009 No

TRIPLE_DES_SHA_US SSL v3 000A No

RC4_SHA_US SSL v3 0005 No

RC4_MD5_US SSL v3 0004 No

DES_SHA_EXPORT SSL v3 0009 N

RC4_MD5_EXPORT SSL v3 0003 No

RC2_MD5_EXPORT SSL v3 0006 No

Securing IBM MQ 471

Table 86. CipherSpecs on z/OS from IBM MQ for z/OS 9.2.0 (continued)

CipherSpec Protocol Hexadecimal code Enabled by default

NULL_SHA SSL v3 0002 No

NULL_MD5 SSL v3 0001 No

TTLSCipherParms CSQ1-CIPHERPARM
{
 V3CipherSuites TLS_CHACHA20_POLY1305_SHA256
 V3CipherSuites TLS_AES_256_GCM_SHA384
 V3CipherSuites TLS_AES_128_GCM_SHA256
}

Attention: If both the queue manager and AT-TLS policy support TLS 1.3, only alias
CipherSpecs that contain at least one TLS 1.3 CipherSpec allow the channel to start. For
example, using ANY_TLS12 results in the channel failing to start, even if TTLSCipherParms
contains TLS 1.2 CipherSpecs, but using ANY_TLS12_OR_HIGHER or ANY_TLS13 allows the
channel to start. See “Relationship between alias CipherSpec settings” on page 449 for an
explanation.

6. A TTLSEnvironmentAdvancedParms statement is associated with the TTLSEnvironmentAction by
the TTLSEnvironmentAdvancedParmsRef property.

This statement can be used to specify which SSL and TLS protocols are enabled, and should be
consistent with the cipher suites in the TTLSCipherParms statement.

TTLSEnvironmentAdvancedParms CSQ1-ENVIRONMENT-ADVANCED
{
 SSLv3 OFF
 TLSv1 OFF
 TLSv1.1 OFF
 SecondaryMap OFF
 TLSv1.2 OFF
 TLSv1.3 ON
}

The complete set of statements are as follows and should be applied to the policy agent :

472 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-ttlsenvironmentadvancedparms-statement

TTLSRule REMOTE-TO-CSQ1
{
 LocalAddr ALL
 LocalPortRange 1414
 RemoteAddr 123.456.78.9
 Jobname CSQ1CHIN
 Direction INBOUND
 TTLSGroupActionRef CSQ1-GROUP-ACTION
 TTLSEnvironmentActionRef CSQ1-INBOUND-ENVIRONMENT-ACTION
}

TTLSGroupAction CSQ1-GROUP-ACTION
{
 TTLSEnabled ON
}

TTLSEnvironmentAction CSQ1-INBOUND-ENVIRONMENT-ACTION
{
 HandshakeRole SERVER
 TTLSKeyringParmsRef CSQ1-KEYRING
 TTLSCipherParmsRef CSQ1-CIPHERPARM
 TTLSEnvironmentAdvancedParmsRef CSQ1-ENVIRONMENT-ADVANCED
}

TTLSKeyringParms CSQ1-KEYRING
{
 Keyring MQCHIN/CSQ1RING
}

TTLSCipherParms CSQ1-CIPHERPARM
{
 V3CipherSuites TLS_CHACHA20_POLY1305_SHA256
 V3CipherSuites TLS_AES_256_GCM_SHA384
 V3CipherSuites TLS_AES_128_GCM_SHA256

}

TTLSEnvironmentAdvancedParms CSQ1-ENVIRONMENT-ADVANCED
{
 SSLv3 OFF
 TLSv1 OFF
 TLSv1.1 OFF
 SecondaryMap OFF
 TLSv1.2 OFF
 TLSv1.3 ON
}

Step 3: Remove SSLCIPH from the z/OS channel

Remove the CipherSpec from the z/OS channel using the following command:

ALTER CHANNEL(channel-name) CHLTYPE(SDR) SSLCIPH(' ')

Step 4: Start the channel

Once the channel has started it will be using a combination of AT-TLS and IBM MQ TLS.

Attention: The preceding AT-TLS statements are only a minimal configuration. There are other
AT-TLS policy statements with AT-TLS which are not documented here, and could be used with
IBM MQ depending on need. However, IBM MQ has only been tested with the policies described.

Resetting SSL and TLS secret keys
IBM MQ supports the resetting of secret keys on queue managers and clients.

Secret keys are reset when a specified number of encrypted bytes of data have flowed across the
channel. If channel heartbeats are enabled, the secret key is reset before data is sent or received
following a channel heartbeat.

The key reset value is always set by the initiating side of the IBM MQ channel.

Securing IBM MQ 473

https://www.ibm.com/docs/en/zos/3.1.0?topic=applications-tls-policy-statements

Queue manager
For a queue manager, use the command ALTER QMGR with the parameter SSLRKEYC to set the values
used during key renegotiation.

On IBM i, use CHGMQM with the SSLRSTCNT parameter.

MQI client
By default, MQI clients do not renegotiate the secret key. You can make an MQI client renegotiate the
key in any of three ways. In the following list, the methods are shown in order of priority. If you specify
multiple values, the highest priority value is used.

1. By using the KeyResetCount field in the MQSCO structure on an MQCONNX call.
2. By using the environment variable MQSSLRESET.
3. By setting the SSLKeyResetCount attribute in the SSL stanza of the client configuration file.

These variables can be set to an integer in the range 0 through 999 999 999, representing the number of
unencrypted bytes sent and received within a TLS conversation before the TLS secret key is renegotiated.
Specifying a value of 0 indicates that TLS secret keys are never renegotiated. If you specify a TLS secret
key reset count in the range 1 byte through 32 KB, TLS channels will use a secret key reset count of 32
KB. This is to avoid excessive key resets which would occur for small TLS secret key reset values.

If a value greater than zero is specified and channel heartbeats are enabled for the channel, the secret
key is also renegotiated before message data is sent or received following a channel heartbeat.

The count of bytes until the next secret key renegotiation is reset after each successful renegotiation.

Java
For IBM MQ classes for Java, an application can reset the secret key in either of the following ways:

• By setting the sslResetCount field in the MQEnvironment class.
• By setting the environment property MQC.SSL_RESET_COUNT_PROPERTY in a Hashtable object. The

application then assigns the hashtable to the properties field in the MQEnvironment class, or passes
the hashtable to an MQQueueManager object on its constructor.

If the application uses more than one of these ways, the usual precedence rules apply. See Class
com.ibm.mq.MQEnvironment for the precedence rules.

The value of the sslResetCount field or environment property MQC.SSL_RESET_COUNT_PROPERTY
represents the total number of bytes sent and received by the IBM MQ classes for Java client code
before the secret key is renegotiated. The number of bytes sent is the number before encryption, and
the number of bytes received is the number after decryption. The number of bytes also includes control
information sent and received by the IBM MQ classes for Java client.

If the reset count is zero, which is the default value, the secret key is never renegotiated. The reset count
is ignored if no CipherSuite is specified.

JMS
For IBM MQ classes for JMS, the SSLRESETCOUNT property represents the total number of bytes sent and
received by a connection before the secret key that is used for encryption is renegotiated. The number
of bytes sent is the number before encryption, and the number of bytes received is the number after
decryption. The number of bytes also includes control information sent and received by IBM MQ classes
for JMS. For example, to configure a ConnectionFactory object that can be used to create a connection
over a TLS enabled MQI channel with a secret key that is renegotiated after 4 MB of data have flowed,
issue the following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

474 Securing IBM MQ

If the value of SSLRESETCOUNT is zero, which is the default value, the secret key is never renegotiated.
The SSLRESETCOUNT property is ignored if SSLCIPHERSUITE is not set.

.NET
For .NET unmanaged clients, the integer property SSLKeyResetCount indicates the number of
unencrypted bytes sent and received within a TLS conversation before the secret key is renegotiated.
For more information about the use of object properties in IBM MQ classes for .NET, see Getting and
setting attribute values.

For .NET managed clients, the SSLStream class does not support secret key reset/renegotiation. However,
to be consistent with other IBM MQ clients, the IBM MQ managed .NET client allows applications to set
SSLKeyResetCount. For more information, see Secret key reset or renegotiation.

XMS .NET
For XMS .NET unmanaged clients, see Secure connections to an IBM MQ queue manager.

Related reference
ALTER QMGR
DISPLAYQMGR
Change Message Queue Manager (CHGMQM)
Display Message Queue Manager (DSPMQM)

Implementing confidentiality in user exit programs

Implementing confidentiality in security exits
Security exits can play a role in the confidentiality service by generating and distributing the symmetric
key for encrypting and decrypting the data that flows on the channel. A common technique for doing this
uses PKI technology.

One security exit generates a random data value, encrypts it with the public key of the queue manager
or user that the partner security exit is representing, and sends the encrypted data to its partner in a
security message. The partner security exit decrypts the random data value with the private key of the
queue manager or user it is representing. Each security exit can now use the random data value to derive
the symmetric key independently of the other by using an algorithm known to both of them. Alternatively,
they can use the random data value as the key.

If the first security exit has not authenticated its partner by this time, the next security message sent by
the partner can contain an expected value encrypted with the symmetric key. The first security exit can
now authenticate its partner by checking that the partner security exit was able to encrypt the expected
value correctly.

The security exits can also use this opportunity to agree the algorithm for encrypting and decrypting the
data that flows on the channel, if more than one algorithm is available for use.

Implementing confidentiality in message exits
A message exit at the sending end of a channel can encrypt the application data in a message and
another message exit at the receiving end of the channel can decrypt the data. For performance
reasons, a symmetric key algorithm is normally used for this purpose. For more information about how
the symmetric key can be generated and distributed, see “Implementing confidentiality in user exit
programs” on page 475.

Headers in a message, such as the transmission queue header, MQXQH, which includes the embedded
message descriptor, must not be encrypted by a message exit. This is because data conversion of the
message headers takes place either after a message exit is called at the sending end or before a message

Securing IBM MQ 475

exit is called at the receiving end. If the headers are encrypted, data conversion fails and the channel
stops.

Implementing confidentiality in send and receive exits
Send and receive exits can be used to encrypt and decrypt the data that flows on a channel. They are
more appropriate than message exits for providing this service for the following reasons:

• On a message channel, message headers can be encrypted as well as the application data in the
messages.

• Send and receive exits can be used on MQI channels as well as message channels. Parameters on
MQI calls might contain sensitive application data that needs to be protected while it flows on an MQI
channel. You can therefore use the same send and receive exits on both kinds of channels.

Implementing confidentiality in the API exit and API-crossing exit
The application data in a message can be encrypted by an API or API-crossing exit when the message
is put by the sending application and decrypted by a second exit when the message is retrieved by
the receiving application. For performance reasons, a symmetric key algorithm is typically used for this
purpose. However, at the application level, where many users might be sending messages to each other,
the problem is how to ensure that only the intended receiver of a message is able to decrypt the message.
One solution is to use a different symmetric key for each pair of users that send messages to each other.
But this solution might be difficult and time consuming to administer, particularly if the users belong to
different organizations. A standard way of solving this problem is known as digital enveloping and uses
PKI technology.

When an application puts a message on a queue, an API or API-crossing exit generates a random
symmetric key and uses the key to encrypt the application data in the message. The exit encrypts the
symmetric key with the public key of the intended receiver. It then replaces the application data in the
message with the encrypted application data and the encrypted symmetric key. In this way, only the
intended receiver can decrypt the symmetric key and therefore the application data. If an encrypted
message has more than one possible intended receiver, the exit can encrypt a copy of the symmetric key
for each intended receiver.

If different algorithms for encrypting and decrypting the application data are available for use, the exit can
include the name of the algorithm it has used.

Confidentiality for data at rest on IBM MQ for z/OS with
data set encryption

IBM MQ for z/OS can harden customer and configuration data by writing the data to the active log data
sets, the archive log data sets, page sets, boot strap data sets (BSDS), and shared message data sets
(SMDS).

z/OS provides efficient, policy-based encryption of data sets. IBM MQ for z/OS supports z/OS data set
encryption for:

• Active log data sets; see note “1” on page 477
• Archive log data sets; see note “2” on page 477
• Page sets; see note “1” on page 477
• BSDS; see note “2” on page 477
• CSQINP* data sets; see note “2” on page 477
• SMDS; see note “1” on page 477

This provides confidentiality of data at rest on an individual z/OS queue manager.

Notes:

476 Securing IBM MQ

1. From IBM MQ for z/OS 9.2.0, z/OS data set encryption for active logs. page sets, and SMDS are
supported.

2. Data set encryption for archive logs, BSDS and CSQINP* data sets is supported on all versions of IBM
MQ for z/OS.

3. IBM MQ Advanced Message Security provides an alternative mechanism of protecting data at rest. In
addition AMS also protects data in memory and in flight

See Using the z/OS data set encryption enhancements for more information about z/OS data set
encryption.

Configuration of z/OS data set encryption is outside of the control of IBM MQ for z/OS. Encryption settings
take effect when the data set is created.

This means that any existing data sets need to be recreated before a new data set encryption policy can
be used.

IBM MQ for z/OS can run with a mixture of encrypted and non-encrypted data sets, but a standard
configuration would encrypt all, or none, of the data sets used.

Overview of steps to encrypt an IBM MQ for z/OS data set
How you encrypt an IBM MQ for z/OS data set.

Before you begin
You must ensure that you have configured z/OS data set encryption correctly in your enterprise. If you are
setting up data set encryption in a queue sharing group, you must configure z/OS data set encryption for
data sharing.

Note: A z/OS encrypted data set must be an extended format data set.

Procedure
1. Set up encryption key and key-label in RACF to use to encrypt the data set.
2. Create a profile for key-label in the RACF CSFKEYS class.
3. Grant READ access to the user Id of the queue manager, and any other user Ids that need access to

the encrypted data.
This might include user IDs that are used to run print utilities against the data set. For example, the
user running CSQUTIL SCOPY would need to decrypt the relevant page set.

4. Associate the encryption key-label with the data set name.
You can do this by using an SMS data class, or a RACF DFP segment, for the data set name or
high-level qualifier.
You can also associate the key-label with the data set when the data set is allocated.

5. Rename any existing data set using IDCAMS ALTER.
6. Re-allocate the data set with the appropriate attributes.
7. Copy the contents of the renamed data set to the new data set using IDCAMS REPRO.

The data is encrypted by the action of copying it into the data set.
8. Repeat steps “4” on page 477 to “6” on page 477 for any other data sets that need to be encrypted.

Example of how to encrypt queue manager active logs
The following topics guide you through the process of enabling data set encryption on existing active logs.

Note: The process for other data sets is similar to that for active logs.

In this example:

Securing IBM MQ 477

https://www.ibm.com/docs/en/zos/3.1.0?topic=v2r3-using-zos-data-set-encryption-enhancements

• Queue manager CSQ1 is run under user QMCSQ1, and has active log data sets
CSQ1.LOGS.LOGCOPY1.DS001, CSQ1.LOGS.LOGCOPY1.DS002, and so on

• The hardware and software environment is capable of using z/OS data set encryption
• RACF is used as the SAF
• The queue manager has been stopped

Carry out the procedure in the following order:

1. “Configuring the data set encryption key for the queue manager” on page 478
2. “Configuring data set encryption for the log data sets” on page 478

Configuring the data set encryption key for the queue manager
How you configure a data set encryption key for a queue manager.

About this task
This task is a prerequisite for “Configuring data set encryption for the log data sets” on page 478.

Procedure
1. Set up an AES-256 bit encryption DATA key with a label, for example, CSQ1DSKY, using the z/OS key

generator utility program (KGUP).
2. Define the RACF CSFKEYS profile for the CSQ1DSKY encryption key, by issuing the following command:

RDEFINE CSFKEYS CSQ1DSKY UACC(NONE)

3. Configure the ICSF segment of the profile to allow the key to be used as a protected key, by issuing the
following command:

RALTER CSFKEYS CSQ1DSKY ICSF(SYMCPACFWRAP(YES) SYMCPACFRET(YES))

4. Allow the queue manager to use the encryption key by giving QMCSQ1 READ access to the profile, by
issuing the following command:

PERMIT CSQ1DSKY CLASS(CSFKEYS) ID(QMCSQ1) ACCESS(READ)

Give the same access to any administrative user that needs to read or write the encrypted data set.
5. Refresh the CSFKEYS class by issuing the following command.

SETROPTS RACLIST(CSFKEYS) REFRESH

What to do next
Configure data set encryption for the data sets as described in “Configuring data set encryption for the log
data sets” on page 478

Configuring data set encryption for the log data sets
How you configure the encryption on the log data sets.

Before you begin
Ensure that you have read:

Overview of steps to encrypt an IBM MQ for z/OS data set, and carried out the procedure in
“Configuring the data set encryption key for the queue manager” on page 478

478 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=keys-key-generator-utility-program
https://www.ibm.com/docs/en/zos/3.1.0?topic=keys-key-generator-utility-program

About this task
This method uses the DFP segment of a RACF generic profile, so that you can use the encryption key for
all new data sets that match the profile.

Alternatively, you can configure and use an SMS data class, or the key label can be specified directly when
allocating the data set.

As previously described, in this example, queue manager CSQ1 is run under user QMCSQ1, and has active
log data sets CSQ1.LOGS.LOGCOPY1.DS001, CSQ1.LOGS.LOGCOPY1.DS002, and so on.

Procedure
1. Create the generic profile if it does not exist, by issuing the following command:

ADDSD 'CSQ1.LOGS.*' UACC(NONE)

2. Permit the queue manager user alter access on the profile, by issuing the following command:

PERMIT 'CSQ1.LOGS.*' ID(QMCSQ1) ACCESS(ALTER)

Also, permit the appropriate access needed for any administrative user.
3. Add the DFP segment with the encryption key label by issuing the following command:

ALTDSD 'CSQ1.LOGS.*' DFP(RESOWNER(QMCSQ1) DATAKEY(CSQ1DSKY))

Note: You must use the same encryption key that you used in configuring the data set encryption key
for the queue manager.

4. Refresh the generic dataset profiles by issuing the following command:

SETROPTS GENERIC(DATASET) REFRESH

5. Rename each log data set to a backup, then recreate and restore the data, using IDCAMS. The
following JCL fragment converts CSQ1.LOGS.LOGCOPY1.DS001:
a) Rename the data set to a back-up

//RENAME EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /*---*/
 /* RENAME DATASET TO BACKUP */
 /*---*/
 ALTER 'CSQ1.LOGS.LOGCOPY1.DS001' -
 NEWNAME('CSQ1.BAK.LOGS.LOGCOPY1.DS001')

b) Redefine the data set.
The new data set will be encrypted due to the RACF profile.

Note: Replace ++EXTDCLASS++ with the name of the extended format data class you want to use
for the data set.

//REDEFINE EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /*---*/
 /* REDEFINE THE DATASET */
 /*---*/
 DEFINE CLUSTER -
 (NAME(CSQ1.LOGS.LOGCOPY1.DS001) -
 LINEAR -
 SHAREOPTIONS(2 3) -
 MODEL(CSQ1.BAK.LOGS.LOGCOPY1.DS001) -
 DATACLAS(++EXTDCLASS++))

c) Copy the data from the backup into the recreated data set.
This step encrypts the data:

Securing IBM MQ 479

//RESTORE EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /*---*/
 /* RESTORE DATA INTO ENCRYPTED LOG */
 /*---*/
 REPRO INDATASET(CSQ1.BAK.LOGS.LOGCOPY1.DS001) -
 OUTDATASET(CSQ1.LOGS.LOGCOPY1.DS001)

What to do next
Repeat Step “5” on page 479 for all active log data sets.

Only a single encryption key is required, and all data sets can be associated with the same key label.

Restart queue manager CSQ1. Use the output from the DISPLAY LOG command to verify that the log data
sets have been encrypted.

Considerations for z/OS data set encryption in a queue sharing
group

Each queue manager in a queue sharing group (QSG) must be able to read the logs, BSDS, and shared
message data sets (SMDS), of every other queue manager in the QSG.

This means that each system on which a member of the QSG can run, must meet the requirements for
z/OS data set encryption, and all the key labels and encryption keys used to protect the data sets for each
queue manager in the QSG must be available on each system.

A queue manager prior to IBM MQ for z/OS 9.1.4 cannot access an encrypted active log data set.

A queue manager prior to IBM MQ for z/OS 9.1.5 cannot access an encrypted SMDS.

Before making use of z/OS data set encryption, you should migrate all queue managers in a QSG to at
least IBM MQ for z/OS 9.1.5.

If a queue manager in a QSG is started with any encrypted active log data set, and any other queue
manager in the QSG has been started, but was not last started with a version of IBM MQ for z/OS that
supports encrypted active logs, the queue manager with the encrypted active log terminates abnormally
with abend code 5C6-00F50033.

You can convert a QSG to use encrypted active logs and SMDS without a full outage, by:

1. Migrating each queue manager to at least IBM MQ for z/OS 9.1.5 in turn.
2. Converting active logs to encrypted data sets for each queue manager in turn. This requires the queue

manager to be shut down and then restarted.

At the same time, it is likely that page sets and archive logs would be enabled for encrypted data sets
too, but this does not affect QSG migration.

The procedure for converting each data set is described in “Example of how to encrypt queue manager
active logs” on page 477

3. Converting SMDS to encrypted data sets for each individual CF structure in turn by:

a. Issuing the command RESET SMDS(*) ACCESS(DISABLED) CFSTRUCT(structure-name) to suspend
queue manager access to the SMDS.

Note that during this time, the data on the shared queues associated with the SMDS is temporarily
unavailable.

b. Converting each data set that makes up the SMDS to encrypted data sets, using the procedure
described in “Example of how to encrypt queue manager active logs” on page 477.

c. Issuing the command RESET SMDS(*) ACCESS(ENABLED) CFSTRUCT(structure-name) to resume
queue manager access to the SMDS.

480 Securing IBM MQ

Attention: You should shut the queue manager down cleanly prior to converting the logs, and
coupling facility structure recovery might not be possible during the conversion, as the active log
data sets will be temporarily unavailable.

Backwards migration considerations when using z/OS data set
encryption

You need to consider the following when backwards migrating a queue manager, which has one or more
encrypted data sets.

z/OS data set encryption is supported on the following IBM MQ for z/OS data sets:

• Active log data sets
• Archive log data sets
• Page sets
• BSDS
• SMDS
• CSQINP* data sets

There are no backwards migration considerations for BSDS, archive log, or CSINP* data sets.

However, there are considerations for

• SMDS
• Page set and
• Active log

data sets, as using these with z/OS data set encryption is not supported in IBM MQ for z/OS 9.1.0, and
earlier, long term support releases.

Prior to backwards migration, all encryption policies for SMDS, page set, and active log data sets need to
be removed and the data decrypted. This process is described in “Removing data set encryption from a
data set” on page 481.

Attention: If the queue manager to be backwards migrated is part of a queue sharing group (QSG),
read the “Queue sharing group considerations” on page 482 section first.

Removing data set encryption from a data set
This example describes how to remove data set encryption from the log data set
CSQ1.LOGS.LOGCOPY1.DS001. You can use an equivalent process for SMDS and page sets.

The example assumes that:

• RACF is the SAF
• The queue manager that uses the data set has been stopped
• The encryption key label has been associated with the generic RACF profile CSQ1.LOGS.*

Carry out the following procedure:

1. Copy the data from the data set to a back-up data set.

a. Define a backup data set which is not associated with an encryption key label.

Note: Replace ++EXTDCLASS++ with the name of the extended format data class you want to use
for the data set.

//DEFINE EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /*---*/
 /* DEFINE UNENCRYPTED DATA SET */

Securing IBM MQ 481

 /*---*/
 DEFINE CLUSTER -
 (NAME(CSQ1.BAK.LOGS.LOGCOPY1.DS001) -
 LINEAR -
 SHAREOPTIONS(2 3) -
 MODEL(CSQ1.LOGS.LOGCOPY1.DS001) -
 DATACLAS(++EXTDCLASS++))
/*

b. Copy the data from the original data set to the backup. This step decrypts the data.

//COPY EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /*---*/
 /* COPY DATA INTO UNENCRYPTED DATA SET */
 /*---*/
 REPRO INDATASET(CSQ1.LOGS.LOGCOPY1.DS001) -
 OUTDATASET(CSQ1.BAK.LOGS.LOGCOPY1.DS001)
/*

c. Delete the original data set

//DELETE EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /*---*/
 /* DELETE ORIGINAL */
 /*---*/
 DELETE ('CSQ1.LOGS.LOGCOPY1.DS001')
/*

d. Rename the backup to the original data set name. The data remains unencrypted

//RENAME EXEC PGM=IDCAMS,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /*---*/
 /* RENAME UNENCRYPTED DATA SET */
 /*---*/
 ALTER CSQ1.BAK.LOGS.LOGCOPY1.DS001' -
 NEWNAME('CSQ1.LOGS.LOGCOPY1.DS001)
 ALTER 'CSQ1.BAK.LOGS.LOGCOPY1.DS001.*' -
 NEWNAME('CSQ1.LOGS.LOGCOPY1.DS001.*')
/*

2. Optionally, repeat this process for other data sets that have an encryption key label associated with
them through the CSQ1.LOGS.* generic profile.

3. Optionally, if all data sets associated with the CSQ1.LOGS.* generic profile have been decrypted,
remove the DATAKEY associated with the generic profile by issuing the following command

ALTDSD 'CSQ1.LOGS.*' DFP(RESOWNER(QMCSQ1) DATAKEY(CSQ1DSKY))

4. Refresh the generic dataset profiles by issuing the following command:

SETROPTS GENERIC(DATASET) REFRESH

5. Restart the queue manager.
6. If the encryption key is no longer needed, delete it, and delete its associated RACF profile from the

CSFKEYS class.

Queue sharing group considerations
If a queue manager that is part of a queue sharing group is going to be backwards migrated to a version of
IBM MQ for z/OS that does not support data set encryption then all of the active log data sets and SMDS
of all queue managers in the QSG need to have their data set encryption policies removed, and their data
decrypted.

482 Securing IBM MQ

This applies regardless of whether a single member of QSG is backwards migrated, or all members of the
QSG.

You can achieve removal of encryption policies, and decryption of data, without a full QSG outage by:

1. Shutting down each queue manager in the QSG in turn, removing the encryption policies and
decrypting the data from its active logs, using the process described in “Removing data set encryption
from a data set” on page 481.

If the queue manager is to be backwards migrated, its page set should also be decrypted at this time.
Then restart the queue manager.

2. Removing the encryption policies and decrypting the data for the SMDS of each individual CF structure
in turn by:

a. Issuing the command

RESET SMDS(*) ACCESS(DISABLED) CFSTRUCT(structure-name)

to suspend queue manager access to the SMDS. During this time the data on the shared queues
associated with the SMDS will be temporarily unavailable.

b. Following the process in “Removing data set encryption from a data set” on page 481 for each data
set which makes up the SMDS.

c. Issuing the command

RESET SMDS(*) ACCESS(ENABLED) CFSTRUCT(structure-name)

to resume queue manager access to the SMDS.

Using z/OS data set encryption with a queue manager that does not support it
If you accidentally backwards migrate a queue manager to a version of IBM MQ for z/OS that does not
support data set encryption, and forget to remove the encryption policies and decrypt the data you get an
error when the queue manager tries to access the data set.

The error depends on the data set type and is shown in the following table.

Note: If one or more of these errors occur, you need to follow the processes described in “Removing data
set encryption from a data set” on page 481 for the affected data set. These can be performed without
changing the version of IBM MQ for z/OS.

Data set Error if queue manager does not support z/OS data set encryption

Page set 0 Abend 5C6-00C91400 at queue manager start

Page sets 1-99 MQRC 2193 "Pageset error" when accessing page set, for example, on
MQPUT

Active log Abend 5C6-00E80084 at queue manager start

SMDS Message IEC161I-122 logged "The data set has a KEYLABEL, but the user did
not specify that the application could handle encryption".

SMDS marked AVAIL(ERROR).

Securing IBM MQ 483

Data integrity of messages
To maintain data integrity, you can use various types of user exit program to provide message digests or
digital signatures for your messages.

Data integrity
Implementing data integrity in messages

When you use TLS, your choice of CipherSpec determines the level of data integrity in the enterprise.
If you use the IBM MQ Advanced Message Service (AMS) you can specify the integrity for a unique
message.

Implementing data integrity in message exits

A message can be digitally signed by a message exit at the sending end of a channel. The digital
signature can then be checked by a message exit at the receiving end of a channel to detect whether
the message has been deliberately modified.

Some protection can be provided by using a message digest instead of a digital signature. A message
digest might be effective against casual or indiscriminate tampering, but it does not prevent the more
informed individual from changing or replacing the message, and generating a completely new digest
for it. This is particularly true if the algorithm that is used to generate the message digest is a well
known one.

Implementing data integrity in send and receive exits
On a message channel, message exits are more appropriate for providing this service because a
message exit has access to a whole message. On an MQI channel, parameters on MQI calls might
contain application data that needs to be protected and only send and receive exits can provide this
protection.

Implementing data integrity in the API exit or API-crossing exit

A message can be digitally signed by an API or API-crossing exit when the message is put by the
sending application. The digital signature can then be checked by a second exit when the message is
retrieved by the receiving application to detect whether the message has been deliberately modified.

Some protection can be provided by using a message digest instead of a digital signature. A message
digest might be effective against casual or indiscriminate tampering, but it does not prevent the more
informed individual from changing or replacing the message, and generating a completely new digest
for it. This is particularly true if the algorithm that is used to generate the message digest is a well
known one,

Further information
See the section on “Enabling CipherSpecs” on page 429 for more information on ensuring data integrity.

Related tasks
Connecting two queue managers using TLS
Connecting a client to a queue manager securely

Auditing
You can check for security intrusions, or attempted intrusions, by using event messages. You can also
check the security of your system by using the IBM MQ Explorer.

To detect attempts to perform unauthorized actions such as connecting to a queue manager or put
a message on a queue, inspect the event messages produced by your queue managers, particularly
authority event messages. For more information about queue manager event messages, see Queue
manager events, and for more information about event monitoring in general, see Event monitoring.

484 Securing IBM MQ

Keeping clusters secure
Authorize or prevent queue managers joining clusters or putting messages on cluster queues. Force a
queue manager to leave a cluster. Take account of some additional considerations when configuring TLS
for clusters.

Stopping unauthorized queue managers sending messages
Prevent unauthorized queue managers sending messages to your queue manager using a channel
security exit.

Before you begin
Clustering has no effect on the way security exits work. You can restrict access to a queue manager in the
same way as you would in a distributed queuing environment.

About this task
Prevent selected queue managers from sending messages to your queue manager:

Procedure
1. Define a channel security exit program on the CLUSRCVR channel definition.
2. Write a program that authenticates queue managers trying to send messages on your cluster-receiver

channel and denies them access if they are not authorized.

What to do next
Channel security exit programs are called at MCA initiation and termination.

Stopping unauthorized queue managers putting messages on your queues
Use the channel put authority attribute on the cluster-receiver channel to stop unauthorized queue
managers putting messages on your queues. Authorize a remote queue manager by checking the user ID
in the message using RACF on z/OS, or the OAM on other platforms.

About this task
Use the security facilities of a platform and the access control mechanism in IBM MQ to control access to
queues.

Procedure
1. To prevent certain queue managers from putting messages on a queue, use the security facilities

available on your platform.

For example:

• RACF or other external security managers on IBM MQ for z/OS
• The object authority manager (OAM) on other platforms.

2. Use the put authority, PUTAUT, attribute on the CLUSRCVR channel definition.

The PUTAUT attribute allows you to specify what user identifiers are to be used to establish authority
to put a message to a queue.

The options on the PUTAUT attribute are:
DEF

Use the default user ID. On z/OS, the check might involve using both the user ID received from the
network and that derived from MCAUSER.

Securing IBM MQ 485

CTX
Use the user ID in the context information associated with the message. On z/OS the check might
involve using either the user ID received from the network, or that derived from MCAUSER, or both.
Use this option if the link is trusted and authenticated.

ONLYMCA (z/OS only)
As for DEF, but any user ID received from the network is not used. Use this option if the link is not
trusted. You want to allow only a specific set of actions on it, which are defined for the MCAUSER.

ALTMCA (z/OS only)
As for CTX, but any user ID received from the network is not used.

Authorizing putting messages on remote cluster queues
On z/OS set up authorization to put to a cluster queue using RACF. On other platforms, authorize access
to connect to the queue managers, and to put to the queues on those queue managers.

About this task
The default behavior is to perform access control against the SYSTEM.CLUSTER.TRANSMIT.QUEUE. Note
that this behavior applies, even if you are using multiple transmission queues.

The specific behavior described in this topic applies only when you have configured the
ClusterQueueAccessControl attribute in the qm.ini file to be RQMName, as described in the
Security stanza topic, and restarted the queue manager.

Procedure
• For z/OS, issue the following commands:

RDEFINE MQQUEUE QMgrName.QUEUE. QueueName UACC(NONE)
PERMIT QMgrName.QUEUE. QueueName CLASS(MQADMIN) ID(GroupName) ACCESS(UPDATE)

• For AIX, Linux, and Windows systems, issue the following commands:

setmqaut -m QMgrName -t qmgr -g GroupName +connect
setmqaut -m QMgrName -t queue -n QueueName -g GroupName -all +put

• For IBM i, issue the following commands:

GRTMQMAUT OBJ(' QMgrName ') OBJTYPE(*MQM) USER(GroupName) AUT(*CONNECT)
GRTMQMAUT OBJ(' QueueName ') OBJTYPE(*Q) USER(GroupName) AUT(*PUT) MQMNAME(' QMgrName ')

The user can put messages only to the specified cluster queue, and no other cluster queues.

The variable names have the following meanings:
QMgrName

The name of the queue manager. On z/OS, this value can also be the name of a queue sharing
group.

GroupName
The name of the group to be granted access.

QueueName
Name of the queue or generic profile for which to change authorizations.

What to do next
If you specify a reply-to queue when you put a message on a cluster queue, the consuming application
must have authority to send the reply. Set this authority by following the instructions in “Granting
authority to put messages to a remote cluster queue” on page 406.

486 Securing IBM MQ

Related concepts
Security stanza in qm.ini

Preventing queue managers joining a cluster
If a rogue queue manager joins a cluster it is difficult to prevent it receiving messages you do not want it
to receive.

Procedure
If you want to ensure that only certain authorized queue managers join a cluster you have a choice of
three techniques:

• Using channel authentication records you can block the cluster channel connection based on: the
remote IP address, the remote queue manager name, or the TLS Distinguished Name provided by the
remote system.

• Write an exit program to prevent unauthorized queue managers from writing to
SYSTEM.CLUSTER.COMMAND.QUEUE. Do not restrict access to SYSTEM.CLUSTER.COMMAND.QUEUE
such that no queue manager can write to it, or you would prevent any queue manager from joining the
cluster.

• A security exit program on the CLUSRCVR channel definition.

Security exits on cluster channels
Extra considerations when using security exits on cluster channels.

About this task
When a cluster-sender channel is first started, it uses attributes defined manually by a system
administrator. When the channel is stopped and restarted, it picks up the attributes from the
corresponding cluster-receiver channel definition. The original cluster-sender channel definition is
overwritten with the new attributes, including the SecurityExit attribute.

Procedure
1. You must define a security exit on both the cluster-sender end and the cluster-receiver end of a

channel.

The initial connection must be made with a security-exit handshake, even though the security exit
name is sent over from the cluster-receiver definition.

2. Validate the PartnerName in the MQCXP structure in the security exit.

The exit must allow the channel to start only if the partner queue manager is authorized
3. Design the security exit on the cluster-receiver definition to be receiver initiated.

4. If you design it as sender initiated, an unauthorized queue manager without a security exit can join the
cluster because no security checks are performed.

Not until the channel is stopped and restarted can the SCYEXIT name be sent over from the cluster-
receiver definition and full security checks made.

5. To view the cluster-sender channel definition that is currently in use, use the command:

DISPLAY CLUSQMGR(queue manager) ALL

The command displays the attributes that have been sent across from the cluster-receiver definition.
6. To view the original definition, use the command:

DISPLAY CHANNEL(channel name) ALL

Securing IBM MQ 487

7. You might need to define a channel auto-definition exit, CHADEXIT, on the cluster-sender queue
manager, if the queue managers are on different platforms.

Use the channel auto-definition exit to set the SecurityExit attribute to an appropriate format for
the target platform.

8. Deploy and configure the security-exit.

z/OS
The security-exit load module must be in the data set specified in the CSQXLIB DD statement of
the channel-initiator address-space procedure.

AIX, Linux, and Windows systems

• The security-exit dynamic link library must be in the path specified in the SCYEXIT attribute of
the channel definition.

• The channel auto-definition exit dynamic link library must be in the path specified in the
CHADEXIT attribute of the queue manager definition.

Forcing unwanted queue managers to leave a cluster
Force an unwanted queue manager to leave a cluster by issuing the RESET CLUSTER command at a full
repository queue manager.

About this task
You can force an unwanted queue manager to leave a cluster. If for example, a queue manager is deleted
but its cluster-receiver channels are still defined to the cluster. You might want to tidy up.

Only full repository queue managers are authorized to eject a queue manager from a cluster.

Note: Although using the RESET CLUSTER command forcibly removes a queue manager from a cluster,
the use of RESET CLUSTER by itself does not prevent the queue manager rejoining the cluster later. To
ensure that the queue manager does not rejoin the cluster, follow the steps detailed in “Preventing queue
managers joining a cluster” on page 487.

Follow this procedure to eject the queue manager OSLO from the cluster NORWAY:

Procedure
1. On a full repository queue manager, issue the command:

RESET CLUSTER(NORWAY) QMNAME(OSLO) ACTION(FORCEREMOVE)

2. Alternative use the QMID instead of QMNAME in the command:

RESET CLUSTER(NORWAY) QMID(qmid) ACTION(FORCEREMOVE)

Note: QMID is a string, so the value of qmid should be surrounded by single quotation marks, for
example, QMID('FR01_2019-07-15_14.42.42').

Results
The queue manager that is force removed does not change; its local cluster definitions show it to be in the
cluster. The definitions at all other queue managers do not show it in the cluster.

488 Securing IBM MQ

Preventing queue managers receiving messages
You can prevent a cluster queue manager from receiving messages it is unauthorized to receive by using
exit programs.

About this task
It is difficult to stop a queue manager that is a member of a cluster from defining a queue. There is a
danger that a rogue queue manager joins a cluster, and defines its own instance of one of the queues in
the cluster. It can now receive messages that it is not authorized to receive. To prevent a queue manager
receiving messages, use one of the following options given in the procedure.

Procedure
• A channel exit program on each cluster-sender channel. The exit program uses the connection name to

determine the suitability of the destination queue manager to be sent the messages.
• A cluster workload exit program, which uses the destination records to determine the suitability of the

destination queue and queue manager to be sent the messages.

SSL/TLS and clusters
When configuring TLS for clusters, be aware a CLUSRCVR channel definition is propagated to other queue
managers as an auto-defined CLUSSDR channel. If a CLUSRCVR channel uses TLS, you must configure
TLS on all queue managers that communicate using the channel.

For more information about TLS, see “TLS security protocols in IBM MQ ” on page 24. The advice there
is generally applicable to cluster channels, but you might want to give some special consideration to the
following:

In an IBM MQ cluster a particular CLUSRCVR channel definition is frequently propagated to many other
queue managers where it is transformed into an auto-defined CLUSSDR. Subsequently the auto-defined
CLUSSDR is used to start a channel to the CLUSRCVR. If the CLUSRCVR is configured for TLS connectivity
the following considerations apply:

• All queue managers that want to communicate with this CLUSRCVR must have access to TLS support.
This TLS provision must support the CipherSpec for the channel.

• The different queue managers to which the auto-defined cluster-sender channels have been
propagated will each have a different distinguished name associated. If distinguished name peer
checking is to be used on the CLUSRCVR it must be set up so all of the distinguished names that
can be received are successfully matched.

For example, let us assume that all of the queue managers that will host cluster-sender channels
which will connect to a particular CLUSRCVR, have certificates associated. Let us also assume that
the distinguished names in all of these certificates define the country as UK, organization as IBM, the
organization unit as IBM MQ Development, and all have common names in the form DEVT.QMnnn,
where nnn is numeric.

In this case an SSLPEER value of C=UK, O=IBM, OU=IBM MQ Development, CN=DEVT.QM* on the
CLUSRCVR will allow all the required cluster-sender channels to connect successfully, but will prevent
unwanted cluster-sender channels from connecting.

• If custom CipherSpec strings are used, be aware that the custom string formats are not allowed on all
platforms. An example of this is that the CipherSpec string RC4_SHA_US has a value of 05 on IBM i
but is not a valid specification on AIX, Linux, and Windows systems. So if custom SSLCIPH parameters
are used on a CLUSRCVR, all resulting auto-defined cluster-sender channels should reside on platforms
on which the underlying TLS support implements this CipherSpec and on which it can be specified
with the custom value. If you cannot select a value for the SSLCIPH parameter that will be understood
throughout your cluster you will need a channel auto definition exit to change it into something the
platforms being used will understand. Use the textual CipherSpec strings where possible (for example
TLS_RSA_WITH_AES_128_CBC_SHA).

Securing IBM MQ 489

An SSLCRLNL parameter applies to an individual queue manager and is not propagated to other queue
managers within a cluster.

Upgrading clustered queue managers and channels to SSL/TLS
Upgrade the cluster channels one at a time, changing all the CLUSRCVR channels before the CLUSSDR
channels.

Before you begin
Consider the following considerations, as these might affect your choice of CipherSpec for a cluster:

• Some CipherSpecs are not available on all platforms. Take care to choose a CipherSpec that is
supported by all of the queue managers in the cluster.

• Some CipherSpecs might be new in the current IBM MQ release and not supported in older releases.
A cluster containing queue managers running at different MQ releases is only be able to use the
CipherSpecs supported by each release.

To use a new CipherSpec within a cluster, you must first migrate all of the cluster queue managers to the
current release.

• Some CipherSpecs require a specific type of digital certificate to be used, notably those that use Elliptic
Curve Cryptography.

Attention: It is not possible to use a mixture of Elliptic Curve-signed certificates and RSA-signed
certificates on queue managers that you want to join together as part of a cluster.

Queue managers in a cluster must all use RSA-signed certificates, or all use EC-signed certificates,
not a mixture of both.

See “Digital certificates and CipherSpec compatibility in IBM MQ” on page 46 for more
information.

Upgrade all queue managers in the cluster to IBM MQ V8 or higher, if they are not already at these levels.
Distribute the certificates and keys so that TLS works from each of them.

If you want to upgrade to, or use any of the alias CipherSpecs (ANY_TLS13, ANY_TLS13_OR_HIGHER,
ANY_TLS12, ANY_TLS12_OR_HIGHER, and so on), you must upgrade all IBM MQ for Multiplatforms queue
managers in the cluster to IBM MQ 9.1.4 or higher, and all IBM MQ for z/OS queue managers in the cluster
to IBM MQ for z/OS 9.2.0 or later.

About this task
Change the CLUSRCVR channels before the CLUSSDR channels.

Procedure
1. Switch the CLUSRCVR channels to TLS in any order you like, changing one CLUSRCVR at a time, and

allow the changes to flow through the cluster before changing the next.

Important: Make sure that you do not change the reverse path until the changes for the current
channel have been distributed throughout the cluster.

2. Optional: Switch all manual CLUSSDR channels to TLS.
This does not have any effect on the operation of the cluster, unless you use the REFRESH CLUSTER
command with the REPOS(YES) option.

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster
while it is in progress, and again at 27 day intervals thereafter when the cluster objects automatically
send status updates to all interested queue managers. See Refreshing in a large cluster can affect
performance and availability of the cluster.

3. Use the DISPLAY CLUSQMGR command to ensure that the new security configuration has been
propagated throughout the cluster.

490 Securing IBM MQ

4. Restart the channels to use TLS and run REFRESH SECURITY (SSL).

Related concepts
“Enabling CipherSpecs” on page 429
Enable a CipherSpec by using the SSLCIPH parameter in either the DEFINE CHANNEL or ALTER
CHANNEL MQSC command.
“Digital certificates and CipherSpec compatibility in IBM MQ” on page 46
This topic provides information on how to choose appropriate CipherSpecs and digital certificates for your
security policy, by outlining the relationship between CipherSpecs and digital certificates in IBM MQ.
Related information
Clustering: Using REFRESH CLUSTER best practices

Disabling SSL/TLS on clustered queue managers and channels
To turn off TLS, set the SSLCIPH parameter to ' '. Disable TLS on the cluster channels individually,
changing all the cluster receiver channels before the cluster sender channels.

About this task
Change one cluster receiver channel at a time, and allow the changes to flow through the cluster before
changing the next.

Important: Ensure that you do not change the reverse path until the changes for the current channel have
been distributed throughout the cluster.

Procedure
1. Set the value of the SSLCIPH parameter to ' ', an empty string in a single quotation mark

, or *NONE on IBM i .
You can turn off TLS on the cluster receiver channels in any order you like.

Note that the changes flow in the opposite direction over channels on which you leave TLS active.
2. Check that the new value is reflected in all the other queue managers by using the command DISPLAY
CLUSQMGR(*) ALL.

3. Turn off TLS on all manual cluster sender channels.
This does not have any effect on the operation of the cluster, unless you use the REFRESH CLUSTER
command with the REPOS(YES) option.

For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while
it is in progress, and again at regular intervals thereafter, when the cluster objects automatically
send status updates to all interested queue managers. See Refreshing in a large cluster can affect
performance and availability of the cluster for more information.

4. Stop and restart the cluster sender channels.

Publish/subscribe security
The components and interactions that are involved in publish/subscribe are described as an introduction
to the more detailed explanations and examples that follow.

There are a number of components involved in publishing and subscribing to a topic. Some of the security
relationships between them are illustrated in Figure 22 on page 492 and described in the following
example.

Securing IBM MQ 491

Figure 22. Publish/subscribe security relationships between various components

Topics
Topics are identified by topic strings, and are typically organized into trees, see Topic trees. You need
to associate a topic with a topic object to control access to the topic. “Topic security model” on page
494 explains how you secure topics using topic objects.

Administrative topic objects
You can control who has access to a topic, and for what purpose, by using the command setmqaut
with a list of administrative topic objects. See the examples, “Grant access to a user to subscribe to a

topic” on page 499 and “Grant access to a user to publish to a topic” on page 506. For
controlling access to topic objects on z/OS, see Profiles for topic security.

Subscriptions

Subscribe to one or more topics by creating a subscription supplying a topic string, which can include
wildcards, to match against the topic strings of publications. For further details, see:
Subscribe using a topic object

“Subscribing using the topic object name” on page 495
Subscribe using a topic

“Subscribing using a topic string where the topic node does not exist” on page 496
Subscribe using a topic with wildcards

“Subscribing using a topic string that contains wildcard characters” on page 496

492 Securing IBM MQ

A subscription contains information about the identity of the subscriber and the identity of the
destination queue on to which the publications are to be placed. It also contains information about
how the publication is to be placed on the destination queue.

As well as defining which subscribers have the authority to subscribe to certain topics, you can restrict
subscriptions to being used by an individual subscriber. You can also control what information about
the subscriber is used by the queue manager when publications are placed on to the destination
queue. See “Subscription security” on page 511.

Queues

The destination queue is an important queue to secure. It is local to the subscriber, and publications
that matched the subscription are placed onto it. You need to consider access to the destination
queue from two perspectives:

1. Putting a publication on to the destination queue.
2. Getting the publication off the destination queue.

The queue manager puts a publication onto the destination queue using an identity provided by the
subscriber. The subscriber, or a program that has been delegated the task of getting publications,
takes messages off the queue. See “Authority to destination queues” on page 496.

There are no topic object aliases, but you can use an alias queue as the alias for a topic object. If
you do so, as well as checking authority to use the topic for publish or subscribe, the queue manager
checks authority to use the queue.

“Publish/subscribe security between queue managers” on page 513

Your permission to publish or subscribe to a topic is checked on the local queue manager using
local identities and authorizations. Authorization does not depend on whether the topic is defined or
not, nor where it is defined. Consequently, you need to perform topic authorization on every queue
manager in a cluster when clustered topics are used.

Note: The security model for topics differs from the security model for queues. You can achieve the
same result for queues by defining a queue alias locally for every clustered queue.

Queue managers exchange subscriptions in a cluster. In most IBM MQ cluster configurations,
channels are configured with PUTAUT=DEF to place messages onto target queues using the authority
of the channel process. You can modify the channel configuration to use PUTAUT=CTX to require
the subscribing user to have authority to propagate a subscription onto another queue manager in a
cluster.

“Publish/subscribe security between queue managers” on page 513 describes how to change your
channel definitions to control who is allowed to propagate subscriptions onto other servers in the
cluster.

Authorization
You can apply authorization to topic objects, just like queues and other objects. There are three
authorization operations, pub, sub, and resume that you can apply only to topics. The details are
described in Specifying authorities for different object types.

Function calls

In publish and subscribe programs, like in queued programs, authorization checks are made when
objects are opened, created, changed, or deleted. Checks are not made when MQPUT or MQGET MQI
calls are made to put and get publications.

To publish a topic, perform an MQOPEN on the topic, which performs the authorization checks. Publish
messages to the topic handle using the MQPUT command, which performs no authorization checks.

To subscribe to a topic, typically you perform an MQSUB command to create or resume the
subscription, and also to open the destination queue to receive publications. Alternatively, perform a
separate MQOPEN to open the destination queue, and then perform the MQSUB to create or resume the
subscription.

Securing IBM MQ 493

Whichever calls you use, the queue manager checks that you can subscribe to the topic and get
the resulting publications from the destination queue. If the destination queue is unmanaged,
authorization checks are also made that the queue manager is able to place publications on the
destination queue. It uses the identity it adopted from a matching subscription. It is assumed that the
queue manager is always able to place publications onto managed destination queues.

Roles

Users are involved in four roles in running publish/subscribe applications:

1. Publisher
2. Subscriber
3. Topic administrator
4. IBM MQ Administrator - member of group mqm

Define groups with appropriate authorizations corresponding to the publish, subscribe, and topic
administration roles. You can then assign principals to these groups authorizing them to perform
specific publish and subscribe tasks.

In addition, you need to extend the administrative operations authorizations to the administrator of
the queues and channels responsible for moving publications and subscriptions.

Topic security model
Only defined topic objects can have associated security attributes. For a description of topic objects,
see Administrative topic objects. The security attributes specify whether a specified user ID, or security
group, is permitted to perform a subscribe or a publish operation on each topic object.

The security attributes are associated with the appropriate administration node in the topic tree. When
an authority check is made for a particular user ID during a subscribe or publish operation, the authority
granted is based on the security attributes of the associated topic tree node.

The security attributes are an access control list, indicating what authority a particular operating system
user ID or security group has to the topic object.

Consider the following example where the topic objects have been defined with the security attributes, or
authorities shown:

Table 87. Example topic object authorities

Topic name Topic string
Authorities - not
z/OS z/OS authorities

SECROOT SEC None None

SECGOOD SEC/GOOD usr1+subscribe ALTER

HLQ.SUBSCRIBE.SECGOOD

SECBAD SEC/BAD None None

HLQ.SUBSCRIBE.SECBAD

SECCOMB SEC/COMB None None

HLQ.SUBSCRIBE.SECCOMB

SECCOMBB SEC/COMB/
GOOD/BAD

None None

HLQ.SUBSCRIBE.SECCOMBB

SECCOMBG SEC/COMB/GOOD usr2+subscribe ALTER

HLQ.SUBSCRIBE.SECCOMBG

494 Securing IBM MQ

Table 87. Example topic object authorities (continued)

Topic name Topic string
Authorities - not
z/OS z/OS authorities

SECCOMBN SEC/COMB/BAD None None

HLQ.SUBSCRIBE.SECCOMBN

The topic tree with the associated security attributes at each node can be represented as follows:

The examples listed give the following authorizations:

• At the root node of the tree /SEC, no user has authority at that node.
• usr1 has been granted subscribe authority to the object /SEC/GOOD
• usr2 has been granted subscribe authority to the object /SEC/COMB/GOOD

Subscribing using the topic object name
When subscribing to a topic object by specifying the MQCHAR48 name, the corresponding node in the
topic tree is located. If the security attributes associated with the node indicate that the user has
authority to subscribe, then access is granted.

If the user is not granted access, the parent node in the tree determines if the user has authority to
subscribe at the parent node level. If so, then access is granted. If not, then the parent of that node is
considered. The recursion continues until a node is located that grants subscribe authority to the user.
The recursion stops when the root node is considered without authority having been granted. In the latter
case, access is denied.

In short, if any node in the path grants authority to subscribe to that user or application, the subscriber is
allowed to subscribe at that node, or anywhere below that node in the topic tree.

The root node in the example is SEC.

The user is granted subscribe authority if the access control list indicates that the user ID itself has
authority, or that an operating system security group of which the user ID is a member has authority.

So, for example:

• If usr1 tries to subscribe, using a topic string of SEC/GOOD, the subscription would be allowed as
the user ID has access to the node associated with that topic. However, if usr1 tried to subscribe
using topic string SEC/COMB/GOOD the subscription would not be allowed as the user ID does not have
access to the node associated with it.

• If usr2 tries to subscribe, using a topic string of SEC/COMB/GOOD the subscription would be allowed
to as the user ID has access to the node associated with the topic. However, if usr2 tried to subscribe

Securing IBM MQ 495

to SEC/GOOD the subscription would not be allowed as the user ID does not have access to the node
associated with it.

• If usr2 tries to subscribe using a topic string of SEC/COMB/GOOD/BAD the subscription would be
allowed to because the user ID has access to the parent node SEC/COMB/GOOD.

• If usr1 or usr2 tries to subscribe using a topic string of /SEC/COMB/BAD, neither would be allowed as
they do not have access to the topic node associated with it, or the parent nodes of that topic.

A subscribe operation specifying the name of a topic object that does not exist results in an
MQRC_UNKNOWN_OBJECT_NAME error.

Subscribing using a topic string where the topic node exists
The behavior is the same as when specifying the topic by the MQCHAR48 object name.

Subscribing using a topic string where the topic node does not exist
Consider the case of an application subscribing, specifying a topic string representing a topic node that
does not currently exist in the topic tree. The authority check is performed as outlined in the previous
section. The check starts with the parent node of that which is represented by the topic string. If the
authority is granted, a new node representing the topic string is created in the topic tree.

For example, usr1 tries to subscribe to a topic SEC/GOOD/NEW. Authority is granted as usr1 has access
to the parent node SEC/GOOD. A new topic node is created in the tree as the following diagram shows.
The new topic node is not a topic object it does not have any security attributes associated with it directly;
the attributes are inherited from its parent.

Subscribing using a topic string that contains wildcard characters
Consider the case of subscribing using a topic string that contains a wildcard character. The authority
check is made against the node in the topic tree that matches the fully qualified part of the topic string.

So, if an application subscribes to SEC/COMB/GOOD/*, an authority check is carried out as outlined in the
previous two sections on the node SEC/COMB/GOOD in the topic tree.

Similarly, if an application needs to subscribe to SEC/COMB/*/GOOD, an authority check is carried out on
the node SEC/COMB.

Authority to destination queues
When subscribing to a topic, one of the parameters is the handle hobj of a queue that has been opened
for output to receive the publications.

If hobj is not specified, but is blank, a managed queue is created if the following conditions apply:

• The MQSO_MANAGED option has been specified.

496 Securing IBM MQ

• The subscription does not exist.
• Create is specified.

If hobj is blank, and you are altering or resuming an existing subscription, the previously provided
destination queue could be either managed or unmanaged.

The application or user making the MQSUB request must have the authority to put messages to the
destination queue it has provided; in effect authority to have published messages put on that queue. The
authority check follows the existing rules for queue security checking.

The security checking includes alternate user ID and context security checks where required. To be able
to set any of the Identity context fields you must specify the MQSO_SET_IDENTITY_CONTEXT option as
well as the MQSO_CREATE or MQSO_ALTER option. You cannot set any of the Identity context fields on an
MQSO_RESUME request.

If the destination is a managed queue, no security checks are performed against the managed
destination. If you are allowed to subscribe to a topic it is assumed that you can use managed
destinations.

Publishing using the topic name or topic string where the topic node exists
The security model for publishing is the same as that for subscribing, with the exception of wildcards.
Publications do not contain wildcards; so there is no case of a topic string containing wildcards to
consider.

The authorities to publish and subscribe are distinct. A user or group can have the authority to do one
without necessarily being able to do the other.

When publishing to a topic object by specifying either the MQCHAR48 name or the topic string, the
corresponding node in the topic tree is located. If the security attributes associated with the topic node
indicates that the user has authority to publish, then access is granted.

If access is not granted, the parent node in the tree determines if the user has authority to publish at that
level. If so, then access is granted. If not, the recursion continues until a node is located which grants
publish authority to the user. The recursion stops when the root node is considered without authority
having been granted. In the latter case, access is denied.

In short, if any node in the path grants authority to publish to that user or application, the publisher is
allowed to publish at that node or anywhere below that node in the topic tree.

Publishing using the topic name or topic string where the topic node does not exist
As with the subscribe operation, when an application publishes, specifying a topic string representing
a topic node that does not currently exist in the topic tree, the authority check is performed starting
with the parent of the node represented by the topic string. If the authority is granted, a new node
representing the topic string is created in the topic tree.

Publishing using an alias queue that resolves to a topic object
If you publish using an alias queue that resolves to a topic object then security checking occurs on both
the alias queue and the underlying topic to which it resolves.

The security check on the alias queue verifies that the user has authority to put messages on that alias
queue and the security check on the topic verifies that the user can publish to that topic. When an alias
queue resolves to another queue, checks are not made on the underlying queue. Authority checking is
performed differently for topics and queues.

Closing a subscription
There is additional security checking if you close a subscription using the MQCO_REMOVE_SUB option if
you did not create the subscription under this handle.

Securing IBM MQ 497

A security check is performed to ensure that you have the correct authority to do this as the action results
in the removal of the subscription. If the security attributes associated with the topic node indicate that
the user has authority, then access is granted. If not, then the parent node in the tree is considered to
determine if the user has authority to close the subscription. The recursion continues until either authority
is granted or the root node is reached.

Defining, altering, and deleting a subscription
No subscribe security checks are performed when a subscription is created administratively, rather
than using an MQSUB API request. The administrator has already been given this authority through the
command.

Security checks are performed to ensure that publications can be put on the destination queue associated
with the subscription. The checks are performed in the same way as for an MQSUB request.

The user ID that is used for these security checks depends upon the command being issued. If the
SUBUSER parameter is specified it affects the way the check is performed, as shown in Table 88 on page
498:

Table 88. User IDs used for security checks for commands

Command SUBUSER
specified
and blank

SUBUSER
specified
and
completed

SUBUSER
not
specified

Use the
administrato
r ID

Use the user
ID from the
LIKE
subscription

Use the
administrato
r ID

Use the
user ID

from the
SYSTEM

.DEFAULT.SU
B
subscription
- if blank,
use the
administrato
r ID

Use the
administrato
r ID

Use the user
ID from the
existing
subscription

The only security check performed when deleting subscriptions using the DELETE SUB command is the
command security check.

498 Securing IBM MQ

Example publish/subscribe security setup
This section describes a scenario that has access control set up on topics in a way that allows the security
control to be applied as required.

Grant access to a user to subscribe to a topic
This topic is the first one in a list of tasks that tells you how to grant access to topics by more than one
user.

About this task
This task assumes that no administrative topic objects exist, nor have any profiles been defined for
subscription or publication. The applications are creating new subscriptions, rather than resuming
existing ones, and are doing so using the topic string only.

An application can make a subscription by providing a topic object, or a topic string, or a combination of
both. Whichever way the application selects, the effect is to make a subscription at a certain point in the
topic tree. If this point in the topic tree is represented by an administrative topic object, a security profile
is checked based on the name of that topic object.

Figure 23. Topic object access example

Table 89. Example topic object access

Topic Subscribe
access required

Topic object

Price No user None

Price/Fruit USER1 FRUIT

Define a new topic object as follows:

Procedure
1. Issue the MQSC command DEF TOPIC(FRUIT) TOPICSTR('Price/Fruit').
2. Grant access as follows:

• z/OS :

Grant access to USER1 to subscribe to topic "Price/Fruit" by granting the user access to the
hlq.SUBSCRIBE.FRUIT profile. Do this, using the following RACF commands:

RDEFINE MXTOPIC hlq.SUBSCRIBE.FRUIT UACC(NONE)
PERMIT hlq.SUBSCRIBE.FRUIT CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

• Other platforms:

Grant access to USER1 to subscribe to topic "Price/Fruit" by granting the user access to the
FRUIT object. Do this, using the authorization command for the platform:

Securing IBM MQ 499

AIX, Linux, and Windows systems

setmqaut -t topic -n FRUIT -p USER1 +sub

IBM i

GRTMQAUT OBJ(FRUIT) OBJTYPE(*TOPIC) USER(USER1) AUT(*SUB)

Results
When USER1 attempts to subscribe to topic "Price/Fruit" the result is success.

When USER2 attempts to subscribe to topic "Price/Fruit" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On z/OS, the following messages seen on the console that show the full security path
through the topic tree that has been attempted:

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit"

• On IBMi, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit"

Note that this is an illustration of what you see; not all the fields.

Grant access to a user to subscribe to a topic deeper within the tree
This topic is the second in a list of tasks that tells you how to grant access to topics by more than one user.

Before you begin
This topic uses the setup described in “Grant access to a user to subscribe to a topic” on page 499.

About this task
If the point in the topic tree where the application makes the subscription is not represented by an
administrative topic object, move up the tree until the closest parent administrative topic object is
located. The security profile is checked, based on the name of that topic object.

500 Securing IBM MQ

Figure 24. Example of granting access to a topic within a topic tree

Table 90. Access requirements for example topics and topic objects

Topic Subscribe
access required

Topic object

Price No user None

Price/Fruit USER1 FRUIT

Price/Fruit/
Apples

USER1

Price/Fruit/
Oranges

USER1

In the previous task USER1 was granted access to subscribe to topic "Price/Fruit" by granting it
access to the hlq.SUBSCRIBE.FRUIT profile on z/OS and subscribe access to the FRUIT profile on
other platforms. This single profile also grants USER1 access to subscribe to "Price/Fruit/Apples",
"Price/Fruit/Oranges" and "Price/Fruit/#".

When USER1 attempts to subscribe to topic "Price/Fruit/Apples" the result is success.

When USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On z/OS, the following messages seen on the console that show the full security path through the topic
tree that has been attempted:

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit/Apples"

Note the following:

• The messages you receive on z/OS are identical to those received in the previous task as the same topic
objects and profiles are controlling the access.

Securing IBM MQ 501

• The event message you receive on other platforms is similar to the one received in the previous task,
but the actual topic string is different.

Grant another user access to subscribe to only the topic deeper within the
tree
This topic is the third in a list of tasks that tells you how to grant access to subscribe to topics by more
than one user.

Before you begin
This topic uses the setup described in “Grant access to a user to subscribe to a topic deeper within the
tree” on page 500.

About this task
In the previous task USER2 was refused access to topic "Price/Fruit/Apples". This topic tells you
how to grant access to that topic, but not to any other topics.

Figure 25. Granting access to specific topics within a topic tree

Table 91. Access requirements for example topics and topic objects

Topic Subscribe
access required

Topic object

Price No user None

Price/Fruit USER1 FRUIT

Price/Fruit/
Apples

USER1 and
USER2

APPLE

Price/Fruit/
Oranges

USER1

Define a new topic object as follows:

Procedure
1. Issue the MQSC command DEF TOPIC(APPLE) TOPICSTR('Price/Fruit/Apples').
2. Grant access as follows:

• z/OS :

502 Securing IBM MQ

In the previous task USER1 was granted access to subscribe to topic "Price/Fruit/Apples" by
granting the user access to the hlq.SUBSCRIBE.FRUIT profile.

This single profile also granted USER1 access to subscribe to "Price/Fruit/Oranges"
"Price/Fruit/#" and this access remains even with the addition of the new topic object and
the profiles associated with it.

Grant access to USER2 to subscribe to topic "Price/Fruit/Apples" by granting the user access
to the hlq.SUBSCRIBE.APPLE profile. Do this, using the following RACF commands:

RDEFINE MXTOPIC hlq.SUBSCRIBE.APPLE UACC(NONE)
PERMIT hlq.SUBSCRIBE.FRUIT APPLE(MXTOPIC) ID(USER2) ACCESS(ALTER)

• Other platforms:

In the previous task USER1 was granted access to subscribe to topic "Price/Fruit/Apples" by
granting the user subscribe access to the FRUIT profile.

This single profile also granted USER1 access to subscribe to "Price/Fruit/Oranges" and
"Price/Fruit/#", and this access remains even with the addition of the new topic object and the
profiles associated with it.

Grant access to USER2 to subscribe to topic "Price/Fruit/Apples" by granting the user
subscribe access to the APPLE profile. Do this, using the authorization command for the platform:

AIX, Linux, and Windows systems

setmqaut -t topic -n APPLE -p USER2 +sub

IBM i

GRTMQAUT OBJ(APPLE) OBJTYPE(*TOPIC) USER(USER2) AUT(*SUB)

Results
On z/OS, when USER1 attempts to subscribe to topic "Price/Fruit/Apples" the first security check
on the hlq.SUBSCRIBE.APPLE profile fails, but on moving up the tree the hlq.SUBSCRIBE.FRUIT
profile allows USER1 to subscribe, so the subscription succeeds and no return code is sent to the MQSUB
call. However, a RACF ICH message is generated for the first check:

ICH408I USER(USER1) ...
 hlq.SUBSCRIBE.APPLE ...

When USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is success because the
security check passes on the first profile.

When USER2 attempts to subscribe to topic "Price/Fruit/Oranges" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On z/OS, the following messages seen on the console that show the full security path
through the topic tree that has been attempted:

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

Securing IBM MQ 503

• On AIX, Linux, and Windows platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit/Oranges"

• On IBMi, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit/Oranges"

The disadvantage of this setup is that, on z/OS, you receive additional ICH messages on the console. You
can avoid this if you secure the topic tree in a different manner.

Change access control to avoid additional messages
This topic is the fourth in a list of tasks that tells you how to grant access to subscribe to topics by more
than one user and to avoid additional RACF ICH408I messages on z/OS.

Before you begin
This topic enhances the setup described in “Grant another user access to subscribe to only the topic
deeper within the tree” on page 502 so that you avoid additional error messages.

About this task
This topic tells you how to grant access to topics deeper in the tree, and how to remove access to the
topic lower down the tree when no user requires it.

Figure 26. Example of granting access control to avoid additional messages.

Define a new topic object as follows:

Procedure
1. Issue the MQSC command DEF TOPIC(ORANGE) TOPICSTR('Price/Fruit/Oranges').
2. Grant access as follows:

• z/OS :

504 Securing IBM MQ

Define a new profile and add access to that profile, and the existing profiles. Do this, using the
following RACF commands:

RDEFINE MXTOPIC hlq.SUBSCRIBE.ORANGE UACC(NONE)
PERMIT hlq.SUBSCRIBE.ORANGE CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)
PERMIT hlq.SUBSCRIBE.APPLE CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

• Other platforms:

Set up the equivalent access by using the authorization commands for the platform:

AIX, Linux, and Windows systems

setmqaut -t topic -n ORANGE -p USER1 +sub
setmqaut -t topic -n APPLE -p USER1 +sub

IBM i

GRTMQAUT OBJ(ORANGE) OBJTYPE(*TOPIC) USER(USER1) AUT(*SUB)
GRTMQAUT OBJ(APPLE) OBJTYPE(*TOPIC) USER(USER1) AUT(*SUB)

Results
On z/OS, when USER1 attempts to subscribe to topic "Price/Fruit/Apples" the first security check
on the hlq.SUBSCRIBE.APPLE profile succeeds.

Similarly, when USER2 attempts to subscribe to topic "Price/Fruit/Apples" the result is success
because the security check passes on the first profile.

When USER2 attempts to subscribe to topic "Price/Fruit/Oranges" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On z/OS, the following messages seen on the console that show the full security path
through the topic tree that has been attempted:

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.ORANGE ...

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.FRUIT ...

ICH408I USER(USER2) ...
 hlq.SUBSCRIBE.SYSTEM.BASE.TOPIC ...

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames ORANGE, FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit/Oranges"

• On IBMi, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_SUB_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames ORANGE, FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit/Oranges"

Securing IBM MQ 505

Grant access to a user to publish to a topic
This topic is the first one in a list of tasks that tells you how to grant access to publish topics by more than
one user.

About this task
This task assumes that no administrative topic objects exist on the right hand side of the topic tree, nor
have any profiles been defined for publication. The assumption used is that publishers are using the topic
string only.

An application can publish to a topic by providing a topic object, or a topic string, or a combination of both.
Whichever way the application selects, the effect is to publish at a certain point in the topic tree. If this
point in the topic tree is represented by an administrative topic object, a security profile is checked based
on the name of that topic object. For example:

Figure 27. Granting publish access to a topic

Table 92. Example publish access requirements

Topic Publish access
required

Topic object

Price No user None

Price/Vegetables USER1 VEG

Define a new topic object as follows:

Procedure
1. Issue the MQSC command DEF TOPIC(VEG) TOPICSTR('Price/Vegetables').
2. Grant access as follows:

• z/OS :

Grant access to USER1 to publish to topic "Price/Vegetables" by granting the user access to
the hlq.PUBLISH.VEG profile. Do this, using the following RACF commands:

RDEFINE MXTOPIC hlq.PUBLISH.VEG UACC(NONE)
PERMIT hlq.PUBLISH.VEG CLASS(MXTOPIC) ID(USER1) ACCESS(UPDATE)

• Other platforms:

Grant access to USER1 to publish to topic "Price/Vegetables" by granting the user access to
the VEG profile. Do this, using the authorization command for the platform:

AIX, Linux, and Windows systems

setmqaut -t topic -n VEG -p USER1 +pub

506 Securing IBM MQ

IBM i

GRTMQAUT OBJ(VEG) OBJTYPE(*TOPIC) USER(USER1) AUT(*PUB)

Results
When USER1 attempts to publish to topic "Price/Vegetables" the result is success; that is, the
MQOPEN call succeeds.

When USER2 attempts to publish to topic "Price/Vegetables" the MQOPEN call fails with an
MQRC_NOT_AUTHORIZED message, together with:

• On z/OS, the following messages seen on the console that show the full security path
through the topic tree that has been attempted:

ICH408I USER(USER2) ...
 hlq.PUBLISH.VEG ...

ICH408I USER(USER2) ...
 hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames VEG, SYSTEM.BASE.TOPIC
TopicString "Price/Vegetables"

• On IBMi, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames VEG, SYSTEM.BASE.TOPIC
TopicString "Price/Vegetables"

Note that this is an illustration of what you see; not all the fields.

Grant access to a user to publish to a topic deeper within the tree
This topic is the second in a list of tasks that tells you how to grant access to publish to topics by more
than one user.

Before you begin
This topic uses the setup described in “Grant access to a user to publish to a topic” on page 506.

About this task
If the point in the topic tree where the application publishes is not represented by an administrative topic
object, move up the tree until the closest parent administrative topic object is located. The security profile
is checked, based on the name of that topic object.

Securing IBM MQ 507

Figure 28. Granting publish access to a topic within a topic tree

Table 93. Example publish access requirements

Topic Subscribe
access required

Topic object

Price No user None

Price/Vegetables USER1 VEG

Price/
Vegetables/
Potatoes

USER1

Price/
Vegetables/
Onions

USER1

In the previous task USER1 was granted access to publish topic "Price/Vegetables/Potatoes" by
granting it access to the hlq.PUBLISH.VEG profile on z/OS or publish access to the VEG profile on other
platforms. This single profile also grants USER1 access to publish at "Price/Vegetables/Onions".

When USER1 attempts to publish at topic "Price/Vegetables/Potatoes" the result is success; that
is the MQOPEN call succeeds.

When USER2 attempts to subscribe to topic "Price/Vegetables/Potatoes" the result is failure; that
is, the MQOPEN call fails with an MQRC_NOT_AUTHORIZED message, together with:

• On z/OS, the following messages seen on the console that show the full security path through the topic
tree that has been attempted:

ICH408I USER(USER2) ...
 hlq.PUBLISH.VEG ...

ICH408I USER(USER2) ...
 hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

• On other platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames VEG, SYSTEM.BASE.TOPIC
TopicString "Price/Vegetables/Potatoes"

Note the following:

• The messages you receive on z/OS are identical to those received in the previous task as the same topic
objects and profiles are controlling the access.

508 Securing IBM MQ

• The event message you receive on other platforms is similar to the one received in the previous task,
but the actual topic string is different.

Grant access for publish and subscribe
This topic is the last in a list of tasks that tells you how to grant access to publish and subscribe to topics
by more than one user.

Before you begin
This topic uses the setup described in “Grant access to a user to publish to a topic deeper within the tree”
on page 507.

About this task
In a previous task USER1 was given access to subscribe to the topic "Price/Fruit". This topic tells you
how to grant access to that user to publish to that topic.

Figure 29. Granting access for publishing and subscribing

Table 94. Example publishing and subscribing access requirements

Topic Subscribe
access
required

Publish
access
required

Topic object

Price No user No user None

Price/Fruit USER1 USER1 FRUIT

Price/Fruit/
Apples

USER1 and
USER2

APPLE

Price/Fruit/
Oranges

USER1 ORANGE

Procedure
Grant access as follows:

• z/OS :

In an earlier task USER1 was granted access to subscribe to topic "Price/Fruit" by granting the
user access to the hlq.SUBSCRIBE.FRUIT profile.

Securing IBM MQ 509

In order to publish to the "Price/Fruit" topic, grant access to USER1 to the hlq.PUBLISH.FRUIT
profile. Do this, using the following RACF commands:

RDEFINE MXTOPIC hlq.PUBLISH.FRUIT UACC(NONE)
PERMIT hlq.PUBLISH.FRUIT CLASS(MXTOPIC) ID(USER1) ACCESS(ALTER)

• Other platforms:

Grant access to USER1 to publish to topic "Price/Fruit" by granting the user publish access to the
FRUIT profile. Do this, using the authorization command for the platform:

AIX, Linux, and Windows systems

setmqaut -t topic -n FRUIT -p USER1 +pub

IBM i

GRTMQAUT OBJ(FRUIT) OBJTYPE(*TOPIC) USER(USER1) AUT(*PUB)

Results
On z/OS, when USER1 attempts to publish to topic "Price/Fruit" the security check on the MQOPEN
call passes.

When USER2 attempts to publish at topic "Price/Fruit" the result is failure with an
MQRC_NOT_AUTHORIZED message, together with:

• On z/OS, the following messages seen on the console that show the full security path
through the topic tree that has been attempted:

ICH408I USER(USER2) ...
 hlq.PUBLISH.FRUIT ...

ICH408I USER(USER2) ...
 hlq.PUBLISH.SYSTEM.BASE.TOPIC ...

• On AIX, Linux, and Windows platforms, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit"

• On IBM i, the following authorization event:

MQRC_NOT_AUTHORIZED
ReasonQualifier MQRQ_OPEN_NOT_AUTHORIZED
UserIdentifier USER2
AdminTopicNames FRUIT, SYSTEM.BASE.TOPIC
TopicString "Price/Fruit"

Following the complete set of these tasks, gives USER1 and USER2 the following access authorities for
publish and subscribe to the topics listed:

510 Securing IBM MQ

Table 95. Complete list of access authorities resulting from security examples

Topic Subscribe
access
required

Publish
access
required

Topic object

Price No user No user None

Price/Fruit USER1 USER1 FRUIT

Price/Fruit/
Apples

USER1 and
USER2

APPLE

Price/Fruit/
Oranges

USER1 ORANGE

Price/
Vegetables

USER1 VEG

Price/
Vegetables/
Potatoes

Price/
Vegetables/
Onions

Where you have different requirements for security access at different levels within the topic tree, careful
planning ensures that you do not receive extraneous security warnings on the z/OS console log. Setting up
security at the correct level within the tree avoids misleading security messages.

Subscription security

MQSO_ALTERNATE_USER_AUTHORITY
The AlternateUserId field contains a user identifier to use to validate this MQSUB call. The call can
succeed only if this AlternateUserId is authorized to subscribe to the topic with the specified access
options, regardless of whether the user identifier under which the application is running is authorized to
do so.

MQSO_SET_IDENTITY_CONTEXT
The subscription is to use the accounting token and application identity data supplied in the
PubAccountingToken and PubApplIdentityData fields.

If this option is specified, the same authorization check is carried out as if the destination queue was
accessed using an MQOPEN call with MQOO_SET_IDENTITY_CONTEXT, except in the case where the
MQSO_MANAGED option is also used in which case there is no authorization check on the destination
queue.

If this option is not specified, the publications sent to this subscriber have default context information
associated with them as follows:

Table 96. Default publication context information

Field in MQMD Value used

UserIdentifier The user ID associated with the subscription (see
SUBUSER field on DISPLAY SBSTATUS) at the time
the publication is made.

Securing IBM MQ 511

Table 96. Default publication context information (continued)

Field in MQMD Value used

AccountingToken Determined from the environment if possible; set
to MQACT_NONE otherwise.

ApplIdentityData Set to blanks.

This option is only valid with MQSO_CREATE and MQSO_ALTER. If used with MQSO_RESUME, the
PubAccountingToken and PubApplIdentityData fields are ignored, so this option has no effect.

If a subscription is altered without using this option where previously the subscription had supplied
identity context information, default context information is generated for the altered subscription.

If a subscription allowing different user IDs to use it with option MQSO_ANY_USERID, is resumed by a
different user ID, default identity context is generated for the new user ID now owning the subscription
and any subsequent publications are delivered containing the new identity context.

AlternateSecurityId
This is a security identifier that is passed with the AlternateUserId to the authorization service
to allow appropriate authorization checks to be performed. AlternateSecurityId is used only if
MQSO_ALTERNATE_USER_AUTHORITY is specified, and the AlternateUserId field is not entirely blank
up to the first null character or the end of the field.

MQSO_ANY_USERID subscription option

When MQSO_ANY_USERID is specified, the identity of the subscriber is not restricted to a single user ID.
This allows any user to alter or resume the subscription when they have suitable authority. Only a single
user may have the subscription at any one time. An attempt to resume use of a subscription currently in
use by another application will cause the call to fail with MQRC_SUBSCRIPTION_IN_USE.

To add this option to an existing subscription the MQSUB call (using MQSO_ALTER) must come from the
same user ID as the original subscription.

If an MQSUB call refers to an existing subscription with MQSO_ANY_USERID set, and the user ID differs
from the original subscription, the call succeeds only if the new user ID has authority to subscribe to the
topic. After successful completion, future publications to this subscriber are put to the subscriber's queue
with the new user ID set in the publication.

MQSO_FIXED_USERID
When MQSO_FIXED_USERID is specified, the subscription can only be altered or resumed by a single
owning user ID. This user ID is the last user ID to alter the subscription that set this option, thereby
removing the MQSO_ANY_USERID option, or if no alters have taken place, it is the user ID that created the
subscription.

If an MQSUB verb refers to an existing subscription with MQSO_ANY_USERID set and alters the
subscription (using MQSO_ALTER) to use option MQSO_FIXED_USERID, the user ID of the subscription
is now fixed at this new user ID. The call succeeds only if the new user ID has authority to subscribe to the
topic.

If a user ID other than the one recorded as owning a subscription trys to resume or alter an
MQSO_FIXED_USERID subscription, the call will fail with MQRC_IDENTITY_MISMATCH. The owning user
ID of a subscription can be viewed using the DISPLAY SBSTATUS command.

If neither MQSO_ANY_USERID or MQSO_FIXED_USERID is specified, the default is MQSO_FIXED_USERID.

512 Securing IBM MQ

Publish/subscribe security between queue managers
Publish/subscribe internal messages, such as proxy subscriptions and publications, are put to publish/
subscribe system queues using normal channel security rules. The information and diagrams in this topic
highlight the various processes and user IDs involved in the delivery of these messages.

Local access control
Access to topics for publication and subscriptions is governed by local security definitions and rules that
are described in Publish/subscribe security. On z/OS, no local topic object is required to establish access
control. No local topic is required for access control on other platforms either. Administrators can choose
to apply access control to clustered topic objects, irrespective of whether they exist in the cluster yet.

System administrators are responsible for access control on their local system. They must trust the
administrators of other members of the hierarchy or cluster collectives to be responsible for their access
control policy. Because access control is defined for each separate machine it is likely to be burdensome
if fine level control is needed. It might not be necessary to impose any access control, or access control
might be defined on high-level objects in the topic tree. Fine level access control can be defined for each
subdivision of the topic namespace.

Making a proxy subscription
Trust for an organization to connect its queue manager to your queue manager is confirmed by
normal channel authentication means. If that trusted organization is also allowed to do distributed
publish/subscribe, an authority check is done. The check is made when the channel puts a
message to a distributed publish/subscribe queue. For example, if a message is put to the
SYSTEM.INTER.QMGR.CONTROL queue. The user ID for the queue authority check depends on the
PUTAUT values of the receiving channel. For example, the user ID of the channel, MCAUSER, the message
context, depending on the value and platform. For more information about channel security, see Channel
security.

Proxy subscriptions are made with the user ID of the distributed publish/subscribe agent on the remote
queue manager. For example, QM2 in Figure 30 on page 513. The user is then easily granted access
to local topic object profiles, because that user ID is defined in the system and there are therefore no
domain conflicts.

Figure 30. Proxy subscription security, making a subscription

Sending back remote publications
When a publication is created on the publishing queue manager, a copy of the publication is created
for any proxy subscription. The context of the copied publication contains the context of the user ID
which made the subscription; QM2 in Figure 31 on page 514. The proxy subscription is created with a

Securing IBM MQ 513

destination queue that is a remote queue, so the publication message is resolved onto a transmission
queue.

Trust for an organization to connect its queue manager, QM2, to another queue manager, QM1, is confirmed
by normal channel authentication means. If that trusted organization is then allowed to do distributed
publish/subscribe, an authority check is done when the channel puts the publication message to the
distributed publish/subscribe publication queue SYSTEM.INTER.QMGR.PUBS. The user ID for the queue
authority check depends on the PUTAUT value of the receiving channel (for example, the user ID of the
channel, MCAUSER, message context, and others, depending on value and platform). For more information
about channel security, see Channel security.

When the publication message reaches the subscribing queue manager, another MQPUT to the topic is
done under the authority of that queue manager and the context with the message is replaced by the
context of each of the local subscribers as they are each given the message.

Figure 31. Proxy subscription security, forwarding publications

On a system where little has been considered regarding security, the distributed publish/subscribe
processes are likely to be running under a user ID in the mqm group, the MCAUSER parameter on a
channel is blank (the default), and messages are delivered to the various system queues as required.
The unsecured system makes it easy to set up a proof of concept to demonstrate distributed publish/
subscribe.

On a system where security is more seriously considered, these internal messages are subject to the
same security controls as any message going over the channel.

If the channel is set up with a non-blank MCAUSER and a PUTAUT value specifying that MCAUSER must
be checked, then the MCAUSER in question must be granted access to SYSTEM.INTER.QMGR.* queues.
If there are multiple different remote queue managers, with channels running under different MCAUSER
IDs, all those user IDs need to be granted access to the SYSTEM.INTER.QMGR.* queues. Channels
running under different MCAUSER IDs might occur, for example, when multiple hierarchical connections
are configured on a single queue manager.

If the channel is set up with a PUTAUT value specifying that the context of the message is used, then
access to the SYSTEM.INTER.QMGR.* queues are checked based on the user ID inside the internal
message. Because all these messages are put with the user ID of the distributed publish/subscribe agent
from the queue manager that is sending the internal message, or publication message (see Figure 31 on
page 514), it is not too large a set of user IDs to grant access to the various system queues (one per
remote queue manager), if you want to set up your distributed publish/subscribe security in this way.
It still has all the same issues that channel context security always has; that of the different user ID
domains and the fact that the user ID in the message might not be defined on the receiving system.
However, it is a perfectly acceptable way to run if required.

514 Securing IBM MQ

 System queue security provides a list of queues and the access that is required to securely
set up your distributed publish/subscribe environment. If any internal messages or publications fail to
be put due to security violations, the channel writes a message to the log in the normal manner and the
messages can be sent to the dead-letter queue according to normal channel error processing.

All inter-queue manager messaging for the purposes of distributed publish/subscribe runs using normal
channel security.

For information about restricting publications and proxy subscriptions at the topic level, see Publish/
subscribe security.

Using default user IDs with a queue manager hierarchy
If you have a hierarchy of queue managers running on different platforms and are using default user IDs,
note that these default user IDs differ between platforms and might not be known on the target platform.
As a result, a queue manager running on one platform rejects messages received from queue managers
on other platforms with the reason code MQRC_NOT_AUTHORIZED.

To avoid messages being rejected, at a minimum, the following authorities need to be added to the default
user IDs used on other platforms:

• *PUT *GET authority on the SYSTEM.BROKER. queues
• *PUB *SUB authority on the SYSTEM.BROKER. topics
• *ADMCRT *ADMDLT *ADMCHG authority on the SYSTEM.BROKER.CONTROL.QUEUE queue.

The default user IDs with a queue manager hierarchy are as follows:

Platform Default user ID

Windows mqm

AIX and Linux systems mqm

IBM i QMQM

z/OS The channel initiator address space user ID

Create and grant access to the 'qmqm' user ID if hierarchically attached to a queue manager on IBM i for
Queue Managers on z/OS, AIX, Linux, and Windows platforms.

For queue managers on IBM i and z/OS platforms create and grant access to the 'mqm' user ID if
hierarchically attached to a queue manager on AIX, Linux, and Windows .

Create and grant user access to the z/OS channel initiator address space user ID if hierarchically attached
to a queue manager on z/OS for Queue Managers on Multiplatforms.

User IDs can be case sensitive. The originating queue manager (if on Multiplatforms) forces the user ID to
be all uppercase. The receiving queue manager (if on AIX, Linux, and Windows) forces the user ID to be all
lowercase. Therefore, all user IDs created on AIX and Linux systems must be created in their lowercase
form. If a message exit has been installed, forcing the user ID into uppercase or lowercase does not take
place. Care must be taken to understand how the message exit processes the user ID.

To avoid potential problems with conversion of user IDs:

• On AIX, Linux, and Windows systems, ensure the user IDs are specified in lowercase.
• On IBM i and z/OS, ensure the user IDs are specified in uppercase.

Securing IBM MQ 515

IBM MQ Console and REST API security
Security for the IBM MQ Console and the REST API is configured by editing the mqweb server
configuration in the mqwebuser.xml file.

About this task
You can track user actions and audit the use of the IBM MQ Console and the REST API by examining the
log files of the mqweb server.

Users of the IBM MQ Console and the REST API can be authenticated by using:

• Basic registry
• LDAP registry
• Local OS registry
• SAF on z/OS
• Any other registry type supported by WebSphere Liberty

Roles can be assigned to IBM MQ Console users, and to REST API users to determine what level of access
they are granted to IBM MQ objects. For example, to perform messaging, users must be assigned the
MQWebUser role. For more information about the available roles, see “Roles on the IBM MQ Console and
REST API” on page 527.

After a user is assigned a role, there are a number of methods that can be used to authenticate the user.
With the IBM MQ Console, users can log in with a user name and password, or can use client certificate
authentication. With the REST API, users can use basic HTTP authentication, token based authentication,
or client certificate authentication.

Procedure
1. Define the user registry to authenticate users, and assign each user or group a role to authorize the

users and groups to use the IBM MQ Console or REST API. For more information, see “Configuring
users and roles” on page 517

2. Choose how users of the IBM MQ Console authenticate with the mqweb server. You do not have to use
the same method for all users:

• Let users authenticate by using token authentication. In this case, a user enters a user ID and
password at the IBM MQ Console log in screen. An LTPA token is generated that enables the user to
remain logged in and authorized for a set amount of time. No further configuration is required to use
this authentication option, but you can optionally configure the expiry time for the LTPA token. For
more information, see Configuring the LTPA token expiry interval.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID
or password to log in to the IBM MQ Console, but uses the client certificate instead. For more
information, see “Using client certificate authentication with the REST API and IBM MQ Console” on
page 532.

3. Choose how users of the REST API authenticate with the mqweb server. You do not have to use the
same method for all users:

• Let users authenticate by using HTTP basic authentication. In this case, a user name and
password is encoded, but not encrypted, and sent with each REST API request to authenticate
and authorize the user for that request. In order for this authentication to be secure, you must use
a secure connection. That is, you must use HTTPS. For more information, see “Using HTTP basic
authentication with the REST API” on page 536.

• Let users authenticate by using token authentication. In this case, a user provides a user ID
and password to the REST API login resource with the HTTP POST method. An LTPA token is
generated that enables the user to remain logged in and authorized for a set amount of time. For
more information, see “Using token-based authentication with the REST API ” on page 537.

516 Securing IBM MQ

In order for this authentication to be secure, you must use a secure connection. That is, you must
use HTTPS. However, if you have enabled HTTP connections, you can allow an LTPA token that
is issued for an HTTPS connection to be used for an HTTP connection. For more information, see
Configuring the LTPA token.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID or
password to log in to the REST API, but uses the client certificate instead. For more information,
see “Using client certificate authentication with the REST API and IBM MQ Console” on page 532.

4. Optional: Configure Cross Origin Resource Sharing for the REST API.

By default, a web browser does not allow scripts, such as JavaScript, to invoke the REST API when
the script is not from the same origin as the REST API. That is, cross-origin requests are not enabled.
You can configure Cross Origin Resource Sharing (CORS) to allow cross-origin requests from specified
URLs. For more information, see “Configuring CORS for the REST API” on page 540.

5. Optional: Configure host header validation for the IBM MQ Console and REST API.

You can configure host header validation and create an allowlist of hostnames and ports to ensure that
only requests that contain specific host headers are processed by the IBM MQ Console and REST API.
For more information, see “Configuring host header validation for the IBM MQ Console and REST API”
on page 541.

Configuring users and roles
To make use of the IBM MQ Console or the REST API, users need to authenticate against a user registry,
defined to the mqweb server.

About this task
Authenticated users need to be a member of one of the groups that authorizes access to the capabilities
of the IBM MQ Console and REST API. By default, the user registry does not contain any users; these need
to be added by editing the mqwebuser.xml file.

When you configure users and groups, you first configure a user registry to authenticate users and groups
against. This user registry is shared between the IBM MQ Console and the REST API. You can control
whether users and groups have access to the IBM MQ Console, REST API, or both, when you configure
roles for your users and groups.

After you configure the user registry, you configure roles for the users and groups to grant them
authorization. There are several roles available, including roles specific to using the REST API for Managed
File Transfer. Each role grants a different level of access. For more information, see “Roles on the IBM MQ
Console and REST API” on page 527.

A number of sample XML files are provided with the mqweb server to make the configuration of users and
groups simpler. Users who are familiar with configuring security in WebSphere Liberty (WLP) might prefer
not to use the samples. WLP provides other authorization capabilities in addition to the ones documented
here.

Procedure
• Configure users and groups with a basic registry by using the basic_registry.xml file.

The user names and passwords in the registry are used to authenticate and authorize users of the IBM
MQ Console and the REST API.

To configure a basic registry by using the basic_registry.xml sample file, see “Configuring a basic
registry for the IBM MQ Console and REST API” on page 519.

• Configure users and groups with an LDAP registry by using the ldap_registry.xml file.

The user names and passwords in the LDAP registry are used to authenticate and authorize use of the
IBM MQ Console and the REST API.

Securing IBM MQ 517

To configure an LDAP registry by using the ldap_registry.xml sample file, see “Configuring an
LDAP registry for the IBM MQ Console and REST API” on page 523.

•
Configure users and groups with a local operating system registry by using the
local_os_registry.xml file.

The user names and passwords in the operating system registry are used to authenticate and authorize
users of the IBM MQ Console and the REST API.

To configure a local OS registry by using the local_os_registry.xml sample file, see “Configuring
a local OS registry for the IBM MQ Console and REST API” on page 521.

•
Configure users and groups with the System authorization facility (SAF) interface on z/OS by using the
zos_saf_registry.xml file.

RACF, or other security product, profiles are used to grant users and groups access to roles. The user
names and passwords in the RACF database are used to authenticate and authorize users of the IBM
MQ Console and REST API.

To configure the SAF interface by using the zos_saf_registry.xml sample file, see “Configuring a
SAF registry for the IBM MQ Console and REST API” on page 525.

• Disable security, including the ability to access the IBM MQ Console, or the REST API, using HTTPS, by
using the no_security.xml file.

What to do next
Choose how users authenticate:
IBM MQ Console authentication options

• Let users authenticate by using token authentication. In this case, a user enters a user ID and
password at the IBM MQ Console log in screen. An LTPA token is generated that enables the user to
remain logged in and authorized for a set amount of time. No further configuration is required to use
this authentication option, but you can optionally configure the expiry interval for the LTPA token.
For more information, see Configuring the LTPA token expiry interval.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID
or password to log in to the IBM MQ Console, but uses the client certificate instead. For more
information, see “Using client certificate authentication with the REST API and IBM MQ Console” on
page 532.

REST API authentication options

• Let users authenticate by using HTTP basic authentication. In this case, a user name and
password is encoded, but not encrypted, and sent with each REST API request to authenticate
and authorize the user for that request. In order for this authentication to be secure, you must use
a secure connection. That is, you must use HTTPS. For more information, see “Using HTTP basic
authentication with the REST API” on page 536.

• Let users authenticate by using token authentication. In this case, a user provides a user ID and
password to the REST API login resource with the HTTP POST method. An LTPA token is generated
that enables the user to remain logged in and authorized for a set amount of time. For more
information, see “Using token-based authentication with the REST API ” on page 537. You can
configure the expiry interval for the LTPA token. For more information, see Configuring the LTPA
token.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID or
password to log in to the REST API, but uses the client certificate instead. For more information, see
“Using client certificate authentication with the REST API and IBM MQ Console” on page 532.

518 Securing IBM MQ

Configuring a basic registry for the IBM MQ Console and REST API
You can configure a basic registry within the mqwebuser.xml file. The user names, passwords, and roles
in the XML file are used to authenticate and authorize users of the IBM MQ Console and the REST API.

Before you begin
• When you configure users within the basic registry, you must assign each user a role. Each role provides

different levels of privilege to access the IBM MQ Console and REST API, and determines the security
context that is used when an allowed operation is attempted. You need to understand these roles
before you configure the basic registry. For more information about each of the roles, see “Roles on the
IBM MQ Console and REST API” on page 527.

• To complete this task, you must be a user with sufficient privileges to edit the mqwebuser.xml file:

– On z/OS, you must have write access to the mqwebuser.xml file.

– On all other operating systems, you must be a privileged user.

– If the mqweb server is part of a stand-alone IBM MQ Web Server
installation, you must have write access to the mqwebuser.xml file in the IBM MQ Web Server
data directory.

Procedure
1. Copy the sample XML file basic_registry.xml from one of the following paths:

• In an IBM MQ installation:

– On AIX, Linux, and Windows: MQ_INSTALLATION_PATH /web/mq/samp/
configuration

– On z/OS: PathPrefix /web/mq/samp/configuration

where PathPrefix is the IBM MQ for z/OS UNIX System Services Components installation path.

• In a stand-alone IBM MQ Web Server installation:
MQWEB_INSTALLATION_PATH/web/mq/samp/configuration

where MQWEB_INSTALLATION_PATH is the directory to which the IBM MQ Web Server installation
file was decompressed.

2. Place the sample file in the appropriate directory:

• In an IBM MQ installation:

– On AIX or Linux: /var/mqm/web/installations/
installationName/servers/mqweb

– On Windows:
MQ_DATA_PATH\web\installations\installationName\servers\mqweb, where
MQ_DATA_PATH is the IBM MQ data path. This path is the data path that is selected during
the installation of IBM MQ. By default, this path is C:\ProgramData\IBM\MQ.

– On z/OS: WLP_user_directory/servers/mqweb

where WLP_user_directory is the directory that was specified when the crtmqweb script ran to
create the mqweb server definition.

• In a stand-alone IBM MQ Web Server installation:
MQ_OVERRIDE_DATA_PATH/web/installations/MQWEBINST/servers/mqweb

where MQ_OVERRIDE_DATA_PATH is the IBM MQ Web Server data directory that the
MQ_OVERRIDE_DATA_PATH environment variable points to.

Securing IBM MQ 519

3. Optional: If you changed any configuration settings in mqwebuser.xml, copy them into the sample
file.

4. Delete the existing mqwebuser.xml file and rename the sample file to mqwebuser.xml.
5. Edit the new mqwebuser.xml file to add users and groups within the basicRegistry tags.

Be aware that any user with the MQWebUser role can perform only the operations that the user ID is
granted to perform on the queue manager. Therefore, the user ID defined in the registry must have an
identical user ID on the system on which IBM MQ is installed. These user IDs must be in the same
case, or the mapping between the user IDs can fail.

For more information about configuring basic user registries, see Configuring a basic user registry for
Liberty in the WebSphere Liberty documentation.

6. Assign roles to users and groups by editing the mqwebuser.xml file:

There are several roles available that authorize users and groups to use the IBM MQ Console, and the
REST API. Each role grants a different level of access. For more information, see “Roles on the IBM MQ
Console and REST API” on page 527.

• To assign roles and grant access to the IBM MQ Console, add your users and groups
between the appropriate security-role tags within the <enterpriseApplication
id="com.ibm.mq.console"> tags.

• To assign roles and grant access to the REST API, add your users and groups
between the appropriate security-role tags within the <enterpriseApplication
id="com.ibm.mq.rest"> tags.

For help with the format of the user and group information within the security-role tags, see the
examples.

7. If you provided passwords for users in mqwebuser.xml, you should encode these passwords, to make
them more secure, by using the securityUtility encoding command provided by WebSphere
Liberty. For more information, see Liberty:securityUtility command in the WebSphere Liberty product
documentation.

Example

In the following example, the group MQWebAdminGroup is granted access to the IBM MQ Console with
the role MQWebAdmin. The user, reader, is granted access with the role MQWebAdminRO, and the user
guest is granted access with the role MQWebUser:

<enterpriseApplication id="com.ibm.mq.console">
 <application-bnd>
 <security-role name="MQWebAdmin">
 <group name="MQWebAdminGroup" realm="defaultRealm"/>
 </security-role>
 <security-role name="MQWebAdminRO">
 <user name="reader" realm="defaultRealm"/>
 </security-role>
 <security-role name="MQWebUser">
 <user name="guest" realm="defaultRealm"/>
 </security-role>
 </application-bnd>
 </enterpriseApplication>

In the following example, the users reader and guest are granted access to the IBM MQ Console. The
user user is granted access to the REST API, and any users within the MQAdmin group are granted access
to the IBM MQ Console and the REST API. The mftadmin user is granted access to the REST API for MFT :

<enterpriseApplication id="com.ibm.mq.console">
 <application-bnd>
 <security-role name="MQWebAdmin">
 <group name="MQAdmin" realm="defaultRealm"/>
 </security-role>
 <security-role name="MQWebAdminRO">
 <user name="reader" realm="defaultRealm"/>
 </security-role>
 <security-role name="MQWebUser">
 <user name="guest" realm="defaultRealm"/>

520 Securing IBM MQ

 </security-role>
 </application-bnd>
</enterpriseApplication>

<enterpriseApplication id="com.ibm.mq.rest">
 <application-bnd>
 <security-role name="MQWebAdmin">
 <group name="MQAdmin" realm="defaultRealm"/>
 </security-role>
 <security-role name="MQWebUser">
 <user name="user" realm="defaultRealm"/>
 </security-role>
 <security-role name="MFTWebAdmin">
 <user name="mftadmin" realm="defaultRealm"/>
 </security-role>
 </application-bnd>
</enterpriseApplication>

What to do next
Choose how users authenticate:
IBM MQ Console authentication options

• Let users authenticate by using token authentication. In this case, a user enters a user ID and
password at the IBM MQ Console log in screen. An LTPA token is generated that enables the user to
remain logged in and authorized for a set amount of time. No further configuration is required to use
this authentication option, but you can optionally configure the expiry interval for the LTPA token.
For more information, see Configuring the LTPA token expiry interval.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID
or password to log in to the IBM MQ Console, but uses the client certificate instead. For more
information, see “Using client certificate authentication with the REST API and IBM MQ Console” on
page 532.

REST API authentication options

• Let users authenticate by using HTTP basic authentication. In this case, a user name and
password is encoded, but not encrypted, and sent with each REST API request to authenticate
and authorize the user for that request. In order for this authentication to be secure, you must use
a secure connection. That is, you must use HTTPS. For more information, see “Using HTTP basic
authentication with the REST API” on page 536.

• Let users authenticate by using token authentication. In this case, a user provides a user ID and
password to the REST API login resource with the HTTP POST method. An LTPA token is generated
that enables the user to remain logged in and authorized for a set amount of time. For more
information, see “Using token-based authentication with the REST API ” on page 537. You can
configure the expiry interval for the LTPA token. For more information, see Configuring the LTPA
token.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID or
password to log in to the REST API, but uses the client certificate instead. For more information, see
“Using client certificate authentication with the REST API and IBM MQ Console” on page 532.

Configuring a local OS registry for the IBM MQ Console and REST
API
You can configure a local operating system registry within the mqwebuser.xml file. The user names and
passwords on the local operating system are used to authenticate and authorize users of the IBM MQ
Console and the REST API.

Before you begin
• For client certificate authentication with the local OS authentication feature, the user identity is the

common name (CN) from the distinguished name (DN) of the client certificate. If the user identity does

Securing IBM MQ 521

not exist as an operating system user, client certificate login will fail and fallback to password based
authentication.

• To complete this task, you must be a user with sufficient privileges to edit the mqwebuser.xml file:

– If the mqweb server is part of a stand-alone IBM MQ Web Server
installation, you must have write access to the mqwebuser.xml file in the IBM MQ Web Server
data directory.

– If the mqweb server is part of an IBM MQ installation, you must be a privileged user.

About this task
With a local operating system registry, users and groups are automatically assigned a role:

• Any user that is part of the 'mqm' group, or the 'QMQMADM' group on IBM i, is granted the MQWebAdmin
and MFTWebAdmin roles.

• All other users are granted the MQWebUser role.

For more information about these roles, see “Roles on the IBM MQ Console and REST API” on page 527.

A local operating system registry can only be used on AIX, Linux, and Windows. Equivalent function is
provided on z/OS by configuring a SAF registry. For more information, see “Configuring a SAF registry for
the IBM MQ Console and REST API” on page 525.

Procedure
1. Copy the sample XML file local_os_registry.xml from one of the following paths:

• In a stand-alone IBM MQ Web Server installation:
MQWEB_INSTALLATION_PATH/web/mq/samp/configuration

where MQWEB_INSTALLATION_PATH is the directory to which the IBM MQ Web Server installation
file was decompressed.

• In an IBM MQ installation: MQ_INSTALLATION_PATH/web/mq/samp/configuration
2. Place the sample file in one of the following directories:

• In a stand-alone IBM MQ Web Server installation:
MQ_OVERRIDE_DATA_PATH/web/installations/MQWEBINST/servers/mqweb

where MQ_OVERRIDE_DATA_PATH is the IBM MQ Web Server data directory that the
MQ_OVERRIDE_DATA_PATH environment variable points to.

• In an IBM MQ installation: MQ_DATA_PATH/web/installations/installationName/
servers/mqweb

3. Optional: If you changed any configuration settings in mqwebuser.xml, copy them into the sample
file.

4. Delete the existing mqwebuser.xml file and rename the sample file to mqwebuser.xml.

What to do next
Choose how users authenticate:
IBM MQ Console authentication options

• Let users authenticate by using token authentication. In this case, a user enters a user ID and
password at the IBM MQ Console log in screen. An LTPA token is generated that enables the user to
remain logged in and authorized for a set amount of time. No further configuration is required to use
this authentication option, but you can optionally configure the expiry interval for the LTPA token.
For more information, see Configuring the LTPA token expiry interval.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID
or password to log in to the IBM MQ Console, but uses the client certificate instead. For more

522 Securing IBM MQ

information, see “Using client certificate authentication with the REST API and IBM MQ Console” on
page 532.

REST API authentication options

• Let users authenticate by using HTTP basic authentication. In this case, a user name and
password is encoded, but not encrypted, and sent with each REST API request to authenticate
and authorize the user for that request. In order for this authentication to be secure, you must use
a secure connection. That is, you must use HTTPS. For more information, see “Using HTTP basic
authentication with the REST API” on page 536.

• Let users authenticate by using token authentication. In this case, a user provides a user ID and
password to the REST API login resource with the HTTP POST method. An LTPA token is generated
that enables the user to remain logged in and authorized for a set amount of time. For more
information, see “Using token-based authentication with the REST API ” on page 537. You can
configure the expiry interval for the LTPA token. For more information, see Configuring the LTPA
token.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID or
password to log in to the REST API, but uses the client certificate instead. For more information, see
“Using client certificate authentication with the REST API and IBM MQ Console” on page 532.

Configuring an LDAP registry for the IBM MQ Console and REST API
You can configure an LDAP registry within the mqwebuser.xml file. The user names and passwords in the
LDAP registry are used to authenticate and authorize users of the IBM MQ Console and the REST API.

Before you begin
• When you configure an LDAP registry, you must assign each user a role. Each role provides different

levels of privilege to access the IBM MQ Console and REST API, and determines the security context
that is used when an allowed operation is attempted. You need to understand these roles before you
configure the registry. For more information about each of the roles, see “Roles on the IBM MQ Console
and REST API” on page 527.

Be aware that any user with the MQWebUser role can perform only the operations that the user ID is
granted to perform on the queue manager. Therefore, the user ID defined on the LDAP server must have
an identical user ID on the system on which IBM MQ is installed. These user IDs must be in the same
case, or the mapping between the user IDs can fail.

• To complete this task, you must be a user with sufficient privileges to edit the mqwebuser.xml file:

– On z/OS, you must have write access to the mqwebuser.xml file.

– On all other operating systems, you must be a privileged user.

– If the mqweb server is part of a stand-alone IBM MQ Web Server
installation, you must have write access to the mqwebuser.xml file in the IBM MQ Web Server
data directory.

Procedure
1. Copy the sample XML file ldap_registry.xml from one of the following paths:

• In an IBM MQ installation:

– On AIX, Linux, and Windows: MQ_INSTALLATION_PATH /web/mq/samp/
configuration

– On z/OS: PathPrefix /web/mq/samp/configuration

where PathPrefix is the IBM MQ for z/OS UNIX System Services Components installation path.

Securing IBM MQ 523

• In a stand-alone IBM MQ Web Server installation:
MQWEB_INSTALLATION_PATH/web/mq/samp/configuration

where MQWEB_INSTALLATION_PATH is the directory to which the IBM MQ Web Server installation
file was decompressed.

2. Place the sample file in the appropriate directory:

• In an IBM MQ installation:

– On AIX or Linux: /var/mqm/web/installations/
installationName/servers/mqweb

– On Windows:
MQ_DATA_PATH\web\installations\installationName\servers\mqweb, where
MQ_DATA_PATH is the IBM MQ data path. This path is the data path that is selected during
the installation of IBM MQ. By default, this path is C:\ProgramData\IBM\MQ.

– On z/OS: WLP_user_directory/servers/mqweb

where WLP_user_directory is the directory that was specified when the crtmqweb script ran to
create the mqweb server definition.

• In a stand-alone IBM MQ Web Server installation:
MQ_OVERRIDE_DATA_PATH/web/installations/MQWEBINST/servers/mqweb

where MQ_OVERRIDE_DATA_PATH is the IBM MQ Web Server data directory that the
MQ_OVERRIDE_DATA_PATH environment variable points to.

3. Optional: If you changed any configuration settings in mqwebuser.xml, copy them into the sample
file.

4. Delete the existing mqwebuser.xml file and rename the sample file to mqwebuser.xml.
5. Edit the new mqwebuser.xml file to change the LDAP registry settings within the ldapRegistry and
idsLdapFilterProperties tags.

For more information about configuring LDAP registries, see Configuring LDAP user registries in Liberty
in the WebSphere Liberty documentation.

6. Assign roles to users and groups by editing the mqwebuser.xml file:

There are several roles available that authorize users and groups to use the IBM MQ Console, and the
REST API. Each role grants a different level of access. For more information, see “Roles on the IBM MQ
Console and REST API” on page 527.

• To assign roles and grant access to the IBM MQ Console, add your users and groups
between the appropriate security-role tags within the <enterpriseApplication
id="com.ibm.mq.console"> tags.

• To assign roles and grant access to the REST API, add your users and groups
between the appropriate security-role tags within the <enterpriseApplication
id="com.ibm.mq.rest"> tags.

What to do next
Choose how users authenticate:
IBM MQ Console authentication options

• Let users authenticate by using token authentication. In this case, a user enters a user ID and
password at the IBM MQ Console log in screen. An LTPA token is generated that enables the user to
remain logged in and authorized for a set amount of time. No further configuration is required to use
this authentication option, but you can optionally configure the expiry interval for the LTPA token.
For more information, see Configuring the LTPA token expiry interval.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID
or password to log in to the IBM MQ Console, but uses the client certificate instead. For more

524 Securing IBM MQ

information, see “Using client certificate authentication with the REST API and IBM MQ Console” on
page 532.

REST API authentication options

• Let users authenticate by using HTTP basic authentication. In this case, a user name and
password is encoded, but not encrypted, and sent with each REST API request to authenticate
and authorize the user for that request. In order for this authentication to be secure, you must use
a secure connection. That is, you must use HTTPS. For more information, see “Using HTTP basic
authentication with the REST API” on page 536.

• Let users authenticate by using token authentication. In this case, a user provides a user ID and
password to the REST API login resource with the HTTP POST method. An LTPA token is generated
that enables the user to remain logged in and authorized for a set amount of time. For more
information, see “Using token-based authentication with the REST API ” on page 537. You can
configure the expiry interval for the LTPA token. For more information, see Configuring the LTPA
token.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID or
password to log in to the REST API, but uses the client certificate instead. For more information, see
“Using client certificate authentication with the REST API and IBM MQ Console” on page 532.

Configuring a SAF registry for the IBM MQ Console and REST API
The System Authorization Facility (SAF) interface allows the mqweb server to call the external security
manager for authentication and authorization checking. A user can then log in to the IBM MQ Console and
REST API with a z/OS user ID and password.

Before you begin
• When you configure a SAF registry, you must assign users a role. Each role provides different levels of

privilege to access the IBM MQ Console and REST API, and determines the security context that is used
when an allowed operation is attempted. You need to understand these roles before you configure the
registry. For more information about each of the roles, see “Roles on the IBM MQ Console and REST
API” on page 527.

• You need the WebSphere Liberty Angel process running to use the authorized interface to SAF. See
Enabling z/OS authorized services on Liberty for z/OS for more information.

• To complete this task, you must have write access to the mqwebuser.xml file, and authority to define
security manager profiles.

Note: From IBM MQ 9.3.5 for Continuous Delivery, the sample configuration file
zos_saf_registry.xml has been updated to remove a duplicate safAuthorization entry.

This update fixes an issue where an ICH408I error can occur when the IBM MQ Console on z/OS is
upgraded to a level that ships WebSphere Liberty Profile 22.0.0.12 or later: that is, from IBM MQ 9.3.0 Fix
Pack 2 for Long Term Support and from IBM MQ 9.3.1 CSU 1 and IBM MQ 9.3.2 for Continuous Delivery.
Having more than one safAuthorization statement is not supported and might cause an ICH408I error
when users who are not in either MQWebAdmin or MQWebAdminRO roles, in the EBJROLE class, try to
access a z/OS queue manager through the IBM MQ Console.

The default for racRouteLog, which specifies the types of access attempts to log, is NONE. If you require
an additional report or record for security auditing, see SAF Authorization (safAuthorization) for more
information.

About this task
The SAF interface allows the mqweb server to call the external security manager for authentication and
authorization checking for both the IBM MQ Console and REST API.

Securing IBM MQ 525

https://www.ibm.com/docs/en/was-liberty/zos?topic=configuration-safauthorization

Procedure
1. Follow the steps in Enabling z/OS authorized services on Liberty for z/OS to give your mqweb server

access to use z/OS authorized services.
Sample JCL for starting the angel process is in USS_ROOT/web/templates/zos/procs/
bbgzangl.jcl, where USS_ROOT is the path in z/OS UNIX System Services (z/OS UNIX) where
z/OS UNIX components are installed.

In bbgzangl.jcl, change the SET ROOT statement to point to USS_ROOT/web, for
example, /usr/lpp/mqm/V9R2M0/web.

See Administering Liberty on z/OS for further information on stopping and starting the angel process.
2. Follow the steps in Liberty: Setting up the System Authorization Facility (SAF) unauthenticated user

to create the unauthenticated user needed by Liberty.
3. Copy the zos_saf_registry.xml file from the following path: PathPrefix /web/mq/samp/
configuration where PathPrefix is the z/OS UNIX Components installation path.

4. Place the sample file in the WLP_user_directory/servers/mqweb directory, where
WLP_user_directory is the directory that was specified when the crtmqweb script ran to create the
mqweb server definition.

5. Optional: If you previously changed any configuration settings in mqwebuser.xml, copy them into
the sample file.

6. Delete the existing mqwebuser.xml file and rename the sample file to mqwebuser.xml.
7. Customize the safCredentials element in mqwebuser.xml.

a. Set profilePrefix to a name that is unique to your Liberty server. If you have more than one
mqweb server running on a single system, you will need to choose a different name for each
server; for example MQWEB920 and MQWEB915.

b. Set unauthenticatedUser to the name of the unauthenticated user created in step “2” on page
526.

8. Define the mqweb server APPLID to RACF.
The APPLID resource name is the value you specified in the profilePrefix attribute in step “7” on
page 526. The following example defines the mqweb server APPLID in RACF:

RDEFINE APPL profilePrefix UACC(NONE)

9. Grant all users, or groups, to be authenticated to the IBM MQ Console or REST API READ access to
the mqweb server APPLID in the APPL class.
You must also do this for the unauthenticated user defined in step “2” on page 526. The following
example grants a user READ access to the mqweb server APPLID in RACF:

PERMIT profilePrefix CLASS(APPL) ACCESS(READ) ID(userID)

10. Use the SETROPTS RACF command to refresh the in-storage RACLISTed APPL class profiles:
SETROPTS RACLIST(APPL) REFRESH

11. Define the profiles in the EJBROLE class needed to give users access to roles in the IBM MQ Console
and REST API.
The following example defines the profiles in RACF, where profilePrefix is the value specified for
the profilePrefix attribute in step “7” on page 526.

RDEFINE EJBROLE profilePrefix.com.ibm.mq.console.MQWebAdmin UACC(NONE)
RDEFINE EJBROLE profilePrefix.com.ibm.mq.console.MQWebAdminRO UACC(NONE)
RDEFINE EJBROLE profilePrefix.com.ibm.mq.console.MQWebUser UACC(NONE)
RDEFINE EJBROLE profilePrefix.com.ibm.mq.rest.MQWebAdmin UACC(NONE)
RDEFINE EJBROLE profilePrefix.com.ibm.mq.rest.MQWebAdminRO UACC(NONE)
RDEFINE EJBROLE profilePrefix.com.ibm.mq.rest.MQWebUser UACC(NONE)
RDEFINE EJBROLE profilePrefix.com.ibm.mq.rest.MFTWebAdmin UACC(NONE)
RDEFINE EJBROLE profilePrefix.com.ibm.mq.rest.MFTWebAdminRO UACC(NONE)

12. Grant users access to roles in the IBM MQ Console and REST API.

526 Securing IBM MQ

To do this, give users or groups READ access to one or more of the profiles in the EBJROLE class
created in step “11” on page 526. For more information about the roles, see “Roles on the IBM MQ
Console and REST API” on page 527.
The following example gives a user access to the MQWebAdmin role for the REST API in RACF, where
profilePrefix is the value specified for the profilePrefix attribute in step “7” on page 526.

PERMIT profilePrefix.com.ibm.mq.rest.MQWebAdmin CLASS(EJBROLE) ACCESS(READ) ID(userID)

Results
You have set up SAF authentication for the IBM MQ Console and REST API.

What to do next
Choose how users authenticate:
IBM MQ Console authentication options

• Let users authenticate by using token authentication. In this case, a user enters a user ID and
password at the IBM MQ Console log in screen. An LTPA token is generated that enables the user to
remain logged in and authorized for a set amount of time. No further configuration is required to use
this authentication option, but you can optionally configure the expiry interval for the LTPA token.
For more information, see Configuring the LTPA token expiry interval.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID
or password to log in to the IBM MQ Console, but uses the client certificate instead. For more
information, see “Using client certificate authentication with the REST API and IBM MQ Console” on
page 532.

REST API authentication options

• Let users authenticate by using HTTP basic authentication. In this case, a user name and
password is encoded, but not encrypted, and sent with each REST API request to authenticate
and authorize the user for that request. In order for this authentication to be secure, you must use
a secure connection. That is, you must use HTTPS. For more information, see “Using HTTP basic
authentication with the REST API” on page 536.

• Let users authenticate by using token authentication. In this case, a user provides a user ID and
password to the REST API login resource with the HTTP POST method. An LTPA token is generated
that enables the user to remain logged in and authorized for a set amount of time. For more
information, see “Using token-based authentication with the REST API ” on page 537. You can
configure the expiry interval for the LTPA token. For more information, see Configuring the LTPA
token.

• Let users authenticate by using client certificates. In this case, the user does not use a user ID or
password to log in to the REST API, but uses the client certificate instead. For more information, see
“Using client certificate authentication with the REST API and IBM MQ Console” on page 532.

Roles on the IBM MQ Console and REST API
When you authorize users and groups to use the IBM MQ Console or REST API, you must assign the users
and groups one of the available roles: MQWebAdmin, MQWebAdminRO, MQWebUser, MFTWebAdmin, and
MFTWebAdminRO. Each role provides different levels of privilege to access the IBM MQ Console and REST
API, and determines the security context that is used when an allowed operation is attempted.

Note: With the exception of the MQWebUser role, the user ID is not case sensitive. See “MQWebUser” on
page 528 for the specific requirements for this role.

MQWebAdmin
A user or group that is assigned this role can perform all administrative operations, and operates
under the security context of the operating system user ID that is used to start the mqweb server.
A user or group with this role does not have access to the following REST services:

Securing IBM MQ 527

• The REST API for MFT. To use these services, the user or group must also be assigned the
MFTWebAdmin or MFTWebAdminRO role.

• The messaging REST API. To use the messaging REST API, the user must be assigned the
MQWebUser role.

MQWebAdminRO
This role gives read only access to the IBM MQ Console or REST API. A user or group that is assigned
this role can perform the following operations:

• Display and inquire operations on IBM MQ objects such as queues and channels.
• Browse messages on queues.

A user or group that is assigned this role operates under the security context of the operating system
user ID that is used to start the mqweb server.
A user or group with this role does not have access to the following REST services:

• The REST API for MFT. To use these services, the user or group must also be assigned the
MFTWebAdmin or MFTWebAdminRO role.

• The messaging REST API. To use the messaging REST API, the user must be assigned the
MQWebUser role.

MQWebUser
A user or group that is assigned this role can perform any operation that the user ID is granted to
perform on the queue manager. For example:

• Start and stop operations on IBM MQ objects such as channels.
• Define and set operations on IBM MQ objects such as queues and channels.
• Display and inquire operations on IBM MQ objects such as queues and channels.
• Put and get messages using the messaging REST API.

A user or group that is assigned this role operates under the security context of the principal, and can
perform only the operations that the user ID is granted to perform on the queue manager.
Therefore, the user or group that is defined in the mqweb user registry must be given authority within
IBM MQ before that user can perform any operations. By using this role, you can finely control which
users have which type of access to specific IBM MQ resources when they use the IBM MQ Console
and REST API.

Note:

• The maximum length of a user ID that is assigned this role is 12 characters.
• The case of the user ID must be the same in the mqweb user registry and on the IBM MQ system.

If the case of the user ID is different, the user might be authenticated by the IBM MQ Console and
REST API but not authorized to use IBM MQ resources.

MFTWebAdmin
A user or group assigned this role can perform all MFT REST operations, and operates under the
security context of the operating system user ID that is used to start the mqweb server.
A user or group with this role does not have access to any of the IBM MQ REST API services. To
use these services, the user or group must also be assigned the MQWebAdmin, MQWebAdminRO, or
MQWebUser role.

MFTWebAdminRO
This role gives read only access to the REST API for MFT . A user or group that is assigned this role can
perform read only operations (GET requests) like list transfer and list agents.
A user or group that is assigned this role operates under the security context of the operating system
user ID that is used to start the mqweb server.
A user or group with this role does not have access to any of the IBM MQ REST API services. To
use these services, the user or group must also be assigned the MQWebAdmin, MQWebAdminRO, or
MQWebUser role.

528 Securing IBM MQ

For more information about configuring users and groups to use these roles, see “Configuring users and
roles” on page 517.

Overlapping roles
A user or group can be assigned more than one role. When a user performs an operation in this situation,
the highest privilege role that is applicable to the operation is used. For example, if a user with the roles
MQWebAdminRO and MQWebUser performs an inquire queue operation, the MQWebAdminRO role is used
and the operation is attempted under the context of the system user ID that started the web server. If
that same user performs a define operation, the MQWebUser role is used, and the operation is attempted
under the context of the principal.

Changing the certificate provided by the IBM MQ Console to your
browser

You can configure the IBM MQ Console to present your own CA-signed certificate for authentication
purposes. Doing this removes the self-signed certificate warning presented by a web browser when
accessing the IBM MQ Console console

Before you begin
Configure users, groups, and roles to be authorized to use the IBM MQ Console. For more information, see
“Configuring users and roles” on page 517.

About this task
The console security is provided by an IBM WebSphere Application Server Liberty used by your IBM MQ
installation.

To change the certificate that is presented to your browser by this server, you need to:

1. Add the certificate you want to present into the web server keystore.
2. Label the certificate.
3. Edit the mqwebuser.xml file to turn off the default security configuration.
4. Turn on your own security configuration in the mqwebuser.xml file and specify the certificate you

want to present.

The procedure assumes that you are:

• Using an AIX, Linux, and Windows system.
• A privileged user.

Notes:

• The following example creates and uses a self-signed certificate, using commands issued on a Linux
machine; that is ls, rather than dir used on a Windows machine.

• This shows you the concept but does not remove the browser warning.
• In order to remove the browser warning, you must provide a CA-signed certificate.

Procedure
1. If the Liberty server is running, stop the server by entering the endmqweb command on the command

line.
2. Add your certificate into the keystore the Liberty application server uses, so it can find and present the

certificate to your web browser.
a) Move to the keystore location by issuing the following command, and list the output:

Securing IBM MQ 529

cd /var/mqm/web/installations/Installation1/servers/mqweb/resources/security
ls

For example, you see the following output, which displays the keystore named key.jks:

/var/mqm/web/installations/Installation1/servers/mqweb/resources/security$
ls key.jks ltpa.keys

b) Create a self-signed certificate:
To create a self-signed certificate, for educational purposes, which is added to the key.jks with a
password of password, issue the following command:

runmqckm -cert -create -db key.jks -pw password -dn
"cn=QueueManager,o=IBM,c=UK" -label myowncertificate

The -dn flag allows you to specify the values displayed on your certificate.
c) Verify that you have successfully added the certificate by issuing the following command:

runmqckm -cert -list -db key.jks -pw password

For example, you see the following output, which shows that the certificate has been added with its
label, along with the certificate labeled default which the server is currently using:

/var/mqm/web/installations/Installation1/servers/mqweb/resources/security
$ runmqckm -cert -list -db key.jks -pw password
Certificates in database /var/mqm/web/installations/Installation1/servers/mqweb/resources/
security/key.jks
 default
 myown certificate

3. Edit the mqwebuser.xml file to make the server provide the new certificate.
a) Move to the location of the mqwebuser.xml file and then open it up for editing in a text editor of

your choice, in this case nano

cd /var/mqm/web/installations/Installation1/servers/mqweb
nano mqwebuser.xml

b) Turn off the default security configuration.
Comment out the following line by adding <!–- to the beginning of the line of code and --> to the
end of the line of code:

<!--
<sslDefault sslRef="mqDefaultSSLConfig"/>
-->

c) Enable and specify your own configuration.
To do this, carry out the following procedure:

i) Uncomment the following lines of code by removing the <!–- from the beginning of the block of
code and the --> from the end of the block of code.

<!--
<keyStore id="defaultKeyStore" location="key.jks" type="JKS" password="password"/>
<keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="password"/>
<ssl id="thisSSLConfig" clientAuthenticationSupported="true" keyStoreRef="defaultKeyStore"
serverKeyAlias="default" trustStoreRef="defaultTrustStore" sslProtocol="TLSv1.2"/>
<sslDefault sslRef="thisSSLConfig"/>
-->

ii) Do not change the first line of the block of code because this line specifies the keystore the
console uses to store its personal certificates.

530 Securing IBM MQ

iii) Comment out the second line of the block of code, because this line specifies a truststore
where the console would look for client certificates. As you are using token authentication you
have not created a truststore, and leaving the line of code in would cause an error when the
console starts.

iv) Change serverKeyAlias="default" to serverKeyAlias="myowncertificate" in the third line of
the block of code and leave everything else the same.

v) Do not change the last line of the block of code as this tells the server to use the configuration
you have just specified.

The block of code now looks like this:

<keyStore id="defaultKeyStore" location="key.jks" type="JKS" password="password"/>
<!-- Commenting out the defaultTrustStore as otherwise we get errors (viewable in the messages.log file
in the logs folder) j
<keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="password"/>
-->
<ssl id="thisSSLConfig" clientAuthenticationSupported="true" keyStoreRef="defaultKeyStore"
serverKeyAlias="myowncertificate" trustStoreRef="defaultTrustStore" sslProtocol="TLSv1.2"/>
<sslDefault sslRef="thisSSLConfig"/>

4. Restart the web server using the strmqweb command.

Results
When the web server starts, browse to your IBM MQ Console and refresh. If you are using a self-signed
certificate that you created, using the procedure described in the preceding text in steps “2” on page 529
and “3” on page 530, you see a security warning.

Note that the format of this warning depends upon the browser you are using.

Securing IBM MQ 531

If you click View Certificate, you see that it has the details you provided on the -dn flag when you
created the certificate in step “2.b” on page 530.

However, if you are using a CA-signed certificate your browser trusts, which you added by issuing the
following command:

runmqckm -cert -add -db key.jks -pw password -label myCACertificate

where myCACertificate is the file path to the file with your CA certificate you are taken straight to the
login page.

Attention: If you are using a CA-signed certificate, and that CA certificate is part of a certificate
chain, you must add all the certificates to the chain, starting with the root CA certificate. See
“Adding a CA certificate, or the public part of a self-signed certificate, into a key repository on AIX,
Linux, and Windows” on page 311 for more information.

Using client certificate authentication with the REST API and IBM
MQ Console

You can map client certificates to principals to authenticate IBM MQ Console and REST API users.

Before you begin
• Configure users, groups, and roles to be authorized to use the IBM MQ Console and REST API. For more

information, see “Configuring users and roles” on page 517.
• When you use the REST API, you can query the credentials of the current user by using the HTTP GET

method on the login resource, providing the client certificate to authenticate the request. This request
returns information about the user name, and the roles that the user is assigned. For more information,
see GET /login.

• When you map client certificates to principals to authenticate users, the distinguished name of the
client certificate is used to match against users in the configured user registry:

– For a basic registry, the Common Name (CN) is matched against the user. For example, CN=Fred,
O=IBM, C=GB is matched against a user name of Fred.

532 Securing IBM MQ

– For an LDAP registry, by default the full distinguished name is matched against LDAP. You can set
up filters and mapping to customize the matching. For more information, see Liberty:LDAP certificate
map mode in the WebSphere Liberty documentation.

About this task
When a user authenticates by using a client certificate, the certificate is used in place of a user name and
password. For the REST API, the client certificate is provided with each REST request to authenticate the
user. For the IBM MQ Console, when a user logs in with a certificate, the user cannot then be logged out.

The procedure assumes the following information:

• That your mqwebuser.xml file is based on one of the following samples:

– basic_registry.xml
– local_os_registry.xml
– ldap_registry.xml

• That you are using an AIX, Linux, and Windows system.
• You are a privileged user.

To configure client certificate authentication with a RACF key ring on z/OS, follow the procedure in
“Configuring TLS for the REST API and IBM MQ Console on z/OS” on page 545.

Note: The following procedure outlines the steps necessary to use client certificates with the IBM MQ
Console and REST API. For developer convenience, the steps detail how to create and use self-signed
certificates. However, for production, use certificates that are obtained from a certificate authority.

Procedure
1. Start the mqweb server by entering the strmqweb command on the command line.
2. Create a client certificate:

a) Create a PKCS#12 keystore:

i) Open the IBM Key Management tool by entering the strmqikm command on the command line.
ii) From the Key Database File menu in the IBM Key Management tool, click New.

iii) Select PKCS12 from the Key database type list.
iv) Select a location to save the keystore, and enter an appropriate name in the File Name field. For

example, user.p12
v) Set a password when prompted.

b) Create the certificate, either by creating a self-signed certificate, or by obtaining a certificate from a
certificate authority:

• Create a self-signed certificate:

i) Click New Self-Signed.
ii) Enter user in the Key Label field.

iii) If you are using a basic user registry, enter the name of a user from your user registry in the
Common Name field. For example, mqadmin. For an LDAP user registry, make sure that the
distinguished name for the certificate matches the distinguished name in the LDAP registry.

iv) Click OK.
• Obtain a certificate from a certificate authority. The CA certificate must include the appropriate

user name within the common name (CN) of the distinguished name (DN) field:

i) Request a new certificate. From the Create menu, click New Certificate Request.
ii) In the Key Label field, enter the certificate label.

iii) If you are using a basic user registry, in the Common Name field, enter the user name of the
user that the certificate is for.

Securing IBM MQ 533

If you are using a local OS registry, the Common Name field must match the local OS user id.

For an LDAP user registry, make sure that the distinguished name for the certificate matches
the distinguished name in the LDAP registry.

iv) Type or select values for the remaining fields, as applicable.
v) Choose where to save the certificate request, and the filename for the certificate request,

then click OK.
vi) Send the certificate request file to a certificate authority (CA).

vii) When you have the certificate from the CA, open the IBM Key Management tool by entering
the strmqikm command on the command line.

viii) From the Key Database File menu in the IBM Key Management tool, click Open.
ix) Select the PKCS#12 keystore that holds the client certificate. For example, user.p12
x) Click Receive, select the appropriate certificate, and click OK.

3. Extract the public part of the client certificate:
a) Open the IBM Key Management tool by entering the strmqikm command on the command line.
b) From the Key Database File menu in the IBM Key Management tool, click Open.
c) Select the PKCS#12 keystore that holds the client certificate. For example, user.p12
d) Select the client certificate from the certificate list in the IBM Key Management tool.
e) Click Extract Certificate.
f) Select a location to save the certificate, and enter an appropriate file name in the Certificate file

name field. For example, user.arm.
4. Import the public part of the client certificate into the mqweb server trust keystore as a signer

certificate so that the server can validate the client certificate:
a) Create a trust.jks keystore for use by the mqweb server, if one does not already exist:

i) From the Key Database File menu in the IBM Key Management tool, click New.
ii) Select JKS from the Key database type list.

iii) Click Browse and navigate to: MQ_DATA_DIRECTORY/web/installations/
installationName/servers/mqweb/resources/security.

This directory should already contain a key.jks file. If a trust.jks file already exists then
open the existing one rather than overwriting it.

iv) Enter trust.jks in the File Name field.
v) Set a password when prompted.

b) From the drop-down menu, select Signer Certificates.
c) Click Add.
d) Select the appropriate arm file, and click OK. For example, select user.arm.
e) Enter a label for the certificate.

5. Change the password of the mqweb server keystore:
a) From the Key Database File menu, click Open.
b) Select JKS from the Key database type list.
c) Click Browse and navigate to MQ_DATA_PATH/web/installations/installationName/
servers/mqweb/resources/security

d) Select the key.jks keystore, and click Open.
e) Enter the password when prompted. The default password is password.
f) From the Key Database File menu, click Change Password.
g) Enter a new password for the keystore.

6. Enable client certificate authentication in the mqwebuser.xml file:

534 Securing IBM MQ

The mqwebuser.xml file can be found on the following path: MQ_DATA_PATH/web/
installations/installationName/servers/mqweb

a) Uncomment the section in the mqwebuser.xml file that enables client certificate authentication.
The section contains the following text:

<keyStore id="defaultKeyStore" location="key.jks" type="JKS" password="password"/>
 <keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="password"/>
 <ssl id="thisSSLConfig" clientAuthenticationSupported="true"
keyStoreRef="defaultKeyStore"
 trustStoreRef="defaultTrustStore" sslProtocol="TLSv1.2"
serverKeyAlias="default"/>
 <sslDefault sslRef="thisSSLConfig"/>

b) Check that the serverKeyAlias value matches the name of the server certificate. If you are using
the default server certificate, the value is correct.

c) Change the value for password for the defaultKeyStore to an encoded version of the password
for the key.jks keystore:

i) From the MQ_INSTALLATION_PATH/web/bin directory, enter the following command on the
command line:

securityUtility encode password

ii) Place the output of this command in the password field for the defaultKeyStore.
d) Change the value for password for the defaultTrustStore to match the password for the
trust.jks keystore:

i) From the MQ_INSTALLATION_PATH/web/bin directory, enter the following command on the
command line:

securityUtility encode password

ii) Place the output of this command in the password field for the defaultTrustStore.
e) Remove, or comment out, the following line from the mqwebuser.xml file:

<sslDefault sslRef="mqDefaultSSLConfig"/>

7. Stop the mqweb server by entering the endmqweb command on the command line.
8. Start the mqweb server by entering the strmqweb command on the command line.
9. Use the client certificate to authenticate:

• To use the client certificate with the IBM MQ Console, install the client certificate into the web
browser that is used to access the IBM MQ Console. For example, install the client certificate
user.p12 as a personal certificate.

• To use the client certificate with the REST API, provide the client certificate with each REST
request. When you use HTTP POST, PATCH, or DELETE methods, you must provide extra
authentication with the client certificate to prevent cross-site request forgery attacks. That is, the
extra authentication is used to confirm that the credentials that are being used to authenticate the
request are being used by the owner of the credentials.

This extra authentication is provided by the ibm-mq-rest-csrf-token HTTP header. Set the
value of the ibm-mq-csrf-token header to anything including blank, then submit the request.

Example

Important: In the example, not all cURL implementations support self signed certificates, so you must
use a cURL implementation that does.

The following cURL example shows how to create a new queue Q1, on queue manager QM1, with client
certificate authentication. The exact configuration of this cURL command depends on the libraries that
cURL was built against. The example is based on a Windows system, with cURL built against OpenSSL.

Securing IBM MQ 535

• Use the HTTP POST method with the queue resource, authenticating with the client certificate and
including the ibm-mq-rest-csrf-token HTTP header with an arbitrary value. This value can be
anything, including blank. The --cert-type flag specifies that the certificate is a PKCS#12 certificate.
The --cert flag specifies the location of the certificate, followed by a colon,: , and then the password
for the certificate:

curl -k https://localhost:9443/ibmmq/rest/v1/admin/qmgr/QM1/queue -X POST -
-cert-type P12 --cert c:\user.p12:password
-H "ibm-mq-rest-csrf-token: value"
-H "Content-Type: application/json" --data "{\"name\":\"Q1\"}"

Using HTTP basic authentication with the REST API
Users of the REST API can authenticate by providing their user ID and password within an HTTP header.
To use this method of authentication with HTTP methods, such as POST, PATCH, and DELETE, the ibm-
mq-rest-csrf-token HTTP header must also be provided, as well as a user ID and password.

Before you begin
• Configure users, groups, and roles to be authorized to use the REST API. For more information, see

“Configuring users and roles” on page 517.
• Ensure that HTTP basic authentication is enabled. Check that the following XML is present, and is not

commented out, in the mqwebuser.xml file. This XML must be within the <featureManager> tags:

<feature>basicAuthenticationMQ-1.0</feature>

On z/OS, you must be a user that has write access to mqwebuser.xml to edit this file.

On all other operating systems, you must be a privileged user to edit the mqwebuser.xml
file.

• Ensure that you are using a secure connection when you send REST requests. As the user name and
password combination are encoded, but not encrypted, you must use a secure connection (HTTPS)
when you use HTTP basic authentication with the REST API.

• You can query the credentials of the current user by using the HTTP GET method on the login
resource, providing the basic authentication information to authenticate the request. This request
returns information about the user name, and the roles that the user is assigned. For more information,
see GET /login.

Procedure
1. Concatenate the user name with a colon, and the password. Note that the user name is case-sensitive.

For example, a user name of admin, and a password of admin becomes the following string:

admin:admin

2. Encode this user name and password string in base64 encoding.
3. Include this encoded user name and password in an HTTP Authorization: Basic header.

For example, with an encoded user name of admin, and a password of admin, the following header is
created:

Authorization: Basic YWRtaW46YWRtaW4=

4. When you use HTTP POST, PATCH, or DELETE methods, you must provide extra authentication, as well
as a user name and password.
This extra authentication is provided by the ibm-mq-rest-csrf-token HTTP header. The ibm-mq-
rest-csrf-token HTTP header must be present in the request, but its value can be anything,
including blank.

5. Submit your REST request to IBM MQ with the appropriate headers.

536 Securing IBM MQ

Example

The following example shows how to create a new queue Q1, on queue manager QM1, with basic
authentication, on Windows systems. The example uses cURL:

• Use the HTTP POST method with the queue resource, authenticating with basic authentication and
including the ibm-mq-rest-csrf-token HTTP header with an arbitrary value. This value can be
anything, including blank:

curl -k https://localhost:9443/ibmmq/rest/v1/admin/qmgr/QM1/queue -X POST
-u mqadmin:mqadmin
-H "ibm-mq-rest-csrf-token: value"
-H "Content-Type: application/json" --data "{\"name\":\"Q1\"}"

Using token-based authentication with the REST API
Users of the REST API can authenticate by providing a user ID and password to the REST API login
resource with the HTTP POST method. An LTPA token is generated that enables the user to authenticate
future requests. This LTPA token has the prefix LtpaToken2. The user can log out by using the HTTP
DELETE method, and can query the log in information of the current user with the HTTP GET method.

Before you begin
• Configure users, groups, and roles to be authorized to use the REST API. For more information, see

“Configuring users and roles” on page 517.
• By default, the name of the cookie that includes the LTPA token starts with LtpaToken2, and includes a

suffix that can change when the mqweb server is restarted. This randomized cookie name allows more
than one mqweb server to run on the same system. However, if you want the cookie name to remain a
consistent value, you can specify the name that the cookie has by using the setmqweb command. For
more information, see Configuring the LTPA token.

• By default, the LTPA token cookie expires after 120 minutes. You can configure the expiry time of the
LTPA token cookie by using the setmqweb command. For more information, see Configuring the LTPA
token.

• Ensure that you are using a secure connection when you send REST requests. When you use the
HTTP POST method on the login resource, the user name and password combination that is sent
with the request are not encrypted. Therefore, you must use a secure connection (HTTPS) when you
use token based authentication with the REST API. By default, you cannot use HTTP with LTPA token
authentication. You can enable the LTPA token to be used by insecure HTTP connections by setting
secureLTPA to False. For more information, see Configuring the LTPA token.

• You can query the credentials of the current user by using the HTTP GET method on the login
resource, providing the LTPA token to authenticate the request. This request returns information about
the user name, and the roles that the user is assigned. For more information, see GET /login.

Procedure
1. Log in a user:

a) Use the HTTP POST method on the login resource:

https://host:port/ibmmq/rest/v1/login

Include the user name and password in the body of the JSON request, in the following format:

{
 "username" : name,
 "password" : password
}

b) Store the LTPA token that is returned from the request in the local cookie store. By default, this
LTPA token has a prefix of LtpaToken2.

Securing IBM MQ 537

2. Authenticate REST requests with the stored LTPA token as a cookie with every request.
For requests that use the HTTP PUT, PATCH, or DELETE methods, include an ibm-mq-rest-csrf-
token header. The value of this header can be anything, including blank.

3. Log out a user:
a) Use the HTTP DELETE method on the login resource:

https://host:9443/ibmmq/rest/v1/login

You must provide the LTPA token as a cookie to authenticate the request, and include an ibm-mq-
rest-csrf-token header. The value of this header can be anything, including blank

b) Process the instruction to delete the LTPA token from the local cookie store.

Note: If the instruction is not processed, and the LTPA token remains in the local cookie store, then
the LTPA token can be used to authenticate future REST requests. That is, when the user attempts
to authenticate with the LTPA token after the session is ended, a new session is created that uses
the existing token.

Example
The following cURL example shows how to create a new queue Q1, on queue manager QM1, with token-
based authentication, on Windows systems:

• Log in and add the LTPA token with the prefix LtpaToken2, to the local cookie store. The user name
and password information are included in the JSON body. The -c flag specifies the location of the file to
store the token in:

curl -k https://localhost:9443/ibmmq/rest/v1/login -X POST
-H "Content-Type: application/json" --data
"{\"username\":\"mqadmin\",\"password\":\"mqadmin\"}"
-c c:\cookiejar.txt

• Create a queue. Use the HTTP POST method with the queue resource, authenticating with the LTPA
token. The LTPA token with the prefix LtpaToken2 is retrieved from the cookiejar.txt file by using
the -b flag. CSRF protection is provided by the presence of the ibm-mq-rest-csrf-token HTTP
header:

curl -k https://localhost:9443/ibmmq/rest/v1/admin/qmgr/QM1/queue -X POST -b
c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: value" -H "Content-Type: application/json"
--data "{\"name\":\"Q1\"}"

• Log out and delete the LTPA token from the local cookie store. The LTPA token is retrieved from
the cookiejar.txt file by using the -b flag. CSRF protection is provided by the presence of the
ibm-mq-rest-csrf-token HTTP header. The location of the cookiejar.txt file is specified by the
-c flag so that the LTPA token is deleted from the file:

curl -k https://localhost:9443/ibmmq/rest/v1/admin/qmgr/QM1/queue -X DELETE
-H "ibm-mq-rest-csrf-token: value" -b c:\cookiejar.txt
-c c:\cookiejar.txt

Related reference
POST /login
GET /login
DELETE /login

Embedding the IBM MQ Console in an IFrame
The HTML <iframe> element can be used to embed one web page into another using an Inline Frame
(IFrame). For security reasons the IBM MQ Console can not be embedded into an IFrame by default.

538 Securing IBM MQ

However, you can enable an IFrame by using the mqConsoleFrameAncestors configuration property on
the mqweb server.

About this task
The mqweb server maintains an allowlist of origins of web pages that can embed the IBM MQ Console
using an IFrame. An origin is a combination of a URL scheme, domain and port, for example, https://
example.com:1234.

You can use the mqConsoleFrameAncestors configuration property on the mqweb server to specify the
entries in the list.

By default, mqConsoleFrameAncestors is blank, which means that the IBM MQ Console can not be
embedded in an IFrame.

Procedure
Specify a list of origins of web pages, that can embed the IBM MQ Console in an IFrame, by entering the
following command:

setmqweb properties -k mqConsoleFrameAncestors -v allowedOrigins

where allowedOrigins is a comma separated list of origins. Each origin should consist of:

• A hostname or IP address
• An optional URL scheme
• An optional port number

Note that the host name can start with the wildcard character (*) and the port number can also use the
wild card character (*).
Example origins are:

https://example.com:1234

which allows any web page served from https://example.com:1234 to embed the IBM MQ Console in
an IFrame.

https://*.example.com:*

which allows any HTTPS web page with a hostname ending with example.com, and using any port, to
embed the IBM MQ Console in an IFrame.

Example

The following example allows the IBM MQ Console to be embedded in an IFrame from web pages served
from either https://site2.example.com:1234 or https://site2.example.com:1235:

setmqweb properties -k mqConsoleFrameAncestors -v
https://site2.example.com:1234,https://site2.example.com:1235

Securing IBM MQ 539

Configuring CORS for the REST API
By default, a web browser does not allow scripts, such as JavaScript, to invoke the REST API when the
script is not from the same origin as the REST API. That is, cross-origin requests are not enabled. You can
configure Cross Origin Resource Sharing (CORS) to allow cross-origin requests from specified origins.

About this task
You can access the REST API through a web browser, for example through a script. As these requests are
from a different origin to the REST API, the web browser refuses the request because it is a cross-origin
request. The origin is different if the domain, port, or scheme is not the same.

For example, if you have a script that is hosted at http://localhost:1999/ you make a cross-origin
request if you issue an HTTP GET on a website that is hosted at https://localhost:9443/. This
request is a cross-origin request because the port numbers and scheme (HTTP) are different.

You can enable cross-origin requests by configuring CORS and specifying the origins that are allowed to
access the REST API.

For more information about CORS, see https://www.w3.org/TR/cors/ and https://developer.mozilla.org/
en-US/docs/Web/HTTP/CORS.

Procedure
1. View the current configuration by entering the following command:

dspmqweb properties -a

The mqRestCorsAllowedOrigins entry specifies the allowed origins. The
mqRestCorsMaxAgeInSeconds entry specifies the time, in seconds, that the web browser can cache
the results of any CORS pre-flight checks.

2. Specify the origins that are allowed to access the REST API by entering the following command:

setmqweb properties -k mqRestCorsAllowedOrigins -v allowedOrigins

where allowedOrigins specifies the origin that you want to allow cross-origin requests from. You can
use an asterisk surrounded by double quotation marks, "*", to allow all cross-origin requests. You can
enter more than one origin in a comma-separated list, surrounded by double quotation marks. To allow
no cross-origin requests, enter empty quotation marks as the value for allowedOrigins.

3. Specify the time, in seconds, that you want to allow a web browser to cache the results of any CORS
pre-flight checks by entering the following command:

setmqweb properties -k mqRestCorsMaxAgeInSeconds -v time

Example

The following example shows cross-origin requests enabled for http://localhost:9883, https://
localhost:1999, and https://localhost:9663. The maximum age of cached results of any CORS
pre-flight checks is set to 90 seconds:

setmqweb properties -k mqRestCorsAllowedOrigins -v "http://localhost:9883,https://
localhost:1999,https://localhost:9663"
setmqweb properties -k mqRestCorsMaxAgeInSeconds -v 90

540 Securing IBM MQ

https://www.w3.org/TR/cors/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Configuring host header validation for the IBM MQ Console and REST API
You can configure the mqweb server to restrict access to the IBM MQ Console and REST API such that
only requests that are sent with a host header that matches a specified allowlist are processed. An error is
returned if a host header value that is not on the allowlist is used.

About this task
The mqweb server uses virtual hosts to define the allowlist of acceptable host headers. For more
information about virtual hosts, see the WebSphere Liberty documentation: https://www.ibm.com/docs/
SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/cwlp_virtual_hosts.html

To complete this task, you must be a user with sufficient privileges to edit the mqwebuser.xml file:

• On z/OS, you must have write access to the mqwebuser.xml file.

• On all other operating systems, you must be a privileged user.

• If the mqweb server is part of a stand-alone IBM MQ Web Server installation,
you must have write access to the mqwebuser.xml file in the IBM MQ Web Server data directory.

Procedure
1. Open the mqwebuser.xml file. This file is in one of the following locations:

• In an IBM MQ installation:

– On AIX or Linux: /var/mqm/web/installations/
installationName/servers/mqweb

– On Windows:
MQ_DATA_PATH\web\installations\installationName\servers\mqweb, where
MQ_DATA_PATH is the IBM MQ data path. This path is the data path that is selected during
the installation of IBM MQ. By default, this path is C:\ProgramData\IBM\MQ.

– On z/OS: WLP_user_directory/servers/mqweb

Where WLP_user_directory is the directory that was specified when the crtmqweb command ran
to create the mqweb server definition.

• In a stand-alone IBM MQ Web Server installation:
MQ_OVERRIDE_DATA_PATH/web/installations/MQWEBINST/servers/mqweb

where MQ_OVERRIDE_DATA_PATH is the IBM MQ Web Server data directory that the
MQ_OVERRIDE_DATA_PATH environment variable points to.

2. Add or uncomment the following code in the mqwebuser.xml file:

<virtualHost allowFromEndpointRef="defaultHttpEndpoint" id="default_host">
 <hostAlias>localhost:9080</hostAlias>
</virtualHost>

3. Edit the <hostAlias> field, inserting the hostname and port combination that you want to allow.
This combination might be the hostname and port name that you used in the configuration of the
mqweb server. For example, if you use the default configuration of localhost:9443, you might want
to use localhost:9443 in the <hostAlias> field.

If necessary, you can add multiple <hostAlias> fields within the <virtualHost> tags to allow
more hostname and port combinations. For example, to allow host headers that use an HTTP port as
well as host headers that use the HTTPS port.

Securing IBM MQ 541

Auditing
Audit records of operations that are performed in the IBM MQ Console and REST API can be produced by
enabling queue manager command and configuration events, and on AIX, Linux, and Windows significant
state changes are recorded in the log files of the mqweb server.

Significant state changes

On AIX, Linux, and Windows, the IBM MQ Console records significant state changes as messages in the
logs of the mqweb server. Each message indicates the authenticated principal name that requested the
operation.

Significant state changes, such as when queue managers are created, started, ended, or deleted, are
logged in the mqweb server messages.log and console.log files at the [AUDIT] logging level. Each
log entry indicates the authenticated principal name that requested the operation.

The messages.log and console.log files can be found in the following location:

• In an IBM MQ installation:

– On AIX or Linux: /var/mqm/web/installations/
installationName/servers/mqweb/logs

– On Windows:
MQ_DATA_PATH\web\installations\installationName\servers\mqweb\logs, where
MQ_DATA_PATH is the IBM MQ data path. This path is the data path that is selected during the
installation of IBM MQ. By default, this path is C:\ProgramData\IBM\MQ.

• In a stand-alone IBM MQ Web Server installation:
MQ_OVERRIDE_DATA_PATH/web/installations/MQWEBINST/servers/mqweb/logs

where MQ_OVERRIDE_DATA_PATH is the IBM MQ Web Server data directory that the
MQ_OVERRIDE_DATA_PATH environment variable points to.

For more information about configuring the mqweb server logging levels, see Configuring logging.

Command and configuration events
You can optionally enable command and configuration events on the queue manager to provide
information about most IBM MQ Console and REST API activity. For example, the creation of channels,
and the inquiry of queues generate command and configuration events. For more information about
enabling command and configuration events, see Controlling configuration, command and logger events.

For these command and configuration event messages, the MQIACF_EVENT_ORIGIN field is set
to MQEVO_REST and the MQCACF_EVENT_APPL_IDENTITY field reports the first 32 characters of
the authenticated principal name. If a user has the MQWebAdmin or MQWebAdminRO role, the
MQCACF_EVENT_USER_ID field reports the mqweb server user ID, not the username of the principal
that issued the command. However, if the user has the MQWebUser role, the MQCACF_EVENT_USER_ID
reports the username of the principal that issued the command.

Related concepts
“Auditing” on page 484

542 Securing IBM MQ

You can check for security intrusions, or attempted intrusions, by using event messages. You can also
check the security of your system by using the IBM MQ Explorer.

Security considerations for the IBM MQ Console and REST API on z/OS
The IBM MQ Console and REST API have security features controlling whether a user can issue, display, or
alter commands. The commands are then passed to the queue manager, and the queue manager security
is then used to control if the user is allowed to issue the command to that specific queue manager.

Procedure
1. Ensure that the mqweb server started task user ID has appropriate authorities to issue certain PCF

commands and access certain queues. For more information, see “Authority required by the mqweb
server started task user ID” on page 543.

2. Ensure that any users that are granted the MQWebUser role have appropriate authorities.

IBM MQ Console and REST API users that are assigned to the MQWebUser role operate under the
security context of the principal. These user IDs can only perform operations that the user ID is
granted to perform on the queue manager, and need to be granted access to the same system queues
as the mqweb server address space.

The mqweb server started task user ID must be granted alternate user access to all users assigned to
the MQWebUser role.

For more information about granting appropriate authorities for users with the MQWebUser role, see
“Access to IBM MQ resources required to use the IBM MQ Console or REST API ” on page 544.

3. Optional: Configure TLS for the IBM MQ Console and REST API. For more information, see “Configuring
TLS for the REST API and IBM MQ Console on z/OS” on page 545.

Authority required by the mqweb server started task user ID
On z/OS, the mqweb server started task user ID requires certain authorities to issue PCF commands and
access system resources.

The mqweb server started task user ID needs:

• A z/OS UNIX user identifier (UID) to be able to use z/OS UNIX System Services.
• Access to the hlq.SCSQAUTH and hlq.SCSQANL* data sets in the IBM MQ installation.
• Read access to the IBM MQ installation files in z/OS UNIX System Services.
• Read and write access to the Liberty user directory created by the crtmqweb script.
• Authority to connect to the queue manager. Grant the mqweb server started task user ID READ access

to the hlq.BATCH profile in the MQCONN class.
• Authority to issue IBM MQ commands and access certain queues. These details are described in “IBM

MQ Console - required command security profiles” on page 226, “System queue security” on page 204,
and “Profiles for context security” on page 214.

• Authority to subscribe to the SYSTEM.FTE topic, in order to use the REST API for MFT. Grant the
mqweb server started task user ID ALTER access to the hlq.SUBSCRIBE.SYSTEM.FTE profile in the
MXTOPIC class.

• If you are are configuring a SAF registry, access to various security profiles. See “Configuring a SAF
registry for the IBM MQ Console and REST API” on page 525 for more information.

Connection authentication
If your queue manager has been configured to require that all batch applications provide a valid user ID
and password, by setting CHKLOCL(REQUIRED), you must give the mqweb server started task user ID
UPDATE access to the hlq.BATCH profile in the MQCONN class.

Securing IBM MQ 543

This authority causes connection authentication to operate in CHKLOCL(OPTIONAL) mode for the mqweb
server started task user ID.

If you have not configured the queue manager to require that all batch applications provide a valid user
ID and password, it is sufficient to give the user ID that starts the mqweb server task READ access to the
hlq.BATCH profile in the MQCONN class.

For more information about CHCKLOCL, see “Using CHCKLOCL on locally bound applications” on page
195.

Access to IBM MQ resources required to use the IBM MQ Console or REST API
Operations performed in the IBM MQ Console, or REST API, by a user in the MQWebUser role take place
under the security context of the user.

About this task
See “Roles on the IBM MQ Console and REST API” on page 527 for more information on the roles in the
IBM MQ Console and REST API.

Use the following procedure to grant a user, in the MQWebUser role, access to the queue manager
resources required to use the IBM MQ Console or REST API.

Procedure
1. Grant the mqweb server started task user ID alternate user access to each user ID in the
MQWebUser role.
Do this on every queue manager that users will administer through the IBM MQ Console or REST API.

You can use the following sample RACF commands to grant the mqweb server started task user
ID alternate user access to a user in the MQWebUser role:

RDEFINE MQADMIN hlq.ALTERNATE.USER.userId UACC(NONE)
PERMIT hlq.ALTERNATE.USER.userId CLASS(MQADMIN) ACCESS(UPDATE) ID(mqwebUserId)
SETROPTS RACLIST(MQADMIN) REFRESH

where:
hlq

Is the profile prefix, that can be either the queue manager name, or queue sharing group name
userId

Is the user in the MQWebUser role
mqwebUserId

Is the mqweb server started task user ID

Note: If you are using mixed-case security, use the MXADMIN class rather than the MQADMIN class.
2. Grant each user in the MQWebUser role access to system queues that are necessary to use the IBM MQ

Console and REST API.
To do this, for both the SYSTEM.ADMIN.COMMAND.QUEUE and SYSTEM.REST.REPLY.QUEUE, give
each user UPDATE access to the MQQUEUE or MXQUEUE classes, depending on whether mixed-case
security is in use.

You need to do this on every queue manager that the user will administer through the REST API,
including remote queue managers administered through the administrative REST API gateway.

3. To allow a user in the MQWebUser role to administer remote queue managers, grant the user UPDATE
access to the profile in the MQQUEUE or MXQUEUE class, protecting the transmission queue used to
send commands to the remote queue manager. Note that you need to give the user UPDATE access on
the gateway queue manager.

On the remote queue manager, grant access for the same user, to put to the transmission queue used
to send command response messages back to the gateway queue manager.

544 Securing IBM MQ

4. Grant the users in the MQWebUser role access to any other resources required to perform the
operations supported by the IBM MQ Console and REST API.
The access needed to:

• Perform operations in the REST API, is described in the Security requirements sections of the
individual REST API resources

• Issue commands by the IBM MQ Console is described in “IBM MQ Console - required command
security profiles” on page 226

Configuring TLS for the REST API and IBM MQ Console on z/OS
On z/OS, you can configure the mqweb server to use a RACF key ring to store certificates for secure
connections with TLS, and client certificate authentication.

Before you begin
You must be a user that has write access to the mqwebuser.xml file, and authority to work with SAF key
rings, to complete this procedure.

About this task
The default mqweb server configuration uses Java keystores for the server and trusted certificates. On
z/OS, you can configure the mqweb server to use a RACF key ring, instead of the Java keystores. The
server can also be configured to allow users to authenticate using a client certificate.

See Liberty: Keystores for information on using RACF key rings in Liberty.

Follow this procedure to configure the mqweb server to use a RACF key ring, and optionally configure
client certificate authentication. This procedure describes the steps necessary to create and use
certificates signed with your own certificate authority (CA) certificates. For production, you might prefer to
use certificates obtained from an external certificate authority.

Procedure
1. Create a certificate authority (CA) certificate, which will be used to sign the server certificate. For

example, enter the following RACF command:

RACDCERT GENCERT -
 CERTAUTH -
 SUBJECTSDN(CN('mqweb Certification Authority') -
 O('IBM') -
 OU('MQ')) -
 SIZE(2048) -
 WITHLABEL('mqwebCertauth')

2. Create a server certificate, signed with the CA certificate created in step 1, by entering the following
command:

RACDCERT ID(mqwebUserId) GENCERT -
 SUBJECTSDN(CN('hostname') -
 O('IBM') -
 OU('MQ')) -
 SIZE(2048) -
 SIGNWITH (CERTAUTH LABEL('mqwebCertauth')) -
 WITHLABEL('mqwebServerCert')

where mqwebUserId is the mqweb server started task user ID, and hostname is the host name of the
mqweb server.

3. Connect the CA certificate and server certificate to a SAF key ring by entering the following commands:

RACDCERT ID(mqwebUserId) CONNECT(RING(keyring) LABEL('mqwebCertauth') CERTAUTH)
RACDCERT ID(mqwebUserId) CONNECT(RING(keyring) LABEL('mqwebServerCert'))

Securing IBM MQ 545

where mqwebUserId is the mqweb server started task user ID, and keyring is the name of the key ring
you want to use.

4. Export the CA certificate to a CER file by entering the following command:

RACDCERT CERTAUTH EXPORT(LABEL('mqwebCertauth')) -
 DSN('hlq.CERT.MQWEBCA') -
 FORMAT(CERTDER) -
 PASSWORD('password')

5. FTP the exported CA certificate in binary to your workstation, and import it into your browser as a
certificate authority certificate.

6. Optional: If you want to configure client certificate authentication, create and export a client
certificate.
a) Create a certificate authority (CA) certificate, which will be used to sign the client certificate. For

example, enter the following RACF command:

RACDCERT GENCERT -
 CERTAUTH -
 SUBJECTSDN(CN('mqweb User CA') -
 O('IBM') -
 OU('MQ')) -
 SIZE(2048) -
 WITHLABEL('mqwebUserCertauth')

b) Connect the CA certificate to a SAF key ring by entering the following command:

RACDCERT ID(mqwebUserId) CONNECT(RING(keyring) LABEL('mqwebUserCertauth') CERTAUTH)

where mqwebUserId is the mqweb server started task user ID, and keyring is the name of the key
ring you want to use.

c) Create a client certificate, signed with the CA certificate. For example, enter the following
command:

RACDCERT ID(clientUserId) GENCERT -
 SUBJECTSDN(CN('clientUserId') -
 O('IBM') -
 OU('MQ')) -
 SIZE(2048) -
 SIGNWITH (CERTAUTH LABEL('mqwebUserCertauth')) -
 WITHLABEL('userCertLabel')

where clientUserId is the user name.

The method used to map a certificate to a principal depends on the type of user registry configured:

• If you are using a basic registry, the Common Name field in the certificate is matched against the
user in the registry.

• If you are using a SAF registry, and the certificate is in the RACF database, the certificate owner,
specified with the ID parameter when creating the certificate, is used.

• If you are using an LDAP registry, the full distinguished name in the certificate is matched against
the LDAP registry.

d) Export the client certificate to a PKCS #12 file by entering the following command:

RACDCERT ID(mqwebUserId) EXPORT(LABEL('userCertLabel')) -
 PASSWORD('password') DSN('hlq.USER.CERT')

e) FTP the exported certificate in binary to your workstation. To use the client certificate with the IBM
MQ Console, import it into the web browser used to access the IBM MQ Console as a personal
certificate.

7. Edit the file WLP_user_directory/servers/mqweb/mqwebuser.xml, where WLP_user_directory
is the directory that was specified when the crtmqweb script ran to create the mqweb server
definition.
Make the following changes to configure the mqweb server to use a RACF key ring:

546 Securing IBM MQ

a) Remove, or comment out, the following line:

<sslDefault sslRef="mqDefaultSSLConfig"/>

b) Add the following statements:

<keyStore id="defaultKeyStore" filebased="false"
 location="safkeyring://mqwebUserId/keyring"
 password="password" readOnly="true" type="JCERACFKS" />
<ssl id="thisSSLConfig" keyStoreRef="defaultKeyStore" sslProtocol="TLSv1.2"
 serverKeyAlias="mqwebServerCert" clientAuthenticationSupported="true" />
<sslDefault sslRef="thisSSLConfig"/>

where:

• mqwebUserId is the mqweb server started task user ID.
• keyring is the name of the RACF key ring.
• mqwebServerCert is the label of the mqweb server certificate.

Notes: The value of keyStore password is ignored.
8. Restart the mqweb server by stopping and restarting the mqweb server started task.
9. Optional: Use the client certificate to authenticate:

• To use the client certificate with the IBM MQ Console, enter the URL for the IBM MQ Console in the
web browser where you installed the client certificate.

• To use the client certificate with the REST API, provide the client certificate with each REST request.

Notes:

a. If you are using only certificates to authenticate to the IBM MQ Console, the browser might display
a list of certificates for you to select from.

b. If you want to use a different certificate you might need to close and restart your browser.
c. If you are using client certificates that are not in the RACF database, you can use RACF certificate

name filtering, to map certificate attributes to a user ID. For example:

RACDCERT ID(DEPT3USR) MAP SDNFILTER(OU=DEPT1.C=US)

maps certificates with a subject distinguished name containing OU=DEPT1 and C=US to user ID
DEPT3USR.

Results
You have set up a TLS interface for the IBM MQ Console and REST API.

Managing keys and certificates on AIX, Linux, and
Windows

On AIX, Linux, and Windows, use the runmqckm and runmqakm commands to manage keys, certificates,
and certificate requests.

About this task
The runmqckm command provides functions that are similar to those of iKeyman, and the runmqakm
command provides functions that are similar to those of gskitcapicmd. Before using runmqckm or
runmqakm, ensure that the systems environment variables are correctly configured by running the
setmqenv command.

The runmqckm command requires the IBM MQ JRE component to be installed. If this component is not
installed you can use the runmqakm command instead.

Securing IBM MQ 547

If you need to manage TLS certificates in a way that is FIPS compliant, use the runmqakm command
instead of the runmqckm command. This is because the runmqakm command supports stronger
encryption.

Procedure
• Use the runmqckm and runmqakm commands to do the following:

– Create the type of CMS or PKCS#12 key database files that IBM MQ requires
– Create certificate requests
– Import personal certificates
– Import CA certificates
– Manage self-signed certificates

Related tasks
“Using the strmqikm user interface” on page 301
You can create a personal certificate by using the strmqikm (iKeyman) GUI.
Related reference
Invoking the IBM strmqikm (iKeyman) GUI
Related information
Keytool

runmqckm and runmqakm commands on AIX, Linux, and Windows
This section describes the runmqckm and runmqakm commands according to the object of the command.

The main differences between the two commands are as follows:

• runmqckm

– Provides functions that are similar to those of iKeycmd
– Supports the JKS and JCEKS key repository file formats

• runmqakm

– Provides functions that are similar to those of gskitcapicmd
– Supports the creation of certificates and certificate requests with Elliptic Curve public keys whereas

the runmqckm command does not
– Supports stronger encryption of the key repository file than the runmqckm command through the
-strong parameter

– Has been certified as FIPS 140-2 compliant, and can be configured to operate in a FIPS compliant
manner, using the -fips parameter

Attention: The runmqckm command requires installation of the IBM MQ Java runtime
environment (JRE) feature.

Each command specifies at least one object. Commands for PKCS #11 device operations might specify
additional objects. Commands for key database, certificate, and certificate request objects also specify an
action. The object can be one of the following:
-keydb

Actions apply to a key database
-cert

Actions apply to a certificate
-certreq

Actions apply to a certificate request
-help

Displays help

548 Securing IBM MQ

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=guide-keytool

-version
Displays version information

The following subtopics describe the actions that you can take on key database, certificate, and certificate
request objects; See “runmqckm and runmqakm options on AIX, Linux, and Windows” on page 560 for a
description of the options for these commands.

Commands for CMS or PKCS#12 key databases on AIX, Linux, and
Windows
Use the runmqckm and runmqakm commands to manage keys and certificates for a CMS key database or
PKCS#12 key database.

Note: IBM MQ does not support SHA-3 or SHA-5 algorithms. You can use the digital signature algorithm
names SHA384WithRSA and SHA512WithRSA because both algorithms are members of the SHA-2 family.

The digital signature algorithm names SHA3WithRSA and SHA5WithRSA are deprecated
because they are an abbreviated form of SHA384WithRSA and SHA512WithRSA respectively.

-keydb -changepw
Change the password for a key database:

Using the runmqckm command:

-keydb -changepw -db filename -pw password -new_pw new_password -expire days

Using the runmqakm command:

-keydb -changepw -db filename -pw password -new_pw new_password -expire days
-fips -strong

-keydb -convert
For the runmqckm command, convert the key database from one format to another:

-keydb -convert -db filename -pw password
-old_format cms | pkcs12 -new_format cms

Using the runmqakm command, convert an old version CMS key database to the new version CMS key
database:

-keydb -convert -db filename -pw password
-new_db filename -new_pw password -strong -fips

-keydb -create
Create a key database:

Using the runmqckm command:

-keydb -create -db filename -pw password -type cms
| pkcs12

Using the runmqakm command:

-keydb -create -db filename -pw password -type cms
/ p12 -fips -strong

-keydb -delete
Delete a key database:

Using either command:

-keydb -delete -db filename -pw password

Securing IBM MQ 549

-keydb -list
List currently-supported types of key database:

Using the runmqckm command:

-keydb -list

Using the runmqakm command:

-keydb -list -fips

-cert -add
Add a certificate from a file into a key database:

Using the runmqckm command:

-cert -add -db filename -pw password -label label -file filename
-format ascii | binary

Using the runmqakm command:

-cert -add -db filename -pw password -label label -file filename
-format ascii | binary -fips

-cert -create
Create a self-signed certificate:

Using the runmqckm command:

-cert -create -db filename -pw password -label label
-dn distinguished_name -size 1024 | 512 -x509version 3 | 1 | 2
-expire days -sig_alg MD2_WITH_RSA | MD2WithRSA |
MD5_WITH_RSA | MD5WithRSA |
SHA1WithDSA | SHA1WithRSA |
SHA256_WITH_RSA | SHA256WithRSA |
SHA2WithRSA | SHA384_WITH_RSA |
SHA384WithRSA | SHA512_WITH_RSA |
SHA512WithRSA | SHA_WITH_DSA |
SHA_WITH_RSA | SHAWithDSA |
SHAWithRSA

Using the runmqakm command:

-cert -create -db filename -pw password -label label
-dn distinguished_name -size 2048 | 1024 | 512 -x509version 3 | 1 | 2
-expire days -fips -sig_alg md5 |
MD5_WITH_RSA | SHA_WITH_DSA |
SHA_WITH_RSA | sha1 |
SHA1WithDSA | SHA1WithECDSA |
SHA1WithRSA | sha224 |
SHA224_WITH_RSA | SHA224WithDSA |
SHA224WithECDSA | SHA224WithRSA |
sha256 | SHA256_WITH_RSA |
SHA256WithDSA | SHA256WithECDSA |
SHA256WithRSA | SHA2WithRSA |
sha384 | SHA384_WITH_RSA |
SHA384WithECDSA | SHA384WithRSA |
sha512 | SHA512_WITH_RSA |
SHA512WithECDSA | SHA512WithRSA |
SHAWithDSA | SHAWithRSA |
EC_ecdsa_with_SHA1 | EC_ecdsa_with_SHA224 |
EC_ecdsa_with_SHA256 | EC_ecdsa_with_SHA384 |
EC_ecdsa_with_SHA512

-cert -delete
Delete a certificate:

Using the runmqckm command:

-cert -delete -db filename -pw password -label label

550 Securing IBM MQ

Using the runmqakm command:

-cert -delete -db filename -pw password -label label -fips

-cert -details
List the detailed information for a specific certificate:

Using the runmqckm command:

-cert -details -db filename -pw password -label label

Using the runmqakm command:

-cert -details -db filename -pw password -label label -fips

-cert -export
Export a personal certificate and its associated private key from a key database into a PKCS#12 file, or
to another key database:

Using the runmqckm command:

-cert -export -db filename -pw password -label label -type cms | pkcs12
-target filename -target_pw password -target_type cms | pkcs12

Using the runmqakm command:

-cert -export -db filename -pw password -label label -type cms | pkcs12
-target filename -target_pw password -target_type cms | pkcs12
-encryption strong | weak -fips

-cert -extract
Extract a certificate from a key database:

Using the runmqckm command:

-cert -extract -db filename -pw password -label label -target filename
-format ascii | binary

Using the runmqakm command:

-cert -extract -db filename -pw password -label label -target filename
-format ascii | binary -fips

-cert -import
Import a personal certificate from a key database:

Using the runmqckm command:

-cert -import -file filename -pw password -type pkcs12 -target filename
-target_pw password -target_type cms -label label

Using the runmqakm command:

-cert -import -file filename -pw password -type cms -target filename
-target_pw password -target_type cms -label label -fips

For both these commands:

• The -label option is required and specifies the label of the certificate that is to be imported from
the source key database.

• Additionally, you can use the -new_label option. This allows the imported certificate to be given a
different label in the target key database from the label in the source database.

-cert -list
List all certificates in a key database:

Securing IBM MQ 551

Using the runmqckm command:

-cert -list all | personal | CA -db filename -pw password

Using the runmqakm command:

-cert -list all | personal | CA -db filename -pw password -fips

-cert -receive
Receive a certificate from a file:

Using the runmqckm command:

-cert -receive -file filename -db filename -pw password
-format ascii | binary -default_cert yes | no

Using the runmqakm command:

-cert -receive -file filename -db filename -pw password
-format ascii | binary -default_cert yes | no -fips

-cert -sign
Sign a certificate:

Using the runmqckm command:

-cert -sign -db filename -file filename -pw password
-label label -target filename -format ascii | binary -expire days
-sig_alg MD2_WITH_RSA | MD2WithRSA | MD5_WITH_RSA |
MD5WithRSA | SHA1WithDSA | SHA1WithRSA |
SHA256_WITH_RSA | SHA256WithRSA |
SHA2WithRSA | SHA384_WITH_RSA |
SHA384WithRSA | SHA512_WITH_RSA |
SHA512WithRSA | SHA_WITH_DSA |
SHA_WITH_RSA | SHAWithDSA |
SHAWithRSA

Using the runmqakm command:

-cert -sign -db filename -file filename -pw password
-label label -target filename -format ascii | binary -expire days -fips
-sig_alg md5 | MD5_WITH_RSA | SHA_WITH_DSA |
SHA_WITH_RSA | sha1 | SHA1WithDSA |
SHA1WithECDSA | SHA1WithRSA | sha224 |
SHA224_WITH_RSA | SHA224WithDSA |
SHA224WithECDSA | SHA224WithRSA | sha256 |
SHA256_WITH_RSA | SHA256WithDSA |
SHA256WithECDSA | SHA256WithRSA |
SHA2WithRSA | sha384 | SHA384_WITH_RSA |
SHA384WithECDSA | SHA384WithRSA |
sha512 | SHA512_WITH_RSA |
SHA512WithECDSA | SHA512WithRSA |
SHAWithDSA | SHAWithRSA |
EC_ecdsa_with_SHA1 | EC_ecdsa_with_SHA224 |
EC_ecdsa_with_SHA256 | EC_ecdsa_with_SHA384 |
EC_ecdsa_with_SHA512

-certreq -create
Create a certificate request:

Using the runmqckm command:

-certreq -create -db filename -pw password -label label -dn distinguished_name
-size 1024 | 512 -file filename
-sig_alg MD2_WITH_RSA | MD2WithRSA |
MD5_WITH_RSA | MD5WithRSA |
SHA1WithDSA | SHA1WithRSA |
SHA256_WITH_RSA | SHA256WithRSA |
SHA2WithRSA | SHA384_WITH_RSA |
SHA384WithRSA | SHA512_WITH_RSA |
SHA512WithRSA | SHA_WITH_DSA |

552 Securing IBM MQ

SHA_WITH_RSA | SHAWithDSA |
SHAWithRSA

Using the runmqakm command:

-certreq -create -db filename -pw password -label label -dn distinguished_name
-size 2048 | 1024 | 512 -file filename -fips
-sig_alg md5 | MD5_WITH_RSA | SHA_WITH_DSA |
SHA_WITH_RSA | sha1 | SHA1WithDSA |
SHA1WithECDSA | SHA1WithRSA | sha224 |
SHA224_WITH_RSA | SHA224WithDSA |
SHA224WithECDSA | SHA224WithRSA | sha256 |
SHA256_WITH_RSA | SHA256WithDSA |
SHA256WithECDSA | SHA256WithRSA |
SHA2WithRSA | sha384 | SHA384_WITH_RSA |
SHA384WithECDSA | SHA384WithRSA |
sha512 | SHA512_WITH_RSA |
SHA512WithECDSA | SHA512WithRSA |
SHAWithDSA | SHAWithRSA |
EC_ecdsa_with_SHA1 | EC_ecdsa_with_SHA224 |
EC_ecdsa_with_SHA256 | EC_ecdsa_with_SHA384 |
EC_ecdsa_with_SHA512

-certreq -delete
Delete a certificate request:

Using the runmqckm command:

-certreq -delete -db filename -pw password -label label

Using the runmqakm command:

-certreq -delete -db filename -pw password -label label -fips

-certreq -details
List the detailed information of a specific certificate request:

Using the runmqckm command:

-certreq -details -db filename -pw password -label label

Using the runmqakm command:

-certreq -details -db filename -pw password -label label -fips

List the detailed information about a certificate request and show the full certificate request:

Using the runmqckm command:

-certreq -details -showOID -db filename -pw password -label label

Using the runmqakm command:

-certreq -details -showOID -db filename -pw password -label label -fips

-certreq -extract
Extract a certificate request from a certificate request database into a file:

For the runmqckm command:

-certreq -extract -db filename -pw password -label label -target filename

Using the runmqakm command:

-certreq -extract -db filename -pw password -label label -target filename -fips

-certreq -list
List all certificate requests in the certificate request database:

Securing IBM MQ 553

Using the runmqckm command:

-certreq -list -db filename -pw password

Using the runmqakm command:

-certreq -list -db filename -pw password -fips

-certreq -recreate
Re-create a certificate request:

Using the runmqckm command:

-certreq -recreate -db filename -pw password -label label -target filename

Using the runmqakm command:

-certreq -recreate -db filename -pw password -label label -target filename -fips

Commands for cryptographic device operations on AIX, Linux, and
Windows
You can use the runmqckm (iKeycmd) and runmqakm commands to manage keys and certificates for
cryptographic device operations.

Note: IBM MQ does not support SHA-3 or SHA-5 algorithms. You can use the digital signature algorithm
names SHA384WithRSA and SHA512WithRSA because both algorithms are members of the SHA-2 family.

The digital signature algorithm names SHA3WithRSA and SHA5WithRSA are deprecated
because they are an abbreviated form of SHA384WithRSA and SHA512WithRSA respectively.

-keydb -changepw
Change the password for a cryptographic device:

Using the runmqckm command:

-keydb -changepw -crypto module_name -tokenlabel token_label
-pw password -new_pw new_password

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-keydb -changepw -db filename -crypto module_name -tokenlabel token_label
-pw password -new_pw new_password -fips -strong

-keydb -list
List currently-supported types of key database:

Using the runmqckm command:

-keydb -list

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

554 Securing IBM MQ

Using the runmqakm command:

-keydb -list -fips

-cert -add
Add a certificate from a file to a cryptographic device:

Using the runmqckm command:

-cert -add -crypto module_name -tokenlabel token_label -pw password
-label label -file filename -format ascii | binary

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-cert -add -crypto module_name -tokenlabel token_label -pw password
-label label -file filename -format ascii | binary -fips

-cert -create
Create a self-signed certificate on a cryptographic device:

Using the runmqckm command:

-cert -create -crypto module_name -tokenlabel token_label
-pw password -label label -dn distinguished_name
-size 1024 | 512 -x509version 3 | 1 | 2
-default_cert no | yes -expire days
-sig_alg MD2_WITH_RSA | MD2WithRSA |
MD5_WITH_RSA | MD5WithRSA |
SHA1WithDSA | SHA1WithRSA |
SHA256_WITH_RSA | SHA256WithRSA |
SHA2WithRSA | SHA384_WITH_RSA |
SHA384WithRSA | SHA512_WITH_RSA |
SHA512WithRSA | SHA_WITH_DSA |
SHA_WITH_RSA | SHAWithDSA |
SHAWithRSA

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-cert -create -crypto module_name -tokenlabel token_label
-pw password -label label -dn distinguished_name
-size 2048 | 1024 | 512 -x509version 3 | 1 | 2
-default_cert no | yes -expire days
-fips -sig_alg md5 | MD5_WITH_RSA | SHA_WITH_DSA |
SHA_WITH_RSA | sha1 | SHA1WithDSA |
SHA1WithECDSA | SHA1WithRSA |
sha224 | SHA224_WITH_RSA |
SHA224WithDSA | SHA224WithECDSA |
SHA224WithRSA | sha256 |
SHA256_WITH_RSA | SHA256WithDSA |
SHA256WithECDSA | SHA256WithRSA |
SHA2WithRSA | sha384 | SHA384_WITH_RSA |
SHA384WithECDSA | SHA384WithRSA |
sha512 | SHA512_WITH_RSA |
SHA512WithECDSA | SHA512WithRSA |
SHAWithDSA | SHAWithRSA |
EC_ecdsa_with_SHA1 | EC_ecdsa_with_SHA224 |
EC_ecdsa_with_SHA256 | EC_ecdsa_with_SHA384 |
EC_ecdsa_with_SHA512

Securing IBM MQ 555

-cert -delete
Delete a certificate on a cryptographic device:

Using the runmqckm command:

-cert -delete -crypto module_name -tokenlabel token_label -pw password -label label

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-cert -delete -crypto module_name -tokenlabel token_label -pw password -label label -fips

-cert -details
List the detailed information for a specific certificate on a cryptographic device:

Using the runmqckm command:

-cert -details -crypto module_name -tokenlabel token_label
-pw password -label label

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-cert -details -crypto module_name -tokenlabel token_label
-pw password -label label -fips

List the detailed information and show the full certificate for a specific certificate on a cryptographic
device:

Using the runmqckm command:

-cert -details -showOID -crypto module_name -tokenlabel token_label
-pw password -label label

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-cert -details -showOID -crypto module_name -tokenlabel token_label
-pw password -label label -fips

-cert -extract
Extract a certificate from a key database:

Using the runmqckm command:

-cert -extract -crypto module_name -tokenlabel token_label -pw password
-label label -target filename -format ascii | binary

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be

556 Securing IBM MQ

loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-cert -extract -crypto module_name -tokenlabel token_label -pw password
-label label -target filename -format ascii | binary -fips

-cert -import
Import a certificate to a cryptographic device with secondary key database support:

Using the runmqckm command:

-cert -import -db filename -pw password -label label -type cms
-crypto module_name -tokenlabel token_label -pw password
-secondaryDB filename -secondaryDBpw password

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-cert -import -db filename -pw password -label label -type cms
-crypto module_name -tokenlabel token_label -pw password
-secondaryDB filename -secondaryDBpw password -fips

Import a PKCS #12 certificate to a cryptographic device with secondary key database support:

Using the runmqckm command:

-cert -import -file filename -pw password -type pkcs12
-crypto module_name -tokenlabel token_label -pw password
-secondaryDB filename -secondaryDBpw password

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-cert -import -file filename -pw password -type pkcs12
-crypto module_name -tokenlabel token_label -pw password
-secondaryDB filename -secondaryDBpw password -fips

-cert -list
List all certificates on a cryptographic device:

Using the runmqckm command:

-cert -list all | personal | CA -crypto module_name
-tokenlabel token_label -pw password

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Securing IBM MQ 557

Using the runmqakm command:

-cert -list all | personal | CA -crypto module_name
-tokenlabel token_label -pw password -fips

-cert -receive
Receive a certificate from a file to a cryptographic device with secondary key database support:

Using the runmqckm command:

-cert -receive -file filename -crypto module_name -tokenlabel token_label
-pw password -default_cert yes | no -secondaryDB filename
-secondaryDBpw password -format ascii | binary

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-cert -receive -file filename -crypto module_name -tokenlabel token_label
-pw password -default_cert yes | no -secondaryDB filename
-secondaryDBpw password -format ascii | binary -fips

-certreq -create
Create a certificate request on a cryptographic device:

Using the runmqckm command:

-certreq -create -crypto module_name -tokenlabel token_label
-pw password -label label -dn distinguished_name
-size 1024 | 512 -file filename
-sig_alg MD2_WITH_RSA | MD2WithRSA | MD5_WITH_RSA |
MD5WithRSA | SHA1WithDSA | SHA1WithRSA |
SHA256_WITH_RSA | SHA256WithRSA |
SHA2WithRSA | SHA384_WITH_RSA |
SHA384WithRSA | SHA512_WITH_RSA |
SHA512WithRSA | SHA_WITH_DSA |
SHA_WITH_RSA | SHAWithDSA |
SHAWithRSA

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-certreq -create -crypto module_name -tokenlabel token_label
-pw password -label label -dn distinguished_name
-size 2048 | 1024 | 512 -file filename -fips
-sig_alg md5 | MD5_WITH_RSA | SHA_WITH_DSA |
SHA_WITH_RA | sha1 | SHA1WithDSA |
SHA1WithECDSA | SHA1WithRSA |
sha224 | SHA224_WITH_RSA | SHA224WithDSA |
SHA224WithECDSA | SHA224WithRSA |
sha256 | SHA256_WITH_RSA | SHA256WithDSA |
SHA256WithECDSA | SHA256WithRSA |
SHA2WithRSA | sha384 | SHA384_WITH_RSA |
SHA384WithECDSA | SHA384WithRSA |
sha512 | SHA512_WITH_RSA |
SHA512WithECDSA | SHA512WithRSA |
SHAWithDSA | SHAWithRSA |
EC_ecdsa_with_SHA1 | EC_ecdsa_with_SHA224 |
EC_ecdsa_with_SHA256 | EC_ecdsa_with_SHA384 |
EC_ecdsa_with_SHA512

558 Securing IBM MQ

-certreq -delete
Delete a certificate request from a cryptographic device:

Using the runmqckm command:

-certreq -delete -crypto module_name -tokenlabel token_label
-pw password -label label

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-certreq -delete -crypto module_name -tokenlabel token_label
-pw password -label label -fips

-certreq -details
List the detailed information of a specific certificate request on a cryptographic device:

Using the runmqckm command:

-certreq -details -crypto module_name -tokenlabel token_label
-pw password -label label

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-certreq -details -crypto module_name -tokenlabel token_label
-pw password -label label -fips

List the detailed information about a certificate request and show the full certificate request on a
cryptographic device:

Using the runmqckm command:

-certreq -details -showOID -crypto module_name -tokenlabel token_label
-pw password -label label

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-certreq -details -showOID -crypto module_name -tokenlabel token_label
-pw password -label label -fips

-certreq -extract
Extract a certificate request from a certificate request database on a cryptographic device into a file:

Using the runmqckm command:

-certreq -extract -crypto module_name -tokenlabel token_label
-pw password -label label -target filename

Securing IBM MQ 559

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-certreq -extract -crypto module_name -tokenlabel token_label
-pw password -label label -target filename -fips

-certreq -list
List all certificate requests in the certificate request database on a cryptographic device:

Using the runmqckm command:

-certreq -list -crypto module_name -tokenlabel token_label
-pw password

If you are using certificates or keys stored on PKCS#11 cryptographic hardware, note that runmqckm
and strmqikm are 64-bit programs. External modules required for PKCS#11 support will be
loaded into a 64-bit process, therefore you must have a 64-bit PKCS#11 library installed for the
administration of cryptographic hardware. The Windows and Linux x86 32-bit platforms are the only
exceptions, as the strmqikm and runmqckm programs are 32-bit on those platforms.

Using the runmqakm command:

-certreq -list -crypto module_name -tokenlabel token_label
-pw password -fips

runmqckm and runmqakm options on AIX, Linux, and Windows
You can use the runmqckm and runmqakm command line options to manage keys, certificates, and
certificate requests. runmqckm provides functions similar to those of iKeycmd, and runmqakm provides
functions similar to those of gskitcapicmd.

Note: IBM MQ does not support SHA-3 or SHA-5 algorithms. You can use the digital signature algorithm
names SHA384WithRSA and SHA512WithRSA because both algorithms are members of the SHA-2 family.

The digital signature algorithm names SHA3WithRSA and SHA5WithRSA are deprecated
because they are an abbreviated form of SHA384WithRSA and SHA512WithRSA respectively.

The meaning of an option can depend on the object and action specified in the command.

Table 97. Options that can be used with runmqckm and runmqakm

Parameter Description

-create Option to create a key database.

-crypto Name of the module to manage a PKCS #11 cryptographic device.

The value after -crypto is optional if you specify the module name in the
properties file.

If you are using certificates or keys stored on PKCS #11 cryptographic hardware,
note that runmqckm and strmqikm are run using the Java virtual machine
(JVM) supplied with the IBM MQ installation. External modules required for PKCS
#11 support will be loaded into the JVM process, therefore you must have a
PKCS #11 library installed for the administration of cryptographic hardware that
matches the bitness of the JVM , and must specify this library to runmqckm or
strmqikm.

-db Fully qualified path name of a key database.

560 Securing IBM MQ

Table 97. Options that can be used with runmqckm and runmqakm (continued)

Parameter Description

-default_cert Sets a certificate as the default certificate. The value can be yes or no. The
default is no.

-dn X.500 distinguished name. The value is a string enclosed in double quotation
marks, for example "CN=John Smith,O=IBM,OU=Test,C=GB". Note that only
the O, and C attributes are required. Specifying a common name (CN) is optional.

-encryption Strength of encryption used in certificate export command. The value can be
strong or weak. The default is strong.

-expire Expiration time in days of either a certificate or a database password. The default
is 365 days for a certificate password.

There is no default time for a database password: use the -expire parameter to
set a database password expiration time explicitly.

-file File name of a certificate or certificate request.

-fips specifies that the command is run in FIPS mode. When in FIPS mode, the ICC
component uses algorithms that have been FIPS 140-2 validated. If the ICC
component does not initialize in FIPS mode, the runmqakm command fails.

-format Format of a certificate. The value can be ascii for Base64_encoded ASCII or
binary for Binary DER data. The default is ascii.

-label Label attached to a certificate or certificate request. If the certificate is a
personal certificate used to identify an IBM MQ client application or queue
manager, the label must correspond to the IBM MQ certificate label (CERTLABL)
setting, for more information, see “Digital certificate labels, understanding the
requirements” on page 27.

-new_format New format of key database.

-new_label Used on a certificate import command, this option allows a certificate to be
imported with a different label from the label it had in the source key database.
If the certificate is a personal certificate used to identify an IBM MQ client
application or queue manager, the label must correspond to the IBM MQ
certificate label (CERTLABL) setting, for more information, see “Digital certificate
labels, understanding the requirements” on page 27.

-new_pw New database password.

-old_format Old format of key database.

-pw Password for the key database or PKCS #12 file.

-secondaryDB Name of a secondary key database for PKCS #11 device operations.

-secondaryDBpw Password for the secondary key database for PKCS #11 device operations.

runmqakm
-secretKey

-add

-create

-extract

Add a secret key.

Create a random secret key

Extract a secret key from a key database

Securing IBM MQ 561

Table 97. Options that can be used with runmqckm and runmqakm (continued)

Parameter Description

runmqckm
-secKey

-create

-list

-export

Create a random secret key.

List secret keys

Export secret keys

-showOID Displays the full certificate or certificate request.

-sig_alg The hashing algorithm used during the creation of a certificate request, a self-
signed certificate, or the signing of a certificate. This hashing algorithm is used to
create the signature associated with the newly-created certificate or certificate
request.

For runmqckm, the value can be, MD2_WITH_RSA, MD2WithRSA,
MD5_WITH_RSA, MD5WithRSA, SHA1WithDSA, SHA1WithECDSA,
SHA1WithRSA, SHA2/ECDSA, SHA224WithECDSA, SHA256_WITH_RSA,
SHA256WithECDSA, SHA256WithRSA, SHA2WithECDSA, SHA3/ECDSA,
SHA384_WITH_RSA, SHA384WithECDSA, SHA384WithRSA, SHA3WithECDSA,
SHA5/ECDSA, SHA512_WITH_RSA, SHA512WithECDSA, SHA512WithRSA,
SHA5WithECDSA, SHA_WITH_DSA, SHA_WITH_RSA, SHAWithDSA,
SHAWithRSA. The default value is SHA1WithRSA.

For runmqakm, the value can be md5,
MD5_WITH_RSA, MD5WithRSA, SHA_WITH_DSA, SHA_WITH_RSA,
sha1, SHA1WithDSA, SHA1WithECDSA, SHA1WithRSA, sha224,
SHA224_WITH_RSA, SHA224WithDSA, SHA224WithECDSA, SHA224WithRSA,
sha256, SHA256_WITH_RSA, SHA256WithDSA, SHA256WithECDSA,
SHA256WithRSA, SHA2WithRSA, sha384, SHA384_WITH_RSA,
SHA384WithECDSA, SHA384WithRSA, sha512, SHA512_WITH_RSA,
SHA512WithECDSA, SHA512WithRSA, SHAWithDSA, SHAWithRSA,
EC_ecdsa_with_SHA1, EC_ecdsa_with_SHA224, EC_ecdsa_with_SHA256,
EC_ecdsa_with_SHA384, or EC_ecdsa_with_SHA512. The default value is
SHA1WithRSA.

-size Key size.

For runmqckm, the value can be 512, 1024, or 2048. The default value is 1024
bits.

For runmqakm, the value depends upon the signature algorithm:

• For RSA signature algorithms (the default algorithm used if no -sig_alg is
specified), the value can be 512, 1024, 2048, or 4096. An RSA key size of 512
bits is not permitted if the -fips parameter is enabled. The default RSA key
size is 2048 bits.

• For Elliptic Curve algorithms, the value can be 256, 384, or 512. The default
Elliptic Curve key size depends upon the signature algorithm. For SHA256, it is
256; for SHA384, it is 384; and for SHA512, it is 512.

562 Securing IBM MQ

Table 97. Options that can be used with runmqckm and runmqakm (continued)

Parameter Description

-stash Stash the key database password to a file. Only applicable to databases of type
CMS and PKCS12.

Note: -stash is valid on -keydb -create commands to tell runmqckm/
runmqakm to create a stash file containing the password.

Issuing the command $ runmqakm -help lists the high-level help parameters
only.

-stashed Indicates password for the key database or PKCS #12 file is in a stash file.

Note: The -stashed option is valid on calls apart from the -keydb -create
commands. If you do not specify this option, you have to supply the password
using -pw.

In addition, only when you instruct the command what kind of action you are
performing does the detailed help showing -stashed appear.

-stashpw Stash the key database password to a file. Only applicable to databases of type
CMS and PKCS12.

-target Destination file or database.

-target_pw Password for the key database if -target specifies a key database.

-target_type Type of database specified by -target operand. See -type parameter for
permitted values.

-tokenLabel Label of a PKCS #11 cryptographic device.

-trust Trust status of a CA certificate. The value can be enable or disable. The
default is enable.

-type Type of database. The value can be any of the following values:

• cms for a CMS key database
• pkcs12 for a PKCS #12 file.

-x509version Version of X.509 certificate to create. The value can be 1, 2, or 3. The default is 3.

-rfc3339 Use this parameter to output the date in the RFC 3339 format for the runmqakm
-cert -details command, which is of the following format:

Not Before : 2015-08-26T08:53:37Z
Not After : 2016-08-26T08:53:37Z

Note that the -rfc3339 parameter has to appear in the command after the
additional parameters:

runmqakm -cert -details -db exampleDB -stashed -label
 certficateLabel -rfc3339

runmqakm error codes on AIX, Linux, and Windows
A table of the numeric error codes issued by runmqakm, and what they mean.

Error code Error Message

0 Success

Securing IBM MQ 563

Error code Error Message

1 Unknown error occurred

2 An ASN.1 encoding/decoding error occurred.

3 An error occurred while initializing ASN.1 encoder/
decoder.

4 An ASN.1 encoding/decoding error occurred
because of an out-of-range index or non-existent
optional field.

5 A database error occurred.

6 An error occurred while opening the database file,
check for file existence and permission.

7 An error occurred while re-opening the database
file.

8 Database creation failed.

9 The database already exists.

10 An error occurred while deleting the database file.

11 The database could not be opened.

12 An error occurred while reading the database file.

13 An error occurred while writing data to the
database file.

14 A database validation error occurred.

15 An invalid database version was encountered.

16 An invalid database password was encountered.

17 An invalid database file type was encountered.

18 The specified database has been corrupted.

19 An invalid password was provided or the key
database has been tampered with or corrupted.

20 A database key entry integrity error occurred.

21 A duplicate certificate already exists in the
database.

22 A duplicate key already exists in the database
(Record ID).

23 A certificate with the same label already existed in
the key database.

24 A duplicate key already exists in the database
(Signature).

25 A duplicate key already exists in the database
(Unsigned Certificate).

26 A duplicate key already exists in the database
(Issuer and Serial Number).

564 Securing IBM MQ

Error code Error Message

27 A duplicate key already exists in the database
(Subject Public Key Info).

28 A duplicate key already exists in the database
(Unsigned CRL).

29 The label has been used in the database.

30 A password encryption error occurred.

31 An LDAP related error occurred. (LDAP is not
supported by this program)

32 A cryptographic error occurred.

33 An encryption/decryption error occurred.

34 An invalid cryptographic algorithm was found.

35 An error occurred while signing data.

36 An error occurred while verifying data.

37 An error occurred while computing digest of data.

38 An invalid cryptographic parameter was found.

39 An unsupported cryptographic algorithm was
encountered.

40 The specified input size is greater than the
supported modulus size.

41 An unsupported modulus size was found.

42 A database validation error occurred.

43 Key entry validation failed.

44 A duplicate extension field exists.

45 The version of the key is wrong.

46 A required extension field does not exist.

47 The validity period does not include today or does
not fall within its issuer's validity period

48 The validity period does not include today or does
not fall within its issuer's validity period.

49 An error occurred while validating private key
usage extension.

50 The issuer of the key was not found.

51 A required certificate extension is missing.

52 An invalid basic constraint extension was found.

53 The key signature validation failed.

54 The root key of the key is not trusted.

55 The key has been revoked.

Securing IBM MQ 565

Error code Error Message

56 An error occurred while validating authority key
identifier extension.

57 An error occurred while validating private key
usage extension.

58 An error occurred while validating subject
alternative name extension.

59 An error occurred while validating issuer
alternative name extension.

60 An error occurred while validating key usage
extension.

61 An unknown critical extension was found.

62 An error occurred while validating key pair entries.

63 An error occurred while validating CRL.

64 A mutex error occurred.

65 An invalid parameter was found.

66 A null parameter or memory allocation error was
encountered.

67 Number or size is too large or too small.

68 The old password is invalid.

69 The new password is invalid.

70 The password has expired.

71 A thread related error occurred.

72 An error occurred while creating threads.

73 An error occurred while a thread was waiting to
exit.

74 An I/O error occurred.

75 An error occurred while loading CMS.

76 A cryptography hardware related error occurred.

77 The library initialization routine was not
successfully called.

78 The internal database handle table is corrupted.

79 A memory allocation error occurred.

80 An unrecognized option was found.

81 An error occurred while getting time information.

82 Mutex creation error occurred.

83 An error occurred while opening message catalog.

84 An error occurred while opening error message
catalog

566 Securing IBM MQ

Error code Error Message

85 A null file name was found.

86 An error occurred while opening files, check for file
existence and permissions.

87 An error occurred while opening files to read.

88 An error occurred while opening files to write.

89 There is no such file.

90 The file cannot be opened because of its
permission setting.

91 An error occurred while writing data to files.

92 An error occurred while deleting files.

93 Invalid Base64-encoded data was found.

94 An invalid Base64 message type was found.

95 An error occurred while encoding data with Base64
encoding rule.

96 An error occurred while decoding Base64-encoded
data.

97 An error occurred while getting a distinguished
name tag.

98 The required common name field is empty.

99 The required country or region name field is empty.

100 An invalid database handle was found.

101 The key database does not exist.

102 The request key pair database does not exist.

103 The password file does not exist.

104 The new password is identical to the old one.

105 No key was found in the key database.

106 No request key was found.

107 No trusted CA was found.

108 No request key was found for the certificate.

109 There is no private key in the key database.

110 There is no default key in the key database.

111 There is no private key in the key record.

112 There is no certificate in the key record.

113 There is no CRL entry.

114 An invalid key database file name was found.

115 An unrecognized private key type was found.

116 An invalid distinguished name input was found.

Securing IBM MQ 567

Error code Error Message

117 No key entry was found that has the specified key
label.

118 The key label list has been corrupted.

119 The input data is not valid PKCS12 data.

120 The password is invalid or the PKCS12 data has
been corrupted or been created with later version
of PKCS12

121 An unrecognized key export type was found.

122 An unsupported password-based encryption
algorithm was found.

123 An error occurred while converting the key ring file
to a CMS key database.

124 An error occurred while converting the CMS key
database to a key ring file.

125 An error occurred while creating a certificate for
the certificate request.

126 A complete issuer chain cannot be built.

127 Invalid WEBDB data was found.

128 There is no data to be written to the key ring file.

129 The number of days that you entered extends
beyond the permitted validity period.

130 The password is too short; it must consist of at
least {0} characters.

131 A password must contain at least one numeric
digit.

132 All characters in the password are either
alphabetic or numeric characters.

133 An unrecognized or unsupported signature
algorithm was specified.

134 An invalid database type was encountered.

135 The specified secondary key database is in use by
another PKCS#11 device.

136 No secondary key database was specified.

137 The label does not exist on the PKCS#11 device.

138 Password required to access the PKCS#11 device.

139 Password not required to access the PKCS#11
device.

140 Unable to load the cryptographic library.

141 PKCS#11 is not supported for this operation.

142 An operation on a PKCS#11 device has failed.

568 Securing IBM MQ

Error code Error Message

143 The LDAP user is not a valid user. (LDAP is not
supported by this program)

144 The LDAP user is not a valid user. (LDAP is not
supported by this program)

145 The LDAP query failed. (LDAP is not supported by
this program)

146 An invalid certificate chain was found.

147 The root certificate is not trusted.

148 A revoked certificate was encountered.

149 A cryptographic object function failed.

150 There is no certificate revocation list data source
available.

151 There is no cryptographic token available.

152 FIPS mode is not available.

153 There is a conflict with the FIPS mode settings.

154 The password entered does not meet the minimum
required strength.

200 There was a failure during initialization of the
program.

201 Tokenization of the arguments passed to the
runmqakm Program failed.

202 The object identified in the command is not a
recognized object.

203 The action passed is not a known -keydb action.

204 The action passed is not a known -cert action.

205 The action passed is not a known -certreq action.

206 There is a tag missing for the requested command.

207 The value passed with the -version tag is not a
recognized value.

208 The value passed with the -size tag is not a
recognized value.

209 The value passed in with the -dn tag is not in the
correct format.

210 The value passed in with the -format tag is not a
recognized value.

211 There was an error associated with opening the
file.

212 PKCS12 is not supported at this stage.

213 The cryptographic token you are trying to change
the password for is not password protected.

Securing IBM MQ 569

Error code Error Message

214 PKCS12 is not supported at this stage.

215 The password entered does not meet the minimum
required strength.

216 FIPS mode is not available.

217 The number of days you have entered as the expiry
date is out of the allowed range.

218 Password strength failed the minimum
requirements.

219 No Default certificate was found in the requested
key database.

220 An invalid trust status was encountered.

221 An unsupported signature algorithm was

encountered. At this stage only MD5

and SHA1 are supported.

222 PCKS11 not supported for that particular
operation.

223 The action passed is not a known -random action.

224 A length than less than zero is not allowed.

225 When using the -strong tag the minimum length
password is 14 characters.

226 When using the -strong tag the maximum length
password is 300 characters.

227 The MD5 algorithm is not supported when in FIPS
mode.

228 The site tag is not supported for the -cert -list
command. This attribute is added for backward
compatibility and potential future enhancement.

229 The value associated with the -ca tag is not
recognized. The value must be either 'true' or
'false'.

230 The value passed in with the -type tag is not valid.

231 The value passed in with the -expire tag is below
the allowed range.

232 The encryption algorithm used or requested is not
supported.

233 The target already exists.

570 Securing IBM MQ

Protecting passwords in IBM MQ component configuration files
To use certain features of IBM MQ, passwords might have to be supplied either directly to IBM MQ
or in configuration files that the feature reads. From IBM MQ 9.2.0, a password protection system is
implemented that protects passwords in these configuration files.

Passwords in configuration files must be encrypted. The following list explains the common terminology
that is used for each component:
Initial key

The encryption key that is used to protect the password.
For each component listed, supply a unique initial key that is used to protect passwords stored in the
configuration of that component. The same initial key must also be made available to the component
for the password to be decrypted.
Most components require the initial key to be supplied in a file. The initial key file must:

• Contain a single line of at least one character.
• Be adequately protected by using the operating system permissions.

There are no requirements about the length of the initial key or the characters that can be specified.
However, for adequate security, you should specify an initial key that is at least 16 characters long. For
example, your initial key file might contain:

Th1sIs@n3Ncypt|onK$y

Default initial key
The default encryption key used, if you do not supply an initial key when you are encrypting data.
However, you should not use the default initial key as it does not adequately protect the encrypted
data .

Plain text string
The string that is encrypted, commonly a password.

Encrypted password string
A string that contains the encrypted password in a format that IBM MQ understands.

Important: Encrypted password strings that you generated for use with one component cannot be
copied to the configuration file of another component for use. Each password for each component
must be protected by using the component-specific utility.

Details of how to protect passwords for each component of IBM MQ that supports password protection
are listed in the following sections:

• Advanced Message Security
• “Managed File Transfer” on page 572
• “IBM MQ Internet Pass-Thru” on page 573

• “IBM MQ Bridge to blockchain” on page 574

• “IBM MQ Bridge to Salesforce” on page 574

• “IBM MQ clients that use cryptographic hardware” on page 575
• “IBM MQ queue manager” on page 576

• “IBM MQ C client applications” on page 576

• “Native HA configurations” on page 577

• “IBM MQ queue manager (AuthToken stanza in the qm.ini file)” on page 577

Securing IBM MQ 571

Advanced Message Security
Advanced Message Security (AMS) Java clients require access to a keystore that contains private keys to
protect message.

Advanced Message Security (AMS) MQI clients or queue managers that are configured to
perform MCA interception might require access to PKCS#11 cryptographic hardware, or PEM files that
contain private keys to protect messages.

To access these files, a password must be provided in the AMS configuration file that is called a
keystore.conf. Use the runamscred command to protect the sensitive information contained in the
keystore.conf file. For example,

runamscred -f <keystore configuration file>

The runamscred command protects sensitive parameters within the file that is specified, by using the -f
flag.

Two runamscred programs are added to the IBM MQ installation:

• An MQI runamscred program located in <IBM MQ installation root>/bin
• A Java runamscred program located in <IBM MQ installation root>/java/bin

Attention: To ensure compatibility,

1. Use the Java runamscred program to protect configuration files to be used with
Java AMS clients and the MQI runamscred program to protect configuration files to be used
with the MQI AMS clients.

2. Verify that all the necessary sensitive information is protected after you run runamscred.
3. Supply the protected file as normal to AMS enabled applications.

To override or provide the initial key file to use at run time of AMS applications, or when you are protecting
a keystore configuration file by using runamscred, use one of the following four mechanisms, in order of
priority:

1. -sf parameter (runamscred only)
2. MQS_AMSCRED_KEYFILE environment variable
3. amscred.keyfile parameter in the keystore.conf configuration file
4. Default initial key file if none of the previous options are specified.

Attention: Do not use the default initial key.

Before IBM MQ 9.2, a different password protection system was used to protect passwords in AMS Java
configuration files.

By default, the runamscred program protects passwords by using the new system. This means that new
configuration files are not compatible with older versions of AMS Java. To protect configuration files with
the old password protection system, use the -sp 0 flag.

Managed File Transfer
Managed File Transfer (MFT) stores credentials that are required to access queue managers or other
resources in several XML property files:

• MQMFTCredentials.xml - Credentials for connecting to agent, coordination, and command queue
managers and passwords for connecting to keystores for secure communications.

• ProtocolBridgeCredentials.xml - Credentials for connecting to Protocol Servers, such as FTP/
SFTP/FTPS.

572 Securing IBM MQ

• ConnectDirectCredentials.xml - Credentials for Connect:Direct® agent to connect to a
Connect:Direct node.

For more information, see “Encrypting stored credentials in MFT” on page 580.

To protect sensitive information stored in these files, use the fteObfuscate command within the file that is
specified, by using the -f flag, for example:

fteObfuscate -f <File to protect>

To provide an initial key file to use during the protection of your MFT configurations, use the -sf flag:

fteObfuscate -f <File to protect> -sf <initial key file>

If you do not provide an initial key, a default key is used to protect the sensitive information, although you
should not use this option.

Attention:

1. Verify that all the necessary sensitive information is protected after you run fteObfuscate.
2. Supply the protected file as normal to MFT.

At run time, provide the initial key file to use through the following three mechanisms, in order of priority,
these are:

1. By using a Java system property.

• Before IBM MQ 9.3.1 and IBM MQ 9.3.0 Fix Pack 10, the name of this
Java system property was misspelled in the product code as com.ibm.wqmfte.cred.keyfile.
From IBM MQ 9.3.1 and IBM MQ 9.3.0 Fix Pack 10, the spelling of the property name is corrected
to be com.ibm.wmqfte.cred.keyfile. Managed File Transfer uses both versions of the Java
system property when it checks whether a user specified a file that contains the initial key to
be used for encrypting and decrypting credentials. This allows the use the correct spelling of the
property name, while maintaining compatibility with an earlier version with the old misspelled name.
Note that if both Java system properties are set, then the value of the correctly spelled property
com.ibm.wmqfte.cred.keyfile is used.

• Before IBM MQ 9.3.1 and IBM MQ 9.3.0 Fix Pack 10, use the property
com.ibm.wqmfte.cred.keyfile.

2. In the agent, logger, commands, and coordination property files.
3. In the installation.properties file.

Before IBM MQ 9.2, a different credential protection system was used to protect credentials in the MFT
configuration files.

By default, fteObfuscate protects credentials by using the new system; this means configuration files
are not compatible with older versions of MFT.

To protect configuration files with the old credentials protection system, use the -sp 0 parameter.

IBM MQ Internet Pass-Thru
The IBM MQ Internet Pass-Thru (MQIPT) configuration file can contain passwords to access various
resources and the MQIPT administration password.

You can protect these passwords by using the mqiptPW command that is supplied with MQIPT.

mqiptPW

To protect a password with a specific initial key, supply the -sf flag:

mqiptPW -sf <intial key file>

For more information, see Specifying the password encryption key.

Securing IBM MQ 573

If you do not provide an initial key, a default key is used to protect the sensitive information, although you
should not use this option.

mqiptPW prompts you to securely enter a password to protect, and returns a string that needs to be
copied into the MQIPT configuration file.

At run time, provide the initial key file to use through the following four mechanisms. In order of priority,
these are:

1. Through the -sf parameter when MQIPT is started.
2. In the MQS_MQIPTCRED_KEYFILE environment variable.
3. In the com.ibm.mq.ipt.cred.keyfile Java property.
4. In a file named mqipt_cred.key in the MQIPT home directory, that is the directory that contains the

MQIPT configuration and log files, and others.

Before IBM MQ 9.2, a different credential protection system was used to protect credentials in the MQIPT
configuration files.

By default, mqiptPW protects credentials that use the new system; this means that configuration files are
not compatible with older versions of MQIPT.

To protect keystore passwords that use the old credentials protection system, use the mqiptPW
command syntax that is supported in versions earlier than IBM MQ 9.2.

IBM MQ Bridge to blockchain

Bridge to blockchain configurations are stored in files that can be generated with the runmqbcb
command. When you run this command, you are asked to securely provide passwords and a location
of an initial key file to use.

To override what initial key file to use during runtime or configuration mode use the -sf flag. For example,
generate a configuration with a specific initial key file:

runmqbcb -o <output file> -sf <initial key file>

Or to use a specific initial key file during runtime:

runmqbcb -f <config file> -sf <initial key file>

Before IBM MQ 9.2, a different credential protection system was used to protect credentials in the Bridge
to blockchain configuration files.

By default, runmqbcb protects credentials by using the new system, this means configuration files are not
compatible with older versions of the Bridge to blockchain.

To protect configuration files with the old credentials protection system, use the -sp 0 flag.

Important:

• The IBM MQ Bridge to blockchain is deprecated across all releases from November 22
2022 (see US Announcement letter 222-341). Blockchain connectivity can be achieved with IBM App
Connect or through App Connect capabilities available with IBM Cloud Pak® for Integration.

• For Continuous Delivery, the IBM MQ Bridge to blockchain is removed from the product at IBM MQ
9.3.2.

IBM MQ Bridge to Salesforce

574 Securing IBM MQ

https://www.ibm.com/docs/en/announcements/222-341

Bridge to Salesforce configurations are stored in files that can be generated with the runmqsfb
command. While running this command, you are asked to securely provide passwords and a location
of an initial key file to use.

To override what initial key file to use during runtime or configuration mode use the -sf flag. For example,
to generate a configuration with a specific initial key file:

runmqsfb -o <output file> -sf <initial key file>

Or to use a specific initial key file during runtime:

runmqsfb -f <config file> -sf <initial key file>

Before IBM MQ 9.2, a different credential protection system was used to protect credentials in the Bridge
to Salesforce configuration files.

By default, runmqfsb protects credentials by using the new system, this means configuration files are not
compatible with older versions of the Bridge to Salesforce.

To protect configuration files with the old credentials protection system, use the -sp 0 flag.

Important: The IBM MQ Bridge to Salesforce is deprecated across all releases from November 22 2022
(see US Announcement letter 222-341).

IBM MQ clients that use cryptographic hardware

You can configure IBM MQ clients to use PKCS #11 cryptographic hardware to store private keys and
certificates that are used in TLS communications. To access PKCS #11 devices, you must provide a
password as part of the configuration string that is supplied to the IBM MQ client.

Important: Passwords supplied by using the CryptoHardware field in the MQCSO structure, or the
queue manager SSLCRYP attribute cannot be protected by using this mechanism.

You can protect this password by using the runp11cred command, which can be found in the bin folder
in the IBM MQ installation directory.

The runp11cred command prompts for the password to be encrypted to be entered, and returns
the encrypted password. The encrypted password must be copied into the cryptographic hardware
configuration string.

For example, if your cryptographic hardware configuration string is the following:

GSK_PKCS11=/usr/lib/pkcs11/PKCS11_API.so;tokenlabel;Passw0rd;SYMMETRIC_CIPHER_ON

When the runp11cred command prompts you to enter the password, enter Passw0rd. The command
returns a string that is similar to the following:

<P11>!2!0TyDxrRaS6JUsjON9zfK6S4wEHmSNF0/ZsOdCaTD2dc=!MdpCoxGnFqPtZ1dTLQ58kg==

Replace the password in the cryptographic hardware configuration string with the string that is returned
by the runp11cred command, to give the following string that contains the encrypted password:

GSK_PKCS11=/usr/lib/pkcs11/PKCS11_API.so;tokenlabel;<P11>!2!0TyDxrRaS6JUsjON9zfK6S4wEHm SNF0/
ZsOdCaTD2dc=!MdpCoxGnFqPtZ1dTLQ58kg==;SYMMETRIC_CIPHER_ON

Store the cryptographic hardware configuration string that contains the encrypted password in ether
the SSLCryptoHardware attribute in the SSL stanza of the client configuration file, or the MQSSLCRYP
environment variable.

By default, the runp11cred command encrypts a password with a default initial key. To protect a
password with your own initial key, specify the name of the file that contains the initial key by using one of
the following mechanisms, in order of priority:

1. The -sf parameter to the runp11cred command.

Securing IBM MQ 575

https://www.ibm.com/docs/en/announcements/222-341

2. The MQS_SSLCRYP_KEYFILE environment variable.

CAUTION: Do not use the default initial key to encrypt passwords as it does not protect passwords
securely.

If an initial key file is specified when the password is encrypted, you must also specify the name of the file
that contains the initial key when the IBM MQ client runs. Specify the initial key file name by using one of
the following mechanisms, in order of priority:

1. The MQS_SSLCRYP_KEYFILE environment variable.
2. The SSLCryptoHardwareKeyFile attribute in the SSL stanza of the client configuration file.

IBM MQ queue manager
The IBM MQ queue manager stores passwords internally in various attributes, for example, the queue
manager KEYRPWD field. IBM MQ automatically encrypts the password before storing it in files on disk.

The keystore password can be protected by using either the IBM MQ password protection system, or
a keystore stash file. For more information about these two methods, see “Encrypting key repository
passwords on AIX, Linux, and Windows” on page 290.

When the queue manager encrypts a password, the default initial key is used unless an alternative key is
specified by using the INITKEY attribute on the queue manager object. Set a unique, strong key before
supplying any passwords that are to be encrypted.

Warning: Modifying the initial key after you supply the key repository passphrase does not cause
the key repository passphrase to be encrypted with the new initial key. As such, changing the initial
key without resupplying the key repository passphrase results in IBM MQ being unable to decrypt
the key repository passphrase and therefore, unable to access the key repository.

For more information, see INITKEY.

IBM MQ C client applications

The IBM MQ C client libraries require passwords to access certain secured resources, for example a TLS
keystore for applications that use TLS to connect to the queue manager.

The keystore password can be protected by using either the IBM MQ password protection system, or
a keystore stash file. For more information about these two methods, see “Encrypting key repository
passwords on AIX, Linux, and Windows” on page 290.

To protect passwords with the IBM MQ password protection system, use the runmqicred command. The
command is located in the MQ_INSTALLATION_PATH/bin directory.

The runmqicred command prompts for the password to be encrypted to be entered, and returns the
encrypted password that can be used instead of a plain text password.

For example, if you choose to supply a TLS keystore password by using the MQKEYRPWD environment
variable and your TLS keystore password is Passw0rd. When you run runmqicred, enter Passw0rd
when prompted. The command returns a string that is similar to the following:

<MQI>!2!G4lRxBuiNfJ3uOeYTD3lG1hrL5NvVZLAlgZCX3Tn6d8=!pUDOErDfDi9+JFVa0usS7w==

Set this string as the value for the MQKEYRPWD environment variable:

export MQKEYRPWD="<MQI>!2!G4lRxBuiNfJ3uOeYTD3lG1hrL5NvVZLAlgZCX3Tn6d8=!pUDOErDfDi9+JFVa0usS7w=="
set MQKEYRPWD="<MQI>!2!G4lRxBuiNfJ3uOeYTD3lG1hrL5NvVZLAlgZCX3Tn6d8=!pUDOErDfDi9+JFVa0usS7w=="

By default, the runmqicred command encrypts a password with a default initial key. To protect a
password with your own initial key, use one of the following mechanisms to specify the name of the file
that contains the key, in order of priority:

1. The -sf parameter to the runmqicred command.

576 Securing IBM MQ

2. The MQS_MQI_KEYFILE environment variable.

CAUTION: Do not use the default initial key to encrypt passwords as it does not protect passwords
securely.

For more information, see “Supplying the key repository password for an IBM MQ MQI client on AIX,
Linux, and Windows” on page 297.

Native HA configurations

Native HA log replication traffic between instances can be encrypted by using TLS. The certificates
that are used to secure the log replication traffic are stored in a keystore that is specified in the
NativeHALocalInstance stanza of the qm.ini file.

The keystore password can be protected by using either the IBM MQ password protection system, or
a keystore stash file. For more information about these two methods, see “Encrypting key repository
passwords on AIX, Linux, and Windows” on page 290.

To protect the Native HA keystore password with the IBM MQ password protection system, use the
runmqicred command.

The runmqicred command prompts for the password to be encrypted to be entered, and returns
the encrypted password that should be used instead of a plain text password. Set the value of the
KeyRepositoryPassword attribute in the NativeHALocalInstance stanza of the qm.ini file to the
encrypted password that is returned by the command

By default, the runmqicred command encrypts a password with a default initial key. To protect a
password with your own initial key, use one of the following mechanisms to specify the name of the file
that contains the key, in order of priority:

1. The -sf parameter to the runmqicred command.
2. The MQS_MQI_KEYFILE environment variable.

CAUTION: Do not use the default initial key to encrypt passwords as it does not protect passwords
securely.

If you encrypt the keystore password with your own initial key, you must also specify the same initial key
file by using the InitialKeyFile attribute in the NativeHALocalInstance stanza of the qm.ini file.

For more information, see NativeHALocalInstance stanza of the qm.ini file.

IBM MQ queue manager (AuthToken stanza in the qm.ini file)

From IBM MQ 9.3.4, IBM MQ MQI clients that connect to IBM MQ queue managers that run on AIX
or Linux systems, can use authentication tokens to authenticate with the queue manager. The queue
manager must be configured to accept authentication tokens and be able to access the token issuer's
public key certificate or the secret key used to sign the token. The keystore that contains the trusted
issuer's public key certificates or secret keys is secured with a password.

The keystore password can be protected by using either the IBM MQ password protection system, or
a keystore stash file. For more information about these two methods, see “Encrypting key repository
passwords on AIX, Linux, and Windows” on page 290.

To protect the authentication token keystore password with the IBM MQ password protection system, use
the runqmcred command to encrypt the password.

To encrypt the password with a specific initial key, use the -sf parameter to specify the path to the file
that contains the initial key. If you do not provide the initial key, a default initial key is used.

CAUTION: Do not use the default initial key to encrypt passwords as it does not protect passwords
securely.

Securing IBM MQ 577

Important: If you supply an initial key file that contains the encryption key, the same initial key must be
specified in the queue manager INITKEY attribute so that the queue manager can decrypt the password.
If the queue manager INITKEY attribute is already set, use the same initial key when you run the
runqmcred command. For more information about the queue manager INITKEY attribute, see INITKEY.

For example, to encrypt the authentication token keystore passwords using the initial key in the file /
home/initial.key, issue the following command:

runqmcred -sf /home/initial.key

When prompted, enter the password that you want to encrypt.

5724-H72 (C) Copyright IBM Corp. 1994, 2024.
Enter password:

<QM>!2!UnH/9hRXEGA0cenLVSGCW9a0s5A2vHDkTiA7vRv8ogc=!yhlsHFw7MIh48SvaYeTwRQ==

The encrypted password is output on the last line. Copy the encrypted password into a file and include the
path to the file in the KeyStorePwdFile attribute of the AuthToken stanza in the qm.ini file.

For more information, see “Configuring a queue manager to accept authentication tokens” on page 345.

The limits to protection through password encryption
IBM MQ supports AES-128 encryption for passwords that are stored in various configuration files.
When you use Advanced Encryption Standard (AES) encryption to protect passwords in the IBM MQ
configuration, you need to understand the limits to the protection that it provides.

Encrypting a password in the IBM MQ configuration files does not mean that the password is secure or
protected. It only prevents the password from being easily recovered by someone who can access the
encrypted password, but does not know the encryption key. IBM MQ processes require access to both
the encrypted password and the decryption key to obtain the clear text password for use. Both these
items of data must be stored on the file system in a location that is accessible to IBM MQ. Anyone who
encrypts a password that is placed in a configuration file also requires access to the encryption key. If
an attacker has access to the same set of files as IBM MQ, applying AES encryption to the password
therefore provides only a minimal level of protection.

Nonetheless, encrypting passwords at rest is important to consider as it prevents the accidental
disclosure of passwords and enables the sharing of configuration files, if the decryption key is not also
shared.

In addition to ensuring that the file that contains the decryption key is not shared, care must be taken
to ensure that the file is protected from other users on the system. While IBM MQ configuration files
can be accessible to all users, restrict the permissions on the file that contains the decryption key to the
minimum necessary. The user IDs that IBM MQ processes run as must be granted access to read the file
that contains the decryption key. However, it is not necessary to grant access to read the file to a group, or
all users on the system.

Protection of database authentication details
If your are using user name and password authentication to connect to the database manager, you can
store them in the MQ XA credentials store to avoid storing the password in plain text in the qm.ini file.

Update XAOpenString for the resource manager
To use the credentials store you must modify XAOpenString in the qm.ini file. The string is used to
connect to the database manager. You specify replaceable fields to identify where the user name and
password are substituted within the XAOpenString string.

• The +USER+ field is replaced with the user name value stored in the XACredentials store.
• The +PASSWORD+ field is replaced with the password value stored in the XACredentials store.

578 Securing IBM MQ

The following examples show how to modify an XAOpenString to use the credentials file to connect to the
database.

Connecting to a Db2 database

XAResourceManager:
 Name=mydb2
 SwitchFile=db2swit
 XAOpenString=db=mydbname,uid=+USER+,pwd=+PASSWORD+,toc=t
 ThreadOfControl=THREAD

Connecting to an Oracle database

XAResourceManager:
 Name=myoracle
 SwitchFile=oraswit
 XAOpenString=Oracle_XA+Acc=P/+USER+/+PASSWORD++SesTm=35
 +LogDir=/tmp+threads=true
 ThreadOfControl=THREAD

Work with the credentials for the database to the MQ XA credentials store
After you update the qm.ini file with the replaceable credential strings, you must add the user
name and password to the MQ credentials store by using the setmqxacred command. You can also
use setmqxacred to modify existing credentials, delete credentials, or list credentials. The following
examples give some typical use cases:

Adding credentials

The following command securely saves the user name and password for the queue manager QM1 for
the resource mqdb2.

setmqxacred -m QM1 -x mydb2 -u user1 -p Password2

Updating credentials

To update the user name and password used to connect to a database, re-issue the setmqxacred
command with the new user-name and password:

setmqxacred -m QM1 -x mydb2 -u user3 -p Password4

You must restart the queue manager for the changes to take effect.

Deleting credentials
The following command deletes the credentials:

setmqxacred -m QM1 -x mydb2 -d

Listing credentials
The following command lists credentials:

setmqxacred -m QM1 -l

Related reference
setmqxacred

Securing Managed File Transfer
Directly after installation and with no modification, Managed File Transfer has a level of security that
might be suitable for test or evaluation purposes in a protected environment. However, in a production

Securing IBM MQ 579

environment, you must consider appropriately controlling who can start file transfer operations, who can
read and write the files being transferred, and how to protect the integrity of files.
Related tasks
Restricting group authorities for MFT-specific resources
Managing authorities for MFT-specific resources
“Using Advanced Message Security with Managed File Transfer” on page 644
This scenario explains how to configure Advanced Message Security to provide message privacy for data
being sent through a Managed File Transfer.
Related reference
Authorities for MFT to access file systems
commandPath MFT property
Authority to publish MFT Agents log and status messages

Encrypting stored credentials in MFT
Managed File Transfer (MFT) requires several user IDs and credentials, which are stored in two XML files,
and you can obfuscate these using the fteObfuscate command. From IBM MQ 9.2.0, this command
provides enhanced protection of the stored credentials.

Credential files
MQMFTCredentials.xml

This file contains the user Id and credentials for connecting to agents and coordination and command
queue managers. The credentials to access key stores for secure connections to queue managers are
also stored in the same file.
See “MFT and IBM MQ connection authentication” on page 583 for details of the property values
that define the location of the MQMFTCredentials.xml file.

ProtocolBridgeCredentials.xml
This file contains the user Id and credentials for connecting to protocol servers.

Encrypting credentials using the fteObfuscate command
From IBM MQ 9.2.0, the fteObfuscate command accepts the following parameters:

• -f credentials_file_name (required)

Note: This parameter replaces the -credentialsFile parameter that is deprecated
from IBM MQ 9.2.0.

• -sp protection_mode
• -sf credentials_key_file
• -o output_file_name

See fteObfuscate for details of the parameters.

If you do not specify the protection mode, or a credentials key file, the command uses the default
protection mode, and uses the latest algorithm, but with a fixed key to encrypt the credentials.

If you specify a protection mode of 0, and do not specify a credentials key file, the command works as
in previous releases of the product. You receive a warning message on the console indicating usage of
deprecated protection.

If you specify a protection mode of 0, and specify a credentials key file, you receive an error output on the
console indicating that it is not valid to specify key file when using protection mode 0.

If you specify the protection mode of 1, and do not specify a credentials key file, the command uses the
latest algorithm, but with a fixed key to encrypt the credentials.

580 Securing IBM MQ

If you specify the protection mode of 1, and specify a credentials key file, the command encrypts the
credentials with the latest algorithm.

If you specify the protection mode of 1, or do not specify the protection mode, and specify a credentials
key file that does not exist, an error is output on the console indicating that the file does not exist.

If you specify the protection mode of 1, or do not specify the protection mode, and specify a credentials
key file that is not readable, an error is output on the console indicating that the file is not readable..

If you specify the protection mode of 2, and do not specify a credentials key file, the
command uses protection mode 2 to encrypt credentials using the latest algorithm and a fixed key to
encrypt.

If you specify the protection mode of 2, and specify a credentials key file, the command
uses protection mode 2 to encrypt credentials using the latest algorithm and a user specified key to
encrypt.

If you specify the protection mode of 2, or do not specify the protection mode, and specify
a credentials key file that does not exist, an error is output on the console indicating that the file does not
exist.

If you specify the protection mode of 2, or do not specify the protection mode, and specify
a credentials key file that is not readable, an error is output on the console indicating that the file is not
readable..

Decrypting credentials
You can specify the path to the initial key file in various places. In order to decrypt credentials that were
encrypted using an initial key other than the default one, the name of the file containing the initial key
needs to be provided to MFT in one of the following ways, in this order of precedence:

1. By using a Java system property, for example:

-Dcom.ibm.wmqfte.cred.keyfile=/usr/hime/credkeyfile.key

Note:

• Before IBM MQ 9.3.1, the name of this Java system property was misspelled in
the product code as com.ibm.wqmfte.cred.keyfile. From IBM MQ 9.3.1, the spelling of the
property name is corrected to be com.ibm.wmqfte.cred.keyfile. Managed File Transfer uses
both versions of the Java system property when checking if a user has specified a file containing
the initial key that should be used for encrypting and decrypting credentials. This allows you to use
the correct spelling of the property name, while maintaining backwards compatibility with the old
misspelled name. Note that if both Java system properties are set, then the value of the correctly
spelled property com.ibm.wmqfte.cred.keyfile is used.

• Before IBM MQ 9.3.1, use the property com.ibm.wqmfte.cred.keyfile.

.
2. By setting a property in an agent, command, coordination, or logger properties file. The name of the

properties file, and the property that needs to be set in it are shown in the following table:

Property file Property name

agent.properties agentCredentialsKeyFile

command.properties commandCredentialsKeyFile

coordination.properties coordinationCredentialsKeyFile

logger.properties loggerCredentialsKeyFile

3. In the installation.properties file.

Securing IBM MQ 581

Instead of adding properties in individual properties files, you can add the
commonCredentialsKeyFile property to the existing common installation.properties file,
so that agent, logger and commands can use the same property.

If you have defined the various CredentialsKeyFile properties in multiple locations:

• The path of the credentials key file being used for the agent and logger is logged to the output0.log
file for that agent or logger.

• The path of the credentials key file being used for the commands, is displayed on the console.

The Java system property com.ibm.wmqfte.cred.keyfile overrides all others. If the system
property is not set, the agent looks into the agent.properties file, followed by the
installation.properties file for the initial key file.

If the initial key file is still not found, and you have set the protection mode on the fteObfuscate
command to 1, the agent logs an error message in the output0.log file.

If you have set the protection mode to 0 on the fteObfuscate command, a warning message is logged
indicating the deprecation.

The logger and commands follow the same steps for locating the initial key file.

Protocol Bridge and Connect:Direct Bridge
Protocol Bridge uses a properties file, ProtocolBridgeProperties.xml, for connecting to FTP, SFTP,
and FTPS servers. This properties file contains connection attributes required to connect to these servers.

A bridge agent restart is required if you modify the value of the credentialsFile or
credentialsKeyFile attributes in the ProtocolBridgeProperties.xml file.

One of the attributes is credentialsFile, and the value contains the path to an XML file
containing UID, or PWD, or Key required to connect to these servers. The default value for
the attribute is ProtocolBridgeCredentials.xml and the file is in your home directory, just like the
MQMFTCredentials.xml file.

<tns:credentialsFile path="$HOME/ProtocolBridgeCredentials.xml" />

Just like MQMFTCredentails.xml, you can encrypt ProtocolBridgeCredentials.xml with the fteObfuscate
command. For decryption purpose, you can specify the required path to a credentials key file using
the additional element credentialsKeyFile as shown in the following text. The path can contain
environment variables.

<tns:credentialsKeyFile path="$HOME/CredKey.key"/>

Note: Specifying a value for the agentCredentialsKeyFile agent property,
commonCredentialsKeyFile property in the installation.properties, or through the system
property com.ibm.wqmfte.cred.keyfile, does not have any impact on the value specified for the
credentialsKeyFile attribute.

Similarly, Connect:Direct Bridge uses ConnectDirectNodeProperties.xml to connect to the Connect:Direct
server. The XML file contains required connection information, along with an attribute that defines path
to the credentials XML file. This credentials XML file contains UID, or PWD, and additional information
required to connect to the Connect:Direct server.

<tns:credentialsFile path="$HOME/ ConnectDirectCredentials.xml" />

Just like the ProtocolBridgeCredentials.xml file, you can encrypt ConnectDirectCredentials.xml with the
fteObfuscate command. For decryption purpose, you can specify the required path to a credentials
key file using the additional element credentialsKeyFile as shown in the following text. The path can
contain environment variables.

<tns:credentialsKeyFile path="$HOME/CredKey.key"/>

582 Securing IBM MQ

Note: Specifying a value for the agentCredentialsKeyFile agent property,
commonCredentialsKeyFile property in the installation.properties, or through the system
property com.ibm.wqmfte.cred.keyfile does not have any impact on the value specified for the
credentialsKeyFile attribute.

You can specify the credentialsKeyFile element, without specifying the credentialsFile element
in the ProtocolBridgeProperties.xml file.

If you do not specify the credentialsFile element, the default credential file
ProtocolBridgeCredentials.xml is used by the protocol bridge agent, and the value of the key file specified
in the credentialsKeyFile attribute is used to decrypt the credential file.

Similarly, you can specify the credentialsKeyFile element, without specifying the
credentialsFile element in the ConnectDirectNodeProperties.xml file.

If you do not specify the credentialsFile element, the default credential file
ConnectDirectCredentials.xml is used by the Connect:Direct bridge, and the value of the key file specified
in the credentialsKeyFile attribute is used to decrypt the credential file.

Using the key from the data set on z/OS

On z/OS, you can specify MQMFTCredentials and provide the credentials key file using a PDSE. See
“Configuring MQMFTCredentials.xml on z/OS” on page 586.

Related reference
Which MFT command connects to which queue manager
MFT credentials file format
fteObfuscate (encrypt sensitive data)

MFT and IBM MQ connection authentication
Connection authentication allows a queue manager to be configured to authenticate applications by using
a provided user ID and password. If the associated queue manager has security enabled, and requires
credential details (user ID and password), the connection authentication feature must be enabled before
a successful connection to a queue manager can be made. Connection authentication can be run in
compatibility mode or MQCSP authentication mode.

Methods of supplying credential details
Many Managed File Transfer commands support the following methods of supplying credential details:
Details supplied by command line arguments.

The credential details can be specified by using the -mquserid and -mqpassword parameters. If
the -mqpassword is not supplied, then the user is asked for the password where the input is not
displayed.

Details supplied from a credentials file: MQMFTCredentials.xml.
The credential details can be predefined in a MQMFTCredentials.xml file either as clear text or
obfuscated text.

For information about setting up an MQMFTCredentials.xml file on IBM MQ for Multiplatforms see
“Configuring MQMFTCredentials.xml on Multiplatforms” on page 584.

For information about setting up an MQMFTCredentials.xml file on IBM MQ for z/OS see “Configuring
MQMFTCredentials.xml on z/OS” on page 586.

Precedence
The precedence of determining the credential details is:

1. Command line argument.

Securing IBM MQ 583

2. MQMFTCredentials.xml index by associated queue manager and user running the command.
3. MQMFTCredentials.xml index by associated queue manager.
4. Default backward compatibility mode where no credential details are supplied to allow compatibility

with previous releases of IBM MQor IBM WebSphere MQ

Notes:

• The fteStartAgent and fteStartLogger commands do not support the command line
argument -mquserid, or -mqpassword, and the credential details can only be specified with the
MQMFTCredentials.xml file.

•

On z/OS, the password must be uppercase, even if the user's password has lowercase letters. For
example, if the user's password was "password", it would have to be entered as "PASSWORD".

Related reference
Which MFT command connects to which queue manager
MFT credentials file format

Configuring MQMFTCredentials.xml on Multiplatforms
If Managed File Transfer (MFT) is configured with security enabled, connection authentication requires
all MFT commands that connect with a queue manager to supply user ID and password credentials.
Similarly, MFT loggers might be required to specify a user ID and password when connecting to a
database. This credential information can be stored in the MFT credentials file.

About this task
The elements in the MQMFTCredentials.xml file must conform to the MQMFTCredentials.xsd
schema. For information about the format of MQMFTCredentials.xml, see MFT credentials file format.

You can find a sample credentials file in the MQ_INSTALLATION_PATH/mqft/samples/credentials
directory.

You can have one MFT credentials file for the coordination queue manager, one for the command queue
manager, one for each agent, and one for each logger. Alternatively, you can have one file which is used by
everything in your topology.

The default location of the MFT credentials file is as follows:

AIX and Linux
$HOME

Windows
%USERPROFILE% or %HOMEDRIVE%%HOMEPATH%

If the credentials file is stored in a different location, then you can use the following properties to specify
where the commands should look for it:

Table 98. : Properties that define the location of the MQMFTCredentials.xml file for various commands.

Type of command Property file Property name

Command which
connects to the
coordination queue
manager

coordination.properties coordinationQMgrAuthenticationCredentialsFile

Command which
connects to the
command queue
manager

connection.properties connectionQMgrAuthenticationCredentialsFile

584 Securing IBM MQ

Table 98. : Properties that define the location of the MQMFTCredentials.xml file for various commands.
(continued)

Type of command Property file Property name

Command that connects
to an agent process

agent.properties agentQMgrAuthenticationCredentialsFile

Command that connects
to a logger process

logger.properties loggerQMgrAuthenticationCredentialsFile

Table 99. : Properties that define the location of the MQMFTCredentials.xml file for agents and logger
processes.

Type of command Property file Property name

MFT agents agent.properties agentQMgrAuthenticationCredentialsFile

MFT loggers logger.properties loggerQMgrAuthenticationCredentialsFile

For details about what commands and processes connect to which queue manager, see Which MFT
commands and processes connect to which queue manager.

Instead of adding properties in individual properties files, you can add the
commonCredentialsKeyFile property to the existing common installation.properties file, so
that agent, logger and commands can use the same property.

Because the credentials file contains user ID and password information, it requires special permissions to
prevent unauthorized access to it:

AIX and Linux

 chown <agent owner userid>
 chmod 600

Windows
Ensure that inheritance is not enabled, and then remove all of the user IDs except those running the
agent or logger that will be using the credentials file.

The credential details used to connect to an MFT coordination queue manager, in the IBM MQ Explorer
Managed File Transfer plug-in depends on the type of configuration:
Global (configuration on local disk)

A global configuration uses the credentials file specified in the coordination and command properties.
Local (defined within IBM MQ Explorer):

A local configuration uses the properties of the connection details of the associated queue manager in
IBM MQ Explorer.

Related tasks
“Enabling connection authentication for MFT” on page 587
Connection authentication of the IBM MQ Explorer MFT Plugin connecting with a coordination queue
manager or command queue manager, and connection authentication for a Managed File Transfer agent
connecting with a coordination queue manager or command queue manager can be run in compatibility
mode or MQCSP authentication mode.
Creating an IBM MQ File Transfer structure
Related reference
MFT credentials file format
Encrypting stored credentials in MFT
fteObfuscate: encrypt sensitive data

Securing IBM MQ 585

Configuring MQMFTCredentials.xml on z/OS
If Managed File Transfer (MFT) is configured with security enabled, connection authentication requires
all MFT agents, and commands that connect to a queue manager, to supply user ID and password
credentials.

Similarly, MFT loggers might be required to specify a user ID and password when connecting to a
database.

This credential information can be stored in the MFT credentials file. Note that the credentials files
are optional, however, it is easier to define the file or files that you require before you customize the
environment.

In addition to this, if you have credentials files, you receive fewer warning messages. The warning
messages inform you that MFT considers that queue manager security is off, and therefore you are not
supplying authentication details.

You can find a sample credentials file in the MQ_INSTALLATION_PATH/mqft/samples/credentials
directory.

Here is an example of an MQMFTCredentials.xmlfile:

<?xml version="1.0" encoding="IBM-1047"?>
<tns:mqmftCredentials xmlns:tns="http://wmqfte.ibm.com/MFTCredentials"
xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wmqfte.ibm.com/MFTCredentials MFTCredentials.xsd">
 <tns:qmgr name="MQPH" user="ADMIN" mqUserId="JOHNDOEH" mqPassword="cXXXX" />
 <tns:qmgr name="MQPI" user="ADMIN" mqUserId="JOHNDOEI" mqPassword="yXXXX" />
 <tns:qmgr name="MQPH" mqUserId="NONEH" mqPassword="yXXXX" />
 <tns:qmgr name="MQPI" mqUserId="NONEI" mqPassword="yXXXX" />
</tns:mqmftCredentials>

When a job with userid ADMIN needs to connect to queue manager MQPH, it passes user ID JOHNDOEH
and uses password cXXXX.

If the job is run by any other user ID, and connects MQPH, that job passes user ID NONEH and password
yXXXX.

The default location for the MQMFTCredentials.xml file is the user's home directory on z/OS UNIX
System Services (USS). It is also possible to store the file in either a different location on USS, or in a
member within a partitioned data set.

If the credentials file is stored in a different location, then you can use the following properties to specify
where the commands should look for it:

Table 100. : Properties that define the location of the MQMFTCredentials.xml file for various commands.

Type of command Property file Property name

Command which
connects to the
coordination queue
manager

coordination.properties coordinationQMgrAuthenticationCredentialsFile

Command which
connects to the
command queue
manager

connection.properties connectionQMgrAuthenticationCredentialsFile

Command that connects
to an agent process

agent.properties agentQMgrAuthenticationCredentialsFile

Command that connects
to a logger process

logger.properties loggerQMgrAuthenticationCredentialsFile

586 Securing IBM MQ

Table 101. : Properties that define the location of the MQMFTCredentials.xml file for agents and logger
processes.

Type of command Property file Property name

MFT agents agent.properties agentQMgrAuthenticationCredentialsFile

MFT loggers logger.properties loggerQMgrAuthenticationCredentialsFile

For details about what commands and processes connect to which queue manager, see Which MFT
commands and processes connect to which queue manager.

To create the credentials file within a partitioned data set, carry out the following steps:

• Create a PDSE with format VB and logical record length (Lrecl) 200.
• Create a member within the data set, make a note of the data set and member, and add the following

code to the member:

<?xml version="1.0" encoding="IBM-1047"?>
<tns:mqmftCredentials xmlns:tns="http://wmqfte.ibm.com/MQMFTCredentials"
xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wmqfte.ibm.com/MFTCredentials MQMFTCredentials.xsd">
 <!—-credentials information goes here-->
</tns:mqmftCredentials>

You can protect the credentials file using a security product, for example, RACF, but the user IDs running
the Managed File Transfer commands, and administering the agent and logger processes, need read
access to this file.

You can obscure information in this file using the JCL in member BFGCROBS. This takes the file and
encrypts the IBM MQ user ID and password. For example member BFGCROBS takes the line

<tns:qmgr name="MQPI" user="JOHNDOE2" mqUserId="JOHNDOE1" mqPassword="yXXXX" />

and creates

<tns:qmgr mqPasswordCipher="e977c61e9b9c363c" mqUserIdCipher="c394c5887867157c"
name="MQPI" user="JOHNDOE2"/>

If you want to keep the user ID to IBM MQ user ID mapping, you can add comments to the file. For
example

<!-- name="MQPI" user="ADMIN" mqUserId="JOHNDOE1 -->

These comments are unchanged by the obscuring process.

Note that the content is obscured, not strongly encrypted. You should limit which user IDs have access to
the file.

Related tasks
“Configuring MQMFTCredentials.xml on Multiplatforms” on page 584
If Managed File Transfer (MFT) is configured with security enabled, connection authentication requires
all MFT commands that connect with a queue manager to supply user ID and password credentials.
Similarly, MFT loggers might be required to specify a user ID and password when connecting to a
database. This credential information can be stored in the MFT credentials file.

Enabling connection authentication for MFT
Connection authentication of the IBM MQ Explorer MFT Plugin connecting with a coordination queue
manager or command queue manager, and connection authentication for a Managed File Transfer agent

Securing IBM MQ 587

connecting with a coordination queue manager or command queue manager can be run in compatibility
mode or MQCSP authentication mode.

About this task
Before IBM MQ 9.2.0, compatibility mode is the default setting for connection authentication. However,
you can disable the default compatibility mode and enable MQCSP authentication mode.

From IBM MQ 9.2.0, MQCSP authentication mode is the default.

For connection authentication for the IBM MQ Explorer Managed File Transfer plugin or for Managed File
Transfer agents that connect to a queue manager using the CLIENT transport, passwords longer than 12
characters are only supported for MQCSP authentication mode. If you specify a password greater than
12 characters in length when authorizing using compatibility mode, then an error occurs and the agent
does not authenticate with the queue manager. See the BFGAG0187E message in Diagnostic messages:
BFGAG0001 - BFGAG9999.

Procedure
• To select the connection authentication mode for a coordination queue manager or command queue

manager in IBM MQ Explorer, complete the following steps:
a) Select the queue manager that you want to connect to.
b) Right click, and select Connection Details->Properties from the pop-up menu.
c) Click the Userid tab.
d) Make sure that the check box for the mode of connection authentication that you want to use is

selected:

– From IBM MQ 9.1.0, by default, the User identification compatibility mode check box is
unselected. This means that if the Enable user identification check box is selected, the IBM
MQ Explorer will use MQCSP authentication when connecting to the queue manager. If IBM MQ
Explorer needs to connect to the queue manager using compatibility mode instead of MQCSP
authentication, ensure that both the Enable user identification and the User identification
compatibility mode check boxes are selected.

– Before IBM MQ 9.1.0, by default, the User identification compatibility mode check box is
selected. This means that if the Enable user identification check box is selected, the IBM MQ
Explorer will use compatibility mode when connecting to the queue manager. If IBM MQ Explorer
needs to connect to the queue manager using MQCSP authentication, ensure that the Enable
user identification check box is selected, and the User identification compatibility mode check
box is unselected.

• To enable or disable MQCSP authentication mode for a Managed File Transfer agent by
using the MQMFTCredentials.xml file, add the parameter useMQCSPAuthentication to the
MQMFTCredentials.xml file for the relevant user.

The useMQCSPAuthentication parameter has the following values:
true

MQCSP authentication mode is used to authenticate the user with the queue manager.
From IBM MQ 9.2.0, true is the default value. If the useMQCSPAuthentication parameter is
not specified, it is by default set to true and MQCSP authentication mode is used to authenticate
the user with the queue manager..

false
Compatibility mode is used to authenticate the user with the queue manager.
Before IBM MQ 9.2.0, if the useMQCSPAuthentication parameter is not specified, it is by
default set to false and compatibility mode is used to authenticate the user with the queue
manager.

588 Securing IBM MQ

The following example shows how to set the useMQCSPAuthentication parameter in the
MQMFTCredentials.xml file:

<tns:qmgr name="CoordQueueMgr" user="ernest" mqUserId="ernest"
 mqPassword="AveryL0ngPassw0rd2135" useMQCSPAuthentication="true"/>

Related concepts
“MQCSP password protection” on page 31
Authentication credentials that are specified in the MQCSP structure can be either protected by using the
IBM MQ MQCSP password protection feature, or encrypted by using TLS encryption.
Related reference
“MFT and IBM MQ connection authentication” on page 583
Connection authentication allows a queue manager to be configured to authenticate applications by using
a provided user ID and password. If the associated queue manager has security enabled, and requires
credential details (user ID and password), the connection authentication feature must be enabled before
a successful connection to a queue manager can be made. Connection authentication can be run in
compatibility mode or MQCSP authentication mode.
MFT credentials file format

MFT sandboxes
You can restrict the area of the file system that the agent can access as part of a transfer. The area that
the agent is restricted to is called the sandbox. You can apply restrictions to either the agent or to the user
that requests a transfer.

Sandboxes are not supported when the agent is a protocol bridge agent or a Connect:Direct bridge agent.
You can not use agent sandboxing for agents that need to transfer to or from IBM MQ queues.

Related reference
“Working with MFT agent sandboxes” on page 589
To add an additional level of security to Managed File Transfer, you can restrict the area of a file system
that an agent can access.
“Working with MFT user sandboxes” on page 591
You can restrict the area of the file system that files can be transferred into and out of based on the MQMD
user name that requests the transfer.

Working with MFT agent sandboxes
To add an additional level of security to Managed File Transfer, you can restrict the area of a file system
that an agent can access.

You cannot use agent sandboxing for agents that transfer to or from IBM MQ queues. Restricting access
to IBM MQ queues with sandboxing can be implemented instead by using user sandboxing which is the
recommended solution for any sandboxing requirements. For more information about user sandboxing,
see “Working with MFT user sandboxes” on page 591

To enable agent sandboxing, add the following property to the agent.properties file for the agent you
want to restrict:

sandboxRoot=[!]restricted_directory_nameseparator...separator[!]restricted_directory_name

where:

• restricted_directory_name is a directory path to be allowed or denied.
• ! is optional and specifies that the following value for restricted_directory_name is denied

(excluded). If ! is not specified restricted_directory_name is an allowed (included) path.
• separator is the platform-specific separator.

Securing IBM MQ 589

For example, if you want to restrict the access that AGENT1 has to the /tmp directory only, but not allow
the subdirectory private to be accessed, set the property as follows in the agent.properties file
belonging to AGENT1: sandboxRoot=/tmp:!/tmp/private.

The sandboxRoot property is described in Advanced agent properties.

Both agent and user sandboxing are not supported on protocol bridge agents or on Connect:Direct bridge
agents.

Working in a sandbox on AIX, Linux, and Windows platforms
On AIX, Linux, and Windows platforms, sandboxing restricts which directories a Managed

File Transfer Agent can read from and write to. When sandboxing is activated, the Managed File Transfer
Agent can read and write to the directories specified as allowed, and any subdirectories that the specified
directories contain unless the subdirectories are specified as denied in the sandboxRoot. Managed File
Transfer sandboxing does not take precedence over operating system security. The user that started the
Managed File Transfer Agent must have the appropriate operating system level access to any directory to
be able to read from or write to the directory. A symbolic link to a directory is not followed if the directory
linked to is outside the specified sandboxRoot directories (and subdirectories).

Working in a sandbox on z/OS
On z/OS, sandboxing restricts the data set name qualifiers that the Managed File Transfer

Agent can read from and write to. The user that started the Managed File Transfer Agent must have
the correct operating system authorities to any data sets involved. If you enclose a sandboxRoot data
set name qualifier value in double quotation marks, the value follows the normal z/OS convention and
is treated as fully qualified. If you omit the double quotation marks, the sandboxRoot is prefixed with
the current user ID. For example, if you set the sandboxRoot property to the following: sandboxRoot=//
test, the agent can access the following data sets (in standard z/OS notation) //username.test.**
At run time, if the initial levels of the fully resolved data set name do not match the sandboxRoot, the
transfer request is rejected.

Working in a sandbox on IBM i systems
For files in the integrated file system on IBM i systems, sandboxing restricts which

directories a Managed File Transfer Agent can read from and write to. When sandboxing is activated,
the Managed File Transfer Agent can read and write to the directories specified as allowed, and any
subdirectories that the specified directories contain unless the subdirectories are specified as denied in
the sandboxRoot. Managed File Transfer sandboxing does not take precedence over operating system
security. The user that started the Managed File Transfer Agent must have the appropriate operating
system level access to any directory to be able to read from or write to the directory. A symbolic link to
a directory is not followed if the directory linked to is outside the specified sandboxRoot directories (and
subdirectories).
Related reference
“Additional checks for wildcard transfers” on page 594
If an agent has been configured with a user or agent sandbox in order to restrict the locations that the
agent can transfer files to and from, you can specify that additional checks are to be made on wildcard
transfers for that agent.
“Working with MFT agent sandboxes” on page 589
To add an additional level of security to Managed File Transfer, you can restrict the area of a file system
that an agent can access.
The MFT agent.properties file

590 Securing IBM MQ

Working with MFT user sandboxes
You can restrict the area of the file system that files can be transferred into and out of based on the MQMD
user name that requests the transfer.

User sandboxes are not supported when the agent is a protocol bridge agent or a Connect:Direct bridge
agent.

To enable user sandboxing, add the following property to the agent.properties file for the agent that
you want to restrict:

userSandboxes=true

When this property is present and set to true the agent uses the information in the MQ_DATA_PATH/
mqft/config/coordination_qmgr_name/agents/agent_name/UserSandboxes.xml file to
determine which parts of the file system the user who requests the transfer can access.

The UserSandboxes.xml XML is composed of an <agent> element that contains zero or more
<sandbox> elements. These elements describe which rules are applied to which users. The user
attribute of the <sandbox> element is a pattern that is used to match against the MQMD user of the
request.

The file UserSandboxes.xml is periodically reloaded by the agent and any valid changes to the file will
affect the behavior of the agent. The default reload interval is 30 seconds. This interval can be changed by
specifying the agent property xmlConfigReloadInterval in the agent.properties file.

If you specify the userPattern="regex" attribute or value, the user attribute is interpreted as a Java
regular expression. For more information, see Regular expressions used by MFT.

If you do not specify the userPattern="regex" attribute or value the user attribute is interpreted as a
pattern with the following wildcard characters:

• asterisk (*), which represents zero or more characters
• question mark (?), which represents exactly one character

Matches are performed in the order that the <sandbox> elements are listed in the file. Only the first
match is used, all following potential matches in the file are ignored. If none of the <sandbox> elements
specified in the file match the MQMD user associated with the transfer request message, the transfer
cannot access the file system. When a match has been found between the MQMD user name and a user
attribute, the match identifies a set of rules inside a <sandbox> element that are applied to the transfer.
This set of rules is used to determine which files, or data sets, can be read from or written to as part of the
transfer.

Each set of rules can specify a <read> element, which identifies which files can be read, and a <write>
element which identifies which files can be written. If you omit the <read> or <write> elements from
a set of rules, it is assumed that the user associated with that set of rules is not allowed to perform any
reads or any writes, as appropriate.

Note: The <read> element must be before the <write> element, and the <include> element must be
before the <exclude> element, in the UserSandboxes.xml file.

Each <read> or <write> element contains one or more patterns that are used to determine whether
a file is in the sandbox and can be transferred. Specify these patterns by using the <include> and
<exclude> elements. The name attribute of the <include> or <exclude> element specifies the
pattern to be matched. An optional type attribute specifies whether the name value is a file or queue
pattern. If the type attribute is not specified, the agent treats the pattern as a file or directory path
pattern. For example:

<tns:read>
 <tns:include name="/home/user/**"/>
 <tns:include name="USER.**" type="queue"/>
 <tns:exclude name="/home/user/private/**"/>
</tns:read>

Securing IBM MQ 591

The <include> and <exclude> name patterns are used by the agent to determine whether files, data
sets, or queues can be read from or written to. An operation is allowed if the canonical file path, data set,
or queue name matches at least one of the included patterns and exactly zero of the excluded patterns.
The patterns specified by using the name attribute of the <include> and <exclude> elements use the
path separators and conventions appropriate to the platform that the agent is running on. If you specify
relative file paths, the paths are resolved relative to the transferRoot property of the agent.

When specifying a queue restriction, a syntax of QUEUE@QUEUEMANAGER is supported, with the
following rules:

• If the at character (@) is missing from the entry, the pattern is treated as a queue name that can be
accessed on any queue manager. For example, if the pattern is name it is treated the same way as
name@**.

• If the at character (@) is the first character in the entry, the pattern is treated as a queue manager name
and all queues on the queue manager can be accessed. For example, if the pattern is @name it is treated
the same way as **@name..

The following wildcard characters have special meaning when you specify them as part of the name
attribute of the <include> and <exclude> elements:
*

A single asterisk matches zero or more characters in a directory name, or in a qualifier of a data set
name or queue name.

?
A question mark matches exactly one character in a directory name, or in a qualifier of a data set
name or queue name.

**
Two asterisk characters match zero or more directory names, or zero or more qualifiers in a data set
name or queue name. Also, paths that end with a path separator have an implicit "**" added to the
end of the path. So /home/user/ is the same as /home/user/**.

For example:

• /**/test/** matches any file that has a test directory in its path
• /test/file? matches any file inside the /test directory that starts with the string file followed by

any single character
• c:\test*.txt matches any file inside the c:\test directory with a .txt extension
• c:\test***.txt matches any file inside the 'c:\test directory, or one of its subdirectories that

has a .txt extension

• //'TEST.*.DATA' matches any data set that has the first qualifier of TEST, has any
second qualifier, and a third qualifier of DATA.

• *@QM1 matches any queue on the queue manager QM1 that has a single qualifier.
• TEST.*.QUEUE@QM1 matches any queue on the queue manager QM1 that has the first qualifier of
TEST, has any second qualifier, and a third qualifier of QUEUE.

• **@QM1 matches any queue on the queue manager QM1.

Symbolic links
You must fully resolve any symbolic links that you use in file paths in the UserSandboxes.xml file by
specifying hard links in the <include> and <exclude> elements. For example, if you have a symbolic
link where /var maps to /SYSTEM/var, you must specify this path as <tns:include name="/
SYSTEM/var"/>, otherwise the intended transfer fails with a user sandbox security error.

592 Securing IBM MQ

Example

This example shows how to allow the user with the MQMD user name guest to transfer any
file from the /home/user/public directory or any of its subdirectories on the system where
the agent AGENT_JUPITER is running, by adding the following <sandbox> element to the file
UserSandboxes.xml in AGENT_JUPITER's configuration directory:

<?xml version="1.0" encoding="UTF-8"?>
<tns:userSandboxes
 xmlns:tns="http://wmqfte.ibm.com/UserSandboxes"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://wmqfte.ibm.com/UserSandboxes UserSandboxes.xsd">
 <tns:agent>
 <tns:sandbox user="guest">
 <tns:read>
 <tns:include name="/home/user/public/**"/>
 </tns:read>
 </tns:sandbox>
 </tns:agent>
</tns:userSandboxes>

Example

This example shows how to allow any user with the MQMD user name account followed by a single digit,
for example account4, to complete the following actions:

• Transfer any file from the /home/account directory or any of its subdirectories, excluding the /home/
account/private directory on the system where the agent AGENT_SATURN is running

• Transfer any file to the /home/account/output directory or any of its subdirectories on the system
where the agent AGENT_SATURN is running

• Read messages from queues on the local queue manager starting with the prefix ACCOUNT. unless it
starts with ACCOUNT.PRIVATE. (that is has PRIVATE at the second level).

• Transfer data onto queues starting with the prefix ACCOUNT.OUTPUT. on any queue manager.

To allow a user with the MQMD user name account to complete these actions, add the following
<sandbox> element to the file UserSandboxes.xml, in AGENT_SATURN's configuration directory:

<?xml version="1.0" encoding="UTF-8"?>
<tns:userSandboxes
 xmlns:tns="http://wmqfte.ibm.com/UserSandboxes"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://wmqfte.ibm.com/UserSandboxes UserSandboxes.xsd">
 <tns:agent>
 <tns:sandbox user="account[0-9]" userPattern="regex">
 <tns:read>
 <tns:include name="/home/account/**"/>
 <tns:include name="ACCOUNT.**" type="queue"/>
 <tns:exclude name="ACCOUNT.PRIVATE.**" type="queue"/>
 <tns:exclude name="/home/account/private/**"/>
 </tns:read>
 <tns:write>
 <tns:include name="/home/account/output/**"/>
 <tns:include name="ACCOUNT.OUTPUT.**" type="queue"/>
 </tns:write>
 </tns:sandbox>
 </tns:agent>
</tns:userSandboxes>

Related reference
“Additional checks for wildcard transfers” on page 594
If an agent has been configured with a user or agent sandbox in order to restrict the locations that the
agent can transfer files to and from, you can specify that additional checks are to be made on wildcard
transfers for that agent.
The MFT agent.properties file

Securing IBM MQ 593

Additional checks for wildcard transfers
If an agent has been configured with a user or agent sandbox in order to restrict the locations that the
agent can transfer files to and from, you can specify that additional checks are to be made on wildcard
transfers for that agent.

additionalWildcardSandboxChecking property
To enable additional checking for wildcard transfers, add the following property to the
agent.properties file for the agent that you want to check.

additionalWildcardSandboxChecking=true

When this property is set to true, and the agent makes a transfer request that attempts to read a location
that is outside the defined sandbox for file matching of the wildcard, the transfer fails. If there are
multiple transfers within one transfer request, and one of these requests fails due to it attempting to read
a location outside of the sandbox, the entire transfer fails. If checking fails, the reason for failure is given
in an error message.

If the additionalWildcardSandboxChecking property is omitted from an agent's agent.properties file
or is set to false, no additional checks are made on wildcard transfers for that agent.

Error messages for wildcard checking
The messages that are reported when a wildcard transfer request is made to a location outside a
configured sandbox location are as follows.

The following message occurs when a wildcard file path in a transfer request is located outside of the
restricted sandbox:
BFGSS0077E: Attempt to read file path: path has been denied.
The file path is located outside of the restricted transfer sandbox.

The following message occurs when a transfer within a multiple transfer request contains a wildcard
transfer request where the path is located outside of the restricted sandbox:
BFGSS0078E: Attempt to read file path: path has been ignored as another transfer
item in the managed transfer attempted to read outside of the restricted transfer sandbox.

The following message occurs when a file is located outside of the restricted sandbox:
BFGSS0079E: Attempt to read file file path has been denied.
The file is located outside of the restricted transfer sandbox.

The following message occurs in a multiple transfer request where another wildcard transfer request has
caused this one to be ignored:
BFGSS0080E: Attempt to read file: file path has been ignored as another transfer
item in the managed transfer attempted to read outside of the restricted transfer sandbox.

In the case of single file transfers that do not include wildcards, the message that is reported when the
transfer involves a file that is located outside of the sandbox is unchanged from earlier releases:
Fails with BFGIO0056E: Attempt to read file "FILE" has been denied.
The file is located outside of the restricted transfer sandbox.

Related reference
“Working with MFT user sandboxes” on page 591
You can restrict the area of the file system that files can be transferred into and out of based on the MQMD
user name that requests the transfer.
“Working with MFT agent sandboxes” on page 589
To add an additional level of security to Managed File Transfer, you can restrict the area of a file system
that an agent can access.
The MFT agent.properties file

594 Securing IBM MQ

Configuring SSL or TLS encryption for MFT
You can use SSL or TLS can be used with IBM MQ Managed File Transfer to secure the communication
between agents and their agent queue managers, commands and the queue managers that they are
connecting to, and the various queue manager to queue manager connections within your topology.

Before you begin
You can use SSL or TLS encryption to encrypt messages that are flowing through an IBM MQ Managed File
Transfer topology. These include:

• Messages that pass between an agent and its agent queue manager.
• Messages for commands and the queue managers that they are connecting to.
• Internal messages that flow between the agent queue managers, command queue managers and

coordination queue manager within the topology.

About this task
For general information about using SSL with IBM MQ, see “Working with SSL/TLS” on page 268. In IBM
MQ terms, Managed File Transfer is a standard Java client application.

Follow these steps to use SSL with Managed File Transfer:

Procedure
1. Create a truststore file and optionally a keystore file (these files can be the same file). If you do not

need client-authentication (that is, SSLCAUTH=OPTIONAL on channels) you do not need to provide a
keystore. You require a truststore only to authenticate the queue manager's certificate.

The key algorithm used for creating certificates for the truststore and keystores must be RSA to work
with IBM MQ.

2. Set up your IBM MQ queue manager to use SSL.
For information about setting up a queue manager to use SSL using IBM MQ Explorer for example, see
Configuring SSL on queue managers.

3. Save the truststore file and keystore file (if you have one) in a suitable location. A suggested location is
the config_directory/coordination_qmgr/agents/agent_name directory.

4. Set the SSL properties as required for each SSL-enabled queue manager in the appropriate Managed
File Transfer properties file. Each set of properties refers to a separate queue manager (agent,
coordination, and command), although one queue manager might perform two or more of these roles.

One of the CipherSpec or CipherSuite properties is required, otherwise the client tries to
connect without SSL. Both the CipherSpec or CipherSuite properties are provided because of
the terminology differences between IBM MQ and Java. Managed File Transfer accepts either property
and does the necessary conversion, so you do not need to set both properties. If you do specify both
the CipherSpec or CipherSuite properties, CipherSpec takes precedence.

The PeerName property is optional. You can set the property to the Distinguished Name of the queue
manager that you want to connect to. Managed File Transfer rejects connections to an incorrect SSL
server with a Distinguished Name that does not match.

Set the SslTrustStore and SslKeyStore properties to file names that point to the truststore and
keystore files. If you are setting up these properties for an agent that is already running, stop and
restart the agent to reconnect in SSL mode.

Properties files contain plain-text passwords so consider setting appropriate file system permissions.

For more information about SSL properties, see “SSL/TLS properties for MFT” on page 596.
5. If an agent queue manager uses SSL, you cannot provide the necessary details when you create the

agent. Use the following steps to create the agent:

Securing IBM MQ 595

a) Create the agent by using the fteCreateAgent command. You receive a warning about being
unable to publish the existence of the agent to the coordination queue manager.

b) Edit the agent.properties file that was created by the previous step to add the SSL information.
When the agent is successfully started, the publish is attempted again.

6. If agents or instances of the IBM MQ Explorer are running while the SSL properties in the
agent.properties file or coordination.properties file are changed, you must restart the
agent or IBM MQ Explorer.

Related reference
The MFT agent.properties file

SSL/TLS properties for MFT
Some MFT properties files include SSL and TLS properties. You can use SSL or TLS with IBM MQ and
Managed File Transfer to prevent unauthorized connections between agents and queue managers, and to
encrypt message traffic between agents and queue managers.

The following MFT properties files include SSL properties:

• SSL/TLS properties for the MFT agent.properties file
• SSL/TLS properties for the MFT coordination.properties file
• SSL/TLS properties for the MFT command.properties file
• SSL/TLS properties for the MFT logger.properties file

For information about using SSL or TLS with Managed File Transfer, see “Configuring SSL or TLS
encryption for MFT” on page 595.

From IBM WebSphere MQ 7.5, you can use environment variables in some Managed File Transfer
properties that represent file or directory locations. This allows the locations of files or directories that are
used when running parts of the product to vary depending on environment changes, such as which user is
running the process. For more information, see The use of environment variables in MFT properties.

Related concepts
MFT configuration options on Multiplatforms
Related reference
The use of environment variables in MFT properties

Connecting to a queue manager in client mode with channel authentication
IBM MQ uses channel authentication records to control more precisely access at a channel level. This
means that by default newly created queue managers reject client connections from the Managed File
Transfer component.

For more information about channel authentication, see “Channel authentication records” on page 51.

If the channel authentication configuration for the SVRCONN used by Managed File Transfer specifies a
non-privileged MCAUSER ID, you must grant specific authority records for the queue manager, queues,
and topics, to allow the Managed File Transfer Agent and commands to work correctly. Use the MQSC
command SET CHLAUTH or the PCF command Set Channel Authentication Record to create, modify, or
remove channel authentication records. For all Managed File Transfer agents that you want to connect to
the IBM MQ queue manager, you can either set up an MCAUSER ID to use for all your agents, or set up a
separate MCAUSER ID for each agent.

Grant each MCAUSER ID the following permissions:

• Authority records required for the queue manager:

– connect
– setid
– inq

596 Securing IBM MQ

• Authority records required for queues.

For all agent-specific queues, that is queue names that end in agent_name in the following list, you
must create these queue authority records for each agent that you want to connect to the IBM MQ
queue manager by using a client connection.

– put, get, dsp (SYSTEM.DEFAULT.MODEL.QUEUE)
– put, get, setid, browse (SYSTEM.FTE.COMMAND.agent_name)
– put, get (SYSTEM.FTE.DATA.agent_name)
– put, get (SYSTEM.FTE.REPLY.agent_name)
– put, get, inq, browse (SYSTEM.FTE.STATE.agent_name)
– put, get, browse (SYSTEM.FTE.EVENT.agent_name)
– put, get (SYSTEM.FTE)

• Authority records required for topics:

– sub, pub (SYSTEM.FTE)
• Authority records required for file transfers.

If you have separate MCAUSER IDs for source and destination agent, create the authority records on
agents' queues at both source and destination.

For example, if the source agent's MCAUSER ID is user1 and the destination agent MCAUSER ID is
user2, set the following authorities for the agent users:

AGENT user Queue Authority required

user1 SYSTEM.FTE.DATA.destination_agent_name put

user1 SYSTEM.FTE.COMMAND.destination_agent_name put

user2 SYSTEM.FTE.REPLY.source_agent_name put

user2 SYSTEM.FTE.COMMAND.source_agent_name put

Configuring SSL or TLS between the Connect:Direct bridge agent and the
Connect:Direct node

Configure the Connect:Direct bridge agent and the Connect:Direct node to connect to each other through
the SSL protocol by creating a keystore and a truststore, and by setting properties in the Connect:Direct
bridge agent properties file.

About this task
These steps include instructions for getting your keys signed by a certificate authority. If you do not use
a certificate authority, you can generate a self-signed certificate. For more information about generating a
self-signed certificate, see “Working with SSL/TLS on AIX, Linux, and Windows” on page 286.

These steps include instructions for creating a new keystore and truststore for the Connect:Direct bridge
agent. If the Connect:Direct bridge agent already has a keystore and truststore that it uses to connect
securely to IBM MQ queue managers, you can use the existing keystore and truststore when connecting
securely to the Connect:Direct node. For more information, see “Configuring SSL or TLS encryption for
MFT” on page 595.

Procedure
For the Connect:Direct node, complete the following steps:

1. Generate a key and signed certificate for the Connect:Direct node.
You can do this by using the IBM Key Management tool that is provided with IBM MQ. For more
information, see “Working with SSL/TLS” on page 268.

Securing IBM MQ 597

2. Send a request to a certificate authority to have the key signed. You receive a certificate in return.
3. Create a text file; for example, /test/ssl/certs/CAcert, that contains the public key of your

certification authority.
4. Install the Secure+ Option on the Connect:Direct node.

If the node already exists, you can install the Secure+ Option by running the installer again, specifying
the location of the existing installation, and choosing to install only the Secure+ Option.

5. Create a new text file; for example, /test/ssl/cd/keyCertFile/node_name.txt.
6. Copy the certificate that you received from your certification authority and the private key, located

in /test/ssl/cd/privateKeys/node_name.key, into the text file.
The contents of /test/ssl/cd/keyCertFile/node_name.txt must be in the following format:

-----BEGIN CERTIFICATE-----
MIICnzCCAgigAwIBAgIBGjANBgkqhkiG9w0BAQUFADBeMQswCQYDVQQGEwJHQjES
MBAGA1UECBMJSGFtcHNoaXJlMRAwDgYDVQQHEwdIdXJzbGV5MQwwCgYDVQQKEwNJ
Qk0xDjAMBgNVBAsTBU1RSVBUMQswCQYDVQQDEwJDQTAeFw0xMTAzMDExNjIwNDZa
Fw0yMTAyMjYxNjIwNDZaMFAxCzAJBgNVBAYTAkdCMRIwEAYDVQQIEwlIYW1wc2hp
cmUxDDAKBgNVBAoTA0lCTTEOMAwGA1UECxMFTVFGVEUxDzANBgNVBAMTBmJpbmJh
ZzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAvgP1QIklU9ypSKD1XoODo1yk
EyMFXBOUpZRrDVxjoSEC0vtWNcJ199e+Vc4UpNybDyBu+NkDlMNofX4QxeQcLAFj
WnhakqCiQ+JIAD5AurhnrwChe0MV3kjA84GKH/rOSVqtl984mu/lDyS819XcfSSn
cOOMsK1KbneVSCIV2XECAwEAAaN7MHkwCQYDVR0TBAIwADAsBglghkgBhvhCAQ0E
HxYdT3BlblNTTCBHZW5lcmF0ZWQgQ2VydGlmaWNhdGUwHQYDVR0OBBYEFNXMIpSc
csBXUniW4A3UrZnCRsv3MB8GA1UdIwQYMBaAFDXY8rmj4lVz5+FVAoQb++cns+B4
MA0GCSqGSIb3DQEBBQUAA4GBAFc7klXa4pGKYgwchxKpE3ZF6FNwy4vBXS216/ja
8h/vl8+iv01OCL8t0ZOKSU95fyZLzOPKnCH7v+ItFSE3CIiEk9Dlz2U6WO9lICwn
l7PL72TdfaL3kabwHYVf17IVcuL+VZsZ3HjLggP2qHO9ZuJPspeT9+AxFVMLiaAb
8eHw
-----END CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,64A02DA15B6B6EF9

57kqxLOJ/gRUOIQ6hVK2YN13B4E1jAi1gSme0I5ZpEIG8CHXISKB7/0cke2FTqsV
lvI99QyCxsDWoMNt5fj51v7aPmVeS60bOm+UlGre8B/Ze18JVj2O4K2Uh72rDCXE
5e6eFxSdUM207sQDy20euBVELJtM2kOkL1ROdoQQSlU3XQNgJw/t3ZIx5hPXWEQT
rjRQO64BEhb+PzzxPF8uwzZ9IrUK9BJ/UUnqC6OdBR87IeA4pnJD1Jvb2ML7EN9Z
5Y+50hTKI8OGvBvWXO4fHyvIX5aslwhBoArXIS1AtNTrptPvoaP1zyIAeZ6OCVo/
SFo+A2UhmtEJeOJaZG2XZ3H495fAw/EHmjehzIACwukQ9nSIETgu4A1+CV64RJED
aYBCM8UjaAkbZDH5gn7+eBov0ssXAXWDyJBVhUOjXjvAj/e1h+kcSF1hax5D//AI
66nRMZzboSxNqkjcVd8wfDwP+bEjDzUaaarJTS7lIFeLLw7eJ8MNAkMGicDkycL0
EPBU9X5QnHKLKOfYHN/1WgUk8qt3UytFXXfzTXGF3EbsWbBupkT5e5+lYcX8OVZ6
sHFPNlHluCNy/riUcBy9iviVeodX8IomOchSyO5DKl8bwZNjYtUP+CtYHNFU5BaD
I+1uUOAeJ+wjQYKT1WaeIGZ3VxuNITJul8y5qDTXXfX7vxM5OoWXa6U5+AYuGUMg
/itPZmUmNrHjTk7ghT6i1IQOaBowXXKJBlMmq/6BQXN2IhkD9ys2qrvM1hdi5nAf
egmdiG50loLnBRqWbfR+DykpAhK4SaDi2F52Uxovw3Lhiw8dQP7lzQ==
-----END RSA PRIVATE KEY-----

7. Start the Secure+ Admin Tool.

• On AIX and Linux systems, run the command spadmin.sh.
• On Windows systems, click Start > Programs > Sterling Commerce Connect:Direct > CD Secure+

Admin Tool

The CD Secure+ Admin Tool starts.
8. In the CD Secure+ Admin Tool, double-click the .Local line to edit the main SSL or TLS settings.

a) Select Enable SSL Protocol or Enable TLS Protocol, depending on which protocol you are using.
b) Select Disable Override.
c) Select at least one Cipher Suite.
d) If you want two-way authentication, change the value of Enable Client Authentication to Yes.
e) In the Trusted Root Certificate field, enter the path to the public certificate file of your

certification authority, /test/ssl/certs/CAcert.
f) In the Key Certificate File field, enter the path to the file that you created, /test/ssl/cd/
keyCertFile/node_name.txt.

9. Double-click the .Client line to edit the main SSL or TLS settings.

598 Securing IBM MQ

a) Select Enable SSL Protocol or Enable TLS Protocol, depending on which protocol you are using.
b) Select Disable Override.

For the Connect:Direct bridge agent, perform the following steps:
10. Create a truststore. You can do this by creating a dummy key and then deleting the dummy key.

You can use the following commands:

keytool -genkey -alias dummy -keystore /test/ssl/fte/stores/truststore.jks

keytool -delete -alias dummy -keystore /test/ssl/fte/stores/truststore.jks

11. Import the public certificate of the certification authority into the truststore.
You can use the following command:

keytool -import -trustcacerts -alias myCA
 -file /test/ssl/certs/CAcert
 -keystore /test/ssl/fte/stores/truststore.jks

12. Edit the Connect:Direct bridge agent properties file.
Include the following lines anywhere in the file:

cdNodeProtocol=protocol
cdNodeTruststore=/test/ssl/fte/stores/truststore.jks
cdNodeTruststorePassword=password

In the example in this step, protocol is the protocol you are using, either SSL or TLS, and password is
the password that you specified when you created the truststore.

13. If you want two-way authentication, create a key and certificate for the Connect:Direct bridge agent.
a) Create a keystore and key.

You can use the following command:

keytool -genkey -keyalg RSA -alias agent_name
 -keystore /test/ssl/fte/stores/keystore.jks
 -storepass password -validity 365

b) Generate a signing request.
You can use the following command:

keytool -certreq -v -alias agent_name
 -keystore /test/ssl/fte/stores/keystore.jks -storepass password
 -file /test/ssl/fte/requests/agent_name.request

c) Import the certificate you receive from the preceding step into the keystore. The certificate must
be in x.509 format.
You can use the following command:

keytool -import -keystore /test/ssl/fte/stores/keystore.jks
 -storepass password -file certificate_file_path

d) Edit the Connect:Direct bridge agent properties file.
Include the following lines anywhere in the file:

cdNodeKeystore=/test/ssl/fte/stores/keystore.jks
cdNodeKeystorePassword=password

Securing IBM MQ 599

In the example in this step, password is the password that you specified when you created the
keystore.

Related tasks
Configuring the Connect:Direct bridge

Securing AMQP clients
You use a range of security mechanisms to secure connections from AMQP clients and ensure data is
suitably protected on the network. You can build security into your MQ Light applications. You can also
use existing security features of IBM MQ with AMQP clients, in the same way that the features are used
for other applications.

Channel authentication rules (CHLAUTH)
You can use channel authentication rules to restrict the TCP connections to a queue manager. AMQP
channels support the use of channel authentication rules that you configure for your queue manager. If
channel authentication rules are defined with a profile that matches any AMQP channels on your queue
manager, these rules are applied to those channels. By default, channel authentication is enabled on new
IBM® MQ queue managers so you must complete at least some configuration before you can use an AMQP
channel.

For more information about how to configure channel authentication rules to allow AMQP connections to
your queue manager, see Creating and using AMQP channels.

Connection authentication (CONNAUTH)
You can use connection authentication to authenticate connections to a queue manager. AMQP channels
support the use of connection authentication to control access to the queue manager from AMQP
applications.

The AMQP protocol uses the SASL (Simple Authentication and Security Layer) framework to specify how
a connection is authenticated. There are various SASL mechanisms and IBM MQ supports two SASL
mechanisms: ANONYMOUS and PLAIN.

In the case of ANONYMOUS, no credentials are passed from the client to the queue manager for
authentication. If the MQ AUTHINFO object specified in the CONNAUTH attribute has a CHCKCLNT value
of REQUIRED or REQDADM (if connecting as an administrative user), the connection is refused. If the
value of CHCKCLNT is NONE or OPTIONAL, the connection is accepted.

In the case of PLAIN, a user name and password are passed from the client to the queue manager for
authentication. If the MQ AUTHINFO object specified in the CONNAUTH attribute has a CHCKCLNT value
of NONE, the connection is refused. If the value of CHCKCLNT is OPTIONAL, REQUIRED, or REQDADM (if
connecting as an administrative user), the user name and password is checked by the queue manager.
The queue manager checks the operating system (if the AUTHINFO object is of type IDPWOS) or an LDAP
repository (if the AUTHINFO object is of type IDPWLDAP).

The following table summarizes this authentication behavior:

Table 102. Summary of SASL mechanisms and connection authentication

SASL mechanism Credentials passed from client
to queue manager?

CHKCLNT value

ANONYMOUS No REQUIRED or REQDADM -
connection refused

NONE or OPTIONAL - connection
accepted

600 Securing IBM MQ

Table 102. Summary of SASL mechanisms and connection authentication (continued)

SASL mechanism Credentials passed from client
to queue manager?

CHKCLNT value

PLAIN Yes, user name and password REQUIRED, REQDADM, or
OPTIONAL - user name and
password checked by the queue
manager

NONE - connection refused

If you are using an MQ Light client, you can specify credentials by including them in the AMQP address
you connect to, for example:

amqp://mwhitehead:mYp4ssw0rd@localhost:5672/sports/football

MCAUSER setting on a channel
AMQP channels have an MCAUSER attribute, which you can use to set the IBM MQ user ID that all
connections to that channel are authorized under. All connections from AMQP clients to that channel
adopt the MCAUSER ID you have configured. That user ID is used for authorization of messaging on
different topics.

You are recommended to use channel authentication (CHLAUTH) to secure connections to queue
managers. If you are using channel authentication, you are recommended to configure the value of
MCAUSER to a non-privileged user. This ensures that if a connection to a channel is not matched by a
CHLAUTH rule, the connection is not authorized to perform any messaging on the queue manager.

Note: On Windows, before IBM MQ 9.2, the MCAUSER user ID setting is only supported for
user IDs up to 12 characters in length. From IBM MQ 9.2 Long Term Support, the 12 character limit is
removed.

SSL/TLS support
AMQP channels support SSL/TLS encryption using keys from the key repository configured for your queue
manager. AMQP channel configuration options for SSL/TLS encryption support the same options as other
types of MQ channel; you can specify a cipher specification and whether the queue manager requires
certificates from AMQP client connections.

By using the FIPS attributes of the queue manager you can control the SSL/TLS cipher suites, which you
can use to secure connections from AMQP clients.

For information about how to set up a key repository for the queue manager see “Working with SSL/TLS
on AIX, Linux, and Windows” on page 286.

For information about how to configure SSL/TLS support for an AMQP client connection, see Creating and
using AMQP channels.

Java Authentication and Authorization Service (JAAS)
You can optionally configure AMQP channels with a JAAS login module, which can check the user name
and password provided by an AMQP client. See “Configuring JAAS for AMQP channels” on page 602.

Related tasks
Developing AMQP client applications
Creating and using AMQP channels

Securing IBM MQ 601

Restricting AMQP client takeover
When an AMQP client connection is made that has the same client identifier as an existing AMQP client
connection, the existing client connection is disconnected by default. However, you can configure the
queue manager to restrict the client takeover behavior so that takeover is possible only when certain
criteria are met.

For example, disconnecting the existing client connection might not be appropriate if there are AMQP
applications being developed by different teams and they happen to be using the same client ID. To
address this issue you can restrict client takeover based on the name of the AMQP channel being used,
the IP address of the client, and client User ID (when SASL authentication is enabled).

Use the settings of queue manager attributes AdoptNewMCA and AdoptNewMCACheck to specify the
required level of client takeover restriction, as detailed in the following table:

Table 103. AdoptNewMCA and AdoptNewMCACheck settings to restrict client takeover

AdoptNewMCA AdoptNewMCACheck Criteria checked before client
takeover is allowed

NO or undefined Not applicable None. Client takeover is allowed
for all client connections that
are authenticated and pass all
CHLAUTH rules.

ALL (or value other than NO) QM or undefined None. Client takeover is allowed
for all client connections that
are authenticated and pass all
CHLAUTH rules.

ALL (or value other than NO) NAME User ID (when SASL enabled)
Channel name

ALL (or value other than NO) ADDRESS User ID (when SASL enabled)
IP address

ALL (or value other than NO) ALL User ID (when SASL enabled)
Channel name
IP address

The queue manager attributes AdoptNewMCA and AdoptNewMCACheck are part of the queue manager
configuration, which is defined in the CHANNELS stanza. On IBM MQ for Windows and IBM MQ for Linux
x86-64 systems, modify configuration information using the IBM MQ Explorer. On other systems, modify
the information by editing the qm.ini configuration file. For information about how to modify the queue
manager channels information, see Attributes of channels.

Related tasks
Developing AMQP client applications
Creating and using AMQP channels

Configuring JAAS for AMQP channels
Java Authentication and Authorization Service (JAAS) custom modules can be used to authenticate
username and password credentials passed to an AMQP channel by an AMQP client when it connects.

About this task
You might want to use a custom JAAS module if you already use JAAS modules for authentication in
other Java-based systems, and want to reuse those modules for authenticating AMQP connections to MQ.

602 Securing IBM MQ

Alternatively, you might want to write a custom JAAS module if the authentication features built into MQ
do not support the authentication mechanism you want to use.

Configuration of JAAS modules for AMQP channels is done at a queue manager level. This means that, if
you configure a JAAS module for authenticating AMQP connections to the queue manager, the module will
apply to all AMQP channels. The name of the channel that has invoked the JAAS module is passed to the
module, allowing you to code different JAAS log in behavior for different channels.

Other information is also passed the JAAS module:

• The client ID of the AMQP client that is attempting to authenticate.
• The network address of the AMQP client.
• The name of the channel that invoked the JAAS module.

Procedure
You configure a JAAS configuration module for AMQP channels by completing the following steps:
1. Define a jaas.config file containing one or more JAAS module configuration stanzas. The

stanza must specify the fully qualified name of the Java class that implements the JAAS
javax.security.auth.spi.LoginModule interface.

• A default jaas.config file is shipped with the product and is located in QM_data_directory/
amqp/jaas.config.

• A preconfigured stanza named MQXRConfig is already defined in the default jaas.config file.
2. Specify the name of the stanza to use for AMQP channels.

• Add a property to the amqp_unix.properties file.

• Add a property to the amqp_win.properties file.

The property has the following form:

com.ibm.mq.MQXR.JAASConfig=JAAS_stanza_name

for example:

com.ibm.mq.MQXR.JAASConfig=MQXRConfig

3. Configure the queue manager environment to include the class of the custom module. The AMQP
service must have access to the Java class configured in the JAAS configuration stanza.

You do this by adding the path to the JAAS class to the MQ service.env file. Edit the service.env
file in the MQ configuration directory (MQ_config_directory) or the queue manager configuration
directory (QM_config_directory) to set the CLASSPATH variable to the location of the JAAS module
class.

What to do next
A sample JAAS login module is shipped with the product in the mq_installation_directory/amqp/
samples directory. The sample JAAS login module authenticates all client connections, regardless of the
username or password the client connects with.

You can modify the source code of the sample and recompile it to try authenticating only specific users
with a particular password. To configure the AMQP channel on a UNIX system to use the sample JAAS
login module shipped with the product:

1. Edit the file /var/mqm/qmgrs/QMNAME/amqp/amqp_unix.properties and set the property
com.ibm.mq.MQXR.JAASConfig=MQXRConfig.

2. Edit the file /var/mqm/service.env and set the property CLASSPATH=mq_installation_location/
amqp/samples

Securing IBM MQ 603

The jaas.config file already contains a stanza named MQXRConfig that specifies the sample class
samples.JAASLoginModule as the login module class. No changes are required to jaas.config
before you try the sample module.
Related tasks
Developing AMQP client applications
Creating and using AMQP channels

Advanced Message Security
Advanced Message Security (AMS) is a component of IBM MQ that provides a high level of protection for
sensitive data flowing through the IBM MQ network, while not impacting the end applications.

Overview of Advanced Message Security
IBM MQ applications can use Advanced Message Security to send sensitive data, such as high-value
financial transactions and personal information, with different levels of protection by using a public key
cryptography model.
Related reference
GSKit return codes used in AMS messages

Features and functions of Advanced Message Security
Advanced Message Security expands IBM MQ security services to provide data signing and encryption at
the message level. The expanded services guarantee that message data has not been modified between
when it is originally placed on a queue and when it is retrieved. In addition, AMS verifies that a sender of
message data is authorized to place signed messages on a target queue.

AMS provides the following functions:

• Secures sensitive or high-value transactions processed by IBM MQ.
• Detects and removes rogue or unauthorized messages before they are processed by a receiving

application.
• Verifies that messages were not modified while in transit from queue to queue.
• Protects the data not only as it flows across the network but also when it is put on a queue.
• Secures existing proprietary and customer-written applications for IBM MQ.

• From IBM MQ 9.1.3, IBM MQ for z/OS provides the ability to optionally remove and add
AMS protection from, or to, messages that flow across the network, respectively. This is known as Server
to Server Message Channel Agent (MCA) Interception..

• From IBM MQ 9.1.4 and IBM MQ 9.1.0 Fix Pack 4, a check is added to the IBM MQ library
code that runs within the customer's application program. The check runs early in its initialization to
read the value of the environment variable AMQ_AMS_FIPS_OFF and, if it is set to any value, then the
GSKit code is run in non-FIPS mode in that application.

Qualities of protection available with AMS
There are three qualities of protection for Advanced Message Security, Integrity, Privacy, and
Confidentiality.

Integrity protection is provided by digital signing, which provides assurance on who created the
message, and that the message has not been altered or tampered with.

Privacy protection is provided by a combination of digital signing and encryption. Encryption ensures
that message data is only viewable to the intended recipient, or recipients. Even if unauthorized recipients
obtain a copy of the encrypted message data, they are unable to view the actual message data itself.

Confidentiality protection is provided by encryption only with optional key reuse.

604 Securing IBM MQ

Effect on performance
AMS uses a combination of symmetric and asymmetric cryptographic routines to provide digital signing
and encryption. As symmetric key operations are very fast in comparison to asymmetric key operations,
which are CPU intensive, this in turn can have a significant impact on the costs of protecting large
numbers of messages with AMS.
Asymmetric cryptographic routines

For example, when putting a signed message, the message hash is signed using an asymmetric key
operation.
When getting a signed message, a further asymmetric key operation is used to verify the signed hash.
Therefore, a minimum of two asymmetric key operations are required per message to sign and verify
the message data.

Asymmetric and symmetric cryptographic routines
When putting an encrypted message, a symmetric key is generated and then encrypted using an
asymmetric key operation for each intended recipient of the message.
The message data is then encrypted with the symmetric key. When getting the encrypted message the
intended recipient needs to use an asymmetric key operation to discover the symmetric key in use for
the message.

All three qualities of protection, therefore, contain varying elements of the CPU intensive asymmetric
key operations, which will significantly impact the maximum achievable messaging rate for applications
putting and getting messages.

Confidentiality policies do, however, allow for symmetric key reuse over a sequence of messages.
Significant CPU cost savings can be made with Confidentiality policies through symmetric key
reuse. This mode of operation continues to use the PKCS#7 format to share a symmetric encryption
key. However, there is no digital signature, which eliminates some of the per message asymmetric key
operations. The symmetric key still needs to be encrypted with asymmetric key operations for each
recipient, but the symmetric key can be optionally reused over multiple messages that are destined for
the same recipients. If key reuse is permitted by policy, then only the first message requires asymmetric
key operations. Subsequent messages only need to use symmetric key operations.

Key reuse
With Confidentiality policies, you can use the symmetric key reuse approach to significantly reduce
the costs involved in encrypting a number of messages that are put to the same queue and intended for
the same recipient or recipients.

For example, when putting 10 encrypted messages to the same set of recipients, a symmetric key is
generated, and then encrypted for the first message, using an asymmetric key operation for each intended
recipient of the message.

Based upon policy controlled limits, the encrypted symmetric key can then be reused by subsequent
messages that are intended for the same recipients. To allow the symmetric key to be reused by
subsequent messages, the application must keep the queue open after putting a message to the queue.
The symmetric key cannot be reused by MQPUT1 operations. An application that is getting encrypted
messages can apply the same optimization, in that the application can detect when a symmetric key has
not changed and avoid the expense of retrieving the symmetric key.

In this example 90% of the asymmetric key operations can be avoided by both the putting and getting
applications by reusing the same key.

For more information on how to use key reuse, see:

• MQSC command SET POLICY
• Control command setmqspl

• IBM i command SETMQMSPL

Securing IBM MQ 605

Key concepts in AMS
Learn about the key concepts in Advanced Message Security to understand how the tool works and how to
manage it effectively.

Public key infrastructure and Advanced Message Security
Public key infrastructure (PKI) is a system of facilities, policies, and services that support the use of public
key cryptography to obtain secure communication.

There is no single standard that defines the components of a public key infrastructure, but a PKI typically
involves usage of public key certificates and comprises certificate authorities (CA) and other registration
authorities (RA) that provide the following services:

• Issuing digital certificates
• Validating digital certificates
• Revoking digital certificates
• Distributing certificates

Identity of users and applications are represented by the distinguished name (DN) field in a certificate
associated with signed or encrypted messages. Advanced Message Security uses this identity to
represent a user or an application. To authenticate this identity, the user or application must have access
to the keystore where the certificate and associated private key are stored. Each certificate is represented
by a label in the keystore.

Related concepts
“Using keystores and certificates with AMS” on page 647
To provide transparent cryptographic protection to IBM MQ applications, Advanced Message Security
uses the keystore file, where public key certificates and a private key are stored. On z/OS, a SAF key ring is
used instead of a keystore file.

Digital certificates in AMS
Advanced Message Security associates users and applications with X.509 standard digital certificates.
X.509 certificates are typically signed by a trusted certificate authority (CA) and involve private and public
keys which are used for encryption and decryption.

Digital certificates provide protection against impersonation by binding a public key to its owner, whether
that owner is an individual, a queue manager, or some other entity. Digital certificates are also known as
public key certificates, because they give you assurance about the ownership of a public key when you
use an asymmetric key scheme. This scheme requires that a public key and a private key be generated for
an application. Data encrypted with the public key can only be decrypted using the corresponding private
key while data encrypted with the private key can only be decrypted using the corresponding public key.
The private key is stored in a key database file that is password-protected. Only its owner has the access
to the private key used to decrypt messages that are encrypted using the corresponding public key.

If public keys are sent directly by their owner to another entity, there is a risk that the message could be
intercepted and the public key substituted by another. This is known as a "man-in-the-middle" attack. The
solution is to exchange public keys through a trusted third party, giving the user a strong assurance that
the public key belongs to the entity with which you are communicating. Instead of sending your public key
directly, you ask a trusted third party to incorporate it into a digital certificate. The trusted third-party who
issues digital certificates is called a certificate authority (CA).

For more information about digital certificates, see What is in a digital certificate.

A digital certificate contains the public key for an entity and states that the public key belongs to that
entity:

• when a certificate is for an individual entity, it is called a personal certificate or user certificate.
• when a certificate is for a certificate authority, the certificate is called a CA certificate or signer
certificate.

Note: Advanced Message Security supports self-signed certificates in both Java and native applications

606 Securing IBM MQ

Related concepts
“Cryptography” on page 11
Cryptography is the process of converting between readable text, called plaintext, and an unreadable
form, called ciphertext.

Object authority manager and AMS
On Multiplatforms, the Object Authority Manager (OAM) is the authorization service component supplied
with the IBM MQ products.

The access to Advanced Message Security entities is controlled through IBM MQ user groups and the
OAM. Administrators can use the command-line interface to grant or revoke authorizations as required.
Different groups of users can have different kinds of access authority to the same objects. For example,
one group could perform both PUT and GET operations for a specific queue while another group might be
allowed only to browse the queue. Similarly, some groups might have GET and PUT authority to a queue,
but are not allowed to alter or delete the queue.

Through the OAM, you can control:

• Access to Advanced Message Security objects through the Message Queue Interface (MQI). When an
application program attempts to access objects, the OAM checks if the user profile making the request
has the authorization for the operation requested. This means that queues, and the messages on
queues, can be protected from unauthorized access.

• Permission to use PCF and MQSC commands.

Related concepts
Object authority manager
The Message Queue Interface overview

Technology supported by Advanced Message Security
Advanced Message Security depends on several technology components to provide a security
infrastructure.

Advanced Message Security supports the following IBM MQ application programming interfaces (APIs):

• Message queue interface (MQI)
• IBM MQ Java Message Service (JMS) 1.0.2 and 1.1.
• IBM MQ Base Classes for Java
• IBM MQ classes for .Net in an unmanaged mode

Note: Advanced Message Security supports X.509 compliant certificate authorities.

Known limitations of AMS
There are a number of IBM MQ options that are either not supported, or have limitations for Advanced
Message Security.

• The following IBM MQ options are not supported or have limitations:
Publish/subscribe

One of the major benefits of a publish/subscribe messaging model over point-to-point is that the
sending and receiving applications do not need to know anything about each other for data to be
sent and received. This benefit is negated by the use of Advanced Message Security policies that
must define intended recipients or authorized signers. It is possible for an application to publish to
a topic via an alias queue definition that is protected by a policy, it is also possible for a subscribing
application to get messages from a policy protected queue. It is not possible to assign a policy
directly to a topic string, policies can only be assigned to queue definitions.

Channel data conversion
The protected payload of an Advanced Message Security protected message is transmitted using
binary format, this ensures that data conversion on a channel between applications does not
invalidate the message digest. Applications retrieving messages from a policy protected queue

Securing IBM MQ 607

should request data conversion, the conversion of the protected payload will be attempted after
messages have been successfully verified and unprotected.

Distribution lists
Advanced Message Security policies can be used when protecting applications putting messages
to distribution lists, provided each destination queue in the list has an identical policy defined. If
inconsistent policies are identified when an application opens a distribution list, the open operation
will fail and a security error returned to the application.

Application message segmentation
The size of policy protected messages will increase and it is not possible for applications to
accurately specify the segment boundaries of a message.

Applications using IBM MQ classes for .NET in a managed mode (client connections)
Applications using IBM MQ classes for .NET in a managed mode (client connections) are not
supported.

Note: MCA interception can be used to allow unsupported clients to use AMS.

Message Service client for .NET (XMS) applications in a managed mode
Message Service client for .NET (XMS) applications in a managed mode are not supported.

Note: MCA interception can be used to allow unsupported clients to use AMS.

IBM MQ queues processed by the IMS bridge
IBM MQ queues processed by the IMS bridge are not supported.

Note: AMS is supported on CICS bridge queues. You should use the same user ID to MQPUT
(encrypt) and MQGET (decrypt) on CICS bridge queues.

Put to waiting getter
Put to waiting getter is not supported for getter applications against queues that have AMS policies
defined for them.

Server to server MCA interception
From IBM MQ for z/OS 9.1.3, server to server MCA interception is only supported for sender, server,
receiver and requestor channel types.

• Users should avoid putting more than one certificate with the same Distinguished Name in a single
keystore file, because the choice of which certificate to use when protecting a message is undefined.

• AMS is not supported in JMS if the WMQ_PROVIDER_VERSION property is set to 6.
• The AMS interceptor is not supported for AMQP or MQTT channels.

Advanced Message Security interception on message channels
On z/OS, Advanced Message Security (AMS) interception provides an additional option of security policy
protection (SPLPROT) to sender, server, receiver, and requester channels, allowing you to support AMS
and to communicate with business partners who do not support AMS.

Taking the example of a clearing house communicating with a bank, Figure 1 shows that, without AMS
interception, both sides of the system need to support AMS.

608 Securing IBM MQ

Figure 32. Usage of AMS without AMS interception

A key benefit of the AMS interception option is, that if your enterprise has AMS configured, and not all
of your business partners support AMS, you can remove protection from outbound messages and protect
inbound messages on channels to and from those business partners that do not support AMS.

Using the example of a clearing house and banks, this scenario is shown in Figure 2, where there is a
message flow between the clearing house, banks, and business partners where some institutions have
AMS, and others do not.

Figure 33. Some partners support AMS and some do not

Typically the channels are TLS enabled.

However, there might be a case where some banks and business partners do not support AMS, and there
is a requirement to be able to exchange messages between all banks and business partners. This scenario
is shown in Figure 3

Securing IBM MQ 609

Figure 34. Message flow between business partners

Related tasks
Server-to-server message channel interception example configurations

AMS interception on server-to-server message channels
Server-to-server message channel interception provides a means to control if messages should have
any applicable Advanced Message Security (AMS) policies applied to them, when sender type message
channel agents get messages from transmission queues, and receiver type message channel agents put
messages to target queues.

This allows AMS protection to be enabled on a queue manager when communicating, using server-to-
server message channels of type sender, server, receiver, and requester, with a queue manager that does
not have AMS enabled.

That is, AMS protected messages in AMS enabled queue managers can be unprotected prior to being sent
to non-AMS enabled queue managers, and unprotected messages received from non-AMS enabled queue
managers can be protected, by applicable AMS policies, on AMS enabled queue managers.

Configuring server-to-server message channel interception
Server-to-server message channel interception is configured with the SPLPROT attribute on channels with
a channel type of sender, server, receiver, or requester. The available options to configure the behavior are
dependent on the channel type specified:
PASSTHRU

Pass through, unchanged, any messages sent or received by the message channel agent for this
channel.
This value is valid for channels with a channel type (CHLTYPE) of SDR, SVR, RCVR, or RQSTR, and is the
default value.

REMOVE
Remove any AMS protection from messages retrieved from the transmission queue by the message
channel agent, and send the messages to the partner.
When the message channel agent gets a message from the transmission queue, if an AMS policy is
defined for the transmission queue, it is applied to remove any AMS protection from the message
prior to sending the message across the channel. If an AMS policy is not defined for the transmission
queue, the message is sent as is.
This value is valid only for channels with a channel type of SDR or SVR.

ASPOLICY
Based on the policy defined for the target queue, apply AMS protection to inbound messages prior to
putting them on to the target queue.

610 Securing IBM MQ

When the message channel agent receives an inbound message, if an AMS policy is defined for the
target queue, AMS protection is applied to the message prior to the message being put to the target
queue. If an AMS policy is not defined for the target queue, the message is put to the target queue as
is.
This value is valid only for channels with a channel type of RCVR or RQSTR.

User ID for message channel interception
The requirement for user IDs used with server-to-server message channel interception are the same as
those for existing AMS enabled applications. For a running channel, the sending message channel agent
gets messages from a transmission queue and the receiving message channel agent puts messages to
target queues. The message channel agent user ID (MCAUSER) field, set on server to server channels,
defines the user ID under which message channel agents perform put and get requests.

With server-to-server message channel interception, AMS functions are performed during get and put
requests, as with other AMS enabled applications. Therefore, message channel agent user Ids have the
same requirements as those for AMS application user IDs.

The MCAUSER used to perform the put and get is configurable, and dependent on whether it is an
outbound or inbound channel. See MCAUSER for details of how the chosen user ID performs actions on
the message channel agent. As such, the user ID that the channel initiator is running under is the user
ID that is to be used for AMS functions performed during server-to-server message channel interception.
Therefore, these user IDs have the same requirements as those for AMS application user IDs.

Authentication is performed using the existing rules for the channel detailed for channels with PUTAUT
configuration. See user IDs used by the channel initiator for more information.

Note: Server-to-server message channel interception does not take into account the value of the PUTAUT
channel attribute.

Message size and MAXMSGL
Due to AMS protection, the message size of protected messages will be larger than the original message
size.

Protected messages are larger than unprotected messages. Therefore, the value of the MAXMSGL
attribute, on both queues and channels, might need to be altered to take into account the size of
protected messages.

Related reference
Server-to-server message channel interception example configurations

Error handling for AMS
IBM MQ Advanced Message Security defines an error handling queue to manage messages that contain
errors or messages that cannot be unprotected.

Defective messages are dealt with as exceptional cases. If a received message does not meet the security
requirements for the queue it is on, for example, if the message is signed when it should be encrypted,
or decryption or signature verification fails, the message is sent to the error handling queue. A message
might be sent to the error handling queue for the following reasons:

• Quality of protection mismatch - a quality of protection (QOP) mismatch exists between the received
message and the QOP definition in the security policy.

• Decryption error - the message cannot be decrypted.
• PDMQ header error - the Advanced Message Security (AMS) message header cannot be accessed.
• Size mismatch - length of a message after decryption is different than expected.
• Encryption algorithm strength mismatch - the message encryption algorithm is weaker than required.
• Unknown error - unexpected error occurred.

Securing IBM MQ 611

AMS uses the SYSTEM.PROTECTION.ERROR.QUEUE as its error handling queue. All messages put by IBM
MQ AMS to the SYSTEM.PROTECTION.ERROR.QUEUE are preceded by an MQDLH header.

Your IBM MQ administrator can also define the SYSTEM.PROTECTION.ERROR.QUEUE as an alias queue
pointing to another queue.

From IBM MQ 9.1.3, on IBM MQ for z/OS, if server to server Message Channel Agent (MCA)
interception is in use:

• If, for one of the previously stated reasons, IBM MQ AMS moves messages from the transmission queue
to the error handling queue, the sender MCA simply proceeds to process the next available message on
the transmission queue.

• In general, existing channel rules apply for:

– Putting messages to the Dead Letter Queue, and
– Actions taken if puts to the Dead Letter Queue should fail.

See “Undelivered messages for AMS on z/OS” on page 612 for further information on specific scenarios.

Undelivered messages for AMS on z/OS
Specific scenarios related to server to server Message Channel Agent interception on IBM MQ for z/OS.

From IBM MQ 9.1.3, on IBM MQ for z/OS, if server to server Message Channel Agent (MCA) interception is
in use:

• If, after having got and unprotected a message, the sender MCA fails to deliver a message for some
reason, for example, because the message is too big for the channel, if the USEDLQ sender channel
attribute is set to YES, the sender MCA moves the message to the local Dead Letter Queue (DLQ).

If the SYSTEM.DEAD.LETTER.QUEUE is being used as the local DLQ, the message is placed unprotected.

Note: IBM MQ AMS does not support the protection of messages put to system queues.

If a named DLQ is being used as the local DLQ, the message will be placed protected if you have defined
an IBM MQ AMS policy with the same name as the named DLQ, and unprotected if you have not defined
a suitable policy.

• If a message cannot be put to the local DLQ for some reason, then if the NPMSPEED of the channel
is set to NORMAL, or the message is a persistent message, the current batch of messages is backed
out and the channel put into RETRY state. Otherwise, the message is discarded and the sender MCA
continues to process the next message on the transmission queue.

• Given that security policies have no effect on the SYSTEM.DEAD.LETTER.QUEUE, or the other SYSTEM
queues listed in “System queue protection in AMS” on page 683, if the SYSTEM.DEAD.LETTER.QUEUE
is in use, messages put to this queue by MCAs are placed as is. That is, if messages were previously
protected, they are placed protected; otherwise, they are placed unprotected.

If the queue manager DEADQ attribute has been set to the name of an alternate (non-system) dead
letter queue, and an AMS policy with the same name does not exist, messages put to this queue by
MCAs are placed as is. That is, if messages were previously protected, they are placed protected;
otherwise, they are placed unprotected.

If the queue manager DEADQ attribute has been set to the name of an alternate (non-system) dead
letter queue and an AMS policy with the same name as the DLQ does exist, the policy is used to protect
messages put to this queue by MCAs. If the message has previously already been protected, it is not
protected again; this is to avoid double protection. If an AMS policy with the same name does not exist,
messages are placed as-is.

• If there is a policy for the DLQ with the tolerate option in the setmqspl command set to off, that
is '-t O', the put to the DLQ fails if the message is not AMS protected, and hence does not have a
PDMQ header. This happens if the message arrives at the receiver without a PDMQ header. That is the
original putter of the message did not have a policy for the destination, and the receiver does not have
SPLPROT(ASPOLICY) set.

612 Securing IBM MQ

• An MCA might fail to put a message to the DLQ, if the AMS policy defined for the DLQ does not permit
the user ID that the channel initiator is running under to protect the message.

• Receiver channels generally place undelivered messages to the local DLQ, while sender channels
generally place messages that cannot be processed for some reason, for example, message too large
for queue, or bad MQXQH header, and so on to the local DLQ.

• DLQ handlers generally only look at the DLQ header (DLH) and not the message payload itself. So, the
fact that the message payload might be protected, does not prevent handlers from determining why the
message was placed on the DLQ.

• If a DLQ is not defined, the channel:

– Ends abnormally (and goes into retrying state) if a persistent message cannot be delivered.
– Discards a non-persistent undelivered message, and continues to run.

Related concepts
“Error handling for AMS” on page 611
IBM MQ Advanced Message Security defines an error handling queue to manage messages that contain
errors or messages that cannot be unprotected.

User scenarios for AMS
Familiarize yourself with possible scenarios to understand what business goals you can achieve with
Advanced Message Security.

Quick Start Guide for AMS on Windows platforms
Use this guide to quickly configure Advanced Message Security (AMS) to provide message security on
Windows platforms. By the time you complete it, you will have created a key database to verify user
identities, and defined signing/encryption policies for your queue manager.

Before you begin
You should have at least the following features installed on your system:

• Server
• Development Toolkit (for the Sample programs)
• Advanced Message Security (AMS)

Refer to IBM MQ features for Windows systems for details.

For information about using the setmqenv command to initialize the current environment so that the
appropriate IBM MQ commands can be located and executed by the operating system, see setmqenv (set
IBM MQ environment).

1. Creating a queue manager and a queue

About this task
All the following examples use a queue named TEST.Q for passing messages between applications.
Advanced Message Security uses interceptors to sign and encrypt messages at the point they enter the
IBM MQ infrastructure through the standard IBM MQ interface. The basic setup is done in IBM MQ and is
configured in the following steps.

You can use IBM MQ Explorer to create the queue manager QM_VERIFY_AMS and its local queue called
TEST.Q by using all the default wizard settings, or you can use the commands found in C:\Program
Files\IBM\MQ\bin. Remember that you must be a member of the mqm user group to run the following
administrative commands.

Procedure
1. Create a queue manager

Securing IBM MQ 613

crtmqm QM_VERIFY_AMS

2. Start the queue manager

strmqm QM_VERIFY_AMS

3. Create a queue called TEST.Q by entering the following command into runmqsc for queue manager
QM_VERIFY_AMS

DEFINE QLOCAL(TEST.Q)

Results
If the procedure is completed, command entered into runmqsc will display details about TEST.Q:

DISPLAY Q(TEST.Q)

2. Creating and authorizing users

About this task
There are two users that appear in this example: alice, the sender, and bob, the receiver. To use
the application queue, these users need to be granted authority to use it. Also to successfully use the
protection policies that we will define these users must be granted access to some system queues. For
more information about the setmqaut command refer to setmqaut.

Procedure
1. Create the two users and ensure that HOMEPATH and HOMEDRIVE are set for both these users.
2. Authorize the users to connect to the queue manager and to work with the queue

setmqaut -m QM_VERIFY_AMS -t qmgr -p alice -p bob +connect +inq

setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p alice +put

setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p bob +get

3. You should also allow the two users to browse the system policy queue and put messages on the error
queue.

setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p alice -p bob +browse

setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p alice -p bob +put

Attention: IBM MQ optimizes performance by caching policies so that you do not have to
browse records for policy details on the SYSTEM.PROTECTION.POLICY.QUEUE in all cases.

IBM MQ does not cache all the policies available. If there are high number of policies,
IBM MQ caches a limited number of policies. So, if the queue manager has a low
number of policies defined, there is no need to provide the browse option to the
SYSTEM.PROTECTION.POLICY.QUEUE.

However, you should give browse authority to this queue, in case there is a high number of
policies defined, or if you are using old clients. The SYSTEM.PROTECTION.ERROR.QUEUE is

614 Securing IBM MQ

used to put error messages generated by the AMS code. The put authority against this queue
is checked only when you attempt to put an error message to the queue. Your put authority
against the queue is not checked when you attempt to put or get message from an AMS
protected queue.

Results
Users are now created and the required authorities granted to them.

What to do next
To verify if the steps were carried out correctly, use the amqsput and amqsget samples as described in
section “7. Testing the setup” on page 618.

3. Creating key database and certificates

About this task
Interceptor requires the public key of the sending users to encrypt the message. Thus, the key database
of user identities mapped to public and private keys must be created. In the real system, where users
and applications are dispersed over several computers, each user would have its own private keystore.
Similarly, in this guide, we create key databases for alice and bob and share the user certificates
between them.

Note: In this guide, we use sample applications written in C connecting using local bindings. If you plan
to use Java applications using client bindings, you must create a JKS keystore and certificates using the
keytool command, which is part of the JRE (see “Quick Start Guide for AMS with Java clients” on page
635 for more details). For all other languages, and for Java applications using local bindings, the steps in
this guide are correct.

Procedure
1. Use the IBM Key Management GUI (strmqikm.exe) to create a new key database for the user
alice.

Type: CMS
Filename: alicekey.kdb
Location: C:/Documents and Settings/alice/AMS

Note:

• It is advisable to use a strong password to secure the database.
• Make sure that Stash password to a file check box is selected.

2. Change the key database content view to Personal Certificates.
3. Select New Self Signed ; self signed certificates are used in this scenario.
4. Create a certificate identifying the user alice for use in encryption, using these fields:

Key label: Alice_Cert
Common Name: alice
Organisation: IBM
Country: GB

Note:

• For the purpose of this guide, we are using self-signed certificate which can be created without using
a Certificate Authority. For production systems, it is advisable not to use self-signed certificates but
instead rely on certificates signed by a Certificate Authority.

• The Key label parameter specifies the name for the certificate, which interceptors will look up to
receive necessary information.

Securing IBM MQ 615

• The Common Name and optional parameters specifies the details of the Distinguished Name (DN),
which must be unique for each user.

5. Repeat step 1-4 for the user bob

Results
The two users alice and bob each now have a self-signed certificate.

4. Creating keystore.conf

About this task
You must point Advanced Message Security interceptors to the directory where the key databases and
certificates are located. This is done via the keystore.conf file, which holds that information in plain
text form. Each user must have a separate keystore.conf file in the .mqs folder. This step must be
done for both alice and bob.

The content of keystore.conf must be of the form:

cms.keystore = dir/keystore_file
cms.certificate = certificate_label

Example
For this scenario, the contents of the keystore.conf will be as follows:

cms.keystore = C:/Documents and Settings/alice/AMS/alicekey
cms.certificate = Alice_Cert

Note:

• The path to the keystore file must be provided with no file extension.
• The certificate label can include spaces, thus "Alice_Cert" and "Alice_Cert " (with a space on the end) for

example, are recognized as labels of two different certificates. However, to avoid confusion, it is better
not to use spaces in label's name.

• There are the following keystore formats: CMS (Cryptographic Message Syntax), JKS (Java Keystore)
and JCEKS (Java Cryptographic Extension Keystore). For more information, refer to “Structure of the
keystore configuration file (keystore.conf) for AMS” on page 648.

• %HOMEDRIVE%\%HOMEPATH%\.mqs\keystore.conf (eg. C:\Documents and
Settings\alice\.mqs\keystore.conf) is the default location where Advanced Message Security searches
for the keystore.conf file. For information about how to use a non-default location for the
keystore.conf, see “Using keystores and certificates with AMS” on page 647.

• To create .mqs directory, you must use the command prompt.

5. Sharing Certificates

About this task
Share the certificates between the two key databases so that each user can successfully identify the
other. This is done by extracting each user's public certificate to a file, which is then added to the other
user's key database.

Note: Take care to use the extract option, and not the export option. Extract gets the user's public
key, whereas export gets both the public and private key. Using export by mistake would completely
compromise your application, by passing on its private key.

Procedure
1. Extract the certificate identifying alice to an external file:

616 Securing IBM MQ

runmqakm -cert -extract -db "C:/Documents and Settings/alice/AMS/alicekey.kdb" -pw passw0rd
-label Alice_Cert -target alice_public.arm

2. Add the certificate to bob's keystore:

runmqakm -cert -add -db "C:/Documents and Settings/bob/AMS/bobkey.kdb" -pw passw0rd -label
Alice_Cert -file alice_public.arm

3. Repeat steps for bob:

runmqakm -cert -extract -db "C:/Documents and Settings/bob/AMS/bobkey.kdb" -pw passw0rd
-label Bob_Cert -target bob_public.arm

runmqakm -cert -add -db "C:/Documents and Settings/alice/AMS/alicekey.kdb" -pw passw0rd
-label Bob_Cert -file bob_public.arm

Results
The two users alice and bob are now able to successfully identify each other having created and shared
self-signed certificates.

What to do next
Verify that a certificate is in the keystore either by browsing it using the GUI or running the following
commands which print out its details:

runmqakm -cert -details -db "C:/Documents and Settings/bob/AMS/bobkey.kdb" -pw passw0rd -label
Alice_Cert

runmqakm -cert -details -db "C:/Documents and Settings/alice/AMS/alicekey.kdb" -pw passw0rd
-label Bob_Cert

6. Defining queue policy

About this task
With the queue manager created and interceptors prepared to intercept messages and access encryption
keys, we can start defining protection policies on QM_VERIFY_AMS using the setmqspl command. Refer
to setmqspl for more information on this command. Each policy name must be the same as the queue
name it is to be applied to.

Example
This is an example of a policy defined for the TEST.Q queue. In the example, messages are signed

with the SHA1 algorithm and encrypted with the AES256 algorithm. alice is the only valid
sender and bob is the only receiver of the messages on this queue:

setmqspl -m QM_VERIFY_AMS -p TEST.Q -s SHA1 -a "CN=alice,O=IBM,C=GB" -e AES256 -r
"CN=bob,O=IBM,C=GB"

Note: The DNs match exactly those specified in the respective user's certificate from the key database.

What to do next
To verify the policy you have defined, issue the following command:

dspmqspl -m QM_VERIFY_AMS

Securing IBM MQ 617

To print the policy details as a set of setmqspl commands, use the -export flag. This allows storing
already defined policies:

dspmqspl -m QM_VERIFY_AMS -export >restore_my_policies.bat

7. Testing the setup

About this task
By running different programs under different users you can verify if the application has been properly
configured.

Procedure
1. Switch user to run as user alice

Right-click cmd.exe and select Run as.... When prompted, log in as the user alice.
2. As the user alice put a message using a sample application:

amqsput TEST.Q QM_VERIFY_AMS

3. Type the text of the message, then press Enter.
4. Switch user to run as user bob

Open another window by right-clicking cmd.exe and selecting Run as.... When prompted, log in as the
user bob.

5. As the user bob get a message using a sample application:

amqsget TEST.Q QM_VERIFY_AMS

Results
If the application has been configured properly for both users, the user alice 's message is displayed
when bob runs the getting application.

8. Testing encryption

About this task
To verify that the encryption is occurring as expected, create an alias queue which references the original
queue TEST.Q. This alias queue will have no security policy and so no user will have the information to
decrypt the message and therefore the encrypted data will be shown.

Procedure
1. Using the runmqsc command against queue manager QM_VERIFY_AMS, create an alias queue.

DEFINE QALIAS(TEST.ALIAS) TARGET(TEST.Q)

2. Grant bob access to browse from the alias queue

setmqaut -m QM_VERIFY_AMS -n TEST.ALIAS -t queue -p bob +browse

3. As the user alice, put another message using a sample application just as before:

amqsput TEST.Q QM_VERIFY_AMS

4. As the user bob, browse the message using a sample application via the alias queue this time:

618 Securing IBM MQ

amqsbcg TEST.ALIAS QM_VERIFY_AMS

5. As the user bob, get the message using a sample application from the local queue:

amqsget TEST.Q QM_VERIFY_AMS

Results
The output from the amqsbcg application shows the encrypted data that is on the queue proving that the
message has been encrypted.

Quick Start Guide for AMS on AIX and Linux
Use this guide to quickly configure Advanced Message Security to provide message security on AIX and
Linux. By the time you complete it, you will have created a key database to verify user identities, and
defined signing/encryption policies for your queue manager.

Before you begin
You should have at least the following components installed on your system:

• Runtime
• Server
• Sample programs
• IBM Global Security Kit
• Advanced Message Security

Refer to the following topics for the component names on each specific platform:

• IBM MQ components for Linux systems

• IBM MQ components for AIX systems

1. Creating a queue manager and a queue

About this task
All the following examples use a queue named TEST.Q for passing messages between applications.
Advanced Message Security uses interceptors to sign and encrypt messages at the point they enter the
IBM MQ infrastructure through the standard IBM MQ interface. The basic setup is done in IBM MQ and is
configured in the following steps.

You can use IBM MQ Explorer to create the queue manager QM_VERIFY_AMS and its local queue
called TEST.Q by using all the default wizard settings, or you can use the commands found in
MQ_INSTALLATION_PATH/bin. Remember that you must be a member of the mqm user group to run
the following administrative commands.

Procedure
1. Create a queue manager

crtmqm QM_VERIFY_AMS

2. Start the queue manager

strmqm QM_VERIFY_AMS

Securing IBM MQ 619

3. Create a queue called TEST.Q by entering the following command into runmqsc for queue manager
QM_VERIFY_AMS

DEFINE QLOCAL(TEST.Q)

Results
If the procedure completed successfully, the following command entered into runmqsc will display
details about TEST.Q:

DISPLAY Q(TEST.Q)

2. Creating and authorizing users

About this task
There are two users that appear in this example: alice, the sender, and bob, the receiver. To use
the application queue, these users need to be granted authority to use it. Also to successfully use the
protection policies that we will define these users must be granted access to some system queues. For
more information about the setmqaut command refer to setmqaut.

Procedure
1. Create the two users

useradd alice

useradd bob

2. Authorize the users to connect to the queue manager and to work with the queue

setmqaut -m QM_VERIFY_AMS -t qmgr -p alice -p bob +connect +inq

setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p alice +put

setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p bob +get

3. You should also allow the two users to browse the system policy queue and put messages on the error
queue.

setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p alice -p bob +browse

setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p alice -p bob +put

Attention: IBM MQ optimizes performance by caching policies so that you do not have to
browse records for policy details on the SYSTEM.PROTECTION.POLICY.QUEUE in all cases.

IBM MQ does not cache all the policies available. If there are high number of policies,
IBM MQ caches a limited number of policies. So, if the queue manager has a low
number of policies defined, there is no need to provide the browse option to the
SYSTEM.PROTECTION.POLICY.QUEUE.

However, you should give browse authority to this queue, in case there is a high number of
policies defined, or if you are using old clients. The SYSTEM.PROTECTION.ERROR.QUEUE is

620 Securing IBM MQ

used to put error messages generated by the AMS code. The put authority against this queue
is checked only when you attempt to put an error message to the queue. Your put authority
against the queue is not checked when you attempt to put or get message from an AMS
protected queue.

Results
User groups are now created and the required authorities granted to them. This way users who are
assigned to those groups will also have permission to connect to the queue manager and to put and get
from the queue.

What to do next
To verify if the steps were carried out correctly, use the amqsput and amqsget samples as described in
section “8. Testing encryption” on page 624.

3. Creating key database and certificates

About this task
To encrypt the message, the interceptor requires the private key of the sending user and the public key(s)
of the recipient(s). Thus, the key database of user identities mapped to public and private keys must be
created. In the real system, where users and applications are dispersed over several computers, each
user would have its own private keystore. Similarly, in this guide, we create key databases for alice and
bob and share the user certificates between them.

Note: In this guide, we use sample applications written in C connecting using local bindings. If you plan
to use Java applications using client bindings, you must create a JKS keystore and certificates using the
keytool command, which is part of the JRE (see “Quick Start Guide for AMS with Java clients” on page
635 for more details). For all other languages, and for Java applications using local bindings, the steps in
this guide are correct.

Procedure
1. Create a new key database for the user alice

mkdir /home/alice/.mqs -p

runmqakm -keydb -create -db /home/alice/.mqs/alicekey.kdb -pw passw0rd -stash

Note:

• It is advisable to use a strong password to secure the database.
• The stash parameter stores the password into the key.sth file, which interceptors can use to open

the database.
2. Ensure the key database is readable

chmod +r /home/alice/.mqs/alicekey.kdb

3. Create a certificate identifying the user alice for use in encryption

runmqakm -cert -create -db /home/alice/.mqs/alicekey.kdb -pw passw0rd -label Alice_Cert -dn
"cn=alice,O=IBM,c=GB" -default_cert yes

Note:

• For the purpose of this guide, we are using self-signed certificate which can be created without using
a Certificate Authority. For production systems, it is advisable not to use self-signed certificates but
instead rely on certificates signed by a Certificate Authority.

Securing IBM MQ 621

• The label parameter specifies the name for the certificate, which interceptors will look up to
receive necessary information.

• The DN parameter specifies the details of the Distinguished Name (DN), which must be unique for
each user.

4. Now we have created the key database, we should set the ownership of it, and ensure it is unreadable
by all other users.

chown alice /home/alice/.mqs/alicekey.kdb /home/alice/.mqs/alicekey.sth

chmod 600 /home/alice/.mqs/alicekey.kdb /home/alice/.mqs/alicekey.sth

5. Repeat step 1-4 for the user bob

Results
The two users alice and bob each now have a self-signed certificate.

4. Creating keystore.conf

About this task
You must point Advanced Message Security interceptors to the directory where the key databases and
certificates are located. This is done via the keystore.conf file, which holds that information in plain
text form. Each user must have a separate keystore.conf file in the .mqs folder. This step must be
done for both alice and bob.

The content of keystore.conf must be of the form:

cms.keystore = dir/keystore_file

cms.certificate = certificate_label

Example
For this scenario, the contents of the keystore.conf will be as follows:

cms.keystore = /home/alice/.mqs/alicekey
cms.certificate = Alice_Cert

Note:

• The path to the keystore file must be provided with no file extension.
• There are the following keystore formats: CMS (Cryptographic Message Syntax), JKS (Java Keystore)

and JCEKS (Java Cryptographic Extension Keystore). For more information, refer to “Structure of the
keystore configuration file (keystore.conf) for AMS” on page 648.

• HOME/.mqs/keystore.conf is the default location where Advanced Message Security searches
for the keystore.conf file. For information about how to use a non-default location for the
keystore.conf, see “Using keystores and certificates with AMS” on page 647.

5. Sharing Certificates

About this task
Share the certificates between the two key databases so that each user can successfully identify the
other. This is done by extracting each user's public certificate to a file, which is then added to the other
user's key database.

622 Securing IBM MQ

Note: Take care to use the extract option, and not the export option. Extract gets the user's public
key, whereas export gets both the public and private key. Using export by mistake would completely
compromise your application, by passing on its private key.

Procedure
1. Extract the certificate identifying alice to an external file:

runmqakm -cert -extract -db /home/alice/.mqs/alicekey.kdb -pw passw0rd -label Alice_Cert
-target alice_public.arm

2. Add the certificate to bob's keystore:

runmqakm -cert -add -db /home/bob/.mqs/bobkey.kdb -pw passw0rd -label Alice_Cert -file
alice_public.arm

3. Repeat the step for bob:

runmqakm -cert -extract -db /home/bob/.mqs/bobkey.kdb -pw passw0rd -label Bob_Cert -target
bob_public.arm

4. Add the certificate for bob to alice's keystore:

runmqakm -cert -add -db /home/alice/.mqs/alicekey.kdb -pw passw0rd -label Bob_Cert -file
bob_public.arm

Results
The two users alice and bob are now able to successfully identify each other having created and shared
self-signed certificates.

What to do next
Verify that a certificate is in the keystore by running the following commands which print out its details:

runmqakm -cert -details -db /home/bob/.mqs/bobkey.kdb -pw passw0rd -label Alice_Cert

runmqakm -cert -details -db /home/alice/.mqs/alicekey.kdb -pw passw0rd -label Bob_Cert

6. Defining queue policy

About this task
With the queue manager created and interceptors prepared to intercept messages and access encryption
keys, we can start defining protection policies on QM_VERIFY_AMS using the setmqspl command. Refer
to setmqspl for more information on this command. Each policy name must be the same as the queue
name it is to be applied to.

Example
This is an example of a policy defined for the TEST.Q queue. In this example, messages are signed by

the user alice using the SHA1 algorithm, and encrypted using the 256-bit AES algorithm.
alice is the only valid sender and bob is the only receiver of the messages on this queue:

setmqspl -m QM_VERIFY_AMS -p TEST.Q -s SHA1 -a "CN=alice,O=IBM,C=GB" -e AES256 -r
"CN=bob,O=IBM,C=GB"

Note: The DNs match exactly those specified in the respective user's certificate from the key database.

Securing IBM MQ 623

What to do next
To verify the policy you have defined, issue the following command:

dspmqspl -m QM_VERIFY_AMS

To print the policy details as a set of setmqspl commands, use the -export flag. This allows storing
already defined policies:

dspmqspl -m QM_VERIFY_AMS -export >restore_my_policies.bat

7. Testing the setup

About this task
By running different programs under different users you can verify if the application has been properly
configured.

Procedure
1. Change to the directory containing the samples. If MQ is installed in a non-default location, this may be

in a different place.

cd /opt/mqm/samp/bin

2. Switch user to run as user alice

su alice

3. As the user alice, put a message using a sample application:

./amqsput TEST.Q QM_VERIFY_AMS

4. Type the text of the message, then press Enter.
5. Stop running as user alice

exit

6. Switch user to run as user bob

su bob

7. As the user bob, get a message using a sample application:

./amqsget TEST.Q QM_VERIFY_AMS

Results
If the application has been configured properly for both users, the user alice 's message is displayed
when bob runs the getting application.

8. Testing encryption

About this task
To verify that the encryption is occurring as expected, create an alias queue which references the original
queue TEST.Q. This alias queue will have no security policy and so no user will have the information to
decrypt the message and therefore the encrypted data will be shown.

624 Securing IBM MQ

Procedure
1. Using the runmqsc command against queue manager QM_VERIFY_AMS, create an alias queue.

DEFINE QALIAS(TEST.ALIAS) TARGET(TEST.Q)

2. Grant bob access to browse from the alias queue

setmqaut -m QM_VERIFY_AMS -n TEST.ALIAS -t queue -p bob +browse

3. As the user alice, put another message using a sample application just as before:

./amqsput TEST.Q QM_VERIFY_AMS

4. As the user bob, browse the message using a sample application via the alias queue this time:

./amqsbcg TEST.ALIAS QM_VERIFY_AMS

5. As the user bob, get the message using a sample application from the local queue:

./amqsget TEST.Q QM_VERIFY_AMS

Results
The output from the amqsbcg application will show the encrypted data that is on the queue proving that
the message has been encrypted.

Example AMS configurations on z/OS
This section provides example configurations of policies and certificates for Advanced Message Security
queuing scenarios on z/OS.

See Configuring Advanced Message Security for z/OS for details on how you configure Advanced Message
Security.

The examples cover the Advanced Message Security policies required, and the digital certificates that
must exist relative to users and key rings. The examples assume that the users involved in the scenarios
have been set up by following the instructions provided in Grant users resource permissions for Advanced
Message Security.

Additionally, from IBM MQ 9.1.3 onwards, see server-to-server message channel interception examples.

Local queuing of integrity-protected messages for AMS on z/OS
This example details the Advanced Message Security policies and certificates needed to send and retrieve
integrity-protected messages to and from a queue, local to the putting and getting applications.

The example queue manager and queue are:

BNK6 - Queue manager
FIN.XFER.Q7 - Local queue

These users are used:

WMQBNK6 - AMS task user
TELLER5 - Sending user
FINADM2 - Recipient user

Securing IBM MQ 625

Create the user certificates
In this example, only one user certificate is needed. This is the sending user's certificate which is needed
to sign integrity-protected messages. The sending user is 'TELLER5'.

The Certificate Authority (CA) certificate is also required. The CA certificate is the certificate of the
authority that issued the user's certificate. This can be a chain of certificates. If so, all certificates in
the chain are required in the key ring of the Advanced Message Security task user, in this case user
WMQBNK6.

A CA certificate can be created using the RACF RACDCERT command. This certificate is used to issue user
certificates. For example:

RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('BCOCA') O('BCO') C('US'))
KEYUSAGE(CERTSIGN) WITHLABEL('BCOCA')

This RACDCERT command creates a CA certificate which can then be used to issue a user certificate for
user 'TELLER5'. For example:

RACDCERT ID(TELLER5) GENCERT SUBJECTSDN(CN('Teller5') O('BCO') C('US'))
WITHLABEL('Teller5') SIGNWITH(CERTAUTH LABEL('BCOCA'))KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN)

Your installation will have procedures for choosing or creating a CA certificate, as well as procedures for
issuing certificates and distributing them to relevant systems.

When exporting and importing these certificates, Advanced Message Security requires:

• The CA certificate (chain).
• The user certificate and its private key.

If you are using RACF, the RACDCERT EXPORT command can be used to export certificates to a data
set, and the RACDCERT ADD command can be used to import certificates from the data set. For more
information about these and other RACDCERT commands, refer to z/OS: Security Server RACF Command
Language Reference.

The certificates in this case, are required on the z/OS system running queue manager BNK6.

When the certificates have been imported on the z/OS system running BNK6, the user certificate requires
the TRUST attribute. The RACDCERT ALTER command can be used to add the TRUST attribute to the
certificate. For example:

RACDCERT ID(TELLER5) ALTER (LABEL('Teller5')) TRUST

In this example, no certificate is required for the recipient user.

Connect certificates to relevant key rings
When the required certificates have been created or imported, and set as trusted, they must be
connected to the appropriate user key rings on the z/OS system running BNK6. To create the key rings use
the RACDCERT ADDRING commands:

RACDCERT ID(WMQBNK6) ADDRING(drq.ams.keyring)

RACDCERT ID(TELLER5) ADDRING(drq.ams.keyring)

This creates a key ring for the Advanced Message Security task user, WMQBNK6, and a key ring for the
sending user, 'TELLER5'. Note that the key ring name drq.ams.keyring is mandatory, and the name is
case-sensitive.

When the key rings have been created, the relevant certificates can be connected:

RACDCERT ID(WMQBNK6) CONNECT(CERTAUTH LABEL('BCOCA')
RING(drq.ams.keyring))

626 Securing IBM MQ

RACDCERT ID(TELLER5) CONNECT(ID(TELLER5) LABEL('Teller5')
RING(drq.ams.keyring) DEFAULT USAGE(PERSONAL))

The sending user certificate must be connected as DEFAULT. If the sending user has more than one
certificate in its drq.ams.keyring, the default certificate is used for signing purposes.

The creation and modification of certificates is not recognized by Advanced Message Security until the
queue manager is stopped and restarted, or the z/OS MODIFY command is used to refresh the Advanced
Message Security certificate configuration. For example:

F BNK6AMSM,REFRESH KEYRING

Create the Advanced Message Security policy
In this example, integrity-protected messages are put to queue FIN.XFER.Q7 by an application running as
user 'TELLER5', and retrieved from the same queue by an application running as user 'FINADM2', so only
one Advanced Message Security policy is required.

Advanced Message Security policies are created using the CSQ0UTIL utility that is documented at The
message security policy utility (CSQ0UTIL).

Use the CSQ0UTIL utility to run the following command:

setmqspl -m BNK6 -p FIN.XFER.Q7 -s MD5 -a CN=Teller5,O=BCO,C=US

In this policy, the queue manager is identified as BNK6. The policy name and associated queue is
FIN.XFER.Q7. The algorithm that is used to generate the sender's signature is MD5, and the distinguished
name (DN) of the sending user is 'CN=Teller5,O=BCO,C=US'.

After defining the policy, either restart the BNK6 queue manager, or use the z/OS MODIFY command to
refresh the Advanced Message Security policy configuration. For example:

F BNK6AMSM,REFRESH POLICY

Local queuing of privacy-protected messages for AMS on z/OS
This example details the Advanced Message Security policies and certificates needed to send and retrieve
privacy-protected messages to and from a queue, local to the putting and getting applications. Privacy-
protected messages are both signed and encrypted.

The example queue manager and local queue are as follows:

BNK6 - Queue manager
FIN.XFER.Q8 - Local queue

These users are used:

WMQBNK6 - AMS task user
TELLER5 - Sending user
FINADM2 - Recipient user

The steps to configure this scenario are:

Create the user certificates
In this example, two user certificates are required. These are the sending user's certificate which is
needed to sign messages, and the recipient user's certificate which is needed to encrypt and decrypt the
message data. The sending user is 'TELLER5' and the recipient user is 'FINADM2'.

The Certificate Authority (CA) certificate is also required. The CA certificate is the certificate of the
authority that issued the user's certificate. This can be a chain of certificates. If so, all certificates in

Securing IBM MQ 627

the chain are required in the key ring of the Advanced Message Security task user, in this case user
WMQBNK6.

A CA certificate can be created using the RACF RACDCERT command. This certificate is used to issue user
certificates. For example:

RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('BCOCA') O('BCO') C('US'))
KEYUSAGE(CERTSIGN) WITHLABEL('BCOCA')

This RACDCERT command creates a CA certificate which can then be used to issue user certificates for
users 'TELLER5' and 'FINADM2'. For example:

RACDCERT ID(TELLER5) GENCERT SUBJECTSDN(CN('Teller5') O('BCO') C('US'))
WITHLABEL('Teller5') SIGNWITH(CERTAUTH LABEL('BCOCA'))KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN)

RACDCERT ID(FINADM2) GENCERT SUBJECTSDN(CN('FinAdm2') O('BCO') C('US'))
WITHLABEL('FinAdm2') SIGNWITH(CERTAUTH LABEL('BCOCA'))KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN)

Your installation will have procedures for choosing or creating a CA certificate, as well as procedures for
issuing certificates and distributing them to relevant systems.

When exporting and importing these certificates, Advanced Message Security requires:

• The CA certificate (chain).
• The sending user certificate and its private key.
• The recipient user certificate and its private key.

If you are using RACF, the RACDCERT EXPORT command can be used to export certificates to a data
set, and the RACDCERT ADD command can be used to import certificates from the data set. For more
information about these and other RACDCERT commands, refer to RACDCERT (Manage RACF digital
certificates) in the z/OS: Security Server RACF Command Language Reference.

The certificates in this case are required on the z/OS system running queue manager BNK6.

When the certificates have been imported on the z/OS system running BNK6, the user certificates require
the TRUST attribute. The RACDCERT ALTER command can be used to add the TRUST attribute to the
certificate. For example:

RACDCERT ID(TELLER5) ALTER (LABEL('Teller5')) TRUST

RACDCERT ID(FINADM2) ALTER (LABEL('FinAdm2')) TRUST

Connect certificates to relevant key rings
When the required certificates have been created or imported, and set as trusted, they must be
connected to the appropriate user key rings on the z/OS system running BNK6. To create the key rings use
the RACDCERT ADDRING command:

RACDCERT ID(WMQBNK6) ADDRING(drq.ams.keyring)

RACDCERT ID(TELLER5) ADDRING(drq.ams.keyring)

RACDCERT ID(FINADM2) ADDRING(drq.ams.keyring)

This creates a key ring for the Advanced Message Security task user and key rings for the sending
and recipient users. Note that the key ring name drq.ams.keyring is mandatory, and the name is
case-sensitive.

When the key rings have been created, the relevant certificates can be connected.

RACDCERT ID(WMQBNK6) CONNECT(CERTAUTH LABEL('BCOCA')
RING(drq.ams.keyring))

628 Securing IBM MQ

https://www.ibm.com/docs/en/zos/2.5.0?topic=syntax-racdcert-manage-racf-digital-certificates
https://www.ibm.com/docs/en/zos/2.5.0?topic=syntax-racdcert-manage-racf-digital-certificates

RACDCERT ID(WMQBNK6) CONNECT(ID(FINADM2) LABEL('FinAdm2')
RING(drq.ams.keyring) USAGE(SITE))

RACDCERT ID(TELLER5) CONNECT(ID(TELLER5) LABEL('Teller5')
RING(drq.ams.keyring) DEFAULT USAGE(PERSONAL))

RACDCERT ID(FINADM2) CONNECT(ID(FINADM2) LABEL('FinAdm2')
RING(drq.ams.keyring) DEFAULT USAGE(PERSONAL))

The sending and recipient user certificates must be connected as DEFAULT. If either user has more than
one certificate in its drq.ams.keyring, the default certificate is used for signing and decryption purposes.

The recipient user's certificate must also be connected to the Advanced Message Security task user's key
ring with USAGE(SITE). This is because the Advanced Message Security task needs the recipient's public
key when encrypting the message data. The USAGE(SITE) prevents the private key from being accessible
in the key ring.

The creation and modification of certificates is not recognized by Advanced Message Security until the
queue manager is stopped and restarted, or the z/OS MODIFY command is used to refresh the Advanced
Message Security certificate configuration. For example:

F BNK6AMSM,REFRESH KEYRING

Create the Advanced Message Security policy
In this example, privacy-protected messages are put to queue FIN.XFER.Q8 by an application running as
user 'TELLER5', and retrieved from the same queue by an application running as user 'FINADM2', so only
one Advanced Message Security policy is required.

Advanced Message Security policies are created using the CSQ0UTIL utility that is documented at The
message security policy utility (CSQ0UTIL).

Use the CSQ0UTIL utility to run the following command:

setmqspl -m BNK6 -p FIN.XFER.Q8 -s SHA1 -e 3DES -a CN=Teller5,O=BCO,C=US -r
CN=FinAdm2,O=BCO,C=US

In this policy, the queue manager is identified as BNK6. The policy name and associated queue is

FIN.XFER.Q8. The algorithm that is used to generate the sender's signature is SHA1, and
the distinguished name (DN) of the sending user is 'CN=Teller5,O=BCO,C=US', and the recipient user

is 'CN=FinAdm2,O=BCO,C=US'. The algorithm that is used to encrypt the message data is
3DES.

After defining the policy, either restart the BNK6 queue manager, or use the z/OS MODIFY command to
refresh the Advanced Message Security policy configuration. For example:

F BNK6AMSM,REFRESH POLICY

Remote queuing of integrity-protected messages for AMS on z/OS
This example details the Advanced Message Security policies and certificates needed to send and retrieve
integrity-protected messages to and from queues managed by two different queue managers. The two
queue managers can be running on the same z/OS system, or on different z/OS systems, or one queue
manager can be on a distributed system running Advanced Message Security.

The example queue managers and queues are:

BNK6 - Sending queue manager
BNK7 - Recipient queue manager
FIN.XFER.Q7 - Remote queue on BNK6
FIN.RCPT.Q7 - Local queue on BNK7

Securing IBM MQ 629

Note: For this example, BNK6 and BNK7 are queue managers running on different z/OS systems.

These users are used:

WMQBNK6 - AMS task user on BNK6
WMQBNK7 - AMStask user on BNK7
TELLER5 - Sending user on BNK6
FINADM2 - Recipient user on BNK7

The steps to configure this scenario are as follows:

Create the user certificates
In this example, only one user certificate is needed. This is the sending user's certificate which is needed
to sign integrity-protected message. The sending user is 'TELLER5'.

The Certificate Authority (CA) certificate is also required. The CA certificate is the certificate of the
authority that issued the user's certificate. This can be a chain of certificates. If so, all certificates in
the chain are required in the key ring of the Advanced Message Security task user, in this case user
WMQBNK7.

A CA certificate can be created using the RACF RACDCERT command. This certificate is used to issue user
certificates. For example:

RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('BCOCA') O('BCO') C('US'))
KEYUSAGE(CERTSIGN) WITHLABEL('BCOCA')

This RACDCERT command creates a CA certificate which can then be used to issue user certificate for
user 'TELLER5'. For example:

RACDCERT ID(TELLER5) GENCERT SUBJECTSDN(CN('Teller5') O('BCO') C('US'))
WITHLABEL('Teller5') SIGNWITH(CERTAUTH LABEL('BCOCA'))KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN)

Your installation will have procedures for choosing or creating a CA certificate, as well as procedures for
issuing certificates and distributing them to relevant systems.

When exporting and importing these certificates, Advanced Message Security require:

• The CA certificate (chain).
• The sending user certificate and its private key.

If you are using RACF, the RACDCERT EXPORT command can be used to export certificates to a data
set, and the RACDCERT ADD command can be used to import certificates from the data set. For more
information about these and other RACDCERT commands, refer to RACDCERT (Manage RACF digital
certificates) in the z/OS: Security Server RACF Command Language Reference.

The certificates in this case, are required on the z/OS system running queue manager BNK6 and BNK7.

In this example, the sending certificate must be imported on the z/OS system running BNK6, and the
CA certificate must be imported on the z/OS system running BNK7. When the certificates have been
imported, the user certificate requires the TRUST attribute. The RACDCERT ALTER command can be used
to add the TRUST attribute to the certificate. For example, on BNK6:

RACDCERT ID(TELLER5) ALTER (LABEL('Teller5')) TRUST

Connect certificates to relevant key rings
When the required certificates have been created or imported, and set as trusted, they must be
connected to the appropriate user key rings on the z/OS system running BNK6 and BNK7.

To create the key rings use the RACDCERT ADDRING command, on BNK6:

RACDCERT ID(TELLER5) ADDRING(drq.ams.keyring)

630 Securing IBM MQ

https://www.ibm.com/docs/en/zos/2.5.0?topic=syntax-racdcert-manage-racf-digital-certificates
https://www.ibm.com/docs/en/zos/2.5.0?topic=syntax-racdcert-manage-racf-digital-certificates

This creates a key ring for the sending user on BNK6. Note that the key ring name drq.ams.keyring is
mandatory, and the name is case-sensitive.

On BNK7:

RACDCERT ID(WMQBNK7) ADDRING(drq.ams.keyring)

This creates a key ring for the Advanced Message Security task user on BNK7. No user key ring is required
for 'TELLER5' on BNK7.

When the key rings have been created, the relevant certificates can be connected.

On BNK6:

RACDCERT ID(TELLER5) CONNECT(ID(TELLER5) LABEL('Teller5')
RING(drq.ams.keyring) DEFAULT USAGE(PERSONAL))

On BNK7:

RACDCERT ID(WMQBNK7) CONNECT(CERTAUTH LABEL('BCOCA')
RING(drq.ams.keyring))

The sending user certificate must be connected as DEFAULT. If the sending user has more than one
certificate in its drq.ams.keyring, the default certificate is used for signing purposes.

The creation and modification of certificates is not recognized by Advanced Message Security until the
queue manager is stopped and restarted, or the z/OS MODIFY command is used to refresh the Advanced
Message Security certificate configuration. For example:

On BNK6:

F BNK6AMSM,REFRESH,KEYRING

On BNK7:

F BNK7AMSM,REFRESH,KEYRING

Create the Advanced Message Security policies
In this example, integrity-protected messages are put to remote queue FIN.XFER.Q7 on BNK6 by an
application running as user 'TELLER5', and retrieved from local queue FIN.RCPT.Q7 on BNK7 by an
application running as user 'FINADM2', so two Advanced Message Security policies are required.

Advanced Message Security policies are created using the CSQ0UTIL utility that is documented at The
message security policy utility (CSQ0UTIL).

Use the CSQ0UTIL utility to run the following command to define an integrity policy for the remote queue
on BNK6:

setmqspl -m BNK6 -p FIN.XFER.Q7 -s MD5 -a CN=Teller5,O=BCO,C=US

In this policy, the queue manager is identified as BNK6. The policy name and associated queue is
FIN.XFER.Q7. The algorithm that is used to generate the sender's signature is MD5, and the distinguished
name (DN) of the sending user is 'CN=Teller5,O=BCO,C=US'.

Also, use the CSQ0UTIL utility to run the following command to define an integrity policy for the local
queue on BNK7:

setmqspl -m BNK7 -p FIN.RCPT.Q7 -s MD5 -a CN=Teller5,O=BCO,C=US

In this policy, the queue manager is identified as BNK7. The policy name and associated queue is
FIN.RCPT.Q7. The algorithm expected for the sender's signature is MD5, and the distinguished name (DN)
of the sending user is expected to be 'CN=Teller5,O=BCO,C=US'.

Securing IBM MQ 631

After defining the two policies, either restart the BNK6 and BNK7 queue managers, or use the z/OS
MODIFY command to refresh the Advanced Message Security policy configurations. For example:

On BNK6:

F BNK6AMSM,REFRESH,POLICY

On BNK7:

F BNK7AMSM,REFRESH,POLICY

Remote queuing of privacy-protected messages for AMS on z/OS
This example details the Advanced Message Security policies and certificates needed to send and retrieve
privacy-protected messages to and from queues managed by two different queue managers. The two
queue managers can be running on the same z/OS system, or on different z/OS systems, or one queue
manager can be on a distributed system running Advanced Message Security.

The example queue managers and queues are:

BNK6 - Sending queue manager
BNK7 - Recipient queue manager
FIN.XFER.Q7 - Remote queue on BNK6
FIN.RCPT.Q7 - Local queue on BNK7

Note: For this example, BNK6 and BNK7 are queue managers running on different z/OS systems of the
same name.

These users are used:

WMQBNK6 - AMS task user on BNK6
WMQBNK7 - AMS task user on BNK7
TELLER5 - Sending user on BNK6
FINADM2 - Recipient user on BNK7

The steps to configure this scenario are as follows:

Create the user certificates
In this example, two user certificates are required. These are the sending user's certificate which is
needed to sign messages, and the recipient user's certificate which is needed to encrypt and decrypt the
message data. The sending user is 'TELLER5' and the recipient user is 'FINADM2'.

The Certificate Authority (CA) certificate is also required. The CA certificate is the certificate of the
authority that issued the user's certificate. This can be a chain of certificates. If so, all certificates in
the chain are required in the key ring of the Advanced Message Security task user, in this case user
WMQBNK7.

A CA certificate can be created using the RACF RACDCERT command. This certificate is used to issue user
certificates. For example:

RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('BCOCA') O('BCO') C('US'))
KEYUSAGE(CERTSIGN) WITHLABEL('BCOCA')

This RACDCERT command creates a CA certificate which can then be used to issue user certificates for
users 'TELLER5' and 'FINADM2'. For example:

RACDCERT ID(TELLER5) GENCERT SUBJECTSDN(CN('Teller5') O('BCO') C('US'))
WITHLABEL('Teller5') SIGNWITH(CERTAUTH LABEL('BCOCA'))KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN)

RACDCERT ID(FINADM2) GENCERT SUBJECTSDN(CN('FinAdm2') O('BCO') C('US'))
WITHLABEL('FinAdm2') SIGNWITH(CERTAUTH LABEL('BCOCA'))KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN)

632 Securing IBM MQ

Your installation will have procedures for choosing or creating a CA certificate, as well as procedures for
issuing certificates and distributing them to relevant systems.

When exporting and importing these certificates, Advanced Message Security requires:

• The CA certificate (chain).
• The sending user certificate and its private key.
• The recipient user certificate and its private key.

If you are using RACF, the RACDCERT EXPORT command can be used to export certificates to a data set,
and the RACDCERT ADD command can be used to import certificates from the data set.

For more information about these and other RACDCERT commands, see RACDCERT (Manage RACF digital
certificates) in the z/OS: Security Server RACF Command Language Reference.

The certificates in this case, are required on the z/OS system running queue manager BNK6 and BNK7.

In this example, the sending and recipient certificates must be imported on the z/OS system running
BNK6, and the CA and recipient certificates must be imported on the z/OS system running BNK7. When
the certificates have been imported, the user certificates require the TRUST attribute. The RACDCERT
ALTER command can be used to add the TRUST attribute to the certificate. For example:

On BNK6:

RACDCERT ID(TELLER5) ALTER (LABEL('Teller5')) TRUST

RACDCERT ID(FINADM2) ALTER (LABEL('FinAdm2')) TRUST

On BNK7:

RACDCERT ID(FINADM2) ALTER (LABEL('FinAdm2')) TRUST

Connect certificates to relevant key rings
When the required certificates have been created or imported, and set as trusted, they must be
connected to the appropriate user key rings on the z/OS systems running BNK6 and BNK7.

To create the key rings use the RACDCERT ADDRING command:

On BNK6:

RACDCERT ID(WMQBNK6) ADDRING(drq.ams.keyring)

RACDCERT ID(TELLER5) ADDRING(drq.ams.keyring)

This creates a key ring for the Advanced Message Security task user and a key ring for the sending user on
BNK6. Note that the key ring name drq.ams.keyring is mandatory, and the name is case-sensitive.

On BNK7:

RACDCERT ID(WMQBNK7) ADDRING(drq.ams.keyring)

RACDCERT ID(FINADM2) ADDRING(drq.ams.keyring)

This creates a key ring for the Advanced Message Security task user and a key ring for the recipient user
on BNK7.

When the key rings have been created, the relevant certificates can be connected.

On BNK6:

RACDCERT ID(WMQBNK6) CONNECT(ID(FINADM2) LABEL('FinAdm2')
RING(drq.ams.keyring) USAGE(SITE))

Securing IBM MQ 633

https://www.ibm.com/docs/en/zos/2.5.0?topic=syntax-racdcert-manage-racf-digital-certificates
https://www.ibm.com/docs/en/zos/2.5.0?topic=syntax-racdcert-manage-racf-digital-certificates

RACDCERT ID(TELLER5) CONNECT(ID(TELLER5) LABEL('Teller5')
RING(drq.ams.keyring) DEFAULT USAGE(PERSONAL))

On BNK7:

RACDCERT ID(WMQBNK7) CONNECT(CERTAUTH LABEL('BCOCA')
RING(drq.ams.keyring))

RACDCERT ID(FINADM2) CONNECT(ID(FINADM2) LABEL('FinAdm2')
RING(drq.ams.keyring) DEFAULT USAGE(PERSONAL))

The sending and recipient user certificates must be connected as DEFAULT. If either user has more than
one certificate in its drq.ams.keyring, the default certificate is used for signing and encryption/decryption
purposes.

On BNK6, the recipient user's certificate must also be connected to the Advanced Message Security
task user's key ring with USAGE(SITE). This is because the Advanced Message Security task needs the
recipient's public key when encrypting the message data. The USAGE(SITE) prevents the private key from
being accessible in the key ring.

The creation and modification of certificates is not recognized by Advanced Message Security until the
queue manager is stopped and restarted, or the z/OS MODIFY command is used to refresh the Advanced
Message Security certificate configuration. For example:

On BNK6:

F BNK6AMSM,REFRESH,KEYRING

On BNK7:

F BNK7AMSM,REFRESH,KEYRING

Create the Advanced Message Security policies
In this example, privacy-protected messages are put to remote queue FIN.XFER.Q7 on BNK6 by an
application running as user 'TELLER5', and retrieved from local queue FIN.RCPT.Q7 on BNK7 by an
application running as user 'FINADM2', so two Advanced Message Security policies are required.

Advanced Message Security policies are created using the CSQ0UTIL utility that is documented at The
message security policy utility (CSQ0UTIL).

Use the CSQ0UTIL utility to run the following command to define a privacy policy for the remote queue on
BNK6:

setmqspl -m BNK6 -p FIN.XFER.Q7 -s SHA1 -e 3DES -a CN=Teller5,O=BCO,C=US -r
CN=FinAdm2,O=BCO,C=US

In this policy, the queue manager is identified as BNK6. The policy name and associated queue is

FIN.XFER.Q7. The algorithm that is used to generate the sender's signature is SHA1, the
distinguished name (DN) of the sending user is 'CN=Teller5,O=BCO,C=US', and the recipient user is

'CN=FinAdm2,O=BCO,C=US'. The algorithm that is used to encrypt the message data is
3DES.

Also, use the CSQ0UTIL utility to run the following command to define a privacy policy for the local queue
on BNK7:

setmqspl -m BNK7 -p FIN.RCPT.Q7 -s SHA1 -e 3DES -a CN=Teller5,O=BCO,C=US -r
CN=FinAdm2,O=BCO,C=US

In this policy, the queue manager is identified as BNK7. The policy name and associated queue is

FIN.RCPT.Q7. The algorithm expected for the sender's signature is SHA1, the distinguished

634 Securing IBM MQ

name (DN) of the sending user is expected to be 'CN=Teller5,O=BCO,C=US', and the recipient user is

'CN=FinAdm2,O=BCO,C=US'. The algorithm that is used to decrypt the message data is
3DES.

After defining the two policies, either restart the BNK6 and BNK7 queue managers, or use the z/OS
MODIFY command to refresh the Advanced Message Security policy configuration. For example:

On BNK6:

F BNK6AMSM,REFRESH,POLICY

On BNK7:

F BNK7AMSM,REFRESH,POLICY

Quick Start Guide for AMS with Java clients
Use this guide to quickly configure Advanced Message Security to provide message security for Java
applications connecting using client bindings. By the time you complete it, you will have created a
keystore to verify user identities, and defined signing/encryption policies for your queue manager.

Before you begin
Ensure you have the appropriate components installed as described in the Quick Start Guide (Windows
or AIX and Linux).

1. Creating a queue manager and a queue

About this task
All the following examples use a queue named TEST.Q for passing messages between applications.
Advanced Message Security uses interceptors to sign and encrypt messages at the point they enter the
IBM MQ infrastructure through the standard IBM MQ interface. The basic setup is done in IBM MQ and is
configured in the following steps.

Procedure
1. Create a queue manager

crtmqm QM_VERIFY_AMS

2. Start the queue manager

strmqm QM_VERIFY_AMS

3. Create and start a listener by entering the following commands into runmqsc for queue manager
QM_VERIFY_AMS

DEFINE LISTENER(AMS.LSTR) TRPTYPE(TCP) PORT(1414) CONTROL(QMGR)

START LISTENER(AMS.LSTR)

4. Create a channel for our applications to connect in through by entering the following command into
runmqsc for queue manager QM_VERIFY_AMS

DEFINE CHANNEL(AMS.SVRCONN) CHLTYPE(SVRCONN)

5. Create a queue called TEST.Q by entering the following command into runmqsc for queue manager
QM_VERIFY_AMS

Securing IBM MQ 635

DEFINE QLOCAL(TEST.Q)

Results
If the procedure completed successfully, the following command entered into runmqsc displays details
about TEST.Q:

DISPLAY Q(TEST.Q)

2. Creating and authorizing users

About this task
There are two users that appear in this scenario: alice, the sender, and bob, the receiver. To use
the application queue, these users need to be granted authority to use it. Also to successfully use the
protection policies defined in this scenario, these users must be granted access to some system queues.
For more information about the setmqaut command refer to setmqaut.

Procedure
1. Create the two users as described in the Quick Start Guide (Windows or AIX and Linux) for your

platform.
2. Authorize the users to connect to the queue manager and to work with the queue

setmqaut -m QM_VERIFY_AMS -t qmgr -p alice -p bob +connect +inq

setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p alice +put

setmqaut -m QM_VERIFY_AMS -n TEST.Q -t queue -p bob +get +inq +browse

3. You should also allow the two users to browse the system policy queue and put messages on the error
queue.

setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p alice -p bob +browse

setmqaut -m QM_VERIFY_AMS -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p alice -p bob +put

Attention: IBM MQ optimizes performance by caching policies so that you do not have to
browse records for policy details on the SYSTEM.PROTECTION.POLICY.QUEUE in all cases.

IBM MQ does not cache all the policies available. If there are high number of policies,
IBM MQ caches a limited number of policies. So, if the queue manager has a low
number of policies defined, there is no need to provide the browse option to the
SYSTEM.PROTECTION.POLICY.QUEUE.

However, you should give browse authority to this queue, in case there is a high number of
policies defined, or if you are using old clients. The SYSTEM.PROTECTION.ERROR.QUEUE is
used to put error messages generated by the AMS code. The put authority against this queue
is checked only when you attempt to put an error message to the queue. Your put authority
against the queue is not checked when you attempt to put or get message from an AMS
protected queue.

Results
Users are now created and the required authorities granted to them.

636 Securing IBM MQ

What to do next
To verify if the steps were carried out correctly, use the JmsProducer and JmsConsumer samples as
described in section “7. Testing the setup” on page 639.

3. Creating key database and certificates

About this task
To encrypt the message to interceptor requires the public key of the sending users. Thus, the key
database of user identities mapped to public and private keys must be created. In the real system,
where users and applications are dispersed over several computer, each user would have its own
private keystore. Similarly, in this guide, we create key databases for alice and bob and share the
user certificates between them.

Note: In this guide, we use sample applications written in Java connecting using client bindings. If you
plan to use Java applications using local bindings or C applications, you must create a CMS keystore and
certificates using the runmqakm command. This is shown in the Quick Start Guide (Windows or AIX and
Linux).

Procedure
1. Create a directory in which to create your keystore, for example /home/alice/.mqs. You might wish

to create it in the same directory as used by the Quick Start Guide (Windows or AIX and Linux) for
your platform.

Note: This directory is referred to as keystore-dir in the following steps
2. Create a new keystore and certificate identifying the user alice for use in encryption

Note: The keytool command is part of the JRE.

keytool -genkey -alias Alice_Java_Cert -keyalg RSA -keystore keystore-dir/keystore.jks
-storepass passw0rd
-dname "CN=alice, O=IBM, C=GB" -keypass passw0rd

Note:

• If your keystore-dir contains spaces, you must put quotes round the full name of your keystore
• It is advisable to use a strong password to secure the keystore.
• For the purpose of this guide, we are using self-signed certificate which can be created without using

a Certificate Authority. For production systems, it is advisable not to use self-signed certificates but
instead rely on certificates signed by a Certificate Authority.

• The alias parameter specifies the name for the certificate, which interceptors will look up to
receive necessary information.

• The dname parameter specifies the details of the Distinguished Name (DN), which must be unique
for each user.

3. On AIX and Linux, ensure the keystore is readable

chmod +r keystore-dir/keystore.jks

4. Repeat step1-4 for the user bob

Results
The two users alice and bob each now have a self-signed certificate.

Securing IBM MQ 637

4. Creating keystore.conf

About this task
You must point Advanced Message Security interceptors to the directory where the key databases and
certificates are located. This is done via the keystore.conf file, which hold that information in the plain
text form. Each user must have a separate keystore.conf file. This step should be done for both alice
and bob.

Example
For this scenario, the contents of the keystore.conf for alice are as follows:

JKS.keystore = keystore-dir/keystore
JKS.certificate = Alice_Java_Cert
JKS.encrypted = no
JKS.keystore_pass = passw0rd
JKS.key_pass = passw0rd
JKS.provider = IBMJCE

For this scenario, the contents of the keystore.conf for bob are as follows:

JKS.keystore = keystore-dir/keystore
JKS.certificate = Bob_Java_Cert
JKS.encrypted = no
JKS.keystore_pass = passw0rd
JKS.key_pass = passw0rd
JKS.provider = IBMJCE

Note:

• The path to the keystore file must be provided with no file extension.
• If you already have a keystore.conf file because you have followed the instructions in the Quick Start

Guide (Windows or AIX and Linux), you can edit the existing file to add these lines.
• For more information, see “Structure of the keystore configuration file (keystore.conf) for AMS” on page

648.

5. Sharing certificates

About this task
Share the certificates between the two keystores so that each user can successfully identify the other.
This is done by extracting each user's certificate and importing it into the other user's keystore.

Note: The terms extract and export are used differently by different certificate tools. For example the
IBM GSKit strmqikm command (ikeyman) tool makes a distinction that you extract certificates (public
keys) and you export private keys. This distinction is extremely important for tools that offer both options,
since using export by mistake would completely compromise your application by passing on its private
key. Because the distinction is so important, the IBM MQ documentation strives to use these terms
consistently. However, the Java keytool provides a command line option called exportcert that extracts
only the public key. For these reasons, the following procedure refers to extracting certificates by using
the exportcert option.

Procedure
1. Extract the certificate identifying alice.

keytool -exportcert -keystore alice-keystore-dir/keystore.jks -storepass passw0rd
-alias Alice_Java_Cert -file alice-keystore-dir/Alice_Java_Cert.cer

2. Import the certificate identifying alice into the keystore that bob will use. When prompted indicate
that you will trust this certificate.

638 Securing IBM MQ

keytool -importcert -file alice-keystore-dir/Alice_Java_Cert.cer -alias Alice_Java_Cert
-keystore bob-keystore-dir/keystore.jks -storepass passw0rd

3. Repeat the steps for bob

Results
The two users alice and bob are now able to successfully identify each other having created and shared
self-signed certificates.

What to do next
Verify that a certificate is in the keystore by running the following commands which print out its details:

keytool -list -keystore bob-keystore-dir/keystore.jks -storepass passw0rd -alias Alice_Java_Cert

keytool -list -keystore alice-keystore-dir/keystore.jks -storepass passw0rd -alias Bob_Java_Cert

6. Defining queue policy

About this task
With the queue manager created and interceptors prepared to intercept messages and access encryption
keys, we can start defining protection policies on QM_VERIFY_AMS using the setmqspl command. Refer
to setmqspl for more information on this command. Each policy name must be the same as the queue
name it is to be applied to.

Example
This is an example of a policy defined on the TEST.Q queue, signed by the user alice using the

SHA1 algorithm, and encrypted using the 256-bit AES algorithm for the user bob:

setmqspl -m QM_VERIFY_AMS -p TEST.Q -s SHA1 -a "CN=alice,O=IBM,C=GB" -e AES256 -r
"CN=bob,O=IBM,C=GB"

Note: The DNs match exactly those specified in the respective user's certificate from the key database.

What to do next
To verify the policy you have defined, issue the following command:

dspmqspl -m QM_VERIFY_AMS

To print the policy details as a set of setmqspl commands, the -export flag. This allows storing already
defined policies:

dspmqspl -m QM_VERIFY_AMS -export >restore_my_policies.bat

7. Testing the setup

Before you begin
Ensure the version of Java you are using has the unrestricted JCE policy files installed.

Note: The version of Java supplied in the IBM MQ installation already has these policy files. It can be
found in MQ_INSTALLATION_PATH/java/bin.

Securing IBM MQ 639

About this task
By running different programs under different users you can verify if the application has been properly
configured. Refer to the Quick Start Guide (Windows or AIX) for your platform, for details about running
programs under different users.

Procedure
1. To run these JMS sample applications, use the CLASSPATH setting for your platform as shown in

Environment variables used by IBM MQ classes for JMS to ensure the samples directory is included.
2. As the user alice, put a message using a sample application, connecting as a client:

java JmsProducer -m QM_VERIFY_AMS -d TEST.Q -h localhost -p 1414 -l AMS.SVRCONN

3. As the user bob, get a message using a sample application, connecting as a client:

java JmsConsumer -m QM_VERIFY_AMS -d TEST.Q -h localhost -p 1414 -l AMS.SVRCONN

Results
If the application has been configured properly for both users, the user alice 's message is displayed
when bob runs the getting application.

Protecting remote queues on AMS
To fully protect remote queues, policies must be set on the remote queue and local queue to which
messages are transmitted.

When a message is put into a remote queue, Advanced Message Security intercepts the operation and
processes the message according to a policy set for the remote queue. For example, for an encryption
policy, the message is encrypted before it is passed to the IBM MQ to handle it. After Advanced
Message Security has processed the message put into a remote queue, IBM MQ puts it into associated
transmission queue and forwards it to the target queue manager and target queue.

When a GET operation is performed on the local queue, Advanced Message Security tries to decode the
message according to the policy set on the local queue. For the operation to succeed, the policy used
to decrypt the message must be identical to the one used to encrypt it. Any discrepancy will cause the
message to be rejected.

If for any reason both policies cannot be set at the same time, a staged roll-out support is provided. The
policy can be set on a local queue with toleration flag on, which indicates that a policy associated with
a queue can be ignored when an attempt to retrieve a message from the queue involves a message that
does not have the security policy set. In this case, GET will try to decrypt the message, but will allow
non-encrypted messages to be delivered. This way policies on remote queues can be set after the local
queues has been protected (and tested).

Remember: Remove the toleration flag once the Advanced Message Security roll-out has been
completed.

Related reference
setmqspl (set security policy)

Routing protected messages with AMS using IBM Integration Bus
Advanced Message Security can protect messages in an infrastructure where IBM Integration Bus, or
WebSphere Message Broker 8.0.0.1 (or later) is installed. You should understand the nature of both
products before applying security in the IBM Integration Bus environment.

About this task
Advanced Message Security provides end-to-end security of the message payload. This means that only
the parties specified as the valid senders and recipients of a message are capable of producing or
receiving it. This implies that in order to secure messages flowing through IBM Integration Bus, you can

640 Securing IBM MQ

either allow IBM Integration Bus to process messages without knowing their content (Scenario 1) or
make it an authorized user able to receive and send messages (Scenario 2).

Scenario 1 - Integration Bus cannot see message content

Before you begin
You should have your IBM Integration Bus connected to an existing queue manager. Replace QMgrName
with this existing queue manager name in the commands that follow.

About this task
In this scenario, Alice puts a protected message into an input queue QIN. Based on the message property
routeTo, the message is routed either to bob's (QBOB), 1 (QCECIL), or the default (QDEF) queue. The
routing is possible because Advanced Message Security protects only the message payload and not its
headers and properties which remain unprotected and can be read by IBM Integration Bus. Advanced
Message Security is used only by alice, bob and cecil. It is not necessary to install or configure it for the
IBM Integration Bus.

IBM Integration Bus receives the protected message from the unprotected alias queue in order to avoid
any attempt to decrypt the message. If it were to use the protected queue directly, the message would
be put onto the DEAD LETTER queue as impossible to decrypt. The message is routed by IBM Integration
Bus and arrives on the target queue unchanged. Therefore it is still signed by the original author (both
bob and cecil only accept messages sent by alice) and protected as before (only bob and cecil can read
it). IBM Integration Bus puts the routed message to an unprotected alias. The recipients retrieve the
message from a protected output queue where AMS will transparently decrypt the message.

Procedure
1. Configure alice, bob and cecil to use Advanced Message Security as described in the Quick Start

Guide (Windows or AIX).
Ensure the following steps are completed:

• Creating and authorizing users
• Creating Key Database and Certificates
• Creating keystore.conf

2. Provide alice's certificate to bob and cecil, so alice can be identified by them when checking digital
signatures on messages.

Do this by extracting the certificate identifying alice to an external file, then adding the extracted
certificate to bob's and cecil's keystores. It is important that you use the method described in Task 5.
Sharing Certificates in the Quick Start Guide (Windows or AIX).

3. Provide bob and cecil's certificates to alice, so alice can send messages encrypted for bob and cecil.

Do this using the method specified in the previous step.
4. On your queue manager, define local queues called QIN, QBOB, QCECIL and QDEF.

DEFINE QLOCAL(QIN)

5. Set up the security policy for the QIN queue to an eligible configuration. Use the identical setup for
the QBOB, QCECIL and QDEF queues.

setmqspl -m QMgrName -p QIN -s SHA1 -a "CN=alice,O=IBM,C=GB"
-e AES256 -r "CN=bob,O=IBM,C=GB" -r "CN=cecil,O=IBM,C=GB"

This scenario assumes the security policy where alice is the only authorized sender and bob and cecil
are the recipients.

1 cecil's

Securing IBM MQ 641

6. Define alias queues AIN, ABOB and ACECIL referencing local queues QIN, QBOB and QCECIL
respectively.

DEFINE QALIAS(AIN) TARGET(QIN)

7. Verify that the security configuration for the aliases specified in the previous step is not present;
otherwise set its policy to NONE.

dspmqspl -m QMgrName -p AIN

8. In IBM Integration Bus create a message flow to route the messages arriving on the AIN alias queue
to the BOB, CECIL, or DEF node depending on the routeTo property of the message. To do so:
a) Create an MQInput node called IN and assign the AIN alias as its queue name.
b) Create MQOutput nodes called BOB, CECIL and DEF, and assign alias queues ABOB, ACECIL and
ADEF as their respective queue names.

c) Create a route node and call it TEST.
d) Connect the IN node to the input terminal of the TEST node.
e) Create bob, and cecil output terminals for the TEST node.
f) Connect the bob output terminal to the BOB node.
g) Connect the cecil output terminal to the CECIL node.
h) Connect the DEF node to the default output terminal.
i) Apply the following rules:

$Root/MQRFH2/usr/routeTo/text()="bob"

$Root/MQRFH2/usr/routeTo/text()="cecil"

9. Deploy the message flow to the IBM Integration Bus runtime component.
10. Running as the user Alice put a message that also contains a message property called routeTo

with a value of either bob or cecil. Running the sample application amqsstm will allow you to do
this.

Sample AMQSSTMA start
target queue is TEST.Q
Enter property name
routeTo
Enter property value
bob
Enter property name

Enter message text
My Message to Bob
Sample AMQSSTMA end

11. Running as user bob retrieve the message from the queue QBOB using the sample application
amqsget.

Results
When alice puts a message on the QIN queue, the message is protected. It is retrieved in protected form
by the IBM Integration Bus from the AIN alias queue. IBM Integration Bus decides where to route the
message reading the routeTo property which is, as all properties, not encrypted. IBM Integration Bus
places the message on the appropriate unprotected alias avoiding its further protection. When received
by bob or cecil from the queue, the message is decrypted and the digital signature is verified.

642 Securing IBM MQ

Scenario 2 - Integration Bus can see message content

About this task
In this scenario, a group of individuals are allowed to send messages to IBM Integration Bus. Another
group are authorized to receive messages which are created by IBM Integration Bus. The transmission
between the parties and IBM Integration Bus cannot be eavesdropped.

Remember that IBM Integration Bus reads protection policies and certificates only when a queue is
opened, so you must reload the execution group after making any updates to protection policies for the
changes to take effect.

mqsireload execution-group-name

If IBM Integration Bus is considered an authorized party allowed to read or sign the message payload,
you must configure Advanced Message Security for the user starting the IBM Integration Bus service. Be
aware it is not necessarily the same user who puts/gets the messages onto queues nor the user creating
and deploying the IBM Integration Bus applications.

Procedure
1. Configure alice, bob, cecil and dave and the IBM Integration Bus service user, to use Advanced

Message Security as described in the Quick Start Guide (Windows or AIX).
Ensure the following steps are completed:

• Creating and authorizing users
• Creating Key Database and Certificates
• Creating keystore.conf

2. Provide alice, bob, cecil and dave's certificates to the IBM Integration Bus service user.

Do this by extracting each of the certificates identifying alice, bob, cecil and dave to external files, then
adding the extracted certificates to the IBM Integration Bus keystore. It is important that you use the
method described in Task 5. Sharing Certificates in the Quick Start Guide (Windows or AIX).

3. Provide the IBM Integration Bus service user's certificate to alice, bob, cecil and dave.

Do this using the method specified in the previous step.

Note: Alice and bob need the IBM Integration Bus service user's certificate to encrypt the messages
correctly. The IBM Integration Bus service user needs alice's and bob's certificates to verify authors of
the messages. The IBM Integration Bus service user needs cecil's and dave's certificates to encrypt the
messages for them. cecil and dave need the IBM Integration Bus service user's certificate to verify if
the message comes from IBM Integration Bus.

4. Define a local queue named IN and define the security policy with alice and bob specified as authors,
and the service user for the IBM Integration Bus specified as recipient:

setmqspl -m QMgrName -p IN -s MD5 -a "CN=alice,O=IBM,C=GB" -a "CN=bob,O=IBM,C=GB"
-e AES256 -r "CN=broker,O=IBM,C=GB"

5. Define a local queue named OUT, and define the security policy with the service user for the IBM
Integration Bus specified as author, and cecil and dave specified as recipients:

setmqspl -m QMgrName -p OUT -s MD5 -a "CN=broker,O=IBM,C=GB" -e AES256
-r "CN=cecil,O=IBM,C=GB" -r "CN=dave,O=IBM,C=GB"

6. In IBM Integration Bus create a message flow with an MQInput and MQOutput node. Configure the
MQInput node to use the IN queue and the MQOutput node to use the OUT queue.

7. Deploy the message flow to the IBM Integration Bus runtime component.
8. Running as user alice or bob put a message on the queue IN using the sample application amqsput.

Securing IBM MQ 643

9. Running as user cecil or dave retrieve the message from the queue OUT using the sample application
amqsget.

Results
Messages sent by alice or bob to the input queue IN are encrypted allowing only IBM Integration Bus
to read it. IBM Integration Bus only accepts messages from alice and bob and rejects any others. The
accepted messages are appropriately processed, then signed and encrypted with cecil's and dave's keys
before being put onto the output queue OUT. Only cecil and dave are capable of reading it, messages not
signed by IBM Integration Bus are rejected.

Using Advanced Message Security with Managed File Transfer
This scenario explains how to configure Advanced Message Security to provide message privacy for data
being sent through a Managed File Transfer.

Before you begin
Ensure that you have Advanced Message Security component installed on the IBM MQ installation hosting
the queues used by Managed File Transfer that you want to protect.

If your Managed File Transfer agents are connecting in bindings mode, ensure you also have the GSKit
component installed on their local installation.

About this task
When transfer of data between two Managed File Transfer agents is interrupted, possibly confidential data
might remain unprotected on the underlying IBM MQ queues used to manage the transfer. This scenario
explains how to configure and use Advanced Message Security to protect such data on the Managed File
Transfer queues.

In this scenario we consider a simple topology comprising one machine with two Managed File Transfer
queues and two agents, AGENT1 and AGENT2, sharing a single queue manager, as described in the
scenario Managed File Transfer scenario. Both agents connect in the same way, either in bindings mode or
client mode.

1. Creating certificates

Before you begin
This scenario uses a simple model where a user ftagent in a group FTAGENTS is used to run the
Managed File Transfer Agent processes. If you are using your own user and group names, change the
commands accordingly.

About this task
Advanced Message Security uses public key cryptography to sign and/or encrypt messages on protected
queues.

Note:

• If your Managed File Transfer agents are running in bindings mode, the commands that you use to
create a CMS (Cryptographic Message Syntax) keystore are detailed in the Quick Start Guide (Windows
or AIX) for your platform.

• If your Managed File Transfer agents are running in client mode, the commands you will need to create a
JKS (Java Keystore) are detailed in the “Quick Start Guide for AMS with Java clients” on page 635.

Procedure
1. Create a self-signed certificate to identify the user ftagent as detailed in the appropriate Quick Start

Guide.
Use a Distinguished Name (DN) as follows:

644 Securing IBM MQ

CN=ftagent, OU=MFT, O=<organisation>, L=<location>, ST=<state>, C=<country>

2. Create a keystore.conf file to identify the location of the keystore and the certificate within it as
detailed in the appropriate Quick Start Guide.

2. Configuring message protection

About this task
You should define a security policy for the data queue used by AGENT2, using the setmqspl command. In
this scenario the same user is used to start both agents, and therefore the signer and receiver DN are the
same and match the certificate we generated.

Procedure
1. Shut down the Managed File Transfer agents in preparation for protection using the fteStopAgent

command.
2. Create a security policy to protect the SYSTEM.FTE.DATA.AGENT2 queue.

setmqspl -m hubQM -p SYSTEM.FTE.DATA.AGENT2 -s SHA1 -a "CN=ftagent, OU=MFT,
O=<organisation>, L=<location>, ST=<state>, C=<country>"
-e AES128 -r "CN=ftagent, OU=MFT, O=<organisation>, L=<location>, ST=<state>, C=<country>"

3. Ensure the user running the Managed File Transfer Agent process has access to browse the system
policy queue and put messages on the error queue.

setmqaut -m hubQM -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p ftagent +browse

setmqaut -m hubQM -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p ftagent +put

4. Restart your Managed File Transfer agents using the fteStartAgent command.
5. Confirm that your agents restarted successfully by using the fteListAgents command and verifying

that the agents are in READY status.

Results
You are now able to submit transfers from AGENT1 to AGENT2, and the file contents will be transmitted
securely between the two agents.

Advanced Message Security installation overview
Install the Advanced Message Security component on various platforms.

Procedure
• Install Advanced Message Security on multiplatforms.
• Install IBM MQ Advanced for z/OS.
• Install IBM MQ Advanced for z/OS Value Unit Edition.

Related tasks
Uninstalling Advanced Message Security

Auditing for AMS on z/OS
Advanced Message Security (AMS) for z/OS provides a means for optional auditing of operations by
applications on policy protected queues. When enabled, IBM System Management Facility (SMF) audit

Securing IBM MQ 645

records are generated for the success and failure of these operations on policy-protected queues.
Operations audited include MQPUT, MQPUT1, and MQGET.

Auditing is disabled by default, however, you can activate auditing by configuring _AMS_SMF_TYPE
and _AMS_SMF_AUDIT in the configured Language Environment® _CEE_ENVFILE file for the AMS
address space. For more information, see Create procedures for Advanced Message Security. The
_AMS_SMF_TYPE variable is used to designate the SMF record type and is a number between 128 and
255. A SMF record type of 180 is usual, however is not mandatory. Auditing is disabled by specifying a
value of 0. The _AMS_SMF_AUDIT variable configures whether audit records are created for operations
that are successful, operations that fail, or both. The auditing options can also be dynamically changed
while AMS is active using operator commands. For more information, see Operating Advanced Message
Security.

The SMF record is defined using subtypes, with subtype 1 being a general auditing event. The SMF record
contains all data relevant to the request being processed.

The SMF record is mapped by the CSQ0KSMF macro (note the zero in the macro name), which is provided
in the target library SCSQMACS. If you are writing data-reduction programs for SMF data, you can include
this mapping macro to aid in the development and customization of SMF post-processing routines.

In the SMF records produced by Advanced Message Security for z/OS, the data is organized into sections.
The record consists of:

• a standard SMF header
• a header extension defined by Advanced Message Security for z/OS
• a product section
• a data section

The product section of the SMF record is always present in the records produced by Advanced Message
Security for z/OS. The data section varies based on subtype. Currently, one subtype is defined and
therefore a single data section is used.

SMF is described in the z/OS System Management Facilities manual (SA22-7630). Valid record types are
described in the SMFPRMxx member of your system PARMLIB data set. See SMF documentation for more
information.

Advanced Message Security audit report generator (CSQ0USMF)
Advanced Message Security for z/OS provides an audit report generator tool called CSQ0USMF which is
provided in the installation SCSQAUTH library. Sample JCL to run the CSQ0USMF utility called CSQ40RSM
is provided in the installation library SCSQPROC.

Before running the CSQ0USMF utility, the SMF type 180 records must be dumped from the system SMF
data sets to a sequential data set. As an example, this JCL dumps SMF type 180 records from an SMF
data set, and transfers them to a target data set:

//IFAUDUMP EXEC PGM=IFASMFDP
//INDD1 DD DSN=SYSn.MANn.syst,DISP=SHR
//OUTDD1 DD DSN=your.target.dataset,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
INDD(INDD1,OPTIONS(DUMP))
OUTDD(OUTDD1,TYPE(180))
/*

You must verify the actual SMF data set names used by your installation. The target data set for the
dumped records must have a record format of VBS, and a record length of 32760.

Note: If SMF logstreams are being used, you must use program IFASMFDL to dump a logstream out to a
sequential dataset. See Processing type 116 SMF records for an example of the JCL used.

646 Securing IBM MQ

The target data set can then be used as input to the CSQ0USMF utility to produce an AMS audit report. For
example:

//STEP1 EXEC PGM=CSQ0USMF,
// PARM=('/ -SMFTYPE 180 -M qmgr')
//STEPLIB DD DSN=thlqual.SCSQANLE,DISP=SHR
// DD DSN=thlqual.SCSQAUTH,DISP=SHR
//SMFIN DD DSN=your.target.dataset,DISP=SHR
//

The CSQ0USMF program accepts two optional parameters, which are listed in Table 104 on page 647:

Table 104. CSQ0USMF optional parameters

Parameter Value Description

SMFTYPE nnn The SMF record type applicable
to the audit report. The
CSQ0USMF program uses only
SMF records that match the
SMFTYPE value when generating
the report. If you do not specify
SMFTYPE, a default value of 180
is used.

M qmgr The IBM MQ queue manager
name applicable to the audit
report. If you do not specify the
-M parameter, the audit report
will include all audit records for
all queue managers represented
in the SMFIN data set.

Using keystores and certificates with AMS
To provide transparent cryptographic protection to IBM MQ applications, Advanced Message Security
uses the keystore file, where public key certificates and a private key are stored. On z/OS, a SAF key ring is
used instead of a keystore file.

In Advanced Message Security, users and applications are represented by public key infrastructure (PKI)
identities. This type of identity is used to sign and encrypt messages. The PKI identity is represented by
the subject's distinguished name (DN) field in a certificate that is associated with signed and encrypted
messages. For a user or application to encrypt their messages they require access to the keystore file
where certificates and associated private and public keys are stored.

On AIX, Linux, and Windows, the location of the keystore is provided in the keystore configuration file,
which is keystore.conf by default. Each Advanced Message Security user must have the keystore
configuration file that points to a keystore file. Advanced Message Security accepts the following format of
keystore files: .kdb, .jceks, .jks.

The default location of the keystore.conf file is:

• On IBM i, AIX and Linux: $HOME/.mqs/keystore.conf

• On Windows: %HOMEDRIVE%%HOMEPATH%\.mqs\keystore.conf

If you are using a specified keystore filename and location, you should specify this with the
MQS_KEYSTORE_CONF environment variable, as shown in the following example commands:

• For Java: java -DMQS_KEYSTORE_CONF=path/filename app_name
• For a C client and server:

– On AIX and Linux: export MQS_KEYSTORE_CONF=path/filename

Securing IBM MQ 647

– On Windows: set MQS_KEYSTORE_CONF=path\filename

Note: The path on Windows can, and should, specify the drive letter if more than one drive letter is
available.

Protecting sensitive information in the keystore.conf file
In order to access keystore file sensitive information, such as passwords, you must supply tokens so that
IBM MQ Advanced Message Security (AMS) can access the keystore and sign and encrypt messages.

You should protect the sensitive information contained in the keystore configuration file using the
runamscred command provided with AMS. See “Setting up AMS password protection for configuration
files” on page 666 for details on how to protect configuration files.

When protecting passwords, you should use a custom, strong encryption key. In order to access the
passwords during runtime, this encryption key must be supplied to AMS.

There are two methods of supplying the location of the encryption key file, which are, through the:

• amscred.keyfile configuration property in the keystore.conf file
• MQS_AMSCRED_KEYFILE environment variable

The order of precedence is MQS_AMSCRED_KEYFILE, followed by amscred.keyfile, and then the
default key.

Related concepts
“Sender distinguished names in AMS” on page 675
The sender distinguished names (DNs) identify users who are authorized to place messages on a queue. A
sender uses their certificate to sign a message, prior to placing the message on a queue.
“Recipient distinguished names in AMS” on page 676
The recipient distinguished names (DN) identify users who are authorized to retrieve messages from a
queue.

Structure of the keystore configuration file (keystore.conf) for AMS
The keystore configuration file (keystore.conf) points Advanced Message Security to the location of
the appropriate keystore.

Each of the following configuration file types has a prefix:
AMSCRED

Parameters that relate to the password protection system.
CMS

Certificate Management System, configuration entries are prefixed with: cms.
PKCS#11

Public Key Cryptography Standard #11, configuration entries are prefixed with: pkcs11.

PEM
Privacy Enhanced Mail format, configuration entries are prefixed with: pem.

JKS
Java KeyStore, configuration entries are prefixed with: jks.

JCEKS
Java Cryptographic Encryption KeyStore, configuration entries are prefixed with: jceks.

JCERACFKS
Java Cryptographic Encryption RACF keyring KeyStore, configuration entries are prefixed with:
jceracfks.

Important: From IBM MQ 9.0 the JCEKS.provider and JKS.provider values are ignored. The Bouncy
Castle provider is used, in conjunction with whichever JCE/JCE provision is supplied by the JRE in use. For
more information, see “Support for non-IBM JREs with AMS” on page 653.

648 Securing IBM MQ

Example structures for keystores:

CMS

cms.keystore = /dir/keystore_file
cms.certificate = certificate_label

PKCS#11

pkcs11.library = dir\cryptoki.dll
pkcs11.certificate = certificatelabel
pkcs11.token = tokenlabel
pkcs11.token_pin = tokenpin
pkcs11.secondary_keystore = dir\signers

pkcs11.encrypted = no

PEM

pem.private = /dir/keystore_file_private_key
pem.public = /dir/keystore_file_public_keys
pem.password = password

pem.encrypted = no

Java JKS

jks.keystore = dir/Keystore
jks.certificate = certificate_label
jks.encrypted = no
jks.keystore_pass = password
jks.key_pass = password
jks.provider = IBMJCE

Java JCEKS

jceks.keystore = dir/Keystore
jceks.certificate = certificate_label
jceks.encrypted = no
jceks.keystore_pass = password
jceks.key_pass = password
jceks.provider = IBMJCE

Java JCERACFKS

jceracfks.keystore = safkeyring://user/keyring
jceracfks.certificate = certificate_label

Java PKCS#11

pkcs11.library = dir\cryptoki.dll
pkcs11.certificate = certificatelabel
pkcs11.token = tokenlabel
pkcs11.token_pin = tokenpin
pkcs11.secondary_keystore = dir\signers
pkcs11.secondary_keystore_pass = password
pkcs11.encrypted = no

Securing IBM MQ 649

Table 105. Summary of parameters needed for each configuration file type

Parameters Required

Configuration file type

Java
(PKCS#11,
JKS, JCEKS,
and
JCERACFKS)

PEM
PKCS#11 CMS AMSCRED

keystore

private

public

password

library

certificat
e

token

token_pin

secondary_
keystore

secondary_
keystore_p
assword

encrypted

keystore_p
ass

key_pass

provider

keyfile You

Note that you can add comments using the # symbol.

Configuration file parameters are defined as follows:
keystore

CMS and Java configuration only.
Path to the keystore file for CMS, JKS, and JCEKS configuration.

URI to the RACF keyring for JCERACFKS configuration.

650 Securing IBM MQ

Important:

• The path to the keystore file must not include the file extension.

• The URI to the RACF keyring must be in the form:

safkeyring://user/keyring

where:

– user is the user id that owns the keyring
– keyring is the keyring name.

private
PEM configuration only.
File name of a file that contains private key and certificate in PEM format.

public
PEM configuration only.
File name of a file that contains trusted public certificates in PEM format.

password
PEM configuration only.
Password that is used to decrypt an encrypted private key.

You should protect this field using the native AMS password protection tool; see
“Protecting passwords” on page 652

library
PKCS#11 only.
Path name of the PKCS#11 library.

certificate
CMS, PKCS#11 and Java configuration only.
Certificate label.

token
PKCS#11 only.
Token label.

token_pin
PKCS#11 only.
PIN to unlock the token.
For Java operations only; you should protect this field using the Java AMS password protection tool;
see “Protecting passwords” on page 652.

For Native operations only; you should protect this field using the native AMS password
protection tool; see “Protecting passwords” on page 652.

secondary_keystore
PKCS#11 only.
Path name of the CMS keystore, provided without the .kdb extension, that contains anchor
certificates (root certificates) required by certificates stored on the PKCS #11 token. The secondary
keystore can also contain certificates that are intermediate in the trust chain, as well as recipient
certificates that are defined in the privacy security policy. This CMS keystore must be accompanied by
a stash file which must be located in the same directory as the secondary keystore.
For Java environments a JKS keystore is required and you must provide a
secondary_keystore_password.

secondary_keystore_password
Java PKCS#11 only.

Securing IBM MQ 651

Password for the JKS keystore provided through the secondary_keystore property. You should
protect this field using the Java AMS password protection tool; see “Protecting passwords” on page
652.

encrypted
Java and, from IBM MQ 9.3.0, PKCS#11 and PEM only.
Status of the password.

keystore_pass
Java configuration only.
Password for the keystore file.
For Java operations only. You should protect this field using the Java AMS password protection tool;
see “Protecting passwords” on page 652.

key_pass
Java configuration only.
Password for the private key of the user.
For Java operations only; you should protect this field using the Java AMS password protection tool;
see “Protecting passwords” on page 652.

keyfile
Provides the location of the initial key to use when protecting or decrypting passwords contained in
this configuration file; see “Protecting passwords” on page 652

provider
Java configuration only.
The Java security provider that implements cryptographic algorithms required by the keystore
certificate.

Important: Information that is stored in the keystore is crucial for the secure flow of data that is sent
by using IBM MQ. Security administrators must pay particular attention when they are assigning file
permissions to these files.

Protecting passwords
You should protect the passwords and other sensitive information contained in the keystore.conf file.
For more information, see runamscred.

Example of the keystore.conf file:

Native AMS application configuration
cms.keystore = c:\Documents and Settings\Alice\AliceKeystore
cms.certificate = AliceCert

Java AMS application configuration
jceks.keystore = c:/Documents and Settings/Alice/AliceKeystore
jceks.certificate = AliceCert
jceks.encrypted = no
jceks.keystore_pass = passw0rd
jceks.key_pass = passw0rd
jceks.provider = IBMJCE

Related tasks
“Setting up AMS password protection for configuration files” on page 666

652 Securing IBM MQ

Storing keystore and private key passwords as plain text poses a security risk so Advanced Message
Security provides a tool that can scramble those passwords using a user's key.

Support for non-IBM JREs with AMS
IBM MQ classes for Java and IBM MQ classes for JMS support Advanced Message Security operation
when running with non-IBM JREs.

Advanced Message Security (AMS) implements Cryptographic Message Syntax (CMS). The CMS syntax is
used to digitally sign, digest, authenticate, or encrypt arbitrary message content.

From IBM MQ 9.0, the Advanced Message Security support in IBM MQ classes for Java and IBM MQ
classes for JMS uses the open source Bouncy Castle packages to support CMS. This means that these
classes can support Advanced Message Security operation when running with non-IBM JREs.

Before IBM MQ 9.0, Advanced Message Security was not supported in non-IBM JREs in Java clients.
Advanced Message Security support in the IBM MQ classes for Java and IBM MQ classes for JMS
depended on CMS support specifically provided by the IBM implementation of the Java Cryptography
Extensions (JCE). Because of this restriction, the functionality was only available when using a Java
runtime environment (JRE) that included the Java JCE provider.

Location and version numbering for Bouncy Castle JAR files
The Bouncy Castle JAR files that are needed for support for non-IBM JREs are included as part of the IBM
MQ classes for Java and IBM MQ classes for JMS installation package.

The Bouncy Castle JAR files used are the following files:
The provider JAR file, which is fundamental to Bouncy Castle operations.

For Continuous Delivery from IBM MQ 9.3.5, this JAR file is called bcprov-
jdk18on.jar.

For Long Term Support and Continuous Delivery before IBM MQ 9.3.5, this JAR file is
called bcprov-jdk15to18.jar.

The "PKIX" JAR file, which contains the support for CMS operations that are used by Advanced
Message Security.

For Continuous Delivery from IBM MQ 9.3.5, this JAR file is called bcpkix-
jdk18on.jar.

For Long Term Support and Continuous Delivery before IBM MQ 9.3.5, this JAR file is
called bcpkix-jdk15to18.jar.

The "util" JAR file, which contains classes used by the other Bouncy Castle JAR files.
For Continuous Delivery from IBM MQ 9.3.5, this JAR file is called bcutil-

jdk18on.jar.

For Long Term Support and Continuous Delivery before IBM MQ 9.3.5, this JAR file is
called bcutil-jdk15to18.jar.

Dependencies
The IBM MQ 9.1 and later classes have been tested with IBM JREs and Oracle JREs. They are also likely
to run successfully under any J2SE-compliant JRE. However, you should note the following dependencies:

• There are no changes to Advanced Message Security configuration.
• The Bouncy Castle classes are used only for CMS operations. All other security-related operations, for

example keystore access, the actual encryption of data, and calculation of signature checksums use the
functionality that is provided by the JRE.

Important: For this reason, the JRE used must include a JCE provider implementation.

Securing IBM MQ 653

https://tools.ietf.org/html/rfc5652
https://bouncycastle.org/

• To use some strong encryption algorithms, you might need to install the unrestricted policy files for the
JRE's JCE implementation.

Refer to the JRE documentation for more details.
• If you have enabled Java security:

– Add java.security.SecurityPermissioninsertProvider.BC to the application so that the
Bouncy Castle classes can be used as a security provider.

– Grant java.security.AllPermission to the Bouncy Castle JAR files.

For Continuous Delivery from IBM MQ 9.3.5, these files are:

mq_install_dir/java/lib/bcutil-jdk18on.jar
mq_install_dir/java/lib/bcpkix-jdk18on.jar
mq_install_dir/java/lib/bcprov-jdk18on.jar

For Long Term Support and Continuous Delivery before IBM MQ 9.3.5

mq_install_dir/java/lib/bcutil-jdk15to18.jar
mq_install_dir/java/lib/bcpkix-jdk15to18.jar
mq_install_dir/java/lib/bcprov-jdk15to18.jar

Related concepts
What is installed for IBM MQ classes for JMS
What is installed for IBM MQ classes for Java

Message Channel Agent (MCA) interception and AMS
MCA interception enables a queue manager running under IBM MQ to selectively enable policies to be
applied for server connection channels.

MCA interception allows clients that remain outside AMS to still be connected to a queue manager and
their messages to be encrypted and decrypted.

MCA interception is intended to provide AMS capability when AMS cannot be enabled at the client. Note
that using MCA interception and an AMS-enabled client leads to double-protection of messages which
might be problematic for receiving applications. For more information, see “Disabling Advanced Message
Security at the client” on page 657.

Note: MCA interceptors are not supported for AMQP or MQTT channels.

Keystore configuration file
By default, the keystore configuration file for MCA interception is keystore.conf and is located in
the .mqs directory in the HOME directory path of the user who started the queue manager or the listener.
The keystore can also be configured by using the MQS_KEYSTORE_CONF environment variable. For more
information about configuring the AMS keystore, see “Using keystores and certificates with AMS” on page
647.

To enable MCA interception, you must provide the name of a channel that you want to use in the keystore
configuration file. For MCA Interception, only a cms keystore type can be used.

See “MCA interception example for AMS” on page 655 for an example of setting up MCA interception.

Attention: You must complete client authentication and encryption on the selected channels,
for example, by using SSL and SSLPEER or CHLAUTH TYPE(SSLPEERMAP), to ensure that only
authorized clients can connect and use this capability.

654 Securing IBM MQ

If your enterprise uses IBM i, and you selected a commercial Certificate Authority (CA) to sign your
certificate, the Digital Certificate Manager creates a certificate request in PEM (Privacy-Enhanced Mail)
format. You must forward the request to your chosen CA.

To do this, you must use the following command to select the correct certificate for the channel specified
in channelname:

pem.certificate.channel.channelname

MCA interception example for AMS
An example task on how you set up an AMS MCA interception.

Before you begin
Attention: You must complete client authentication and encryption on the selected channels,
for example, by using SSL and SSLPEER or CHLAUTH TYPE(SSLPEERMAP), to ensure that only
authorized clients can connect and use this capability.

If your enterprise uses IBM i, and you selected a commercial Certificate Authority (CA) to sign your
certificate, the Digital Certificate Manager creates a certificate request in PEM (Privacy-Enhanced Mail)
format. You must forward the request to your chosen CA.

About this task
This task takes you through the process of setting up your system to use MCA interception, then verifying
the setup.

Note: IBM MQ, includes the AMS interceptors and dynamically enables them in the MQ client and server
runtime environments.

Attention:

• Replace userID in the code with your user ID.
• The following procedure does not work as expected in IBM MQ unless the AMS interception is

deactivated on the client.

Procedure
1. Create the key database and certificates by using the following commands to create a shell script.

Also, change the INSTLOC and KEYSTORELOC or run the required commands. Note that you might
not need to create the certificate for bob.

INSTLOC=/opt/mqm
KEYSTORELOC=/home/userID/var/mqm
mkdir -p $KEYSTORELOC
chmod -R 777 $KEYSTORELOC
chown -R mqm:mqm $KEYSTORELOC
export PATH=$PATH:$INSTLOC/gskit8/bin
echo "PATH = $PATH"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$INSTLOC/gskit8/lib64

runmqakm -keydb -create -db $KEYSTORELOC/alicekey.kdb -pw passw0rd -stash
runmqakm -keydb -create -db $KEYSTORELOC/bobkey.kdb -pw passw0rd -stash
runmqakm -cert -create -db $KEYSTORELOC/alicekey.kdb -pw passw0rd \
-label alice_cert -dn "cn=alice,O=IBM,c=IN" -default_cert yes
runmqakm -cert -create -db $KEYSTORELOC/bobkey.kdb -pw passw0rd \
-label bob_cert -dn "cn=bob,O=IBM,c=IN" -default_cert yes

2. Share the certificates between the two key databases so that each user can successfully identify the
other.

It is important that you use the method described for sharing certificates in the Quick Start Guide, for
the platform your enterprise uses:

Securing IBM MQ 655

Windows
Task 5 Sharing certificates

AIX and Linux
Task 5 Sharing certificates

Java clients
Task 5 Sharing certificates

3. Create keystore.conf with the following configuration: Keystore.conf location: /home/
userID/ssl/ams1/

cms.keystore = /home/userID/ssl/ams1/alicekey
cms.certificate.channel.SYSTEM.DEF.SVRCONN = alice_cert

Attention:

a. The keystore must be on the system where the queue manager is.
b. You must specify a specific channel for cms.certificate to enable MCA intervention,

and then the queue manager performs AMS operations on applications connecting through
that channel to queues with policies set.

4. Create and start queue manager AMSQMGR1
5. Define a TCP listener using an available port number under QMGR control.

For example:

DEFINE LISTENER(MY.LISTENER) TRPTYPE(TCP) PORT(14567) CONTROL(QMGR)

6. Start the listener and verify that it started correctly.
For example:

START LISTENER(MY.LISTENER)
DISPLAY LSSTATUS(MY.LISTENER) PORT

7. Stop the queue manager.
8. Set the keystore:

export MQS_KEYSTORE_CONF=/home/userID/ssl/ams1/keystore.conf

9. Start the queue manager on the same shell, so that the MQS_KEYSTORE_CONF environment variable
is available to the queue manager.

10. Set the security policy and verify:

setmqspl -m AMSQMGR1 -s SHA256 -e AES256 -p TESTQ -a "CN=alice,O=IBM,C=IN" \
-r "CN=alice,O=IBM,C=IN"
dspmqspl -m AMSQMGR1

See setmqspl and dspmqspl for more information.
11. Set the MQSERVER environment variable:

export MQSERVER='SYSTEM.DEF.SVRCONN/TCP/127.0.0.1(14567)'

12. Remove the security policy and verify the result:

setmqspl -m AMSQMGR1 -p TESTQ -remove
dspmqspl -m AMSQMGR1

13. Browse the queue from your IBM MQ 9.3 installation:

/opt/mq93/samp/bin/amqsbcg TESTQ AMSQMGR1

The browse output shows the messages in encrypted format.
14. Set the security policy and verify the result:

656 Securing IBM MQ

setmqspl -m AMSQMGR1 -s SHA256 -e AES256 -p TESTQ -a "CN=alice,O=IBM,C=IN"
-r "CN=alice,O=IBM,C=IN"
dspmqspl -m AMSQMGR1

15. Run amqsgetc from your IBM MQ 9.3 installation:

/opt/mqm/samp/bin/amqsgetc TESTQ TESTQMGR

Related concepts
“Structure of the keystore configuration file (keystore.conf) for AMS” on page 648
The keystore configuration file (keystore.conf) points Advanced Message Security to the location of
the appropriate keystore.
Related reference
“Known limitations of AMS” on page 607
There are a number of IBM MQ options that are either not supported, or have limitations for Advanced
Message Security.

Disabling Advanced Message Security at the client
You need to disable IBM MQ Advanced Message Security (AMS) if you are using an IBM MQ
client to connect to a queue manager from an earlier version of the product and a 2085
(MQRC_UNKNOWN_OBJECT_NAME) error is reported.

About this task
IBM MQ Advanced Message Security (AMS) is automatically enabled in an IBM MQ client and so, by
default, the client tries to check the security policies for objects at the queue manager.

If this error is reported, when you are trying to connect to a queue manager from an earlier version of the
product, you can disable AMS as follows:

• For Java clients, in any of the following ways:

– By setting an environment variable AMQ_DISABLE_CLIENT_AMS.
– By setting the Java system property com.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS.
– By using the DisableClientAMS property, under the Security stanza in the mqclient.ini file.

• For C clients, by setting an environment variable MQS_DISABLE_ALL_INTERCEPT.

Note: You cannot use the AMQ_DISABLE_CLIENT_AMS environment variable for C clients. You need to
use the MQS_DISABLE_ALL_INTERCEPT environment variable instead.

Procedure
• To disable AMS at the client, use one of the following options:

AMQ_DISABLE_CLIENT_AMS environment variable
You need to set this variable in the following cases:

– If you are using a Java runtime environment (JRE) other than the IBM Java runtime environment
(JRE)

– If you are using an IBM MQ IBM MQ classes for JMS or IBM MQ classes for Java client.

Create the AMQ_DISABLE_CLIENT_AMS environment variable and set it to TRUE in the
environment where the application is running. For example:

export AMQ_DISABLE_CLIENT_AMS=TRUE

Java system property com.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS
For IBM MQ classes for JMS and IBM MQ classes for Java clients, you can set the Java system
property com.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS to the value TRUE for the Java application.

Securing IBM MQ 657

For example, you can set the Java system property as a -D option when the Java command is
invoked:

java -Dcom.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS=TRUE
-cp <MQ_INSTALLATION_PATH>/java/lib/com.ibm.mq.jakarta.client.jar
my.java.applicationClass

java -Dcom.ibm.mq.cfg.AMQ_DISABLE_CLIENT_AMS=TRUE -cp <MQ_INSTALLATION_PATH>/
java/lib/com.ibm.mq.allclient.jar my.java.applicationClass

Alternatively, you can specify the Java system property within a JMS configuration file,
jms.config, if the application uses this file.

MQS_DISABLE_ALL_INTERCEPT environment variable
You need to set this environment variable if you are using IBM MQ with native clients and you need
to disable AMS at the client.
Create the environment variable MQS_DISABLE_ALL_INTERCEPT and set it to TRUE in the
environment where the client is running. For example:

export MQS_DISABLE_ALL_INTERCEPT =TRUE

You can use the MQS_DISABLE_ALL_INTERCEPT environment variable for C clients only. For Java
clients, you need to use the AMQ_DISABLE_CLIENT_AMS environment variable instead.

DisableClientAMS property in the mqclient.ini file
You can use this option for IBM MQ classes for JMS and IBM MQ classes for Java clients, and for C
clients.
Add the property name DisableClientAMS under the Security stanza the mqclient.ini file
as shown in the following example:

Security:
DisableClientAMS=Yes

You can also enable AMS as shown in the following example:

Security:
DisableClientAMS=No

What to do next
For more information on problems with opening AMS protected queues, see Problems opening protected
queues when using AMS with JMS.

Related concepts
“Message Channel Agent (MCA) interception and AMS” on page 654
MCA interception enables a queue manager running under IBM MQ to selectively enable policies to be
applied for server connection channels.
Related tasks
IBM MQ MQI client configuration file, mqclient.ini
Related reference
The IBM MQ classes for JMS configuration file

Certificate requirements for AMS
Certificates must have an RSA public key in order to be used with Advanced Message Security.

For more information about different public key types and how to create them, see “Digital certificates
and CipherSpec compatibility in IBM MQ” on page 46.

658 Securing IBM MQ

Key usage extensions
Key usage extensions place additional restrictions on the way a certificate can be used.

In Advanced Message Security, the key usage of X.509 v3 certificates must be set in accordance with the
RFC 5280 specification.

For the quality of protection integrity, if certificate key usage extensions are set, that set must include at
least one of the two:

• nonRepudiation
• digitalSignature

For the quality of protection privacy, if certificate key usage extensions are set, that set must include:

• keyEncipherment

For the quality of protection confidentiality, if certificate key usage extensions are set, that set must
include:

• dataEncipherment

Extended key usage further refines key usage extensions. For all qualities of protection, if certificate
extended key usage is set, the set must include:

• emailProtection

Related concepts
“Quality of protection in AMS” on page 678
Advanced Message Security data-protection policies imply a quality of protection (QOP).

Certificate validation methods in AMS
You can use Advanced Message Security to detect and reject revoked certificates so that messages on
your queues are not protected using certificates that do not fulfill security standards.

AMS allows you to verify a certificate validity by using either Online Certificate Status Protocol (OCSP) or
certificate revocation list (CRL).

AMS can be configured for either OCSP or CRL checking or both. If both methods are enabled, then, for
performance reasons, AMS uses OCSP for revocation status first. If the revocation status of a certificate is
undetermined after the OCSP checking, AMS uses the CRL checking.

Note that both OCSP and CRL checking are enabled by default.

Related concepts
“Online Certificate Status Protocol (OCSP) in AMS” on page 659
Online Certificate Status Protocol (OCSP) determines whether a certificate has been revoked and,
therefore, helps to determine whether the certificate can be trusted. OCSP is enabled by default.
“Certificate revocation lists (CRLs) in AMS” on page 662
CRLs holds a list of certificates that have been marked by Certificate Authority (CA) as no longer trusted
for a variety of reasons, for example, the private key has been lost or compromised.

Online Certificate Status Protocol (OCSP) in AMS
Online Certificate Status Protocol (OCSP) determines whether a certificate has been revoked and,
therefore, helps to determine whether the certificate can be trusted. OCSP is enabled by default.

OCSP is not supported on IBM i sytems.

Securing IBM MQ 659

Enabling OCSP checking in native interceptors of Advanced Message Security
Online Certificate Status Protocol (OCSP) checking in Advanced Message Security is enabled by default,
based on information in the certificates being used.

Procedure
Add the following options to the keystore configuration file:

Note: All the OCSP stanza are optional and can be specified independently.

Option Description

ocsp.enable=off Enable the OCSP checking if the certificate being
checked has an Authority Info Access (AIA)
Extension with an PKIX_AD_OCSP access method
containing a URI of where the OCSP Responder is
located.

Possible values: on or off.

ocsp.url=responder_URL The URL address of OCSP responder. If this
option is omitted then non-AIA OCSP checking is
disabled.

ocsp.http.proxy.host=OCSP_proxy The URL address of the OCSP proxy server. If this
option is omitted then a proxy is not used for non-
AIA online certificate checks.

ocsp.http.proxy.port=port_number The OCSP proxy server's port number. If this option
is omitted then the default port of 8080 is used.

ocsp.nonce.generation=on/off Generate nonce when querying OCSP.

The default value is off.

ocsp.nonce.check=on/off Check nonce after receiving a response from OCSP.

The default value is off.

ocsp.nonce.size=8 Nonce size in bytes.

ocsp.http.get=on/off Specify HTTP GET as your request method. If this
option is set to off, HTTP POST is used. The
default value is off.

ocsp.max_response_size=20480 Maximum size of response from the OCSP
responder provided in bytes.

ocsp.cache_size=100 Enable internal OCSP response caching and set the
limit for the number of cache entries.

ocsp.timeout=30 Waiting time for a server response, in seconds,
after which Advanced Message Security times-out.

ocsp.unknown=ACCEPT Defines the behavior when an OCSP server cannot
be reached within a timeout period. Possible
values:

• ACCEPT Allows the certificate
• WARN Allows the certificate and logs a warning
• REJECT Prevents the certificate from being used

and logs an error

660 Securing IBM MQ

Enabling OCSP checking in Java in AMS
To enable OCSP checking for Java in Advanced Message Security, modify the java.security file or the
keystore configuration file.

About this task
There are two ways of enabling OCSP checking in Advanced Message Security:

Using java.security
Check whether your certificate contains an Authority Information Access (AIA) certificate extension.

Procedure
1. If AIA is not set up or you want to override your certificate, edit the $JAVA_HOME/lib/security/
java.security file with the following properties:

ocsp.responderURL=http://url.to.responder:port
ocsp.responderCertSubjectName=CN=Example CA,O=IBM,C=US

and enable OCSP checking by editing the $JAVA_HOME/lib/security/java.security file with
the following line:

ocsp.enable=true

2. If AIA is set up, enable OCSP checking by editing the $JAVA_HOME/lib/security/java.security
file with the following line:

ocsp.enable=true

What to do next
If you are using Java Security Manager, too complete the configuration, add the following Java permission
to lib/security/java.policy

permission java.security.SecurityPermission "getProperty.ocsp.enable";

Using keystore.conf

Procedure
Add the following attribute to the configuration file:

ocsp.enable=true

Important: Setting this attribute in the configuration file overrides java.security settings.

What to do next
To complete the configuration, add the following Java permissions to lib/security/java.policy:

permission java.security.SecurityPermission "getProperty.ocsp.enable";
permission java.security.SecurityPermission "setProperty.ocsp.enable";

Securing IBM MQ 661

Certificate revocation lists (CRLs) in AMS
CRLs holds a list of certificates that have been marked by Certificate Authority (CA) as no longer trusted
for a variety of reasons, for example, the private key has been lost or compromised.

To validate certificates, Advanced Message Security constructs a certificate chain that consists of the
signer's certificate and the certificate authority's (CA's) certificate chain up to a trust anchor. A trust
anchor is a trusted keystore file that contains a trusted certificate or a trusted root certificate that
is used to assert the trust of a certificate. AMS verifies the certificate path using a PKIX validation
algorithm. When the chain is created and verified, AMS completes the certificate validation which includes
validating the issue and expiry date of each certificate in the chain against the current date, checking
if the key usage extension is present in the End Entity certificate. If the extension is appended to the
certificate, AMS verifies whether digitalSignature or nonRepudiation are also set. If they are not, the
MQRC_SECURITY_ERROR is reported and logged. Next, AMS downloads CRLs from files or from LDAP
depending on what values were specified in the configuration file. Only CRLs that are encoded in DER
format are supported by AMS. If no CRL related configuration is found in the keystore configuration
file, AMS performs no CRL validity check. For each CA certificate, AMS queries LDAP for CRLs using
Distinguished Names of a CA to find its CRL. The following attributes are included in the LDAP query:

certificateRevocationList,
certificateRevocationList;binary,
authorityRevocationList,
authorityRevocationList;binary
deltaRevocationList
deltaRevocationList;binary,

Note: deltaRevocationList is supported only when it is specified as distribution points.

Enabling certificate validation and certificate revocation list support in native interceptors
You must modify the keystore configuration file so that Advanced Message Security can download CLRs
from the Lightweight Directory Access Protocol (LDAP) server.

About this task

Enabling certificate validation and certificate revocation list support in native interceptors is
not supported for Advanced Message Security on IBM i.

Procedure
Add the following options to the configuration file:

Note: All the CRL stanza are optional and can be specified independently.

Option Description

crl.ldap.host=host_name LDAP server host name.

crl.ldap.port=port_number LDAP server port number.

You can specify up to 11 servers. Multiple LDAP
hosts are used to ensure transparent failover in
case of LDAP connection failure. It is expected
that all LDAP servers are replicas and contain
the same data. When the AMS Java interceptor
successfully connects to an LDAP server, it does
not attempt to download CRLs from the remaining
servers provided.

crl.cdp=off Use this option to check or use
CRLDistributionPoints extensions in certificates.

662 Securing IBM MQ

Option Description

crl.ldap.version=3 LDAP protocol version number. Possible values: 2
or 3.

crl.ldap.user=cn=username Log in to the LDAP server. If this value is not
specified, CRL attributes in LDAP must be world-
readable

crl.ldap.pass=password Password for the LDAP server.

crl.ldap.encrypted=no/yes Whether the clr.ldap.pass is encrypted or not.
See Protecting passwords in AMS configuration
files for more information.

crl.ldap.cache_lifetime=0 LDAP cache lifetime in seconds. Possible values:
0-86400.

crl.ldap.cache_size=50 LDAP cache size. This option can be specified only
if the crl.ldap.cache_lifetime value is larger
than 0.

crl.http.proxy.host=some.host.com Http proxy server port for CDP CRL retrieval.

crl.http.proxy.port=8080 Http proxy server port number.

crl.http.max_response_size=204800 The maximum size of CRL, in bytes, that can be
retrieved from an HTTP server that is accepted by
GSKit.

crl.http.timeout=30 Waiting time for a server response, in seconds,
after which AMS times outs.

crl.http.cache_size=0 HTTP cache size, in bytes.

crl.unknown=ACCEPT Defines the behavior when a CRL server cannot be
reached within a timeout period. Possible values:

• ACCEPT Allows the certificate
• WARN Allows the certificate and logs a warning
• REJECT Prevents the certificate from being used

and logs an error

Enabling certificate revocation list support in Java in AMS
To enable CRL support in Advanced Message Security, you must modify the keystore configuration file to
allow AMS to download CRLs from the Lightweight Directory Access Protocol (LDAP) server and configure
the java.security file.

Procedure
1. Add the following options to the configuration file:

Header Description

crl.ldap.host=host_name LDAP host name.

Securing IBM MQ 663

Header Description

crl.ldap.port=port_number LDAP server port number.

You can specify up to 11 servers. Multiple LDAP
hosts are used to ensure transparent failover in
case of LDAP connection failure. It is expected
that all LDAP servers are replicas and contain
the same data. When the AMS Java interceptor
successfully connects to an LDAP server, it
does not attempt to download CRLs from the
remaining servers provided.

Java does not use crl.ldap.user and
crl.ldaworldp.pass values. It does not use a
user and password when connecting to an LDAP
server. As a consequence, CRL attributes in LDAP
must be world-readable.

crl.cdp=on/off Use this option to check or use
CRLDistributionPoints extensions in certificates.

2. Modify the JRE/lib/security/java.security file with the following properties:

Property Name Description

com.ibm.security.enableCRLDP This property takes the following values: true,
false.

If it is set to true, when doing certificate
revocation check, CRLs are located using the
URL from CRL distribution points extension of the
certificate.

If it is set to false or not set, checking CRL
by using the CRL distribution points extension is
disabled.

ibm.security.certpath.ldap.cache.life
time

This property can be used to set the lifetime of
entries in the memory cache of LDAP CertStore
to a value in seconds. A value of 0 disables the
cache; -1 means unlimited lifetime. If not set, the
default lifetime is 30 seconds.

com.ibm.security.enableAIAEXT This property takes the following values: true,
false.

If it is set to true, any Authority Information
Access extensions that are found within the
certificates of the certificate path being built
are examined to determine whether they contain
LDAP URIs. For each LDAP URI found, an
LDAPCertStore object is created and added to
the collection of CertStores that is used to locate
other certificates that are required to build the
certificate path.

If it is set to false or not set, additional
LDAPCertStore objects are not created.

664 Securing IBM MQ

Enabling certificate revocation lists (CRLs) on z/OS
Advanced Message Security supports Certificate Revocation List (CRL) checking of the digital certificates
used to protect data messages

About this task
When enabled, Advanced Message Security will validate recipient certificates when messages are put to a
privacy protected queue, and validate sender certificates when messages are retrieved from a protected
queue (integrity or privacy). Validation in this case includes verification that relevant certificates are not
registered in a relevant CRL.

Advanced Message Security uses IBM System SSL services to validate sender and recipient certificates.
Detailed documentation regarding System SSL certificate validation can be found in the z/OS
Cryptographic Services System Secure Sockets Layer Programming manual (SC24-5901).

To enabled CRL checking, you specify the location of a CRL configuration file via the CRLFILE DD in the
started task JCL for the AMS address space. A sample CRL configuration file that can be customized is
provided in thlqual.SCSQPROC(CSQ40CRL). Settings permitted in this file are as follows:

Table 106. Advanced Message Security CRL configuration variables

Variable Valid values Description

crl.ldap.host[.n] hostname -or- hostname:port The ipaddr/hostname of your
LDAP server that hosts CRLs of
your issuer certificates. If you
do not specify a port number
for your LDAP server, the port
number specified by crl.ldap.port
is used.

crl.ldap.port port The TCP/IP port number of your
LDAP server.

crl.ldap.user ldap_user The LDAP user name to use when
connecting to the LDAP server.

crl.ldap.pass ldap_password The LDAP password associated
with the crl.ldap.user.

You can specify multiple LDAP server host names and ports as follows:

crl.ldap.host.1 = hostname -or hostname:port
crl.ldap.host.2 = hostname -or hostname:port
crl.ldap.host.3 = hostname -or hostname:port

You can specify up to 10 host names. If you do not specify a port number for your LDAP servers, the port
number specified by crl.ldap.port is used. Each LDAP server must use the same crl.ldap.user/password
combination for access.

When the CRLFILE DD is specified the configuration is loaded during initialization of the Advanced
Message Security address space and CRL checking is enabled. If the CRLFILE DD is not specified, or
the CRL configuration file is unavailable, or invalid, CRL checking is disabled.

AMS performs a CRL check using IBM System SSL certificate validation services as follows:

Table 107. Advanced Message Security CRL checks

Operation Quality of protection Certificate(s) checked

PUT Privacy Recipient(s)

GET Integrity/Privacy Sender

Securing IBM MQ 665

If a message operation fails a CRL check Advanced Message Security performs the following actions:

Table 108. Advanced Message Security CRL check failure behavior

Operation CRL check failure

PUT The message is not put to the target queue. A
completion code of MQCC_FAILED and a reason
code of MQRC_SECURITY_ERROR is returned to
the application.

GET The message is removed from the target queue
and moved to the system protection error queue.
A completion code of MQCC_FAILED and a reason
code of MQRC_SECURITY_ERROR is returned to
the application.

AMS for z/OS uses IBM System SSL services to validate certificates, which includes CRL and trust
checking. IBM System SSL provides environment variable GSK_CRL_SECURITY_LEVEL to moderate the
operation of CRL checking. For example:

GSK_CRL_SECURITY_LEVEL=MEDIUM

This variable is documented in the z/OS Cryptographic Services System Secure Sockets Layer
Programming manual. Valid assignments include:

• LOW - Certificate validation will not fail if the LDAP server cannot be contacted.
• MEDIUM- Certificate validation requires the LDAP server to be contactable, but does not require a CRL

to be defined.
• HIGH - Certificate validation requires the LDAP server to be contactable and a CRL to be defined.

The IBM System SSL default is MEDIUM. You can set this variable in the configuration file specified
via the ENVARS DD in the started task JCL for the AMS address space. A sample environment variable
configuration file is provided in thlqual.SCSQPROC(CSQ40ENV).

Note: It is the responsibility of administrators to ensure relevant LDAP services are available and to
maintain CRL entries for relevant Certificate Authorities.

Setting up AMS password protection for configuration files
Storing keystore and private key passwords as plain text poses a security risk so Advanced Message
Security provides a tool that can scramble those passwords using a user's key.

Before you begin
The keystore.conf file owner must ensure that only the file owner is entitled to read and write to
the file. The passwords protection described in this topic, is only an additional measure of protection.
Additionally, you should perform this procedure on a secure system.

Ensure you use the correct runamscred variant for the type of AMS client that is going to be
reading the configuration file. If the AMS client is a:

• Java client, you should use the Java runamscred command, which is located in <IBM MQ
installation root>/java/bin

• MQI client, you should use the MQI runmqascred command which is located in <IBM MQ
installation root>/bin

Procedure
1. Edit the keystore.conf files to include all the required information, including the passwords that

require protecting.

666 Securing IBM MQ

jceks.keystore = c:/Documents and Settings/Alice/AliceKeystore
jceks.certificate = AliceCert
jceks.encrypted = no
jceks.keystore_pass = passw0rd
jceks.key_pass = passw0rd
jceks.provider = IBMJCE

2. Place the encryption key to encrypt the passwords inside a file accessible to the user protecting the
keystore.conf file.

This key must be the same key that is going to be used by the AMS client later:

ThisIsAnExampleEncryptionKey

3. Run the runamscred command, to protect the keystore.conf file providing the encryption key file.

runamscred -f <location of keystore.conf> -sf <location of encryption keyfile>

4. Verify that the keystore.conf file has been protected and contains encrypted passwords.

Example
The following example shows what a protected keystore.conf file looks like:

jceks.keystore = c:/Documents and Settings/Alice/AliceKeystore
jceks.certificate = AliceCert
jceks.encrypted = yes
jceks.keystore_pass =
<AMS>1!62K/a4RinT+bks4RjFWx4A==!Vhi/RjIN2FH5qStUJ/0hsgKyn2IdMuhanemRRDrJq
HM=
jceks.key_pass =
<AMS>1!qmnxY++rsOUtZfDSgwcR1g==!VmWVREdVkNp1xYJstvuW64ph5vxxf7SPoqtsXxYh2
Tk=
jceks.provider = IBMJCE

Related information
runamscred: protect AMS keywords

Using certificates with AMS on z/OS

About this task
Advanced Message Security implements three levels of protection: integrity, confidentiality, and privacy.

With an integrity policy, messages are signed using the private key of the originator (the application doing
the MQPUT). Integrity provides detection of message modification, but the message text itself is not
encrypted.

With a confidentiality policy, the message is encrypted when it is put to the queue. The message is
encrypted using a symmetric key and an algorithm specified in the relevant Advanced Message Security
policy. The symmetric key itself is encrypted with the public key of each recipient (the application doing
the MQGET). Public keys are associated with certificates stored in key rings.

With a privacy policy, messages are both signed and encrypted.

When a message that is protected with privacy is dequeued by a recipient application doing an MQGET,
the message must be decrypted. Because it was encrypted using the recipient's public key, it must be
decrypted using the recipient's private key found in a key ring.

Use of SAF key rings with AMS on z/OS
Advanced Message Security (AMS) makes use of z/OS SAF key ring services to define and manage the
certificates needed for signing and encryption. Security products that are functionally equivalent to RACF
may be used instead of RACF if they provide the same level of support.

Efficient use of key rings can reduce the administration needed to manage the certificates.

Securing IBM MQ 667

After a certificate is generated (or imported), it must be connected to a key ring to become accessible. The
same certificate can be connected to more than one key ring.

Advanced Message Security uses two sets of key rings. One set consists of key rings owned by the
individual user IDs that originate or receive messages. Each key ring contains the private key associated
with the certificate of the owning user ID. The private key of each certificate is used to sign messages
for integrity protected or privacy protected queues. It is also used to decrypt messages from privacy
protected or confidentiality protected queues when receiving messages.

The other set is a single key ring owned by the AMS address space user. It contains the chain of signing CA
certificates necessary to validate the certificates of the message originator and recipients.

When privacy or confidentiality protection is used, the key ring owned by the AMS address space user
also contains the certificates of the message recipients. The public keys in these certificates are used to
encrypt the symmetric key that was used to encrypt the message data when the message was put to the
protected queue. When these messages are retrieved, the private key of relevant recipients is used to
decrypt the symmetric key which is then used to decrypt the message data.

Advanced Message Security uses a key ring name of drq.ams.keyring when searching for certificates and
private keys. This is the case for both the user and the AMS address space key rings.

For an illustration and further explanation of certificates and key ring, and their role in data protection,
refer to Summary of the certificate-related operations.

The private key used for signing and decryption can have any label but must be connected as the default
certificate.

Digital certificates and key rings are managed in RACF primarily by using the RACDCERT command.

For more information about certificates, labels, and the RACDCERT command, see the z/OS: Security
Server RACF Command Language Reference and the z/OS: Security Server RACF Security Administrator's
Guide.

Authorizing access to the RACDCERT command for AMS on z/OS
Authorization to use the RACDCERT command is a post-installation task that should have been completed
by your z/OS system programmer. This task involves granting relevant permissions to the Advanced
Message Security security administrator.

As a summary, these commands are needed to allow access to the RACF RACDCERT command:

RDEFINE FACILITY IRR.DIGTCERT.* UACC(NONE)
PERMIT IRR.DIGTCERT.* CLASS(FACILITY) ID(admin) ACCESS(CONTROL)
SETROPTS RACLIST(FACILITY) REFRESH

In this example, admin specifies the user ID of your security administrator, or any user you want to use
the RACDCERT command.

Creating the certificates and key rings for AMS users on z/OS
This section documents the steps required to create the certificates and key rings necessary for z/OS
users of Advanced Message Security (AMS), using a RACF Certificate Authority (CA).

Resolving problems with certificates when using Advanced Message Security on
z/OS
If you are having problems with certificates and missing entries in key stores you can enable a GSKIT
trace.

668 Securing IBM MQ

https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-command-language-reference
https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-command-language-reference
https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-security-administrators-guide
https://www.ibm.com/docs/en/zos/3.1.0?topic=racf-zos-security-server-security-administrators-guide

In the file referenced by the ENVARS DD in the AMS started task procedure, add:

GSK_TRACE_FILE=/u/... /gsktrace
GSK_TRACE=0xff

See Environment variables for more information.

For every access to the keystore, data is written to the trace file specified in GSK_TRACE_FILE.

To format the trace file use the command:

gsktrace inputtrace file > output_file

Scenario
A scenario of a sending application and a receiving application is used to explain the required steps.

In the examples that follow, user1 is the originator of a message and user2 is the recipient. The user ID
of the Advanced Message Security address space is WMQAMSD.

All of the commands in the examples shown here are issued from ISPF option 6 by the administrative user
ID admin.

Defining a local Certificate Authority certificate for AMS on z/OS

If you are using RACF as your CA, you must create a certificate authority certificate, if you have not
already done so. The command shown here creates a certificate authority (or signer) certificate. This
example creates a certificate called AMSCA to be used when creating subsequent certificates that reflect
the identity of Advanced Message Security users and applications.

This command may be modified, specifically SUBJECTSDN, to reflect the naming structure and
conventions used at your installation:

RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('AMSCA') O('ibm') C('us'))
KEYUSAGE(CERTSIGN) WITHLABEL('AMSCA')

Note: Certificates signed with this local certificate authority certificate show an issuer of
CN=AMSCA,O=ibm,C=us when listed with the RACDCERT LIST command.

Creating a digital certificate with a private key for AMS on z/OS

A digital certificate with a private key must be generated for each Advanced Message Security user. In the
example shown here, RACDCERT commands are used to generate certificates for user1 and user2, which
are signed with the local CA certificate identified by the label AMSCA.

RACDCERT ID(user1) GENCERT SUBJECTSDN(CN('user1') O('ibm') C('us'))
WITHLABEL('user1') SIGNWITH(CERTAUTH LABEL('AMSCA'))
KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN)

RACDCERT ID(user2) GENCERT SUBJECTSDN(CN('user2') O('ibm') C('us'))
WITHLABEL('user2') SIGNWITH(CERTAUTH LABEL('AMSCA'))
KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN)

RACDCERT ID(user1) ALTER (LABEL('user1')) TRUST
RACDCERT ID(user2) ALTER (LABEL('user2')) TRUST

The RACDCERT ALTER command is required to add the TRUST attribute to the certificate. When a
certificate is first created using this procedure, it has a different valid date range than the signing
certificate. As a result, RACF marks it as NOTRUST, which means that the certificate is not to be used. Use
the RACDCERT ALTER command to set the TRUST attribute.

The KEYUSAGE attributes HANDSHAKE, DATAENCRYPT and DOCSIGN must be specified for certificates
used by Advanced Message Security.

Securing IBM MQ 669

https://www.ibm.com/docs/en/zos/3.1.0?topic=programming-environment-variables

Table 109. RACDCERT KEYUSAGE values and indicators

KEYUSAGE Value Indicators Set

HANDSHAKE digitalSignature and keyEncipherment

DATAENCRYPT dataEncipherment

DOCSIGN nonRepudiation

CERTSIGN keyCertSign and cRLSign

Creating the RACF key rings for AMS on z/OS

The commands shown here create a key ring for RACF-defined user IDs user1, user2, and the Advanced
Message Security address space task user WMQAMSD. The key ring name is fixed by Advanced Message
Security and must be coded as shown, without quotes. The name is case-sensitive.

RACDCERT ID(user1) ADDRING(drq.ams.keyring)
RACDCERT ID(user2) ADDRING(drq.ams.keyring)
RACDCERT ID(WMQAMSD) ADDRING(drq.ams.keyring)

Connecting the certificates to the key rings for AMS on z/OS

Connect the user and CA certificates to the key rings:

RACDCERT ID(WMQAMSD) CONNECT(CERTAUTH LABEL('AMSCA')
RING(drq.ams.keyring))
RACDCERT ID(user1) CONNECT(ID(user1) LABEL('user1')
RING(drq.ams.keyring) DEFAULT USAGE(PERSONAL))
RACDCERT ID(user2) CONNECT(ID(user2) LABEL('user2')
RING(drq.ams.keyring) DEFAULT USAGE(PERSONAL))
RACDCERT ID(WMQAMSD) CONNECT(ID(user2) LABEL('user2')
RING(drq.ams.keyring) USAGE(SITE))

The certificate containing the private key used for decryption must be connected to the user's key ring as
the default certificate.

The RACDCERT USAGE(SITE) attribute prevents the private key from being accessible in the key ring,
while the RACDCERT USAGE(PERSONAL) attribute allows the private key to be used, if it exists. User2's
certificate must be connected to the Advanced Message Security address space key ring because its
public key is needed to encrypt messages as they are put to the queue. USAGE(SITE) limits exposure of
user2's private key.

The CERTAUTH certificate with label AMSCA must be connected to the Advanced Message Security
address space key ring because it was used to sign the certificate of user1, who is the message originator.
It is used to validate user1's signing certificate.

Key ring verification for AMS on z/OS

The key ring should appear as shown here, after all commands have been entered:

RACDCERT ID(user1) LISTRING(drq.ams.keyring)
Digital ring information for user USER1:
Ring:>drq.ams.keyring<:

Certificate Label Name Cert Owner USAGE DEFAULT
-------------------------------- ------------ -------- -------
user1 ID(USER1) PERSONAL YES

RACDCERT ID(user2) LISTRING(drq.ams.keyring)
Digital ring information for user USER2:
Ring:>drq.ams.keyring<:

Certificate Label Name Cert Owner USAGE DEFAULT

670 Securing IBM MQ

-------------------------------- ------------ -------- -------
user2 ID(USER2) PERSONAL YES

RACDCERT ID(WMQAMSD) LISTRING(drq.ams.keyring)
Digital ring information for user WMQAMSD:
Ring:>drq.ams.keyring<:

Certificate Label Name Cert Owner USAGE DEFAULT
-------------------------------- ------------ -------- -------
AMSCA CERTAUTH CERTAUTH NO
user2 ID(USER2) SITE NO

Listing the individual certificates also shows the ring association.

RACDCERT ID(user2) LIST(label('user2'))
Digital certificate information for user USER2:

Label: user2
Certificate ID: 2QfH8Pny9/LzpKKFmfFA
Status: TRUST
Start Date: 2010/05/03 22:59:53
End Date: 2011/05/04 22:59:52
Serial Number:>15<:
Issuer's Name:>OU=AMSCA.O=ibm.C=us<:
Subject's Name:>CN=user2.O=ibm.C=us<:
Key Usage: HANDSHAKE, DATAENCRYPT, DOCSIGN
Private Key Type: Non-ICSF
Private Key Size: 1024
Ring Associations:
Ring Owner: USER2
Ring:>drq.ams.keyring<:
Ring Owner: WMQAMSD
Ring:>drq.ams.keyring<:

To improve performance, the contents of the drq.ams.keyring associated with the AMS address space is
cached for the life of the address space. Changes to that key ring do not become effective automatically.
The administrator can refresh the cache by either:

• Stopping and restarting the queue manager.
• Using the z/OS MODIFY command:

F qmgrAMSM,REFRESH KEYRING

Related tasks
Operating Advanced Message Security

Summary of the certificate-related operations for AMS on z/OS
Figure 35 on page 672 illustrates the relationships between sending and receiving applications and
relevant certificates. The scenario illustrated involves remote queuing between two z/OS queue managers
using a data-protection policy of privacy. In Figure 35 on page 672, "AMS" indicates " Advanced Message
Security".

Securing IBM MQ 671

Figure 35. Application and certificate relationships

In this diagram, an application running as 'user1' puts a message to a remote queue managed by queue
manager CSQ1, intended to be retrieved by an application running as 'user2' from a local queue managed
by queue manager CSQ2. The diagram assumes an Advanced Message Security policy of privacy, which
means the message is both signed and encrypted.

Advanced Message Security intercepts the message when a put occurs and uses user2's certificate
(stored in the AMS address space user's key ring) to encrypt a symmetric key used to encrypt the
message data.

Note that user2's certificate is connected to the AMS address space user key ring with option
USAGE(SITE). This means the AMS address space user can access the certificate and public key, but
not the private key.

On the receiving end, Advanced Message Security intercepts the get issued by user2, and uses user2's
certificate to decrypt the symmetric key so that it can decrypt the message data. It then validates user1's
signature using the CA certificate chain of user1's certificate stored in the AMS address space user's key
ring.

Given this scenario, but with a data-protection policy of integrity, certificates for user2 would not be
required.

To use Advanced Message Security to enqueue messages on IBM MQ-protected queues having a message
protection policy of privacy or integrity, Advanced Message Security must have access to these data
items:

• The X.509 V2 or V3 certificate and private key for the user enqueuing the message.
• The chain of certificates used to sign the digital certificates of all message signers.
• If the data protection policy is privacy, the X.509 V2 or V3 certificate of the intended recipients. The

intended recipients are listed in the Advanced Message Security policy associated with the queue.

For processes and applications that run on z/OS, Advanced Message Security must have certificates in
two places:

672 Securing IBM MQ

• In a SAF-managed key ring associated with the RACF identity of the sending application (the application
that enqueues the protected message) or receiving application (if using privacy).

The certificate that Advanced Message Security locates is the default certificate, and must include the
private key. Advanced Message Security assumes the z/OS user identity of the sending application. That
is, it acts as a surrogate, so it can access the user's private key.

• In a SAF-managed key ring associated with the AMS address space user.

When sending messages protected with privacy, this key ring contains the public key certificates of the
message recipients. When receiving messages, it contains the chain of Certificate Authority certificates
needed to validate the message sender's signature.

The earlier examples shown have used RACF as the local CA. However, you may use another PKI provider
(Certificate Authority) at your installation. If you intend to use another PKI product, remember that the
private key and the certificate must be imported into a key ring associated with the z/OS RACF user IDs
that originate IBM MQ messages protected by Advanced Message Security.

You can use the RACF RACDCERT command as the mechanism to generate certificate requests, which can
be exported and sent to the PKI provider of your choice to be issued.

Here is a summary of the certificate-related steps:

1. Request the creation of a CA certificate, one in which RACF is the local CA. Omit this step if you are
using another PKI provider.

2. Generate user certificates signed by the CA.
3. Create the key rings for the users and the Advanced Message Security AMS address space ID.
4. Connect the user certificate to the user key ring with the default attribute.
5. Connect the recipients certificates to the Advanced Message Security AMS address space user key ring

using the usage(site) attribute (This step is necessary only for user certificates that will ultimately be
the recipients of privacy-protected messages).

6. Connect the CA certificate chains for message senders to the Advanced Message Security AMS
address space user key ring. (This step is necessary only for AMS tasks that will be verifying sender
signatures.)

Configuring a non-z/OS resident PKI for AMS
Advanced Message Security for z/OS, uses X.509 V3 digital certificates in the protection-processing of
messages placed on or received from IBM MQ queues. Advanced Message Security itself does not create
or manage the life cycle of these certificates; that function is provided by a public key infrastructure (PKI).
The examples in this publication that illustrate the use of certificates use z/OS Security Server RACF to fill
certificate requests.

Whether or not a z/OS or non-z/OS resident PKI is used, AMS for z/OS uses only key rings that are
managed by RACF or its equivalent. These key rings are based on Security Authorization Facility (SAF) and
are the repository used by AMS for z/OS to retrieve certificates for originators and recipients of messages
placed on or received from IBM MQ queues.

For messages that are originated from z/OS, which are protected by either integrity or encryption policy,
the certificate and private key of the originating user ID must be stored in an SAF-managed key ring that is
associated with the z/OS user ID of the message originator.

RACF includes the capability for importing certificates and private keys into RACF-managed key rings. See
the z/OS Security Server RACF publications for the details and examples of how to load certificates to
RACF managed key rings.

If your installation is using one of the supported PKI products, refer to the publications that accompany
the product for information on how to deploy it.

Securing IBM MQ 673

https://www.ibm.com/docs/en/zos/3.1.0?topic=zos-security-server-racf

Administering Advanced Message Security security policies
Advanced Message Security uses security policies to specify the cryptographic encryption and signature
algorithms for encrypting and authenticating messages that flow through the queues.

Security policies overview for AMS
Advanced Message Security security policies are conceptual objects that describe the way a message is
cryptographically encrypted and signed.

For details of the security policy attributes, see the following subtopics:

Related concepts
“Quality of protection in AMS” on page 678
Advanced Message Security data-protection policies imply a quality of protection (QOP).
“Security policy attributes in AMS” on page 677
You can use Advanced Message Security to select a particular algorithm or method to protect the data.

Policy names in AMS
The policy name is a unique name that identifies a specific Advanced Message Security policy and the
queue to which it applies.

The policy name must be the same as the queue name to which it applies. There is a one-to-one mapping
between an Advanced Message Security (AMS) policy and a queue.

By creating a policy with the same name as a queue, you activate the policy for that queue. Queues
without matching policy names are not protected by AMS.

The scope of the policy is relevant to the local queue manager and its queues. Remote queue managers
must have their own locally-defined policies for the queues they manage.

Signature algorithm in AMS
The signature algorithm indicates the algorithm that should be used when signing data messages.

Valid values include:

• MD5
• SHA-1
• SHA-2 family:

– SHA256
– SHA384 (minimum key length acceptable - 768 bits)
– SHA512 (minimum key length acceptable - 768 bits)

A policy that does not specify a signature algorithm, or specifies an algorithm of NONE, implies that
messages placed on the queue associated with the policy are not signed.

Note: The quality of protection used for the message put and get functions must match. If there is a policy
quality of protection mismatch between the queue and the message in the queue, the message is not
accepted and is sent to the error handling queue. This rule applies for both local and remote queues.

Encryption algorithm in AMS
The encryption algorithm indicates the algorithm that should be used when encrypting data messages
placed on the queue associated with the policy.

Valid values include:

• RC2

• DES

• 3DES

674 Securing IBM MQ

• AES128
• AES256

A policy that does not specify an encryption algorithm or specifies an algorithm of NONE implies that
messages placed on the queue associated with the policy are not encrypted.

Note that a policy that specifies an encryption algorithm other than NONE must also specify at least one
Recipient DN and a signature algorithm because Advanced Message Security encrypted messages are
also signed.

Important: The quality of protection used for the message put and get functions must match. If there is
a policy quality of protection mismatch between the queue and the message in the queue, the message is
not accepted and is sent to the error handling queue. This rule applies for both local and remote queues.

Toleration in AMS
The toleration attribute indicates whether Advanced Message Security can accept messages with no
security policy specified.

When retrieving a message from a queue with a policy to encrypt messages, if the message is not
encrypted, it is returned to the calling application. Valid values include:

0
No (default).

1
Yes.

A policy that does not specify a toleration value or specifies 0, implies that messages placed on the queue
associated with the policy must match the policy rules.

Toleration is optional and exists to facilitate configuration roll-out, where policies were applied to queues
but those queues already contain messages that do not have a security policy specified.

Sender distinguished names in AMS
The sender distinguished names (DNs) identify users who are authorized to place messages on a queue. A
sender uses their certificate to sign a message, prior to placing the message on a queue.

Advanced Message Security (AMS) does not check whether a message has been placed on a data-
protected queue by a valid user until the message is retrieved. At this time, if the policy stipulates one or
more valid senders, and the user that placed the message on the queue is not in the list of valid senders,
AMS returns an error to the receiving application, and places the message on the AMS error queue.

A policy can have 0 or more sender DNs specified. If no sender DNs are specified for the policy, any
sender can put data-protected messages to the queue providing the sender's certificate is trusted. A
sender's certificate is trusted by adding the public certificate to a keystore available to the receiving
application.

Sender distinguished names have the following form:

CN=Common Name,O=Organization,C=Country

Important:

• All DN Component names must be in uppercase. All component name identifiers in the DN must be
specified in the order shown in the following table:

Component name Value

CN The common name for the object of this DN, such
as a full name or the intended purpose of a device.

OU The unit within the organization with which the
object of the DN is affiliated, such as a corporate
division or a product name.

Securing IBM MQ 675

Component name Value

O The organization with which the object of the DN
is affiliated, such as a corporation.

L The locality (city or municipality) where the object
of the DN is located.

ST The state or province name where the object of
the DN is located.

C The country where the object of the distinguished
name (DN) is located.

• If one or more sender DNs are specified for the policy, only those users can put messages to the queue
associated with the policy.

• Sender DNs, when specified, must match exactly the DN contained in the digital certificate associated
with user putting the message.

• AMS supports DNs with values only from Latin-1 character set. To create DNs with characters of the set,
you must first create a certificate with a DN that is created in UTF-8 coding using AIX and Linux with
UTF-8 coding turned on or with the strmqikm GUI. Then you must create a policy from a Linux or AIX
platform with UTF-8 coding turned on, or use the AMS plug-in to IBM MQ.

• The method used by AMS, to convert the name of the sender from x.509 format to DN format, always
uses ST= for the State or Province value.

• The following special characters need escape characters:

 , (comma)
 + (plus)
 " (double quote)
 \ (backslash)
 < (less than)
 > (greater than)
 ; (semicolon)

• If the distinguished name contains embedded blanks, you should enclose the DN in double quotation
marks.

Related concepts
“Recipient distinguished names in AMS” on page 676
The recipient distinguished names (DN) identify users who are authorized to retrieve messages from a
queue.

Recipient distinguished names in AMS
The recipient distinguished names (DN) identify users who are authorized to retrieve messages from a
queue.

A policy can have zero or more recipient DNs specified. Recipient distinguished names have the following
form:

CN=Common Name,O=Organization,C=Country

Important:

• All DN Component names must be in uppercase. All component name identifiers in the DN must be
specified in the order shown in the following table:

Component name Value

CN The common name for the object of this DN, such
as a full name or the intended purpose of a device.

676 Securing IBM MQ

Component name Value

OU The unit within the organization with which the
object of the DN is affiliated, such as a corporate
division or a product name.

O The organization with which the object of the DN
is affiliated, such as a corporation.

L The locality (city or municipality) where the object
of the DN is located.

ST The state or province name where the object of
the DN is located.

C The country where the object of the distinguished
name (DN) is located.

• If no recipient DNs are specified for the policy, any user can get messages from the queue associated
with the policy.

• If one or more recipient DNs are specified for the policy, only those users can get messages from the
queue associated with the policy.

• Recipient DNs, when specified, must match exactly the DN contained in the digital certificate associated
with user getting the message.

• Advanced Message Security supports DNs with values only from Latin-1 character set. To create DNs
with characters of the set, you must first create a certificate with a DN that is created in UTF-8 coding
using AIX or Linux with UTF-8 coding turned on or with the strmqikm GUI. Then you must create a
policy from a Linux or AIX platform with UTF-8 coding turned on or use the Advanced Message Security
plug-in to IBM MQ.

Related concepts
“Sender distinguished names in AMS” on page 675
The sender distinguished names (DNs) identify users who are authorized to place messages on a queue. A
sender uses their certificate to sign a message, prior to placing the message on a queue.

Security policy attributes in AMS
You can use Advanced Message Security to select a particular algorithm or method to protect the data.

A security policy is a conceptual object that describes the way a message is cryptographically encrypted
and signed.

Table 110. Security policy attributes in AMS

Attributes Description

Policy name Unique name of the policy for a queue manager.

Signature algorithm Cryptographic algorithm that is used to sign
messages before sending.

Encryption algorithm Cryptographic algorithm that is used to encrypt
messages before sending.

Recipient list List of certificate distinguished names (DNs) of
potential receivers of a message.

Signature DN checklist List of signature DNs to be validated during
message retrieval.

In Advanced Message Security, messages are encrypted with a symmetric key, and the symmetric key
is encrypted with the public keys of the recipients. Public keys are encrypted with the RSA algorithm,

Securing IBM MQ 677

with keys of an effective length up to 2048 bits. The actual asymmetric key encryption depends on the
certificate key length.

The supported symmetric-key algorithms are as follows:

• RC2

• DES

• 3DES
• AES128
• AES256

Advanced Message Security also supports the following cryptographic hash functions:

• MD5

• SHA-1
• SHA-2 family:

– SHA256
– SHA384 (minimum key length acceptable - 768 bits)
– SHA512 (minimum key length acceptable - 768 bits)

Note: The quality of protection used for the message put and get functions must match. If there is a policy
quality of protection mismatch between the queue and the message in the queue, the message is not
accepted and is sent to the error handling queue. This rule applies for both local and remote queues.

Quality of protection in AMS
Advanced Message Security data-protection policies imply a quality of protection (QOP).

The three quality of protection levels in Advanced Message Security are supplemented by a fourth level in
IBM MQ 9.0 and later, and all depend on cryptographic algorithms that are used to sign and encrypt the
message:

• Privacy - messages placed on the queue must be signed and encrypted.
• Integrity - messages placed on the queue must be signed by the sender.
• Confidentiality - messages placed on the queue must be encrypted. For more information, see

“Qualities of protection available with AMS” on page 604
• None - no data protection is applicable.

A policy that stipulates that messages must be signed when placed on a queue has a QOP of INTEGRITY.
A QOP of INTEGRITY means that a policy stipulates a signature algorithm, but does not stipulate an
encryption algorithm. Integrity-protected messages are also referred to as "SIGNED".

A policy that stipulates that messages must be signed and encrypted when placed on a queue has a
QOP of PRIVACY. A QOP of PRIVACY means that when a policy stipulates a signature algorithm and an
encryption algorithm. Privacy-protected messages are also referred to as "SEALED".

A policy that stipulates that messages must be encrypted when placed on a queue has a QOP of
CONFIDENTIALITY. A QOP of CONFIDENTIALITY means that a policy stipulates an encryption algorithm.

A policy that does not stipulate a signature algorithm or an encryption algorithm has a QOP of NONE.
Advanced Message Security provides no data-protection for queues that have a policy with a QOP of
NONE.

678 Securing IBM MQ

Managing security policies in AMS
A security policy is a conceptual object that describes the way a message is cryptographically encrypted
and signed.

The location from which all administrative tasks related to security policies are run depends on which
platform you are using.

• On AIX, Linux, and Windows, you use the DELETE POLICY, DISPLAY POLICY, and SET
POLICY (or equivalent PCF) commands to manage your security policies.

– On AIX and Linux, administrative tasks can be run from
MQ_INSTALLATION_PATH/bin.

– On Windows platforms, administrative tasks can be run from any location as the PATH
environment variable is updated at the installation.

• On IBM i, the DSPMQMSPL, SETMQMSPL, and WRKMQMSPL commands are installed into
the QSYS system library for the primary language of the system when IBM MQ is installed.

Additional national language versions get installed into QSYS29xx libraries according to the language
feature load. For example, a machine with US English as the primary language and Korean as the
secondary language has the US English commands installed into QSYS and the Korean secondary
language load in QSYS2962 as 2962 is the language load for Korean.

• On z/OS, the administrative commands are run using the message security policy utility
(CSQ0UTIL). When policies are created, modified or deleted on z/OS, the changes are not recognized
by Advanced Message Security until the queue manager is stopped and restarted, or the z/OS MODIFY
command is used to refresh the Advanced Message Security policy configuration. For example:

F <qmgr ssid>AMSM,REFRESH POLICY

Related tasks
“Creating security policies in AMS” on page 679
Security policies define the way in which a message is protected when the message is put, or how a
message must have been protected when a message is received.
“Changing security policies in AMS” on page 680
You can use Advanced Message Security to alter details of security policies that you have already defined.
“Displaying and dumping security policies in AMS” on page 681
Use the dspmqspl command to display a list of all security policies or details of a named policy
depending on the command-line parameters you supply.
“Removing security policies in AMS” on page 683
To remove security policies in Advanced Message Security, you must use the setmqspl command.
Operating Advanced Message Security
Related reference
The message security policy utility (CSQ0UTIL)

Creating security policies in AMS
Security policies define the way in which a message is protected when the message is put, or how a
message must have been protected when a message is received.

Before you begin
There are some entry conditions which must be met when creating security policies:

• The queue manager must be running.
• The name of a security policy must follow Rules for naming IBM MQ objects.

Securing IBM MQ 679

• You must have the necessary authority to connect to the queue manager and create a security policy:

– On z/OS, grant the authorities documented in The message security policy utility
(CSQ0UTIL).

– On other platforms other than z/OS, you must grant the necessary +connect, +inq and
+chg authorities using the setmqaut command.

For more information about configuring security see “Setting up security” on page 130.

• On z/OS, ensure the required system objects have been defined according to the
definitions in CSQ4INSM.

Example
Here is an example of creating a policy on queue manager QMGR. The policy specifies that messages be
signed using the SHA256 algorithm and encrypted using the AES256 algorithm for certificates with DN:
CN=joe,O=IBM,C=US and DN: CN=jane,O=IBM,C=US. This policy is attached to MY.QUEUE:

setmqspl -m QMGR -p MY.QUEUE -s SHA256 -e AES256 -r CN=joe,O=IBM,C=US -r CN=jane,O=IBM,C=US

Here is an example of creating policy on the queue manager QMGR. The policy specifies that
messages be encrypted using the 3DES algorithm for certificates with DNs: CN=john,O=IBM,C=US and
CN=jeff,O=IBM,C=US and signed with the SHA256 algorithm for certificate with DN: CN=phil,O=IBM,C=US

setmqspl -m QMGR -p MY.OTHER.QUEUE -s SHA256 -e 3DES -r CN=john,O=IBM,C=US -r
CN=jeff,O=IBM,C=US -a CN=phil,O=IBM,C=US

Note:

• The quality of protection being used for the message put and get must match. If the policy quality of
protection that is defined for the message is weaker than that defined for a queue, the message is sent
to the error handling queue. This policy is valid for both local and remote queues.

Related reference
Complete list of setmqspl command attributes

Changing security policies in AMS
You can use Advanced Message Security to alter details of security policies that you have already defined.

Before you begin
• The queue manager on which you want to operate must be running.
• You must have the necessary authority to connect to the queue manager and create a security policy.

– On z/OS, grant the authorities documented in The message security policy utility
(CSQ0UTIL).

– On other platforms other than z/OS, you must grant the necessary +connect, +inq and
+chg authorities using the setmqaut command.

For more information about configuring security see “Setting up security” on page 130.

About this task
To change security policies, apply the setmqspl command to an already existing policy providing new
attributes.

680 Securing IBM MQ

Example
Here is an example of creating a policy named MYQUEUE on a queue manager named QMGR, specifying
that messages are to be encrypted using the 3DES algorithm for authors (-a) having certificates with
Distinguished Name (DN) of CN=alice,O=IBM,C=US and signed with the SHA256 algorithm for recipients
(-r) having certificates with DN of CN=jeff,O=IBM,C=US.

setmqspl -m QMGR -p MYQUEUE -e 3DES -s SHA256 -a CN=jeff,O=IBM,C=US -r CN=alice,O=IBM,C=US

To alter this policy, issue the setmqspl command with all attributes from the example changing only the
values you want to modify. In this example, previously created policy is attached to a new queue and its
encryption algorithm is changed to AES256:

setmqspl -m QMGR -p MYQUEUE -e AES256 -s SHA256 -a CN=jeff,O=IBM,C=US -r CN=alice,O=IBM,C=US

Related reference
setmqspl (set security policy)

Displaying and dumping security policies in AMS
Use the dspmqspl command to display a list of all security policies or details of a named policy
depending on the command-line parameters you supply.

Before you begin
• To display security policies details, the queue manager must exist, and be running.
• You must have the necessary authority to connect to the queue manager and create a security policy.

– On z/OS, grant the authorities documented in The message security policy utility
(CSQ0UTIL).

– On other platforms other than z/OS, you must grant the necessary +connect, +inq and
+chg authorities using the setmqaut command.

For more information about configuring security see “Setting up security” on page 130.

About this task
Here is the list of dspmqspl command flags:

Table 111. dspmqspl command flags.

Command flag Explanation

-m Queue manager name (mandatory).

-p Policy name.

-export Adding this flag generates output which can easily
be applied to a different queue manager.

Example
The following example shows how to create two security policies for venus.queue.manager:

setmqspl -m venus.queue.manager -p AMS_POL_04_ONE -s sha256 -a "CN=signer1,O=IBM,C=US" -e NONE
setmqspl -m venus.queue.manager -p AMS_POL_06_THREE -s sha256 -a "CN=another signer,O=IBM,C=US"
-e NONE

Securing IBM MQ 681

This example shows a command that displays details of all policies defined for venus.queue.manager
and the output it produces:

dspmqspl -m venus.queue.manager

Policy Details:
Policy name: AMS_POL_04_ONE
Quality of protection: INTEGRITY
Signature algorithm: SHA256
Encryption algorithm: NONE
Signer DNs:
 CN=signer1,O=IBM,C=US
Recipient DNs: -
Toleration: 0
- -
Policy Details:
Policy name: AMS_POL_06_THREE
Quality of protection: INTEGRITY
Signature algorithm: SHA256
Encryption algorithm: NONE
Signer DNs:
 CN=another signer,O=IBM,C=US
Recipient DNs: -
Toleration: 0

This example shows a command that displays details of a selected security policy defined for
venus.queue.manager and the output it produces:

dspmqspl -m venus.queue.manager -p AMS_POL_06_THREE

Policy Details:
Policy name: AMS_POL_06_THREE
Quality of protection: INTEGRITY
Signature algorithm: SHA256
Encryption algorithm: NONE
Signer DNs:
 CN=another signer,O=IBM,C=US
Recipient DNs: -
Toleration: 0

In the next example, first, we create a security policy and then, we export the policy using the -export
flag:

setmqspl -m venus.queue.manager -p AMS_POL_04_ONE -s SHA256 -a "CN=signer1,O=IBM,C=US" -e NONE

dspmqspl -m venus.queue.manager -export

On z/OS, the exported policy information is written by CSQ0UTIL to the EXPORT DD.

On platforms other than z/OS, redirect the output to a file, for example:

dspmqspl -m venus.queue.manager -export > policies.[bat|sh]

To import a security policy:

• On AIX and Linux:

1. Log on as a user that belongs to the mqm IBM MQ administration group.
2. Issue . policies.sh.

• On Windows, run policies.bat.

• On z/OS use the CSQ0UTIL utility, specifying to SYSIN the data set containing the
exported policy information.

Related reference
Complete list of dspmqspl command attributes

682 Securing IBM MQ

Removing security policies in AMS
To remove security policies in Advanced Message Security, you must use the setmqspl command.

Before you begin
There are some entry conditions which must be met when managing security policies:

• The queue manager must be running.
• You must have the necessary authority to connect to the queue manager and create a security policy.

– On z/OS, grant the authorities documented in The message security policy utility
(CSQ0UTIL).

– On other platforms other than z/OS, you must grant the necessary +connect, +inq and
+chg authorities using the setmqaut command.

For more information about configuring security see “Setting up security” on page 130.

About this task
Use the setmqspl command with the -remove option.

Example
Here is an example of removing a policy:

setmqspl -m QMGR -remove -p MY.OTHER.QUEUE

Related reference
Complete list of setmqspl command attributes

System queue protection in AMS
System queues enable communication between IBM MQ and its ancillary applications. Whenever a queue
manager is created, a system queue is also created to store IBM MQ internal messages and data. You
can protect system queues with Advanced Message Security so that only authorized users can access or
decrypt them.

System queue protection follows the same pattern as the protection of regular queues. See “Creating
security policies in AMS” on page 679.

To use system queue protection on Windows, copy the keystore.conf file to the following
directory:

c:\Documents and Settings\Default User\.mqs\keystore.conf

On z/OS, to provide protection for SYSTEM.ADMIN.COMMAND.QUEUE, the command server
must have access to the keystore and the keystore.conf, which contain keys and a configuration
so that the command server can access keys and certificates. All changes made to the security policy of
SYSTEM.ADMIN.COMMAND.QUEUE require the restart of the command server.

All messages that are sent and received from the command queue are signed or signed and encrypted
depending on policy settings. If an administrator defines authorized signers, command messages that do
not pass the signer Distinguished Name (DN) check are not executed by the command server and are not
routed to the Advanced Message Security error handling queue. Messages that are sent as replies to IBM
MQ Explorer temporary dynamic queues are not protected by AMS.

Security policies do not have an effect on the following SYSTEM queues:

• SYSTEM.ADMIN.ACCOUNTING.QUEUE
• SYSTEM.ADMIN.ACTIVITY.QUEUE

Securing IBM MQ 683

• SYSTEM.ADMIN.CHANNEL.EVENT
• SYSTEM.ADMIN.COMMAND.EVENT

• SYSTEM.ADMIN.COMMAND.QUEUE
• SYSTEM.ADMIN.CONFIG.EVENT
• SYSTEM.ADMIN.LOGGER.EVENT
• SYSTEM.ADMIN.PERFM.EVENT
• SYSTEM.ADMIN.PUBSUB.EVENT
• SYSTEM.ADMIN.QMGR.EVENT
• SYSTEM.ADMIN.STATISTICS.QUEUE
• SYSTEM.ADMIN.TRACE.ROUTE.QUEUE
• SYSTEM.AUTH.DATA.QUEUE
• SYSTEM.BROKER.ADMIN.STREAM

• SYSTEM.BROKER.CLIENTS.DATA
• SYSTEM.BROKER.CONTROL.QUEUE
• SYSTEM.BROKER.DEFAULT.STREAM
• SYSTEM.BROKER.INTER.BROKER.COMMUNICATIONS

• SYSTEM.BROKER.SUBSCRIPTIONS.DATA
• SYSTEM.CHANNEL.INITQ
• SYSTEM.CHANNEL.SYNCQ

• SYSTEM.CHLAUTH.DATA.QUEUE
• SYSTEM.CICS.INITIATION.QUEUE
• SYSTEM.CLUSTER.COMMAND.QUEUE
• SYSTEM.CLUSTER.HISTORY.QUEUE
• SYSTEM.CLUSTER.REPOSITORY.QUEUE
• SYSTEM.CLUSTER.TRANSMIT.QUEUE

• SYSTEM.COMMAND.INPUT

• SYSTEM.DDELAY.LOCAL.QUEUE
• SYSTEM.DEAD.LETTER.QUEUE
• SYSTEM.DURABLE.SUBSCRIBER.QUEUE
• SYSTEM.HIERARCHY.STATE
• SYSTEM.INTER.QMGR.CONTROL
• SYSTEM.INTER.QMGR.FANREQ
• SYSTEM.INTER.QMGR.PUBS
• SYSTEM.INTERNAL.REPLY.QUEUE

• SYSTEM.JMS.PS.STATUS.QUEUE

• SYSTEM.JMS.REPORT.QUEUE
• SYSTEM.PENDING.DATA.QUEUE
• SYSTEM.PROTECTION.ERROR.QUEUE
• SYSTEM.PROTECTION.POLICY.QUEUE

• SYSTEM.QSG.CHANNEL.SYNCQ

684 Securing IBM MQ

• SYSTEM.QSG.TRANSMIT.QUEUE

• SYSTEM.QSG.UR.RESOLUTION.QUEUE
• SYSTEM.RETAINED.PUB.QUEUE

• SYSTEM.RETAINED.PUB.QUEUE
• SYSTEM.SELECTION.EVALUATION.QUEUE
• SYSTEM.SELECTION.VALIDATION.QUEUE

Streaming queues and AMS
It is possible to stream duplicate Advanced Message Security (AMS) protected messages.

If a queue has an AMS policy defined that causes messages put to that queue to be signed and/or
encrypted, you can also configure the STREAMQ attribute of the queue to put a copy of each protected
message to a second queue. The duplicate, streamed message is signed and/or encrypted using the same
policy that has been configured for the original queue.

In the following example you are configuring two queues, QUEUE1 and QUEUE2. QUEUE1 has its
STREAMQ attribute configured to put streamed messages to QUEUE2:

DEFINE QLOCAL(QUEUE2)

DEFINE QLOCAL(QUEUE1) STREAMQ(QUEUE2)

AMS protected messages are being put to QUEUE1 by a user with the certificate CN=bob,O=IBM,C=GB.

An application with certificate CN=alice,O=IBM,C=GB is going to consume the messages from QUEUE1.
A separate application with certificate CN=fred,O=IBM,C=GB is going to consume the messages from
QUEUE2.

QUEUE1 has the following AMS privacy policy applied to it:

SET POLICY(QUEUE1) SIGNALG(SHA256) SIGNER('CN=bob,O=IBM,C=GB') ENCALG(AES256)
RECIP('CN=alice,O=IBM,C=GB') RECIP('CN=fred,O=IBM,C=GB') ACTION(ADD)

If an encryption algorithm has been configured in the policy for QUEUE1, the recipients listed in the policy
must include both the recipients of the original messages from QUEUE1, and the recipients who are going
to consume duplicate messages from QUEUE2.

When the application attempts to consume messages from QUEUE2 it performs integrity checks, and/or
decrypts the message based on the policy that has been set on QUEUE2. If an application wants to
consume streamed messages from QUEUE2, you must set a suitable policy on QUEUE2 that allows the
messages to be checked for integrity and decrypted correctly.

In particular, the signing algorithm, the signer, and the encryption algorithm must be the same as the
policy applied to QUEUE1. The policy recipients for QUEUE2 must include the identity of the recipient
consuming the message from QUEUE2.

Note: It is not necessary for the policy applied to QUEUE2 to list all of the recipients named in the policy
set on QUEUE1.

For example, the following policy could be set on QUEUE2 to allow an application with the certificate
distinguished name CN=fred,O=IBM,C=GB to read AMS-protected messages from it:

SET POLICY(QUEUE2) SIGNALG(SHA256) SIGNER('CN=bob,O=IBM,C=GB') ENCALG(AES256)
RECIP('CN=fred,O=IBM,C=GB') ACTION(ADD)

Related concepts
Streaming queues

Securing IBM MQ 685

Granting OAM permissions in AMS
File permissions authorize all users to execute setmqspl and dspmqspl commands. However, Advanced
Message Security relies on the Object Authority Manager (OAM) and every attempt to execute these
commands by a user who does not belong to the mqm group, which is the IBM MQ administration group,
or does not have permissions to read security policy settings that are granted, results in an error.

Procedure
To grant necessary permissions to a user, run:

setmqaut -m SOME.QUEUE.MANAGER -t qmgr -p SOME.USER +connect +inq
setmqaut -m SOME.QUEUE.MANAGER -t queue -n SYSTEM.PROTECTION.POLICY.QUEUE -p SOME.USER +browse
+put
setmqaut -m SOME.QUEUE.MANAGER -t queue -n SYSTEM.PROTECTION.ERROR.QUEUE -p SOME.USER +put

Note: You only need to set these OAM authorities if you intend to connect clients, to the queue manager,
using Advanced Message Security 7.0.1.

Attention: Browse authority to the SYSTEM.PROTECTION.POLICY.QUEUE is not mandatory in all
situations. IBM MQ optimizes performance by caching policies so that you do not have to browse
records for policy details on the SYSTEM.PROTECTION.POLICY.QUEUE in all cases.

IBM MQ does not cache all the policies available. If there are high number of policies,
IBM MQ caches a limited number of policies. So, if the queue manager has a low
number of policies defined, there is no need to provide the browse option to the
SYSTEM.PROTECTION.POLICY.QUEUE.

However, you should give browse authority to this queue, in case there is a high number of policies
defined, or if you are using old clients. The SYSTEM.PROTECTION.ERROR.QUEUE is used to put
error messages generated by the AMS code. The put authority against this queue is checked only
when you attempt to put an error message to the queue. Your put authority against the queue is
not checked when you attempt to put or get message from an AMS protected queue.

Granting security permissions in AMS
When using command resource security you must set up permissions to allow Advanced Message
Security to function. This topic uses RACF commands in the examples. If your enterprise uses a different
external security manager (ESM) you must use the equivalent commands for that ESM.

There are three aspects to granting security permissions:

• “The AMSM address space” on page 686
• “CSQ0UTIL” on page 687
• “Using queues that have an Advanced Message Security policy defined” on page 687

Notes: The example commands use the following variables.

1. QMgrName - the name of the queue manager.

On z/OS, this value can also be the name of a queue sharing group.
2. username - this can be a group name.
3. The examples show the MQQUEUE class. this can also be MXQUEUE, GMQQUEUE or GMXQUEUE. See

“Profiles for queue security” on page 198 for further information.

Furthermore, if the profile already exists, you do not require the RDEFINE command.

The AMSM address space
You need to issue some IBM MQ security to the user name that the Advanced Message Security address
space runs under.

686 Securing IBM MQ

• For batch connection to the queue manager, issue

RDEFINE MQCONN QMgrName.BATCH UACC(NONE)
 PERMIT QMgrName.BATCH CLASS(MQCONN) ID(username) ACCESS(READ)

• For access to the SYSTEM.PROTECTION.POLICY.QUEUE, issue:

RDEFINE MQQUEUE QMgrName.SYSTEM.PROTECTION.POLICY.QUEUE UACC(NONE)
 PERMIT QMgrName.SYSTEM.PROTECTION.POLICY.QUEUE CLASS(MQQUEUE)
ID(username) ACCESS(READ)

CSQ0UTIL
The utility that allows users to run the setmqspl and dspmqspl commands requires the following
permissions, where the user name is the job user ID:

• For batch connection to the queue manager, issue:

 RDEFINE MQCONN QMgrName.BATCH UACC(NONE)
 PERMIT QMgrName.BATCH CLASS(MQCONN) ID(username) ACCESS(READ)

• For access to the SYSTEM.PROTECTION.POLICY.QUEUE, required for the setmqpol command, issue:

 RDEFINE MQQUEUE QMgrName.SYSTEM.PROTECTION.POLICY.QUEUE UACC(NONE)
 PERMIT QMgrName.SYSTEM.PROTECTION.POLICY.QUEUE CLASS(MQQUEUE)
ID(username) ACCESS(ALTER)

• For access to the SYSTEM.PROTECTION.POLICY.QUEUE, required for the dspmqpol command, issue:

 RDEFINE MQQUEUE QMgrName.SYSTEM.PROTECTION.POLICY.QUEUE UACC(NONE)
 PERMIT QMgrName.SYSTEM.PROTECTION.POLICY.QUEUE CLASS(MQQUEUE)
ID(username) ACCESS(READ)

Using queues that have an Advanced Message Security policy defined
When an application does any work with queues that have a policy defined on them, that application
requires additional permissions to allow Advanced Message Security to protect messages.

The application requires:

• Read access to the SYSTEM.PROTECTION.POLICY.QUEUE. Do this by issuing:

RDEFINE MQQUEUE QMgrName.SYSTEM.PROTECTION.POLICY.QUEUE UACC(NONE)
 PERMIT QMgrName.SYSTEM.PROTECTION.POLICY.QUEUE CLASS(MQQUEUE)
ID(username) ACCESS(READ)

• Put access to the SYSTEM.PROTECTION.ERROR.QUEUE. Do this by issuing:

RDEFINE MQQUEUE QMgrName.SYSTEM.PROTECTION.ERROR.QUEUE UACC(NONE)
 PERMIT QMgrName.SYSTEM.PROTECTION.ERROR.QUEUE CLASS(MQQUEUE)
ID(username) ACCESS(READ)

Setting up certificates and the keystore configuration file for AMS
on IBM i
Your first task when setting up Advanced Message Security protection is to create a certificate, and
associate that with your environment. The association is configured through a file held in the integrated
filesystem (IFS).

Procedure
1. To create a self-signed certificate using the OpenSSL tooling shipped with IBM i, issue the following

command from QShell:

Securing IBM MQ 687

/QOpenSys/usr/bin/openssl req -x509 -newkey rsa:2048 -keyout
$HOME/private.pem -out $HOME/mycert.pem -nodes -days 365

The command prompts for various distinguished name attributes for a new self-signed certificate,
including:

• Common Name (CN=)
• Organization (O=)
• Country (C=)

This creates an unencrypted private key and a matching certificate, both in PEM (Privacy Enhanced
Mail) format.

For simplicity, just enter values for common name, organization, and country. These attributes and
values are important when creating a policy.

Additional prompts and attributes can be customized by specifying a custom openssl configuration file
on the command line with the -config parameter. Refer to OpenSSL documentation for more details
on the configuration file syntax.

For example, the following command adds additional X.509 v3 certificate extensions:

/QOpenSys/usr/bin/openssl req -x509 -newkey rsa:2048
-keyout $HOME/private.pem -out $HOME/mycert.pem -nodes -days 365 -config myconfig.cnf

where myconfig.cnf is an ASCII stream file that contains the following:

[req]
distinguished_name = req_distinguished_name
x509_extensions = myextensions

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = GB
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Hants
localityName = Locality Name (eg, city)
localityName_default = Hursley
organizationName = Organization Name (eg, company)
organizationName_default = IBM United Kingdom
organizationalUnitName = Organizational Unit Name (eg, department)
organizationalUnitName_default = IBM MQ Development
commonName = Common Name (eg, Your Name)

[myextensions]
keyUsage = digitalSignature,nonRepudiation,dataEncipherment,keyEncipherment
extendedKeyUsage = emailProtection

2. AMS requires that both the certificate and private key are held in the same file. Issue the following
command to achieve this:

cat $HOME/mycert.pem >> $HOME/private.pem

The private.pem file in $HOME now contains a matching private key and certificate, while the
mycert.pem file contains all of the public certificates for which you can encrypt messages and
validate signatures.

The two files need to be associated with your environment by creating a keystore configuration file,
keystore.conf, in your default location.

By default, AMS looks for the keystore configuration in a .mqs subdirectory of your home directory.
3. In QShell create the keystore.conf file:

mkdir -p $HOME/.mqs

688 Securing IBM MQ

echo "pem.private = $HOME/private.pem" > $HOME/.mqs/keystore.conf
echo "pem.public = $HOME/mycert.pem" >> $HOME/.mqs/keystore.conf
echo "pem.password = unused" >> $HOME/.mqs/keystore.conf

Creating a policy for AMS on IBM i
Before creating a policy, you need to create a queue to hold protected messages.

Procedure
1. At a command line prompt enter;

CRTMQMQ QNAME(PROTECTED) QTYPE(*LCL) MQMNAME (mqmname)

where mqmname is the name of your queue manager.

Use the DSPMQM command to check that the queue manager is capable of using security policies.
Ensure that Security Policy Capability shows *YES.

The simplest policy you can define is an integrity policy, which is achieved by creating a policy with a
digital signature algorithm but no encryption algorithm.

Messages are signed but not encrypted. If messages are to be encrypted, you must specify an
encryption algorithm, and one or more intended message recipients.

A certificate in the public keystore for an intended message recipient is identified through a
distinguished name.

2. Display the distinguished names of the certificates in the public keystore, mycert.pem in $HOME, by
using the following command in QShell:

/QOpenSys/usr/bin/openssl x509 -in $HOME/mycert.pem -noout -subject -nameopt RFC2253

You need to enter the distinguished name as an intended recipient, and the policy name must match
the queue name to be protected.

3. At a CL command prompt enter, for example:

SETMQMSPL POLICY(PROTECTED) MQMNAME (mqmname)SIGNALG(*SHA256) ENCALG(*AES256) RECIP('CN=..,
O=.., C=..')

where mqmname is the name of your queue manager.

Once the policy is created, any messages that are put, browsed, or destructively removed through that
queue name are subject to the AMS policy.

Related reference
Display Message Queue Manager (DSPMQM)
Set MQM Security Policy (SETMQMSPL)

Testing a policy for AMS on IBM i
Use the sample applications provided with the product to test your security policies.

About this task
You can use the sample applications provided with IBM MQ , such as AMQSPUT4, AMQSGET4,
AMQSGBR4, and tools such as WRKMQMMSG to put, browse, and get messages using the PROTECTED
queue name.

Provided everything has been configured correctly, there should be no difference in application behavior
to that of an unprotected queue for this user.

Securing IBM MQ 689

A user not set up for Advanced Message Security, or a user that does not have the required private key to
decrypt the message will, however, not be able to view the message. The user receives a completion code
of RCFAIL, equivalent to MQCC_FAILED (2) and reason code of RC2063 (MQRC_SECURITY_ERROR).

To see that AMS protection is in effect, put some test messages to the PROTECTED queue, for example
using AMQSPUT0. You can then create an alias queue to browse the raw protected data while at rest.

Procedure
To grant necessary permissions to a user, run:

CRTMQMQ QNAME(ALIAS) QTYPE(*ALS) TGTQNAME(PROTECTED) MQMNAME(yourqm)

Browsing using the ALIAS queue name, for example using AMQSBCG4 or WRKMQMMSG, should reveal
larger scrambled messages where a browse of the PROTECTED queue shows cleartext messages.

The scrambled messages are visible, but the original cleartext is not decipherable using the ALIAS queue,
as there is no policy for AMS to enforce matching this name. Hence, the raw protected data is returned.

Related reference
Set MQM Security Policy (SETMQMSPL)
Work with MQ Messages (WRKMQMMSG)

Command and configuration events for AMS
With Advanced Message Security, you can generate command and configuration event messages, which
can be logged and serve as a record of policy changes for auditing.

Command and configuration events generated by IBM MQ are messages of the PCF format sent to
dedicated queues on the queue manager where the event occurs.

Configuration events messages are sent to the SYSTEM.ADMIN.CONFIG.EVENT queue.

Command events messages are sent to the SYSTEM.ADMIN.COMMAND.EVENT queue.

Events are generated regardless of tools you are using to manage Advanced Message Security security
policies.

In Advanced Message Security, there are four types of events generated by different actions on security
policies:

• “Creating security policies in AMS” on page 679, which generate two IBM MQ event messages:

– A configuration event
– A command event

• “Changing security policies in AMS” on page 680, which generates three IBM MQ event messages:

– A configuration event that contains old security policy values
– A configuration event that contains new security policy values
– A command event

• “Displaying and dumping security policies in AMS” on page 681, which generates one IBM MQ event
message:

– A command event
• “Removing security policies in AMS” on page 683, which generates two IBM MQ event messages:

– A configuration event
– A command event

690 Securing IBM MQ

Enabling and disabling event logging for AMS
You control command and configuration events by using the queue manager attributes CONFIGEV and
CMDEV. To enable these events, set the appropriate queue manager attribute to ENABLED. To disable
these events, set the appropriate queue manager attribute to DISABLED.

Procedure

Configuration events
To enable configuration events, set CONFIGEV to ENABLED. To disable configuration events, set
CONFIGEV to DISABLED. For example, you can enable configuration events by using the following
MQSC command:

ALTER QMGR CONFIGEV (ENABLED)

Command events
To enable command events, set CMDEV to ENABLED. To enable command events for commands
except DISPLAY MQSC commands and Inquire PCF commands, set the CMDEV to NODISPLAY. To
disable command events, set CMDEV to DISABLED. For example, you can enable command events by
using the following MQSC command:

ALTER QMGR CMDEV (ENABLED)

Related tasks
Controlling configuration, command, and logger events in IBM MQ

Command event message format for AMS
Command event message consists of MQCFH structure and PCF parameters following it.

Here are selected MQCFH values:

Type = MQCFT_EVENT;
Command = MQCMD_COMMAND_EVENT;
MsgSeqNumber = 1;
Control = MQCFC_LAST;
ParameterCount = 2;
CompCode = MQCC_WARNING;
Reason = MQRC_COMMAND_PCF;

Note: ParameterCount value is two because there are always two parameters of MQCFGR type (group).
Each group consists of appropriate parameters. The event data consists of two groups, CommandContext
and CommandData.

CommandContext contains:
EventUserID

Description: The user ID that issued the command or call that generated the event. (This
is the same user ID that is used to check the authority to issue the command
or call; for commands received from a queue, this is also the user identifier
(UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID.

Data type: MQCFST.

Maximum length: MQ_USER_ID_LENGTH.

Returned: Always.

EventOrigin

Description: The origin of the action causing the event.

Securing IBM MQ 691

Identifier: MQIACF_EVENT_ORIGIN.

Data type: MQCFIN.

Values: MQEVO_CONSOLE
Console command - command line.

MQEVO_MSG
Command message from IBM MQ Explorer plugin.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The queue
manager where the command is executed and that generates the event is in
the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR.

Data type: MQCFST.

Maximum length: MQ_Q_MGR_NAME_LENGTH.

Returned: Always.

EventAccountingToken

Description: For commands received as a message (MQEVO_MSG), the accounting token
(AccountingToken) from the MD of the command message.

Identifier: MQBACF_EVENT_ACCOUNTING_TOKEN.

Data type: MQCFBS.

Maximum length: MQ_ACCOUNTING_TOKEN_LENGTH.

Returned: Only if EventOrigin is MQEVO_MSG.

EventIdentityData

Description: For commands received as a message (MQEVO_MSG), application identity data
(ApplIdentityData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_IDENTITY.

Data type: MQCFST.

Maximum length: MQ_APPL_IDENTITY_DATA_LENGTH.

Returned: Only if EventOrigin is MQEVO_MSG.

EventApplType

Description: For commands received as a message (MQEVO_MSG), the type of application
(PutApplType) from the MD of the command message.

Identifier: MQIACF_EVENT_APPL_TYPE.

Data type: MQCFIN.

Returned: Only if EventOrigin is MQEVO_MSG.

EventApplName

Description: For commands received as a message (MQEVO_MSG), the name of the
application (PutApplName) from the MD of the command message.

692 Securing IBM MQ

Identifier: MQCACF_EVENT_APPL_NAME.

Data type: MQCFST.

Maximum length: MQ_APPL_NAME_LENGTH.

Returned: Only if EventOrigin is MQEVO_MSG.

EventApplOrigin

Description: For commands received as a message (MQEVO_MSG), the application origin
data (ApplOriginData) from the MD of the command message.

Identifier: MQCACF_EVENT_APPL_ORIGIN.

Data type: MQCFST.

Maximum length: MQ_APPL_ORIGIN_DATA_LENGTH.

Returned: Only if EventOrigin is MQEVO_MSG.

Command

Description: The command code.

Identifier: MQIACF_COMMAND.

Data type: MQCFIN.

Values: MQCMD_INQUIRE_PROT_POLICY numeric value 205
MQCMD_CREATE_PROT_POLICY numeric value 206
MQCMD_DELETE_PROT_POLICY numeric value 207
MQCMD_CHANGE_PROT_POLICY numeric value 208
These are defined in IBM MQ 8.0 cmqcfc.h

Returned: Always.

CommandData contains PCF elements that comprised the PCF command.

Configuration event message format for AMS
Configuration events are PCF messages of standard Advanced Message Security format.

Possible values for the MQMD message descriptor can be found in Event message MQMD (message
descriptor).

Here are selected MQMD values:

Format = MQFMT_EVENT
Peristence = MQPER_PERSISTENCE_AS_Q_DEF
PutApplType = MQAT_QMGR //for both CLI and command server

Message buffer consist of MQCFH structure and the parameter structure that follows it. Possible MQCFH
values can be found in Event message MQCFH (PCF header).

Here are selected MQCFH values:

Type = MQCFT_EVENT
Command = MQCMD_CONFIG_EVENT
MsgSeqNumber = 1 or 2 // 2 will be in case of Change Object event
Control = MQCFC_LAST or MQCFC_NOT_LAST //MQCFC_NOT_LAST will be in case of 1 Change Object
event
ParameterCount = reflects number of PCF parameters following MQCFH
CompCode = MQCC_WARNING
Reason = one of {MQRC_CONFIG_CREATE_OBJECT, MQRC_CONFIG_CHANGE_OBJECT,
MQRC_CONFIG_DELETE_OBJECT}

Securing IBM MQ 693

The parameters following MQCFH are:

EventUserID

Description: The user ID that issued the command or call that generated the event. (This
is the same user ID that is used to check the authority to issue the command
or call; for commands received from a queue, this is also the user identifier
(UserIdentifier) from the MD of the command message).

Identifier: MQCACF_EVENT_USER_ID

Data type: MQCFST.

Maximum length: MQ_USER_ID_LENGTH.

Returned: Always.

SecurityId

Description: Value of MQMD.AccountingToken in case of command server message or
Windows SID for local command.

Identifier: MQBACF_EVENT_SECURITY_ID

Data type: MQCBS.

Maximum length: MQ_SECURITY_ID_LENGTH.

Returned: Always.

EventOrigin

Description: The origin of the action causing the event.

Identifier: MQIACF_EVENT_ORIGIN

Data type: MQCFIN.

Values: MQEVO_CONSOLE
Console command - command line.

MQEVO_MSG
Command message from the IBM MQ Explorer plugin.

Returned: Always.

EventQMgr

Description: The queue manager where the command or call was entered. (The queue
manager where the command is executed and that generates the event is in
the MD of the event message).

Identifier: MQCACF_EVENT_Q_MGR

Data type: MQCFST

Maximum length: MQ_Q_MGR_NAME_LENGTH

Returned: Always.

ObjectType

Description: Object type.

Identifier: MQIACF_OBJECT_TYPE

Data type: MQCFIN

694 Securing IBM MQ

Value: MQOT_PROT_POLICY
Advanced Message Security protection policy. 1019 - a numeric value
defined in IBM MQ 8.0 or in the cmqc.h file.

Returned: Always.

PolicyName

Description: The Advanced Message Security policy name.

Identifier: MQCA_POLICY_NAME.

Data type: MQCFST.

Value: 2112 - a numeric value defined in IBM MQ 8.0 or in the cmqc.h file.

Maximum length: MQ_OBJECT_NAME_LENGTH.

Returned: Always.

PolicyVersion

Description: The Advanced Message Security policy version.

Identifier: MQIA_POLICY_VERSION

Data type: MQCFIN

Value 238 - a numeric value defined in IBM MQ 8.0 or in the cmqc.h file.

Returned: Always

TolerateFlag

Description: The Advanced Message Security policy toleration flag.

Identifier: MQIA_TOLERATE_UNPROTECTED

Data type: MQCFIN

Value 235 - a numeric value defined in IBM MQ 8.0 or in the cmqc.h file.

Returned: Always.

SignatureAlgorithm

Description: The Advanced Message Security policy signature algorithm.

Identifier: MQIA_SIGNATURE_ALGORITHM

Data type: MQCFIN

Value: 236 - a numeric value defined in IBM MQ 8.0 or in the cmqc.h file.

Returned: Whenever there is a signature algorithm defined in the Advanced Message
Security policy

EncryptionAlgorithm

Description: The Advanced Message Security policy encryption algorithm.

Identifier: MQIA_ENCRYPTION_ALGORITHM

Data type: MQCFIN

Value: 237 - a numeric value defined in IBM MQ 8.0 or in the cmqc.h file.

Returned: Whenever there is an encryption algorithm defined in the IBM MQ policy

Securing IBM MQ 695

SignerDNs

Description: Subject DistinguishedName of allowed signers.

Identifier: MQCA_SIGNER_DN

Data type: MQCFSL

Value: 2113 - a numeric value defined in IBM MQ 8.0 or in the cmqc.h file.

Maximum length: Longest signer DN in the policy, but no longer then
MQ_DISTINGUISHED_NAME_LENGTH

Returned: Whenever defined in IBM MQ policy.

RecipientDNs

Description: Subject DistinguishedName of allowed signers.

Identifier: MQCA_RECIPIENT_DN

Data type: MQCFSL

Value: 2114 - a numeric value defined in IBM MQ 8.0 or in the cmqc.h file.

Maximum length: Longest recipient DN in the policy, but no longer then
MQ_DISTINGUISHED_NAME_LENGTH.

Returned: Whenever defined in IBM MQ policy.

696 Securing IBM MQ

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2024 697

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

698 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (https://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 699

700 Securing IBM MQ

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Securing IBM MQ
	Security overview
	Identification and authentication
	Non-repudiation
	Authorization
	Auditing
	Confidentiality
	Data integrity
	Cryptographic concepts
	Cryptography
	Message digests and digital signatures
	Digital certificates
	What is in a digital certificate
	Requirements for personal certificates
	Certificate Authorities
	Distinguished Names
	Obtaining personal certificates from a certificate authority
	How certificate chains work
	When certificates are no longer valid

	Public Key Infrastructure (PKI)

	Cryptographic security protocols: TLS
	Transport Layer Security (TLS) concepts
	An overview of the SSL/TLS handshake
	How TLS provides identification, authentication, confidentiality, and integrity
	CipherSpecs and CipherSuites
	Digital signatures in SSL/TLS
	Federal Information Processing Standards
	National Security Agency (NSA) Suite B Cryptography

	IBM MQ security mechanisms
	TLS security protocols in IBM MQ
	The SSL/TLS key repository
	Protecting IBM MQ key repositories
	Digital certificate labels, understanding the requirements
	How IBM MQ provides multiple certificates capability

	Refreshing the queue manager's key repository
	Refreshing a client's view of the SSL/TLS key repository contents and SSl/TLS settings

	MQCSP password protection
	Digital Certificate Manager (DCM)
	Federal Information Processing Standards (FIPS)
	Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows
	Federal Information Processing Standards (FIPS) for z/OS

	Verifying the TLS configuration of your queue manager with mqcertck
	SSL/TLS on the IBM MQ MQI client
	Specifying that an MQI channel uses SSL/TLS

	CipherSpecs and CipherSuites in IBM MQ
	NSA Suite B Cryptography in IBM MQ
	Configuring IBM MQ for Suite B
	Certificate validation policies in IBM MQ
	Configuring certificate validation policies in IBM MQ
	Digital certificates and CipherSpec compatibility in IBM MQ

	Channel authentication records
	Interaction of CHLAUTH and CONNAUTH
	Resolving CHLAUTH access issues
	Creating new CHLAUTH rules for users
	Creating new CHLAUTH rules for channels
	Creating a CHLAUTH back-stop rule
	Creating a non-privileged IBM MQ administrator

	Connection authentication
	Connection authentication: Configuration
	Connection authentication: Application changes
	Connection authentication: User repositories
	Client side security exit to insert user ID and password (mqccred)
	Connection authentication with the Java client

	Message security in IBM MQ

	Planning for your security requirements
	Planning identification and authentication
	Planning authentication for a client application
	User IDs

	Planning authorization
	Authority to administer IBM MQ
	Authority to administer IBM MQ on AIX, Linux, and Windows systems
	Authority to administer IBM MQ on IBM i
	Authority to administer IBM MQ on z/OS
	Authority checks on z/OS
	Command security and command resource security on z/OS
	MQSC commands and the system command input queue on z/OS
	Access to the queue manager data sets on z/OS

	Authorization for applications to use IBM MQ
	When authority checks are performed
	Alternate user authority
	Message context
	Authority to work with IBM MQ objects on IBM i , AIX, Linux, and Windows systems
	Using PCF to access OAM commands

	Authority to work with IBM MQ objects on z/OS

	Security for remote messaging
	Security of IBM MQ for IBM i objects
	Security of objects on AIX and Linux
	Security of objects on Windows systems
	User IDs across systems

	Using a custom authorization service
	Access control for clients

	Planning confidentiality
	Comparing link level security and application level security
	Link level security
	Providing your own link level security
	Link level security using a security exit
	Link level security using a message exit
	Link level security using send and receive exits

	Application level security
	Planning for Advanced Message Security
	Providing your own application level security

	Channel exit programs
	Security exit overview
	Message exit
	Send and receive exits

	Planning data integrity
	Planning auditing
	Planning security by topology
	Channel authorization
	Protecting channel initiator definitions
	Transmission queues
	Channel exits
	Protecting channels with SSL/TLS
	IBM MQ for z/OS server connection channel
	SNA LU 6.2 security services
	Session level cryptography
	Session level authentication
	Conversation level authentication
	Support for conversation level authentication on Multiplatforms
	Conversation level authentication and IBM MQ for z/OS

	Security for queue manager clusters
	Security for IBM MQ Publish/Subscribe
	Multicast security

	Firewalls and Internet pass-thru
	Security for IBM MQ Internet Pass-Thru

	IBM MQ for z/OS security implementation checklist

	Setting up security
	Setting up security on AIX, Linux, and Windows
	How authorizations work on AIX, Linux, and Windows
	Authorizations for MQI calls
	Authorizations for MQSC commands in escape PCFs
	Authorizations for PCF commands

	Creating and managing groups on AIX
	Creating and managing groups on Linux
	Creating and managing groups on Windows
	Creating a group on Windows
	Adding a user to a group on Windows
	Displaying who is in a group on Windows
	Removing a user from a group on Windows

	Special considerations for security on Windows
	Local and domain user accounts for the IBM MQ Windows service
	Windows Server security permissions
	Changing the user name associated with the IBM MQ service
	Changing the password of the IBM MQ Windows service local user account
	Changing the password for an IBM MQ Windows service for an installation running under a domain user account

	Considerations when promoting Windows servers to domain controllers
	Restrictions on nested groups on Windows
	Authorizing users to use IBM MQ remotely
	The SSPI channel exit program on Windows
	Applying security template files on Windows
	Configuring extra authority for Windows applications connecting to IBM MQ

	Setting up security on IBM i
	Object authority manager on IBM i
	IBM MQ authorities on IBM i
	Access authorities for IBM MQ objects on IBM i
	Access authorizations on IBM i
	Using the access authorization commands on IBM i

	Authorization specification tables on IBM i
	Authorizations for MQSC commands in escape PCFs on IBM i
	Authorizations for PCF commands on IBM i

	Generic OAM profiles on IBM i
	Specifying the installed authorization service on IBM i
	Working with and without authority profiles on IBM i
	Object Authority Manager guidelines on IBM i

	Setting up security on z/OS
	RACF security classes
	RACF profiles
	Switch profiles
	Switches and classes
	How switches work
	Profiles to control subsystem security
	Profiles to control queue sharing group or queue manager level security
	Valid combinations of security switches

	Resource level checks
	An example of defining switches

	Profiles used to control access to IBM MQ resources
	Profiles for connection security
	Connection security profiles for batch connections
	Using CHCKLOCL on locally bound applications

	Connection security profiles for CICS connections
	Connection security profiles for IMS connections
	Connection security profiles for the channel initiator

	Profiles for queue security
	Considerations for alias queues
	Using alias queues to distinguish between MQGET and MQPUT requests
	Considerations for model queues
	Close options on permanent dynamic queues
	Security and remote queues
	Dead-letter queue security
	System queue security
	API-resource security access quick reference

	Profiles for topic security
	Profiles for processes
	Profiles for namelists
	Profiles for alternate user security
	Profiles for context security
	Profiles for command security
	IBM MQ Console - required command security profiles

	Profiles for command resource security
	Command resource security checking for alias queues and remote queues

	The RESLEVEL security profile
	RESLEVEL and batch connections
	RESLEVEL and system functions
	RESLEVEL and CICS connections
	RESLEVEL and IMS connections
	RESLEVEL and the channel initiator connection
	RESLEVEL and intra-group queuing
	RESLEVEL and the user IDs checked

	User IDs for security checking on z/OS
	User IDs for connection security
	User IDs for command and command resource security
	User IDs for resource security (MQOPEN, MQSUB, and MQPUT1)
	User IDs checked for batch connections
	User IDs checked for CICS connections
	User IDs checked for IMS connections
	User IDs used by the channel initiator
	Receiving channels using TCP/IP
	Receiving channels using LU 6.2
	Client MQI requests
	Channel initiator example

	User IDs used by the intra-group queuing agent

	Blank user IDs and UACC levels

	z/OS user IDs and Multi-Factor Authentication (MFA)
	IBM MQ for z/OS security management
	User ID reverification
	User ID timeouts
	Refreshing queue manager security on z/OS
	Displaying security status

	Security installation tasks for z/OS
	Setting up IBM MQ for z/OS data set security
	RACF authorization of started-task procedures
	Authorizing access to data sets
	Encrypting data sets

	Setting up IBM MQ for z/OS resource security
	Configuring your z/OS system to use TLS

	Managing channel authentication records in a QSG
	Auditing considerations on z/OS
	Auditing RESLEVEL

	Customizing security
	Security violation messages on z/OS
	What to do if access is allowed or disallowed incorrectly
	Security considerations for the channel initiator on z/OS
	Security in queue manager clusters on z/OS
	Security considerations for using IBM MQ with CICS
	Security considerations for using IBM MQ with IMS
	Security considerations for connecting to IMS
	Application access control for the IMS bridge
	Security checking on IMS
	Security checking done by the IMS bridge
	Using RACF PassTickets in the IMS header

	Migrating a z/OS queue manager to mixed-case security

	Setting up IBM MQ MQI client security
	Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
	Running TLS client applications with multiple installations of GSKit V8.0 on AIX

	Setting up communications for SSL or TLS on IBM i
	Setting up communications for SSL or TLS on AIX, Linux, and Windows
	Setting up communications for SSL or TLS on z/OS
	Working with SSL/TLS
	Working with SSL/TLS on IBM i
	Accessing DCM
	Assigning a certificate to a queue manager on IBM i
	Setting up a key repository on IBM i
	Encrypting key repository passwords on IBM i
	Creating a certificate store on IBM i
	Stashing the certificate store password on IBM i systems

	Locating the key repository for a queue manager on IBM i
	Changing the key repository location for a queue manager on IBM i
	Supplying the key repository password for a queue manager on IBM i
	Supplying the key repository password for an IBM MQ MQI client on IBM i
	Supplying an initial key for an IBM MQ MQI client on IBM i

	Creating a certificate authority and certificate for testing on IBM i
	Requesting a server certificate on IBM i
	Requesting a server certificate for IBM Key Manager on IBM i
	Adding server certificates to a key repository on IBM i
	Exporting a certificate from a key repository on IBM i
	Importing a certificate into a key repository on IBM i
	Removing certificates in IBM i
	Using the *SYSTEM certificate store for one-way authentication on IBM i
	IBM MQ SSL Client utility (amqrsslc) for IBM i
	When changes to certificates or the certificate store become effective on IBM i
	Configuring cryptographic hardware on IBM i

	Working with SSL/TLS on AIX, Linux, and Windows
	Using runmqckm, runmqakm, and strmqikm to manage digital certificates
	Setting up a key repository on AIX, Linux, and Windows
	Encrypting key repository passwords on AIX, Linux, and Windows
	Accessing and securing your key database files on Windows
	Accessing and securing your key database files on AIX and Linux systems
	Adding default CA certificates into an empty key repository on AIX, Linux, and Windows with GSKit 8.0

	Locating the key repository for a queue manager on AIX, Linux, and Windows
	Changing the key repository location for a queue manager on AIX, Linux, and Windows
	Supplying the key repository password for a queue manager on AIX, Linux, and Windows
	Locating the key repository for an IBM MQ MQI client on AIX, Linux, and Windows
	Specifying the key repository location for an IBM MQ MQI client on AIX, Linux, and Windows
	Supplying the key repository password for an IBM MQ MQI client on AIX, Linux, and Windows
	Supplying an initial key for an IBM MQ MQI client on AIX, Linux, and Windows

	When changes to certificates or the certificate store become effective on AIX, Linux, and Windows
	Creating a self-signed personal certificate on AIX, Linux, and Windows
	Using the strmqikm user interface
	Using the command line

	Requesting a personal certificate on AIX, Linux, and Windows
	Using the strmqikm user interface
	Using the command line

	Renewing an existing personal certificate on AIX, Linux, and Windows
	Using the strmqikm user interface
	Using the command line

	Receiving personal certificates into a key repository on AIX, Linux, and Windows
	Extracting a CA certificate from a key repository on AIX, Linux, and Windows
	Extracting the public part of a self-signed certificate from a key repository on AIX, Linux, and Windows
	Adding a CA certificate, or the public part of a self-signed certificate, into a key repository on AIX, Linux, and Windows
	Exporting a personal certificate from a key repository on AIX, Linux, and Windows
	Importing a personal certificate into a key repository on AIX, Linux, and Windows
	Importing a personal certificate from a Microsoft.pfx file
	Importing a personal certificate from a PKCS #7 file
	Deleting a certificate from a key repository on AIX, Linux, and Windows
	Generating strong passwords for key repository protection on AIX, Linux, and Windows
	Configuring for cryptographic hardware on AIX, Linux, and Windows
	Managing certificates on PKCS #11 hardware
	Requesting a personal certificate for your PKCS #11 hardware
	Receiving a personal certificate into your PKCS #11 hardware

	Working with SSL/TLS on IBM MQ Appliance
	Working with SSL/TLS on z/OS
	Additional user ID requirements for TLS on z/OS
	Setting the SSLTASKS parameter on z/OS
	Setting up a key repository on z/OS
	Making CA certificates available to a queue manager on z/OS

	Locating the key repository for a queue manager on z/OS
	Specifying the key repository location for a queue manager on z/OS
	Giving the channel initiator the correct access rights on z/OS
	When changes to certificates or the key repository become effective on z/OS
	Creating a self-signed personal certificate on z/OS
	Requesting a personal certificate on z/OS
	Creating a RACF signed personal certificate
	Adding personal certificates to a key repository on z/OS
	Exporting a personal certificate from a key repository on z/OS
	Deleting a personal certificate from a key repository on z/OS
	Renaming a personal certificate in a key repository on z/OS
	Associating a user ID with a digital certificate on z/OS
	Setting up a certificate name filter on z/OS

	Defining a sender channel and transmission queue on QMA on z/OS
	Defining a receiver channel on QMB on z/OS
	Starting the sender channel on QMA on z/OS
	Exchanging self-signed certificates on z/OS
	Defining a sender channel and transmission queue on QM1 on z/OS
	Defining a receiver channel on QM2 on z/OS
	Starting the sender channel on QM1 on z/OS
	Refreshing the SSL or TLS environment on z/OS
	Allowing anonymous connections on a receiver channel on z/OS
	Starting the sender channel on QM1 on z/OS
	Starting the sender channel on QMA on z/OS
	Modifying elliptic curve key length on z/OS

	Identifying and authenticating users
	Privileged users
	Identifying and authenticating users using the MQCSP structure
	Implementing identification and authentication in security exits
	Identity mapping in message exits
	Identity mapping in the API exit and API-crossing exit
	Working with authentication tokens
	Requirements for authentication tokens
	Configuring a queue manager to accept authentication tokens
	Obtaining an authentication token from your chosen token issuer
	Using authentication tokens in an application

	Working with revoked certificates
	OCSP/CRL checking
	Revoked certificates and OCSP
	Working with Certificate Revocation Lists and Authority Revocation Lists
	Setting up LDAP servers
	Configuring and updating LDAP servers

	Accessing CRLs and ARLs with a queue manager
	Accessing CRLs and ARLs on IBM i
	Accessing CRLs and ARLs using IBM MQ Explorer

	Accessing CRLs and ARLs with an IBM MQ MQI client
	Location of an OCSP responder, and of LDAP servers that hold CRLs

	Accessing CRLs and ARLs with IBM MQ classes for Java and IBM MQ classes for JMS

	Manipulating authentication information objects

	Using the Pluggable Authentication Method (PAM)

	Authorizing access to objects
	Determining which user is used for authorization
	Controlling access to objects by using the OAM on AIX, Linux, and Windows
	OAM user-based permissions on AIX and Linux
	Giving access to an IBM MQ object on AIX, Linux, and Windows
	Using OAM generic profiles on AIX, Linux, and Windows
	Using wildcard characters in OAM profiles on AIX, Linux, and Windows
	Profile priorities on AIX, Linux, and Windows
	Dumping profile settings on AIX, Linux, and Windows

	Displaying access settings on AIX, Linux, and Windows
	Changing and revoking access to an IBM MQ object on AIX, Linux, and Windows
	Preventing security access checks on AIX, Linux, and Windows systems

	Granting required access to resources
	Granting partial administrative access on a subset of queue manager resources
	Granting limited administrative access to some queues
	Granting limited administrative access to some topics
	Granting limited administrative access to some channels
	Granting limited administrative access to a queue manager
	Granting limited administrative access to some processes
	Granting limited administrative access to some namelists
	Granting limited administrative access to some services

	Granting full administrative access on a subset of queue manager resources
	Granting full administrative access to some queues
	Granting full administrative access to some topics
	Granting full administrative access to some channels
	Granting full administrative access to a queue manager
	Granting full administrative access to some processes
	Granting full administrative access to some namelists
	Granting full administrative access to some services

	Granting read-only access to all resources on a queue manager
	Granting full administrative access to all resources on a queue manager
	Removing connectivity to the queue manager
	Allowing user applications to connect to your queue manager
	Securing remote connectivity to the queue manager
	Blocking specific IP addresses
	Temporarily blocking specific IP addresses if the queue manager is not running

	Blocking specific user IDs
	Mapping a remote queue manager to an MCAUSER user ID
	Mapping a client user ID to an MCAUSER user ID
	Mapping an SSL or TLS Distinguished Name to an MCAUSER user ID
	Blocking access from a remote queue manager
	Blocking access for a client user ID
	Blocking access for an SSL or TLS Distinguished Name
	Mapping an IP address to an MCAUSER user ID

	Disabling remote access to the queue manager
	Setting up connection security
	Controlling user access to queues
	Granting authority to get messages from queues
	Granting authority to set context
	Granting authority to pass context
	Granting authority to put messages to a local queue
	Granting authority to put messages to a model queue
	Granting authority to put messages to a remote cluster queue

	Controlling user access to topics
	Granting authority to publish messages to a topic
	Granting authority to subscribe to topics

	Granting authority to inquire on a queue manager
	Granting authority to access processes
	Granting authority to access namelists

	Authority to administer IBM MQ on AIX, Linux, and Windows
	Managing the mqm group on AIX, Linux, and Windows

	Authority to work with IBM MQ objects on AIX, Linux, and Windows
	When security checks are made on AIX, Linux, and Windows
	How access control is implemented by IBM MQ on AIX, Linux, and Windows
	Identifying the user ID on AIX, Linux, and Windows
	Principals and groups on AIX, Linux, and Windows
	Windows security identifiers (SIDs)

	Alternate-user authority on AIX, Linux, and Windows
	Solving certain group membership problems on Linux
	Context authority on AIX, Linux, and Windows

	Implementing access control in security exits
	Implementing access control in message exits
	Implementing access control in the API exit and API-crossing exit
	Streaming queues security
	Streaming queues security on z/OS

	LDAP authorization
	Setting authorizations
	Displaying authorizations
	Other considerations when using LDAP authorization
	Switching between OS and LDAP authorization models
	LDAP administration

	Confidentiality of messages
	Enabling CipherSpecs
	AES-GCM cipher restriction
	CipherSpec order in TLS handshake
	Deprecated CipherSpecs
	Relationship between alias CipherSpec settings
	Obtaining information about CipherSpecs using IBM MQ Explorer
	Alternatives for specifying CipherSpecs
	Specifying a CipherSpec for an IBM MQ MQI client
	Specifying a CipherSuite with IBM MQ classes for Java and IBM MQ classes for JMS
	Specifying a CipherSpec for IBM MQ.NET
	Use of AT-TLS with IBM MQ for z/OS
	Configuring AT-TLS on an outbound channel to an IBM MQ for Multiplatforms queue manager using a single, named CipherSpec
	Configuring AT-TLS on an outbound channel to an IBM MQ for Multiplatforms queue manager using alias CipherSpecs
	Configuring AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue manager using a single, named CipherSpec
	Configuring AT-TLS on an inbound channel from an IBM MQ for Multiplatforms queue manager using an alias CipherSpec

	Resetting SSL and TLS secret keys
	Implementing confidentiality in user exit programs

	Confidentiality for data at rest on IBM MQ for z/OS with data set encryption
	Overview of steps to encrypt an IBM MQ for z/OS data set
	Example of how to encrypt queue manager active logs
	Configuring the data set encryption key for the queue manager
	Configuring data set encryption for the log data sets

	Considerations for z/OS data set encryption in a queue sharing group
	Backwards migration considerations when using z/OS data set encryption

	Data integrity of messages
	Auditing
	Keeping clusters secure
	Stopping unauthorized queue managers sending messages
	Stopping unauthorized queue managers putting messages on your queues
	Authorizing putting messages on remote cluster queues
	Preventing queue managers joining a cluster
	Security exits on cluster channels

	Forcing unwanted queue managers to leave a cluster
	Preventing queue managers receiving messages
	SSL/TLS and clusters
	Upgrading clustered queue managers and channels to SSL/TLS
	Disabling SSL/TLS on clustered queue managers and channels

	Publish/subscribe security
	Example publish/subscribe security setup
	Grant access to a user to subscribe to a topic
	Grant access to a user to subscribe to a topic deeper within the tree
	Grant another user access to subscribe to only the topic deeper within the tree
	Change access control to avoid additional messages
	Grant access to a user to publish to a topic
	Grant access to a user to publish to a topic deeper within the tree
	Grant access for publish and subscribe

	Subscription security
	MQSO_ANY_USERID subscription option

	Publish/subscribe security between queue managers

	IBM MQ Console and REST API security
	Configuring users and roles
	Configuring a basic registry for the IBM MQ Console and REST API
	Configuring a local OS registry for the IBM MQ Console and REST API
	Configuring an LDAP registry for the IBM MQ Console and REST API
	Configuring a SAF registry for the IBM MQ Console and REST API
	Roles on the IBM MQ Console and REST API

	Changing the certificate provided by the IBM MQ Console to your browser
	Using client certificate authentication with the REST API and IBM MQ Console
	Using HTTP basic authentication with the REST API
	Using token-based authentication with the REST API
	Embedding the IBM MQ Console in an IFrame
	Configuring CORS for the REST API
	Configuring host header validation for the IBM MQ Console and REST API
	Auditing
	Security considerations for the IBM MQ Console and REST API on z/OS
	Authority required by the mqweb server started task user ID
	Access to IBM MQ resources required to use the IBM MQ Console or REST API
	Configuring TLS for the REST API and IBM MQ Console on z/OS

	Managing keys and certificates on AIX, Linux, and Windows
	runmqckm and runmqakm commands on AIX, Linux, and Windows
	Commands for CMS or PKCS#12 key databases on AIX, Linux, and Windows
	Commands for cryptographic device operations on AIX, Linux, and Windows

	runmqckm and runmqakm options on AIX, Linux, and Windows
	runmqakm error codes on AIX, Linux, and Windows

	Protecting passwords in IBM MQ component configuration files
	The limits to protection through password encryption

	Protection of database authentication details
	Securing Managed File Transfer
	Encrypting stored credentials in MFT
	MFT and IBM MQ connection authentication
	Configuring MQMFTCredentials.xml on Multiplatforms
	Configuring MQMFTCredentials.xml on z/OS
	Enabling connection authentication for MFT

	MFT sandboxes
	Working with MFT agent sandboxes
	Working with MFT user sandboxes
	Additional checks for wildcard transfers

	Configuring SSL or TLS encryption for MFT
	SSL/TLS properties for MFT

	Connecting to a queue manager in client mode with channel authentication
	Configuring SSL or TLS between the Connect:Direct bridge agent and the Connect:Direct node

	Securing AMQP clients
	Restricting AMQP client takeover
	Configuring JAAS for AMQP channels

	Advanced Message Security
	Overview of Advanced Message Security
	Features and functions of Advanced Message Security
	Qualities of protection available with AMS
	Key concepts in AMS
	Public key infrastructure and Advanced Message Security
	Digital certificates in AMS
	Object authority manager and AMS

	Technology supported by Advanced Message Security
	Known limitations of AMS

	Advanced Message Security interception on message channels
	AMS interception on server-to-server message channels

	Error handling for AMS
	Undelivered messages for AMS on z/OS

	User scenarios for AMS
	Quick Start Guide for AMS on Windows platforms
	1. Creating a queue manager and a queue
	2. Creating and authorizing users
	3. Creating key database and certificates
	4. Creating keystore.conf
	5. Sharing Certificates
	6. Defining queue policy
	7. Testing the setup
	8. Testing encryption

	Quick Start Guide for AMS on AIX and Linux
	1. Creating a queue manager and a queue
	2. Creating and authorizing users
	3. Creating key database and certificates
	4. Creating keystore.conf
	5. Sharing Certificates
	6. Defining queue policy
	7. Testing the setup
	8. Testing encryption

	Example AMS configurations on z/OS
	Local queuing of integrity-protected messages for AMS on z/OS
	Local queuing of privacy-protected messages for AMS on z/OS
	Remote queuing of integrity-protected messages for AMS on z/OS
	Remote queuing of privacy-protected messages for AMS on z/OS

	Quick Start Guide for AMS with Java clients
	1. Creating a queue manager and a queue
	2. Creating and authorizing users
	3. Creating key database and certificates
	4. Creating keystore.conf
	5. Sharing certificates
	6. Defining queue policy
	7. Testing the setup

	Protecting remote queues on AMS
	Routing protected messages with AMS using IBM Integration Bus
	Scenario 1 - Integration Bus cannot see message content
	Scenario 2 - Integration Bus can see message content

	Using Advanced Message Security with Managed File Transfer
	1. Creating certificates
	2. Configuring message protection

	Advanced Message Security installation overview
	Auditing for AMS on z/OS
	Using keystores and certificates with AMS
	Structure of the keystore configuration file (keystore.conf) for AMS
	Support for non-IBM JREs with AMS
	Message Channel Agent (MCA) interception and AMS
	MCA interception example for AMS

	Disabling Advanced Message Security at the client
	Certificate requirements for AMS
	Certificate validation methods in AMS
	Online Certificate Status Protocol (OCSP) in AMS
	Enabling OCSP checking in native interceptors of Advanced Message Security
	Enabling OCSP checking in Java in AMS
	Using java.security
	Using keystore.conf

	Certificate revocation lists (CRLs) in AMS
	Enabling certificate validation and certificate revocation list support in native interceptors
	Enabling certificate revocation list support in Java in AMS
	Enabling certificate revocation lists (CRLs) on z/OS

	Setting up AMS password protection for configuration files
	Using certificates with AMS on z/OS
	Use of SAF key rings with AMS on z/OS
	Authorizing access to the RACDCERT command for AMS on z/OS
	Creating the certificates and key rings for AMS users on z/OS
	Defining a local Certificate Authority certificate for AMS on z/OS
	Creating a digital certificate with a private key for AMS on z/OS
	Creating the RACF key rings for AMS on z/OS
	Connecting the certificates to the key rings for AMS on z/OS
	Key ring verification for AMS on z/OS

	Summary of the certificate-related operations for AMS on z/OS
	Configuring a non-z/OS resident PKI for AMS

	Administering Advanced Message Security security policies
	Security policies overview for AMS
	Policy names in AMS
	Signature algorithm in AMS
	Encryption algorithm in AMS
	Toleration in AMS
	Sender distinguished names in AMS
	Recipient distinguished names in AMS
	Security policy attributes in AMS
	Quality of protection in AMS

	Managing security policies in AMS
	Creating security policies in AMS
	Changing security policies in AMS
	Displaying and dumping security policies in AMS
	Removing security policies in AMS

	System queue protection in AMS
	Streaming queues and AMS
	Granting OAM permissions in AMS
	Granting security permissions in AMS
	Setting up certificates and the keystore configuration file for AMS on IBM i
	Creating a policy for AMS on IBM i
	Testing a policy for AMS on IBM i

	Command and configuration events for AMS
	Enabling and disabling event logging for AMS
	Command event message format for AMS
	Configuration event message format for AMS

	Notices
	Programming interface information
	Trademarks

