
9.3

IBM MQ in containers

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
219.

This edition applies to version 9 release 3 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

IBM MQ in containers and IBM Cloud Pak for Integration.. 5
Planning for IBM MQ in containers.. 5

Choosing how you want to use IBM MQ in containers.. 5
Support for IBM MQ in containers..6
Planning for licensing IBM MQ in containers...13
Dependencies for the IBM MQ Operator... 18
Cluster-scoped permissions required by the IBM MQ Operator...19
Storage considerations for IBM MQ Operator... 20
IBM MQ Advanced for Developers container image..21
High availability for IBM MQ in containers.. 24
Disaster recovery for IBM MQ in containers..26
Planning to secure IBM MQ in containers..26
Planning scalability and performance for IBM MQ in containers..32

Using the IBM MQ Operator...33
Release history for IBM MQ Operator..33
Verifying image signatures...82
Migrating IBM MQ to IBM Cloud Pak for Integration...83
Installing the IBM MQ Operator...105
Installing IBM MQ Operator 2.x in an air-gap environment..112
Deploying a queue manager onto a Red Hat OpenShift Container Platform cluster....................... 118
Uninstalling the IBM MQ Operator...121
Upgrading the IBM MQ Operator and queue managers..123
Configuring queue managers using the IBM MQ Operator... 135
Operating IBM MQ using the IBM MQ Operator..173
Troubleshooting problems with the IBM MQ Operator...181
API reference for the IBM MQ Operator..183

Building your own IBM MQ container and deployment code...207
Planning your own IBM MQ queue manager image using a container... 207
Building a sample IBM MQ queue manager container image...208
Running local binding applications in separate containers.. 210
Creating the Native HA group if creating your own containers...213

Notices..219
Programming interface information..220
Trademarks.. 220

 iii

iv

IBM MQ in containers and IBM Cloud Pak for
Integration

Containers allow you to package an IBM MQ queue manager or IBM MQ client application, with all of its
dependencies, into a standardized unit for software development.

You can run IBM MQ using the IBM MQ Operator on Red Hat® OpenShift®. This can be done using IBM
Cloud Pak® for Integration, IBM MQ Advanced or IBM MQ Advanced for Developers.

You can also run IBM MQ in a container you build yourself.

For more information about the IBM MQ Operator, see the following links.

Planning for IBM MQ in containers
When planning for IBM MQ in containers, consider the support that IBM MQ provides for various
architectural options, such as how high availability is managed, and how to secure your queue managers.

About this task
Before you plan your IBM MQ in containers architecture, you should familiarize yourself with the basic
IBM MQ concepts (see IBM MQ Technical overview) as well as basic Kubernetes/Red Hat OpenShift
concepts (see OpenShift Container Platform architecture).

Procedure
• “Choosing how you want to use IBM MQ in containers” on page 5.
• “Support for IBM MQ in containers” on page 6.
• “Storage considerations for IBM MQ Operator” on page 20.
• “High availability for IBM MQ in containers” on page 24.
• “Disaster recovery for IBM MQ in containers” on page 26.
• “User authentication and authorization for IBM MQ in containers” on page 27.

Choosing how you want to use IBM MQ in containers
There are multiple options for using IBM MQ in containers: you can choose to use the IBM MQ Operator,
which uses pre-packaged container images, or you can build your own images and deployment code.

Using the IBM MQ Operator

If you are planning to deploy on Red Hat OpenShift Container Platform, then you probably want to use the
IBM MQ Operator.

The IBM MQ Operator extends the Red Hat OpenShift Container Platform API to add a new
QueueManager custom resource. The operator watches for new queue manager definitions, and then
turns them into necessary low-level resources, such as StatefulSet and Service resources. In the
case of Native HA, the operator can also perform the complex rolling update of queue manager instances.
See “Considerations for performing your own rolling update of a Native HA queue manager” on page 215

Some IBM MQ features are not supported when using the IBM MQ Operator. See “Support for IBM MQ in
containers” on page 6 for details of what is supported when using the IBM MQ Operator.

Note that the IBM MQ Operator does not support installing on an OpenShift cluster with multi-
architecture compute machines.

© Copyright IBM Corp. 2007, 2025 5

https://docs.openshift.com/container-platform/latest/architecture/architecture.html

Building your own images and deployment code

This is the most flexible container solution, but it requires you to have strong skills in configuring
containers, and to "own" the resultant container. If you aren't planning to use Red Hat OpenShift
Container Platform, then you will need to build your own images and deployment code.

Samples for building your own images are available. See “Building your own IBM MQ container and
deployment code” on page 207.

See “Support for IBM MQ in containers” on page 6 for details of what is supported when building your
own image and deployment code.

Related reference
“Support for IBM MQ in containers” on page 6
Not all IBM MQ features are available and supported in the same way in containers.

Support for IBM MQ in containers
Not all IBM MQ features are available and supported in the same way in containers.

Below is a table which shows in detail how IBM MQ features are supported with the IBM MQ Operator, or
when you build your own containers and deployment code.

Note: The pre-built IBM MQ container images on IBM Container Registry (icr.io and cp.icr.io) are only
supported and eligible for fixes if used with the IBM MQ Operator.

It is not possible to "upgrade" the license of the pre-built IBM MQ Advanced for Developers image to
a different license. The IBM MQ Operator will deploy different images, depending on which license is
selected.

In this table, the following terms apply:

"Container enablement code"
The executables runmqserver, runmqintegrationserver, chkmqhealthy, chkmqready and
chkmqstarted. This code is provided as a sample, and is only supported as part of the pre-built
containers when used with the IBM MQ Operator.

6 IBM MQ in containers

Using IBM MQ
Operator and a
IBM Cloud Pak
for Integration
license

Using IBM MQ
Operator and
an IBM MQ
Advanced
license

Using IBM MQ
Operator and
an IBM MQ
Advanced for
Developers
license

Pre-built IBM
MQ Advanced
for Developers
image

Build-your-
own container

Supported
platforms

Supported on Red Hat
OpenShift Container Platform
only. Releases of Red Hat
OpenShift Container Platform are
no longer supported by IBM MQ
once Red Hat stops support.

See “Version support for the IBM
MQ Operator” on page 11 for
more details.

Available on
Red Hat
OpenShift
Container
Platform only,
but not
supported.

Works on any
Docker,
containerd or
cri-o platform,
but not
supported. See
System
Requirements
for IBM MQ for
details.

Any Docker,
containerd or
cri-o platform.
See System
Requirements
for IBM MQ for
details. Native
HA is only
supported on
Kubernetes or
Red Hat
OpenShift
Container
Platform. The
sample
container
image uses a
Red Hat
Universal Base
Image (UBI),
which includes
Linux® libraries
and utilities
used by IBM
MQ. The UBI is
supported by
Red Hat when
run on Red Hat
OpenShift. The
container
enablement
code is not
supported.

CPU
architectures

Supported on amd64, on s390x
z/Linux, and on ppc64le Power®

Systems.

Available on amd64, on s390x
z/Linux, and on ppc64le Power
Systems, but not supported.

As per IBM MQ
software.

IBM MQ in containers and IBM Cloud Pak for Integration 7

https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq
https://www.ibm.com/support/pages/system-requirements-ibm-mq

Using IBM MQ
Operator and a
IBM Cloud Pak
for Integration
license

Using IBM MQ
Operator and
an IBM MQ
Advanced
license

Using IBM MQ
Operator and
an IBM MQ
Advanced for
Developers
license

Pre-built IBM
MQ Advanced
for Developers
image

Build-your-
own container

Duration of
support

IBM Cloud Pak
for Integration -
Long Term
Support or
Continuous
Delivery. 1

CD operator
and queue
managers are
supported until
next IBM Cloud
Pak for
Integration CD
or CP4I-LTS
release.

CP4I-LTS
operator and
queue
managers are
supported until
next IBM Cloud
Pak for
Integration
CP4I-LTS
release, plus a
grace period to
allow for
upgrade.

Continuous
Delivery stream
only, for both
the IBM MQ
Operator, and
queue
managers.

Each IBM MQ
Operator and
queue manager
version is only
supported until
the next CD or
LTS release.

Not supported As per IBM MQ
software. See
IBM MQ FAQ for
Long Term
Support and
Continuous
Delivery
releases. The
container
enablement
code is not
supported.

Security fix
availability

Periodic fixes available as container images on IBM Container
Registry

Fixes to IBM
MQ software
are available as
software on Fix
Central. The
container
enablement
code is not
supported.

1 The IBM MQ Operator is supported either as an IBM MQ CD release, or as a CP4I-LTS release:

• IBM MQ 9.3.0.x container images deployed with IBM MQ Operator 2.0.x, when used as part of IBM
Cloud Pak for Integration 2022.2.1, are eligible for CP4I-LTS support. The latest Long Term Support (LTS)
release of the IBM MQ Operator is 2.0.29, and the latest LTS container image is 9.3.0.25-r1.

• IBM MQ 9.3.5 container images deployed with IBM MQ Operator 3.1.x, when used as part of IBM Cloud
Pak for Integration 2023.4.1, are eligible for CD support. The latest Continuous Delivery (CD) release of
the IBM MQ Operator is 3.1.3, and the latest CD container image is 9.3.5.1-r2.

8 IBM MQ in containers

https://www.ibm.com/support/pages/ibm-mq-faq-long-term-support-and-continuous-delivery-releases
https://www.ibm.com/support/pages/ibm-mq-faq-long-term-support-and-continuous-delivery-releases
https://www.ibm.com/support/pages/ibm-mq-faq-long-term-support-and-continuous-delivery-releases
https://www.ibm.com/support/pages/ibm-mq-faq-long-term-support-and-continuous-delivery-releases
https://www.ibm.com/support/pages/ibm-mq-faq-long-term-support-and-continuous-delivery-releases
https://www.ibm.com/support/pages/ibm-mq-faq-long-term-support-and-continuous-delivery-releases
https://www.ibm.com/support/fixcentral/
https://www.ibm.com/support/fixcentral/

Using IBM MQ
Operator and a
IBM Cloud Pak
for Integration
license

Using IBM MQ
Operator and
an IBM MQ
Advanced
license

Using IBM MQ
Operator and
an IBM MQ
Advanced for
Developers
license

Pre-built IBM
MQ Advanced
for Developers
image

Build-your-
own container

Interim fix
availability

Queue manager fixes available as
software, and a custom image
build is necessary.

IBM MQ Operator fixes are not
available as interim fixes.

No interim fixes available. Fixes to IBM
MQ software
are available as
software on Fix
Central or via
IBM Support.
The container
enablement
code is not
supported.

Feature:
Advanced
Message
Security

Supported. Note that it's not easy
to use server-side encryption,
because the IBM MQ Operator
does not directly allow you to
specify your own key store for
Advanced Message Security.

Available but not supported. Supported as
per IBM MQ
software, but
no sample
available.

Feature:
Managed File
Transfer

Not available and not supported. However, you
can use the IBM MQ Operator to provide one
or more Coordination, Command, or Agent queue
managers.

Not available
and not
supported.

Supported as
per IBM MQ
software, with
sample for
agent.

Feature: MQTT Not available and not supported. Supported as
per IBM MQ
software, but
no sample
available.

Feature: AMQP Not available and not supported. Supported as
per IBM MQ
software, but
no sample
available.

Feature: REST
API

Available and
supported from
IBM MQ
Operator 3.0
and IBM MQ
9.3.4 onwards.
Prior to that,
REST APIs were
not supported.

Available and
supported.
Easy to
configure from
IBM MQ
Operator 3.0
and IBM MQ
9.3.4 onwards.

Available and
supported from
IBM MQ
Operator 3.0
and IBM MQ
9.3.4 onwards,
but not
supported.
Prior to that,
REST APIs were
not available.

Available and
supported from
IBM MQ 9.3.4
onwards, but
not supported.
Prior to that,
REST API was
not available.

Available and
supported as
per IBM MQ
software.

Feature:
Replicated
Data Queue
Managers

Not available and not supported. Replicated Data Queue Managers (RDQM) are tightly
coupled with the Linux kernel, and are not supported in containers.

IBM MQ in containers and IBM Cloud Pak for Integration 9

https://www.ibm.com/support/fixcentral/
https://www.ibm.com/support/fixcentral/
https://github.com/ibm-messaging/mq-container-mft

Using IBM MQ
Operator and a
IBM Cloud Pak
for Integration
license

Using IBM MQ
Operator and
an IBM MQ
Advanced
license

Using IBM MQ
Operator and
an IBM MQ
Advanced for
Developers
license

Pre-built IBM
MQ Advanced
for Developers
image

Build-your-
own container

Feature:
Native HA

Available and supported. Available, but not supported. Available only
on Kubernetes
and Red Hat
OpenShift
Container
Platform.
Supported as
per IBM MQ
software.

Feature: Multi-
instance queue
managers

Available and supported. Available, but not supported. Available and
supported as
per IBM MQ
software.

Feature: Types
of recovery
logs

Circular logging or replicated logs only. Linear logging is not
supported.

Available and
supported as
per IBM MQ
software. You
need to
configure the
crtmqm
options.

Feature:
specifying
custom
command line
options for
crtmqdir,
crtmqm,
strmqm and
endmqm

Not available and not supported. Most options can be configured
using an INI file, however some cannot be configured, such as the
use of linear logging.

Optional,
depending on
how you
implement your
container
enablement
code.

Feature:
Operating
system (OS)
users

Not available and not supported. Possible and
supported as
per IBM MQ
software, if you
install IBM MQ
using RPMs, but
no sample is
available. Not
recommended
due to security
risk.

Feature: IBM
MQ Bridge to
blockchain

Not available and not supported. Removed from IBM MQ entirely from IBM MQ 9.3.2
onwards.

10 IBM MQ in containers

Using IBM MQ
Operator and a
IBM Cloud Pak
for Integration
license

Using IBM MQ
Operator and
an IBM MQ
Advanced
license

Using IBM MQ
Operator and
an IBM MQ
Advanced for
Developers
license

Pre-built IBM
MQ Advanced
for Developers
image

Build-your-
own container

Feature: IBM
MQ Bridge to
Salesforce

Not available and not supported. Supported as
per IBM MQ
software, but
deprecated
from IBM MQ
9.3.1 onwards.

Note: The phrase "supported as per IBM MQ software" means that the IBM Technical Support is limited to
the core IBM MQ software that is running inside the container.

Related concepts
IBM MQ FAQ for Long Term Support and Continuous Delivery releases
Related reference
IBM Cloud Pak for Integration Software Support Lifecycle Addendum

Version support for the IBM MQ
Operator
A mapping between supported versions of IBM MQ, OpenShift Container Platform and IBM Cloud Pak for
Integration.

Note:

The IBM MQ Operator only supports Extended Update Support (EUS) versions of the OpenShift Container
Platform. For information about which releases this includes, see Life Cycle Phases on the Red Hat
OpenShift Container Platform Life Cycle Policy web page.

• “Available IBM MQ versions” on page 11
• “Compatible Red Hat OpenShift Container Platform versions” on page 12
• “IBM Cloud Pak for Integration versions” on page 12
• “Available IBM MQ versions in older operators” on page 13
• “Compatible OpenShift Container Platform versions for older operators” on page 13

Available IBM MQ versions
Operat

or
chann

el

Operat
or

versio
n

IBM MQ versions

9.2.0
EUS

9.2.3 9.2.4 9.2.5 9.3.0 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5

v2.0 2.0 → ⚠ ● ● ●◼

v2.1 2.1 → ⚠ ⚠ ⚠ → ●
v2.2 2.2 → ⚠ ⚠ ⚠ → ●
v2.3 2.3 → ⚠ ⚠ ⚠ → ⚠ ●
v2.4 2.4 → ⚠ ⚠ ⚠ → ⚠ ⚠ ●
v3.0 3.0 → ⚠ ⚠ ⚠ ●
v3.1 3.1 → ⚠ ⚠ ⚠ ⚠ ●

IBM MQ in containers and IBM Cloud Pak for Integration 11

https://www.ibm.com/support/docview.wss?uid=swg27047919
https://www.ibm.com/support/pages/ibm-cloud-pak-integration-software-support-lifecycle-addendum
https://access.redhat.com/support/policy/updates/openshift#ocp4_phases

Key:
●

Continuous Delivery support available
◼

IBM Cloud Pak for Integration - Long Term Support available
→

Only available during migration from IBM Cloud Pak for Integration - Long Term Support operand to a
Continuous Delivery operand.

⚠
As IBM MQ releases go out of support, they might still be configurable in the operator,

but are no longer eligible for support and may be removed in future releases.

See “Release history for IBM MQ Operator” on page 33 for full details of each version, including detailed
features, changes and fixes in each version.

Compatible Red Hat OpenShift Container Platform versions
Operator
channel

Operator
version

OpenShift Container Platform versions 2

4.10 4.12 4.14 4.16

v2.0 2.0.0-2.0.15 → ◼

2.0.16 ◼

2.0.17 onwards ◼ ◼

2.0.25 onwards ◼ ◼ ◼

v2.1 2.1 → ●
v2.2 2.2 → ●
v2.3 2.3 → ●
v2.4 2.4.0-2.4.3 → ●

2.4.4 ●
2.4.5 onwards ● ●

v3.0 3.0.0 onwards ● ●
v3.1 3.1.0 onwards ● ●

Key:
●

Continuous Delivery support available
◼

IBM Cloud Pak for Integration - Long Term Support available
→

No longer supported. Please migrate to a later OpenShift Container Platform version.

IBM Cloud Pak for Integration versions
Supported for use as part of IBM Cloud Pak for Integration version 2022.2.1, or independently:

• IBM MQ Operator 2.0.x

2 OpenShift Container Platform versions are subject to their own support dates. See OpenShift Container
Platform Life Cycle Policy for more information.

12 IBM MQ in containers

https://access.redhat.com/support/policy/updates/openshift/
https://access.redhat.com/support/policy/updates/openshift/

• IBM MQ Operator 2.1.x

Supported for use as part of IBM Cloud Pak for Integration version 2022.4.1, or independently:

• IBM MQ Operator 2.2.x
• IBM MQ Operator 2.3.x

Supported for use as part of IBM Cloud Pak for Integration version 2023.2.1, or independently:

• IBM MQ Operator 2.4.x

Supported for use as part of IBM Cloud Pak for Integration version 2023.4.1, or independently:

• IBM MQ Operator 3.0.x
• IBM MQ Operator 3.1.x

Available IBM MQ versions in older operators
See Available IBM MQ versions in the IBM MQ 9.2 documentation.

Compatible OpenShift Container Platform versions for older operators
See Compatible OpenShift Container Platform versions in the IBM MQ 9.2 documentation.

Planning for licensing IBM MQ in containers
Container licensing allows you to license only the available capacity of your individual IBM MQ containers,
rather than requiring you to license the entire server where your containers are running. To take
advantage of container licensing, the IBM License Service must be used to track license usage and
determine your required entitlement.
Related information
IBM Container Licenses
Container licensing FAQs
Installing License Service
Viewing and tracking license usage

License annotations when building your own IBM MQ container
image
License annotations let you track usage based on the limits defined on the container, rather than on the
underlying machine. You configure your clients to deploy the container with specific annotations that the
IBM License Service then uses to track usage.

When deploying a self-built IBM MQ container image, there are two common approaches to licensing:

• License the entire machine running the container.
• License the container based on the associated limits.

Both options are available to clients, and further details can be found on the IBM Container Licenses page
on Passport Advantage®.

If the IBM MQ container is to be licensed based on the container limits, then the IBM License Service
needs to be installed to track usage. Further information regarding the supported environments and
installation instructions can be found on the ibm-licensing-operator page on GitHub.

The IBM License Service is installed on the Kubernetes cluster where the IBM MQ container is deployed,
and pod annotations are used to track usage. Therefore clients need to deploy the pod with specific
annotations that the IBM License Service then uses. Based on your entitlement and capabilities deployed
within the container, use one or more of the following annotations.

Note: Many of the annotations contain one or both of the following lines:

IBM MQ in containers and IBM Cloud Pak for Integration 13

https://www.ibm.com/software/passportadvantage/containerlicenses.html
https://www.ibm.com/software/passportadvantage/containerfaqov.html
https://www.ibm.com/docs/en/cloud-paks/foundational-services/4.3?topic=service-installing-license
https://www.ibm.com/docs/en/cloud-paks/foundational-services/4.3?topic=reporting-viewing-tracking-license-usage
https://www.ibm.com/software/passportadvantage/containerlicenses.html
https://github.com/IBM/ibm-licensing-operator

productChargedContainers: "All" | "NAME_OF_CONTAINER"
productMetric: "PROCESSOR_VALUE_UNIT" | "VIRTUAL_PROCESSOR_CORE"

You must edit these lines before using the annotation:

• For productChargedContainers, you must choose "All", or substitute the actual name of the
container.

• For productMetric, you must choose one of the values offered.

Annotations to use with an IBM MQ product entitlement
If you have an IBM MQ product entitlement, select the annotation below that matches the entitlement
you have purchased and want to use.

• “IBM MQ” on page 16
• “IBM MQ Advanced” on page 16
• “IBM MQ for Non-Production Environment” on page 16
• “IBM MQ Advanced for Non-Production Environment” on page 16
• “IBM MQ Advanced for Developers” on page 16

The IBM MQ annotations to use with IBM MQ Multi Instance High Availability configurations are as
follows. See also “Selecting the correct annotations for High Availability configurations” on page 14.

• “IBM MQ Container Multi Instance” on page 16
• “IBM MQ Advanced Container Multi Instance” on page 16
• “IBM MQ Container Multi Instance for Non-Production Environment” on page 16
• “IBM MQ Advanced Container Multi Instance for Non-Production Environment” on page 16

Annotations to use with CP4I product entitlement
If you have IBM Cloud Pak for Integration (CP4I) entitlement select the annotation below that matches
the entitlement you have purchased and want to use.

• “IBM MQ with CP4I entitlement” on page 17
• “IBM MQ Advanced with CP4I entitlement” on page 17
• “IBM MQ for Non-Production Environment with CP4I entitlement” on page 17
• “IBM MQ Advanced for Non-Production Environment with CP4I entitlement” on page 17

The CP4I annotations to use with IBM MQ Multi Instance High Availability configurations are as follows.
See also “Selecting the correct annotations for High Availability configurations” on page 14.

• “IBM MQ Container Multi Instance with CP4I entitlement” on page 17
• “IBM MQ Advanced Container Multi Instance with CP4I entitlement” on page 17
• “IBM MQ Container Multi Instance for Non-Production Environment with CP4I entitlement” on page

18
• “IBM MQ Advanced Container Multi Instance for Non-Production Environment with CP4I entitlement”

on page 18

Selecting the correct annotations for High Availability configurations
IBM MQ Multi Instance

When you deploy a pair of queue managers in an IBM MQ multi-instance high availability configuration,
you should use the same annotation on both instances. One of the following annotations should be
selected, depending on the entitlement purchased:

• IBM MQ or IBM MQ Advanced standalone entitlement

14 IBM MQ in containers

– “IBM MQ Container Multi Instance” on page 16
– “IBM MQ Advanced Container Multi Instance” on page 16
– “IBM MQ Container Multi Instance for Non-Production Environment” on page 16
– “IBM MQ Advanced Container Multi Instance for Non-Production Environment” on page 16

• IBM Cloud Pak for Integration entitlement

– “IBM MQ Container Multi Instance with CP4I entitlement” on page 17
– “IBM MQ Advanced Container Multi Instance with CP4I entitlement” on page 17
– “IBM MQ Container Multi Instance for Non-Production Environment with CP4I entitlement” on page

18
– “IBM MQ Advanced Container Multi Instance for Non-Production Environment with CP4I

entitlement” on page 18

When used with IBM Cloud Pak for Integration entitlement, the entitlement ratios in the annotations
ensure that correct entitlement consumption is recorded. When used with standalone IBM MQ or IBM
MQ Advanced entitlements, the annotations reported in the License Service for each instance need to be
mapped to the IBM MQ entitlement parts as follows:

• IBM MQ Advanced container Multi Instance

– 1 x IBM MQ Advanced and 1 x IBM MQ Advanced High Availability Replica or
– 2 x IBM MQ Advanced3

• IBM MQ Advanced container Multi Instance for Non-Production Environment

– 1 x IBM MQ Advanced and 1 x IBM MQ Advanced High Availability Replica or
– 2 x IBM MQ Advanced for Non-Production Environment)3

• IBM MQ Container Multi Instance

– 1 x IBM MQ and 1 x IBM MQ High Availability Replica or
– 2 x IBM MQ3

• IBM MQ Container Multi Instance for Non-Production Environment

– 1 x IBM MQ and 1 x IBM MQ High Availability Replica or
– 2 x IBM MQ for Non-Production Environment) 3

IBM MQ Native HA

If you are deploying three queue managers in a Native HA quorum, only the active instance consumes
entitlement. All instances should have the same annotation. One of the following should be selected,
depending on the entitlement purchased:

• IBM MQ or IBM MQ Advanced standalone entitlement

– “IBM MQ Advanced” on page 16
– “IBM MQ Advanced for Non-Production Environment” on page 16

• IBM Cloud Pak for Integration entitlement

– “IBM MQ Advanced with CP4I entitlement” on page 17
– “IBM MQ Advanced for Non-Production Environment with CP4I entitlement” on page 17

Annotations
The rest of this topic details the contents of each annotation.

3 This entitlement option is sub optimal and should only be used if no entitlement of the relevant High
Availability Replica part is available.

IBM MQ in containers and IBM Cloud Pak for Integration 15

IBM MQ
productID: "c661609261d5471fb4ff8970a36bccea"
productName: "IBM MQ"
productMetric: "PROCESSOR_VALUE_UNIT" | "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"

IBM MQ Advanced
productID: "208423bb063c43288328b1d788745b0c"
productName: "IBM MQ Advanced"
productMetric: "PROCESSOR_VALUE_UNIT" | "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"

IBM MQ for Non-Production Environment
productID: "151bec68564a4a47a14e6fa99266deff"
productName: "IBM MQ for Non-Production Environment"
productMetric: "PROCESSOR_VALUE_UNIT" | "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"

IBM MQ Advanced for Non-Production Environment
productID: "21dfe9a0f00f444f888756d835334909"
productName: "IBM MQ Advanced for Non-Production Environment"
productMetric: "PROCESSOR_VALUE_UNIT" | "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"

IBM MQ Advanced for Developers
productID: "2f886a3eefbe4ccb89b2adb97c78b9cb"
productName: "IBM MQ Advanced for Developers (Non-Warranted)"
productMetric: "FREE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"

IBM MQ Container Multi Instance
productID: "2dea73b866b648b6b4abe2a85eb76964"
productName: "IBM MQ Container Multi Instance"
productMetric: "PROCESSOR_VALUE_UNIT" | "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"

IBM MQ Advanced Container Multi Instance
productID: "bd35bff411bb47c2a3f3a4590f33a8ef"
productName: "IBM MQ Advanced Container Multi Instance"
productMetric: "PROCESSOR_VALUE_UNIT" | "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"

IBM MQ Container Multi Instance for Non-Production Environment
productID: "af11b093f16a4a26806013712b860b60"
productName: "IBM MQ Container Multi Instance for Non-Production Environment"
productMetric: "PROCESSOR_VALUE_UNIT" | "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"

IBM MQ Advanced Container Multi Instance for Non-Production Environment
productID: "31f844f7a96b49749130cd0708fdbb17"
productName: "IBM MQ Advanced Container Multi Instance for Non-Production Environment"

16 IBM MQ in containers

productMetric: "PROCESSOR_VALUE_UNIT" | "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"

IBM MQ with CP4I entitlement
cloudpakId: "c8b82d189e7545f0892db9ef2731b90d"
cloudpakName: "IBM Cloud Pak for Integration"
productID: "c661609261d5471fb4ff8970a36bccea"
productName: "IBM MQ"
productMetric: "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"
productCloudpakRatio: "4:1"

IBM MQ Advanced with CP4I entitlement
cloudpakId: "c8b82d189e7545f0892db9ef2731b90d"
cloudpakName: "IBM Cloud Pak for Integration"
productID: "208423bb063c43288328b1d788745b0c"
productName: "IBM MQ Advanced"
productMetric: "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"
productCloudpakRatio: "2:1"

IBM MQ for Non-Production Environment with CP4I entitlement
cloudpakId: "c8b82d189e7545f0892db9ef2731b90d"
cloudpakName: "IBM Cloud Pak for Integration"
productID: "151bec68564a4a47a14e6fa99266deff"
productName: "IBM MQ for Non-Production Environment"
productMetric: "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"
productCloudpakRatio: "8:1"

IBM MQ Advanced for Non-Production Environment with CP4I entitlement
cloudpakId: "c8b82d189e7545f0892db9ef2731b90d"
cloudpakName: "IBM Cloud Pak for Integration"
productID: "21dfe9a0f00f444f888756d835334909"
productName: "IBM MQ Advanced for Non-Production Environment"
productMetric: "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"
productCloudpakRatio: "4:1"

IBM MQ Container Multi Instance with CP4I entitlement
productName: "IBM MQ Container Multi Instance"
productID: "2dea73b866b648b6b4abe2a85eb76964"
productChargedContainers: "All" | "NAME_OF_CONTAINER"
productMetric: "VIRTUAL_PROCESSOR_CORE"
productCloudpakRatio: "10:3"
cloudpakName: "IBM Cloud Pak for Integration"
cloudpakId: "c8b82d189e7545f0892db9ef2731b90d"

IBM MQ Advanced Container Multi Instance with CP4I entitlement
cloudpakId: "c8b82d189e7545f0892db9ef2731b90d"
cloudpakName: "IBM Cloud Pak for Integration"
productID: "bd35bff411bb47c2a3f3a4590f33a8ef"
productName: "IBM MQ Advanced Container Multi Instance"
productMetric: "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"
productCloudpakRatio: "5:3"

IBM MQ in containers and IBM Cloud Pak for Integration 17

IBM MQ Container Multi Instance for Non-Production Environment with CP4I
entitlement
cloudpakId: "c8b82d189e7545f0892db9ef2731b90d"
cloudpakName: "IBM Cloud Pak for Integration"
productID: "af11b093f16a4a26806013712b860b60"
productName: "IBM MQ Container Multi Instance for Non-Production Environment"
productMetric: "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"
productCloudpakRatio: "20:3"

IBM MQ Advanced Container Multi Instance for Non-Production Environment with
CP4I entitlement
cloudpakId: "c8b82d189e7545f0892db9ef2731b90d"
cloudpakName: "IBM Cloud Pak for Integration"
productID: "31f844f7a96b49749130cd0708fdbb17"
productName: "IBM MQ Advanced Container Multi Instance for Non-Production Environment"
productMetric: "VIRTUAL_PROCESSOR_CORE"
productChargedContainers: "All" | "NAME_OF_CONTAINER"
productCloudpakRatio: "10:3"

Dependencies for the IBM MQ Operator
From IBM MQ Operator 3.0 onwards, no other operators are installed automatically when you install
IBM MQ Operator. In older versions of IBM MQ Operator, there is a hard dependency on the IBM Cloud
Pak foundational services Operator, which also installs the IBM Operand Deployment Lifecycle Manager
(ODLM) Operator.

The IBM Licensing Operator needs to be installed separately to track license usage. See Deploying
License Service in the IBM Cloud Pak for Integration documentation.

IBM MQ Operator 3.0 onwards

When you create a QueueManager using a IBM Cloud Pak for Integration license, you can choose
whether or not you want to use single sign-on with the IBM Cloud Pak for Integration instance of
Keycloak. Use of Keycloak is enabled by default with a IBM Cloud Pak for Integration license, but if it is
not installed, the QueueManager will enter a "Blocked" state until the correct dependencies are installed.
See “Installing the IBM MQ Operator” on page 105 for more details on the dependencies.

Older versions of IBM MQ Operator
The IBM Cloud Pak foundational services operators will be installed automatically when you install older
versions of the IBM MQ Operator. These dependent operators have a small CPU and memory footprint,
and are used to deploy additional resources in some circumstances.

When you create a QueueManager, the IBM MQ Operator will create an OperandRequest for additional
services it needs. The OperandRequest is fulfilled by the ODLM Operator, and will install and instantiate
the required services, if necessary. Which services are required is determined based on the license
agreement accepted when deploying the queue manager, and on which queue manager components are
requested.

• If you choose an IBM MQ Advanced or IBM MQ Advanced for Developers license, then no additional
services are requested. For example, in the following case, the IBM Cloud Pak foundational services are
not used:

spec:
 license:
 accept: true
 license: L-AMRD-XH6P3Q
 use: "Production"

18 IBM MQ in containers

• If you choose a IBM Cloud Pak for Integration license and choose to enable the web server, the IBM
MQ Operator will also instantiate the IBM Identity and Access Management (IAM) Operator, to enable
single sign-on. The IAM Operator will already be available if you have installed the IBM Cloud Pak for
Integration Operator. For example:

spec:
 license:
 accept: true
 license: L-RJON-CD3JKX
 use: "Production"

However, if you disable the web server, then no IBM Cloud Pak foundational services are requested. For
example:

spec:
 license:
 accept: true
 license: L-RJON-CD3JKX
 use: "Production"
 web:
 enabled: false

For a detailed breakdown of hardware and software requirements for the dependent operators, see
Hardware requirements and recommendations for foundational services.

You can choose the amount of CPU and memory used by your queue managers. See
“.spec.queueManager.resources” on page 192 for more information.

Related reference
“Licensing reference for mq.ibm.com/v1beta1” on page 184

Cluster-scoped permissions required by the IBM MQ
Operator

The IBM MQ Operator requires cluster-scoped permissions to manage admission webhooks and samples,
and to read storage class and cluster version information.

The IBM MQ Operator requires the following cluster-scoped permissions:

• Permission to manage admission webhooks. This allows creating, retrieving, and updating specific
webhooks that are used in the process of creating and managing containers provided by the Operator.

– API Groups: admissionregistration.k8s.io
– Resources: validatingwebhookconfigurations
– Verbs: get, delete

• Permission to create and manage resources that are used in the Red Hat OpenShift console to provide
samples and snippets when creating custom resources.

– API Groups: console.openshift.io
– Resources: consoleyamlsamples
– Verbs: create, get, update, delete

• Permission to read the cluster version. This allows the Operator to feed back any issues with the cluster
environment.

– API Groups: config.openshift.io
– Resources: clusterversions
– Verbs: get, list, watch

• Permission to read storage classes on the cluster. This allows the Operator to feed back any issues with
selected storage classes in containers.

– API Groups: storage.k8s.io

IBM MQ in containers and IBM Cloud Pak for Integration 19

– Resources: storageclasses
– Verbs: get, list

Note: The IBM MQ Operator also requires namespace-scoped permissions. If the IBM MQ Operator is
installed at a cluster scope, then the namespace-scoped permissions are present in all namespaces.

Storage considerations for IBM MQ Operator
The IBM MQ Operator runs in two storage modes:

• Ephemeral storage is used when all state information for the container can be discarded when the
container restarts. This is commonly used when environments are created for demonstration, or when
developing with stand-alone queue managers.

• Persistent storage is the common configuration for IBM MQ and ensures that if the container is
restarted, the existing configuration, logs and persistent messages are available in the restarted
container.

The IBM MQ Operator provides the capability to customize the storage characteristics which can differ
considerably depending on the environment, and the desired storage mode.

Ephemeral storage
IBM MQ is a stateful application and persists this state to storage for recovery in the event of a restart. If
using ephemeral storage, all state information for the queue manager is lost on restart. This includes:

• All messages
• All queue manager to queue manager communication state (channel message sequence numbers)
• The MQ Cluster identity of the queue manager
• All transaction state
• All queue manager configuration
• All local diagnostic data

For this reason you need to consider if ephemeral storage is a suitable approach for a production, test or
development scenario. For example, where all messages are known to be non-persistent and the queue
manager is not a member of an MQ Cluster. As well as disposing of all messaging state at restart, the
configuration of the queue manager is also discarded. To enable a completely ephemeral container the
IBM MQ configuration must be added to the container image itself (for more information, see “Building
an image with custom MQSC and INI files, using the Red Hat OpenShift CLI” on page 165). If this is not
completed, then IBM MQ will need to be configured each time the container restarts.

For example, to configure IBM MQ with ephemeral storage the storage type of
the QueueManager should include the following:

queueManager:
 storage:
 queueManager:
 type: ephemeral

Persistent storage

IBM MQ normally runs with persistent storage to assure the queue manager retains its persistent
messages and configuration after a restart. This is the default behavior. Because there are various
storage providers, each supporting different capabilities, this often means that customization of the
configuration is required. The example below outlines the common fields that customize the IBM MQ
storage configuration in the v1beta1 API:

20 IBM MQ in containers

• spec.queueManager.availability controls the availability mode. If you are using
SingleInstance or NativeHA, you only require ReadWriteOnce storage. For multiInstance you
require a storage class that supports ReadWriteMany with the correct file locking characteristics. IBM
MQ provides a support statement and a testing statement. The availability mode also influences the
persistent volume layout. For more information, see “High availability for IBM MQ in containers” on
page 24.

• spec.queueManager.storage controls the individual storage settings. A queue manager can be
configured to use between one and four persistent volumes.

The following example shows a snippet of a simple configuration using a single-instance queue manager:

spec:
 queueManager:
 storage:
 queueManager:
 enabled: true

The following example shows a snippet of a multi-instance queue manager configuration, with a non-
default storage class, and with file storage requiring supplemental groups:

spec:
 queueManager:
 availability:
 type: MultiInstance
 storage:
 queueManager:
 class: ibmc-file-gold-gid
 persistedData:
 enabled: true
 class: ibmc-file-gold-gid
 recoveryLogs:
 enabled: true
 class: ibmc-file-gold-gid
 securityContext:
 supplementalGroups: [65534] # Change to 99 for clusters with RHEL7 or earlier worker nodes

For information about storage considerations for Native HA queue managers, see “Native HA” on page
145.

Note: You can also configure supplemental groups with single-instance queue managers.

Storage capacity

When you use the IBM MQ Operator, the size of the storage requested is fixed, and cannot be re-sized
after creating the queue manager. You must ensure the volume is large enough for your needs.

Encryption

IBM MQ does not actively encrypt data at rest. Therefore you should use passively encrypted storage, or
IBM MQ Advanced Message Security, or both, to encrypt your messages. On IBM Cloud® both block and
file storage are available with passive encryption at rest.

IBM MQ Advanced for Developers container
image

A prebuilt container image is available for IBM MQ Advanced for Developers. This image is available from
the IBM Container Registry. This image is suitable for use with Docker, Podman, Kubernetes, and other
container environments.

Note: IBM MQ Advanced for Developers images were previously available from Docker Hub,
but this is deprecated, and no further updates are available on Docker Hub.

IBM MQ in containers and IBM Cloud Pak for Integration 21

https://www.ibm.com/support/pages/node/391335
https://www.ibm.com/support/pages/testing-statement-ibm-mq-multi-instance-queue-manager-file-systems

Available images
IBM MQ images are stored in the IBM Container Registry:

• IBM MQ Advanced for Developers 9.3.0.25: icr.io/ibm-messaging/mq:9.3.0.25-r1
• IBM MQ Advanced for Developers 9.3.5.1: icr.io/ibm-messaging/mq:9.3.5.1-r2

Quick reference
• License:

– IBM MQ Advanced for Developers and Apache License 2.0. Note that the IBM MQ Advanced for
Developers license does not permit further distribution, and the terms restrict usage to a developer
machine.

• Where to file issues:

– GitHub
• Available for the following CPU architectures:

– amd64
– s390x
– ppc64le

Usage
Run IBM MQ Advanced for Developers in a container.

See the usage documentation for details on how to run a container.

To be able to use the image, you must accept the terms of the IBM MQ license by setting the LICENSE
environment variable.

Environment variables supported
LANG

Set the language you want the license to be printed in.
LICENSE

Set accept to agree to the IBM MQ Advanced for Developers license conditions.
Set view to view the license conditions.

LOG_FORMAT
DEPRECATED: Superseded by “[MQ 9.3.2 Feb 2023]MQ_LOGGING_CONSOLE_FORMAT” on page 23.
Change the format of the logs that are printed to the container's stdout location.
Set basic to use a simple human-readable format. This is the default value.
Set json to use JSON format (one JSON object on each line).

MQ_ADMIN_PASSWORD
Specify the password of the admin user.
Must be at least 8 characters long.

There is no default password for the admin user. For IBM MQ Operator versions prior to
3.0.0, the default value is passw0rd.

From IBM MQ 9.3.4, this variable is deprecated. The example YAML in this topic shows
how you can create this variable yourself and secure it with a secret.

MQ_APP_PASSWORD
Specify the password of the app user.

22 IBM MQ in containers

https://www14.software.ibm.com/cgi-bin/weblap/lap.pl?popup=Y&li_formnum=L-APIG-BYHCL7
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/ibm-messaging/mq-container/issues
https://www.ibm.com/products/mq/advanced
https://github.com/ibm-messaging/mq-container/blob/master/docs/usage.md

If set, this causes the DEV.APP.SVRCONN channel to become secured and only allow connections
that supply a valid user ID and password.
Must be at least 8 characters long.

There is no default password for the app user. For IBM MQ Operator versions prior to
3.0.0, the default value is blank (no password required) for IBM MQ clients, and passw0rd for HTTP
clients.

From IBM MQ 9.3.4, this variable is deprecated. The example YAML in this topic shows
how you can create this variable yourself and secure it with a secret.

MQ_DEV
Set false to stop the default objects being created.

MQ_ENABLE_METRICS
Set true to generate Prometheus metrics for your queue manager.

MQ_LOGGING_CONSOLE_SOURCE
Specify a comma-separated list of sources for logs that are mirrored to the container's stdout
location.
Valid values are qmgr and web.
Default value is qmgr,web.

MQ_LOGGING_CONSOLE_FORMAT
Replaces “[Deprecated]LOG_FORMAT” on page 22.
Change the format of the logs that are printed to the container's stdout location.
Set basic to use a simple human-readable format. This is the default value.
Set json to use JSON format (one JSON object on each line).

MQ_LOGGING_CONSOLE_EXCLUDE_ID
Specify a comma-separated list of message IDs for log messages that are excluded.
The log messages still appear in the log file on disk, but are not printed to the container's stdout
location.
Default value is AMQ5041I,AMQ5052I,AMQ5051I,AMQ5037I,AMQ5975I.

MQ_QMGR_NAME
Set the name you want your queue manager to be created with.

For more information about the default developer configuration supported by the IBM MQ Advanced for
Developers image, see the default developer configuration documentation.

Example queue manager YAML that describes how to specify passwords
for admin and app users
From IBM MQ 9.3.4, the admin and app user IDs no longer have default passwords. For these users, you
must provide passwords when deploying a queue manager using the Development license. Here is an
example queue manager YAML that shows you how to do this with the IBM MQ Operator.

The following command creates a secret containing passwords for admin and app users.

oc create secret generic my-mq-dev-passwords --from-literal=dev-admin-password=passw0rd --from-
literal=dev-app-password=passw0rd

The following YAML uses these passwords when deploying a queue manager.

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: qm-dev
spec:
 license:

IBM MQ in containers and IBM Cloud Pak for Integration 23

https://github.com/ibm-messaging/mq-container/blob/master/docs/developer-config.md

 accept: false
 license: L-AXAF-JLZ53A
 use: Development
 web:
 enabled: true
 template:
 pod:
 containers:
 - env:
 - name: MQ_DEV
 value: "true"
 - name: MQ_CONNAUTH_USE_HTP
 value: "true"
 - name: MQ_ADMIN_PASSWORD
 valueFrom:
 secretKeyRef:
 name: my-mq-dev-passwords
 key: dev-admin-password
 - name: MQ_APP_PASSWORD
 valueFrom:
 secretKeyRef:
 name: my-mq-dev-passwords
 key: dev-app-password
 name: qmgr
 queueManager:
 storage:
 queueManager:
 type: persistent-claim
 name: QUICKSTART
 version: 9.3.5.1-r2

High availability for IBM MQ in containers
There are three choices for high availability with IBM MQ Operator: Native HA queue manager (which
has an active replica and two standby replicas), Multi-instance queue manager (which is an active-
standby pair, using a shared, networked file system), or Single resilient queue manager (which offers
a simple approach for HA using networked storage). The latter two rely on the file system to ensure
the availability of the recoverable data, however Native HA does not. Therefore, when not using Native
HA, the availability of the file system is critical to queue manager availability. Where data recovery is
important the file system should ensure redundancy through replication.

You should consider separately message and service availability. With IBM MQ for Multiplatforms, a
message is stored on exactly one queue manager. So if that queue manager becomes unavailable, you
temporarily lose access to the messages it holds. To achieve high message availability, you need to be
able to recover a queue manager as quickly as possible. You can achieve service availability by having
multiple instances of queues for client applications to use, for example by using an IBM MQ uniform
cluster.

A queue manager can be thought of in two parts: the data stored on disk, and the running processes that
allow access to the data. Any queue manager can be moved to a different Kubernetes Node, as long as
it keeps the same data (provided by Kubernetes Persistent Volumes) and is still addressable across the
network by client applications. In Kubernetes, a Service is used to provide a consistent network identity.

IBM MQ relies on the availability of the data on the persistent volumes. Therefore, the availability of the
storage providing the persistent volumes is critical to queue manager availability, because IBM MQ cannot
be more available than the storage it is using. If you want to tolerate an outage of an entire availability
zone, you need to use a volume provider that replicates disk writes to another zone.

Native HA queue manager

Native HA queue managers involve an active and two replica Kubernetes Pods, which run as part of
a Kubernetes StatefulSet with exactly three replicas each with their own set of Kubernetes Persistent
Volumes. The IBM MQ requirements for shared file systems also apply when using a native HA queue
manager (except for lease-based locking), but you do not need to use a shared file system. You can use
block storage, with a suitable file system on top. For example, xfs or ext4. The recovery times for a native
HA queue manager are controlled by the following factors:

24 IBM MQ in containers

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistent-volumes

1. How long the replica instances take to detect that the active instance has failed. This is configurable.
2. How long it takes for the Kubernetes Pod readiness probe to detect that the ready container has

changed and redirect network traffic. This is configurable.
3. How long it takes IBM MQ clients to reconnect.

For more information, see “Native HA” on page 145.

Multi-instance queue manager

Multi-instance queue managers involve an active and a standby Kubernetes Pod, which run as part of a
Kubernetes Stateful Set with exactly two replicas and a set of Kubernetes Persistent Volumes. The queue
manager transaction logs and data are held on two persistent volumes, using a shared file system.

Multi-instance queue managers require both the active and the standby Pods to have concurrent access
to the persistent volume. To configure this, you use Kubernetes Persistent Volumes with access mode
set to ReadWriteMany. The volumes must also meet the IBM MQ requirements for shared file systems,
because IBM MQ relies on the automatic release of file locks to instigate a queue manager failover. IBM
MQ produces a list of tested file systems.

The recovery times for a multi-instance queue manager are controlled by the following factors:

1. How long it takes after a failure occurs for the shared file system to release the locks originally taken
by the active instance.

2. How long it takes for the standby instance to acquire the locks and then start.
3. How long it takes for the Kubernetes Pod readiness probe to detect that the ready container has

changed and redirect network traffic. This is configurable.
4. How long it takes for IBM MQ clients to reconnect.

Single resilient queue manager

A single resilient queue manager is a single instance of a queue manager running in a single Kubernetes
Pod, where Kubernetes monitors the queue manager and replaces the Pod as necessary.

The IBM MQ requirements for shared file systems also apply when using a single resilient queue manager
(except for lease-based locking), but you do not need to use a shared file system. You can use block
storage, with a suitable file system on top. For example, xfs or ext4.

The recovery times for a single resilient queue manager are controlled by the following factors:

1. How long it takes for the liveness probe to run, and how many failures it tolerates. This is configurable.
2. How long the Kubernetes Scheduler takes to re-schedule the failed Pod to a new Node.
3. How long it takes to download the container image to the new Node. If you use an imagePullPolicy

value of IfNotPresent, then the image might already be available on that Node.
4. How long it takes for the new queue manager instance to start.
5. How long it takes for the Kubernetes Pod readiness probe to detect that the container is ready. This is

configurable.
6. How long it takes for IBM MQ clients to reconnect.

Important:

Although the single resilient queue manager pattern offers some benefits, you need to understand
whether you can reach your availability goals with the limitations around Node failures.

In Kubernetes, a failing Pod is typically recovered quickly; but the failure of an entire Node is handled
differently. When using a stateful workload like IBM MQ with a Kubernetes StatefulSet, if a Kubernetes
Master Node loses contact with a worker node, it cannot determine if the node has failed or if it has simply

IBM MQ in containers and IBM Cloud Pak for Integration 25

https://www.ibm.com/support/pages/node/136799

lost network connectivity. Therefore Kubernetes takes no action in this case until one of the following
events occurs:

1. The node recovers to a state where the Kubernetes Master Node can communicate with it.
2. An administrative action is taken to explicitly delete the Pod on the Kubernetes Master Node. This

does not necessarily stop the Pod from running, but just deletes it from the Kubernetes store. This
administrative action must therefore be taken very carefully.

Note: Changing the details of the StatefulSet of an IBM MQ queue manager, including the number of
replicas, is not supported when the queue manager is created through the IBM MQ Operator.

Related concepts
High availability configurations
Related tasks
“Configuring high availability for queue managers using the IBM MQ Operator” on page 144

Disaster recovery for IBM MQ in containers
You need to consider what kind of disaster you are preparing for. In cloud environments, the use
of availability zones provides a certain level of toleration for disasters, and are much easier to use.
If you have an odd number of data centers (for quorum) and a low latency network link, then you
could potentially run a single Red Hat OpenShift Container Platform or Kubernetes cluster with multiple
availability zones, each in a separate physical location. This topic discusses considerations for disaster
recovery where these criteria cannot be met: that is to say either an even number of data centers, or a
high latency network link.

For disaster recovery, you need to consider the following:

• Replication of IBM MQ data (held in one or more PersistentVolume resources) to the disaster
recovery location

• Re-creating the queue manager using the replicated data
• The queue manager network ID that is visible to IBM MQ client applications and other queue managers.

This ID could be a DNS entry, for example.

Persistent data needs to be replicated, either synchronously or asynchronously, to the disaster recovery
site. This is usually specific to the storage provider, but can also be done using a VolumeSnapshot. See
CSI volume snapshots for more information on volume snapshots.

When recovering from a disaster, you will need to re-create the queue manager instance on the new
Kubernetes cluster, using the replicated data. If you are using the IBM MQ Operator, you will need the
QueueManager YAML, as well as the YAML for other supporting resources like a ConfigMap or Secret.

Related information
ha_for_ctr.dita

Planning to secure IBM MQ in containers
Security considerations when planning your IBM MQ in containers configuration.

Procedure
• “User authentication and authorization for IBM MQ in containers” on page 27

– “Security constraints on the use of operating system users in containers” on page 27
• “Considerations for restricting network traffic to IBM MQ in containers” on page 28

26 IBM MQ in containers

https://docs.openshift.com/container-platform/latest/storage/container_storage_interface/persistent-storage-csi-snapshots.html

User authentication and authorization for IBM MQ in containers
IBM MQ in containers can be configured to authenticate users through LDAP, Mutual TLS, or a custom MQ
plugin.

Note that the IBM MQ Operator does not allow the use of operating system users and groups within the
container image. For more information, see “Security constraints on the use of operating system users in
containers” on page 27.

LDAP
For information about configuring IBM MQ to use an LDAP user repository, see Connection authentication:
User repositories and LDAP authorization.

Mutual TLS
If you configure incoming connections to a queue manager to require a TLS certificate (mutual TLS), you
can map the distinguished name of the certificate to a user name. You need to do two things:

• Configure a channel authentication record to create the mapping to a user name, using SSLPEER. For
more information, see Mapping an SSL or TLS Distinguished Name to an MCAUSER user ID.

• Configure the queue manager to allow you to define authority records for a user name that is not known
to the system. For more information, see Service stanza of the qm.ini file.

JSON Web Tokens
For information about configuring IBM MQ to use JSON Web Tokens (JWT), see Working with
authentication tokens.

Custom MQ plugin
This is an advanced technique, and requires a lot more work. For more information, see Using a custom
authorization service.

Related tasks
“Example: Configuring a queue manager with mutual TLS authentication” on page 139
This example deploys a queue manager into the OpenShift Container Platform using the IBM MQ
Operator. Mutual TLS is used for authentication, to map from a TLS certificate to an identity in the queue
manager.

Security constraints on the use of operating system users in containers
Using operating system users in containers is not recommended, and is prohibited with the IBM MQ
Operator.

In a multi-tenant containerized environment, security constraints are typically put in place to prevent
potential security issues, for example:

• Preventing use of the "root" user inside a container
• Forcing the use of a random UID. For example, in Red Hat OpenShift Container Platform the default
SecurityContextConstraints (called restricted) uses a randomized user ID for each container.

• Preventing the use of privilege escalation. IBM MQ on Linux uses privilege escalation to check the
passwords of users — it uses a "setuid" program so as to become the "root" user to do this.

 To ensure compliance with these security measures, the IBM MQ Operator
does not allow the use of IDs that are defined on the operating system libraries inside a container. There
is no mqm user ID or group defined in the container.

IBM MQ in containers and IBM Cloud Pak for Integration 27

Considerations for restricting network traffic to IBM MQ in containers
You can define network policies to restrict traffic to pods in your cluster in OpenShift Container Platform
and Kubernetes. This topic describes some considerations for how network policies can apply to IBM MQ.

For network ingress to a queue manager, there are several ports to consider:

• Port 1414 for queue manager traffic
• Port 9414 for native HA
• Port 9157 for metrics
• Port 9443 for the web console and REST APIs

Network egress is more complex. Examples of network egress which you might want to consider:

• DNS — if you have channels or other configuration which use DNS names
• Other queue managers
• Online Certificate Status Protocol (OCSP) and Certificate Revocation Lists (CRLs) - determined by your
certificate provider.

• Authentication providers:

– LDAP
– Open ID Connect or other configured login provider for the IBM MQ web server. This includes the IBM

Cloud Pak Platform UI and the IBM Cloud Pak foundational services IAM.
• Tracing providers:

– Instana
– Cloud Pak for Integration Operations Dashboard4

Example ingress NetworkPolicy
The following is an example network policy to control ingress for a queue manager called "myqm", for use
on Red Hat OpenShift Container Platform.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: myqm
spec:
 podSelector:
 matchLabels:
 app.kubernetes.io/instance: myqm
 app.kubernetes.io/name: ibm-mq
 ingress:
 # Allow access to queue manager listener from anywhere
 - ports:
 - protocol: TCP
 port: 1414
 # Allow access to Native HA port from other instances of the same queue manager
 - from:
 - podSelector:
 matchLabels:
 app.kubernetes.io/instance: myqm
 app.kubernetes.io/name: ibm-mq
 ports:
 - protocol: TCP
 port: 9414
 # Allow access to metrics from monitoring project
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: monitoring
 ports:
 - protocol: TCP
 port: 9157
 # Allow access to web server via Route

4 The Operations Dashboard is deprecated from IBM MQ 9.3.0, and removed at IBM MQ 9.3.3. See
“Integrating with the IBM Cloud Pak for Integration Operations Dashboard” on page 157.

28 IBM MQ in containers

https://docs.openshift.com/container-platform/4.10/networking/network_policy/about-network-policy.html
https://kubernetes.io/docs/concepts/services-networking/network-policies/

 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 ports:
 - protocol: TCP
 port: 9443

FIPS compliance for IBM MQ in containers
At start up, IBM MQ in containers detects whether the operating system on which the container is starting
is FIPS compliant, and (if so) configures FIPS support automatically. Requirements and limitations are
noted here.

Federal Information Processing Standards
The US government produces technical advice on IT systems and security, including data encryption.
The National Institute for Standards and Technology (NIST) is a government body concerned with IT
systems and security. NIST produces recommendations and standards, including the Federal Information
Processing Standards (FIPS).

A significant FIPS standard is FIPS 140-2, which requires the use of strong cryptographic algorithms.
FIPS 140-2 also specifies requirements for hashing algorithms to be used to protect packets against
modification in transit.

IBM MQ provides FIPS 140-2 support if it has been configured to do so.

Note: On AIX®, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the IBM Crypto
for C (ICC) cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C (ICC) certificate and be aware of any advice provided
by NIST. A replacement FIPS 140-3 module is currently in progress and its status can be viewed by
searching for it in the NIST CMVP modules in process list.

Requirements
For requirements related to cluster setup and other considerations, see FIPS Wall: Current IBM approach
to FIPS compliance.

IBM MQ in containers can run in FIPS 140-2 compliance mode. During start up, IBM MQ in containers
(9.3.1.0 and above) detects whether the host operating system on which the container is starting is FIPS
compliant. If the host operating system is FIPS compliant, and private keys and certificates have been
supplied, the IBM MQ container configures the queue manager, the IBM MQ web server, and data transfer
between the nodes in a Native High Availability deployment, to run in FIPS compliance mode.

When using IBM MQ Operator to deploy queue managers, the operator creates a route with a termination
type of Passthrough. This means that the traffic is sent straight to the destination without the router
providing TLS termination. The IBM MQ queue manager and IBM MQ web server are the destinations in
this case, and they already provide FIPS compliant secure communication.

Key requirements:

1. A private key and certificates, provided in a secret to the queue manager and web server, that allow
external clients to connect securely to the queue manager and web server.

2. A private key and certificates for data transfer between different nodes in a Native High Availability
configuration.

Limitations
For a FIPS compliant deployment of IBM MQ in containers, consider the following:

• IBM MQ in containers provides an endpoint for collection of metrics. Currently this endpoint is HTTP
only. You can turn off the metrics endpoint to make the rest of IBM MQ FIPS compliant.

IBM MQ in containers and IBM Cloud Pak for Integration 29

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

• IBM MQ in containers allows custom image overrides. That is, you can build custom images using the
IBM MQ container image as the base image. FIPS compliance might not apply for such customized
images.

• For message tracking using IBM Instana®, the communication between IBM MQ and IBM Instana is
HTTP or HTTPS, with no FIPS compliance.

• IBM MQ Operator access to IBM identity and access management (IAM)/Zen services is not FIPS
compliant.

How FIPS compliance is detected and FIPS support is configured automatically
If the operating system on which the container is starting is FIPS compliant, FIPS support is configured
automatically.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the IBM Crypto for
C (ICC) cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C (ICC) certificate and be aware of any advice provided
by NIST. A replacement FIPS 140-3 module is currently in progress and its status can be viewed by
searching for it in the NIST CMVP modules in process list.

During start up, IBM MQ in containers detects whether the operating system on which the container is
starting is FIPS compliant. If so, then the following actions are taken automatically:
Queue manager

If the host operating system is FIPS compliant, and the private key and certificates are supplied, the
queue manager attribute SSLFIPS is set to YES. Otherwise, the SSLFIPS attribute is set to NO.

IBM MQ web server
The IBM MQ web server provides an HTTP/HTTPS interface for administering IBM MQ. If the host
operating system is FIPS compliant, the JVM options are updated to make the web server use FIPS-
compliant cryptography. To be able to use FIPS, the private key and certificates must be supplied
during container start.

Native HA
Security of the data replicated between nodes is controlled by the NativeHALocalInstance stanza
of the qm.ini file. For example:

NativeHALocalInstance:
 KeyRepository=/run/runmqserver/ha/tls/key.kdb
 CertificateLabel=NHAQM
 CipherSpec=ECDHE_RSA_AES_256_GCM_SHA384

If FIPS is enabled, the SSLFipsRequired attribute is added to the stanza, with the value set to Yes:

NativeHALocalInstance:
 KeyRepository=/run/runmqserver/ha/tls/key.kdb
 CertificateLabel=NHAQM
 CipherSpec=ECDHE_RSA_AES_256_GCM_SHA384
 SSLFipsRequired=Yes

If the container is running in an OpenShift cluster without FIPS support, then the queue manager, IBM
MQ web server, and Native HA components do not have their FIPS support automatically enabled. Only
the x86-64 architecture is currently supported by the OpenShift platform for FIPS. For Power and Linux
for IBM Z® architectures, OpenShift does not offer FIPS support. To explicitly enable FIPS support in the
IBM MQ components for these architectures, set the MQ_ENABLE_FIPS environment variable to true
in the queue manager YAML. The following YAML snippet describes the usage of the MQ_ENABLE_FIPS
environment variable:

template:
 pod:
 containers:
 - env:
 - name: MQ_ENABLE_FIPS
 value: "true"
 name: qmgr

30 IBM MQ in containers

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

Overriding automatic FIPS mode for IBM MQ in containers
Use environment variable MQ_ENABLE_FIPS to explicitly enable or disable FIPS mode for the IBM MQ
components in the container.

Before you begin
Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the IBM Crypto for
C (ICC) cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C (ICC) certificate and be aware of any advice provided
by NIST. A replacement FIPS 140-3 module is currently in progress and its status can be viewed by
searching for it in the NIST CMVP modules in process list.

About this task
MQ_ENABLE_FIPS supports three values:
auto

This is the default value.
If the host operating system is FIPS enabled then all components (queue manager, IBM MQ web
server and Native HA) run in FIPS mode.
If the host operating system is not FIPS enabled, then all components do not run in FIPS mode.

true
This value turns on FIPS for selected components in the container.
The queue manager attribute SSLFIPS is set to YES even if IBM MQ in containers is running on a host
operating system that is not FIPS compliant. That is, if the IBM MQ queue manager, web server and
Native HA are FIPS compliant, but the operating system of the container is not.

false
This value turns off FIPS compliance.
The queue manager attribute SSLFIPS is set to NO, even if IBM MQ in containers is running on
a FIPS-compliant host machine. However, IBM MQ still secures connections if the private key and
certificates are supplied.
JVM options are not updated for the IBM MQ web server. However, the IBM MQ web server still runs
an HTTPS endpoint if the private key and certificates are supplied.
Data replication in Native HA does not use FIPS cryptography.

Example

Here is a sample queue manager YAML that describes enabling TLS and FIPS for the queue manager
component:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 namespace: ibm-mq-fips
 name: ibm-mq-qm-ppcle
spec:
 license:
 accept: true
 license: L-AMRD-XH6P3Q
 use: Production
 queueManager:
 name: PPCLEQM
 storage:
 queueManager:
 type: ephemeral
 template:
 pod:
 containers:
 - env:
 - name: MQ_ENABLE_FIPS
 value: "true"
 name: qmgr

IBM MQ in containers and IBM Cloud Pak for Integration 31

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

 version: 9.3.5.1-r2
 web:
 enabled: false
 pki:
 keys:
 - name: ibm-mq-tls-certs
 secret:
 secretName: ibm-mq-tls-secret
 items:
 - tls.key
 - tls.crt

Planning scalability and performance for IBM MQ in containers
In most cases, scaling and performance of IBM MQ in containers is the same as IBM MQ for
Multiplatforms. However there are a few additional limits that can be imposed by the container platform.

About this task
When planning scalability and performance for IBM MQ in containers, consider the following options:

Procedure
• Limit the number of threads and processes.

IBM MQ uses threads to manage concurrency. In Linux, threads are implemented as processes, so
you can encounter limits imposed by the container platform or operating system, on the maximum
number of processes. From Red Hat OpenShift Container Platform 4.11, there is a default limit of
4096 processes per container. For older versions of the OpenShift Container Platform the limit is 1024
processes. For compatibility of IBM MQ Operator versions with OpenShift Container Platform versions,
see “Compatible Red Hat OpenShift Container Platform versions” on page 12. While this is adequate
for the vast majority of scenarios, there may be cases where this can impact the number of client
connections for a queue manager.

The process limit in Kubernetes can be configured by a cluster administrator using the
kubelet configuration setting podPidsLimit. See Process ID limits and reservations in the
Kubernetes documentation. In Red Hat OpenShift Container Platform, you can also create a
ContainerRuntimeConfig custom resource to edit CRI-O parameters.

In your IBM MQ configuration, you can also set the maximum number of client connections for a queue
manager. See Server-connection channel limits for applying limits to an individual server-connection
channel, and the MAXCHANNELS INI attribute for applying limits to the whole queue manager.

• Limit the number of volumes.

In cloud and container systems, network-attached storage volumes are commonly used. There are
limits to the number of volumes that can be attached to Linux Nodes. For example, AWS EC2 limits
to no more than 30 volumes per VM. Red Hat OpenShift Container Platform has a similar limit, as do
Microsoft Azure and Google Cloud Platform.

A Native HA queue manager requires one volume for each of the three instances, and enforces
instances to be spread across Nodes. However, you can configure the queue manager to use three
volumes per instance (queue manager data, recovery logs and persisted data).

• Use IBM MQ scaling techniques.

Instead of a small number of large queue managers, it can be beneficial to use IBM MQ scaling
techniques such as IBM MQ uniform clusters to run multiple queue managers with the same
configuration. This has the added benefit that the impact of a single container restarting (for example,
as part of container platform maintenance) is lessened.

32 IBM MQ in containers

https://kubernetes.io/docs/concepts/policy/pid-limiting/
https://docs.openshift.com/container-platform/4.12/post_installation_configuration/machine-configuration-tasks.html#create-a-containerruntimeconfig_post-install-machine-configuration-tasks
https://docs.openshift.com/container-platform/4.12/post_installation_configuration/machine-configuration-tasks.html#create-a-containerruntimeconfig_post-install-machine-configuration-tasks
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html
https://docs.openshift.com/container-platform/4.10/storage/persistent_storage/persistent-storage-aws.html#maximum-number-of-ebs-volumes-on-a-node_persistent-storage-aws

Using the IBM MQ Operator for
Red Hat OpenShift

The IBM MQ Operator deploys and manages IBM MQ as part of IBM Cloud Pak for Integration, or
standalone on Red Hat OpenShift Container Platform

Procedure
• “Release history for IBM MQ Operator” on page 33.
• “Migrating IBM MQ to IBM Cloud Pak for Integration” on page 83.
• “Installing the IBM MQ Operator” on page 105.
• “Upgrading the IBM MQ Operator and queue managers” on page 123.
• “Deploying a queue manager onto a Red Hat OpenShift Container Platform cluster” on page 118.
• “Operating IBM MQ using the IBM MQ Operator” on page 173.
• “API reference for the IBM MQ Operator” on page 183.

Release history for IBM MQ Operator
Notes:

• For information about earlier IBM MQ Operators, see Release history for IBM MQ Operator in the IBM
MQ 9.2 documentation.

• For information about future IBM MQ updates, see the overall IBM MQ planned maintenance release
dates page.

IBM MQ Operator 3.1.3

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.4.1

Operator channel
v3.1

Allowed values for .spec.version
9.3.5.1-r2

Allowed values for .spec.version during migration
9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3,9.3.3.2-r3 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4, 9.3.0.3-
r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-r2,
9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.0.17-r2, 9.3.1.0-r1,
9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2,
9.3.3.1-r1, 9.3.3.1-r2, 9.3.3.2-r1, 9.3.3.2-r2, 9.3.3.2-r3, 9.3.3.3-r1, 9.3.3.3-r2, 9.3.4.0-r1, 9.3.4.1-r1,
9.3.5.0-r1, 9.3.5.0-r2, 9.3.5.1-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services version 4.3 and above (optional installation).

What's changed

• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ in containers and IBM Cloud Pak for Integration 33

https://www.ibm.com/support/pages/ibm-mq-planned-maintenance-release-dates
https://www.ibm.com/support/pages/ibm-mq-planned-maintenance-release-dates
https://www.ibm.com/support/pages/node/7154630

IBM MQ Operator 3.1.2

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.4.1

Operator channel
v3.1

Allowed values for .spec.version
9.3.5.1-r1

Allowed values for .spec.version during migration
9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3,9.3.3.2-r3 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4, 9.3.0.3-
r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-r2,
9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.1.0-r1, 9.3.1.0-r2,
9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1,
9.3.3.1-r2, 9.3.3.2-r1, 9.3.3.2-r2, 9.3.3.2-r3, 9.3.3.3-r1, 9.3.3.3-r2, 9.3.4.0-r1, 9.3.4.1-r1, 9.3.5.0-r1,
9.3.5.0-r2,

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services version 4.3 and above (optional installation).

What's changed

• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 3.1.1

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.4.1

Operator channel
v3.1

Allowed values for .spec.version
9.3.5.0-r2

Allowed values for .spec.version during migration
9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3,9.3.3.2-r3 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4, 9.3.0.3-
r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-r2,
9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3,
9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2,
9.3.3.2-r1, 9.3.3.2-r2, 9.3.3.2-r3, 9.3.3.3-r1, 9.3.3.3-r2, 9.3.4.0-r1, 9.3.4.1-r1, 9.3.5.0-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services version 4.3 and above (optional installation).

What's changed

• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 3.1.0

34 IBM MQ in containers

https://www.ibm.com/support/pages/node/7149801
https://www.ibm.com/support/pages/node/7145419

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.4.1

Operator channel
v3.1

Allowed values for .spec.version
9.3.5.0-r1

Allowed values for .spec.version during migration
9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3,9.3.3.2-r3 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4, 9.3.0.3-
r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-r2,
9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1,
9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2, 9.3.3.2-r1,
9.3.3.2-r2, 9.3.3.2-r3, 9.3.3.3-r1, 9.3.3.3-r2, 9.3.4.0-r1, 9.3.4.1-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services version 4.3 and above (optional installation).

What's changed

• Vulnerabilities that are addressed are detailed in these Security Bulletins:

– https://www.ibm.com/support/pages/node/7126571.
– https://www.ibm.com/support/pages/node/7137570.

IBM MQ Operator 3.0.1

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.4.1

Operator channel
v3.0

Allowed values for .spec.version
9.3.4.1-r1

Allowed values for .spec.version during migration
9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3,9.3.3.2-r3 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4, 9.3.0.3-
r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-r2,
9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1,
9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2, 9.3.3.2-r1, 9.3.3.2-r2,
9.3.3.2-r3, 9.3.3.3-r1, 9.3.4.0-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services version 4.3 and above (optional installation).

What's changed

• Security-only update built on “IBM MQ Operator 3.0.0” on page 35.
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 3.0.0

IBM MQ in containers and IBM Cloud Pak for Integration 35

https://www.ibm.com/support/pages/node/7126571
https://www.ibm.com/support/pages/node/7137570
https://www.ibm.com/support/pages/node/7112467

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.4.1

Operator channel
v3.0

Allowed values for .spec.version
9.3.4.0-r1

Allowed values for .spec.version during migration
9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4, 9.3.0.3-r1, 9.3.0.4-
r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-r2, 9.3.0.11-r1,
9.3.0.11-r2, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-
r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2, 9.3.3.2-r1, 9.3.3.2-r2, 9.3.3.2-r3

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services version 4.3 and above (optional installation).

What's new

• You can configure the IBM MQ web server by adding a mqwebuser.xml file to a ConfigMap or
Secret, using the new manualConfig YAML property (requires IBM MQ 9.3.4 or higher)

• The administrative REST API is now supported. You can configure this via a ConfigMap or Secret
as above (requires IBM MQ 9.3.4 or higher). However, please note that the web server is still not
deemed a critical service for the liveness probe, so if it fails, the container will not be restarted
automatically.

• You disable single sign-on when using an IBM Cloud Pak for Integration license by choosing
"manual" authentication and authorization (requires IBM MQ 9.3.4 or higher)

• You can enable a read-only root filesystem inside the container. This improves security by
preventing writes to most of the files inside the container at runtime (requires IBM MQ 9.3.4 or
higher). The readOnlyRootFilesystem option is accompanied by additional options to configure
the size of the "scratch" and "tmp" volumes that are mounted to allow writing of temporary files. See
“Running the IBM MQ container with a read-only root file system” on page 168

What's changed

• Removed (previously deprecated) releases: IBM MQ 9.2.0 EUS, 9.2.3, 9.2.4, 9.2.5. Important:
Ensure that you do not have queue managers for any of the removed versions before you upgrade
the IBM MQ Operator. After upgrading, you will no longer be able to edit the QueueManager
resource, other than to upgrade to an in-support version, because the IBM MQ Operator no longer
recognizes the older versions.

• Operator installation and lifecycle

– The IBM MQ Operator is now supported on Red Hat OpenShift Container Platform version 4.14.
– The IBM MQ Operator no longer installs IBM Cloud Pak foundational services automatically. If

you deploy a QueueManager which uses a IBM Cloud Pak for Integration license, and which
configures single sign-on (the default for queue managers with that license), the QueueManager
will enter a "Blocked" state if the necessary dependencies are not already installed. No other
operators will be installed automatically.

• Security changes

– IBM Cloud Pak for Integration 2023.4.1 uses Keycloak for single sign-on and authorization,
instead of the IBM Cloud Pak Identity and Access Manager.

– The IBM Cloud Pak for Integration "quick start" template no longer disables security with
MQSNOAUT. You need to configure authentication. See “User authentication and authorization
for IBM MQ in containers” on page 27.

36 IBM MQ in containers

– Disabled default users in IBM MQ Advanced for Developers from version 9.3.4. The default users
("admin" and "app") and other configuration provided as part of IBM MQ Advanced for Developers
are disabled by default.

• Minor changes to the IBM MQ Operator Pod:

– The IBM MQ Operator no longer deploys an init container
– The IBM MQ Operator container name is now manager
– The IBM MQ Operator pod prefix is ibm-mq-operator

• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.4.8
IBM Cloud Pak for Integration version

IBM Cloud Pak for Integration 2023.2.1
Operator channel

v2.4
Allowed values for .spec.version

9.3.3.3-r2
Allowed values for .spec.version during migration

9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1,
9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2, 9.3.3.2-r1,
9.3.3.2-r2, 9.3.3.2-r3, 9.3.3.3-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Security-only update built on “IBM MQ Operator 2.4.0” on page 41.
• Vulnerabilities that are addressed are detailed in these Security Bulletins:

– https://www.ibm.com/support/pages/node/7126571.
– https://www.ibm.com/support/pages/node/7137570.

IBM MQ Operator 2.4.7
IBM Cloud Pak for Integration version

IBM Cloud Pak for Integration 2023.2.1
Operator channel

v2.4
Allowed values for .spec.version

9.3.3.3-r1
Allowed values for .spec.version during migration

9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1,

IBM MQ in containers and IBM Cloud Pak for Integration 37

https://www.ibm.com/support/pages/node/7096558
https://www.ibm.com/support/pages/node/7126571
https://www.ibm.com/support/pages/node/7137570

9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2, 9.3.3.2-r1, 9.3.3.2-r2,
9.3.3.2-r3

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Security-only update built on “IBM MQ Operator 2.4.0” on page 41.
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.4.6

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.2.1

Operator channel
v2.4

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2,
9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2, 9.3.3.2-r1, 9.3.3.2-r2, 9.3.3.2-r3

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Security-only update built on “IBM MQ Operator 2.4.0” on page 41.
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.4.5

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.2.1

Operator channel
v2.4

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1,
9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2, 9.3.3.2-r1, 9.3.3.2-r2

38 IBM MQ in containers

https://www.ibm.com/support/pages/node/7112467
https://www.ibm.com/support/pages/node/7096558

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Security-only update built on “IBM MQ Operator 2.4.0” on page 41.
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.4.4

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.2.1

Operator channel
v2.4

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1,
9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2, 9.3.3.2-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Security-only update built on “IBM MQ Operator 2.4.0” on page 41.
• Vulnerabilities that are addressed are detailed in this Security Bulletin.
• The IBM MQ Operator is no longer tested or supported on OpenShift Container Platform 4.10.

IBM MQ Operator 2.4.3

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.2.1

Operator channel
v2.4

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-
r4, 9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1,
9.3.0.10-r2, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-
r2, 9.3.3.0-r1, 9.3.3.0-r2, 9.3.3.1-r1, 9.3.3.1-r2

IBM MQ in containers and IBM Cloud Pak for Integration 39

https://www.ibm.com/support/pages/node/7077530
https://www.ibm.com/support/pages/node/7064962

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Security-only update built on “IBM MQ Operator 2.4.0” on page 41.
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.4.2

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.2.1

Operator channel
v2.4

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-
r4, 9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1,
9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1,
9.3.3.0-r2, 9.3.3.1-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Security-only update built on “IBM MQ Operator 2.4.0” on page 41.
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.4.1

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.2.1

Operator channel
v2.4

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.1.0-r1, 9.3.1.0-r2,
9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1, 9.3.3.0-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

40 IBM MQ in containers

https://www.ibm.com/support/pages/node/7039373
https://www.ibm.com/support/pages/node/7029356

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Security-only update built on “IBM MQ Operator 2.4.0” on page 41.
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.4.0

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2023.2.1

Operator channel
v2.4

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3,
9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2, 9.3.3.0-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's new

• Removed Operations Dashboard integration.
• Added IBM MQ Operator support for LogFilePages.

What's changed

• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.3.3

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.4.1

Operator channel
v2.3

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1,
9.3.2.0-r1, 9.3.2.0-r2, 9.3.2.1-r1, 9.3.2.1-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

IBM MQ in containers and IBM Cloud Pak for Integration 41

https://www.ibm.com/support/pages/node/7016688
https://www.ibm.com/support/pages/node/7004197

What's changed

• Security-only update built on “IBM MQ Operator 2.3.0” on page 43
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.3.2

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.4.1

Operator channel
v2.3

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1,
9.3.2.0-r2, 9.3.2.1-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Security-only update built on “IBM MQ Operator 2.3.0” on page 43
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.3.1

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.4.1

Operator channel
v2.3

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's new

• From March 2023, IBM MQ Operator and IBM MQ queue manager container images are digitally
signed. IBM MQ Operator 2.3.1 and IBM MQ 9.3.2.0-r2 images have been signed with this release.
See “Verifying image signatures” on page 82.

42 IBM MQ in containers

https://www.ibm.com/support/pages/node/6999605
https://www.ibm.com/support/pages/node/6986323

What's changed

• Security-only update built on “IBM MQ Operator 2.3.0” on page 43
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.3.0

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.4.1

Operator channel
v2.3

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's new

• From IBM MQ Operator 2.3.0, FIPS 140-2 support can be configured. See “FIPS compliance for IBM
MQ in containers” on page 29.

• From IBM MQ Operator 2.3.0, IBM MQ 9.3.1 is deprecated.

What's changed

• From IBM MQ Operator 2.3.0, “Native HA” on page 145 is available under an IBM MQ Advanced or
IBM MQ Advanced for Developers license

• The set of permissions required by the IBM MQ Operator is reduced.
• From IBM MQ Operator 2.3.0, ibm-automation-core is removed from the OperandRequest

made for IBM Cloud Pak for Integration deployments.
• From IBM MQ Operator 2.3.0, the IBM MQ Operator deployment specifies an imagePullPolicy of
IfNotPresent.

• Vulnerabilities that are addressed are detailed in these security bulletins:

– Bulletin for CVE-2022-47629 and CVE-2022-35737
– Bulletin for CVE-2023-26284

IBM MQ Operator 2.2.2

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.4.1

Operator channel
v2.2

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1

IBM MQ in containers and IBM Cloud Pak for Integration 43

https://www.ibm.com/support/pages/node/6966198
https://www.ibm.com/support/pages/node/6956513
https://www.ibm.com/support/pages/node/6960201

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.2.1

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.4.1

Operator channel
v2.2

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's changed

• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.2.0

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.4.1

Operator channel
v2.2

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.1.0-r1,
9.3.1.0-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services versions 3.19 to 3.24 inclusive.

What's new

• From IBM MQ Operator 2.2.0 (CD), IBM Instana tracing is supported natively. Support is available
in the 9.3.1.0-r2 (CD) IBM MQ queue manager container image. 9.3.1.0-r2 contains version 2.4.0

44 IBM MQ in containers

https://www.ibm.com/support/pages/node/6857613
https://www.ibm.com/support/pages/node/6851363
https://www.ibm.com/support/pages/node/6484595

(2022.4.0) of the IBM Instana MQ Exit. To enable IBM Instana tracing, see “Integrating IBM MQ
with IBM Instana tracing” on page 158.

What's changed

• Vulnerabilities that are addressed are detailed in this Security Bulletin.
• From IBM MQ Operator 2.2.0, the Operations Dashboard is deprecated and will receive no further

updates. No new uses of the Operations Dashboard should be started. IBM MQ 2.0.x Operators
continue to support the Operations Dashboard.

IBM MQ Operator 2.1.0

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.1

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.1.0-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.X, but at least 3.19

What's new

• Adds IBM MQ 9.3.1.
• Adds a new option that allows users to disable default value updates to the queue manager
specification.

• Adds a new status condition that deprecates all IBM MQ versions earlier than IBM MQ 9.3.1.
• Adds a new status condition that warns users who are using LTS operands with this CD version of

the IBM MQ Operator.

What's changed

• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.29 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.25-r1

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-

IBM MQ in containers and IBM Cloud Pak for Integration 45

https://www.ibm.com/support/pages/node/6484595
https://www.ibm.com/support/pages/node/6842505
https://www.ibm.com/support/pages/node/6830587

r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.0.17-r2, 9.3.0.17-
r3, 9.3.0.20-r1, 9.3.0.20-r2, 9.3.0.21-r1, 9.3.0.21-r2, 9.3.0.21-r3

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• golang-jwt/jwt library has been upgraded to remediate a reported vulnerability.
• Vulnerabilities that are addressed are detailed in this security bulletin: https://www.ibm.com/

support/pages/node/7178065

IBM MQ Operator 2.0.28 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.21-r3

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.0.17-r2, 9.3.0.17-
r3, 9.3.0.20-r1, 9.3.0.20-r2, 9.3.0.21-r1, 9.3.0.21-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this security bulletin: https://www.ibm.com/

support/pages/node/7174358

IBM MQ Operator 2.0.27 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.21-r2

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-

46 IBM MQ in containers

https://www.ibm.com/support/pages/node/7178065
https://www.ibm.com/support/pages/node/7178065
https://www.ibm.com/support/pages/node/7174358
https://www.ibm.com/support/pages/node/7174358

r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.0.17-r2, 9.3.0.17-
r3, 9.3.0.20-r1, 9.3.0.20-r2, 9.3.0.21-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this security bulletin: https://www.ibm.com/

support/pages/node/7171536

IBM MQ Operator 2.0.26 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.21-r1

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.0.17-r2, 9.3.0.17-
r3, 9.3.0.20-r1, 9.3.0.20-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this security bulletin: https://www.ibm.com/

support/pages/node/7167732

IBM MQ Operator 2.0.25 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.20-r2

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-

IBM MQ in containers and IBM Cloud Pak for Integration 47

https://www.ibm.com/support/pages/node/7171536
https://www.ibm.com/support/pages/node/7171536
https://www.ibm.com/support/pages/node/7167732
https://www.ibm.com/support/pages/node/7167732

r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.0.17-r2, 9.3.0.17-
r3, 9.3.0.20-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in these security bulletins:

– https://www.ibm.com/support/pages/node/7162095
– https://www.ibm.com/support/pages/node/7162272

IBM MQ Operator 2.0.24 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.20-r1

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.0.17-r2, 9.3.0.17-
r3

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin

IBM MQ Operator 2.0.23 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.17-r3

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,

48 IBM MQ in containers

https://www.ibm.com/support/pages/node/7162095
https://www.ibm.com/support/pages/node/7162272
https://www.ibm.com/support/pages/node/7159714

9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.0.17-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security update built on “IBM MQ Operator 2.0.0” on page 59
• IBM MQ Catalog image moved to file-based catalog format from SQLite database format.
• Vulnerabilities that are addressed are detailed in this Security Bulletin

IBM MQ Operator 2.0.22 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.17-r2

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin

IBM MQ Operator 2.0.21 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.17-r1

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,

IBM MQ in containers and IBM Cloud Pak for Integration 49

https://www.ibm.com/support/pages/node/7157667
https://www.ibm.com/support/pages/node/7154630

9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin

IBM MQ Operator 2.0.20 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.16-r2

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin

IBM MQ Operator 2.0.19 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.16-r1

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,

50 IBM MQ in containers

https://www.ibm.com/support/pages/node/7149801
https://www.ibm.com/support/pages/node/7145419

9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in these Security Bulletins:

– https://www.ibm.com/support/pages/node/7126571.
– https://www.ibm.com/support/pages/node/7137570.

IBM MQ Operator 2.0.18 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.3.0.15-r1

Allowed values for .spec.version during migration
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.17 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,

IBM MQ in containers and IBM Cloud Pak for Integration 51

https://www.ibm.com/support/pages/node/7126571
https://www.ibm.com/support/pages/node/7137570
https://www.ibm.com/support/pages/node/7112467

9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1, 9.3.0.11-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.
• The IBM MQ Operator is no longer tested or supported on OpenShift Container Platform 4.10.

IBM MQ Operator 2.0.16 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2, 9.3.0.11-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.12 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.16 and 4.18.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.
• The IBM MQ Operator is no longer tested or supported on OpenShift Container Platform 4.10.

IBM MQ Operator 2.0.15 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-
r2

52 IBM MQ in containers

https://www.ibm.com/support/pages/node/7096558
https://www.ibm.com/support/pages/node/7064962

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.14 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.13 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

IBM MQ in containers and IBM Cloud Pak for Integration 53

https://www.ibm.com/support/pages/node/7039373
https://www.ibm.com/support/pages/node/7029356

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.12 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.11 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.10 (LTS)

54 IBM MQ in containers

https://www.ibm.com/support/pages/node/7016688
https://www.ibm.com/support/pages/node/7004197
https://www.ibm.com/support/pages/node/6999605

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2, 9.3.0.5-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.9 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1, 9.3.0.4-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's new

• From March 2023, IBM MQ Operator and IBM MQ queue manager container images are digitally
signed. IBM MQ Operator 2.0.9 and IBM MQ 9.3.0.4-r2 images have been signed with this release.
See “Verifying image signatures” on page 82)

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.8 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

IBM MQ in containers and IBM Cloud Pak for Integration 55

https://www.ibm.com/support/pages/node/6986323
https://www.ibm.com/support/pages/node/6966198

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1, 9.3.0.4-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in these security bulletins:

– Bulletin for CVE-2022-47629 and CVE-2022-35737
– Bulletin for CVE-2023-26284

IBM MQ Operator 2.0.7 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4,
9.3.0.3-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.6 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

56 IBM MQ in containers

https://www.ibm.com/support/pages/node/6956513
https://www.ibm.com/support/pages/node/6960201
https://www.ibm.com/support/pages/node/6857613

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.5 (LTS)

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.4

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM MQ in containers and IBM Cloud Pak for Integration 57

https://www.ibm.com/support/pages/node/6851363
https://www.ibm.com/support/pages/node/6842505

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.3

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.0.6-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1,
9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.2

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.0.6-r2-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1, 9.2.5.0-r2, 9.2.5.0-
r3, 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.1

58 IBM MQ in containers

https://www.ibm.com/support/pages/node/6830587
https://www.ibm.com/support/pages/node/6824759
https://www.ibm.com/support/pages/node/6616631

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.0.6-r1-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1, 9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1,
9.3.0.0-r2

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's changed

• Security-only update built on “IBM MQ Operator 2.0.0” on page 59
• Vulnerabilities that are addressed are detailed in this Security Bulletin.

IBM MQ Operator 2.0.0

IBM Cloud Pak for Integration version
IBM Cloud Pak for Integration 2022.2.1

Operator channel
v2.0

Allowed values for .spec.version
9.2.0.1-r1-eus, 9.2.0.2-r1-eus, 9.2.0.2-r2-eus, 9.2.0.4-r1-eus, 9.2.0.5-r1-eus, 9.2.0.5-r2-eus,
9.2.0.5-r3-eus, 9.2.3.0-r1, 9.2.4.0-r1, 9.2.5.0-r1, 9.2.5.0-r2, 9.2.5.0-r3, 9.3.0.0-r1

Red Hat OpenShift Container Platform versions
OpenShift Container Platform 4.10 and above. Note: Only the OpenShift Container Platform Extended
Update Support (EUS) releases are supported, which are the even-numbered minor releases, for
example 4.10 and 4.12.

IBM Cloud Pak foundational services versions
IBM Cloud Pak foundational services 3.19

What's new

• Adds IBM MQ 9.3.0.
• Adds support for POWER (ppc64le).

What's changed

• Red Hat OpenShift Container Platform 4.10 now required. See “Version support for the IBM MQ
Operator” on page 11.

• Deprecated versions: IBM MQ 9.2.3. These versions might not be reconciled by future
versions of the IBM MQ Operator.

• Removed (previously deprecated) continuous delivery releases: IBM MQ 9.1.5, 9.2.0
CD, 9.2.1, 9.2.2

• The IBM MQ Operator validating web hook is now installed by the Operator Lifecycle Manager
(OLM). OLM now manages the web hook's certificate.

• Fixed a bug that was previously generating user preference warnings in the IBM MQ Console
logging.

• Vulnerabilities that are addressed are detailed in these Security Bulletins:

IBM MQ in containers and IBM Cloud Pak for Integration 59

https://www.ibm.com/support/pages/node/6611147

– https://www.ibm.com/support/pages/node/6602255
– https://www.ibm.com/support/pages/node/6602259

Release history for Queue Manager
Container images for use with IBM MQ Operator
Note: For information about earlier Queue Manager Container images, see Release history for IBM MQ
Operator in the IBM MQ 9.2 documentation.

9.3.5.1-r2

Required operator version
3.1.3 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.5.1-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.5.1-r2
• icr.io/ibm-messaging/mq:9.3.5.1-r2

What's new

• What's new in IBM MQ 9.3.5

What's changed

• What's changed in IBM MQ 9.3.5
• Based on Red Hat Universal Base Image 8.9-1161.1715068733
• golang.org/x/net library has been upgraded to remediate a reported vulnerability

9.3.5.1-r1

Required operator version
3.1.2 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.5.1-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.5.1-r1
• icr.io/ibm-messaging/mq:9.3.5.1-r1

What's new

• What's new in IBM MQ 9.3.5

What's changed

• What's changed in IBM MQ 9.3.5
• Based on Red Hat Universal Base Image 8.9-1161
• "dependabot" reported security vulnerabilities have been addressed

60 IBM MQ in containers

https://www.ibm.com/support/pages/node/6602255
https://www.ibm.com/support/pages/node/6602259
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=6639e6e904a1a78fa9e8e6c4
https://pkg.go.dev/golang.org/x/net
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=660383f31ba64b6bd44df0a7

9.3.5.0-r2

Required operator version
3.1.1 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.5.0-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.5.0-r2
• icr.io/ibm-messaging/mq:9.3.5.0-r2

What's new

• What's new in IBM MQ 9.3.5

What's changed

• What's changed in IBM MQ 9.3.5
• Based on Red Hat Universal Base Image 8.9-1137
• You only need to pick-up the new 9.3.5.0-r2 image if you have Operations Dashboard enabled.

9.3.5.0-r1

Required operator version
3.1.0 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.5.0-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.5.0-r1
• icr.io/ibm-messaging/mq:9.3.5.0-r1

What's new

• What's new in IBM MQ 9.3.5

What's changed

• What's changed in IBM MQ 9.3.5
• Based on Red Hat Universal Base Image 8.9-1137
• A symbolic link is provided to /var/mam where unencrypted credentials in mqwebuser.xml would

be copied.
• golang.org/x/crypto library has been upgraded to remediate CVE-2023-48795 vulnerability.
• More secure SHA512 algorithm used instead of SHA256 to create self-signed certificate in the web

keystore.
• PKCS#12 key store for use with the IBM MQ web server is now generated using the
Pkcs12.Modern.Encode function, which uses SHA-2 encryption (previously generated using a
legacy SHA-1 encryption).

• Vulnerability reported on PathTraversal method usages is fixed.

9.3.4.1-r1

IBM MQ in containers and IBM Cloud Pak for Integration 61

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=65cad19b3e4fe61cff409362
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=65cad19b3e4fe61cff409362
https://golang.org/x/crypto

Required operator version
3.0.1 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.4.1-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.4.1-r1
• icr.io/ibm-messaging/mq:9.3.4.1-r1

What's new

• What's new in IBM MQ 9.3.4

What's changed

• What's changed in IBM MQ 9.3.4
• Based on Red Hat Universal Base Image 8.9-1108

9.3.4.0-r1

Required operator version
3.0.0 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.4.0-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.4.0-r1
• icr.io/ibm-messaging/mq:9.3.4.0-r1

What's new

• What's new in IBM MQ 9.3.4

What's changed

• What's changed in IBM MQ 9.3.4
• Based on Red Hat Universal Base Image 8.9-1029
• Improved support for the IBM MQ web server — The IBM MQ web server log now appears by

default in the container log. The web server's messages.log file is now automatically mirrored
to the container log output. As part of this change, the messages.log file written to disk is now
always in JSON format, though the container log continues to be available as either JSON or the
human-readable "basic" format.

• Fixed the signal handling inside the queue manager container image, so that it correctly processes
control signals if the container is terminated by Red Hat OpenShift Container Platform before
startup is complete.

9.3.3.3-r2
Required operator version

2.4.8 or higher
Supported architectures

amd64, s390x, ppc64le
Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.3.3-r2

62 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=6594c6c561a77a3ef608ba7f
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=6541c626134440daf5b30636

• cp.icr.io/cp/ibm-mqadvanced-server:9.3.3.3-r2
• icr.io/ibm-messaging/mq:9.3.3.3-r2

What's new

• What's new in IBM MQ 9.3.3

What's changed

• What's changed in IBM MQ 9.3.3
• Based on Red Hat Universal Base Image 8.9-1137
• golang.org/x/crypto library has been upgraded to remediate CVE-2023-48795 vulnerability.
• More secure SHA512 algorithm used instead of SHA256 to create self-signed certificate in the web

keystore.
• PKCS#12 key store for use with the IBM MQ web server is now generated using the
Pkcs12.Modern.Encode function, which uses SHA-2 encryption (previously generated using a
legacy SHA-1 encryption).

• Vulnerability reported on PathTraversal method usages is fixed.

9.3.3.3-r1
Required operator version

2.4.7 or higher
Supported architectures

amd64, s390x, ppc64le
Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.3.3-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.3.3-r1
• icr.io/ibm-messaging/mq:9.3.3.3-r1

What's new

• What's new in IBM MQ 9.3.3

What's changed

• What's changed in IBM MQ 9.3.3
• Based on Red Hat Universal Base Image 8.9-1108

IBM MQ APARs included

• IT44961
• IT44821
• IT44954

9.3.3.2-r3

Required operator version
2.4.6 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.3.2-r3
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.3.2-r3
• icr.io/ibm-messaging/mq:9.3.3.2-r3

IBM MQ in containers and IBM Cloud Pak for Integration 63

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=65cad19b3e4fe61cff409362
https://golang.org/x/crypto
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=6594c6c561a77a3ef608ba7f

What's new

• What's new in IBM MQ 9.3.3

What's changed

• What's changed in IBM MQ 9.3.3
• Based on Red Hat Universal Base Image 8.9-1029

9.3.3.2-r2

Required operator version
2.4.5 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.3.2-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.3.2-r2
• icr.io/ibm-messaging/mq:9.3.3.2-r2

What's new

• What's new in IBM MQ 9.3.3

What's changed

• What's changed in IBM MQ 9.3.3
• Based on Red Hat Universal Base Image 8.8-1072.1697626218
• IBM MQ Queue Manager Container image 9.3.3.2-r2 includes version 3.1.7 (2023.4.0) of the

Instana MQ Exit.

9.3.3.2-r1

Required operator version
2.4.4 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.3.2-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.3.2-r1
• icr.io/ibm-messaging/mq:9.3.3.2-r1

What's new

• What's new in IBM MQ 9.3.3

What's changed
5

• What's changed in IBM MQ 9.3.3
• Based on Red Hat Universal Base Image 8.8-1072.1697626218
• Updates level of libcurl to 8.4.0.

5 A previous version of this topic incorrectly stated that IBM MQ Queue Manager Container image 9.3.3.2-r1
includes version 3.1.7 (2023.4.0) of the Instana MQ Exit.

64 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=6541c626134440daf5b30636
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=652fd555eab15fcc8f3cfe0d
https://www.ibm.com/docs/en/instana-observability/current?topic=mq-tracing#ibm-mq-tracing
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=652fd555eab15fcc8f3cfe0d
https://www.ibm.com/docs/en/instana-observability/current?topic=mq-tracing#ibm-mq-tracing

IBM MQ APARs included

• IT41871
• IT44585
• IT44623
• IT44762

9.3.3.1-r2

Required operator version
2.4.3 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.3.1-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.3.1-r2
• icr.io/ibm-messaging/mq:9.3.3.1-r2

What's new

• What's new in IBM MQ 9.3.3

What's changed

• What's changed in IBM MQ 9.3.3
• Security-only update built on IBM MQ 9.3.3.1-r1
• Based on Red Hat Universal Base Image 8.8-1037

9.3.3.1-r1

Required operator version
2.4.2 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.3.1-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.3.1-r1
• icr.io/ibm-messaging/mq:9.3.3.1-r1

What's new

• What's new in IBM MQ 9.3.3

What's changed

• What's changed in IBM MQ 9.3.3
• Based on Red Hat Universal Base Image 8.8-1037.

9.3.3.0-r2

Required operator version
2.4.1 or higher

IBM MQ in containers and IBM Cloud Pak for Integration 65

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?tag=8.8-1037&architecture=amd64&image=64ca80c7905d43ee1bcc493f
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?tag=8.8-1037&architecture=amd64&image=64ca80c7905d43ee1bcc493f

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.3.0-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.3.0-r2
• icr.io/ibm-messaging/mq:9.3.3.0-r2

What's new

• What's new in IBM MQ 9.3.3

What's changed

• What's changed in IBM MQ 9.3.3
• Based on Red Hat Universal Base Image 8.8-1014.

9.3.3.0-r1

Required operator version
2.4.0 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.3.0-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.3.0-r1
• icr.io/ibm-messaging/mq:9.3.3.0-r1

What's new

• What's new in IBM MQ 9.3.3

What's changed

• What's changed in IBM MQ 9.3.3
• Based on Red Hat Universal Base Image 8.8-860.
• IBM MQ Queue Manager Container image 9.3.3.0-r1 includes version 3.1.2 (2023.2.0) of the

Instana MQ Exit.

9.3.2.1-r2

Required operator version
2.3.3 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.2.1-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.2.1-r2
• icr.io/ibm-messaging/mq:9.3.2.1-r2

What's new

• What's new in IBM MQ 9.3.2

66 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?tag=8.8-1014&push_date=1687885725000&architecture=amd64&image=649b18078013dfd26cbbaf17
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?tag=8.8-860&push_date=1684242445000&architecture=amd64&image=64527ab385a0b411c813ec98
https://www.ibm.com/support/pages/node/6484595
https://www.ibm.com/support/pages/node/6484595

What's changed

• What's changed in IBM MQ 9.3.2
• Based on Red Hat Universal Base Image 8.7-1107.

9.3.2.1-r1

Required operator version
2.3.2 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.2.1-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.2.1-r1
• icr.io/ibm-messaging/mq:9.3.2.1-r1

What's new

• What's new in IBM MQ 9.3.2

What's changed

• What's changed in IBM MQ 9.3.2
• Based on Red Hat Universal Base Image 8.7-1107.

9.3.2.0-r2

Required operator version
2.3.1 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.2.0-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.2.0-r2
• icr.io/ibm-messaging/mq:9.3.2.0-r2

What's new

• What's new in IBM MQ 9.3.2

What's changed

• What's changed in IBM MQ 9.3.2
• Based on Red Hat Universal Base Image 8.7-1085.

9.3.2.0-r1

Required operator version
2.3.0 or higher

Supported architectures
amd64, s390x, ppc64le

IBM MQ in containers and IBM Cloud Pak for Integration 67

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?push_date=1680615327000&tag=8.7-1107&architecture=amd64&image=64226b3c5f05d70b2f432ca6
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?push_date=1680615327000&tag=8.7-1107&architecture=amd64&image=64226b3c5f05d70b2f432ca6
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?tag=8.7-10852ca6&architecture=amd64&image=63ec5c40f709fb285c2f879f

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.2.0-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.2.0-r1
• icr.io/ibm-messaging/mq:9.3.2.0-r1

What's new

• What's new in IBM MQ 9.3.2
• The environment variable MQ_LOGGING_CONSOLE_FORMAT is now set, which replaces the

deprecated LOG_FORMAT variable.

What's changed

• What's changed in IBM MQ 9.3.2
• Queue manager certificates with the same Subject Distinguished Name (DN) as the issuer (CA)
certificate are not supported. A certificate must have a unique Subject Distinguished Name.

• Based on Red Hat Universal Base Image 8.7-1049.1675784874.

9.3.1.1-r1

Required operator version
2.2.2 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.1.1-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.1.1-r1
• icr.io/ibm-messaging/mq:9.3.1.1-r1

What's new

• What's new in IBM MQ 9.3.1

What's changed

• What's changed in IBM MQ 9.3.1
• Based on Red Hat Universal Base Image 8.7-1031.
• IBM MQ Queue Manager Container image 9.3.1.1-r1 includes version 2.4.3 (2022.4.3) of the IBM

Instana MQ Exit.

9.3.1.0-r3

Required operator version
2.2.1 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.1.0-r3
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.1.0-r3
• icr.io/ibm-messaging/mq:9.3.1.0-r3

68 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?tag=8.7-1049.1675784874&architecture=amd64&image=63e2808a52c0447946266286
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=639b2b1e5964de28f79f6e1a&architecture=amd64
https://www.ibm.com/support/pages/node/6484595
https://www.ibm.com/support/pages/node/6484595

What's new

• What's new in IBM MQ 9.3.1

What's changed

• What's changed in IBM MQ 9.3.1
• Based on Red Hat Universal Base Image 8.7-923.1669829893.
• IBM MQ Queue Manager Container image 9.3.1.0-r3 includes version 2.4.3 (2022.4.3) of the IBM

Instana MQ Exit.

9.3.1.0-r2

Required operator version
2.2.0 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.1.0-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.1.0-r2
• icr.io/ibm-messaging/mq:9.3.1.0-r2

What's new

• What's new in IBM MQ 9.3.1
• From the 9.3.1.0-r2 (CD) IBM MQ Queue Manager Container image, IBM Instana tracing is

supported natively. IBM MQ version 9.3.1.0-r2 includes version 2.4.0 (2022.4.0) of the IBM Instana
MQ Exit. To enable IBM Instana tracing, see “Integrating IBM MQ with IBM Instana tracing” on page
158.

What's changed

• What's changed in IBM MQ 9.3.1
• Based on Red Hat Universal Base Image 8.7-923.
• If a key and certificate are not supplied, queue manager attribute SSLKEYR is now set to blank

rather than being set to "/run/runmqserver/tls/key".

9.3.1.0-r1

Required operator version
2.1.0 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.1.0-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.1.0-r1
• icr.io/ibm-messaging/mq:9.3.1.0-r1

What's new

• What's new in IBM MQ 9.3.1

What's changed

• What's changed in IBM MQ 9.3.1

IBM MQ in containers and IBM Cloud Pak for Integration 69

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=6387a1b852c044794623007f&architecture=amd64
https://www.ibm.com/support/pages/node/6484595
https://www.ibm.com/support/pages/node/6484595
https://www.ibm.com/support/pages/node/6484595
https://www.ibm.com/support/pages/node/6484595
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=6360a49a1952be73d3f63410&architecture=amd64

• Based on Red Hat Universal Base Image 8.6-941.

9.3.0.25-r1

Required operator version
2.0.29 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.25-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.25-r1
• icr.io/ibm-messaging/mq:9.3.0.25-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.10-1130

9.3.0.21-r3

Required operator version
2.0.28 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.21-r3
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.21-r3
• icr.io/ibm-messaging/mq:9.3.0.21-r3

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.10-1086

9.3.0.21-r2

Required operator version
2.0.27 or higher

Supported architectures
amd64, s390x, ppc64le

70 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=6317835e702c566559ca17ff&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=6722ca74023a282abf2b7f50&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=66e98c6a9dde6f49f88eac38&architecture=amd64

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.21-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.21-r2
• icr.io/ibm-messaging/mq:9.3.0.21-r2

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.10-1052.1724178568

9.3.0.21-r1

Required operator version
2.0.26 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.21-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.21-r1
• icr.io/ibm-messaging/mq:9.3.0.21-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.10-1052.1724178568

9.3.0.20-r2

Required operator version
2.0.25 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.20-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.20-r2
• icr.io/ibm-messaging/mq:9.3.0.20-r2

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0

IBM MQ in containers and IBM Cloud Pak for Integration 71

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=66c4ea562211f7876a5626b0&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=66c4ea562211f7876a5626b0&architecture=amd64

• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.10-1018
• k8s.io/Apimachinery updated to v0.25.16

9.3.0.20-r1

Required operator version
2.0.24 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.20-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.20-r1
• icr.io/ibm-messaging/mq:9.3.0.20-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.10-896.1717584414

9.3.0.17-r3

Required operator version
2.0.22 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.17-r3
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.17-r3
• icr.io/ibm-messaging/mq:9.3.0.17-r3

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 9.4-949.1716471857

9.3.0.17-r2

Required operator version
2.0.22 or higher

Supported architectures
amd64, s390x, ppc64le

72 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=667d4f640e434cf21900fc19&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=666045bf85809d5690748c8b&architecture=amd64
https://catalog.redhat.com/software/containers/ubi9/ubi-minimal/615bd9b4075b022acc111bf5?architecture=amd64&image=664f4c2d9cbb931e839f138b

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.17-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.17-r2
• icr.io/ibm-messaging/mq:9.3.0.17-r2

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.9-1161.1715068733
• golang.org/x/net library has been upgraded to remediate a reported vulnerability

9.3.0.17-r1

Required operator version
2.0.21 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.17-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.17-r1
• icr.io/ibm-messaging/mq:9.3.0.17-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.9-1161
• "dependabot" reported security vulnerabilities have been addressed.

9.3.0.16-r2

Required operator version
2.0.20 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.16-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.16-r2
• icr.io/ibm-messaging/mq:9.3.0.16-r2

What's new

• What's new in IBM MQ 9.3.0

IBM MQ in containers and IBM Cloud Pak for Integration 73

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=6639e6e904a1a78fa9e8e6c4
https://pkg.go.dev/golang.org/x/net
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=660383f31ba64b6bd44df0a7

What's changed

• What's changed in IBM MQ 9.3.0
• Security update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.9-1137
• You only need to pick-up the new 9.3.0.16-r2 image if you have Operations Dashboard enabled.

9.3.0.16-r1

Required operator version
2.0.19 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.16-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.16-r1
• icr.io/ibm-messaging/mq:9.3.0.16-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.9-1137
• golang.org/x/crypto library has been upgraded to remediate CVE-2023-48795 vulnerability.
• More secure SHA512 algorithm used instead of SHA256 to create self-signed certificate in the web

keystore.
• PKCS#12 key store for use with the IBM MQ web server is now generated using the
Pkcs12.Modern.Encode function, which uses SHA-2 encryption (previously generated using a
legacy SHA-1 encryption).

• Vulnerability reported on PathTraversal method usages is fixed.

9.3.0.15-r1

Required operator version
2.0.18 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.15-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.15-r1
• icr.io/ibm-messaging/mq:9.3.0.15-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0

74 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=65cad19b3e4fe61cff409362
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=65cad19b3e4fe61cff409362
https://golang.org/x/crypto

• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.9-1108

9.3.0.11-r2

Required operator version
2.0.17 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.11-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.11-r2
• icr.io/ibm-messaging/mq:9.3.0.11-r2

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.9-1029.

9.3.0.11-r1

Required operator version
2.0.16 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.11-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.11-r1
• icr.io/ibm-messaging/mq:9.3.0.11-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.8-1072.1697626218.
• Updates level of libcurl to 8.4.0

9.3.0.10-r2

Required operator version
2.0.15 or higher

Supported architectures
amd64, s390x, ppc64le

IBM MQ in containers and IBM Cloud Pak for Integration 75

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=6594c6c561a77a3ef608ba7f
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=6541c626134440daf5b30636
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?architecture=amd64&image=652fd555eab15fcc8f3cfe0d

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.10-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.10-r2
• icr.io/ibm-messaging/mq:9.3.0.10-r2

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.8-1037.

9.3.0.10-r1

Required operator version
2.0.14 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.10-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.10-r1
• icr.io/ibm-messaging/mq:9.3.0.10-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.8-1037.

9.3.0.6-r1

Required operator version
2.0.13 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.6-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.6-r1
• icr.io/ibm-messaging/mq:9.3.0.6-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0

76 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=64ca80c7905d43ee1bcc493f&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=64ca80c7905d43ee1bcc493f&architecture=amd64

• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.8-1014.

9.3.0.5-r3

Required operator version
2.0.12 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.5-r3
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.5-r3
• icr.io/ibm-messaging/mq:9.3.0.5-r3

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.8-860.

9.3.0.5-r2

Required operator version
2.0.11 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.5-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.5-r2
• icr.io/ibm-messaging/mq:9.3.0.5-r2

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.7-1107.

Important: For users of Operations Dashboard on IBM MQ LTS Queue Manager Container Image
9.3.0.5-r2

When Operations Dashboard is enabled, IBM MQ LTS Queue Manager Container Image 9.3.0.5-r2 deploys
Operations Dashboard Agent and Collector images that do not contain the latest security fixes available at
the time of their General Availability.

Mitigation: Upgrade to at least 9.3.0.5-r3 all IBM MQ LTS Queue Manager Container 9.3.0.5-r2 images
with Operations Dashboard enabled. See “Upgrading an IBM MQ queue manager using Red Hat
OpenShift” on page 133.

IBM MQ in containers and IBM Cloud Pak for Integration 77

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=649b18078013dfd26cbbaf17&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=64527ab385a0b411c813ec98&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=64226b3c5f05d70b2f432ca6&architecture=amd64

9.3.0.5-r1

Required operator version
2.0.10 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.5-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.5-r1
• icr.io/ibm-messaging/mq:9.3.0.5-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.7-1107.

Important: For users of Operations Dashboard on IBM MQ LTS Queue Manager Container Image
9.3.0.5-r1

When Operations Dashboard is enabled, IBM MQ LTS Queue Manager Container Image 9.3.0.5-r1 deploys
Operations Dashboard Agent and Collector images that do not contain the latest security fixes available at
the time of their General Availability.

Mitigation: Upgrade to at least 9.3.0.5-r3 all IBM MQ LTS Queue Manager Container 9.3.0.5-r1 images
with Operations Dashboard enabled. See “Upgrading an IBM MQ queue manager using Red Hat
OpenShift” on page 133.

9.3.0.4-r2

Required operator version
2.0.9 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.4-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.4-r2
• icr.io/ibm-messaging/mq:9.3.0.4-r2

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.7-1085.

9.3.0.4-r1

78 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=64226b3c5f05d70b2f432ca6&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=63ec5c40f709fb285c2f879f&architecture=amd64

Required operator version
2.0.8 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.4-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.4-r1
• icr.io/ibm-messaging/mq:9.3.0.4-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.7-1049.1675784874.

9.3.0.3-r1

Required operator version
2.0.7 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.3-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.3-r1
• icr.io/ibm-messaging/mq:9.3.0.3-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.7-1031.

9.3.0.1-r4

Required operator version
2.0.6 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.1-r4
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.1-r4
• icr.io/ibm-messaging/mq:9.3.0.1-r4

IBM MQ in containers and IBM Cloud Pak for Integration 79

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=63e2808a52c0447946266286&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=639b2b1e5964de28f79f6e1a&architecture=amd64

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.7-923.1669829893.

9.3.0.1-r3

Required operator version
2.0.5 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.1-r3
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.1-r3
• icr.io/ibm-messaging/mq:9.3.0.1-r3

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.7-923.

9.3.0.1-r2

Required operator version
2.0.4 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.1-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.1-r2
• icr.io/ibm-messaging/mq:9.3.0.1-r2

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.6-941.

9.3.0.1-r1

80 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=6387a1b852c044794623007f&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=6360a49a1952be73d3f63410&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=6317835e702c566559ca17ff&architecture=amd64

Required operator version
2.0.3 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.1-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.1-r1
• icr.io/ibm-messaging/mq:9.3.0.1-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.6-941.

9.3.0.0-r3

Required operator version
2.0.2 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.0-r3
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.0-r3
• icr.io/ibm-messaging/mq:9.3.0.0-r3

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.6-902.

9.3.0.0-r2

Required operator version
2.0.1 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.0-r2
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.0-r2
• icr.io/ibm-messaging/mq:9.3.0.0-r2

IBM MQ in containers and IBM Cloud Pak for Integration 81

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=6317835e702c566559ca17ff&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=62dfdfdc80cc9b32910baeea&architecture=amd64

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• Security-only update built on IBM MQ 9.3.0.0-r1
• Based on Red Hat Universal Base Image 8.6-854.

9.3.0.0-r1

Required operator version
2.0.0 or higher

Supported architectures
amd64, s390x, ppc64le

Images

• cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.0.0-r1
• cp.icr.io/cp/ibm-mqadvanced-server:9.3.0.0-r1
• icr.io/ibm-messaging/mq:9.3.0.0-r1

What's new

• What's new in IBM MQ 9.3.0

What's changed

• What's changed in IBM MQ 9.3.0
• The default developer configuration in the MQ Advanced for Developers image now uses
ANY_TLS12_OR_HIGHER.

• Fixed an issue with the IBM MQ web server, which caused an error in the log due to missing Java
preferences.

• Based on Red Hat Universal Base Image 8.6-751.1655117800.

Verifying image signatures
From March 2023, IBM MQ Operator and IBM MQ queue manager container images are digitally signed.

First IBM MQ Operators to be signed:

• 2.3.1 (CD)
• 2.0.9 (LTS)

First IBM MQ queue manager container images to be signed:

• 9.3.2.0-r2 (CD)
• 9.3.0.4-r2 (LTS)

About this task
Digital signatures provide a way for consumers of content to ensure that what they download is both
authentic (it originated from the expected source) and has integrity (it is what we expect it to be).

Procedure
• Verify the signatures of IBM MQ Operator and IBM MQ queue manager container images:

82 IBM MQ in containers

https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=62ac01aff5a0de37689b1947&architecture=amd64
https://catalog.redhat.com/software/containers/ubi8/ubi-minimal/5c359a62bed8bd75a2c3fba8?image=62a7214880cc9b3291f0f922&architecture=amd64

– For an IBM MQ Operator at 3.0.0 or later, or an IBM MQ queue manager
container image at 9.3.4.0-r1 or later, see Verifying image signatures in the IBM Cloud Pak for
Integration (CP4I) 2023.4 documentation.

– For an IBM MQ Operator at 2.4.x, or an IBM MQ queue manager container image at
9.3.3.x, see Verifying image signatures in the CP4I 2023.2 documentation.

– For an IBM MQ Operator prior to 2.4.0, or an IBM MQ queue manager container image prior to
9.3.3.0-r1, see Verifying image signatures in the CP4I 2022.4 documentation.

Migrating IBM MQ to IBM Cloud Pak for
Integration

This set of topics describes the key steps to migrate an existing IBM MQ queue manager into a container
environment using the IBM MQ Operator in IBM Cloud Pak for Integration.

About this task
Clients who deploy IBM MQ on Red Hat OpenShift can be separated into the following scenarios:

1. Creating a new IBM MQ deployment in Red Hat OpenShift for new applications.
2. Extending an IBM MQ network into Red Hat OpenShift for new applications in Red Hat OpenShift.
3. Moving an IBM MQ deployment into Red Hat OpenShift to continue to support existing applications.

It is only for scenario 3 that you need to migrate your IBM MQ configuration. The other scenarios are
considered new deployments.

This set of topics focuses on scenario 3, and describes the key steps to migrate an existing IBM MQ
queue manager into a container environment using the IBM MQ Operator. Because of the flexibility and
extensive use of IBM MQ, there are several optional steps. Each of these includes a "Do I need to do this"
section. Verifying your need should save you time during your migration.

You also need to consider what data to migrate:

1. Migrate IBM MQ with the same configuration but without any existing queued messages.
2. Migrate IBM MQ with the same configuration and existing messages.

A typical version to version migration can use either approach. In a typical IBM MQ queue manager at the
point of migration there are few if any messages stored on queues, which makes option 1 appropriate for
many cases. In the case of migration to a container platform it is even more common to use option 1, to
reduce the complexity of the migration and allow a blue green deployment. Therefore, the instructions
focus on this scenario.

The objective of this scenario is to create a queue manager in the container environment that matches the
definition of the existing queue manager. This allows existing network attached applications to simply be
reconfigured to point to the new queue manager, without changing any other configuration or application
logic.

Throughout this migration you generate multiple configuration files to be applied to the new queue
manager. To simplify the management of these files, you should create a directory and generate them into
that directory.

Procedure
1. “Checking that required functions are available” on page 84
2. “ Extracting the queue manager configuration” on page 84
3. Optional: “Optional: Extracting and acquiring the queue manager keys and certificates” on page 85
4. Optional: “Optional: Configuring LDAP” on page 87
5. Optional: “Optional: Changing the IP addresses and host names in the IBM MQ configuration” on

page 95

IBM MQ in containers and IBM Cloud Pak for Integration 83

6. “Updating the queue manager configuration for a container environment” on page 96
7. “Selecting the target HA architecture for IBM MQ running in containers” on page 99
8. “Creating the resources for the queue manager” on page 99
9. “Creating the new queue manager on Red Hat OpenShift” on page 100

10. “Verifying the new container deployment” on page 104

Checking that required functions are available
The IBM MQ Operator does not include all the features available within IBM MQ Advanced, and you must
verify that these features are not required. Other features are partially supported, and can be reconfigured
to match what is available in the container.

Before you begin
This is the first step in the “Migrating IBM MQ to IBM Cloud Pak for Integration” on page 83.

Procedure
1. Verify that the target container image includes all the functions required.

For the latest information, see “Choosing how you want to use IBM MQ in containers” on page 5.
2. The IBM MQ Operator has a single IBM MQ traffic port, known as a listener. If you have multiple

listeners, simplify this to using a single listener in the container. Because this is not a common scenario
this modification is not documented in detail.

3. If IBM MQ exits are used, migrate them into the container by layering in the IBM MQ exit binaries. This
is an advanced migration scenario and therefore not included here. For an outline of the steps, see
“Building an image with custom MQSC and INI files, using the Red Hat OpenShift CLI” on page 165.

4. If your IBM MQ system includes High Availability, review the available options.

See “High availability for IBM MQ in containers” on page 24.

What to do next
You are now ready to extract the queue manager configuration.

 Extracting the queue manager configuration
The majority of configuration is portable between queue managers. For example the things that
applications interact with, such as definitions of queues, topics and channels. Use this task to extract
the configuration from the existing IBM MQ queue manager.

Before you begin
This task assumes that you have checked that required functions are available.

Procedure
1. Log into the machine with the existing IBM MQ installation.
2. Back up the configuration.

Run the following command:

dmpmqcfg -m QMGR_NAME > /tmp/backup.mqsc

Usage notes for this command:

• This command stores the backup in the tmp directory. You can store the backup in another location,
but this scenario assumes the tmp directory for subsequent commands.

84 IBM MQ in containers

• Replace QMGR_NAME with the queue manager name from your environment. If you are unsure of
the value, run the dspmq command to view the available queue managers on the machine. Here is
sample dspmq command output for a queue manager named qm1:

QMNAME(qm1) STATUS(Running)

The dspmq command requires the IBM MQ queue manager to be started, otherwise you receive the
following error:

AMQ8146E: IBM MQ queue manager not available.

If required, start the queue manager by running the following command:

strmqm QMGR_NAME

What to do next
You are now ready to extract and acquire the queue manager keys and certificates.

Optional: Extracting and acquiring the queue
manager keys and certificates
IBM MQ can be configured using TLS to encrypt traffic into the queue manager. Use this task to verify if
your queue manager is using TLS, to extract keys and certificates, and to configure TLS on the migrated
queue manager.

Before you begin
This task assumes that you have extracted the queue manager configuration.

About this task
Do I need to do this?

IBM MQ can be configured to encrypt traffic into the queue manager. This encryption is completed using a
key repository configured on the queue manager. IBM MQ channels then enable the TLS communication.
If you are unsure if it is configured in your environment, run the following command to verify:

grep 'SECCOMM(ALL\|SECCOMM(ANON\|SSLCIPH' backup.mqsc

If no results are found, TLS is not being used. However, this does not mean that TLS should not be
configured in the migrated queue manager. There are several reasons why you might want to change this
behavior:

• The security approach on the Red Hat OpenShift environment should be enhanced compared to the
previous environment.

• If you need to access the migrated queue manager from outside of the Red Hat OpenShift environment,
TLS is required to pass through the Red Hat OpenShift Route.

Note: Queue manager certificates with the same Subject Distinguished Name (DN) as the
issuer (CA) certificate are not supported. A certificate must have a unique Subject Distinguished Name.
The product now checks that the DNs are not the same.

Procedure
1. Extract any trusted certificates from the existing store.

If TLS is currently in use on the queue manager, the queue manager might have a number of trusted
certificates stored. These need to be extracted and copied to the new queue manager. Complete one
of the following optional steps:

IBM MQ in containers and IBM Cloud Pak for Integration 85

• To streamline the extraction of the certificates, run the following script on the local system:

#!/bin/bash

keyr=$(grep SSLKEYR $1)
if [-n "${keyr}"]; then
 keyrlocation=$(sed -n "s/^.*'\(.*\)'.*$/\1/ p" <<< ${keyr})
 mapfile -t runmqckmResult < <(runmqckm -cert -list -db ${keyrlocation}.kdb -stashed)
 cert=1
 for i in "${runmqckmResult[@]:1}"
 do
 certlabel=$(echo ${i} | xargs)
 echo Extracting certificate $certlabel to $cert.cert
 runmqckm -cert -extract -db ${keyrlocation}.kdb -label "$certlabel" -target $
{cert}.cert -stashed
 cert=$[$cert+1]
 done
fi

When running the script, specify the location of the IBM MQ backup as an argument and the
certificates are extracted. For instance, if the script is called extractCert.sh and the IBM MQ
backup is located at /tmp/backup.mqsc then run the following command:

extractCert.sh /tmp/backup.mqsc

• Alternatively, run the following commands in the order shown:

a. Identify the location of the TLS store:

grep SSLKEYR /tmp/backup.mqsc

Sample output:

SSLKEYR('/run/runmqserver/tls/key') +

where the key store is located at /run/runmqserver/tls/key.kdb
b. Based on this location information, query the key store to determine the stored certificates:

runmqckm -cert -list -db /run/runmqserver/tls/key.kdb -stashed

Sample output:

Certificates in database /run/runmqserver/tls/key.kdb:
 default
 CN=cs-ca-certificate,O=cert-manager

c. Extract each of the listed certificates. Do this by running the following command:

runmqckm -cert -extract -db KEYSTORE_LOCATION -label "LABEL_NAME" -target OUTPUT_FILE
-stashed

In the samples previously shown this equates to the following:

runmqckm -cert -extract -db /run/runmqserver/tls/key.kdb -label "CN=cs-ca-
certificate,O=cert-manager" -target /tmp/cert-manager.crt -stashed
runmqckm -cert -extract -db /run/runmqserver/tls/key.kdb -label "default" -target /tmp/
default.crt -stashed

2. Acquire a new key and certificate for the queue manager

To configure TLS on the migrated queue manager, you generate a new key and certificate. This is
then used during the deployment. In many organizations this means contacting your security team
to request a key and certificate. In some organizations this option is not available, and self-signed
certificates are used.

The following example generates a self-signed certificate where the expiry is set to 10 years:

openssl req \
 -newkey rsa:2048 -nodes -keyout qmgr.key \

86 IBM MQ in containers

 -subj "/CN=mq queuemanager/OU=ibm mq" \
 -x509 -days 3650 -out qmgr.crt

Two new files are created:

• qmgr.key is the private key for the queue manager
• qmgr.crt is the public certificate

What to do next
You are now ready to configure LDAP.

Optional: Configuring LDAP
The IBM MQ Operator can be configured to use several different security approaches. Typically LDAP is
the most effective for an enterprise deployment, and LDAP is used for this migration scenario.

Before you begin
This task assumes that you have extracted and acquired the queue manager keys and certificates.

About this task
Do I need to do this?

If you are already using LDAP for authentication and authorization then no changes are required.

If you are not sure if LDAP is being used, run the following command:

connauthname="$(grep CONNAUTH backup.mqsc | cut -d "(" -f2 | cut -d ")" -f1)"; grep -A 20
AUTHINFO\($connauthname\) backup.mqsc

Sample output:

DEFINE AUTHINFO('USE.LDAP') +
 AUTHTYPE(IDPWLDAP) +
 ADOPTCTX(YES) +
 CONNAME('ldap-service.ldap(389)') +
 CHCKCLNT(REQUIRED) +
 CLASSGRP('groupOfUniqueNames') +
 FINDGRP('uniqueMember') +
 BASEDNG('ou=groups,dc=ibm,dc=com') +
 BASEDNU('ou=people,dc=ibm,dc=com') +
 LDAPUSER('cn=admin,dc=ibm,dc=com') +
* LDAPPWD('********************************') +
 SHORTUSR('uid') +
 GRPFIELD('cn') +
 USRFIELD('uid') +
 AUTHORMD(SEARCHGRP) +
* ALTDATE(2020-11-26) +
* ALTTIME(15.44.38) +
 REPLACE

There are two attributes in the output that are of particular interest:
AUTHTYPE

If this has the value IDPWLDAP, then you are using LDAP for authentication.
If the value is blank, or another value, then LDAP is not configured. In this case, check the AUTHORMD
attribute to see if LDAP users are being used for authorization.

AUTHORMD
If this has the value OS, then you are not using LDAP for authorization.

To modify the authorization and authentication to use LDAP, complete the following tasks:

IBM MQ in containers and IBM Cloud Pak for Integration 87

Procedure
1. Update the IBM MQ backup for the LDAP server.
2. Update the IBM MQ backup for LDAP authorization information.

LDAP part 1: Updating the IBM MQ backup for the
LDAP server
A comprehensive description of how to set up LDAP is outside the scope of this scenario. This topic gives
a summary of the process, a sample, and references to further information.

Before you begin
This task assumes that you have extracted and acquired the queue manager keys and certificates.

About this task
Do I need to do this?

If you are already using LDAP for authentication and authorization then no changes are required. If you
are not sure if LDAP is being used, see “Optional: Configuring LDAP” on page 87.

There are two parts to setting up the LDAP server:

1. Define an LDAP configuration.
2. Associate the LDAP configuration with the queue manager definition.

Further information to help you with this configuration:

• User Repository Overview
• Reference guide to the AUTHINFO command

Procedure
1. Define an LDAP configuration.

Edit the backup.mqsc file to define a new AUTHINFO object for the LDAP system. For example:

DEFINE AUTHINFO(USE.LDAP) +
 AUTHTYPE(IDPWLDAP) +
 CONNAME('ldap-service.ldap(389)') +
 LDAPUSER('cn=admin,dc=ibm,dc=com') +
 LDAPPWD('admin') +
 SECCOMM(NO) +
 USRFIELD('uid') +
 SHORTUSR('uid') +
 BASEDNU('ou=people,dc=ibm,dc=com') +
 AUTHORMD(SEARCHGRP) +
 BASEDNG('ou=groups,dc=ibm,dc=com') +
 GRPFIELD('cn') +
 CLASSGRP('groupOfUniqueNames') +
 FINDGRP('uniqueMember')
 REPLACE

where

• CONNAME is the hostname and port corresponding to the LDAP server. If multiple addresses exist for
resilience then these can be configured using a comma-separated list.

• LDAPUSER is the distinguished name corresponding to the user that IBM MQ uses when connecting
to LDAP to query user records.

• LDAPPWD is the password that corresponds to the LDAPUSER user.
• SECCOM specifies whether the communication to the LDAP server should use TLS. Possible values:

– YES: TLS is used and a certificate is presented by the IBM MQ server.
– ANON: TLS is used without a certificate being presented by the IBM MQ server.

88 IBM MQ in containers

– NO: TLS is not used during the connection.
• USRFIELD specifies the field in the LDAP record that the presented username be matched against.
• SHORTUSR is a field within the LDAP record that does not exceed 12 characters in length. The value

within this field be the asserted identity if authentication is successful.
• BASEDNU is the base DN that should be used for searching LDAP.
• BASEDNG is the base DN for groups within LDAP.
• AUTHORMD defines the mechanism used to resolve group membership for the user. There are four

options:

– OS: Query the operating system for the groups associated with the short name.
– SEARCHGRP: Search the group entries in LDAP for the authenticated user.
– SEARCHUSR: Search the authenticated user record for group membership information.
– SRCHGRPSN: Search the group entries in LDAP for the authenticated users short user name

(defined by the SHORTUSR field).
• GRPFIELD is the attribute within the LDAP group record that corresponds to a simple name. If
specified this can be used for defining authorization records.

• CLASSUSR is the LDAP object class that corresponds to a user.
• CLASSGRP is the LDAP object class that corresponds to a group.
• FINDGRP is the attribute within the LDAP record that corresponds to group membership.

The new entry can be placed anywhere within the file, however you might find it helpful to have any
new entries at the beginning of the file:

IBM MQ in containers and IBM Cloud Pak for Integration 89

2. Associate the LDAP configuration with the queue manager definition.

You need to associate the LDAP configuration with the queue manager definition. Immediately
below the DEFINE AUTHINFO entry is an ALTER QMGR entry. Modify the CONNAUTH
entry to correspond to the newly created AUTHINFO name. For example in the previous
example AUTHINFO(USE.LDAP) was defined, meaning the name is USE.LDAP. Therefore change
CONNAUTH('SYSTEM.DEFAULT.AUTHINFO.IDPWOS') to CONNAUTH('USE.LDAP'):

90 IBM MQ in containers

To cause the switch to LDAP to occur immediately, call a REFRESH SECURITY command by adding a
line immediately after the ALTER QMGR command:

IBM MQ in containers and IBM Cloud Pak for Integration 91

What to do next
You are now ready to update the IBM MQ backup for LDAP authorization information.

92 IBM MQ in containers

LDAP part 2: Updating the IBM MQ backup for LDAP
authorization information
IBM MQ provides fine grained authorization rules that control access to the IBM MQ objects. If you
changed the authentication and authorization to LDAP, the authorization rules might be invalid and require
updating.

Before you begin
This task assumes that you have updated the backup for the LDAP server.

About this task
Do I need to do this?

If you are already using LDAP for authentication and authorization then no changes are required. If you
are not sure if LDAP is being used, see “Optional: Configuring LDAP” on page 87.

There are two parts to updating the LDAP authorization information:

1. Remove all existing authorization from the file.
2. Define new authorization information for LDAP.

Procedure
1. Remove all existing authorization from the file.

In the backup file, near to the end of the file, you should see several entries that start with SET
AUTHREC:

IBM MQ in containers and IBM Cloud Pak for Integration 93

Find the existing entries and delete them. The most straightforward approach is to remove all the
existing SET AUTHREC rules, then create new entries based on the LDAP entries.

2. Define new authorization information for LDAP

Depending on your queue manager configuration, and the number of resources and groups, this could
be either a time consuming or straightforward activity. The following example assumes that your
queue manager has only a single queue called Q1, and you want to allow the LDAP group apps to have
access.

SET AUTHREC GROUP('apps') OBJTYPE(QMGR) AUTHADD(ALL)
SET AUTHREC PROFILE('Q1') GROUP('apps') OBJTYPE(QUEUE) AUTHADD(ALL)

The first AUTHREC command adds permission to access the queue manager, and the second provides
access to the queue. If access to a second queue is required then a third AUTHREC command is
needed, unless you decided to use wildcards to provide more generic access.

Here is another example. If an administrator group (called admins) needs full access to the queue
manager, add the following commands:

SET AUTHREC PROFILE('*') OBJTYPE(QUEUE) GROUP('admins') AUTHADD(ALL)
SET AUTHREC PROFILE('*') OBJTYPE(TOPIC) GROUP('admins') AUTHADD(ALL)
SET AUTHREC PROFILE('*') OBJTYPE(CHANNEL) GROUP('admins') AUTHADD(ALL)
SET AUTHREC PROFILE('*') OBJTYPE(CLNTCONN) GROUP('admins') AUTHADD(ALL)
SET AUTHREC PROFILE('*') OBJTYPE(AUTHINFO) GROUP('admins') AUTHADD(ALL)
SET AUTHREC PROFILE('*') OBJTYPE(LISTENER) GROUP('admins') AUTHADD(ALL)
SET AUTHREC PROFILE('*') OBJTYPE(NAMELIST) GROUP('admins') AUTHADD(ALL)

94 IBM MQ in containers

SET AUTHREC PROFILE('*') OBJTYPE(PROCESS) GROUP('admins') AUTHADD(ALL)
SET AUTHREC PROFILE('*') OBJTYPE(SERVICE) GROUP('admins') AUTHADD(ALL)
SET AUTHREC PROFILE('*') OBJTYPE(QMGR) GROUP('admins') AUTHADD(ALL)

What to do next
You are now ready to change the IP addresses and host names in the IBM MQ configuration.

Optional: Changing the IP addresses and host
names in the IBM MQ configuration
The IBM MQ configuration might have IP addresses and host names specified. In some situations these
can remain, while in other situations they need to be updated.

Before you begin
This task assumes that you have configured LDAP.

About this task
Do I need to do this?

First, determine if you have any IP addresses or host names specified, apart from the LDAP configuration
defined in the previous section. To do this, run the following command:

grep 'CONNAME\|LOCLADDR\|IPADDRV' -B 3 backup.mqsc

Sample output:

**
DEFINE AUTHINFO(USE.LDAP) +
 AUTHTYPE(IDPWLDAP) +
 CONNAME('ldap-service.ldap(389)') +
--
DEFINE AUTHINFO('SYSTEM.DEFAULT.AUTHINFO.IDPWLDAP') +
 AUTHTYPE(IDPWLDAP) +
 ADOPTCTX(YES) +
 CONNAME(' ') +
--
 REPLACE
DEFINE AUTHINFO('SYSTEM.DEFAULT.AUTHINFO.CRLLDAP') +
 AUTHTYPE(CRLLDAP) +
 CONNAME(' ') +

In this example the search returns three results. One result corresponds to the LDAP configuration
defined previously. This can be ignored, because the hostname of the LDAP server is remaining the same.
The other two results are empty connection entries, so these can be ignored as well. If you do not have
any additional entries, you can skip the remainder of this topic.

Procedure
1. Understand the entries returned.

IBM MQ can include IP addresses, host names and ports within many aspects of the configuration. We
can classify these into two categories:

a. Location of this queue manager: Location information that this queue manager uses or publishes,
that other queue managers or applications within an IBM MQ network can use for connectivity.

b. Location of queue manager dependencies: The locations of other queue managers or systems
that this queue manager needs to be aware of.

Because this scenario is focused only on the changes to this queue manager configuration, we
only handle the configuration updates for category (a). However, if this queue manager location is
referenced by other queue managers or applications, their configurations might need updating to
match this queue manager's new location.

IBM MQ in containers and IBM Cloud Pak for Integration 95

There are two key objects that might contain information that needs to be updated:

• Listeners: These represent the network address that IBM MQ is listening on.
• CLUSTER RECEIVER channel: If the queue manager is part of an IBM MQ cluster, then this object

exists. It specifies the network address that other queue managers can connect to.
2. In the original output from the grep 'CONNAME\|LOCLADDR\|IPADDRV' -B 3 backup.mqsc

command, identify if any CLUSTER RECEIVER channels are defined. If so,update the IP addresses.

To identify if any CLUSTER RECEIVER channels are defined, find any entries with CHLTYPE(CLUSRCVR)
in the original output:

DEFINE CHANNEL(ANY_NAME) +
 CHLTYPE(CLUSRCVR) +

If entries do exist, update the CONNAME with the IBM MQ Red Hat OpenShift Route. This value is based
on the Red Hat OpenShift environment and uses a predictable syntax:

queue_manager_resource_name-ibm-mq-qm-openshift_project_name.openshift_app_route_hostname

For example, if the queue manager deployment is named qm1 within the cp4i namespace, and the
openshift_app_route_hostname is apps.callumj.icp4i.com, then the route URL is this:

qm1-ibm-mq-qm-cp4i.apps.callumj.icp4i.com

The port number for the route is typically 443. Unless your Red Hat OpenShift Administrator tells you
differently, this is normally the correct value. Using this information, update the CONNAME fields. For
example:

CONNAME('qm1-ibm-mq-qm-cp4i.apps.callumj.icp4i.com(443)')

In the original output from the grep 'CONNAME\|LOCLADDR\|IPADDRV' -B 3 backup.mqsc
command, verify if any entries exist for LOCLADDR or IPADDRV. If they do, delete them. They are not
relevant in a container environment.

What to do next
You are now ready to update the queue manager configuration for a container environment.

Updating the queue manager configuration for
a container environment
When running in a container, certain configuration aspects are defined by the container, and might conflict
with the exported configuration.

Before you begin
This task assumes that you have changed the IBM MQ configuration of IP addresses and hostnames.

About this task
The following configuration aspects are defined by the container:

• The listener definitions (which correspond to the ports exposed).
• The location of any potential TLS store.

Therefore you need to update the exported configuration:

1. Remove any listener definitions.
2. Define the location of the TLS key repository.

96 IBM MQ in containers

Procedure
1. Remove any listener definitions.

In the backup configuration, search for DEFINE LISTENER. This should be between the AUTHINFO
and SERVICE definitions. Highlight the area, and delete it.

2. Define the location of the TLS key repository.

The queue manager backup contains the TLS configuration for the original environment. This is
different from the container environment, and therefore a couple of updates are required:

IBM MQ in containers and IBM Cloud Pak for Integration 97

• Change the CERTLABL entry to default
• Change the location of the TLS key repository (SSLKEYR) to: /run/runmqserver/tls/key

To find the location of the SSLKEYR attribute in the file, search for SSLKEYR. Typically only one entry
is found. If multiple entries are found, check that you are editing the QMGR object as shown in the
following illustration:

What to do next
You are now ready to select the target architecture for IBM MQ running in containers.

98 IBM MQ in containers

Selecting the target HA architecture for IBM MQ
running in containers
Choose between single instance (a single Kubernetes Pod) and multi-instance (two Pods) to meet your
high availability requirements.

Before you begin
This task assumes that you have updated the queue manager configuration for a container environment.

About this task
The IBM MQ Operator provides two high availability options:

• Single instance: A single container (Pod) is started and it is the responsibility of Red Hat OpenShift
to restart in the event of a failure. Because of the characteristics of a stateful set within Kubernetes,
there are several situations in which this failover might take an extended period of time, or require an
administrative action to be completed.

• Multi-instance: Two containers (each in a separate Pod) are started, one in active mode and another
on standby. This topology enables much faster failover. It requires a Read Write Many file system that
meets IBM MQ requirements.

In this task you only choose the target HA architecture. Steps for configuring your chosen architecture are
described in a subsequent task in this scenario (“Creating the new queue manager on Red Hat OpenShift”
on page 100).

Procedure
1. Review the two options.

For a comprehensive description of these two options, see “High availability for IBM MQ in containers”
on page 24.

2. Select the target HA architecture.

If you are unsure which option to choose, start with the Single instance option, and verify if this meets
your high availability requirements.

What to do next
You are now ready to create the queue manager resources.

Creating the resources for the queue manager
Import the IBM MQ configuration, and the TLS certificates and keys, into the Red Hat OpenShift
environment.

Before you begin
This task assumes that you have selected the target architecture for IBM MQ running in containers.

About this task
In the previous sections you have extracted, updated and defined two resources:

• IBM MQ configuration
• TLS certificates and keys

You need to import these resources into the Red Hat OpenShift environment before the queue manager is
deployed.

IBM MQ in containers and IBM Cloud Pak for Integration 99

Procedure
1. Import the IBM MQ configuration into Red Hat OpenShift.

The following instructions assume that you have the IBM MQ configuration in the current directory, in a
file called backup.mqsc. Otherwise, you need to customize the filename based on your environment.

a) Log into your cluster using oc login.
b) Load the IBM MQ configuration into a configmap.

Run the following command:

oc create configmap my-mqsc-migrated --from-file=backup.mqsc

c) Verify that the file has loaded successfully.

Run the following command:

oc describe configmap my-mqsc-migrated

2. Import the IBM MQ TLS resources

As discussed in “Optional: Extracting and acquiring the queue manager keys and certificates” on page
85, TLS might be required for the queue manager deployment. If so, you should already have a number
of files ending with .crt and .key. You need to add these into Kubernetes secrets for the queue
manager to reference at deployment time.

For example, if you had a key and certificate for the queue manager they might be called:

• qmgr.crt
• qmgr.key

To import these files, run the following command:

oc create secret tls my-tls-migration --cert=qmgr.crt --key=qmgr.key

Kubernetes provides this helpful utility when you are importing a matching public and private key.
If you have additional certificates to add, for instance into the queue manager trust store, run the
following command:

oc create secret generic my-extra-tls-migration --from-file=comma_separated_list_of_files

For example, if the files to be imported are trust1.crt, trust2.crt and trust3.crt, the
command is this:

oc create secret generic my-extra-tls-migration --from-file=trust1.crt,trust2.crt,trust3.crt

What to do next
You are now ready to create the new queue manager on Red Hat OpenShift.

Creating the new queue manager on Red Hat
OpenShift
Deploy either a single instance or multi-instance queue manager on Red Hat OpenShift.

Before you begin
This task assumes that you have created the queue manager resources, and installed the IBM MQ
Operator into Red Hat OpenShift.

100 IBM MQ in containers

About this task
As outlined in “Selecting the target HA architecture for IBM MQ running in containers” on page 99, there
are two possible deployment topologies. Therefore this topic provides two different templates:

• Deploy a single instance queue manager.
• Deploy a multi instance queue manager.

Important: Only complete one of the two templates, based on your preferred topology.

Procedure
• Deploy a single instance queue manager.

The migrated queue manager is deployed to Red Hat OpenShift using a YAML file. Here is a sample,
based on the names used in previous topics:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: qm1
spec:
 version: 9.3.5.1-r2
 license:
 accept: true
 license: L-VTPK-22YZPK
 use: "Production"
 pki:
 keys:
 - name: default
 secret:
 secretName: my-tls-migration
 items:
 - tls.key
 - tls.crt
 web:
 enabled: true
 queueManager:
 name: QM1
 mqsc:
 - configMap:
 name: my-mqsc-migrated
 items:
 - backup.mqsc

Depending on the steps that you performed, the previous YAML might need to be customized. To help
you with this, here is an explanation of this YAML:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: qm1

This defines the Kubernetes object, type and name. The only field requiring customization is the name
field.

 spec:
 version: 9.3.5.1-r2
 license:
 accept: true
 license: L-VTPK-22YZPK
 use: "Production"

This corresponds to the version and license information for the deployment. If you need to customize
this, use the information provided in “Licensing reference for mq.ibm.com/v1beta1” on page 184.

 pki:
 keys:
 - name: default
 secret:
 secretName: my-tls-migration

IBM MQ in containers and IBM Cloud Pak for Integration 101

 items:
 - tls.key
 - tls.crt

For the queue manager to be configured to use TLS, it must reference the relevant certificates
and keys. The secretName field references the Kubernetes secret created within the Import the
IBM MQ TLS resources section, and the list of items (tls.key and tls.crt) are the standard
names Kubernetes assigns when using the oc create secret tls syntax. If you have additional
certificates to add into the trust store then these can be added in a similar way, but the items are
the corresponding file names used during the import. For example, the following code can be used to
create the trust store certificates:

oc create secret generic my-extra-tls-migration --from-file=trust1.crt,trust2.crt,trust3.crt

 pki:
 trust:
 - name: default
 secret:
 secretName: my-extra-tls-migration
 items:
 - trust1.crt
 - trust2.crt
 - trust3.crt

Important: If TLS is not required, delete the TLS section of the YAML.

 web:
 enabled: true

This enables the web console for the deployment

 queueManager:
 name: QM1

This defines the name of the queue manager as QM1. The queue manager is customized based on your
requirements, for instance what was the original queue manager name.

 mqsc:
 - configMap:
 name: my-mqsc-migrated
 items:
 - backup.mqsc

The previous code pulls in the queue manager configuration that was imported in the Import the IBM
MQ configuration section. If you used different names, you need to modify my-mqsc-migrated and
backup.mqsc.

Note that the sample YAML assumes that the default storage class for the Red Hat OpenShift
environment is defined as either a RWX or RWO storage class. If a default is not defined within your
environment, then you need to specify the storage class to be used. You can do this by extending the
YAML as follows:

 queueManager:
 name: QM1
 storage:
 defaultClass: my_storage_class
 queueManager:
 type: persistent-claim

Add the highlighted text, with the class attribute customized to match your environment. To discover
the storage class names within your environment, run the following command:

oc get storageclass

102 IBM MQ in containers

Here is sample output returned by this command:

NAME PROVISIONER RECLAIMPOLICY
aws-efs openshift.org/aws-efs Delete
gp2 (default) kubernetes.io/aws-ebs Delete

The following code shows how to reference the IBM MQ configuration that was imported in the
Import the IBM MQ configuration section. If you used different names, you need to modify my-mqsc-
migrated and backup.mqsc.

 mqsc:
 - configMap:
 name: my-mqsc-migrated
 items:
 - backup.mqsc

You have deployed your single instance queue manager. This completes the template. You are now
ready to verify the new container deployment.

• Deploy a multi instance queue manager.

The migrated queue manager is deployed to Red Hat OpenShift using a YAML file. The following
sample is based on the names used in previous sections.

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: qm1mi
spec:
 version: 9.3.5.1-r2
 license:
 accept: true
 license: L-VTPK-22YZPK
 use: "Production"
 pki:
 keys:
 - name: default
 secret:
 secretName: my-tls-migration
 items:
 - tls.key
 - tls.crt
 web:
 enabled: true
 queueManager:
 name: QM1
 availability: MultiInstance
 storage:
 defaultClass: aws-efs
 persistedData:
 enabled: true
 queueManager:
 enabled: true
 recoveryLogs:
 enabled: true
 mqsc:
 - configMap:
 name: my-mqsc-migrated
 items:
 - backup.mqsc

Here is an explanation of this YAML. The majority of the configuration follows the same approach as
deploying a single instance queue manager, therefore only the queue manager availability and storage
aspects are explained here.

queueManager:
 name: QM1
 availability: MultiInstance

IBM MQ in containers and IBM Cloud Pak for Integration 103

This specifies the queue manager name as QM1, and sets the deployment to be MultiInstance
instead of the default single instance.

 storage:
 defaultClass: aws-efs
 persistedData:
 enabled: true
 queueManager:
 enabled: true
 recoveryLogs:
 enabled: true

An IBM MQ multi-instance queue manager depends on RWX storage. By default, a queue manager
is deployed in single instance mode and therefore additional storage options are required when
changing to multi instance mode. In the previous YAML sample, three storage persistent volumes and
a persisted volume class are defined. This persisted volume class needs to be a RWX storage class.
If you are unsure of the storage class names within your environment, you can run the following
command to discover them:

oc get storageclass

Here is sample output returned by this command:

NAME PROVISIONER RECLAIMPOLICY
aws-efs openshift.org/aws-efs Delete
gp2 (default) kubernetes.io/aws-ebs Delete

The following code shows how to reference the IBM MQ configuration that was imported in the
Import the IBM MQ configuration section. If you used different names, you need to modify my-mqsc-
migrated and backup.mqsc.

 mqsc:
 - configMap:
 name: my-mqsc-migrated
 items:
 - backup.mqsc

You have deployed your multi instance queue manager. This completes the template. You are now
ready to verify the new container deployment.

Verifying the new container deployment
Now that IBM MQ is deployed on Red Hat OpenShift, you can verify the environment using the IBM MQ
samples.

Before you begin
This task assumes that you have created the new queue manager on Red Hat OpenShift.

Important: This task assumes that TLS is not enabled in the queue manager.

About this task
In this task you run the IBM MQ samples from inside the migrated queue manager's container. However
you might prefer to use your own applications running from another environment.

You need the following information:

• LDAP Username
• LDAP Password
• IBM MQ Channel name
• Queue name

This example code uses the following settings. Please note that your settings will differ.

104 IBM MQ in containers

• LDAP Username: mqapp
• LDAP Password: mqapp
• IBM MQ Channel name: DEV.APP.SVRCONN
• Queue name: Q1

Procedure
1. Exec into the running IBM MQ container.

Use the following command:

oc exec -it qm1-ibm-mq-0 /bin/bash

where qm1-ibm-mq-0 is the Pod that we deployed in “Creating the new queue manager on Red Hat
OpenShift” on page 100. If you called the deployment something different, then customize this value.

2. Send a message.

Run the following commands:

cd /opt/mqm/samp/bin
export IBM MQSAMP_USER_ID=mqapp
export IBM MQSERVER=DEV.APP.SVRCONN/TCP/'localhost(1414)'
./amqsputc Q1 QM1

You are prompted for a password, then you can send a message.
3. Verify that the message has been received successfully.

Run the GET sample:

./amqsgetc Q1 QM1

Results
You have completed the “Migrating IBM MQ to IBM Cloud Pak for Integration” on page 83.

What to do next
Use the following information to help you with more complex migration scenarios:

Migrating queued messages
To migrate existing queued messages, follow guidance in the following topic for exporting and
importing messages after the new queue manager is in place: Using the dmpmqmsg utility between
two systems.

Connecting to IBM MQ from outside the Red Hat OpenShift environment
The deployed queue manager can be exposed to IBM MQ clients and queue managers outside the Red
Hat OpenShift environment. The process depends on the version of IBM MQ connecting into the Red
Hat OpenShift environment. See “Configuring a Route to connect to a queue manager from outside a
Red Hat OpenShift cluster ” on page 155.

Installing the IBM MQ Operator
The IBM MQ Operator can be installed onto Red Hat OpenShift using the OpenShift console or command
line interface (CLI).

Before you begin
To ensure that your installation goes as smoothly as possible, make sure that you understand all of
the prerequisites and requirements before you start your installation. See “Planning for IBM MQ in
containers” on page 5.

IBM MQ in containers and IBM Cloud Pak for Integration 105

Important: Review the guidance on structuring your deployment before you install the IBM
MQ Operator.

About this task
The following steps represent the typical task flow for installing your IBM MQ Operator:

1. Install Red Hat OpenShift Container Platform.
2. Configure storage.
3. Mirror images (air-gap only).
4. Add the IBM operator catalog and prepare your cluster.
5. Install the IBM MQ Operator.
6. Create the entitlement key secret (online installs only).
7. Optional: Install IBM Cloud Pak for Integration (CP4I) and its dependencies.
8. Deploy the License Service.
9. Deploy a queue manager.

Procedure
1. Install Red Hat OpenShift Container Platform.

For detailed steps to install OpenShift, see Installing Red Hat software 4.6 or later.

Important: Ensure that you install a supported version of OpenShift Container Platform. For example,
to use IBM MQ Operator 2.0 or later, you must install OpenShift Container Platform 4.12 or later. For
more information, see IBM Cloud Pak and Red Hat OpenShift Container Platform compatibility.

For any steps that use the Red Hat OpenShift Container Platform CLI, you must be logged in to your
OpenShift cluster with oc login. To install the CLI, see Getting started with the OpenShift CLI.

After you install OpenShift, you can verify and gain access to your container software by using the IBM
entitlement key that you create in Create the entitlement key secret.

2. Configure storage.

You must define storage classes in Red Hat OpenShift Container Platform and set your storage
configuration to satisfy your sizing requirements.

Important: IBM MQ single-instance and Native HA queue managers can use RWO access mode,
while multi-instance queue managers require RWX as described in “Storage considerations for IBM
MQ Operator” on page 20. IBM MQ multi-instance queue managers require particular file system
characteristics, which can be verified using the instructions for Testing a shared file system for IBM
MQ.

A list of known compliant and non-compliant file systems, and notes on other limits or restrictions, can
be found in the Testing statement for IBM MQ file systems.

Recommended storage providers can be found on the CP4I Storage considerations page.

3.
Mirror images (air-gap only).

If your cluster is in a restricted (air-gapped) network environment, you must mirror the IBM MQ
images. Depending on your configuration, you might also need to mirror some additional components.
Read the following information, then mirror the images as required.

• You must mirror the IBM MQ images. Use the following values:

export OPERATOR_PACKAGE_NAME=ibm-mq
export OPERATOR_VERSION=3.1.3

106 IBM MQ in containers

https://www.ibm.com/docs/en/cloudpaks_start/ocp_start/ocp_on_prem.html
https://www.ibm.com/docs/en/cloudpaks_start/cp_start/cp_rh_version_compat.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html
https://www.ibm.com/support/pages/node/6117868
https://www.ibm.com/support/pages/node/6117868
https://www.ibm.com/support/pages/testing-statement-ibm-mq-multi-instance-queue-manager-file-systems
https://www.ibm.com/docs/en/cloud-paks/cp-integration/2022.4?topic=requirements-storage-considerations

• You must also mirror some additional required components if you intend to deploy at least one
queue manager where all of the following statements are true:

– You are using IBM MQ 9.3.4 or later.
– You are using a CP4I license.
– The IBM MQ Console is enabled.
– You are using the IBM Cloud Pak for Integration Keycloak service for IBM MQ Console single

sign-on (SSO) authentication and authorization (the default).

If the previous statements are true, then SSO is provided by Keycloak and you must mirror each of
the following components:

– IBM Cloud Pak foundational services
– Certificate Manager. If you have installed a version of IBM Cloud Pak foundational services

operator prior to version 4.4, you must mirror Certificate Manager.6

– IBM Cloud Pak for Integration
– Keycloak (Red Hat OpenShift operator)

To create mirror images, see Mirroring images for an air-gapped cluster.
4. Add the IBM MQ Operator catalog source.

Add the catalog source that makes the operators available to your cluster. See “Adding the IBM MQ
Operator catalog source” on page 108.

5. Install the IBM MQ Operator.

Choose one of the following two options (use the console, or use the CLI):

• Option 1: Install the IBM MQ Operator using the OpenShift console.
• Option 2: Install the IBM MQ Operator using the OpenShift CLI.

6. Create the entitlement key secret (online installs only).

The IBM MQ Operator deploys queue manager images that are pulled from a container registry that
performs a license entitlement check. This check requires an entitlement key that is stored in a
docker-registry pull secret. If you do not yet have an entitlement key in the namespace in which
you will install queue managers, follow these instructions to get an entitlement key and create a pull
secret.

Note: The entitlement key is not required if only IBM MQ Advanced for Developers (Non-Warranted)
queue managers are going to be deployed.

You can create the entitlement key secret using either the OpenShift console or the CLI. The following
example uses the CLI:

a. Get the entitlement key that is assigned to your IBM ID. Log in to MyIBM Container Software Library
with the IBM ID and password that are associated with the entitled software.

b. In the Entitlement keys section, select Copy key to copy the entitlement key to the clipboard.
c. From the OpenShift CLI, run the following command to create an image pull secret called ibm-
entitlement-key.

oc create secret docker-registry ibm-entitlement-key \
--docker-server=cp.icr.io \
--docker-username=cp \
--docker-password=<entitlement-key> \
--docker-email=<user-email>
\--namespace=<namespace>

Where <entitlement-key> is the entitlement key that you copied in step b, <user-email> is the IBM
ID associated with the entitled software, and <namespace> is the namespace that you installed
your IBM MQ Operator into.

6 From version 4.4 of IBM Cloud Pak foundational services this mirroring is no longer required.

IBM MQ in containers and IBM Cloud Pak for Integration 107

https://myibm.ibm.com/products-services/containerlibrary

7. Optional: Install CP4I and its dependencies.

There are some additional required components when you deploy at least one queue manager where
all of the following statements are true:

• You are using IBM MQ 9.3.4 or later.
• You are using a CP4I license.
• The IBM MQ Console is enabled.
• You are using the CP4I Keycloak service for IBM MQ Console single sign-on (SSO) authentication and

authorization (the default).

If all the previous statements are true, then SSO is provided by Keycloak and you must complete the
following additional steps:

• Install the IBM Cloud Pak foundational services operator in the same installation mode as the CP4I
Operator. For supported versions, see Operator channel versions for this release

• If you have installed a version of IBM Cloud Pak foundational services operator prior to version 4.4,
Install the cert-manager Operator for the Red Hat OpenShift Container Platform.7

• Install the CP4I Operator.
• Optional: Deploy the Platform UI.

a. Create the ibm-common-services namespace. When logged into your OpenShift cluster
through the CLI, run the following command:

oc new-project ibm-common-services

b. Deploy the Platform UI.
8. Deploy the License Service.

This is required for monitoring license usage of queue managers. Follow the instructions in Deploying
License Service.

9. Deploy a queue manager.
For instructions on deploying an example "quick start" queue manager, see “Deploying a queue
manager onto a Red Hat OpenShift Container Platform cluster” on page 118.

Related tasks
“Uninstalling the IBM MQ Operator” on page 121
You can use the Red Hat OpenShift console or CLI to uninstall the IBM MQ Operator from Red Hat
OpenShift.
Related reference
“Installing IBM MQ Operator 2.x in an air-gap environment” on page 112
This tutorial guides you in installing IBM MQ Operator 2.x into a Red Hat OpenShift cluster that has no
internet connectivity. You can install IBM MQ Operator in an air-gap environment using a portable storage
device, or using a bastion machine.

Adding the IBM MQ Operator catalog source
Adding catalog source to your OpenShift cluster adds the IBM operators to the list of operators you can
install.

Before you begin
This task assumes that you have completed the first 3 steps of “Installing the IBM MQ Operator” on page
105.

This task must be performed by a cluster administrator.

7 From version 4.4 of IBM Cloud Pak foundational services this is no longer required.

108 IBM MQ in containers

https://docs.openshift.com/container-platform/4.12/security/cert_manager_operator/cert-manager-operator-install.html

About this task
The IBM MQ Operator catalog is an index of operators available to extend the API of a Red Hat OpenShift
Container Platform cluster to enable IBM software products.

Complete either Option A: Air-gap or Option B: Internet, depending on whether your cluster is in a
restricted (air-gapped) network environment, or your cluster has access to the Internet.

Procedure

•
Option A: Air-gap Add the catalog source in an air-gapped network environment.
a) Add the IBM MQ Operator catalog source.

Follow the instructions in Adding catalog sources to a cluster.

Note: Because you have already completed the operator install step Mirror images (air-gap only),
you only have to complete the step that applies the catalog source. For example:

oc apply -f ~/.ibm-pak/data/mirror/${OPERATOR_PACKAGE_NAME}/${OPERATOR_VERSION}/catalog-
sources.yaml

b) Add the catalog source for additional required components.
There are some additional required components when you deploy at least one queue manager where
all of the following statements are true:

– You are using IBM MQ 9.3.4 or later.
– You are using an IBM Cloud Pak for Integration license.
– The IBM MQ Console is enabled.
– You are using the IBM Cloud Pak for Integration Keycloak service for IBM MQ Console single sign-on

(SSO) authentication and authorization (the default).

If all the previous statements are true, then SSO is provided by Keycloak. Therefore, as well as for the
IBM MQ Operator catalog source, you must also follow the steps in Adding catalog sources to a cluster
for each of these additional required components:

– IBM Cloud Pak foundational services
– Certificate Manager. If you have installed a version of IBM Cloud Pak foundational services operator

prior to version 4.4, you must mirror Certificate Manager.8

– IBM Cloud Pak for Integration
• Option B: Internet Add the catalog source in an environment that has access to the Internet.

Create a CatalogSource using the OpenShift CLI.

Add the catalog by applying the following YAML file to the Red Hat OpenShift Container Platform
cluster.

a) Create the CatalogSource YAML.
Save the following resource definition as a file called catalog_source.yaml.

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: ibm-operator-catalog
 namespace: openshift-marketplace
spec:
 displayName: IBM Operator Catalog
 image: icr.io/cpopen/ibm-operator-catalog:latest
 publisher: IBM
 sourceType: grpc
 updateStrategy:

8 From version 4.4 of IBM Cloud Pak foundational services this mirroring is no longer required.

IBM MQ in containers and IBM Cloud Pak for Integration 109

 registryPoll:
 interval: 45m

b) Apply the CatalogSource YAML.
Do this from the Red Hat OpenShift Container Platform web console by clicking the "+" button, or by
using the command line.
For example, apply the file by running the following command:

oc apply -f catalog_source.yaml -n openshift-marketplace

c) Verify successful CatalogSource creation
Run the following command:

oc get CatalogSources ibm-operator-catalog -n openshift-marketplace

You receive this output on success:

NAME DISPLAY TYPE PUBLISHER AGE
ibm-operator-catalog IBM operator Catalog grpc IBM 28s

Results
You are now ready to complete Step 5 of Installing the IBM MQ Operator.

Installing the IBM MQ Operator using the OpenShift
console
The IBM MQ Operator can be installed onto Red Hat OpenShift using the OperatorHub.

Before you begin
This task assumes that you have completed Steps 1-4 of “Installing the IBM MQ Operator” on page 105.

Procedure
1. Log in to your Red Hat OpenShift cluster console.
2. From the navigation pane, click Operators > OperatorHub.

The OperatorHub page is displayed.
3. In the All Items field, enter "IBM MQ".

The IBM MQ catalog entry is displayed.
4. Select IBM MQ.

The IBM MQ window is displayed.
5. Click Install.

The Install Operator page is displayed.
6. Enter the following values:

a) Set Channel to your chosen version.

Review “Version support for the IBM MQ Operator” on page 11 to determine which operator
channel to choose.

b) Set Installation Mode to either "a specific namespace on the cluster" (which you can create in the
next step), or the cluster-wide scope.

Choosing the cluster-wide scope is recommended, because installing different versions of an
Operator in different namespaces can lead to problems. Operators are designed to be extensions of
the control plane.

c) Optional: If you chose "a specific namespace on the cluster", set the Namespace to the project
(namespace) value that you want to install the operator into.

110 IBM MQ in containers

Note: When using the console to install the operator, you can either use an existing namespace,
the default namespace that is provided by the operator, or create a new namespace. If you want
to create a new namespace you can create it from this form, as follows: From the navigation pane,
click Home > Projects, select Create Project, specify the Name of the project (the namespace) that
you want to create, then click Create.

d) Set Approval Strategy to Automatic.
7. Click Install and wait for your operator to install.

You are provided with a confirmation when the installation is complete.

To verify the installation, navigate to Operators > Installed Operators, and select your project from
the Projects drop-down list. The status of the operator changes to Succeeded when the installation is
complete.

What to do next
You are now ready to Create the entitlement key secret (step 6 of “Installing the IBM MQ Operator” on
page 105).

Installing the IBM MQ Operator using the Red Hat
OpenShift CLI
The IBM MQ Operator can be installed onto Red Hat OpenShift using the command line interface (CLI).

Before you begin
This task assumes that you have completed Steps 1-4 of “Installing the IBM MQ Operator” on page 105.

Procedure
1. Log into the Red Hat OpenShift command line interface (CLI) using oc login.
2. Optional: Create a namespace to use for the IBM MQ Operator.

The IBM MQ Operator can be installed scoped to a single namespace or all namespaces. This step is
only needed if you want to install into a particular namespace that does not already exist.

To create a new namespace in the CLI, run the following command:

oc create namespace <namespace_name>

Where <namespace_name> is the name of the namespace that you want to create.
3. View the list of operators available to the cluster from the OperatorHub:

oc get packagemanifests -n openshift-marketplace

4. Inspect the IBM MQ Operator to verify its supported InstallModes and available Channels.

oc describe packagemanifests ibm-mq -n openshift-marketplace

5. Optional: Create an OperatorGroup.

An OperatorGroup is an OLM resource that selects target namespaces in which to generate required
RBAC access for all operators in the same namespace as the OperatorGroup.

The namespace to which you subscribe the operator must have an OperatorGroup that matches the
operator's InstallMode, either the AllNamespaces or SingleNamespace mode.

If the operator you want to install uses AllNamespaces mode, then the openshift-operators
namespace already has an appropriate OperatorGroup in place, and you can skip this step.

If the Operator uses the SingleNamespace mode and you do not already have an appropriate
OperatorGroup in place, create one by running the following command:

IBM MQ in containers and IBM Cloud Pak for Integration 111

cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace_name>
spec:
 targetNamespaces:
 - <namespace_name>
EOF

6. Review “Version support for the IBM MQ Operator” on page 11 to determine which operator channel
to choose.

7. Install the operator.

Use the following command, changing <ibm-mq-operator-channel> to match the channel for
the version of the IBM MQ Operator you want to install, and changing <namespace_name> to
openshift-operators if you are using "AllNamespaces" mode, or to the namespace you want to
deploy the IBM MQ Operator to if you are using "SingleNamespace" mode.

cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ibm-mq
 namespace: <namespace_name>
spec:
 channel: <ibm-mq-operator-channel>
 installPlanApproval: Automatic
 name: ibm-mq
 source: ibm-operator-catalog
 sourceNamespace: openshift-marketplace
EOF

8. After a few minutes, the operator is installed. Run the following command to verify that all of the
components are in the Succeeded state:

oc get csv -n <namespace_name> | grep ibm-mq

Where <namespace_name> is openshift-operators if you are using "AllNamespaces" mode, or
the project (namespace) name if you are using "SingleNamespace" mode.

What to do next
You are now ready to Create the entitlement key secret (step 6 of “Installing the IBM MQ Operator” on
page 105).

Installing IBM MQ Operator 2.x in an air-gap
environment

This tutorial guides you in installing IBM MQ Operator 2.x into a Red Hat OpenShift cluster that has no
internet connectivity. You can install IBM MQ Operator in an air-gap environment using a portable storage
device, or using a bastion machine.

Before you begin
These instructions are for installing the 2.x version of the IBM MQ Operator in an air-gap environment.
To install IBM MQ Operator 3.0.0 and later, see “Installing the IBM MQ Operator” on page 105, paying
particular attention to the air-gap specific steps.

112 IBM MQ in containers

Installing the IBM MQ Operator in an air-gap environment using a portable storage
device
For the steps to complete the installation, see Mirroring images with a portable storage device in the IBM
Cloud Pak for Integration documentation. If you are installing only IBM MQ, then replace all occurrences
of the following environment variables with the values given here:

export CASE_NAME=ibm-mq
export CASE_ARCHIVE_VERSION=version_number
export CASE_INVENTORY_SETUP=ibmMQOperator

where version_number is the version of the case that you want to use to do the air-gap install. For a list of
available case versions, see https://github.com/IBM/cloud-pak/tree/master/repo/case/ibm-mq. Review
“Version support for the IBM MQ Operator” on page 11 to determine which operator channel to choose.

Installing the IBM MQ Operator in an air-gap environment using a bastion machine
1. “Prerequisites” on page 113
2. “Prepare a Docker registry” on page 113
3. “Prepare a bastion host” on page 114
4. “Create environment variables for the installer and image inventory” on page 115
5. “Download the IBM MQ installer and image inventory” on page 115
6. “Log in to the OpenShift Container Platform cluster as a cluster administrator” on page 115
7. “Create a Kubernetes namespace for the IBM MQ Operator” on page 115
8. “Mirror the images and configure the cluster” on page 115
9. “Install the IBM MQ Operator.” on page 117

10. “Deploy IBM MQ Queue Manager” on page 118

Prerequisites
1. A OpenShift Container Platform cluster must be installed. For the supported OpenShift Container

Platform versions, see “Version support for the IBM MQ Operator” on page 11.
2. A Docker registry must be available. For more information, see “Prepare a Docker registry” on page

113.
3. A bastion server must be configured. For more information, see “Prepare a bastion host” on page 114.

Prepare a Docker registry
A local Docker registry is used to store all images in your local environment. You must create such a
registry and must ensure that it meets the following requirements:

• Supports Docker Manifest V2, Schema 2.
• Supports multi-architecture images.
• Is accessible from both the bastion server and your OpenShift Container Platform cluster nodes.
• Has the username and password of a user who can write to the target registry from the bastion host.
• Has the username and password of a user who can read from the target registry that is on the Red Hat

OpenShift cluster nodes.
• Allows path separators in the image name.

After you create the Docker registry, you must configure the registry:

• An example of a simple registry is included in Creating a mirror registry for installation in a restricted
network in the Red Hat OpenShift documentation.

• Verify that each namespace meets the following requirements:

IBM MQ in containers and IBM Cloud Pak for Integration 113

https://github.com/IBM/cloud-pak/tree/master/repo/case/ibm-mq
https://www.ibm.com/links?url=https://docs.docker.com/registry/spec/manifest-v2-2/
https://www.ibm.com/docs/en/openshift?source=https%3A%2F%2Fdocs.openshift.com%2Fcontainer-platform%2F4.4%2Finstalling%2Finstall_config%2Finstalling-restricted-networks-preparations.html%23installation-creating-mirror-registry_installing-restricted-networks-preparations&referrer=SSGT7J_20.2%2Finstall%2Fmirroring_operators.html
https://www.ibm.com/docs/en/openshift?source=https%3A%2F%2Fdocs.openshift.com%2Fcontainer-platform%2F4.4%2Finstalling%2Finstall_config%2Finstalling-restricted-networks-preparations.html%23installation-creating-mirror-registry_installing-restricted-networks-preparations&referrer=SSGT7J_20.2%2Finstall%2Fmirroring_operators.html

– Supports auto-repository creation.
– Has credentials of a user who can write and create repositories. The bastion host uses these

credentials.
– Has credentials of a user who can read all repositories. The OpenShift Container Platform cluster

uses these credentials.

Prepare a bastion host
Prepare a bastion host that can access the OpenShift Container Platform cluster, the local Docker registry,
and the Internet. The bastion host must be on a Linux for x86-64 platform with any operating system that
the IBM Cloud Pak CLI and the OpenShift Container Platform CLI support.

Complete these steps on your bastion node:

1. Install OpenSSL version 1.11.1 or higher.
2. Install Docker or Podman on the bastion node.

• To install Docker, run these commands:

yum check-update
yum install docker

• To install Podman, see Podman Installation Instructions
3. Install skopeo version 1.x.x on the bastion node. To install skopeo, run these commands:

yum check-update
yum install skopeo

4. Install the IBM Cloud Pak CLI. Install the latest version of the binary file for your platform. For more
information, see cloud-pak-cli.

a. Download the binary file.

wget https://github.com/IBM/cloud-pak-cli/releases/download/vversion-number/binary-file-
name

For example:

wget https://github.com/IBM/cloud-pak-cli/releases/latest/download/cloudctl-linux-
amd64.tar.gz

b. Extract the binary file.

tar -xf binary-file-name

c. Run the following commands to modify and move the file

chmod 755 file-name
mv file-name /usr/local/bin/cloudctl

d. Confirm that cloudctl is installed:

cloudctl --help

5. Install the oc OpenShift Container Platform CLI tool.

For more information, see OpenShift Container Platform CLI tools
6. Create a directory that serves as the offline store.

The following is an example directory. This example is used in the subsequent steps.

mkdir $HOME/offline

114 IBM MQ in containers

https://podman.io/getting-started/installation.html
https://github.com/IBM/cloud-pak-cli/releases/latest

Note: This offline store must be persistent to avoid transferring data more than once. The persistence
also helps to run the mirroring process multiple times or on a schedule.

Create environment variables for the installer and image inventory
Create the following environment variables with the installer image name and the image inventory:

export CASE_ARCHIVE_VERSION=version_number
export CASE_ARCHIVE=ibm-mq-$CASE_ARCHIVE_VERSION.tgz
export CASE_INVENTORY=ibmMQOperator

where version_number is the version of the case that you want to use to do the airgap install. For a list of
available case versions, see https://github.com/IBM/cloud-pak/tree/master/repo/case/ibm-mq. Review
Version support for the IBM MQ Operator to determine which operator channel to choose.

Download the IBM MQ installer and image inventory
Download the ibm-mq installer and image inventory to the bastion host:

cloudctl case save \
 --case https://github.com/IBM/cloud-pak/raw/master/repo/case/ibm-mq/$CASE_ARCHIVE_VERSION/
$CASE_ARCHIVE \
 --outputdir $HOME/offline/

Log in to the OpenShift Container Platform cluster as a cluster administrator
The following is an example command to log in to the OpenShift Container Platform cluster:

oc login cluster_host:port --username=cluster_admin_user --password=cluster_admin_password

Create a Kubernetes namespace for the IBM MQ Operator
Create an environment variable with a namespace to install the IBM MQ Operator, then create the
namespace:

export NAMESPACE=ibm-mq-test
oc create namespace ${NAMESPACE}

Mirror the images and configure the cluster
Complete these steps to mirror the images and configure your cluster:

Note: Do not use the tilde within double quotation marks in any command. For example, do not use args
"--registry registry --user registry_userid --pass registry_password --inputDir
~/offline". The tilde does not expand and your commands might fail.

1. Store authentication credentials for all source Docker registries.

All IBM Cloud Platform Common Services, IBM MQ Operator image and IBM MQ Advanced
Developer image are stored in public registries that do not require authentication. However, IBM MQ
Advanced Server (non-Developer), other products and third-party components require one or more
authenticated registries. The following registries require authentication:

• cp.icr.io
• registry.redhat.io
• registry.access.redhat.com

For more information about these registries, see Create registry namespaces.

IBM MQ in containers and IBM Cloud Pak for Integration 115

https://github.com/IBM/cloud-pak/tree/master/repo/case/ibm-mq

You must run the following command to configure credentials for all registries that require
authentication. Run the command separately for each such registry:

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action configure-creds-airgap \
--namespace ${NAMESPACE} \
--args "--registry registry --user registry_userid --pass registry_password --inputDir $HOME/
offline"

The command stores and caches the registry credentials in a file on your file system in the
$HOME/.airgap/secrets location.

2. Create environment variables with the local Docker registry connection information.

export LOCAL_DOCKER_REGISTRY=IP_or_FQDN_of_local_docker_registry
export LOCAL_DOCKER_USER=username
export LOCAL_DOCKER_PASSWORD=password

Note: The Docker registry uses standard ports such as 80 or 443. If your Docker registry uses a
non-standard port, specify the port by using the syntax host:port. For example:

export LOCAL_DOCKER_REGISTRY=myregistry.local:5000

3. Configure an authentication secret for the local Docker registry.

Note: This step needs to be done only one time.

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action configure-creds-airgap \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --user ${LOCAL_DOCKER_USER} --pass $
{LOCAL_DOCKER_PASSWORD}"

The command stores and caches the registry credentials in a file on your file system in the
$HOME/.airgap/secrets location.

4. Configure a global image pull secret and ImageContentSourcePolicy.

a. Check whether a node restart is required.

• In OpenShift Container Platform version 4.4 and above, and on a new installation of IBM MQ
Operator using airgap, this step restarts all cluster nodes. The cluster resources might be
unavailable until the time the new pull secret is applied.

• In IBM MQ Operator 1.8, the CASE is updated to include an additional mirroring source for
images. Therefore when you upgrade from previous versions of IBM MQ Operator to version 1.8
or above, a node restart is triggered.

• To check if this step needs a node restart, add the --dry-run option to the code for this
step. This generates the latest ImageContentSourcePolicy and displays it in the console
window(stdout). If this ImageContentSourcePolicy differs from the cluster configured
ImageContentSourcePolicy, a restart occurs.

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action configure-cluster-airgap \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --user ${LOCAL_DOCKER_USER} --pass $
{LOCAL_DOCKER_PASSWORD} --inputDir $HOME/offline --dryRun"

b. To configure the global image pull secret and ImageContentSourcePolicy, run the code for this
step without the --dry-run option:

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \

116 IBM MQ in containers

--action configure-cluster-airgap \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --user ${LOCAL_DOCKER_USER} --pass $
{LOCAL_DOCKER_PASSWORD} --inputDir $HOME/offline"

5. Verify that the ImageContentSourcePolicy resource is created.

oc get imageContentSourcePolicy

6. Optional: If you are using an insecure registry, you must add the local registry to the cluster
insecureRegistries list.

oc patch image.config.openshift.io/cluster --type=merge -p '{"spec":{"registrySources":
{"insecureRegistries":["'${LOCAL_DOCKER_REGISTRY}'"]}}}'

7. Verify your cluster node status.

oc get nodes

After the imageContentsourcePolicy and global image pull secret are applied, you might see the
node status as Ready, Scheduling, or Disabled. Wait until all the nodes show a Ready status.

8. Mirror the images to the local registry.

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action mirror-images \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --user ${LOCAL_DOCKER_USER} --pass $
{LOCAL_DOCKER_PASSWORD} --inputDir $HOME/offline"

Install the IBM MQ Operator.
1. Log in to your Red Hat OpenShift cluster web console.
2. Create a catalog source. Use the same terminal that executed the previous steps.

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action install-catalog \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --recursive"

3. Verify that the CatalogSource is created for the Common Services Installer Operator.

oc get pods -n openshift-marketplace
oc get catalogsource -n openshift-marketplace

4. Install the IBM MQ Operator using OLM.

a. From the navigation pane, click Operators > OperatorHub.

The OperatorHub page is displayed.
b. In the All Items field, enter IBM MQ.

The IBM MQ catalog entry is displayed.
c. Select IBM MQ.

The IBM MQ window is displayed.
d. Click Install.

The Create Operator Subscription page is displayed.
e. Review “Version support for the IBM MQ Operator” on page 11 to determine which operator

channel to choose.
f. Set Installation Mode to either the specific namespace that you created, or the cluster wide scope.

IBM MQ in containers and IBM Cloud Pak for Integration 117

g. Click Subscribe.

IBM MQ is added to the Installed Operators page.
h. Check the status of the operator on the Installed Operators page. The status changes to
Succeeded when the installation is complete.

Deploy IBM MQ Queue Manager
To create a new queue manager under the installed operator, see “Deploying a queue manager onto a Red
Hat OpenShift Container Platform cluster” on page 118.

Related tasks
“[Deprecated]Preparing to upgrade to the latest IBM MQ 2.x Operator or queue manager in an air-gap
environment” on page 128
In a Red Hat OpenShift cluster that has no internet connectivity, there are preparatory steps you need to
take before you upgrade the IBM MQ 2.x Operator or queue manager.

Deploying a queue manager onto a Red Hat OpenShift
Container Platform cluster

This example deploys a "quick start" queue manager, which uses ephemeral (non-persistent) storage, and
turns off IBM MQ security. Messages are not persisted across restarts of the queue manager. You can
adjust the configuration to change many queue manager settings.

About this task
This task offers 3 options for deploying a queue manager onto OpenShift:

1. Deploy a queue manager with the OpenShift console.
2. Deploy a queue manager with the OpenShift CLI.
3. Deploy a queue manager with the IBM Cloud Pak for Integration Platform UI.

Procedure
• Option 1: Deploy a queue manager with the OpenShift console.

a) Deploy a queue manager.

a. Log in to the OpenShift console with your Red Hat OpenShift Container Platform cluster
administrator credentials.

b. Change Project to the namespace where you installed the IBM MQ Operator. Select the
namespace from the Project drop-down list.

c. In the navigation pane, click Operators > Installed Operators.
d. In the list on the Installed Operators panel, find and click IBM MQ.
e. Click on the Queue Manager tab.
f. Click on the Create QueueManager button. The instance creation panel is displayed, and offers

two methods for configuring the resource; the Form view and the YAML view. The Form view is
selected by default.

b) Configure the queue manager.

Step 2 Option 1: Configure in the Form view.

The Form view opens a form that you can use to view or modify the resource configuration.

a. Next to License, click the arrow to expand the license acceptance section.
b. Set License accept to true if you accept the license agreement.

118 IBM MQ in containers

c. Click the arrow to open the drop-down list, and select a license. IBM MQ is available under
several different licenses. For more information on the valid licenses, see “Licensing reference
for mq.ibm.com/v1beta1” on page 184. You must accept the license to deploy a queue manager.

d. Click Create. The list of queue managers in the current project (namespace) is now displayed.
The new QueueManager should be in a Pending state.

Step 2 Option 2: Configure in the YAML view.

The YAML view opens an editor containing an example YAML file for a QueueManager. Update the
values in the file by following the steps below.

a. Change metadata.namespace to your project (namespace) name.
b. Change the value of spec.license.license to the license string that matches your

requirements. See “Licensing reference for mq.ibm.com/v1beta1” on page 184 for the license
details.

c. Change spec.license.accept to true if you accept the license agreement.
d. Click Create. The list of queue managers in the current project (namespace) is now displayed.

The new QueueManager should be in a Pending state.
c) Verify queue manager creation.

You can verify that you've created a Queue Manager by completing the following steps:

a. Ensure that you're in the namespace that you created your IBM MQ Operator in.
b. From the Home screen, click Operators > Installed Operators, then select the installed IBM MQ

Operator that you created the queue manager for.
c. Click on the Queue Manager tab. The creation is complete when the QueueManager status is
Running.

• Option 2: Deploy a queue manager with the OpenShift CLI.

a) Create a QueueManager YAML file

For example, to install a basic queue manager in IBM Cloud Pak for Integration, create the file
"mq-quickstart.yaml" with the following contents:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: quickstart-cp4i
spec:
 version: 9.3.5.1-r2
 license:
 accept: false
 license: L-VTPK-22YZPK
 use: NonProduction
 web:
 enabled: true
 queueManager:
 name: "QUICKSTART"
 storage:
 queueManager:
 type: ephemeral

Important: If you accept the license agreement, change accept: false to accept: true. See
“Licensing reference for mq.ibm.com/v1beta1” on page 184 for details on the license.

This example also includes a web server deployed with the queue manager, with the web console

enabled with Single Sign-On within IBM Cloud Pak for Integration. From IBM Cloud
Pak for Integration 2023.4.1, for Single Sign-On to work, you will first need to install other IBM
Cloud Pak for Integration components.

To install a basic queue manager independently of IBM Cloud Pak for Integration, create the file
"mq-quickstart.yaml" with the following contents:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager

IBM MQ in containers and IBM Cloud Pak for Integration 119

metadata:
 name: quickstart
spec:
 version: 9.3.5.1-r2
 license:
 accept: false
 license: L-AMRD-XH6P3Q
 web:
 enabled: true
 queueManager:
 name: "QUICKSTART"
 storage:
 queueManager:
 type: ephemeral

Important:If you accept the MQ license agreement, change accept: false to accept: true.
See “Licensing reference for mq.ibm.com/v1beta1” on page 184 for details on the license.

b) Create the QueueManager object.

oc apply -f mq-quickstart.yaml

c) Verify queue manager creation.
Verify that you've created a queue manager by completing the following steps:

a. Validate the deployment:

oc describe queuemanager <QueueManagerResourceName>

b. Check the status:

oc describe queuemanager quickstart

• Option 3: Deploy a queue manager with the IBM Cloud Pak for Integration Platform UI.
a) In a browser, launch the IBM Cloud Pak for Integration Platform UI.
b) In the IBM Cloud Pak for Integration Platform UI, click Create instance.
c) Select Messaging, then click Next.

The instance creation panel is displayed, and offers two methods for configuring the resource; the
Form view and the YAML view. The Form view is selected by default.

d) In the Details section, check or update the Name field, and specify the Namespace in which to
create the queue manager instance.

e) If you accept the IBM Cloud Pak for Integration license agreement, change License acceptance to
On.

See “Licensing reference for mq.ibm.com/v1beta1” on page 184 for details on the license. You
must accept the license to deploy a queue manager.

f) In the Queue Manager section, check or update the Name of the underlying queue manager. In
older versions of the IBM Cloud Pak for Integration Platform UI, use the Queue Manager Config
section.
By default, the name of the queue manager used by IBM MQ client applications is the same as the
name of the QueueManager, but with any invalid characters (such as hyphens) removed.

g) Click Create
The list of queue managers in the current project (namespace) is now displayed. The new
QueueManager should have a status of Pending

h) Verify queue manager creation.
The creation is complete when the QueueManager status is Running.

Related tasks
“Configuring a Route to connect to a queue manager from outside a Red Hat OpenShift cluster ” on page
155

120 IBM MQ in containers

You need a Red Hat OpenShift Route to connect an application to an IBM MQ queue manager from outside
a Red Hat OpenShift cluster. You must enable TLS on your IBM MQ queue manager and client application,
because SNI is only available in the TLS protocol when a TLS 1.2 or higher protocol is used. The Red Hat
OpenShift Container Platform Router uses SNI for routing requests to the IBM MQ queue manager.
“Connecting to the IBM MQ Console deployed in a Red Hat OpenShift cluster” on page 173
How to connect to the IBM MQ Console of a queue manager that has been deployed onto a Red Hat
OpenShift Container Platform cluster.
“Examples for configuring a queue manager” on page 136
A queue manager can be configured by adjusting the contents of the QueueManager custom resource.

Uninstalling the IBM MQ Operator
You can use the Red Hat OpenShift console or CLI to uninstall the IBM MQ Operator from Red Hat
OpenShift.

Procedure
• Option 1: Uninstall the IBM MQ Operator with the OpenShift console.

Note: If the IBM MQ Operator is installed across all projects/namespaces on the cluster, repeat steps
2-6 of the following procedure for each project where you want to delete queue managers.

a) Log in to the Red Hat OpenShift Container Platform web console with your Red Hat OpenShift
Container Platform cluster admin credentials.

b) Change Project to the namespace from which you want to uninstall the IBM MQ Operator. Select
the namespace from the Project dropdown list.

c) In the navigation pane, click Operators > Installed Operators.
d) Click the IBM MQ operator.
e) Click the Queue Managers tab, to view the queue managers managed by this IBM MQ Operator.
f) Delete one or more queue managers.

Note that, although these queue managers continue to run, they might not function as expected
without an IBM MQ Operator.

g) Optional: If appropriate, repeat steps 2-6 for each project where you want to delete queue
managers.

h) Return to Operators > Installed Operators.
i) Next to the IBM MQ operator, click the three dots menu and select Uninstall Operator.

• Option 2: Uninstall the IBM MQ Operator with the OpenShift CLI
a) Log in to your Red Hat OpenShift cluster using oc login.
b) If the IBM MQ Operator is installed in a single namespace, complete the following substeps:

a. Ensure you are in the project containing the IBM MQ Operator to be uninstalled:

oc project <project_name>

b. View the queue managers installed in the project:

oc get qmgr

c. Delete one or more queue managers:

oc delete qmgr <qmgr_name>

Note that, although these queue managers continue to run, they might not function as expected
without an IBM MQ Operator.

IBM MQ in containers and IBM Cloud Pak for Integration 121

d. View the ClusterServiceVersion instances:

oc get csv

e. Delete the IBM MQ ClusterServiceVersion:

oc delete csv <ibm_mq_csv_name>

f. View the subscriptions:

oc get subscription

g. Delete all subscriptions:

oc delete subscription <ibm_mq_subscription_name>

h. If nothing else is using common services, you might want to uninstall the common services
operator, and delete the operator group:

i) Uninstall the common services operator, by following the instructions in Uninstalling
foundational services in the IBM Cloud Pak foundational services product documentation.

ii) View the operator group:

oc get operatorgroup

iii) Delete the operator group:

oc delete OperatorGroup <operator_group_name>

c) If the IBM MQ Operator is installed and available to all namespaces on the cluster, complete the
following substeps:

a. View all the installed queue managers:

oc get qmgr -A

b. Delete one or more queue managers:

oc delete qmgr <qmgr_name> -n <namespace_name>

Note that, although these queue managers continue to run, they might not function as expected
without an IBM MQ Operator.

c. View the ClusterServiceVersion instances:

oc get csv -A

d. Delete the IBM MQ ClusterServiceVersion from the cluster:

oc delete csv <ibm_mq_csv_name> -n openshift-operators

e. View the subscriptions:

oc get subscription -n openshift-operators

f. Delete the subscriptions:

oc delete subscription <ibm_mq_subscription_name> -n openshift-operators

g. Optional: If nothing else is using common services, you might want to uninstall the common
services operator. To do so, follow the instructions in Uninstalling foundational services in the
IBM Cloud Pak foundational services product documentation.

122 IBM MQ in containers

Upgrading the IBM MQ Operator and queue
managers

There are different upgrade processes for Continuous Delivery (CD) and Long Term Support (LTS) versions
of the IBM MQ Operator. Complete the upgrade step for your deployment type.

About this task
To upgrade your IBM MQ Operator and queue managers, complete one of the following steps:

Procedure
• Option 1: Upgrade deployments to the latest version on your current Operator channel.

To upgrade deployments of the IBM MQ Operator to the latest version on your current Operator
channel, see “Upgrading to an IBM MQ Operator channel latest security release” on page 123.

• Option 2: Upgrade CD deployments.
To upgrade previous CD deployments of IBM MQ Operator to the latest CD version of the IBM MQ
Operator (version 3.1.3), see “Migrating to the current CD channel of the IBM MQ Operator” on page
125.

Note:

Version 2.0.x was released as both a CD and LTS release, so you can use the procedure in “Migrating to
the current CD channel of the IBM MQ Operator” on page 125 to upgrade from any version 2.0.x IBM
MQ Operator to the latest CD version of the IBM MQ Operator.

Upgrading to an IBM MQ Operator channel latest security
release
Upgrading the IBM MQ Operator allows you to upgrade your queue managers.

Before you begin
Important: This topic is for upgrading deployments of the IBM MQ Operator to the latest Security Release
on the deployment's Channel. If this does not apply to your deployment, please refer to alternative
upgrade paths described in “Upgrading the IBM MQ Operator and queue managers” on page 123.

For deployments of the IBM MQ Operator in a Red Hat OpenShift cluster that has no internet connectivity,
follow the procedure in “[Deprecated]Preparing to upgrade to the latest IBM MQ 2.x Operator or queue
manager in an air-gap environment” on page 128.

Procedure
1. Upgrade the IBM MQ Operator to a newer version.

If you have automatic upgrades set, then upon the release of a new Security Release your IBM MQ
Operator completes an upgrade.

If you do not have automatic upgrades set, then manually approve your IBM MQ Operator upgrade:

• If there is an upgrade available, the Upgrade Status might be "Upgrade available".
• In this case, there might be an available control that you can use to approve the InstallPlan that

upgrades the IBM MQ Operator.
2. Upgrade an IBM MQ queue manager to a newer version.

The following table describes the latest version of the IBM MQ queue manager for each active
Operator channel. Using the relevant version, follow the procedure in “Upgrading an IBM MQ queue
manager using Red Hat OpenShift” on page 133.

IBM MQ in containers and IBM Cloud Pak for Integration 123

Operator channel Latest IBM MQ queue manager

v2.0 (LTS) 9.3.0.25-r1

v3.1 (CD) 9.3.5.1-r2

Migrating to the LTS channel of the IBM MQ
Operator
Upgrading the IBM MQ Operator allows you to upgrade your queue managers.

Before you begin
Important: This topic is for upgrading deployments of the 1.3.x Long Term Support (LTS) IBM MQ
Operator to the LTS stream of IBM MQ Operator 2.0.x only. If this does not apply to your deployment, see
the alternative upgrade paths described in Upgrading the IBM MQ Operator and queue managers.

For deployments of the IBM MQ Operator in a Red Hat OpenShift cluster that has no internet connectivity,
follow the procedure in “[Deprecated]Preparing to upgrade to the latest IBM MQ 2.x Operator or queue
manager in an air-gap environment” on page 128.

Important: IBM MQ Operator 2.0.x requires:

• Red Hat OpenShift Container Platform 4.12.

To upgrade, follow the procedure in Upgrading Red Hat OpenShift.
• IBM Cloud Pak foundational services 3.19.x

When you upgrade from IBM MQ Operator 1.3.x (2020.4), both instances of a multi-instance queue
manager are restarted simultaneously. This occurs when you change the version of IBM MQ to 9.2.0.5-r3-
eus. There is a rolling update of the IBM MQ queue manager when you upgrade from IBM MQ Operator
1.3.x to 2.0.x. If you have the IBM Cloud Pak for Integration Platform UI installed, there are additional
restarts of IBM MQ when changing the version of the IBM Cloud Pak for Integration Platform UI to
2020.4.1-8-eus, and to 2022.2.1-0.

Procedure
1. Before following the link in step 2, you must read the following essential information for your upgrade:

• You should omit all substeps for components you do not have installed. This includes the IBM Cloud
Pak for Integration Platform UI if you do not have this installed.

• Step 2 takes you to the IBM Cloud Pak for Integration documentation. During the upgrade process
you are brought back to the following IBM MQ topic, to upgrade the IBM MQ Operand: Upgrading an
IBM MQ queue manager.

• All IBM MQ users are recommended to complete at least the following tasks, using the instructions
from the link in step 2, as well as any others that apply to your environment:

– Patch IBM MQ Operator and operand (Patching 2020.4):

- Upgrade your IBM MQ Operator to at least version 1.3.5 in the v1.3-eus Operator Channel.
- Upgrade your IBM MQ Operand (Queue Manager Container image) to at least version 9.2.0.5-r3-

eus.

Note: It is recommended that you update your IBM MQ Operand to at least this version, but this
is not mandatory.

– Upgrade dependencies:

- Upgrade IBM Cloud Pak foundational services.
- Upgrade OpenShift Container Platform.

124 IBM MQ in containers

– Upgrade the operators:

- Upgrade IBM MQ Operator to 2.0.29.
– Upgrade the capabilities:

- Upgrade IBM MQ Operand (Queue Manager Container image) to the latest 9.3.0 version
(9.3.0.25-r1) to receive the latest security fixes.

2. Upgrade the IBM MQ Operator and queue managers, by completing Upgrade from IBM MQ Operator
1.3-eus (IBM Cloud Pak for Integration 2020.4).

Related tasks
“[Deprecated]Preparing to upgrade to the latest IBM MQ 2.x Operator or queue manager in an air-gap
environment” on page 128
In a Red Hat OpenShift cluster that has no internet connectivity, there are preparatory steps you need to
take before you upgrade the IBM MQ 2.x Operator or queue manager.
“Upgrading the IBM MQ Operator using Red Hat OpenShift” on page 131
You can upgrade the IBM MQ Operator using either the Red Hat OpenShift web console or CLI.
“Upgrading an IBM MQ queue manager using Red Hat OpenShift” on page 133

Migrating to the current CD channel of the IBM
MQ Operator
Upgrade from an earlier IBM MQ Operator to version 3.1.3. Upgrading the operator allows you to upgrade
your queue managers.

Before you begin
This topic is for upgrading Continuous Delivery (CD) deployments of the IBM MQ Operator prior to version
3.1.0, to version 3.1.3 only. If this does not apply to your deployment, see the alternative upgrade paths
described in Upgrading the IBM MQ Operator and queue managers.

To upgrade to IBM MQ Operator 3.1.3 you must be running Red Hat OpenShift Container Platform 4.12 or
later. To upgrade the platform, see Upgrading Red Hat OpenShift.

Procedure
1. Optional: Upgrade an IBM MQ Operator that is currently at a CD version prior to 2.0.0.

If your IBM MQ Operator is currently at a 1.x CD version, first follow the procedure in “Migrating a
1.x CD IBM MQ Operator to version 2.0.x” on page 126, then return here to upgrade to the latest CD
version.

2. Optional: Upgrade an IBM MQ Operator that is currently at version 2.2.x or 2.3.x to 2.4.x.

If your IBM MQ Operator is currently at a 2.2.x or 2.3.x version, follow the relevant steps in “Migrating
to the v2.4 channel of the IBM MQ Operator” on page 127, then return here to upgrade to the latest CD
version. Note that this is a mandatory prerequisite step before upgrading to version 3.1.3.

3. Upgrade components.

Choose one of the following options:

• Option 1: If you are a CP4I user, or you have deployed at least one of your queue managers using a
CP4I license, follow the relevant steps to upgrade all of your components, including your IBM MQ
Operator and queue managers, through the generated upgrade plan:

– To upgrade from version 2023.2, see Upgrading from 2023.2 by generating an upgrade plan.
– To upgrade from version 2022.2, see Upgrading from 2022.2 by generating an upgrade plan.

• Option 2: For all other users:

a. Mirror images (air-gap only).

IBM MQ in containers and IBM Cloud Pak for Integration 125

You must mirror the IBM MQ images. Complete the steps at the following link, using only these
values:

export OPERATOR_PACKAGE_NAME=ibm-mq
export OPERATOR_VERSION=3.1.3

You should omit section 3.5 "Configure the cluster", because the connection to the image registry
should have been set up during previous installs or upgrades.

Link: Mirroring images for an air-gapped cluster.
b. Upgrade your IBM MQ Operator to 3.1.3.

See “Upgrading the IBM MQ Operator using Red Hat OpenShift” on page 131.
c. Upgrade the instances.

To receive the latest features and security fixes, upgrade the IBM MQ Operand (Queue Manager
Container image) to the latest CD version (9.3.5.1-r2). See “Upgrading an IBM MQ queue
manager using Red Hat OpenShift” on page 133.

4. Optional: Upgrade Red Hat OpenShift Container Platform 4.12 to 4.14.

From IBM MQ Operator 3.0.0, Red Hat OpenShift Container Platform 4.12 is required. Note that you
can optionally choose to upgrade further to Red Hat OpenShift 4.14. To verify the compatible versions
for each IBM MQ Operator channel, see “Compatible Red Hat OpenShift Container Platform versions”
on page 12. To upgrade, see Upgrading Red Hat OpenShift.

5. Optional: Pin the specific catalog source for the IBM MQ Operator.

If the installation that you are upgrading uses the IBM MQ Operator Catalog, you should pin the
specific catalog source for the IBM MQ Operator. See Moving to specific catalog sources for each
operator.

Related tasks
“[Deprecated]Preparing to upgrade to the latest IBM MQ 2.x Operator or queue manager in an air-gap
environment” on page 128
In a Red Hat OpenShift cluster that has no internet connectivity, there are preparatory steps you need to
take before you upgrade the IBM MQ 2.x Operator or queue manager.

Migrating a 1.x CD IBM MQ Operator to version 2.0.x
Upgrading the IBM MQ Operator allows you to upgrade your queue managers.

Before you begin
Important: This topic is for upgrading Continuous Delivery (CD) deployments of the IBM MQ Operator
prior to version 2.0.x to version 2.0.x only. If this does not apply to your deployment, see alternative
upgrade paths described in Upgrading the IBM MQ Operator and queue managers.

For deployments of the IBM MQ Operator in a Red Hat OpenShift cluster that has no internet connectivity,
follow the procedure in “[Deprecated]Preparing to upgrade to the latest IBM MQ 2.x Operator or queue
manager in an air-gap environment” on page 128.

To complete this upgrade, the following requirements for IBM MQ Operator 2.0.0 must be met:

• Red Hat OpenShift Container Platform 4.12.

To upgrade, follow the procedure in Upgrading Red Hat OpenShift.
• IBM Cloud Pak foundational services 3.19

Procedure
1. Before following the link in step 2, you must read the following essential information for your upgrade:

• Omit all substeps for components you do not have installed. This includes the IBM Cloud Pak for
Integration Platform UI if you do not have this installed.

126 IBM MQ in containers

• Step 2 takes you to the IBM Cloud Pak for Integration documentation. During the upgrade process
you are brought back to the following IBM MQ topic, to upgrade the IBM MQ Operand: Upgrading an
IBM MQ queue manager.

• All IBM MQ users are recommended to complete at least the following tasks, using the instructions
from the link in step 2, as well as any others that apply to your environment:

– Patch IBM MQ Operator and operand (Patching 2021.4):

- Upgrade your IBM MQ Operator to at least version 1.8.0 in the v1.8 Operator Channel.
- Upgrade your IBM MQ Operand (Queue Manager Container image) to at least version 9.2.5.0-r3.

Note: It is recommended that you update your IBM MQ Operand to the current version
(9.3.0.25-r1), but this is not mandatory.

– Upgrade dependencies:

- Upgrade IBM Cloud Pak foundational services.
- Upgrade OpenShift Container Platform.

– Upgrade the operators:

- Upgrade IBM MQ Operator to 2.0.29.
– Upgrade the capabilities:

- Upgrade IBM MQ Operand (Queue Manager Container image) to the latest 9.3.0 version
(9.3.0.25-r1) to receive the latest security fixes.

2. Upgrade the IBM MQ Operator and queue managers, by completing Upgrade from IBM MQ Operator
1.8 (IBM Cloud Pak for Integration 2021.4) or earlier CD IBM MQ Operator version.

What to do next
You are now ready to upgrade the IBM MQ Operator and queue managers to the latest CD version (3.1.3).
See “Migrating to the current CD channel of the IBM MQ Operator” on page 125.

Migrating to the v2.4 channel of the IBM MQ
Operator
Upgrading the IBM MQ Operator allows you to upgrade your queue managers.

Before you begin
Important: This topic is for upgrading Continuous Delivery (CD) deployments of the IBM MQ Operator
prior to version 2.4.0, to version 2.4.8 only. This is an intermediate step to upgrading to the latest CD
version of the IBM MQ Operator; the v2.4 channel does not receive security updates. If this does not
apply to your deployment, see the alternative upgrade paths described in Upgrading the IBM MQ Operator
and queue managers.

For deployments of the IBM MQ Operator in a Red Hat OpenShift cluster that has no internet connectivity,
follow the procedure in “[Deprecated]Preparing to upgrade to the latest IBM MQ 2.x Operator or queue
manager in an air-gap environment” on page 128.

To complete this upgrade, the following requirements for IBM MQ Operator 2.4.8 must be met:

• Red Hat OpenShift Container Platform 4.12.

To upgrade, follow the procedure in Upgrading Red Hat OpenShift.
• IBM Cloud Pak foundational services 3.19 to 3.24 inclusive.

Procedure
1. Optional: Upgrade an IBM MQ Operator that is currently at a CD version prior to 2.0.0

IBM MQ in containers and IBM Cloud Pak for Integration 127

If your IBM MQ Operator is currently at a 1.x CD version, first follow the procedure in “Migrating a
1.x CD IBM MQ Operator to version 2.0.x” on page 126, then return here to upgrade to the latest 2.4
version.

2. Upgrade an IBM MQ Operator that is at CD version 2.x.x to the latest 2.4 version (2.4.8).

Follow the procedure in “Upgrading the IBM MQ Operator using Red Hat OpenShift” on page 131.
3. Optional: Upgrade other components of the IBM Cloud Pak for Integration.

If you are a user of the IBM Cloud Pak for Integration you might have other components that you want
to upgrade. For steps to upgrade other components, refer to the relevant steps below based on your
deployment:

• Option 1: Upgrade from IBM MQ Operator 2.0.x/2.1.x (IBM Cloud Pak for Integration 2022.2).
• Option 2: Upgrade from IBM MQ Operator 2.2.x/2.3.x (IBM Cloud Pak for Integration 2022.4).

4. Optional: Upgrade the IBM Cloud Pak foundational services.

If you are a user of the IBM Cloud Pak for Integration you might want to upgrade your IBM Cloud Pak
foundational services from version 3.19.x to version 3.24.x. For steps to complete this upgrade, see
Upgrading IBM Cloud Pak foundational services.

Related tasks
“[Deprecated]Preparing to upgrade to the latest IBM MQ 2.x Operator or queue manager in an air-gap
environment” on page 128
In a Red Hat OpenShift cluster that has no internet connectivity, there are preparatory steps you need to
take before you upgrade the IBM MQ 2.x Operator or queue manager.
“Upgrading the IBM MQ Operator using Red Hat OpenShift” on page 131
You can upgrade the IBM MQ Operator using either the Red Hat OpenShift web console or CLI.
“Upgrading an IBM MQ queue manager using Red Hat OpenShift” on page 133

Preparing to upgrade to the latest
IBM MQ 2.x Operator or queue manager in an air-gap environment
In a Red Hat OpenShift cluster that has no internet connectivity, there are preparatory steps you need to
take before you upgrade the IBM MQ 2.x Operator or queue manager.

Before you begin
Note: These instructions are for upgrading to the 2.x version of the IBM MQ Operator in an air-gap
environment. To upgrade to IBM MQ Operator 3.0.0 and later, see “Upgrading the IBM MQ Operator and
queue managers” on page 123, paying particular attention to the air-gap specific steps.

This topic assumes that you have already configured a local image registry in which the previous released
IBM Cloud Pak for Integration images are mirrored.

About this task
Before you can upgrade the IBM MQ Operator or queue manager in an airgap environment, you must
mirror the latest IBM Cloud Pak for Integration images.

Note that the first four steps in this task are the same as steps that you take when “Installing IBM MQ
Operator 2.x in an air-gap environment” on page 112.

Procedure
1. Create environment variables for the installer and image inventory.

Create the following environment variables with the installer image name and the image inventory:

128 IBM MQ in containers

export CASE_ARCHIVE_VERSION=version_number
export CASE_ARCHIVE=ibm-mq-$CASE_ARCHIVE_VERSION.tgz
export CASE_INVENTORY=ibmMQOperator

where version_number is the version of the case that you want to use to do the airgap install. For a
list of available case versions, see https://github.com/IBM/cloud-pak/tree/master/repo/case/ibm-mq.
Review Version support for the IBM MQ Operator to determine which operator channel to choose.

2. Download the IBM MQ installer and image inventory.

Download the ibm-mq installer and image inventory to the bastion host:

cloudctl case save \
 --case https://github.com/IBM/cloud-pak/raw/master/repo/case/ibm-mq/
$CASE_ARCHIVE_VERSION/$CASE_ARCHIVE \
 --outputdir $HOME/offline/

3. Log in to the OpenShift Container Platform cluster as a cluster administrator.

The following is an example command to log in to the OpenShift Container Platform cluster:

oc login cluster_host:port --username=cluster_admin_user --password=cluster_admin_password

4. Mirror the images and configure the cluster.

Complete these steps to mirror the images and configure your cluster:

Note: Do not use the tilde within double quotation marks in any command. For example, do not
use args "--registry registry --user registry_userid --pass registry_password
--inputDir ~/offline". The tilde does not expand and your commands might fail.

a. Store authentication credentials for all source Docker registries.

All IBM Cloud Platform Common Services, IBM MQ Operator image and IBM MQ Advanced
Developer image are stored in public registries that do not require authentication. However, IBM
MQ Advanced Server (non-Developer), other products and third-party components require one or
more authenticated registries. The following registries require authentication:

• cp.icr.io
• registry.redhat.io
• registry.access.redhat.com

For more information about these registries, see Create registry namespaces.

You must run the following command to configure credentials for all registries that require
authentication. Run the command separately for each such registry:

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action configure-creds-airgap \
--namespace ${NAMESPACE} \
--args "--registry registry --user registry_userid --pass registry_password --inputDir
$HOME/offline"

The command stores and caches the registry credentials in a file on your file system in the
$HOME/.airgap/secrets location.

b. Create environment variables with the local Docker registry connection information.

export LOCAL_DOCKER_REGISTRY=IP_or_FQDN_of_local_docker_registry
export LOCAL_DOCKER_USER=username
export LOCAL_DOCKER_PASSWORD=password

Note: The Docker registry uses standard ports such as 80 or 443. If your Docker registry uses a
non-standard port, specify the port by using the syntax host:port. For example:

export LOCAL_DOCKER_REGISTRY=myregistry.local:5000

IBM MQ in containers and IBM Cloud Pak for Integration 129

https://github.com/IBM/cloud-pak/tree/master/repo/case/ibm-mq

c. Configure an authentication secret for the local Docker registry.

Note: This step needs to be done only one time.

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action configure-creds-airgap \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --user ${LOCAL_DOCKER_USER} --pass $
{LOCAL_DOCKER_PASSWORD}"

The command stores and caches the registry credentials in a file on your file system in the
$HOME/.airgap/secrets location.

d. Configure a global image pull secret and ImageContentSourcePolicy.

i) Check whether a node restart is required.

• In OpenShift Container Platform version 4.4 and above, and on a new installation of IBM MQ
Operator using airgap, this step restarts all cluster nodes. The cluster resources might be
unavailable until the time the new pull secret is applied.

• In IBM MQ Operator 1.8, the CASE is updated to include an additional mirroring source for
images. Therefore when you upgrade from previous versions of IBM MQ Operator to version
1.8 or above, a node restart is triggered.

• To check if this step needs a node restart, add the --dry-run option to the code for this
step. This generates the latest ImageContentSourcePolicy and displays it in the console
window(stdout). If this ImageContentSourcePolicy differs from the cluster configured
ImageContentSourcePolicy, a restart occurs.

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action configure-cluster-airgap \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --user ${LOCAL_DOCKER_USER} --pass $
{LOCAL_DOCKER_PASSWORD} --inputDir $HOME/offline --dryRun"

ii) To configure the global image pull secret and ImageContentSourcePolicy, run the code for
this step without the --dry-run option:

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action configure-cluster-airgap \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --user ${LOCAL_DOCKER_USER} --pass $
{LOCAL_DOCKER_PASSWORD} --inputDir $HOME/offline"

e. Verify that the ImageContentSourcePolicy resource is created.

oc get imageContentSourcePolicy

f. Optional: If you are using an insecure registry, you must add the local registry to the cluster
insecureRegistries list.

oc patch image.config.openshift.io/cluster --type=merge -p '{"spec":{"registrySources":
{"insecureRegistries":["'${LOCAL_DOCKER_REGISTRY}'"]}}}'

g. Verify your cluster node status.

oc get nodes

After the imageContentsourcePolicy and global image pull secret are applied, you might see
the node status as Ready, Scheduling, or Disabled. Wait until all the nodes show a Ready
status.

h. Mirror the images to the local registry.

130 IBM MQ in containers

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action mirror-images \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --user ${LOCAL_DOCKER_USER} --pass $
{LOCAL_DOCKER_PASSWORD} --inputDir $HOME/offline"

5. Upgrade the catalog source.

Use the same terminal that executed the previous steps.

cloudctl case launch \
--case $HOME/offline/${CASE_ARCHIVE} \
--inventory ${CASE_INVENTORY} \
--action install-catalog \
--namespace ${NAMESPACE} \
--args "--registry ${LOCAL_DOCKER_REGISTRY} --recursive"

What to do next
To complete a IBM Cloud Pak for Integration upgrade, you might need to return to the IBM Cloud Pak for
Integration documentation.

Otherwise, you are now ready to upgrade the IBM MQ Operator and queue manager by completing one of
the following tasks:

• “Upgrading the IBM MQ Operator using Red Hat OpenShift” on page 131
• “Upgrading an IBM MQ queue manager using Red Hat OpenShift” on page 133

Upgrading the IBM MQ Operator using Red Hat OpenShift
You can upgrade the IBM MQ Operator using either the Red Hat OpenShift web console or CLI.

Procedure
To upgrade the IBM MQ Operator using Red Hat OpenShift, complete one of the following tasks:
• “Upgrading the IBM MQ Operator using the Red Hat OpenShift web console” on page 131
• “Upgrading the IBM MQ Operator using the Red Hat OpenShift CLI” on page 132

Upgrading the IBM MQ Operator using the Red Hat OpenShift
web console
The IBM MQ Operator can be upgraded using the Operator Hub.

Before you begin
Note: The latest CD version of the IBM MQ Operator is 3.1.3. The latest LTS version of the IBM MQ
Operator is 2.0.29. For the latest IBM MQ Operator release notes, see “Release history for IBM MQ
Operator” on page 33.

Log in to your Red Hat OpenShift cluster web console.

Procedure
1. Review “Version support for the IBM MQ Operator” on page 11 to determine which operator channel

to upgrade to.
2. Apply latest Catalog source.

If you are using the IBM MQ specific catalog source (all air-gap installs), rather than the ibm-
operator-catalog, you must apply the catalog source for your IBM MQ version.

Follow the instructions in Adding catalog sources to a cluster.

IBM MQ in containers and IBM Cloud Pak for Integration 131

Note: If you have already completed the operator install step for air-gap Mirror images (air-gap only),
you only have to complete the step that applies the catalog source. For example:

oc apply -f ~/.ibm-pak/data/mirror/${OPERATOR_PACKAGE_NAME}/${OPERATOR_VERSION}/catalog-
sources.yaml

3. Upgrade the IBM MQ Operator. New major/minor IBM MQ Operator versions are delivered through
new Subscription Channels. To upgrade your Operator to a new major/minor version, you will need to
update the selected channel in your IBM MQ Operator Subscription.
a) From the navigation pane, click Operators > Installed Operators.

All installed Operators in the specified project are displayed.
b) Select the IBM MQ Operator
c) Navigate to the Subscription tab
d) Click the Channel

The Change Subscription Update Channel window is displayed.
e) Select the desired channel, and click Save.

The operator will upgrade to the latest version available to the new channel. See “Version support
for the IBM MQ Operator” on page 11.

Upgrading the IBM MQ Operator using the Red Hat OpenShift
CLI
The IBM MQ Operator can be upgraded from the command line.

Before you begin
Note: The latest CD version of the IBM MQ Operator is 3.1.3. The latest LTS version of the IBM MQ
Operator is 2.0.29. For the latest IBM MQ Operator release notes, see “Release history for IBM MQ
Operator” on page 33.

Log into your cluster using oc login.

Before you can upgrade the IBM MQ Operator in an air-gap environment, you must mirror the latest
IBM Cloud Pak for Integration images. For upgrading to IBM MQ Operator 3.0 or above, Migrating to the
current CD channel of the IBM MQ Operator includes the air-gap specific steps. For upgrading to earlier

IBM MQ operator versions, See Preparing to upgrade to the latest IBM MQ 2.x Operator or
queue manager in an air-gap environment.

Procedure
1. Review “Version support for the IBM MQ Operator” on page 11 to determine which operator channel

to upgrade to.
2. Apply latest Catalog source.

If you are using the IBM MQ specific catalog source (all air-gap installs), rather than the ibm-
operator-catalog, you must apply the catalog source for your IBM MQ version.

Follow the instructions in Adding catalog sources to a cluster.

Note: If you have already completed the operator install step for air-gap Mirror images (air-gap only),
you only have to complete the step that applies the catalog source. For example:

oc apply -f ~/.ibm-pak/data/mirror/${OPERATOR_PACKAGE_NAME}/${OPERATOR_VERSION}/catalog-
sources.yaml

3. Upgrade the IBM MQ Operator. New major/minor IBM MQ Operator versions are delivered through
new Subscription Channels. To upgrade your Operator to a new major or minor version, you will need
to update the selected channel in your IBM MQ Operator Subscription.
a) Ensure the required IBM MQ Operator Upgrade Channel is available.

132 IBM MQ in containers

oc get packagemanifest ibm-mq -o=jsonpath='{.status.channels[*].name}'

b) Patch the Subscription to move to the desired update channel (where vX.Y is the desired update
channel identified in the previous step.

oc patch subscription ibm-mq --patch '{"spec":{"channel":"vX.Y"}}' --type=merge

Upgrading an IBM MQ queue manager using Red Hat
OpenShift

Before you begin
As part of the process to upgrade the IBM MQ queue managers, you might have been sent to this topic
from the IBM Cloud Pak for Integration documentation.

Procedure
To upgrade the IBM MQ queue manager using Red Hat OpenShift, complete one of the following tasks:
• “Upgrading an IBM MQ queue manager using the Red Hat OpenShift web console” on page 133
• “Upgrading an IBM MQ queue manager using the Red Hat OpenShift CLI” on page 134
• “Upgrading an IBM MQ queue manager in Red Hat OpenShift using the Platform UI” on page 135

What to do next
To complete an IBM Cloud Pak for Integration upgrade, you might need to return to the IBM Cloud Pak for
Integration documentation.

Upgrading an IBM MQ queue manager using the Red Hat
OpenShift web console
An IBM MQ queue manager, deployed using the IBM MQ Operator, can be upgraded in Red Hat OpenShift
using the Operator Hub.

Before you begin
Note: The latest CD version of the IBM MQ queue manager is 9.3.5.1-r2. The latest LTS version of the IBM
MQ queue manager is 9.3.0.25-r1. For the latest IBM MQ queue manager release notes, see “Release
history for Queue Manager Container images for use with IBM MQ Operator” on page 60.

• Log in to your Red Hat OpenShift cluster web console.
• Ensure that your IBM MQ Operator is using the desired Update Channel. See “Upgrading the IBM MQ

Operator using Red Hat OpenShift” on page 131.

Before you can upgrade the queue manager in an air-gap environment, you must mirror the latest IBM
Cloud Pak for Integration images. For upgrading to IBM MQ Operator 3.0 or above, Migrating to the
current CD channel of the IBM MQ Operator includes the air-gap specific steps. For upgrading to earlier

IBM MQ operator versions, See Preparing to upgrade to the latest IBM MQ 2.x Operator or
queue manager in an air-gap environment.

Procedure
1. From the navigation pane, click Operators > Installed Operators.

All installed Operators in the specified project are displayed.
2. Select the IBM MQ Operator.

The IBM MQ Operator window is displayed.
3. Navigate to the Queue Manager tab.

IBM MQ in containers and IBM Cloud Pak for Integration 133

The Queue Manager Details window is displayed.
4. Select the queue manager that you want to upgrade.
5. Navigate to the YAML tab.
6. Update the following fields, where necessary, to match the desired IBM MQ queue manager version

upgrade.

• spec.version
• spec.license.licence

See “Release history for Queue Manager Container images for use with IBM MQ Operator” on page 60
for a mapping of IBM MQ Operator versions and IBM MQ queue manager container images.

7. Save the updated queue manager YAML.

Upgrading an IBM MQ queue manager using the Red Hat
OpenShift CLI
An IBM MQ queue manager, deployed using the IBM MQ Operator, can be upgraded in Red Hat OpenShift
using the command line.

Before you begin
Note: The latest CD version of the IBM MQ queue manager is 9.3.5.1-r2. The latest LTS version of the IBM
MQ queue manager is 9.3.0.25-r1. For the latest IBM MQ queue manager release notes, see “Release
history for Queue Manager Container images for use with IBM MQ Operator” on page 60.

You need to be a cluster administrator to complete these steps.

• Log in to the Red Hat OpenShift command line interface (CLI) using oc login.
• Ensure that your IBM MQ Operator is using the desired Update Channel. See “Upgrading the IBM MQ

Operator and queue managers” on page 123.

Before you can upgrade the queue manager in an air-gap environment, you must mirror the latest IBM
Cloud Pak for Integration images. For upgrading to IBM MQ Operator 3.0 or above, Migrating to the
current CD channel of the IBM MQ Operator includes the air-gap specific steps. For upgrading to earlier

IBM MQ operator versions, See Preparing to upgrade to the latest IBM MQ 2.x Operator or
queue manager in an air-gap environment.

Procedure
Edit the QueueManager resource to update the following fields, where necessary, to match the desired
IBM MQ queue manager version upgrade.

• spec.version
• spec.license.licence

See “Version support for the IBM MQ Operator” on page 11 for a mapping of channels to IBM MQ
Operator versions and IBM MQ queue manager versions.

Use the following command:

oc edit queuemanager my_qmgr

where my_qmgr is the name of the QueueManager resource that you want to upgrade.

134 IBM MQ in containers

Upgrading an IBM MQ queue manager in Red Hat OpenShift using the
Platform UI
An IBM MQ queue manager, deployed using the IBM MQ Operator, can be upgraded in Red Hat OpenShift
using the IBM Cloud Pak for Integration Platform UI (previously the Platform Navigator).

Before you begin
Note: The latest CD version of the IBM MQ queue manager is 9.3.5.1-r2. The latest LTS version of the IBM
MQ queue manager is 9.3.0.25-r1. For the latest IBM MQ queue manager release notes, see “Release
history for Queue Manager Container images for use with IBM MQ Operator” on page 60.

• Log in to the IBM Cloud Pak for Integration Platform UI in the namespace that contains the queue
manager you want to upgrade.

• Ensure that your IBM MQ Operator is using the desired Update Channel. See “Upgrading the IBM MQ
Operator and queue managers” on page 123.

Before you can upgrade the queue manager in an air-gap environment, you must mirror the latest IBM
Cloud Pak for Integration images. For upgrading to IBM MQ Operator 3.0 or above, Migrating to the
current CD channel of the IBM MQ Operator includes the air-gap specific steps. For upgrading to earlier

IBM MQ operator versions, See Preparing to upgrade to the latest IBM MQ 2.x Operator or
queue manager in an air-gap environment.

Procedure
1. From the IBM Cloud Pak for Integration Platform UI (previously the Platform Navigator) home page,

click the Runtimes tab.
2. Queue managers with available upgrades have a blue i next to the Version. Click the i to show New

version available.
3. Click the three dots on the far right of the queue manager that you want to upgrade, then click Change

version.
4. Under Select a new channel or version, select the required upgrade version.
5. Click Change version.

Results
The queue manager is upgraded.

Configuring queue managers using the IBM MQ Operator
Configuration examples; configuring HA; connecting from outside an OpenShift cluster; integrating with
the CP4i dashboard; integrating with Instana tracing; building an image with custom MQSC and INI files;
adding custom annotations and labels.

About this task

Procedure
• “Examples for configuring a queue manager” on page 136.
• “Configuring high availability for queue managers using the IBM MQ Operator” on page 144.
• “Configuring a Route to connect to a queue manager from outside a Red Hat OpenShift cluster ” on

page 155.
• “Integrating with the IBM Cloud Pak for Integration Operations Dashboard” on page 157.
• “Integrating IBM MQ with IBM Instana tracing” on page 158.
• “Building an image with custom MQSC and INI files, using the Red Hat OpenShift CLI” on page 165.

IBM MQ in containers and IBM Cloud Pak for Integration 135

• “Adding custom annotations and labels to queue manager resources” on page 167.
• “Disabling runtime webhook checks” on page 167.
• “Disabling default value updates to the queue manager specification” on page 168.

Examples for configuring a queue manager
A queue manager can be configured by adjusting the contents of the QueueManager custom resource.

About this task
Use the following examples to help you configure a queue manager using the QueueManager YAML file.

Procedure
• “Example: Supplying MQSC and INI files” on page 136
• “Example: Configuring a queue manager with mutual TLS authentication” on page 139

Example: Supplying MQSC and INI files
This example creates a Kubernetes ConfigMap that contains two MQSC files and one INI file. A queue
manager is then deployed that processes these MQSC and INI files.

About this task
MQSC and INI files can be supplied when a queue manager is deployed. The MQSC and INI data must
be defined in one or more Kubernetes ConfigMaps and Secrets. These must be created in the namespace
(project) where you will deploy the queue manager.

Note: A Kubernetes Secret should be used when the MQSC or INI file contains sensitive data.

Example

The following example creates a Kubernetes ConfigMap that contains two MQSC files and one INI file. A
queue manager is then deployed that processes these MQSC and INI files.

Example ConfigMap - apply the following YAML in your cluster:

apiVersion: v1
kind: ConfigMap
metadata:
 name: mqsc-ini-example
data:
 example1.mqsc: |
 DEFINE QLOCAL('DEV.QUEUE.1') REPLACE
 DEFINE QLOCAL('DEV.QUEUE.2') REPLACE
 example2.mqsc: |
 DEFINE QLOCAL('DEV.DEAD.LETTER.QUEUE') REPLACE
 example.ini: |
 Channels:
 MQIBindType=FASTPATH

Example QueueManager - deploy your queue manager with the following configuration, using the
command line or using the Red Hat OpenShift Container Platform web console:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: mqsc-ini-qm
spec:
 version: 9.3.5.1-r2
 license:
 accept: false
 license: L-AMRD-XH6P3Q
 use: Production
 web:
 enabled: true
 queueManager:
 name: "MQSCINI"

136 IBM MQ in containers

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

 mqsc:
 - configMap:
 name: mqsc-ini-example
 items:
 - example1.mqsc
 - example2.mqsc
 ini:
 - configMap:
 name: mqsc-ini-example
 items:
 - example.ini
 storage:
 queueManager:
 type: ephemeral

Important: If you accept the IBM MQ Advanced license agreement, change accept: false to accept:
true. See Licensing reference for mq.ibm.com/v1beta1 for details on the license.

Additional information:

• A queue manager can be configured to use a single Kubernetes ConfigMap or Secret (as shown in this
example) or multiple ConfigMaps and Secrets.

• You can choose to use all of the MQSC and INI data from a Kubernetes ConfigMap or Secret (as shown
in this example) or configure each queue manager to use only a subset of the available files.

• MQSC and INI files are processed in alphabetical order based on their key. So example1.mqsc will
always be processed before example2.mqsc, regardless of the order in which they appear in the queue
manager configuration.

• If multiple MQSC or INI files have the same key, across multiple Kubernetes ConfigMaps or Secrets,
then this set of files is processed based on the order in which the files are defined in the queue manager
configuration.

• When a queue manager pod is running, any changes to the Kubernetes ConfigMap are not picked up
because the IBM MQ Operator is not aware of the change. If you make changes to the ConfigMap, for
example changes to the MQSC commands or to the INI files, then you must manually restart the queue
managers to pick up those changes. For single instance queue managers, delete the pod to trigger the
required restart. For Native HA deployments, restart the stand-by pods first by deleting them. When
they are again in a running state, delete the active pod to restart it. This order of restarts ensures
minimum downtime for the queue manager.

Creating a self-signed PKI using OpenSSL
IBM MQ allows you to use mutual TLS for authentication, where both ends of a connection supply a
certificate, and details in the certificate are used to establish an identity with the queue manager. This
topic presents how to create an example Public Key Infrastructure (PKI) using the OpenSSL command line
tool, creating two certificates which can be used in other examples.

Before you begin
Ensure that the OpenSSL command line tool is installed.

Install the IBM MQ client, and add samp/bin and bin to your PATH. You need the
runmqicredcommand, which can be installed as part of the IBM MQ client as follows:

• For Windows and Linux: Install the IBM MQ redistributable client for your
operating system from https://ibm.biz/mq93redistclients

• For Mac: Download and set up the IBM MQ MacOS Toolkit: https://developer.ibm.com/
tutorials/mq-macos-dev/

About this task
Important: The examples described here are not suitable for a production environment, and are solely
intended as examples to get going quickly. Certificate management is a complex subject for advanced

IBM MQ in containers and IBM Cloud Pak for Integration 137

https://ibm.biz/mq93redistclients
https://developer.ibm.com/tutorials/mq-macos-dev/
https://developer.ibm.com/tutorials/mq-macos-dev/

users. For production, you must consider things like rotation, revocation, key length, disaster recovery and
much more.

These steps have been tested using OpenSSL 3.1.4.

Procedure
1. Create a private key to use for your internal certificate authority

openssl genpkey -algorithm rsa -pkeyopt rsa_keygen_bits:4096 -out ca.key

A private key for the internal certificate authority is created in a file called ca.key. This file should be
kept safe and secret — it will be used to sign certificates for your internal certificate authority.

2. Issue a self-signed certificate for your internal certificate authority

openssl req -x509 -new -nodes -key ca.key -sha512 -days 30 -subj "/CN=example-selfsigned-ca"
-out ca.crt

The -days specifies the number of days that the root CA certificate will be valid.
A certificate is created in a file called ca.crt. This certificate contains the public information about the
internal certificate authority, and is freely shareable.

3. Create a private key and certificate for a queue manager
a) Create a private key and certificate signing request for a queue manager

openssl req -new -nodes -out example-qm.csr -newkey rsa:4096 -keyout example-qm.key -subj
'/CN=example-qm'

A private key is created in a file called example-qm.key, and a certificate signing request is created
in a file called example-qm.csr

b) Sign the queue manager key with your internal certificate authority

openssl x509 -req -in example-qm.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out
example-qm.crt -days 7 -sha512

The -days specifies the number of days that the certificate will be valid.
A signed certificate is created in a file called example-qm.crt

c) Create a Kubernetes secret with the queue manager key and certificate

oc create secret generic example-qm-tls --type="kubernetes.io/tls" --from-
file=tls.key=example-qm.key --from-file=tls.crt=example-qm.crt --from-file=ca.crt

A Kubernetes secret called example-qm-tls is created. This secret contains the private key for the
queue manager, the public certificate, and the CA certificate.

4. Create a private key and certificate for an application
a) Create a private key and certificate signing request for an application

openssl req -new -nodes -out example-app1.csr -newkey rsa:4096 -keyout example-app1.key
-subj '/CN=example-app1'

A private key is created in a file called example-app1.key, and a certificate signing request is
created in a file called example-app1.csr

b) Sign the queue manager key with your internal certificate authority

openssl x509 -req -in example-app1.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out
example-app1.crt -days 7 -sha512

The -days specifies the number of days that the certificate will be valid.
A signed certificate is created in a file called example-app1.crt

c) Create a PKCS#12 key store with the application's key and certificate

138 IBM MQ in containers

IBM MQ uses a key database, and not individual key files. The containerized queue manager will
create the key database for the queue manager from a Secret, but for clients applications, you need
to manually create the key database.

openssl pkcs12 -export -in "example-app1.crt" -name "example-app1" -certfile "ca.crt"
-inkey "example-app1.key" -out "example-app1.p12" -passout pass:<PASSWORD>

Replace <PASSWORD> with a password of your own choosing.
A key store is created in a file called example-app1.p12. The application's key and certificate is
stored inside, with a "label" or "friendly name" of "example-app1", as well as the CA certificate.

d) If you are using an arm64 Apple Mac, then you need to configure an additional file combining the
application and CA certificates.
For example:

cat example-app1.crt ca.crt > example-app1-chain.crt

Related tasks
“Example: Configuring a queue manager with mutual TLS authentication” on page 139
This example deploys a queue manager into the OpenShift Container Platform using the IBM MQ
Operator. Mutual TLS is used for authentication, to map from a TLS certificate to an identity in the queue
manager.
“Example: Configuring Native HA using the IBM MQ Operator” on page 147
This example deploys a queue manager using the native high availability feature into the OpenShift
Container Platform using the IBM MQ Operator. Mutual TLS is used for authentication, to map from a TLS
certificate to an identity in the queue manager.
“Configuring a multi-instance queue manager using the IBM MQ Operator” on page 152
This example deploys a multi-instance queue manager using into the OpenShift Container Platform using
the IBM MQ Operator. Mutual TLS is used for authentication, to map from a TLS certificate to an identity in
the queue manager.

Example: Configuring a queue manager with mutual
TLS authentication
This example deploys a queue manager into the OpenShift Container Platform using the IBM MQ
Operator. Mutual TLS is used for authentication, to map from a TLS certificate to an identity in the queue
manager.

Before you begin
To complete this example, you must first have completed the following prerequisites:

• Create a OpenShift Container Platform (OCP) project/namespace for this example.
• On the command line, log into the OCP cluster, and switch to the above namespace.
• Ensure the IBM MQ Operator is installed and available in the above namespace.

About this task
This example provides a custom resource YAML defining a queue manager to be deployed into the
OpenShift Container Platform. It also details the additional steps required to deploy the queue manager
with TLS enabled.

Procedure
1. Create a pair of certificates as described in “Creating a self-signed PKI using OpenSSL” on page 137.
2. Create a config map containing MQSC commands and an INI file

Create a Kubernetes ConfigMap containing the MQSC commands to create a new queue and a
SVRCONN channel, and to add a channel authentication record that allows access to the channel.

IBM MQ in containers and IBM Cloud Pak for Integration 139

Ensure you are in the namespace you created earlier (see Before you begin), then enter the following
YAML in the OCP web console, or using the command line.

apiVersion: v1
kind: ConfigMap
metadata:
 name: example-tls-configmap
data:
 example-tls.mqsc: |
 DEFINE CHANNEL('MTLS.SVRCONN') CHLTYPE(SVRCONN) SSLCAUTH(REQUIRED)
SSLCIPH('ANY_TLS13_OR_HIGHER') REPLACE
 SET CHLAUTH('MTLS.SVRCONN') TYPE(SSLPEERMAP) SSLPEER('CN=*') USERSRC(NOACCESS)
ACTION(REPLACE)
 SET CHLAUTH('MTLS.SVRCONN') TYPE(SSLPEERMAP) SSLPEER('CN=example-app1') USERSRC(MAP)
MCAUSER('app1') ACTION(REPLACE)
 SET AUTHREC PRINCIPAL('app1') OBJTYPE(QMGR) AUTHADD(CONNECT,INQ)
 DEFINE QLOCAL('EXAMPLE.QUEUE') REPLACE
 SET AUTHREC PROFILE('EXAMPLE.QUEUE') PRINCIPAL('app1') OBJTYPE(QUEUE)
AUTHADD(BROWSE,PUT,GET,INQ)
 example-tls.ini: |
 Service:
 Name=AuthorizationService
 EntryPoints=14
 SecurityPolicy=UserExternal

The MQSC defines a channel called MTLS.SVRCONN and a queue called EXAMPLE.QUEUE. The channel
is configured to allow access only to clients which present a certificate with a "common name" of
example-app1. This is the common name used in one of the certificates created in Step “1” on page
139. Connections on this channel with this common name are mapped to a user ID of app1, which is
authorized to connect to the queue manager, and to access the example queue. The INI file enables a
security policy which means that the app1 user ID does not need to exist in an external user registry —
it exists only as a name in this configuration.

3. Deploy the queue manager
Create a new queue manager using the following custom resource YAML. Ensure you are in the
namespace you created before you began this task, then enter the following YAML in the OCP web
console, or using the command line. Check that the correct license is specified, and accept the license
by changing false to true.

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: exampleqm
spec:
 license:
 accept: false
 license: L-AMRD-XH6P3Q
 use: Production
 queueManager:
 name: EXAMPLEQM
 mqsc:
 - configMap:
 name: example-tls-configmap
 items:
 - example-tls.mqsc
 ini:
 - configMap:
 name: example-tls-configmap
 items:
 - example-tls.ini
 storage:
 queueManager:
 type: ephemeral
 version: 9.3.5.1-r2
 pki:
 keys:
 - name: default
 secret:
 secretName: example-qm-tls
 items:
 - tls.key
 - tls.crt
 - ca.crt

140 IBM MQ in containers

Note that the Secret example-qm-tls was created in Step “1” on page 139, and the ConfigMap
example-tls-configmap was created in Step “2” on page 139

4. Confirm that the queue manager is running
The queue manager is now being deployed. Confirm it is in Running state before proceeding. For
example:

oc get qmgr exampleqm

5. Test the connection to the queue manager
To confirm the queue manager is configured for mutual TLS communication, follow the steps in
“Testing a mutual TLS connection to a queue manager from your laptop” on page 141.

Results
Congratulations, you have successfully deployed a queue manager with TLS enabled, and which uses
details provided in the TLS certificate to authenticate with the queue manager and provide an identity.

Testing a mutual TLS connection to a queue manager
from your laptop
After you have created a queue manager using the IBM MQ Operator, you can test that it is working by
connecting to it and putting and getting a message. This task takes you through how to connect using the
IBM MQ sample programs, by running them on a machine outside the Kubernetes cluster, such as your
laptop.

Before you begin
To complete this example, you must first have completed the following prerequisites:

• Install the IBM MQ client. You need the amqsputc and amqsgetc commands, which can be installed as
part of the IBM MQ client as follows:

– For Windows and Linux: Install the IBM MQ redistributable client for your
operating system from https://ibm.biz/mq93redistclients

– For Mac: Download and set up the IBM MQ MacOS Toolkit: https://developer.ibm.com/
tutorials/mq-macos-dev/

• Ensure you have the necessary key and certificate files downloaded to a directory on your machine, and
that you know the key store password. For example, these files are created in “Creating a self-signed
PKI using OpenSSL” on page 137:

– example-app1.p12
– example-app1-chain.crt (only if you're using an arm64 Apple Mac)

• Deploy a queue manager configured with TLS to the OCP cluster, for example by following the steps in
“Example: Configuring a queue manager with mutual TLS authentication” on page 139

About this task
This example uses the IBM MQ sample programs running on a machine outside the Kubernetes cluster
such as your laptop, to connect to a QueueManager configured with TLS and to put and get messages.

Procedure
1. Confirm that the queue manager is running

The queue manager is now being deployed. Confirm it is in Running state before proceeding. For
example:

oc get qmgr exampleqm

IBM MQ in containers and IBM Cloud Pak for Integration 141

https://ibm.biz/mq93redistclients
https://developer.ibm.com/tutorials/mq-macos-dev/
https://developer.ibm.com/tutorials/mq-macos-dev/

2. Find the queue manager hostname
Use the following command to find the queue manager fully-qualified hostname for the queue
manager from outside the OCP cluster, using the route which is created automatically: exampleqm-
ibm-mq-qm:

oc get route exampleqm-ibm-mq-qm --template="{{.spec.host}}"

3. Create a IBM MQ Client Channel Definition Table (CCDT)

Create a file called ccdt.json with the following contents:

{
 "channel":
 [
 {
 "name": "MTLS.SVRCONN",
 "clientConnection":
 {
 "connection":
 [
 {
 "host": "<hostname from previous step>",
 "port": 443
 }
],
 "queueManager": "EXAMPLEQM"
 },
 "transmissionSecurity":
 {
 "cipherSpecification": "ANY_TLS13",
 "certificateLabel": "example-app1"
 },
 "type": "clientConnection"
 }
]
}

The connection uses port 443, because that's the port the Red Hat OpenShift Container Platform
router is listening on. The traffic will be forwarded to the queue manager on port 1414.

If you have used a different channel name, then you will also need to adjust that. The mutual TLS
examples use a channel named MTLS.SVRCONN

For more details, see Configuring a JSON format CCDT
4. Create an client INI file to configure the connection details

Create a file called mqclient.ini in the current directory. This file will be read by amqsputc and
amqsgetc.

Channels:
 ChannelDefinitionDirectory=.
 ChannelDefinitionFile=ccdt.json
SSL:
 OutboundSNI=HOSTNAME
 SSLKeyRepository=example-app1.p12
 SSLKeyRepositoryPassword=<password you used when creating the p12 file>

Make sure to update the SSLKeyRepositoryPassword to the password you chose when creating the
PKCS#12 file. There are other ways to set the key store password, including using an encrypted
password. For more information see Supplying the key repository password for an IBM MQ MQI client
on AIX, Linux, and Windows

Note that the Red Hat OpenShift Container Platform Router uses SNI for routing requests to the IBM
MQ queue manager. The OutboundSNI=HOSTNAME attribute ensures that the IBM MQ client includes
the necessary information for the router to work with the default route configured by the IBM MQ
Operator. For more information, see “Configuring a Route to connect to a queue manager from outside
a Red Hat OpenShift cluster ” on page 155.

5. If you are using an arm64 Apple Mac, then you need to configure an additional environment variable.

142 IBM MQ in containers

export MQSSLTRUSTSTORE=example-app1-chain.crt

This file contains the full certificate chain, including the application and CA certificates.
6. Put messages to the queue

Run the following command:

/opt/mqm/samp/bin/amqsputc EXAMPLE.QUEUE EXAMPLEQM

If connection to the queue manager is successful, the following response is output:

target queue is EXAMPLE.QUEUE

Put several messages to the queue, by entering some text then pressing Enter each time.

To finish, press Enter twice.
7. Retrieve the messages from the queue

Run the following command:

/opt/mqm/samp/bin/amqsgetc EXAMPLE.QUEUE EXAMPLEQM

The messages you added in the previous step have been consumed, and are output. After a few
seconds, the command exits.

Results
Congratulations, you have successfully tested the connection a queue manager with TLS enabled, and
shown that you can securely put and get messages to the queue manager from a client.

Example: Customizing license service annotations
The IBM MQ Operator automatically adds IBM License Service annotations to the deployed resources.
These are monitored by the IBM License Service, and reports are generated that correspond to the
required entitlement.

About this task
The annotations added by the IBM MQ Operator are those expected in standard situations, and are based
on the license values selected during deployment of a queue manager.

Example

If License is set to L-RJON-BZFQU2 (IBM Cloud Pak for Integration 2021.2.1), and Use is
set to NonProduction, then the following annotations are applied:

• cloudpakId: c8b82d189e7545f0892db9ef2731b90d
• cloudpakName: IBM Cloud Pak for Integration
• productChargedContainers: qmgr
• productCloudpakRatio: '4:1'
• productID: 21dfe9a0f00f444f888756d835334909
• productName: IBM MQ Advanced for Non-Production
• productMetric: VIRTUAL_PROCESSOR_CORE
• productVersion: 9.2.3.0

Within the IBM Cloud Pak for Integration, deployments of IBM App Connect Enterprise include a
restricted entitlement for IBM MQ. In these situations, these annotations need to be overridden to assure
that the IBM License Service captures the correct usage. To do this, use the approach described in
“Adding custom annotations and labels to queue manager resources” on page 167.

IBM MQ in containers and IBM Cloud Pak for Integration 143

For example, if IBM MQ is deployed under IBM App Connect Enterprise entitlement, use the approach
shown in the following code fragment:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: mq4ace
 namespace: cp4i
spec:
 annotations:
 productMetric: FREE

There are two other common reasons why license annotations might require modification:

1. IBM MQ Advanced is included in the entitlement of another IBM product.

• In this situation, use the approach previously described for IBM App Connect Enterprise.
2. IBM MQ is deployed under an IBM Cloud Pak for Integration license.

• If you have an IBM Cloud Pak for Integration license, you can decide to deploy a queue manager
either under the IBM MQ or IBM MQ Advanced ratio. If you deploy under an IBM MQ ratio, you
must ensure that you do not use any advanced capabilities such as Native HA or Advanced Message
Security.

• In this situation, use the following annotations for production use:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: mq4ace
 namespace: cp4i
spec:
 annotations:
 productID: c661609261d5471fb4ff8970a36bccea
 productCloudpakRatio: '4:1'
 productName: IBM MQ for Production
 productMetric: VIRTUAL_PROCESSOR_CORE

• Use the following annotations for non-production use:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: mq4ace
 namespace: cp4i
spec:
 annotations:
 productID: 151bec68564a4a47a14e6fa99266deff
 productCloudpakRatio: '8:1'
 productName: IBM MQ for Non-Production
 productMetric: VIRTUAL_PROCESSOR_CORE

Configuring high availability for queue managers using
the IBM MQ Operator

About this task

Procedure
• “Native HA” on page 145.
• “Example: Configuring Native HA using the IBM MQ Operator” on page 147.
• “Configuring a multi-instance queue manager using the IBM MQ Operator” on page 152.

144 IBM MQ in containers

Native HA
Native HA is a native (built-in) high availability solution for IBM MQ that is suitable for use with cloud
block storage.

A Native HA configuration provides a highly available queue manager where the recoverable MQ data
(for example, the messages) are replicated across multiple sets of storage, preventing loss from storage
failures. The queue manager consists of multiple running instances, one is the leader, the others are ready
to quickly take over in the event of a failure, maximizing access to the queue manager and its messages.

A Native HA configuration consists of three Kubernetes pods, each with an instance of the queue
manager. One instance is the active queue manager, processing messages and writing to its recovery
log. Whenever the recovery log is written, the active queue manager sends the data to the other two
instances, known as replicas. Each replica writes to its own recovery log, acknowledges the data, and
then updates its own queue data from the replicated recovery log. If the pod running the active queue
manager fails, one of the replica instances of the queue manager takes over the active role and has
current data to operate with.

The log type is known as a 'replicated log'. A replicated log is essentially a linear log, with automatic log
management and automatic media images enabled. See Types of logging. You use the same techniques
for managing the replicated log that you use for managing a linear log.

A Kubernetes Service is used to route TCP/IP client connections to the current active instance, which is
identified as being the only pod which is ready for network traffic. This happens without the need for the
client application to be aware of the different instances.

Three pods are used to greatly reduce the possibility of a split-brain situation arising. In a two-pod high
availability system split-brain could occur when the connectivity between the two pods breaks. With no
connectivity, both pods could run the queue manager at the same time, accumulating different data.
When connection is restored, there would be two different versions of the data (a 'split-brain'), and
manual intervention is required to decide which data set to keep, and which to discard.

Native HA uses a three pod system with quorum to avoid the split-brain situation. Pods that can
communicate with at least one of the other pods form a quorum. A queue manager can only become
the active instance on a pod that has quorum. The queue manager cannot become active on a pod that is
not connected to at least one other pod, so there can never be two active instances at the same time:

• If a single pod fails, the queue manager on one of the other two pods can take over. If two pods fail,
the queue manager cannot become the active instance on the remaining pod because the pod does not
have quorum (the remaining pod cannot tell whether the other two pods have failed, or they are still
running and it has lost connectivity).

• If a single pod loses connectivity, the queue manager cannot become active on this pod because the
pod does not have quorum. The queue manager on one of the remaining two pods can take over, which
do have quorum. If all pods lose connectivity, the queue manager is unable to become active on any of
the pods, because none of the pods have quorum.

If an active pod fails, and subsequently recovers, it can rejoin the group in a replica role.

For performance and reliability, RWO (ReadWriteOnce) persistent storage is recommended for use with a
Native HA configuration. RWO volumes from any storage provider are supported if they meet the following
conditions:

• Obtained from a block storage provider.
• Formatted as ext4 or XFS (which ensures POSIX compliance).
• Supports dynamic volume provisioning and "volumeBindingMode: WaitForFirstConsumer".

The following providers are explicitly prohibited:

• NFS
• GlusterFS
• Other non-block providers.

IBM MQ in containers and IBM Cloud Pak for Integration 145

The following figure shows a typical deployment with three instances of a queue manager deployed in
three containers.

Figure 1. Example of Native HA configuration

Configuring Native HA using the IBM MQ Operator
Native HA is configured using the QueueManager API, and advanced options are available using an INI
file.

Native HA is configured using the .spec.queueManager.availability of the QueueManager API,
for example:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
name: nativeha-example
spec:
 license:
 accept: false
 license: L-AMRD-XH6P3Q
 use: Production
 queueManager:
 availability:
 type: NativeHA
 version: 9.3.5.1-r2

The .spec.queueManager.availability.type field must be set to NativeHA.

146 IBM MQ in containers

Under .spec.queueManager.availability, you can also configure a TLS secret and ciphers to use
between queue manager instances when replicating. This is strongly recommended, and a step-by-step
guide is available in “Example: Configuring Native HA using the IBM MQ Operator” on page 147.

Related tasks
“Example: Configuring Native HA using the IBM MQ Operator” on page 147
This example deploys a queue manager using the native high availability feature into the OpenShift
Container Platform using the IBM MQ Operator. Mutual TLS is used for authentication, to map from a TLS
certificate to an identity in the queue manager.

Example: Configuring Native HA using the IBM MQ
Operator
This example deploys a queue manager using the native high availability feature into the OpenShift
Container Platform using the IBM MQ Operator. Mutual TLS is used for authentication, to map from a TLS
certificate to an identity in the queue manager.

Before you begin
To complete this example, you must first have completed the following prerequisites:

• Create a OpenShift Container Platform (OCP) project/namespace for this example.
• On the command line, log into the OCP cluster, and switch to the above namespace.
• Ensure the IBM MQ Operator is installed and available in the above namespace.

About this task
This example provides a custom resource YAML defining a queue manager to be deployed into the
OpenShift Container Platform. It also details the additional steps required to deploy the queue manager
with TLS enabled.

Procedure
1. Create a pair of certificates as described in “Creating a self-signed PKI using OpenSSL” on page 137.
2. Create a config map containing MQSC commands and an INI file

Create a Kubernetes ConfigMap containing the MQSC commands to create a new queue and a
SVRCONN channel, and to add a channel authentication record that allows access to the channel.
Ensure you are in the namespace you created earlier (see Before you begin), then enter the following
YAML in the OCP web console, or using the command line.

apiVersion: v1
kind: ConfigMap
metadata:
 name: example-nativeha-configmap
data:
 example-tls.mqsc: |
 DEFINE CHANNEL('MTLS.SVRCONN') CHLTYPE(SVRCONN) SSLCAUTH(REQUIRED)
SSLCIPH('ANY_TLS13_OR_HIGHER') REPLACE
 SET CHLAUTH('MTLS.SVRCONN') TYPE(SSLPEERMAP) SSLPEER('CN=*') USERSRC(NOACCESS)
ACTION(REPLACE)
 SET CHLAUTH('MTLS.SVRCONN') TYPE(SSLPEERMAP) SSLPEER('CN=example-app1') USERSRC(MAP)
MCAUSER('app1') ACTION(REPLACE)
 SET AUTHREC PRINCIPAL('app1') OBJTYPE(QMGR) AUTHADD(CONNECT,INQ)
 DEFINE QLOCAL('EXAMPLE.QUEUE') REPLACE
 SET AUTHREC PROFILE('EXAMPLE.QUEUE') PRINCIPAL('app1') OBJTYPE(QUEUE)
AUTHADD(BROWSE,PUT,GET,INQ)
 example-tls.ini: |
 Service:
 Name=AuthorizationService
 EntryPoints=14
 SecurityPolicy=UserExternal

The MQSC defines a channel called MTLS.SVRCONN and a queue called EXAMPLE.QUEUE. The channel
is configured to allow access only to clients which present a certificate with a "common name" of

IBM MQ in containers and IBM Cloud Pak for Integration 147

example-app1. This is the common name used in one of the certificates created in Step “1” on page
147. Connections on this channel with this common name are mapped to a user ID of app1, which is
authorized to connect to the queue manager, and to access the example queue. The INI file enables a
security policy which means that the app1 user ID does not need to exist in an external user registry —
it exists only as a name in this configuration.

3. Deploy the queue manager
Create a new queue manager using the following custom resource YAML. Ensure you are in the
namespace you created before you began this task, then enter the following YAML in the OCP web
console, or using the command line. Check that the correct license is specified, and accept the license
by changing false to true.

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: exampleqm
spec:
 license:
 accept: false
 license: L-AMRD-XH6P3Q
 use: Production
 queueManager:
 name: EXAMPLEQM
 availability:
 type: NativeHA
 tls:
 secretName: example-qm-tls
 mqsc:
 - configMap:
 name: example-nativeha-configmap
 items:
 - example-tls.mqsc
 ini:
 - configMap:
 name: example-nativeha-configmap
 items:
 - example-tls.ini
 storage:
 queueManager:
 type: persistent-claim
 version: 9.3.5.1-r2
 pki:
 keys:
 - name: default
 secret:
 secretName: example-qm-tls
 items:
 - tls.key
 - tls.crt
 - ca.crt

Note that the Secret example-qm-tls was created in Step “1” on page 147, and the ConfigMap
example-nativeha-configmap was created in Step “2” on page 147

The availability type is set to NativeHA, and persistent storage is selected. The default storage class
configured in your Kubernetes cluster will be used. If you do not have a storage class configured as
default, or you want to use a different storage class, add defaultClass: <storage_class_name>
under spec.queueManager.storage.

The three pods in a Native HA queue manager replicate data over the network. This link is not
encrypted by default, but this example uses the queue manager's certificate for encrypting traffic.
You can specify a different certificate for additional security. The Native HA TLS Secret must be a
Kubernetes TLS Secret, which has a particular structure (for example, the private key must be called
tls.key).

4. Confirm that the queue manager is running
The queue manager is now being deployed. Confirm it is in Running state before proceeding. For
example:

oc get qmgr exampleqm

148 IBM MQ in containers

5. Test the connection to the queue manager
To confirm the queue manager is configured and available, follow the steps in “Testing a mutual TLS
connection to a queue manager from your laptop” on page 141.

6. Force the active pod to fail
To validate the automatic recovery of the queue manager, simulate a pod failure:
a) View the active and standby pods

Run the following command:

oc get pods --selector app.kubernetes.io/instance=exampleqm

Note that, in the READY field, the active pod returns the value 1/1, whereas the replica pods return
the value 0/1.

b) Delete the active pod
Run the following command, specifying the full name of the active pod:

oc delete pod exampleqm-ibm-mq-<value>

c) View the pod status again
Run the following command:

oc get pods --selector app.kubernetes.io/instance=exampleqm

d) View the queue manager status
Run the following command, specifying the full name of one of the other pods:

oc exec -t Pod -- dspmq -o nativeha -x -m EXAMPLEQM

You should see the status shows that the active instance has changed, for example:

QMNAME(EXAMPLEQM) ROLE(Active) INSTANCE(inst1) INSYNC(Yes) QUORUM(3/3)
INSTANCE(inst1) ROLE(Active) REPLADDR(9.20.123.45) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
INSTANCE(inst2) ROLE(Replica) REPLADDR(9.20.123.46) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
INSTANCE(inst3) ROLE(Replica) REPLADDR(9.20.123.47) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)

e) Test the connection to the queue manager again
To confirm the queue manager has recovered, follow the steps in “Testing a mutual TLS connection
to a queue manager from your laptop” on page 141.

Results
Congratulations, you have successfully deployed a queue manager with native high availability and mutual
TLS authentication, and verified that it automatically recovers when the active Pod fails.

Viewing the status of Native HA queue managers for IBM MQ containers
For IBM MQ containers, you can view the status of the Native HA instances by running the dspmq
command inside one of the running Pods.

About this task
You can use the dspmq command in one of the running Pods to view the operational status of a queue
manager instance. The information returned depends on whether the instance is active or a replica. The
information supplied by the active instance is definitive, information from replica nodes might be out of
date.

You can perform the following actions:

• View whether the queue manager instance on the current node is active or a replica.

IBM MQ in containers and IBM Cloud Pak for Integration 149

• View the Native HA operational status of the instance on the current node.
• View the operational status of all three instances in a Native HA configuration.

The following status fields are used to report Native HA configuration status:
ROLE

Specifies the current role of the instance and is one of Active, Replica, or Unknown.
INSTANCE

The name provided for this instance of the queue manager when it was created using the -lr option
of the crtmqm command.

INSYNC
Indicates whether the instance is able to take over as the active instance if required.

QUORUM
Reports the quorum status in the form number_of_instances_in-sync/number_of_instances_configured.

REPLADDR
The replication address of the queue manager instance.

CONNACTV
Indicates whether the node is connected to the active instance.

BACKLOG
Indicates the number of KB that the instance is behind.

CONNINST
Indicates whether the named instance is connected to this instance.

ALTDATE
Indicates the date on which this information was last updated (blank if it has never been updated).

ALTTIME
Indicates the time at which this information was last updated (blank if it has never been updated).

Procedure
• Find the pods that are part of your queue manager.

oc get pod --selector app.kubernetes.io/instance=nativeha-qm

• Run the dspmq in one of the pods

oc exec -t Pod dspmq

oc rsh Pod

for an interactive shell, where you can run dspmq directly.
• To determine whether a queue manager instance is running as the active instance or as a replica:

oc exec -t Pod dspmq -o status -m QMgrName

An active instance of a queue manager named BOB would report the following status:

QMNAME(BOB) STATUS(Running)

A replica instance of a queue manager named BOB would report the following status:

QMNAME(BOB) STATUS(Replica)

An inactive instance would report the following status:

QMNAME(BOB) STATUS(Ended Immediately)

• To determine Native HA operational status of the instance in the specified pod:

150 IBM MQ in containers

oc exec -t Pod dspmq -o nativeha -m QMgrName

The active instance of a queue manager named BOB might report the following status:

QMNAME(BOB) ROLE(Active) INSTANCE(inst1) INSYNC(Yes) QUORUM(3/3)

A replica instance of a queue manager named BOB might report the following status:

QMNAME(BOB) ROLE(Replica) INSTANCE(inst2) INSYNC(Yes) QUORUM(2/3)

An inactive instance of a queue manager named BOB might report the following status:

QMNAME(BOB) ROLE(Unknown) INSTANCE(inst3) INSYNC(no) QUORUM(0/3)

• To determine the Native HA operational status of all the instances in the Native HA configuration:

oc exec -t Pod dspmq -o nativeha -x -m QMgrName

If you issue this command on the node running the active instance of queue manager BOB, you might
receive the following status:

QMNAME(BOB) ROLE(Active) INSTANCE(inst1) INSYNC(Yes) QUORUM(3/3)
 INSTANCE(inst1) ROLE(Active) REPLADDR(9.20.123.45) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
 INSTANCE(inst2) ROLE(Replica) REPLADDR(9.20.123.46) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
 INSTANCE(inst3) ROLE(Replica) REPLADDR(9.20.123.47) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)

If you issue this command on a node running a replica instance of queue manager BOB, you might
receive the following status, which indicates that one of the replicas is lagging behind:

QMNAME(BOB) ROLE(Replica) INSTANCE(inst2) INSYNC(Yes) QUORUM(2/3)
 INSTANCE(inst2) ROLE(Replica) REPLADDR(9.20.123.46) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
 INSTANCE(inst1) ROLE(Active) REPLADDR(9.20.123.45) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
 INSTANCE(inst3) ROLE(Replica) REPLADDR(9.20.123.47) CONNACTV(Yes) INSYNC(No) BACKLOG(435)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)

If you issue this command on a node running an inactive instance of queue manager BOB, you might
receive the following status:

QMNAME(BOB) ROLE(Unknown) INSTANCE(inst3) INSYNC(no) QUORUM(0/3)
 INSTANCE(inst1) ROLE(Unknown) REPLADDR(9.20.123.45) CONNACTV(Unknown) INSYNC(Unknown)
BACKLOG(Unknown) CONNINST(No) ALTDATE() ALTTIME()
 INSTANCE(inst2) ROLE(Unknown) REPLADDR(9.20.123.46) CONNACTV(Unknown) INSYNC(Unknown)
BACKLOG(Unknown) CONNINST(No) ALTDATE() ALTTIME()
 INSTANCE(inst3) ROLE(Unknown) REPLADDR(9.20.123.47) CONNACTV(No) INSYNC(Unknown)
BACKLOG(Unknown) CONNINST(No) ALTDATE() ALTTIME()

If you issue the command when the instances are still negotiating which is active and which are
replicas, you would receive the following status:

QMNAME(BOB) STATUS(Negotiating)

Related tasks
“Example: Configuring Native HA using the IBM MQ Operator” on page 147
This example deploys a queue manager using the native high availability feature into the OpenShift
Container Platform using the IBM MQ Operator. Mutual TLS is used for authentication, to map from a TLS
certificate to an identity in the queue manager.
Related reference
dspmq (display queue managers) command

IBM MQ in containers and IBM Cloud Pak for Integration 151

Advanced tuning for Native HA
Advanced settings for tuning timings and intervals. There should be no need to use these settings unless
the defaults are known not to match your system's requirements.

The basic options for configuring Native HA are handled using the QueueManager API, which the IBM
MQ Operator uses to configure the underlying queue manager INI files for you. There are some more
advanced options that are only configurable using an INI file, under the NativeHALocalInstance stanza.
See also “Example: Supplying MQSC and INI files” on page 136 for more information on how to configure
an INI file.

HeartbeatInterval
The heartbeat interval defines how often in milliseconds an active instance of a Native HA queue
manager sends a network heartbeat. The valid range of the heartbeat interval value is 500 (0.5
seconds) to 60000 (1 minute), a value outside of this range causes the queue manager to fail to start.
If this attribute is omitted, a default value of 5000 (5 seconds) is used. Each instance must use the
same heartbeat interval.

HeartbeatTimeout
The heartbeat timeout defines how long a replica instance of a Native HA queue manager waits before
it decides that the active instance is unresponsive. The valid range of the heartbeat interval timeout
value is 500 (0.5 seconds) to 120000 (2 minutes). The value of the heartbeat timeout must be greater
than or equal to the heartbeat interval.

An invalid value causes the queue manager to fail to start. If this attribute is omitted a replica waits
for 2 x HeartbeatInterval before starting the process to elect a new active instance. Each instance
must use the same heartbeat timeout.

RetryInterval
The retry interval defines how often in milliseconds a Native HA queue manager should retry a failed
replication link. The valid range of the retry interval is 500 (0.5 seconds) to 120000 (2 minutes). If this
attribute is omitted a replica waits for 2 x HeartbeatInterval before retrying a failed replication
link.

Ending Native HA queue managers
You can use the endmqm command to end an active or a replica queue manager that is part of a Native HA
group.

Procedure
• To end the active instance of a queue manager, see Ending Native HA queue managers in the

Configuring section of this documentation.

Configuring a multi-instance queue
manager using the IBM MQ Operator
This example deploys a multi-instance queue manager using into the OpenShift Container Platform using
the IBM MQ Operator. Mutual TLS is used for authentication, to map from a TLS certificate to an identity in
the queue manager.

Before you begin
To complete this example, you must first have completed the following prerequisites:

• Create a OpenShift Container Platform (OCP) project/namespace for this example.
• On the command line, log into the OCP cluster, and switch to the above namespace.
• Ensure the IBM MQ Operator is installed and available in the above namespace.

152 IBM MQ in containers

About this task
This example provides a custom resource YAML defining a queue manager to be deployed into the
OpenShift Container Platform. It also details the additional steps required to deploy the queue manager
with TLS enabled.

Procedure
1. Determine a suitable storage class

Storage in a Kubernetes cluster can be accessed using multiple Persistent Volume Access modes.
A multi-instance queue manager creates multiple persistent volumes: one for each queue manager,
and at least one shared volume. The shared volume for a multi-instance queue manager must use
a ReadWriteMany storage class. The default storage class in a Kubernetes cluster is typically for a
ReadWriteOnce storage class (block storage). For example, if you are using Red Hat OpenShift Data
Foundation, the storage class ocs-storagecluster-cephfs provides a suitable shared file system. The
choice of filesystem is very important, because not all shared file systems handle file locking in the
same way. See Planning file system support on Multiplatforms and Testing statement for IBM MQ
multi-instance queue manager file systems.

2. Create a pair of certificates as described in “Creating a self-signed PKI using OpenSSL” on page 137.
3. Create a config map containing MQSC commands and an INI file

Create a Kubernetes ConfigMap containing the MQSC commands to create a new queue and a
SVRCONN channel, and to add a channel authentication record that allows access to the channel.
Ensure you are in the namespace you created earlier (see Before you begin), then enter the following
YAML in the OCP web console, or using the command line.

apiVersion: v1
kind: ConfigMap
metadata:
 name: example-miqm-configmap
data:
 example-tls.mqsc: |
 DEFINE CHANNEL('MTLS.SVRCONN') CHLTYPE(SVRCONN) SSLCAUTH(REQUIRED)
SSLCIPH('ANY_TLS13_OR_HIGHER') REPLACE
 SET CHLAUTH('MTLS.SVRCONN') TYPE(SSLPEERMAP) SSLPEER('CN=*') USERSRC(NOACCESS)
ACTION(REPLACE)
 SET CHLAUTH('MTLS.SVRCONN') TYPE(SSLPEERMAP) SSLPEER('CN=example-app1') USERSRC(MAP)
MCAUSER('app1') ACTION(REPLACE)
 SET AUTHREC PRINCIPAL('app1') OBJTYPE(QMGR) AUTHADD(CONNECT,INQ)
 DEFINE QLOCAL('EXAMPLE.QUEUE') REPLACE
 SET AUTHREC PROFILE('EXAMPLE.QUEUE') PRINCIPAL('app1') OBJTYPE(QUEUE)
AUTHADD(BROWSE,PUT,GET,INQ)
 example-tls.ini: |
 Service:
 Name=AuthorizationService
 EntryPoints=14
 SecurityPolicy=UserExternal

The MQSC defines a channel called MTLS.SVRCONN and a queue called EXAMPLE.QUEUE. The channel
is configured to allow access only to clients which present a certificate with a "common name" of
example-app1. This is the common name used in one of the certificates created in Step “2” on page
153. Connections on this channel with this common name are mapped to a user ID of app1, which is
authorized to connect to the queue manager, and to access the example queue. The INI file enables a
security policy which means that the app1 user ID does not need to exist in an external user registry —
it exists only as a name in this configuration.

4. Deploy the queue manager
Create a new queue manager using the following custom resource YAML. Ensure you are in the
namespace you created before you began this task, then enter the following YAML in the OCP web
console, or using the command line. Check that the correct license is specified, and accept the license
by changing false to true.

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: exampleqm

IBM MQ in containers and IBM Cloud Pak for Integration 153

https://www.ibm.com/links?url=https%3A%2F%2Fkubernetes.io%2Fdocs%2Fconcepts%2Fstorage%2Fpersistent-volumes%2F%23access-modes
https://www.ibm.com/support/pages/testing-statement-ibm-mq-multi-instance-queue-manager-file-systems
https://www.ibm.com/support/pages/testing-statement-ibm-mq-multi-instance-queue-manager-file-systems

spec:
 license:
 accept: false
 license: L-AMRD-XH6P3Q
 use: Production
 queueManager:
 name: EXAMPLEQM
 availability:
 type: MultiInstance
 mqsc:
 - configMap:
 name: example-miqm-configmap
 items:
 - example-tls.mqsc
 ini:
 - configMap:
 name: example-miqm-configmap
 items:
 - example-tls.ini
 storage:
 defaultClass: <STORAGE CLASS>
 version: 9.3.5.1-r2
 pki:
 keys:
 - name: default
 secret:
 secretName: example-qm-tls
 items:
 - tls.key
 - tls.crt
 - ca.crt

Change <STORAGE CLASS> to the storage class you identified in Step “1” on page 153.

Note that the Secret example-qm-tls was created in Step “2” on page 153, and the ConfigMap
example-miqm-configmap was created in Step “3” on page 153

The availability type is set to MultiInstance, which causes persistent storage to be selected
automatically.

5. Confirm that the queue manager is running
The queue manager is now being deployed. Confirm it is in Running state before proceeding. For
example:

oc get qmgr exampleqm

6. Test the connection to the queue manager
To confirm the queue manager is configured and available, follow the steps in “Testing a mutual TLS
connection to a queue manager from your laptop” on page 141.

7. Force the active pod to fail
To validate the automatic recovery of the queue manager, simulate a pod failure:
a) View the active and standby pods

Run the following command:

oc get pods --selector app.kubernetes.io/instance=exampleqm

Note that, in the READY field, the active pod returns the value 1/1, whereas the standby pod
returns the value 0/1.

b) Delete the active pod
Run the following command, specifying the full name of the active pod:

oc delete pod exampleqm-ibm-mq-<value>

c) View the pod status again
Run the following command:

oc get pods --selector app.kubernetes.io/instance=exampleqm

154 IBM MQ in containers

d) View the queue manager status
Run the following command, specifying the full name of the other pod:

oc exec -t Pod -- dspmq -x

You should see the status shows that the active instance has changed, for example:

QMNAME(EXAMPLEQM) STATUS(Running as standby)
 INSTANCE(exampleqm-ibm-mq-1) MODE(Active)
 INSTANCE(exampleqm-ibm-mq-0) MODE(Standby)

e) Test the connection to the queue manager again
To confirm the queue manager has recovered, follow the steps in “Testing a mutual TLS connection
to a queue manager from your laptop” on page 141.

Results
Congratulations, you have successfully deployed a multi-instance queue manager with mutual TLS
authentication, and verified that it automatically recovers when the active Pod fails.

Configuring a Route to connect to a
queue manager from outside a Red Hat OpenShift cluster
You need a Red Hat OpenShift Route to connect an application to an IBM MQ queue manager from outside
a Red Hat OpenShift cluster. You must enable TLS on your IBM MQ queue manager and client application,
because SNI is only available in the TLS protocol when a TLS 1.2 or higher protocol is used. The Red Hat
OpenShift Container Platform Router uses SNI for routing requests to the IBM MQ queue manager.

About this task
The required configuration of the Red Hat OpenShift Route depends on the Server Name Indication
(SNI) behavior of your client application. IBM MQ supports two different SNI header settings depending
on configuration and client type. An SNI Header is set to the hostname of the client's destination or
alternatively set to the IBM MQ channel name. For information on how IBM MQ maps a channel name to a
hostname, see How IBM MQ provides multiple certificates capability.

Whether an SNI header is set to an IBM MQ channel name or a hostname is controlled using
the OutboundSNI attribute. Possible values are OutboundSNI=CHANNEL (the default value) or
OutboundSNI=HOSTNAME. For more information, see SSL stanza of the client configuration file. Note
that CHANNEL and HOSTNAME are the exact values that you use; they are not variable names that you
replace with an actual channel name or host name.

Client behaviors with different OutboundSNI settings

If OutboundSNI is set to HOSTNAME, the following clients set a hostname SNI as long as a hostname
is provided in the connection name:

• C Clients
• .NET Clients in unmanaged mode
• Java/JMS Clients

If OutboundSNI is set to HOSTNAME and an IP address is used in the connection name, the following
clients send a blank SNI header:

• C Clients
• .NET Clients in unmanaged mode
• Java/JMS Clients (that cannot do a reverse DNS lookup of the hostname)

If OutboundSNI is set to CHANNEL, or not set, an IBM MQ channel name is used instead and is always
sent, whether a hostname or IP address connection name is used.

IBM MQ in containers and IBM Cloud Pak for Integration 155

https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html
https://tools.ietf.org/html/rfc3546#page-8

The following client types do not support setting an SNI header to an IBM MQ channel name, and so
always attempt to set the SNI header to a hostname regardless of the OutboundSNI setting:

• AMQP clients
• XR Clients
• .NET Clients in managed mode (before IBM MQ 9.3.0)

From IBM MQ 9.3.0, the IBM MQ managed .NET client has been updated to set SERVERNAME to the
respective hostname if the OutboundSNI property is set to HOSTNAME, which allows an IBM MQ
managed .NET client to connect to a queue manager using Red Hat OpenShift routes.

If a client application connects to a queue manager deployed in a Red Hat OpenShift cluster through
IBM MQ Internet Pass-Thru (MQIPT), MQIPT can be configured to set the SNI to the hostname by
using the SSLClientOutboundSNI property in the route definition.

OutboundSNI, multiple certificates, and Red Hat OpenShift routes

IBM MQ uses the SNI header to provide multiple certificates functionality. If an application is
connecting to an IBM MQ channel that is configured to use a different certificate through the
CERTLABL field, then the application must connect with an OutboundSNI setting of CHANNEL.

If your Red Hat OpenShift Route configuration requires a HOSTNAME SNI then you are unable to use
the multiple certificates functionality of IBM MQ and unable to set a CERTLABL setting on any IBM MQ
channel object.

If an application with an OutboundSNI setting of anything other than CHANNEL connects
to a channel with a certificate label configured, the application is rejected with an
MQRC_SSL_INITIALIZATION_ERROR, and an AMQ9673 message is printed in the queue manager
error logs.

For more information on how IBM MQ provides multiple certificate functionality, see How IBM MQ
provides multiple certificates capability .

Example

Client applications that set the SNI to the MQ channel require a new Red Hat OpenShift Route to be
created for each channel you wish to connect to. You also have to use unique channel names across your
Red Hat OpenShift Container Platform cluster, to allow routing to the correct queue manager.

It is important that MQ channel names do not end in a lower-case letter because of the way IBM MQ maps
channel names to SNI headers.

To determine the required host name for each of your new Red Hat OpenShift Routes, you need to map
each channel name to an SNI address. See How IBM MQ provides multiple certificates capability for more
information.

You must then create a new Red Hat OpenShift Route for each channel, by applying the following yaml in
your cluster:

 apiVersion: route.openshift.io/v1
 kind: Route
 metadata:
 name: <provide a unique name for the Route>
 namespace: <the namespace of your MQ deployment>
 spec:
 host: <SNI address mapping for the channel>
 to:
 kind: Service
 name: <the name of the Kubernetes Service for your MQ deployment (for example "<Queue Manager
Name>-ibm-mq")>
 port:
 targetPort: 1414
 tls:
 termination: passthrough

Configuring your client application connection details

You can determine the host name to use for your client connection by running the following command:

156 IBM MQ in containers

oc get route <Name of hostname based Route (for example "<Queue Manager Name>-ibm-mq-qm")>
-n <namespace of your MQ deployment> -o jsonpath="{.spec.host}"

The port for your client connection should be set to the port used by the Red Hat OpenShift Container
Platform Router - normally 443.

Related tasks
“Connecting to the IBM MQ Console deployed in a Red Hat OpenShift cluster” on page 173
How to connect to the IBM MQ Console of a queue manager that has been deployed onto a Red Hat
OpenShift Container Platform cluster.

Integrating with the IBM Cloud Pak for
Integration Operations Dashboard
The ability to trace transactions through IBM Cloud Pak for Integration is provided by the Operations
Dashboard.

Before you begin
Attention:

From IBM MQ Operator 2.0.0 the Operations Dashboard
is deprecated, and will receive no further updates. No new uses of the Operations Dashboard
should be created.

From IBM MQ Operator 2.4.0 the Operations Dashboard is removed.
Note that the Operations Dashboard may still be used for existing queue managers that are older
than 9.3.3.0-r1 if on an IBM MQ Operator that supports that queue manager container image. For
version support for the IBM MQ Operator, see “Available IBM MQ versions” on page 11.

Support for the Operations Dashboard ends on June 30, 2025. For more information, see Software
withdrawal and/or support discontinuance.

About this task
Enabling integration with the Operations Dashboard installs an MQ API exit to your queue manager. The
API exit will send tracing data to the Operations Dashboard data store, about messages which are flowing
through the queue manager.

Note that only messages which are sent using MQ client bindings are traced.

Procedure
1. Deploy a queue manager with tracing enabled

By default, the tracing feature is disabled.

If you are deploying using the IBM Cloud Pak for Integration Platform UI (previously the Platform
Navigator), then you can enable tracing while deploying, by setting Enable Tracing to On, and setting
the Tracing Namespace to the namespace where the Operations Dashboard is installed. For more
information on deploying a queue manager, see Deploy a queue manager with the IBM Cloud Pak for
Integration Platform UI

If you are deploying using the Red Hat OpenShift CLI or Red Hat OpenShift web console, then you can
enable tracing with the following YAML snippet:

spec:
 tracing:
 enabled: true
 namespace: <Operations_Dashboard_Namespace

IBM MQ in containers and IBM Cloud Pak for Integration 157

https://www.ibm.com/docs/en/announcements/software-withdrawal-andor-support-discontinuance-select-software-from-following-divisions-chief-operating-officer-data-ai-automation-sustainability-software-security-watson-advertising-weather-z-linuxone-products-part-numbers-vrm-some-replacements-available?region=US
https://www.ibm.com/docs/en/announcements/software-withdrawal-andor-support-discontinuance-select-software-from-following-divisions-chief-operating-officer-data-ai-automation-sustainability-software-security-watson-advertising-weather-z-linuxone-products-part-numbers-vrm-some-replacements-available?region=US

Important: The queue manager will not start until MQ has been registered with the Operations
Dashboard (see the next step).

Note that when this feature is enabled, it will run two sidecar containers ("Agent" and "Collector") in
addition to the queue manager container. The images for these sidecar containers will be available in
the same registry as the main MQ image, and will use the same pull policy and pull secret. There are
additional settings available to configure CPU and memory limits.

2. If this is the first time a queue manager with Operations Dashboard integration has been deployed in
this namespace, then you need to Register with the Operations Dashboard.
Registering creates a Secret object which the queue manager Pod needs to successfully start.

Integrating IBM MQ with IBM Instana tracing
IBM Instana can be used to trace transactions within IBM Cloud Pak for Integration.

Before you begin
This document covers IBM Instana tracing, which is the process of tracing messages through a system.
It does not cover IBM Instana monitoring, in which detail is retrieved about the state of an IBM MQ
queue manager. For information regarding monitoring of IBM MQ by IBM Instana see Monitoring IBM
MQ. For detailed instructions on authenticated monitoring, see “Configuring authenticated IBM Instana
monitoring with TLS” on page 160.

Note:

• This feature can only be used with the IBM MQ Operator version 2.2.0 and later. This feature is
supported only on Operands of IBM MQ version 9.3.1.0-r2 or later.

• You can run IBM Instana tracing on previous IBM MQ Operator and queue manager versions, but not
natively. See Configuring IBM MQ Tracing in the IBM Instana documentation.

Before you can perform IBM Instana tracing with the IBM MQ Operator, you must deploy both an IBM
Instana backend and IBM Instana agents. By default, an IBM MQ queue manager communicates with an
IBM Instana agent deployed on the same node as the queue manager pod.

About this task
Enabling integration with IBM Instana causes an IBM MQ API exit to be installed in your queue manager.
The API exit sends tracing data to IBM Instana agents about messages that are flowing through the queue
manager.

The API exit adds RFH2 headers to each message. These headers contain tracing information.

The IBM Instana agents are responsible for sending the tracing data to the IBM Instana backend.

For information about deploying an IBM Instana backend and IBM Instana agents, see Enabling IBM
Instana monitoring in the CP4I Platform UI in the IBM Instana documentation.

Procedure
Standard Deployment
• Deploy a queue manager with IBM Instana tracing enabled.

By default, IBM Instana tracing is disabled.

If you are using the IBM Cloud Pak for Integration Platform UI (previously the Platform Navigator) or
the OpenShift web console:

1. Click Telemetry > Tracing > Instana.
2. Set the Enable Instana tracing toggle to true.

If you are deploying through YAML, use the following snippet:

158 IBM MQ in containers

spec:
 telemetry:
 tracing:
 instana:
 enabled: true

Advanced Deployment
• Communicate with the IBM Instana agent over https.

By default, the IBM Instana exit for IBM MQ communicates with the IBM Instana agent over http.
The agent's host address is set to the IP address of the node the queue manager is running on.
This matches the configuration described in Enabling IBM Instana monitoring in the IBM Instana
documentation, where IBM Instana agents are deployed by the IBM Instana Agent Operator as a
daemonset.

Currently the communication between the IBM Instana exit for IBM MQ and the IBM Instana agent
supports http or https protocols. To use https, the IBM Instana agent must first be configured to use
TLS encryption. See Setting up TLS encryption for Agent endpoint in the IBM Instana documentation.
The protocol can then be set to https as follows:

If you are using the OpenShift web console:

1. Click Telemetry > Instana.
2. Expand the Advanced configuration dropdown list.
3. Set the Instana agent communication protocol to https.

If you are deploying through YAML, use the following snippet:

spec:
 telemetry:
 instana:
 enabled: true
 protocol: https

• Set the agentHost

If IBM Instana agents have not been deployed as a daemonset on the Openshift cluster where the
queue manager is running, then you must set the agentHost value to the hostname or IP address
where the IBM Instana agent is running. The agentHost value should not include a protocol or port.

If you are using the OpenShift web console:

1. Click Telemetry > Instana.
2. Expand the Advanced configuration dropdown list.
3. Type your hostname into the Instana agent host text box.

If you are deploying through YAML, use the following snippet:

spec:
 telemetry:
 instana:
 enabled: true
 agentHost: 9.9.9.9

What to do next
See also “Deploying a queue manager onto a Red Hat OpenShift Container Platform cluster” on page 118.

IBM MQ in containers and IBM Cloud Pak for Integration 159

Configuring authenticated IBM Instana
monitoring with TLS
To be able to monitor a queue manager through an IBM Instana agent, you must configure both the agent
and the queue manager.

Before you begin
The "Configuration" section of "Monitoring IBM MQ" in the IBM Instana documentation provides general
information regarding IBM Instana monitoring configuration. However it does not include details on
configuring the queue manager.

Before you can perform IBM Instana tracing with the IBM MQ Operator, you must deploy both an IBM
Instana backend and IBM Instana agents. To do this, see Enabling IBM Instana monitoring in the CP4I
Platform UI in the IBM Instana documentation.

Procedure
1. Generate certificates.
2. Configure the IBM Instana agents.
3. Configure the queue manager.
4. Verify and debug.

Related tasks
“Integrating IBM MQ with IBM Instana tracing” on page 158
IBM Instana can be used to trace transactions within IBM Cloud Pak for Integration.

Generate a certificate and key for the IBM Instana
agent and the queue manager
For TLS communication between the IBM Instana agent and the queue manager, both must have a
certificate and corresponding private key.

Before you begin
This is the first of four tasks to configure authenticated IBM Instana monitoring with TLS.

Note: The values used in the generation of these certificates are for demonstration purposes. When
deploying in a production environment ensure that the subject and expiry of the certificate are
appropriate.

Procedure
IBM MQ Queue manager

To communicate with the IBM Instana agent through TLS, the queue manager must have a certificate and
corresponding private key. If you already have these, then skip this section.
1. Generate a certificate and private key for the queue manager.

Run the following command:

openssl req \
 -newkey rsa:2048 -nodes -keyout server.key \
 -subj "/CN=mq queuemanager/OU=ibm mq" \
 -x509 -days 3650 -out server.crt

IBM Instana agent

For the agent to perform TLS communication with the IBM MQ queue manager, the agent must have
a certificate and corresponding private key. If you already have a private key and certificate in a JKS
keystore that you would like to use, then skip this section.

160 IBM MQ in containers

2. Generate a certificate and private key for the IBM Instana agent.

Run the following command:

openssl req \
 -newkey rsa:2048 -nodes -keyout application.key \
 -subj "/CN=instana-agent/OU=app team1" \
 -x509 -days 3650 -out application.crt

3. Store the certificate and private key in a PKCS12 keystore.

Run the following command, replacing your_password with the password you want to use to secure the
keystore. Perform this replacement in all subsequent steps.

openssl pkcs12 -export -out application.p12 -inkey application.key -in application.crt
-passout pass:your_password

4. Convert the PKCS12 keystore into a JKS keystore.

Run the following command:

keytool -importkeystore \
 -srckeystore application.p12 \
 -srcstoretype pkcs12 \
 -destkeystore application.jks \
 -deststoretype JKS \
 -srcstorepass your_password \
 -deststorepass your_password \
 -noprompt

5. Label the certificate.

Run the following command:

keytool -changealias -alias "1" -destalias "instana" -keypass your_password -keystore
application.jks -storepass your_password -noprompt

6. Import the queue manager certificate into the keystore.

Run the following command:

keytool -importcert -file server.crt -keystore application.jks -storepass your_password
-alias myca -noprompt

What to do next
You are now ready to configure the agents for IBM Instana monitoring.

Instana monitoring: Configuring agents
Mount the keystore to the IBM Instana agents, then configure monitoring for a specific queue manager.

Before you begin
This task assumes that you have generated a certificate and key for the IBM Instana agents and the queue
manager.

Procedure
Mounting the keystore to the IBM Instana agents
1. Create a secret from your JKS keystore in the IBM Instana agent namespace.

Run the following command, replacing keystore_secret_name with the name you want to use. Perform
this replacement in all subsequent steps.

oc create secret generic keystore_secret_name --from-file=./application.jks -n instana-agent

IBM MQ in containers and IBM Cloud Pak for Integration 161

2. In the instana-agent namespace, use the oc edit daemonset instana-agent command to edit
the instana-agent daemonset to include the following additional volumeMount and volume:

volumeMounts:
- name: mq-key-jks-name
 subPath: application.jks
 mountPath: /opt/instana/agent/etc/application.jks
volumes:
- name: mq-key-jks-name
 secret:
 secretName: keystore_secret_name

Configuring monitoring for a specific queue manager
3. In the instana-agent namespace, use the oc edit configmap instana-agent command to edit

the instana-agent configmap.
4. Add the following section under configuration.yaml: |. If you have already defined this section,

then just add the new queue manager to the list.

 com.instana.plugin.ibmmq:
 enabled: true
 poll_rate: 60
 queueManagers:
 QUEUE_MANAGER_NAME:
 channel: 'INSTANA.A.SVRCONN'
 keystorePassword: 'your_password'
 keystore: '/opt/instana/agent/etc/application.jks'
 cipherSuite: 'TLS_RSA_WITH_AES_256_CBC_SHA256'

where

• your_password is the password to your JKS keystore
• QUEUE_MANAGER_NAME is the name of the underlying IBM MQ queue manager to deploy, rather

than the name of the Queue Manager Operand.

Note: If QUEUE_MANAGER_NAME is not set to the underlying queue manager name, and is
instead set to the Operand, monitoring will not work. The underlying name is defined in
spec.queuemanager.name for the Queue Manager Operand.

5. Delete the instana-agent pods in the instana-agent namespace. This causes them to restart, and to
begin monitoring with the new settings.

What to do next
You are now ready to configure the queue manager for IBM Instana monitoring.

Instana monitoring: Configuring the queue manager
Set up a queue manager that uses TLS to communicate with the IBM Instana agent. The authentication
for this connection is done using an SSLPEERMAP.

Before you begin
This task assumes that you have configured the agents for IBM Instana monitoring.

Procedure
1. Configure the queue manager through both MQSC and INI.

MQSC is used to set up a new TLS enabled channel, and then configure that channel to authenticate
the connecting IBM Instana agent if it has a certificate with the required fields. In this case, we map
any connecting client with a certificate containing the fields CN=instana-agent,OU=app team1 to
user app1. MQSC then grants permission for user app1 to perform the required operations for IBM
Instana monitoring.

The INI file is used to grant permissions to our external user app1.

162 IBM MQ in containers

The following configmap contains the required MQSC and INI settings. Deploy it into your queue
manager namespace.

apiVersion: v1
data:
 channel.mqsc: |-
 DEFINE CHANNEL('INSTANA.A.SVRCONN') CHLTYPE(SVRCONN) SSLCAUTH(REQUIRED)
SSLCIPH('ANY_TLS12_OR_HIGHER')
 ALTER QMGR CONNAUTH(' ')
 REFRESH SECURITY
 SET CHLAUTH('INSTANA.A.SVRCONN') TYPE(SSLPEERMAP) SSLPEER('CN=*') USERSRC(NOACCESS)
ACTION(REPLACE)
 SET CHLAUTH('*') TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS) ACTION(REPLACE)
 SET CHLAUTH('INSTANA.A.SVRCONN') TYPE(SSLPEERMAP) SSLPEER('CN=instana-agent,OU=app
team1') USERSRC(MAP) MCAUSER('app1')
 SET AUTHREC PRINCIPAL('app1') OBJTYPE(QMGR) AUTHADD(ALL)
 SET AUTHREC PROFILE('SYSTEM.ADMIN.COMMAND.QUEUE') PRINCIPAL('app1') OBJTYPE(QUEUE)
AUTHADD(PUT,INQ,DSP,CHG)
 SET AUTHREC PROFILE('SYSTEM.**') PRINCIPAL('app1') OBJTYPE(TOPIC) AUTHADD(DSP)
 SET AUTHREC PROFILE('*') PRINCIPAL('app1') OBJTYPE(TOPIC) AUTHADD(DSP)
 SET AUTHREC PROFILE('SYSTEM.**') PRINCIPAL('app1') OBJTYPE(QUEUE) AUTHADD(DSP, CHG, GET)
 SET AUTHREC PROFILE('SYSTEM.**') PRINCIPAL('app1') OBJTYPE(LISTENER) AUTHADD(DSP)
 SET AUTHREC PROFILE('AMQ.*') PRINCIPAL('app1') OBJTYPE(QUEUE) AUTHADD(DSP, CHG)
 REFRESH SECURITY TYPE(CONNAUTH)
 auth.ini: |-
 Service:
 Name=AuthorizationService
 EntryPoints=14
 SecurityPolicy=UserExternal
kind: ConfigMap
metadata:
 namespace: your-queue-manager-namespace
 name: qmgr-monitoring-config

where your-queue-manager-namespace is the namespace in which your queue manager will be
deployed.

Note: If you are monitoring user-defined queues then you must add additional lines to the configmap
MQSC, granting DSP, CHG and GET permissions to those queues. For example:

SET AUTHREC PROFILE('MYQUEUE') PRINCIPAL('app1') OBJTYPE(QUEUE) AUTHADD(DSP, CHG, GET).

This example uses a configmap for the MQSC and INI data, but you can use a secret if any additions
you make are confidential. For general information regarding deploying with MQSC and INI, see
“Example: Supplying MQSC and INI files” on page 136.

2. For a TLS connection to be made, the queue manager must trust the certificate of the IBM Instana
agent. To achieve this, create a secret containing just the certificate of the IBM Instana agent:

oc create secret generic instana-certificate-secret --from-file=./application.crt -n your-
queue-manager-namespace

3. The queue manager must present its own certificate for the TLS handshake, and requires access to the
associated private key. Deploy a secret containing the key and certificate that you either created earlier
or already possess:

oc create secret tls qm-tls-secret --cert server.crt --key server.key -n your-queue-manager-
namespace

With the configmap and secret created, you are ready to create the queue manager itself.
4. Ensure that your queue manager YAML does not set the environment variable MQSNOAUT in the queue

manager container.
Otherwise, after it is enabled, the authentication mechanism will not work. Removing the variable
after deployment does not cause the mechanism to be re-enabled, and the queue manager has to be
recreated.

5. Add the following sections to your queue manager definition, where MYQM is the name of your queue
manager:

IBM MQ in containers and IBM Cloud Pak for Integration 163

spec:
 queueManager:
 name: MYQM #(a)
 ini: #(b)
 - configMap:
 items:
 - auth.ini
 name: qmgr-monitoring-config
 mqsc: #(c)
 - configMap:
 items:
 - channel.mqsc
 name: qmgr-monitoring-config
 pki:
 keys: #(d)
 - name: default
 secret:
 items:
 - tls.key
 - tls.crt
 secretName: qm-tls-secret
 trust: #(e)
 - name: app
 secret:
 items:
 - application.crt
 secretName: instana-certificate-secret

The flagged sections of the specification are described as follows:

a. Ensure that you have given your underlying queue manager a unique name. If the underlying queue
manager does not have a unique name, then monitoring might not work as intended. This name
must match the name in the IBM Instana agent configmap that was edited earlier.

b. The INI information that was written to the configmap is added to the queue manager.
c. The MQSC information that was written to the configmap is added to the queue manager.
d. The queue manager certificate and private key are added to the queue manager keystore.
e. The IBM Instana agent certificate is added to the queue manager trust store.

6. Optional: Enable IBM Instana Tracing on your monitored queue manager.

If you want to do this, see “Integrating IBM MQ with IBM Instana tracing” on page 158.
7. Deploy the queue manager.

What to do next
You are now ready to verify and debug the IBM Instana monitoring.

Instana monitoring: Verifying and debugging
To be able to monitor a queue manager through an IBM Instana agent, you must configure both the agent
and the queue manager.

Before you begin
This task assumes that you have configured the queue manager for IBM Instana monitoring.

Procedure
Verifying
1. To verify that you have been successful in your deployment, view your queue manager in the IBM

Instana dashboard.

The queue manager should be visible in the services section of the application page, and also in the
Infrastructure view.

Debugging

164 IBM MQ in containers

Note: These debugging steps assume an Openshift deployment of the IBM Instana agent running as a
daemonset.

If you cannot see your queue manager in the IBM Instana dashboard, then you might have misconfigured
your queue manager. Use the following steps to investigate.
2. Identify the node on which your active queue manager pod is running.

Run the following command in your queue manager namespace:

oc get pods -o wide -n your-queue-manager-namespace

3. To determine which IBM Instana agent pod is running on the same node as your queue manager, run
the same command in the instana-agent namespace:

oc get pods -o wide -n instana-agent-namespace

4. To help understand any issues from the IBM Instana agent side, get the logs of the IBM Instana agent
pod and look for entries relating to 'mq' or to the name of your queue manager.

Run the following command:

oc logs instana-agent-pod -c instana-agent -n instana-agent

5. Check the queue manager logs.

If the agent has made an attempt to connect to the queue manager, then the queue manager logs
should indicate why the connection was not successful. Run the following command:

oc logs your-queue-manager-name -n your-queue-manager-namespace

Results
You have completed all four tasks to configure authenticated IBM Instana monitoring with TLS.

Building an image with custom MQSC and INI files, using
the Red Hat OpenShift CLI
Use an Red Hat OpenShift Container Platform Pipeline to create a new IBM MQ container image, with
MQSC and INI files you want to be applied to queue managers using this image. This task should be
completed by a project administrator

Before you begin
You need to install the Red Hat OpenShift Container Platform command-line interface.

Log into your cluster using cloudctl login (for IBM Cloud Pak for Integration), or oc login.

If you don't have a Red Hat OpenShift Secret for the IBM Entitled Registry in your Red Hat OpenShift
project, then follow the steps for Create the entitlement key secret.

Procedure
1. Create an ImageStream

An image stream and its associated tags provide an abstraction for referencing container images from
within Red Hat OpenShift Container Platform. The image stream and its tags allow you to see what
images are available and ensure that you are using the specific image you need even if the image in the
repository changes.

oc create imagestream mymq

2. Create a BuildConfig for your new image
A BuildConfig will allow builds for your new image, which will be based off the IBM official images,
but will add any MQSC or INI files you want to be run on container start-up.

IBM MQ in containers and IBM Cloud Pak for Integration 165

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html

a) Create a YAML file defining the BuildConfig resource

For example, create a file called "mq-build-config.yaml" with the following contents:

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: mymq
spec:
 source:
 dockerfile: |-
 FROM cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.5.1-r2
 RUN printf "DEFINE QLOCAL(foo) REPLACE\n" > /etc/mqm/my.mqsc \
 && printf "Channels:\n\tMQIBindType=FASTPATH\n" > /etc/mqm/my.ini
 LABEL summary "My custom MQ image"
 strategy:
 type: Docker
 dockerStrategy:
 from:
 kind: "DockerImage"
 name: "cp.icr.io/cp/ibm-mqadvanced-server-integration:9.3.5.1-r2"
 pullSecret:
 name: ibm-entitlement-key
 output:
 to:
 kind: ImageStreamTag
 name: 'mymq:latest-amd64'

You will need to replace the two places where the base IBM MQ is mentioned, to point at the
correct base image for the version and fix you want to use (see “Release history for IBM MQ
Operator” on page 33 for details). As fixes are applied, you will need to repeat these steps to
re-build your image.

This example creates a new image based on the IBM official image, and adds files called "my.mqsc"
and "my.ini" into the /etc/mqm directory. Any MQSC or INI files found in this directory will be
applied by the container at start-up. INI files are applied using the crtmqm -ii option, and
merged with the existing INI files. MQSC files are applied in alphabetical order.

It is important that your MQSC commands are repeatable, as they will be run every time the
queue manager starts up. This typically means adding the REPLACE parameter on any DEFINE
commands, and adding the IGNSTATE(YES) parameter to any START or STOP commands.

b) Apply the BuildConfig to the server.

oc apply -f mq-build-config.yaml

3. Run a build to create your image
a) Start the build

oc start-build mymq

You should see output similar to the following:

build.build.openshift.io/mymq-1 started

b) Check the status of the build
For example, you can run the following command, using the build identifier returned in the previous
step:

oc describe build mymq-1

4. Deploy a queue manager, using your new image
Follow the steps described in “Deploying a queue manager onto a Red Hat OpenShift Container
Platform cluster” on page 118, adding your new custom image into the YAML.

166 IBM MQ in containers

You could add the following snippet of YAML into your normal QueueManager YAML, where my-
namespace is the Red Hat OpenShift project/namespace you are using, and image is the name of the
image you created earlier (for example, "mymq:latest-amd64"):

spec:
 queueManager:
 image: image-registry.openshift-image-registry.svc:5000/my-namespace/my-image

Related tasks
“Deploying a queue manager onto a Red Hat OpenShift Container Platform cluster” on page 118
This example deploys a "quick start" queue manager, which uses ephemeral (non-persistent) storage, and
turns off IBM MQ security. Messages are not persisted across restarts of the queue manager. You can
adjust the configuration to change many queue manager settings.

Adding custom annotations and labels to queue manager
resources
You add custom annotations and labels to the QueueManager metadata.

About this task
Custom annotations and labels are added to all resources except PVCs. If a custom annotation or label
matches an existing key, the value set by the IBM MQ Operator is used.

Procedure
• Add custom annotations.

To add custom annotations to queue manager resources, including the pod, add the annotations under
metadata. For example:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: quickstart-cp4i
 annotations:
 annotationKey: "value"

• Add custom labels.

To add custom labels to queue manager resources, including the pod, add the labels under metadata.
For example:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: quickstart-cp4i
 labels:
 labelKey: "value"

Disabling runtime webhook checks
Runtime webhook checks ensure that the storage classes are viable for your queue manager. You disable
them to improve performance, or because they are not valid for your environment.

About this task
Runtime webhook checks are done on the queue manager configuration. They check that the storage
classes are suitable for your selected queue manager type.

You might choose to disable these checks to decrease time taken for queue manager creation, or because
the checks are not valid for your specific environment.

IBM MQ in containers and IBM Cloud Pak for Integration 167

Note: After you disable runtime webhook checks, any storage class values are allowed. This could result
in a broken queue manager.

Procedure
• Disable runtime webhook checks.

Add the following annotation under metadata. For example:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: quickstart-cp4i
 annotations:
 "com.ibm.cp4i/disable-webhook-runtime-checks" : "true"

Disabling default value updates to the queue
manager specification
The IBM MQ Operator updates any unspecified values in the queue manager specification with their
default values. You can disable this behavior if you want to avoid any modifications to the queue manager
specification. The queue manager status fields are still updated.

Procedure
• Disable queue manager default value updates.

Add the following annotation under metadata. For example:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: quickstart-cp4i
 annotations:
 "com.ibm.mq/write-defaults-spec" : "false"

Note: This feature can only be used with MQ Operator 2.1.0 and later versions. From IBM MQ Operator
2.1.0, the quickstart examples have this annotation applied by default.

Running the IBM MQ container with a read-only root file system
From IBM MQ Operator 3.0.0 and IBM MQ container 9.3.4.0, you can configure the IBM MQ container to
run with a read-only root file system. This prevents attackers from copying and running malicious code in
the container.

About this task
Enabling the read-only root file system makes the container files immutable. That is, on the container file
system, files can be viewed but not modified and no new files can be created. Files can only be modified
or created on a mounted file system.

When a read-only root file system is enabled, two ephemeral volumes Scratch and Tmp are created, and
mounted in /run and /tmp directories respectively in the container.

• The Scratch volume contains the files, keystores and other files used for configuring the queue
manager.

• The Tmp volume contains diagnostic files, for example the queue manager RAS files.

Because these volumes are ephemeral, the files on these volumes are lost on pod restart.

The type of the volume created for queue manager data depends on the storage type. By default, a
persistent volume is mounted. Or, if storage type is ephemeral, then an ephemeral volume is mounted.
If the size of the data in the volume exceeds the value specified for the sizeLimit property, then

168 IBM MQ in containers

Kubernetes can eject the container and create a new one. Prior to IBM MQ Operator 3.0.0, the size limit
was not enforced when using ephemeral storage for queue manager data.

A read-only root file system is not enabled by default. To enable it, complete the following steps:

Procedure
1. Use the spec.securityContext API to enable the read-only root file system.

For your queue manager, set the readOnlyRootFilesystem property in “.spec.securityContext” on
page 196 to true.

IBM MQ Operator creates two ephemeral volumes, Scratch and Tmp.
2. Optional: Set or change the queue manager data storage type.

By default, a Persistent Volume Claim is mounted at /mnt/mqm. Or, if the type property is set to
ephemeral in “.spec.queueManager.storage.queueManager” on page 195, then an ephemeral volume
is created and mounted.

3. For each ephemeral volume, carefully consider by how much the data might grow. Set the value of the
sizeLimit property accordingly, including SI units.

• For the Scratch ephemeral volume, set the sizeLimit property in
“.spec.queueManager.storage.scratch” on page 196. The default value is "100M".

• For the Tmp ephemeral volume, set the sizeLimit property in “.spec.queueManager.storage.tmp”
on page 196. The default value is "2Gi".

• If the type of queue manager volume is set to ephemeral, set the sizeLimit property in
“.spec.queueManager.storage.queueManager” on page 195. The default value is "2Gi".

Configuring the IBM MQ Console with a basic registry
using the IBM MQ Operator
To log in to the IBM MQ Console, you can supply your own configuration to the queue manager.

Before you begin
If you are deploying a queue manager with an IBM MQ Advanced for Developers license, there is a simple
configuration built in. See “[MQ 9.3.4 Dec 2023]Example queue manager YAML that describes how to
specify passwords for admin and app users” on page 23.

If you are deploying an IBM Cloud Pak for Integration license queue manager, you can enable integration
with the IBM Cloud Pak for Integration Keycloak to log in to the IBM MQ Console using Single Sign-On.
See “Connecting to the IBM MQ Console deployed in a Red Hat OpenShift cluster” on page 173.

Procedure
1. Create a password and encrypt it using securityUtility.

A ConfigMap is used to store the credentials you use to access your queue manager. For improved
security, you encode these credentials with the securityUtility command.

Alternatively you can use a Secret, which protects credentials in the Kubernetes layer. However,
monitoring or troubleshooting tools might expose the underlying file insecurely.

2. Optional: Log into the Red Hat OpenShift command line interface (CLI).

If using the OpenShift CLI, log in using oc login.

Alternatively you can use the OpenShift console.
3. Create a ConfigMap with your configuration.

For help with creating the XML configuration, see IBM MQ Console and REST API security.

IBM MQ in containers and IBM Cloud Pak for Integration 169

The following example creates a user within the group MQWebAdminGroup. Members of the
MQWebAdminGroup are assigned the MQWebAdmin role. In this example:

• You must replace the USERNAME and PASSWORD with your own values. Note that USERNAME is
used twice in the example.

You must specify the NAMESPACE as the one in which your IBM MQ Operator is deployed and where
your queue manager will be, or already is, deployed.

a) Use the OpenShift console or the command line to create the following ConfigMap:

kind: ConfigMap
apiVersion: v1
metadata:
 name: mqwebuserconfigmap
 namespace: NAMESPACE
data:
 mqwebuser.xml: |
 <?xml version="1.0" encoding="UTF-8"?>
 <server>
 <featureManager>
 <feature>appSecurity-2.0</feature>
 <feature>basicAuthenticationMQ-1.0</feature>
 </featureManager>
 <enterpriseApplication id="com.ibm.mq.console">
 <application-bnd>
 <security-role name="MQWebAdmin">
 <group name="MQWebAdminGroup" realm="defaultRealm"/>
 </security-role>
 </application-bnd>
 </enterpriseApplication>
 <basicRegistry id="basic" realm="defaultRealm">
 <user name="USERNAME" password="PASSWORD"/>
 <group name="MQWebAdminGroup">
 <member name="USERNAME"/>
 </group>
 </basicRegistry>
 <sslDefault sslRef="mqDefaultSSLConfig"/>
 </server>

b) Optional: If using the command line, apply the ConfigMap:

oc apply -f mqwebuserconfigmap.yaml

For the remaining steps, choose one of the following options:

• Deploy a new queue manager with the configuration to access the IBM MQ Console.
• Apply configuration that gives the IBM MQ Console access to an existing queue manager.

4. Optional: Deploy a new queue manager with the configuration to access the IBM MQ Console.
a) Create your queue manager.

Set the authentication and authorization providers to manual and supply the newly created
ConfigMap mqwebuserconfigmap though one of the following options:

• Option 1: Through the queue manager YAML

Add the following code under the web section of the queue manager YAML:

...
web:
 enabled: true
 console:
 authentication:
 provider: manual
 authorization:
 provider: manual
 manualConfig:
 configMap:
 name: mqwebuserconfigmap

• Option 2: Through the OpenShift console Form view:

i) On the OpenShift console, select Operators > Installed Operators.

170 IBM MQ in containers

ii) Select your deployment of the IBM MQ Operator.
iii) Select Queue Manager and click Create QueueManager.
iv) Select the relevant options for your queue manager.
v) Select Web and set Enable web server to true.

vi) Open the Advanced configuration list box.
vii) Under the Console list box, set the provider for both Authentication and Authorization to

manual.
viii) Open the Configuration list box.

ix) Open the ConfigMap list box and select the ConfigMap mqwebuserconfigmap that was
created in step “3” on page 169.

x) Click Create.

You can now access the IBM MQ Console of your new queue manager through the credentials
specified in the ConfigMap created in step “3” on page 169.

5. Optional: Apply configuration that enables the IBM MQ Console for an existing queue manager.

Edit the YAML of the queue manager for which you are enabling the IBM MQ Console:

a. On the OpenShift console select Operators > Installed Operators.
b. Select your deployment of the IBM MQ Operator.
c. Select Queue Mananger and select the name of your queue manager.
d. Select YAML.
e. Replace the existing web section of the queue manager YAML with the following code:

...
web:
 enabled: true
 console:
 authentication:
 provider: manual
 authorization:
 provider: manual
 manualConfig:
 configMap:
 name: mqwebuserconfigmap

f. Click Save.

You can now access the IBM MQ Console of your existing queue manager through the credentials
specified in the ConfigMap created in step “3” on page 169.

Correcting license annotations for deployed queue managers
Prior to version 9.4.1.0-r1 of the IBM MQ queue manager, some queue managers were deployed with
incorrect license annotations. From version 9.4.1.0-r1 all queue managers are automatically deployed
with the correct license annotations.

About this task
For IBM MQ queue managers that are already deployed there are two options to correct the license
annotations:

• Upgrade your queue manager to version 9.4.1.0-r1 (requires IBM MQ 9.4 and IBM MQ Operator 3.3.0
or newer). See “Upgrading the IBM MQ Operator and queue managers” on page 123. Note that if your
queue manager YAML contains invalid license annotations you are required to resolve this as prompted
when upgrading each queue manager.

• For older queue managers that are not upgraded and are deployed using the following license usages,
the license annotations can be corrected by updating the queue manager YAML. Complete the following

IBM MQ in containers and IBM Cloud Pak for Integration 171

steps to add the specified annotations to the queue manager YAML. Note that this process must be
completed individually for each queue manager.

Important: Updating the queue manager YAML triggers a pod restart.

Affected license usages:

• IBM MQ Advanced for Non-Production Environment with CP4I entitlement
• IBM MQ Advanced for Developers
• IBM MQ Advanced Container Multi Instance
• IBM MQ Advanced Container Multi Instance with CP4I entitlement
• IBM MQ Advanced Container Multi Instance for Non-Production Environment with CP4I entitlement

Procedure
1. Navigate to your queue manager.

a) Log in to the OpenShift console with your Red Hat OpenShift Container Platform cluster
administrator credentials.

b) Change Project to the namespace where you installed the IBM MQ Operator. Select the namespace
from the Project drop-down list.

c) In the navigation pane, click Operators > Installed Operators.
d) In the list on the Installed Operators panel, find and click IBM MQ.
e) Click on the Queue Manager tab.
f) Click on the required Queue Manager name.

2. Add the required annotations to your queue manager.
a) Click on the YAML tab.
b) Locate the spec field.
c) Add the required annotations to the queue manager. Create the annotations field if not already

present.
d) Click Save.

The queue manager pod restarts and the annotations are applied.
3. Repeat for other queue managers as required.

Required license annotations

IBM MQ Advanced for Non-Production Environment with CP4I entitlement

spec:
 annotations:
 productName: IBM MQ Advanced for Non-Production Environment

IBM MQ Advanced for Developers

spec:
 annotations:
 productName: IBM MQ Advanced for Developers (Non-Warranted)
 productChargedContainers: [container_name]

where container_name is found in the queue manager pod YAML, specified as
spec.containers[0].name

IBM MQ Advanced Container Multi Instance

spec:
 annotations:
 productID: bd35bff411bb47c2a3f3a4590f33a8ef
 productName: IBM MQ Advanced Container Multi Instance

172 IBM MQ in containers

IBM MQ Advanced Container Multi Instance with CP4I entitlement

spec:
 annotations:
 productID: bd35bff411bb47c2a3f3a4590f33a8ef
 productName: IBM MQ Advanced Container Multi Instance
 productCloudpakRatio: 5:3

IBM MQ Advanced Container Multi Instance for Non-Production Environment with CP4I entitlement

spec:
 annotations:
 productID: 31f844f7a96b49749130cd0708fdbb17
 productName: IBM MQ Advanced Container Multi Instance for Non-Production Environments
 productCloudpakRatio: 10:3

Operating IBM MQ using the IBM MQ Operator

Procedure
• “Connecting to the IBM MQ Console deployed in a Red Hat OpenShift cluster” on page 173.
• “Monitoring when using the IBM MQ Operator” on page 174.
• “Backing up and restoring queue manager configuration using the Red Hat OpenShift CLI” on page

180.

Connecting to the IBM MQ Console deployed in a Red Hat
OpenShift cluster
How to connect to the IBM MQ Console of a queue manager that has been deployed onto a Red Hat
OpenShift Container Platform cluster.

About this task
The IBM MQ Console URL can be found on the QueueManager details page in the Red Hat OpenShift
web console or in the IBM Cloud Pak for Integration Platform UI (previously the Platform Navigator).
Alternatively, it can be found from the Red Hat OpenShift CLI by running the following command:

oc get queuemanager <QueueManager Name> -n <namespace of your MQ deployment> --output
jsonpath='{.status.adminUiUrl}'

If you are using an IBM Cloud Pak for Integration license:

• For IBM MQ Operator 3.0.0 and later, the IBM MQ Console uses Keycloak for identity and
access management. See Identity and Access management in the IBM Cloud Pak for Integration
documentation.

• For IBM MQ Operator deployments earlier than version 3.0.0, the IBM MQ Console uses the IBM Cloud
Pak Identity and Access Manager (IAM). The IAM component might have already been set up by your
cluster administrator. However, if this is the first time IAM has been used on your Red Hat OpenShift
cluster, then you need to retrieve the initial administrator password. See Getting the initial admin
password.

If you are using an IBM MQ license, then the IBM MQ Console is not pre-configured, and you need
to configure it yourself. For more information, see Configuring users and roles. For an example, see
“Configuring the IBM MQ Console with a basic registry using the IBM MQ Operator” on page 169.

Related tasks
“Configuring a Route to connect to a queue manager from outside a Red Hat OpenShift cluster ” on page
155
You need a Red Hat OpenShift Route to connect an application to an IBM MQ queue manager from outside
a Red Hat OpenShift cluster. You must enable TLS on your IBM MQ queue manager and client application,

IBM MQ in containers and IBM Cloud Pak for Integration 173

because SNI is only available in the TLS protocol when a TLS 1.2 or higher protocol is used. The Red Hat
OpenShift Container Platform Router uses SNI for routing requests to the IBM MQ queue manager.

Giving permissions for the IBM MQ Console using the IBM Cloud
Pak IAM
Permissions for the IBM MQ Console are managed through the IBM Cloud Pak Administration Hub, and
not the IBM Cloud Pak for Integration Platform UI (previously the Platform Navigator). IBM MQ does not
use the "Automation" permissions provided by the IBM Cloud Pak for Integration, but instead uses the
basic permissions enabled by the IBM Cloud Pak Identity and Access Manager (IAM).

Procedure
1. Open the IBM Cloud Pak Administration console.

From the IBM Cloud Pak for Integration Platform UI, click the Cloud Pak switcher (9-dot icon) in the
upper-right corner of the toolbar, then click the IBM Cloud Pak Administration panel.

2. In the navigation menu in the upper-left corner, select Identity and access, then select Teams and
services IDs.

3. Create a team, then add users to it.
a) Select Create team.
b) Input a team name, then select the security domain for the users you want to manage.
c) Search for users.

These users must exist already in your identity provider.
d) When you find each user, give them a role. This must be "Administrator" or "Cluster Administrator",

to administer IBM MQ using the IBM MQ Console.
4. Add each user to a namespace.

a) Select the team to edit it.
b) Select Resources > Manage Resources.
c) Select the namespaces that you want this team to administer. These can be any namespaces with a

queue manager.

Monitoring when using the IBM MQ Operator
Queue managers managed by the IBM MQ Operator can produce metrics compatible with Prometheus.

You can view these metrics using the Red Hat OpenShift Container Platform (OCP) monitoring stack. Open
the Metrics tab in OCP, then click Observe > Metrics. Queue manager metrics are enabled by default, but
can be disabled by setting .spec.metrics.enabled to false.

Prometheus is a time-series database and a rule evaluation engine for metrics. The IBM MQ containers
expose a metrics endpoint which can be queried by Prometheus. The metrics are generated from the MQ
system topics for monitoring and activity trace.

OpenShift Container Platform includes a pre-configured, pre-installed, and self-updating monitoring
stack that uses a Prometheus server. The OpenShift Container Platform monitoring stack needs to be
configured to monitor user-defined projects. For more information, see Enabling monitoring for user-
defined projects. The IBM MQ Operator creates a ServiceMonitor when you create a QueueManager
with metrics enabled, which the Prometheus Operator can then discover.

In older versions of IBM Cloud Pak for Integration, you could also use the IBM Cloud Platform Monitoring
service to provide a Prometheus server instead.

174 IBM MQ in containers

https://docs.openshift.com/container-platform/latest/monitoring/enabling-monitoring-for-user-defined-projects.html
https://docs.openshift.com/container-platform/latest/monitoring/enabling-monitoring-for-user-defined-projects.html
https://docs.openshift.com/container-platform/latest/monitoring/enabling-monitoring-for-user-defined-projects.html

Metrics published when using the IBM MQ Operator
Queue manager containers can publish metrics compatible with Red Hat OpenShift Monitoring.

Metric Type Description

ibmmq_qmgr_commit_
total

counter Commit count

ibmmq_qmgr_cpu_loa
d_fifteen_minute_a
verage_percentage

gauge CPU load - fifteen minute average

ibmmq_qmgr_cpu_loa
d_five_minute_aver
age_percentage

gauge CPU load - five minute average

ibmmq_qmgr_cpu_loa
d_one_minute_avera
ge_percentage

gauge CPU load - one minute average

ibmmq_qmgr_destruc
tive_get_bytes_tot
al

counter Interval total destructive get - byte count

ibmmq_qmgr_destruc
tive_get_total

counter Interval total destructive get- count

ibmmq_qmgr_durable
_subscription_alte
r_total

counter Alter durable subscription count

ibmmq_qmgr_durable
_subscription_crea
te_total

counter Create durable subscription count

ibmmq_qmgr_durable
_subscription_dele
te_total

counter Delete durable subscription count

ibmmq_qmgr_durable
_subscription_resu
me_total

counter Resume durable subscription count

ibmmq_qmgr_errors_
file_system_free_s
pace_percentage

gauge MQ errors file system - free space

ibmmq_qmgr_errors_
file_system_in_use
_bytes

gauge MQ errors file system - bytes in use

ibmmq_qmgr_expired
_message_total

counter Expired message count

ibmmq_qmgr_failed_
browse_total

counter Failed browse count

ibmmq_qmgr_failed_
mqcb_total

counter Failed MQCB count

ibmmq_qmgr_failed_
mqclose_total

counter Failed MQCLOSE count

IBM MQ in containers and IBM Cloud Pak for Integration 175

Metric Type Description

ibmmq_qmgr_failed_
mqconn_mqconnx_tot
al

counter Failed MQCONN/MQCONNX count

ibmmq_qmgr_failed_
mqget_total

counter Failed MQGET - count

ibmmq_qmgr_failed_
mqinq_total

counter Failed MQINQ count

ibmmq_qmgr_failed_
mqopen_total

counter Failed MQOPEN count

ibmmq_qmgr_failed_
mqput1_total

counter Failed MQPUT1 count

ibmmq_qmgr_failed_
mqput_total

counter Failed MQPUT count

ibmmq_qmgr_failed_
mqset_total

counter Failed MQSET count

ibmmq_qmgr_failed_
mqsubrq_total

counter Failed MQSUBRQ count

ibmmq_qmgr_failed_
subscription_creat
e_alter_resume_tot
al

counter Failed create/alter/resume subscription count

ibmmq_qmgr_failed_
subscription_delet
e_total

counter Subscription delete failure count

ibmmq_qmgr_failed_
topic_mqput_mqput1
_total

counter Failed topic MQPUT/MQPUT1 count

ibmmq_qmgr_fdc_fil
es

gauge MQ FDC file count

ibmmq_qmgr_log_fil
e_system_in_use_by
tes

gauge Log file system - bytes in use

ibmmq_qmgr_log_fil
e_system_max_bytes

gauge Log file system - bytes max

ibmmq_qmgr_log_in_
use_bytes

gauge Log - bytes in use

ibmmq_qmgr_log_log
ical_written_bytes
_total

counter Log - logical bytes written

ibmmq_qmgr_log_max
_bytes

gauge Log - bytes max

ibmmq_qmgr_log_occ
upied_by_reusable_
extents_bytes

gauge Log - bytes occupied by reusable extents

176 IBM MQ in containers

Metric Type Description

ibmmq_qmgr_log_phy
sical_written_byte
s_total

counter Log - physical bytes written

ibmmq_qmgr_log_pri
mary_space_in_use_
percentage

gauge Log - current primary space in use

ibmmq_qmgr_log_req
uired_for_media_re
covery_bytes

gauge Log - bytes required for media recovery

ibmmq_qmgr_log_wor
kload_primary_spac
e_utilization_perc
entage

gauge Log - workload primary space utilization

ibmmq_qmgr_log_wri
te_latency_seconds

gauge Log - write latency

ibmmq_qmgr_log_wri
te_size_bytes

gauge Log - write size

ibmmq_qmgr_mqcb_to
tal

counter MQCB count

ibmmq_qmgr_mqclose
_total

counter MQCLOSE count

ibmmq_qmgr_mqconn_
mqconnx_total

counter MQCONN/MQCONNX count

ibmmq_qmgr_mqctl_t
otal

counter MQCTL count

ibmmq_qmgr_mqdisc_
total

counter MQDISC count

ibmmq_qmgr_mqinq_t
otal

counter MQINQ count

ibmmq_qmgr_mqopen_
total

counter MQOPEN count

ibmmq_qmgr_mqput_m
qput1_bytes_total

counter Interval total MQPUT/MQPUT1 byte count

ibmmq_qmgr_mqput_m
qput1_total

counter Interval total MQPUT/MQPUT1 count

ibmmq_qmgr_mqset_t
otal

counter MQSET count

ibmmq_qmgr_mqstat_
total

counter MQSTAT count

ibmmq_qmgr_mqsubrq
_total

counter MQSUBRQ count

ibmmq_qmgr_non_dur
able_subscription_
create_total

counter Create non-durable subscription count

IBM MQ in containers and IBM Cloud Pak for Integration 177

Metric Type Description

ibmmq_qmgr_non_dur
able_subscription_
delete_total

counter Delete non-durable subscription count

ibmmq_qmgr_non_per
sistent_message_br
owse_bytes_total

counter Non-persistent message browse - byte count

ibmmq_qmgr_non_per
sistent_message_br
owse_total

counter Non-persistent message browse - count

ibmmq_qmgr_non_per
sistent_message_de
structive_get_tota
l

counter Non-persistent message destructive get - count

ibmmq_qmgr_non_per
sistent_message_ge
t_bytes_total

counter Got non-persistent messages - byte count

ibmmq_qmgr_non_per
sistent_message_mq
put1_total

counter Non-persistent message MQPUT1 count

ibmmq_qmgr_non_per
sistent_message_mq
put_total

counter Non-persistent message MQPUT count

ibmmq_qmgr_non_per
sistent_message_pu
t_bytes_total

counter Put non-persistent messages - byte count

ibmmq_qmgr_non_per
sistent_topic_mqpu
t_mqput1_total

counter Non-persistent - topic MQPUT/MQPUT1 count

ibmmq_qmgr_persist
ent_message_browse
_bytes_total

counter Persistent message browse - byte count

ibmmq_qmgr_persist
ent_message_browse
_total

counter Persistent message browse - count

ibmmq_qmgr_persist
ent_message_destru
ctive_get_total

counter Persistent message destructive get - count

ibmmq_qmgr_persist
ent_message_get_by
tes_total

counter Got persistent messages - byte count

ibmmq_qmgr_persist
ent_message_mqput1
_total

counter Persistent message MQPUT1 count

ibmmq_qmgr_persist
ent_message_mqput_
total

counter Persistent message MQPUT count

178 IBM MQ in containers

Metric Type Description

ibmmq_qmgr_persist
ent_message_put_by
tes_total

counter Put persistent messages - byte count

ibmmq_qmgr_persist
ent_topic_mqput_mq
put1_total

counter Persistent - topic MQPUT/MQPUT1 count

ibmmq_qmgr_publish
ed_to_subscribers_
bytes_total

counter Published to subscribers - byte count

ibmmq_qmgr_publish
ed_to_subscribers_
message_total

counter Published to subscribers - message count

ibmmq_qmgr_purged_
queue_total

counter Purged queue count

ibmmq_qmgr_queue_m
anager_file_system
_free_space_percen
tage

gauge Queue Manager file system - free space

ibmmq_qmgr_queue_m
anager_file_system
_in_use_bytes

gauge Queue Manager file system - bytes in use

ibmmq_qmgr_ram_fre
e_percentage

gauge RAM free percentage

ibmmq_qmgr_ram_usa
ge_estimate_for_qu
eue_manager_bytes

gauge RAM total bytes - estimate for queue manager

ibmmq_qmgr_rollbac
k_total

counter Rollback count

ibmmq_qmgr_system_
cpu_time_estimate_
for_queue_manager_
percentage

gauge System CPU time - percentage estimate for queue
manager

ibmmq_qmgr_system_
cpu_time_percentag
e

gauge System CPU time percentage

ibmmq_qmgr_topic_m
qput_mqput1_total

counter Topic MQPUT/MQPUT1 interval total

ibmmq_qmgr_topic_p
ut_bytes_total

counter Interval total topic bytes put

ibmmq_qmgr_trace_f
ile_system_free_sp
ace_percentage

gauge MQ trace file system - free space

ibmmq_qmgr_trace_f
ile_system_in_use_
bytes

gauge MQ trace file system - bytes in use

IBM MQ in containers and IBM Cloud Pak for Integration 179

Metric Type Description

ibmmq_qmgr_user_cp
u_time_estimate_fo
r_queue_manager_pe
rcentage

gauge User CPU time - percentage estimate for queue
manager

ibmmq_qmgr_user_cp
u_time_percentage

gauge User CPU time percentage

Related information
Metrics published on the system topics

Backing up and restoring queue manager configuration
using the Red Hat OpenShift CLI
Backing up queue manager configuration can help you to rebuild a queue manager from its definitions
if the queue manager configuration is lost. This procedure does not back up queue manager log data.
Because of the transient nature of messages, historical log data is likely to be irrelevant at the time of
restore.

Before you begin
Log into your cluster using cloudctl login (for IBM Cloud Pak for Integration), or oc login.

Procedure
• Back up queue manager configuration.

You can use the dmpmqcfg command to dump the configuration of an IBM MQ queue manager.

a) Get the name of the pod for your queue manager.
For example, you could run the following command, where queue_manager_name is the name of
your QueueManager resource:

oc get pods --selector app.kubernetes.io/name=ibm-mq,app.kubernetes.io/
instance=queue_manager_name

b) Run the dmpmqcfg command on the pod, directing the output into a file on your local machine.

dmpmqcfg outputs the queue manager's MQSC configuration.

oc exec -it pod_name -- dmpmqcfg > backup.mqsc

• Restore queue manager configuration.

Having followed the backup procedure outlined in the previous step, you should have a backup.mqsc
file that contains the queue manager configuration. You can restore the configuration by applying this
file to a new queue manager.

a) Get the name of the pod for your queue manager.
For example, you could run the following command, where queue_manager_name is the name of
your QueueManager resource:

oc get pods --selector app.kubernetes.io/name=ibm-mq,app.kubernetes.io/
instance=queue_manager_name

b) Run the runmqsc command on the pod, directing in the content of the backup.mqsc file.

oc exec -i pod_name -- runmqsc < backup.mqsc

180 IBM MQ in containers

Troubleshooting problems with the IBM MQ Operator
If you are having problems with IBM MQ Operator, use the techniques described to help you diagnose and
solve them.

Procedure
• “Collecting troubleshooting information for queue managers deployed with the IBM MQ Operator” on

page 181
• “Troubleshooting: Gaining access to queue manager data” on page 182

Collecting troubleshooting information for queue
managers deployed with the IBM MQ Operator
Collecting troubleshooting information that should be provided to IBM Support when raising a new
support case.

Procedure
1. Collect cloud provider information.

This is the cloud provider that hosts your Red Hat OpenShift cluster (for example, IBM Cloud).
2. Collect architecture information.

The architecture of your Red Hat OpenShift cluster is one of the following:

• Linux for x86-64
• Linux on Power Systems (ppc64le)
• Linux for IBM Z

3. Collect IBM MQ deployment information.
a) Log on to your Red Hat OpenShift cluster, using a bash/zsh shell.
b) Set the following environment variables:

export QM=QueueManager_name
export QM_NAMESPACE=QueueManager_namespace
export MQ_OPERATOR_NAMESPACE=mq_operator_namespace

Where QueueManager_name is the name of your QueueManager resource (metadata.name in
the queue manager YAML), QueueManager_namespace is the namespace where it is deployed
(metadata.namespace in the queue manager YAML), and mq_operator_namespace is the
namespace where the IBM MQ Operator is deployed. This might be the same as the QueueManager
namespace.

c) Run the following commands, and provide all of the resulting output files to IBM Support.

OCP / Kubernetes: Version
oc version -o yaml > ocversion.yaml

QueueManager: YAML
oc get qmgr $QM -n $QM_NAMESPACE -o yaml > "queue-manager-$QM.yaml"

MQ Queue Manager: Pods
oc get pods -n $QM_NAMESPACE -o wide --selector "app.kubernetes.io/instance=$QM" > "qm-
pods-$QM.txt"

MQ Queue Manager: Pod YAML
oc get pods -n $QM_NAMESPACE -o yaml --selector "app.kubernetes.io/instance=$QM" > "qm-
pods-$QM.yaml"

MQ Queue Manager: Pod Logs
for p in $(oc get pods -n $QM_NAMESPACE --no-headers --selector "app.kubernetes.io/
instance=$QM" | cut -d ' ' -f 1); do oc logs -n $QM_NAMESPACE --previous "$p" > "qm-logs-
previous-$p.txt"; oc logs -n $QM_NAMESPACE $p > "qm-logs-$p.txt";done

IBM MQ in containers and IBM Cloud Pak for Integration 181

MQ Web UI: Console Log
for p in $(oc get pods -n $QM_NAMESPACE --no-headers --selector "app.kubernetes.io/
instance=$QM" | cut -d ' ' -f 1); do oc cp -n $QM_NAMESPACE --retries=10 "$p:var/mqm/web/
installations/Installation1/servers/mqweb/logs/console.log" "web-$p-console.log"; done

MQ Web UI: Messages Log
for p in $(oc get pods -n $QM_NAMESPACE --no-headers --selector "app.kubernetes.io/
instance=$QM" | cut -d ' ' -f 1); do oc cp -n $QM_NAMESPACE --retries=10 "$p:var/mqm/web/
installations/Installation1/servers/mqweb/logs/messages.log" "web-$p-messages.log"; done

MQ Queue Manager: routes defined by operator
oc get routes -n $QM_NAMESPACE -o yaml --selector "app.kubernetes.io/instance=$QM" > "qm-
routes-$QM.yaml"

MQ Queue Manager: routes to QM
oc get routes -n $QM_NAMESPACE -o yaml --field-selector "spec.to.name=$QM-ibm-mq" > "qm-
routes2-$QM.yaml"

MQ Queue Manager: stateful set
oc get statefulset -n $QM_NAMESPACE -o yaml ${QM}-ibm-mq > "qm-statefulset-$QM.yaml"

MQ Queue Manager: services
oc get services -n $QM_NAMESPACE -o yaml --selector "app.kubernetes.io/instance=$QM" >
"qm-services-$QM.yaml"

MQ Queue Manager: PVCs
oc get pvc -n $QM_NAMESPACE -o yaml --selector "app.kubernetes.io/instance=$QM" > "qm-
pvcs-$QM.yaml"

MQ Operator: Version
oc get csv -n $QM_NAMESPACE | grep "^ibm-mq\|NAME" > mq-operator-csv.txt

Cloud Pak Foundational Services: Version
oc get csv -n $QM_NAMESPACE | grep "^ibm-common-service-operator\|NAME" > common-services-
csv.txt

Cloud Pak for Integration: Version (if applicable)
oc get csv -n $QM_NAMESPACE | grep "^ibm-integration-platform-navigator\|NAME" > cp4i-
csv.txt

Output from runmqras (this may take a while to execute)
for p in $(oc get pods -n $QM_NAMESPACE --no-headers --selector "app.kubernetes.io/
instance=$QM" | cut -d ' ' -f 1); do timestamp=$(TZ=UTC date +"%Y%m%d_%H%M%S");
oc exec -n $QM_NAMESPACE $p -- runmqras -workdirectory "/tmp/runmqras_$timestamp"
-section logger,mqweb,nativeha,trace; oc cp -n $QM_NAMESPACE --retries=10 "$p:tmp/
runmqras_$timestamp/" .; done

MQ Operator: Pod Log
oc logs -n $MQ_OPERATOR_NAMESPACE $(oc get pods -n $MQ_OPERATOR_NAMESPACE --no-headers
--selector app.kubernetes.io/name=ibm-mq,app.kubernetes.io/managed-by=olm | cut -d ' ' -f
1) > mq-operator-log.txt

Notes:

• The majority of these commands require access to the namespace where the queue manager
is deployed. However, collecting the IBM MQ Operator log might additionally require cluster
administrator access if the IBM MQ Operator is installed cluster-scoped.

• If you have a running queue manager, ensure that the output files that are produced by these
commands are not empty (except for the qm-logs-previous-pod_name.txt pod logs, which
are expected to be empty if the container did not restart).

Related tasks
Collecting troubleshooting information

Troubleshooting: Gaining access to queue manager data
Use the PVC inspector tool to gain access to the files on a queue manager PVC where a remote shell
cannot be established to the queue manager pod. This might be because the pod is in an Error or

182 IBM MQ in containers

CrashLoopBackOff state. This tool is designed for use with queue managers deployed by the IBM MQ
Operator.

Before you begin
To use the PVC inspector tool. you must have access to your queue manager namespace.

About this task
To help with troubleshooting, you can access the data stored on the Persistent Volume Claims (PVCs)
associated with a given queue manager. To do this, you use a tool to mount the PVCs to a set of inspector
pods. You can then get a remote shell into any of the inspector pods to read the files.

Depending on the type of deployment, between one and three inspector pods are created. Volumes
specific to a given pod of a Native-HA or Multi-Instance queue manager are available on the associated
PVC inspector pod. Shared volumes are available on all inspectors. The name of the inspector pod
contains the name of the associated queue manager pod.

Procedure
1. Download the MQ PVC inspector tool.

The tool is available here: https://github.com/ibm-messaging/mq-pvc-tool.
2. Make sure that you are logged into your cluster.
3. Find out the name of the queue manager, and the namespace the queue manager is running in.
4. Run the inspector tool against your queue manager.

a) Run the following command, specifying your queue manager name and its namespace name.

./pvc-tool.sh queue_manager_name queue_manager_namespace_name

b) After the tool has completed, run the following command to view the inspector pods being created.

oc get pods

5. View the files mounted to the inspector pod.
a) Each PVC inspector pod is associated with a queue manager pod, so there might be multiple

inspector pods. Access one of these pods, by running the following command:

oc rsh pvc-inspector-pod-name

You are placed in the directory containing the mounted PVC directories.
b) List the PVC directories by running the following command:

ls

c) See a list of the PVCs by running the following command outside of the remote shell session:

oc get pvc

d) Clean up the pods created by the tool, by running the following command:

oc delete pods -l tool=mq-pvc-inspector

API reference for the IBM MQ Operator
IBM MQ provides a Kubernetes Operator, which provides native integration with Red Hat OpenShift
Container Platform.

IBM MQ in containers and IBM Cloud Pak for Integration 183

https://github.com/ibm-messaging/mq-pvc-tool

API reference for mq.ibm.com/v1beta1
The v1beta1 API can be used to create and manage QueueManager resources.

Licensing reference for mq.ibm.com/
v1beta1

Current license versions
The spec.license.license field must contain the license identifier for the license you are accepting.
Valid values are as follows:

Value of
spec.license.l
icense

Value of
spec.license.u
se

License information Applicable IBM
MQ versions

L-VTPK-22YZPK Production or
NonProduction

IBM Cloud Pak for Integration 2023.4.1 9.3.4 or 9.3.5

L-QYQF-8UFZBN Production or
NonProduction

IBM Cloud Pak for Integration Limited
Edition 2023.4.1

9.3.4 or 9.3.5

L-AMRD-XH6P3Q Production IBM MQ Advanced and IBM
MQ Advanced for Non-Production
Environment 9.3 - 05/2023

9.3.3, 9.3.4 or
9.3.5

L-AXAF-JLZ53A Development IBM MQ Advanced for Developers (Non-
Warranted) 9.3 - 05/2023

9.3.3, 9.3.4 or
9.3.5

L-YBXJ-ADJNSM Production or
NonProduction

IBM Cloud Pak for Integration 2023.2.1 9.3.3

L-PYRA-849GYQ Production or
NonProduction

IBM Cloud Pak for Integration Limited
Edition 2023.2.1

9.3.3

L-RJON-CJR2RX Production or
NonProduction

IBM Cloud Pak for Integration 2022.4.1 9.3.1 or 9.3.2

L-RJON-CJR2TC Production or
NonProduction

IBM Cloud Pak for Integration Limited
Edition 2022.4.1

9.3.1 or 9.3.2

L-UPFX-8MW49T Production IBM MQ Advanced and IBM
MQ Advanced for Non-Production
Environment 9.3 – 02/2023

9.3.2

L-APIG-CAUEQC Development IBM MQ Advanced for Developers (Non-
Warranted) 9.3

9.3.0, 9.3.1 or
9.3.2

L-RJON-CD3JKX Production or
NonProduction

IBM Cloud Pak for Integration 2022.2.1 9.3.0 or 9.3.1

L-RJON-CD3JJU Production or
NonProduction

IBM Cloud Pak for Integration Limited
Edition 2022.2.1

9.3.0 or 9.3.1

L-APIG-CAUEBE Production IBM MQ Advanced and IBM
MQ Advanced for Non-Production
Environment 9.3

9.3.0 or 9.3.1

Note that the license version is specified, which is not always the same as the version of IBM MQ.

Older license versions
See Older license versions in the IBM MQ 9.2 documentation.

184 IBM MQ in containers

https://www.ibm.com/support/customer/csol/terms/?id=L-VTPK-22YZPK&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-QYQF-8UFZBN&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-QYQF-8UFZBN&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-AMRD-XH6P3Q&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-AMRD-XH6P3Q&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-AMRD-XH6P3Q&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-AXAF-JLZ53A&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-AXAF-JLZ53A&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-YBXJ-ADJNSM&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-PYRA-849GYQ&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?id=L-PYRA-849GYQ&lc=en#detail-document
https://www.ibm.com/support/customer/csol/terms/?ref=L-RJON-CJR2RX-01-12-2022-zz-en
https://www.ibm.com/support/customer/csol/terms/?ref=L-RJON-CJR2TC-01-12-2022-zz-en
https://www.ibm.com/support/customer/csol/terms/?ref=L-RJON-CJR2TC-01-12-2022-zz-en
https://www.ibm.com/terms/?id=L-UPFX-8MW49T
https://www.ibm.com/terms/?id=L-UPFX-8MW49T
https://www.ibm.com/terms/?id=L-UPFX-8MW49T
https://www.ibm.com/support/customer/csol/terms/?ref=L-APIG-CAUEQC-01-06-2022-zz-en
https://www.ibm.com/support/customer/csol/terms/?ref=L-APIG-CAUEQC-01-06-2022-zz-en
https://www.ibm.com/support/customer/csol/terms/?ref=L-RJON-CD3JKX-01-06-2022-zz-en
https://www.ibm.com/support/customer/csol/terms/?ref=L-RJON-CD3JJU-01-06-2022-zz-en
https://www.ibm.com/support/customer/csol/terms/?ref=L-RJON-CD3JJU-01-06-2022-zz-en
https://www.ibm.com/support/customer/csol/terms/?ref=L-APIG-CAUEBE-01-04-2022-zz-en
https://www.ibm.com/support/customer/csol/terms/?ref=L-APIG-CAUEBE-01-04-2022-zz-en
https://www.ibm.com/support/customer/csol/terms/?ref=L-APIG-CAUEBE-01-04-2022-zz-en

API reference for QueueManager (mq.ibm.com/v1beta1)

QueueManager
A QueueManager is an IBM MQ server which provides queuing and publish/subscribe services to
applications. IBM MQ Documentation: https://ibm.biz/BdPZqj. License reference: https://ibm.biz/BdPZfq..

Field Description

apiVersion string APIVersion defines the versioned schema of this representation of an object.
Servers should convert recognized schemas to the latest internal value,
and may reject unrecognized values. More info: https://git.k8s.io/community/
contributors/devel/sig-architecture/api-conventions.md#resources.

kind string Kind is a string value representing the REST resource this object represents.
Servers may infer this from the endpoint the client submits requests to.
Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/
contributors/devel/sig-architecture/api-conventions.md#types-kinds.

metadata

spec QueueManagerSpec The desired state of the QueueManager.

status QueueManagerStatus The observed state of the QueueManager.

.spec
The desired state of the QueueManager.

Appears in:

• “QueueManager” on page 185

Field Description

affinity Standard Kubernetes affinity rules. For more information,
see https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
#affinity-v1-core.

annotations Annotations The annotations field serves as a pass-through for Pod annotations. Users can
add any annotation to this field and have it apply to the Pod. The annotations
here overwrite the default annotations if provided. Requires MQ Operator 1.3.0
or higher.

imagePullSecrets
LocalObjectReference array

An optional list of references to secrets in the same namespace to use for
pulling any of the images used by this QueueManager. If specified, these
secrets will be passed to individual puller implementations for them to
use. For example, in the case of docker, only DockerConfig type secrets
are honored. For more information, see https://kubernetes.io/docs/concepts/
containers/images#specifying-imagepullsecrets-on-a-pod.

labels Labels The labels field serves as a pass-through for Pod labels. Users can add any
label to this field and have it apply to the Pod. The labels here overwrite the
default labels if provided. Requires MQ Operator 1.3.0 or higher.

license License Settings that control your acceptance of the license, and which license metrics
to use.

pki PKI Public Key Infrastructure settings, for defining keys and certificates for use
with Transport Layer Security (TLS) or MQ Advanced Message Security (AMS).

queueManager
QueueManagerConfig

Settings for the Queue Manager container and underlying Queue Manager.

IBM MQ in containers and IBM Cloud Pak for Integration 185

https://ibm.biz/BdPZqj.
https://ibm.biz/BdPZfq.
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#affinity-v1-core
https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod
https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod

Field Description

securityContext
SecurityContext

Security settings to add to the Queue Manager Pod's securityContext.

telemetry Telemetry Settings for Open Telemetry configuration. Requires MQ Operator 2.2.0 or
higher.

template Template Advanced templating for Kubernetes resources. The template allows users to
override how IBM MQ generates the underlying Kubernetes resources, such
as StatefulSet, Pods and Services. This is for advanced users only, as it has
the potential to disrupt normal operation of MQ if used incorrectly. Any values
specified anywhere else in the QueueManager resource will be overridden by
settings in the template.

terminationGracePeriod
Seconds integer

Optional duration in seconds the Pod needs to terminate gracefully. Value
must be non-negative integer. The value zero indicates delete immediately.
The target time in which ending the queue manager is attempted,
escalating the phases of application disconnection. Essential queue manager
maintenance tasks are interrupted if necessary. Defaults to 30 seconds.

tracing TracingConfig Settings for tracing integration with the Cloud Pak for Integration Operations
Dashboard.

version string Setting that controls the version of MQ that will be used (required). For
example: 9.1.5.0-r2 would specify MQ version 9.1.5.0, using the second
revision of the container image. Container-specific fixes are often applied in
revisions, such as fixes to the base image.

web WebServerConfig Settings for the MQ web server.

.spec.annotations
The annotations field serves as a pass-through for Pod annotations. Users can add any annotation to this
field and have it apply to the Pod. The annotations here overwrite the default annotations if provided.
Requires MQ Operator 1.3.0 or higher.

Appears in:

• “.spec” on page 185

.spec.imagePullSecrets
LocalObjectReference contains enough information to let you locate the referenced object inside the
same namespace.

Appears in:

• “.spec” on page 185

Field Description

name string Name of the referent. More info: https://kubernetes.io/docs/concepts/
overview/working-with-objects/names/#names TODO: Add other useful fields.
apiVersion, kind, uid?.

.spec.labels
The labels field serves as a pass-through for Pod labels. Users can add any label to this field and have it
apply to the Pod. The labels here overwrite the default labels if provided. Requires MQ Operator 1.3.0 or
higher.

Appears in:

186 IBM MQ in containers

https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names

• “.spec” on page 185

.spec.license
Settings that control your acceptance of the license, and which license metrics to use.

Appears in:

• “.spec” on page 185

Field Description

accept boolean Whether or not you accept the license associated with this software (required).

license string The identifier of the license you are accepting. This must be the correct license
identifier for the version of MQ you are using. See https://ibm.biz/BdPZfq for
valid values.

metric string Setting that specifies which license metric to use.
For example, ProcessorValueUnit, VirtualProcessorCore or
ManagedVirtualServer. Defaults to ProcessorValueUnit when using
an MQ license and VirtualProcessorCore when using a Cloud Pak for
Integration license.

use string Setting that controls how the software will to be used, where the license
supports multiple uses. See https://ibm.biz/BdPZfq for valid values.

.spec.pki
Public Key Infrastructure settings, for defining keys and certificates for use with Transport Layer Security
(TLS) or MQ Advanced Message Security (AMS).

Appears in:

• “.spec” on page 185

Field Description

keys PKISource array Private keys to add to the Queue Manager's key repository.

trust PKISource array Certificates to add to the Queue Manager's key repository.

.spec.pki.keys
PKISource defines a source of Public Key Infrastructure information, such as keys or certificates.

Appears in:

• “.spec.pki” on page 187

Field Description

name string Name is used as the label for the key or certificate. Must be a lowercase
alphanumeric string.

secret Secret Supply a key using a Kubernetes Secret.

.spec.pki.keys.secret
Supply a key using a Kubernetes Secret.

Appears in:

• “.spec.pki.keys” on page 187

IBM MQ in containers and IBM Cloud Pak for Integration 187

https://ibm.biz/BdPZfq
https://ibm.biz/BdPZfq

Field Description

items array Keys inside the Kubernetes secret which should be added to the Queue
Manager container.

secretName string The name of the Kubernetes secret.

.spec.pki.trust
PKISource defines a source of Public Key Infrastructure information, such as keys or certificates.

Appears in:

• “.spec.pki” on page 187

Field Description

name string Name is used as the label for the key or certificate. Must be a lowercase
alphanumeric string.

secret Secret Supply a key using a Kubernetes Secret.

.spec.pki.trust.secret
Supply a key using a Kubernetes Secret.

Appears in:

• “.spec.pki.trust” on page 188

Field Description

items array Keys inside the Kubernetes secret which should be added to the Queue
Manager container.

secretName string The name of the Kubernetes secret.

.spec.queueManager
Settings for the Queue Manager container and underlying Queue Manager.

Appears in:

• “.spec” on page 185

Field Description

availability Availability Availability settings for the Queue Manager, such as whether or not to use an
active-standby pair or native high availability.

debug boolean Whether or not to log debug messages from the container-specific code, to the
container log. Defaults to false.

image string The container image that will be used.

imagePullPolicy string Setting that controls when the kubelet attempts to pull the specified image.
Defaults to IfNotPresent.

ini INISource array Settings for supplying INI for the Queue Manager. Requires MQ Operator 1.1.0
or higher.

livenessProbe
QueueManagerLivenessProbe

Settings that control the liveness probe.

188 IBM MQ in containers

Field Description

logFormat string Which log format to use for this container. Use JSON for JSON-formatted
logs from the container. Use Basic for text-formatted messages. Defaults to
Basic.

metrics
QueueManagerMetrics

Settings for Prometheus-style metrics.

mqsc MQSCSource array Settings for supplying MQSC for the Queue Manager. Requires MQ Operator
1.1.0 or higher.

name string Name of the underlying MQ Queue Manager, if different from metadata.name.
Use this field if you want a Queue Manager name which does not conform to
the Kubernetes rules for names (for example, a name which includes capital
letters).

readinessProbe
QueueManagerReadinessProb
e

Settings that control the readiness probe.

recoveryLogs RecoveryLogs Settings for MQ recovery logs. Requires MQ Operator 2.4.0 or higher.

resources Resources Settings that control resource requirements.

route Route Settings for the Queue Manager route. Requires MQ Operator 1.4.0 or higher.

startupProbe StartupProbe Settings that control the startup probe. Only applies to MultiInstance and
NativeHA deployments. Requires MQ Operator 1.5.0 or higher.

storage
QueueManagerStorage

Storage settings to control the Queue Manager's use of persistent volumes and
storage classes.

.spec.queueManager.availability
Availability settings for the Queue Manager, such as whether or not to use an active-standby pair or native
high availability.

Appears in:

• “.spec.queueManager” on page 188

Field Description

tls Tls Optional TLS settings for configuring secure communication between NativeHA
replicas. Requires MQ Operator 1.5.0 or higher.

type string The type of availability to use. Use SingleInstance for a single Pod,
which will be restarted automatically (in some cases) by Kubernetes. Use
MultiInstance for a pair of Pods, one of which is the active Queue
Manager, and the other of which is a standby. Use NativeHA for native high
availability replication (requires MQ Operator 1.5.0 or higher). Defaults to
SingleInstance. See http://ibm.biz/BdqAQa for more details.

updateStrategy string The update strategy to use for MultiInstance and NativeHA Queue Managers.
Use RollingUpdate to enable automatic rolling updates whenever the
Queue Manager configuration changes. Use OnDelete to disable automatic
rolling updates, Queue Manager changes will only be applied when Pods are
deleted (including Pod deletions triggered by external factors). Defaults to
RollingUpdate. Requires MQ Operator 1.6.0 or higher.

IBM MQ in containers and IBM Cloud Pak for Integration 189

http://ibm.biz/BdqAQa

.spec.queueManager.availability.tls
Optional TLS settings for configuring secure communication between NativeHA replicas. Requires MQ
Operator 1.5.0 or higher.

Appears in:

• “.spec.queueManager.availability” on page 189

Field Description

cipherSpec string The name of the CipherSpec for NativeHA TLS.

secretName string The name of the Kubernetes secret.

.spec.queueManager.ini
Source of INI configuration files.

Appears in:

• “.spec.queueManager” on page 188

Field Description

configMap
ConfigMapINISource

ConfigMap represents a Kubernetes ConfigMap that contains INI information.

secret SecretINISource Secret represents a Kubernetes Secret that contains INI information.

.spec.queueManager.ini.configMap
ConfigMap represents a Kubernetes ConfigMap that contains INI information.

Appears in:

• “.spec.queueManager.ini” on page 190

Field Description

items array Keys inside the Kubernetes source which should be applied.

name string The name of the Kubernetes source.

.spec.queueManager.ini.secret
Secret represents a Kubernetes Secret that contains INI information.

Appears in:

• “.spec.queueManager.ini” on page 190

Field Description

items array Keys inside the Kubernetes source which should be applied.

name string The name of the Kubernetes source.

.spec.queueManager.livenessProbe
Settings that control the liveness probe.

Appears in:

• “.spec.queueManager” on page 188

190 IBM MQ in containers

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed after
having succeeded. Defaults to 1.

initialDelaySeconds
integer

Number of seconds after the container has started before the probe is
initiated. Defaults to 90 seconds for SingleInstance. Defaults to 0 seconds
for MultiInstance and NativeHA deployments. More info: https://kubernetes.io/
docs/concepts/workloads/pods/pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe. Defaults to 10 seconds.

successThreshold integer Minimum consecutive successes for the probe to be considered successful
after having failed. Defaults to 1.

timeoutSeconds integer Number of seconds after which the probe times out. Defaults to
5 seconds. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

.spec.queueManager.metrics
Settings for Prometheus-style metrics.

Appears in:

• “.spec.queueManager” on page 188

Field Description

enabled boolean Whether or not to enable an endpoint for Prometheus-compatible metrics.
Defaults to true.

.spec.queueManager.mqsc
Source of MQSC configuration files.

Appears in:

• “.spec.queueManager” on page 188

Field Description

configMap
ConfigMapMQSCSource

ConfigMap represents a Kubernetes ConfigMap that contains MQSC
information.

secret SecretMQSCSource Secret represents a Kubernetes Secret that contains MQSC information.

.spec.queueManager.mqsc.configMap
ConfigMap represents a Kubernetes ConfigMap that contains MQSC information.

Appears in:

• “.spec.queueManager.mqsc” on page 191

Field Description

items array Keys inside the Kubernetes source which should be applied.

name string The name of the Kubernetes source.

.spec.queueManager.mqsc.secret
Secret represents a Kubernetes Secret that contains MQSC information.

IBM MQ in containers and IBM Cloud Pak for Integration 191

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

Appears in:

• “.spec.queueManager.mqsc” on page 191

Field Description

items array Keys inside the Kubernetes source which should be applied.

name string The name of the Kubernetes source.

.spec.queueManager.readinessProbe
Settings that control the readiness probe.

Appears in:

• “.spec.queueManager” on page 188

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed after
having succeeded. Defaults to 1.

initialDelaySeconds
integer

Number of seconds after the container has started before the probe is
initiated. Defaults to 10 seconds for SingleInstance. Defaults to 0 for
MultiInstance and NativeHA deployments. More info: https://kubernetes.io/
docs/concepts/workloads/pods/pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe. Defaults to 5 seconds.

successThreshold integer Minimum consecutive successes for the probe to be considered successful
after having failed. Defaults to 1.

timeoutSeconds integer Number of seconds after which the probe times out. Defaults to
3 seconds. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

.spec.queueManager.recoveryLogs
Settings for MQ recovery logs. Requires MQ Operator 2.4.0 or higher.

Appears in:

• “.spec.queueManager” on page 188

Field Description

logFilePages integer The recovery log data is held in a series of files. The log file size is specified in
units of 4 KB pages.

.spec.queueManager.resources
Settings that control resource requirements.

Appears in:

• “.spec.queueManager” on page 188

Field Description

limits Limits CPU & memory settings.

requests Requests CPU & memory settings.

192 IBM MQ in containers

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

.spec.queueManager.resources.limits
CPU & memory settings.

Appears in:

• “.spec.queueManager.resources” on page 192

Field Description

cpu

memory

.spec.queueManager.resources.requests
CPU & memory settings.

Appears in:

• “.spec.queueManager.resources” on page 192

Field Description

cpu

memory

.spec.queueManager.route
Settings for the Queue Manager route. Requires MQ Operator 1.4.0 or higher.

Appears in:

• “.spec.queueManager” on page 188

Field Description

enabled boolean Whether or not to enable the route. Defaults to true.

.spec.queueManager.startupProbe
Settings that control the startup probe. Only applies to MultiInstance and NativeHA deployments.
Requires MQ Operator 1.5.0 or higher.

Appears in:

• “.spec.queueManager” on page 188

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed. Defaults
to 24.

initialDelaySeconds
integer

Number of seconds after the container has started before the probe
is initiated. Defaults to 0 seconds. More info: https://kubernetes.io/docs/
concepts/workloads/pods/pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe. Defaults to 5 seconds.

successThreshold integer Minimum consecutive successes for the probe to be considered successful.
Defaults to 1.

timeoutSeconds integer Number of seconds after which the probe times out. Defaults to
5 seconds. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

IBM MQ in containers and IBM Cloud Pak for Integration 193

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

.spec.queueManager.storage
Storage settings to control the Queue Manager's use of persistent volumes and storage classes.

Appears in:

• “.spec.queueManager” on page 188

Field Description

defaultClass string Storage class to apply to all persistent volumes of this Queue Manager by
default. Specific persistent volumes can define their own storage class which
will override this default storage class setting. If type of availability is
SingleInstance or NativeHA, storage class can be of type ReadWriteOnce
or ReadWriteMany. If type of availability is MultiInstance, storage
class must be of type ReadWriteMany.

defaultDeleteClaim
boolean

Whether or not all the volumes should be deleted when the Queue Manager
is deleted. Specific persistent volumes can define their own value for
deleteClaim which will override this defaultDeleteClaim setting. Defaults to
false.

persistedData
QueueManagerOptionalVolum
e

PersistentVolume details for MQ persisted data, including configuration,
queues and messages. Required when using multi-instance Queue Manager.

queueManager
QueueManagerVolume

Default PersistentVolume for any data normally under /var/mqm. Will contain
all persisted data and recovery logs, if no other volumes are specified.

recoveryLogs
QueueManagerOptionalVolum
e

Persistent volume details for MQ recovery logs. Required when using multi-
instance Queue Manager.

scratch Scratch Settings for the Queue Manager's Scratch ephemeral volume. This volume will
be mounted as the '/run' folder on the container. Only applicable if the root
filesystem is set to read-only. Requires MQ Operator 3.0.0 or higher.

tmp Tmp Settings for the Queue Manager's Tmp ephemeral volume. This volume will be
mounted on the container as the '/tmp' folder. The diagnostic data files, such
as the zip file produced by the runmqras command, will be created in this
volume. Only applicable if the root filesystem is set to read-only. Requires MQ
Operator 3.0.0 or higher.

.spec.queueManager.storage.persistedData
PersistentVolume details for MQ persisted data, including configuration, queues and messages. Required
when using multi-instance Queue Manager.

Appears in:

• “.spec.queueManager.storage” on page 194

Field Description

class string Storage class to use for this volume. Only valid if type is persistent-
claim. If type of availability is SingleInstance or NativeHA,
storage class can be of type ReadWriteOnce or ReadWriteMany. If type
of availability is MultiInstance, storage class must be of type
ReadWriteMany.

deleteClaim boolean Whether or not this volume should be deleted when the Queue Manager is
deleted.

194 IBM MQ in containers

Field Description

enabled boolean Whether or not this volume should be enabled as a separate volume, or be
placed on the default queueManager volume. Defaults to false.

size string Size of the PersistentVolume to pass to Kubernetes, including SI units. Only
valid if type is persistent-claim. For example, 2Gi. Defaults to 2Gi.

sizeLimit string Size limit when using an ephemeral volume. Files are still written to a
temporary directory, so you can use this option to limit the size. Only valid
if type is ephemeral and root filesystem is set to read-only. Requires MQ
Operator 3.0.0 or higher.

type string Type of volume to use. Choose ephemeral to use non-persistent storage,
or persistent-claim to use a persistent volume. Defaults to persistent-
claim.

.spec.queueManager.storage.queueManager
Default PersistentVolume for any data normally under /var/mqm. Will contain all persisted data and
recovery logs, if no other volumes are specified.

Appears in:

• “.spec.queueManager.storage” on page 194

Field Description

class string Storage class to use for this volume. Only valid if type is persistent-
claim. If type of availability is SingleInstance or NativeHA,
storage class can be of type ReadWriteOnce or ReadWriteMany. If type
of availability is MultiInstance, storage class must be of type
ReadWriteMany.

deleteClaim boolean Whether or not this volume should be deleted when the Queue Manager is
deleted.

size string Size of the PersistentVolume to pass to Kubernetes, including SI units. Only
valid if type is persistent-claim. For example, 2Gi. Defaults to 2Gi.

sizeLimit string Size limit when using an ephemeral volume. Files are still written to a
temporary directory, so you can use this option to limit the size. Only valid
if type is ephemeral and root filesystem is set to read-only. Requires MQ
Operator 3.0.0 or higher.

type string Type of volume to use. Choose ephemeral to use non-persistent storage,
or persistent-claim to use a persistent volume. Defaults to persistent-
claim.

.spec.queueManager.storage.recoveryLogs
Persistent volume details for MQ recovery logs. Required when using multi-instance Queue Manager.

Appears in:

• “.spec.queueManager.storage” on page 194

IBM MQ in containers and IBM Cloud Pak for Integration 195

Field Description

class string Storage class to use for this volume. Only valid if type is persistent-
claim. If type of availability is SingleInstance or NativeHA,
storage class can be of type ReadWriteOnce or ReadWriteMany. If type
of availability is MultiInstance, storage class must be of type
ReadWriteMany.

deleteClaim boolean Whether or not this volume should be deleted when the Queue Manager is
deleted.

enabled boolean Whether or not this volume should be enabled as a separate volume, or be
placed on the default queueManager volume. Defaults to false.

size string Size of the PersistentVolume to pass to Kubernetes, including SI units. Only
valid if type is persistent-claim. For example, 2Gi. Defaults to 2Gi.

sizeLimit string Size limit when using an ephemeral volume. Files are still written to a
temporary directory, so you can use this option to limit the size. Only valid
if type is ephemeral and root filesystem is set to read-only. Requires MQ
Operator 3.0.0 or higher.

type string Type of volume to use. Choose ephemeral to use non-persistent storage,
or persistent-claim to use a persistent volume. Defaults to persistent-
claim.

.spec.queueManager.storage.scratch
Settings for the Queue Manager's Scratch ephemeral volume. This volume will be mounted as the '/run'
folder on the container. Only applicable if the root filesystem is set to read-only. Requires MQ Operator
3.0.0 or higher.

Appears in:

• “.spec.queueManager.storage” on page 194

Field Description

sizeLimit string Size limit of the ephemeral volume, including SI units. For example, 2Gi. Valid
only when root filesystem is set to read-only. Requires MQ Operator 3.0.0 or
higher.

.spec.queueManager.storage.tmp
Settings for the Queue Manager's Tmp ephemeral volume. This volume will be mounted on the container
as the '/tmp' folder. The diagnostic data files, such as the zip file produced by the runmqras command,
will be created in this volume. Only applicable if the root filesystem is set to read-only. Requires MQ
Operator 3.0.0 or higher.

Appears in:

• “.spec.queueManager.storage” on page 194

Field Description

sizeLimit string Size limit of the ephemeral volume, including SI units. For example, 2Gi. Valid
only when root filesystem is set to read-only. Requires MQ Operator 3.0.0 or
higher.

.spec.securityContext
Security settings to add to the Queue Manager Pod's securityContext.

196 IBM MQ in containers

Appears in:

• “.spec” on page 185

Field Description

fsGroup integer A special supplemental group that applies to all containers in a pod. Some
volume types allow the Kubelet to change the ownership of that volume to
be owned by the pod: 1. The owning GID will be the FSGroup 2. The setgid
bit is set (new files created in the volume will be owned by FSGroup) 3. The
permission bits are OR'd with rw-rw---- If unset, the Kubelet will not modify
the ownership and permissions of any volume.

initVolumeAsRoot boolean This affects the securityContext used by the container which initializes the
PersistentVolume. Set this to true if you are using a storage provider which
requires you to be the root user to access newly provisioned volumes.
Setting this to true affects which Security Context Constraints (SCC) object
you can use, and the Queue Manager may fail to start if you are not
authorized to use an SCC which allows the root user. Defaults to false. For
more information, see https://docs.openshift.com/container-platform/latest/
authentication/managing-security-context-constraints.html.

readOnlyRootFilesystem
boolean

Whether or not to enable read-only root filesystem settings for the Queue
Manager. Defaults to false. Requires MQ Operator 3.0.0 or higher.

supplementalGroups array A list of groups applied to the first process run in each container, in addition
to the container's primary GID. If unspecified, no groups will be added to any
container.

.spec.telemetry
Settings for Open Telemetry configuration. Requires MQ Operator 2.2.0 or higher.

Appears in:

• “.spec” on page 185

Field Description

tracing Tracing Settings for Open Telemetry tracing.

.spec.telemetry.tracing
Settings for Open Telemetry tracing.

Appears in:

• “.spec.telemetry” on page 197

Field Description

instana Instana Settings for Instana tracing.

.spec.telemetry.tracing.instana
Settings for Instana tracing.

Appears in:

• “.spec.telemetry.tracing” on page 197

IBM MQ in containers and IBM Cloud Pak for Integration 197

https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html

Field Description

agentHost string The hostname of the Instana agent to send tracing data to. This should not
include a protocol.

enabled boolean Whether or not to enable Instana tracing. Defaults to false.

protocol string The protocol to be used in communication with the Instana agent. http and
https are supported.

.spec.template
Advanced templating for Kubernetes resources. The template allows users to override how IBM MQ
generates the underlying Kubernetes resources, such as StatefulSet, Pods and Services. This is for
advanced users only, as it has the potential to disrupt normal operation of MQ if used incorrectly. Any
values specified anywhere else in the QueueManager resource will be overridden by settings in the
template.

Appears in:

• “.spec” on page 185

Field Description

pod Overrides for the template used for the Pod. See https://kubernetes.io/docs/
reference/generated/kubernetes-api/v1.17/#podspec-v1-core.

.spec.tracing
Settings for tracing integration with the Cloud Pak for Integration Operations Dashboard.

Appears in:

• “.spec” on page 185

Field Description

agent TracingAgent In Cloud Pak for Integration only, you can configure settings for the optional
Tracing Agent.

collector TracingCollector In Cloud Pak for Integration only, you can configure settings for the optional
Tracing Collector.

enabled boolean Whether or not to enable integration with the Cloud Pak for Integration
Operations Dashboard, via tracing. Defaults to false.

namespace string Namespace where the Cloud Pak for Integration Operations Dashboard is
installed.

.spec.tracing.agent
In Cloud Pak for Integration only, you can configure settings for the optional Tracing Agent.

Appears in:

• “.spec.tracing” on page 198

Field Description

image string The container image that will be used.

imagePullPolicy string Setting that controls when the kubelet attempts to pull the specified image.
Defaults to IfNotPresent.

198 IBM MQ in containers

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#podspec-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#podspec-v1-core

Field Description

livenessProbe
TracingProbe

Settings that control the liveness probe.

readinessProbe
TracingProbe

Settings that control the readiness probe.

.spec.tracing.agent.livenessProbe
Settings that control the liveness probe.

Appears in:

• “.spec.tracing.agent” on page 198

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed after
having succeeded. Defaults to 1.

initialDelaySeconds
integer

Number of seconds after the container has started before liveness probes
are initiated. Defaults to 10 seconds. More info: https://kubernetes.io/docs/
concepts/workloads/pods/pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe. Defaults to 10 seconds.

successThreshold integer Minimum consecutive successes for the probe to be considered successful
after having failed. Defaults to 1.

timeoutSeconds integer Number of seconds after which the probe times out. Defaults to
2 seconds. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

.spec.tracing.agent.readinessProbe
Settings that control the readiness probe.

Appears in:

• “.spec.tracing.agent” on page 198

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed after
having succeeded. Defaults to 1.

initialDelaySeconds
integer

Number of seconds after the container has started before liveness probes
are initiated. Defaults to 10 seconds. More info: https://kubernetes.io/docs/
concepts/workloads/pods/pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe. Defaults to 10 seconds.

successThreshold integer Minimum consecutive successes for the probe to be considered successful
after having failed. Defaults to 1.

timeoutSeconds integer Number of seconds after which the probe times out. Defaults to
2 seconds. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

.spec.tracing.collector
In Cloud Pak for Integration only, you can configure settings for the optional Tracing Collector.

IBM MQ in containers and IBM Cloud Pak for Integration 199

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

Appears in:

• “.spec.tracing” on page 198

Field Description

image string The container image that will be used.

imagePullPolicy string Setting that controls when the kubelet attempts to pull the specified image.
Defaults to IfNotPresent.

livenessProbe
TracingProbe

Settings that control the liveness probe.

readinessProbe
TracingProbe

Settings that control the readiness probe.

.spec.tracing.collector.livenessProbe
Settings that control the liveness probe.

Appears in:

• “.spec.tracing.collector” on page 199

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed after
having succeeded. Defaults to 1.

initialDelaySeconds
integer

Number of seconds after the container has started before liveness probes
are initiated. Defaults to 10 seconds. More info: https://kubernetes.io/docs/
concepts/workloads/pods/pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe. Defaults to 10 seconds.

successThreshold integer Minimum consecutive successes for the probe to be considered successful
after having failed. Defaults to 1.

timeoutSeconds integer Number of seconds after which the probe times out. Defaults to
2 seconds. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

.spec.tracing.collector.readinessProbe
Settings that control the readiness probe.

Appears in:

• “.spec.tracing.collector” on page 199

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed after
having succeeded. Defaults to 1.

initialDelaySeconds
integer

Number of seconds after the container has started before liveness probes
are initiated. Defaults to 10 seconds. More info: https://kubernetes.io/docs/
concepts/workloads/pods/pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe. Defaults to 10 seconds.

successThreshold integer Minimum consecutive successes for the probe to be considered successful
after having failed. Defaults to 1.

200 IBM MQ in containers

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

Field Description

timeoutSeconds integer Number of seconds after which the probe times out. Defaults to
2 seconds. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

.spec.web
Settings for the MQ web server.

Appears in:

• “.spec” on page 185

Field Description

console Console Settings for the MQ web console. Requires MQ Operator 3.0.0 or higher.

enabled boolean Whether or not to enable the web server. Defaults to false.

manualConfig ManualConfig Settings for supplying web server XML configuration. Requires MQ Operator
3.0.0 or higher.

.spec.web.console
Settings for the MQ web console. Requires MQ Operator 3.0.0 or higher.

Appears in:

• “.spec.web” on page 201

Field Description

authentication
Authentication

Authentication settings for the MQ web console. Requires MQ Operator 3.0.0
or higher.

authorization
Authorization

Authorization settings for the MQ web console. Requires MQ Operator 3.0.0 or
higher.

.spec.web.console.authentication
Authentication settings for the MQ web console. Requires MQ Operator 3.0.0 or higher.

Appears in:

• “.spec.web.console” on page 201

Field Description

provider string The authentication provider to use for the MQ web console. Use
integration-keycloak to use single sign-on with the Cloud Pak for
Integration Platform UI (Keycloak). Defaults to integration-keycloak if
you use a Cloud Pak for Integration license, or manual if you use an MQ
license. Use manual if you want to provide your own configuration.

.spec.web.console.authorization
Authorization settings for the MQ web console. Requires MQ Operator 3.0.0 or higher.

Appears in:

• “.spec.web.console” on page 201

IBM MQ in containers and IBM Cloud Pak for Integration 201

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

Field Description

provider string The authorization provider to use for the MQ web console. Use integration-
keycloak to use roles provided by the Cloud Pak for Integration Keycloak.
Use manual if you want to provide your own configuration. Defaults to
integration-keycloak if you use a Cloud Pak for Integration license, or
manual if you use an MQ license.

.spec.web.manualConfig
Settings for supplying web server XML configuration. Requires MQ Operator 3.0.0 or higher.

Appears in:

• “.spec.web” on page 201

Field Description

configMap ConfigMap ConfigMap represents a Kubernetes ConfigMap that contains web server XML
configuration.

secret Secret Secret represents a Kubernetes Secret that contains web server XML
configuration. Using a Secret protects any credentials in the Kubernetes layer,
but it’s possible that monitoring or troubleshooting tools might expose the
underlying file insecurely. For improved security, encode credentials using
“securityUtility”.

.spec.web.manualConfig.configMap
ConfigMap represents a Kubernetes ConfigMap that contains web server XML configuration.

Appears in:

• “.spec.web.manualConfig” on page 202

Field Description

name string The name of the Kubernetes source.

.spec.web.manualConfig.secret
Secret represents a Kubernetes Secret that contains web server XML configuration. Using a Secret
protects any credentials in the Kubernetes layer, but it’s possible that monitoring or troubleshooting
tools might expose the underlying file insecurely. For improved security, encode credentials using
“securityUtility”.

Appears in:

• “.spec.web.manualConfig” on page 202

Field Description

name string The name of the Kubernetes source.

.status
The observed state of the QueueManager.

Appears in:

• “QueueManager” on page 185

202 IBM MQ in containers

Field Description

adminUiUrl string URL for the Admin UI.

availability Availability Availability status for the Queue Manager.

conditions
QueueManagerStatusConditio
n array

Conditions represent the latest available observations of the Queue Manager's
state.

endpoints
QueueManagerStatusEndpoin
t array

Information on the endpoints that this Queue Manager is exposing, such as
API or UI endpoints.

metadata Metadata Metadata represents additional information for the Queue Manager, including
Integration-Keycloak status.

name string The name of the Queue Manager.

phase string Phase of the Queue Manager's state.

versions
QueueManagerStatusVersion

Version of MQ being used, and other versions available from the IBM Entitled
Registry.

.status.availability
Availability status for the Queue Manager.

Appears in:

• “.status” on page 202

Field Description

initialQuorumEstablish
ed boolean

Whether or not an initial quorum has been established for NativeHA.

.status.conditions
QueueManagerStatusCondition defines the conditions of the Queue Manager.

Appears in:

• “.status” on page 202

Field Description

lastTransitionTime string Last time the condition transitioned from one status to another.

message string Human-readable message indicating details about last transition.

reason string Reason for last transition of this status.

status string Status of the condition.

type string Type of condition.

.status.endpoints
QueueManagerStatusEndpoint defines the endpoints for the QueueManager.

Appears in:

• “.status” on page 202

IBM MQ in containers and IBM Cloud Pak for Integration 203

Field Description

name string Name of the endpoint.

type string The type of the endpoint, for example 'UI' for a UI endpoint, 'API' for an API
endpoint, 'OpenAPI' for API documentation.

uri string URI for the endpoint.

.status.metadata
Metadata represents additional information for the Queue Manager, including Integration-Keycloak
status.

Appears in:

• “.status” on page 202

Field Description

integrationKeycloak
IntegrationKeycloak

QueueManagerStatusIntegrationKeycloak defines the Integration-Keycloak
status for the QueueManager.

.status.metadata.integrationKeycloak
QueueManagerStatusIntegrationKeycloak defines the Integration-Keycloak status for the QueueManager.

Appears in:

• “.status.metadata” on page 204

Field Description

clientName string

.status.versions
Version of MQ being used, and other versions available from the IBM Entitled Registry.

Appears in:

• “.status” on page 202

Field Description

available
QueueManagerStatusVersionA
vailable

Other versions of MQ available from the IBM Entitled Registry.

reconciled string The specific version of IBM MQ being used. If a custom image is specified,
then this may not match the version of MQ actually being used.

.status.versions.available
Other versions of MQ available from the IBM Entitled Registry.

Appears in:

• “.status.versions” on page 204

Field Description

channels array Channels which are available for automatically updating the MQ version.

versions Versions array Specific versions of MQ which are available.

204 IBM MQ in containers

.status.versions.available.versions
QueueManagerStatusVersion defines a version of MQ.

Appears in:

• “.status.versions.available” on page 204

Field Description

licenses Licenses array Licenses that are applicable for this version of QueueManager.

name string Version name for this version of QueueManager. These are valid values for the
spec.version field.

.status.versions.available.versions.licenses
QueueManagerStatusLicense defines a license.

Appears in:

• “.status.versions.available.versions” on page 205

Field Description

displayName string Display name for the license.

link string Link to the license content.

matchesCurrentType
boolean

Whether or not the license matches the type of license currently used.

name string Name of the license.

Status conditions for QueueManager (mq.ibm.com/v1beta1)
The status.conditions fields are updated to reflect the condition of the QueueManager resource.
In general, conditions describe abnormal situations. A queue manager in a healthy, ready state has no
Error or Pending conditions. It might have some advisory Warning conditions.

Support for conditions was introduced in IBM MQ Operator 1.2.

The following conditions are defined for a QueueManager resource:

IBM MQ in containers and IBM Cloud Pak for Integration 205

Table 1. Queue manager status conditions

Component Condition type Reason code Message warning

QueueManager9 Blocked OperatorDependenc
y

To install, this instance requires
Keycloak to be configured by
[IBM Cloud Pak for Integration].
This instance will remain in
[Pending] status until Keycloak is
reported as [KeycloakReady] in the
Cp4iServicesBinding resource for
this QueueManager.

To install, this instance requires the
operator [IBM IAM]. This instance
will remain in [Blocked] status until
the operator is installed by [IBM
Cloud Pak foundational services].

Pending Creating MQ queue manager is being
deployed

Pending OidcPending MQ queue manager is waiting for
OIDC client registration

Error Failed MQ queue manager failed to deploy

Warning UnsupportedVersion 10An operand has been installed by
an operator which is not supported
on OCP version <ocp_version>. This
operand is not supported.

Warning CP4I-LTS Support 11A CP4I-LTS operand
<mq_version> has been installed
but is being managed by an
operator that does not qualify for
the extended support duration. This
operand does not qualify for the
extended support duration.

Warning CP4I-LTS Support 12A CP4I-LTS operand
<mq_version> has been installed
but the OCP version 4<ocp_version>
does not qualify for the extended
support duration. This operand
does not qualify for the extended
support duration.

Warning CP4I-LTS Support 13A CP4I-LTS operand
<mq_version> has been installed
but the OCP version <ocp_version>
does not qualify for the extended
support duration. This operand is
supported as per a regular CD
release.

9 The conditions Creating and Failed monitor the overall progress of the deployment of the queue
manager. If you are using an IBM Cloud Pak for Integration license and the web console is enabled,
then the OidcPending condition logs the status of the queue manager while waiting for OIDC client
registration to complete with IAM.

10 Operator 1.4.0 and later

206 IBM MQ in containers

Table 1. Queue manager status conditions (continued)

Component Condition type Reason code Message warning

Pod14 Pending PodPending Pod for MQ queue manager is being
deployed

Error PodFailed Pod for MQ queue manager is being
deployed

Storage15 Pending StoragePending Storage for MQ queue manager is
being provisioned

Warning StorageEphemeral Using ephemeral storage for a
production MQ queue manager

Error StorageFailed Storage for MQ queue manager
failed to provision

Building your own IBM MQ container and deployment code
Develop a self-built container. This is the most flexible container solution, but it requires you to have
strong skills in configuring containers, and to "own" the resultant container.

Before you begin
Before you develop your own container, consider whether you can instead use the IBM MQ Operator. See
“Choosing how you want to use IBM MQ in containers” on page 5

About this task

Procedure
• “Planning your own IBM MQ queue manager image using a container” on page 207
• “Building a sample IBM MQ queue manager container image” on page 208
• “Running local binding applications in separate containers” on page 210
• Review the IBM MQ sample Helm chart.

Planning your own IBM MQ queue manager image using a container
There are several requirements to consider when running an IBM MQ queue manager in a container. The
sample container image provides a way to handle these requirements, but if you want to use your own
image, you need to consider how these requirements are handled.

Process supervision
When you run a container, you are essentially running a single process (PID 1 inside the container), which
can later spawn child processes.

11 Operator 1.4.0 and later
12 Operator 1.4.0 and later
13 Operator 1.3.0 only
14 Pod conditions monitor the status of pods during the deployment of a queue manager. If you see any

PodFailed condition, then the overall queue manager condition will also be set to Failed.
15 Storage conditions monitor the progress (StoragePending condition) of requests to create volumes for

persistent storage, and report back binding errors and other failures. If any error occurs during storage
provisioning, the StorageFailed condition will be added to the conditions list, and the overall queue
manager condition will also be set to Failed.

IBM MQ in containers and IBM Cloud Pak for Integration 207

https://github.com/ibm-messaging/mq-helm

If the main process ends, the container runtime stops the container. An IBM MQ queue manager requires
multiple processes to be running in the background.

For this reason, you need to make sure that your main process stays active as long as the queue manager
is running. It is good practice to check that the queue manager is active from this process, for example, by
performing administrative queries.

Populating /var/mqm
Containers must be configured with /var/mqm as a volume.

When you do this, the directory of the volume is empty when the container first starts. This directory is
usually populated at installation time, but installation and runtime are separate environments when using
a container.

To solve this, when your container starts, you can use the crtmqdir command to populate /var/mqm
when it runs for the first time.

Container security
In order to minimize the runtime security requirements, the samples container images are installed using
the IBM MQ unzippable install. This ensures that no setuid bits are set, and that the container doesn't
need to use privilege escalation. Some container systems define which user IDs you are able to use, and
the unzippable install does not make any assumptions about available operating system users.

Building a sample IBM MQ queue manager container image
Use this information to build a sample container image for running an IBM MQ queue manager in a
container.

About this task
Firstly, you build a base image containing an Red Hat Universal Base Image file system and a clean
installation of IBM MQ.

Secondly, you build another container image layer on top of the base, which adds some IBM MQ
configuration to allow basic user ID and password security.

Finally, you run a container using this image as its file system, with the contents of /var/mqm provided by
a container-specific volume on the host file system.

Procedure
• For information on how to build a sample container image for running an IBM MQ queue manager in a

container, see the following subtopics:

– “Building a sample base IBM MQ queue manager image” on page 208
– “Building a sample configured IBM MQ queue manager image” on page 209

Building a sample base IBM MQ queue manager image
In order to use IBM MQ in your own container image, you need initially to build a base image with a clean
IBM MQ installation. The following steps show you how to build a sample base image, using sample code
hosted on GitHub.

Procedure
• Use the make files supplied in the mq-container GitHub repository to build your production container

image.

Follow the instructions in Building a container image on GitHub.

208 IBM MQ in containers

https://github.com/ibm-messaging/mq-container
https://github.com/ibm-messaging/mq-container/blob/master/docs/building.md

• Optional: If you plan to configure secure access using the Red Hat OpenShift Container Platform
"restricted" Security Context Constraint (SCC), use one of the IBM MQ non-install images.

Links to download these images are available in the Containers section of IBM MQ downloads.

Results
You now have a base container image with IBM MQ installed.

You are now ready to build a sample configured IBM MQ queue manager image.

Building a sample configured IBM MQ queue manager image
After you have built your generic base IBM MQ container image, you need to apply your own configuration
to allow secure access. To do this, you create your own container image layer, using the generic image as
a parent.

Before you begin
This task assumes that, when you built your sample base IBM MQ queue manager image, you used the
"No-Install" IBM MQ package. Otherwise you cannot configure secure access using the Red Hat OpenShift
Container Platform "restricted" Security Context Constraint (SCC). The "restricted" SCC, which is used
by default, uses random user IDs, and prevents privilege escalation by changing to a different user. The
IBM MQ traditional RPM-based installer relies on an mqm user and group, and also uses setuid bits on
executable programs. In the current version of IBM MQ, when you use the "No-Install" IBM MQ package,
there is no mqm user any more, nor an mqm group.

Procedure
1. Create a new directory, and add a file called config.mqsc, with the following contents:

DEFINE QLOCAL(EXAMPLE.QUEUE.1) REPLACE

Note that the preceding example uses simple user ID and password authentication. However, you can
apply any security configuration that your enterprise requires.

2. Create a file called Dockerfile, with the following contents:

FROM mq
COPY config.mqsc /etc/mqm/

3. Build your custom container image using the following command:

docker build -t mymq .

where "." is the directory containing the two files you have just created.

Docker then creates a temporary container using that image, and runs the remaining commands.

Note: On Red Hat Enterprise Linux (RHEL), you use the command docker (RHEL V7) or podman (RHEL
V7 or RHEL V8). On Linux, you will need to run docker commands with sudo at the beginning of the
command, to gain extra privileges.

4. Run your new customized image to create a new container, with the disk image you have just created.

Your new image layer did not specify any particular command to run, so that has been inherited from
the parent image. The entry point of the parent (the code is available on GitHub):

• Creates a queue manager
• Starts the queue manager
• Creates a default listener
• Then runs any MQSC commands from /etc/mqm/config.mqsc.

IBM MQ in containers and IBM Cloud Pak for Integration 209

Issue the following commands to run your new customized image:

docker run \
 --env LICENSE=accept \
 --env MQ_QMGR_NAME=QM1 \
 --volume /var/example:/var/mqm \
 --publish 1414:1414 \
 --detach \
 mymq

where the:
First env parameter

Passes an environment variable into the container, which acknowledges your acceptance of the
license for IBM IBM WebSphere® MQ. You can also set the LICENSE variable to view to view the
license.
See IBM MQ license information for further details on IBM MQ licenses.

Second env parameter
Sets the queue manager name that you are using.

Volume parameter
Tells the container that whatever MQ writes to /var/mqm should actually be written to /var/
example on the host.
This option means that you can easily delete the container later, and still keep any persistent data.
This option also makes it easier to view log files.

Publish parameter
Maps ports on the host system to ports in the container. The container runs by default with its
own internal IP address, which means that you need to specifically map any ports that you want to
expose.
In this example, that means mapping port 1414 on the host to port 1414 in the container.

Detach parameter
Runs the container in the background.

Results
You have built a configured container image and can view running containers using the docker ps
command. You can view the IBM MQ processes running in your container using the docker top
command.

Attention:

You can view the logs of a container using the docker logs ${CONTAINER_ID} command.

What to do next
• If your container is not shown when you use the docker ps command the container might have failed.

You can see failed containers by using the docker ps -a command.
• When you use the docker ps -a command, the container ID is displayed. This ID was also printed

when you issued the docker run command.
• You can view the logs of a container by using the docker logs ${CONTAINER_ID} command.

Running local binding applications in separate containers
With process namespace sharing between containers, you can run applications that require a local
binding connection to IBM MQ in separate containers from the IBM MQ queue manager.

About this task
You must adhere to the following restrictions:

210 IBM MQ in containers

• You must share the containers PID namespace using the --pid argument.
• You must share the containers IPC namespace using the --ipc argument.
• You must either:

1. Share the containers UTS namespace with the host using the --uts argument, or
2. Ensure the containers have the same hostname using the -h or --hostname argument.

• You must mount the IBM MQ data directory in a volume that is available to the all containers under
the /var/mqm directory.

The following example uses the sample IBM MQ container image. You can find details of this image on
Github.

Procedure
1. Create a temporary directory to act as your volume, by issuing the following command:

mkdir /tmp/dockerVolume

2. Create a queue manager (QM1) in a container, with the name sharedNamespace, by issuing the
following command:

docker run -d -e LICENSE=accept -e MQ_QMGR_NAME=QM1 --volume /tmp/dockerVol:/mnt/mqm
--uts host --name sharedNamespace ibmcom/mq

3. Start a second container called secondaryContainer, based off ibmcom/mq, but do not create a
queue manager, by issuing the following command:

docker run --entrypoint /bin/bash --volumes-from sharedNamespace --pid
container:sharedNamespace --ipc container:sharedNamespace --uts host --name
secondaryContainer -it --detach ibmcom/mq

4. Run the dspmq command on the second container, to see the status for both queue managers, by
issuing the following command:

docker exec secondaryContainer dspmq

5. Run the following command to process MQSC commands against the queue manager running on the
other container:

docker exec -it secondaryContainer runmqsc QM1

Results
You now have local applications running in separate containers, and you can now successfully run
commands like dspmq, amqsput, amqsget, and runmqsc as local bindings to the QM1 queue manager
from the secondary container.

If you do not see the result you expected, see “Troubleshooting your namespace applications” on page
211 for more information.

Troubleshooting your namespace applications
When using shared namespaces, you must ensure that you share all namespaces (IPC, PID and UTS/
hostname) and mounted volumes, otherwise your applications will not work.

See “Running local binding applications in separate containers” on page 210 for a list of restrictions you
must follow.

If your application does not meet all the restrictions listed, you could encounter problems where the
container starts, but the functionality you expect does not work.

IBM MQ in containers and IBM Cloud Pak for Integration 211

https://github.com/ibm-messaging/mq-container

The following list outlines some common causes, and the behavior you are likely see if you have forgotten
to meet one of the restrictions.

• If you forget to share either the namespace (UTS/PID/IPC), or the hostname of the containers, and you
mount the volume, then your container will be able to see the queue manager but not interact with the
queue manager.

– For dspmq commands, you see the following:

docker exec container dspmq

QMNAME(QM1) STATUS(Status not available)

– For runmqsc commands, or other commands that try to connect to the queue manager, you are likely
to receive an AMQ8146 error message:

docker exec -it container runmqsc QM1
5724-H72 (C) Copyright IBM Corp. 1994, 2025.
Starting MQSC for queue manager QM1.
AMQ8146: IBM MQ queue manager not available

• If you share all the required namespaces but you do not mount a shared volume to the /var/mqm
directory, and you have a valid IBM MQ data path, then your commands also receive AMQ8146 error
messages.

However, dspmq is not able to see your queue manager at all, and instead returns a blank response:

docker exec container dspmq

• If you share all the required namespaces but you do not mount a shared volume to the /var/mqm
directory, and you do not have a valid IBM MQ data path (or no IBM MQ data path), then you see various
errors as the data path is a key component of an IBM MQ installation. Without the data path, IBM MQ
cannot operate.

If you run any of the following commands, and you see responses similar to those shown in these
examples, you should verify that you have mounted the directory or created an IBM MQ data directory:

docker exec container dspmq
'No such file or directory' from /var/mqm/mqs.ini
AMQ6090: IBM MQ was unable to display an error message FFFFFFFF.
AMQffff

docker exec container dspmqver
AMQ7047: An unexpected error was encountered by a command. Reason code is 0.

docker exec container mqrc
<file path>/mqrc.c[1152]
lpiObtainQMDetails --> 545261715

docker exec container crtmqm QM1
AMQ8101: IBM MQ error (893) has occurred.

docker exec container strmqm QM1
AMQ6239: Permission denied attempting to access filesystem location '/var/mqm'.
AMQ7002: An error occurred manipulating a file.

docker exec container endmqm QM1
AMQ8101: IBM MQ error (893) has occurred.

docker exec container dltmqm QM1
AMQ7002: An error occurred manipulating a file.

docker exec container strmqweb
<file path>/mqrc.c[1152]
lpiObtainQMDetails --> 545261715

212 IBM MQ in containers

Creating the Native HA group if creating your own containers
You must create, configure, and start three queue managers to create the Native HA group.

About this task
The recommended method for creating a Native HA solution is by using the IBM MQ operator (see Native
HA). Alternatively, if you create your own containers, you can follow these instructions.

To create a Native HA group, you create three queue managers on three nodes with their log type set to
log replication. You then edit the qm.ini file for each queue manager to add the connection details
for each of the three nodes so that they can replicate log data to each other.

You must then start all three queue managers so that they can check that all three instances can
communicate with one another, and determine which of them will be the active instance and which will be
the replicas.

Note: You can only create a Native HA group in your own containers in this way if you are running
Kubernetes or Red Hat OpenShift.

Procedure
1. On each of the three nodes, create a queue manager, specifying a log type of log replica, and supplying

a unique name for each log instance. Each queue manager has the same name:

crtmqm -lr instance_name qmname

For example:

node 1> crtmqm -lr qm1_inst1 qm1

node 2> crtmqm -lr qm1_inst2 qm1

node 3> crtmqm -lr qm1_inst3 qm1

2. On successful creation of each queue manager, an additional stanza named
NativeHALocalInstance is added to the queue manager configuration file, qm.ini. A Name
attribute is added to the stanza specifying the supplied instance name.

You can add optionally add the following attributes to the NativeHALocalInstance stanza in the
qm.ini file:

KeyRepository
The location of the key repository that holds the digital certificate to use for protection of log
replication traffic. The location is given in stem format, that is, it includes the full path and file
name without an extension. If the KeyRepository stanza attribute is omitted, log replication data
is exchanged between instances in plain text.

CertificateLabel
The certificate label identifying the digital certificate to use for protection of log replication
traffic. If KeyRepository is provided but CertificateLabel is omitted, a default value of
ibmwebspheremqqueue_manager is used.

CipherSpec
The MQ CipherSpec to use to protect log replication traffic. If this stanza attribute is provided,
KeyRepository must also be provided. If KeyRepository is provided but CipherSpec is
omitted, a default value of ANY is used.

LocalAddress
The local network interface address that accepts log replication traffic. If this stanza attribute
is provided it identifies the local network interface and/or port using the format "[addr][(port)]".
The network address can be specified as a hostname, IPv4 dotted decimal, or IPv6 hexadecimal
format. If this attribute is omitted, the queue manager attempts to bind to all network interfaces,

IBM MQ in containers and IBM Cloud Pak for Integration 213

it uses the port specified in the ReplicationAddress in the NativeHAInstances stanza
matching the local instance name.

HeartbeatInterval
The heartbeat interval defines how often in milliseconds an active instance of a Native HA queue
manager sends a network heartbeat. The valid range of the heartbeat interval value is 500 (0.5
seconds) to 60000 (1 minute), a value outside of this range causes the queue manager to fail to
start. If this attribute is omitted, a default value of 5000 (5 seconds) is used. Each instance must
use the same heartbeat interval.

HeartbeatTimeout
The heartbeat timeout defines how long a replica instance of a Native HA queue manager waits
before it decides that the active instance is unresponsive. The valid range of the heartbeat interval
timeout value is 500 (0.5 seconds) to 120000 (2 minutes). The value of the heartbeat timeout
must be greater than or equal to the heartbeat interval.

An invalid value causes the queue manager to fail to start. If this attribute is omitted a replica
waits for 2 x HeartbeatInterval before starting the process to elect a new active instance. Each
instance must use the same heartbeat timeout.

RetryInterval
The retry interval defines how often in milliseconds a Native HA queue manager should retry a
failed replication link. The valid range of the retry interval is 500 (0.5 seconds) to 120000 (2
minutes). If this attribute is omitted a replica waits for 2 x HeartbeatInterval before retrying a
failed replication link.

3. Edit the qm.ini file for each queue manager and add connection details. You add three
NativeHAInstance stanzas, one for each queue manager instance in the Native HA group (including
the local instance). Add the following attributes:
Name

Specify the instance name that you used when you created the queue manager instance.
ReplicationAddress

Specify the hostname, IPv4 dotted decimal or IPv6 hexadecimal format address of the instance.
You can specify the address as a hostname, IPv4 dotted decimal, or IPv6 hexadecimal format
address. The replication address must be resolvable and routable from each instance in the group.
The port number to use for the log replication must be specified in brackets, for example:

ReplicationAddress=host1.example.com(4444)

Note: The NativeHAInstance stanzas are identical on every instance and could be provided by using
automatic configuration (crtmqm -ii).

4. Start each of the three instances:

strmqm QMgrName

When the instances are started they communicate to check that all three instances are running, then
decide which of the three is the active instance, while the other two instances continue to run as
replicas.

Example
The following example shows the section of a qm.ini file specifying the required Native HA details for
one of the three instances:

NativeHALocalInstance:
 LocalName=node-1

NativeHAInstance:
 Name=node-1
 ReplicationAddress=host1.example.com(4444)
NativeHAInstance:
 Name=node-2
 ReplicationAddress=host2.example.com(4444)
NativeHAInstance:

214 IBM MQ in containers

 Name=node-3
 ReplicationAddress=host3.example.com(4444)

Considerations for performing your own rolling update of a Native
HA queue manager
Any update to the IBM MQ version or Pod specification for a Native HA queue manager, will require
you to perform a rolling update of the queue manager instances. The IBM MQ Operator handles this for
you automatically, but if you are building your own deployment code, then there are some important
considerations.

Note: The sample Helm chart includes a shell script to perform a rolling update, but the script is not
suitable for production use, as it does not address the considerations in this topic.

In Kubernetes, StatefulSet resources are used to manage ordered start-up and rolling
updates. Part of the start-up procedure is to start each Pod individually, wait for it to become ready,
and then move onto the next Pod. This won't work for Native HA, as all Pods need to be started so that
they can run a leader election. Therefore the .spec.podManagementPolicy field on the StatefulSet
needs to be set to Parallel. This also means that all Pods will be updated in parallel too, which
is particularly undesirable. For this reason, the StatefulSet should also use the OnDelete update
strategy.

Inability to use the StatefulSet rolling update code drives a need for custom rolling update code, which
should consider the following:

• General rolling update procedure
• Minimizing down time by updating Pods in the best order
• Handling changes in cluster state
• Handling errors
• Handling timing problems

General rolling update procedure
The rolling update code should wait for each instance to show a status of REPLICA from dspmq. This
means that the instance has performed some level of start up (for example, the container is started, and
MQ processes are running), but it has not necessarily managed to talk to the other instances yet. For
example: Pod A gets restarted, and as soon as it's in REPLICA state, Pod B gets restarted. Once Pod B
starts with the new configuration, it should be able to talk to Pod A, and can form quorum, and either A or
B will become the new active instance.

As part of this, it is useful to have a delay after each Pod has reached the REPLICA state, to allow for it to
connect to its peers and establish quorum.

Minimizing down time by updating Pods in the best order
The rolling update code should delete Pods one at a time, starting with Pods which are in a known error
state, followed by any Pods that have not successfully started. The active queue manager Pod should
generally be updated last.

It is also important to pause the deletion of Pods if the last update resulted in a Pod going into a known
error state. This prevents the roll-out of a broken update across all Pods. For example, this can happen if
the Pod is updated to use a new container image which isn't accessible (or contains a typo).

Handling changes in cluster state
The rolling update code needs to react appropriately to real-time changes in cluster state. For example,
one of the queue manager's Pods might be evicted due to a Node reboot or due to Node pressure. It's
possible that an evicted Pod might not be immediately re-scheduled if the cluster is busy. In this case, the
rolling update code would need to wait appropriately before restarting any other Pods.

IBM MQ in containers and IBM Cloud Pak for Integration 215

https://github.com/ibm-messaging/mq-helm

Handling errors
The rolling update code needs to be robust to failures when calling the Kubernetes API and other
unexpected cluster behaviour.

In addition, the rolling update code itself needs to be tolerant to being restarted. A rolling update can be
long-running, and the code may need to be restarted.

Handling timing problems
The rolling update code needs to check the update revisions of the Pod, so that it can ensure the Pod has
restarted. This avoids timing issues where a Pod may indicate that it is "Started", but it has in-fact not yet
terminated.

Related concepts
“Choosing how you want to use IBM MQ in containers” on page 5
There are multiple options for using IBM MQ in containers: you can choose to use the IBM MQ Operator,
which uses pre-packaged container images, or you can build your own images and deployment code.

Viewing the status of Native HA queue managers for custom-built
containers
For custom-built containers, you can view the status of the Native HA instances by using the dspmq
command.

About this task
You can use the dspmq command to view the operational status of a queue manager instance on a node.
The information returned depends on whether the instance is active or a replica. The information supplied
by the active instance is definitive, information from replica nodes might be out of date.

You can perform the following actions:

• View whether the queue manager instance on the current node is active or a replica.
• View the Native HA operational status of the instance on the current node.
• View the operational status of all three instances in a Native HA configuration.

The following status fields are used to report Native HA configuration status:
ROLE

Specifies the current role of the instance and is one of Active, Replica, or Unknown.
INSTANCE

The name provided for this instance of the queue manager when it was created using the -lr option
of the crtmqm command.

INSYNC
Indicates whether the instance is able to take over as the active instance if required.

QUORUM
Reports the quorum status in the form number_of_instances_in-sync/number_of_instances_configured.

REPLADDR
The replication address of the queue manager instance.

CONNACTV
Indicates whether the node is connected to the active instance.

BACKLOG
Indicates the number of KB that the instance is behind.

CONNINST
Indicates whether the named instance is connected to this instance.

216 IBM MQ in containers

ALTDATE
Indicates the date on which this information was last updated (blank if it has never been updated).

ALTTIME
Indicates the time at which this information was last updated (blank if it has never been updated).

Procedure
• To determine whether a queue manager instance is running as the active instance or as a replica:

dspmq -o status -m QMgrName

An active instance of a queue manager named BOB would report the following status:

QMNAME(BOB) STATUS(Running)

A replica instance of a queue manager named BOB would report the following status:

QMNAME(BOB) STATUS(Replica)

An inactive instance would report the following status:

QMNAME(BOB) STATUS(Ended Immediately)

• To determine Native HA operational status of the instance on the current node:

dspmq -o nativeha -m QMgrName

The active instance of a queue manager named BOB might report the following status:

QMNAME(BOB) ROLE(Active) INSTANCE(inst1) INSYNC(Yes) QUORUM(3/3)

A replica instance of a queue manager named BOB might report the following status:

QMNAME(BOB) ROLE(Replica) INSTANCE(inst2) INSYNC(Yes) QUORUM(2/3)

An inactive instance of a queue manager named BOB might report the following status:

QMNAME(BOB) ROLE(Unknown) INSTANCE(inst3) INSYNC(no) QUORUM(0/3)

• To determine the Native HA operational status of all the instances in the Native HA configuration:

dspmq -o nativeha -x -m QMgrName

If you issue this command on the node running the active instance of queue manager BOB, you might
receive the following status:

QMNAME(BOB) ROLE(Active) INSTANCE(inst1) INSYNC(Yes) QUORUM(3/3)
 INSTANCE(inst1) ROLE(Active) REPLADDR(9.20.123.45) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
 INSTANCE(inst2) ROLE(Replica) REPLADDR(9.20.123.46) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
 INSTANCE(inst3) ROLE(Replica) REPLADDR(9.20.123.47) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)

If you issue this command on a node running a replica instance of queue manager BOB, you might
receive the following status, which indicates that one of the replicas is lagging behind:

QMNAME(BOB) ROLE(Replica) INSTANCE(inst2) INSYNC(Yes) QUORUM(2/3)
 INSTANCE(inst2) ROLE(Replica) REPLADDR(9.20.123.46) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
 INSTANCE(inst1) ROLE(Active) REPLADDR(9.20.123.45) CONNACTV(Yes) INSYNC(Yes) BACKLOG(0)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)
 INSTANCE(inst3) ROLE(Replica) REPLADDR(9.20.123.47) CONNACTV(Yes) INSYNC(No) BACKLOG(435)
CONNINST(Yes) ALTDATE(2022-01-12) ALTTIME(12.03.44)

IBM MQ in containers and IBM Cloud Pak for Integration 217

If you issue this command on a node running an inactive instance of queue manager BOB, you might
receive the following status:

QMNAME(BOB) ROLE(Unknown) INSTANCE(inst3) INSYNC(no) QUORUM(0/3)
 INSTANCE(inst1) ROLE(Unknown) REPLADDR(9.20.123.45) CONNACTV(Unknown) INSYNC(Unknown)
BACKLOG(Unknown) CONNINST(No) ALTDATE() ALTTIME()
 INSTANCE(inst2) ROLE(Unknown) REPLADDR(9.20.123.46) CONNACTV(Unknown) INSYNC(Unknown)
BACKLOG(Unknown) CONNINST(No) ALTDATE() ALTTIME()
 INSTANCE(inst3) ROLE(Unknown) REPLADDR(9.20.123.47) CONNACTV(No) INSYNC(Unknown)
BACKLOG(Unknown) CONNINST(No) ALTDATE() ALTTIME()

If you issue the command when the instances are still negotiating which is active and which are
replicas, you would receive the following status:

QMNAME(BOB) STATUS(Negotiating)

Related reference
dspmq (display queue managers) command

Ending Native HA queue managers
You can use the endmqm command to end an active or a replica queue manager that is part of a Native HA
group.

Procedure
• To end the active instance of a queue manager, see Ending Native HA queue managers in the

Configuring section of this documentation.

218 IBM MQ in containers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2025 219

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

220 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (https://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 221

222 IBM MQ in containers

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	IBM MQ in containers and IBM Cloud Pak for Integration
	Planning for IBM MQ in containers
	Choosing how you want to use IBM MQ in containers
	Support for IBM MQ in containers
	Version support for the IBM MQ Operator

	Planning for licensing IBM MQ in containers
	License annotations when building your own IBM MQ container image

	Dependencies for the IBM MQ Operator
	Cluster-scoped permissions required by the IBM MQ Operator
	Storage considerations for IBM MQ Operator
	IBM MQ Advanced for Developers container image
	High availability for IBM MQ in containers
	Disaster recovery for IBM MQ in containers
	Planning to secure IBM MQ in containers
	User authentication and authorization for IBM MQ in containers
	Security constraints on the use of operating system users in containers

	Considerations for restricting network traffic to IBM MQ in containers
	FIPS compliance for IBM MQ in containers
	How FIPS compliance is detected and FIPS support is configured automatically
	Overriding automatic FIPS mode for IBM MQ in containers

	Planning scalability and performance for IBM MQ in containers

	Using the IBM MQ Operator
	Release history for IBM MQ Operator
	Release history for Queue Manager Container images for use with IBM MQ Operator

	Verifying image signatures
	Migrating IBM MQ to IBM Cloud Pak for Integration
	Checking that required functions are available
	Extracting the queue manager configuration
	Optional: Extracting and acquiring the queue manager keys and certificates
	Optional: Configuring LDAP
	LDAP part 1: Updating the IBM MQ backup for the LDAP server
	LDAP part 2: Updating the IBM MQ backup for LDAP authorization information

	Optional: Changing the IP addresses and host names in the IBM MQ configuration
	Updating the queue manager configuration for a container environment
	Selecting the target HA architecture for IBM MQ running in containers
	Creating the resources for the queue manager
	Creating the new queue manager on Red Hat OpenShift
	Verifying the new container deployment

	Installing the IBM MQ Operator
	Adding the IBM MQ Operator catalog source
	Installing the IBM MQ Operator using the OpenShift console
	Installing the IBM MQ Operator using the Red Hat OpenShift CLI

	Installing IBM MQ Operator 2.x in an air-gap environment
	Deploying a queue manager onto a Red Hat OpenShift Container Platform cluster
	Uninstalling the IBM MQ Operator
	Upgrading the IBM MQ Operator and queue managers
	Upgrading to an IBM MQ Operator channel latest security release
	Migrating to the LTS channel of the IBM MQ Operator
	Migrating to the current CD channel of the IBM MQ Operator
	Migrating a 1.x CD IBM MQ Operator to version 2.0.x

	Migrating to the v2.4 channel of the IBM MQ Operator
	Preparing to upgrade to the latest IBM MQ 2.x Operator or queue manager in an air-gap environment
	Upgrading the IBM MQ Operator using Red Hat OpenShift
	Upgrading the IBM MQ Operator using the Red Hat OpenShift web console
	Upgrading the IBM MQ Operator using the Red Hat OpenShift CLI

	Upgrading an IBM MQ queue manager using Red Hat OpenShift
	Upgrading an IBM MQ queue manager using the Red Hat OpenShift web console
	Upgrading an IBM MQ queue manager using the Red Hat OpenShift CLI
	Upgrading an IBM MQ queue manager in Red Hat OpenShift using the Platform UI

	Configuring queue managers using the IBM MQ Operator
	Examples for configuring a queue manager
	Example: Supplying MQSC and INI files
	Creating a self-signed PKI using OpenSSL
	Example: Configuring a queue manager with mutual TLS authentication
	Testing a mutual TLS connection to a queue manager from your laptop
	Example: Customizing license service annotations

	Configuring high availability for queue managers using the IBM MQ Operator
	Native HA
	Configuring Native HA using the IBM MQ Operator
	Example: Configuring Native HA using the IBM MQ Operator
	Viewing the status of Native HA queue managers for IBM MQ containers
	Advanced tuning for Native HA
	Ending Native HA queue managers

	Configuring a multi-instance queue manager using the IBM MQ Operator

	Configuring a Route to connect to a queue manager from outside a Red Hat OpenShift cluster
	Integrating with the IBM Cloud Pak for Integration Operations Dashboard
	Integrating IBM MQ with IBM Instana tracing
	Configuring authenticated IBM Instana monitoring with TLS
	Generate a certificate and key for the IBM Instana agent and the queue manager
	Instana monitoring: Configuring agents
	Instana monitoring: Configuring the queue manager
	Instana monitoring: Verifying and debugging

	Building an image with custom MQSC and INI files, using the Red Hat OpenShift CLI
	Adding custom annotations and labels to queue manager resources
	Disabling runtime webhook checks
	Disabling default value updates to the queue manager specification
	Running the IBM MQ container with a read-only root file system
	Configuring the IBM MQ Console with a basic registry using the IBM MQ Operator
	Correcting license annotations for deployed queue managers

	Operating IBM MQ using the IBM MQ Operator
	Connecting to the IBM MQ Console deployed in a Red Hat OpenShift cluster
	Giving permissions for the IBM MQ Console using the IBM Cloud Pak IAM

	Monitoring when using the IBM MQ Operator
	Metrics published when using the IBM MQ Operator

	Backing up and restoring queue manager configuration using the Red Hat OpenShift CLI

	Troubleshooting problems with the IBM MQ Operator
	Collecting troubleshooting information for queue managers deployed with the IBM MQ Operator
	Troubleshooting: Gaining access to queue manager data

	API reference for the IBM MQ Operator
	API reference for mq.ibm.com/v1beta1
	Licensing reference for mq.ibm.com/v1beta1
	API reference for QueueManager (mq.ibm.com/v1beta1)
	Status conditions for QueueManager (mq.ibm.com/v1beta1)

	Building your own IBM MQ container and deployment code
	Planning your own IBM MQ queue manager image using a container
	Building a sample IBM MQ queue manager container image
	Building a sample base IBM MQ queue manager image
	Building a sample configured IBM MQ queue manager image

	Running local binding applications in separate containers
	Troubleshooting your namespace applications

	Creating the Native HA group if creating your own containers
	Considerations for performing your own rolling update of a Native HA queue manager
	Viewing the status of Native HA queue managers for custom-built containers
	Ending Native HA queue managers

	Notices
	Programming interface information
	Trademarks

