
9.2

IBM MQ Developing Applications
Reference

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
2181.

This edition applies to version 9 release 2 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Developing applications reference... 7
MQI applications reference... 7

Code examples... 8
Constants..61
Data types used in the MQI..235
Function calls... 618
Attributes of objects...789
Return codes.. 864
Rules for validating MQI options... 865
Queued publish/subscribe command messages.. 868
Machine encodings.. 890
Report options and message flags.. 893
Data-conversion exit.. 897
Properties specified as MQRFH2 elements...919
Code page conversion..928
Coding standards on 64-bit platforms.. 982

IBM i Application Programming Reference (ILE/RPG)... 986
Data type descriptions on IBM i...987
Function calls on IBM i...1239
Attributes of objects on IBM i..1355
Applications... 1400
Return codes for IBM i (ILE RPG).. 1413
Rules for validating MQI options for IBM i (ILE RPG)... 1414
Machine encodings on IBM i..1417
Report options and message flags on IBM i..1420

Data conversion on IBM i.. 1423
Conversion processing on IBM i.. 1424
Processing conventions on IBM i...1425
Conversion of report messages on IBM i.. 1429
MQDXP (Data-conversion exit parameter) on IBM i... 1430
MQXCNVC (Convert characters) on IBM i..1435
MQCONVX (Data conversion exit) on IBM i... 1439

User exits, API exits, and installable services reference... 1443
MQIEP structure...1443
Data-conversion exit reference... 1447
MQ_PUBLISH_EXIT - Publish exit... 1451
Channel-exit calls and data structures... 1459
Cluster workload exit call and data structures... 1522
API exit reference.. 1547
Installable services interface reference information..1607
Installable services interface reference information on IBM i... 1670

The IBM MQ .NET classes and interfaces...1710
MQAsyncStatus.NET class.. 1710
MQAuthenticationInformationRecord.NET class.. 1711
MQDestination.NET class.. 1712
MQEnvironment.NET class.. 1714
MQException.NET class...1717
MQGetMessageOptions.NET class...1717
MQManagedObject.NET class..1720
MQMessage.NET class... 1723
MQProcess.NET class... 1735
MQPropertyDescriptor.NET class...1737

 iii

MQPutMessageOptions.NET class...1738
MQQueue.NET class... 1741
MQQueueManager.NET class.. 1748
MQSubscription.NET class.. 1761
MQTopic.NET class... 1762
IMQObjectTrigger.NET interface... 1768
MQC.NET interface..1769
Character set identifiers for .NET applications... 1769

IBM MQ C++ classes..1772
C++ and MQI cross-reference... 1773
ImqAuthenticationRecord C++ class.. 1789
ImqBinary C++ class..1791
ImqCache C++ class.. 1793
ImqChannel C++ class...1796
ImqCICSBridgeHeader C++ class... 1801
ImqDeadLetterHeader C++ class..1807
ImqDistributionList C++ class... 1810
ImqError C++ class.. 1811
ImqGetMessageOptions C++ class... 1812
ImqHeader C++ class.. 1816
ImqIMSBridgeHeader C++ class...1817
ImqItem C++ class.. 1820
ImqMessage C++ class..1822
ImqMessageTracker C++ class..1828
ImqNamelist C++ class..1831
ImqObject C++ class... 1832
ImqProcess C++ class... 1838
ImqPutMessageOptions C++ class... 1839
ImqQueue C++ class... 1842
ImqQueueManager C++ class... 1852
ImqReferenceHeader C++ class... 1868
ImqString C++ class...1871
ImqTrigger C++ class... 1876
ImqWorkHeader C++ class..1879

Properties of IBM MQ classes for JMS objects...1881
Dependencies between properties of IBM MQ classes for JMS objects..1884
APPLICATIONNAME...1886
ASYNCEXCEPTION...1886
BROKERCCDURSUBQ.. 1887
BROKERCCSUBQ..1888
BROKERCONQ..1888
BROKERDURSUBQ...1889
BROKERPUBQ.. 1889
BROKERPUBQMGR.. 1890
BROKERQMGR... 1890
BROKERSUBQ.. 1890
BROKERVER... 1891
CCDTURL.. 1892
CCSID... 1892
CHANNEL... 1893
CLEANUP.. 1893
CLEANUPINT..1894
CONNECTIONNAMELIST... 1894
CLIENTRECONNECTOPTIONS...1894
CLIENTRECONNECTTIMEOUT.. 1895
CLIENTID..1896
CLONESUPP... 1896
COMPHDR.. 1897

iv

COMPMSG.. 1897
CONNOPT... 1898
CONNTAG... 1899
DESCRIPTION.. 1899
DIRECTAUTH..1900
ENCODING... 1900
EXPIRY... 1901
FAILIFQUIESCE..1901
HOSTNAME.. 1902
LOCALADDRESS... 1903
MAPNAMESTYLE..1903
MAXBUFFSIZE... 1904
MDREAD... 1904
MDWRITE... 1905
MDMSGCTX.. 1905
MSGBATCHSZ...1906
MSGBODY...1906
MSGRETENTION.. 1907
MSGSELECTION... 1907
MULTICAST.. 1908
OPTIMISTICPUBLICATION..1909
OUTCOMENOTIFICATION... 1909
PERSISTENCE.. 1910
POLLINGINT...1910
PORT...1911
PRIORITY... 1911
PROCESSDURATION..1912
PROVIDERVERSION...1912
PROXYHOSTNAME...1915
PROXYPORT... 1915
PUBACKINT..1916
PUTASYNCALLOWED... 1916
QMANAGER.. 1917
QUEUE.. 1917
READAHEADALLOWED.. 1918
READAHEADCLOSEPOLICY... 1918
RECEIVECCSID...1919
RECEIVECONVERSION.. 1919
RECEIVEISOLATION.. 1920
RECEXIT... 1920
RECEXITINIT..1921
REPLYTOSTYLE.. 1921
RESCANINT..1922
SECEXIT... 1922
SECEXITINIT..1923
SENDCHECKCOUNT... 1923
SENDEXIT...1924
SENDEXITINIT... 1924
SHARECONVALLOWED.. 1925
SPARSESUBS..1925
SSLCIPHERSUITE...1926
SSLCRL... 1926
SSLFIPSREQUIRED..1927
SSLPEERNAME...1927
SSLRESETCOUNT... 1928
STATREFRESHINT..1928
SUBSTORE..1929
SYNCPOINTALLGETS... 1929

 v

TARGCLIENT.. 1930
TARGCLIENTMATCHING..1930
TEMPMODEL.. 1931
TEMPQPREFIX... 1931
TEMPTOPICPREFIX... 1932
TOPIC... 1932
TRANSPORT... 1932
WILDCARDFORMAT... 1933
The ENCODING property... 1934
TLS properties of JMS objects... 1934

IBM MQ Message Service Client (XMS) for .NET reference..1935
.NET interfaces...1935
Properties of XMS objects..2016

Managed File Transfer developing applications reference.. 2083
Examples of using fteCreateTransfer to start programs... 2083
fteAnt: run Ant tasks in MFT... 2085
MFT user exits for customization reference..2110
Message formats for messages you can put on the MFT Agent command queue.........................2150

Messaging REST API reference...2150
REST API resources... 2150

Notices..2181
Programming interface information..2182
Trademarks..2182

vi

Developing applications reference

Use the links provided in this section to help you develop your IBM MQ applications.

• “MQI applications reference” on page 7

• “IBM i Application Programming Reference (ILE/RPG)” on page 986

• “Data conversion on IBM i” on page 1423
• “User exits, API exits, and installable services reference” on page 1443
• “The IBM MQ .NET classes and interfaces” on page 1710
• “IBM MQ C++ classes” on page 1772
• “Properties of IBM MQ classes for JMS objects” on page 1881
• “Messaging REST API reference” on page 2150

Related tasks
Developing applications
Related reference
IBM MQ classes for Java libraries
IBM MQ classes for JMS

MQI applications reference
Use the links provided in this section to help you develop your Message Queue Interface (MQI)
applications.

• “Code examples” on page 8
• “Constants” on page 61
• “Data types used in the MQI” on page 235
• “Function calls” on page 618
• “Attributes of objects” on page 789
• “Return codes” on page 864
• “Rules for validating MQI options” on page 865
• “Machine encodings” on page 890
• “Report options and message flags” on page 893
• “Data-conversion exit” on page 897
• “Properties specified as MQRFH2 elements” on page 919
• “Code page conversion” on page 928

Related concepts
“User exits, API exits, and installable services reference” on page 1443
Use the linformation in this section to help you develop your User exits, API exits, and installable services
applications:
Related tasks
Developing applications
Related reference
“The IBM MQ .NET classes and interfaces” on page 1710

© Copyright IBM Corp. 2007, 2024 7

IBM MQ .NET classes and interfaces are listed alphabetically. The properties, methods and constructors
are described.
“IBM MQ C++ classes” on page 1772
The IBM MQ C++ classes encapsulate the IBM MQ Message Queue Interface (MQI). There is a single C++
header file, imqi.hpp, which covers all of these classes.
The IBM MQ Classes for Java libraries
IBM MQ Classes for JMS

Code examples
Use the reference information in this section to accomplish the tasks that address your business needs.

C language examples
This collection of topics is mostly taken from the IBM MQ for z/OS sample applications. They are
applicable to all platforms, except where noted.

Connecting to a queue manager
This example demonstrates how to use the MQCONN call to connect a program to a queue manager in
z/OS batch.

This extract is taken from the Browse sample application (program CSQ4BCA1) supplied with IBM MQ for
z/OS. For the names and locations of the sample applications on other platforms, see Sample procedural
programs (platforms except z/OS).

#include <cmqc.h>
⋮
static char Parm1[MQ_Q_MGR_NAME_LENGTH] ;

int main(int argc, char *argv[])
 {
 /* */
 /* Variables for MQ calls */
 /* */
 MQHCONN Hconn; /* Connection handle */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Qualifying reason */

 /* Copy the queue manager name, passed in the */
 /* parm field, to Parm1 */
 strncpy(Parm1,argv[1],MQ_Q_MGR_NAME_LENGTH);

 /* */
 /* Connect to the specified queue manager. */
 /* Test the output of the connect call. If the */
 /* call fails, print an error message showing the */
 /* completion code and reason code, then leave the */
 /* program. */
 /* */
 MQCONN(Parm1,
 &Hconn,
 &CompCode,
 &Reason);
 if ((CompCode != MQCC_OK) | (Reason != MQRC_NONE))
 {
 sprintf(pBuff, MESSAGE_4_E,
 ERROR_IN_MQCONN, CompCode, Reason);
 PrintLine(pBuff);
 RetCode = CSQ4_ERROR;
 goto AbnormalExit2;
 }
 ⋮
}

8 IBM MQ Developing Applications Reference

Disconnecting from a queue manager
This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager
in z/OS batch.

The variables used in this code extract are those that were set in “Connecting to a queue manager” on
page 8. This extract is taken from the Browse sample application (program CSQ4BCA1) supplied with
IBM MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
 /* */
 /* Disconnect from the queue manager. Test the */
 /* output of the disconnect call. If the call */
 /* fails, print an error message showing the */
 /* completion code and reason code. */
 /* */
 MQDISC(&Hconn,
 &CompCode,
 &Reason);
 if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))
 {
 sprintf(pBuff, MESSAGE_4_E,
 ERROR_IN_MQDISC, CompCode, Reason);
 PrintLine(pBuff);
 RetCode = CSQ4_ERROR;
 }
⋮

Creating a dynamic queue
This example demonstrates how to use the MQOPEN call to create a dynamic queue.

This extract is taken from the Mail Manager sample application (program CSQ4TCD1) supplied with IBM
MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
MQLONG HCONN = 0; /* Connection handle */
MQHOBJ HOBJ; /* MailQ Object handle */
MQHOBJ HobjTempQ; /* TempQ Object Handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */
MQOD ObjDesc = {MQOD_DEFAULT};
 /* Object descriptor */
MQLONG OpenOptions; /* Options control MQOPEN */

 /*--- */
 /* Initialize the Object Descriptor (MQOD) */
 /* control block. (The remaining fields */
 /* are already initialized.) */
 /*--*/
 strncpy(ObjDesc.ObjectName,
 SYSTEM_REPLY_MODEL,
 MQ_Q_NAME_LENGTH);
 strncpy(ObjDesc.DynamicQName,
 SYSTEM_REPLY_INITIAL,
 MQ_Q_NAME_LENGTH);
 OpenOptions = MQOO_INPUT_AS_Q_DEF;
 /*--*/
 /* Open the model queue and, therefore, */
 /* create and open a temporary dynamic */
 /* queue */
 /*--*/
 MQOPEN(HCONN,
 &ObjDesc,
 OpenOptions,
 &HobjTempQ,
 &CompCode,
 &Reason);
 if (CompCode == MQCC_OK) {

 }
 else {
 /*---------------------------------------*/

Developing applications reference 9

 /* Build an error message to report the */
 /* failure of the opening of the model */
 /* queue */
 /*---------------------------------------*/
 MQMErrorHandling("OPEN TEMPQ", CompCode,
 Reason);
 ErrorFound = TRUE;
 }
 return ErrorFound;
}
⋮

Opening an existing queue
This example demonstrates how to use the MQOPEN call to open a queue that has already been defined.

This extract is taken from the Browse sample application (program CSQ4BCA1) supplied with IBM MQ for
z/OS. For the names and locations of the sample applications on other platforms, see Sample procedural
programs (platforms except z/OS).

#include <cmqc.h>
⋮
static char Parm1[MQ_Q_MGR_NAME_LENGTH];
⋮
int main(int argc, char *argv[])
 {
 /*
 /* Variables for MQ calls */
 /*
 MQHCONN Hconn ; /* Connection handle */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Qualifying reason */
 MQOD ObjDesc = { MQOD_DEFAULT };
 /* Object descriptor */
 MQLONG OpenOptions; /* Options that control */
 /* the MQOPEN call */
 MQHOBJ Hobj; /* Object handle */
 ⋮
 /* Copy the queue name, passed in the parm field, */
 /* to Parm2 strncpy(Parm2,argv[2], */
 /* MQ_Q_NAME_LENGTH); */
 ⋮
 /* */
 /* Initialize the object descriptor (MQOD) control */
 /* block. (The initialization default sets StrucId, */
 /* Version, ObjectType, ObjectQMgrName, */
 /* DynamicQName, and AlternateUserid fields) */
 /* */
 strncpy(ObjDesc.ObjectName,Parm2,MQ_Q_NAME_LENGTH);
 ⋮
 /* Initialize the other fields required for the open */
 /* call (Hobj is set by the MQCONN call). */
 /* */
 OpenOptions = MQOO_BROWSE;
 ⋮
 /* */
 /* Open the queue. */
 /* Test the output of the open call. If the call */
 /* fails, print an error message showing the */
 /* completion code and reason code, then bypass */
 /* processing, disconnect and leave the program. */
 /* */
 MQOPEN(Hconn,
 &ObjDesc,
 OpenOptions,
 &Hobj,
 &CompCode,
 &Reason);

 if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))
 {
 sprintf(pBuff, MESSAGE_4_E,
 ERROR_IN_MQOPEN, CompCode, Reason);
 PrintLine(pBuff);
 RetCode = CSQ4_ERROR;
 goto AbnormalExit1; /* disconnect processing */

10 IBM MQ Developing Applications Reference

 }
 ⋮
 } /* end of main */

Closing a queue
This example demonstrates how to use the MQCLOSE call to close a queue.

This extract is taken from the Browse sample application (program CSQ4BCA1) supplied with IBM MQ for
z/OS. For the names and locations of the sample applications on other platforms, see Sample procedural
programs (platforms except z/OS).

⋮
 /* */
 /* Close the queue. */
 /* Test the output of the close call. If the call */
 /* fails, print an error message showing the */
 /* completion code and reason code. */
 /* */
 MQCLOSE(Hconn,
 &Hobj,
 MQCO_NONE,
 &CompCode,
 &Reason);
 if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))
 {
 sprintf(pBuff, MESSAGE_4_E,
 ERROR_IN_MQCLOSE, CompCode, Reason);
 PrintLine(pBuff);
 RetCode = CSQ4_ERROR;
 }
⋮

Putting a message using MQPUT
This example demonstrates how to use the MQPUT call to put a message on a queue.

This extract is not taken from the sample applications supplied with IBM MQ. For the names and locations

of the sample applications, see Sample procedural programs (platforms except z/OS) and
Sample programs for IBM MQ for z/OS .

⋮
qput()
{
 MQMD MsgDesc;
 MQPMO PutMsgOpts;
 MQLONG CompCode;
 MQLONG Reason;
 MQHCONN Hconn;
 MQHOBJ Hobj;
 char message_buffer[] = "MY MESSAGE";
 /*-------------------------------*/
 /* Set up PMO structure. */
 /*-------------------------------*/
 memset(&PutMsgOpts, '\0', sizeof(PutMsgOpts));
 memcpy(PutMsgOpts.StrucId, MQPMO_STRUC_ID,
 sizeof(PutMsgOpts.StrucId));
 PutMsgOpts.Version = MQPMO_VERSION_1;
 PutMsgOpts.Options = MQPMO_SYNCPOINT;

 /*-------------------------------*/
 /* Set up MD structure. */
 /*-------------------------------*/
 memset(&MsgDesc, '\0', sizeof(MsgDesc));
 memcpy(MsgDesc.StrucId, MQMD_STRUC_ID,
 sizeof(MsgDesc.StrucId));
 MsgDesc.Version = MQMD_VERSION_1;
 MsgDesc.Expiry = MQEI_UNLIMITED;
 MsgDesc.Report = MQRO_NONE;
 MsgDesc.MsgType = MQMT_DATAGRAM;
 MsgDesc.Priority = 1;
 MsgDesc.Persistence = MQPER_PERSISTENT;
 memset(MsgDesc.ReplyToQ,
 '\0',

Developing applications reference 11

 sizeof(MsgDesc.ReplyToQ));
 /*---*/
 /* Put the message. */
 /*---*/
 MQPUT(Hconn, Hobj, &MsgDesc, &PutMsgOpts,
 sizeof(message_buffer), message_buffer,
 &CompCode, &Reason);

 /*-------------------------------------*/
 /* Check completion and reason codes. */
 /*-------------------------------------*/
 switch (CompCode)
 {
 case MQCC_OK:
 break;
 case MQCC_FAILED:
 switch (Reason)
 {
 case MQRC_Q_FULL:
 case MQRC_MSG_TOO_BIG_FOR_Q:
 break;
 default:
 break; /* Perform error processing */
 }
 break;
 default:
 break; /* Perform error processing */
 }
}

Putting a message using MQPUT1
This example demonstrates how to use the MQPUT1 call to open a queue, put a single message on the
queue, then close the queue.

This extract is taken from the Credit Check sample application (program CSQ4CCB5) supplied with IBM
MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
MQLONG Hconn; /* Connection handle */
MQHOBJ Hobj_CheckQ; /* Object handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */
MQOD ObjDesc = {MQOD_DEFAULT};
 /* Object descriptor */
MQMD MsgDesc = {MQMD_DEFAULT};
 /* Message descriptor */
MQLONG OpenOptions; /* Control the MQOPEN call */

MQGMO GetMsgOpts = {MQGMO_DEFAULT};
 /* Get Message Options */
MQLONG MsgBuffLen; /* Length of message buffer */
CSQ4BCAQ MsgBuffer; /* Message structure */
MQLONG DataLen; /* Length of message */

MQPMO PutMsgOpts = {MQPMO_DEFAULT};
 /* Put Message Options */
CSQ4BQRM PutBuffer; /* Message structure */
MQLONG PutBuffLen = sizeof(PutBuffer);
 /* Length of message buffer */
⋮

void Process_Query(void)
 {
 /* */
 /* Build the reply message */
 /* */
 ⋮
 /* */
 /* Set the object descriptor, message descriptor and */
 /* put message options to the values required to */
 /* create the reply message. */
 /* */

12 IBM MQ Developing Applications Reference

 strncpy(ObjDesc.ObjectName, MsgDesc.ReplyToQ,
 MQ_Q_NAME_LENGTH);
 strncpy(ObjDesc.ObjectQMgrName, MsgDesc.ReplyToQMgr,
 MQ_Q_MGR_NAME_LENGTH);
 MsgDesc.MsgType = MQMT_REPLY;
 MsgDesc.Report = MQRO_NONE;
 memset(MsgDesc.ReplyToQ, ' ', MQ_Q_NAME_LENGTH);
 memset(MsgDesc.ReplyToQMgr, ' ', MQ_Q_MGR_NAME_LENGTH);
 memcpy(MsgDesc.MsgId, MQMI_NONE, sizeof(MsgDesc.MsgId));
 PutMsgOpts.Options = MQPMO_SYNCPOINT +
 MQPMO_PASS_IDENTITY_CONTEXT;
 PutMsgOpts.Context = Hobj_CheckQ;
 PutBuffLen = sizeof(PutBuffer);
 MQPUT1(Hconn,
 &ObjDesc,
 &MsgDesc,
 &PutMsgOpts,
 PutBuffLen,
 &PutBuffer,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 strncpy(TS_Operation, "MQPUT1",
 sizeof(TS_Operation));
 strncpy(TS_ObjName, ObjDesc.ObjectName,
 MQ_Q_NAME_LENGTH);
 Record_Call_Error();
 Forward_Msg_To_DLQ();
 }
 return;
 }
 ⋮

Getting a message
This example demonstrates how to use the MQGET call to remove a message from a queue.

This extract is taken from the Browse sample application (program CSQ4BCA1) supplied with IBM MQ for
z/OS. For the names and locations of the sample applications on other platforms, see Sample procedural
programs (platforms except z/OS).

#include "cmqc.h"
⋮
#define BUFFERLENGTH 80
⋮
int main(int argc, char *argv[])
 {
 /* */
 /* Variables for MQ calls */
 /* */
 MQHCONN Hconn ; /* Connection handle */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Qualifying reason */
 MQHOBJ Hobj; /* Object handle */
 MQMD MsgDesc = { MQMD_DEFAULT };
 /* Message descriptor */
 MQLONG DataLength ; /* Length of the message */
 MQCHAR Buffer[BUFFERLENGTH+1];
 /* Area for message data */
 MQGMO GetMsgOpts = { MQGMO_DEFAULT };
 /* Options which control */
 /* the MQGET call */
 MQLONG BufferLength = BUFFERLENGTH ;
 /* Length of buffer */
 ⋮
 /* No need to change the message descriptor */
 /* (MQMD) control block because initialization */
 /* default sets all the fields. */
 /* */
 /* Initialize the get message options (MQGMO) */
 /* control block (the copy file initializes all */
 /* the other fields). */
 /* */
 GetMsgOpts.Options = MQGMO_NO_WAIT +
 MQGMO_BROWSE_FIRST +
 MQGMO_ACCEPT_TRUNCATED_MSG;

Developing applications reference 13

 /* */
 /* Get the first message. */
 /* Test for the output of the call is carried out */
 /* in the 'for' loop. */
 /* */
 MQGET(Hconn,
 Hobj,
 &MsgDesc,
 &GetMsgOpts,
 BufferLength,
 Buffer,
 &DataLength,
 &CompCode,
 &Reason);

 /* */
 /* Process the message and get the next message, */
 /* until no messages remaining. */
 ⋮
 /* If the call fails for any other reason, */
 /* print an error message showing the completion */
 /* code and reason code. */
 /* */
 if ((CompCode == MQCC_FAILED) &&
 (Reason == MQRC_NO_MSG_AVAILABLE))
 {
 ⋮
 }
 else
 {
 sprintf(pBuff, MESSAGE_4_E,
 ERROR_IN_MQGET, CompCode, Reason);
 PrintLine(pBuff);
 RetCode = CSQ4_ERROR;
 }
 ⋮
 } /* end of main */

Getting a message using the wait option
This example demonstrates how to use the wait option of the MQGET call.

This code accepts truncated messages. This extract is taken from the Credit Check sample application
(program CSQ4CCB5) supplied with IBM MQ for z/OS. For the names and locations of the sample
applications on other platforms, see Sample procedural programs (platforms except z/OS).

⋮
MQLONG Hconn; /* Connection handle */
MQHOBJ Hobj_CheckQ; /* Object handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Qualifying reason */
MQOD ObjDesc = {MQOD_DEFAULT};
 /* Object descriptor */
MQMD MsgDesc = {MQMD_DEFAULT};
 /* Message descriptor */
MQLONG OpenOptions;
 /* Control the MQOPEN call */
MQGMO GetMsgOpts = {MQGMO_DEFAULT};
 /* Get Message Options */
MQLONG MsgBuffLen; /* Length of message buffer */
CSQ4BCAQ MsgBuffer; /* Message structure */
MQLONG DataLen; /* Length of message */

⋮
void main(void)
 {
 ⋮
 /* */
 /* Initialize options and open the queue for input */
 /* */
 ⋮
 /* */
 /* Get and process messages */
 /* */

14 IBM MQ Developing Applications Reference

 GetMsgOpts.Options = MQGMO_WAIT +
 MQGMO_ACCEPT_TRUNCATED_MSG +
 MQGMO_SYNCPOINT;
 GetMsgOpts.WaitInterval = WAIT_INTERVAL;
 MsgBuffLen = sizeof(MsgBuffer);
 memcpy(MsgDesc.MsgId, MQMI_NONE,
 sizeof(MsgDesc.MsgId));
 memcpy(MsgDesc.CorrelId, MQCI_NONE,
 sizeof(MsgDesc.CorrelId));
 /* */
 /* Make the first MQGET call outside the loop */
 /* */
 MQGET(Hconn,
 Hobj_CheckQ,
 &MsgDesc,
 &GetMsgOpts,
 MsgBuffLen,
 &MsgBuffer,
 &DataLen,
 &CompCode,
 &Reason);
 ⋮
 /* */
 /* Test the output of the MQGET call. If the call */
 /* failed, send an error message showing the */
 /* completion code and reason code, unless the */
 /* reason code is NO_MSG AVAILABLE. */
 /* */
 if (Reason != MQRC_NO_MSG_AVAILABLE)
 {
 strncpy(TS_Operation, "MQGET", sizeof(TS_Operation));
 strncpy(TS_ObjName, ObjDesc.ObjectName,
 MQ_Q_NAME_LENGTH);
 Record_Call_Error();
 }
 ⋮

Getting a message using signaling
Signaling is available only with IBM MQ for z/OS .

This example demonstrates how to use the MQGET call to set a signal so that you are notified when a
suitable message arrives on a queue. This extract is not taken from the sample applications supplied with
IBM MQ.

⋮
get_set_signal()
{
 MQMD MsgDesc;
 MQGMO GetMsgOpts;
 MQLONG CompCode;
 MQLONG Reason;
 MQHCONN Hconn;
 MQHOBJ Hobj;
 MQLONG BufferLength;
 MQLONG DataLength;
 char message_buffer[100];
 long int q_ecb, work_ecb;
 short int signal_sw, endloop;
 long int mask = 255;

 /*---------------------------*/
 /* Set up GMO structure. */
 /*---------------------------*/
 memset(&GetMsgOpts,'\0',sizeof(GetMsgOpts));
 memcpy(GetMsgOpts.StrucId, MQGMO_STRUC_ID,
 sizeof(GetMsgOpts.StrucId);
 GetMsgOpts.Version = MQGMO_VERSION_1;
 GetMsgOpts.WaitInterval = 1000;
 GetMsgOpts.Options = MQGMO_SET_SIGNAL +
 MQGMO_BROWSE_FIRST;
 q_ecb = 0;
 GetMsgOpts.Signal1 = &q_ecb;
 /*---------------------------*/
 /* Set up MD structure. */
 /*---------------------------*/
 memset(&MsgDesc,'\0',sizeof(MsgDesc));
 memcpy(MsgDesc.StrucId, MQMD_STRUC_ID,

Developing applications reference 15

 sizeof(MsgDesc.StrucId);
 MsgDesc.Version = MQMD_VERSION_1;
 MsgDesc.Report = MQRO_NONE;
 memcpy(MsgDesc.MsgId,MQMI_NONE,
 sizeof(MsgDesc.MsgId));
 memcpy(MsgDesc.CorrelId,MQCI_NONE,
 sizeof(MsgDesc.CorrelId));

 /*---*/
 /* Issue the MQGET call. */
 /*---*/
 BufferLength = sizeof(message_buffer);
 signal_sw = 0;

 MQGET(Hconn, Hobj, &MsgDesc, &GetMsgOpts,
 BufferLength, message_buffer, &DataLength,
 &CompCode, &Reason);
 /*-------------------------------------*/
 /* Check completion and reason codes. */
 /*-------------------------------------*/
 switch (CompCode)
 {
 case (MQCC_OK): /* Message retrieved */
 break;
 case (MQCC_WARNING):
 switch (Reason)
 {
 case (MQRC_SIGNAL_REQUEST_ACCEPTED):
 signal_sw = 1;
 break;
 default:
 break; /* Perform error processing */
 }
 break;
 case (MQCC_FAILED):
 switch (Reason)
 {
 case (MQRC_Q_MGR_NOT_AVAILABLE):
 case (MQRC_CONNECTION_BROKEN):
 case (MQRC_Q_MGR_STOPPING):
 break;
 default:
 break; /* Perform error processing. */
 }
 break;
 default:
 break; /* Perform error processing. */
 }
 /*---*/
 /* If the SET_SIGNAL was accepted, set up a loop to */
 /* check whether a message has arrived at one second */
 /* intervals. The loop ends if a message arrives or */
 /* the wait interval specified in the MQGMO */
 /* structure has expired. */
 /* */
 /* If a message arrives on the queue, another MQGET */
 /* must be issued to retrieve the message. If other */
 /* MQM calls have been made in the intervening */
 /* period, this may necessitate reinitializing the */
 /* MQMD and MQGMO structures. */
 /* In this code, no intervening calls */
 /* have been made, so the only change required to */
 /* the structures is to specify MQGMO_NO_WAIT, */
 /* since we now know the message is there. */
 /* */
 /* This code uses the EXEC CICS DELAY command to */
 /* suspend the program for a second. A batch program */
 /* may achieve the same effect by calling an */
 /* assembler language subroutine which issues a */
 /* z/OS STIMER macro. */
 /*---*/

 if (signal_sw == 1)
 {
 endloop = 0;
 do
 {
 EXEC CICS DELAY FOR HOURS(0) MINUTES(0) SECONDS(1);

16 IBM MQ Developing Applications Reference

 work_ecb = q_ecb & mask;
 switch (work_ecb)
 {
 case (MQEC_MSG_ARRIVED):
 endloop = 1;
 mqgmo_options = MQGMO_NO_WAIT;
 MQGET(Hconn, Hobj, &MsgDesc, &GetMsgOpts,
 BufferLength, message_buffer,
 &DataLength, &CompCode, &Reason);
 if (CompCode != MQCC_OK)
 ; /* Perform error processing. */
 break;
 case (MQEC_WAIT_INTERVAL_EXPIRED):
 case (MQEC_WAIT_CANCELED):
 endloop = 1;
 break;
 default:
 break;
 }
 } while (endloop == 0);
 }
 return;
}

Inquiring about the attributes of an object
This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CCC1) supplied with
IBM MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

#include <cmqc.h> /* MQ API header file */
⋮
#define NUMBEROFSELECTORS 2

const MQHCONN Hconn = MQHC_DEF_HCONN;
⋮
static void InquireGetAndPut(char *Message,
 PMQHOBJ pHobj,
 char *Object)

 {
 /* Declare local variables */
 /* */
 MQLONG SelectorCount = NUMBEROFSELECTORS;
 /* Number of selectors */
 MQLONG IntAttrCount = NUMBEROFSELECTORS;
 /* Number of int attrs */
 MQLONG CharAttrLength = 0;
 /* Length of char attribute buffer */
 MQCHAR *CharAttrs ;
 /* Character attribute buffer */
 MQLONG SelectorsTable[NUMBEROFSELECTORS];
 /* attribute selectors */
 MQLONG IntAttrsTable[NUMBEROFSELECTORS];
 /* integer attributes */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Qualifying reason */
 /* */
 /* Open the queue. If successful, do the inquire */
 /* call. */
 /* */
 /* */
 /* Initialize the variables for the inquire */
 /* call: */
 /* - Set SelectorsTable to the attributes whose */
 /* status is */
 /* required */
 /* - All other variables are already set */
 /* */
 SelectorsTable[0] = MQIA_INHIBIT_GET;
 SelectorsTable[1] = MQIA_INHIBIT_PUT;
 /* */
 /* Issue the inquire call */
 /* Test the output of the inquire call. If the */

Developing applications reference 17

 /* call failed, display an error message */
 /* showing the completion code and reason code,*/
 /* otherwise display the status of the */
 /* INHIBIT-GET and INHIBIT-PUT attributes */
 /* */
 MQINQ(Hconn,
 *pHobj,
 SelectorCount,
 SelectorsTable,
 IntAttrCount,
 IntAttrsTable,
 CharAttrLength,
 CharAttrs,
 &CompCode,
 &Reason);
 if (CompCode != MQCC_OK)
 {
 sprintf(Message, MESSAGE_4_E,
 ERROR_IN_MQINQ, CompCode, Reason);
 SetMsg(Message);
 }
 else
 {
 /* Process the changes */
 } /* end if CompCode */

Setting the attributes of a queue
This example demonstrates how to use the MQSET call to change the attributes of a queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CCC1) supplied with
IBM MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

#include <cmqc.h> /* MQ API header file */
⋮
#define NUMBEROFSELECTORS 2

const MQHCONN Hconn = MQHC_DEF_HCONN;

static void InhibitGetAndPut(char *Message,
 PMQHOBJ pHobj,
 char *Object)
 {
 /* */
 /* Declare local variables */
 /* */
 MQLONG SelectorCount = NUMBEROFSELECTORS;
 /* Number of selectors */
 MQLONG IntAttrCount = NUMBEROFSELECTORS;
 /* Number of int attrs */
 MQLONG CharAttrLength = 0;
 /* Length of char attribute buffer */
 MQCHAR *CharAttrs ;
 /* Character attribute buffer */
 MQLONG SelectorsTable[NUMBEROFSELECTORS];
 /* attribute selectors */
 MQLONG IntAttrsTable[NUMBEROFSELECTORS];
 /* integer attributes */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Qualifying reason */
 ⋮
 /* */
 /* Open the queue. If successful, do the */
 /* inquire call. */
 /* */
 ⋮
 /* */
 /* Initialize the variables for the set call: */
 /* - Set SelectorsTable to the attributes to be */
 /* set */
 /* - Set IntAttrsTable to the required status */
 /* - All other variables are already set */
 /* */
 SelectorsTable[0] = MQIA_INHIBIT_GET;
 SelectorsTable[1] = MQIA_INHIBIT_PUT;
 IntAttrsTable[0] = MQQA_GET_INHIBITED;

18 IBM MQ Developing Applications Reference

 IntAttrsTable[1] = MQQA_PUT_INHIBITED;
 ⋮

 /* */
 /* Issue the set call. */
 /* Test the output of the set call. If the */
 /* call fails, display an error message */
 /* showing the completion code and reason */
 /* code; otherwise move INHIBITED to the */
 /* relevant screen map fields */
 /* */
 MQSET(Hconn,
 *pHobj,
 SelectorCount,
 SelectorsTable,
 IntAttrCount,
 IntAttrsTable,
 CharAttrLength,
 CharAttrs,
 &CompCode,
 &Reason);
 if (CompCode != MQCC_OK)
 {
 sprintf(Message, MESSAGE_4_E,
 ERROR_IN_MQSET, CompCode, Reason);
 SetMsg(Message);
 }
 else
 {
 /* Process the changes */
 } /* end if CompCode */

Retrieving status information with MQSTAT
This example demonstrates how to issue an asynchronous MQPUT and retrieve the status information
with MQSTAT.

This extract is taken from the Calling MQSTAT sample application (program amqsapt0) supplied with IBM
MQ for Windows systems. For the names and locations of the sample applications on other platforms, see
Sample procedural programs (platforms except z/OS).

 /**/
 /* */
 /* Program name: AMQSAPT0 */
 /* */
 /* Description: Sample C program that asynchronously puts messages */
 /* to a message queue (example using MQPUT & MQSTAT). */
 /* */
 /* Licensed Materials - Property of IBM */
 /* */
 /* 63H9336 */
 /* (c) Copyright IBM Corp. 2006, 2024. All Rights Reserved. */
 /* */
 /* US Government Users Restricted Rights - Use, duplication or */
 /* disclosure restricted by GSA ADP Schedule Contract with */
 /* IBM Corp. */
 /* */
 /**/
 /* */
 /* Function: */
 /* */
 /* AMQSAPT0 is a sample C program to put messages on a message */
 /* queue with asynchronous response option, querying the success */
 /* of the put operations with MQSTAT. */
 /* */
 /* -- messages are sent to the queue named by the parameter */
 /* */
 /* -- gets lines from StdIn, and adds each to target */
 /* queue, taking each line of text as the content */
 /* of a datagram message; the sample stops when a null */
 /* line (or EOF) is read. */
 /* New-line characters are removed. */
 /* If a line is longer than 99 characters it is broken up */
 /* into 99-character pieces. Each piece becomes the */
 /* content of a datagram message. */
 /* If the length of a line is a multiple of 99 plus 1, for */

Developing applications reference 19

 /* example, 199, the last piece will only contain a */
 /* new-line character so will terminate the input. */
 /* */
 /* -- writes a message for each MQI reason other than */
 /* MQRC_NONE; stops if there is a MQI completion code */
 /* of MQCC_FAILED */
 /* */
 /* -- summarizes the overall success of the put operations */
 /* through a call to MQSTAT to query MQSTAT_TYPE_ASYNC_ERROR*/
 /* */
 /* Program logic: */
 /* MQOPEN target queue for OUTPUT */
 /* while end of input file not reached, */
 /* . read next line of text */
 /* . MQPUT datagram message with text line as data */
 /* MQCLOSE target queue */
 /* MQSTAT connection */
 /* */
 /* */
 /**/
 /* */
 /* AMQSAPT0 has the following parameters */
 /* required: */
 /* (1) The name of the target queue */
 /* optional: */
 /* (2) Queue manager name */
 /* (3) The open options */
 /* (4) The close options */
 /* (5) The name of the target queue manager */
 /* (6) The name of the dynamic queue */
 /* */
 /**/
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 /* includes for MQI */
 #include <cmqc.h>

 int main(int argc, char **argv)
 {
 /* Declare file and character for sample input */
 FILE *fp;

 /* Declare MQI structures needed */
 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
 MQSTS sts = {MQSTS_DEFAULT}; /* status information */
 /** note, sample uses defaults where it can **/
 MQHCONN Hcon; /* connection handle */
 MQHOBJ Hobj; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code for MQCONN */
 MQLONG messlen; /* message length */
 char buffer[100]; /* message buffer */
 char QMName[50]; /* queue manager name */

 printf("Sample AMQSAPT0 start\n");
 if (argc < 2)
 {
 printf("Required parameter missing - queue name\n");
 exit(99);
 }

 /**/
 /* */
 /* Connect to queue manager */
 /* */
 /**/
 QMName[0] = 0; /* default */
 if (argc > 2)
 strcpy(QMName, argv[2]);
 MQCONN(QMName, /* queue manager */
 &Hcon, /* connection handle */
 &Compcode, /* completion code */
 &Reason); /* reason code */
 /* report reason and stop if it failed */
 if (CompCode == MQCC_FAILED)

20 IBM MQ Developing Applications Reference

 {
 printf("MQCONN ended with reason code %d\n", CReason);
 exit((int)CReason);
 }

 /**/
 /* */
 /* Use parameter as the name of the target queue */
 /* */
 /**/
 strncpy(od.ObjectName, argv[1], (size_t)MQ_Q_NAME_LENGTH);
 printf("target queue is %s\n", od.ObjectName);

 if (argc > 5)
 {
 strncpy(od.ObjectQMgrName, argv[5], (size_t) MQ_Q_MGR_NAME_LENGTH);
 printf("target queue manager is %s\n", od.ObjectQMgrName);
 }

 if (argc > 6)
 {
 strncpy(od.DynamicQName, argv[6], (size_t) MQ_Q_NAME_LENGTH);
 printf("dynamic queue name is %s\n", od.DynamicQName);
 }

 /**/
 /* */
 /* Open the target message queue for output */
 /* */
 /**/
 if (argc > 3)
 {
 O_options = atoi(argv[3]);
 printf("open options are %d\n", O_options);
 }
 else
 {
 O_options = MQOO_OUTPUT /* open queue for output */
 | MQOO_FAIL_IF_QUIESCING /* but not if MQM stopping */
 ; /* = 0x2010 = 8208 decimal */
 }

 MQOPEN(Hcon, /* connection handle */
 &od, /* object descriptor for queue */
 O_options, /* open options */
 &Hobj, /* object handle */
 &OpenCode, /* MQOPEN completion code */
 &Reason); /* reason code */

 /* report reason, if any; stop if failed */
 if (Reason != MQRC_NONE)
 {
 printf("MQOPEN ended with reason code %d\n", Reason);
 }

 if (OpenCode == MQCC_FAILED)
 {
 printf("unable to open queue for output\n");
 }

 /**/
 /* */
 /* Read lines from the file and put them to the message queue */
 /* Loop until null line or end of file, or there is a failure */
 /* */
 /**/
 CompCode = OpenCode; /* use MQOPEN result for initial test */
 fp = stdin;

 memcpy(md.Format, /* character string format */
 MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

 /**/
 /* These options specify that put operation should occur */
 /* asynchronously and the application will check the success */
 /* using MQSTAT at a later time. */
 /**/
 md.Persistence = MQPER_NOT_PERSISTENT;
 pmo.Options |= MQPMO_ASYNC_RESPONSE;

 /**/
 /* These options cause the MsgId and CorrelId to be replaced, so */

Developing applications reference 21

 /* that there is no need to reset them before each MQPUT */
 /**/
 pmo.Options |= MQPMO_NEW_MSG_ID;
 pmo.Options |= MQPMO_NEW_CORREL_ID;

 while (CompCode != MQCC_FAILED)
 {
 if (fgets(buffer, sizeof(buffer), fp) != NULL)
 {
 messlen = (MQLONG)strlen(buffer); /* length without null */
 if (buffer[messlen-1] == '\n') /* last char is a new-line */
 {
 buffer[messlen-1] = '\0'; /* replace new-line with null */
 --messlen; /* reduce buffer length */
 }
 }
 else messlen = 0; /* treat EOF same as null line */

 /**/
 /* */
 /* Put each buffer to the message queue */
 /* */
 /**/
 if (messlen > 0)
 {
 MQPUT(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &pmo, /* default options (datagram) */
 messlen, /* message length */
 buffer, /* message buffer */
 &CompCode, /* completion code */
 &Reason); /* reason code */

 /* report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQPUT ended with reason code %d\n", Reason);
 }
 }
 else /* satisfy end condition when empty line is read */
 CompCode = MQCC_FAILED;
 }

 /**/
 /* */
 /* Close the target queue (if it was opened) */
 /* */
 /**/
 if (OpenCode != MQCC_FAILED)
 {
 if (argc > 4)
 {
 C_options = atoi(argv[4]);
 printf("close options are %d\n", C_options);
 }
 else
 {
 C_options = MQCO_NONE; /* no close options */
 }

 MQCLOSE(Hcon, /* connection handle */
 &Hobj, /* object handle */
 C_options,
 &CompCode, /* completion code */
 &Reason); /* reason code */

 /* report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQCLOSE ended with reason code %d\n", Reason);
 }
 }

 /**/
 /* */
 /* Query how many asynchronous puts succeeded */
 /* */
 /**/
 MQSTAT(&Hcon, /* connection handle */
 MQSTAT_TYPE_ASYNC_ERROR, /* status type */
 &Sts, /* MQSTS structure */

22 IBM MQ Developing Applications Reference

 &CompCode, /* completion code */
 &Reason); /* reason code */

 /* report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQSTAT ended with reason code %d\n", Reason);
 }
 else
 {
 /* Display results */
 printf("Succeeded putting %d messages\n",
 sts.PutSuccessCount);
 printf("%d messages were put with a warning\n",
 sts.PutWarningCount);
 printf("Failed to put %d messages\n",
 sts.PutFailureCount);

 if(sts.CompCode == MQCC_WARNING)
 {
 printf("The first warning that occurred had reason code %d\n",
 sts.Reason);
 }
 else if(sts.CompCode == MQCC_FAILED)
 {
 printf("The first error that occurred had reason code %d\n",
 sts.Reason);
 }
 }

 /**/
 /* */
 /* Disconnect from MQM if not already connected */
 /* */
 /**/
 if (CReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&Hcon, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */

 /* report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQDISC ended with reason code %d\n", Reason);
 }
 }

 /**/
 /* */
 /* END OF AMQSAPT0 */
 /* */
 /**/
 printf("Sample AMQSAPT0 end\n");
 return(0);
 }

COBOL examples
This collection of topics is taken from the IBM MQ for z/OS sample applications. They are applicable to all
platforms, except where noted.

Connecting to a queue manager
This example demonstrates how to use the MQCONN call to connect a program to a queue manager in
z/OS batch.

This extract is taken from the Browse sample application (program CSQ4BVA1) supplied with IBM MQ for
z/OS. For the names and locations of the sample applications on other platforms, see Sample procedural
programs (platforms except z/OS).

* ---*
WORKING-STORAGE SECTION.
* ---*
* W02 - Data fields derived from the PARM field
 01 W02-MQM PIC X(48) VALUE SPACES.

Developing applications reference 23

* W03 - MQM API fields
 01 W03-HCONN PIC S9(9) BINARY.
 01 W03-COMPCODE PIC S9(9) BINARY.
 01 W03-REASON PIC S9(9) BINARY.
*
* MQV contains constants (for filling in the control
* blocks)
* and return codes (for testing the result of a call)
*
 01 W05-MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
 ⋮
* Separate into the relevant fields any data passed
* in the PARM statement
*
 UNSTRING PARM-STRING DELIMITED BY ALL ','
 INTO W02-MQM
 W02-OBJECT.
 ⋮
* Connect to the specified queue manager.
*
 CALL 'MQCONN' USING W02-MQM
 W03-HCONN
 W03-COMPCODE
 W03-REASON.
*
* Test the output of the connect call. If the call
* fails, print an error message showing the
* completion code and reason code.
*
 IF (W03-COMPCODE NOT = MQCC-OK) THEN
 ⋮
 END-IF.
 ⋮

Disconnecting from a queue manager
This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager
in z/OS batch.

The variables used in this code extract are those that were set in “Connecting to a queue manager” on
page 23. This extract is taken from the Browse sample application (program CSQ4BVA1) supplied with
IBM MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
*
* Disconnect from the queue manager
*
 CALL 'MQDISC' USING W03-HCONN
 W03-COMPCODE
 W03-REASON.
*
* Test the output of the disconnect call. If the
* call fails, print an error message showing the
* completion code and reason code.
*
 IF (W03-COMPCODE NOT = MQCC-OK) THEN
⋮
 END-IF.
⋮

Creating a dynamic queue
This example demonstrates how to use the MQOPEN call to create a dynamic queue.

This extract is taken from the Credit Check sample application (program CSQ4CVB1) supplied with IBM
MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
* ---*
WORKING-STORAGE SECTION.
* ---*

24 IBM MQ Developing Applications Reference

*
* W02 - Queues processed in this program
*
 01 W02-MODEL-QNAME PIC X(48) VALUE
 'CSQ4SAMP.B1.MODEL '.
 01 W02-NAME-PREFIX PIC X(48) VALUE
 'CSQ4SAMP.B1.* '.
 01 W02-TEMPORARY-Q PIC X(48).
*
* W03 - MQM API fields
*
 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
 01 W03-OPTIONS PIC S9(9) BINARY.
 01 W03-HOBJ PIC S9(9) BINARY.
 01 W03-COMPCODE PIC S9(9) BINARY.
 01 W03-REASON PIC S9(9) BINARY.
*
* API control blocks
*
 01 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
*
* CMQV contains constants (for setting or testing
* field values) and return codes (for testing the
* result of a call)
*
 01 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
* ---*
 PROCEDURE DIVISION.
* ---*
⋮
* ---*
 OPEN-TEMP-RESPONSE-QUEUE SECTION.
* ---*

*
* This section creates a temporary dynamic queue
* using a model queue
*
* ---*
*
* Change three fields in the Object Descriptor (MQOD)
* control block. (MQODV initializes the other fields)
*
 MOVE MQOT-Q TO MQOD-OBJECTTYPE.
 MOVE W02-MODEL-QNAME TO MQOD-OBJECTNAME.
 MOVE W02-NAME-PREFIX TO MQOD-DYNAMICQNAME.
*
 COMPUTE W03-OPTIONS = MQOO-INPUT-EXCLUSIVE.
*
 CALL 'MQOPEN' USING W03-HCONN
 MQOD
 W03-OPTIONS
 W03-HOBJ-MODEL
 W03-COMPCODE
 W03-REASON.
*
 IF W03-COMPCODE NOT = MQCC-OK
 MOVE 'MQOPEN' TO M01-MSG4-OPERATION
 MOVE W03-COMPCODE TO M01-MSG4-COMPCODE
 MOVE W03-REASON TO M01-MSG4-REASON
 MOVE M01-MESSAGE-4 TO M00-MESSAGE
 ELSE
 MOVE MQOD-OBJECTNAME TO W02-TEMPORARY-Q
 END-IF.
*
 OPEN-TEMP-RESPONSE-QUEUE-EXIT.
*
* Return to performing section.
*
 EXIT.
 EJECT
*

Developing applications reference 25

Opening an existing queue
This example demonstrates how to use the MQOPEN call to open an existing queue.

This extract is taken from the Browse sample application (program CSQ4BVA1) supplied with IBM MQ for
z/OS. For the names and locations of the sample applications on other platforms, see Sample procedural
programs (platforms except z/OS).

⋮
* ---*
 WORKING-STORAGE SECTION.
* ---*
*
* W01 - Fields derived from the command area input
*
 01 W01-OBJECT PIC X(48).
*
* W02 - MQM API fields
*
 01 W02-HCONN PIC S9(9) BINARY VALUE ZERO.
 01 W02-OPTIONS PIC S9(9) BINARY.
 01 W02-HOBJ PIC S9(9) BINARY.
 01 W02-COMPCODE PIC S9(9) BINARY.
 01 W02-REASON PIC S9(9) BINARY.
*
* CMQODV defines the object descriptor (MQOD)
*
 01 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
*
* CMQV contains constants (for setting or testing
* field values) and return codes (for testing the
* result of a call)
*
 01 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
* ---*
 E-OPEN-QUEUE SECTION.
* ---*
* *
* This section opens the queue *
*
* Initialize the Object Descriptor (MQOD) control
* block
* (The copy file initializes the remaining fields.)
*
 MOVE MQOT-Q TO MQOD-OBJECTTYPE.
 MOVE W01-OBJECT TO MQOD-OBJECTNAME.
*
* Initialize W02-OPTIONS to open the queue for both
* inquiring about and setting attributes
*
 COMPUTE W02-OPTIONS = MQOO-INQUIRE + MQOO-SET.

*
* Open the queue
*
 CALL 'MQOPEN' USING W02-HCONN
 MQOD
 W02-OPTIONS
 W02-HOBJ
 W02-COMPCODE
 W02-REASON.
*
* Test the output from the open
*
* If the completion code is not OK, display a
* separate error message for each of the following
* errors:
*
* Q-MGR-NOT-AVAILABLE - MQM is not available
* CONNECTION-BROKEN - MQM is no longer connected to CICS
* UNKNOWN-OBJECT-NAME - The queue does not exist
* NOT-AUTHORIZED - The user is not authorized to open
* the queue
*
* For any other error, display an error message

26 IBM MQ Developing Applications Reference

* showing the completion and reason codes
*
 IF W02-COMPCODE NOT = MQCC-OK
 EVALUATE TRUE
*
 WHEN W02-REASON = MQRC-Q-MGR-NOT-AVAILABLE
 MOVE M01-MESSAGE-6 TO M00-MESSAGE
*
 WHEN W02-REASON = MQRC-CONNECTION-BROKEN
 MOVE M01-MESSAGE-6 TO M00-MESSAGE
*
 WHEN W02-REASON = MQRC-UNKNOWN-OBJECT-NAME
 MOVE M01-MESSAGE-2 TO M00-MESSAGE
*
 WHEN W02-REASON = MQRC-NOT-AUTHORIZED
 MOVE M01-MESSAGE-3 TO M00-MESSAGE
*
 WHEN OTHER
 MOVE 'MQOPEN' TO M01-MSG4-OPERATION
 MOVE W02-COMPCODE TO M01-MSG4-COMPCODE
 MOVE W02-REASON TO M01-MSG4-REASON
 MOVE M01-MESSAGE-4 TO M00-MESSAGE
 END-EVALUATE
 END-IF.
 E-EXIT.
*
* Return to performing section
*
 EXIT.
 EJECT

Closing a queue
This example demonstrates how to use the MQCLOSE call.

The variables used in this code extract are those that were set in “Connecting to a queue manager” on
page 23. This extract is taken from the Browse sample application (program CSQ4BVA1) supplied with
IBM MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
*
* Close the queue
*
 MOVE MQCO-NONE TO W03-OPTIONS.
*
 CALL 'MQCLOSE' USING W03-HCONN
 W03-HOBJ
 W03-OPTIONS
 W03-COMPCODE
 W03-REASON.
*
* Test the output of the MQCLOSE call. If the call
* fails, print an error message showing the
* completion code and reason code.
*
 IF (W03-COMPCODE NOT = MQCC-OK) THEN
 MOVE 'CLOSE' TO W04-MSG4-TYPE
 MOVE W03-COMPCODE TO W04-MSG4-COMPCODE
 MOVE W03-REASON TO W04-MSG4-REASON
 MOVE W04-MESSAGE-4 TO W00-PRINT-DATA
 PERFORM PRINT-LINE
 MOVE W06-CSQ4-ERROR TO W00-RETURN-CODE
 END-IF.
*

Putting a message using MQPUT
This example demonstrates how to use the MQPUT call using context.

This extract is taken from the Credit Check sample application (program CSQ4CVB1) supplied with IBM
MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮

Developing applications reference 27

* ---*
 WORKING-STORAGE SECTION.
* ---*
*
* W02 - Queues processed in this program
*
 01 W02-TEMPORARY-Q PIC X(48).
*
* W03 - MQM API fields
*
 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
 01 W03-HOBJ-INQUIRY PIC S9(9) BINARY.
 01 W03-OPTIONS PIC S9(9) BINARY.
 01 W03-BUFFLEN PIC S9(9) BINARY.
 01 W03-COMPCODE PIC S9(9) BINARY.
 01 W03-REASON PIC S9(9) BINARY.
*
 01 W03-PUT-BUFFER.
*
 05 W03-CSQ4BIIM.
 COPY CSQ4VB1.
*
* API control blocks
*
 01 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 01 MQM-PUT-MESSAGE-OPTIONS.
 COPY CMQPMOV.
*
* MQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
 01 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
* ---*
 PROCEDURE DIVISION.
* ---*
⋮
* Open queue and build message.
⋮

*
* Set the message descriptor and put-message options to
* the values required to create the message.
* Set the length of the message.
*
 MOVE MQMT-REQUEST TO MQMD-MSGTYPE.
 MOVE MQCI-NONE TO MQMD-CORRELID.
 MOVE MQMI-NONE TO MQMD-MSGID.
 MOVE W02-TEMPORARY-Q TO MQMD-REPLYTOQ.
 MOVE SPACES TO MQMD-REPLYTOQMGR.
 MOVE 5 TO MQMD-PRIORITY.
 MOVE MQPER-NOT-PERSISTENT TO MQMD-PERSISTENCE.
 COMPUTE MQPMO-OPTIONS = MQPMO-NO-SYNCPOINT +
 MQPMO-DEFAULT-CONTEXT.
 MOVE LENGTH OF CSQ4BIIM-MSG TO W03-BUFFLEN.
*
 CALL 'MQPUT' USING W03-HCONN
 W03-HOBJ-INQUIRY
 MQMD
 MQPMO
 W03-BUFFLEN
 W03-PUT-BUFFER
 W03-COMPCODE
 W03-REASON.
 IF W03-COMPCODE NOT = MQCC-OK
 ⋮
 END-IF.

28 IBM MQ Developing Applications Reference

Putting a message using MQPUT1
This example demonstrates how to use the MQPUT1 call.

This extract is taken from the Credit Check sample application (program CSQ4CVB5) supplied with IBM
MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
* ---*
 WORKING-STORAGE SECTION.
* ---*
*
* W03 - MQM API fields
*
 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
 01 W03-OPTIONS PIC S9(9) BINARY.
 01 W03-COMPCODE PIC S9(9) BINARY.
 01 W03-REASON PIC S9(9) BINARY.
 01 W03-BUFFLEN PIC S9(9) BINARY.
*
 01 W03-PUT-BUFFER.
 05 W03-CSQ4BQRM.
 COPY CSQ4VB4.

*
* API control blocks
*
 01 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
 01 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 01 MQM-PUT-MESSAGE-OPTIONS.
 COPY CMQPMOV.
*
* CMQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
 01 MQM-MQV.
 COPY CMQV SUPPRESS.
* ---*
 PROCEDURE DIVISION.
* ---*
⋮
* Get the request message.
⋮
* ---*
 PROCESS-QUERY SECTION.
* ---*
⋮
* Build the reply message.
⋮
*
* Set the object descriptor, message descriptor and
* put-message options to the values required to create
* the message.
* Set the length of the message.
*
 MOVE MQMD-REPLYTOQ TO MQOD-OBJECTNAME.
 MOVE MQMD-REPLYTOQMGR TO MQOD-OBJECTQMGRNAME.
 MOVE MQMT-REPLY TO MQMD-MSGTYPE.
 MOVE SPACES TO MQMD-REPLYTOQ.
 MOVE SPACES TO MQMD-REPLYTOQMGR.
 MOVE LOW-VALUES TO MQMD-MSGID.
 COMPUTE MQPMO-OPTIONS = MQPMO-SYNCPOINT +
 MQPMO-PASS-IDENTITY-CONTEXT.
 MOVE W03-HOBJ-CHECKQ TO MQPMO-CONTEXT.
 MOVE LENGTH OF CSQ4BQRM-MSG TO W03-BUFFLEN.
*
 CALL 'MQPUT1' USING W03-HCONN
 MQOD
 MQMD
 MQPMO
 W03-BUFFLEN
 W03-PUT-BUFFER
 W03-COMPCODE

Developing applications reference 29

 W03-REASON.
 IF W03-COMPCODE NOT = MQCC-OK
 MOVE 'MQPUT1' TO M02-OPERATION
 MOVE MQOD-OBJECTNAME TO M02-OBJECTNAME
 PERFORM RECORD-CALL-ERROR
 PERFORM FORWARD-MSG-TO-DLQ
 END-IF.
*

Getting a message
This example demonstrates how to use the MQGET call to remove a message from a queue.

This extract is taken from the Credit Check sample application (program CSQ4CVB1) supplied with IBM
MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
* ---*
 WORKING-STORAGE SECTION.
* ---*
*
* W03 - MQM API fields
*
 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
 01 W03-HOBJ-RESPONSE PIC S9(9) BINARY.
 01 W03-OPTIONS PIC S9(9) BINARY.
 01 W03-BUFFLEN PIC S9(9) BINARY.
 01 W03-DATALEN PIC S9(9) BINARY.
 01 W03-COMPCODE PIC S9(9) BINARY.
 01 W03-REASON PIC S9(9) BINARY.
*
 01 W03-GET-BUFFER.
 05 W03-CSQ4BAM.
 COPY CSQ4VB2.
*
* API control blocks
*
 01 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 01 MQM-GET-MESSAGE-OPTIONS.
 COPY CMQGMOV.
*
* MQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
 01 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
* ---*
 A-MAIN SECTION.
* ---*
⋮
* Open response queue.
⋮
* ---*
 PROCESS-RESPONSE-SCREEN SECTION.
* ---*
* *
* This section gets a message from the response queue. *
* *
* When a correct response is received, it is *
* transferred to the map for display; otherwise *
* an error message is built. *
* *
* ---*

*
* Set get-message options
*
 COMPUTE MQGMO-OPTIONS = MQGMO-SYNCPOINT +
 MQGMO-ACCEPT-TRUNCATED-MSG +
 MQGMO-NO-WAIT.
*
* Set msgid and correlid in MQMD to nulls so that any
* message will qualify.

30 IBM MQ Developing Applications Reference

* Set length to available buffer length.
*
 MOVE MQMI-NONE TO MQMD-MSGID.
 MOVE MQCI-NONE TO MQMD-CORRELID.
 MOVE LENGTH OF W03-GET-BUFFER TO W03-BUFFLEN.
*
 CALL 'MQGET' USING W03-HCONN
 W03-HOBJ-RESPONSE
 MQMD
 MQGMO
 W03-BUFFLEN
 W03-GET-BUFFER
 W03-DATALEN
 W03-COMPCODE
 W03-REASON.
 EVALUATE TRUE
 WHEN W03-COMPCODE NOT = MQCC-FAILED
 ⋮
* Process the message
 ⋮
 WHEN (W03-COMPCODE = MQCC-FAILED AND
 W03-REASON = MQRC-NO-MSG-AVAILABLE)
 MOVE M01-MESSAGE-9 TO M00-MESSAGE
 PERFORM CLEAR-RESPONSE-SCREEN
*
 WHEN OTHER
 MOVE 'MQGET ' TO M01-MSG4-OPERATION
 MOVE W03-COMPCODE TO M01-MSG4-COMPCODE
 MOVE W03-REASON TO M01-MSG4-REASON
 MOVE M01-MESSAGE-4 TO M00-MESSAGE
 PERFORM CLEAR-RESPONSE-SCREEN
 END-EVALUATE.

Getting a message using the wait option
This example demonstrates how to use the MQGET call with the wait option and accepting truncated
messages.

This extract is taken from the Credit Check sample application (program CSQ4CVB5) supplied with IBM
MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
* ---*
 WORKING-STORAGE SECTION.
* ---*
*
* W00 - General work fields
*
 01 W00-WAIT-INTERVAL PIC S9(09) BINARY VALUE 30000.
*
* W03 - MQM API fields
*
 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
 01 W03-OPTIONS PIC S9(9) BINARY.
 01 W03-HOBJ-CHECKQ PIC S9(9) BINARY.
 01 W03-COMPCODE PIC S9(9) BINARY.
 01 W03-REASON PIC S9(9) BINARY.
 01 W03-DATALEN PIC S9(9) BINARY.
 01 W03-BUFFLEN PIC S9(9) BINARY.
*
 01 W03-MSG-BUFFER.
 05 W03-CSQ4BCAQ.
 COPY CSQ4VB3.
*
* API control blocks
*
 01 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 01 MQM-GET-MESSAGE-OPTIONS.
 COPY CMQGMOV.
*
* CMQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
 01 MQM-MQV.
 COPY CMQV SUPPRESS.

Developing applications reference 31

* ---*
 PROCEDURE DIVISION.
* ---*
⋮
* Open input queue.
⋮

*
* Get and process messages.
*
 COMPUTE MQGMO-OPTIONS = MQGMO-WAIT +
 MQGMO-ACCEPT-TRUNCATED-MSG +
 MQGMO-SYNCPOINT.
 MOVE LENGTH OF W03-MSG-BUFFER TO W03-BUFFLEN.
 MOVE W00-WAIT-INTERVAL TO MQGMO-WAITINTERVAL.
 MOVE MQMI-NONE TO MQMD-MSGID.
 MOVE MQCI-NONE TO MQMD-CORRELID.
*
* Make the first MQGET call outside the loop.
*
 CALL 'MQGET' USING W03-HCONN
 W03-HOBJ-CHECKQ
 MQMD
 MQGMO
 W03-BUFFLEN
 W03-MSG-BUFFER
 W03-DATALEN
 W03-COMPCODE
 W03-REASON.
*
* Test the output of the MQGET call using the
* PERFORM loop that follows.
*
* Perform whilst no failure occurs
* - process this message
* - reset the call parameters
* - get another message
* End-perform
*

*
* Test the output of the MQGET call. If the call
* fails, send an error message showing the
* completion code and reason code, unless the
* completion code is NO-MSG-AVAILABLE.
*
 IF (W03-COMPCODE NOT = MQCC-FAILED) OR
 (W03-REASON NOT = MQRC-NO-MSG-AVAILABLE)
 MOVE 'MQGET ' TO M02-OPERATION
 MOVE MQOD-OBJECTNAME TO M02-OBJECTNAME
 PERFORM RECORD-CALL-ERROR
 END-IF.
⋮

Getting a message using signaling
This example demonstrates how to use the MQGET call with signaling. This extract is taken from the
Credit Check sample application (program CSQ4CVB2) supplied with IBM MQ for z/OS.

Signaling is available only with IBM MQ for z/OS .

⋮
* ---*
 WORKING-STORAGE SECTION.
* ---*
*
* W00 - General work fields
 ⋮
 01 W00-WAIT-INTERVAL PIC S9(09) BINARY VALUE 30000.
*
* W03 - MQM API fields
*
 01 W03-HCONN PIC S9(9) BINARY VALUE ZERO.
 01 W03-HOBJ-REPLYQ PIC S9(9) BINARY.
 01 W03-COMPCODE PIC S9(9) BINARY.

32 IBM MQ Developing Applications Reference

 01 W03-REASON PIC S9(9) BINARY.
 01 W03-DATALEN PIC S9(9) BINARY.
 01 W03-BUFFLEN PIC S9(9) BINARY.
 ⋮
 01 W03-GET-BUFFER.
 05 W03-CSQ4BQRM.
 COPY CSQ4VB4.
*
 05 W03-CSQ4BIIM REDEFINES W03-CSQ4BQRM.
 COPY CSQ4VB1.
*
 05 W03-CSQ4BPGM REDEFINES W03-CSQ4BIIM.
 COPY CSQ4VB5.
 ⋮
* API control blocks
*
 01 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 01 MQM-GET-MESSAGE-OPTIONS.
 COPY CMQGMOV.
 ⋮
* MQV contains constants (for filling in the
* control blocks) and return codes (for testing
* the result of a call).
*
 01 MQM-MQV.
 COPY CMQV SUPPRESS.
* ---*
 LINKAGE SECTION.
* ---*
 01 L01-ECB-ADDR-LIST.
 05 L01-ECB-ADDR1 POINTER.
 05 L01-ECB-ADDR2 POINTER.

*
 01 L02-ECBS.
 05 L02-INQUIRY-ECB1 PIC S9(09) BINARY.
 05 L02-REPLY-ECB2 PIC S9(09) BINARY.
 01 REDEFINES L02-ECBS.
 05 PIC X(02).
 05 L02-INQUIRY-ECB1-CC PIC S9(04) BINARY.
 05 PIC X(02).
 05 L02-REPLY-ECB2-CC PIC S9(04) BINARY.
*
* ---*
 PROCEDURE DIVISION.
* ---*
⋮
* Initialize variables, open queues, set signal on
* inquiry queue.
⋮
* ---*
 PROCESS-SIGNAL-ACCEPTED SECTION.
* ---*
* This section gets a message with signal. If a *
* message is received, process it. If the signal *
* is set or is already set, the program goes into *
* an operating system wait. *
* Otherwise an error is reported and call error set. *
* ---*
*
 PERFORM REPLYQ-GETSIGNAL.
*
 EVALUATE TRUE
 WHEN (W03-COMPCODE = MQCC-OK AND
 W03-REASON = MQRC-NONE)
 PERFORM PROCESS-REPLYQ-MESSAGE
*
 WHEN (W03-COMPCODE = MQCC-WARNING AND
 W03-REASON = MQRC-SIGNAL-REQUEST-ACCEPTED)
 OR
 (W03-COMPCODE = MQCC-FAILED AND
 W03-REASON = MQRC-SIGNAL-OUTSTANDING)
 PERFORM EXTERNAL-WAIT
*
 WHEN OTHER
 MOVE 'MQGET SIGNAL' TO M02-OPERATION
 MOVE MQOD-OBJECTNAME TO M02-OBJECTNAME
 PERFORM RECORD-CALL-ERROR
 MOVE W06-CALL-ERROR TO W06-CALL-STATUS

Developing applications reference 33

 END-EVALUATE.
*
 PROCESS-SIGNAL-ACCEPTED-EXIT.
* Return to performing section
 EXIT.
 EJECT
*

* ---*
 EXTERNAL-WAIT SECTION.
* ---*
* This section performs an external CICS wait on two *
* ECBs until at least one is posted. It then calls *
* the sections to handle the posted ECB. *
* ---*
 EXEC CICS WAIT EXTERNAL
 ECBLIST(W04-ECB-ADDR-LIST-PTR)
 NUMEVENTS(2)
 END-EXEC.
*
* At least one ECB must have been posted to get to this
* point. Test which ECB has been posted and perform
* the appropriate section.
*
 IF L02-INQUIRY-ECB1 NOT = 0
 PERFORM TEST-INQUIRYQ-ECB
 ELSE
 PERFORM TEST-REPLYQ-ECB
 END-IF.
*
 EXTERNAL-WAIT-EXIT.
*
* Return to performing section.
*
 EXIT.
 EJECT
 ⋮
* ---*
 REPLYQ-GETSIGNAL SECTION.
* ---*
* *
* This section performs an MQGET call (in syncpoint with *
* signal) on the reply queue. The signal field in the *
* MQGMO is set to the address of the ECB. *
* Response handling is done by the performing section. *
* *
* ---*
*
 COMPUTE MQGMO-OPTIONS = MQGMO-SYNCPOINT +
 MQGMO-SET-SIGNAL.
 MOVE W00-WAIT-INTERVAL TO MQGMO-WAITINTERVAL.
 MOVE LENGTH OF W03-GET-BUFFER TO W03-BUFFLEN.
*
 MOVE ZEROS TO L02-REPLY-ECB2.
 SET MQGMO-SIGNAL1 TO ADDRESS OF L02-REPLY-ECB2.

*
* Set msgid and correlid to nulls so that any message
* will qualify.
*
 MOVE MQMI-NONE TO MQMD-MSGID.
 MOVE MQCI-NONE TO MQMD-CORRELID.
*
 CALL 'MQGET' USING W03-HCONN
 W03-HOBJ-REPLYQ
 MQMD
 MQGMO
 W03-BUFFLEN
 W03-GET-BUFFER
 W03-DATALEN
 W03-COMPCODE
 W03-REASON.
*
 REPLYQ-GETSIGNAL-EXIT.
*
* Return to performing section.
*
 EXIT.

34 IBM MQ Developing Applications Reference

 EJECT
*
 ⋮

Inquiring about the attributes of an object
This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CVC1) supplied with
IBM MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS).

⋮
* ---*
 WORKING-STORAGE SECTION.
* ---*
*
* W02 - MQM API fields
*
 01 W02-SELECTORCOUNT PIC S9(9) BINARY VALUE 2.
 01 W02-INTATTRCOUNT PIC S9(9) BINARY VALUE 2.
 01 W02-CHARATTRLENGTH PIC S9(9) BINARY VALUE ZERO.
 01 W02-CHARATTRS PIC X VALUE LOW-VALUES.
 01 W02-HCONN PIC S9(9) BINARY VALUE ZERO.
 01 W02-HOBJ PIC S9(9) BINARY.
 01 W02-COMPCODE PIC S9(9) BINARY.
 01 W02-REASON PIC S9(9) BINARY.
 01 W02-SELECTORS-TABLE.
 05 W02-SELECTORS PIC S9(9) BINARY OCCURS 2 TIMES
 01 W02-INTATTRS-TABLE.
 05 W02-INTATTRS PIC S9(9) BINARY OCCURS 2 TIMES
*
* CMQODV defines the object descriptor (MQOD).
*
 01 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
*
* CMQV contains constants (for setting or testing field
* values) and return codes (for testing the result of a
* call).
*
 01 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
* ---*
 PROCEDURE DIVISION.
* ---*
*
* Get the queue name and open the queue.
*
 ⋮
*
* Initialize the variables for the inquiry call:
* - Set W02-SELECTORS-TABLE to the attributes whose
* status is required
* - All other variables are already set
*
 MOVE MQIA-INHIBIT-GET TO W02-SELECTORS(1).
 MOVE MQIA-INHIBIT-PUT TO W02-SELECTORS(2).

*
* Inquire about the attributes.
*
 CALL 'MQINQ' USING W02-HCONN,
 W02-HOBJ,
 W02-SELECTORCOUNT,
 W02-SELECTORS-TABLE,
 W02-INTATTRCOUNT,
 W02-INTATTRS-TABLE,
 W02-CHARATTRLENGTH,
 W02-CHARATTRS,
 W02-COMPCODE,
 W02-REASON.
*
* Test the output from the inquiry:
*
* - If the completion code is not OK, display an error

Developing applications reference 35

* message showing the completion and reason codes
*
* - Otherwise, move the correct attribute status into
* the relevant screen map fields
*
 IF W02-COMPCODE NOT = MQCC-OK
 MOVE 'MQINQ' TO M01-MSG4-OPERATION
 MOVE W02-COMPCODE TO M01-MSG4-COMPCODE
 MOVE W02-REASON TO M01-MSG4-REASON
 MOVE M01-MESSAGE-4 TO M00-MESSAGE
*
 ELSE
* Process the changes.
 ⋮
 END-IF.
 ⋮

Setting the attributes of a queue
This example demonstrates how to use the MQSET call to change the attributes of a queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CVC1) supplied with
IBM MQ for z/OS. For the names and locations of the sample applications on other platforms, see Sample
procedural programs (platforms except z/OS)

⋮
* ---*
 WORKING-STORAGE SECTION.
* ---*
*
* W02 - MQM API fields
*
 01 W02-SELECTORCOUNT PIC S9(9) BINARY VALUE 2.
 01 W02-INTATTRCOUNT PIC S9(9) BINARY VALUE 2.
 01 W02-CHARATTRLENGTH PIC S9(9) BINARY VALUE ZERO.
 01 W02-CHARATTRS PIC X VALUE LOW-VALUES.
 01 W02-HCONN PIC S9(9) BINARY VALUE ZERO.
 01 W02-HOBJ PIC S9(9) BINARY.
 01 W02-COMPCODE PIC S9(9) BINARY.
 01 W02-REASON PIC S9(9) BINARY.
 01 W02-SELECTORS-TABLE.
 05 W02-SELECTORS PIC S9(9) BINARY OCCURS 2 TIMES.
 01 W02-INTATTRS-TABLE.
 05 W02-INTATTRS PIC S9(9) BINARY OCCURS 2 TIMES.
*
* CMQODV defines the object descriptor (MQOD).
*
 01 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
*
* CMQV contains constants (for setting or testing
* field values) and return codes (for testing the
* result of a call).
*
 01 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
* ---*
 PROCEDURE DIVISION.
* ---*

*
* Get the queue name and open the queue.
*
⋮
*
*
* Initialize the variables required for the set call:
* - Set W02-SELECTORS-TABLE to the attributes to be set
* - Set W02-INTATTRS-TABLE to the required status
* - All other variables are already set
*
 MOVE MQIA-INHIBIT-GET TO W02-SELECTORS(1).
 MOVE MQIA-INHIBIT-PUT TO W02-SELECTORS(2).
 MOVE MQQA-GET-INHIBITED TO W02-INTATTRS(1).
 MOVE MQQA-PUT-INHIBITED TO W02-INTATTRS(2).
*

36 IBM MQ Developing Applications Reference

* Set the attributes.
*
 CALL 'MQSET' USING W02-HCONN,
 W02-HOBJ,
 W02-SELECTORCOUNT,
 W02-SELECTORS-TABLE,
 W02-INTATTRCOUNT,
 W02-INTATTRS-TABLE,
 W02-CHARATTRLENGTH,
 W02-CHARATTRS,
 W02-COMPCODE,
 W02-REASON.
*
* Test the output from the call:
*
* - If the completion code is not OK, display an error
* message showing the completion and reason codes
*
* - Otherwise, move 'INHIBITED' into the relevant
* screen map fields
*
 IF W02-COMPCODE NOT = MQCC-OK
 MOVE 'MQSET' TO M01-MSG4-OPERATION
 MOVE W02-COMPCODE TO M01-MSG4-COMPCODE
 MOVE W02-REASON TO M01-MSG4-REASON
 MOVE M01-MESSAGE-4 TO M00-MESSAGE
 ELSE
*
* Process the changes.
⋮
 END-IF.

System/390 assembler-language examples
This collection of topics is mostly taken from the IBM MQ for z/OS sample applications.

Connecting to a queue manager
This example demonstrates how to use the MQCONN call to connect a program to a queue manager in
z/OS batch.

This extract is taken from the Browse sample program (CSQ4BAA1) supplied with IBM MQ for z/OS.

⋮
WORKAREA DSECT
*
PARMLIST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
COMPCODE DS F Completion code
REASON DS F Reason code
HCONN DS F Connection handle
 ORG
PARMADDR DS F Address of parm field
PARMLEN DS H Length of parm field
*
MQMNAME DS CL48 Queue manager name
*
*
**
* SECTION NAME : MAINPARM *
**
MAINPARM DS 0H
 MVI MQMNAME,X'40'
 MVC MQMNAME+1(L'MQMNAME-1),MQMNAME
*
* Space out first byte and initialize
*
*
* Code to address and verify parameters passed omitted
*
*
PARM1MVE DS 0H
 SR R1,R3 Length of data
 LA R4,MQMNAME Address for target
 BCTR R1,R0 Reduce for execute
 EX R1,MOVEPARM Move the data
*

Developing applications reference 37

**
* EXECUTES *
**
MOVEPARM MVC 0(*-*,R4),0(R3)
*
 EJECT

**
* SECTION NAME : MAINCONN *
**
*
*
MAINCONN DS 0H
 XC HCONN,HCONN Null connection handle
*
 CALL MQCONN, X
 (MQMNAME, X
 HCONN, X
 COMPCODE, X
 REASON), X
 MF=(E,PARMLIST),VL
*
 LA R0,MQCC_OK Expected compcode
 C R0,COMPCODE As expected?
 BER R6 Yes .. return to caller
*
 MVC INF4_TYP,=CL10'CONNECT '
 BAL R7,ERRCODE Translate error
 LA R0,8 Set exit code
 ST R0,EXITCODE to 8
 B ENDPROG End the program
*

Disconnecting from a queue manager
This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager
in z/OS batch.

This extract is not taken from the sample applications supplied with IBM MQ.

⋮
*
* ISSUE MQI DISC REQUEST USING REENTRANT FORM
* OF CALL MACRO
*
* HCONN WAS SET BY A PREVIOUS MQCONN REQUEST
* R5 = WORK REGISTER
*
DISC DS 0H
 CALL MQDISC, X
 (HCONN, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
*
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL
 ⋮

BADCALL DS 0H
⋮
* CONSTANTS
*
 CMQA
*
* WORKING STORAGE (RE-ENTRANT)
*
WEG3 DSECT
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
HCONN DS F
COMPCODE DS F
REASON DS F

38 IBM MQ Developing Applications Reference

*
*
LEG3 EQU *-WKEG3
 END

Creating a dynamic queue
This example demonstrates how to use the MQOPEN call to create a dynamic queue.

This extract is not taken from the sample applications supplied with IBM MQ.

⋮
*
* R5 = WORK REGISTER.
*
OPEN DS 0H
*
 MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF
* MQOD WITH DEFAULTS
 MVC WOD_OBJECTNAME,MOD_Q COPY IN THE MODEL Q NAME
 MVC WOD_DYNAMICQNAME,DYN_Q COPY IN THE DYNAMIC Q NAME
 L R5,=AL4(MQOO_OUTPUT) OPEN FOR OUTPUT AND
 A R5,=AL4(MQOO_INQUIRE) INQUIRE
 ST R5,OPTIONS

*
* ISSUE MQI OPEN REQUEST USING REENTRANT
* FORM OF CALL MACRO
*
 CALL MQOPEN, X
 (HCONN, X
 WOD, X
 OPTIONS, X
 HOBJ, X
 COMPCODE, X
 REASON),VL,MF=(E,CALLLST)
*
 LA R5,MQCC_OK CHECK THE COMPLETION CODE
 C R5,COMPCODE FROM THE REQUEST AND BRANCH
 BNE BADCALL TO ERROR ROUTINE IF NOT MQCC_OK
*
 MVC TEMP_Q,WOD_OBJECTNAME SAVE NAME OF TEMPORARY Q
* CREATED BY OPEN OF MODEL Q
*
⋮
BADCALL DS 0H
⋮
*
*
* CONSTANTS:
*
MOD_Q DC CL48'QUERY.REPLY.MODEL' MODEL QUEUE NAME
DYN_Q DC CL48'QUERY.TEMPQ.*' DYNAMIC QUEUE NAME
*
 CMQODA DSECT=NO,LIST=YES CONSTANT VERSION OF MQOD
 CMQA MQI VALUE EQUATES
*
* WORKING STORAGE
*
 DFHEISTG
HCONN DS F CONNECTION HANDLE
OPTIONS DS F OPEN OPTIONS
HOBJ DS F OBJECT HANDLE
COMPCODE DS F MQI COMPLETION CODE
REASON DS F MQI REASON CODE
TEMP_Q DS CL(MQ_Q_NAME_LENGTH) SAVED QNAME AFTER OPEN
*
WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L LIST FORM
 OF CALL
* MACRO
 ⋮
 END

Developing applications reference 39

Opening an existing queue
This example demonstrates how to use the MQOPEN call to open a queue that has already been defined.

It shows how to specify two options. This extract is not taken from the sample applications supplied with
IBM MQ.

⋮
*
* R5 = WORK REGISTER.
*
OPEN DS 0H
*
 MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF
* MQOD WITH DEFAULTS
 MVC WOD_OBJECTNAME,Q_NAME SPECIFY Q NAME TO OPEN
 LA R5,MQOO_INPUT_EXCLUSIVE OPEN FOR MQGET CALLS
*
 ST R5,OPTIONS
*
* ISSUE MQI OPEN REQUEST USING REENTRANT FORM
* OF CALL MACRO
*
 CALL MQOPEN, X
 (HCONN, X
 WOD, X
 OPTIONS, X
 HOBJ, X
 COMPCODE, X
 REASON),VL,MF=(E,CALLLST)
*
 LA R5,MQCC_OK CHECK THE COMPLETION CODE
 C R5,COMPCODE FROM THE REQUEST AND BRANCH
 BNE BADCALL TO ERROR ROUTINE IF NOT MQCC_OK
*
 ⋮
BADCALL DS 0H
⋮
*
*
* CONSTANTS:
*
Q_NAME DC CL48'REQUEST.QUEUE' NAME OF QUEUE TO OPEN
*
 CMQODA DSECT=NO,LIST=YES CONSTANT VERSION OF MQOD
 CMQA MQI VALUE EQUATES
*
* WORKING STORAGE
*
 DFHEISTG
HCONN DS F CONNECTION HANDLE
OPTIONS DS F OPEN OPTIONS
HOBJ DS F OBJECT HANDLE
COMPCODE DS F MQI COMPLETION CODE
REASON DS F MQI REASON CODE
*
WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L LIST FORM
 OF CALL
* MACRO
 ⋮
 END

Closing a queue
This example demonstrates how to use the MQCLOSE call to close a queue.

This extract is not taken from the sample applications supplied with IBM MQ.

⋮
*
* ISSUE MQI CLOSE REQUEST USING REENTRANT FROM OF
* CALL MACRO
*
* HCONN WAS SET BY A PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY A PREVIOUS MQOPEN REQUEST

40 IBM MQ Developing Applications Reference

* R5 = WORK REGISTER
*
CLOSE DS 0H
 LA R5,MQCO_NONE NO SPECIAL CLOSE OPTIONS
 ST R5,OPTIONS ARE REQUIRED.
*
 CALL MQCLOSE, X
 (HCONN, X
 HOBJ, X
 OPTIONS, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
*
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL
*
 ⋮
BADCALL DS 0H
 ⋮
* CONSTANTS
*
 CMQA
*
* WORKING STORAGE (REENTRANT)
*
WEG4 DSECT
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
HCONN DS F
HOBJ DS F
OPTIONS DS F
COMPCODE DS F
REASON DS F
*
*
LEG4 EQU *-WKEG4
 END

Putting a message using MQPUT
This example demonstrates how to use the MQPUT call to put a message on a queue.

This extract is not taken from the sample applications supplied with IBM MQ.

⋮
* CONNECT TO QUEUE MANAGER
*
CONN DS 0H
⋮
*
* OPEN A QUEUE
*
OPEN DS 0H
⋮
*
* R4,R5,R6,R7 = WORK REGISTER.
*
PUT DS 0H
 LA R4,MQMD SET UP ADDRESSES AND
 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
 LA R6,WMD INSTRUCTION, AS MQMD IS
 LA R7,WMD_LENGTH OVER 256 BYES LONG.
 MVCL R6,R4 INITIALIZE WORKING VERSION
* OF MESSAGE DESCRIPTOR
*
 MVC WPMO_AREA,MQPMO_AREA INITIALIZE WORKING MQPMO
*

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
 ST R5,BUFFLEN AND SAVE IT FOR MQM USE
*
 MVC BUFFER,TEST_MSG SET THE MESSAGE TO BE PUT
*
* ISSUE MQI PUT REQUEST USING REENTRANT FORM
* OF CALL MACRO
*

Developing applications reference 41

* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*
 CALL MQPUT, X
 (HCONN, X
 HOBJ, X
 WMD, X
 WPMO, X
 BUFFLEN, X
 BUFFER, X
 COMPCODE, X
 REASON),VL,MF=(E,CALLLST)
*
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL
*
 ⋮
BADCALL DS 0H
⋮

*
* CONSTANTS
*
CMQMDA DSECT=NO,LIST=YES,PERSISTENCE=MQPER_PERSISTENT
CMQPMOA DSECT=NO,LIST=YES
CMQA
TEST_MSG DC CL80'THIS IS A TEST MESSAGE'
*
* WORKING STORAGE DSECT
*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WMD CMQMDA DSECT=NO,LIST=NO
WPMO CMQPMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
⋮
END

Putting a message using MQPUT1
This example demonstrates how to use the MQPUT1 call to open a queue, put a single message on the
queue, then close the queue.

This extract is not taken from the sample applications supplied with IBM MQ.

⋮
*
* CONNECT TO QUEUE MANAGER
*
CONN DS 0H
⋮
*
* R4,R5,R6,R7 = WORK REGISTER.
*
PUT DS 0H
*
 MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF
* MQOD WITH DEFAULTS
 MVC WOD_OBJECTNAME,Q_NAME SPECIFY Q NAME FOR PUT1
*
 LA R4,MQMD SET UP ADDRESSES AND
 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
 LA R6,WMD INSTRUCTION, AS MQMD IS
 LA R7,WMD_LENGTH OVER 256 BYES LONG.

42 IBM MQ Developing Applications Reference

 MVCL R6,R4 INITIALIZE WORKING VERSION
* OF MESSAGE DESCRIPTOR

*
 MVC WPMO_AREA,MQPMO_AREA INITIALIZE WORKING MQPMO
*

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
 ST R5,BUFFLEN AND SAVE IT FOR MQM USE
*
 MVC BUFFER,TEST_MSG SET THE MESSAGE TO BE PUT
*
* ISSUE MQI PUT REQUEST USING REENTRANT FORM OF CALL MACRO
*
* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*
 CALL MQPUT1, X
 (HCONN, X
 LMQOD, X
 LMQMD, X
 LMQPMO, X
 BUFFERLENGTH, X
 BUFFER, X
 COMPCODE, X
 REASON),VL,MF=(E,CALLLST)
*
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL
*
 ⋮
BADCALL DS 0H
⋮
*

* CONSTANTS
*
 CMQMDA DSECT=NO,LIST=YES,PERSISTENCE=MQPER_PERSISTENT
 CMQPMOA DSECT=NO,LIST=YES
 CMQODA DSECT=NO,LIST=YES
 CMQA
*
TEST_MSG DC CL80'THIS IS ANOTHER TEST MESSAGE'
Q_NAME DC CL48'TEST.QUEUE.NAME'
*
* WORKING STORAGE DSECT
*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD
WMD CMQMDA DSECT=NO,LIST=NO
WPMO CMQPMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
 ⋮
 END

Developing applications reference 43

Getting a message
This example demonstrates how to use the MQGET call to remove a message from a queue.

This extract is not taken from the sample applications supplied with IBM MQ.

⋮
*
* CONNECT TO QUEUE MANAGER
*
CONN DS 0H
⋮
*
* OPEN A QUEUE FOR GET
*
OPEN DS 0H
⋮
*
* R4,R5,R6,R7 = WORK REGISTER.
*
GET DS 0H
 LA R4,MQMD SET UP ADDRESSES AND
 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
 LA R6,WMD INSTRUCTION, AS MQMD IS
 LA R7,WMD_LENGTH OVER 256 BYES LONG.
 MVCL R6,R4 INITIALIZE WORKING VERSION
* OF MESSAGE DESCRIPTOR
*
 MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO
*

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
 ST R5,BUFFLEN AND SAVE IT FOR MQM USE
*
*
* ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO
*
* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*
 CALL MQGET, X
 (HCONN, X
 HOBJ, X
 WMD, X
 WGMO, X
 BUFFLEN, X
 BUFFER, X
 DATALEN, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
*
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL
*
 ⋮
BADCALL DS 0H
⋮

*
* CONSTANTS
*
 CMQMDA DSECT=NO,LIST=YES
 CMQGMOA DSECT=NO,LIST=YES
 CMQA
*
* WORKING STORAGE DSECT
*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
DATALEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F

44 IBM MQ Developing Applications Reference

*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WMD CMQMDA DSECT=NO,LIST=NO
WGMO CMQGMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
⋮
END

Getting a message using the wait option
This example demonstrates how to use the wait option of the MQGET call.

This code accepts truncated messages. This extract is not taken from the sample applications supplied
with IBM MQ.

⋮
* CONNECT TO QUEUE MANAGER
CONN DS 0H
⋮
* OPEN A QUEUE FOR GET
OPEN DS 0H
⋮
* R4,R5,R6,R7 = WORK REGISTER.
GET DS 0H
 LA R4,MQMD SET UP ADDRESSES AND
 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
 LA R6,WMD INSTRUCTION, AS MQMD IS
 LA R7,WMD_LENGTH OVER 256 BYES LONG.
 MVCL R6,R4 INITIALIZE WORKING VERSION
* OF MESSAGE DESCRIPTOR

*
 MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO
 L R5,=AL4(MQGMO_WAIT)
 A R5,=AL4(MQGMO_ACCEPT_TRUNCATED_MSG)
 ST R5,WGMO_OPTIONS
 MVC WGMO_WAITINTERVAL,TWO_MINUTES WAIT UP TO TWO
 MINUTES BEFORE
 FAILING THE
 CALL
*
 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
 ST R5,BUFFLEN AND SAVE IT FOR MQM USE
*
* ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO
*
* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*
 CALL MQGET, X
 (HCONN, X
 HOBJ, X
 WMD, X
 WGMO, X
 BUFFLEN, X
 BUFFER, X
 DATALEN, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
*
 LA R5,MQCC_OK DID THE MQGET REQUEST
 C R5,COMPCODE WORK OK?
 BE GETOK YES, SO GO AND PROCESS.
 LA R5,MQCC_WARNING NO, SO CHECK FOR A WARNING.
 C R5,COMPCODE IS THIS A WARNING?
 BE CHECK_W YES, SO CHECK THE REASON.
*
 LA R5,MQRC_NO_MSG_AVAILABLE IT MUST BE AN ERROR.
 IS IT DUE TO AN EMPTY
 C R5,REASON QUEUE?
 BE NOMSG YES, SO HANDLE THE ERROR
 B BADCALL NO, SO GO TO ERROR ROUTINE

Developing applications reference 45

*
CHECK_W DS 0H
 LA R5,MQRC_TRUNCATED_MSG_ACCEPTED IS THIS A
 TRUNCATED
 C R5,REASON MESSAGE?
 BE GETOK YES, SO GO AND PROCESS.
 B BADCALL NO, SOME OTHER WARNING
*
NOMSG DS 0H
 ⋮
GETOK DS 0H
 ⋮

BADCALL DS 0H
⋮
*
* CONSTANTS
*
 CMQMDA DSECT=NO,LIST=YES
 CMQGMOA DSECT=NO,LIST=YES
 CMQA
*
TWO_MINUTES DC F'120000' GET WAIT INTERVAL
*
* WORKING STORAGE DSECT

*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
DATALEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WMD CMQMDA DSECT=NO,LIST=NO
WGMO CMQGMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
 ⋮
 END

Getting a message using signaling
This example demonstrates how to use the MQGET call to set a signal so that you are notified when a
suitable message arrives on a queue.

This extract is not taken from the sample applications supplied with IBM MQ.

⋮
*
* CONNECT TO QUEUE MANAGER
*
CONN DS 0H
 ⋮
*
* OPEN A QUEUE FOR GET
*
OPEN DS 0H
 ⋮
*
* R4,R5,R6,R7 = WORK REGISTER.
*
GET DS 0H
 LA R4,MQMD SET UP ADDRESSES AND
 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
 LA R6,WMD INSTRUCTION, AS MQMD IS
 LA R7,WMD_LENGTH OVER 256 BYES LONG.

46 IBM MQ Developing Applications Reference

 MVCL R6,R4 INITIALIZE WORKING VERSION
* OF MESSAGE DESCRIPTOR

*
 MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO
 LA R5,MQGMO_SET_SIGNAL
 ST R5,WGMO_OPTIONS
 MVC WGMO_WAITINTERVAL,FIVE_MINUTES WAIT UP TO FIVE
 MINUTES BEFORE
* FAILING THE CALL
*
 XC SIG_ECB,SIG_ECB CLEAR THE ECB
 LA R5,SIG_ECB GET THE ADDRESS OF THE ECB
 ST R5,WGMO_SIGNAL1 AND PUT IT IN THE WORKING
* MQGMO
*

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
 ST R5,BUFFLEN AND SAVE IT FOR MQM USE
*
*
* ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO
*
* HCONN WAS SET BY PREVIOUS MQCONN REQUEST
* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
*
 CALL MQGET, X
 (HCONN, X
 HOBJ, X
 WMD, X
 WGMO, X
 BUFFLEN, X
 BUFFER, X
 DATALEN, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
*
 LA R5,MQCC_OK DID THE MQGET REQUEST
 C R5,COMPCODE WORK OK?
 BE GETOK YES, SO GO AND PROCESS.
 LA R5,MQCC_WARNING NO, SO CHECK FOR A WARNING.
 C R5,COMPCODE IS THIS A WARNING?
 BE CHECK_W YES, SO CHECK THE REASON.
 B BADCALL NO, SO GO TO ERROR ROUTINE
*

CHECK_W DS 0H
 LA R5,MQRC_SIGNAL_REQUEST_ACCEPTED
 C R5,REASON SIGNAL REQUEST SIGNAL SET?
 BNE BADCALL NO, SOME ERROR OCCURRED
 B DOWORK YES, SO DO SOMETHING
* ELSE
*
CHECKSIG DS 0H
 CLC SIG_ECB+1(3),=AL3(MQEC_MSG_ARRIVED)
 IS A MESSAGE AVAILABLE?
 BE GET YES, SO GO AND GET IT
*
 CLC SIG_ECB+1(3),=AL3(MQEC_WAIT_INTERVAL_EXPIRED)
 HAVE WE WAITED LONG ENOUGH?
 BE NOMSG YES, SO SAY NO MSG AVAILABLE
 B BADCALL IF IT'S ANYTHING ELSE
* GO TO ERROR ROUTINE.
*
DOWORK DS 0H
 ⋮
 TM SIG_ECB,X'40' HAS THE SIGNAL ECB BEEN POSTED?
 BO CHECKSIG YES, SO GO AND CHECK WHY
 B DOWORK NO, SO GO AND DO MORE WORK
*
NOMSG DS 0H
 ⋮
GETOK DS 0H
 ⋮
BADCALL DS 0H
 ⋮
*

Developing applications reference 47

* CONSTANTS
*
 CMQMDA DSECT=NO,LIST=YES
 CMQGMOA DSECT=NO,LIST=YES
 CMQA
*
FIVE_MINUTES DC F'300000' GET SIGNAL INTERVAL
*
* WORKING STORAGE DSECT
*
WORKSTG DSECT
*
COMPCODE DS F
REASON DS F
BUFFLEN DS F
DATALEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
SIG_ECB DS F

*
BUFFER DS CL80
BUFFER_LEN EQU *-BUFFER
*
WMD CMQMDA DSECT=NO,LIST=NO
WGMO CMQGMOA DSECT=NO,LIST=NO
*
CALLLST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
*
⋮
END

Inquiring about and setting the attributes of a queue
This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue and to
use the MQSET call to change the attributes of a queue.

This extract is taken from the Queue Attributes sample application (program CSQ4CAC1) supplied with
IBM MQ for z/OS.

⋮
DFHEISTG DSECT
 ⋮
OBJDESC CMQODA LIST=YES Working object descriptor
*
SELECTORCOUNT DS F Number of selectors
INTATTRCOUNT DS F Number of integer attributes
CHARATTRLENGTH DS F char attributes length
CHARATTRS DS C Area for char attributes
*
OPTIONS DS F Command options
HCONN DS F Handle of connection
HOBJ DS F Handle of object
COMPCODE DS F Completion code
REASON DS F Reason code
SELECTOR DS 2F Array of selectors
INTATTRS DS 2F Array of integer attributes
 ⋮
OBJECT DS CL(MQ_Q_NAME_LENGTH) Name of queue
 ⋮
CALLLIST CALL ,(0,0,0,0,0,0,0,0,0,0,0),VL,MF=L
**
* PROGRAM EXECUTION STARTS HERE *
⋮
CSQ4CAC1 DFHEIENT CODEREG=(R3),DATAREG=(R13)
 ⋮
* Initialize the variables for the set call
*
 SR R0,R0 Clear register zero
 ST R0,CHARATTRLENGTH Set char length to zero
 LA R0,2 Load to set
 ST R0,SELECTORCOUNT selectors add
 ST R0,INTATTRCOUNT integer attributes
*
 LA R0,MQIA_INHIBIT_GET Load q attribute selector

48 IBM MQ Developing Applications Reference

 ST R0,SELECTOR+0 Place in field
 LA R0,MQIA_INHIBIT_PUT Load q attribute selector
 ST R0,SELECTOR+4 Place in field
*
UPDTEST DS 0H
 CLC ACTION,CINHIB Are we inhibiting?
 BE UPDINHBT Yes branch to section
*
 CLC ACTION,CALLOW Are we allowing?
 BE UPDALLOW Yes branch to section
*
 MVC M00_MSG,M01_MSG1 Invalid request
 BR R6 Return to caller
*

UPDINHBT DS 0H
 MVC UPDTYPE,CINHIBIT Indicate action type
 LA R0,MQQA_GET_INHIBITED Load attribute value
 ST R0,INTATTRS+0 Place in field
 LA R0,MQQA_PUT_INHIBITED Load attribute value
 ST R0,INTATTRS+4 Place in field
 B UPDCALL Go and do call
*
UPDALLOW DS 0H
 MVC UPDTYPE,CALLOWED Indicate action type
 LA R0,MQQA_GET_ALLOWED Load attribute value
 ST R0,INTATTRS+0 Place in field
 LA R0,MQQA_PUT_ALLOWED Load attribute value
 ST R0,INTATTRS+4 Place in field
 B UPDCALL Go and do call
*
UPDCALL DS 0H
 CALL MQSET, C
 (HCONN, C
 HOBJ, C
 SELECTORCOUNT, C
 SELECTOR, C
 INTATTRCOUNT, C
 INTATTRS, C
 CHARATTRLENGTH, C
 CHARATTRS, C
 COMPCODE, C
 REASON), C
 VL,MF=(E,CALLLIST)
*
 LA R0,MQCC_OK Load expected compcode
 C R0,COMPCODE Was set successful?
 ⋮
* SECTION NAME : INQUIRE *
* FUNCTION : Inquires on the objects attributes *
* CALLED BY : PROCESS *
* CALLS : OPEN, CLOSE, CODES *
* RETURN : To Register 6 *
INQUIRE DS 0H
 ⋮

* Initialize the variables for the inquire call
*
 SR R0,R0 Clear register zero
 ST R0,CHARATTRLENGTH Set char length to zero
 LA R0,2 Load to set
 ST R0,SELECTORCOUNT selectors add
 ST R0,INTATTRCOUNT integer attributes
*
 LA R0,MQIA_INHIBIT_GET Load attribute value
 ST R0,SELECTOR+0 Place in field
 LA R0,MQIA_INHIBIT_PUT Load attribute value
 ST R0,SELECTOR+4 Place in field
 CALL MQINQ, C
 (HCONN, C
 HOBJ, C
 SELECTORCOUNT, C
 SELECTOR, C
 INTATTRCOUNT, C
 INTATTRS, C
 CHARATTRLENGTH, C
 CHARATTRS, C
 COMPCODE, C

Developing applications reference 49

 REASON), C
 VL,MF=(E,CALLLIST)
 LA R0,MQCC_OK Load expected compcode
 C R0,COMPCODE Was inquire successful?
 ⋮

PL/I examples
The use of PL/I is supported by z/OS only. This collection of topics demonstrates techniques using PL/I
examples.

Connecting to a queue manager
This example demonstrates how to use the MQCONN call to connect a program to a queue manager in
z/OS batch.

This extract is not taken from the sample applications supplied with IBM MQ.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
 /**/
 /* STRUCTURE BASED ON PARAMETER INPUT AREA (PARAM) */
 /**/
 DCL 1 INPUT_PARAM BASED(ADDR(PARAM)),
 2 PARAM_LENGTH FIXED BIN(15),
 2 PARAM_MQMNAME CHAR(48);
 ⋮
 /**/
 /* WORKING STORAGE DECLARATIONS */
 /**/
 DCL MQMNAME CHAR(48);
 DCL COMPCODE BINARY FIXED (31);
 DCL REASON BINARY FIXED (31);
 DCL HCONN BINARY FIXED (31);
 ⋮
 /**/
 /* COPY QUEUE MANAGER NAME PARAMETER */
 /* TO LOCAL STORAGE */
 /**/
 MQMNAME = ' ';
 MQMNAME = SUBSTR(PARAM_MQMNAME,1,PARAM_LENGTH);
 ⋮
 /**/
 /* CONNECT FROM THE QUEUE MANAGER */
 /**/
 CALL MQCONN (MQMNAME, /* MQM SYSTEM NAME */
 HCONN, /* CONNECTION HANDLE */
 COMPCODE, /* COMPLETION CODE */
 REASON); /* REASON CODE */

 /**/
 /* TEST THE COMPLETION CODE OF THE CONNECT CALL. */
 /* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
 /* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
 /**/
 IF COMPCODE ¬= MQCC_OK
 THEN DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;

Disconnecting from a queue manager
This example demonstrates how to use the MQDISC call to disconnect a program from a queue manager
in z/OS batch.

This extract is not taken from the sample applications supplied with IBM MQ.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
 /**/
 /* WORKING STORAGE DECLARATIONS */

50 IBM MQ Developing Applications Reference

 /**/
 DCL COMPCODE BINARY FIXED (31);
 DCL REASON BINARY FIXED (31);
 DCL HCONN BINARY FIXED (31);
 ⋮
 /**/
 /* DISCONNECT FROM THE QUEUE MANAGER */
 /**/
 CALL MQDISC (HCONN, /* CONNECTION HANDLE */
 COMPCODE, /* COMPLETION CODE */
 REASON); /* REASON CODE */

/**/
/* TEST THE COMPLETION CODE OF THE DISCONNECT CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/**/
 IF COMPCODE ¬= MQCC_OK
 THEN DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;

Creating a dynamic queue
This example demonstrates how to use the MQOPEN call to create a dynamic queue.

This extract is not taken from the sample applications supplied with IBM MQ.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
⋮
DCL MODEL_QUEUE_NAME CHAR(48) INIT('PL1.REPLY.MODEL');
DCL DYNAMIC_NAME_PREFIX CHAR(48) INIT('PL1.TEMPQ.*');
DCL DYNAMIC_QUEUE_NAME CHAR(48) INIT(' ');
⋮
/***/
/* LOCAL COPY OF OBJECT DESCRIPTOR */
/***/
DCL 1 LMQOD LIKE MQOD;
⋮
/***/
/* SET UP OBJECT DESCRIPTOR FOR OPEN OF REPLY QUEUE */
/***/
LMQOD.OBJECTTYPE =MQOT_Q;
LMQOD.OBJECTNAME = MODEL_QUEUE_NAME;
LMQOD.DYNAMICQNAME = DYNAMIC_NAME_PREFIX;
OPTIONS = MQOO_INPUT_EXCLUSIVE;

 CALL MQOPEN (HCONN,
 LMQOD,
 OPTIONS,
 HOBJ,
 COMPCODE,
 REASON);

/***/
/* TEST THE COMPLETION CODE OF THE OPEN CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/* IF THE CALL HAS SUCCEEDED THEN EXTRACT THE NAME OF */
/* THE NEWLY CREATED DYNAMIC QUEUE FROM THE OBJECT */
/* DESCRIPTOR. */
/***/
 IF COMPCODE ¬= MQCC_OK
 THEN DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;

Developing applications reference 51

 ELSE
 DYNAMIC_QUEUE_NAME = LMQOD_OBJECTNAME;

Opening an existing queue
This example demonstrates how to use the MQOPEN call to open an existing queue.

This extract is not taken from the sample applications supplied with IBM MQ.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
⋮
DCL QUEUE_NAME CHAR(48) INIT('PL1.LOCAL.QUEUE');
⋮
/***/
/* LOCAL COPY OF OBJECT DESCRIPTOR */
/***/
DCL 1 LMQOD LIKE MQOD;
⋮
/***/
/* SET UP OBJECT DESCRIPTOR FOR OPEN OF REPLY QUEUE */
/***/
LMQOD.OBJECTTYPE = MQOT_Q;
LMQOD.OBJECTNAME = QUEUE_NAME;
OPTIONS = MQOO_INPUT_EXCLUSIVE;

CALL MQOPEN (HCONN,
 LMQOD,
 OPTIONS,
 HOBJ,
 COMPCODE,
 REASON);

/***/
/* TEST THE COMPLETION CODE OF THE OPEN CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/***/
 IF COMPCODE ¬= MQCC_OK
 THEN DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;

Closing a queue
This example demonstrates how to use the MQCLOSE call.

This extract is not taken from the sample applications supplied with IBM MQ.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
⋮
/***/
/* SET CLOSE OPTIONS */
/***/
OPTIONS=MQCO_NONE;

/***/

52 IBM MQ Developing Applications Reference

/* CLOSE QUEUE */
/***/
 CALL MQCLOSE (HCONN, /* CONNECTION HANDLE */
 HOBJ, /* OBJECT HANDLE */
 OPTIONS, /* CLOSE OPTIONS */
 COMPCODE, /* COMPLETION CODE */
 REASON); /* REASON CODE */

/***/
/* TEST THE COMPLETION CODE OF THE CLOSE CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/***/
 IF COMPCODE ¬= MQCC_OK
 THEN DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;

Putting a message using MQPUT
This example demonstrates how to use the MQPUT call using context.

This extract is not taken from the sample applications supplied with IBM MQ.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL BUFFER CHAR(80);
⋮
DCL PL1_TEST_MESSAGE CHAR(80)
INIT('***** THIS IS A TEST MESSAGE *****');
⋮
**/
/* LOCAL COPY OF MESSAGE DESCRIPTOR */
/* AND PUT MESSAGE OPTIONS */
/***/
DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQPMO LIKE MQPMO;
⋮
/***/
/* SET UP MESSAGE DESCRIPTOR */
/***/
LMQMD.MSGTYPE = MQMT_DATAGRAM;
LMQMD.PRIORITY = 1;
LMQMD.PERSISTENCE = MQPER_PERSISTENT;
LMQMD.REPLYTOQ = ' ';
LMQMD.REPLYTOQMGR = ' ';
LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/***/
/* SET UP PUT MESSAGE OPTIONS */
/***/
LMQPMO.OPTIONS = MQPMO_NO_SYNCPOINT;

/***/
/* SET UP LENGTH OF MESSAGE BUFFER AND THE MESSAGE */
/***/
BUFFLEN = LENGTH(BUFFER);
BUFFER = PL1_TEST_MESSAGE;
/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */
/***/
CALL MQPUT (HCONN,
 HOBJ,
 LMQMD,

Developing applications reference 53

 LMQPMO,
 BUFFLEN,
 BUFFER,
 COMPCODE,
 REASON);

/***/
/* TEST THE COMPLETION CODE OF THE PUT CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/***/
 IF COMPCODE ¬= MQCC_OK
 THEN DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;

Putting a message using MQPUT1
This example demonstrates how to use the MQPUT1 call.

This extract is not taken from the sample applications supplied with IBM MQ.

%INCLUDE SYSLIB(CMQEPP);
%INCLUDE SYSLIB(CMQP);
⋮
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL BUFFER CHAR(80);
⋮
DCL REPLY_TO_QUEUE CHAR(48) INIT('PL1.REPLY.QUEUE');
DCL QUEUE_NAME CHAR(48) INIT('PL1.LOCAL.QUEUE');
DCL PL1_TEST_MESSAGE CHAR(80)
INIT('***** THIS IS ANOTHER TEST MESSAGE *****');
⋮
/***/
/* LOCAL COPY OF OBJECT DESCRIPTOR, MESSAGE DESCRIPTOR */
/* AND PUT MESSAGE OPTIONS */
/***/
DCL 1 LMQOD LIKE MQOD;
DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQPMO LIKE MQPMO;
⋮
/***/
/* SET UP OBJECT DESCRIPTOR AS REQUIRED. */
/***/
LMQOD.OBJECTTYPE = MQOT_Q;
LMQOD.OBJECTNAME = QUEUE_NAME;

/***/
/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */
/***/
LMQMD.MSGTYPE = MQMT_REQUEST;
LMQMD.PRIORITY = 5;
LMQMD.PERSISTENCE = MQPER_PERSISTENT;
LMQMD.REPLYTOQ = REPLY_TO_QUEUE;
LMQMD.REPLYTOQMGR = ' ';
LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/***/
/* SET UP PUT MESSAGE OPTIONS AS REQUIRED */
/***/
LMQPMO.OPTIONS = MQPMO_NO_SYNCPOINT;

/***/
/* SET UP LENGTH OF MESSAGE BUFFER AND THE MESSAGE */
/***/
BUFFLEN = LENGTH(BUFFER);

54 IBM MQ Developing Applications Reference

BUFFER = PL1_TEST_MESSAGE;

CALL MQPUT1 (HCONN,
LMQOD,
LMQMD,
LMQPMO,
BUFFLEN,
BUFFER,
COMPCODE,
REASON);

/***/
/* TEST THE COMPLETION CODE OF THE PUT1 CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING */
/* THE COMPLETION CODE AND THE REASON CODE. */
/***/
IF COMPCODE ¬= MQCC_OK
THEN DO;
⋮
CALL ERROR_ROUTINE;
END;

Getting a message
This example demonstrates how to use the MQGET call to remove a message from a queue.

This extract is not taken from the sample applications supplied with IBM MQ.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 ⋮
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
 DCL COMPCODE BINARY FIXED (31);
 DCL REASON BINARY FIXED (31);
 DCL HCONN BINARY FIXED (31);
 DCL HOBJ BINARY FIXED (31);
 DCL BUFFLEN BINARY FIXED (31);
 DCL DATALEN BINARY FIXED (31);
 DCL BUFFER CHAR(80);
⋮

/***/
/* LOCAL COPY OF MESSAGE DESCRIPTOR AND */
/* GET MESSAGE OPTIONS */
/***/
 DCL 1 LMQMD LIKE MQMD;
 DCL 1 LMQGMO LIKE MQGMO;
 ⋮
/***/
/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */
/* MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST */
/* AVAILABLE MESSAGE WILL BE RETRIEVED. */
/***/
 LMQMD.MSGID = MQMI_NONE;
 LMQMD.CORRELID = MQCI_NONE;

/***/
/* SET UP GET MESSAGE OPTIONS AS REQUIRED. */
/***/
 LMQGMO.OPTIONS = MQGMO_NO_SYNCPOINT;

/***/
/* SET UP LENGTH OF MESSAGE BUFFER. */
/***/
 BUFFLEN = LENGTH(BUFFER);
/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */
/***/

 CALL MQGET (HCONN,
 HOBJ,
 LMQMD,

Developing applications reference 55

 LMQGMO,
 BUFFERLEN,
 BUFFER,
 DATALEN,
 COMPCODE,
 REASON);

/***/
/* TEST THE COMPLETION CODE OF THE GET CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE */
/* SHOWING THE COMPLETION CODE AND THE REASON CODE. */
/***/
 IF COMPCODE ¬= MQCC_OK
 THEN DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;

Getting a message using the wait option
This example demonstrates how to use the MQGET call with the wait option and accepting truncated
messages.

This extract is not taken from the sample applications supplied with IBM MQ.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 ⋮
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
 DCL COMPCODE BINARY FIXED (31);
 DCL REASON BINARY FIXED (31);
 DCL HCONN BINARY FIXED (31);
 DCL HOBJ BINARY FIXED (31);
 DCL BUFFLEN BINARY FIXED (31);
 DCL DATALEN BINARY FIXED (31);
 DCL BUFFER CHAR(80);
 ⋮
/***/
/* LOCAL COPY OF MESSAGE DESCRIPTOR AND GET MESSAGE */
/* OPTIONS */
/***/
 DCL 1 LMQMD LIKE MQMD;
 DCL 1 LMQGMO LIKE MQGMO;
 ⋮
/***/
/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */
/* MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST */
/* AVAILABLE MESSAGE WILL BE RETRIEVED. */
/***/
 LMQMD.MSGID = MQMI_NONE;
 LMQMD.CORRELID = MQCI_NONE;

/***/
/* SET UP GET MESSAGE OPTIONS AS REQUIRED. */
/* WAIT INTERVAL SET TO ONE MINUTE. */
/***/
 LMQGMO.OPTIONS = MQGMO_WAIT +
 MQGMO_ACCEPT_TRUNCATED_MSG +
 MQGMO_NO_SYNCPOINT;
 LMQGMO.WAITINTERVAL=60000;

/***/
/* SET UP LENGTH OF MESSAGE BUFFER. */
/***/
 BUFFLEN = LENGTH(BUFFER);

/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */
/***/

 CALL MQGET (HCONN,
 HOBJ,

56 IBM MQ Developing Applications Reference

 LMQMD,
 LMQGMO,
 BUFFERLEN,
 BUFFER,
 DATALEN,
 COMPCODE,
 REASON);

/***/
/* TEST THE COMPLETION CODE OF THE GET CALL. */
/* TAKE APPROPRIATE ACTION BASED ON COMPLETION CODE AND */
/* REASON CODE. */
/***/

 SELECT(COMPCODE);
 WHEN (MQCC_OK) DO; /* GET WAS SUCCESSFUL */
 ⋮
 END;
 WHEN (MQCC_WARNING) DO;
 IF REASON = MQRC_TRUNCATED_MSG_ACCEPTED
 THEN DO; /* GET WAS SUCCESSFUL */
 ⋮
 END;
 ELSE DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;
 END;
 WHEN (MQCC_FAILED) DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;
 END;
 OTHERWISE;
 END;

Getting a message using signaling
A code extract that demonstrates how to use the MQGET call with signaling.

Signaling is available only with IBM MQ for z/OS .

This extract is not taken from the sample applications supplied with IBM MQ.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
 DCL COMPCODE BINARY FIXED (31);
 DCL REASON BINARY FIXED (31);
 DCL HCONN BINARY FIXED (31);
 DCL HOBJ BINARY FIXED (31);
 DCL DATALEN BINARY FIXED (31);
 DCL BUFFLEN BINARY FIXED (31);
 DCL BUFFER CHAR(80);
 ⋮
 DCL ECB_FIXED FIXED BIN(31);
 DCL 1 ECB_OVERLAY BASED(ADDR(ECB_FIXED)),
 3 ECB_WAIT BIT,
 3 ECB_POSTED BIT,
 3 ECB_FLAG3_8 BIT(6),
 3 ECB_CODE PIC'999';
 ⋮
/***/
/* LOCAL COPY OF MESSAGE DESCRIPTOR AND GET MESSAGE */
/* OPTIONS */
/***/
 DCL 1 LMQMD LIKE MQMD;
 DCL 1 LMQGMO LIKE MQGMO;
 ⋮
/***/
/* CLEAR ECB FIELD. */
/***/
 ECB_FIXED = 0;
 ⋮
/***/
/* SET UP MESSAGE DESCRIPTOR AS REQUIRED. */

Developing applications reference 57

/* MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST */
/* AVAILABLE MESSAGE WILL BE RETRIEVED. */
/***/
 LMQMD.MSGID = MQMI_NONE;
 LMQMD.CORRELID = MQCI_NONE;
/***/
/* SET UP GET MESSAGE OPTIONS AS REQUIRED. */
/* WAIT INTERVAL SET TO ONE MINUTE. */
/***/
 LMQGMO.OPTIONS = MQGMO_SET_SIGNAL +
 MQGMO_NO_SYNCPOINT;
 LMQGMO.WAITINTERVAL=60000;
 LMQGMO.SIGNAL1 = ADDR(ECB_FIXED);

/***/
/* SET UP LENGTH OF MESSAGE BUFFER. */
/* CALL MESSAGE RETRIEVAL ROUTINE. */
/***/
 BUFFLEN = LENGTH(BUFFER);
 CALL GET_MSG;

/***/
/* TEST THE COMPLETION CODE OF THE GET CALL. */
/* TAKE APPROPRIATE ACTION BASED ON COMPLETION CODE AND */
/* REASON CODE. */
/***/

 SELECT;
 WHEN ((COMPCODE = MQCC_OK) &
 (REASON = MQCC_NONE)) DO
 ⋮
 CALL MSG_ROUTINE;
 ⋮
 END;
 WHEN ((COMPCODE = MQCC_WARNING) &
 (REASON = MQRC_SIGNAL_REQUEST_ACCEPTED)) DO;
 ⋮
 CALL DO_WORK;
 ⋮
 END;
 WHEN ((COMPCODE = MQCC_FAILED) &
 (REASON = MQRC_SIGNAL_OUTSTANDING)) DO;
 ⋮
 CALL DO_WORK;
 ⋮
 END;
 OTHERWISE DO; /* FAILURE CASE */
/***/
/* ISSUE AN ERROR MESSAGE SHOWING THE COMPLETION CODE */
/* AND THE REASON CODE. */
/***/
 ⋮
 CALL ERROR_ROUTINE;
 ⋮
 END;
 END;
 ⋮

 DO_WORK: PROC;
 ⋮
 IF ECB_POSTED
 THEN DO;
 SELECT(ECB_CODE);
 WHEN(MQEC_MSG_ARRIVED) DO;
 ⋮
 CALL GET_MSG;
 ⋮
 END;
 WHEN(MQEC_WAIT_INTERVAL_EXPIRED) DO;
 ⋮
 CALL NO_MSG;
 ⋮
 END;
 OTHERWISE DO; /* FAILURE CASE */
/***/
/* ISSUE AN ERROR MESSAGE SHOWING THE COMPLETION CODE */
/* AND THE REASON CODE. */

58 IBM MQ Developing Applications Reference

/***/
 ⋮
 CALL ERROR_ROUTINE;
 ⋮
 END;

 END;

 END;
 ⋮
 END DO_WORK;

 GET_MSG: PROC;

/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* MD AND GMO SET UP AS REQUIRED. */
/* */
/***/

 CALL MQGET (HCONN,
 HOBJ,
 LMQMD,
 LMQGMO,
 BUFFLEN,
 BUFFER,
 DATALEN,
 COMPCODE,
 REASON);

 END GET_MSG;

 NO_MSG: PROC;
 ⋮
 END NO_MSG;

Inquiring about the attributes of an object
This example demonstrates how to use the MQINQ call to inquire about the attributes of a queue.

This extract is not taken from the sample applications supplied with IBM MQ.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
 DCL COMPCODE BINARY FIXED (31);
 DCL REASON BINARY FIXED (31);
 DCL HCONN BINARY FIXED (31);
 DCL HOBJ BINARY FIXED (31);
 DCL OPTIONS BINARY FIXED (31);
 DCL SELECTORCOUNT BINARY FIXED (31);
 DCL INTATTRCOUNT BINARY FIXED (31);
 DCL 1 SELECTOR_TABLE,
 3 SELECTORS(5) BINARY FIXED (31);
 DCL 1 INTATTR_TABLE,
 3 INTATTRS(5) BINARY FIXED (31);
 DCL CHARATTRLENGTH BINARY FIXED (31);
 DCL CHARATTRS CHAR(100);
 ⋮

/***/
/* SET VARIABLES FOR INQUIRE CALL */
/* INQUIRE ON THE CURRENT QUEUE DEPTH */
/***/

 SELECTORS(01) = MQIA_CURRENT_Q_DEPTH;

 SELECTORCOUNT = 1;
 INTATTRCOUNT = 1;

 CHARATTRLENGTH = 0;
/***/

Developing applications reference 59

/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */
/***/
 CALL MQINQ (HCONN,
 HOBJ,
 SELECTORCOUNT,
 SELECTORS,
 INTATTRCOUNT,
 INTATTRS,
 CHARATTRLENGTH,
 CHARATTRS,
 COMPCODE,
 REASON);

/***/
/* TEST THE COMPLETION CODE OF THE INQUIRE CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING */
/* THE COMPLETION CODE AND THE REASON CODE. */
/***/
 IF COMPCODE ¬= MQCC_OK
 THEN DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;

Setting the attributes of a queue
This example demonstrates how to use the MQSET call to change the attributes of a queue.

This extract is not taken from the sample applications supplied with IBM MQ.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/***/
/* WORKING STORAGE DECLARATIONS */
/***/
 DCL COMPCODE BINARY FIXED (31);
 DCL REASON BINARY FIXED (31);
 DCL HCONN BINARY FIXED (31);
 DCL HOBJ BINARY FIXED (31);
 DCL OPTIONS BINARY FIXED (31);
 DCL SELECTORCOUNT BINARY FIXED (31);
 DCL INTATTRCOUNT BINARY FIXED (31);
 DCL 1 SELECTOR_TABLE,
 3 SELECTORS(5) BINARY FIXED (31);
 DCL 1 INTATTR_TABLE,
 3 INTATTRS(5) BINARY FIXED (31);
 DCL CHARATTRLENGTH BINARY FIXED (31);
 DCL CHARATTRS CHAR(100);
 ⋮

/***/
/* SET VARIABLES FOR SET CALL */
/* SET GET AND PUT INHIBITED */
/***/

 SELECTORS(01) = MQIA_INHIBIT_GET;
 SELECTORS(02) = MQIA_INHIBIT_PUT;

 INTATTRS(01) = MQQA_GET_INHIBITED;
 INTATTRS(02) = MQQA_PUT_INHIBITED;

 SELECTORCOUNT = 2;
 INTATTRCOUNT = 2;

 CHARATTRLENGTH = 0;

/***/
/* */
/* HCONN WAS SET BY PREVIOUS MQCONN REQUEST. */
/* HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. */
/* */

60 IBM MQ Developing Applications Reference

/***/
 CALL MQSET (HCONN,
 HOBJ,
 SELECTORCOUNT,
 SELECTORS,
 INTATTRCOUNT,
 INTATTRS,
 CHARATTRLENGTH,
 CHARATTRS,
 COMPCODE,
 REASON);

/***/
/* TEST THE COMPLETION CODE OF THE SET CALL. */
/* IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING */
/* THE COMPLETION CODE AND THE REASON CODE. */
/***/
 IF COMPCODE ¬= MQCC_OK
 THEN DO;
 ⋮
 CALL ERROR_ROUTINE;
 END;

Constants
Use the reference information in this section to accomplish the tasks that address your business needs.

IBM MQ COPY, header, include, and module files

This information is general-use programming interface information.

This section contains information to help you use the MQI for various programming languages, as follows.

C header files
Header files are provided to help you write C application programs that use the MQI.

The C header files are summarized in the following table:

Table 1. C header files - call prototypes, data types, return codes, constants, and structures

File name Description IBM i

AIX® and
Linux®
systems Windows z/OS

Call prototypes, data types, return codes, constants, and structures

CMQC MQI definitions C C C C

CMQBC MQAI definitions C C C

CMQEC Interface Entry Points definition
(includes CMQC, CMQXC and
CMQZC)

C C

CMQCFC PCF definitions C C C C

CMQPSC Publish/Subscribe definitions C C C C

CMQXC Channel and exit definitions C C C C

CMQZC Installable services definitions C C C

Key: C= Files provided

Developing applications reference 61

COBOL COPY files
Various COPY files are provided to help you write COBOL application programs that use the MQI.

Table 2. COBOL copy files - return codes, constants, and structures

File name Description IBM i AIX and
Linux

Windows z/OS

Return codes and constants

CMQx MQI definitions V V V V

CMQCFx PCF definitions V V V V

CMQPSx Publish/Subscribe definitions V V V V

CMQXx Channel and exit definitions V V V V

Structures

CMQAIRx MQAIR - Authentication information
record

V L V L

CMQBOx MQBO - Begin options V L V L V L

CMQCDx MQCD - Channel definition V L V L V L V L

CMQCFBFx MQCFBF - PCF byte string filter
parameter

V L V L V L V L

CMQCFBSx MQCFBS - PCF byte string
parameter

V L V L V L V L

CMQCFGRx MQCFGR - PCF group parameter V L V L V L V L

CMQCFHx MQCFH - PCF header V L V L V L V L

CMQCFIFx MQCFIF - PCF integer filter
parameter

V L V L V L V L

CMQCFILx MQCFIL - PCF integer list parameter V L V L V L V L

CMQCFINx MQCFIN - PCF integer parameter V L V L V L V L

CMQCFSFx MQCFSF - PCF string filter
parameter

V L V L V L V L

CMQCFSLx MQCFSL - PCF string list parameter V L V L V L V L

CMQCFSTx MQCFST - PCF string parameter V L V L V L V L

CMQCFXLx MQCFIL64 - PCF 64-bit integer list
parameter

V L V L V L V L

CMQCFXNx MQCFIN64 - PCF 64-bit integer
parameter

V L V L V L V L

CMQCHRVx MQCHARV - Variable length string V L V L V L V L

CMQCIHx MQCIH - CICS® bridge header V L V L V L V L

CMQCNOx MQCNO - Connect options V L V L V L V L

CMQCSPx MQCSP - Security parameters V L V L V L V L

CMQCXPx MQCXP - Channel exit parameters V L V L

CMQDHx MQDH - Distribution header V L V L V L V L

62 IBM MQ Developing Applications Reference

Table 2. COBOL copy files - return codes, constants, and structures (continued)

File name Description IBM i AIX and
Linux

Windows z/OS

CMQDLHx MQDLH - Dead-letter header V L V L V L V L

CMQDXPx MQDXP - Data conversion exit
parameters

V L V L

CMQEPHx MQEPH - Embedded PCF header V L V L V L V L

CMQGMOx MQGMO - Get message options V L V L V L V L

CMQIIHx MQIIH - IMS information header V L V L V L V L

CMQMDx MQMD - Message descriptor V L V L V L V L

CMQMD1x MQMD1 - Message descriptor
version 1

V L V L V L V L

CMQMD2x MQMD2 - Message descriptor
version 2

V L V L V L V L

CMQMDEx MQMDE - Message descriptor
extended

V L V L V L V L

CMQODx MQOD - Object descriptor V L V L V L V L

CMQORx MQOR - Object record V L V L V L V L

CMQPMOx MQPMO - Put message options V L V L V L V L

CMQRFHx MQRFH - Rules and formatting
header

V L V L V L V L

CMQRFH2x MQRFH2 - Rules and formatting
header 2

V L V L V L V L

CMQRMHx MQRMH - Reference message
header

V L V L V L V L

CMQRRx MQRR - Response record V L V L V L

CMQSCOx MQSCO - TLS configuraton options V L V L

CMQTMx MQTM - Trigger message V L V L V L

CMQTMCx MQTMC - Trigger message character V L V L

CMQTMC2x MQTMC2 - Trigger message 2
character

V L V L V L V L

CMQWIHx MQWIH - Work information header V L V L V L V L

CMQXQHx MQXQH - Transmission queue
header

V L V L V L V L

Key:

• Files with initial values provided, x=V
• Files without initial values provided, x=L

Developing applications reference 63

PL/I include files
A number of INCLUDE files are provided for the PL/I programming language. These files are available on
z/OS only.

Table 3. PL/I include files - data types, return codes, constants, and structures

File name Description IBM i
AIX and
Linux Windows z/OS

Data types, return codes, constants, and structures

CMQP MQI definitions P

CMQCFP PCF definitions P

CMQEPP Entry point definitions P

CMQPSP Publish/Subscribe definitions P

CMQXP Channel and exit definitions P

Key: P= File provided

RPG copy files
The RPG COPY files are provided for the RPG programming language. These files are available only on IBM
i.

Table 4. RPG copy files - return codes, constants, and structures

File name Description IBM i AIX and
Linux

Windows z/OS

Return codes and constants

CMQx MQI definitions G R

CMQCFx PCF definitions G

CMQPSx Publish/Subscribe definitions G

CMQXx Channel and exit definitions G R

Structures

CMQBOx MQBO - Begin options G H

CMQCDx MQCD - Channel definition G H R

CMQCFBFx MQCFBF - PCF byte string filter
parameter

G H

CMQCFBSx MQCFBS - PCF byte string
parameter

G H

CMQCFGRx MQCFGR - PCF group parameter G H

CMQCFHx MQCFH - PCF header G H

CMQCFIFx MQCFIF - PCF integer filter
parameter

G H

CMQCFILx MQCFIL - PCF integer list parameter G H

CMQCFINx MQCFIN - PCF integer parameter G H

CMQCFSFx MQCFSF - PCF string filter
parameter

G H

64 IBM MQ Developing Applications Reference

Table 4. RPG copy files - return codes, constants, and structures (continued)

File name Description IBM i AIX and
Linux

Windows z/OS

CMQCFSLx MQCFSL - PCF string list parameter G H

CMQCFSTx MQCFST - PCF string parameter G H

CMQCFXLx MQCFIL64 - PCF 64-bit integer list
parameter

G H

CMQCFXNx MQCFIN64 - PCF 64-bit integer
parameter

G H

CMQCHARVx MQCHARV - Variable length string G H

CMQCIHx MQCIH - CICS bridge header G H

CMQCNOx MQCNO - Connect options G H

CMQCSPx MQCSP - Security parameters G H

CMQCXPx MQCXP - Channel exit parameters G H R

CMQDHx MQDH - Distribution header G H R

CMQDLHx MQDLH - Dead-letter header G H R

CMQDXPx MQDXP - Data conversion exit
parameters

G H R

CMQEPHx MQEPH - Embedded PCF header G H

CMQGMOx MQGMO - Get message options G H R

CMQIIHx MQIIH - IMS information header G H R

CMQMDx MQMD - Message descriptor G H R

CMQMD1x MQMD1 - Message descriptor
version 1

G H R

CMQMD2x MQMD2 - Message descriptor
version 2

G H

CMQMDEx MQMDE - Message descriptor
extended

G H R

CMQODx MQOD - Object descriptor G H R

CMQORx MQOR - Object record G H R

CMQPMOx MQPMO - Put message options G H R

CMQPXPx MQPXP - Publish/Subscribe routing
exit parameters

G H

CMQRFHx MQRFH - Rules and formatting
header

G H

CMQRFH2x MQRFH2 - Rules and formatting
header 2

G H

CMQRMHx MQRMH - Reference message
header

G H R

CMQRRx MQRR - Response record G H R

Developing applications reference 65

Table 4. RPG copy files - return codes, constants, and structures (continued)

File name Description IBM i AIX and
Linux

Windows z/OS

CMQTMx MQTM - Trigger message G H R

CMQTMCx MQTMC - Trigger message character G H R

CMQTMC2x MQTMC2 - Trigger message 2
character

G H R

CMQWIHx MQWIH - Work information header G H

CMQXQHx MQXQH - Transmission queue
header

G H R

Key:

• File for static linkage, initialized, provided x=G
• File for static linkage, not initialized, provided x=H
• File for dynamic linkage, initialized, provided, x=R

Visual Basic module files
Header (or form) files are provided to help you write Visual Basic application programs that use the MQI.
These header files are supplied in 32-bit versions only.

Table 5. Visual Basic module files - call declarations, data types, return codes, constants, and structures

File name Description IBM i

AIX and
Linux
systems Windows z/OS

Call declarations, data types, return codes, constants, and structures

CMQB MQI definitions B

CMQBB MQAI definitions B

CMQCFB PCF definitions B

CMQXB Channel and exit definitions B

Key: B= File provided

z/OS Assembler COPY files
Various COPY files are provided to help you write z/OS Assembler application programs that use the MQI.

Table 6. z/OS Assembler copy files - data types, return codes, constants, and structures

File name Description IBM i AIX and
Linux

Windows z/OS

Data types, return codes, and constants

CMQA MQI definitions A

CMQCFA PCF definitions A

CMQPSA Publish/Subscribe definitions A

CMQVERA Structure version control A

CMQXA Channel and exit definitions A

66 IBM MQ Developing Applications Reference

Table 6. z/OS Assembler copy files - data types, return codes, constants, and structures (continued)

File name Description IBM i AIX and
Linux

Windows z/OS

Structures

CMQCDA MQCD - Channel definition

CMQCFBFA MQCFBF - PCF byte string filter
parameter

CMQCFBSA MQCFBS - PCF byte string
parameter

A

CMQCFGRA MQCFGR - PCF group parameter A

CMQCFHA MQCFH - PCF header A

CMQCFIFA MQCFIF - PCF integer filter
parameter

A

CMQCFILA MQCFIL - PCF integer list parameter A

CMQCFINA MQCFIN - PCF integer parameter A

CMQCFSFA MQCFSF - PCF string filter
parameter

A

CMQCFSLA MQCFSL - PCF string list parameter A

CMQCFSTA MQCFST - PCF string parameter A

CMQCFXLA MQCFIL64 - PCF 64-bit integer list
parameter

A

CMQCFXNA MQCFIN64 - PCF 64-bit integer
parameter

A

CMQCHARVA MQCHARV - Variable length string A

CMQCIHA MQCIH - CICS bridge header A

CMQCNOA MQCNO - Connect options A

CMQCSPA MQCSP - Security parameters A

CMQCXPA MQCXP - Channel exit parameters A

CMQDHA MQDH - Distribution header A

CMQDLHA MQDLH - Dead-letter header A

CMQDXPA MQDXP - Data conversion exit
parameters

A

CMQEPHA MQEPH - Embedded PCF header A

CMQGMOA MQGMO - Get message options A

CMQIIHA MQIIH - IMS information header A

CMQMDA MQMD - Message descriptor A

CMQMD1A MQMD1 - Message descriptor
version 1

A

CMQMD2A MQMD2 - Message descriptor
version 2

A

Developing applications reference 67

Table 6. z/OS Assembler copy files - data types, return codes, constants, and structures (continued)

File name Description IBM i AIX and
Linux

Windows z/OS

CMQMDEA MQMDE - Message descriptor
extended

A

CMQODA MQOD - Object descriptor A

CMQORA MQOR - Object record A

CMQPMOA MQPMO - Put message options A

CMQRFHA MQRFH - Rules and formatting
header

A

CMQRFH2A MQRFH2 - Rules and formatting
header 2

A

CMQRMHA MQRMH - Reference message
header

A

CMQTMA MQTM - Trigger message A

CMQTMC2A MQTMC2 - Trigger message 2
character

A

CMQWCRA MQWCR - Cluster workload cluster
record

A

CMQWDRA MQWDR - Cluster workload
destination record

A

CMQWDR1A MQWDR1 - Cluster workload
destination record version 1

A

CMQWDR2A MQWDR2 - Cluster workload
destination record version 2

A

CMQWIHA MQWIH - Work information header A

CMQWQRA MQWQR - Cluster workload queue
record

A

CMQWQR1A MQWQR1 - Cluster workload queue
record version 1

A

CMQWQR2A MQWQR2 - Cluster workload queue
record version 2

A

CMQWXPA MQWXP - Cluster workload exit
parameters

A

CMQWXP1A MQWXP1 - Cluster workload exit
parameters version 1

A

CMQWXP2A MQWXP2 - Cluster workload exit
parameters version 2

A

CMQWXP3A MQWXP3 - Cluster workload exit
parameters version 3

A

CMQXPA MQXP - CICS API-crossing exit
parameters

A

68 IBM MQ Developing Applications Reference

Table 6. z/OS Assembler copy files - data types, return codes, constants, and structures (continued)

File name Description IBM i AIX and
Linux

Windows z/OS

CMQXQHA MQXQH - Transmission queue
header

A

CMQXWDA MQXWD - Exit wait descriptor A

Key: A= File provided

MQ_* (String Lengths)
Table 7. Values of constants

Name Decimal value Hexadecimal value

MQ_ABEND_CODE_LENGTH 4 X'00000004'

MQ_ACCOUNTING_TOKEN_LENGTH 32 X'00000020'

MQ_APPL_FUNCTION_NAME_LENGTH 10 X'0000000A'

MQ_APPL_IDENTITY_DATA_LENGTH 32 X'00000020'

MQ_APPL_NAME_LENGTH 28 X'0000001C'

MQ_APPL_ORIGIN_DATA_LENGTH 4 X'00000004'

MQ_APPL_TAG_LENGTH 28 X'0000001C'

MQ_ARM_SUFFIX_LENGTH 2 X'00000002'

MQ_ATTENTION_ID_LENGTH 4 X'00000004'

MQ_AUTH_INFO_CONN_NAME_LENGTH 264 X'00000108'

MQ_AUTH_INFO_DESC_LENGTH 64 X'00000040'

MQ_AUTH_INFO_NAME_LENGTH 48 X'00000030'

MQ_AUTH_INFO_OCSP_URL_LENGTH 256 X'00000100'

MQ_AUTHENTICATOR_LENGTH 8 X'00000008'

MQ_AUTO_REORG_CATALOG_LENGTH 44 X'0000002C'

MQ_AUTO_REORG_TIME_LENGTH 4 X'00000004'

MQ_BATCH_INTERFACE_ID_LENGTH 8 X'00000008'

MQ_BRIDGE_NAME_LENGTH 24 X'00000018'

MQ_CANCEL_CODE_LENGTH 4 X'00000004'

MQ_CF_STRUC_DESC_LENGTH 64 X'00000040'

MQ_CF_STRUC_NAME_LENGTH 12 X'0000000C'

MQ_CHANNEL_DATE_LENGTH 12 X'0000000C'

MQ_CHANNEL_DESC_LENGTH 64 X'00000040'

MQ_CHANNEL_NAME_LENGTH 20 X'00000014'

MQ_CHANNEL_TIME_LENGTH 8 X'00000008'

MQ_CHINIT_SERVICE_PARM_LENGTH 32 X'00000020'

MQ_CICS_FILE_NAME_LENGTH 8 X'00000008'

MQ_CLIENT_ID_LENGTH 23 X'00000017'

MQ_CLUSTER_NAME_LENGTH 48 X'00000030'

MQ_CONN_NAME_LENGTH 264 X'00000108'

Developing applications reference 69

Table 7. Values of constants (continued)

Name Decimal value Hexadecimal value

MQ_CONN_TAG_LENGTH 128 X'00000080'

MQ_CONNECTION_ID_LENGTH 24 X'00000018'

MQ_CORREL_ID_LENGTH 24 X'00000018'

MQ_CREATION_DATE_LENGTH 12 X'0000000C'

MQ_CREATION_TIME_LENGTH 8 X'00000008'

MQ_DATE_LENGTH 12 X'0000000C'

MQ_DISTINGUISHED_NAME_LENGTH 1024 X'00000400'

MQ_DNS_GROUP_NAME_LENGTH 18 X'00000012'

MQ_EXIT_DATA_LENGTH 32 X'00000020'

MQ_EXIT_INFO_NAME_LENGTH 48 X'00000030'

MQ_EXIT_NAME_LENGTH (value differs by platform or version)

MQ_EXIT_PD_AREA_LENGTH 48 X'00000030'

MQ_EXIT_USER_AREA_LENGTH 16 X'00000010'

MQ_FACILITY_LENGTH 8 X'00000008'

MQ_FACILITY_LIKE_LENGTH 4 X'00000004'

MQ_FORMAT_LENGTH 8 X'00000008'

MQ_FUNCTION_LENGTH 4 X'00000004'

MQ_GROUP_ID_LENGTH 24 X'00000018'

MQ_LDAP_PASSWORD_LENGTH 32 X'00000020'

MQ_LISTENER_NAME_LENGTH 48 X'00000030'

MQ_LISTENER_DESC_LENGTH 64 X'00000040'

MQ_LOCAL_ADDRESS_LENGTH 48 X'00000030'

MQ_LTERM_OVERRIDE_LENGTH 8 X'00000008'

MQ_LU_NAME_LENGTH 8 X'00000008'

MQ_LUWID_LENGTH 16 X'00000010'

MQ_MAX_EXIT_NAME_LENGTH 128 X'00000080'

MQ_MAX_MCA_USER_ID_LENGTH 64 X'00000040'

MQ_MAX_PROPERTY_NAME_LENGTH 4095 X'00000FFF'

MQ_MAX_USER_ID_LENGTH 64 X'00000040'

MQ_MCA_JOB_NAME_LENGTH 28 X'0000001C'

MQ_MCA_NAME_LENGTH 20 X'00000014'

MQ_MCA_USER_DATA_LENGTH 32 X'00000020'

MQ_MCA_USER_ID_LENGTH (value differs by
platform or version)

(value differs by
platform or version)

MQ_MFS_MAP_NAME_LENGTH 8 X'00000008'

MQ_MODE_NAME_LENGTH 8 X'00000008'

MQ_MSG_HEADER_LENGTH 4000 X'00000FA0'

MQ_MSG_ID_LENGTH 24 X'00000018'

MQ_MSG_TOKEN_LENGTH 16 X'00000010'

MQ_NAMELIST_DESC_LENGTH 64 X'00000040'

70 IBM MQ Developing Applications Reference

Table 7. Values of constants (continued)

Name Decimal value Hexadecimal value

MQ_NAMELIST_NAME_LENGTH 48 X'00000030'

MQ_NHA_INSTANCE_NAME_LENGTH 48 X'00000030'

MQ_OBJECT_INSTANCE_ID_LENGTH 24 X'00000018'

MQ_OBJECT_NAME_LENGTH 48 X'00000030'

MQ_PASS_TICKET_APPL_LENGTH 8 X'00000008'

MQ_PASSWORD_LENGTH 12 X'0000000C'

MQ_PROCESS_APPL_ID_LENGTH 256 X'00000100'

MQ_PROCESS_DESC_LENGTH 64 X'00000040'

MQ_PROCESS_ENV_DATA_LENGTH 128 X'00000080'

MQ_PROCESS_NAME_LENGTH 48 X'00000030'

MQ_PROCESS_USER_DATA_LENGTH 128 X'00000080'

MQ_PROGRAM_NAME_LENGTH 20 X'00000014'

MQ_PUT_APPL_NAME_LENGTH 28 X'0000001C'

MQ_PUT_DATE_LENGTH 8 X'00000008'

MQ_PUT_TIME_LENGTH 8 X'00000008'

MQ_Q_DESC_LENGTH 64 X'00000040'

MQ_Q_MGR_DESC_LENGTH 64 X'00000040'

MQ_Q_MGR_IDENTIFIER_LENGTH 48 X'00000030'

MQ_Q_MGR_NAME_LENGTH 48 X'00000030'

MQ_Q_NAME_LENGTH 48 X'00000030'

MQ_QSG_NAME_LENGTH 4 X'00000004'

MQ_REMOTE_SYS_ID_LENGTH 4 X'00000004'

MQ_SECURITY_ID_LENGTH 40 X'00000028'

MQ_SELECTOR_LENGTH 10240 X'00002800'

MQ_SERVICE_ARGS_LENGTH 255 X'000000FF'

MQ_SERVICE_COMMAND_LENGTH 255 X'000000FF'

MQ_SERVICE_DESC_LENGTH 64 X'00000040'

MQ_SERVICE_NAME_LENGTH 32 X'00000020'

MQ_SERVICE_PATH_LENGTH 255 X'000000FF'

MQ_SERVICE_STEP_LENGTH 8 X'00000008'

MQ_SHORT_CONN_NAME_LENGTH 20 X'00000014'

MQ_SHORT_DNAME_LENGTH 256 X'00000100'

MQ_SSL_CIPHER_SPEC_LENGTH 32 X'00000020'

MQ_SSL_CRYPTO_HARDWARE_LENGTH 256 X'00000100'

MQ_SSL_HANDSHAKE_STAGE_LENGTH 32 X'00000020'

MQ_SSL_KEY_LIBRARY_LENGTH 44 X'0000002C'

MQ_SSL_KEY_MEMBER_LENGTH 8 X'00000008'

MQ_SSL_KEY_REPOSITORY_LENGTH 256 X'00000100'

MQ_SSL_PEER_NAME_LENGTH 1024 X'00000400'

Developing applications reference 71

Table 7. Values of constants (continued)

Name Decimal value Hexadecimal value

MQ_SSL_SHORT_PEER_NAME_LENGTH 256 X'00000100'

MQ_START_CODE_LENGTH 4 X'00000004'

MQ_STORAGE_CLASS_DESC_LENGTH 64 X'00000040'

MQ_STORAGE_CLASS_LENGTH 8 X'00000008'

MQ_SUB_IDENTITY_LENGTH 128 X'00000080'

MQ_SUB_POINT_LENGTH 128 X'00000080'

MQ_SUITE_B_128_BIT 2 X'00000002'

MQ_SUITE_B_192_BIT 4 X'00000004'

MQ_SUITE_B_NONE 1 X'00000001'

MQ_SUITE_B_NOT_AVAILABLE 0 X'00000000'

MQ_TCP_NAME_LENGTH 8 X'00000008'

MQ_TIME_LENGTH 8 X'00000008'

MQ_TOPIC_DESC_LENGTH 64 X'00000040'

MQ_TOPIC_NAME_LENGTH 48 X'00000030'

MQ_TOPIC_STR_LENGTH 10240 X'00002800'

MQ_TOTAL_EXIT_DATA_LENGTH 999 X'000003E7'

MQ_TOTAL_EXIT_NAME_LENGTH 999 X'000003E7'

MQ_TP_NAME_LENGTH 64 X'00000040'

MQ_TPIPE_NAME_LENGTH 8 X'00000008'

MQ_TRAN_INSTANCE_ID_LENGTH 16 X'00000010'

MQ_TRANSACTION_ID_LENGTH 4 X'00000004'

MQ_TRIGGER_DATA_LENGTH 64 X'00000040'

MQ_TRIGGER_PROGRAM_NAME_LENGTH 8 X'00000008'

MQ_TRIGGER_TERM_ID_LENGTH 4 X'00000004'

MQ_TRIGGER_TRANS_ID_LENGTH 4 X'00000004'

MQ_USER_ID_LENGTH 12 X'0000000C'

MQ_VERSION_LENGTH 8 X'00000008'

MQ_XCF_GROUP_NAME_LENGTH 8 X'00000008'

MQ_XCF_MEMBER_NAME_LENGTH 16 X'00000010'

MQ_* (Command format String Lengths)
Table 8. Values of constants

Name Decimal value Hexadecimal value

MQ_ARCHIVE_PFX_LENGTH 36 X'00000024'

MQ_ARCHIVE_UNIT_LENGTH 8 X'00000008'

MQ_ASID_LENGTH 4 X'00000004'

MQ_AUTH_PROFILE_NAME_LENGTH 48 X'00000030'

MQ_CF_LEID_LENGTH 12 X'0000000C'

MQ_COMMAND_MQSC_LENGTH 32768 X'00008000'

MQ_DATA_SET_NAME_LENGTH 44 X'0000002C'

72 IBM MQ Developing Applications Reference

Table 8. Values of constants (continued)

Name Decimal value Hexadecimal value

MQ_DB2_NAME_LENGTH 4 X'00000004'

MQ_DSG_NAME_LENGTH 8 X'00000008'

MQ_ENTITY_NAME_LENGTH 1024 X'00000400'

MQ_ENV_INFO_LENGTH 96 X'00000060'

MQ_IP_ADDRESS_LENGTH 48 X'00000030'

MQ_LOG_CORREL_ID_LENGTH 8 X'00000008'

MQ_LOG_EXTENT_NAME_LENGTH 24 X'00000018'

MQ_LOG_PATH_LENGTH 1024 X'00000400'

MQ_LRSN_LENGTH 12 X'0000000C'

MQ_ORIGIN_NAME_LENGTH 8 X'00000008'

MQ_PSB_NAME_LENGTH 8 X'00000008'

MQ_PST_ID_LENGTH 8 X'00000008'

MQ_Q_MGR_CPF_LENGTH 4 X'00000004'

MQ_RESPONSE_ID_LENGTH 24 X'00000018'

MQ_RBA_LENGTH 16 X'00000010'

MQ_SECURITY_PROFILE_LENGTH 40 X'00000028'

MQ_SERVICE_COMPONENT_LENGTH 48 X'00000030'

MQ_SUB_NAME_LENGTH 10240 X'00002800'

MQ_SYSP_SERVICE_LENGTH 32 X'00000020'

MQ_SYSTEM_NAME_LENGTH 8 X'00000008'

MQ_TASK_NUMBER_LENGTH 8 X'00000008'

MQ_TPIPE_PFX_LENGTH 4 X'00000004'

MQ_UOW_ID_LENGTH 256 X'00000100'

MQ_USER_DATA_LENGTH 10240 X'00002800'

MQ_VOLSER_LENGTH 6 X'00000006'

MQACH_* (API exit chain area header structure)
Table 9. Structures of constants

Name Structure

MQACH_STRUC_ID "ACH¬"

MQACH_STRUC_ID_ARRAY 'A','C','H','¬'

Note: The symbol ¬ represents a single blank character.

Table 10. Values of constants

Name Decimal value Hexadecimal value

MQACH_VERSION_1 1 X'00000001'

MQACH_CURRENT_VERSION 1 X'00000001'

MQACH_LENGTH_1 (value differs by
platform or version)

(value differs by
platform or version)

MQACH_CURRENT_LENGTH (value differs by
platform or version)

(value differs by
platform or version)

Developing applications reference 73

MQACT_* (Accounting Token)
Table 11. Constant names and values

Name Value

MQACT_NONE X'00...00' (32 nulls)

MQACT_NONE_ARRAY '\0','\0',... (32 nulls)

MQACT_* (Command format Action Options)
Table 12. Values of constants

Name Decimal value Hexadecimal value

MQACT_FORCE_REMOVE 1 X'00000001'

MQACT_ADVANCE_LOG 2 X'00000002'

MQACT_COLLECT_STATISTICS 3 X'00000003'

MQACT_PUBSUB 4 X'00000004'

MQACTP_* (Action)
Table 13. Values of constants

Name Decimal value Hexadecimal value

MQACTP_NEW 0 X'00000000'

MQACTP_FORWARD 1 X'00000001'

MQACTP_REPLY 2 X'00000002'

MQACTP_REPORT 3 X'00000003'

MQACTT_* (Accounting Token Types)
Table 14. Values of constants

Name Hexadecimal value

MQACTT_UNKNOWN X'00'

MQACTT_CICS_LUOW_ID X'01'

MQACTT_OS2_DEFAULT X'04'

MQACTT_DOS_DEFAULT X'05'

MQACTT_UNIX_NUMERIC_ID X'06'

MQACTT_OS400_ACCOUNT_TOKEN X'08'

MQACTT_WINDOWS_DEFAULT X'09'

MQACTT_NT_SECURITY_ID X'0B'

MQACTT_USER X'19'

MQADOPT_* (Adopt New MCA Checks and Adopt New MCA Types)

Adopt New MCA Checks
Table 15. Values of constants

Name Decimal value Hexadecimal value

MQADOPT_CHECK_NONE 0 X'00000000'

74 IBM MQ Developing Applications Reference

Table 15. Values of constants (continued)

Name Decimal value Hexadecimal value

MQADOPT_CHECK_ALL 1 X'00000001'

MQADOPT_CHECK_Q_MGR_NAME 2 X'00000002'

MQADOPT_CHECK_NET_ADDR 4 X'00000004'

Adopt New MCA Types
Table 16. Values of constants

Name Decimal value Hexadecimal value

MQADOPT_TYPE_NO 0 X'00000000'

MQADOPT_TYPE_ALL 1 X'00000001'

MQADOPT_TYPE_SVR 2 X'00000002'

MQADOPT_TYPE_SDR 4 X'00000004'

MQADOPT_TYPE_RCVR 8 X'00000008'

MQADOPT_TYPE_CLUSRCVR 16 X'00000010'

MQAIR_* (Authentication information record structure)
Table 17. Structures of constants

Name Structure

MQAIR_STRUC_ID "AIR¬"

MQAIR_STRUC_ID_ARRAY 'A','I','R','¬'

Note: The symbol ¬ represents a single blank character.

Table 18. Values of constants

Name Decimal value Hexadecimal value

MQAIR_VERSION_1 1 X'00000001'

MQAIR_VERSION_2 2 X'00000002'

MQAIR_CURRENT_VERSION 2 X'00000002'

MQAIT_* (Authentication Information Type)
Table 19. Values of constants

Name Decimal value Hexadecimal value

MQAIT_ALL 0 X'00000000'

MQAIT_CRL_LDAP 1 X'00000001'

MQAIT_OCSP 2 X'00000002'

MQAIT_IDPW_OS 3 X'00000003'

MQAIT_IDPW_LDAP 4 X'00000004'

MQAS_* (Command format Asynchronous State Values)
Table 20. Values of constants

Name Decimal value Hexadecimal value

MQAS_NONE 0 X'00000000'

Developing applications reference 75

Table 20. Values of constants (continued)

Name Decimal value Hexadecimal value

MQAS_STARTED 1 X'00000001'

MQAS_START_WAIT 2 X'00000002'

MQAS_STOPPED 3 X'00000003'

MQAS_SUSPENDED 4 X'00000004'

MQAS_SUSPENDED_TEMPORARY 5 X'00000005'

MQAS_ACTIVE 6 X'00000006'

MQAS_INACTIVE 7 X'00000007'

MQAT_* (Put Application Types)
Table 21. Values of constants

Name Decimal value Hexadecimal value

MQAT_UNKNOWN -1 X'FFFFFFFF'

MQAT_NO_CONTEXT 0 X'00000000'

MQAT_CICS 1 X'00000001'

MQAT_MVS 2 X'00000002'

MQAT_OS390 2 X'00000002'

MQAT_ZOS 2 X'00000002'

MQAT_IMS 3 X'00000003'

MQAT_OS2 4 X'00000004'

MQAT_DOS 5 X'00000005'

MQAT_AIX 6 X'00000006'

MQAT_UNIX 6 X'00000006'

MQAT_QMGR 7 X'00000007'

MQAT_OS400 8 X'00000008'

MQAT_WINDOWS 9 X'00000009'

MQAT_CICS_VSE 10 X'0000000A'

MQAT_WINDOWS_NT 11 X'0000000B'

MQAT_VMS 12 X'0000000C'

MQAT_GUARDIAN 13 X'0000000D'

MQAT_NSK 13 X'0000000D'

MQAT_VOS 14 X'0000000E'

MQAT_OPEN_TP1 15 X'0000000F'

MQAT_VM 18 X'00000012'

MQAT_IMS_BRIDGE 19 X'00000013'

MQAT_XCF 20 X'00000014'

MQAT_CICS_BRIDGE 21 X'00000015'

MQAT_NOTES_AGENT 22 X'00000016'

MQAT_TPF 23 X'00000017'

MQAT_USER 25 X'00000019'

76 IBM MQ Developing Applications Reference

Table 21. Values of constants (continued)

Name Decimal value Hexadecimal value

MQAT_BROKER 26 X'0000001A'

MQAT_QMGR_PUBLISH 26 X'0000001A'

MQAT_JAVA 28 X'0000001C'

MQAT_DQM 29 X'0000001D'

MQAT_CHANNEL_INITIATOR 30 X'0000001E'

MQAT_WLM 31 X'0000001F'

MQAT_BATCH 32 X'00000020'

MQAT_RRS_BATCH 33 X'00000021'

MQAT_SIB 34 X'00000022'

MQAT_DEFAULT (value differs by
platform or version)

(value differs by
platform or version)

MQAT_USER_FIRST 65536 X'00010000'

MQAT_USER_LAST 999999999 X'3B9AC9FF'

MQAUTH_* (Command format Authority Values)
Table 22. Values of constants

Name Decimal value Hexadecimal value

MQAUTH_NONE 0 X'00000000'

MQAUTH_ALT_USER_AUTHORITY 1 X'00000001'

MQAUTH_BROWSE 2 X'00000002'

MQAUTH_CHANGE 3 X'00000003'

MQAUTH_CLEAR 4 X'00000004'

MQAUTH_CONNECT 5 X'00000005'

MQAUTH_CREATE 6 X'00000006'

MQAUTH_DELETE 7 X'00000007'

MQAUTH_DISPLAY 8 X'00000008'

MQAUTH_INPUT 9 X'00000009'

MQAUTH_INQUIRE 10 X'0000000A'

MQAUTH_OUTPUT 11 X'0000000B'

MQAUTH_PASS_ALL_CONTEXT 12 X'0000000C'

MQAUTH_PASS_IDENTITY_CONTEXT 13 X'0000000D'

MQAUTH_SET 14 X'0000000E'

MQAUTH_SET_ALL_CONTEXT 15 X'0000000F'

MQAUTH_SET_IDENTITY_CONTEXT 16 X'00000010'

MQAUTH_CONTROL 17 X'00000011'

MQAUTH_CONTROL_EXTENDED 18 X'00000012'

MQAUTH_PUBLISH 19 X'00000013'

MQAUTH_SUBSCRIBE 20 X'00000014'

MQAUTH_RESUME 21 X'00000015'

MQAUTH_SYSTEM 22 X'00000016'

Developing applications reference 77

MQAUTHOPT_* (Command format Authority Options)
Table 23. Values of constants

Name Decimal value Hexadecimal value

MQAUTHOPT_CUMULATIVE 256 X'00000100'

MQAUTHOPT_ENTITY_EXPLICIT 1 X'00000001'

MQAUTHOPT_ENTITY_SET 2 X'00000002'

MQAUTHOPT_NAME_ALL_MATCHING 32 X'00000020'

MQAUTHOPT_NAME_AS_WILDCARD 64 X'00000040'

MQAUTHOPT_NAME_EXPLICIT 16 X'00000010'

MQAXC_* (API exit context structure)
Table 24. Structures of constants

Name Structure

MQAXC_STRUC_ID "AXC¬"

MQAXC_STRUC_ID_ARRAY 'A','X','C','¬'

Note: The symbol ¬ represents a single blank character.

Table 25. Values of constants

Name Decimal value Hexadecimal value

MQAXC_VERSION_1 1 X'00000001'

MQAXC_CURRENT_VERSION 1 X'00000001'

MQAXP_* (API exit parameter structure)
Table 26. Structures of constants

Name Structure

MQAXP_STRUC_ID "AXP¬"

MQAXP_STRUC_ID_ARRAY 'A','X','P','¬'

Note: The symbol ¬ represents a single blank character.

Table 27. Values of constants

Name Decimal value Hexadecimal value

MQAXP_VERSION_1 1 X'00000001'

MQAXP_VERSION_2 2 X'00000002'

MQAXP_CURRENT_VERSION 2 X'00000002'

MQBA_* (Byte Attribute Selectors)
Table 28. Values of constants

Name Decimal value Hexadecimal value

MQBA_FIRST 6001 X'00001771'

MQBA_LAST 8000 X'00001F40'

78 IBM MQ Developing Applications Reference

MQBACF_* (Command format Byte Parameter Types)
Table 29. Values of constants

Name Decimal value Hexadecimal value

MQBACF_FIRST 7001 X'00001B59'

MQBACF_EVENT_ACCOUNTING_TOKEN 7001 X'00001B59'

MQBACF_EVENT_SECURITY_ID 7002 X'00001B5A'

MQBACF_RESPONSE_SET 7003 X'00001B5B'

MQBACF_RESPONSE_ID 7004 X'00001B5C'

MQBACF_EXTERNAL_UOW_ID 7005 X'00001B5D'

MQBACF_CONNECTION_ID 7006 X'00001B5E'

MQBACF_GENERIC_CONNECTION_ID 7007 X'00001B5F'

MQBACF_ORIGIN_UOW_ID 7008 X'00001B60'

MQBACF_Q_MGR_UOW_ID 7009 X'00001B61'

MQBACF_ACCOUNTING_TOKEN 7010 X'00001B62'

MQBACF_CORREL_ID 7011 X'00001B63'

MQBACF_GROUP_ID 7012 X'00001B64'

MQBACF_MSG_ID 7013 X'00001B65'

MQBACF_CF_LEID 7014 X'00001B66'

MQBACF_DESTINATION_CORREL_ID 7015 X'00001B67'

MQBACF_SUB_ID 7016 X'00001B68'

MQBACF_LAST_USED 7016 X'00001B68'

MQBL_* (Buffer Length for mqAddString and mqSetString)
Table 30. Values of constants

Name Decimal value Hexadecimal value

MQBL_NULL_TERMINATED -1 X'FFFFFFFF'

MQBMHO_* (Buffer to message handle options and structure)

Buffer to message handle options structure
Table 31. Structures of constants

Name Structure

MQBMHO_STRUC_ID "BMHO"

MQBMHO_STRUC_ID_ARRAY 'B','M','H','O'

Note: The symbol ¬ represents a single blank character.

Table 32. Values of constants

Name Decimal value Hexadecimal value

MQBMHO_VERSION_1 1 X'00000001'

MQBMHO_CURRENT_VERSION 1 X'00000001'

Developing applications reference 79

Buffer To Message Handle Options
Table 33. Values of constants

Name Decimal value Hexadecimal value

MQBMHO_NONE 0 X'00000000'

MQBMHO_DELETE_PROPERTIES 1 X'00000001'

MQBND_* (Default Bindings)
Table 34. Values of constants

Name Decimal value Hexadecimal value

MQBND_BIND_ON_OPEN 0 X'00000000'

MQBND_BIND_NOT_FIXED 1 X'00000001'

MQBND_BIND_ON_GROUP 2 X'00000002'

MQBO_* (Begin options and structure)

Begin options structure
Table 35. Structures of constants

Name Structure

MQBO_STRUC_ID "BO¬¬"

MQBO_STRUC_ID_ARRAY 'B','O','¬','¬'

Note: The symbol ¬ represents a single blank character.

Table 36. Values of constants

Name Decimal value Hexadecimal value

MQBO_VERSION_1 1 X'00000001'

MQBO_CURRENT_VERSION 1 X'00000001'

Begin Options
Table 37. Values of constants

Name Decimal value Hexadecimal value

MQBO_NONE 0 X'00000000'

MQBT_* (Command format Bridge Types)
Table 38. Values of constants

Name Decimal value Hexadecimal value

MQBT_OTMA 1 X'00000001'

MQCA_* (Character Attribute Selectors)
Table 39. Values of constants

Name Decimal value Hexadecimal value

MQCA_ADMIN_TOPIC_NAME 2105 X'00000839'

MQCA_ALTERATION_DATE 2027 X'000007EB'

80 IBM MQ Developing Applications Reference

Table 39. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCA_ALTERATION_TIME 2028 X'000007EC'

MQCA_APPL_ID 2001 X'000007D1'

MQCA_AUTH_INFO_CONN_NAME 2053 X'00000805'

MQCA_AUTH_INFO_DESC 2046 X'000007FE'

MQCA_AUTH_INFO_NAME 2045 X'000007FD'

MQCA_AUTH_INFO_OCSP_URL 2109 X'0000083D'

MQCA_AUTO_REORG_CATALOG 2091 X'0000082B'

MQCA_AUTO_REORG_START_TIME 2090 X'0000082A'

MQCA_BACKOUT_REQ_Q_NAME 2019 X'000007E3'

MQCA_BASE_OBJECT_NAME 2002 X'000007D2'

MQCA_BASE_Q_NAME 2002 X'000007D2'

MQCA_BATCH_INTERFACE_ID 2068 X'00000814'

MQCA_CF_STRUC_DESC 2052 X'00000804'

MQCA_CF_STRUC_NAME 2039 X'000007F7'

MQCA_CHANNEL_AUTO_DEF_EXIT 2026 X'000007EA'

MQCA_CHILD 2101 X'00000835'

MQCA_CHINIT_SERVICE_PARM 2076 X'0000081C'

MQCA_CICS_FILE_NAME 2060 X'0000080C'

MQCA_CLUS_CHL_NAME 2124 X'0000084C'

MQCA_CLUSTER_DATE 2037 X'000007F5'

MQCA_CLUSTER_NAME 2029 X'000007ED'

MQCA_CLUSTER_NAMELIST 2030 X'000007EE'

MQCA_CLUSTER_Q_MGR_NAME 2031 X'000007EF'

MQCA_CLUSTER_TIME 2038 X'000007F6'

MQCA_CLUSTER_WORKLOAD_DATA 2034 X'000007F2'

MQCA_CLUSTER_WORKLOAD_EXIT 2033 X'000007F1'

MQCA_COMMAND_INPUT_Q_NAME 2003 X'000007D3'

MQCA_COMMAND_REPLY_Q_NAME 2067 X'00000813'

MQCA_CREATION_DATE 2004 X'000007D4'

MQCA_CREATION_TIME 2005 X'000007D5'

MQCA_DEAD_LETTER_Q_NAME 2006 X'000007D6'

MQCA_DEF_XMIT_Q_NAME 2025 X'000007E9'

MQCA_DNS_GROUP 2071 X'00000817'

MQCA_ENV_DATA 2007 X'000007D7'

MQCA_FIRST 2001 X'000007D1'

MQCA_IGQ_USER_ID 2041 X'000007F9'

MQCA_INITIATION_Q_NAME 2008 X'000007D8'

MQCA_LAST 4000 X'00000FA0'

MQCA_LAST_USED 2109 X'0000083D'

Developing applications reference 81

Table 39. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCA_LDAP_PASSWORD 2048 X'00000800'

MQCA_LDAP_USER_NAME 2047 X'000007FF'

MQCA_LU_GROUP_NAME 2072 X'00000818'

MQCA_LU_NAME 2073 X'00000819'

MQCA_LU62_ARM_SUFFIX 2074 X'0000081A'

MQCA_MODEL_DURABLE_Q 2096 X'00000830'

MQCA_MODEL_NON_DURABLE_Q 2097 X'00000831'

MQCA_MONITOR_Q_NAME 2066 X'00000812'

MQCA_NAMELIST_DESC 2009 X'000007D9'

MQCA_NAMELIST_NAME 2010 X'000007DA'

MQCA_NAMES 2020 X'000007E4'

MQCA_PARENT 2102 X'00000836'

MQCA_PASS_TICKET_APPL 2086 X'00000826'

MQCA_PROCESS_DESC 2011 X'000007DB'

MQCA_PROCESS_NAME 2012 X'000007DC'

MQCA_Q_DESC 2013 X'000007DD'

MQCA_Q_MGR_DESC 2014 X'000007DE'

MQCA_Q_MGR_IDENTIFIER 2032 X'000007F0'

MQCA_Q_MGR_NAME 2015 X'000007DF'

MQCA_Q_NAME 2016 X'000007E0'

MQCA_QSG_NAME 2040 X'000007F8'

MQCA_REMOTE_Q_MGR_NAME 2017 X'000007E1'

MQCA_REMOTE_Q_NAME 2018 X'000007E2'

MQCA_REPOSITORY_NAME 2035 X'000007F3'

MQCA_REPOSITORY_NAMELIST 2036 X'000007F4'

MQCA_RESUME_DATE 2098 X'00000832'

MQCA_RESUME_TIME 2099 X'00000833'

MQCA_SERVICE_DESC 2078 X'0000081E'

MQCA_SERVICE_NAME 2077 X'0000081D'

MQCA_SERVICE_START_ARGS 2080 X'00000820'

MQCA_SERVICE_START_COMMAND 2079 X'0000081F'

MQCA_SERVICE_STOP_ARGS 2082 X'00000822'

MQCA_SERVICE_STOP_COMMAND 2081 X'00000821'

MQCA_STDERR_DESTINATION 2084 X'00000824'

MQCA_STDOUT_DESTINATION 2083 X'00000823'

MQCA_SSL_CRL_NAMELIST 2050 X'00000802'

MQCA_SSL_CRYPTO_HARDWARE 2051 X'00000803'

MQCA_SSL_KEY_LIBRARY 2069 X'00000815'

MQCA_SSL_KEY_MEMBER 2070 X'00000816'

82 IBM MQ Developing Applications Reference

Table 39. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCA_SSL_KEY_REPOSITORY 2049 X'00000801'

MQCA_STORAGE_CLASS 2022 X'000007E6'

MQCA_STORAGE_CLASS_DESC 2042 X'000007FA'

MQCA_SYSTEM_LOG_Q_NAME 2065 X'00000811'

MQCA_TCP_NAME 2075 X'0000081B'

MQCA_TOPIC_DESC 2093 X'0000082D'

MQCA_TOPIC_NAME 2092 X'0000082C'

MQCA_TOPIC_STRING_FILTER 2108 X'0000083C'

MQCA_TOPIC_STRING 2094 X'0000082E'

MQCA_TPIPE_NAME 2085 X'00000825'

MQCA_TRIGGER_CHANNEL_NAME 2064 X'00000810'

MQCA_TRIGGER_DATA 2023 X'000007E7'

MQCA_TRIGGER_PROGRAM_NAME 2062 X'0000080E'

MQCA_TRIGGER_TERM_ID 2063 X'0000080F'

MQCA_TRIGGER_TRANS_ID 2061 X'0000080D'

MQCA_USER_DATA 2021 X'000007E5'

MQCA_USER_LIST 4000 X'00000FA0'

MQCA_VERSION 2120 X'00000848'

MQCA_XCF_GROUP_NAME 2043 X'000007FB'

MQCA_XCF_MEMBER_NAME 2044 X'000007FC'

MQCA_XMIT_Q_NAME 2024 X'000007E8'

MQCACF_* (Command format Character Parameter Types)
Table 40. Values of constants

Name Decimal value Hexadecimal value

MQCACF_FIRST 3001 X'00000BB9'

MQCACF_FROM_Q_NAME 3001 X'00000BB9'

MQCACF_TO_Q_NAME 3002 X'00000BBA'

MQCACF_FROM_PROCESS_NAME 3003 X'00000BBB'

MQCACF_TO_PROCESS_NAME 3004 X'00000BBC'

MQCACF_FROM_NAMELIST_NAME 3005 X'00000BBD'

MQCACF_TO_NAMELIST_NAME 3006 X'00000BBE'

MQCACF_FROM_CHANNEL_NAME 3007 X'00000BBF'

MQCACF_TO_CHANNEL_NAME 3008 X'00000BC0'

MQCACF_FROM_AUTH_INFO_NAME 3009 X'00000BC1'

MQCACF_TO_AUTH_INFO_NAME 3010 X'00000BC2'

MQCACF_Q_NAMES 3011 X'00000BC3'

MQCACF_PROCESS_NAMES 3012 X'00000BC4'

MQCACF_NAMELIST_NAMES 3013 X'00000BC5'

Developing applications reference 83

Table 40. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCACF_ESCAPE_TEXT 3014 X'00000BC6'

MQCACF_LOCAL_Q_NAMES 3015 X'00000BC7'

MQCACF_MODEL_Q_NAMES 3016 X'00000BC8'

MQCACF_ALIAS_Q_NAMES 3017 X'00000BC9'

MQCACF_REMOTE_Q_NAMES 3018 X'00000BCA'

MQCACF_SENDER_CHANNEL_NAMES 3019 X'00000BCB'

MQCACF_SERVER_CHANNEL_NAMES 3020 X'00000BCC'

MQCACF_REQUESTER_CHANNEL_NAMES 3021 X'00000BCD'

MQCACF_RECEIVER_CHANNEL_NAMES 3022 X'00000BCE'

MQCACF_OBJECT_Q_MGR_NAME 3023 X'00000BCF'

MQCACF_APPL_NAME 3024 X'00000BD0'

MQCACF_USER_IDENTIFIER 3025 X'00000BD1'

MQCACF_AUX_ERROR_DATA_STR_1 3026 X'00000BD2'

MQCACF_AUX_ERROR_DATA_STR_2 3027 X'00000BD3'

MQCACF_AUX_ERROR_DATA_STR_3 3028 X'00000BD4'

MQCACF_BRIDGE_NAME 3029 X'00000BD5'

MQCACF_STREAM_NAME 3030 X'00000BD6'

MQCACF_TOPIC 3031 X'00000BD7'

MQCACF_PARENT_Q_MGR_NAME 3032 X'00000BD8'

MQCACF_CORREL_ID 3033 X'00000BD9'

MQCACF_PUBLISH_TIMESTAMP 3034 X'00000BDA'

MQCACF_STRING_DATA 3035 X'00000BDB'

MQCACF_SUPPORTED_STREAM_NAME 3036 X'00000BDC'

MQCACF_REG_TOPIC 3037 X'00000BDD'

MQCACF_REG_TIME 3038 X'00000BDE'

MQCACF_REG_USER_ID 3039 X'00000BDF'

MQCACF_CHILD_Q_MGR_NAME 3040 X'00000BE0'

MQCACF_REG_STREAM_NAME 3041 X'00000BE1'

MQCACF_REG_Q_MGR_NAME 3042 X'00000BE2'

MQCACF_REG_Q_NAME 3043 X'00000BE3'

MQCACF_REG_CORREL_ID 3044 X'00000BE4'

MQCACF_EVENT_USER_ID 3045 X'00000BE5'

MQCACF_OBJECT_NAME 3046 X'00000BE6'

MQCACF_EVENT_Q_MGR 3047 X'00000BE7'

MQCACF_AUTH_INFO_NAMES 3048 X'00000BE8'

MQCACF_EVENT_APPL_IDENTITY 3049 X'00000BE9'

MQCACF_EVENT_APPL_NAME 3050 X'00000BEA'

MQCACF_EVENT_APPL_ORIGIN 3051 X'00000BEB'

MQCACF_SUBSCRIPTION_NAME 3052 X'00000BEC'

84 IBM MQ Developing Applications Reference

Table 40. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCACF_REG_SUB_NAME 3053 X'00000BED'

MQCACF_SUBSCRIPTION_IDENTITY 3054 X'00000BEE'

MQCACF_REG_SUB_IDENTITY 3055 X'00000BEF'

MQCACF_SUBSCRIPTION_USER_DATA 3056 X'00000BF0'

MQCACF_REG_SUB_USER_DATA 3057 X'00000BF1'

MQCACF_APPL_TAG 3058 X'00000BF2'

MQCACF_DATA_SET_NAME 3059 X'00000BF3'

MQCACF_UOW_START_DATE 3060 X'00000BF4'

MQCACF_UOW_START_TIME 3061 X'00000BF5'

MQCACF_UOW_LOG_START_DATE 3062 X'00000BF6'

MQCACF_UOW_LOG_START_TIME 3063 X'00000BF7'

MQCACF_UOW_LOG_EXTENT_NAME 3064 X'00000BF8'

MQCACF_PRINCIPAL_ENTITY_NAMES 3065 X'00000BF9'

MQCACF_GROUP_ENTITY_NAMES 3066 X'00000BFA'

MQCACF_AUTH_PROFILE_NAME 3067 X'00000BFB'

MQCACF_ENTITY_NAME 3068 X'00000BFC'

MQCACF_SERVICE_COMPONENT 3069 X'00000BFD'

MQCACF_RESPONSE_Q_MGR_NAME 3070 X'00000BFE'

MQCACF_CURRENT_LOG_EXTENT_NAME 3071 X'00000BFF'

MQCACF_RESTART_LOG_EXTENT_NAME 3072 X'00000C00'

MQCACF_MEDIA_LOG_EXTENT_NAME 3073 X'00000C01'

MQCACF_LOG_PATH 3074 X'00000C02'

MQCACF_COMMAND_MQSC 3075 X'00000C03'

MQCACF_Q_MGR_CPF 3076 X'00000C04'

MQCACF_USAGE_LOG_RBA 3078 X'00000C06'

MQCACF_USAGE_LOG_LRSN 3079 X'00000C07'

MQCACF_COMMAND_SCOPE 3080 X'00000C08'

MQCACF_ASID 3081 X'00000C09'

MQCACF_PSB_NAME 3082 X'00000C0A'

MQCACF_PST_ID 3083 X'00000C0B'

MQCACF_TASK_NUMBER 3084 X'00000C0C'

MQCACF_TRANSACTION_ID 3085 X'00000C0D'

MQCACF_Q_MGR_UOW_ID 3086 X'00000C0E'

MQCACF_ORIGIN_NAME 3088 X'00000C10'

MQCACF_ENV_INFO 3089 X'00000C11'

MQCACF_SECURITY_PROFILE 3090 X'00000C12'

MQCACF_CONFIGURATION_DATE 3091 X'00000C13'

MQCACF_CONFIGURATION_TIME 3092 X'00000C14'

MQCACF_FROM_CF_STRUC_NAME 3093 X'00000C15'

Developing applications reference 85

Table 40. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCACF_TO_CF_STRUC_NAME 3094 X'00000C16'

MQCACF_CF_STRUC_NAMES 3095 X'00000C17'

MQCACF_FAIL_DATE 3096 X'00000C18'

MQCACF_FAIL_TIME 3097 X'00000C19'

MQCACF_BACKUP_DATE 3098 X'00000C1A'

MQCACF_BACKUP_TIME 3099 X'00000C1B'

MQCACF_SYSTEM_NAME 3100 X'00000C1C'

MQCACF_CF_STRUC_BACKUP_START 3101 X'00000C1D'

MQCACF_CF_STRUC_BACKUP_END 3102 X'00000C1E'

MQCACF_CF_STRUC_LOG_Q_MGRS 3103 X'00000C1F'

MQCACF_FROM_STORAGE_CLASS 3104 X'00000C20'

MQCACF_TO_STORAGE_CLASS 3105 X'00000C21'

MQCACF_STORAGE_CLASS_NAMES 3106 X'00000C22'

MQCACF_DSG_NAME 3108 X'00000C24'

MQCACF_DB2_NAME 3109 X'00000C25'

MQCACF_SYSP_CMD_USER_ID 3110 X'00000C26'

MQCACF_SYSP_OTMA_GROUP 3111 X'00000C27'

MQCACF_SYSP_OTMA_MEMBER 3112 X'00000C28'

MQCACF_SYSP_OTMA_DRU_EXIT 3113 X'00000C29'

MQCACF_SYSP_OTMA_TPIPE_PFX 3114 X'00000C2A'

MQCACF_SYSP_ARCHIVE_PFX1 3115 X'00000C2B'

MQCACF_SYSP_ARCHIVE_UNIT1 3116 X'00000C2C'

MQCACF_SYSP_LOG_CORREL_ID 3117 X'00000C2D'

MQCACF_SYSP_UNIT_VOLSER 3118 X'00000C2E'

MQCACF_SYSP_Q_MGR_TIME 3119 X'00000C2F'

MQCACF_SYSP_Q_MGR_DATE 3120 X'00000C30'

MQCACF_SYSP_Q_MGR_RBA 3121 X'00000C31'

MQCACF_SYSP_LOG_RBA 3122 X'00000C32'

MQCACF_SYSP_SERVICE 3123 X'00000C33'

MQCACF_FROM_LISTENER_NAME 3124 X'00000C34'

MQCACF_TO_LISTENER_NAME 3125 X'00000C35'

MQCACF_FROM_SERVICE_NAME 3126 X'00000C36'

MQCACF_TO_SERVICE_NAME 3127 X'00000C37'

MQCACF_LAST_PUT_DATE 3128 X'00000C38'

MQCACF_LAST_PUT_TIME 3129 X'00000C39'

MQCACF_LAST_GET_DATE 3130 X'00000C3A'

MQCACF_LAST_GET_TIME 3131 X'00000C3B'

MQCACF_OPERATION_DATE 3132 X'00000C3C'

MQCACF_OPERATION_TIME 3133 X'00000C3D'

86 IBM MQ Developing Applications Reference

Table 40. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCACF_ACTIVITY_DESC 3134 X'00000C3E'

MQCACF_APPL_IDENTITY_DATA 3135 X'00000C3F'

MQCACF_APPL_ORIGIN_DATA 3136 X'00000C40'

MQCACF_PUT_DATE 3137 X'00000C41'

MQCACF_PUT_TIME 3138 X'00000C42'

MQCACF_REPLY_TO_Q 3139 X'00000C43'

MQCACF_REPLY_TO_Q_MGR 3140 X'00000C44'

MQCACF_RESOLVED_Q_NAME 3141 X'00000C45'

MQCACF_STRUC_ID 3142 X'00000C46'

MQCACF_VALUE_NAME 3143 X'00000C47'

MQCACF_SERVICE_START_DATE 3144 X'00000C48'

MQCACF_SERVICE_START_TIME 3145 X'00000C49'

MQCACF_SYSP_OFFLINE_RBA 3146 X'00000C4A'

MQCACF_SYSP_ARCHIVE_PFX2 3147 X'00000C4B'

MQCACF_SYSP_ARCHIVE_UNIT2 3148 X'00000C4C'

MQCACF_TO_TOPIC_NAME 3149 X'00000C4D'

MQCACF_FROM_TOPIC_NAME 3150 X'00000C4E'

MQCACF_TOPIC_NAMES 3151 X'00000C4F'

MQCACF_SUB_NAME 3152 X'00000C50'

MQCACF_DESTINATION_Q_MGR 3153 X'00000C51'

MQCACF_DESTINATION 3154 X'00000C52'

MQCACF_SUB_USER_ID 3156 X'00000C54'

MQCACF_SUB_USER_DATA 3159 X'00000C57'

MQCACF_SUB_SELECTOR 3160 X'00000C58'

MQCACF_LAST_PUB_DATE 3161 X'00000C59'

MQCACF_LAST_PUB_TIME 3162 X'00000C5A'

MQCACF_FROM_SUB_NAME 3163 X'00000C5B'

MQCACF_TO_SUB_NAME 3164 X'00000C5C'

MQCACF_LAST_MSG_TIME 3167 X'00000C5F'

MQCACF_LAST_MSG_DATE 3168 X'00000C60'

MQCACF_SUBSCRIPTION_POINT 3169 X'00000C61'

MQCACF_FILTER 3170 X'00000C62'

MQCACF_NONE 3171 X'00000C63'

MQCACF_ADMIN_TOPIC_NAMES 3172 X'00000C64'

MQCACF_ROUTING_FINGER_PRINT 3173 X'00000C65'

MQCACF_APPL_DESC 3174 X'00000C66'

MQCACF_Q_MGR_START_DATE 3175 X'00000C67'

MQCACF_Q_MGR_START_TIME 3176 X'00000C68'

MQCACF_FROM_COMM_INFO_NAME 3177 X'00000C69'

Developing applications reference 87

Table 40. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCACF_TO_COMM_INFO_NAME 3178 X'00000C6A'

MQCACF_CF_OFFLOAD_SIZE1 3179 X'00000C6B'

MQCACF_CF_OFFLOAD_SIZE2 3180 X'00000C6C'

MQCACF_CF_OFFLOAD_SIZE3 3181 X'00000C6D'

MQCACF_CF_SMDS_GENERIC_NAME 3182 X'00000C6E'

MQCACF_CF_SMDS 3183 X'00000C6F'

MQCACF_RECOVERY_DATE 3184 X'00000C70'

MQCACF_RECOVERY_TIME 3185 X'00000C71'

MQCACF_CF_SMDSCONN 3186 X'00000C72'

MQCACF_CF_STRUC_NAME 3187 X'00000C73'

MQCACF_ALTERNATE_USERID 3188 X'00000C74'

MQCACF_CHAR_ATTRS 3189 X'00000C75'

MQCACF_DYNAMIC_Q_NAME 3190 X'00000C76'

MQCACF_HOST_NAME 3191 X'00000C77'

MQCACF_MQCB_NAME 3192 X'00000C78'

MQCACF_OBJECT_STRING 3193 X'00000C79'

MQCACF_RESOLVED_LOCAL_Q_MGR 3194 X'00000C7A'

MQCACF_RESOLVED_LOCAL_Q_NAME 3195 X'00000C7B'

MQCACF_RESOLVED_OBJECT_STRING 3196 X'00000C7C'

MQCACF_RESOLVED_Q_MGR 3197 X'00000C7D'

MQCACF_SELECTION_STRING 3198 X'00000C7E'

MQCACF_XA_INFO 3199 X'00000C7F'

MQCACF_APPL_FUNCTION 3200 X'00000C80'

MQCACF_XQH_REMOTE_Q_NAME 3201 X'00000C81'

MQCACF_XQH_REMOTE_Q_MGR 3202 X'00000C82'

MQCACF_XQH_PUT_TIME 3203 X'00000C83'

MQCACF_XQH_PUT_DATE 3204 X'00000C84'

MQCACF_EXCL_OPERATOR_MESSAGES 3205 X'00000C85'

MQCACF_CSP_USER_IDENTIFIER 3206 X'00000C86'

MQCACF_AMQP_CLIENT_ID 3207 X'00000C87'

MQCACF_ARCHIVE_LOG_EXTENT_NAME 3208 X'00000C88'

MQCACF_APPL_IMMOVABLE_DATE 3209 X'00000C89'

MQCACF_APPL_IMMOVABLE_TIME 3210 X'00000C8A'

MQCACF_NHA_INSTANCE_NAME 3211 X'00000C8B'

MQCACF_LAST_USED 3211 X'00000C8B'

88 IBM MQ Developing Applications Reference

MQCACH_* (Command format Character Channel Parameter Types)
Table 41. Values of constants

Name Decimal value Hexadecimal value

MQCACH_FIRST 3501 X'00000DAD'

MQCACH_CHANNEL_NAME 3501 X'00000DAD'

MQCACH_DESC 3502 X'00000DAE'

MQCACH_MODE_NAME 3503 X'00000DAF'

MQCACH_TP_NAME 3504 X'00000DB0'

MQCACH_XMIT_Q_NAME 3505 X'00000DB1'

MQCACH_CONNECTION_NAME 3506 X'00000DB2'

MQCACH_MCA_NAME 3507 X'00000DB3'

MQCACH_SEC_EXIT_NAME 3508 X'00000DB4'

MQCACH_MSG_EXIT_NAME 3509 X'00000DB5'

MQCACH_SEND_EXIT_NAME 3510 X'00000DB6'

MQCACH_RCV_EXIT_NAME 3511 X'00000DB7'

MQCACH_CHANNEL_NAMES 3512 X'00000DB8'

MQCACH_SEC_EXIT_USER_DATA 3513 X'00000DB9'

MQCACH_MSG_EXIT_USER_DATA 3514 X'00000DBA'

MQCACH_SEND_EXIT_USER_DATA 3515 X'00000DBB'

MQCACH_RCV_EXIT_USER_DATA 3516 X'00000DBC'

MQCACH_USER_ID 3517 X'00000DBD'

MQCACH_PASSWORD 3518 X'00000DBE'

MQCACH_LOCAL_ADDRESS 3520 X'00000DC0'

MQCACH_LOCAL_NAME 3521 X'00000DC1'

MQCACH_LAST_MSG_TIME 3524 X'00000DC4'

MQCACH_LAST_MSG_DATE 3525 X'00000DC5'

MQCACH_MCA_USER_ID 3527 X'00000DC7'

MQCACH_CHANNEL_START_TIME 3528 X'00000DC8'

MQCACH_CHANNEL_START_DATE 3529 X'00000DC9'

MQCACH_MCA_JOB_NAME 3530 X'00000DCA'

MQCACH_LAST_LUWID 3531 X'00000DCB'

MQCACH_CURRENT_LUWID 3532 X'00000DCC'

MQCACH_FORMAT_NAME 3533 X'00000DCD'

MQCACH_MR_EXIT_NAME 3534 X'00000DCE'

MQCACH_MR_EXIT_USER_DATA 3535 X'00000DCF'

MQCACH_SSL_CIPHER_SPEC 3544 X'00000DD8'

MQCACH_SSL_PEER_NAME 3545 X'00000DD9'

MQCACH_SSL_HANDSHAKE_STAGE 3546 X'00000DDA'

MQCACH_SSL_SHORT_PEER_NAME 3547 X'00000DDB'

MQCACH_REMOTE_APPL_TAG 3548 X'00000DDC'

MQCACH_SSL_CERT_USER_ID 3549 X'00000DDD'

Developing applications reference 89

Table 41. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCACH_SSL_CERT_ISSUER_NAME 3550 X'00000DDE'

MQCACH_LU_NAME 3551 X'00000DDF'

MQCACH_IP_ADDRESS 3552 X'00000DE0'

MQCACH_TCP_NAME 3553 X'00000DE1'

MQCACH_LISTENER_NAME 3554 X'00000DE2'

MQCACH_LISTENER_DESC 3555 X'00000DE3'

MQCACH_LISTENER_START_DATE 3556 X'00000DE4'

MQCACH_LISTENER_START_TIME 3557 X'00000DE5'

MQCACH_SSL_KEY_RESET_DATE 3558 X'00000DE6'

MQCACH_SSL_KEY_RESET_TIME 3559 X'00000DE7'

MQCACH_LAST_USED 3559 X'00000DE7'

MQCADSD_* (CICS information header ADS Descriptors)
Table 42. Values of constants

Name Decimal value Hexadecimal value

MQCADSD_NONE 0 X'00000000'

MQCADSD_SEND 1 X'00000001'

MQCADSD_RECV 16 X'00000010'

MQCADSD_MSGFORMAT 256 X'00000100'

MQCAFTY_* (Connection Affinity Values)
Table 43. Values of constants

Name Decimal value Hexadecimal value

MQCAFTY_NONE 0 X'00000000'

MQCAFTY_PREFERRED 1 X'00000001'

MQCAMO_* (Command format Character Monitoring Parameter Types)
Table 44. Values of constants

Name Decimal value Hexadecimal value

MQCAMO_FIRST 2701 X'00000A8D'

MQCAMO_CLOSE_DATE 2701 X'00000A8D'

MQCAMO_CLOSE_TIME 2702 X'00000A8E'

MQCAMO_CONN_DATE 2703 X'00000A8F'

MQCAMO_CONN_TIME 2704 X'00000A90'

MQCAMO_DISC_DATE 2705 X'00000A91'

MQCAMO_DISC_TIME 2706 X'00000A92'

MQCAMO_END_DATE 2707 X'00000A93'

MQCAMO_END_TIME 2708 X'00000A94'

MQCAMO_OPEN_DATE 2709 X'00000A95'

MQCAMO_OPEN_TIME 2710 X'00000A96'

90 IBM MQ Developing Applications Reference

Table 44. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCAMO_START_DATE 2711 X'00000A97'

MQCAMO_START_TIME 2712 X'00000A98'

MQCAMO_LAST_USED 2712 X'00000A98'

MQCBC_* (MQCBC constants structure)
Table 45. Structures of constants

Name Structure

MQCBC_STRUC_ID "CBC¬"

MQCBC_STRUC_ID_ARRAY 'C','B','C','¬'

Note: The symbol ¬ represents a single blank character.

Table 46. Values of constants

Name Decimal value Hexadecimal value

MQCBC_VERSION_1 1 X'00000001'

MQCBC_CURRENT_VERSION 1 X'00000001'

MQCBCF_* (MQCBC constants Flags)
Table 47. Values of constants

Name Decimal value Hexadecimal value

MQCBCF_NONE 0 X'00000000'

MQCBCF_READA_BUFFER_EMPTY 1 X'00000001'

MQCBCT_* (MQCBC constants Callback type)
Table 48. Values of constants

Name Decimal value Hexadecimal value

MQCBCT_START_CALL 1 X'00000001'

MQCBCT_STOP_CALL 2 X'00000002'

MQCBCT_REGISTER_CALL 3 X'00000003'

MQCBCT_DEREGISTER_CALL 4 X'00000004'

MQCBCT_EVENT_CALL 5 X'00000005'

MQCBCT_MSG_REMOVED 6 X'00000006'

MQCBCT_MSG_NOT_REMOVED 7 X'00000007'

MQCBD_* (MQCBD constants structure)
Table 49. Structures of constants

Name Structure

MQCBD_STRUC_ID "CBD¬"

MQCBD_STRUC_ID_ARRAY 'C','B','D','¬'

Note: The symbol ¬ represents a single blank character.

Developing applications reference 91

Table 50. Values of constants

Name Decimal value Hexadecimal value

MQCBD_VERSION_1 1 X'00000001'

MQCBD_CURRENT_VERSION 1 X'00000001'

MQCBDO_* (MQCBD constants Callback Options)
Table 51. Values of constants

Name Decimal value Hexadecimal value

MQCBDO_NONE 0 X'00000000'

MQCBDO_START_CALL 1 X'00000001'

MQCBDO_STOP_CALL 4 X'00000004'

MQCBDO_REGISTER_CALL 256 X'00000100'

MQCBDO_DEREGISTER_CALL 512 X'00000200'

MQCBDO_FAIL_IF_QUIESCING 8192 X'00002000'

MQCBO_* (Create-Bag Options for mqCreateBag)
Table 52. Values of constants

Name Decimal value Hexadecimal value

MQCBO_NONE 0 X'00000000'

MQCBO_USER_BAG 0 X'00000000'

MQCBO_ADMIN_BAG 1 X'00000001'

MQCBO_COMMAND_BAG 16 X'00000010'

MQCBO_SYSTEM_BAG 32 X'00000020'

MQCBO_GROUP_BAG 64 X'00000040'

MQCBO_LIST_FORM_ALLOWED 2 X'00000002'

MQCBO_LIST_FORM_INHIBITED 0 X'00000000'

MQCBO_REORDER_AS_REQUIRED 4 X'00000004'

MQCBO_DO_NOT_REORDER 0 X'00000000'

MQCBO_CHECK_SELECTORS 8 X'00000008'

MQCBO_DO_NOT_CHECK_SELECTORS 0 X'00000000'

MQCBT_* (MQCBD constants This is the type of the Callback Function)
Table 53. Values of constants

Name Decimal value Hexadecimal value

MQCBT_MESSAGE_CONSUMER 1 X'00000001'

MQCBT_EVENT_HANDLER 2 X'00000002'

MQCC_* (completion codes)
Table 54. Values of constants

Name Decimal value Hexadecimal value

MQCC_OK 0 X'00000000'

MQCC_WARNING 1 X'00000001'

92 IBM MQ Developing Applications Reference

Table 54. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCC_FAILED 2 X'00000002'

MQCC_UNKNOWN -1 X'FFFFFFFF'

MQCCSI_* (Coded Character Set Identifiers)
Table 55. Values of constants

Name Decimal value Hexadecimal value

MQCCSI_UNDEFINED 0 X'00000000'

MQCCSI_DEFAULT 0 X'00000000'

MQCCSI_Q_MGR 0 X'00000000'

MQCCSI_INHERIT -2 X'FFFFFFFE'

MQCCSI_EMBEDDED -1 X'FFFFFFFF'

MQCCSI_APPL -3 X'FFFFFFFD'

MQCCT_* (CICS information header Conversational Task Options)
Table 56. Values of constants

Name Decimal value Hexadecimal value

MQCCT_YES 1 X'00000001'

MQCCT_NO 0 X'00000000'

MQCD_* (Channel definition structure)
Table 57. Values of constants

Name Decimal value Hexadecimal value

MQCD_VERSION_1 1 X'00000001'

MQCD_VERSION_2 2 X'00000002'

MQCD_VERSION_3 3 X'00000003'

MQCD_VERSION_4 4 X'00000004'

MQCD_VERSION_5 5 X'00000005'

MQCD_VERSION_6 6 X'00000006'

MQCD_VERSION_7 7 X'00000007'

MQCD_VERSION_8 8 X'00000008'

MQCD_VERSION_9 9 X'00000009'

MQCD_VERSION_10 10 X'0000000A'

MQCD_VERSION_11
11 X'0000000B'

MQCD_CURRENT_VERSION
11 X'0000000B'

MQCD_VERSION_12
12 X'0000000C'

MQCD_CURRENT_VERSION
12 X'0000000C'

MQCD_LENGTH_4 (value differs by
platform or version)

(value differs by
platform or version)

Developing applications reference 93

Table 57. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCD_LENGTH_5 (value differs by
platform or version)

(value differs by
platform or version)

MQCD_LENGTH_6 (value differs by
platform or version)

(value differs by
platform or version)

MQCD_LENGTH_7 (value differs by
platform or version)

(value differs by
platform or version)

MQCD_LENGTH_8 (value differs by
platform or version)

(value differs by
platform or version)

MQCD_LENGTH_9 (value differs by
platform or version)

(value differs by
platform or version)

MQCD_LENGTH_10 (value differs by
platform or version)

(value differs by
platform or version)

MQCD_LENGTH_11 (value differs by
platform or version)

(value differs by
platform or version)

MQCD_LENGTH_12
(value differs by

platform or version)
(value differs by

platform or version)

MQCD_CURRENT_LENGTH (value differs by
platform or version)

(value differs by
platform or version)

MQCDC_* (Channel Data Conversion)
Table 58. Values of constants

Name Decimal value Hexadecimal value

MQCDC_SENDER_CONVERSION 1 X'00000001'

MQCDC_NO_SENDER_CONVERSION 0 X'00000000'

MQCERT_* (Certificate Validation Policy Type)

MQ_CERT_VAL_POLICY_DEFAULT 0 X'00000000'

MQ_CERT_VAL_POLICY_ANY 0 X'00000000'

MQ_CERT_VAL_POLICY_RFC5280 1 X'00000001'

MQCF_* (Capability Flags)
Table 59. Values of constants

Name Decimal value Hexadecimal value

MQCF_NONE 0 X'00000000'

MQCF_DIST_LISTS 1 X'00000001'

MQCFAC_* (CICS information header Facility)
Table 60. Constant names and values

Name Hexadecimal value

MQCFAC_NONE X'00...00' (8 nulls)

MQCFAC_NONE_ARRAY '\0','\0',... (8 nulls)

94 IBM MQ Developing Applications Reference

MQCFBF_* (Command format byte string filter parameter structure)
Table 61. Values of constants

Name Decimal value Hexadecimal value

MQCFBF_STRUC_LENGTH_FIXED 20 X'00000014'

MQCFBS_* (Command format byte string parameter structure)
Table 62. Values of constants

Name Decimal value Hexadecimal value

MQCFBS_STRUC_LENGTH_FIXED 16 X'00000010'

MQCFC_* (Command format header Control Options)
Table 63. Values of constants

Name Decimal value Hexadecimal value

MQCFC_LAST 1 X'00000001'

MQCFC_NOT_LAST 0 X'00000000'

MQCFGR_* (Command format group parameter structure)
Table 64. Values of constants

Name Decimal value Hexadecimal value

MQCFGR_STRUC_LENGTH 16 X'00000010'

MQCFH_* (Command format header structure)
Table 65. Values of constants

Name Decimal value Hexadecimal value

MQCFH_STRUC_LENGTH 36 X'00000024'

MQCFH_VERSION_1 1 X'00000001'

MQCFH_VERSION_2 2 X'00000002'

MQCFH_VERSION_3 3 X'00000003'

MQCFH_CURRENT_VERSION 3 X'00000003'

MQCFIF_* (Command format integer filter parameter structure)
Table 66. Values of constants

Name Decimal value Hexadecimal value

MQCFIF_STRUC_LENGTH 20 X'00000014'

MQCFIL_* (Command format integer list parameter structure)
Table 67. Values of constants

Name Decimal value Hexadecimal value

MQCFIL_STRUC_LENGTH_FIXED 16 X'00000010'

Developing applications reference 95

MQCFIL64_* (Command format 64-bit integer list parameter structure)
Table 68. Values of constants

Name Decimal value Hexadecimal value

MQCFIL64_STRUC_LENGTH_FIXED 16 X'00000010'

MQCFIN_* (Command format integer parameter structure)
Table 69. Values of constants

Name Decimal value Hexadecimal value

MQCFIN_STRUC_LENGTH 16 X'00000010'

MQCFIN64_* (Command format 64-bit integer parameter structure)
Table 70. Values of constants

Name Decimal value Hexadecimal value

MQCFIN64_STRUC_LENGTH 24 X'00000018'

MQCFO_* (Command format Refresh Repository Options and Command
format Remove Queues Options)

Command format Refresh Repository Options
Table 71. Values of constants

Name Decimal value Hexadecimal value

MQCFO_REFRESH_REPOSITORY_YES 1 X'00000001'

MQCFO_REFRESH_REPOSITORY_NO 0 X'00000000'

Command format Remove Queues Options
Table 72. Values of constants

Name Decimal value Hexadecimal value

MQCFO_REMOVE_QUEUES_YES 1 X'00000001'

MQCFO_REMOVE_QUEUES_NO 0 X'00000000'

MQCFOP_* (Command format Filter Operators)
Table 73. Values of constants

Name Decimal value Hexadecimal value

MQCFOP_LESS 1 X'00000001'

MQCFOP_EQUAL 2 X'00000002'

MQCFOP_GREATER 4 X'00000004'

MQCFOP_NOT_LESS 6 X'00000006'

MQCFOP_NOT_EQUAL 5 X'00000005'

MQCFOP_NOT_GREATER 3 X'00000003'

MQCFOP_LIKE 18 X'00000012'

MQCFOP_NOT_LIKE 21 X'00000015'

MQCFOP_CONTAINS 10 X'0000000A'

96 IBM MQ Developing Applications Reference

Table 73. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCFOP_EXCLUDES 13 X'0000000D'

MQCFOP_CONTAINS_GEN 26 X'0000001A'

MQCFOP_EXCLUDES_GEN 29 X'0000001D'

MQCFR_* (CF Recoverability)
Table 74. Values of constants

Name Decimal value Hexadecimal value

MQCFR_YES 1 X'00000001'

MQCFR_NO 0 X'00000000'

MQCFSF_* (Command format string filter parameter structure)
Table 75. Values of constants

Name Decimal value Hexadecimal value

MQCFSF_STRUC_LENGTH_FIXED 24 X'00000018'

MQCFSL_* (Command format string list parameter structure)
Table 76. Values of constants

Name Decimal value Hexadecimal value

MQCFSL_STRUC_LENGTH_FIXED 24 X'00000018'

MQCFST_* (Command format string parameter structure)
Table 77. Values of constants

Name Decimal value Hexadecimal value

MQCFST_STRUC_LENGTH_FIXED 20 X'00000014'

MQCFSTATUS_* (Command format CF Status)
Table 78. Values of constants

Name Decimal value Hexadecimal value

MQCFSTATUS_NOT_FOUND 0 X'00000000'

MQCFSTATUS_ACTIVE 1 X'00000001'

MQCFSTATUS_IN_RECOVER 2 X'00000002'

MQCFSTATUS_IN_BACKUP 3 X'00000003'

MQCFSTATUS_FAILED 4 X'00000004'

MQCFSTATUS_NONE 5 X'00000005'

MQCFSTATUS_UNKNOWN 6 X'00000006'

MQCFSTATUS_ADMIN_INCOMPLETE 20 X'00000014'

MQCFSTATUS_NEVER_USED 21 X'00000015'

MQCFSTATUS_NO_BACKUP 22 X'00000016'

MQCFSTATUS_NOT_FAILED 23 X'00000017'

MQCFSTATUS_NOT_RECOVERABLE 24 X'00000018'

Developing applications reference 97

Table 78. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCFSTATUS_XES_ERROR 25 X'00000019'

MQCFT_* (Command format Types of Structure)
Table 79. Values of constants

Name Decimal value Hexadecimal value

MQCFT_NONE 0 X'00000000'

MQCFT_COMMAND 1 X'00000001'

MQCFT_RESPONSE 2 X'00000002'

MQCFT_INTEGER 3 X'00000003'

MQCFT_STRING 4 X'00000004'

MQCFT_INTEGER_LIST 5 X'00000005'

MQCFT_STRING_LIST 6 X'00000006'

MQCFT_EVENT 7 X'00000007'

MQCFT_USER 8 X'00000008'

MQCFT_BYTE_STRING 9 X'00000009'

MQCFT_TRACE_ROUTE 10 X'0000000A'

MQCFT_REPORT 12 X'0000000C'

MQCFT_INTEGER_FILTER 13 X'0000000D'

MQCFT_STRING_FILTER 14 X'0000000E'

MQCFT_BYTE_STRING_FILTER 15 X'0000000F'

MQCFT_COMMAND_XR 16 X'00000010'

MQCFT_XR_MSG 17 X'00000011'

MQCFT_XR_ITEM 18 X'00000012'

MQCFT_XR_SUMMARY 19 X'00000013'

MQCFT_GROUP 20 X'00000014'

MQCFT_STATISTICS 21 X'00000015'

MQCFT_ACCOUNTING 22 X'00000016'

MQCFT_INTEGER64 23 X'00000017'

MQCFT_INTEGER64_LIST 25 X'00000019'

MQCFTYPE_* (Command format CF Types)
Table 80. Values of constants

Name Decimal value Hexadecimal value

MQCFTYPE_APPL 0 X'00000000'

MQCFTYPE_ADMIN 1 X'00000001'

98 IBM MQ Developing Applications Reference

MQCFUNC_* (CICS information header Functions)
Table 81. Structures of constants

Name Structure

MQCFUNC_MQCONN "CONN"

MQCFUNC_MQGET "GET¬"

MQCFUNC_MQINQ "INQ¬"

MQCFUNC_MQOPEN "OPEN"

MQCFUNC_MQPUT "PUT¬"

MQCFUNC_MQPUT1 "PUT1"

MQCFUNC_NONE "¬¬¬¬"

MQCFUNC_MQCONN_ARRAY 'C','O','N','N'

MQCFUNC_MQGET_ARRAY 'G','E','T','¬'

MQCFUNC_MQINQ_ARRAY 'I','N','Q','¬'

MQCFUNC_MQOPEN_ARRAY 'O','P','E','N'

MQCFUNC_MQPUT_ARRAY 'P','U','T','¬'

MQCFUNC_MQPUT1_ARRAY 'P','U','T','1'

MQCFUNC_NONE_ARRAY '¬','¬','¬','¬'

Note: The symbol ¬ represents a single blank character.

MQCGWI_* (CICS information header Get Wait Interval)
Table 82. Values of constants

Name Decimal value Hexadecimal value

MQCGWI_DEFAULT -2 X'FFFFFFFE'

MQCHAD_* (Channel Auto Definition)
Table 83. Values of constants

Name Decimal value Hexadecimal value

MQCHAD_DISABLED 0 X'00000000'

MQCHAD_ENABLED 1 X'00000001'

MQCHIDS_* (Command format Indoubt Status)
Table 84. Values of constants

Name Decimal value Hexadecimal value

MQCHIDS_NOT_INDOUBT 0 X'00000000'

MQCHIDS_INDOUBT 1 X'00000001'

MQCHLD_* (Command format Channel Dispositions)
Table 85. Values of constants

Name Decimal value Hexadecimal value

MQCHLD_ALL -1 X'FFFFFFFF'

MQCHLD_DEFAULT 1 X'00000001'

Developing applications reference 99

Table 85. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCHLD_SHARED 2 X'00000002'

MQCHLD_PRIVATE 4 X'00000004'

MQCHLD_FIXSHARED 5 X'00000005'

MQCHS_* (Command format Channel Status)
Table 86. Values of constants

Name Decimal value Hexadecimal value

MQCHS_INACTIVE 0 X'00000000'

MQCHS_BINDING 1 X'00000001'

MQCHS_STARTING 2 X'00000002'

MQCHS_RUNNING 3 X'00000003'

MQCHS_STOPPING 4 X'00000004'

MQCHS_RETRYING 5 X'00000005'

MQCHS_STOPPED 6 X'00000006'

MQCHS_REQUESTING 7 X'00000007'

MQCHS_PAUSED 8 X'00000008'

MQCHS_INITIALIZING 13 X'0000000D'

MQCHS_SWITCHING 14 X'0000000E'

MQCHSH_* (Command format Channel Shared Restart Options)
Table 87. Values of constants

Name Decimal value Hexadecimal value

MQCHSH_RESTART_NO 0 X'00000000'

MQCHSH_RESTART_YES 1 X'00000001'

MQCHSR_* (Command format Channel Stop Options)
Table 88. Values of constants

Name Decimal value Hexadecimal value

MQCHSR_STOP_NOT_REQUESTED 0 X'00000000'

MQCHSR_STOP_REQUESTED 1 X'00000001'

MQCHSSTATE_* (Command format Channel Substates)
Table 89. Values of constants

Name Decimal value Hexadecimal value

MQCHSSTATE_OTHER 0 X'00000000'

MQCHSSTATE_END_OF_BATCH 100 X'00000064'

MQCHSSTATE_SENDING 200 X'000000C8'

MQCHSSTATE_RECEIVING 300 X'0000012C'

MQCHSSTATE_SERIALIZING 400 X'00000190'

MQCHSSTATE_RESYNCHING 500 X'000001F4'

100 IBM MQ Developing Applications Reference

Table 89. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCHSSTATE_HEARTBEATING 600 X'00000258'

MQCHSSTATE_IN_SCYEXIT 700 X'000002BC'

MQCHSSTATE_IN_RCVEXIT 800 X'00000320'

MQCHSSTATE_IN_SENDEXIT 900 X'00000384'

MQCHSSTATE_IN_MSGEXIT 1000 X'000003E8'

MQCHSSTATE_IN_MREXIT 1100 X'0000044C'

MQCHSSTATE_IN_CHADEXIT 1200 X'000004B0'

MQCHSSTATE_NET_CONNECTING 1250 X'000004E2'

MQCHSSTATE_SSL_HANDSHAKING 1300 X'00000514'

MQCHSSTATE_NAME_SERVER 1400 X'00000578'

MQCHSSTATE_IN_MQPUT 1500 X'000005DC'

MQCHSSTATE_IN_MQGET 1600 X'00000640'

MQCHSSTATE_IN_MQI_CALL 1700 X'000006A4'

MQCHSSTATE_COMPRESSING 1800 X'00000708'

MQCHT_* (Channel Types)
Table 90. Values of constants

Name Decimal value Hexadecimal value

MQCHT_SENDER 1 X'00000001'

MQCHT_SERVER 2 X'00000002'

MQCHT_RECEIVER 3 X'00000003'

MQCHT_REQUESTER 4 X'00000004'

MQCHT_ALL 5 X'00000005'

MQCHT_CLNTCONN 6 X'00000006'

MQCHT_SVRCONN 7 X'00000007'

MQCHT_CLUSRCVR 8 X'00000008'

MQCHT_CLUSSDR 9 X'00000009'

MQCHTAB_* (Command format Channel Table Types)
Table 91. Values of constants

Name Decimal value Hexadecimal value

MQCHTAB_Q_MGR 1 X'00000001'

MQCHTAB_CLNTCONN 2 X'00000002'

MQCI_* (Correlation Identifier)
Table 92. Constant names and values

Name Value

MQCI_NONE X'00...00' (24 nulls)

MQCI_NONE_ARRAY '\0','\0',... (24 nulls)

MQCI_NEW_SESSION X'414D5121...'

Developing applications reference 101

Table 92. Constant names and values (continued)

Name Value

MQCI_NEW_SESSION_ARRAY '\x41','\x4D','\51','\x21',...

MQCIH_* (CICS information header structure and Flags)

CICS information header structure
Table 93. Structures of constants

Name Structure

MQCIH_STRUC_ID "CIH¬"

MQCIH_STRUC_ID_ARRAY 'C','I','H','¬'

Note: The symbol ¬ represents a single blank character.

Table 94. Values of constants

Name Decimal value Hexadecimal value

MQCIH_VERSION_1 1 X'00000001'

MQCIH_VERSION_2 2 X'00000002'

MQCIH_CURRENT_VERSION 2 X'00000002'

MQCIH_LENGTH_1 164 X'000000A4'

MQCIH_LENGTH_2 180 X'000000B4'

MQCIH_CURRENT_LENGTH 180 X'000000B4'

CICS information header Flags
Table 95. Values of constants

Name Decimal value Hexadecimal value

MQCIH_NONE 0 X'00000000'

MQCIH_PASS_EXPIRATION 1 X'00000001'

MQCIH_UNLIMITED_EXPIRATION 0 X'00000000'

MQCIH_REPLY_WITHOUT_NULLS 2 X'00000002'

MQCIH_REPLY_WITH_NULLS 0 X'00000000'

MQCIH_SYNC_ON_RETURN 4 X'00000004'

MQCIH_NO_SYNC_ON_RETURN 0 X'00000000'

MQCLCT_* (Cluster Cache Types)
Table 96. Values of constants

Name Decimal value Hexadecimal value

MQCLCT_STATIC 0 X'00000000'

MQCLCT_DYNAMIC 1 X'00000001'

102 IBM MQ Developing Applications Reference

MQCLRS_* (Command format Clear Topic String Scope)
Table 97. Values of constants

Name Decimal value Hexadecimal value

MQCLRS_LOCAL 1 X'00000001'

MQCLRS_GLOBAL 2 X'00000002'

MQCLRT_* (Command format Clear Topic String Type)
Table 98. Values of constants

Name Decimal value Hexadecimal value

MQCLRT_RETAINED 1 X'00000001'

MQCLT_* (CICS information header Link Types)
Table 99. Values of constants

Name Decimal value Hexadecimal value

MQCLT_PROGRAM 1 X'00000001'

MQCLT_TRANSACTION 2 X'00000002'

MQCLWL_* (Cluster Workload)
Table 100. Values of constants

Name Decimal value Hexadecimal value

MQCLWL_USEQ_LOCAL 0 X'00000000'

MQCLWL_USEQ_ANY 1 X'00000001'

MQCLWL_USEQ_AS_Q_MGR -3 X'FFFFFFFD'

MQCLXQ_* (Cluster transmission queue type)
MQCLXQ_* are the values you can set in the DEFCLXQ queue manager attribute. The DEFCLXQ attribute
controls which transmission queue is selected by default by cluster-sender channels to get messages
from, to send the messages to cluster-receiver channels.

Table 101. Values of constants

Name Decimal value Hexadecimal value

MQCLXQ_SCTQ 0 X'00000000'

MQCLXQ_CHANNEL 1 X'00000001'

Related reference
“DefClusterXmitQueueType (MQLONG)” on page 806
The DefClusterXmitQueueType attribute controls which transmission queue is selected by default by
cluster-sender channels to get messages from, to send the messages to cluster-receiver channels.
Change Queue Manager
Inquire Queue Manager
Inquire Queue Manager (Response)
“MQINQ - Inquire object attributes” on page 697

Developing applications reference 103

The MQINQ call returns an array of integers and a set of character strings containing the attributes of an
object.

MQCMD_* (Command Codes)
Table 102. Values of constants

Name Decimal value Hexadecimal value

MQCMD_NONE 0 X'00000000'

MQCMD_CHANGE_Q_MGR 1 X'00000001'

MQCMD_INQUIRE_Q_MGR 2 X'00000002'

MQCMD_CHANGE_PROCESS 3 X'00000003'

MQCMD_COPY_PROCESS 4 X'00000004'

MQCMD_CREATE_PROCESS 5 X'00000005'

MQCMD_DELETE_PROCESS 6 X'00000006'

MQCMD_INQUIRE_PROCESS 7 X'00000007'

MQCMD_CHANGE_Q 8 X'00000008'

MQCMD_CLEAR_Q 9 X'00000009'

MQCMD_COPY_Q 10 X'0000000A'

MQCMD_CREATE_Q 11 X'0000000B'

MQCMD_DELETE_Q 12 X'0000000C'

MQCMD_INQUIRE_Q 13 X'0000000D'

MQCMD_REFRESH_Q_MGR 16 X'00000010'

MQCMD_RESET_Q_STATS 17 X'00000011'

MQCMD_INQUIRE_Q_NAMES 18 X'00000012'

MQCMD_INQUIRE_PROCESS_NAMES 19 X'00000013'

MQCMD_INQUIRE_CHANNEL_NAMES 20 X'00000014'

MQCMD_CHANGE_CHANNEL 21 X'00000015'

MQCMD_COPY_CHANNEL 22 X'00000016'

MQCMD_CREATE_CHANNEL 23 X'00000017'

MQCMD_DELETE_CHANNEL 24 X'00000018'

MQCMD_INQUIRE_CHANNEL 25 X'00000019'

MQCMD_PING_CHANNEL 26 X'0000001A'

MQCMD_RESET_CHANNEL 27 X'0000001B'

MQCMD_START_CHANNEL 28 X'0000001C'

MQCMD_STOP_CHANNEL 29 X'0000001D'

MQCMD_START_CHANNEL_INIT 30 X'0000001E'

MQCMD_START_CHANNEL_LISTENER 31 X'0000001F'

MQCMD_CHANGE_NAMELIST 32 X'00000020'

MQCMD_COPY_NAMELIST 33 X'00000021'

MQCMD_CREATE_NAMELIST 34 X'00000022'

MQCMD_DELETE_NAMELIST 35 X'00000023'

MQCMD_INQUIRE_NAMELIST 36 X'00000024'

MQCMD_INQUIRE_NAMELIST_NAMES 37 X'00000025'

104 IBM MQ Developing Applications Reference

Table 102. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCMD_ESCAPE 38 X'00000026'

MQCMD_RESOLVE_CHANNEL 39 X'00000027'

MQCMD_PING_Q_MGR 40 X'00000028'

MQCMD_INQUIRE_Q_STATUS 41 X'00000029'

MQCMD_INQUIRE_CHANNEL_STATUS 42 X'0000002A'

MQCMD_CONFIG_EVENT 43 X'0000002B'

MQCMD_Q_MGR_EVENT 44 X'0000002C'

MQCMD_PERFM_EVENT 45 X'0000002D'

MQCMD_CHANNEL_EVENT 46 X'0000002E'

MQCMD_DELETE_PUBLICATION 60 X'0000003C'

MQCMD_DEREGISTER_PUBLISHER 61 X'0000003D'

MQCMD_DEREGISTER_SUBSCRIBER 62 X'0000003E'

MQCMD_PUBLISH 63 X'0000003F'

MQCMD_REGISTER_PUBLISHER 64 X'00000040'

MQCMD_REGISTER_SUBSCRIBER 65 X'00000041'

MQCMD_REQUEST_UPDATE 66 X'00000042'

MQCMD_BROKER_INTERNAL 67 X'00000043'

MQCMD_ACTIVITY_MSG 69 X'00000045'

MQCMD_INQUIRE_CLUSTER_Q_MGR 70 X'00000046'

MQCMD_RESUME_Q_MGR_CLUSTER 71 X'00000047'

MQCMD_SUSPEND_Q_MGR_CLUSTER 72 X'00000048'

MQCMD_REFRESH_CLUSTER 73 X'00000049'

MQCMD_RESET_CLUSTER 74 X'0000004A'

MQCMD_TRACE_ROUTE 75 X'0000004B'

MQCMD_REFRESH_SECURITY 78 X'0000004E'

MQCMD_CHANGE_AUTH_INFO 79 X'0000004F'

MQCMD_COPY_AUTH_INFO 80 X'00000050'

MQCMD_CREATE_AUTH_INFO 81 X'00000051'

MQCMD_DELETE_AUTH_INFO 82 X'00000052'

MQCMD_INQUIRE_AUTH_INFO 83 X'00000053'

MQCMD_INQUIRE_AUTH_INFO_NAMES 84 X'00000054'

MQCMD_INQUIRE_CONNECTION 85 X'00000055'

MQCMD_STOP_CONNECTION 86 X'00000056'

MQCMD_INQUIRE_AUTH_RECS 87 X'00000057'

MQCMD_INQUIRE_ENTITY_AUTH 88 X'00000058'

MQCMD_DELETE_AUTH_REC 89 X'00000059'

MQCMD_SET_AUTH_REC 90 X'0000005A'

MQCMD_LOGGER_EVENT 91 X'0000005B'

MQCMD_RESET_Q_MGR 92 X'0000005C'

Developing applications reference 105

Table 102. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCMD_CHANGE_LISTENER 93 X'0000005D'

MQCMD_COPY_LISTENER 94 X'0000005E'

MQCMD_CREATE_LISTENER 95 X'0000005F'

MQCMD_DELETE_LISTENER 96 X'00000060'

MQCMD_INQUIRE_LISTENER 97 X'00000061'

MQCMD_INQUIRE_LISTENER_STATUS 98 X'00000062'

MQCMD_COMMAND_EVENT 99 X'00000063'

MQCMD_CHANGE_SECURITY 100 X'00000064'

MQCMD_CHANGE_CF_STRUC 101 X'00000065'

MQCMD_CHANGE_STG_CLASS 102 X'00000066'

MQCMD_CHANGE_TRACE 103 X'00000067'

MQCMD_ARCHIVE_LOG 104 X'00000068'

MQCMD_BACKUP_CF_STRUC 105 X'00000069'

MQCMD_CREATE_BUFFER_POOL 106 X'0000006A'

MQCMD_CREATE_PAGE_SET 107 X'0000006B'

MQCMD_CREATE_CF_STRUC 108 X'0000006C'

MQCMD_CREATE_STG_CLASS 109 X'0000006D'

MQCMD_COPY_CF_STRUC 110 X'0000006E'

MQCMD_COPY_STG_CLASS 111 X'0000006F'

MQCMD_DELETE_CF_STRUC 112 X'00000070'

MQCMD_DELETE_STG_CLASS 113 X'00000071'

MQCMD_INQUIRE_ARCHIVE 114 X'00000072'

MQCMD_INQUIRE_CF_STRUC 115 X'00000073'

MQCMD_INQUIRE_CF_STRUC_STATUS 116 X'00000074'

MQCMD_INQUIRE_CMD_SERVER 117 X'00000075'

MQCMD_INQUIRE_CHANNEL_INIT 118 X'00000076'

MQCMD_INQUIRE_QSG 119 X'00000077'

MQCMD_INQUIRE_LOG 120 X'00000078'

MQCMD_INQUIRE_SECURITY 121 X'00000079'

MQCMD_INQUIRE_STG_CLASS 122 X'0000007A'

MQCMD_INQUIRE_SYSTEM 123 X'0000007B'

MQCMD_INQUIRE_THREAD 124 X'0000007C'

MQCMD_INQUIRE_TRACE 125 X'0000007D'

MQCMD_INQUIRE_USAGE 126 X'0000007E'

MQCMD_MOVE_Q 127 X'0000007F'

MQCMD_RECOVER_BSDS 128 X'00000080'

MQCMD_RECOVER_CF_STRUC 129 X'00000081'

MQCMD_RESET_TPIPE 130 X'00000082'

MQCMD_RESOLVE_INDOUBT 131 X'00000083'

106 IBM MQ Developing Applications Reference

Table 102. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCMD_RESUME_Q_MGR 132 X'00000084'

MQCMD_REVERIFY_SECURITY 133 X'00000085'

MQCMD_SET_ARCHIVE 134 X'00000086'

MQCMD_SET_LOG 136 X'00000088'

MQCMD_SET_SYSTEM 137 X'00000089'

MQCMD_START_CMD_SERVER 138 X'0000008A'

MQCMD_START_Q_MGR 139 X'0000008B'

MQCMD_START_TRACE 140 X'0000008C'

MQCMD_STOP_CHANNEL_INIT 141 X'0000008D'

MQCMD_STOP_CHANNEL_LISTENER 142 X'0000008E'

MQCMD_STOP_CMD_SERVER 143 X'0000008F'

MQCMD_STOP_Q_MGR 144 X'00000090'

MQCMD_STOP_TRACE 145 X'00000091'

MQCMD_SUSPEND_Q_MGR 146 X'00000092'

MQCMD_INQUIRE_CF_STRUC_NAMES 147 X'00000093'

MQCMD_INQUIRE_STG_CLASS_NAMES 148 X'00000094'

MQCMD_CHANGE_SERVICE 149 X'00000095'

MQCMD_COPY_SERVICE 150 X'00000096'

MQCMD_CREATE_SERVICE 151 X'00000097'

MQCMD_DELETE_SERVICE 152 X'00000098'

MQCMD_INQUIRE_SERVICE 153 X'00000099'

MQCMD_INQUIRE_SERVICE_STATUS 154 X'0000009A'

MQCMD_START_SERVICE 155 X'0000009B'

MQCMD_STOP_SERVICE 156 X'0000009C'

MQCMD_DELETE_BUFFER_POOL 157 X'0000009D'

MQCMD_DELETE_PAGE_SET 158 X'0000009E'

MQCMD_CHANGE_BUFFER_POOL 159 X'0000009F'

MQCMD_CHANGE_PAGE_SET 160 X'000000A0'

MQCMD_INQUIRE_Q_MGR_STATUS 161 X'000000A1'

MQCMD_CREATE_LOG 162 X'000000A2'

MQCMD_STATISTICS_MQI 164 X'000000A4'

MQCMD_STATISTICS_Q 165 X'000000A5'

MQCMD_STATISTICS_CHANNEL 166 X'000000A6'

MQCMD_ACCOUNTING_MQI 167 X'000000A7'

MQCMD_ACCOUNTING_Q 168 X'000000A8'

MQCMD_INQUIRE_AUTH_SERVICE 169 X'000000A9'

MQCMD_CHANGE_TOPIC 170 X'000000AA'

MQCMD_COPY_TOPIC 171 X'000000AB'

MQCMD_CREATE_TOPIC 172 X'000000AC'

Developing applications reference 107

Table 102. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCMD_DELETE_TOPIC 173 X'000000AD'

MQCMD_INQUIRE_TOPIC 174 X'000000AE'

MQCMD_INQUIRE_TOPIC_NAMES 175 X'000000AF'

MQCMD_INQUIRE_SUBSCRIPTION 176 X'000000B0'

MQCMD_CREATE_SUBSCRIPTION 177 X'000000B1'

MQCMD_CHANGE_SUBSCRIPTION 178 X'000000B2'

MQCMD_DELETE_SUBSCRIPTION 179 X'000000B3'

MQCMD_COPY_SUBSCRIPTION 181 X'000000B5'

MQCMD_INQUIRE_SUB_STATUS 182 X'000000B6'

MQCMD_INQUIRE_TOPIC_STATUS 183 X'000000B7'

MQCMD_CLEAR_TOPIC_STRING 184 X'000000B8'

MQCMD_INQUIRE_PUBSUB_STATUS 185 X'000000B9'

MQCMD_PURGE_CHANNEL 195 X'000000C3'

MQCMDI_* (Command format Command Information Values)
Table 103. Values of constants

Name Decimal value Hexadecimal value

MQCMDI_CMDSCOPE_ACCEPTED 1 X'00000001'

MQCMDI_CMDSCOPE_GENERATED 2 X'00000002'

MQCMDI_CMDSCOPE_COMPLETED 3 X'00000003'

MQCMDI_QSG_DISP_COMPLETED 4 X'00000004'

MQCMDI_COMMAND_ACCEPTED 5 X'00000005'

MQCMDI_CLUSTER_REQUEST_QUEUED 6 X'00000006'

MQCMDI_CHANNEL_INIT_STARTED 7 X'00000007'

MQCMDI_RECOVER_STARTED 11 X'0000000B'

MQCMDI_BACKUP_STARTED 12 X'0000000C'

MQCMDI_RECOVER_COMPLETED 13 X'0000000D'

MQCMDI_SEC_TIMER_ZERO 14 X'0000000E'

MQCMDI_REFRESH_CONFIGURATION 16 X'00000010'

MQCMDI_SEC_SIGNOFF_ERROR 17 X'00000011'

MQCMDI_IMS_BRIDGE_SUSPENDED 18 X'00000012'

MQCMDI_DB2_SUSPENDED 19 X'00000013'

MQCMDI_DB2_OBSOLETE_MSGS 20 X'00000014'

MQCMDI_SEC_UPPERCASE 21 X'00000015'

MQCMDI_SEC_MIXEDCASE 22 X'00000016'

MQCMDL_* (Command Levels)
Table 104. Constant names and values

Name Value

MQCMDL_LEVEL_800 800

108 IBM MQ Developing Applications Reference

Table 104. Constant names and values (continued)

Name Value

MQCMDL_LEVEL_801 801

MQCMDL_LEVEL_802 802

MQCMDL_LEVEL_900 900

MQCMDL_LEVEL_901 901

MQCMDL_LEVEL_902 902

MQCMDL_LEVEL_903 903

MQCMDL_LEVEL_904 904

MQCMDL_LEVEL_905 905

MQCMDL_LEVEL_910 910

MQCMDL_LEVEL_912 912

MQCMDL_LEVEL_913 913

MQCMDL_LEVEL_914 914

MQCMDL_LEVEL_915 915

MQCMDL_LEVEL_920 920

MQCMDL_LEVEL_921 921

MQCMDL_LEVEL_922 922

MQCMDL_LEVEL_923 923

MQCMDL_LEVEL_924 924

MQCMDL_LEVEL_925 925

MQCMHO_* (Create message handle options and structure)

Create message handle options structure
Table 105. Structures of constants

Name Structure

MQCMHO_STRUC_ID "CMHO"

MQCMHO_STRUC_ID_ARRAY 'C','M','H','O'

Note: The symbol ¬ represents a single blank character.

Table 106. Values of constants

Name Decimal value Hexadecimal value

MQCMHO_VERSION_1 1 X'00000001'

MQCMHO_CURRENT_VERSION 1 X'00000001'

Create Message Handle Options
Table 107. Values of constants

Name Decimal value Hexadecimal value

MQCMHO_DEFAULT_VALIDATION 0 X'00000000'

MQCMHO_NO_VALIDATION 1 X'00000001'

MQCMHO_VALIDATE 2 X'00000002'

Developing applications reference 109

Table 107. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCMHO_NONE 0 X'00000000'

MQCNO_* (Connect options and structure)

Connect options structure
Table 108. Structures of constants

Name Structure

MQCNO_STRUC_ID "CNO¬"

MQCNO_STRUC_ID_ARRAY 'C','N','O','¬'

Note: The symbol ¬ represents a single blank character.

Table 109. Values of constants

Name Decimal value Hexadecimal value

MQCNO_VERSION_1 1 X'00000001'

MQCNO_VERSION_2 2 X'00000002'

MQCNO_VERSION_3 3 X'00000003'

MQCNO_VERSION_4 4 X'00000004'

MQCNO_VERSION_5 5 X'00000005'

MQCNO_CURRENT_VERSION 5 X'00000005'

Connect Options
Table 110. Values of constants

Name Decimal value Hexadecimal value

MQCNO_STANDARD_BINDING 0 X'00000000'

MQCNO_FASTPATH_BINDING 1 X'00000001'

MQCNO_SERIALIZE_CONN_TAG_Q_MGR 2 X'00000002'

MQCNO_SERIALIZE_CONN_TAG_QSG 4 X'00000004'

MQCNO_RESTRICT_CONN_TAG_Q_MGR 8 X'00000008'

MQCNO_RESTRICT_CONN_TAG_QSG 16 X'00000010'

MQCNO_HANDLE_SHARE_NONE 32 X'00000020'

MQCNO_HANDLE_SHARE_BLOCK 64 X'00000040'

MQCNO_HANDLE_SHARE_NO_BLOCK 128 X'00000080'

MQCNO_SHARED_BINDING 256 X'00000100'

MQCNO_ISOLATED_BINDING 512 X'00000200'

MQCNO_LOCAL_BINDING 1024 X'00000400'

MQCNO_CLIENT_BINDING 2048 X'00000800'

MQCNO_ACCOUNTING_MQI_ENABLED 4096 X'00001000'

MQCNO_ACCOUNTING_MQI_DISABLED 8192 X'00002000'

MQCNO_ACCOUNTING_Q_ENABLED 16384 X'00004000'

MQCNO_ACCOUNTING_Q_DISABLED 32768 X'00008000'

110 IBM MQ Developing Applications Reference

Table 110. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCNO_NO_CONV_SHARING 65536 X'00010000'

MQCNO_ALL_CONVS_SHARE 262144 X'00040000'

MQCNO_CD_FOR_OUTPUT_ONLY 524288 X'00080000'

MQCNO_USE_CD_SELECTION 1048576 X'00100000'

MQCNO_RECONNECT 16777216 X'01000000'

MQCNO_RECONNECT_AS_DEF 0 X'00000000'

MQCNO_RECONNECT_DISABLED 33554432 X'02000000'

MQCNO_RECONNECT_Q_MGR 67108864 X'04000000'

MQCNO_ACTIVITY_TRACE_ENABLED 134217728 X'08000000'

MQCNO_ACTIVITY_TRACE_DISABLED 268435456 X'10000000'

MQCNO_NONE 0 X'00000000'

MQCO_* (Close Options)
Table 111. Values of constants

Name Decimal value Hexadecimal value

MQCO_IMMEDIATE 0 X'00000000'

MQCO_NONE 0 X'00000000'

MQCO_DELETE 1 X'00000001'

MQCO_DELETE_PURGE 2 X'00000002'

MQCO_KEEP_SUB 4 X'00000004'

MQCO_REMOVE_SUB 8 X'00000008'

MQCO_QUIESCE 32 X'00000020'

MQCODL_* (CICS information header Output Data Length)
Table 112. Values of constants

Name Decimal value Hexadecimal value

MQCODL_AS_INPUT -1 X'FFFFFFFF'

MQCOMPRESS_* (Channel Compression)
Table 113. Values of constants

Name Decimal value Hexadecimal value

MQCOMPRESS_NOT_AVAILABLE -1 X'FFFFFFFF'

MQCOMPRESS_NONE 0 X'00000000'

MQCOMPRESS_RLE 1 X'00000001'

MQCOMPRESS_ZLIBFAST 2 X'00000002'

MQCOMPRESS_ZLIBHIGH 4 X'00000004'

MQCOMPRESS_SYSTEM 8 X'00000008'

MQCOMPRESS_ANY 268435455 X'0FFFFFFF'

Developing applications reference 111

MQCONNID_* (Connection Identifier)
Table 114. Constant names and values

Name Value

MQCONNID_NONE X'00...00' (24 nulls)

MQCONNID_NONE_ARRAY '\0','\0',... (24 nulls)

MQCOPY_* (Property Copy Options)
Table 115. Values of constants

Name Decimal value Hexadecimal value

MQCOPY_NONE 0 X'00000000'

MQCOPY_ALL 1 X'00000001'

MQCOPY_FORWARD 2 X'00000002'

MQCOPY_PUBLISH 4 X'00000004'

MQCOPY_REPLY 8 X'00000008'

MQCOPY_REPORT 16 X'00000010'

MQCOPY_DEFAULT 22 X'00000016'

MQCQT_* (Cluster Queue Types)
Table 116. Values of constants

Name Decimal value Hexadecimal value

MQCQT_LOCAL_Q 1 X'00000001'

MQCQT_ALIAS_Q 2 X'00000002'

MQCQT_REMOTE_Q 3 X'00000003'

MQCQT_Q_MGR_ALIAS 4 X'00000004'

MQCRC_* (CICS information header Return Codes)
Table 117. Values of constants

Name Decimal value Hexadecimal value

MQCRC_OK 0 X'00000000'

MQCRC_CICS_EXEC_ERROR 1 X'00000001'

MQCRC_MQ_API_ERROR 2 X'00000002'

MQCRC_BRIDGE_ERROR 3 X'00000003'

MQCRC_BRIDGE_ABEND 4 X'00000004'

MQCRC_APPLICATION_ABEND 5 X'00000005'

MQCRC_SECURITY_ERROR 6 X'00000006'

MQCRC_PROGRAM_NOT_AVAILABLE 7 X'00000007'

MQCRC_BRIDGE_TIMEOUT 8 X'00000008'

MQCRC_TRANSID_NOT_AVAILABLE 9 X'00000009'

112 IBM MQ Developing Applications Reference

MQCS_* (MQCBC constants Consumer state)
Table 118. Values of constants

Name Decimal value Hexadecimal value

MQCS_NONE 0 X'00000000'

MQCS_SUSPENDED_TEMPORARY 1 X'00000001'

MQCS_SUSPENDED_USER_ACTION 2 X'00000002'

MQCS_SUSPENDED 3 X'00000003'

MQCS_STOPPED 4 X'00000004'

MQCSC_* (CICS information header Start Codes)
Table 119. Structures of constants

Name Structure

MQCSC_START "S¬¬¬"

MQCSC_STARTDATA "SD¬¬"

MQCSC_TERMINPUT "TD¬¬"

MQCSC_NONE "¬¬¬¬"

MQCSC_START_ARRAY 'S','¬','¬','¬'

MQCSC_STARTDATA_ARRAY 'S','D','¬','¬'

MQCSC_TERMINPUT_ARRAY 'T','D','¬','¬'

MQCSC_NONE_ARRAY '¬','¬','¬','¬'

Note: The symbol ¬ represents a single blank character.

MQCSP_* (Connection security parameters structure and Authentication
Types)

Connection security parameters structure
Table 120. Structures of constants

Name Structure

MQCSP_STRUC_ID "CSP¬"

MQCSP_STRUC_ID_ARRAY 'C','S','P','¬'

Note: The symbol ¬ represents a single blank character.

Table 121. Values of constants

Name Decimal value Hexadecimal value

MQCSP_VERSION_1 1 X'00000001'

MQCSP_CURRENT_VERSION 1 X'00000001'

Connection security parameters Authentication Types
Table 122. Values of constants

Name Decimal value Hexadecimal value

MQCSP_AUTH_NONE 0 X'00000000'

Developing applications reference 113

Table 122. Values of constants (continued)

Name Decimal value Hexadecimal value

MQCSP_AUTH_USER_ID_AND_PWD 1 X'00000001'

MQCSRV_* (Command Server Options)
Table 123. Values of constants

Name Decimal value Hexadecimal value

MQCSRV_CONVERT_NO 0 X'00000000'

MQCSRV_CONVERT_YES 1 X'00000001'

MQCSRV_DLQ_NO 0 X'00000000'

MQCSRV_DLQ_YES 1 X'00000001'

MQCT_* (Queue Manager Connection Tag)
Table 124. Constant names and values

Name Value

MQCT_NONE X'00...00' (128 nulls)

MQCT_NONE_ARRAY '\0','\0',... (128 nulls)

MQCTES_* (CICS information header Task End Status)
Table 125. Values of constants

Name Decimal value Hexadecimal value

MQCTES_NOSYNC 0 X'00000000'

MQCTES_COMMIT 256 X'00000100'

MQCTES_BACKOUT 4352 X'00001100'

MQCTES_ENDTASK 65536 X'00010000'

MQCTLO_* (MQCTL options structure and Consumer Control Options)

MQCTL options structure
Table 126. Structures of constants

Name Structure

MQCTLO_STRUC_ID "CTLO"

MQCTLO_STRUC_ID_ARRAY 'C','T','L','O'

Note: The symbol ¬ represents a single blank character.

Table 127. Values of constants

Name Decimal value Hexadecimal value

MQCTLO_VERSION_1 1 X'00000001'

MQCTLO_CURRENT_VERSION 1 X'00000001'

114 IBM MQ Developing Applications Reference

MQCTL options Consumer Control Options
Table 128. Values of constants

Name Decimal value Hexadecimal value

MQCTLO_NONE 0 X'00000000'

MQCTLO_THREAD_AFFINITY 1 X'00000001'

MQCTLO_FAIL_IF_QUIESCING 8192 X'00002000'

MQCUOWC_* (CICS information header Unit-of-Work Controls)
Table 129. Values of constants

Name Decimal value Hexadecimal value

MQCUOWC_ONLY 273 X'00000111'

MQCUOWC_CONTINUE 65536 X'00010000'

MQCUOWC_FIRST 17 X'00000011'

MQCUOWC_MIDDLE 16 X'00000010'

MQCUOWC_LAST 272 X'00000110'

MQCUOWC_COMMIT 256 X'00000100'

MQCUOWC_BACKOUT 4352 X'00001100'

MQCXP_* (Channel exit parameter structure)
Table 130. Structures of constants

Name Structure

MQCXP_STRUC_ID "CXP¬"

MQCXP_STRUC_ID_ARRAY 'C','X','P','¬'

Note: The symbol ¬ represents a single blank character.

Table 131. Values of constants

Name Decimal value Hexadecimal value

MQCXP_VERSION_1 1 X'00000001'

MQCXP_VERSION_2 2 X'00000002'

MQCXP_VERSION_3 3 X'00000003'

MQCXP_VERSION_4 4 X'00000004'

MQCXP_VERSION_5 5 X'00000005'

MQCXP_VERSION_6 6 X'00000006'

MQCXP_VERSION_7 7 X'00000007'

MQCXP_VERSION_8 8 X'00000008'

MQCXP_VERSION_9 9 X'00000009'

MQCXP_CURRENT_VERSION 9 X'00000009'

MQDC_* (Destination Class)
Table 132. Values of constants

Name Decimal value Hexadecimal value

MQDC_MANAGED 1 X'00000001'

Developing applications reference 115

Table 132. Values of constants (continued)

Name Decimal value Hexadecimal value

MQDC_PROVIDED 2 X'00000002'

MQDCC_* (Conversion Options, and Masks and Factors)

Conversion Options
Table 133. Values of constants

Name Decimal value Hexadecimal value

MQDCC_DEFAULT_CONVERSION 1 X'00000001'

MQDCC_FILL_TARGET_BUFFER 2 X'00000002'

MQDCC_INT_DEFAULT_CONVERSION 4 X'00000004'

MQDCC_SOURCE_ENC_NATIVE (value differs by
platform or version)

(value differs by
platform or version)

MQDCC_SOURCE_ENC_NORMAL 16 X'00000010'

MQDCC_SOURCE_ENC_REVERSED 32 X'00000020'

MQDCC_SOURCE_ENC_UNDEFINED 0 X'00000000'

MQDCC_TARGET_ENC_NATIVE (value differs by
platform or version)

(value differs by
platform or version)

MQDCC_TARGET_ENC_NORMAL 256 X'00000100'

MQDCC_TARGET_ENC_REVERSED 512 X'00000200'

MQDCC_TARGET_ENC_UNDEFINED 0 X'00000000'

MQDCC_NONE 0 X'00000000'

Conversion Options Masks and Factors
Table 134. Values of constants

Name Decimal value Hexadecimal value

MQDCC_SOURCE_ENC_MASK 240 X'000000F0'

MQDCC_TARGET_ENC_MASK 3840 X'00000F00'

MQDCC_SOURCE_ENC_FACTOR 16 X'00000010'

MQDCC_TARGET_ENC_FACTOR 256 X'00000100'

MQDELO_* (Publish/Subscribe Delete Options)
Table 135. Values of constants

Name Decimal value Hexadecimal value

MQDELO_NONE 0 X'00000000'

MQDELO_LOCAL 4 X'00000004'

MQDH_* (Distribution header structure)
Table 136. Structures of constants

Name Structure

MQDH_STRUC_ID "DH¬¬"

116 IBM MQ Developing Applications Reference

Table 136. Structures of constants (continued)

Name Structure

MQDH_STRUC_ID_ARRAY 'D','H','¬','¬'

Note: The symbol ¬ represents a single blank character.

Table 137. Values of constants

Name Decimal value Hexadecimal value

MQDH_VERSION_1 1 X'00000001'

MQDH_CURRENT_VERSION 1 X'00000001'

MQDHF_* (Distribution header Flags)
Table 138. Values of constants

Name Decimal value Hexadecimal value

MQDHF_NEW_MSG_IDS 1 X'00000001'

MQDHF_NONE 0 X'00000000'

MQDISCONNECT_* (Command format Disconnect Types)
Table 139. Values of constants

Name Decimal value Hexadecimal value

MQDISCONNECT_NORMAL 0 X'00000000'

MQDISCONNECT_IMPLICIT 1 X'00000001'

MQDISCONNECT_Q_MGR 2 X'00000002'

MQDL_* (Distribution Lists)
Table 140. Values of constants

Name Decimal value Hexadecimal value

MQDL_SUPPORTED 1 X'00000001'

MQDL_NOT_SUPPORTED 0 X'00000000'

MQDLH_* (Dead-letter header structure)
Table 141. Structures of constants

Name Structure

MQDLH_STRUC_ID "DLH¬"

MQDLH_STRUC_ID_ARRAY 'D','L','H','¬'

Note: The symbol ¬ represents a single blank character.

Table 142. Values of constants

Name Decimal value Hexadecimal value

MQDLH_VERSION_1 1 X'00000001'

MQDLH_CURRENT_VERSION 1 X'00000001'

Developing applications reference 117

MQDLV_* (Persistent/Non-persistent Message Delivery)
Table 143. Values of constants

Name Decimal value Hexadecimal value

MQDLV_AS_PARENT 0 X'00000000'

MQDLV_ALL 1 X'00000001'

MQDLV_ALL_DUR 2 X'00000002'

MQDLV_ALL_AVAIL 3 X'00000003'

MQDMHO_* (Delete message handle options and structure)

Delete message handle options structure
Table 144. Structures of constants

Name Structure

MQDMHO_STRUC_ID "DMHO"

MQDMHO_STRUC_ID_ARRAY 'D','M','H','O'

Note: The symbol ¬ represents a single blank character.

Table 145. Values of constants

Name Decimal value Hexadecimal value

MQDMHO_VERSION_1 1 X'00000001'

MQDMHO_CURRENT_VERSION 1 X'00000001'

Delete Message Handle Options
Table 146. Values of constants

Name Decimal value Hexadecimal value

MQDMHO_NONE 0 X'00000000'

MQDMPO_* (Delete message property options and structure)

Delete message property options structure
Table 147. Structures of constants

Name Structure

MQDMPO_STRUC_ID "DMPO"

MQDMPO_STRUC_ID_ARRAY 'D','M','P','O'

Note: The symbol ¬ represents a single blank character.

Table 148. Values of constants

Name Decimal value Hexadecimal value

MQDMPO_VERSION_1 1 X'00000001'

MQDMPO_CURRENT_VERSION 1 X'00000001'

118 IBM MQ Developing Applications Reference

Delete Message Property Options
Table 149. Values of constants

Name Decimal value Hexadecimal value

MQDMPO_DEL_FIRST 0 X'00000000'

MQDMPO_DEL_PROP_UNDER_CURSOR 1 X'00000001'

MQDMPO_NONE 0 X'00000000'

MQDNSWLM_* (DNS WLM)
Table 150. Values of constants

Name Decimal value Hexadecimal value

MQDNSWLM_NO 0 X'00000000'

MQDNSWLM_YES 1 X'00000001'

MQDT_* (Destination Types)
Table 151. Values of constants

Name Decimal value Hexadecimal value

MQDT_APPL 1 X'00000001'

MQDT_BROKER 2 X'00000002'

MQDXP_* (Conversion exit parameter structure)
Table 152. Structures of constants

Name Structure

MQDXP_STRUC_ID "DXP¬"

MQDXP_STRUC_ID_ARRAY 'D','X','P','¬'

Note: The symbol ¬ represents a single blank character.

Table 153. Values of constants

Name Decimal value Hexadecimal value

MQDXP_VERSION_1 1 X'00000001'

MQDXP_VERSION_2 2 X'00000002'

MQDXP_CURRENT_VERSION 2 X'00000002'

MQEC_* (Signal Values)
Table 154. Values of constants

Name Decimal value Hexadecimal value

MQEC_MSG_ARRIVED 2 X'00000002'

MQEC_WAIT_INTERVAL_EXPIRED 3 X'00000003'

MQEC_WAIT_CANCELED 4 X'00000004'

MQEC_Q_MGR_QUIESCING 5 X'00000005'

MQEC_CONNECTION_QUIESCING 6 X'00000006'

Developing applications reference 119

MQEI_* (Expiry)
Table 155. Values of constants

Name Decimal value Hexadecimal value

MQEI_UNLIMITED -1 X'FFFFFFFF'

MQENC_* (Encoding)

MQENC_* (Encoding)
Table 156. Values of constants by platform

Name Platform Decimal value Hexadecimal value

MQENC_NATIVE IBM i 273 X'00000111'

Linux 546 X'00000222'

Linux on SPARC 273 X'00000111'

Linux on x86 546 X'00000222'

AIX and Linux 273 X'00000111'

Windows 546 X'00000222'

Micro Focus COBOL on Windows 17 X'00000011'

z/OS 785 X'00000311'

MQENC_* (Encoding Masks)
Table 157. Values of constants

Name Decimal value Hexadecimal value

MQENC_INTEGER_MASK 15 X'0000000F'

MQENC_DECIMAL_MASK 240 X'000000F0'

MQENC_FLOAT_MASK 3840 X'00000F00'

MQENC_RESERVED_MASK -4096 X'FFFFF000'

MQENC_* (Encodings for Binary Integers)
Table 158. Values of constants

Name Decimal value Hexadecimal value

MQENC_INTEGER_UNDEFINED 0 X'00000000'

MQENC_INTEGER_NORMAL 1 X'00000001'

MQENC_INTEGER_REVERSED 2 X'00000002'

MQENC_* (Encodings for Packed Decimal Integers)
Table 159. Values of constants

Name Decimal value Hexadecimal value

MQENC_DECIMAL_UNDEFINED 0 X'00000000'

MQENC_DECIMAL_NORMAL 16 X'00000010'

MQENC_DECIMAL_REVERSED 32 X'00000020'

120 IBM MQ Developing Applications Reference

MQENC_* (Encodings for Floating Point Numbers)
Table 160. Values of constants

Name Decimal value Hexadecimal value

MQENC_FLOAT_UNDEFINED 0 X'00000000'

MQENC_FLOAT_IEEE_NORMAL 256 X'00000100'

MQENC_FLOAT_IEEE_REVERSED 512 X'00000200'

MQENC_FLOAT_S390 768 X'00000300'

MQENC_FLOAT_TNS 1024 X'00000400'

MQEPH_* (Embedded command format header structure and Flags)

Embedded command format header structure
Table 161. Structures of constants

Name Structure

MQEPH_STRUC_ID "EPH¬"

MQEPH_STRUC_ID_ARRAY 'E','P','H','¬'

Note: The symbol ¬ represents a single blank character.

Table 162. Values of constants

Name Decimal value Hexadecimal value

MQEPH_STRUC_LENGTH_FIXED 68 X'00000044'

MQEPH_VERSION_1 1 X'00000001'

MQEPH_CURRENT_VERSION 1 X'00000001'

Embedded command format header Flags
Table 163. Values of constants

Name Decimal value Hexadecimal value

MQEPH_NONE 0 X'00000000'

MQEPH_CCSID_EMBEDDED 1 X'00000001'

MQET_* (Command format Escape Types)
Table 164. Values of constants

Name Decimal value Hexadecimal value

MQET_MQSC 1 X'00000001'

MQEVO_* (Command format Event Origins)
Table 165. Values of constants

Name Decimal value Hexadecimal value

MQEVO_OTHER 0 X'00000000'

MQEVO_CONSOLE 1 X'00000001'

MQEVO_INIT 2 X'00000002'

MQEVO_MSG 3 X'00000003'

Developing applications reference 121

Table 165. Values of constants (continued)

Name Decimal value Hexadecimal value

MQEVO_MQSET 4 X'00000004'

MQEVO_INTERNAL 5 X'00000005'

MQEVO_MQSUB 6 X'00000006'

MQEVO_CTLMSG 7 X'00000007'

MQEVO_REST 8 X'00000008'

MQEVR_* (Command format Event Recording)
Table 166. Values of constants

Name Decimal value Hexadecimal value

MQEVR_DISABLED 0 X'00000000'

MQEVR_ENABLED 1 X'00000001'

MQEVR_EXCEPTION 2 X'00000002'

MQEVR_NO_DISPLAY 3 X'00000003'

MQEXPI_* (Expiration Scan Interval)
Table 167. Values of constants

Name Decimal value Hexadecimal value

MQEXPI_OFF 0 X'00000000'

MQFB_* (Feedback Values)
Table 168. Values of constants

Name Decimal value Hexadecimal value

MQFB_NONE 0 X'00000000'

MQFB_SYSTEM_FIRST 1 X'00000001'

MQFB_QUIT 256 X'00000100'

MQFB_EXPIRATION 258 X'00000102'

MQFB_COA 259 X'00000103'

MQFB_COD 260 X'00000104'

MQFB_CHANNEL_COMPLETED 262 X'00000106'

MQFB_CHANNEL_FAIL_RETRY 263 X'00000107'

MQFB_CHANNEL_FAIL 264 X'00000108'

MQFB_APPL_CANNOT_BE_STARTED 265 X'00000109'

MQFB_TM_ERROR 266 X'0000010A'

MQFB_APPL_TYPE_ERROR 267 X'0000010B'

MQFB_STOPPED_BY_MSG_EXIT 268 X'0000010C'

MQFB_ACTIVITY 269 X'0000010D'

MQFB_XMIT_Q_MSG_ERROR 271 X'0000010F'

MQFB_PAN 275 X'00000113'

MQFB_NAN 276 X'00000114'

MQFB_STOPPED_BY_CHAD_EXIT 277 X'00000115'

122 IBM MQ Developing Applications Reference

Table 168. Values of constants (continued)

Name Decimal value Hexadecimal value

MQFB_STOPPED_BY_PUBSUB_EXIT 279 X'00000117'

MQFB_NOT_A_REPOSITORY_MSG 280 X'00000118'

MQFB_BIND_OPEN_CLUSRCVR_DEL 281 X'00000119'

MQFB_MAX_ACTIVITIES 282 X'0000011A'

MQFB_NOT_FORWARDED 283 X'0000011B'

MQFB_NOT_DELIVERED 284 X'0000011C'

MQFB_UNSUPPORTED_FORWARDING 285 X'0000011D'

MQFB_UNSUPPORTED_DELIVERY 286 X'0000011E'

MQFB_DATA_LENGTH_ZERO 291 X'00000123'

MQFB_DATA_LENGTH_NEGATIVE 292 X'00000124'

MQFB_DATA_LENGTH_TOO_BIG 293 X'00000125'

MQFB_BUFFER_OVERFLOW 294 X'00000126'

MQFB_LENGTH_OFF_BY_ONE 295 X'00000127'

MQFB_IIH_ERROR 296 X'00000128'

MQFB_NOT_AUTHORIZED_FOR_IMS 298 X'0000012A'

MQFB_IMS_ERROR 300 X'0000012C'

MQFB_IMS_FIRST 301 X'0000012D'

MQFB_IMS_LAST 399 X'0000018F'

MQFB_CICS_INTERNAL_ERROR 401 X'00000191'

MQFB_CICS_NOT_AUTHORIZED 402 X'00000192'

MQFB_CICS_BRIDGE_FAILURE 403 X'00000193'

MQFB_CICS_CORREL_ID_ERROR 404 X'00000194'

MQFB_CICS_CCSID_ERROR 405 X'00000195'

MQFB_CICS_ENCODING_ERROR 406 X'00000196'

MQFB_CICS_CIH_ERROR 407 X'00000197'

MQFB_CICS_UOW_ERROR 408 X'00000198'

MQFB_CICS_COMMAREA_ERROR 409 X'00000199'

MQFB_CICS_APPL_NOT_STARTED 410 X'0000019A'

MQFB_CICS_APPL_ABENDED 411 X'0000019B'

MQFB_CICS_DLQ_ERROR 412 X'0000019C'

MQFB_CICS_UOW_BACKED_OUT 413 X'0000019D'

MQFB_PUBLICATIONS_ON_REQUEST 501 X'000001F5'

MQFB_SUBSCRIBER_IS_PUBLISHER 502 X'000001F6'

MQFB_MSG_SCOPE_MISMATCH 503 X'000001F7'

MQFB_SELECTOR_MISMATCH 504 X'000001F8'

MQFB_IMS_NACK_1A_REASON_FIRST 600 X'00000258'

MQFB_IMS_NACK_1A_REASON_LAST 855 X'00000357'

MQFB_SYSTEM_LAST 65535 X'0000FFFF'

MQFB_APPL_FIRST 65536 X'00010000'

Developing applications reference 123

Table 168. Values of constants (continued)

Name Decimal value Hexadecimal value

MQFB_APPL_LAST 999999999 X'3B9AC9FF'

MQFC_* (Command format Force Options)
Table 169. Values of constants

Name Decimal value Hexadecimal value

MQFC_YES 1 X'00000001'

MQFC_NO 0 X'00000000'

MQFMT_* (Formats)
Table 170. Constant names and values

Name Value

MQFMT_NONE "¬¬¬¬¬¬¬¬"

MQFMT_ADMIN "MQADMIN¬"

MQFMT_CHANNEL_COMPLETED "MQCHCOM¬"

MQFMT_CICS "MQCICS¬¬"

MQFMT_COMMAND_1 "MQCMD1¬¬"

MQFMT_COMMAND_2 "MQCMD2¬¬"

MQFMT_DEAD_LETTER_HEADER "MQDEAD¬¬"

MQFMT_DIST_HEADER "MQHDIST¬"

MQFMT_EMBEDDED_PCF "MQHEPCF¬"

MQFMT_EVENT "MQEVENT¬"

MQFMT_IMS "MQIMS¬¬¬"

MQFMT_IMS_VAR_STRING "MQIMSVS¬"

MQFMT_MD_EXTENSION "MQHMDE¬¬"

MQFMT_PCF "MQPCF¬¬¬"

MQFMT_REF_MSG_HEADER "MQHREF¬¬"

MQFMT_RF_HEADER "MQHRF¬¬¬"

MQFMT_RF_HEADER_1 "MQHRF¬¬¬"

MQFMT_RF_HEADER_2 "MQHRF2¬¬"

MQFMT_STRING "MQSTR¬¬¬"

MQFMT_TRIGGER "MQTRIG¬¬"

MQFMT_WORK_INFO_HEADER "MQHWIH¬¬"

MQFMT_XMIT_Q_HEADER "MQXMIT¬¬"

MQFMT_NONE_ARRAY '¬','¬','¬','¬','¬','¬','¬','¬'

MQFMT_ADMIN_ARRAY 'M','Q','A','D','M','I','N','¬'

MQFMT_CHANNEL_COMPLETED_ARRAY 'M','Q','C','H','C','O','M','¬'

MQFMT_CICS_ARRAY 'M','Q','C','I','C','S','¬','¬'

MQFMT_COMMAND_1_ARRAY 'M','Q','C','M','D','1','¬','¬'

MQFMT_COMMAND_2_ARRAY 'M','Q','C','M','D','2','¬','¬'

124 IBM MQ Developing Applications Reference

Table 170. Constant names and values (continued)

Name Value

MQFMT_DEAD_LETTER_HEADER_ARRAY 'M','Q','D','E','A','D','¬','¬'

MQFMT_DIST_HEADER_ARRAY 'M','Q','H','D','I','S','T','¬'

MQFMT_EMBEDDED_PCF_ARRAY 'M','Q','H','E','P','C','F','¬'

MQFMT_EVENT_ARRAY 'M','Q','E','V','E','N','T','¬'

MQFMT_IMS_ARRAY 'M','Q','I','M','S','¬','¬','¬'

MQFMT_IMS_VAR_STRING_ARRAY 'M','Q','I','M','S','V','S','¬'

MQFMT_MD_EXTENSION_ARRAY 'M','Q','H','M','D','E','¬','¬'

MQFMT_PCF_ARRAY 'M','Q','P','C','F','¬','¬','¬'

MQFMT_REF_MSG_HEADER_ARRAY 'M','Q','H','R','E','F','¬','¬'

MQFMT_RF_HEADER_ARRAY 'M','Q','H','R','F','¬','¬','¬'

MQFMT_RF_HEADER_1_ARRAY 'M','Q','H','R','F','¬','¬','¬'

MQFMT_RF_HEADER_2_ARRAY 'M','Q','H','R','F','2','¬','¬'

MQFMT_STRING_ARRAY 'M','Q','S','T','R','¬','¬','¬'

MQFMT_TRIGGER_ARRAY 'M','Q','T','R','I','G','¬','¬'

MQFMT_WORK_INFO_HEADER_ARRAY 'M','Q','H','W','I','H','¬','¬'

MQFMT_XMIT_Q_HEADER_ARRAY 'M','Q','X','M','I','T','¬','¬'

Note: The symbol ¬ represents a single blank character.

MQFUN_* (Application Function Types)
Table 171. Values of constants

Name Decimal value Hexadecimal value

MQFUN_TYPE_UNKNOWN 0 X'00000000'

MQFUN_TYPE_JVM 1 X'00000001'

MQFUN_TYPE_PROGRAM 2 X'00000002'

MQFUN_TYPE_PROCEDURE 3 X'00000003'

MQFUN_TYPE_USERDEF 4 X'00000004'

MQFUN_TYPE_COMMAND 5 X'00000005'

MQGA_* (Group Attribute Selectors)
Table 172. Values of constants

Name Decimal value Hexadecimal value

MQGA_FIRST 8001 X'00001F41'

MQGA_LAST 9000 X'00002328'

MQGACF_* (Command format Group Parameter Types)
Table 173. Values of constants

Name Decimal value Hexadecimal value

MQGACF_FIRST 8001 X'00001F41'

MQGACF_COMMAND_CONTEXT 8001 X'00001F41'

Developing applications reference 125

Table 173. Values of constants (continued)

Name Decimal value Hexadecimal value

MQGACF_COMMAND_DATA 8002 X'00001F42'

MQGACF_TRACE_ROUTE 8003 X'00001F43'

MQGACF_OPERATION 8004 X'00001F44'

MQGACF_ACTIVITY 8005 X'00001F45'

MQGACF_EMBEDDED_MQMD 8006 X'00001F46'

MQGACF_MESSAGE 8007 X'00001F47'

MQGACF_MQMD 8008 X'00001F48'

MQGACF_VALUE_NAMING 8009 X'00001F49'

MQGACF_Q_ACCOUNTING_DATA 8010 X'00001F4A'

MQGACF_Q_STATISTICS_DATA 8011 X'00001F4B'

MQGACF_CHL_STATISTICS_DATA 8012 X'00001F4C'

MQGACF_LAST_USED 8012 X'00001F4C'

MQGI_* (Group Identifier)
Table 174. Constant names and values

Name Value

MQGI_NONE X'00...00' (24 nulls)

MQGI_NONE_ARRAY '\0','\0',... (24 nulls)

MQGMO_* (Get message options and structure)

Get message options structure
Table 175. Structures of constants

Name Structure

MQGMO_STRUC_ID "GMO¬"

MQGMO_STRUC_ID_ARRAY 'G','M','O','¬'

Note: The symbol ¬ represents a single blank character.

Table 176. Values of constants

Name Decimal value Hexadecimal value

MQGMO_VERSION_1 1 X'00000001'

MQGMO_VERSION_2 2 X'00000002'

MQGMO_VERSION_3 3 X'00000003'

MQGMO_VERSION_4 4 X'00000004'

MQGMO_CURRENT_VERSION 4 X'00000004'

Get Message Options
Table 177. Values of constants

Name Decimal value Hexadecimal value

MQGMO_WAIT 1 X'00000001'

126 IBM MQ Developing Applications Reference

Table 177. Values of constants (continued)

Name Decimal value Hexadecimal value

MQGMO_NO_WAIT 0 X'00000000'

MQGMO_SET_SIGNAL 8 X'00000008'

MQGMO_FAIL_IF_QUIESCING 8192 X'00002000'

MQGMO_SYNCPOINT 2 X'00000002'

MQGMO_SYNCPOINT_IF_PERSISTENT 4096 X'00001000'

MQGMO_NO_SYNCPOINT 4 X'00000004'

MQGMO_MARK_SKIP_BACKOUT 128 X'00000080'

MQGMO_BROWSE_FIRST 16 X'00000010'

MQGMO_BROWSE_NEXT 32 X'00000020'

MQGMO_BROWSE_MSG_UNDER_CURSOR 2048 X'00000800'

MQGMO_BROWSE_HANDLE 17825808 X'01100010'

MQGMO_BROWSE_CO_OP 18874384 X'01200010'

MQGMO_MSG_UNDER_CURSOR 256 X'00000100'

MQGMO_LOCK 512 X'00000200'

MQGMO_UNLOCK 1024 X'00000400'

MQGMO_ACCEPT_TRUNCATED_MSG 64 X'00000040'

MQGMO_CONVERT 16384 X'00004000'

MQGMO_LOGICAL_ORDER 32768 X'00008000'

MQGMO_COMPLETE_MSG 65536 X'00010000'

MQGMO_ALL_MSGS_AVAILABLE 131072 X'00020000'

MQGMO_ALL_SEGMENTS_AVAILABLE 262144 X'00040000'

MQGMO_MARK_BROWSE_HANDLE 1048576 X'00100000'

MQGMO_MARK_BROWSE_CO_OP 2097152 X'00200000'

MQGMO_UNMARK_BROWSE_CO_OP 4194304 X'00400000'

MQGMO_UNMARK_BROWSE_HANDLE 8388608 X'00800000'

MQGMO_UNMARKED_BROWSE_MSG 16777216 X'01000000'

MQGMO_PROPERTIES_FORCE_MQRFH2 33554432 X'02000000'

MQGMO_NO_PROPERTIES 67108864 X'04000000'

MQGMO_PROPERTIES_IN_HANDLE 134217728 X'08000000'

MQGMO_PROPERTIES_COMPATIBILITY 268435456 X'10000000'

MQGMO_PROPERTIES_AS_Q_DEF 0 X'00000000'

MQGMO_NONE 0 X'00000000'

MQGS_* (Group Status)
Table 178. Constant names and values

Name Value

MQGS_NOT_IN_GROUP '¬'

MQGS_MSG_IN_GROUP 'G'

MQGS_LAST_MSG_IN_GROUP 'L'

Developing applications reference 127

Note: The symbol ¬ represents a single blank character.

MQHA_* (Handle Selectors)
Table 179. Values of constants

Name Decimal value Hexadecimal value

MQHA_FIRST 4001 X'00000FA1'

MQHA_BAG_HANDLE 4001 X'00000FA1'

MQHA_LAST_USED 4001 X'00000FA1'

MQHA_LAST 6000 X'00001770'

MQHB_* (Bag Handles)
Table 180. Values of constants

Name Decimal value Hexadecimal value

MQHB_UNUSABLE_HBAG -1 X'FFFFFFFF'

MQHB_NONE -2 X'FFFFFFFE'

MQHC_* (Connection Handles)
Table 181. Values of constants

Name Decimal value Hexadecimal value

MQHC_DEF_HCONN 0 X'00000000'

MQHC_UNUSABLE_HCONN -1 X'FFFFFFFF'

MQHC_UNASSOCIATED_HCONN -3 X'FFFFFFFD'

MQHM_* (Message handle)
Table 182. Values of constants

Name Decimal value Hexadecimal value

MQHM_UNUSABLE_HMSG -1 X'FFFFFFFF'

MQHM_NONE 0 X'00000000'

MQHO_* (Object Handle)
Table 183. Values of constants

Name Decimal value Hexadecimal value

MQHO_UNUSABLE_HOBJ -1 X'FFFFFFFF'

MQHO_NONE 0 X'00000000'

MQHSTATE_* (Command format Handle States)
Table 184. Values of constants

Name Decimal value Hexadecimal value

MQHSTATE_INACTIVE 0 X'00000000'

MQHSTATE_ACTIVE 1 X'00000001'

128 IBM MQ Developing Applications Reference

MQIA_* (Integer Attribute Selectors)
Table 185. Values of constants

Name Decimal value Hexadecimal value

MQIA_ACCOUNTING_CONN_OVERRIDE 136 X'00000088'

MQIA_ACCOUNTING_INTERVAL 135 X'00000087'

MQIA_ACCOUNTING_MQI 133 X'00000085'

MQIA_ACCOUNTING_Q 134 X'00000086'

MQIA_ACTIVE_CHANNELS 100 X'00000064'

MQIA_ACTIVITY_CONN_OVERRIDE 239 X'000000EF'

MQIA_ACTIVITY_RECORDING 138 X'0000008A'

MQIA_ACTIVITY_TRACE 240 X'000000F0'

MQIA_ADOPTNEWMCA_CHECK 102 X'00000066'

MQIA_ADOPTNEWMCA_INTERVAL 104 X'00000068'

MQIA_ADOPTNEWMCA_TYPE 103 X'00000067'

MQIA_ADOPT_CONTEXT 260 X'00000104'

MQIA_ADVANCED_CAPABILITY
273 X'00000111'

MQIA_AMQP_CAPABILITY 265 X'00000109'

MQIA_APPL_TYPE 1 X'00000001'

MQIA_ARCHIVE 60 X'0000003C'

MQIA_AUTHENTICATION_FAIL_DELAY 259 X'00000103'

MQIA_AUTHENTICATION_METHOD 266 X'0000010A'

MQIA_AUTH_INFO_TYPE 66 X'00000042'

MQIA_AUTHORITY_EVENT 47 X'0000002F'

MQIA_AUTO_REORG_INTERVAL 174 X'000000AE'

MQIA_AUTO_REORGANIZATION 173 X'000000AD'

MQIA_BACKOUT_THRESHOLD 22 X'00000016'

MQIA_BASE_TYPE 193 X'000000C1'

MQIA_BATCH_INTERFACE_AUTO 86 X'00000056'

MQIA_BRIDGE_EVENT 74 X'0000004A'

MQIA_CF_LEVEL 70 X'00000046'

MQIA_CF_RECOVER 71 X'00000047'

MQIA_CHANNEL_AUTO_DEF 55 X'00000037'

MQIA_CHANNEL_AUTO_DEF_EVENT 56 X'00000038'

MQIA_CHANNEL_EVENT 73 X'00000049'

MQIA_CHECK_CLIENT_BINDING 258 X'00000102'

MQIA_CHECK_LOCAL_BINDING 257 X'00000101'

MQIA_CHINIT_ADAPTERS 101 X'00000065'

MQIA_CHINIT_CONTROL 119 X'00000077'

MQIA_CHINIT_DISPATCHERS 105 X'00000069'

MQIA_CHINIT_TRACE_AUTO_START 117 X'00000075'

MQIA_CHINIT_TRACE_TABLE_SIZE 118 X'00000076'

Developing applications reference 129

Table 185. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIA_CLUSTER_OBJECT_STATE 256 X'00000100'

MQIA_CLUSTER_PUB_ROUTE 255 X'000000FF'

MQIA_CLUSTER_Q_TYPE 59 X'0000003B'

MQIA_CLUSTER_WORKLOAD_LENGTH 58 X'0000003A'

MQIA_CLWL_MRU_CHANNELS 97 X'00000061'

MQIA_CLWL_Q_RANK 95 X'0000005F'

MQIA_CLWL_Q_PRIORITY 96 X'00000060'

MQIA_CLWL_USEQ 98 X'00000062'

MQIA_CMD_SERVER_AUTO 87 X'00000057'

MQIA_CMD_SERVER_CONTROL 120 X'00000078'

MQIA_CMD_SERVER_CONVERT_MSG 88 X'00000058'

MQIA_CMD_SERVER_DLQ_MSG 89 X'00000059'

MQIA_CODED_CHAR_SET_ID 2 X'00000002'

MQIA_COMM_EVENT 232 X'000000E8'

MQIA_COMMAND_EVENT 99 X'00000063'

MQIA_COMMAND_LEVEL 31 X'0000001F'

MQIA_CONFIGURATION_EVENT 51 X'00000033'

MQIA_CPI_LEVEL 27 X'0000001B'

MQIA_CURRENT_Q_DEPTH 3 X'00000003'

MQIA_DEF_BIND 61 X'0000003D'

MQIA_DEF_CLUSTER_XMIT_Q_TYPE 250 X'000000FA'

MQIA_DEF_INPUT_OPEN_OPTION 4 X'00000004'

MQIA_DEF_PERSISTENCE 5 X'00000005'

MQIA_DEF_PRIORITY 6 X'00000006'

MQIA_DEF_PUT_RESPONSE_TYPE 184 X'000000B8'

MQIA_DEF_READ_AHEAD 188 X'000000BC'

MQIA_DEFINITION_TYPE 7 X'00000007'

MQIA_DISPLAY_TYPE 262 X'00000106'

MQIA_DIST_LISTS 34 X'00000022'

MQIA_DNS_WLM 106 X'0000006A'

MQIA_DURABLE_SUB 175 X'000000AF'

MQIA_EXPIRY_INTERVAL 39 X'00000027'

MQIA_FIRST 1 X'00000001'

MQIA_GROUP_UR 221 X'000000DD'

MQIA_HARDEN_GET_BACKOUT 8 X'00000008'

MQIA_HIGH_Q_DEPTH 36 X'00000024'

MQIA_IGQ_PUT_AUTHORITY 65 X'00000041'

MQIA_INDEX_TYPE 57 X'00000039'

MQIA_INHIBIT_EVENT 48 X'00000030'

130 IBM MQ Developing Applications Reference

Table 185. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIA_INHIBIT_GET 9 X'00000009'

MQIA_INHIBIT_PUB 181 X'000000B5'

MQIA_INHIBIT_PUT 10 X'0000000A'

MQIA_INHIBIT_SUB 182 X'000000B6'

MQIA_INTRA_GROUP_queuing 64 X'00000040'

MQIA_IP_ADDRESS_VERSION 93 X'0000005D'

MQIA_KEY_REUSE_COUNT 267 X'0000010B'

MQIA_LAST 2000 X'000007D0'

MQIA_LAST_USED 267 X'0000010B'

MQIA_LDAP_AUTHORMD 263 X'00000107'

MQIA_LDAP_NESTGRP 264 X'00000108'

MQIA_LDAP_SECURE_COMM 261 X'00000105'

MQIA_LISTENER_PORT_NUMBER 85 X'00000055'

MQIA_LISTENER_TIMER 107 X'0000006B'

MQIA_LOGGER_EVENT 94 X'0000005E'

MQIA_LU62_CHANNELS 108 X'0000006C'

MQIA_LOCAL_EVENT 49 X'00000031'

MQIA_MSG_MARK_BROWSE_INTERVAL 68 X'00000044'

MQIA_MAX_CHANNELS 109 X'0000006D'

MQIA_MAX_CLIENTS 172 X'000000AC'

MQIA_MAX_GLOBAL_LOCKS 83 X'00000053'

MQIA_MAX_HANDLES 11 X'0000000B'

MQIA_MAX_LOCAL_LOCKS 84 X'00000054'

MQIA_MAX_MSG_LENGTH 13 X'0000000D'

MQIA_MAX_OPEN_Q 80 X'00000050'

MQIA_MAX_PRIORITY 14 X'0000000E'

MQIA_MAX_PROPERTIES_LENGTH 192 X'000000C0'

MQIA_MAX_Q_DEPTH 15 X'0000000F'

MQIA_MAX_Q_TRIGGERS 90 X'0000005A'

MQIA_MAX_RECOVERY_TASKS 171 X'000000AB'

MQIA_MAX_UNCOMMITTED_MSGS 33 X'00000021'

MQIA_MCAST_BRIDGE 233 X'000000E9'

MQIA_MONITOR_INTERVAL 81 X'00000051'

MQIA_MONITORING_AUTO_CLUSSDR 124 X'0000007C'

MQIA_MONITORING_CHANNEL 122 X'0000007A'

MQIA_MONITORING_Q 123 X'0000007B'

MQIA_MSG_DELIVERY_SEQUENCE 16 X'00000010'

MQIA_MSG_DEQ_COUNT 38 X'00000026'

MQIA_MSG_ENQ_COUNT 37 X'00000025'

Developing applications reference 131

Table 185. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIA_NAME_COUNT 19 X'00000013'

MQIA_NAMELIST_TYPE 72 X'00000048'

MQIA_NPM_CLASS 78 X'0000004E'

MQIA_NPM_DELIVERY 196 X'000000C4'

MQIA_OPEN_INPUT_COUNT 17 X'00000011'

MQIA_OPEN_OUTPUT_COUNT 18 X'00000012'

MQIA_OUTBOUND_PORT_MAX 140 X'0000008C'

MQIA_OUTBOUND_PORT_MIN 110 X'0000006E'

MQIA_PAGESET_ID 62 X'0000003E'

MQIA_PERFORMANCE_EVENT 53 X'00000035'

MQIA_PLATFORM 32 X'00000020'

MQIA_PM_DELIVERY 195 X'000000C3'

MQIA_PROPERTY_CONTROL 190 X'000000BE'

MQIA_PROT_POLICY_CAPABILITY 251 X'000000FB'

MQIA_PROXY_SUB 199 X'000000C7'

MQIA_PUB_COUNT 215 X'000000D7'

MQIA_PUB_SCOPE 219 X'000000DB'

MQIA_PUBSUB_CLUSTER 249 X'000000F9'

MQIA_PUBSUB_MAXMSG_RETRY_COUNT 206 X'000000CE'

MQIA_PUBSUB_MODE 187 X'000000BB'

MQIA_PUBSUB_NP_MSG 203 X'000000CB'

MQIA_PUBSUB_NP_RESP 205 X'000000CD'

MQIA_PUBSUB_SYNC_PT 207 X'000000CF'

MQIA_Q_DEPTH_HIGH_EVENT 43 X'0000002B'

MQIA_Q_DEPTH_HIGH_LIMIT 40 X'00000028'

MQIA_Q_DEPTH_LOW_EVENT 44 X'0000002C'

MQIA_Q_DEPTH_LOW_LIMIT 41 X'00000029'

MQIA_Q_DEPTH_MAX_EVENT 42 X'0000002A'

MQIA_Q_SERVICE_INTERVAL 54 X'00000036'

MQIA_Q_SERVICE_INTERVAL_EVENT 46 X'0000002E'

MQIA_Q_TYPE 20 X'00000014'

MQIA_Q_USERS 82 X'00000052'

MQIA_QMGR_CFCONLOS 245 X'000000F5'

MQIA_QMOPT_CONS_COMMS_MSGS 155 X'0000009B'

MQIA_QMOPT_CONS_CRITICAL_MSGS 154 X'0000009A'

MQIA_QMOPT_CONS_ERROR_MSGS 153 X'00000099'

MQIA_QMOPT_CONS_INFO_MSGS 151 X'00000097'

MQIA_QMOPT_CONS_REORG_MSGS 156 X'0000009C'

MQIA_QMOPT_CONS_SYSTEM_MSGS 157 X'0000009D'

132 IBM MQ Developing Applications Reference

Table 185. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIA_QMOPT_CONS_WARNING_MSGS 152 X'00000098'

MQIA_QMOPT_CSMT_ON_ERROR 150 X'00000096'

MQIA_QMOPT_INTERNAL_DUMP 170 X'000000AA'

MQIA_QMOPT_LOG_COMMS_MSGS 162 X'000000A2'

MQIA_QMOPT_LOG_CRITICAL_MSGS 161 X'000000A1'

MQIA_QMOPT_LOG_ERROR_MSGS 160 X'000000A0'

MQIA_QMOPT_LOG_INFO_MSGS 158 X'0000009E'

MQIA_QMOPT_LOG_REORG_MSGS 163 X'000000A3'

MQIA_QMOPT_LOG_SYSTEM_MSGS 164 X'000000A4'

MQIA_QMOPT_LOG_WARNING_MSGS 159 X'0000009F'

MQIA_QMOPT_TRACE_COMMS 166 X'000000A6'

MQIA_QMOPT_TRACE_CONVERSION 168 X'000000A8'

MQIA_QMOPT_TRACE_REORG 167 X'000000A7'

MQIA_QMOPT_TRACE_MQI_CALLS 165 X'000000A5'

MQIA_QMOPT_TRACE_SYSTEM 169 X'000000A9'

MQIA_QSG_DISP 63 X'0000003F'

MQIA_READ_AHEAD 189 X'000000BD'

MQIA_RECEIVE_TIMEOUT 111 X'0000006F'

MQIA_RECEIVE_TIMEOUT_MIN 113 X'00000071'

MQIA_RECEIVE_TIMEOUT_TYPE 112 X'00000070'

MQIA_REMOTE_EVENT 50 X'00000032'

MQIA_RETENTION_INTERVAL 21 X'00000015'

MQIA_REVERSE_DNS_LOOKUP 254 X'000000FE'

MQIA_SCOPE 45 X'0000002D'

MQIA_SECURITY_CASE 141 X'0000008D'

MQIA_SERVICE_CONTROL 139 X'0000008B'

MQIA_SERVICE_TYPE 121 X'00000079'

MQIA_SHAREABILITY 23 X'00000017'

MQIA_SHARED_Q_Q_MGR_NAME 77 X'0000004D'

MQIA_SSL_EVENT 75 X'0000004B'

MQIA_SSL_FIPS_REQUIRED 92 X'0000005C'

MQIA_SSL_RESET_COUNT 76 X'0000004C'

MQIA_SSL_TASKS 69 X'00000045'

MQIA_START_STOP_EVENT 52 X'00000034'

MQIA_STATISTICS_CHANNEL 129 X'00000081'

MQIA_STATISTICS_AUTO_CLUSSDR 130 X'00000082'

MQIA_STATISTICS_INTERVAL 131 X'00000083'

MQIA_STATISTICS_MQI 127 X'0000007F'

MQIA_STATISTICS_Q 128 X'00000080'

Developing applications reference 133

Table 185. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIA_SUB_COUNT 204 X'000000CC'

MQIA_SUB_SCOPE 218 X'000000DA'

MQIA_SYNCPOINT 30 X'0000001E'

MQIA_TCP_CHANNELS 114 X'00000072'

MQIA_TCP_KEEP_ALIVE 115 X'00000073'

MQIA_TCP_STACK_TYPE 116 X'00000074'

MQIA_TIME_SINCE_RESET 35 X'00000023'

MQIA_TOPIC_DEF_PERSISTENCE 185 X'000000B9'

MQIA_TOPIC_NODE_COUNT 253 X'000000FD'

MQIA_TOPIC_TYPE 208 X'000000D0'

MQIA_TRACE_ROUTE_RECORDING 137 X'00000089'

MQIA_TREE_LIFE_TIME 183 X'000000B7'

MQIA_TRIGGER_CONTROL 24 X'00000018'

MQIA_TRIGGER_DEPTH 29 X'0000001D'

MQIA_TRIGGER_INTERVAL 25 X'00000019'

MQIA_TRIGGER_MSG_PRIORITY 26 X'0000001A'

MQIA_TRIGGER_TYPE 28 X'0000001C'

MQIA_TRIGGER_RESTART 91 X'0000005B'

MQIA_USAGE 12 X'0000000C'

MQIA_USE_DEAD_LETTER_Q 234 X'000000EA'

MQIA_USER_LIST 2000 X'000007D0'

MQIA_WILDCARD_OPERATION 216 X'000000D8'

MQIA_XR_CAPABILITY 243 X'000000F3'

MQIACF_* (Command format Integer Parameter Types)
Table 186. Values of constants

Name Decimal value Hexadecimal value

MQIACF_FIRST 1001 X'000003E9'

MQIACF_Q_MGR_ATTRS 1001 X'000003E9'

MQIACF_Q_ATTRS 1002 X'000003EA'

MQIACF_PROCESS_ATTRS 1003 X'000003EB'

MQIACF_NAMELIST_ATTRS 1004 X'000003EC'

MQIACF_FORCE 1005 X'000003ED'

MQIACF_REPLACE 1006 X'000003EE'

MQIACF_PURGE 1007 X'000003EF'

MQIACF_QUIESCE 1008 X'000003F0'

MQIACF_MODE 1008 X'000003F0'

MQIACF_ALL 1009 X'000003F1'

MQIACF_EVENT_APPL_TYPE 1010 X'000003F2'

134 IBM MQ Developing Applications Reference

Table 186. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACF_EVENT_ORIGIN 1011 X'000003F3'

MQIACF_PARAMETER_ID 1012 X'000003F4'

MQIACF_ERROR_ID 1013 X'000003F5'

MQIACF_ERROR_IDENTIFIER 1013 X'000003F5'

MQIACF_SELECTOR 1014 X'000003F6'

MQIACF_CHANNEL_ATTRS 1015 X'000003F7'

MQIACF_OBJECT_TYPE 1016 X'000003F8'

MQIACF_ESCAPE_TYPE 1017 X'000003F9'

MQIACF_ERROR_OFFSET 1018 X'000003FA'

MQIACF_AUTH_INFO_ATTRS 1019 X'000003FB'

MQIACF_REASON_QUALIFIER 1020 X'000003FC'

MQIACF_COMMAND 1021 X'000003FD'

MQIACF_OPEN_OPTIONS 1022 X'000003FE'

MQIACF_OPEN_TYPE 1023 X'000003FF'

MQIACF_PROCESS_ID 1024 X'00000400'

MQIACF_THREAD_ID 1025 X'00000401'

MQIACF_Q_STATUS_ATTRS 1026 X'00000402'

MQIACF_UNCOMMITTED_MSGS 1027 X'00000403'

MQIACF_HANDLE_STATE 1028 X'00000404'

MQIACF_AUX_ERROR_DATA_INT_1 1070 X'0000042E'

MQIACF_AUX_ERROR_DATA_INT_2 1071 X'0000042F'

MQIACF_CONV_REASON_CODE 1072 X'00000430'

MQIACF_BRIDGE_TYPE 1073 X'00000431'

MQIACF_INQUIRY 1074 X'00000432'

MQIACF_WAIT_INTERVAL 1075 X'00000433'

MQIACF_OPTIONS 1076 X'00000434'

MQIACF_BROKER_OPTIONS 1077 X'00000435'

MQIACF_REFRESH_TYPE 1078 X'00000436'

MQIACF_SEQUENCE_NUMBER 1079 X'00000437'

MQIACF_INTEGER_DATA 1080 X'00000438'

MQIACF_REGISTRATION_OPTIONS 1081 X'00000439'

MQIACF_PUBLICATION_OPTIONS 1082 X'0000043A'

MQIACF_CLUSTER_INFO 1083 X'0000043B'

MQIACF_Q_MGR_DEFINITION_TYPE 1084 X'0000043C'

MQIACF_Q_MGR_TYPE 1085 X'0000043D'

MQIACF_ACTION 1086 X'0000043E'

MQIACF_SUSPEND 1087 X'0000043F'

MQIACF_BROKER_COUNT 1088 X'00000440'

MQIACF_APPL_COUNT 1089 X'00000441'

Developing applications reference 135

Table 186. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACF_ANONYMOUS_COUNT 1090 X'00000442'

MQIACF_REG_REG_OPTIONS 1091 X'00000443'

MQIACF_DELETE_OPTIONS 1092 X'00000444'

MQIACF_CLUSTER_Q_MGR_ATTRS 1093 X'00000445'

MQIACF_REFRESH_INTERVAL 1094 X'00000446'

MQIACF_REFRESH_REPOSITORY 1095 X'00000447'

MQIACF_REMOVE_QUEUES 1096 X'00000448'

MQIACF_OPEN_INPUT_TYPE 1098 X'0000044A'

MQIACF_OPEN_OUTPUT 1099 X'0000044B'

MQIACF_OPEN_SET 1100 X'0000044C'

MQIACF_OPEN_INQUIRE 1101 X'0000044D'

MQIACF_OPEN_BROWSE 1102 X'0000044E'

MQIACF_Q_STATUS_TYPE 1103 X'0000044F'

MQIACF_Q_HANDLE 1104 X'00000450'

MQIACF_Q_STATUS 1105 X'00000451'

MQIACF_SECURITY_TYPE 1106 X'00000452'

MQIACF_CONNECTION_ATTRS 1107 X'00000453'

MQIACF_CONNECT_OPTIONS 1108 X'00000454'

MQIACF_CONN_INFO_TYPE 1110 X'00000456'

MQIACF_CONN_INFO_CONN 1111 X'00000457'

MQIACF_CONN_INFO_HANDLE 1112 X'00000458'

MQIACF_CONN_INFO_ALL 1113 X'00000459'

MQIACF_AUTH_PROFILE_ATTRS 1114 X'0000045A'

MQIACF_AUTHORIZATION_LIST 1115 X'0000045B'

MQIACF_AUTH_ADD_AUTHS 1116 X'0000045C'

MQIACF_AUTH_REMOVE_AUTHS 1117 X'0000045D'

MQIACF_ENTITY_TYPE 1118 X'0000045E'

MQIACF_COMMAND_INFO 1120 X'00000460'

MQIACF_CMDSCOPE_Q_MGR_COUNT 1121 X'00000461'

MQIACF_Q_MGR_SYSTEM 1122 X'00000462'

MQIACF_Q_MGR_EVENT 1123 X'00000463'

MQIACF_Q_MGR_DQM 1124 X'00000464'

MQIACF_Q_MGR_CLUSTER 1125 X'00000465'

MQIACF_QSG_DISPS 1126 X'00000466'

MQIACF_UOW_STATE 1128 X'00000468'

MQIACF_SECURITY_ITEM 1129 X'00000469'

MQIACF_CF_STRUC_STATUS 1130 X'0000046A'

MQIACF_UOW_TYPE 1132 X'0000046C'

MQIACF_CF_STRUC_ATTRS 1133 X'0000046D'

136 IBM MQ Developing Applications Reference

Table 186. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACF_EXCLUDE_INTERVAL 1134 X'0000046E'

MQIACF_CF_STATUS_TYPE 1135 X'0000046F'

MQIACF_CF_STATUS_SUMMARY 1136 X'00000470'

MQIACF_CF_STATUS_CONNECT 1137 X'00000471'

MQIACF_CF_STATUS_BACKUP 1138 X'00000472'

MQIACF_CF_STRUC_TYPE 1139 X'00000473'

MQIACF_CF_STRUC_SIZE_MAX 1140 X'00000474'

MQIACF_CF_STRUC_SIZE_USED 1141 X'00000475'

MQIACF_CF_STRUC_ENTRIES_MAX 1142 X'00000476'

MQIACF_CF_STRUC_ENTRIES_USED 1143 X'00000477'

MQIACF_CF_STRUC_BACKUP_SIZE 1144 X'00000478'

MQIACF_MOVE_TYPE 1145 X'00000479'

MQIACF_MOVE_TYPE_MOVE 1146 X'0000047A'

MQIACF_MOVE_TYPE_ADD 1147 X'0000047B'

MQIACF_Q_MGR_NUMBER 1148 X'0000047C'

MQIACF_Q_MGR_STATUS 1149 X'0000047D'

MQIACF_DB2_CONN_STATUS 1150 X'0000047E'

MQIACF_SECURITY_ATTRS 1151 X'0000047F'

MQIACF_SECURITY_TIMEOUT 1152 X'00000480'

MQIACF_SECURITY_INTERVAL 1153 X'00000481'

MQIACF_SECURITY_SWITCH 1154 X'00000482'

MQIACF_SECURITY_SETTING 1155 X'00000483'

MQIACF_STORAGE_CLASS_ATTRS 1156 X'00000484'

MQIACF_USAGE_TYPE 1157 X'00000485'

MQIACF_BUFFER_POOL_ID 1158 X'00000486'

MQIACF_USAGE_TOTAL_PAGES 1159 X'00000487'

MQIACF_USAGE_UNUSED_PAGES 1160 X'00000488'

MQIACF_USAGE_PERSIST_PAGES 1161 X'00000489'

MQIACF_USAGE_NONPERSIST_PAGES 1162 X'0000048A'

MQIACF_USAGE_RESTART_EXTENTS 1163 X'0000048B'

MQIACF_USAGE_EXPAND_COUNT 1164 X'0000048C'

MQIACF_PAGESET_STATUS 1165 X'0000048D'

MQIACF_USAGE_TOTAL_BUFFERS 1166 X'0000048E'

MQIACF_USAGE_DATA_SET_TYPE 1167 X'0000048F'

MQIACF_USAGE_PAGESET 1168 X'00000490'

MQIACF_USAGE_DATA_SET 1169 X'00000491'

MQIACF_USAGE_BUFFER_POOL 1170 X'00000492'

MQIACF_MOVE_COUNT 1171 X'00000493'

MQIACF_EXPIRY_Q_COUNT 1172 X'00000494'

Developing applications reference 137

Table 186. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACF_CONFIGURATION_OBJECTS 1173 X'00000495'

MQIACF_CONFIGURATION_EVENTS 1174 X'00000496'

MQIACF_SYSP_TYPE 1175 X'00000497'

MQIACF_SYSP_DEALLOC_INTERVAL 1176 X'00000498'

MQIACF_SYSP_MAX_ARCHIVE 1177 X'00000499'

MQIACF_SYSP_MAX_READ_TAPES 1178 X'0000049A'

MQIACF_SYSP_IN_BUFFER_SIZE 1179 X'0000049B'

MQIACF_SYSP_OUT_BUFFER_SIZE 1180 X'0000049C'

MQIACF_SYSP_OUT_BUFFER_COUNT 1181 X'0000049D'

MQIACF_SYSP_ARCHIVE 1182 X'0000049E'

MQIACF_SYSP_DUAL_ACTIVE 1183 X'0000049F'

MQIACF_SYSP_DUAL_ARCHIVE 1184 X'000004A0'

MQIACF_SYSP_DUAL_BSDS 1185 X'000004A1'

MQIACF_SYSP_MAX_CONNS 1186 X'000004A2'

MQIACF_SYSP_MAX_CONNS_FORE 1187 X'000004A3'

MQIACF_SYSP_MAX_CONNS_BACK 1188 X'000004A4'

MQIACF_SYSP_EXIT_INTERVAL 1189 X'000004A5'

MQIACF_SYSP_EXIT_TASKS 1190 X'000004A6'

MQIACF_SYSP_CHKPOINT_COUNT 1191 X'000004A7'

MQIACF_SYSP_OTMA_INTERVAL 1192 X'000004A8'

MQIACF_SYSP_Q_INDEX_DEFER 1193 X'000004A9'

MQIACF_SYSP_DB2_TASKS 1194 X'000004AA'

MQIACF_SYSP_RESLEVEL_AUDIT 1195 X'000004AB'

MQIACF_SYSP_ROUTING_CODE 1196 X'000004AC'

MQIACF_SYSP_SMF_ACCOUNTING 1197 X'000004AD'

MQIACF_SYSP_SMF_STATS 1198 X'000004AE'

MQIACF_SYSP_SMF_INTERVAL 1199 X'000004AF'

MQIACF_SYSP_TRACE_CLASS 1200 X'000004B0'

MQIACF_SYSP_TRACE_SIZE 1201 X'000004B1'

MQIACF_SYSP_WLM_INTERVAL 1202 X'000004B2'

MQIACF_SYSP_ALLOC_UNIT 1203 X'000004B3'

MQIACF_SYSP_ARCHIVE_RETAIN 1204 X'000004B4'

MQIACF_SYSP_ARCHIVE_WTOR 1205 X'000004B5'

MQIACF_SYSP_BLOCK_SIZE 1206 X'000004B6'

MQIACF_SYSP_CATALOG 1207 X'000004B7'

MQIACF_SYSP_COMPACT 1208 X'000004B8'

MQIACF_SYSP_ALLOC_PRIMARY 1209 X'000004B9'

MQIACF_SYSP_ALLOC_SECONDARY 1210 X'000004BA'

MQIACF_SYSP_PROTECT 1211 X'000004BB'

138 IBM MQ Developing Applications Reference

Table 186. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACF_SYSP_QUIESCE_INTERVAL 1212 X'000004BC'

MQIACF_SYSP_TIMESTAMP 1213 X'000004BD'

MQIACF_SYSP_UNIT_ADDRESS 1214 X'000004BE'

MQIACF_SYSP_UNIT_STATUS 1215 X'000004BF'

MQIACF_SYSP_LOG_COPY 1216 X'000004C0'

MQIACF_SYSP_LOG_USED 1217 X'000004C1'

MQIACF_SYSP_LOG_SUSPEND 1218 X'000004C2'

MQIACF_SYSP_OFFLOAD_STATUS 1219 X'000004C3'

MQIACF_SYSP_TOTAL_LOGS 1220 X'000004C4'

MQIACF_SYSP_FULL_LOGS 1221 X'000004C5'

MQIACF_LISTENER_ATTRS 1222 X'000004C6'

MQIACF_LISTENER_STATUS_ATTRS 1223 X'000004C7'

MQIACF_SERVICE_ATTRS 1224 X'000004C8'

MQIACF_SERVICE_STATUS_ATTRS 1225 X'000004C9'

MQIACF_Q_TIME_INDICATOR 1226 X'000004CA'

MQIACF_OLDEST_MSG_AGE 1227 X'000004CB'

MQIACF_AUTH_OPTIONS 1228 X'000004CC'

MQIACF_Q_MGR_STATUS_ATTRS 1229 X'000004CD'

MQIACF_CONNECTION_COUNT 1230 X'000004CE'

MQIACF_Q_MGR_FACILITY 1231 X'000004CF'

MQIACF_CHINIT_STATUS 1232 X'000004D0'

MQIACF_CMD_SERVER_STATUS 1233 X'000004D1'

MQIACF_ROUTE_DETAIL 1234 X'000004D2'

MQIACF_RECORDED_ACTIVITIES 1235 X'000004D3'

MQIACF_MAX_ACTIVITIES 1236 X'000004D4'

MQIACF_DISCONTINUITY_COUNT 1237 X'000004D5'

MQIACF_ROUTE_ACCUMULATION 1238 X'000004D6'

MQIACF_ROUTE_DELIVERY 1239 X'000004D7'

MQIACF_OPERATION_TYPE 1240 X'000004D8'

MQIACF_BACKOUT_COUNT 1241 X'000004D9'

MQIACF_COMP_CODE 1242 X'000004DA'

MQIACF_ENCODING 1243 X'000004DB'

MQIACF_EXPIRY 1244 X'000004DC'

MQIACF_FEEDBACK 1245 X'000004DD'

MQIACF_MSG_FLAGS 1247 X'000004DF'

MQIACF_MSG_LENGTH 1248 X'000004E0'

MQIACF_MSG_TYPE 1249 X'000004E1'

MQIACF_OFFSET 1250 X'000004E2'

MQIACF_ORIGINAL_LENGTH 1251 X'000004E3'

Developing applications reference 139

Table 186. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACF_PERSISTENCE 1252 X'000004E4'

MQIACF_PRIORITY 1253 X'000004E5'

MQIACF_REASON_CODE 1254 X'000004E6'

MQIACF_REPORT 1255 X'000004E7'

MQIACF_VERSION 1256 X'000004E8'

MQIACF_UNRECORDED_ACTIVITIES 1257 X'000004E9'

MQIACF_MONITORING 1258 X'000004EA'

MQIACF_ROUTE_FORWARDING 1259 X'000004EB'

MQIACF_SERVICE_STATUS 1260 X'000004EC'

MQIACF_Q_TYPES 1261 X'000004ED'

MQIACF_USER_ID_SUPPORT 1262 X'000004EE'

MQIACF_INTERFACE_VERSION 1263 X'000004EF'

MQIACF_AUTH_SERVICE_ATTRS 1264 X'000004F0'

MQIACF_USAGE_EXPAND_TYPE 1265 X'000004F1'

MQIACF_SYSP_CLUSTER_CACHE 1266 X'000004F2'

MQIACF_SYSP_DB2_BLOB_TASKS 1267 X'000004F3'

MQIACF_SYSP_WLM_INT_UNITS 1268 X'000004F4'

MQIACF_TOPIC_ATTRS 1269 X'000004F5'

MQIACF_PUBSUB_PROPERTIES 1271 X'000004F7'

MQIACF_DESTINATION_CLASS 1273 X'000004F9'

MQIACF_DURABLE_SUBSCRIPTION 1274 X'000004FA'

MQIACF_SUBSCRIPTION_SCOPE 1275 X'000004FB'

MQIACF_VARIABLE_USER_ID 1277 X'000004FD'

MQIACF_REQUEST_ONLY 1280 X'00000500'

MQIACF_PUB_PRIORITY 1283 X'00000503'

MQIACF_SUB_ATTRS 1287 X'00000507'

MQIACF_WILDCARD_SCHEMA 1288 X'00000508'

MQIACF_SUB_TYPE 1289 X'00000509'

MQIACF_MESSAGE_COUNT 1290 X'0000050A'

MQIACF_Q_MGR_PUBSUB 1291 X'0000050B'

MQIACF_Q_MGR_VERSION 1292 X'0000050C'

MQIACF_SUB_STATUS_ATTRS 1294 X'0000050E'

MQIACF_TOPIC_STATUS 1295 X'0000050F'

MQIACF_TOPIC_SUB 1296 X'00000510'

MQIACF_TOPIC_PUB 1297 X'00000511'

MQIACF_RETAINED_PUBLICATION 1300 X'00000514'

MQIACF_TOPIC_STATUS_ATTRS 1301 X'00000515'

MQIACF_TOPIC_STATUS_TYPE 1302 X'00000516'

MQIACF_SUB_OPTIONS 1303 X'00000517'

140 IBM MQ Developing Applications Reference

Table 186. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACF_PUBLISH_COUNT 1304 X'00000518'

MQIACF_CLEAR_TYPE 1305 X'00000519'

MQIACF_CLEAR_SCOPE 1306 X'0000051A'

MQIACF_SUB_LEVEL 1307 X'0000051B'

MQIACF_ASYNC_STATE 1308 X'0000051C'

MQIACF_SUB_SUMMARY 1309 X'0000051D'

MQIACF_OBSOLETE_MSGS 1310 X'0000051E'

MQIACF_PUBSUB_STATUS 1311 X'0000051F'

MQIACF_PS_STATUS_TYPE 1314 X'00000522'

MQIACF_PUBSUB_STATUS_ATTRS 1318 X'00000526'

MQIACF_SELECTOR_TYPE 1321 X'00000529'

MQIACF_MCAST_REL_INDICATOR 1351 X'00000547'

MQIACF_CHLAUTH_TYPE 1352 X'00000548'

MQXR_DIAGNOSTICS_TYPE 1354 X'0000054A'

MQIACF_CHLAUTH_ATTRS 1355 X'0000054B'

MQIACF_OPERATION_ID 1356 X'0000054C'

MQIACF_API_CALLER_TYPE 1357 X'0000054D'

MQIACF_API_ENVIRONMENT 1358 X'0000054E'

MQIACF_TRACE_DETAIL 1359 X'0000054F'

MQIACF_HOBJ 1360 X'00000550'

MQIACF_CALL_TYPE 1361 X'00000551'

MQIACF_MQCB_OPERATION 1362 X'00000552'

MQIACF_MQCB_TYPE 1363 X'00000553'

MQIACF_MQCB_OPTIONS 1364 X'00000554'

MQIACF_CLOSE_OPTIONS 1365 X'00000555'

MQIACF_CTL_OPERATION 1366 X'00000556'

MQIACF_GET_OPTIONS 1367 X'00000557'

MQIACF_RECS_PRESENT 1368 X'00000558'

MQIACF_KNOWN_DEST_COUNT 1369 X'00000559'

MQIACF_UNKNOWN_DEST_COUNT 1370 X'0000055A'

MQIACF_INVALID_DEST_COUNT 1371 X'0000055B'

MQIACF_RESOLVED_TYPE 1372 X'0000055C'

MQIACF_PUT_OPTIONS 1373 X'0000055D'

MQIACF_BUFFER_LENGTH 1374 X'0000055E'

MQIACF_TRACE_DATA_LENGTH 1375 X'0000055F'

MQIACF_SMDS_EXPANDST 1376 X'00000560'

MQIACF_STRUC_LENGTH 1377 X'00000561'

MQIACF_ITEM_COUNT 1378 X'00000562'

MQIACF_EXPIRY_TIME 1379 X'00000563'

Developing applications reference 141

Table 186. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACF_CONNECT_TIME 1380 X'00000564'

MQIACF_DISCONNECT_TIME 1381 X'00000565'

MQIACF_HSUB 1382 X'00000566'

MQIACF_SUBRQ_OPTIONS 1383 X'00000567'

MQIACF_XA_RMID 1384 X'00000568'

MQIACF_XA_FLAGS 1385 X'00000569'

MQIACF_XA_RETCODE 1386 X'0000056A'

MQIACF_XA_HANDLE 1387 X'0000056B'

MQIACF_XA_RETVAL 1388 X'0000056C'

MQIACF_STATUS_TYPE 1389 X'0000056D'

MQIACF_XA_COUNT 1390 X'0000056E'

MQIACF_SELECTOR_COUNT 1391 X'0000056F'

MQIACF_SELECTORS 1392 X'00000570'

MQIACF_INTATTR_COUNT 1393 X'00000571'

MQIACF_INTATTRS 1394 X'00000572'

MQIACF_SUBRQ_ACTION 1395 X'00000573'

MQIACF_NUM_PUBS 1396 X'00000574'

MQIACF_POINTER_SIZE 1397 X'00000575'

MQIACF_REMOVE_AUTHREC 1398 X'00000576'

MQIACF_XR_ATTRS 1399 X'00000577'

MQIACF_APPL_FUNCTION_TYPE 1400 X'00000578'

MQIACF_AMQP_ATTRS 1401 X'00000579'

MQIACF_EXPORT_TYPE 1402 X'0000057A'

MQIACF_EXPORT_ATTRS 1403 X'0000057B'

MQIACF_SYSTEM_OBJECTS 1404 X'0000057C'

MQIACF_CONNECTION_SWAP 1405 X'0000057D'

MQIACF_AMQP_DIAGNOSTICS_TYPE 1406 X'0000057E'

MQIACF_BUFFER_POOL_LOCATION 1408 X'00000580'

MQIACF_LDAP_CONNECTION_STATUS 1409 X'00000581'

MQIACF_SYSP_MAX_ACE_POOL 1410 X'00000582'

MQIACF_PAGECLAS 1411 X'00000583'

MQIACF_AUTH_REC_TYPE 1412 X'00000584'

MQIACF_SYSP_MAX_CONC_OFFLOADS 1413 X'00000585'

MQIACF_SYSP_ZHYPERWRITE 1414 X'00000586'

MQIACF_Q_MGR_STATUS_LOG 1415 X'00000587'

MQIACF_ARCHIVE_LOG_SIZE 1416 X'00000588'

MQIACF_MEDIA_LOG_SIZE 1417 X'00000589'

MQIACF_RESTART_LOG_SIZE 1418 X'0000058A'

MQIACF_REUSABLE_LOG_SIZE 1419 X'0000058B'

142 IBM MQ Developing Applications Reference

Table 186. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACF_LOG_IN_USE 1420 X'0000058C'

MQIACF_LOG_UTILIZATION 1421 X'0000058D'

MQIACF_IGNORE_STATE
1423 X'0000058F'

MQIACF_MOVABLE_APPL_COUNT 1424 X'00000590'

MQIACF_APPL_INFO_ATTRS 1425 X'00000591'

MQIACF_APPL_MOVABLE 1426 X'00000592'

MQIACF_REMOTE_QMGR_ACTIVE 1427 X'00000593'

MQIACF_APPL_INFO_TYPE 1428 X'00000594'

MQIACF_APPL_INFO_APPL 1429 X'00000595'

MQIACF_APPL_INFO_QMGR 1430 X'00000596'

MQIACF_APPL_INFO_LOCAL 1431 X'00000597'

MQIACF_APPL_IMMOVABLE_COUNT 1432 X'00000598'

MQIACF_BALANCED 1433 X'00000599'

MQIACF_BALSTATE 1434 X'0000059A'

MQIACF_APPL_IMMOVABLE_REASON 1435 X'0000059B'

MQIACF_DS_ENCRYPTED 1436 X'0000059C'

MQIACF_CUR_Q_FILE_SIZE 1437 X'0000059D'

MQIACF_CUR_MAX_FILE_SIZE 1438 X'0000059E'

MQIACF_BALANCING_TYPE 1439 X'0000059F'

MQIACF_BALANCING_OPTIONS 1440 X'000005A0'

MQIACF_BALANCING_TIMEOUT 1441 X'000005A1'

MQIACF_SYSP_SMF_STAT_TIME_SECS 1442 X'000005A2'

MQIACF_SYSP_SMF_ACCT_TIME_MINS 1443 X'000005A3'

MQIACF_SYSP_SMF_ACCT_TIME_SECS 1444 X'000005A4'

MQIACF_LAST_USED
1441 X'000005A1'

MQIACF_LAST_USED
1444 X'000005A4'

MQIACH_* (Command format Integer Channel Types)
Table 187. Values of constants

Name Decimal value Hexadecimal value

MQIACH_FIRST 1501 X'000005DD'

MQIACH_XMIT_PROTOCOL_TYPE 1501 X'000005DD'

MQIACH_BATCH_SIZE 1502 X'000005DE'

MQIACH_DISC_INTERVAL 1503 X'000005DF'

MQIACH_SHORT_TIMER 1504 X'000005E0'

MQIACH_SHORT_RETRY 1505 X'000005E1'

MQIACH_LONG_TIMER 1506 X'000005E2'

MQIACH_LONG_RETRY 1507 X'000005E3'

Developing applications reference 143

Table 187. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACH_PUT_AUTHORITY 1508 X'000005E4'

MQIACH_SEQUENCE_NUMBER_WRAP 1509 X'000005E5'

MQIACH_MAX_MSG_LENGTH 1510 X'000005E6'

MQIACH_CHANNEL_TYPE 1511 X'000005E7'

MQIACH_DATA_COUNT 1512 X'000005E8'

MQIACH_NAME_COUNT 1513 X'000005E9'

MQIACH_MSG_SEQUENCE_NUMBER 1514 X'000005EA'

MQIACH_DATA_CONVERSION 1515 X'000005EB'

MQIACH_IN_DOUBT 1516 X'000005EC'

MQIACH_MCA_TYPE 1517 X'000005ED'

MQIACH_SESSION_COUNT 1518 X'000005EE'

MQIACH_ADAPTER 1519 X'000005EF'

MQIACH_COMMAND_COUNT 1520 X'000005F0'

MQIACH_SOCKET 1521 X'000005F1'

MQIACH_PORT 1522 X'000005F2'

MQIACH_CHANNEL_INSTANCE_TYPE 1523 X'000005F3'

MQIACH_CHANNEL_INSTANCE_ATTRS 1524 X'000005F4'

MQIACH_CHANNEL_ERROR_DATA 1525 X'000005F5'

MQIACH_CHANNEL_TABLE 1526 X'000005F6'

MQIACH_CHANNEL_STATUS 1527 X'000005F7'

MQIACH_INDOUBT_STATUS 1528 X'000005F8'

MQIACH_LAST_SEQ_NUMBER 1529 X'000005F9'

MQIACH_LAST_SEQUENCE_NUMBER 1529 X'000005F9'

MQIACH_CURRENT_MSGS 1531 X'000005FB'

MQIACH_CURRENT_SEQ_NUMBER 1532 X'000005FC'

MQIACH_CURRENT_SEQUENCE_NUMBER 1532 X'000005FC'

MQIACH_SSL_RETURN_CODE 1533 X'000005FD'

MQIACH_MSGS 1534 X'000005FE'

MQIACH_BYTES_SENT 1535 X'000005FF'

MQIACH_BYTES_RCVD 1536 X'00000600'

MQIACH_BYTES_RECEIVED 1536 X'00000600'

MQIACH_BATCHES 1537 X'00000601'

MQIACH_BUFFERS_SENT 1538 X'00000602'

MQIACH_BUFFERS_RCVD 1539 X'00000603'

MQIACH_BUFFERS_RECEIVED 1539 X'00000603'

MQIACH_LONG_RETRIES_LEFT 1540 X'00000604'

MQIACH_SHORT_RETRIES_LEFT 1541 X'00000605'

MQIACH_MCA_STATUS 1542 X'00000606'

MQIACH_STOP_REQUESTED 1543 X'00000607'

144 IBM MQ Developing Applications Reference

Table 187. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACH_MR_COUNT 1544 X'00000608'

MQIACH_MR_INTERVAL 1545 X'00000609'

MQIACH_NPM_SPEED 1562 X'0000061A'

MQIACH_HB_INTERVAL 1563 X'0000061B'

MQIACH_BATCH_INTERVAL 1564 X'0000061C'

MQIACH_NETWORK_PRIORITY 1565 X'0000061D'

MQIACH_KEEP_ALIVE_INTERVAL 1566 X'0000061E'

MQIACH_BATCH_HB 1567 X'0000061F'

MQIACH_SSL_CLIENT_AUTH 1568 X'00000620'

MQIACH_ALLOC_RETRY 1570 X'00000622'

MQIACH_ALLOC_FAST_TIMER 1571 X'00000623'

MQIACH_ALLOC_SLOW_TIMER 1572 X'00000624'

MQIACH_DISC_RETRY 1573 X'00000625'

MQIACH_PORT_NUMBER 1574 X'00000626'

MQIACH_HDR_COMPRESSION 1575 X'00000627'

MQIACH_MSG_COMPRESSION 1576 X'00000628'

MQIACH_CLWL_CHANNEL_RANK 1577 X'00000629'

MQIACH_CLWL_CHANNEL_PRIORITY 1578 X'0000062A'

MQIACH_CLWL_CHANNEL_WEIGHT 1579 X'0000062B'

MQIACH_CHANNEL_DISP 1580 X'0000062C'

MQIACH_INBOUND_DISP 1581 X'0000062D'

MQIACH_CHANNEL_TYPES 1582 X'0000062E'

MQIACH_ADAPS_STARTED 1583 X'0000062F'

MQIACH_ADAPS_MAX 1584 X'00000630'

MQIACH_DISPS_STARTED 1585 X'00000631'

MQIACH_DISPS_MAX 1586 X'00000632'

MQIACH_SSLTASKS_STARTED 1587 X'00000633'

MQIACH_SSLTASKS_MAX 1588 X'00000634'

MQIACH_CURRENT_CHL 1589 X'00000635'

MQIACH_CURRENT_CHL_MAX 1590 X'00000636'

MQIACH_CURRENT_CHL_TCP 1591 X'00000637'

MQIACH_CURRENT_CHL_LU62 1592 X'00000638'

MQIACH_ACTIVE_CHL 1593 X'00000639'

MQIACH_ACTIVE_CHL_MAX 1594 X'0000063A'

MQIACH_ACTIVE_CHL_PAUSED 1595 X'0000063B'

MQIACH_ACTIVE_CHL_STARTED 1596 X'0000063C'

MQIACH_ACTIVE_CHL_STOPPED 1597 X'0000063D'

MQIACH_ACTIVE_CHL_RETRY 1598 X'0000063E'

MQIACH_LISTENER_STATUS 1599 X'0000063F'

Developing applications reference 145

Table 187. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACH_SHARED_CHL_RESTART 1600 X'00000640'

MQIACH_LISTENER_CONTROL 1601 X'00000641'

MQIACH_BACKLOG 1602 X'00000642'

MQIACH_XMITQ_TIME_INDICATOR 1604 X'00000644'

MQIACH_NETWORK_TIME_INDICATOR 1605 X'00000645'

MQIACH_EXIT_TIME_INDICATOR 1606 X'00000646'

MQIACH_BATCH_SIZE_INDICATOR 1607 X'00000647'

MQIACH_XMITQ_MSGS_AVAILABLE 1608 X'00000648'

MQIACH_CHANNEL_SUBSTATE 1609 X'00000649'

MQIACH_SSL_KEY_RESETS 1610 X'0000064A'

MQIACH_COMPRESSION_RATE 1611 X'0000064B'

MQIACH_COMPRESSION_TIME 1612 X'0000064C'

MQIACH_MAX_XMIT_SIZE 1613 X'0000064D'

MQIACH_DEF_CHANNEL_DISP 1614 X'0000064E'

MQIACH_SHARING_CONVERSATIONS 1615 X'0000064F'

MQIACH_MAX_SHARING_CONVS 1616 X'00000650'

MQIACH_CURRENT_SHARING_CONVS 1617 X'00000651'

MQIACH_MAX_INSTANCES 1618 X'00000652'

MQIACH_MAX_INSTS_PER_CLIENT 1619 X'00000653'

MQIACH_CLIENT_CHANNEL_WEIGHT 1620 X'00000654'

MQIACH_CONNECTION_AFFINITY 1621 X'00000655'

MQIACH_AUTH_INFO_TYPES 1622 X'00000656'

MQIACH_RESET_REQUESTED 1623 X'00000657'

MQIACH_BATCH_DATA_LIMIT 1624 X'00000658'

MQIACH_MSG_HISTORY 1625 X'00000659'

MQIACH_MULTICAST_PROPERTIES 1626 X'0000065A'

MQIACH_NEW_SUBSCRIBER_HISTORY 1627 X'0000065B'

MQIACH_MC_HB_INTERVAL 1628 X'0000065C'

MQIACH_USE_CLIENT_ID 1629 X'0000065D'

MQIACH_MQTT_KEEP_ALIVE 1630 X'0000065E'

MQIACH_IN_DOUBT_IN 1631 X'0000065F'

MQIACH_IN_DOUBT_OUT 1632 X'00000660'

MQIACH_MSGS_SENT< 1633 X'00000661'

MQIACH_MSGS_RECEIVED 1634 X'00000662'

MQIACH_MSGS_RCVD 1634 X'00000662'

MQIACH_PENDING_OUT 1635 X'00000663'

MQIACH_AVAILABLE_CIPHERSPECS 1636 X'00000664'

MQIACH_MATCH 1637 X'00000665'

MQIACH_USER_SOURCE 1638 X'00000666'

146 IBM MQ Developing Applications Reference

Table 187. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIACH_WARNING 1639 X'00000667'

MQIACH_DEF_RECONNECT 1640 X'00000668'

MQIACH_CHANNEL_SUMMARY_ATTRS 1642 X'0000066A'

MQIACH_PROTOCOL 1643 X'0000066B'

MQIACH_AMQPKEEPALIVE 1644 X'0000066C'

MQIACH_SECURITY_PROTOCOL 1645 X'0000066D'

MQIACH_SPL_PROTECTION
1646 X'0000066E'

MQIACH_LAST_USED 1646 X'0000066E'

MQIAMO_* (Command format Integer Monitoring Parameter Types)
Table 188. Values of constants

Name Decimal value Hexadecimal value

MQIAMO_FIRST 701 X'000002BD'

MQIAMO_AVG_BATCH_SIZE 702 X'000002BE'

MQIAMO_AVG_Q_TIME 703 X'000002BF'

MQIAMO_BACKOUTS 704 X'000002C0'

MQIAMO_BROWSES 705 X'000002C1'

MQIAMO_BROWSE_MAX_BYTES 706 X'000002C2'

MQIAMO_BROWSE_MIN_BYTES 707 X'000002C3'

MQIAMO_BROWSES_FAILED 708 X'000002C4'

MQIAMO_CLOSES 709 X'000002C5'

MQIAMO_COMMITS 710 X'000002C6'

MQIAMO_COMMITS_FAILED 711 X'000002C7'

MQIAMO_CONNS 712 X'000002C8'

MQIAMO_CONNS_MAX 713 X'000002C9'

MQIAMO_DISCS 714 X'000002CA'

MQIAMO_DISCS_IMPLICIT 715 X'000002CB'

MQIAMO_DISC_TYPE 716 X'000002CC'

MQIAMO_EXIT_TIME_AVG 717 X'000002CD'

MQIAMO_EXIT_TIME_MAX 718 X'000002CE'

MQIAMO_EXIT_TIME_MIN 719 X'000002CF'

MQIAMO_FULL_BATCHES 720 X'000002D0'

MQIAMO_GENERATED_MSGS 721 X'000002D1'

MQIAMO_GETS 722 X'000002D2'

MQIAMO_GET_MAX_BYTES 723 X'000002D3'

MQIAMO_GET_MIN_BYTES 724 X'000002D4'

MQIAMO_GETS_FAILED 725 X'000002D5'

MQIAMO_INCOMPLETE_BATCHES 726 X'000002D6'

MQIAMO_INQS 727 X'000002D7'

Developing applications reference 147

Table 188. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIAMO_MSGS 728 X'000002D8'

MQIAMO_NET_TIME_AVG 729 X'000002D9'

MQIAMO_NET_TIME_MAX 730 X'000002DA'

MQIAMO_NET_TIME_MIN 731 X'000002DB'

MQIAMO_OBJECT_COUNT 732 X'000002DC'

MQIAMO_OPENS 733 X'000002DD'

MQIAMO_PUT1S 734 X'000002DE'

MQIAMO_PUTS 735 X'000002DF'

MQIAMO_PUT_MAX_BYTES 736 X'000002E0'

MQIAMO_PUT_MIN_BYTES 737 X'000002E1'

MQIAMO_PUT_RETRIES 738 X'000002E2'

MQIAMO_Q_MAX_DEPTH 739 X'000002E3'

MQIAMO_Q_MIN_DEPTH 740 X'000002E4'

MQIAMO_Q_TIME_AVG 741 X'000002E5'

MQIAMO_Q_TIME_MAX 742 X'000002E6'

MQIAMO_Q_TIME_MIN 743 X'000002E7'

MQIAMO_SETS 744 X'000002E8'

MQIAMO_CONNS_FAILED 749 X'000002ED'

MQIAMO_OPENS_FAILED 751 X'000002EF'

MQIAMO_INQS_FAILED 752 X'000002F0'

MQIAMO_SETS_FAILED 753 X'000002F1'

MQIAMO_PUTS_FAILED 754 X'000002F2'

MQIAMO_PUT1S_FAILED 755 X'000002F3'

MQIAMO_CLOSES_FAILED 757 X'000002F5'

MQIAMO_MSGS_EXPIRED 758 X'000002F6'

MQIAMO_MSGS_NOT_QUEUED 759 X'000002F7'

MQIAMO_MSGS_PURGED 760 X'000002F8'

MQIAMO_SUBS_DUR 764 X'000002FC'

MQIAMO_SUBS_NDUR 765 X'000002FD'

MQIAMO_SUBS_FAILED 766 X'000002FE'

MQIAMO_SUBRQS 767 X'000002FF'

MQIAMO_SUBRQS_FAILED 768 X'00000300'

MQIAMO_CBS 769 X'00000301'

MQIAMO_CBS_FAILED 770 X'00000302'

MQIAMO_CTLS 771 X'00000303'

MQIAMO_CTLS_FAILED 772 X'00000304'

MQIAMO_STATS 773 X'00000305'

MQIAMO_STATS_FAILED 774 X'00000306'

MQIAMO_SUB_DUR_HIGHWATER 775 X'00000307'

148 IBM MQ Developing Applications Reference

Table 188. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIAMO_SUB_DUR_LOWWATER 776 X'00000308'

MQIAMO_SUB_NDUR_HIGHWATER 777 X'00000309'

MQIAMO_SUB_NDUR_LOWWATER 778 X'0000030A'

MQIAMO_TOPIC_PUTS 779 X'0000030B'

MQIAMO_TOPIC_PUTS_FAILED 780 X'0000030C'

MQIAMO_TOPIC_PUT1S 781 X'0000030D'

MQIAMO_TOPIC_PUT1S_FAILED 782 X'0000030E'

MQIAMO_PUBLISH_MSG_COUNT 784 X'00000310'

MQIAMO_UNSUBS_DUR 786 X'00000312'

MQIAMO_UNSUBS_NDUR 787 X'00000313'

MQIAMO_UNSUBS_FAILED 788 X'00000314'

MQIAMO_INTERVAL 789 X'00000315'

MQIAMO_MSGS_SENT 790 X'00000316'

MQIAMO_BYTES_SENT 791 X'00000317'

MQIAMO_REPAIR_BYTES 792 X'00000318'

MQIAMO_FEEDBACK_MODE 793 X'00000319'

MQIAMO_RELIABILITY_TYPE 794 X'0000031A'

MQIAMO_LATE_JOIN_MARK 795 X'0000031B'

MQIAMO_NACKS_RCVD 796 X'0000031C'

MQIAMO_REPAIR_PKTS 797 X'0000031D'

MQIAMO_HISTORY_PKTS 798 X'0000031E'

MQIAMO_PENDING_PKTS 799 X'0000031F'

MQIAMO_PKT_RATE 800 X'00000320'

MQIAMO_MCAST_XMIT_RATE 801 X'00000321'

MQIAMO_MCAST_BATCH_TIME 802 X'00000322'

MQIAMO_MCAST_HEARTBEAT 803 X'00000323'

MQIAMO_DEST_DATA_PORT 804 X'00000324'

MQIAMO_DEST_REPAIR_PORT 805 X'00000325'

MQIAMO_ACKS_RCVD 806 X'00000326'

MQIAMO_ACTIVE_ACKERS 807 X'00000327'

MQIAMO_PKTS_SENT 808 X'00000328'

MQIAMO_TOTAL_REPAIR_PKTS 809 X'00000329'

MQIAMO_TOTAL_PKTS_SENT 810 X'0000032A'

MQIAMO_TOTAL_MSGS_SENT 811 X'0000032B'

MQIAMO_TOTAL_BYTES_SENT 812 X'0000032C'

MQIAMO_NUM_STREAMS 813 X'0000032D'

MQIAMO_ACK_FEEDBACK 814 X'0000032E'

MQIAMO_NACK_FEEDBACK 815 X'0000032F'

MQIAMO_PKTS_LOST 816 X'00000330'

Developing applications reference 149

Table 188. Values of constants (continued)

Name Decimal value Hexadecimal value

MQIAMO_MSGS_RCVD 817 X'00000331'

MQIAMO_MSG_BYTES_RCVD 818 X'00000332'

MQIAMO_MSGS_DELIVERED 819 X'00000333'

MQIAMO_PKTS_PROCESSED 820 X'00000334'

MQIAMO_PKTS_DLVD 821 X'00000335'

MQIAMO_PKTS_DROPPED 822 X'00000336'

MQIAMO_PKTS_DUPLICATED 823 X'00000337'

MQIAMO_NACKS_CREATED 824 X'00000338'

MQIAMO_NACK_PKTS_SENT 825 X'00000339'

MQIAMO_REPAIR_PKTS_RQSTD 826 X'0000033A'

MQIAMO_REPAIR_PKTS_RCVD 827 X'0000033B'

MQIAMO_PKTS_REPAIRED 828 X'0000033C'

MQIAMO_TOTAL_MSGS_RCVD 829 X'0000033D'

MQIAMO_TOTAL_MSGS_BYTES_RCVD 830 X'0000033E'

MQIAMO_TOTAL_REPAIR_PKTS_RCVD 831 X'0000033F'

MQIAMO_TOTAL_REPAIR_PKTS_RQSTD 832 X'00000340'

MQIAMO_TOTAL_MSGS_PROCESSED 833 X'00000341'

MQIAMO_TOTAL_MSGS_SELECTED 834 X'00000342'

MQIAMO_TOTAL_MSGS_EXPIRED 835 X'00000343'

MQIAMO_TOTAL_MSGS_DELIVERED 836 X'00000344'

MQIAMO_TOTAL_MSGS_RETURNED 837 X'00000345'

MQIAMO_LAST_USED 837 X'00000345'

MQIAMO64_* (Command format 64-bit Integer Monitoring Parameter Types)
Table 189. Values of constants

Name Decimal value Hexadecimal value

MQIAMO64_AVG_Q_TIME 703 X'000002BF'

MQIAMO64_Q_TIME_AVG 741 X'000002E5'

MQIAMO64_Q_TIME_MAX 742 X'000002E6'

MQIAMO64_Q_TIME_MIN 743 X'000002E7'

MQIAMO64_BROWSE_BYTES 745 X'000002E9'

MQIAMO64_BYTES 746 X'000002EA'

MQIAMO64_GET_BYTES 747 X'000002EB'

MQIAMO64_PUT_BYTES 748 X'000002EC'

MQIAMO64_TOPIC_PUT_BYTES 783 X'0000030F'

MQIAMO64_PUBLISH_MSG_BYTES 785 X'00000311'

150 IBM MQ Developing Applications Reference

MQIASY_* (Integer System Selectors)
Table 190. Values of constants

Name Decimal value Hexadecimal value

MQIASY_FIRST -1 X'FFFFFFFF'

MQIASY_CODED_CHAR_SET_ID -1 X'FFFFFFFF'

MQIASY_TYPE -2 X'FFFFFFFE'

MQIASY_COMMAND -3 X'FFFFFFFD'

MQIASY_MSG_SEQ_NUMBER -4 X'FFFFFFFC'

MQIASY_CONTROL -5 X'FFFFFFFB'

MQIASY_COMP_CODE -6 X'FFFFFFFA'

MQIASY_REASON -7 X'FFFFFFF9'

MQIASY_BAG_OPTIONS -8 X'FFFFFFF8'

MQIASY_VERSION -9 X'FFFFFFF7'

MQIASY_LAST_USED -9 X'FFFFFFF7'

MQIASY_LAST -2000 X'FFFFF830'

MQIAUT_* (IMS information header Authenticator)
Table 191. Constant names and values

Name Value

MQIAUT_NONE "¬¬¬¬¬¬¬¬"

MQIAUT_NONE_ARRAY '¬','¬','¬','¬','¬','¬','¬','¬'

Note: The symbol ¬ represents a single blank character.

MQIAV_* (Integer Attribute Values)
Table 192. Values of constants

Name Decimal value Hexadecimal value

MQIAV_NOT_APPLICABLE -1 X'FFFFFFFF'

MQIAV_UNDEFINED -2 X'FFFFFFFE'

MQICM_* (IMS information header Commit Modes)
Table 193. Constant names and values

Name Value

MQICM_COMMIT_THEN_SEND '0'

MQICM_SEND_THEN_COMMIT '1'

MQIDO_* (Command format Indoubt Options)
Table 194. Values of constants

Name Decimal value Hexadecimal value

MQIDO_COMMIT 1 X'00000001'

MQIDO_BACKOUT 2 X'00000002'

Developing applications reference 151

MQIEP_* (Interface entry points)

Connection security parameters structure
Table 195. Structures of constants

Name Structure

MQIEP_STRUC_ID "IEP¬"

MQIEP_STRUC_ID_ARRAY 'I','E','P','¬'

Note: The symbol ¬ represents a single blank character.

Table 196. Values of constants

Name Decimal value Hexadecimal value

MQIEP_VERSION_1 1 X'00000001'

MQDXP_CURRENT_VERSION 1 X'00000001'

MQIGQ_* (Intra-Group queuing)
Table 197. Values of constants

Name Decimal value Hexadecimal value

MQIGQ_DISABLED 0 X'00000000'

MQIGQ_ENABLED 1 X'00000001'

MQIGQPA_* (Intra-Group queuing Put Authority)
Table 198. Values of constants

Name Decimal value Hexadecimal value

MQIGQPA_DEFAULT 1 X'00000001'

MQIGQPA_CONTEXT 2 X'00000002'

MQIGQPA_ONLY_IGQ 3 X'00000003'

MQIGQPA_ALTERNATE_OR_IGQ 4 X'00000004'

MQIIH_* (IMS information header structure and Flags)

IMS information header structure
Table 199. Structures of constants

Name Structure

MQIIH_STRUC_ID "IIH¬"

MQIIH_STRUC_ID_ARRAY 'I','I','H','¬'

Note: The symbol ¬ represents a single blank character.

Table 200. Values of constants

Name Decimal value Hexadecimal value

MQIIH_VERSION_1 1 X'00000001'

MQIIH_CURRENT_VERSION 1 X'00000001'

MQIIH_LENGTH_1 84 X'00000054'

152 IBM MQ Developing Applications Reference

IMS information header Flags
Table 201. Values of constants

Name Decimal value Hexadecimal value

MQIIH_NONE 0 X'00000000'

MQIIH_PASS_EXPIRATION 1 X'00000001'

MQIIH_UNLIMITED_EXPIRATION 0 X'00000000'

MQIIH_REPLY_FORMAT_NONE 8 X'00000008'

MQIIH_IGNORE_PURG 16 X'00000010'

MQIIH_CM0_REQUEST_RESPONSE 32 X'00000020'

MQIMPO_* (Inquire message property options and structure)

Inquire message property options structure
Table 202. Structures of constants

Name Structure

MQIMPO_STRUC_ID "IMPO"

MQIMPO_STRUC_ID_ARRAY 'I','M','P','O'

Note: The symbol ¬ represents a single blank character.

Table 203. Values of constants

Name Decimal value Hexadecimal value

MQIMPO_VERSION_1 1 X'00000001'

MQIMPO_CURRENT_VERSION 1 X'00000001'

Inquire Message Property Options
Table 204. Values of constants

Name Decimal value Hexadecimal value

MQIMPO_CONVERT_TYPE 2 X'00000002'

MQIMPO_QUERY_LENGTH 4 X'00000004'

MQIMPO_INQ_FIRST 0 X'00000000'

MQIMPO_INQ_NEXT 8 X'00000008'

MQIMPO_INQ_PROP_UNDER_CURSOR 16 X'00000010'

MQIMPO_CONVERT_VALUE 32 X'00000020'

MQIMPO_NONE 0 X'00000000'

MQINBD_* (Command format Inbound Dispositions)
Table 205. Values of constants

Name Decimal value Hexadecimal value

MQINBD_Q_MGR 0 X'00000000'

MQINBD_GROUP 3 X'00000003'

Developing applications reference 153

MQIND_* (Special Index Values)
Table 206. Values of constants

Name Decimal value Hexadecimal value

MQIND_NONE -1 X'FFFFFFFF'

MQIND_ALL -2 X'FFFFFFFE'

MQIPADDR_* (IP Address Versions)
Table 207. Values of constants

Name Decimal value Hexadecimal value

MQIPADDR_IPV4 0 X'00000000'

MQIPADDR_IPV6 1 X'00000001'

MQISS_* (IMS information header Security Scopes)
Table 208. Constant names and values

Name Value

MQISS_CHECK 'C'

MQISS_FULL 'F'

MQIT_* (Index Types)
Table 209. Values of constants

Name Decimal value Hexadecimal value

MQIT_NONE 0 X'00000000'

MQIT_MSG_ID 1 X'00000001'

MQIT_CORREL_ID 2 X'00000002'

MQIT_MSG_TOKEN 4 X'00000004'

MQIT_GROUP_ID 5 X'00000005'

MQITEM_* (Item Type for mqInquireItemInfo)
Table 210. Values of constants

Name Decimal value Hexadecimal value

MQITEM_INTEGER 1 X'00000001'

MQITEM_STRING 2 X'00000002'

MQITEM_BAG 3 X'00000003'

MQITEM_BYTE_STRING 4 X'00000004'

MQITEM_INTEGER_FILTER 5 X'00000005'

MQITEM_STRING_FILTER 6 X'00000006'

MQITEM_INTEGER64 7 X'00000007'

MQITEM_BYTE_STRING_FILTER 8 X'00000008'

154 IBM MQ Developing Applications Reference

MQITII_* (IMS information header Transaction Instance Identifier)
Table 211. Constant names and values

Name Value

MQITII_NONE X'00...00' (16 nulls)

MQITII_NONE_ARRAY '\0','\0',... (16 nulls)

MQITS_* (IMS information header Transaction States)
Table 212. Constant names and values

Name Value

MQITS_IN_CONVERSATION 'C'

MQITS_NOT_IN_CONVERSATION '¬'

MQITS_ARCHITECTED 'A'

Note: The symbol ¬ represents a single blank character.

MQKAI_* (KeepAlive Interval)
Table 213. Values of constants

Name Decimal value Hexadecimal value

MQKAI_AUTO -1 X'FFFFFFFF'

MQMASTER_* (Master administration)
Table 214. Values of constants

Name Decimal value Hexadecimal value

MQMASTER_NO 0 X'00000000'

MQMASTER_YES 1 X'00000001'

MQMCAS_* (Command format Message Channel Agent Status)
Table 215. Values of constants

Name Decimal value Hexadecimal value

MQMCAS_STOPPED 0 X'00000000'

MQMCAS_RUNNING 3 X'00000003'

MQMCAT_* (MCA Types)
Table 216. Values of constants

Name Decimal value Hexadecimal value

MQMCAT_PROCESS 1 X'00000001'

MQMCAT_THREAD 2 X'00000002'

Developing applications reference 155

MQMCD_* (Publish/Subscribe Options Tag Information)

Publish/Subscribe Options Tag Message Content Descriptor (mcd) Tags
Table 217. Values of constants

Name Decimal value Hexadecimal value

MQMCD_FOLDER_VERSION 1 X'00000001'

Publish/Subscribe Options Tag Tag names
Table 218. Constant names and values

Name Value

MQMCD_MSG_DOMAIN "Msd"

MQMCD_MSG_SET "Set"

MQMCD_MSG_TYPE "Type"

MQMCD_MSG_FORMAT "Fmt"

Publish/Subscribe Options Tag XML tag names
Table 219. Constant names and values

Name Value

MQMCD_MSG_DOMAIN_B "<Msd>"

MQMCD_MSG_DOMAIN_E "</Msd>"

MQMCD_MSG_SET_B "<Set>"

MQMCD_MSG_SET_E "</Set>"

MQMCD_MSG_TYPE_B "<Type>"

MQMCD_MSG_TYPE_E "</Type>"

MQMCD_MSG_FORMAT_B "<Fmt>"

MQMCD_MSG_FORMAT_E "</Fmt>"

Publish/Subscribe Options Tag Tag values
Table 220. Constant names and values

Name Value

MQMCD_DOMAIN_NONE "none"

MQMCD_DOMAIN_NEON "neon"

MQMCD_DOMAIN_MRM "mrm"

MQMCD_DOMAIN_JMS_NONE "jms_none"

MQMCD_DOMAIN_JMS_TEXT "jms_text"

MQMCD_DOMAIN_JMS_OBJECT "jms_object"

MQMCD_DOMAIN_JMS_MAP "jms_map"

MQMCD_DOMAIN_JMS_STREAM "jms_stream"

MQMCD_DOMAIN_JMS_BYTES "jms_bytes"

156 IBM MQ Developing Applications Reference

MQMD_* (Message descriptor structure)
Table 221. Structures of constants

Name Structure

MQMD_STRUC_ID "MD¬¬"

MQMD_STRUC_ID_ARRAY 'M','D','¬','¬'

Note: The symbol ¬ represents a single blank character.

Table 222. Values of constants

Name Decimal value Hexadecimal value

MQMD_VERSION_1 1 X'00000001'

MQMD_VERSION_2 2 X'00000002'

MQMD_CURRENT_VERSION 2 X'00000002'

MQMDE_* (Message descriptor extension structure)
Table 223. Structures of constants

Name Structure

MQMDE_STRUC_ID "MDE¬"

MQMDE_STRUC_ID_ARRAY 'M','D','E','¬'

Note: The symbol ¬ represents a single blank character.

Table 224. Values of constants

Name Decimal value Hexadecimal value

MQMDE_VERSION_2 2 X'00000002'

MQMDE_CURRENT_VERSION 2 X'00000002'

MQMDE_LENGTH_2 72 X'00000048'

MQMDEF_* (Message descriptor extension Flags)
Table 225. Values of constants

Name Decimal value Hexadecimal value

MQMDEF_NONE 0 X'00000000'

MQMDS_* (Message Delivery Sequence)
Table 226. Values of constants

Name Decimal value Hexadecimal value

MQMDS_PRIORITY 0 X'00000000'

MQMDS_FIFO 1 X'00000001'

MQMF_* (Message Flags)
Table 227. Values of constants

Name Decimal value Hexadecimal value

MQMF_SEGMENTATION_INHIBITED 0 X'00000000'

MQMF_SEGMENTATION_ALLOWED 1 X'00000001'

Developing applications reference 157

Table 227. Values of constants (continued)

Name Decimal value Hexadecimal value

MQMF_MSG_IN_GROUP 8 X'00000008'

MQMF_LAST_MSG_IN_GROUP 16 X'00000010'

MQMF_SEGMENT 2 X'00000002'

MQMF_LAST_SEGMENT 4 X'00000004'

MQMF_NONE 0 X'00000000'

MQMHBO_* (Message handle to buffer options and structure)

Message handle to buffer options structure
Table 228. Structures of constants

Name Structure

MQMHBO_STRUC_ID "MHBO"

MQMHBO_STRUC_ID_ARRAY 'M','H','B','O'

Note: The symbol ¬ represents a single blank character.

Table 229. Values of constants

Name Decimal value Hexadecimal value

MQMHBO_VERSION_1 1 X'00000001'

MQMHBO_CURRENT_VERSION 1 X'00000001'

Message Handle To Buffer Options
Table 230. Values of constants

Name Decimal value Hexadecimal value

MQMHBO_PROPERTIES_IN_MQRFH2 1 X'00000001'

MQMHBO_DELETE_PROPERTIES 2 X'00000002'

MQMHBO_NONE 0 X'00000000'

MQMI_* (Message Identifier)
Table 231. Constant names and values

Name Value

MQMI_NONE X'00...00' (24 nulls)

MQMI_NONE_ARRAY '\0','\0',... (24 nulls)

MQMMBI_* (Message Mark-Browse Interval)
Table 232. Values of constants

Name Decimal value Hexadecimal value

MQMMBI_UNLIMITED -1 X'FFFFFFFF'

158 IBM MQ Developing Applications Reference

MQMO_* (Match Options)
Table 233. Values of constants

Name Decimal value Hexadecimal value

MQMO_MATCH_MSG_ID 1 X'00000001'

MQMO_MATCH_CORREL_ID 2 X'00000002'

MQMO_MATCH_GROUP_ID 4 X'00000004'

MQMO_MATCH_MSG_SEQ_NUMBER 8 X'00000008'

MQMO_MATCH_OFFSET 16 X'00000010'

MQMO_MATCH_MSG_TOKEN 32 X'00000020'

MQMO_NONE 0 X'00000000'

MQMODE_* (Command format Mode Options)
Table 234. Values of constants

Name Decimal value Hexadecimal value

MQMODE_FORCE 0 X'00000000'

MQMODE_QUIESCE 1 X'00000001'

MQMODE_TERMINATE 2 X'00000002'

MQMON_* (Monitoring Values)
Table 235. Values of constants

Name Decimal value Hexadecimal value

MQMON_NOT_AVAILABLE -1 X'FFFFFFFF'

MQMON_NONE -1 X'FFFFFFFF'

MQMON_Q_MGR -3 X'FFFFFFFD'

MQMON_OFF 0 X'00000000'

MQMON_ON 1 X'00000001'

MQMON_DISABLED 0 X'00000000'

MQMON_ENABLED 1 X'00000001'

MQMON_LOW 17 X'00000011'

MQMON_MEDIUM 33 X'00000021'

MQMON_HIGH 65 X'00000041'

MQMT_* (Message Types)
Table 236. Values of constants

Name Decimal value Hexadecimal value

MQMT_SYSTEM_FIRST 1 X'00000001'

MQMT_REQUEST 1 X'00000001'

MQMT_REPLY 2 X'00000002'

MQMT_DATAGRAM 8 X'00000008'

MQMT_REPORT 4 X'00000004'

MQMT_MQE_FIELDS_FROM_MQE 112 X'00000070'

Developing applications reference 159

Table 236. Values of constants (continued)

Name Decimal value Hexadecimal value

MQMT_MQE_FIELDS 113 X'00000071'

MQMT_SYSTEM_LAST 65535 X'0000FFFF'

MQMT_APPL_FIRST 65536 X'00010000'

MQMT_APPL_LAST 999999999 X'3B9AC9FF'

MQMTOK_* (Message Token)
Table 237. Constant names and values

Name Value

MQMTOK_NONE X'00...00' (16 nulls)

MQMTOK_NONE_ARRAY '\0','\0',... (16 nulls)

Table 238. Values of constants

Name Decimal value Hexadecimal value

MQMTOK_NONE X'00...00' (16 nulls)

MQMTOK_NONE_ARRAY '\0','\0',... (16 nulls)

MQNC_* (Name Count)
Table 239. Values of constants

Name Decimal value Hexadecimal value

MQNC_MAX_NAMELIST_NAME_COUNT 256 X'00000100'

MQNPM_* (Nonpersistent Message Class)
Table 240. Values of constants

Name Decimal value Hexadecimal value

MQNPM_CLASS_NORMAL 0 X'00000000'

MQNPM_CLASS_HIGH 10 X'0000000A'

MQNPMS_* (NonPersistent-Message Speeds)
Table 241. Values of constants

Name Decimal value Hexadecimal value

MQNPMS_NORMAL 1 X'00000001'

MQNPMS_FAST 2 X'00000002'

MQNT_* (Namelist Types)
Table 242. Values of constants

Name Decimal value Hexadecimal value

MQNT_NONE 0 X'00000000'

MQNT_Q 1 X'00000001'

MQNT_CLUSTER 2 X'00000002'

MQNT_AUTH_INFO 4 X'00000004'

160 IBM MQ Developing Applications Reference

Table 242. Values of constants (continued)

Name Decimal value Hexadecimal value

MQNT_ALL 1001 X'000003E9'

MQNVS_* (Names for Name/Value String)
Table 243. Constant names and values

Name Value

MQNVS_APPL_TYPE "OPT_APP_GRP¬"

MQNVS_MSG_TYPE "OPT_MSG_TYPE¬"

Note: The symbol ¬ represents a single blank character.

MQOA_* (Limits for Selectors for Object Attributes)
Table 244. Values of constants

Name Decimal value Hexadecimal value

MQOA_FIRST 1 X'00000001'

MQOA_LAST 9000 X'00002328'

MQOD_* (Object descriptor structure)
Table 245. Structures of constants

Name Structure

MQOD_STRUC_ID "OD¬¬"

MQOD_STRUC_ID_ARRAY 'O','D','¬','¬'

Note: The symbol ¬ represents a single blank character.

Table 246. Values of constants

Name Decimal value Hexadecimal value

MQOD_VERSION_1 1 X'00000001'

MQOD_VERSION_2 2 X'00000002'

MQOD_VERSION_3 3 X'00000003'

MQOD_VERSION_4 4 X'00000004'

MQOD_CURRENT_VERSION 4 X'00000004'

MQOD_CURRENT_LENGTH (value differs by
platform or version)

(value differs by
platform or version)

MQOII_* (Object Instance Identifier)
Table 247. Constant names and values

Name Value

MQOII_NONE X'00...00' (24 nulls)

MQOII_NONE_ARRAY '\0','\0',... (24 nulls)

Developing applications reference 161

MQOL_* (Original Length)
Table 248. Values of constants

Name Decimal value Hexadecimal value

MQOL_UNDEFINED -1 X'FFFFFFFF'

MQOM_* (Obsolete Db2 Messages options on Inquire Group)
Table 249. Values of constants

Name Decimal value Hexadecimal value

MQOM_NO 0 X'00000000'

MQOM_YES 1 X'00000001'

MQOO_* (Open Options)
Table 250. Values of constants

Name Decimal value Hexadecimal value

MQOO_BIND_AS_Q_DEF 0 X'00000000'

MQOO_READ_AHEAD_AS_Q_DEF 0 X'00000000'

MQOO_INPUT_AS_Q_DEF 1 X'00000001'

MQOO_INPUT_SHARED 2 X'00000002'

MQOO_INPUT_EXCLUSIVE 4 X'00000004'

MQOO_BROWSE 8 X'00000008'

MQOO_OUTPUT 16 X'00000010'

MQOO_INQUIRE 32 X'00000020'

MQOO_SET 64 X'00000040'

MQOO_SAVE_ALL_CONTEXT 128 X'00000080'

MQOO_PASS_IDENTITY_CONTEXT 256 X'00000100'

MQOO_PASS_ALL_CONTEXT 512 X'00000200'

MQOO_SET_IDENTITY_CONTEXT 1024 X'00000400'

MQOO_SET_ALL_CONTEXT 2048 X'00000800'

MQOO_ALTERNATE_USER_AUTHORITY 4096 X'00001000'

MQOO_FAIL_IF_QUIESCING 8192 X'00002000'

MQOO_BIND_ON_OPEN 16384 X'00004000'

MQOO_BIND_NOT_FIXED 32768 X'00008000'

MQOO_CO_OP 131072 X'00020000'

MQOO_RESOLVE_LOCAL_TOPIC 262144 X'00040000'

MQOO_NO_READ_AHEAD 524288 X'00080000'

MQOO_READ_AHEAD 1048576 X'00100000'

MQOO_BIND_ON_GROUP 4194304 X'00400000'

162 IBM MQ Developing Applications Reference

MQOO_* (Following used in C++ only)
Table 251. Values of constants

Name Decimal value Hexadecimal value

MQOO_RESOLVE_NAMES 65536 X'00010000'

MQOO_RESOLVE_LOCAL_Q 262144 X'00040000'

MQOP_* (Operation codes for MQCTL and MQCB)

Operation codes for MQCTL
Table 252. Values of constants

Name Decimal value Hexadecimal value

MQOP_START 1 X'00000001'

MQOP_START_WAIT 2 X'00000002'

MQOP_STOP 4 X'00000004'

Operation codes for MQCB
Table 253. Values of constants

Name Decimal value Hexadecimal value

MQOP_REGISTER 256 X'00000100'

MQOP_DEREGISTER 512 X'00000200'

Operation codes for MQCTL and MQCB
Table 254. Values of constants

Name Decimal value Hexadecimal value

MQOP_SUSPEND 65536 X'00010000'

MQOP_RESUME 131072 X'00020000'

MQOPEN_* (Values related to MQOPEN_PRIV structure)
Table 255. Values of constants

Name Decimal value Hexadecimal value

MQOPEN_PRIV_VERSION_1 1 X'00000001'

MQOPEN_PRIV_CURRENT_VERSION 1 X'00000001'

MQOPER_* (Activity Operations)
Table 256. Values of constants

Name Decimal value Hexadecimal value

MQOPER_SYSTEM_FIRST 0 X'00000000'

MQOPER_UNKNOWN 0 X'00000000'

MQOPER_BROWSE 1 X'00000001'

MQOPER_DISCARD 2 X'00000002'

MQOPER_GET 3 X'00000003'

Developing applications reference 163

Table 256. Values of constants (continued)

Name Decimal value Hexadecimal value

MQOPER_PUT 4 X'00000004'

MQOPER_PUT_REPLY 5 X'00000005'

MQOPER_PUT_REPORT 6 X'00000006'

MQOPER_RECEIVE 7 X'00000007'

MQOPER_SEND 8 X'00000008'

MQOPER_TRANSFORM 9 X'00000009'

MQOPER_PUBLISH 10 X'0000000A'

MQOPER_EXCLUDED_PUBLISH 11 X'0000000B'

MQOPER_DISCARDED_PUBLISH 12 X'0000000C'

MQOPER_SYSTEM_LAST 65535 X'0000FFFF'

MQOPER_APPL_FIRST 65536 X'00010000'

MQOPER_APPL_LAST 999999999 X'3B9AC9FF'

MQOT_* (Object Types and Extended Object Types)

Object Types
Table 257. Values of constants

Name Decimal value Hexadecimal value

MQOT_NONE 0 X'00000000'

MQOT_Q 1 X'00000001'

MQOT_NAMELIST 2 X'00000002'

MQOT_PROCESS 3 X'00000003'

MQOT_STORAGE_CLASS 4 X'00000004'

MQOT_Q_MGR 5 X'00000005'

MQOT_CHANNEL 6 X'00000006'

MQOT_AUTH_INFO 7 X'00000007'

MQOT_TOPIC 8 X'00000008'

MQOT_CF_STRUC 10 X'0000000A'

MQOT_LISTENER 11 X'0000000B'

MQOT_SERVICE 12 X'0000000C'

MQOT_RESERVED_1 999 X'000003E7'

Extended Object Types
Table 258. Values of constants

Name Decimal value Hexadecimal value

MQOT_ALL 1001 X'000003E9'

MQOT_ALIAS_Q 1002 X'000003EA'

MQOT_MODEL_Q 1003 X'000003EB'

MQOT_LOCAL_Q 1004 X'000003EC'

MQOT_REMOTE_Q 1005 X'000003ED'

164 IBM MQ Developing Applications Reference

Table 258. Values of constants (continued)

Name Decimal value Hexadecimal value

MQOT_SENDER_CHANNEL 1007 X'000003EF'

MQOT_SERVER_CHANNEL 1008 X'000003F0'

MQOT_REQUESTER_CHANNEL 1009 X'000003F1'

MQOT_RECEIVER_CHANNEL 1010 X'000003F2'

MQOT_CURRENT_CHANNEL 1011 X'000003F3'

MQOT_SAVED_CHANNEL 1012 X'000003F4'

MQOT_SVRCONN_CHANNEL 1013 X'000003F5'

MQOT_CLNTCONN_CHANNEL 1014 X'000003F6'

MQOT_SHORT_CHANNEL 1015 X'000003F7'

MQOT_CHLAUTH 1016 X'000003F8'

MQOT_REMOTE_Q_MGR_NAME 1017 X'000003F9'

MQOT_PROT_POLICY 1019 X'000003FB'

MQOT_TT_CHANNEL 1020 X'000003FC'

MQOT_AMQP_CHANNEL 1021 X'000003FD'

MQOT_AUTH_REC 1022 X'000003FE'

MQPA_* (Put Authority)
Table 259. Values of constants

Name Decimal value Hexadecimal value

MQPA_DEFAULT 1 X'00000001'

MQPA_CONTEXT 2 X'00000002'

MQPA_ONLY_MCA 3 X'00000003'

MQPA_ALTERNATE_OR_MCA 4 X'00000004'

MQPD_* (Property descriptor, support and context)

Property descriptor structure
Table 260. Structures of constants

Name Structure

MQPD_STRUC_ID "PD¬¬"

MQPD_STRUC_ID_ARRAY 'P','D','¬','¬'

Note: The symbol ¬ represents a single blank character.

Table 261. Values of constants

Name Decimal value Hexadecimal value

MQPD_VERSION_1 1 X'00000001'

MQPD_CURRENT_VERSION 1 X'00000001'

Note: The symbol ¬ represents a single blank character.

Developing applications reference 165

Property Descriptor Options
Table 262. Values of constants

Name Decimal value Hexadecimal value

MQPD_NONE 0 X'00000000'

Property Support Options
Table 263. Values of constants

Name Decimal value Hexadecimal value

MQPD_SUPPORT_OPTIONAL 1 X'00000001'

MQPD_SUPPORT_REQUIRED 1048576 X'00100000'

MQPD_SUPPORT_REQUIRED_IF_LOCAL 1024 X'00000400'

MQPD_REJECT_UNSUP_MASK -1048576 X'FFF00000'

MQPD_ACCEPT_UNSUP_IF_XMIT_MASK 1047552 X'000FFC00'

MQPD_ACCEPT_UNSUP_MASK 1023 X'000003FF'

Property Context
Table 264. Values of constants

Name Decimal value Hexadecimal value

MQPD_NO_CONTEXT 0 X'00000000'

MQPD_USER_CONTEXT 1 X'00000001'

MQPER_* (Persistence Values)
Table 265. Values of constants

Name Decimal value Hexadecimal value

MQPER_PERSISTENCE_AS_PARENT -1 X'FFFFFFFF'

MQPER_NOT_PERSISTENT 0 X'00000000'

MQPER_PERSISTENT 1 X'00000001'

MQPER_PERSISTENCE_AS_Q_DEF 2 X'00000002'

MQPER_PERSISTENCE_AS_TOPIC_DEF 2 X'00000002'

MQPL_* (Platforms)
Table 266. Values of constants

Name Decimal value Hexadecimal value

MQPL_MVS 1 X'00000001'

MQPL_OS390 1 X'00000001'

MQPL_ZOS 1 X'00000001'

MQPL_OS2 2 X'00000002'

MQPL_AIX 3 X'00000003'

MQPL_UNIX 3 X'00000003'

MQPL_OS400 4 X'00000004'

MQPL_WINDOWS 5 X'00000005'

166 IBM MQ Developing Applications Reference

Table 266. Values of constants (continued)

Name Decimal value Hexadecimal value

MQPL_WINDOWS_NT 11 X'0000000B'

MQPL_VMS 12 X'0000000C'

MQPL_NSK 13 X'0000000D'

MQPL_OPEN_TP1 15 X'0000000F'

MQPL_VM 18 X'00000012'

MQPL_TPF 23 X'00000017'

MQPL_VSE 27 X'0000001B'

MQPL_APPLIANCE 28 X'0000001C'

MQPL_NATIVE 1 X'00000001'

MQPMO_* (Put message options and structure for publish mask)

Put message options structure
Table 267. Structures of constants

Name Structure

MQPMO_STRUC_ID "PMO¬"

MQPMO_STRUC_ID_ARRAY 'P','M','O','¬'

Note: The symbol ¬ represents a single blank character.

Table 268. Values of constants

Name Decimal value Hexadecimal value

MQPMO_VERSION_1 1 X'00000001'

MQPMO_VERSION_2 2 X'00000002'

MQPMO_VERSION_3 3 X'00000003'

MQPMO_CURRENT_VERSION 3 X'00000003'

MQPMO_CURRENT_LENGTH (value differs by
platform or version)

(value differs by
platform or version)

Put Message Options
Table 269. Values of constants

Name Decimal value Hexadecimal value

MQPMO_SYNCPOINT 2 X'00000002'

MQPMO_NO_SYNCPOINT 4 X'00000004'

MQPMO_DEFAULT_CONTEXT 32 X'00000020'

MQPMO_NEW_MSG_ID 64 X'00000040'

MQPMO_NEW_CORREL_ID 128 X'00000080'

MQPMO_PASS_IDENTITY_CONTEXT 256 X'00000100'

MQPMO_PASS_ALL_CONTEXT 512 X'00000200'

MQPMO_SET_IDENTITY_CONTEXT 1024 X'00000400'

MQPMO_SET_ALL_CONTEXT 2048 X'00000800'

Developing applications reference 167

Table 269. Values of constants (continued)

Name Decimal value Hexadecimal value

MQPMO_ALTERNATE_USER_AUTHORITY 4096 X'00001000'

MQPMO_FAIL_IF_QUIESCING 8192 X'00002000'

MQPMO_NO_CONTEXT 16384 X'00004000'

MQPMO_LOGICAL_ORDER 32768 X'00008000'

MQPMO_ASYNC_RESPONSE 65536 X'00010000'

MQPMO_SYNC_RESPONSE 131072 X'00020000'

MQPMO_RESOLVE_LOCAL_Q 262144 X'00040000'

MQPMO_RETAIN 2097152 X'00200000'

MQPMO_MD_FOR_OUTPUT_ONLY 8388608 X'00800000'

MQPMO_SCOPE_QMGR 67108864 X'04000000'

MQPMO_SUPPRESS_REPLYTO 134217728 X'08000000'

MQPMO_NOT_OWN_SUBS 268435456 X'10000000'

MQPMO_RESPONSE_AS_Q_DEF 0 X'00000000'

MQPMO_RESPONSE_AS_TOPIC_DEF 0 X'00000000'

MQPMO_NONE 0 X'00000000'

Put Message Options for publish mask
Table 270. Values of constants

Name Decimal value Hexadecimal value

MQPMO_PUB_OPTIONS_MASK 2097152 X'00200000'

MQPMRF_* (Put Message Record Fields)
Table 271. Values of constants

Name Decimal value Hexadecimal value

MQPMRF_MSG_ID 1 X'00000001'

MQPMRF_CORREL_ID 2 X'00000002'

MQPMRF_GROUP_ID 4 X'00000004'

MQPMRF_FEEDBACK 8 X'00000008'

MQPMRF_ACCOUNTING_TOKEN 16 X'00000010'

MQPMRF_NONE 0 X'00000000'

MQPO_* (Command format Purge Options)
Table 272. Values of constants

Name Decimal value Hexadecimal value

MQPO_YES 1 X'00000001'

MQPO_NO 0 X'00000000'

168 IBM MQ Developing Applications Reference

MQPRI_* (Priority)
Table 273. Values of constants

Name Decimal value Hexadecimal value

MQPRI_PRIORITY_AS_Q_DEF -1 X'FFFFFFFF'

MQPRI_PRIORITY_AS_PARENT -2 X'FFFFFFFE'

MQPRI_PRIORITY_AS_PUBLISHED -3 X'FFFFFFFD'

MQPRI_PRIORITY_AS_TOPIC_DEF -1 X'FFFFFFFF'

MQPROP_* (Queue and Channel Property Control Values and Maximum
Properties Length)

Queue and Channel Property Control Values
Table 274. Values of constants

Name Decimal value Hexadecimal value

MQPROP_COMPATIBILITY 0 X'00000000'

MQPROP_NONE 1 X'00000001'

MQPROP_ALL 2 X'00000002'

MQPROP_FORCE_MQRFH2 3 X'00000003'

Maximum Properties Length
Table 275. Values of constants

Name Decimal value Hexadecimal value

MQPROP_UNRESTRICTED_LENGTH -1 X'FFFFFFFF'

MQPRT_* (Put Response Values)
Table 276. Values of constants

Name Decimal value Hexadecimal value

MQPRT_RESPONSE_AS_PARENT 0 X'00000000'

MQPRT_SYNC_RESPONSE 1 X'00000001'

MQPRT_ASYNC_RESPONSE 2 X'00000002'

MQPS_* (Publish/Subscribe)

Command format Publish/Subscribe Status
Table 277. Values of constants

Name Decimal value Hexadecimal value

MQPS_STATUS_INACTIVE 0 X'00000000'

MQPS_STATUS_STARTING 1 X'00000001'

MQPS_STATUS_STOPPING 2 X'00000002'

MQPS_STATUS_ACTIVE 3 X'00000003'

MQPS_STATUS_COMPAT 4 X'00000004'

MQPS_STATUS_ERROR 5 X'00000005'

Developing applications reference 169

Table 277. Values of constants (continued)

Name Decimal value Hexadecimal value

MQPS_STATUS_REFUSED 6 X'00000006'

Publish/Subscribe Tags as strings
MQPS_COMMAND "MQPSCommand"

MQPS_COMP_CODE "MQPSCompCode"

MQPS_CORREL_ID "MQPSCorrelId"

MQPS_DELETE_OPTIONS "MQPSDelOpts"

MQPS_ERROR_ID "MQPSErrorId"

MQPS_ERROR_POS "MQPSErrorPos"

MQPS_INTEGER_DATA "MQPSIntData"

MQPS_PARAMETER_ID "MQPSParmId"

MQPS_PUBLICATION_OPTIONS "MQPSPubOpts"

MQPS_PUBLISH_TIMESTAMP "MQPSPubTime"

MQPS_Q_MGR_NAME "MQPSQMgrName"

MQPS_Q_NAME "MQPSQName"

MQPS_REASON "MQPSReason"

MQPS_REASON_TEXT "MQPSReasonText"

MQPS_REGISTRATION_OPTIONS "MQPSRegOpts"

MQPS_SEQUENCE_NUMBER "MQPSSeqNum"

MQPS_STREAM_NAME "MQPSStreamName"

MQPS_STRING_DATA "MQPSStringData"

MQPS_SUBSCRIPTION_IDENTITY "MQPSSubIdentity"

MQPS_SUBSCRIPTION_NAME "MQPSSubName"

MQPS_SUBSCRIPTION_USER_DATA "MQPSSubUserData"

MQPS_TOPIC "MQPSTopic"

MQPS_USER_ID "MQPSUserId"

Publish/Subscribe Tags as blank-enclosed strings
MQPS_COMMAND_B "¬MQPSCommand¬"

MQPS_COMP_CODE_B "¬MQPSCompCode¬"

MQPS_CORREL_ID_B "¬MQPSCorrelId¬"

MQPS_DELETE_OPTIONS_B "¬MQPSDelOpts¬"

MQPS_ERROR_ID_B "¬MQPSErrorId¬"

MQPS_ERROR_POS_B "¬MQPSErrorPos¬"

MQPS_INTEGER_DATA_B "¬MQPSIntData¬"

170 IBM MQ Developing Applications Reference

MQPS_PARAMETER_ID_B "¬MQPSParmId¬"

MQPS_PUBLICATION_OPTIONS_B "¬MQPSPubOpts¬"

MQPS_PUBLISH_TIMESTAMP_B "¬MQPSPubTime¬"

MQPS_Q_MGR_NAME_B "¬MQPSQMgrName¬"

MQPS_Q_NAME_B "¬MQPSQName¬"

MQPS_REASON_B "¬MQPSReason¬"

MQPS_REASON_TEXT_B "¬MQPSReasonText¬"

MQPS_REGISTRATION_OPTIONS_B "¬MQPSRegOpts¬"

MQPS_SEQUENCE_NUMBER_B "¬MQPSSeqNum¬"

MQPS_STREAM_NAME_B "¬MQPSStreamName¬"

MQPS_STRING_DATA_B "¬MQPSStringData¬"

MQPS_SUBSCRIPTION_IDENTITY_B "¬MQPSSubIdentity¬"

MQPS_SUBSCRIPTION_NAME_B "¬MQPSSubName¬"

MQPS_SUBSCRIPTION_USER_DATA_B "¬MQPSSubUserData¬"

MQPS_TOPIC_B "¬MQPSTopic¬"

MQPS_USER_ID_B "¬MQPSUserId¬"

Note: The symbol ¬ represents a single blank character.

Publish/Subscribe Command Tag Values as strings
MQPS_DELETE_PUBLICATION "DeletePub"

MQPS_DEREGISTER_PUBLISHER "DeregPub"

MQPS_DEREGISTER_SUBSCRIBER "DeregSub"

MQPS_PUBLISH "Publish"

MQPS_REGISTER_PUBLISHER "RegPub"

MQPS_REGISTER_SUBSCRIBER "RegSub"

MQPS_REQUEST_UPDATE "ReqUpdate"

Publish/Subscribe Command Tag Values as blank-enclosed strings
MQPS_DELETE_PUBLICATION_B "¬DeletePub¬"

MQPS_DEREGISTER_PUBLISHER_B "¬DeregPub¬"

MQPS_DEREGISTER_SUBSCRIBER_B "¬DeregSub¬"

MQPS_PUBLISH_B "¬Publish¬"

MQPS_REGISTER_PUBLISHER_B "¬RegPub¬"

MQPS_REGISTER_SUBSCRIBER_B "¬RegSub¬"

MQPS_REQUEST_UPDATE_B "¬ReqUpdate¬"

Note: The symbol ¬ represents a single blank character.

Developing applications reference 171

Publish/Subscribe Options Tag Values as strings
MQPS_ADD_NAME "AddName"

MQPS_ANONYMOUS "Anon"

MQPS_CORREL_ID_AS_IDENTITY "CorrelAsId"

MQPS_DEREGISTER_ALL "DeregAll"

MQPS_DIRECT_REQUESTS "DirectReq"

MQPS_DUPLICATES_OK "DupsOK"

MQPS_FULL_RESPONSE "FullResp"

MQPS_INCLUDE_STREAM_NAME "InclStreamName"

MQPS_INFORM_IF_RETAINED "InformIfRet"

MQPS_IS_RETAINED_PUBLICATION "IsRetainedPub"

MQPS_JOIN_EXCLUSIVE "JoinExcl"

MQPS_JOIN_SHARED "JoinShared"

MQPS_LEAVE_ONLY "LeaveOnly"

MQPS_LOCAL "Local"

MQPS_LOCKED "Locked"

MQPS_NEW_PUBLICATIONS_ONLY "NewPubsOnly"

MQPS_NO_ALTERATION "NoAlter"

MQPS_NO_REGISTRATION "NoReg"

MQPS_NON_PERSISTENT "NonPers"

MQPS_NONE "None"

MQPS_OTHER_SUBSCRIBERS_ONLY "OtherSubsOnly"

MQPS_PERSISTENT "Pers"

MQPS_PERSISTENT_AS_PUBLISH "PersAsPub"

MQPS_PERSISTENT_AS_Q "PersAsQueue"

MQPS_PUBLISH_ON_REQUEST_ONLY "PubOnReqOnly"

MQPS_RETAIN_PUBLICATION "RetainPub"

MQPS_VARIABLE_USER_ID "VariableUserId"

Publish/Subscribe Options Tag Values as blank-enclosed strings
MQPS_ADD_NAME_B "¬AddName¬"

MQPS_ANONYMOUS_B "¬Anon¬"

MQPS_CORREL_ID_AS_IDENTITY_B "¬CorrelAsId¬"

MQPS_DEREGISTER_ALL_B "¬DeregAll¬"

MQPS_DIRECT_REQUESTS_B "¬DirectReq¬"

MQPS_DUPLICATES_OK_B "¬DupsOK¬"

172 IBM MQ Developing Applications Reference

MQPS_FULL_RESPONSE_B "¬FullResp¬"

MQPS_INCLUDE_STREAM_NAME_B "¬InclStreamName¬"

MQPS_INFORM_IF_RETAINED_B "¬InformIfRet¬"

MQPS_IS_RETAINED_PUBLICATION_B "¬IsRetainedPub¬"

MQPS_JOIN_EXCLUSIVE_B "¬JoinExcl¬"

MQPS_JOIN_SHARED_B "¬JoinShared¬"

MQPS_LEAVE_ONLY_B "¬LeaveOnly¬"

MQPS_LOCAL_B "¬Local¬"

MQPS_LOCKED_B "¬Locked¬"

MQPS_NEW_PUBLICATIONS_ONLY_B "¬NewPubsOnly¬"

MQPS_NO_ALTERATION_B "¬NoAlter¬"

MQPS_NO_REGISTRATION_B "¬NoReg¬"

MQPS_NON_PERSISTENT_B "¬NonPers¬"

MQPS_NONE_B "¬None¬"

MQPS_OTHER_SUBSCRIBERS_ONLY_B "¬OtherSubsOnly¬"

MQPS_PERSISTENT_B "¬Pers¬"

MQPS_PERSISTENT_AS_PUBLISH_B "¬PersAsPub¬"

MQPS_PERSISTENT_AS_Q_B "¬PersAsQueue¬"

MQPS_PUBLISH_ON_REQUEST_ONLY_B "¬PubOnReqOnly¬"

MQPS_RETAIN_PUBLICATION_B "¬RetainPub¬"

MQPS_VARIABLE_USER_ID_B "¬VariableUserId¬"

Note: The symbol ¬ represents a single blank character.

MQPSC_* (Publish/Subscribe Options Tag Publish/Subscribe Command
Folder (psc) Tags)

Table 278. Values of constants

Name Decimal value Hexadecimal value

MQPSC_FOLDER_VERSION 1 X'00000001'

MQPSC_* (Publish/Subscribe Options Tag Tag names)
MQPSC_COMMAND "Command"

MQPSC_REGISTRATION_OPTION "RegOpt"

MQPSC_PUBLICATION_OPTION "PubOpt"

MQPSC_DELETE_OPTION "DelOpt"

MQPSC_TOPIC "Topic"

MQPSC_SUBSCRIPTION_POINT "SubPoint"

MQPSC_FILTER "Filter"

Developing applications reference 173

MQPSC_Q_MGR_NAME "QMgrName"

MQPSC_Q_NAME "QName"

MQPSC_PUBLISH_TIMESTAMP "PubTime"

MQPSC_SEQUENCE_NUMBER "SeqNum"

MQPSC_SUBSCRIPTION_NAME "SubName"

MQPSC_SUBSCRIPTION_IDENTITY "SubIdentity"

MQPSC_SUBSCRIPTION_USER_DATA "SubUserData"

MQPSC_CORREL_ID "CorrelId"

MQPSC_* (Publish/Subscribe Options Tag XML tag names)
MQPSC_COMMAND_B "<Command>"

MQPSC_COMMAND_E "</Command>"

MQPSC_REGISTRATION_OPTION_B "<RegOpt>"

MQPSC_REGISTRATION_OPTION_E "</RegOpt>"

MQPSC_PUBLICATION_OPTION_B "<PubOpt>"

MQPSC_PUBLICATION_OPTION_E "</PubOpt>"

MQPSC_DELETE_OPTION_B "<DelOpt>"

MQPSC_DELETE_OPTION_E "</DelOpt>"

MQPSC_TOPIC_B "<Topic>"

MQPSC_TOPIC_E "</Topic>"

MQPSC_SUBSCRIPTION_POINT_B "<SubPoint>"

MQPSC_SUBSCRIPTION_POINT_E "</SubPoint>"

MQPSC_FILTER_B "<Filter>"

MQPSC_FILTER_E "</Filter>"

MQPSC_Q_MGR_NAME_B "<QMgrName>"

MQPSC_Q_MGR_NAME_E "</QMgrName>"

MQPSC_Q_NAME_B "<QName>"

MQPSC_Q_NAME_E "</QName>"

MQPSC_PUBLISH_TIMESTAMP_B "<PubTime>"

MQPSC_PUBLISH_TIMESTAMP_E "</PubTime>"

MQPSC_SEQUENCE_NUMBER_B "<SeqNum>"

MQPSC_SEQUENCE_NUMBER_E "</SeqNum>"

MQPSC_SUBSCRIPTION_NAME_B "<SubName>"

MQPSC_SUBSCRIPTION_NAME_E "</SubName>"

MQPSC_SUBSCRIPTION_IDENTITY_B "<SubIdentity>"

MQPSC_SUBSCRIPTION_IDENTITY_E "</SubIdentity>"

MQPSC_SUBSCRIPTION_USER_DATA_B "<SubUserData>"

174 IBM MQ Developing Applications Reference

MQPSC_SUBSCRIPTION_USER_DATA_E "</SubUserData>"

MQPSC_CORREL_ID_B "<CorrelId>"

MQPSC_CORREL_ID_E "</CorrelId>"

MQPSC_* (Publish/Subscribe Options Tag Publisher Values as strings)
MQPSC_DELETE_PUBLICATION "DeletePub"

MQPSC_DEREGISTER_SUBSCRIBER "DeregSub"

MQPSC_PUBLISH "Publish"

MQPSC_REGISTER_SUBSCRIBER "RegSub"

MQPSC_REQUEST_UPDATE "ReqUpdate"

MQPSC_* (Publish/Subscribe Options Tag Name Values as strings)
MQPSC_ADD_NAME "AddName"

MQPSC_CORREL_ID_AS_IDENTITY "CorrelAsId"

MQPSC_DEREGISTER_ALL "DeregAll"

MQPSC_DUPLICATES_OK "DupsOK"

MQPSC_FULL_RESPONSE "FullResp"

MQPSC_INFORM_IF_RETAINED "InformIfRet"

MQPSC_IS_RETAINED_PUB "IsRetainedPub"

MQPSC_JOIN_SHARED "JoinShared"

MQPSC_JOIN_EXCLUSIVE "JoinExcl"

MQPSC_LEAVE_ONLY "LeaveOnly"

MQPSC_LOCAL "Local"

MQPSC_LOCKED "Locked"

MQPSC_NEW_PUBS_ONLY "NewPubsOnly"

MQPSC_NO_ALTERATION "NoAlter"

MQPSC_NON_PERSISTENT "NonPers"

MQPSC_OTHER_SUBS_ONLY "OtherSubsOnly"

MQPSC_PERSISTENT "Pers"

MQPSC_PERSISTENT_AS_PUBLISH "PersAsPub"

MQPSC_PERSISTENT_AS_Q "PersAsQueue"

MQPSC_NONE "None"

MQPSC_PUB_ON_REQUEST_ONLY "PubOnReqOnly"

MQPSC_RETAIN_PUB "RetainPub"

MQPSC_VARIABLE_USER_ID "VariableUserId"

Developing applications reference 175

MQPSCR_* (Publish/Subscribe Options)

Publish/Subscribe Options Tag Publish/Subscribe Response Folder (pscr) Tags
Table 279. Values of constants

Name Decimal value Hexadecimal value

MQPSCR_FOLDER_VERSION 1 X'00000001'

Publish/Subscribe Options Tag Tag names
MQPSCR_COMPLETION "Completion"

MQPSCR_RESPONSE "Response"

MQPSCR_REASON "Reason"

Publish/Subscribe Options Tag XML tag names
MQPSCR_COMPLETION_B "<Completion>"

MQPSCR_COMPLETION_E "</Completion>"

MQPSCR_RESPONSE_B "<Response>"

MQPSCR_RESPONSE_E "</Response>"

MQPSCR_REASON_B "<Reason>"

MQPSCR_REASON_E "</Reason>"

Publish/Subscribe Options Tag Tag values
MQPSCR_OK "ok"

MQPSCR_WARNING "warning"

MQPSCR_ERROR "error"

MQPSM_* (Pub/Sub Mode)
Table 280. Values of constants

Name Decimal value Hexadecimal value

MQPSM_DISABLED 0 X'00000000'

MQPSM_COMPAT 1 X'00000001'

MQPSM_ENABLED 2 X'00000002'

MQPSPROP_* (Pub/Sub Message Properties)
Table 281. Values of constants

Name Decimal value Hexadecimal value

MQPSPROP_NONE 0 X'00000000'

MQPSPROP_COMPAT 1 X'00000001'

MQPSPROP_RFH2 2 X'00000002'

MQPSPROP_MSGPROP 3 X'00000003'

176 IBM MQ Developing Applications Reference

MQPSST_* (Command format Pub/Sub Status Type)
Table 282. Values of constants

Name Decimal value Hexadecimal value

MQPSST_ALL 0 X'00000000'

MQPSST_LOCAL 1 X'00000001'

MQPSST_PARENT 2 X'00000002'

MQPSST_CHILD 3 X'00000003'

MQPUBO_* (Publish/Subscribe Publication Options)
Table 283. Values of constants

Name Decimal value Hexadecimal value

MQPUBO_NONE 0 X'00000000'

MQPUBO_CORREL_ID_AS_IDENTITY 1 X'00000001'

MQPUBO_RETAIN_PUBLICATION 2 X'00000002'

MQPUBO_OTHER_SUBSCRIBERS_ONLY 4 X'00000004'

MQPUBO_NO_REGISTRATION 8 X'00000008'

MQPUBO_IS_RETAINED_PUBLICATION 16 X'00000010'

MQPXP_* (Publish/subscribe routing exit parameter structure)
Table 284. Structures of constants

Name Structure

MQPXP_STRUC_ID "PXP¬"

MQPXP_STRUC_ID_ARRAY 'P','X','P','¬'

Note: The symbol ¬ represents a single blank character.

Table 285. Values of constants

Name Decimal value Hexadecimal value

MQPXP_VERSION_1 1 X'00000001'

MQPXP_CURRENT_VERSION 1 X'00000001'

MQQA_* (Queue attributes)

Inhibit Get Values
Table 286. Values of constants

Name Decimal value Hexadecimal value

MQQA_GET_INHIBITED 1 X'00000001'

MQQA_GET_ALLOWED 0 X'00000000'

Inhibit Put Values
Table 287. Values of constants

Name Decimal value Hexadecimal value

MQQA_PUT_INHIBITED 1 X'00000001'

Developing applications reference 177

Table 287. Values of constants (continued)

Name Decimal value Hexadecimal value

MQQA_PUT_ALLOWED 0 X'00000000'

Queue Shareability
Table 288. Values of constants

Name Decimal value Hexadecimal value

MQQA_SHAREABLE 1 X'00000001'

MQQA_NOT_SHAREABLE 0 X'00000000'

Back-Out Hardening
Table 289. Values of constants

Name Decimal value Hexadecimal value

MQQA_BACKOUT_HARDENED 1 X'00000001'

MQQA_BACKOUT_NOT_HARDENED 0 X'00000000'

MQQDT_* (Queue Definition Types)
Table 290. Values of constants

Name Decimal value Hexadecimal value

MQQDT_PREDEFINED 1 X'00000001'

MQQDT_PERMANENT_DYNAMIC 2 X'00000002'

MQQDT_TEMPORARY_DYNAMIC 3 X'00000003'

MQQDT_SHARED_DYNAMIC 4 X'00000004'

MQQF_* (Queue Flags)
Table 291. Values of constants

Name Decimal value Hexadecimal value

MQQF_LOCAL_Q 1 X'00000001'

MQQF_CLWL_USEQ_ANY 64 X'00000040'

MQQF_CLWL_USEQ_LOCAL 128 X'00000080'

MQQMDT_* (Command format Queue Manager Definition Types)
Table 292. Values of constants

Name Decimal value Hexadecimal value

MQQMDT_EXPLICIT_CLUSTER_SENDER 1 X'00000001'

MQQMDT_AUTO_CLUSTER_SENDER 2 X'00000002'

MQQMDT_AUTO_EXP_CLUSTER_SENDER 4 X'00000004'

MQQMDT_CLUSTER_RECEIVER 3 X'00000003'

178 IBM MQ Developing Applications Reference

MQQMF_* (Queue Manager Flags)
Table 293. Values of constants

Name Decimal value Hexadecimal value

MQQMF_REPOSITORY_Q_MGR 2 X'00000002'

MQQMF_CLUSSDR_USER_DEFINED 8 X'00000008'

MQQMF_CLUSSDR_AUTO_DEFINED 16 X'00000010'

MQQMF_AVAILABLE 32 X'00000020'

MQQMFAC_* (Command format Queue Manager Facility)
Table 294. Values of constants

Name Decimal value Hexadecimal value

MQQMFAC_IMS_BRIDGE 1 X'00000001'

MQQMFAC_DB2 2 X'00000002'

MQQMSTA_* (Command format Queue Manager Status)
Table 295. Values of constants

Name Decimal value Hexadecimal value

MQQMSTA_STARTING 1 X'00000001'

MQQMSTA_RUNNING 2 X'00000002'

MQQMSTA_QUIESCING 3 X'00000003'

MQQMT_* (Command format Queue Manager Types)
Table 296. Values of constants

Name Decimal value Hexadecimal value

MQQMT_NORMAL 0 X'00000000'

MQQMT_REPOSITORY 1 X'00000001'

MQQO_* (Command format Quiesce Options)
Table 297. Values of constants

Name Decimal value Hexadecimal value

MQQO_YES 1 X'00000001'

MQQO_NO 0 X'00000000'

MQQSGD_* (Queue sharing group dispositions)
Table 298. Values of constants

Name Decimal value Hexadecimal value

MQQSGD_ALL -1 X'FFFFFFFF'

MQQSGD_Q_MGR 0 X'00000000'

MQQSGD_COPY 1 X'00000001'

MQQSGD_SHARED 2 X'00000002'

MQQSGD_GROUP 3 X'00000003'

Developing applications reference 179

Table 298. Values of constants (continued)

Name Decimal value Hexadecimal value

MQQSGD_PRIVATE 4 X'00000004'

MQQSGD_LIVE 6 X'00000006'

MQQSGS_* (Command format queue sharing group status)
Table 299. Values of constants

Name Decimal value Hexadecimal value

MQQSGS_UNKNOWN 0 X'00000000'

MQQSGS_CREATED 1 X'00000001'

MQQSGS_ACTIVE 2 X'00000002'

MQQSGS_INACTIVE 3 X'00000003'

MQQSGS_FAILED 4 X'00000004'

MQQSGS_PENDING 5 X'00000005'

MQQSIE_* (Command format Queue Service-Interval Events)
Table 300. Values of constants

Name Decimal value Hexadecimal value

MQQSIE_NONE 0 X'00000000'

MQQSIE_HIGH 1 X'00000001'

MQQSIE_OK 2 X'00000002'

MQQSO_* (Command format Queue Status Open Options for SET, BROWSE,
INPUT)

Table 301. Values of constants

Name Decimal value Hexadecimal value

MQQSO_NO 0 X'00000000'

MQQSO_YES 1 X'00000001'

MQQSO_SHARED 1 X'00000001'

MQQSO_EXCLUSIVE 2 X'00000002'

MQQSOT_* (Command format Queue Status Open Types)
Table 302. Values of constants

Name Decimal value Hexadecimal value

MQQSOT_ALL 1 X'00000001'

MQQSOT_INPUT 2 X'00000002'

MQQSOT_OUTPUT 3 X'00000003'

MQQSUM_* (Command format Queue Status Uncommitted Messages)
Table 303. Values of constants

Name Decimal value Hexadecimal value

MQQSUM_YES 1 X'00000001'

180 IBM MQ Developing Applications Reference

Table 303. Values of constants (continued)

Name Decimal value Hexadecimal value

MQQSUM_NO 0 X'00000000'

MQQT_* (Queue Types and Extended Queue Types)

Queue Types
Table 304. Values of constants

Name Decimal value Hexadecimal value

MQQT_LOCAL 1 X'00000001'

MQQT_MODEL 2 X'00000002'

MQQT_ALIAS 3 X'00000003'

MQQT_REMOTE 6 X'00000006'

MQQT_CLUSTER 7 X'00000007'

Extended Queue Types
Table 305. Values of constants

Name Decimal value Hexadecimal value

MQQT_ALL 1001 X'000003E9'

MQRC_* (reason codes)
Table 306. Values of constants

Name Decimal value Hexadecimal value

MQRC_NONE 0 X'00000000'

MQRC_APPL_FIRST 900 X'00000384'

MQRC_APPL_LAST 999 X'000003E7'

MQRC_ALIAS_BASE_Q_TYPE_ERROR 2001 X'000007D1'

MQRC_ALREADY_CONNECTED 2002 X'000007D2'

MQRC_BACKED_OUT 2003 X'000007D3'

MQRC_BUFFER_ERROR 2004 X'000007D4'

MQRC_BUFFER_LENGTH_ERROR 2005 X'000007D5'

MQRC_CHAR_ATTR_LENGTH_ERROR 2006 X'000007D6'

MQRC_CHAR_ATTRS_ERROR 2007 X'000007D7'

MQRC_CHAR_ATTRS_TOO_SHORT 2008 X'000007D8'

MQRC_CONNECTION_BROKEN 2009 X'000007D9'

MQRC_DATA_LENGTH_ERROR 2010 X'000007DA'

MQRC_DYNAMIC_Q_NAME_ERROR 2011 X'000007DB'

MQRC_ENVIRONMENT_ERROR 2012 X'000007DC'

MQRC_EXPIRY_ERROR 2013 X'000007DD'

MQRC_FEEDBACK_ERROR 2014 X'000007DE'

MQRC_GET_INHIBITED 2016 X'000007E0'

MQRC_HANDLE_NOT_AVAILABLE 2017 X'000007E1'

Developing applications reference 181

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_HCONN_ERROR 2018 X'000007E2'

MQRC_HOBJ_ERROR 2019 X'000007E3'

MQRC_INHIBIT_VALUE_ERROR 2020 X'000007E4'

MQRC_INT_ATTR_COUNT_ERROR 2021 X'000007E5'

MQRC_INT_ATTR_COUNT_TOO_SMALL 2022 X'000007E6'

MQRC_INT_ATTRS_ARRAY_ERROR 2023 X'000007E7'

MQRC_SYNCPOINT_LIMIT_REACHED 2024 X'000007E8'

MQRC_MAX_CONNS_LIMIT_REACHED 2025 X'000007E9'

MQRC_MD_ERROR 2026 X'000007EA'

MQRC_MISSING_REPLY_TO_Q 2027 X'000007EB'

MQRC_MSG_TYPE_ERROR 2029 X'000007ED'

MQRC_MSG_TOO_BIG_FOR_Q 2030 X'000007EE'

MQRC_MSG_TOO_BIG_FOR_Q_MGR 2031 X'000007EF'

MQRC_NO_MSG_AVAILABLE 2033 X'000007F1'

MQRC_NO_MSG_UNDER_CURSOR 2034 X'000007F2'

MQRC_NOT_AUTHORIZED 2035 X'000007F3'

MQRC_NOT_OPEN_FOR_BROWSE 2036 X'000007F4'

MQRC_NOT_OPEN_FOR_INPUT 2037 X'000007F5'

MQRC_NOT_OPEN_FOR_INQUIRE 2038 X'000007F6'

MQRC_NOT_OPEN_FOR_OUTPUT 2039 X'000007F7'

MQRC_NOT_OPEN_FOR_SET 2040 X'000007F8'

MQRC_OBJECT_CHANGED 2041 X'000007F9'

MQRC_OBJECT_IN_USE 2042 X'000007FA'

MQRC_OBJECT_TYPE_ERROR 2043 X'000007FB'

MQRC_OD_ERROR 2044 X'000007FC'

MQRC_OPTION_NOT_VALID_FOR_TYPE 2045 X'000007FD'

MQRC_OPTIONS_ERROR 2046 X'000007FE'

MQRC_PERSISTENCE_ERROR 2047 X'000007FF'

MQRC_PERSISTENT_NOT_ALLOWED 2048 X'00000800'

MQRC_PRIORITY_EXCEEDS_MAXIMUM 2049 X'00000801'

MQRC_PRIORITY_ERROR 2050 X'00000802'

MQRC_PUT_INHIBITED 2051 X'00000803'

MQRC_Q_DELETED 2052 X'00000804'

MQRC_Q_FULL 2053 X'00000805'

MQRC_Q_NOT_EMPTY 2055 X'00000807'

MQRC_Q_SPACE_NOT_AVAILABLE 2056 X'00000808'

MQRC_Q_TYPE_ERROR 2057 X'00000809'

MQRC_Q_MGR_NAME_ERROR 2058 X'0000080A'

MQRC_Q_MGR_NOT_AVAILABLE 2059 X'0000080B'

182 IBM MQ Developing Applications Reference

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_REPORT_OPTIONS_ERROR 2061 X'0000080D'

MQRC_SECOND_MARK_NOT_ALLOWED 2062 X'0000080E'

MQRC_SECURITY_ERROR 2063 X'0000080F'

MQRC_SELECTOR_COUNT_ERROR 2065 X'00000811'

MQRC_SELECTOR_LIMIT_EXCEEDED 2066 X'00000812'

MQRC_SELECTOR_ERROR 2067 X'00000813'

MQRC_SELECTOR_NOT_FOR_TYPE 2068 X'00000814'

MQRC_SIGNAL_OUTSTANDING 2069 X'00000815'

MQRC_SIGNAL_REQUEST_ACCEPTED 2070 X'00000816'

MQRC_STORAGE_NOT_AVAILABLE 2071 X'00000817'

MQRC_SYNCPOINT_NOT_AVAILABLE 2072 X'00000818'

MQRC_TRIGGER_CONTROL_ERROR 2075 X'0000081B'

MQRC_TRIGGER_DEPTH_ERROR 2076 X'0000081C'

MQRC_TRIGGER_MSG_PRIORITY_ERR 2077 X'0000081D'

MQRC_TRIGGER_TYPE_ERROR 2078 X'0000081E'

MQRC_TRUNCATED_MSG_ACCEPTED 2079 X'0000081F'

MQRC_TRUNCATED_MSG_FAILED 2080 X'00000820'

MQRC_UNKNOWN_ALIAS_BASE_Q 2082 X'00000822'

MQRC_UNKNOWN_OBJECT_NAME 2085 X'00000825'

MQRC_UNKNOWN_OBJECT_Q_MGR 2086 X'00000826'

MQRC_UNKNOWN_REMOTE_Q_MGR 2087 X'00000827'

MQRC_WAIT_INTERVAL_ERROR 2090 X'0000082A'

MQRC_XMIT_Q_TYPE_ERROR 2091 X'0000082B'

MQRC_XMIT_Q_USAGE_ERROR 2092 X'0000082C'

MQRC_NOT_OPEN_FOR_PASS_ALL 2093 X'0000082D'

MQRC_NOT_OPEN_FOR_PASS_IDENT 2094 X'0000082E'

MQRC_NOT_OPEN_FOR_SET_ALL 2095 X'0000082F'

MQRC_NOT_OPEN_FOR_SET_IDENT 2096 X'00000830'

MQRC_CONTEXT_HANDLE_ERROR 2097 X'00000831'

MQRC_CONTEXT_NOT_AVAILABLE 2098 X'00000832'

MQRC_SIGNAL1_ERROR 2099 X'00000833'

MQRC_OBJECT_ALREADY_EXISTS 2100 X'00000834'

MQRC_OBJECT_DAMAGED 2101 X'00000835'

MQRC_RESOURCE_PROBLEM 2102 X'00000836'

MQRC_ANOTHER_Q_MGR_CONNECTED 2103 X'00000837'

MQRC_UNKNOWN_REPORT_OPTION 2104 X'00000838'

MQRC_STORAGE_CLASS_ERROR 2105 X'00000839'

MQRC_COD_NOT_VALID_FOR_XCF_Q 2106 X'0000083A'

MQRC_XWAIT_CANCELED 2107 X'0000083B'

Developing applications reference 183

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_XWAIT_ERROR 2108 X'0000083C'

MQRC_SUPPRESSED_BY_EXIT 2109 X'0000083D'

MQRC_FORMAT_ERROR 2110 X'0000083E'

MQRC_SOURCE_CCSID_ERROR 2111 X'0000083F'

MQRC_SOURCE_INTEGER_ENC_ERROR 2112 X'00000840'

MQRC_SOURCE_DECIMAL_ENC_ERROR 2113 X'00000841'

MQRC_SOURCE_FLOAT_ENC_ERROR 2114 X'00000842'

MQRC_TARGET_CCSID_ERROR 2115 X'00000843'

MQRC_TARGET_INTEGER_ENC_ERROR 2116 X'00000844'

MQRC_TARGET_DECIMAL_ENC_ERROR 2117 X'00000845'

MQRC_TARGET_FLOAT_ENC_ERROR 2118 X'00000846'

MQRC_NOT_CONVERTED 2119 X'00000847'

MQRC_CONVERTED_MSG_TOO_BIG 2120 X'00000848'

MQRC_TRUNCATED 2120 X'00000848'

MQRC_NO_EXTERNAL_PARTICIPANTS 2121 X'00000849'

MQRC_PARTICIPANT_NOT_AVAILABLE 2122 X'0000084A'

MQRC_OUTCOME_MIXED 2123 X'0000084B'

MQRC_OUTCOME_PENDING 2124 X'0000084C'

MQRC_BRIDGE_STARTED 2125 X'0000084D'

MQRC_BRIDGE_STOPPED 2126 X'0000084E'

MQRC_ADAPTER_STORAGE_SHORTAGE 2127 X'0000084F'

MQRC_UOW_IN_PROGRESS 2128 X'00000850'

MQRC_ADAPTER_CONN_LOAD_ERROR 2129 X'00000851'

MQRC_ADAPTER_SERV_LOAD_ERROR 2130 X'00000852'

MQRC_ADAPTER_DEFS_ERROR 2131 X'00000853'

MQRC_ADAPTER_DEFS_LOAD_ERROR 2132 X'00000854'

MQRC_ADAPTER_CONV_LOAD_ERROR 2133 X'00000855'

MQRC_BO_ERROR 2134 X'00000856'

MQRC_DH_ERROR 2135 X'00000857'

MQRC_MULTIPLE_REASONS 2136 X'00000858'

MQRC_OPEN_FAILED 2137 X'00000859'

MQRC_ADAPTER_DISC_LOAD_ERROR 2138 X'0000085A'

MQRC_CNO_ERROR 2139 X'0000085B'

MQRC_CICS_WAIT_FAILED 2140 X'0000085C'

MQRC_DLH_ERROR 2141 X'0000085D'

MQRC_HEADER_ERROR 2142 X'0000085E'

MQRC_SOURCE_LENGTH_ERROR 2143 X'0000085F'

MQRC_TARGET_LENGTH_ERROR 2144 X'00000860'

MQRC_SOURCE_BUFFER_ERROR 2145 X'00000861'

184 IBM MQ Developing Applications Reference

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_TARGET_BUFFER_ERROR 2146 X'00000862'

MQRC_IIH_ERROR 2148 X'00000864'

MQRC_PCF_ERROR 2149 X'00000865'

MQRC_DBCS_ERROR 2150 X'00000866'

MQRC_OBJECT_NAME_ERROR 2152 X'00000868'

MQRC_OBJECT_Q_MGR_NAME_ERROR 2153 X'00000869'

MQRC_RECS_PRESENT_ERROR 2154 X'0000086A'

MQRC_OBJECT_RECORDS_ERROR 2155 X'0000086B'

MQRC_RESPONSE_RECORDS_ERROR 2156 X'0000086C'

MQRC_ASID_MISMATCH 2157 X'0000086D'

MQRC_PMO_RECORD_FLAGS_ERROR 2158 X'0000086E'

MQRC_PUT_MSG_RECORDS_ERROR 2159 X'0000086F'

MQRC_CONN_ID_IN_USE 2160 X'00000870'

MQRC_Q_MGR_QUIESCING 2161 X'00000871'

MQRC_Q_MGR_STOPPING 2162 X'00000872'

MQRC_DUPLICATE_RECOV_COORD 2163 X'00000873'

MQRC_PMO_ERROR 2173 X'0000087D'

MQRC_API_EXIT_NOT_FOUND 2182 X'00000886'

MQRC_API_EXIT_LOAD_ERROR 2183 X'00000887'

MQRC_REMOTE_Q_NAME_ERROR 2184 X'00000888'

MQRC_INCONSISTENT_PERSISTENCE 2185 X'00000889'

MQRC_GMO_ERROR 2186 X'0000088A'

MQRC_CICS_BRIDGE_RESTRICTION 2187 X'0000088B'

MQRC_STOPPED_BY_CLUSTER_EXIT 2188 X'0000088C'

MQRC_CLUSTER_RESOLUTION_ERROR 2189 X'0000088D'

MQRC_CONVERTED_STRING_TOO_BIG 2190 X'0000088E'

MQRC_TMC_ERROR 2191 X'0000088F'

MQRC_PAGESET_FULL 2192 X'00000890'

MQRC_STORAGE_MEDIUM_FULL 2192 X'00000890'

MQRC_PAGESET_ERROR 2193 X'00000891'

MQRC_NAME_NOT_VALID_FOR_TYPE 2194 X'00000892'

MQRC_UNEXPECTED_ERROR 2195 X'00000893'

MQRC_UNKNOWN_XMIT_Q 2196 X'00000894'

MQRC_UNKNOWN_DEF_XMIT_Q 2197 X'00000895'

MQRC_DEF_XMIT_Q_TYPE_ERROR 2198 X'00000896'

MQRC_DEF_XMIT_Q_USAGE_ERROR 2199 X'00000897'

MQRC_MSG_MARKED_BROWSE_CO_OP 2200 X'00000898'

MQRC_NAME_IN_USE 2201 X'00000899'

MQRC_CONNECTION_QUIESCING 2202 X'0000089A'

Developing applications reference 185

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_CONNECTION_STOPPING 2203 X'0000089B'

MQRC_ADAPTER_NOT_AVAILABLE 2204 X'0000089C'

MQRC_MSG_ID_ERROR 2206 X'0000089E'

MQRC_CORREL_ID_ERROR 2207 X'0000089F'

MQRC_FILE_SYSTEM_ERROR 2208 X'000008A0'

MQRC_NO_MSG_LOCKED 2209 X'000008A1'

MQRC_SOAP_DOTNET_ERROR 2210 X'000008A2'

MQRC_SOAP_AXIS_ERROR 2211 X'000008A3'

MQRC_SOAP_URL_ERROR 2212 X'000008A4'

MQRC_FILE_NOT_AUDITED 2216 X'000008A8'

MQRC_CONNECTION_NOT_AUTHORIZED 2217 X'000008A9'

MQRC_MSG_TOO_BIG_FOR_CHANNEL 2218 X'000008AA'

MQRC_CALL_IN_PROGRESS 2219 X'000008AB'

MQRC_RMH_ERROR 2220 X'000008AC'

MQRC_Q_MGR_ACTIVE 2222 X'000008AE'

MQRC_Q_MGR_NOT_ACTIVE 2223 X'000008AF'

MQRC_Q_DEPTH_HIGH 2224 X'000008B0'

MQRC_Q_DEPTH_LOW 2225 X'000008B1'

MQRC_Q_SERVICE_INTERVAL_HIGH 2226 X'000008B2'

MQRC_Q_SERVICE_INTERVAL_OK 2227 X'000008B3'

MQRC_RFH_HEADER_FIELD_ERROR 2228 X'000008B4'

MQRC_RAS_PROPERTY_ERROR 2229 X'000008B5'

MQRC_UNIT_OF_WORK_NOT_STARTED 2232 X'000008B8'

MQRC_CHANNEL_AUTO_DEF_OK 2233 X'000008B9'

MQRC_CHANNEL_AUTO_DEF_ERROR 2234 X'000008BA'

MQRC_CFH_ERROR 2235 X'000008BB'

MQRC_CFIL_ERROR 2236 X'000008BC'

MQRC_CFIN_ERROR 2237 X'000008BD'

MQRC_CFSL_ERROR 2238 X'000008BE'

MQRC_CFST_ERROR 2239 X'000008BF'

MQRC_INCOMPLETE_GROUP 2241 X'000008C1'

MQRC_INCOMPLETE_MSG 2242 X'000008C2'

MQRC_INCONSISTENT_CCSIDS 2243 X'000008C3'

MQRC_INCONSISTENT_ENCODINGS 2244 X'000008C4'

MQRC_INCONSISTENT_UOW 2245 X'000008C5'

MQRC_INVALID_MSG_UNDER_CURSOR 2246 X'000008C6'

MQRC_MATCH_OPTIONS_ERROR 2247 X'000008C7'

MQRC_MDE_ERROR 2248 X'000008C8'

MQRC_MSG_FLAGS_ERROR 2249 X'000008C9'

186 IBM MQ Developing Applications Reference

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_MSG_SEQ_NUMBER_ERROR 2250 X'000008CA'

MQRC_OFFSET_ERROR 2251 X'000008CB'

MQRC_ORIGINAL_LENGTH_ERROR 2252 X'000008CC'

MQRC_SEGMENT_LENGTH_ZERO 2253 X'000008CD'

MQRC_UOW_NOT_AVAILABLE 2255 X'000008CF'

MQRC_WRONG_GMO_VERSION 2256 X'000008D0'

MQRC_WRONG_MD_VERSION 2257 X'000008D1'

MQRC_GROUP_ID_ERROR 2258 X'000008D2'

MQRC_INCONSISTENT_BROWSE 2259 X'000008D3'

MQRC_XQH_ERROR 2260 X'000008D4'

MQRC_SRC_ENV_ERROR 2261 X'000008D5'

MQRC_SRC_NAME_ERROR 2262 X'000008D6'

MQRC_DEST_ENV_ERROR 2263 X'000008D7'

MQRC_DEST_NAME_ERROR 2264 X'000008D8'

MQRC_TM_ERROR 2265 X'000008D9'

MQRC_CLUSTER_EXIT_ERROR 2266 X'000008DA'

MQRC_CLUSTER_EXIT_LOAD_ERROR 2267 X'000008DB'

MQRC_CLUSTER_PUT_INHIBITED 2268 X'000008DC'

MQRC_CLUSTER_RESOURCE_ERROR 2269 X'000008DD'

MQRC_NO_DESTINATIONS_AVAILABLE 2270 X'000008DE'

MQRC_CONN_TAG_IN_USE 2271 X'000008DF'

MQRC_PARTIALLY_CONVERTED 2272 X'000008E0'

MQRC_CONNECTION_ERROR 2273 X'000008E1'

MQRC_OPTION_ENVIRONMENT_ERROR 2274 X'000008E2'

MQRC_CD_ERROR 2277 X'000008E5'

MQRC_CLIENT_CONN_ERROR 2278 X'000008E6'

MQRC_CHANNEL_STOPPED_BY_USER 2279 X'000008E7'

MQRC_HCONFIG_ERROR 2280 X'000008E8'

MQRC_FUNCTION_ERROR 2281 X'000008E9'

MQRC_CHANNEL_STARTED 2282 X'000008EA'

MQRC_CHANNEL_STOPPED 2283 X'000008EB'

MQRC_CHANNEL_CONV_ERROR 2284 X'000008EC'

MQRC_SERVICE_NOT_AVAILABLE 2285 X'000008ED'

MQRC_INITIALIZATION_FAILED 2286 X'000008EE'

MQRC_TERMINATION_FAILED 2287 X'000008EF'

MQRC_UNKNOWN_Q_NAME 2288 X'000008F0'

MQRC_SERVICE_ERROR 2289 X'000008F1'

MQRC_Q_ALREADY_EXISTS 2290 X'000008F2'

MQRC_USER_ID_NOT_AVAILABLE 2291 X'000008F3'

Developing applications reference 187

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_UNKNOWN_ENTITY 2292 X'000008F4'

MQRC_UNKNOWN_AUTH_ENTITY 2293 X'000008F5'

MQRC_UNKNOWN_REF_OBJECT 2294 X'000008F6'

MQRC_CHANNEL_ACTIVATED 2295 X'000008F7'

MQRC_CHANNEL_NOT_ACTIVATED 2296 X'000008F8'

MQRC_UOW_CANCELED 2297 X'000008F9'

MQRC_FUNCTION_NOT_SUPPORTED 2298 X'000008FA'

MQRC_SELECTOR_TYPE_ERROR 2299 X'000008FB'

MQRC_COMMAND_TYPE_ERROR 2300 X'000008FC'

MQRC_MULTIPLE_INSTANCE_ERROR 2301 X'000008FD'

MQRC_SYSTEM_ITEM_NOT_ALTERABLE 2302 X'000008FE'

MQRC_BAG_CONVERSION_ERROR 2303 X'000008FF'

MQRC_SELECTOR_OUT_OF_RANGE 2304 X'00000900'

MQRC_SELECTOR_NOT_UNIQUE 2305 X'00000901'

MQRC_INDEX_NOT_PRESENT 2306 X'00000902'

MQRC_STRING_ERROR 2307 X'00000903'

MQRC_ENCODING_NOT_SUPPORTED 2308 X'00000904'

MQRC_SELECTOR_NOT_PRESENT 2309 X'00000905'

MQRC_OUT_SELECTOR_ERROR 2310 X'00000906'

MQRC_STRING_TRUNCATED 2311 X'00000907'

MQRC_SELECTOR_WRONG_TYPE 2312 X'00000908'

MQRC_INCONSISTENT_ITEM_TYPE 2313 X'00000909'

MQRC_INDEX_ERROR 2314 X'0000090A'

MQRC_SYSTEM_BAG_NOT_ALTERABLE 2315 X'0000090B'

MQRC_ITEM_COUNT_ERROR 2316 X'0000090C'

MQRC_FORMAT_NOT_SUPPORTED 2317 X'0000090D'

MQRC_SELECTOR_NOT_SUPPORTED 2318 X'0000090E'

MQRC_ITEM_VALUE_ERROR 2319 X'0000090F'

MQRC_HBAG_ERROR 2320 X'00000910'

MQRC_PARAMETER_MISSING 2321 X'00000911'

MQRC_CMD_SERVER_NOT_AVAILABLE 2322 X'00000912'

MQRC_STRING_LENGTH_ERROR 2323 X'00000913'

MQRC_INQUIRY_COMMAND_ERROR 2324 X'00000914'

MQRC_NESTED_BAG_NOT_SUPPORTED 2325 X'00000915'

MQRC_BAG_WRONG_TYPE 2326 X'00000916'

MQRC_ITEM_TYPE_ERROR 2327 X'00000917'

MQRC_SYSTEM_BAG_NOT_DELETABLE 2328 X'00000918'

MQRC_SYSTEM_ITEM_NOT_DELETABLE 2329 X'00000919'

MQRC_CODED_CHAR_SET_ID_ERROR 2330 X'0000091A'

188 IBM MQ Developing Applications Reference

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_MSG_TOKEN_ERROR 2331 X'0000091B'

MQRC_MISSING_WIH 2332 X'0000091C'

MQRC_WIH_ERROR 2333 X'0000091D'

MQRC_RFH_ERROR 2334 X'0000091E'

MQRC_RFH_STRING_ERROR 2335 X'0000091F'

MQRC_RFH_COMMAND_ERROR 2336 X'00000920'

MQRC_RFH_PARM_ERROR 2337 X'00000921'

MQRC_RFH_DUPLICATE_PARM 2338 X'00000922'

MQRC_RFH_PARM_MISSING 2339 X'00000923'

MQRC_CHAR_CONVERSION_ERROR 2340 X'00000924'

MQRC_UCS2_CONVERSION_ERROR 2341 X'00000925'

MQRC_DB2_NOT_AVAILABLE 2342 X'00000926'

MQRC_OBJECT_NOT_UNIQUE 2343 X'00000927'

MQRC_CONN_TAG_NOT_RELEASED 2344 X'00000928'

MQRC_CF_NOT_AVAILABLE 2345 X'00000929'

MQRC_CF_STRUC_IN_USE 2346 X'0000092A'

MQRC_CF_STRUC_LIST_HDR_IN_USE 2347 X'0000092B'

MQRC_CF_STRUC_AUTH_FAILED 2348 X'0000092C'

MQRC_CF_STRUC_ERROR 2349 X'0000092D'

MQRC_CONN_TAG_NOT_USABLE 2350 X'0000092E'

MQRC_GLOBAL_UOW_CONFLICT 2351 X'0000092F'

MQRC_LOCAL_UOW_CONFLICT 2352 X'00000930'

MQRC_HANDLE_IN_USE_FOR_UOW 2353 X'00000931'

MQRC_UOW_ENLISTMENT_ERROR 2354 X'00000932'

MQRC_UOW_MIX_NOT_SUPPORTED 2355 X'00000933'

MQRC_WXP_ERROR 2356 X'00000934'

MQRC_CURRENT_RECORD_ERROR 2357 X'00000935'

MQRC_NEXT_OFFSET_ERROR 2358 X'00000936'

MQRC_NO_RECORD_AVAILABLE 2359 X'00000937'

MQRC_OBJECT_LEVEL_INCOMPATIBLE 2360 X'00000938'

MQRC_NEXT_RECORD_ERROR 2361 X'00000939'

MQRC_BACKOUT_THRESHOLD_REACHED 2362 X'0000093A'

MQRC_MSG_NOT_MATCHED 2363 X'0000093B'

MQRC_JMS_FORMAT_ERROR 2364 X'0000093C'

MQRC_SEGMENTS_NOT_SUPPORTED 2365 X'0000093D'

MQRC_WRONG_CF_LEVEL 2366 X'0000093E'

MQRC_CONFIG_CREATE_OBJECT 2367 X'0000093F'

MQRC_CONFIG_CHANGE_OBJECT 2368 X'00000940'

MQRC_CONFIG_DELETE_OBJECT 2369 X'00000941'

Developing applications reference 189

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_CONFIG_REFRESH_OBJECT 2370 X'00000942'

MQRC_CHANNEL_SSL_ERROR 2371 X'00000943'

MQRC_PARTICIPANT_NOT_DEFINED 2372 X'00000944'

MQRC_CF_STRUC_FAILED 2373 X'00000945'

MQRC_API_EXIT_ERROR 2374 X'00000946'

MQRC_API_EXIT_INIT_ERROR 2375 X'00000947'

MQRC_API_EXIT_TERM_ERROR 2376 X'00000948'

MQRC_EXIT_REASON_ERROR 2377 X'00000949'

MQRC_RESERVED_VALUE_ERROR 2378 X'0000094A'

MQRC_NO_DATA_AVAILABLE 2379 X'0000094B'

MQRC_SCO_ERROR 2380 X'0000094C'

MQRC_KEY_REPOSITORY_ERROR 2381 X'0000094D'

MQRC_CRYPTO_HARDWARE_ERROR 2382 X'0000094E'

MQRC_AUTH_INFO_REC_COUNT_ERROR 2383 X'0000094F'

MQRC_AUTH_INFO_REC_ERROR 2384 X'00000950'

MQRC_AIR_ERROR 2385 X'00000951'

MQRC_AUTH_INFO_TYPE_ERROR 2386 X'00000952'

MQRC_AUTH_INFO_CONN_NAME_ERROR 2387 X'00000953'

MQRC_LDAP_USER_NAME_ERROR 2388 X'00000954'

MQRC_LDAP_USER_NAME_LENGTH_ERR 2389 X'00000955'

MQRC_LDAP_PASSWORD_ERROR 2390 X'00000956'

MQRC_SSL_ALREADY_INITIALIZED 2391 X'00000957'

MQRC_SSL_CONFIG_ERROR 2392 X'00000958'

MQRC_SSL_INITIALIZATION_ERROR 2393 X'00000959'

MQRC_Q_INDEX_TYPE_ERROR 2394 X'0000095A'

MQRC_CFBS_ERROR 2395 X'0000095B'

MQRC_SSL_NOT_ALLOWED 2396 X'0000095C'

MQRC_JSSE_ERROR 2397 X'0000095D'

MQRC_SSL_PEER_NAME_MISMATCH 2398 X'0000095E'

MQRC_SSL_PEER_NAME_ERROR 2399 X'0000095F'

MQRC_UNSUPPORTED_CIPHER_SUITE 2400 X'00000960'

MQRC_SSL_CERTIFICATE_REVOKED 2401 X'00000961'

MQRC_SSL_CERT_STORE_ERROR 2402 X'00000962'

MQRC_CLIENT_EXIT_LOAD_ERROR 2406 X'00000966'

MQRC_CLIENT_EXIT_ERROR 2407 X'00000967'

MQRC_UOW_COMMITTED 2408 X'00000968'

MQRC_SSL_KEY_RESET_ERROR 2409 X'00000969'

MQRC_UNKNOWN_COMPONENT_NAME 2410 X'0000096A'

MQRC_LOGGER_STATUS 2411 X'0000096B'

190 IBM MQ Developing Applications Reference

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_COMMAND_MQSC 2412 X'0000096C'

MQRC_COMMAND_PCF 2413 X'0000096D'

MQRC_CFIF_ERROR 2414 X'0000096E'

MQRC_CFSF_ERROR 2415 X'0000096F'

MQRC_CFGR_ERROR 2416 X'00000970'

MQRC_MSG_NOT_ALLOWED_IN_GROUP 2417 X'00000971'

MQRC_FILTER_OPERATOR_ERROR 2418 X'00000972'

MQRC_NESTED_SELECTOR_ERROR 2419 X'00000973'

MQRC_EPH_ERROR 2420 X'00000974'

MQRC_RFH_FORMAT_ERROR 2421 X'00000975'

MQRC_CFBF_ERROR 2422 X'00000976'

MQRC_CLIENT_CHANNEL_CONFLICT 2423 X'00000977'

MQRC_SD_ERROR 2424 X'00000978'

MQRC_TOPIC_STRING_ERROR 2425 X'00000979'

MQRC_STS_ERROR 2426 X'0000097A'

MQRC_NO_SUBSCRIPTION 2428 X'0000097C'

MQRC_SUBSCRIPTION_IN_USE 2429 X'0000097D'

MQRC_STAT_TYPE_ERROR 2430 X'0000097E'

MQRC_SUB_USER_DATA_ERROR 2431 X'0000097F'

MQRC_SUB_ALREADY_EXISTS 2432 X'00000980'

MQRC_IDENTITY_MISMATCH 2434 X'00000982'

MQRC_ALTER_SUB_ERROR 2435 X'00000983'

MQRC_DURABILITY_NOT_ALLOWED 2436 X'00000984'

MQRC_NO_RETAINED_MSG 2437 X'00000985'

MQRC_SRO_ERROR 2438 X'00000986'

MQRC_SUB_NAME_ERROR 2440 X'00000988'

MQRC_OBJECT_STRING_ERROR 2441 X'00000989'

MQRC_PROPERTY_NAME_ERROR 2442 X'0000098A'

MQRC_SEGMENTATION_NOT_ALLOWED 2443 X'0000098B'

MQRC_CBD_ERROR 2444 X'0000098C'

MQRC_CTLO_ERROR 2445 X'0000098D'

MQRC_NO_CALLBACKS_ACTIVE 2446 X'0000098E'

MQRC_CALLBACK_NOT_REGISTERED 2448 X'00000990'

MQRC_OPTIONS_CHANGED 2457 X'00000999'

MQRC_READ_AHEAD_MSGS 2458 X'0000099A'

MQRC_SELECTOR_SYNTAX_ERROR 2459 X'0000099B'

MQRC_HMSG_ERROR 2460 X'0000099C'

MQRC_CMHO_ERROR 2461 X'0000099D'

MQRC_DMHO_ERROR 2462 X'0000099E'

Developing applications reference 191

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_SMPO_ERROR 2463 X'0000099F'

MQRC_IMPO_ERROR 2464 X'000009A0'

MQRC_PROPERTY_NAME_TOO_BIG 2465 X'000009A1'

MQRC_PROP_VALUE_NOT_CONVERTED 2466 X'000009A2'

MQRC_PROP_TYPE_NOT_SUPPORTED 2467 X'000009A3'

MQRC_PROPERTY_VALUE_TOO_BIG 2469 X'000009A5'

MQRC_PROP_CONV_NOT_SUPPORTED 2470 X'000009A6'

MQRC_PROPERTY_NOT_AVAILABLE 2471 X'000009A7'

MQRC_PROP_NUMBER_FORMAT_ERROR 2472 X'000009A8'

MQRC_PROPERTY_TYPE_ERROR 2473 X'000009A9'

MQRC_PROPERTIES_TOO_BIG 2478 X'000009AE'

MQRC_PUT_NOT_RETAINED 2479 X'000009AF'

MQRC_ALIAS_TARGTYPE_CHANGED 2480 X'000009B0'

MQRC_DMPO_ERROR 2481 X'000009B1'

MQRC_PD_ERROR 2482 X'000009B2'

MQRC_CALLBACK_TYPE_ERROR 2483 X'000009B3'

MQRC_CBD_OPTIONS_ERROR 2484 X'000009B4'

MQRC_MAX_MSG_LENGTH_ERROR 2485 X'000009B5'

MQRC_CALLBACK_ROUTINE_ERROR 2486 X'000009B6'

MQRC_CALLBACK_LINK_ERROR 2487 X'000009B7'

MQRC_OPERATION_ERROR 2488 X'000009B8'

MQRC_BMHO_ERROR 2489 X'000009B9'

MQRC_UNSUPPORTED_PROPERTY 2490 X'000009BA'

MQRC_PROP_NAME_NOT_CONVERTED 2492 X'000009BC'

MQRC_GET_ENABLED 2494 X'000009BE'

MQRC_MODULE_NOT_FOUND 2495 X'000009BF'

MQRC_MODULE_INVALID 2496 X'000009C0'

MQRC_MODULE_ENTRY_NOT_FOUND 2497 X'000009C1'

MQRC_MIXED_CONTENT_NOT_ALLOWED 2498 X'000009C2'

MQRC_MSG_HANDLE_IN_USE 2499 X'000009C3'

MQRC_HCONN_ASYNC_ACTIVE 2500 X'000009C4'

MQRC_MHBO_ERROR 2501 X'000009C5'

MQRC_PUBLICATION_FAILURE 2502 X'000009C6'

MQRC_SUB_INHIBITED 2503 X'000009C7'

MQRC_SELECTOR_ALWAYS_FALSE 2504 X'000009C8'

MQRC_XEPO_ERROR 2507 X'000009CB'

MQRC_DURABILITY_NOT_ALTERABLE 2509 X'000009CD'

MQRC_TOPIC_NOT_ALTERABLE 2510 X'000009CE'

MQRC_SUBLEVEL_NOT_ALTERABLE 2512 X'000009D0'

192 IBM MQ Developing Applications Reference

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_PROPERTY_NAME_LENGTH_ERR 2513 X'000009D1'

MQRC_DUPLICATE_GROUP_SUB 2514 X'000009D2'

MQRC_GROUPING_NOT_ALTERABLE 2515 X'000009D3'

MQRC_SELECTOR_INVALID_FOR_TYPE 2516 X'000009D4'

MQRC_HOBJ_QUIESCED 2517 X'000009D5'

MQRC_HOBJ_QUIESCED_NO_MSGS 2518 X'000009D6'

MQRC_SELECTION_STRING_ERROR 2519 X'000009D7'

MQRC_RES_OBJECT_STRING_ERROR 2520 X'000009D8'

MQRC_CONNECTION_SUSPENDED 2521 X'000009D9'

MQRC_INVALID_DESTINATION 2522 X'000009DA'

MQRC_INVALID_SUBSCRIPTION 2523 X'000009DB'

MQRC_SELECTOR_NOT_ALTERABLE 2524 X'000009DC'

MQRC_RETAINED_MSG_Q_ERROR 2525 X'000009DD'

MQRC_RETAINED_NOT_DELIVERED 2526 X'000009DE'

MQRC_RFH_RESTRICTED_FORMAT_ERR 2527 X'000009DF'

MQRC_CONNECTION_STOPPED 2528 X'000009E0'

MQRC_ASYNC_UOW_CONFLICT 2529 X'000009E1'

MQRC_ASYNC_XA_CONFLICT 2530 X'000009E2'

MQRC_PUBSUB_INHIBITED 2531 X'000009E3'

MQRC_MSG_HANDLE_COPY_FAILURE 2532 X'000009E4'

MQRC_DEST_CLASS_NOT_ALTERABLE 2533 X'000009E5'

MQRC_OPERATION_NOT_ALLOWED 2534 X'000009E6'

MQRC_ACTION_ERROR 2535 X'000009E7'

MQRC_CHANNEL_NOT_AVAILABLE 2537 X'000009E9'

MQRC_HOST_NOT_AVAILABLE 2538 X'000009EA'

MQRC_CHANNEL_CONFIG_ERROR 2539 X'000009EB'

MQRC_UNKNOWN_CHANNEL_NAME 2540 X'000009EC'

MQRC_LOOPING_PUBLICATION 2541 X'000009ED'

MQRC_ALREADY_JOINED 2542 X'000009EE'

MQRC_CHANNEL_SSL_WARNING 2552 X'000009F8'

MQRC_OCSP_URL_ERROR 2553 X'000009F9'

MQRC_CIPHER_SPEC_NOT_SUITE_B 2591 X'00000A1F'

MQRC_SUITE_B_ERROR 2592 X'00000A20'

MQRC_PASSWORD_PROTECTION_ERROR 2594 X'00000A22'

MQRC_REOPEN_EXCL_INPUT_ERROR 6100 X'000017D4'

MQRC_REOPEN_INQUIRE_ERROR 6101 X'000017D5'

MQRC_REOPEN_SAVED_CONTEXT_ERR 6102 X'000017D6'

MQRC_REOPEN_TEMPORARY_Q_ERROR 6103 X'000017D7'

MQRC_ATTRIBUTE_LOCKED 6104 X'000017D8'

Developing applications reference 193

Table 306. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRC_CURSOR_NOT_VALID 6105 X'000017D9'

MQRC_ENCODING_ERROR 6106 X'000017DA'

MQRC_STRUC_ID_ERROR 6107 X'000017DB'

MQRC_NULL_POINTER 6108 X'000017DC'

MQRC_NO_CONNECTION_REFERENCE 6109 X'000017DD'

MQRC_NO_BUFFER 6110 X'000017DE'

MQRC_BINARY_DATA_LENGTH_ERROR 6111 X'000017DF'

MQRC_BUFFER_NOT_AUTOMATIC 6112 X'000017E0'

MQRC_INSUFFICIENT_BUFFER 6113 X'000017E1'

MQRC_INSUFFICIENT_DATA 6114 X'000017E2'

MQRC_DATA_TRUNCATED 6115 X'000017E3'

MQRC_ZERO_LENGTH 6116 X'000017E4'

MQRC_NEGATIVE_LENGTH 6117 X'000017E5'

MQRC_NEGATIVE_OFFSET 6118 X'000017E6'

MQRC_INCONSISTENT_FORMAT 6119 X'000017E7'

MQRC_INCONSISTENT_OBJECT_STATE 6120 X'000017E8'

MQRC_CONTEXT_OBJECT_NOT_VALID 6121 X'000017E9'

MQRC_CONTEXT_OPEN_ERROR 6122 X'000017EA'

MQRC_STRUC_LENGTH_ERROR 6123 X'000017EB'

MQRC_NOT_CONNECTED 6124 X'000017EC'

MQRC_NOT_OPEN 6125 X'000017ED'

MQRC_DISTRIBUTION_LIST_EMPTY 6126 X'000017EE'

MQRC_INCONSISTENT_OPEN_OPTIONS 6127 X'000017EF'

MQRC_WRONG_VERSION 6128 X'000017F0'

MQRC_REFERENCE_ERROR 6129 X'000017F1'

MQRCCF_* (Command format header reason codes)
See PCF reason codes for more information on the programmer response.

Table 307. Values of constants

Name Decimal value Hexadecimal value

MQRCCF_CFH_TYPE_ERROR 3001 X'00000BB9'

MQRCCF_CFH_LENGTH_ERROR 3002 X'00000BBA'

MQRCCF_CFH_VERSION_ERROR 3003 X'00000BBB'

MQRCCF_CFH_MSG_SEQ_NUMBER_ERR 3004 X'00000BBC'

MQRCCF_CFH_CONTROL_ERROR 3005 X'00000BBD'

MQRCCF_CFH_PARM_COUNT_ERROR 3006 X'00000BBE'

MQRCCF_CFH_COMMAND_ERROR 3007 X'00000BBF'

MQRCCF_COMMAND_FAILED 3008 X'00000BC0'

MQRCCF_CFIN_LENGTH_ERROR 3009 X'00000BC1'

194 IBM MQ Developing Applications Reference

Table 307. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRCCF_CFST_LENGTH_ERROR 3010 X'00000BC2'

MQRCCF_CFST_STRING_LENGTH_ERR 3011 X'00000BC3'

MQRCCF_FORCE_VALUE_ERROR 3012 X'00000BC4'

MQRCCF_STRUCTURE_TYPE_ERROR 3013 X'00000BC5'

MQRCCF_CFIN_PARM_ID_ERROR 3014 X'00000BC6'

MQRCCF_CFST_PARM_ID_ERROR 3015 X'00000BC7'

MQRCCF_MSG_LENGTH_ERROR 3016 X'00000BC8'

MQRCCF_CFIN_DUPLICATE_PARM 3017 X'00000BC9'

MQRCCF_CFST_DUPLICATE_PARM 3018 X'00000BCA'

MQRCCF_PARM_COUNT_TOO_SMALL 3019 X'00000BCB'

MQRCCF_PARM_COUNT_TOO_BIG 3020 X'00000BCC'

MQRCCF_Q_ALREADY_IN_CELL 3021 X'00000BCD'

MQRCCF_Q_TYPE_ERROR 3022 X'00000BCE'

MQRCCF_MD_FORMAT_ERROR 3023 X'00000BCF'

MQRCCF_CFSL_LENGTH_ERROR 3024 X'00000BD0'

MQRCCF_REPLACE_VALUE_ERROR 3025 X'00000BD1'

MQRCCF_CFIL_DUPLICATE_VALUE 3026 X'00000BD2'

MQRCCF_CFIL_COUNT_ERROR 3027 X'00000BD3'

MQRCCF_CFIL_LENGTH_ERROR 3028 X'00000BD4'

MQRCCF_QUIESCE_VALUE_ERROR 3029 X'00000BD5'

MQRCCF_MODE_VALUE_ERROR 3029 X'00000BD5'

MQRCCF_MSG_SEQ_NUMBER_ERROR 3030 X'00000BD6'

MQRCCF_PING_DATA_COUNT_ERROR 3031 X'00000BD7'

MQRCCF_PING_DATA_COMPARE_ERROR 3032 X'00000BD8'

MQRCCF_CFSL_PARM_ID_ERROR 3033 X'00000BD9'

MQRCCF_CHANNEL_TYPE_ERROR 3034 X'00000BDA'

MQRCCF_PARM_SEQUENCE_ERROR 3035 X'00000BDB'

MQRCCF_XMIT_PROTOCOL_TYPE_ERR 3036 X'00000BDC'

MQRCCF_BATCH_SIZE_ERROR 3037 X'00000BDD'

MQRCCF_DISC_INT_ERROR 3038 X'00000BDE'

MQRCCF_SHORT_RETRY_ERROR 3039 X'00000BDF'

MQRCCF_SHORT_TIMER_ERROR 3040 X'00000BE0'

MQRCCF_LONG_RETRY_ERROR 3041 X'00000BE1'

MQRCCF_LONG_TIMER_ERROR 3042 X'00000BE2'

MQRCCF_SEQ_NUMBER_WRAP_ERROR 3043 X'00000BE3'

MQRCCF_MAX_MSG_LENGTH_ERROR 3044 X'00000BE4'

MQRCCF_PUT_AUTH_ERROR 3045 X'00000BE5'

MQRCCF_PURGE_VALUE_ERROR 3046 X'00000BE6'

MQRCCF_CFIL_PARM_ID_ERROR 3047 X'00000BE7'

Developing applications reference 195

Table 307. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRCCF_MSG_TRUNCATED 3048 X'00000BE8'

MQRCCF_CCSID_ERROR 3049 X'00000BE9'

MQRCCF_ENCODING_ERROR 3050 X'00000BEA'

MQRCCF_QUEUES_VALUE_ERROR 3051 X'00000BEB'

MQRCCF_DATA_CONV_VALUE_ERROR 3052 X'00000BEC'

MQRCCF_INDOUBT_VALUE_ERROR 3053 X'00000BED'

MQRCCF_ESCAPE_TYPE_ERROR 3054 X'00000BEE'

MQRCCF_REPOS_VALUE_ERROR 3055 X'00000BEF'

MQRCCF_CHANNEL_TABLE_ERROR 3062 X'00000BF6'

MQRCCF_MCA_TYPE_ERROR 3063 X'00000BF7'

MQRCCF_CHL_INST_TYPE_ERROR 3064 X'00000BF8'

MQRCCF_CHL_STATUS_NOT_FOUND 3065 X'00000BF9'

MQRCCF_CFSL_DUPLICATE_PARM 3066 X'00000BFA'

MQRCCF_CFSL_TOTAL_LENGTH_ERROR 3067 X'00000BFB'

MQRCCF_CFSL_COUNT_ERROR 3068 X'00000BFC'

MQRCCF_CFSL_STRING_LENGTH_ERR 3069 X'00000BFD'

MQRCCF_BROKER_DELETED 3070 X'00000BFE'

MQRCCF_STREAM_ERROR 3071 X'00000BFF'

MQRCCF_TOPIC_ERROR 3072 X'00000C00'

MQRCCF_NOT_REGISTERED 3073 X'00000C01'

MQRCCF_Q_MGR_NAME_ERROR 3074 X'00000C02'

MQRCCF_INCORRECT_STREAM 3075 X'00000C03'

MQRCCF_Q_NAME_ERROR 3076 X'00000C04'

MQRCCF_NO_RETAINED_MSG 3077 X'00000C05'

MQRCCF_DUPLICATE_IDENTITY 3078 X'00000C06'

MQRCCF_INCORRECT_Q 3079 X'00000C07'

MQRCCF_CORREL_ID_ERROR 3080 X'00000C08'

MQRCCF_NOT_AUTHORIZED 3081 X'00000C09'

MQRCCF_UNKNOWN_STREAM 3082 X'00000C0A'

MQRCCF_REG_OPTIONS_ERROR 3083 X'00000C0B'

MQRCCF_PUB_OPTIONS_ERROR 3084 X'00000C0C'

MQRCCF_UNKNOWN_BROKER 3085 X'00000C0D'

MQRCCF_Q_MGR_CCSID_ERROR 3086 X'00000C0E'

MQRCCF_DEL_OPTIONS_ERROR 3087 X'00000C0F'

MQRCCF_CLUSTER_NAME_CONFLICT 3088 X'00000C10'

MQRCCF_REPOS_NAME_CONFLICT 3089 X'00000C11'

MQRCCF_CLUSTER_Q_USAGE_ERROR 3090 X'00000C12'

MQRCCF_ACTION_VALUE_ERROR 3091 X'00000C13'

MQRCCF_COMMS_LIBRARY_ERROR 3092 X'00000C14'

196 IBM MQ Developing Applications Reference

Table 307. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRCCF_NETBIOS_NAME_ERROR 3093 X'00000C15'

MQRCCF_BROKER_COMMAND_FAILED 3094 X'00000C16'

MQRCCF_CFST_CONFLICTING_PARM 3095 X'00000C17'

MQRCCF_PATH_NOT_VALID 3096 X'00000C18'

MQRCCF_PARM_SYNTAX_ERROR 3097 X'00000C19'

MQRCCF_PWD_LENGTH_ERROR 3098 X'00000C1A'

MQRCCF_FILTER_ERROR 3150 X'00000C4E'

MQRCCF_WRONG_USER 3151 X'00000C4F'

MQRCCF_DUPLICATE_SUBSCRIPTION 3152 X'00000C50'

MQRCCF_SUB_NAME_ERROR 3153 X'00000C51'

MQRCCF_SUB_IDENTITY_ERROR 3154 X'00000C52'

MQRCCF_SUBSCRIPTION_IN_USE 3155 X'00000C53'

MQRCCF_SUBSCRIPTION_LOCKED 3156 X'00000C54'

MQRCCF_ALREADY_JOINED 3157 X'00000C55'

MQRCCF_OBJECT_IN_USE 3160 X'00000C58'

MQRCCF_UNKNOWN_FILE_NAME 3161 X'00000C59'

MQRCCF_FILE_NOT_AVAILABLE 3162 X'00000C5A'

MQRCCF_DISC_RETRY_ERROR 3163 X'00000C5B'

MQRCCF_ALLOC_RETRY_ERROR 3164 X'00000C5C'

MQRCCF_ALLOC_SLOW_TIMER_ERROR 3165 X'00000C5D'

MQRCCF_ALLOC_FAST_TIMER_ERROR 3166 X'00000C5E'

MQRCCF_PORT_NUMBER_ERROR 3167 X'00000C5F'

MQRCCF_CHL_SYSTEM_NOT_ACTIVE 3168 X'00000C60'

MQRCCF_ENTITY_NAME_MISSING 3169 X'00000C61'

MQRCCF_PROFILE_NAME_ERROR 3170 X'00000C62'

MQRCCF_AUTH_VALUE_ERROR 3171 X'00000C63'

MQRCCF_AUTH_VALUE_MISSING 3172 X'00000C64'

MQRCCF_OBJECT_TYPE_MISSING 3173 X'00000C65'

MQRCCF_CONNECTION_ID_ERROR 3174 X'00000C66'

MQRCCF_LOG_TYPE_ERROR 3175 X'00000C67'

MQRCCF_PROGRAM_NOT_AVAILABLE 3176 X'00000C68'

MQRCCF_PROGRAM_AUTH_FAILED 3177 X'00000C69'

MQRCCF_NONE_FOUND 3200 X'00000C80'

MQRCCF_SECURITY_SWITCH_OFF 3201 X'00000C81'

MQRCCF_SECURITY_REFRESH_FAILED 3202 X'00000C82'

MQRCCF_PARM_CONFLICT 3203 X'00000C83'

MQRCCF_COMMAND_INHIBITED 3204 X'00000C84'

MQRCCF_OBJECT_BEING_DELETED 3205 X'00000C85'

MQRCCF_STORAGE_CLASS_IN_USE 3207 X'00000C87'

Developing applications reference 197

Table 307. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRCCF_OBJECT_NAME_RESTRICTED 3208 X'00000C88'

MQRCCF_OBJECT_LIMIT_EXCEEDED 3209 X'00000C89'

MQRCCF_OBJECT_OPEN_FORCE 3210 X'00000C8A'

MQRCCF_DISPOSITION_CONFLICT 3211 X'00000C8B'

MQRCCF_Q_MGR_NOT_IN_QSG 3212 X'00000C8C'

MQRCCF_ATTR_VALUE_FIXED 3213 X'00000C8D'

MQRCCF_NAMELIST_ERROR 3215 X'00000C8F'

MQRCCF_NO_CHANNEL_INITIATOR 3217 X'00000C91'

MQRCCF_CHANNEL_INITIATOR_ERROR 3218 X'00000C92'

MQRCCF_COMMAND_LEVEL_CONFLICT 3222 X'00000C96'

MQRCCF_Q_ATTR_CONFLICT 3223 X'00000C97'

MQRCCF_EVENTS_DISABLED 3224 X'00000C98'

MQRCCF_COMMAND_SCOPE_ERROR 3225 X'00000C99'

MQRCCF_COMMAND_REPLY_ERROR 3226 X'00000C9A'

MQRCCF_FUNCTION_RESTRICTED 3227 X'00000C9B'

MQRCCF_PARM_MISSING 3228 X'00000C9C'

MQRCCF_PARM_VALUE_ERROR 3229 X'00000C9D'

MQRCCF_COMMAND_LENGTH_ERROR 3230 X'00000C9E'

MQRCCF_COMMAND_ORIGIN_ERROR 3231 X'00000C9F'

MQRCCF_LISTENER_CONFLICT 3232 X'00000CA0'

MQRCCF_LISTENER_STARTED 3233 X'00000CA1'

MQRCCF_LISTENER_STOPPED 3234 X'00000CA2'

MQRCCF_CHANNEL_ERROR 3235 X'00000CA3'

MQRCCF_CF_STRUC_ERROR 3236 X'00000CA4'

MQRCCF_UNKNOWN_USER_ID 3237 X'00000CA5'

MQRCCF_UNEXPECTED_ERROR 3238 X'00000CA6'

MQRCCF_NO_XCF_PARTNER 3239 X'00000CA7'

MQRCCF_CFGR_PARM_ID_ERROR 3240 X'00000CA8'

MQRCCF_CFIF_LENGTH_ERROR 3241 X'00000CA9'

MQRCCF_CFIF_OPERATOR_ERROR 3242 X'00000CAA'

MQRCCF_CFIF_PARM_ID_ERROR 3243 X'00000CAB'

MQRCCF_CFSF_FILTER_VAL_LEN_ERR 3244 X'00000CAC'

MQRCCF_CFSF_LENGTH_ERROR 3245 X'00000CAD'

MQRCCF_CFSF_OPERATOR_ERROR 3246 X'00000CAE'

MQRCCF_CFSF_PARM_ID_ERROR 3247 X'00000CAF'

MQRCCF_TOO_MANY_FILTERS 3248 X'00000CB0'

MQRCCF_LISTENER_RUNNING 3249 X'00000CB1'

MQRCCF_LSTR_STATUS_NOT_FOUND 3250 X'00000CB2'

MQRCCF_SERVICE_RUNNING 3251 X'00000CB3'

198 IBM MQ Developing Applications Reference

Table 307. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRCCF_SERV_STATUS_NOT_FOUND 3252 X'00000CB4'

MQRCCF_SERVICE_STOPPED 3253 X'00000CB5'

MQRCCF_CFBS_DUPLICATE_PARM 3254 X'00000CB6'

MQRCCF_CFBS_LENGTH_ERROR 3255 X'00000CB7'

MQRCCF_CFBS_PARM_ID_ERROR 3256 X'00000CB8'

MQRCCF_CFBS_STRING_LENGTH_ERR 3257 X'00000CB9'

MQRCCF_CFGR_LENGTH_ERROR 3258 X'00000CBA'

MQRCCF_CFGR_PARM_COUNT_ERROR 3259 X'00000CBB'

MQRCCF_CONN_NOT_STOPPED 3260 X'00000CBC'

MQRCCF_SERVICE_REQUEST_PENDING 3261 X'00000CBD'

MQRCCF_NO_START_CMD 3262 X'00000CBE'

MQRCCF_NO_STOP_CMD 3263 X'00000CBF'

MQRCCF_CFBF_LENGTH_ERROR 3264 X'00000CC0'

MQRCCF_CFBF_PARM_ID_ERROR 3265 X'00000CC1'

MQRCCF_CFBF_OPERATOR_ERROR 3266 X'00000CC2'

MQRCCF_CFBF_FILTER_VAL_LEN_ERR 3267 X'00000CC3'

MQRCCF_LISTENER_STILL_ACTIVE 3268 X'00000CC4'

MQRCCF_DEF_XMIT_Q_CLUS_ERROR 3269 X'0000CC5'

MQRCCF_TOPICSTR_ALREADY_EXISTS 3300 X'00000CE4'

MQRCCF_SHARING_CONVS_ERROR 3301 X'00000CE5'

MQRCCF_SHARING_CONVS_TYPE 3302 X'00000CE6'

MQRCCF_SECURITY_CASE_CONFLICT 3303 X'00000CE7'

MQRCCF_TOPIC_TYPE_ERROR 3305 X'00000CE9'

MQRCCF_MAX_INSTANCES_ERROR 3306 X'00000CEA'

MQRCCF_MAX_INSTS_PER_CLNT_ERR 3307 X'00000CEB'

MQRCCF_TOPIC_STRING_NOT_FOUND 3308 X'00000CEC'

MQRCCF_SUBSCRIPTION_POINT_ERR 3309 X'00000CED'

MQRCCF_SUB_ALREADY_EXISTS 3311 X'00000CEF'

MQRCCF_UNKNOWN_OBJECT_NAME 3312 X'00000CF0'

MQRCCF_REMOTE_Q_NAME_ERROR 3313 X'00000CF1'

MQRCCF_DURABILITY_NOT_ALLOWED 3314 X'00000CF2'

MQRCCF_HOBJ_ERROR 3315 X'00000CF3'

MQRCCF_DEST_NAME_ERROR 3316 X'00000CF4'

MQRCCF_INVALID_DESTINATION 3317 X'00000CF5'

MQRCCF_PUBSUB_INHIBITED 3318 X'00000CF6'

MQRCCF_CHLAUTH_TYPE_ERROR 3326 X'00000CFE'

MQRCCF_CHLAUTH_ACTION_ERROR 3327 X'00000CFF'

MQRCCF_CHLAUTH_USERSRC_ERROR 3335 X'00000D07'

MQRCCF_WRONG_CHLAUTH_TYPE 3336 X'00000D08'

Developing applications reference 199

Table 307. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRCCF_CHLAUTH_ALREADY_EXISTS 3337 X'00000D09'

MQRCCF_CHLAUTH_NOT_FOUND 3338 X'00000D0A'

MQRCCF_WRONG_CHLAUTH_ACTION 3339 X'00000D0B'

MQRCCF_WRONG_CHLAUTH_USERSRC 3340 X'00000D0C'

MQRCCF_CHLAUTH_WARN_ERROR 3341 X'00000D0D'

MQRCCF_WRONG_CHLAUTH_MATCH 3342 X'00000D0E'

MQRCCF_IPADDR_RANGE_CONFLICT 3343 X'00000D0F'

MQRCCF_CHLAUTH_MAX_EXCEEDED 3344 X'00000D10'

MQRCCF_IPADDR_ERROR 3345 X'00000D11'

MQRCCF_IPADDR_RANGE_ERROR 3346 X'00000D12'

MQRCCF_PROFILE_NAME_MISSING 3347 X'00000D13'

MQRCCF_CHLAUTH_CLNTUSER_ERROR 3348 X'00000D14'

MQRCCF_CHLAUTH_NAME_ERROR 3349 X'00000D15'

MQRCCF_SUITE_B_ERROR 3353 X'00000D19'

MQRCCF_PSCLUS_DISABLED_TOPDEF 3359 X'00000D1F'

MQRCCF_PSCLUS_TOPIC_EXISTS 3360 X'00000D20'

MQRCCF_INVALID_PROTOCOL 3365 X'00000D25'

MQRCCF_ACCESS_BLOCKED 3382 X'00000D36'

MQRCCF_OBJECT_ALREADY_EXISTS 4001 X'00000FA1'

MQRCCF_OBJECT_WRONG_TYPE 4002 X'00000FA2'

MQRCCF_LIKE_OBJECT_WRONG_TYPE 4003 X'00000FA3'

MQRCCF_OBJECT_OPEN 4004 X'00000FA4'

MQRCCF_ATTR_VALUE_ERROR 4005 X'00000FA5'

MQRCCF_UNKNOWN_Q_MGR 4006 X'00000FA6'

MQRCCF_Q_WRONG_TYPE 4007 X'00000FA7'

MQRCCF_OBJECT_NAME_ERROR 4008 X'00000FA8'

MQRCCF_ALLOCATE_FAILED 4009 X'00000FA9'

MQRCCF_HOST_NOT_AVAILABLE 4010 X'00000FAA'

MQRCCF_CONFIGURATION_ERROR 4011 X'00000FAB'

MQRCCF_CONNECTION_REFUSED 4012 X'00000FAC'

MQRCCF_ENTRY_ERROR 4013 X'00000FAD'

MQRCCF_SEND_FAILED 4014 X'00000FAE'

MQRCCF_RECEIVED_DATA_ERROR 4015 X'00000FAF'

MQRCCF_RECEIVE_FAILED 4016 X'00000FB0'

MQRCCF_CONNECTION_CLOSED 4017 X'00000FB1'

MQRCCF_NO_STORAGE 4018 X'00000FB2'

MQRCCF_NO_COMMS_MANAGER 4019 X'00000FB3'

MQRCCF_LISTENER_NOT_STARTED 4020 X'00000FB4'

MQRCCF_BIND_FAILED 4024 X'00000FB8'

200 IBM MQ Developing Applications Reference

Table 307. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRCCF_CHANNEL_INDOUBT 4025 X'00000FB9'

MQRCCF_MQCONN_FAILED 4026 X'00000FBA'

MQRCCF_MQOPEN_FAILED 4027 X'00000FBB'

MQRCCF_MQGET_FAILED 4028 X'00000FBC'

MQRCCF_MQPUT_FAILED 4029 X'00000FBD'

MQRCCF_PING_ERROR 4030 X'00000FBE'

MQRCCF_CHANNEL_IN_USE 4031 X'00000FBF'

MQRCCF_CHANNEL_NOT_FOUND 4032 X'00000FC0'

MQRCCF_UNKNOWN_REMOTE_CHANNEL 4033 X'00000FC1'

MQRCCF_REMOTE_QM_UNAVAILABLE 4034 X'00000FC2'

MQRCCF_REMOTE_QM_TERMINATING 4035 X'00000FC3'

MQRCCF_MQINQ_FAILED 4036 X'00000FC4'

MQRCCF_NOT_XMIT_Q 4037 X'00000FC5'

MQRCCF_CHANNEL_DISABLED 4038 X'00000FC6'

MQRCCF_USER_EXIT_NOT_AVAILABLE 4039 X'00000FC7'

MQRCCF_COMMIT_FAILED 4040 X'00000FC8'

MQRCCF_WRONG_CHANNEL_TYPE 4041 X'00000FC9'

MQRCCF_CHANNEL_ALREADY_EXISTS 4042 X'00000FCA'

MQRCCF_DATA_TOO_LARGE 4043 X'00000FCB'

MQRCCF_CHANNEL_NAME_ERROR 4044 X'00000FCC'

MQRCCF_XMIT_Q_NAME_ERROR 4045 X'00000FCD'

MQRCCF_MCA_NAME_ERROR 4047 X'00000FCF'

MQRCCF_SEND_EXIT_NAME_ERROR 4048 X'00000FD0'

MQRCCF_SEC_EXIT_NAME_ERROR 4049 X'00000FD1'

MQRCCF_MSG_EXIT_NAME_ERROR 4050 X'00000FD2'

MQRCCF_RCV_EXIT_NAME_ERROR 4051 X'00000FD3'

MQRCCF_XMIT_Q_NAME_WRONG_TYPE 4052 X'00000FD4'

MQRCCF_MCA_NAME_WRONG_TYPE 4053 X'00000FD5'

MQRCCF_DISC_INT_WRONG_TYPE 4054 X'00000FD6'

MQRCCF_SHORT_RETRY_WRONG_TYPE 4055 X'00000FD7'

MQRCCF_SHORT_TIMER_WRONG_TYPE 4056 X'00000FD8'

MQRCCF_LONG_RETRY_WRONG_TYPE 4057 X'00000FD9'

MQRCCF_LONG_TIMER_WRONG_TYPE 4058 X'00000FDA'

MQRCCF_PUT_AUTH_WRONG_TYPE 4059 X'00000FDB'

MQRCCF_KEEP_ALIVE_INT_ERROR 4060 X'00000FDC'

MQRCCF_MISSING_CONN_NAME 4061 X'00000FDD'

MQRCCF_CONN_NAME_ERROR 4062 X'00000FDE'

MQRCCF_MQSET_FAILED 4063 X'00000FDF'

MQRCCF_CHANNEL_NOT_ACTIVE 4064 X'00000FE0'

Developing applications reference 201

Table 307. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRCCF_TERMINATED_BY_SEC_EXIT 4065 X'00000FE1'

MQRCCF_DYNAMIC_Q_SCOPE_ERROR 4067 X'00000FE3'

MQRCCF_CELL_DIR_NOT_AVAILABLE 4068 X'00000FE4'

MQRCCF_MR_COUNT_ERROR 4069 X'00000FE5'

MQRCCF_MR_COUNT_WRONG_TYPE 4070 X'00000FE6'

MQRCCF_MR_EXIT_NAME_ERROR 4071 X'00000FE7'

MQRCCF_MR_EXIT_NAME_WRONG_TYPE 4072 X'00000FE8'

MQRCCF_MR_INTERVAL_ERROR 4073 X'00000FE9'

MQRCCF_MR_INTERVAL_WRONG_TYPE 4074 X'00000FEA'

MQRCCF_NPM_SPEED_ERROR 4075 X'00000FEB'

MQRCCF_NPM_SPEED_WRONG_TYPE 4076 X'00000FEC'

MQRCCF_HB_INTERVAL_ERROR 4077 X'00000FED'

MQRCCF_HB_INTERVAL_WRONG_TYPE 4078 X'00000FEE'

MQRCCF_CHAD_ERROR 4079 X'00000FEF'

MQRCCF_CHAD_WRONG_TYPE 4080 X'00000FF0'

MQRCCF_CHAD_EVENT_ERROR 4081 X'00000FF1'

MQRCCF_CHAD_EVENT_WRONG_TYPE 4082 X'00000FF2'

MQRCCF_CHAD_EXIT_ERROR 4083 X'00000FF3'

MQRCCF_CHAD_EXIT_WRONG_TYPE 4084 X'00000FF4'

MQRCCF_SUPPRESSED_BY_EXIT 4085 X'00000FF5'

MQRCCF_BATCH_INT_ERROR 4086 X'00000FF6'

MQRCCF_BATCH_INT_WRONG_TYPE 4087 X'00000FF7'

MQRCCF_NET_PRIORITY_ERROR 4088 X'00000FF8'

MQRCCF_NET_PRIORITY_WRONG_TYPE 4089 X'00000FF9'

MQRCCF_CHANNEL_CLOSED 4090 X'00000FFA'

MQRCCF_Q_STATUS_NOT_FOUND 4091 X'00000FFB'

MQRCCF_SSL_CIPHER_SPEC_ERROR 4092 X'00000FFC'

MQRCCF_SSL_PEER_NAME_ERROR 4093 X'00000FFD'

MQRCCF_SSL_CLIENT_AUTH_ERROR 4094 X'00000FFE'

MQRCCF_RETAINED_NOT_SUPPORTED 4095 X'00000FFF'

MQRCCF_KWD_VALUE_WRONG_TYPE

4096 X'00001000'

MQRCN_* (Client reconnect Constants)
Table 308. Values of constants

Name Decimal value Hexadecimal value

MQRCN_NO 0 X'00000000'

MQRCN_YES 1 X'00000001'

MQRCN_Q_MGR 2 X'00000002'

202 IBM MQ Developing Applications Reference

Table 308. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRCN_DISABLED 3 X'00000003'

MQRCVTIME_* (Receive Timeout Types)
Table 309. Values of constants

Name Decimal value Hexadecimal value

MQRCVTIME_MULTIPLY 0 X'00000000'

MQRCVTIME_ADD 1 X'00000001'

MQRCVTIME_EQUAL 2 X'00000002'

MQREADA_* (Read Ahead Values)
Table 310. Values of constants

Name Decimal value Hexadecimal value

MQREADA_NO 0 X'00000000'

MQREADA_YES 1 X'00000001'

MQREADA_DISABLED 2 X'00000002'

MQREADA_INHIBITED 3 X'00000003'

MQREADA_BACKLOG 4 X'00000004'

MQRECORDING_* (Recording Options)
Table 311. Values of constants

Name Decimal value Hexadecimal value

MQRECORDING_DISABLED 0 X'00000000'

MQRECORDING_Q 1 X'00000001'

MQRECORDING_MSG 2 X'00000002'

MQREGO_* (Publish/Subscribe Registration Options)
Table 312. Values of constants

Name Decimal value Hexadecimal value

MQREGO_NONE 0 X'00000000'

MQREGO_CORREL_ID_AS_IDENTITY 1 X'00000001'

MQREGO_ANONYMOUS 2 X'00000002'

MQREGO_LOCAL 4 X'00000004'

MQREGO_DIRECT_REQUESTS 8 X'00000008'

MQREGO_NEW_PUBLICATIONS_ONLY 16 X'00000010'

MQREGO_PUBLISH_ON_REQUEST_ONLY 32 X'00000020'

MQREGO_DEREGISTER_ALL 64 X'00000040'

MQREGO_INCLUDE_STREAM_NAME 128 X'00000080'

MQREGO_INFORM_IF_RETAINED 256 X'00000100'

MQREGO_DUPLICATES_OK 512 X'00000200'

MQREGO_NON_PERSISTENT 1024 X'00000400'

Developing applications reference 203

Table 312. Values of constants (continued)

Name Decimal value Hexadecimal value

MQREGO_PERSISTENT 2048 X'00000800'

MQREGO_PERSISTENT_AS_PUBLISH 4096 X'00001000'

MQREGO_PERSISTENT_AS_Q 8192 X'00002000'

MQREGO_ADD_NAME 16384 X'00004000'

MQREGO_NO_ALTERATION 32768 X'00008000'

MQREGO_FULL_RESPONSE 65536 X'00010000'

MQREGO_JOIN_SHARED 131072 X'00020000'

MQREGO_JOIN_EXCLUSIVE 262144 X'00040000'

MQREGO_LEAVE_ONLY 524288 X'00080000'

MQREGO_VARIABLE_USER_ID 1048576 X'00100000'

MQREGO_LOCKED 2097152 X'00200000'

MQRFH_* (Rules and formatting header structure and Flags)

Rules and formatting header structure
Table 313. Structures of constants

Name Structure

MQRFH_STRUC_ID "RFH¬"

MQRFH_STRUC_ID_ARRAY 'R','F','H','¬'

Note: The symbol ¬ represents a single blank character.

Table 314. Values of constants

Name Decimal value Hexadecimal value

MQRFH_VERSION_1 1 X'00000001'

MQRFH_VERSION_2 2 X'00000002'

MQRFH_STRUC_LENGTH_FIXED 32 X'00000020'

MQRFH_STRUC_LENGTH_FIXED_2 36 X'00000024'

Rules and formatting header Flags
Table 315. Values of constants

Name Decimal value Hexadecimal value

MQRFH_NONE 0 X'00000000'

MQRFH_NO_FLAGS 0 X'00000000'

MQRFH2_* (Publish/Subscribe Options Tag RFH2 Top-level folder Tags)
Table 316. Values of constants

Name Decimal value Hexadecimal value

MQRFH2_NAME_VALUE_VERSION 1 X'00000001'

204 IBM MQ Developing Applications Reference

MQRFH2_* (Publish/Subscribe Options Tag Tag names)
MQRFH2_PUBSUB_CMD_FOLDER "psc"

MQRFH2_PUBSUB_RESP_FOLDER "pscr"

MQRFH2_MSG_CONTENT_FOLDER "mcd"

MQRFH2_USER_FOLDER "usr"

MQRFH2_* (Publish/Subscribe Options Tag XML tag names)
MQRFH2_PUBSUB_CMD_FOLDER_B "<psc>"

MQRFH2_PUBSUB_CMD_FOLDER_E "</psc>"

MQRFH2_PUBSUB_RESP_FOLDER_B "<pscr>"

MQRFH2_PUBSUB_RESP_FOLDER_E "</pscr>"

MQRFH2_MSG_CONTENT_FOLDER_B "<mcd>"

MQRFH2_MSG_CONTENT_FOLDER_E "</mcd>"

MQRFH2_USER_FOLDER_B "<usr>"

MQRFH2_USER_FOLDER_E "</usr>"

MQRL_* (Returned Length)
Table 317. Values of constants

Name Decimal value Hexadecimal value

MQRL_UNDEFINED -1 X'FFFFFFFF'

MQRMH_* (Reference message header structure)
Table 318. Structures of constants

Name Structure

MQRMH_STRUC_ID "RMH¬"

MQRMH_STRUC_ID_ARRAY 'R','M','H','¬'

Note: The symbol ¬ represents a single blank character.

Table 319. Values of constants

Name Decimal value Hexadecimal value

MQRMH_VERSION_1 1 X'00000001'

MQRMH_CURRENT_VERSION 1 X'00000001'

MQRMHF_* (Reference message header Flags)
Table 320. Values of constants

Name Decimal value Hexadecimal value

MQRMHF_LAST 1 X'00000001'

MQRMHF_NOT_LAST 0 X'00000000'

Developing applications reference 205

MQRO_* (Report Options)
Table 321. Values of constants

Name Decimal value Hexadecimal value

MQRO_EXCEPTION 16777216 X'01000000'

MQRO_EXCEPTION_WITH_DATA 50331648 X'03000000'

MQRO_EXCEPTION_WITH_FULL_DATA 117440512 X'07000000'

MQRO_EXPIRATION 2097152 X'00200000'

MQRO_EXPIRATION_WITH_DATA 6291456 X'00600000'

MQRO_EXPIRATION_WITH_FULL_DATA 14680064 X'00E00000'

MQRO_COA 256 X'00000100'

MQRO_COA_WITH_DATA 768 X'00000300'

MQRO_COA_WITH_FULL_DATA 1792 X'00000700'

MQRO_COD 2048 X'00000800'

MQRO_COD_WITH_DATA 6144 X'00001800'

MQRO_COD_WITH_FULL_DATA 14336 X'00003800'

MQRO_PAN 1 X'00000001'

MQRO_NAN 2 X'00000002'

MQRO_ACTIVITY 4 X'00000004'

MQRO_NEW_MSG_ID 0 X'00000000'

MQRO_PASS_MSG_ID 128 X'00000080'

MQRO_COPY_MSG_ID_TO_CORREL_ID 0 X'00000000'

MQRO_PASS_CORREL_ID 64 X'00000040'

MQRO_DEAD_LETTER_Q 0 X'00000000'

MQRO_DISCARD_MSG 134217728 X'08000000'

MQRO_PASS_DISCARD_AND_EXPIRY 16384 X'00004000'

MQRO_NONE 0 X'00000000'

MQRO_* (Report Options Masks)
Table 322. Values of constants

Name Decimal value Hexadecimal value

MQRO_REJECT_UNSUP_MASK 270270464 X'101C0000'

MQRO_ACCEPT_UNSUP_MASK -270532353 X'EFE000FF'

MQRO_ACCEPT_UNSUP_IF_XMIT_MASK 261888 X'0003FF00'

MQROUTE_* (Trace-route)

Trace-route Max Activities (MQIACF_MAX_ACTIVITIES)
Table 323. Values of constants

Name Decimal value Hexadecimal value

MQROUTE_UNLIMITED_ACTIVITIES 0 X'00000000'

206 IBM MQ Developing Applications Reference

Trace-route Detail (MQIACF_ROUTE_DETAIL)
Table 324. Values of constants

Name Decimal value Hexadecimal value

MQROUTE_DETAIL_LOW 2 X'00000002'

MQROUTE_DETAIL_MEDIUM 8 X'00000008'

MQROUTE_DETAIL_HIGH 32 X'00000020'

Trace-route Forwarding (MQIACF_ROUTE_FORWARDING)
Table 325. Values of constants

Name Decimal value Hexadecimal value

MQROUTE_FORWARD_ALL 256 X'00000100'

MQROUTE_FORWARD_IF_SUPPORTED 512 X'00000200'

MQROUTE_FORWARD_REJ_UNSUP_MASK -65536 X'FFFF0000'

Trace-route Delivery (MQIACF_ROUTE_DELIVERY)
Table 326. Values of constants

Name Decimal value Hexadecimal value

MQROUTE_DELIVER_YES 4096 X'00001000'

MQROUTE_DELIVER_NO 8192 X'00002000'

MQROUTE_DELIVER_REJ_UNSUP_MASK -65536 X'FFFF0000'

Trace-route Accumulation (MQIACF_ROUTE_ACCUMULATION)
Table 327. Values of constants

Name Decimal value Hexadecimal value

MQROUTE_ACCUMULATE_NONE 65539 X'00010003'

MQROUTE_ACCUMULATE_IN_MSG 65540 X'00010004'

MQROUTE_ACCUMULATE_AND_REPLY 65541 X'00010005'

MQRP_* (Command format Replace Options)
Table 328. Values of constants

Name Decimal value Hexadecimal value

MQRP_YES 1 X'00000001'

MQRP_NO 0 X'00000000'

MQRQ_* (Command format Reason Qualifiers)
Table 329. Values of constants

Name Decimal value Hexadecimal value

MQRQ_CONN_NOT_AUTHORIZED 1 X'00000001'

MQRQ_OPEN_NOT_AUTHORIZED 2 X'00000002'

MQRQ_CLOSE_NOT_AUTHORIZED 3 X'00000003'

MQRQ_CMD_NOT_AUTHORIZED 4 X'00000004'

Developing applications reference 207

Table 329. Values of constants (continued)

Name Decimal value Hexadecimal value

MQRQ_Q_MGR_STOPPING 5 X'00000005'

MQRQ_Q_MGR_QUIESCING 6 X'00000006'

MQRQ_CHANNEL_STOPPED_OK 7 X'00000007'

MQRQ_CHANNEL_STOPPED_ERROR 8 X'00000008'

MQRQ_CHANNEL_STOPPED_RETRY 9 X'00000009'

MQRQ_CHANNEL_STOPPED_DISABLED 10 X'0000000A'

MQRQ_BRIDGE_STOPPED_OK 11 X'0000000B'

MQRQ_BRIDGE_STOPPED_ERROR 12 X'0000000C'

MQRQ_SSL_HANDSHAKE_ERROR 13 X'0000000D'

MQRQ_SSL_CIPHER_SPEC_ERROR 14 X'0000000E'

MQRQ_SSL_CLIENT_AUTH_ERROR 15 X'0000000F'

MQRQ_SSL_PEER_NAME_ERROR 16 X'00000010'

MQRQ_SUB_NOT_AUTHORIZED 17 X'00000011'

MQRQ_SUB_DEST_NOT_AUTHORIZED 18 X'00000012'

MQRQ_SSL_UNKNOWN_REVOCATION 19 X'00000013'

MQRQ_SYS_CONN_NOT_AUTHORIZED 20 X'00000014'

MQRQ_CHANNEL_BLOCKED_ADDRESS 21 X'00000015'

MQRQ_CHANNEL_BLOCKED_USERID 22 X'00000016'

MQRQ_CHANNEL_BLOCKED_NOACCESS 23 X'00000017'

MQRQ_MAX_ACTIVE_CHANNELS 24 X'00000018'

MQRQ_MAX_CHANNELS 25 X'00000019'

MQRQ_SVRCONN_INST_LIMIT 26 X'0000001A'

MQRQ_CLIENT_INST_LIMIT! 27 X'0000001B'

MQRQ_CAF_NOT_INSTALLED 28 X'0000001C'

MQRQ_CSP_NOT_AUTHORIZED 29 X'0000001D'

MQRQ_FAILOVER_PERMITTED 30 X'0000001E'

MQRQ_FAILOVER_NOT_PERMITTED 31 X'0000001F'

MQRQ_STANDBY_ACTIVATED 32 X'00000020'

MQRQ_REPLICA_ACTIVATED 33 X'00000021'

MQRT_* (Command format Refresh Types)
Table 330. Values of constants

Name Decimal value Hexadecimal value

MQRT_CONFIGURATION 1 X'00000001'

MQRT_EXPIRY 2 X'00000002'

MQRT_NSPROC 3 X'00000003'

MQRT_PROXYSUB 4 X'00000004'

208 IBM MQ Developing Applications Reference

MQRU_* (Request Only)
Table 331. Values of constants

Name Decimal value Hexadecimal value

MQRU_PUBLISH_ON_REQUEST 1 X'00000001'

MQRU_PUBLISH_ALL 2 X'00000002'

MQSCA_* (TLS Client Authentication)
Table 332. Values of constants

Name Decimal value Hexadecimal value

MQSCA_REQUIRED 0 X'00000000'

MQSCA_OPTIONAL 1 X'00000001'

MQSCO_* (TLS configuration options)

TLS configuration options structure
Table 333. Structures of constants

Name Structure

MQSCO_STRUC_ID "SCO¬"

MQSCO_STRUC_ID_ARRAY 'S','C','O','¬'

Note: The symbol ¬ represents a single blank character.

Table 334. Values of constants

Name Decimal value Hexadecimal value

MQSCO_VERSION_1 1 X'00000001'

MQSCO_VERSION_2 2 X'00000002'

MQSCO_VERSION_3 3 X'00000003'

MQSCO_VERSION_4 4 X'00000004'

MQSCO_CURRENT_VERSION 4 X'00000004'

Note: The symbol ¬ represents a single blank character.

TLS configuration options Key Reset Count
Table 335. Values of constants

Name Decimal value Hexadecimal value

MQSCO_RESET_COUNT_DEFAULT 0 X'00000000'

Command format Queue Definition Scope
Table 336. Values of constants

Name Decimal value Hexadecimal value

MQSCO_Q_MGR 1 X'00000001'

MQSCO_CELL 2 X'00000002'

Developing applications reference 209

MQSCOPE_* (Publish scope)
Table 337. Values of constants

Name Decimal value Hexadecimal value

MQSCOPE_ALL 0 X'00000000'

MQSCOPE_AS_PARENT 1 X'00000001'

MQSCOPE_QMGR 4 X'00000004'

MQSCYC_* (Security Case)
Table 338. Values of constants

Name Decimal value Hexadecimal value

MQSCYC_UPPER 0 X'00000000'

MQSCYC_MIXED 1 X'00000001'

MQSD_* (Object descriptor structure)
Table 339. Constant names and structures

Name Structure

MQSD_STRUC_ID "SD¬¬"

MQSD_STRUC_ID_ARRAY 'S','D','¬','¬'

Note: The symbol ¬ represents a single blank character.

Table 340. Values of constants

Name Decimal value Hexadecimal value

MQSD_VERSION_1 1 X'00000001'

MQSD_CURRENT_VERSION 1 X'00000001'

MQSECITEM_* (Command format Security Items)
Table 341. Values of constants

Name Decimal value Hexadecimal value

MQSECITEM_ALL 0 X'00000000'

MQSECITEM_MQADMIN 1 X'00000001'

MQSECITEM_MQNLIST 2 X'00000002'

MQSECITEM_MQPROC 3 X'00000003'

MQSECITEM_MQQUEUE 4 X'00000004'

MQSECITEM_MQCONN 5 X'00000005'

MQSECITEM_MQCMDS 6 X'00000006'

MQSECITEM_MXADMIN 7 X'00000007'

MQSECITEM_MXNLIST 8 X'00000008'

MQSECITEM_MXPROC 9 X'00000009'

MQSECITEM_MXQUEUE 10 X'0000000A'

MQSECITEM_MXTOPIC 11 X'0000000B'

210 IBM MQ Developing Applications Reference

MQSECPROT_* (Security Protocol Types)
Table 342. Values of constants

Name Decimal value Hexadecimal value

MQSECPROT_NONE 0 X'00000000'

MQSECPROT_SSLV30 1 X'00000001'

MQSECPROT_TLSV10 2 X'00000002'

MQSECPROT_TLSV12 4 X'00000004'

MQSECSW_* (Command format Security Switches and Switch States)

Command format Security Switches
Table 343. Values of constants

Name Decimal value Hexadecimal value

MQSECSW_PROCESS 1 X'00000001'

MQSECSW_NAMELIST 2 X'00000002'

MQSECSW_Q 3 X'00000003'

MQSECSW_TOPIC 4 X'00000004'

MQSECSW_CONTEXT 6 X'00000006'

MQSECSW_ALTERNATE_USER 7 X'00000007'

MQSECSW_COMMAND 8 X'00000008'

MQSECSW_CONNECTION 9 X'00000009'

MQSECSW_SUBSYSTEM 10 X'0000000A'

MQSECSW_COMMAND_RESOURCES 11 X'0000000B'

MQSECSW_Q_MGR 15 X'0000000F'

MQSECSW_QSG 16 X'00000010'

Command format Security Switch States
Table 344. Values of constants

Name Decimal value Hexadecimal value

MQSECSW_OFF_FOUND 21 X'00000015'

MQSECSW_ON_FOUND 22 X'00000016'

MQSECSW_OFF_NOT_FOUND 23 X'00000017'

MQSECSW_ON_NOT_FOUND 24 X'00000018'

MQSECSW_OFF_ERROR 25 X'00000019'

MQSECSW_ON_OVERRIDDEN 26 X'0000001A'

MQSECTYPE_* (Command format Security Types)
Table 345. Values of constants

Name Decimal value Hexadecimal value

MQSECTYPE_AUTHSERV 1 X'00000001'

MQSECTYPE_SSL 2 X'00000002'

Developing applications reference 211

Table 345. Values of constants (continued)

Name Decimal value Hexadecimal value

MQSECTYPE_CLASSES 3 X'00000003'

MQSEG_* (Segmentation)
Table 346. Constant names and values

Name Value

MQSEG_INHIBITED '¬'

MQSEG_ALLOWED 'A'

Note: The symbol ¬ represents a single blank character.

MQSEL_* (Special Selector Values)
Table 347. Values of constants

Name Decimal value Hexadecimal value

MQSEL_ANY_SELECTOR -30001 X'FFFF8ACF'

MQSEL_ANY_USER_SELECTOR -30002 X'FFFF8ACE'

MQSEL_ANY_SYSTEM_SELECTOR -30003 X'FFFF8ACD'

MQSEL_ALL_SELECTORS -30001 X'FFFF8ACF'

MQSEL_ALL_USER_SELECTORS -30002 X'FFFF8ACE'

MQSEL_ALL_SYSTEM_SELECTORS -30003 X'FFFF8ACD'

MQSELTYPE_* (Selector Types)
Table 348. Values of constants

Name Decimal value Hexadecimal value

MQSELTYPE_NONE 0 X'00000000'

MQSELTYPE_STANDARD 1 X'00000001'

MQSELTYPE_EXTENDED 2 X'00000002'

MQSID_* (Security Identifier)
Table 349. Constant names and values

Name Value

MQSID_NONE X'00...00' (40 nulls)

MQSID_NONE_ARRAY '\0','\0',... (40 nulls)

MQSIDT_* (Security Identifier Types)
Table 350. Constant names and values

Name Hexadecimal value

MQSIDT_NONE X'00'

MQSIDT_NT_SECURITY_ID X'01'

MQSIDT_WAS_SECURITY_ID X'02'

212 IBM MQ Developing Applications Reference

MQSMPO_* (Set message property options and structure)

Set message property options structure
Table 351. Structures of constants

Name Structure

MQSMPO_STRUC_ID "SMPO"

MQSMPO_STRUC_ID_ARRAY 'S','M','P','O'

Note: The symbol ¬ represents a single blank character.

Table 352. Values of constants

Name Decimal value Hexadecimal value

MQSMPO_VERSION_1 1 X'00000001'

MQSMPO_CURRENT_VERSION 1 X'00000001'

Set Message Property Options
Table 353. Values of constants

Name Decimal value Hexadecimal value

MQSMPO_SET_FIRST 0 X'00000000'

MQSMPO_SET_PROP_UNDER_CURSOR 1 X'00000001'

MQSMPO_SET_PROP_AFTER_CURSOR 2 X'00000002'

MQSMPO_APPEND_PROPERTY 4 X'00000004'

MQSMPO_SET_PROP_BEFORE_CURSOR 8 X'00000008'

MQSMPO_NONE 0 X'00000000'

MQSO_* (Subscribe Options)
Table 354. Values of constants

Name Decimal value Hexadecimal value

MQSO_NONE 0 X'00000000'

MQSO_NON_DURABLE 0 X'00000000'

MQSO_READ_AHEAD_AS_Q_DEF 0 X'00000000'

MQSO_ALTER 1 X'00000001'

MQSO_CREATE 2 X'00000002'

MQSO_RESUME 4 X'00000004'

MQSO_DURABLE 8 X'00000008'

MQSO_GROUP_SUB 16 X'00000010'

MQSO_MANAGED 32 X'00000020'

MQSO_SET_IDENTITY_CONTEXT 64 X'00000040'

MQSO_FIXED_USERID 256 X'00000100'

MQSO_ANY_USERID 512 X'00000200'

MQSO_PUBLICATIONS_ON_REQUEST 2048 X'00000800'

MQSO_NEW_PUBLICATIONS_ONLY 4096 X'00001000'

MQSO_FAIL_IF_QUIESCING 8192 X'00002000'

Developing applications reference 213

Table 354. Values of constants (continued)

Name Decimal value Hexadecimal value

MQSO_ALTERNATE_USER_AUTHORITY 262144 X'00040000'

MQSO_WILDCARD_CHAR 1048576 X'00100000'

MQSO_WILDCARD_TOPIC 2097152 X'00200000'

MQSO_SET_CORREL_ID 4194304 X'00400000'

MQSO_SCOPE_QMGR 67108864 X'04000000'

MQSO_NO_READ_AHEAD 134217728 X'08000000'

MQSO_READ_AHEAD 268435456 X'10000000'

MQSP_* (Sync point Availability)
Table 355. Values of constants

Name Decimal value Hexadecimal value

MQSP_AVAILABLE 1 X'00000001'

MQSP_NOT_AVAILABLE 0 X'00000000'

MQSPL_* (Security Policy Protection Options)
Table 356. Values of constants

Name Decimal value Hexadecimal value

MQSPL_PASSTHRU 0 X'00000000'

MQSPL_REMOVE 1 X'00000001'

MQSPL_AS_POLICY 2 X'00000002'

MQSQQM_* (Shared Queue Queue Manager Name)
Table 357. Values of constants

Name Decimal value Hexadecimal value

MQSQQM_USE 0 X'00000000'

MQSQQM_IGNORE 1 X'00000001'

MQSR_* (Action)
Table 358. Values of constants

Name Decimal value Hexadecimal value

MQSR_ACTION_PUBLICATION 1 X'00000001'

MQSRO_* (Subscription request options structure)
Table 359. Structures of constants

Name Structure

MQSRO_STRUC_ID "SRO¬"

MQSRO_STRUC_ID_ARRAY 'S','R','O','¬'

Note: The symbol ¬ represents a single blank character.

214 IBM MQ Developing Applications Reference

Table 360. Values of constants

Name Decimal value Hexadecimal value

MQSRO_VERSION_1 1 X'00000001'

MQSRO_CURRENT_VERSION 1 X'00000001'

MQSRO_NONE 0 X'00000000'

MQSRO_FAIL_IF_QUIESCING 8192 X'00002000'

MQSS_* (Segment Status)
Table 361. Constant names and structures

Name Structure

MQSS_NOT_A_SEGMENT '¬'

MQSS_SEGMENT 'S'

MQSS_LAST_SEGMENT 'L'

Note: The symbol ¬ represents a single blank character.

MQSSL_* (TLS FIPS Requirements)
Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

Table 362. Values of constants

Name Decimal value Hexadecimal value

MQSSL_FIPS_NO 0 X'00000000'

MQSSL_FIPS_YES 1 X'00000001'

MQSTAT_* (Stat Options)
Table 363. Values of constants

Name Decimal value Hexadecimal value

MQSTAT_TYPE_ASYNC_ERROR 0 X'00000000'

MQSTAT_TYPE_RECONNECTION 0 X'00000000'

MQSTAT_TYPE_RECONNECTION_ERROR 0 X'00000000'

MQSTS_* (Status reporting structure structure)
Table 364. Structures of constants

Name Structure

MQSTS_STRUC_ID "STAT"

MQSTS_STRUC_ID_ARRAY 'S','T','A','T'

Note: The symbol ¬ represents a single blank character.

Developing applications reference 215

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

Table 365. Values of constants

Name Decimal value Hexadecimal value

MQSTS_VERSION_1 1 X'00000001'

MQSTS_CURRENT_VERSION 1 X'00000001'

MQSUB_* (Durable subscriptions)

Durable permitted subscriptions
Table 366. Values of constants

Name Decimal value Hexadecimal value

MQSUB_DURABLE_AS_PARENT 0 X'00000000'

MQSUB_DURABLE_ALLOWED 1 X'00000001'

MQSUB_DURABLE_INHIBITED 2 X'00000002'

Durable subscriptions range
Table 367. Values of constants

Name Decimal value Hexadecimal value

MQSUB_DURABLE_ALL -1 X'FFFFFFFF'

MQSUB_DURABLE_YES 1 X'00000001'

MQSUB_DURABLE_NO 2 X'00000002'

MQSUBTYPE_* (Command format Subscription Types)
Table 368. Values of constants

Name Decimal value Hexadecimal value

MQSUBTYPE_API 1 X'00000001'

MQSUBTYPE_ADMIN 2 X'00000002'

MQSUBTYPE_PROXY 3 X'00000003'

MQSUBTYPE_ALL -1 X'FFFFFFFF'

MQSUBTYPE_USER -2 X'FFFFFFFE'

MQSUS_* (Command format Suspend Status)
Table 369. Values of constants

Name Decimal value Hexadecimal value

MQSUS_YES 1 X'00000001'

MQSUS_NO 0 X'00000000'

MQSVC_* (Service)

Service Types
Table 370. Values of constants

Name Decimal value Hexadecimal value

MQSVC_TYPE_COMMAND 0 X'00000000'

216 IBM MQ Developing Applications Reference

Table 370. Values of constants (continued)

Name Decimal value Hexadecimal value

MQSVC_TYPE_SERVER 1 X'00000001'

Service Controls
Table 371. Values of constants

Name Decimal value Hexadecimal value

MQSVC_CONTROL_Q_MGR 0 X'00000000'

MQSVC_CONTROL_Q_MGR_START 1 X'00000001'

MQSVC_CONTROL_MANUAL 2 X'00000002'

Service Status
Table 372. Values of constants

Name Decimal value Hexadecimal value

MQSVC_STATUS_STOPPED 0 X'00000000'

MQSVC_STATUS_STARTING 1 X'00000001'

MQSVC_STATUS_RUNNING 2 X'00000002'

MQSVC_STATUS_STOPPING 3 X'00000003'

MQSVC_STATUS_RETRYING 4 X'00000004'

MQSYNCPOINT_* (Command format Syncpoint values for Pub/Sub migration)
Table 373. Values of constants

Name Decimal value Hexadecimal value

MQSYNCPOINT_YES 0 X'00000000'

MQSYNCPOINT_IFPER 1 X'00000001'

MQSYSP_* (Command format System Parameter Values)
Table 374. Values of constants

Name Decimal value Hexadecimal value

MQSYSP_NO 0 X'00000000'

MQSYSP_YES 1 X'00000001'

MQSYSP_EXTENDED 2 X'00000002'

MQSYSP_TYPE_INITIAL 10 X'0000000A'

MQSYSP_TYPE_SET 11 X'0000000B'

MQSYSP_TYPE_LOG_COPY 12 X'0000000C'

MQSYSP_TYPE_LOG_STATUS 13 X'0000000D'

MQSYSP_TYPE_ARCHIVE_TAPE 14 X'0000000E'

MQSYSP_ALLOC_BLK 20 X'00000014'

MQSYSP_ALLOC_TRK 21 X'00000015'

MQSYSP_ALLOC_CYL 22 X'00000016'

MQSYSP_STATUS_BUSY 30 X'0000001E'

Developing applications reference 217

Table 374. Values of constants (continued)

Name Decimal value Hexadecimal value

MQSYSP_STATUS_PREMOUNT 31 X'0000001F'

MQSYSP_STATUS_AVAILABLE 32 X'00000020'

MQSYSP_STATUS_UNKNOWN 33 X'00000021'

MQSYSP_STATUS_ALLOC_ARCHIVE 34 X'00000022'

MQSYSP_STATUS_COPYING_BSDS 35 X'00000023'

MQSYSP_STATUS_COPYING_LOG 36 X'00000024'

MQTA_* (Topic attributes)

Wildcards
Table 375. Values of constants

Name Decimal value Hexadecimal value

MQTA_BLOCK 1 X'00000001'

MQTA_PASSTHRU 2 X'00000002'

Subscriptions Allowed
Table 376. Values of constants

Name Decimal value Hexadecimal value

MQTA_SUB_AS_PARENT 0 X'00000000'

MQTA_SUB_INHIBITED 1 X'00000001'

MQTA_SUB_ALLOWED 2 X'00000002'

Proxy Sub Propagation
Table 377. Values of constants

Name Decimal value Hexadecimal value

MQTA_PROXY_SUB_FORCE 1 X'00000001'

MQTA_PROXY_SUB_FIRSTUSE 2 X'00000002'

Publications Allowed
Table 378. Values of constants

Name Decimal value Hexadecimal value

MQTA_PUB_AS_PARENT 0 X'00000000'

MQTA_PUB_INHIBITED 1 X'00000001'

MQTA_PUB_ALLOWED 2 X'00000002'

MQTC_* (Trigger Controls)
Table 379. Values of constants

Name Decimal value Hexadecimal value

MQTC_OFF 0 X'00000000'

MQTC_ON 1 X'00000001'

218 IBM MQ Developing Applications Reference

MQTCPKEEP_* (TCP Keepalive)
Table 380. Values of constants

Name Decimal value Hexadecimal value

MQTCPKEEP_NO 0 X'00000000'

MQTCPKEEP_YES 1 X'00000001'

MQTCPSTACK_* (TCP Stack Types)
Table 381. Values of constants

Name Decimal value Hexadecimal value

MQTCPSTACK_SINGLE 0 X'00000000'

MQTCPSTACK_MULTIPLE 1 X'00000001'

MQTIME_* (Command format Time units)
Table 382. Values of constants

Name Decimal value Hexadecimal value

MQTIME_UNIT_MINS 0 X'00000000'

MQTIME_UNIT_SECS 1 X'00000001'

MQTM_* (Trigger message structure)
Table 383. Structures of constants

Name Structure

MQTM_STRUC_ID "TM¬¬"

MQTM_STRUC_ID_ARRAY 'T','M','¬','¬'

Note: The symbol ¬ represents a single blank character.

Table 384. Values of constants

Name Decimal value Hexadecimal value

MQTM_VERSION_1 1 X'00000001'

MQTM_CURRENT_VERSION 1 X'00000001'

MQTMC_* (Trigger message character format structure)
Table 385. Structures of constants

Name Structure

MQTMC_STRUC_ID "TMC¬"

MQTMC_STRUC_ID_ARRAY 'T','M','C','¬'

MQTMC_VERSION_1 "bbb1"

MQTMC_VERSION_2 "bbb2"

MQTMC_CURRENT_VERSION "bbb2"

MQTMC_VERSION_1_ARRAY '¬','¬','¬','1'

MQTMC_VERSION_2_ARRAY '¬','¬','¬','2'

MQTMC_CURRENT_VERSION_ARRAY '¬','¬','¬','2'

Developing applications reference 219

MQTOPT_* (Topic Type)
Table 386. Values of constants

Name Decimal value Hexadecimal value

MQTOPT_LOCAL 0 X'00000000'

MQTOPT_CLUSTER 1 X'00000001'

MQTOPT_ALL 2 X'00000002'

MQTRAXSTR_* (Channel Initiator Trace Autostart)
Table 387. Values of constants

Name Decimal value Hexadecimal value

MQTRAXSTR_NO 0 X'00000000'

MQTRAXSTR_YES 1 X'00000001'

MQTSCOPE_* (Subscription Scope)
Table 388. Values of constants

Name Decimal value Hexadecimal value

MQTSCOPE_QMGR 1 X'00000001'

MQTSCOPE_ALL 2 X'00000002'

MQTT_* (Trigger Types)
Table 389. Values of constants

Name Decimal value Hexadecimal value

MQTT_NONE 0 X'00000000'

MQTT_FIRST 1 X'00000001'

MQTT_EVERY 2 X'00000002'

MQTT_DEPTH 3 X'00000003'

MQTYPE_* (Property data types)
Table 390. Values of constants

Name Decimal value Hexadecimal value

MQTYPE_AS_SET 0 X'00000000'

MQTYPE_NULL 2 X'00000002'

MQTYPE_BOOLEAN 4 X'00000004'

MQTYPE_BYTE_STRING 8 X'00000008'

MQTYPE_INT8 16 X'00000010'

MQTYPE_INT16 32 X'00000020'

MQTYPE_INT32 64 X'00000040'

MQTYPE_LONG 64 X'00000040'

MQTYPE_INT64 128 X'00000080'

MQTYPE_FLOAT32 256 X'00000100'

MQTYPE_FLOAT64 512 X'00000200'

220 IBM MQ Developing Applications Reference

Table 390. Values of constants (continued)

Name Decimal value Hexadecimal value

MQTYPE_STRING 1024 X'00000400'

MQUA_* (Publish/Subscribe User Attribute Selectors)
Table 391. Values of constants

Name Decimal value Hexadecimal value

MQUA_FIRST 65536 X'00010000'

MQUA_LAST 999999999 X'3B9AC9FF'

MQUIDSUPP_* (Command format User ID Support)
Table 392. Values of constants

Name Decimal value Hexadecimal value

MQUIDSUPP_NO 0 X'00000000'

MQUIDSUPP_YES 1 X'00000001'

MQUNDELIVERED_* (Command format Undelivered values for Pub/Sub
migration)

Table 393. Values of constants

Name Decimal value Hexadecimal value

MQUNDELIVERED_NORMAL 0 X'00000000'

MQUNDELIVERED_SAFE 1 X'00000001'

MQUNDELIVERED_DISCARD 2 X'00000002'

MQUNDELIVERED_KEEP 3 X'00000003'

MQUOWST_* (Command format UOW States)
Table 394. Values of constants

Name Decimal value Hexadecimal value

MQUOWST_NONE 0 X'00000000'

MQUOWST_ACTIVE 1 X'00000001'

MQUOWST_PREPARED 2 X'00000002'

MQUOWST_UNRESOLVED 3 X'00000003'

MQUOWT_* (Command format UOW Types)
Table 395. Values of constants

Name Decimal value Hexadecimal value

MQUOWT_Q_MGR 0 X'00000000'

MQUOWT_CICS 1 X'00000001'

MQUOWT_RRS 2 X'00000002'

MQUOWT_IMS 3 X'00000003'

MQUOWT_XA 4 X'00000004'

Developing applications reference 221

MQUS_* (Queue Usages)
Table 396. Values of constants

Name Decimal value Hexadecimal value

MQUS_NORMAL 0 X'00000000'

MQUS_TRANSMISSION 1 X'00000001'

MQUSAGE_* (Command format Page Set Usage Values and Data Set Usage
Values)

Command format Page Set Usage Values
Table 397. Values of constants

Name Decimal value Hexadecimal value

MQUSAGE_PS_AVAILABLE 0 X'00000000'

MQUSAGE_PS_DEFINED 1 X'00000001'

MQUSAGE_PS_OFFLINE 2 X'00000002'

MQUSAGE_PS_NOT_DEFINED 3 X'00000003'

MQUSAGE_PS_SUSPENDED 4 X'00000004'

MQUSAGE_EXPAND_USER 1 X'00000001'

MQUSAGE_EXPAND_SYSTEM 2 X'00000002'

MQUSAGE_EXPAND_NONE 3 X'00000003'

Command format Data Set Usage Values
Table 398. Values of constants

Name Decimal value Hexadecimal value

MQUSAGE_DS_OLDEST_ACTIVE_UOW 10 X'0000000A'

MQUSAGE_DS_OLDEST_PS_RECOVERY 11 X'0000000B'

MQUSAGE_DS_OLDEST_CF_RECOVERY 12 X'0000000C'

MQVL_* (Value Length)
Table 399. Values of constants

Name Decimal value Hexadecimal value

MQVL_NULL_TERMINATED -1 X'FFFFFFFF'

MQVL_EMPTY_STRING 0 X'00000000'

MQVU_* (Variable User ID)
Table 400. Values of constants

Name Decimal value Hexadecimal value

MQVU_FIXED_USER 1 X'00000001'

MQVU_ANY_USER 2 X'00000002'

222 IBM MQ Developing Applications Reference

MQWDR_* (Cluster workload exit destination record structure)
Table 401. Structures of constants

Name Structure

MQWDR_STRUC_ID "WDR¬"

MQWDR_STRUC_ID_ARRAY 'W','D','R','¬'

Note: The symbol ¬ represents a single blank character.

Table 402. Values of constants

Name Decimal value Hexadecimal value

MQWDR_VERSION_1 1 X'00000001'

MQWDR_VERSION_2 2 X'00000002'

MQWDR_CURRENT_VERSION 2 X'00000002'

MQWDR_LENGTH_1 124 X'0000007C'

MQWDR_LENGTH_2 136 X'00000088'

MQWDR_CURRENT_LENGTH 136 X'00000088'

MQWI_* (Wait Interval)
Table 403. Values of constants

Name Decimal value Hexadecimal value

MQWI_UNLIMITED -1 X'FFFFFFFF'

MQWIH_* (Workload information header structure and Flags)

Workload information header structure
Table 404. Structures of constants

Name Structure

MQWIH_STRUC_ID "WIH¬"

MQWIH_STRUC_ID_ARRAY 'W','I','H','¬'

Note: The symbol ¬ represents a single blank character.

Table 405. Values of constants

Name Decimal value Hexadecimal value

MQWIH_VERSION_1 1 X'00000001'

MQWIH_CURRENT_VERSION 1 X'00000001'

MQWIH_LENGTH_1 120 X'00000078'

MQWIH_CURRENT_LENGTH 120 X'00000078'

Workload information header Flags
Table 406. Values of constants

Name Decimal value Hexadecimal value

MQWIH_NONE 0 X'00000000'

Developing applications reference 223

MQWQR_* (Cluster workload exit queue record structure)
Table 407. Structures of constants

Name Structure

MQWQR_STRUC_ID "WQR¬"

MQWQR_STRUC_ID_ARRAY 'W','Q','R','¬'

Note: The symbol ¬ represents a single blank character.

Table 408. Values of constants

Name Decimal value Hexadecimal value

MQWQR_VERSION_1 1 X'00000001'

MQWQR_VERSION_2 2 X'00000002'

MQWQR_VERSION_3 3 X'00000003'

MQWQR_CURRENT_VERSION 3 X'00000003'

MQWQR_LENGTH_1 200 X'000000C8'

MQWQR_LENGTH_2 208 X'000000D0'

MQWQR_LENGTH_3 212 X'000000D4'

MQWQR_CURRENT_LENGTH 212 X'000000D4'

MQWS_* (Wildcard Schema)
Table 409. Values of constants

Name Decimal value Hexadecimal value

MQWS_DEFAULT 0 X'00000000'

MQWS_CHAR 1 X'00000001'

MQWS_TOPIC 2 X'00000002'

MQWXP_* (Cluster workload exit parameter structure)

MQWXP_* (Cluster workload exit parameter structure)
Table 410. Structures of constants

Name Structure

MQWXP_STRUC_ID "WXP¬"

MQWXP_STRUC_ID_ARRAY 'W','X','P','¬'

Note: The symbol ¬ represents a single blank character.

Table 411. Values of constants

Name Decimal value Hexadecimal value

MQWXP_VERSION_1 1 X'00000001'

MQWXP_VERSION_2 2 X'00000002'

MQWXP_VERSION_3 3 X'00000003'

MQWXP_VERSION_4 4 X'00000004'

MQWXP_CURRENT_VERSION 4 X'00000004'

224 IBM MQ Developing Applications Reference

MQWXP_* (Cluster Workload Flags)
Table 412. Values of constants

Name Decimal value Hexadecimal value

MQWXP_PUT_BY_CLUSTER_CHL 2 X'00000002'

Related reference
“Fields in MQWXP - Cluster workload exit parameter structure” on page 1530
Description of the fields in the MQWXP - Cluster workload exit parameter structure

MQXACT_* (API Caller Types)
Table 413. Values of constants

Name Decimal value Hexadecimal value

MQXACT_EXTERNAL 1 X'00000001'

MQXACT_INTERNAL 2 X'00000002'

MQXC_* (Exit Commands)
Table 414. Values of constants

Name Decimal value Hexadecimal value

MQXC_MQOPEN 1 X'00000001'

MQXC_MQCLOSE 2 X'00000002'

MQXC_MQGET 3 X'00000003'

MQXC_MQPUT 4 X'00000004'

MQXC_MQPUT1 5 X'00000005'

MQXC_MQINQ 6 X'00000006'

MQXC_MQSET 8 X'00000008'

MQXC_MQBACK 9 X'00000009'

MQXC_MQCMIT 10 X'0000000A'

MQXCC_* (Exit Responses)
Table 415. Values of constants

Name Decimal value Hexadecimal value

MQXCC_OK 0 X'00000000'

MQXCC_SUPPRESS_FUNCTION -1 X'FFFFFFFF'

MQXCC_SKIP_FUNCTION -2 X'FFFFFFFE'

MQXCC_SEND_AND_REQUEST_SEC_MSG -3 X'FFFFFFFD'

MQXCC_SEND_SEC_MSG -4 X'FFFFFFFC'

MQXCC_SUPPRESS_EXIT -5 X'FFFFFFFB'

MQXCC_CLOSE_CHANNEL -6 X'FFFFFFFA'

MQXCC_REQUEST_ACK -7 X'FFFFFFF9'

MQXCC_FAILED -8 X'FFFFFFF8'

Developing applications reference 225

MQXDR_* (Exit Response)
Table 416. Values of constants

Name Decimal value Hexadecimal value

MQXDR_OK 0 X'00000000'

MQXDR_CONVERSION_FAILED 1 X'00000001'

MQXE_* (Environments)
Table 417. Values of constants

Name Decimal value Hexadecimal value

MQXE_OTHER 0 X'00000000'

MQXE_MCA 1 X'00000001'

MQXE_MCA_SVRCONN 2 X'00000002'

MQXE_COMMAND_SERVER 3 X'00000003'

MQXE_MQSC 4 X'00000004'

MQXEPO_* (Register Entry Point Options structure and Exit Options)

Register Entry Point Options structure
Table 418. Structures of constants

Name Structure

MQXEPO_STRUC_ID "XEPO"

MQXEPO_STRUC_ID_ARRAY 'X','E','P','O'

Note: The symbol ¬ represents a single blank character.

Table 419. Values of constants

Name Decimal value Hexadecimal value

MQXEPO_VERSION_1 1 X'00000001'

MQXEPO_CURRENT_VERSION 1 X'00000001'

Exit Options
Table 420. Values of constants

Name Decimal value Hexadecimal value

MQXEPO_NONE 0 X'00000000'

MQXF_* (API Function Identifiers)
Table 421. Values of constants

Name Decimal value Hexadecimal value

MQXF_INIT 1 X'00000001'

MQXF_TERM 2 X'00000002'

MQXF_CONN 3 X'00000003'

MQXF_CONNX 4 X'00000004'

MQXF_DISC 5 X'00000005'

226 IBM MQ Developing Applications Reference

Table 421. Values of constants (continued)

Name Decimal value Hexadecimal value

MQXF_OPEN 6 X'00000006'

MQXF_CLOSE 7 X'00000007'

MQXF_PUT1 8 X'00000008'

MQXF_PUT 9 X'00000009'

MQXF_GET 10 X'0000000A'

MQXF_DATA_CONV_ON_GET 11 X'0000000B'

MQXF_INQ 12 X'0000000C'

MQXF_SET 13 X'0000000D'

MQXF_BEGIN 14 X'0000000E'

MQXF_CMIT 15 X'0000000F'

MQXF_BACK 16 X'00000010'

MQXF_STAT 18 X'00000012'

MQXF_CB 19 X'00000013'

MQXF_CTL 20 X'00000014'

MQXF_CALLBACK 21 X'00000015'

MQXF_SUB 22 X'00000016'

MQXF_SUBRQ 23 X'00000017'

MQXF_XACLOSE 24 X'00000018'

MQXF_XACOMMIT 25 X'00000019'

MQXF_XACOMPLETE 26 X'0000001A'

MQXF_XAEND 27 X'0000001B'

MQXF_XAFORGET 28 X'0000001C'

MQXF_XAOPEN 29 X'0000001D'

MQXF_XAPREPARE 30 X'0000001E'

MQXF_XARECOVER 31 X'0000001F'

MQXF_XAROLLBACK 32 X'00000020'

MQXF_XASTART 33 X'00000021'

MQXF_AXREG 34 X'00000022'

MQXF_AXUNREG 35 X'00000023'

MQXP_* (API crossing exit parameter structure)
Table 422. Structures of constants

Name Structure

MQXP_STRUC_ID "XP¬¬"

MQXP_STRUC_ID_ARRAY 'X','P','¬','¬'

Note: The symbol ¬ represents a single blank character.

Table 423. Values of constants

Name Decimal value Hexadecimal value

MQXP_VERSION_1 1 X'00000001'

Developing applications reference 227

MQXPDA_* (Problem Determination Area)
Table 424. Constant names and values

Name Value

MQXPDA_NONE X'00...00' (48 nulls)

MQXPDA_NONE_ARRAY '\0','\0',... (48 nulls)

MQXPT_* (Transport Types)
Table 425. Values of constants

Name Decimal value Hexadecimal value

MQXPT_ALL -1 X'FFFFFFFF'

MQXPT_LOCAL 0 X'00000000'

MQXPT_LU62 1 X'00000001'

MQXPT_TCP 2 X'00000002'

MQXPT_NETBIOS 3 X'00000003'

MQXPT_SPX 4 X'00000004'

MQXPT_DECNET 5 X'00000005'

MQXPT_UDP 6 X'00000006'

MQXQH_* (Transmission queue header structure)
Table 426. Structures of constants

Name Structure

MQXQH_STRUC_ID "XQH¬"

MQXQH_STRUC_ID_ARRAY 'X','Q','H','¬'

Note: The symbol ¬ represents a single blank character.

Table 427. Values of constants

Name Decimal value Hexadecimal value

MQXQH_VERSION_1 1 X'00000001'

MQXQH_CURRENT_VERSION 1 X'00000001'

MQXR_* (Exit Reasons)
Table 428. Values of constants

Name Decimal value Hexadecimal value

MQXR_BEFORE 1 X'00000001'

MQXR_AFTER 2 X'00000002'

MQXR_CONNECTION 3 X'00000003'

MQXR_INIT 11 X'0000000B'

MQXR_TERM 12 X'0000000C'

MQXR_MSG 13 X'0000000D'

MQXR_XMIT 14 X'0000000E'

MQXR_SEC_MSG 15 X'0000000F'

MQXR_INIT_SEC 16 X'00000010'

228 IBM MQ Developing Applications Reference

Table 428. Values of constants (continued)

Name Decimal value Hexadecimal value

MQXR_RETRY 17 X'00000011'

MQXR_AUTO_CLUSSDR 18 X'00000012'

MQXR_AUTO_RECEIVER 19 X'00000013'

MQXR_CLWL_OPEN 20 X'00000014'

MQXR_CLWL_PUT 21 X'00000015'

MQXR_CLWL_MOVE 22 X'00000016'

MQXR_CLWL_REPOS 23 X'00000017'

MQXR_CLWL_REPOS_MOVE 24 X'00000018'

MQXR_END_BATCH 25 X'00000019'

MQXR_ACK_RECEIVED 26 X'0000001A'

MQXR_AUTO_SVRCONN 27 X'0000001B'

MQXR_AUTO_CLUSRCVR 28 X'0000001C'

MQXR_SEC_PARMS 29 X'0000001D'

MQXR2_* (Exit Response 2)
Table 429. Values of constants

Name Decimal value Hexadecimal value

MQXR2_PUT_WITH_DEF_ACTION 0 X'00000000'

MQXR2_PUT_WITH_DEF_USERID 1 X'00000001'

MQXR2_PUT_WITH_MSG_USERID 2 X'00000002'

MQXR2_USE_AGENT_BUFFER 0 X'00000000'

MQXR2_USE_EXIT_BUFFER 4 X'00000004'

MQXR2_DEFAULT_CONTINUATION 0 X'00000000'

MQXR2_CONTINUE_CHAIN 8 X'00000008'

MQXR2_SUPPRESS_CHAIN 16 X'00000010'

MQXR2_STATIC_CACHE 0 X'00000000'

MQXR2_DYNAMIC_CACHE 32 X'00000020'

MQXT_* (Exit Identifiers)
Table 430. Values of constants

Name Decimal value Hexadecimal value

MQXT_API_CROSSING_EXIT 1 X'00000001'

MQXT_API_EXIT 2 X'00000002'

MQXT_CHANNEL_SEC_EXIT 11 X'0000000B'

MQXT_CHANNEL_MSG_EXIT 12 X'0000000C'

MQXT_CHANNEL_SEND_EXIT 13 X'0000000D'

MQXT_CHANNEL_RCV_EXIT 14 X'0000000E'

MQXT_CHANNEL_MSG_RETRY_EXIT 15 X'0000000F'

MQXT_CHANNEL_AUTO_DEF_EXIT 16 X'00000010'

MQXT_CLUSTER_WORKLOAD_EXIT 20 X'00000014'

Developing applications reference 229

Table 430. Values of constants (continued)

Name Decimal value Hexadecimal value

MQXT_PUBSUB_ROUTING_EXIT 21 X'00000015'

MQXUA_* (Exit User Area Value)
Table 431. Constant names and values

Name Value

MQXUA_NONE X'00...00' (16 nulls)

MQXUA_NONE_ARRAY '\0','\0',... (16 nulls)

MQXWD_* (Exit wait descriptor structure)
Table 432. Structures of constants

Name Structure

MQXWD_STRUC_ID "XWD¬"

MQXWD_STRUC_ID_ARRAY 'X','W','D','¬'

Note: The symbol ¬ represents a single blank character.

Table 433. Values of constants

Name Decimal value Hexadecimal value

MQXWD_VERSION_1 1 X'00000001'

MQZAC_* (Application context structure)
Table 434. Structures of constants

Name Structure

MQZAC_STRUC_ID "ZAC¬"

MQZAC_STRUC_ID_ARRAY 'Z','A','C','¬'

Note: The symbol ¬ represents a single blank character.

Table 435. Values of constants

Name Decimal value Hexadecimal value

MQZAC_VERSION_1 1 X'00000001'

MQZAC_CURRENT_VERSION 1 X'00000001'

MQZAD_* (Authority data structure)
Table 436. Structures of constants

Name Structure

MQZAD_STRUC_ID "ZAD¬"

MQZAD_STRUC_ID_ARRAY 'Z','A','D','¬'

Note: The symbol ¬ represents a single blank character.

230 IBM MQ Developing Applications Reference

Table 437. Values of constants

Name Decimal value Hexadecimal value

MQZAD_VERSION_1 1 X'00000001'

MQZAD_VERSION_2 2 X'00000002'

MQZAD_CURRENT_VERSION 2 X'00000002'

MQZAET_* (Installable Services Entity Types)
Table 438. Values of constants

Name Decimal value Hexadecimal value

MQZAET_NONE 0 X'00000000'

MQZAET_PRINCIPAL 1 X'00000001'

MQZAET_GROUP 2 X'00000002'

MQZAET_UNKNOWN 3 X'00000003'

MQZAO_* (Installable Services Authorizations)
Table 439. Values of constants

Name Decimal value Hexadecimal value

MQZAO_CONNECT 1 X'00000001'

MQZAO_BROWSE 2 X'00000002'

MQZAO_INPUT 4 X'00000004'

MQZAO_OUTPUT 8 X'00000008'

MQZAO_INQUIRE 16 X'00000010'

MQZAO_SET 32 X'00000020'

MQZAO_PASS_IDENTITY_CONTEXT 64 X'00000040'

MQZAO_PASS_ALL_CONTEXT 128 X'00000080'

MQZAO_SET_IDENTITY_CONTEXT 256 X'00000100'

MQZAO_SET_ALL_CONTEXT 512 X'00000200'

MQZAO_ALTERNATE_USER_AUTHORITY 1024 X'00000400'

MQZAO_PUBLISH 2048 X'00000800'

MQZAO_SUBSCRIBE 4096 X'00001000'

MQZAO_RESUME 8192 X'00002000'

MQZAO_ALL_MQI 16383 X'00003FFF'

MQZAO_CREATE 65536 X'00010000'

MQZAO_DELETE 131072 X'00020000'

MQZAO_DISPLAY 262144 X'00040000'

MQZAO_CHANGE 524288 X'00080000'

MQZAO_CLEAR 1048576 X'00100000'

MQZAO_CONTROL 2097152 X'00200000'

MQZAO_CONTROL_EXTENDED 4194304 X'00400000'

MQZAO_AUTHORIZE 8388608 X'00800000'

MQZAO_ALL_ADMIN 16646144 X'00FE0000'

MQZAO_ALL 16662527 X'00FE3FFF'

Developing applications reference 231

Table 439. Values of constants (continued)

Name Decimal value Hexadecimal value

MQZAO_REMOVE 16777216 X'01000000'

MQZAO_NONE 0 X'00000000'

MQZAS_* (Installable Services Service Interface Version)
Table 440. Values of constants

Name Decimal value Hexadecimal value

MQZAS_VERSION_1 1 X'00000001'

MQZAS_VERSION_2 2 X'00000002'

MQZAS_VERSION_3 3 X'00000003'

MQZAS_VERSION_4 4 X'00000004'

MQZAS_VERSION_5 5 X'00000005'

MQZAS_VERSION_6 6 X'00000006'

MQZAT_* (Authentication Types)
Table 441. Values of constants

Name Decimal value Hexadecimal value

MQZAT_INITIAL_CONTEXT 0 X'00000000'

MQZAT_CHANGE_CONTEXT 1 X'00000001'

MQZCI_* (Installable Services Continuation Indicator)
Table 442. Values of constants

Name Decimal value Hexadecimal value

MQZCI_DEFAULT 0 X'00000000'

MQZCI_CONTINUE 0 X'00000000'

MQZCI_STOP 1 X'00000001'

MQZED_* (Entity data structure)
Table 443. Structures of constants

Name Structure

MQZED_STRUC_ID "ZED¬"

MQZED_STRUC_ID_ARRAY 'Z','E','D','¬'

Note: The symbol ¬ represents a single blank character.

Table 444. Values of constants

Name Decimal value Hexadecimal value

MQZED_VERSION_1 1 X'00000001'

MQZED_VERSION_2 2 X'00000002'

MQZED_CURRENT_VERSION 2 X'00000002'

232 IBM MQ Developing Applications Reference

MQZFP_* (Free parameters structure)
Table 445. Structures of constants

Name Structure

MQZFP_STRUC_ID "ZFP¬"

MQZFP_STRUC_ID_ARRAY 'Z','F','P','¬'

Note: The symbol ¬ represents a single blank character.

Table 446. Values of constants

Name Decimal value Hexadecimal value

MQZFP_VERSION_1 1 X'00000001'

MQZFP_CURRENT_VERSION 1 X'00000001'

MQZIC_* (Identity context structure)
Table 447. Structures of constants

Name Structure

MQZIC_STRUC_ID "ZIC¬"

MQZIC_STRUC_ID_ARRAY 'Z','I','C','¬'

Note: The symbol ¬ represents a single blank character.

Table 448. Values of constants

Name Decimal value Hexadecimal value

MQZIC_VERSION_1 1 X'00000001'

MQZIC_CURRENT_VERSION 1 X'00000001'

MQZID_* (Function ids for services)

Function ids common to all services
Table 449. Values of constants

Name Decimal value Hexadecimal value

MQZID_INIT 0 X'00000000'

MQZID_TERM 1 X'00000001'

Function ids for Authority service
Table 450. Values of constants

Name Decimal value Hexadecimal value

MQZID_INIT_AUTHORITY 0 X'00000000'

MQZID_TERM_AUTHORITY 1 X'00000001'

MQZID_CHECK_AUTHORITY 2 X'00000002'

MQZID_COPY_ALL_AUTHORITY 3 X'00000003'

MQZID_DELETE_AUTHORITY 4 X'00000004'

MQZID_SET_AUTHORITY 5 X'00000005'

MQZID_GET_AUTHORITY 6 X'00000006'

Developing applications reference 233

Table 450. Values of constants (continued)

Name Decimal value Hexadecimal value

MQZID_GET_EXPLICIT_AUTHORITY 7 X'00000007'

MQZID_REFRESH_CACHE 8 X'00000008'

MQZID_ENUMERATE_AUTHORITY_DATA 9 X'00000009'

MQZID_AUTHENTICATE_USER 10 X'0000000A'

MQZID_FREE_USER 11 X'0000000B'

MQZID_INQUIRE 12 X'0000000C'

MQZID_CHECK_PRIVILEGED 13 X'0000000D'

Function ids for Name service
Table 451. Values of constants

Name Decimal value Hexadecimal value

MQZID_INIT_NAME 0 X'00000000'

MQZID_TERM_NAME 1 X'00000001'

MQZID_LOOKUP_NAME 2 X'00000002'

MQZID_INSERT_NAME 3 X'00000003'

MQZID_DELETE_NAME 4 X'00000004'

Function ids for Userid service
Table 452. Values of constants

Name Decimal value Hexadecimal value

MQZID_INIT_USERID 0 X'00000000'

MQZID_TERM_USERID 1 X'00000001'

MQZID_FIND_USERID 2 X'00000002'

MQZIO_* (Installable Services Initialization Options)
Table 453. Values of constants

Name Decimal value Hexadecimal value

MQZIO_PRIMARY 0 X'00000000'

MQZIO_SECONDARY 1 X'00000001'

MQZNS_* (Name Service Interface Version)
Table 454. Values of constants

Name Decimal value Hexadecimal value

MQZNS_VERSION_1 1 X'00000001'

MQZSE_* (Installable Services Start-Enumeration Indicator)
Table 455. Values of constants

Name Decimal value Hexadecimal value

MQZSE_START 1 X'00000001'

234 IBM MQ Developing Applications Reference

Table 455. Values of constants (continued)

Name Decimal value Hexadecimal value

MQZSE_CONTINUE 0 X'00000000'

MQZSL_* (Installable Services Selector Indicator)
Table 456. Values of constants

Name Decimal value Hexadecimal value

MQZSL_NOT_RETURNED 0 X'00000000'

MQZSL_RETURNED 1 X'00000001'

MQZTO_* (Installable Services Termination Options)
Table 457. Values of constants

Name Decimal value Hexadecimal value

MQZTO_PRIMARY 0 X'00000000'

MQZTO_SECONDARY 1 X'00000001'

MQZUS_* (Userid Service Interface Version)
Table 458. Values of constants

Name Decimal value Hexadecimal value

MQZUS_VERSION_1 1 X'00000001'

Data types used in the MQI
Information on the data types that can be used in the Message Queue Interface (MQI). Descriptions,
fields, and language declarations for relevant languages with each data type.

Data types and programming for the MQI
Introducing Elementary and Structure data types, and how to use the MQI through C programming,
COBOL programming, or High Level Assembler programming.

Elementary data types
This section contains information about data types used in the MQI (or in exit functions). These are
described in detail, followed by examples showing how to declare the elementary data types in the
supported programming languages in the following topics.

The data types used in the MQI (or in exit functions) are either:

• Elementary data types, or
• Aggregates of elementary data types (arrays or structures)

The following elementary data types are used in the MQI (or in exit functions):

Developing applications reference 235

Table 459. Elementary data type names, types and descriptions

Elementary data type name Data type Description

MQBOOL Boolean The MQBOOL data type represents
a boolean value. The value 0
represents false. Any other value
represents true. An MQBOOL must
be aligned as for the MQLONG data
type.

MQBYTE Byte The MQBYTE data type represents
a single byte of data. No particular
interpretation is placed on the byte;
it is treated as a string of bits,
and not as a binary number or
character. No special alignment is
required.

When MQBYTE data is sent
between queue managers that
use different character sets or
encodings, the MQBYTE data is not
converted in any way. The MsgId
and CorrelId fields in the MQMD
structure are like this.

An array of MQBYTE is sometimes
used to represent an area of
main storage that is not known to
the queue manager. For example,
the area might contain application
message data or a structure. The
boundary alignment of this area
must be compatible with the nature
of the data contained within it.

In the C programming language,
any data type can be used
for function parameters that are
shown as arrays of MQBYTE. This
is because such parameters are
always passed by address, and in C
the function parameter is declared
as a pointer-to-void.

236 IBM MQ Developing Applications Reference

Table 459. Elementary data type names, types and descriptions (continued)

Elementary data type name Data type Description

MQBYTEn String of n bytes Each MQBYTEn data type
represents a string of n bytes,
where n can take any of the
following values: 8, 16, 24, 32, 40,
or 128. Each byte is described by
the MQBYTE data type. No special
alignment is required.

If the data in the byte string is
shorter than the defined length of
the string, the data must be padded
with nulls to fill the string.

When the queue manager returns
byte strings to the application (for
example, on the MQGET call), the
queue manager pads with nulls to
the defined length of the string.

Named constants are available
to define the lengths of byte
string fields. These are listed in
“Constants” on page 61

MQCHAR Character The MQCHAR data type represents
a single-byte character, or one
byte of a double-byte or multi-byte
character. No special alignment is
required.

When MQCHAR data is sent
between queue managers that
use different character sets or
encodings, the MQCHAR data
usually requires conversion in order
for the data to be interpreted
correctly. The queue manager does
this automatically for MQCHAR data
in the MQMD structure. Conversion
of MQCHAR data in the application
message data is controlled by the
MQGMO_CONVERT option specified
on the MQGET call; see the
description of this option in
“MQGMO - Get-message options”
on page 364 for further details.

Developing applications reference 237

Table 459. Elementary data type names, types and descriptions (continued)

Elementary data type name Data type Description

MQCHARn String of n characters Each MQCHARn data type
represents a string of n characters,
where n can take any of the
following values: 4, 8, 12, 20,
28, 32, 48, 64, 128, or 256.
Each character is described by the
MQCHAR data type. No special
alignment is required.

If the data in the string is shorter
than the defined length of the
string, the data must be padded
with blanks to fill the string. In
some cases a null character can be
used to end the string prematurely,
instead of padding with blanks;
the null character and characters
following it are treated as blanks,
up to the defined length of the
string. The places where a null can
be used are identified in the call
and data type descriptions.

When the queue manager returns
character strings to the application
(for example, on the MQGET call),
the queue manager always pads
with blanks to the defined length of
the string; the queue manager does
not use the null character to delimit
the string.

Named constants are available that
define the lengths of character
string fields and are listed in
“Constants” on page 61.

MQFLOAT32 32-bit floating point number The MQFLOAT32 data type is
a 32-bit floating-point number
represented using the standard
IEEE floating-point format. An
MQFLOAT32 must be aligned on a
4-byte boundary.

The use of MQFLOAT32 in C on
z/OS requires the use of the
FLOAT(IEEE) compiler flag.

The use of MQFLOAT32 in COBOL
is limited to compilers that support
floating-point numbers in IEEE
format. This might require the use
of the FLOAT(NATIVE) compiler
flag.

238 IBM MQ Developing Applications Reference

Table 459. Elementary data type names, types and descriptions (continued)

Elementary data type name Data type Description

MQFLOAT64 64-bit floating point number The MQFLOAT64 data type is
a 64-bit floating-point number
represented using the standard
IEEE floating-point format. An
MQFLOAT64 must be aligned on an
8-byte boundary.

The use of MQFLOAT64 in C on
z/OS requires the use of the
FLOAT(IEEE) compiler flag.

The use of MQFLOAT64 in COBOL
is limited to compilers that support
floating-point numbers in IEEE
format. This might require the use
of the FLOAT(NATIVE) compiler
flag.

MQHCONFIG Configuration handle The MQHCONFIG data type
represents a configuration handle,
that is, the component that is
being configured for a particular
installable service. A configuration
handle must be aligned on its
natural boundary.

Applications must not rely on the
format of the data stored inside this
handle. If valid, its value is intended
to be usable in further MQI calls,
but is not intended to have any
meaning besides that purpose.

MQHCONN Connection handle The MQHCONN data type
represents a connection handle,
that is, the connection to a
particular queue manager. A
connection handle must be aligned
on a 4-byte boundary.

Applications must not rely on the
format of the data stored inside this
handle. If valid, its value is intended
to be usable in further MQI calls,
but is not intended to have any
meaning besides that purpose.

Developing applications reference 239

Table 459. Elementary data type names, types and descriptions (continued)

Elementary data type name Data type Description

MQHMSG Message handle The MQHMSG data type represents
a message handle that gives access
to a message. A message handle
must be aligned on an 8-byte
boundary.

Applications must not rely on the
format of the data stored inside this
handle. If valid, its value is intended
to be usable in further MQI calls,
but is not intended to have any
meaning besides that purpose.

MQHOBJ Object handle The MQHOBJ data type represents
an object handle that gives access
to an object. An object handle must
be aligned on a 4-byte boundary.

Applications must not rely on the
format of the data stored inside this
handle. If valid, its value is intended
to be usable in further MQI calls,
but is not intended to have any
meaning besides that purpose.

MQINT8 8-bit signed integer The MQINT8 data type is an 8-bit
signed integer that can take any
value in the range -128 to +127,
unless otherwise restricted by the
context.

MQINT16 16-bit signed integer The MQINT16 data type is a 16-bit
signed integer that can take any
value in the range -32 768 to +32
767, unless otherwise restricted by
the context. An MQINT16 must be
aligned on a 2-byte boundary.

MQINT32 32-bit signed integer The MQINT32 data type is a 32-
bit signed binary integer that can
take any value in the range -2 147
483 648 through +2 147 483 647,
unless otherwise restricted by the
context.

See the definition of MQLONG.

240 IBM MQ Developing Applications Reference

Table 459. Elementary data type names, types and descriptions (continued)

Elementary data type name Data type Description

MQINT64 64-bit signed integer The MQINT64 data type is a 64-bit
signed integer that can take any
value in the range -9 223 372 036
854 775 808 through +9 223 372
036 854 775 807, unless otherwise
restricted by the context.

For COBOL, the valid range is
limited to -999 999 999 999 999
999 through +999 999 999 999
999 999. A 64-bit integer must be
aligned on an 8-byte boundary.

MQLONG 32-bit signed integer The MQLONG data type is a 32-
bit signed binary integer that can
take any value in the range -2 147
483 648 through +2 147 483 647,
unless otherwise restricted by the
context.

For COBOL, the valid range is
limited to -999 999 999 through
+999 999 999. An MQLONG must
be aligned on a 4-byte boundary.

MQPID Process identifier The IBM MQ process identifier.

This is the same identifier used
in MQ trace and FFST™ dumps,
but might be different from the
operating system process identifier.

MQPTR Pointer The MQPTR data type is the
address of data of any type. A
pointer must be aligned on its
natural boundary; this is a 16-byte
boundary on IBM i, and an 8-byte
boundary on other platforms.

Some programming languages
support typed pointers; the MQI
also uses these in a few cases (for
example, PMQCHAR and PMQLONG
in the C programming language).

MQTID Thread identifier The IBM MQ thread identifier.

This is the same identifier used
in MQ trace and FFST™ dumps,
but might be different from the
operating system thread identifier.

MQUINT8 8-bit unsigned integer The MQUINT8 data type is an 8-bit
unsigned integer that can take any
value in the range 0 to +255, unless
otherwise restricted by the context.

Developing applications reference 241

Table 459. Elementary data type names, types and descriptions (continued)

Elementary data type name Data type Description

MQUINT16 16-bit unsigned integer The MQUINT16 data type is a
16-bit unsigned integer that can
take any value in the range 0
through +65 535, unless otherwise
restricted by the context. An
MQUINT16 must be aligned on a
2-byte boundary.

MQUINT32 32-bit unsigned integer The MQUINT32 data type is a 32-
bit unsigned binary integer.

See the definition of MQULONG.

MQUINT64 64-bit unsigned integer The MQINT64 data type is a 64-bit
unsigned integer that can take any
value in the range 0 through +18
446 744 073 709 551 615, unless
otherwise restricted by the context.

For COBOL, the valid range is
limited to 0 through +999 999 999
999 999 999. A 64-bit integer must
be aligned on an 8-byte boundary.

MQULONG 32-bit unsigned integer The MQULONG data type is a 32-
bit unsigned binary integer that
can take any value in the range 0
through +4 294 967 294, unless
otherwise restricted by the context.

For COBOL, the valid range is
limited to 0 through +999 999 999.
An MQULONG must be aligned on a
4-byte boundary.

PMQACH Pointer Pointer to a data structure of type
MQACH

PMQAIR Pointer Pointer to a data structure of type
MQAIR

PMQAXC Pointer Pointer to a data structure of type
MQAXC

PMQAXP Pointer Pointer to a data structure of type
MQAXP

PMQBMHO Pointer Pointer to a data structure of type
MQBMHO

PMQBO Pointer Pointer to a data structure of type
MQBO

PMQBOOL Pointer Pointer to data of type MQBOOL

PMQBYTE Pointer Pointer to data of type MQBYTE

242 IBM MQ Developing Applications Reference

Table 459. Elementary data type names, types and descriptions (continued)

Elementary data type name Data type Description

PMQBYTEn Pointer Pointer to data of type MQBYTEn,
where n can be 8, 16, 24, 32, 40,
128

PMQCBC Pointer Pointer to a data structure of type
MQCBC

PMQCBD Pointer Pointer to a data structure of type
MQCBD

PMQCHAR Pointer Pointer to data of type MQCHAR

PMQCHARN Pointer Pointer to a data type of MQCHARN,
where n can be 4, 8, 12, 20, 28, 32,
48, 64, 128, 256, 264

PMQCHARV Pointer Pointer to a data structure of type
MQCHARV

PMQCIH Pointer Pointer to a data structure of type
MQCIH

PMQCMHO Pointer Pointer to a data structure of type
MQCMHO

PMQCNO Pointer Pointer to a data structure of type
MQCNO

PMQCSP Pointer Pointer to a data structure of type
MQCSP

PMQCTLO Pointer Pointer to a data structure of type
MQCTLO

PMQDH Pointer Pointer to a data structure of type
MQDH

PMQDHO Pointer Pointer to a data structure of type
MQDHO

PMQDLH Pointer Pointer to a data structure of type
MQDLH

PMQDMHO Pointer Pointer to a data structure of type
MQDMHO

PMQDMPO Pointer Pointer to a data structure of type
MQDMPO

PMQEPH Pointer Pointer to a data structure of type
MQEPH

PMQFLOAT32 Pointer Pointer to a data structure of type
MQFLOAT32

PMQFLOAT64 Pointer Pointer to a data structure of type
MQFLOAT64

PMQFUNC Pointer Pointer to a function

PMQGMO Pointer Pointer to a data structure of type
MQGMO

Developing applications reference 243

Table 459. Elementary data type names, types and descriptions (continued)

Elementary data type name Data type Description

PMQHCONFIG Pointer Pointer to data of type MQHCONFIG

PMQHCONN Pointer Pointer to data of type MQHCONN

PMQHMSG Pointer Pointer to data of type MQHMSG

PMQHOBJ Pointer Pointer to data of type MQHOBJ

PMQIIH Pointer Pointer to a data structure of type
MQIIH

PMQIMPO Pointer Pointer to a data structure of type
MQIMPO

PMQINT8 Pointer Pointer to data of type MQINT8

PMQINT16 Pointer Pointer to data of type MQINT16

PMQINT32 Pointer Pointer to data of type MQINT32

PMQINT64 Pointer Pointer to data of type MQINT64

PMQLONG Pointer Pointer to data of type MQLONG

PMQMD Pointer Pointer to structure of type MQMD

PMQMDE Pointer Pointer to a data structure of type
MQMDE

PMQMD1 Pointer Pointer to a data structure of type
MQMD1

PMQMD2 Pointer Pointer to a data structure of type
MQMD2

PMQMHBO Pointer Pointer to a data structure of type
MQMHBO

PMQOD Pointer Pointer to a data structure of type
MQOD

PMQOR Pointer Pointer to a data structure of type
MQOR

PMQPD Pointer Pointer to a data structure of type
MQPD

PMQPID Pointer Pointer to a process identifier

PMQMD Pointer Pointer to a data structure of type
MQMD

PMQPMO Pointer Pointer to a data structure of type
MQPMO

PMQPTR Pointer Pointer to data of type MQPTR

PMQRFH Pointer Pointer to a data structure of type
MQRFH

PMQRFH2 Pointer Pointer to a data structure of type
MQRFH2

244 IBM MQ Developing Applications Reference

Table 459. Elementary data type names, types and descriptions (continued)

Elementary data type name Data type Description

PMQRMH Pointer Pointer to a data structure of type
MQRMH

PMQRR Pointer Pointer to a data structure of type
MQRR

PMQSCO Pointer Pointer to a data structure of type
MQSCO

PMQSD Pointer Pointer to a data structure of type
MQSD

PMQSMPO Pointer Pointer to a data structure of type
MQSMPO

PMQSRO Pointer Pointer to a data structure of type
MQSRO

PMSSTS Pointer Pointer to a data structure of type
MQSTS

PMQTID Pointer Pointer to a thread ID

PMQTM Pointer Pointer to a data structure of type
MQTM

PMQTMC2 Pointer Pointer to a data structure of type
MQTMC2

PMQUINT8 Pointer Pointer to a data type of MQUINT8

PMQUINT16 Pointer Pointer to a data type of MQUINT16

PMQUINT32 Pointer Pointer to a data type of MQUINT32

PMQUINT64 Pointer Pointer to a data type of MQUINT64

PMQULONG Pointer Pointer to a data type of MQULONG

PMQVOID Pointer

PMQWIH Pointer Pointer to a data structure of type
MQWIH

PMQXQH Pointer Pointer to a data structure of type
MQXQH

C declarations

Table 460. C data type names and representations

Data type Representation

MQBOOL
typedef MQLONG MQBOOL;

MQBYTE
typedef unsigned char MQBYTE;

MQBYTE8
typedef MQBYTE MQBYTE8[8];

Developing applications reference 245

Table 460. C data type names and representations (continued)

Data type Representation

MQBYTE16
typedef MQBYTE MQBYTE16[16];

MQBYTE24
typedef MQBYTE MQBYTE24[24];

MQBYTE32
typedef MQBYTE MQBYTE32[32];

MQBYTE40
typedef MQBYTE MQBYTE40[40];

MQCHAR
typedef char MQCHAR;

MQCHAR4
typedef MQCHAR MQCHAR4[4];

MQCHAR8
typedef MQCHAR MQCHAR8[8];

MQCHAR12
typedef MQCHAR MQCHAR12[12];

MQCHAR20
typedef MQCHAR MQCHAR20[20];

MQCHAR28
typedef MQCHAR MQCHAR28[28];

MQCHAR32
typedef MQCHAR MQCHAR32[32];

MQCHAR48
typedef MQCHAR MQCHAR48[48];

MQCHAR64
typedef MQCHAR MQCHAR64[64];

MQCHAR128
typedef MQCHAR MQCHAR128[128];

MQCHAR256
typedef MQCHAR MQCHAR256[256];

MQFLOAT32
typedef float MQFLOAT32;

246 IBM MQ Developing Applications Reference

Table 460. C data type names and representations (continued)

Data type Representation

MQFLOAT64
typedef double MQFLOAT64;

MQHCONFIG
typedef void MQPOINTER MQHCONFIG;

MQHCONN
typedef MQLONG MQHCONN;

MQHOBJ
typedef MQLONG MQHOBJ;

MQINT8
typedef signed char MQINT8;

MQINT16
typedef short MQINT16;

MQINT64
On 64-bit UNIX:

typedef long;

On 32-bit AIX:

typedef int64_t;

On Linux, IBM i, and
z/OS:

typedef long long;

On Windows:

typedef _int64;

MQLONG
On IBM i:

typedef long MQLONG;

On other platforms:

if defined(MQ_64_BIT)
 typedef int MQLONG;
else
 typedef long MQLONG;

Developing applications reference 247

Table 460. C data type names and representations (continued)

Data type Representation

MQPID
typedef MQLONG MQPID;

MQPTR
typedef void MQPOINTER MQPTR;

MQTID
typedef MQLONG MQTID;

MQUINT8
typedef unsigned char MQUINT8;

MQUINT16
typedef unsigned short MQUINT16;

MQUINT64
On 64-bit UNIX:

typedef unsigned long;

On 32-bit AIX:

typedef uint64_t;

On Linux, IBM i, and
z/OS:

typedef unsigned long long;

On Windows:

typedef unsigned _int64;

MQULONG
On IBM i:

typedef unsigned long MQULONG;

On other platforms:

if defined(MQ_64_BIT)
 typedef unsigned int MQULONG;
else
 typedef unsigned long MQULONG;

PMQBO
typedef MQBO MQPOINTER PMQBO;

248 IBM MQ Developing Applications Reference

Table 460. C data type names and representations (continued)

Data type Representation

PMQBOOL
typedef MQBOOL MQPOINTER PMQBOOL;

PMQBYTE
typedef MQBYTE MQPOINTER PMQBYTE;

PMQBYTE8
typedef MQBYTE8[8] MQPOINTER PMQBYTE8[8];

PMQBYTE16
typedef MQBYTE16[16] MQPOINTER PMQBYTE16[16];

PMQBYTE24
typedef MQBYTE24[24] MQPOINTER PMQBYTE24[24];

PMQBYTE32
typedef MQBYTE32[32] MQPOINTER PMQBYTE32[32];

PMQBYTE40
typedef MQBYTE40[40] MQPOINTER PMQBYTE40[40];

PMQBYTE128
typedef MQBYTE128[128] MQPOINTER PMQBYTE128[128];

PMQCHAR
typedef MQCHAR MQPOINTER PMQCHAR;

PMQCHAR4
typedef MQCHAR4[4] MQPOINTER PMQCHAR4[4];

PMQCHAR8
typedef MQCHAR8[8] MQPOINTER PMQCHAR8[8];

PMQCHAR12
typedef MQCHAR12[12] MQPOINTER PMQCHAR12[12];

PMQCHAR20
typedef MQCHAR20[20] MQPOINTER PMQCHAR20[20];

PMQCHAR28
typedef MQCHAR28[28] MQPOINTER PMQCHAR28[28];

PMQCHAR32
typedef MQCHAR32[32] MQPOINTER PMQCHAR32[32];

PMQCHAR48
typedef MQCHAR48[48] MQPOINTER PMQCHAR48[48];

Developing applications reference 249

Table 460. C data type names and representations (continued)

Data type Representation

PMQCHAR64
typedef MQCHAR64[64] MQPOINTER PMQCHAR64[64];

PMQCHAR128
typedef MQCHAR128[128] MQPOINTER PMQCHAR128[128];

PMQCHAR256
typedef MQCHAR256[256] MQPOINTER PMQCHAR256[256];

PMQCHAR264
typedef MQCHAR264[264] MQPOINTER PMQCHAR264[264];

PMQCIH
typedef MQCIH MQPOINTER PMQCIH;

PMQCNO
typedef MQCNO MQPOINTER PMQCNO;

PMQDLH
typedef MQDLH MQPOINTER PMQDLH;

PMQFUNC
typedef void MQPOINTER PMQFUNC;

PMQFLOAT32
typedef MQFLOAT32 MQPOINTER PMQFLOAT32;

PMQFLOAT64
typedef MQFLOAT64 MQPOINTER PMQFLOAT64;

PMQGMO
typedef MQGMO MQPOINTER PMQGMO;

PMQHCONFIG
typedef MQHCONFIG MQPOINTER PMQHCONFIG;

PMQHCONN
typedef MQHCONN MQPOINTER PMQHCONN;

PMQHOBJ
typedef MQHOBJ MQPOINTER PMQHOBJ;

PMQIIH
typedef MQIIH MQPOINTER PMQIIH;

PMQINT8
typedef MQINT8 MQPOINTER PMQINT8;

250 IBM MQ Developing Applications Reference

Table 460. C data type names and representations (continued)

Data type Representation

PMQINT16
typedef MQINT16 MQPOINTER PMQINT16;

PMQLONG
typedef MQLONG MQPOINTER PMQLONG;

PMQMD
typedef MQMD MQPOINTER PMQMD;

PMQMD1
typedef MQMD1[1] MQPOINTER PMQMD1[1];

PMQMDE
typedef MQMDE MQPOINTER PMQMDE;

PMQOD
typedef MQOD MQPOINTER PMQOD;

PMQPMO
typedef MQPMO MQPOINTER PMQPMO;

PMQPTR
typedef MQPTR MQPOINTER PMQPTR;

PMQRFH
typedef MQRFH MQPOINTER PMQRFH;

PMQRFH2
typedef MQRFH2[2] MQPOINTER PMQRFH2[2];

PMQRMH
typedef MQRMH MQPOINTER PMQRMH;

PMQTM
typedef MQTM MQPOINTER PMQTM;

PMQTMC2
typedef MQTMC2[2] MQPOINTER PMQTMC2[2];

PMQUINT8
typedef MQUINT8 MQPOINTER PMQUINT8;

PMQUINT16
typedef MQUINT16 MQPOINTER PMQUINT16;

PMQULONG
typedef MQULONG MQPOINTER PMQULONG;

Developing applications reference 251

Table 460. C data type names and representations (continued)

Data type Representation

PMQVOID
typedef void MQPOINTER PMQVOID;

PMQWIH
typedef MQWIH MQPOINTER PMQWIH;

PMQXQH
typedef MQXQH MQPOINTER PMQXQH;

PPMQBO
typedef PMQBO MQPOINTER PPMQBO;

PPMQBYTE
typedef PMQBYTE MQPOINTER PPMQBYTE;

PPMQCHAR
typedef PMQCHAR MQPOINTER PPMQCHAR;

PPMQCNO
typedef PMQCNO MQPOINTER PPMQCNO;

PPMQGMO
typedef PMQGMO MQPOINTER PPMQGMO;

PPMQHCONN
typedef PMQHCONN MQPOINTER PPMQHCONN;

PPMQHOBJ
typedef PMQHOBJ MQPOINTER PPMQHOBJ;

PPMQLONG
typedef PMQLONG MQPOINTER PPMQLONG;

PPMQMD
typedef PMQMD MQPOINTER PPMQMD;

PPMQOD
typedef PMQOD MQPOINTER PPMQOD;

PPMQPMO
typedef PMQPMO MQPOINTER PPMQPMO;

PPMQULONG
typedef PMQULONG MQPOINTER PPMQULONG;

PPMQVOID
typedef PMQVOID MQPOINTER PPMQVOID;

Where defined(MQ_64_BIT) means a 64 bit platform.

252 IBM MQ Developing Applications Reference

See “Data types” on page 263 for a description of the MQPOINTER macro variable.

COBOL declarations

Table 461. COBOL data type names and representations

Data type Representation

MQBOOL
PIC S9(9) BINARY

MQBYTE
PIC X

MQBYTE8
PIC X(8)

MQBYTE16
PIC X(16)

MQBYTE24
PIC X(24)

MQBYTE32
PIC X(32)

MQBYTE40
PIC X(40)

MQCHAR
PIC X

MQCHAR4
PIC X(4)

MQCHAR8
PIC X(8)

MQCHAR12
PIC X(12)

MQCHAR20
PIC X(20)

MQCHAR28
PIC X(28)

MQCHAR32
PIC X(32)

MQCHAR48
PIC X(48)

Developing applications reference 253

Table 461. COBOL data type names and representations (continued)

Data type Representation

MQCHAR64
PIC X(64)

MQCHAR128
PIC X(128)

MQCHAR256
PIC X(256)

MQFLOAT32
USAGE COMP-1

MQFLOAT64
USAGE COMP-2

MQHCONN On z/OS

PIC S9(9) COMP-5

On other platforms

PIC S9(9) BINARY

MQHOBJ
PIC S9(9) BINARY

MQINT8
PIC S9(2) BINARY

MQINT16
PIC S9(4) BINARY

MQINT64
PIC S9(18) BINARY

MQLONG
PIC S9(9) BINARY

MQPTR
POINTER

MQUINT8
PIC 9(2) BINARY

MQUINT16
PIC 9(4) BINARY

254 IBM MQ Developing Applications Reference

Table 461. COBOL data type names and representations (continued)

Data type Representation

MQUINT64
PIC 9(18) BINARY

MQULONG
PIC 9(9) BINARY

PL/I declarations
PL/I is supported on z/OS.

Table 462. PL/I data type names and representations

Data type Representation

MQBOOL
fixed bin(31)

MQBYTE
char(1)

MQBYTE8
char(8)

MQBYTE16
char(16)

MQBYTE24
char(24)

MQBYTE32
char(32)

MQBYTE40
char(40)

MQCHAR
char(1)

MQCHAR4
char(4)

MQCHAR8
char(8)

MQCHAR12
char(12)

MQCHAR20
char(20)

Developing applications reference 255

Table 462. PL/I data type names and representations (continued)

Data type Representation

MQCHAR28
char(28)

MQCHAR32
char(32)

MQCHAR48
char(48)

MQCHAR64
char(64)

MQCHAR128
char(128)

MQCHAR256
char(256)

MQFLOAT32
binary float(21) ieee

MQFLOAT64
binary float(52) ieee

MQHCONN
fixed bin(31)

MQHOBJ
fixed bin(31)

MQINT8
fixed bin(7)

MQINT16
fixed bin(15)

MQINT64
fixed bin(63)

MQLONG
fixed bin(31)

MQPTR
pointer

MQUINT8
fixed bin(8)

256 IBM MQ Developing Applications Reference

Table 462. PL/I data type names and representations (continued)

Data type Representation

MQUINT16
fixed bin(16)

MQUINT64
fixed bin(64)

MQULONG
fixed bin(32)

System/390 assembler declarations
System/390 assembler is supported on z/OS only.

Table 463. System/390 assembler data type names and representations

Data type Representation

MQBOOL
DS F

MQBYTE
DS XL1

MQBYTE8
DS XL8

MQBYTE16
DS XL16

MQBYTE24
DS XL24

MQBYTE32
DS XL32

MQBYTE40
DS XL40

MQCHAR
DS CL1

MQCHAR4
DS CL4

MQCHAR8
DS CL8

MQCHAR12
DS CL12

Developing applications reference 257

Table 463. System/390 assembler data type names and representations (continued)

Data type Representation

MQCHAR20
DS CL20

MQCHAR28
DS CL28

MQCHAR32
DS CL32

MQCHAR48
DS CL48

MQCHAR64
DS CL64

MQCHAR128
DS CL128

MQCHAR256
DS CL256

MQFLOAT32
DS EB

MQFLOAT64
DS DB

MQHCONN
DS F

MQHOBJ
DS F

MQINT8
DS XL1

MQINT16
DS H

MQINT64
DS D

MQLONG
DS F

MQPTR
DS F

258 IBM MQ Developing Applications Reference

Table 463. System/390 assembler data type names and representations (continued)

Data type Representation

MQUINT8
DS XL1

MQUINT16
DS H

MQUINT64
DS D

MQULONG
DS F

Structure data types
A summary of the structure data types, rules for mapping the MQI structures consistently, and
conventions used in each structure data type description.

• “Summary of the structure data types used on MQI calls or exit functions” on page 259
• “Summary of the structure data types used in message data” on page 260
• “Rules for mapping the MQI structures consistently” on page 261
• “Conventions used in each structure data type description” on page 261

Summary of the structure data types used on MQI calls or exit functions
Table 464. Structure data types used on MQI calls or exit functions

Structure Description Calls where used

MQACH API exit chain header

MQAIR Authentication information record MQCONNX

MQAXC API exit context

MQAXP API exit parameter

MQBMHO Buffer to message handle options MQBUFMH

MQBO Begin options MQBEGIN

MQCBD Callback descriptor MQCB

MQCBO Create-bag options mqCreateBag

MQCHARV Variable length string MQINQMP

MQCNO Connect options MQCONNX

MQCSP Security parameters MQCONNX

MQCTLO Callback options MQCTL

MQDMPO Delete message property options MQDLTMP

MQGMO Get-message options MQGET

MQIMPO Inquire message property options MQINQMP

Developing applications reference 259

Table 464. Structure data types used on MQI calls or exit functions (continued)

Structure Description Calls where used

MQMD Message descriptor MQBUFMH, MQMHBUF, MQCB, MQGET, MQPUT,
MQPUT1

MQMHBO Message handle to buffer options MQMHBUF

MQOD Object descriptor MQOPEN, MQPUT1

MQOR Object record MQOPEN, MQPUT1

MQPD Property descriptor MQSETMP

MQPMO Put-message options MQPUT, MQPUT1

MQPMR Put-message record MQPUT, MQPUT1

MQRR Response record MQOPEN, MQPUT, MQPUT1

MQSCO TLS configuration options MQCONNX

MQSD Subscription descriptor MQSUB

MQSMPO Set message property option MQSETMP

MQSRO Subscription request options MQSUBRQ

MQSTS Status reporting structure MQSTAT

Summary of the structure data types used in message data
Table 465. Structure data types used in message data

Structure Description

MQCIH CICS information header

MQCFH PCF header

MQEPH Embedded PCF header

MQDH Distribution header

MQDLH Dead letter (undelivered message) header

MQIIH IMS information header

MQMDE Message descriptor extension

MQRFH Rules and formatting header

MQRFH2 Rules and formatting header 2

MQRMH Reference message header

MQTM Trigger message

MQTMC2 Trigger message (character format 2)

MQWIH Work information header

MQXQH Transmission queue header

Note: The MQDXP structure (data conversion exit parameter) is described in “Data-conversion exit” on
page 897, together with the associated data conversion calls.

260 IBM MQ Developing Applications Reference

Rules for mapping the MQI structures consistently
Programming languages vary in their level of support for structures, and certain rules and conventions are
adopted to map the MQI structures consistently in each programming language:

1. Structures must be aligned on their natural boundaries.

• Most MQI structures require 4-byte alignment.
• On IBM i, structures containing pointers require 16-byte alignment; these are: MQCNO, MQOD,

MQPMO.
2. Each field in a structure must be aligned on its natural boundary.

• Fields with data types that equate to MQLONG must be aligned on 4-byte boundaries.
• Fields with data types that equate to MQPTR must be aligned on 16-byte boundaries on IBM i, and

4-byte boundaries in other environments.
• Other fields are aligned on 1-byte boundaries.

3. The length of a structure must be a multiple of its boundary alignment.

• Most MQI structures have lengths that are multiples of 4 bytes.
• On IBM i, structures containing pointers have lengths that are multiples of 16 bytes.

4. Where necessary, padding bytes or fields must be added to ensure compliance with the preceding
rules.

Conventions used in each structure data type description
The description of each structure data type includes:

• An overview of the purpose and use of the structure
• Descriptions of the fields in the structure, in a form that is independent of the programming language
• Examples of how the structure is declared in each of the supported programming languages

The description of each structure data type contains the following sections:
Structure name

The name of the structure, followed by a summary of the fields in the structure.
Overview

A brief description of the purpose and use of the structure.
Fields

Descriptions of the fields. For each field, the name of the field is followed by its elementary data type
in parentheses (). In text, field names are shown using an italic typeface; for example Version.

There is also a description of the purpose of the field, together with a list of any values that the
field can take. Names of constants are shown in uppercase; for example MQGMO_STRUC_ID. A set of
constants having the same prefix is shown using the * character, for example: MQIA_*.

In the descriptions of the fields, the following terms are used:
input

You supply information in the field when you make a call.
output

The queue manager returns information in the field when the call completes or fails.
input/output

You supply information in the field when you make a call, and the queue manager changes the
information when the call completes or fails.

Initial values
A table showing the initial values for each field in the data definition files supplied with the MQI.

C declaration
Typical declaration of the structure in C.

Developing applications reference 261

COBOL declaration
Typical declaration of the structure in COBOL.

PL/I declaration
Typical declaration of the structure in PL/I.

High Level Assembler declaration
Typical declaration of the structure in System/390 assembler language.

Visual Basic declaration
Typical declaration of the structure in Visual Basic.

C programming
Information to help you use the MQI from the C programming language.

• “Header files” on page 262
• “Functions” on page 262
• “Parameters with undefined data type” on page 263
• “Data types” on page 263
• “Manipulating binary strings” on page 263
• “Manipulating character strings” on page 263
• “Initial values for structures” on page 264
• “Initial values for dynamic structures” on page 264
• “Use from C++” on page 265
• “Notation conventions” on page 265

Header files

Table 466. C header files

File Contents

CMQC Function prototypes, data types, and named constants for the main MQI

CMQXC Function prototypes, data types, and named constants for the data conversion exit

CMQEC Function prototypes, data types, and named constants for the main MQI, data
conversion exit and Interface Entry Points structure (CMQEC includes CMQXC and
CMQC.)

CMQSTRC Functions that convert MQI constant definitions to the text equivalent.

Attention: Applicable to z/OS from IBM MQ 9.1. Programs
using this header file must be compiled with the LONGNAME compiler
option.

To improve the portability of applications, code the name of the header file in lowercase on the #include
preprocessor directive:

#include "cmqec.h"

Functions
You do not need to specify all parameters that are passed by address every time you invoke a function.

• Pass parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG by value.
• Pass all other parameters by address.

262 IBM MQ Developing Applications Reference

Where a particular parameter is not required, use a null pointer as the parameter on the function
invocation, in place of the address of the parameter data. Parameters for which this is possible are
identified in the call descriptions.

No parameter is returned as the value of the function; in C terminology, this means that all functions
return void.

The attributes of the function are defined by the MQENTRY macro variable; the value of this macro
variable depends on the environment.

Parameters with undefined data type
The Buffer parameter on the MQGET, MQPUT, and MQPUT1 functions has an undefined data type. This
parameter is used to send and receive the application's message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. You can declare the
parameters in this way, but it is usually more convenient to declare them as the particular structure
that describes the layout of the data in the message. Declare the actual function parameter as a pointer-
to-void, and specify the address of any sort of data as the parameter on the function invocation.

Data types
Define all data types using the C typedef statement. For each data type, also define the corresponding
pointer data type. The name of the pointer data type is the name of the elementary or structure data type
prefixed with the letter P to denote a pointer. Define the attributes of the pointer using the MQPOINTER
macro variable; the value of this macro variable depends on the environment. The following illustrates
how to declare pointer data types:

#define MQPOINTER * /* depends on environment */
...
typedef MQLONG MQPOINTER PMQLONG; /* pointer to MQLONG */
typedef MQMD MQPOINTER PMQMD; /* pointer to MQMD */

Manipulating binary strings
Declare strings of binary data as one of the MQBYTEn data types.

Whenever you copy, compare, or set fields of this type, use the C functions memcpy, memcmp, or memset ;
for example:

#include <string.h>
#include "cmqc.h"

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /* set "MsgId" field to nulls */
 MQMI_NONE, /* ...using named constant */
 sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /* set "CorrelId" field to nulls */
 0x00, /* ...using a different method */
 sizeof(MQBYTE24));

Do not use the string functions strcpy, strcmp, strncpy, or strncmp, because these do not work
correctly for data declared with the MQBYTEn data types.

Manipulating character strings
When the queue manager returns character data to the application, the queue manager always pads
the character data with blanks to the defined length of the field. The queue manager does not return
null-terminated strings.

Developing applications reference 263

Therefore, when copying, comparing, or concatenating such strings, use the string functions strncpy,
strncmp, or strncat.

Do not use the string functions that require the string to be terminated by a null (strcpy, strcmp,
strcat). Also, do not use the function strlen to determine the length of the string; use instead the
sizeof function to determine the length of the field.

Initial values for structures
The header files define various macro variables that you can use to provide initial values for the MQ
structures when you declare instances of those structures.

These macro variables have names of the form MQxxx_DEFAULT, where MQxxx represents the name of
the structure. They are used in the following way:

MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields (for example, the StrucId fields that occur in most structures, or the Format
field that occurs in MQMD), the MQI defines particular values that are valid. For each of the valid values,
two macro variables are provided:

• One macro variable defines the value as a string with a length, excluding the implied null matches,
exactly the defined length of the field. For example, for the Format field in MQMD the following macro
variable is provided (¬ represents a single blank character):

#define MQFMT_STRING "MQSTR¬¬¬"

Use this form with the memcpy and memcmp functions.
• The other macro variable defines the value as an array of characters; the name of this macro variable is

the name of the string form suffixed with _ARRAY. For example:

#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','¬','¬','¬'

Use this form to initialize the field when you declare an instance of the structure with values different
from those provided by the MQMD_DEFAULT macro variable. (This is not always necessary; in some
environments you can use the string form of the value in both situations. However, you can use the array
form for declarations, because this is required for compatibility with the C++ programming language.)

Initial values for dynamic structures
When a variable number of instances of a structure is required, the instances are typically created in
main storage obtained dynamically using the calloc or malloc functions. To initialize the fields in such
structures, consider the following technique:

1. Declare an instance of the structure using the appropriate MQxxx_DEFAULT macro variable to initialize
the structure. This instance becomes the model for other instances:

MQMD Model = {MQMD_DEFAULT}; /* declare model instance */

The static or auto keywords can be coded on the declaration in order to give the model instance
static or dynamic lifetime, as required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of the structure:

PMQMD Instance;
Instance = malloc(sizeof(MQMD)); /* get storage for dynamic instance */

264 IBM MQ Developing Applications Reference

3. Use the memcpy function to copy the model instance to the dynamic instance:

memcpy(Instance,&Model,sizeof(MQMD)); /* initialize dynamic instance */

Use from C++
For the C++ programming language, the header files contain the following additional statements that are
included only when you use a C++ compiler:

#ifdef __cplusplus
 extern "C" {
#endif

/* rest of header file */

#ifdef __cplusplus
 }
#endif

Notation conventions
This information shows how to invoke the functions and declare parameters.

In some cases, the parameters are arrays with a size that is not fixed. For these, a lowercase n is used to
represent a numeric constant. When you code the declaration for that parameter, replace the n with the
numeric value required.

COBOL programming
This section contains information to help you use the MQI from the COBOL programming language.

High Level Assembler programming
Information to help to you use the MQI from the System/390 Assembler programming language.

• “Macros” on page 265
• “Structures” on page 266
• “CMQVERA macro” on page 266
• “Notation conventions” on page 266

Macros
There are two macros for named constants, and one macro for each of the structures. These files are
summarized in the following table.

Table 467. Assembler macros

File Contents

CMQA Named constants (equates) for main MQI

CMQCIHA CICS information header structure

CMQCNOA Connect options structure

CMQDLHA Dead letter header structure

CMQDXPA Data conversion exit parameter structure

CMQGMOA Get message options structure

CMQIIHA IMS information header structure

CMQMDA Message descriptor structure

Developing applications reference 265

Table 467. Assembler macros (continued)

File Contents

CMQMDEA Message descriptor extension structure

CMQODA Object descriptor structure

CMQPMOA Put message options structure

CMQRFHA Rules and formatting header structure

CMQRFH2A Rules and formatting header structure version 2

CMQRMHA Reference message header structure

CMQTMA Trigger message structure

CMQTMC2A Trigger message structure (character format) version 2

CMQVERA Structure version control

CMQWIHA Work information header structure

CMQXA Named constants for data conversion exit

CMQXPA API crossing exit parameter structure

CMQXQHA Transmission queue header structure

Structures
The structures are generated by macros that have various parameters to control the action of the macro.
See “Structures” on page 266

CMQVERA macro
This macro allows you to set the default value to be used for the DCLVER parameter on the structure
macros.

The value specified by CMQVERA is used by the structure macro only if you omit the DCLVER parameter
from the invocation of the structure macro. The default value is set by coding the CMQVERA macro with
the DCLVER parameter:
DCLVER=CURRENT

The default version is set to the current (most recent) version.
DCLVER=SPECIFIED

The default version is set to the version specified by the VERSION parameter.
You must specify the DCLVER parameter, and the value must be uppercase. The value set by CMQVERA
remains the default value until the next invocation of CMQVERA, or the end of the assembly. If you omit
CMQVERA, the default is DCLVER=CURRENT.

Notation conventions
Other topics show how to invoke the calls and declare parameters. In some cases, the parameters are
arrays or character strings with a size that is not fixed for which, a lowercase n is used to represent a
numeric constant. When you code the declaration for that parameter, replace the n with the numeric value
required.

Structures
The structures are generated by macros that have various parameters to control the action of the macro.

Note: From time to time new versions of the IBM MQ structures are introduced. The additional fields in
a new version can cause a structure that previously was smaller than 256 bytes to become larger than

266 IBM MQ Developing Applications Reference

256 bytes. Because of this, write assembler instructions that are intended to copy an IBM MQ structure,
or to set an IBM MQ structure to nulls, to work correctly with structures that might be larger than 256
bytes. Alternatively, use the DCLVER macro parameter or CMQVERA macro with the VERSION parameter
to declare a specific version of the structure.

• “Specifying the name of the structure” on page 267
• “Specifying the form of the structure” on page 267
• “Controlling the version of the structure” on page 267
• “Declaring one structure embedded within another” on page 268
• “Specifying initial values for fields” on page 268
• “Controlling the listing” on page 268

Specifying the name of the structure
To declare more than one instance of a structure, the macro prefixes the name of each field in the
structure with a user-specifiable string and an underscore.

The string used is the label specified on the invocation of the macro. If no label is specified, the name of
the structure is used to construct the prefix:

* Declare two object descriptors
 CMQODA , Prefix used="MQOD_" (the default)
MY_MQOD CMQODA , Prefix used="MY_MQOD_"

The structure declarations shown in this section use the default prefix.

Specifying the form of the structure
Structure declarations can be generated by the macro in one of two forms, controlled by the DSECT
parameter:
DSECT=YES

An assembler DSECT instruction is used to start a new data section; the structure definition
immediately follows the DSECT statement. The label on the macro invocation is used as the name
of the data section; if no label is specified, the name of the structure is used.

DSECT=NO
Assembler DC instructions are used to define the structure at the current position in the routine. The
fields are initialized with values, which can be specified by coding the relevant parameters on the
macro invocation. Fields for which no values are specified on the macro invocation are initialized with
default values.

The value specified must be uppercase. If the DSECT parameter is not specified, DSECT=NO is assumed.

Controlling the version of the structure
By default, the macros always declare the most recent version of each structure.

Although you can use the VERSION macro parameter to specify a value for the Version field in the
structure, that parameter defines the initial value for the Version field, and does not control the version
of the structure actually declared. To control the version of the structure that is declared, use the DCLVER
parameter:
DCLVER=CURRENT

The version declared is the current (most recent) version.
DCLVER=SPECIFIED

The version declared is the version specified by the VERSION parameter. If you omit the VERSION
parameter, the default is version 1.

Developing applications reference 267

If you specify the VERSION parameter, the value must be a self-defining numeric constant, or the
named constant for the version required (for example, MQCNO_VERSION_3). If you specify some
other value, the structure is declared as if DCLVER=CURRENT had been specified, even if the value of
VERSION resolves to a valid value.

The value specified must be uppercase. If you omit the DCLVER parameter, the value used is taken from
the MQDCLVER global macro variable. You can set this variable using the CMQVERA macro.

Declaring one structure embedded within another
To declare one structure as a component of another structure, use the NESTED parameter:
NESTED=YES

The structure declaration is nested within another.
NESTED=NO

The structure declaration is not nested within another.
The value specified must be uppercase. If you omit the NESTED parameter, NESTED=NO is assumed.

Specifying initial values for fields
Specify the value to be used to initialize a field in a structure by coding the name of that field (without the
prefix) as a parameter on the macro invocation, accompanied by the value required.

For example, to declare a message-descriptor structure with the MsgType field initialized with
MQMT_REQUEST, and the ReplyToQ field initialized with the string "MY_REPLY_TO_QUEUE", use the
following:

MY_MQMD CMQMDA MSGTYPE=MQMT_REQUEST, X
 REPLYTOQ=MY_REPLY_TO_QUEUE

If you specify a named constant (equate) as a value on the macro invocation, use the CMQA macro to
define the named constant. Do not enclose character string values in single quotation marks.

Controlling the listing
Control the appearance of the structure declaration in the assembler listing using the LIST parameter:
LIST=YES

The structure declaration appears in the assembler listing.
LIST=NO

The structure declaration does not appear in the assembler listing.
The value specified must be uppercase. If you omit the LIST parameter, LIST=NO is assumed.

MQAIR - Authentication information record
The MQAIR structure allows an application running as an IBM MQ MQI client to specify information about
an authenticator that is to be used for the client connection. The structure is an input parameter on the
MQCONNX call.

Availability
The MQAIR structure is available for the following clients:

• AIX

• Linux

• Windows

268 IBM MQ Developing Applications Reference

Character set and encoding
Data in MQAIR must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue manager attribute and MQENC_NATIVE.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 468. Fields in MQAIR

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQAIR_STRUC_ID 'AIR¬'

Version (structure version number) MQAIR_VERSION_1 1

AuthInfoType (type of authentication information) MQAIT_CRL_LDAP 1

AuthInfoConnName (connection name of LDAP
CRL server)

None Null string or blanks

LDAPUserNamePtr (address of LDAP user name) None Null pointer or null bytes

LDAPUserNameOffset (offset of LDAP user name
from start of MQSCO)

None 0

LDAPUserNameLength (length of LDAP user name) None 0

LDAPPassword (password to access LDAP server) None Null string or blanks

Note: The remaining fields are ignored if Version is less than MQAIR_VERSION_2.

OCSPResponderURL (URL at which the OCSP
responder can be contacted)

None Null string or blanks

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQAIR_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQAIR MyAIR = {MQAIR_DEFAULT};

Language declarations
C declaration for MQAIR

typedef struct tagMQAIR MQAIR;
struct tagMQAIR {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG AuthInfoType; /* Type of authentication
 information */
 MQCHAR264 AuthInfoConnName; /* Connection name of CRL LDAP
 server */
 PMQCHAR LDAPUserNamePtr; /* Address of LDAP user name */
 MQLONG LDAPUserNameOffset; /* Offset of LDAP user name from start
 of MQAIR structure */
 MQLONG LDAPUserNameLength; /* Length of LDAP user name */
 MQCHAR32 LDAPPassword; /* Password to access LDAP server */
 MQCHAR256 OCSPResponderURL; /* URL of OCSP responder */

Developing applications reference 269

};

COBOL declaration for MQAIR

** MQAIR structure
 10 MQAIR.
** Structure identifier
 15 MQAIR-STRUCID PIC X(4).
** Structure version number
 15 MQAIR-VERSION PIC S9(9) BINARY.
** Type of authentication information
 15 MQAIR-AUTHINFOTYPE PIC S9(9) BINARY.
** Connection name of CRL LDAP server
 15 MQAIR-AUTHINFOCONNNAME PIC X(264).
** Address of LDAP user name
 15 MQAIR-LDAPUSERNAMEPTR POINTER.
** Offset of LDAP user name from start of MQAIR structure
 15 MQAIR-LDAPUSERNAMEOFFSET PIC S9(9) BINARY.
** Length of LDAP user name
 15 MQAIR-LDAPUSERNAMELENGTH PIC S9(9) BINARY.
** Password to access LDAP server
 15 MQAIR-LDAPPASSWORD PIC X(32).
** URL of OCSP responder
 15 MQAIR-OCSPRESPONDERURL PIC X(256).

Visual Basic declaration for MQAIR

Type MQAIR
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 AuthInfoType As Long 'Type of authentication information'
 AuthInfoConnName As String*264 'Connection name of CRL LDAP server'
 LDAPUserNamePtr As MQPTR 'Address of LDAP user name'
 LDAPUserNameOffset As Long 'Offset of LDAP user name from start'
 'of MQAIR structure'
 LDAPUserNameLength As Long 'Length of LDAP user name'
 LDAPPassword As String*32 'Password to access LDAP server'
End Type

StrucId (MQCHAR4)
The value must be:
MQAIR_STRUC_ID

Identifier for the authentication information record.

For the C programming language, the constant MQAIR_STRUC_ID_ARRAY is also defined; this has the
same value as MQAIR_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQAIR_STRUC_ID.

Version (MQLONG)
The version number of the MQAIR structure.

The value must be one of the following:
MQAIR_VERSION_1

Version-1 authentication information record.
MQAIR_VERSION_2

Version-2 authentication information record.

The following constant specifies the version number of the current version:
MQAIR_CURRENT_VERSION

Current version of authentication information record.

This is always an input field. The initial value of this field is MQAIR_VERSION_1.

270 IBM MQ Developing Applications Reference

AuthInfoType (MQLONG)
This is the type of authentication information contained in the record.

The value can be one of the two following parameters:
MQAIT_CRL_LDAP

Certificate revocation checking using LDAP server.
MQAIT_OCSP

Certificate revocation checking using OCSP.

If the value is not valid, the call fails with reason code MQRC_AUTH_INFO_TYPE_ERROR.

This is an input field. The initial value of this field is MQAIT_CRL_LDAP.

AuthInfoConnName (MQCHAR264)
This is either the host name or the network address of a host on which the LDAP server is running. This
can be followed by an optional port number, enclosed in parentheses. The default port number is 389.

If the value is shorter than the length of the field, terminate the value with a null character, or pad
it with blanks to the length of the field. If the value is not valid, the call fails with reason code
MQRC_AUTH_INFO_CONN_NAME_ERROR.

This is an input field. The length of this field is given by MQ_AUTH_INFO_CONN_NAME_LENGTH. The
initial value of this field is the null string in C, and blank characters in other programming languages.

LDAPUserNamePtr (PMQCHAR)
This is the LDAP user name.

It consists of the Distinguished Name of the user who is attempting to access the LDAP CRL server.
If the value is shorter than the length specified by LDAPUserNameLength, terminate the value with
a null character, or pad it with blanks to the length LDAPUserNameLength. The field is ignored if
LDAPUserNameLength is zero.

You can supply the LDAP user name in one of two ways:

• By using the pointer field LDAPUserNamePtr

In this case, the application can declare a string that is separate from the MQAIR structure, and set
LDAPUserNamePtr to the address of the string.

Consider using LDAPUserNamePtr for programming languages that support the pointer data type in a
fashion that is portable to different environments (for example, the C programming language).

• By using the offset field LDAPUserNameOffset

In this case, the application must declare a compound structure containing the MQSCO structure
followed by the array of MQAIR records followed by the LDAP user name strings, and set
LDAPUserNameOffset to the offset of the appropriate name string from the start of the MQAIR
structure. Ensure that this value is correct, and has a value that can be accommodated within
an MQLONG (the most restrictive programming language is COBOL, for which the valid range is
-999 999 999 through +999 999 999).

Consider using LDAPUserNameOffset for programming languages that do not support the pointer
data type, or that implement the pointer data type in a fashion that might not be portable to different
environments (for example, the COBOL programming language).

Whichever technique is chosen, use only one of LDAPUserNamePtr and LDAPUserNameOffset ; the call
fails with reason code MQRC_LDAP_USER_NAME_ERROR if both are nonzero.

This is an input field. The initial value of this field is the null pointer in those programming languages that
support pointers, and an all-null byte string otherwise.

Note: On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length.

Developing applications reference 271

LDAPUserNameOffset (MQLONG)
This is the offset in bytes of the LDAP user name from the start of the MQAIR structure.

The offset can be positive or negative. The field is ignored if LDAPUserNameLength is zero.

You can use either LDAPUserNamePtr or LDAPUserNameOffset to specify the LDAP user name, but not
both; see the description of the LDAPUserNamePtr field for details.

This is an input field. The initial value of this field is 0.

LDAPUserNameLength (MQLONG)
This is the length in bytes of the LDAP user name addressed by the LDAPUserNamePtr
or LDAPUserNameOffset field. The value must be in the range zero through
MQ_DISTINGUISHED_NAME_LENGTH. If the value is not valid, the call fails with reason code
MQRC_LDAP_USER_NAME_LENGTH_ERR.

If the LDAP server involved does not require a user name, set this field to zero.

This is an input field. The initial value of this field is 0.

LDAPPassword (MQCHAR32)
This is the password needed to access the LDAP CRL server. If the value is shorter than the length of the
field, terminate the value with a null character, or pad it with blanks to the length of the field.

If the LDAP server does not require a password, or you omit the LDAP user name, LDAPPassword must
be null or blank. If you omit the LDAP user name and LDAPPassword is not null or blank, the call fails
with reason code MQRC_LDAP_PASSWORD_ERROR.

This is an input field. The length of this field is given by MQ_LDAP_PASSWORD_LENGTH. The initial value
of this field is the null string in C, and blank characters in other programming languages.

OCSPResponderURL (MQCHAR256)
For an MQAIR structure that represents connection details for an OCSP responder, this field contains the
URL at which the responder can be contacted.

The value of this field is an HTTP URL. This field takes priority over a URL in an AuthorityInfoAccess (AIA)
certificate extension.

The value is ignored unless both the following statements are true:

• The MQAIR structure is Version 2 or later (the Version field is set to MQAIR_VERSION_2 or greater).
• The AuthInfoType field is set to MQAIT_OCSP.

If the field does not contain an HTTP URL in the correct format (and is not being ignored), the MQCONNX
call fails with reason code MQRC_OCSP_URL_ERROR.

This field is case-sensitive. It must start with the string http:// in lowercase. The rest of the URL might be
case-sensitive, depending on the OCSP server implementation.

This field is not subject to data conversion.

MQBMHO - Buffer to message handle options
The MQBMHO structure allows applications to specify options that control how message handles are
produced from buffers. The structure is an input parameter on the MQBUFMH call.

Character set and encoding
Data in MQBMHO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

272 IBM MQ Developing Applications Reference

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 469. Fields in MQBMHO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQBMHO_STRUC_ID 'BMHO'

Version (structure version number) MQBMHO_VERSION_1 1

Options (options controlling the action of
MQBMHO)

MQBMHO_NONE 0

Notes:

1. In the C programming language, the macro variable MQBMHO_DEFAULT contains the values that are
listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQBMHO MyBMHO = {MQBMHO_DEFAULT};

Language declarations
C declaration for MQBMHO

typedef struct tagMQBMHO MQBMHO;
struct tagMQBMHO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of
 MQBUFMH */
};

COBOL declaration for MQBMHO

** MQBMHO structure
 10 MQBMHO.
** Structure identifier
 15 MQBMHO-STRUCID PIC X(4).
** Structure version number
 15 MQBMHO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQBUFMH
 15 MQBMHO-OPTIONS PIC S9(9) BINARY.

PL/I declaration for MQBMHO

Dcl
 1 MQBMHO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action
 of MQBUFMH */

High Level Assembler declaration for MQBMHO

MQBMHO DSECT
MQBMHO_STRUCID DS CL4 Structure identifier
MQBMHO_VERSION DS F Structure version number
MQBMHO_OPTIONS DS F Options that control the
* action of MQBUFMH

Developing applications reference 273

MQBMHO_LENGTH EQU *-MQBMHO
MQBMHO_AREA DS CL(MQBMHO_LENGTH)

StrucId (MQCHAR4)
Buffer to message handle structure - StrucId field

This is the structure identifier. The value must be:
MQBMHO_STRUC_ID

Identifier for buffer to message handle structure.

For the C programming language, the constant MQBMHO_STRUC_ID_ARRAY is also defined; this has
the same value as MQBMHO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQBMHO_STRUC_ID.

Version (MQLONG)
Buffer to message handle structure - Version field

This is the structure version number. The value must be:
MQBMHO_VERSION_1

Version number for buffer to message handle structure.

The following constant specifies the version number of the current version:
MQBMHO_CURRENT_VERSION

Current version of buffer to message handle structure.

This is always an input field. The initial value of this field is MQBMHO_VERSION_1.

Options (MQLONG)
Buffer to message handle structure - Options field

The value can be:
MQBMHO_DELETE_PROPERTIES

Properties that are added to the message handle are deleted from the buffer. If the call fails no
properties are deleted.

Default options: If you do not need the option described, use the following option:
MQBMHO_NONE

No options specified.

This is always an input field. The initial value of this field is MQBMHO_DELETE_PROPERTIES.

MQBNO - Balancing options
The following table summarizes the fields in the structure.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 470. Fields in MQBNO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQBNO_STRUC_ID 'BNO¬'

Version (structure version number) MQBNO_VERSION_1 1

274 IBM MQ Developing Applications Reference

Table 470. Fields in MQBNO (continued)

Field name and description Name of constant Initial value (if any) of
constant

ApplicationType (type of balancing option set in the
structure)

MQBNO_VALTYPE_SIMP
LE

0

Timeout (timeout after which re-balancing might
interrupt application activity)

MQBNO_TIMEOUT_AS_
DEFAULT

0

BalanceOptions (balancing options set by the
issuing application)

MQBNO_OPTIONS_NON
E

0

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQBNO_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQBNO MyBNO = {MQBNO_DEFAULT};

Language declarations
C declaration for MQBNO

typedef struct tagMQBNO MQBNO;
struct tagMQBNO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Type; /* Type of balancing options set in the
 structure */
 MQLONG Timeout; /* Timeout after which re-balancing might
 interrupt application activity */
 MQLONG BalanceOptions; /* Balancing options set by the issuing
 application */
};

COBOL declaration for MQBNO

** MQBNO structure
 10 MQBNO.
** Structure identifier
 15 MQBNO-STRUCID PIC X(4).
** Structure version number
 15 MQBNO-VERSION PIC S9(9) BINARY.
** Type of balancing options set in the structure
 15 MQBNO-TYPE PIC S9(9) BINARY.
** Timeout after which re-balancing might interrupt application activity
 15 MQBNO-TIMEOUT PIC S9(9) BINARY.
** Balancing options set by the issuing application
 15 MQBNO-BALANCEOPTIONS PIC S9(9) BINARY.

PL/I declaration for MQBNO

dcl
 1 MQBNO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Type fixed bin(31), /* Type of balancing options set in the
 structure*/
 3 Timeout fixed bin(31), /* Timeout after which re-balancing might
 interrupt application activity */
 3 BalanceOptions fixed bin(31), /* Balancing options set by the issuing

Developing applications reference 275

 application*/

Related reference
“MQCNO - Connect options” on page 314
The MQCNO structure allows the application to specify options relating to the connection to the queue
manager. The structure is an input/output parameter on the MQCONNX call.

StrucId (MQCHAR4)
StrucId is always an input field. Its initial value is BNO.

The value must be
BNO

Identifier for balancing-options structure.

For the C programming language, the constant MQBNO_STRUC_ID_ARRAY is also defined; this
constant has the same value as BNO, but is an array of characters instead of a string.

You must provide a valid value for StrucId or MQRC_BNO_ERROR is returned.

Version (MQLONG)
Version is always an input field. Its initial value is MQBNO_VERSION_1.

The value must be:
MQBNO_VERSION_1

Version-1 balancing-options structure.

You must provide a valid value for Version or MQRC_BNO_ERROR is returned.

ApplicationType (MQLONG)
The type of balancing option set in the structure.

The possible values are:
MQBNO_BALTYPE_SIMPLE

Simple balancing; no specific rules are applied in addition to those described in Influencing
application re-balancing in uniform clusters.

MQBNO_BALTYPE_REQREP
Request-Reply balancing; after each MQPUT call, a matching MQGET call is expected for a response
message. Balancing is delayed until such a message is received, or the request message EXPIRY has
been exceeded.

This is always an input field. The initial value of this field is MQBNO_BALTYPE_SIMPLE.

You must provide one value only for the ApplicationType field or MQRC_BNO_ERROR is returned.

Note: An additional value for this field of MQBNO_BALTYPE_RA_MANAGED is reserved for use by the IBM
MQ Resource Adapter for JEE environments. While it is an error for an application to supply this value
directly it can, for example, be reported when querying application status.

Timeout (MQLONG)
The Timeout after which re-balancing might interrupt application activity.

The possible values are:
MQBNO_TIMEOUT_AS_DEFAULT

The set default timeout value.
MQBNO_TIMEOUT_IMMEDIATE

Immediate timeout occurs.
MQBNO_TIMEOUT_NEVER

No timeout occurs.

276 IBM MQ Developing Applications Reference

The initial value of this field is MQBNO_TIMEOUT_AS_DEFAULT.

You must provide one value only from the defined values, or a value of 0-999999999 seconds, for the
Timeout field or MQRC_BNO_ERROR is returned.

BalanceOptions (MQLONG)
The balancing options set by the issuing application.

The possible values are :
MQBNO_OPTIONS_NONE

No options are set
MQBNO_OPTIONS_IGNORE_TRANS

Setting this option allows applications to be rebalanced even if in the middle of a transaction.

The initial value of this field is MQBNO_OPTIONS_NONE.

You can provide any combination of the defined values using the logical or character for the
BalanceOptions field. Any values that are not valid cause an MQRC_BNO_ERROR to be returned.

MQBO - Begin options
The MQBO structure allows the application to specify options relating to the creation of a unit of work. The
structure is an input/output parameter on the MQBEGIN call.

Availability
The MQBO structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

The MQBO structure is not available for IBM MQ MQI clients.

Character set and encoding
Data in MQBO must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ MQI client, the structure must be in the character set and encoding of the client.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 471. Fields in MQBO for MQBO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQBO_STRUC_ID 'BO¬¬'

Version (structure version number) MQBO_VERSION_1 1

Options (options that control the action of
MQBEGIN)

MQBO_NONE 0

Developing applications reference 277

Table 471. Fields in MQBO for MQBO (continued)

Field name and description Name of constant Initial value (if any) of
constant

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQBO_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQBO MyBO = {MQBO_DEFAULT};

Language declarations
C declaration for MQBO

typedef struct tagMQBO MQBO;
struct tagMQBO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of MQBEGIN */
};

COBOL declaration for MQBO

** MQBO structure
 10 MQBO.
** Structure identifier
 15 MQBO-STRUCID PIC X(4).
** Structure version number
 15 MQBO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQBEGIN
 15 MQBO-OPTIONS PIC S9(9) BINARY.

PL/I declaration for MQBO

dcl
 1 MQBO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31); /* Options that control the action of
 MQBEGIN */

Visual Basic declaration for MQBO

Type MQBO
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 Options As Long 'Options that control the action of MQBEGIN'
End Type

StrucId (MQCHAR4)
This field is always an input field. Its initial value is MQBO_STRUC_ID.

The value must be:
MQBO_STRUC_ID

Identifier for begin-options structure.

For the C programming language, the constant MQBO_STRUC_ID_ARRAY is also defined; this has the
same value as MQBO_STRUC_ID, but is an array of characters instead of a string.

278 IBM MQ Developing Applications Reference

Version (MQLONG)
This field is always an input field. Its initial value is MQBO_VERSION_1.

The value must be:
MQBO_VERSION_1

Version number for begin-options structure.

The following constant specifies the version number of the current version:
MQBO_CURRENT_VERSION

Current version of begin-options structure.

Options (MQLONG)
This field is always an input field. Its initial value is MQBO_NONE.

The value must be:
MQBO_NONE

No options specified.

MQCBC - Callback context
The MQCBC structure is used to specify context information that is passed to a callback function. The
structure is an input/output parameter on the call to a message consumer routine.

Availability
The MQCBC structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

• z/OS

and for IBM MQ MQI clients connected to these systems.

Version
The current version of MQCBC is MQCBC_VERSION_2.

Character set and encoding
Data in MQCBC must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ MQI client, the structure will be in the character set and encoding of the client.

Fields
There are no initial values for the MQCBC structure. The structure is passed as a parameter to a callback
routine. The queue manager initializes the structure; applications never initialize it.

Notes:

• In the following table, the fields are grouped by usage rather than alphabetically. The child topics follow
the same sequence.

• There are no initial values for the MQCBC structure. The structure is passed as a parameter to a callback
routine. The queue manager initializes the structure; applications never initialize it.

Developing applications reference 279

Table 472. Fields in MQCBC

Field Description

StrucID Structure identifier

Version Structure version number

CallType Why function has been called

Hobj Object handle

CallbackArea Field for callback function to use

ConnectionArea Field for callback function to use

CompCode Completion code

Reason Reason code

State Indication of the state of the current consumer

DataLength Message length

BufferLength Length of message buffer in bytes

Flags General flags

Note: The remaining field is ignored if Version is less than MQCBC_VERSION_2

ReconnectDelay Number of milliseconds before reconnection attempt

Language declarations
C declaration for MQCBC

typedef struct tagMQCBC MQCBC;
struct tagMQCBC {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG CallType; /* Why Function was called */
 MQHOBJ Hobj; /* Object Handle */
 MQPTR CallbackArea; /* Callback data passed to the function */
 MQPTR ConnectionArea; /* MQCTL data area passed to the function */
 MQLONG CompCode; /* Completion Code */
 MQLONG Reason; /* Reason Code */
 MQLONG State; /* Consumer State */
 MQLONG DataLength; /* Message Data Length */
 MQLONG BufferLength; /* Buffer Length */
 MQLONG Flags; /* Flags containing information about
 this consumer */
 /* Ver:1 */
 MQLONG ReconnectDelay; /* Number of milliseconds before */
 /* Ver:2 */ }; /* reconnect attempt */

COBOL declaration for MQCBC

** MQCBC structure
 10 MQCBC.
** Structure Identifier
 15 MQCBC-STRUCID PIC X(4).
** Structure Version
 15 MQCBC-VERSION PIC S9(9) BINARY.
 ** Call Type
 15 MQCBC-CALLTYPE PIC S9(9) BINARY.
** Object Handle
 15 MQCBC-HOBJ PIC S9(9) BINARY.
** Callback User Area
 15 MQCBC-CALLBACKAREA POINTER
** Connection Area
 15 MQCBC-CONNECTIONAREA POINTER

280 IBM MQ Developing Applications Reference

** Completion Code
 15 MQCBC-COMPCODE PIC S9(9) BINARY.
** Reason Code
 15 MQCBC-REASON PIC S9(9) BINARY.
** Consumer State
 15 MQCBC-STATE PIC S9(9) BINARY.
** Data Length
 15 MQCBC-DATALENGTH PIC S9(9) BINARY.
** Buffer Length
 15 MQCBC-BUFFERLENGTH PIC S9(9) BINARY.
** Flags
 15 MQCBC-FLAGS PIC S9(9) BINARY.
** Ver:1 **
** Number of milliseconds before reconnect attempt
 15 MQCBC-RECONNECTDELAY PIC S9(9) BINARY.
** Ver:2 **

PL/I declaration for MQCBC

dcl
 1 MQCBC based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version */
 3 CallType fixed bin(31), /* Callback type */
 3 Hobj fixed bin(31), /* Object Handle */
 3 CallbackArea pointer, /* User area passed to the function */
 3 ConnectionArea pointer, /* Connection User Area */
 3 CompCode fixed bin(31); /* Completion Code */
 3 Reason fixed bin(31); /* Reason Code */
 3 State fixed bin(31); /* Consumer State */
 3 DataLength fixed bin(31); /* Message Data Length */
 3 BufferLength fixed bin(31); /* Message Buffer length */
 3 Flags fixed bin(31); /* Consumer Flags */
/* Ver:1 */
 3 ReconnectDelay fixed bin(31); /* Number of milliseconds before */
/* Ver:2 */ /* reconnect attempt */

High Level Assembler declaration for MQCBC

 MQCBC DSECT
 MQCBC DS 0F Force fullword alignment
 MQCBC_STRUCID DS CL4 Structure identifier
 MQCBC_VERSION DS F Structure version number
 MQCBC_CALLTYPE DS F Why Function was called
 MQCBC_HOBJ DS F Object Handle
 MQCBC_CALLBACKAREA DS A Callback data passed to the function
 MQCBC_CONNECTIONAREA DS A MQCTL Data area passed to the function
 MQCBC_COMPCODE DS F Completion Code
 MQCBC_REASON DS F Reason Code
 MQCBC_STATE DS F Consumer State
 MQCBC_DATALENGTH DS F Message Data Length
 MQCBC_BUFFERLENGTH DS F Buffer Length
 MQCBC_FLAGS DS F Flags containing information about this consumer
 MQCBC_RECONNECTDELAY DS F Number of milliseconds before reconnect
 MQCBC_LENGTH EQU *-MQCBC
 ORG MQCBC
 MQCBC_AREA DS CL(MQCBC_LENGTH)

StrucId (MQCHAR4)
The value in this field is the structure identifier.

The value must be:
MQCBC_STRUC_ID

Identifier for callback context structure.

For the C programming language, the constant MQCBC_STRUC_ID_ARRAY is also defined; this has the
same value as MQCBC_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCBC_STRUC_ID.

Developing applications reference 281

Version (MQLONG)
The value in this field is the structure version number.

The value must be:
MQCBC_VERSION_1

Version-1 callback context structure.

The following constant specifies the version number of the current version:
MQCBC_CURRENT_VERSION

Current version of the callback context structure.

This is always an input field. The initial value of this field is MQCBC_VERSION_1.

The callback function is always passed the latest version of the structure.

CallType (MQLONG)
Field containing information about why this function has been called; the following values are defined.

Message delivery call types: These call types contain information about a message. The DataLength and
BufferLength parameters are valid for these call types.
MQCBCT_MSG_REMOVED

The message consumer function has been invoked with a message that has been destructively
removed from the object handle.

If the value of CompCode is MQCC_WARNING, the value of the Reason field is
MQRC_TRUNCATED_MSG_ACCEPTED or one of the codes indicating a data conversion problem.

MQCBCT_MSG_NOT_REMOVED
The message consumer function has been invoked with a message that has not yet been destructively
removed from the object handle. The message can be destructively removed from the object handle
using the MsgToken.

The message might not have been removed because:

• The MQGMO options requested a browse operation, MQGMO_BROWSE_*
• The message is larger than the available buffer and the MQGMO options do not specify

MQGMO_ACCEPT_TRUNCATED_MSG

If the value of CompCode is MQCC_WARNING, the value of the Reason field is
MQRC_TRUNCATED_MSG_FAILED or one of the codes indicating a data conversion problem.

Callback control call types: These call types contain information about the control of the callback and
do not contain details about a message. These call types are requested using Options in the MQCBD
structure.

The DataLength and BufferLength parameters are not valid for these call types.
MQCBCT_REGISTER_CALL

The purpose of this call type is to allow the callback function to perform some initial setup.

The callback function is invoked is immediately after the callback is registered, that is, upon return
from an MQCB call using a value for the Operation field of MQOP_REGISTER.

This call type is used both for message consumers and event handlers.

If requested, this is the first invocation of the callback function.

The value of the Reason field is MQRC_NONE.

MQCBCT_START_CALL
The purpose of this call type is to allow the callback function to perform some setup when it is started,
for example, reinstating resources that were cleaned up when it was previously stopped.

282 IBM MQ Developing Applications Reference

The callback function is invoked when the connection is started using either MQOP_START or
MQOP_START_WAIT.

If a callback function is registered within another callback function, this call type is invoked when the
callback returns.

This call type is used for message consumers only.

The value of the Reason field is MQRC_NONE.

MQCBCT_STOP_CALL
The purpose of this call type is to allow the callback function to perform some cleanup when it is
stopped for a while, for example, cleaning up additional resources that have been acquired during the
consuming of messages.

The callback function is invoked when an MQCTL call is issued using a value for the Operation field
of MQOP_STOP.

This call type is used for message consumers only.

The value of the Reason field is set to indicate the reason for stopping.

MQCBCT_DEREGISTER_CALL
The purpose of this call type is to allow the callback function to perform final cleanup at the end of the
consume process. The callback function is invoked when the:

• Callback function is deregistered using an MQCB call with MQOP_DEREGISTER.
• Queue is closed, causing an implicit deregister. In this instance the callback function is passed

MQHO_UNUSABLE_HOBJ as the object handle.
• MQDISC call completes - causing an implicit close and, therefore, a deregister. In this case the

connection is not disconnected immediately, and any ongoing transaction is not yet committed.

If any of these actions are taken inside the callback function itself, the action is invoked once the
callback returns.

This call type is used both for message consumers and event handlers.

If requested, this is the last invocation of the callback function.

The value of the Reason field is set to indicate the reason for stopping.

MQCBCT_EVENT_CALL
Event handler function

The event handler function has been invoked without a message when the queue manager or
connection stops or quiesces.

This call can be used to take appropriate action for all callback functions.

Message consumer function

The message consumer function has been invoked without a message when an error (CompCode =
MQCC_FAILED) has been detected that is specific to the object handle; for example Reason code =
MQRC_GET_INHIBITED.

The value of the Reason field is set to indicate the reason for the call.

MQCBCT_MC_EVENT_CALL

The event handler function has been invoked for multicast events; The event handler is sent IBM MQ
Multicast events instead of 'normal' IBM MQ events.

For more information about MQCBCT_MC_EVENT_CALL, see Multicast exception reporting.

Hobj (MQHOBJ)
This is the object handle for calls to the message consumer.

Developing applications reference 283

For an event handler, this value is MQHO_NONE

The application can use this handle and the message token in the Get Message Options block to get the
message if a message has not been removed from the queue.

This is always an input field. The initial value of this field is MQHO_UNUSABLE_HOBJ

CallbackArea (MQPTR)
This field is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed unchanged
from the CallbackArea field in the MQCBD structure, which is a parameter on the MQCB call used to define
the callback function.

Changes to the CallbackArea are preserved across the invocations of the callback function for an HObj.
This field is not shared with callback functions for other handles.

This is an input/output field to the callback function. The initial value of this field is a null pointer or null
bytes.

ConnectionArea (MQPTR)
This field is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed unchanged
from the ConnectionArea field in the MQCTLO structure, which is a parameter on the MQCTL call used to
control the callback function.

Any changes made to this field by the callback functions are preserved across the invocations of the
callback function. This area can be used to pass information that is to be shared by all callback functions.
Unlike CallbackArea, this area is common across all callbacks for a connection handle.

This is an input and output field. The initial value of this field is a null pointer or null bytes.

CompCode (MQLONG)
This field is the completion code. It indicates whether there were any problems consuming the message.

The value is one of the following:
MQCC_OK

Successful completion
MQCC_WARNING

Warning (partial completion)
MQCC_FAILED

Call failed

This is an input field. The initial value of this field is MQCC_OK.

Reason (MQLONG)
This is the reason code qualifying the CompCode.

This is an input field. The initial value of this field is MQRC_NONE.

State (MQLONG)
An indication as to the state of the current consumer. This field is of most value to an application when a
nonzero reason code is passed to the consumer function.

You can use this field to simplify application programming because you do not need to code behavior for
each reason code.

284 IBM MQ Developing Applications Reference

This is an input field. The initial value of this field is MQCS_NONE

Table 473.

State Queue manager action Value of
constant

MQCS_NONE

This reason code represents a normal call
with no additional reason information

None; this is the normal operation. 0

MQCS_SUSPENDED_TEMPORARY

These reason codes represent temporary
conditions.

The callback routine is called to report
the condition and then suspended. After a
period of time the system might attempt
the operation again, which can lead to the
same condition being raised again.

1

MQCS_SUSPENDED_USER_ACTION

These reason codes represent conditions
where the callback needs to take action to
resolve the condition.

The consumer is suspended and the
callback routine is called to report the
condition. The callback routine should
resolve the condition if possible and either
RESUME or close down the connection.

2

MQCS_SUSPENDED

These reason codes represent failures that
prevent further message callbacks.

The queue manager automatically
suspends the callback function. If the
callback function is resumed it is likely to
receive the same reason code again.

3

MQCS_STOPPED

These reason codes represent the end of
message consumption.

Delivered to the exception handler
and to callbacks that specified
MQCBDO_STOP_CALL. No further messages
can be consumed.

4

DataLength (MQLONG)
This is the length in bytes of the application data in the message. If the value is zero, it means that the
message contains no application data.

The DataLength field contains the length of the message but not necessarily the length of the message
data passed to the consumer. It could be that the message was truncated. Use the ReturnedLength field
in the MQGMO to determine how much data has actually been passed to the consumer.

If the reason code indicates the message has been truncated, you can use the DataLength field to
determine how large the actual message is. This allows you to determine the size of the buffer required
to accommodate the message data, and then issue an MQCB call to update the MaxMsgLength with an
appropriate value.

If the MQGMO_CONVERT option is specified, the converted message could be larger than the value
returned for DataLength. In such cases, the application probably needs to issue an MQCB call to update
the MaxMsgLength to to be greater than the value returned by the queue manager for DataLength.

To avoid message truncation problems, specify MaxMsgLength as MQCBD_FULL_MSG_LENGTH. This
causes the queue manager to allocate a buffer for the full message length after data conversion. Be
aware, however, that even if this option is specified, it is still possible that sufficient storage is not
available to correctly process the request. Applications should always check the returned reason code.
For example, if it is not possible to allocate sufficient storage to convert the message, the messages is
returned to the application unconverted.

This is an input field to the message consumer function; it is not relevant to an event handler function.

Developing applications reference 285

BufferLength (MQLONG)
This field is the length in bytes of the message buffer that has been passed to this function.

The buffer can be larger than both the MaxMsgLength value defined for the consumer and the
ReturnedLength value in the MQGMO.

The actual message length is supplied in DataLength field.

The application can use the entire buffer for its own purposes for the duration of the callback function.

This is an input field to the message consumer function; it is not relevant to an exception handler function.

Flags (MQLONG)
Flags containing information about this consumer.

The following option is defined:
MQCBCF_READA_BUFFER_EMPTY

This flag can be returned if a previous MQCLOSE call using the MQCO_QUIESCE option failed with a
reason code of MQRC_READ_AHEAD_MSGS.

This code indicated that the last read ahead message is being returned and that the buffer is now
empty. If the application issues another MQCLOSE call using the MQCO_QUIESCE) option, it succeeds.

Note, that an application is not guaranteed to be given a message with this flag set, as there might
still be messages in the read-ahead buffer that do not match the current selection criteria. In this
instance, the consumer function is invoked with the reason code MQRC_HOBJ_QUIESCED.

If the read ahead buffer is completely empty, the consumer is invoked with the
MQCBCF_READA_BUFFER_EMPTY flag and the reason code MQRC_HOBJ_QUIESCED_NO_MSGS.

This is an input field to the message consumer function; it is not relevant to an event handler function.

ReconnectDelay (MQLONG)
ReconnectDelay indicates how long the queue manager will wait before trying to reconnect. The field can
be modified by an event handler to change the delay or stop reconnection altogether.

Use the ReconnectDelay field only if the value of the Reason field in the Callback Context is
MQRC_RECONNECTING.

On entry to the event handler the value of ReconnectDelay is the number of milliseconds the queue
manager is going to wait before making a reconnection attempt. Table 474 on page 286 lists the values
that you can set to modify the behavior of the queue manager on return from the event handler.

Table 474. ReconnectDelay values

Name Value Description

MQRD_NO_RECONNECT -1 Make no more reconnection attempts. An error is returned to
the application.

MQRD_NO_DELAY 0 Try to reconnect immediately.

Milliseconds >0 Wait for this many milliseconds before retrying the connection.

MQCBD - Callback descriptor
The MQCBD structure is used to specify a callback function and the options controlling its use by the
queue manager. The structure is an input parameter on the MQCB call.

Availability
The MQCBD structure is available on the following platforms:

• AIX

286 IBM MQ Developing Applications Reference

• IBM i

• Linux

• Windows

• z/OS

and for IBM MQ MQI clients connected to these systems.

Version
The current version of MQCBD is MQCBD_VERSION_1.

Character set and encoding
Data in MQCBD must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ MQI client, the structure must be in the character set and encoding of the client.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 475. Fields in MQCBD

Field name and description Name of constant Initial value (if any) of
constant

StrucID (structure identifier) MQCBD_STRUC_ID 'CBD¬'

Version (structure version number) MQCBD_VERSION_1 1

CallbackType (type of callback function) MQCBT_MESSAGE_CON
SUMER

1

Options (options controlling message
consumption)

MQCBDO_NONE 0

CallbackArea (field for callback function to use) None Null pointer or null
blanks

CallbackFunction (whether the function is invoked
as an API call)

None Null pointer or null
blanks

CallbackName (whether the function is invoked as
a dynamically-linked program)

None Null string or blanks

MaxMsgLength (length of longest message that can
be read)

MQCBD_FULL_MSG_LE
NGTH

-1

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null sting in the C programming language, and blank

characters in other programming languages.
3. In the C programming language, the macro variable MQCBD_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQCBD MyCBD = {MQCBD_DEFAULT};

Developing applications reference 287

Language declarations
C declaration for MQCBD

typedef struct tagMQCBD MQCBD;
 struct tagMQCBD {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG CallBackType; /* Callback function type */
 MQLONG Options; /* Options controlling message
 consumption */
 MQPTR CallbackArea; /* User data passed to the function */
 MQPTR CallbackFunction; /* Callback function pointer */
 MQCHAR128 CallbackName; /* Callback name */
 MQLONG MaxMsgLength; /* Maximum message length */
 };

COBOL declaration for MQCBD

** MQCBCD structure
 10 MQCBD.
** Structure Identifier
 15 MQCBD-STRUCID PIC X(4).
** Structure Version
 15 MQCBD-VERSION PIC S9(9) BINARY.
 ** Callback Type
 15 MQCBD-CALLBACKTYPE PIC S9(9) BINARY.
** Options
 15 MQCBD-OPTIONS PIC S9(9) BINARY.
** Callback User Area
 15 MQCBD-CALLBACKAREA POINTER
** Callback Function Pointer
 15 MQCBD-CALLBACKFUNCTION FUNCTION-POINTER
** Callback Program Name
 15 MQCBD-CALLBACKNAME PIC X(128)
** Maximum Message Length
 15 MQCDB-MAXMSGLENGTH PIC S9(9) BINARY.

PL/I declaration for MQCBD

dcl
 1 MQCBD based,
 3 StrucId char(4), /* Structure identifier*/
 3 Version fixed bin(31), /* Structure version*/
 3 CallbackType fixed bin(31), /* Callback function type */
 3 Options fixed bin(31), /* Options */
 3 CallbackArea pointer, /* User area passed to the function */
 3 CallbackFunction pointer, /* Callback Function Pointer */
 3 CallbackName char(128), /* Callback Program Name */
 3 MaxMsgLength fixed bin(31); /* Maximum Message Length */

StrucId (MQCHAR4)
Callback descriptor structure - StrucId field

This is the structure identifier; the value must be:
MQCBD_STRUC_ID

Identifier for callback descriptor structure.

For the C programming language, the constant MQCBD_STRUC_ID_ARRAY is also defined; this has the
same value as MQCBD_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCBD_STRUC_ID.

Version (MQLONG)
Callback descriptor structure - Version field

This is the structure version number; the value must be:

288 IBM MQ Developing Applications Reference

MQCBD_VERSION_1
Version-1 callback descriptor structure.

The following constant specifies the version number of the current version:
MQCBD_CURRENT_VERSION

Current version of callback descriptor structure.

This is always an input field. The initial value of this field is MQCBD_VERSION_1.

CallbackType (MQLONG)
Callback descriptor structure - CallbackType field

This is the type of the callback function. The value must be one of:
MQCBT_MESSAGE_CONSUMER

Defines this callback as a message consumer function.

A message consumer callback function is called when a message, meeting the selection criteria
specified, is available on an object handle and the connection is started.

MQCBT_EVENT_HANDLER
Defines this callback as the asynchronous event routine; it is not driven to consume messages for a
handle.

Hobj is not required on the MQCB call defining the event handler and is ignored if specified.

The event handler is called for conditions that affect the whole message consumer environment. The
consumer function is invoked without a message when an event, for example, a queue manager or
connection stopping, or quiescing, occurs. It is not called for conditions that are specific to a single
message consumer, for example, MQRC_GET_INHIBITED.

Events are delivered to the application, regardless of whether the connection is started or stopped,
except in the following environments:

• CICS on z/OS environment
• nonthreaded applications

If the caller does not pass one of these values, the call fails with a Reason code of
MQRC_CALLBACK_TYPE_ERROR

This is always an input field. The initial value of this field is MQCBT_MESSAGE_CONSUMER.

Options (MQLONG)
Callback descriptor structure - Options field

You can specify one or more of these options. To specify more than one option, either add the values
together (do not add the same constant more than once), or combine the values using the bitwise OR
operation (if the programming language supports bit operations).

MQCBDO_FAIL_IF_QUIESCING
The MQCB call fails if the queue manager is in the quiescing state.

On z/OS, this option also forces the MQCB call to fail if the connection (for a CICS or IMS application)
is in the quiescing state.

Specify MQGMO_FAIL_IF_QUIESCING, in the MQGMO options passed on the MQCB call, to cause
notification to message consumers when they are quiescing.

Control options: The following options control whether the callback function is called, without a message,
when the state of the consumer changes:
MQCBDO_REGISTER_CALL

The callback function is invoked with call type MQCBCT_REGISTER_CALL.
MQCBDO_START_CALL

The callback function is invoked with call type MQCBCT_START_CALL.

Developing applications reference 289

MQCBDO_STOP_CALL
The callback function is invoked with call type MQCBCT_STOP_CALL.

MQCBDO_DEREGISTER_CALL
The callback function is invoked with call type MQCBCT_DEREGISTER_CALL.

MQCBDO_EVENT_CALL
The callback function is invoked with call type MQCBCT_EVENT_CALL.

MQCBDO_MC_EVENT_CALL
The callback function is invoked with call type MQCBCT__MC_EVENT_CALL.

See CallType for further details about these call types.

Default option: If you do not need any of the options described, use the following option:
MQCBDO_NONE

Use this value to indicate that no other options have been specified; all options assume their default
values.

MQCBDO_NONE is defined to aid program documentation; it is not intended that this option be used
with any other, but as its value is zero, such use cannot be detected.

This is an input field. The initial value of the Options field is MQCBDO_NONE.

CallbackArea (MQPTR)
Callback descriptor structure - CallbackArea field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed unchanged
from the CallbackArea field in the MQCBC structure, which is a parameter on the callback function
declaration.

The value is used only on an Operation having a value MQOP_REGISTER, with no currently defined
callback, it does not replace a previous definition.

This is an input and output field to the callback function. The initial value of this field is a null pointer or
null bytes.

CallbackFunction (MQPTR)
Callback descriptor structure - CallbackFunction field

The callback function is invoked as a function call.

Use this field to specify a pointer to the callback function.

You must specify either CallbackFunction or CallbackName. If you specify both, the reason code
MQRC_CALLBACK_ROUTINE_ERROR is returned.

If neither CallbackName nor CallbackFunction is set, the call fails with the reason code
MQRC_CALLBACK_ROUTINE_ERROR.

This option is not supported in the following environment: Programming languages and compilers that
do not support function-pointer references. In such situations, the call fails with the reason code
MQRC_CALLBACK_ROUTINE_ERROR.

On z/OS, the function must expect to be called with OS linkage conventions. For example, in
the C programming language, specify:

#pragma linkage(MQCB_FUNCTION,OS)

This is an input field. The initial value of this field is a null pointer or null bytes.

Note: When using CICS with IBM WebSphere® MQ 7.0.1, asynchronous consumption is supported if:

• Apar PK66866 is applied to CICS TS 3.2

290 IBM MQ Developing Applications Reference

• Apar PK89844 is applied to CICS TS 4.1

CallbackName (MQCHAR128)
Callback descriptor structure - CallbackName field

The callback function is invoked as a dynamically linked program.

You must specify either CallbackFunction or CallbackName. If you specify both, the reason code
MQRC_CALLBACK_ROUTINE_ERROR is returned.

If neither CallbackName nor CallbackFunction is not set, the call fails with the reason code
MQRC_CALLBACK_ROUTINE_ERROR.

The module is loaded when the first callback routine to use is registered, and unloaded when the last
callback routine to use it deregisters.

Except where noted in the following text, the name is left-justified within the field, with no embedded
blanks; the name itself is padded with blanks to the length of the field. In the descriptions that follow,
square brackets ([]) denote optional information:
IBM i

The callback name can be one of the following formats:

• Library "/" Program
• Library "/" ServiceProgram "("FunctionName")"

For example, MyLibrary/MyProgram(MyFunction).

The library name can be *LIBL. Both the library and program names are limited to a maximum of 10
characters.

AIX and Linux
The callback name is the name of a dynamically-loadable module or library, suffixed with the name
of a function residing in that library. The function name must be enclosed in parentheses. The library
name can optionally be prefixed with a directory path:

[path]library(function)

If the path is not specified the system search path is used.

The name is limited to a maximum of 128 characters.

Windows
The callback name is the name of a dynamic-link library, suffixed with the name of a function residing
in that library. The function name must be enclosed in parentheses .The library name can optionally
be prefixed with a directory path and drive:

[d:][path]library(function)

If the drive and path are not specified the system search path is used.

The name is limited to a maximum of 128 characters.

z/OS
The callback name is the name of a load module that is valid for specification on the EP parameter of
the LINK or LOAD macro.

The name is limited to a maximum of 8 characters.

z/OS CICS
The callback name is the name of a load module that is valid for specification on the PROGRAM
parameter of the EXEC CICS LINK command macro.

The name is limited to a maximum of 8 characters.

Developing applications reference 291

The program can be defined as remote using the REMOTESYTEM option of the installed PROGRAM
definition or by the dynamic routing program.

The remote CICS region must be connected to IBM MQ if the program is to use IBM MQ API calls.
Note, however, that the Hobj field in the MQCBC structure is not valid in a remote system.

If a failure occurs trying to load CallbackName, one of the following error codes is returned to the
application:

• MQRC_MODULE_NOT_FOUND
• MQRC_MODULE_INVALID
• MQRC_MODULE_ENTRY_NOT_FOUND

A message is also written to the error log containing the name of the module for which the load was
attempted, and the failing reason code from the operating system.

This is an input field. The initial value of this field is a null string or blanks.

MaxMsgLength (MQLONG)
This is the length in bytes of the longest message that can be read from the handle and given to the
callback routine. Callback descriptor structure - MaxMsgLength field

If a message has a longer length, the callback routine receives MaxMsgLength bytes of the message, and
reason code:

• MQRC_TRUNCATED_MSG_FAILED or
• MQRC_TRUNCATED_MSG_ACCEPTED if you specified MQGMO_ACCEPT_TRUNCATED_MSG.

The actual message length is supplied in the DataLength field of the MQCBC structure.

The following special value is defined:
MQCBD_FULL_MSG_LENGTH

The buffer length is adjusted by the system to return messages without truncation.

If insufficient memory is available to allocate a buffer to receive the message, the system calls the
callback function with an MQRC_STORAGE_NOT_AVAILABLE reason code.

If, for example, you request data conversion, and there is insufficient memory available to convert the
message data, the unconverted message is passed to the callback function.

This is an input field. The initial value of the MaxMsgLength field is MQCBD_FULL_MSG_LENGTH.

MQCHARV - Variable Length String
Use the MQCHARV structure to describe a variable length string.

Availability
The MQCHARV structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ MQI clients connected to these systems.

Character set and encoding
Data in the MQCHARV must be in the encoding of the local queue manager that is given by
MQENC_NATIVE and the character set of the VSCCSID field within the structure. If the application is

292 IBM MQ Developing Applications Reference

running as an MQ client, the structure must be in the encoding of the client. Some character sets have
a representation that depends on the encoding. If VSCCSID is one of these character sets, the encoding
used is the same encoding as that of the other fields in the MQCHARV. The character set identified by
VSCCSID can be a double-byte character set (DBCS).

Usage
The MQCHARV structure addresses data that might be discontiguous with the structure containing it. To
address this data, fields declared with the pointer data type can be used. Be aware that COBOL does not
support the pointer data type in all environments. Because of this, the data can also be addressed using
fields that contain the offset of the data from the start of the structure containing the MQCHARV.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 476. Fields in MQCHARV

Field name and description Name of constant Initial value (if any) of
constant

VSPtr (pointer to the variable length string) None Null pointer or null
bytes.

VSOffset (offset in bytes of the variable length
string from the start of the structure that contains
this MQCHARV structure)

None 0

VSBufSize (size in bytes of the buffer addressed by
the VSPtr or VSOffset field)

MQVS_USE_VSLENGTH 0

VSLength (length in bytes of the variable length
string addressed by the VSPtr or VSOffset field)

None 0

VSCCSID (character set identifier of the variable
length string addressed by the VSPtr or VSOffset
field)

MQCCSI_APPL -3

Note: In the C programming language, the macro variable MQCHARV_DEFAULT contains the values that
are listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQCHARV MyVarStr = {MQCHARV_DEFAULT};

Language declarations
C declaration for MQCHARV

typedef struct tagMQCHARV MQCHARV;
struct tagMQCHARV {
 MQPTR VSPtr; /* Address of variable length string */
 MQLONG VSOffset; /* Offset of variable length string */
 MQLONG VSBufSize; /* Size of buffer */
 MQLONG VSLength; /* Length of variable length string */
 MQLONG VSCCSID; /* CCSID of variable length string */
};

Developing applications reference 293

COBOL declaration for MQCHARV

** MQCHARV structure
 10 MQCHARV.
** Address of variable length string
 15 MQCHARV-VSPTR POINTER.
** Offset of variable length string
 15 MQCHARV-VSOFFSET PIC S9(9) BINARY.
** Size of buffer
 15 MQCHARV-VSBUFSIZE PIC S9(9) BINARY.
** Length of variable length string
 15 MQCHARV-VSLENGTH PIC S9(9) BINARY.
** CCSID of variable length string
 15 MQCHARV-VSCCSID PIC S9(9) BINARY.

Note: If you want to port a COBOL application between environments, you must find out if the pointer
data type is available in all the intended environments. If not, the application must address the data using
the offset fields instead of the pointer fields. In environments where pointers are not supported, you can
declare the pointer fields as byte strings of the appropriate length, with the initial value being the all-null
byte string. Do not alter this initial value if you are using the offset fields. One way to do this without
changing the supplied copy books is to use the following:

COPY CMQCHRVV REPLACING POINTER BY ==BINARY PIC S9(9)==.

where CMQCHRVV can be exchanged for the copy book to be used.

PL/I declaration for MQCHARV

dcl
 1 MQCHARV based,
 3 VSPtr pointer, /* Address of variable length string */
 3 VSOffset fixed bin(31), /* Offset of variable length string */
 3 VSBufSize fixed bin(31), /* Size of buffer */
 3 VSLength fixed bin(31), /* Length of variable length string */
 3 VSCCSID fixed bin(31); /* CCSID of variable length string */

High Level Assembler declaration for MQCHARV

MQCHARV DSECT
MQCHARV_VSPTR DS F Address of variable length string
MQCHARV_VSOFFSET DS F Offset of variable length string
MQCHARV_VSBUFSIZE DS F Size of buffer
MQCHARV_VSLENGTH DS F Length of variable length string
MQCHARV_VSCCSID DS F CCSID of variable length string
*
MQCHARV_LENGTH EQU *-MQCHARV
 ORG MQCHARV
MQCHARV_AREA DS CL(MQCHARV_LENGTH)

VSPtr (MQPTR)
This is a pointer to the variable length string.

You can use either the VSPtr or VSOffset field to specify the variable length string, but not both.

The initial value of this field is a null pointer or null bytes.

VSOffset (MQLONG)
The offset can be positive or negative. You can use either the VSPtr or VSOffset field to specify the
variable length string, but not both. The offset in bytes of the variable length string from the start of the
MQCHARV, or the structure containing it.

When the MQCHARV structure is embedded within another structure, this value is the offset in bytes of
the variable length string from the start of the structure that contains this MQCHARV structure. When
the MQCHARV structure is not embedded within another structure, for example, if it is specified as a
parameter on a function call, the offset is relative to the start of the MQCHARV structure.

294 IBM MQ Developing Applications Reference

The initial value of this field is 0.

VSBufSize (MQLONG)
This is the size in bytes of the buffer addressed by the VSPtr or VSOffset field.

When the MQCHARV structure is used as an output field on a function call, this field must be initialised
with the length of the buffer provided. If the value of VSLength is greater than VSBufSize then only
VSBufSize bytes of data are returned to the caller in the buffer.

This value must be a value greater than or equal to zero, or the following special value which is
recognized:
MQVS_USE_VSLENGTH

When specified, the length of the buffer is taken from the VSLength field in the MQCHARV structure.
Do not use this value when using the structure as an output field and a buffer is provided.
This is the initial value of this field.

VSLength (MQLONG)
The length in bytes of the variable length string addressed by the VSPtr or VSOffset field.

The initial value of this field is 0. The value must be either greater than or equal to zero or the following
special value which is recognized:

MQVS_NULL_TERMINATED

If MQVS_NULL_TERMINATED is not specified, VSLength bytes are included as part of the string. If null
characters are present they do not delimit the string.

If MQVS_NULL_TERMINATED is specified, the string is delimited by the first null encountered in the
string. The null itself is not included as part of that string.

Note: The null character used to terminate a string if MQVS_NULL_TERMINATED is specified is a null
from the codeset specified by VSCCSID.

For example, in UTF-16 (CCSIDs 1200, 13488, and 17584), this is the two byte Unicode encoding
where a null is represented by a 16-bit number of all zeros. In UTF-16 it is common to find single
bytes set to all zero which are part of characters (7-bit ASCII characters for instance), but the strings
will only be null terminated when two 'zero' bytes are found on an even byte boundary. It is possible
to get two 'zero' bytes on an odd boundary when they are each part of valid characters. For example
x'01' x'00 x'00' x'30' represents two valid Unicode characters and does not null terminate the string.

VSCCSID (MQLONG)
This is the character set identifier of the variable length string addressed by the VSPtr or VSOffset field.

The initial value of this field is MQCCSI_APPL, which is defined by MQ to indicate that it should be changed
to the true character set identifier of the current process. As a result, the value of constant MQCCSI_APPL
is never associated with a variable length string.

The initial value of this field can be changed by defining a different value for the constant MQCCSI_APPL
for your compile unit. How you do this depends on your application's programming language.

On z/OS systems, the default application CCSID used by MQCCSI_APPL is defined as
follows:

• For batch LE applications using the DLL interface, the default is the CODESET associated with the
current locale at the time MQCONN is issued (default value is 1047).

• For batch LE applications bound with one of the batch MQ stubs, the default is the CODESET associated
with the current locale at the time of the first MQI call issued after MQCONN (default value is 1047).

• For batch non-LE applications running on a z/OS UNIX System Services thread, the default is the value
of THLICCSID at the time of the first MQI call issued after MQCONN (default value is 1047).

• For other batch applications, the default is the CCSID of the queue manager.

Developing applications reference 295

Redefinition of MQCCSI_APPL
The following examples show how you can override the value of MQCCSI_APPL in various programming
languages. You can change the value of MQCCSI_APPL, removing the need to set the VSCCSID for each
variable length string separately. In these examples the CCSID is set to 1208; change this to the value you
require. This becomes the default value, which you can override by setting the VSCCSID in any specific
instance of MQCHARV.

C usage

#define MQCCSI_APPL 1208
#include <cmqc.h>

COBOL usage

COPY CMQXYZV REPLACING -3 BY 1208.

PL/I usage

%MQCCSI_APPL = '1208';
%include syslib(cmqp);

High Level Assembler usage

MQCCSI_APPL EQU 1208
CMQA LIST=NO

MQCIH - CICS bridge header
The MQCIH structure describes the header information for a message sent to CICS across the CICS
bridge.

For any IBM MQ supported platform you can create and transmit a message that includes the MQCIH
structure, but only an IBM MQ for z/OS queue manager can use the CICS bridge. Therefore, for the
message to get to CICS from a non-z/OS queue manager, your queue manager network must include at
least one z/OS queue manager through which the message can be routed.

All the CICS versions supported by IBM MQ 9.0.0, and later use the CICS supplied version of the
bridge. For more information about configuring the IBM MQ CICS adapter, and the IBM MQ CICS bridge
components, see the Configuring connections to MQ section of the CICS documentation.

Availability
The MQCIH structure is available on the following platforms:

• AIX

• Linux

• Windows

• z/OS

and for IBM MQ MQI clients connected to these systems.

Format name
MQFMT_CICS

296 IBM MQ Developing Applications Reference

Version
The current version of MQCIH is MQCIH_VERSION_2. Fields that exist only in the more recent version of
the structure are identified as such in the descriptions that follow.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the
most-recent version of MQCIH, with the initial value of the Version field set to MQCIH_VERSION_2.

Character set and encoding
Special conditions apply to the character set and encoding used for the MQCIH structure and application
message data:

• Applications that connect to the queue manager that owns the CICS bridge queue must provide an
MQCIH structure that is in the character set and encoding of the queue manager. This is because data
conversion of the MQCIH structure is not performed in this case.

• Applications that connect to other queue managers can provide an MQCIH structure that is in any of the
supported character sets and encodings; the receiving message channel agent connected to the queue
manager that owns the CICS bridge queue converts the MQCIH structure.

• The application message data following the MQCIH structure must be in the same character set and
encoding as the MQCIH structure. You cannot use the CodedCharSetId and Encoding fields in the
MQCIH structure to specify the character set and encoding of the application message data.

You must provide a data-conversion exit to convert the application message data if the data is not one of
the built-in formats supported by the queue manager.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 477. Fields in MQCIH for MQCIH

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQCIH_STRUC_ID 'CIH¬'

Version (structure version number) MQCIH_VERSION_2 2

StrucLength (length of MQCIH structure) MQCIH_LENGTH_2 180

Encoding (reserved) None 0

CodedCharSetId (reserved) None 0

Format (MQ format name of data that follows
MQCIH)

MQFMT_NONE Blanks

Flags (flags) MQCIH_NONE 0

ReturnCode (return code from bridge) MQCRC_OK 0

CompCode (MQ completion code or CICS EIBRESP) MQCC_OK 0

Reason (MQ reason or feedback code, or CICS
EIBRESP2)

MQRC_NONE 0

UOWControl (unit-of-work control) MQCUOWC_ONLY 273

GetWaitInterval (wait interval for MQGET call
issued by bridge task)

MQCGWI_DEFAULT -2

LinkType (link type) MQCLT_PROGRAM 1

Developing applications reference 297

Table 477. Fields in MQCIH for MQCIH (continued)

Field name and description Name of constant Initial value (if any) of
constant

OutputDataLength (output COMMAREA data
length)

MQCODL_AS_INPUT -1

FacilityKeepTime (bridge facility release time) None 0

ADSDescriptor (send/receive ADS descriptor) MQCADSD_NONE 0

ConversationalTask (whether task can be
conversational)

MQCCT_NO 0

TaskEndStatus (status at end of task) MQCTES_NOSYNC 0

Facility (bridge facility token) MQCFAC_NONE Nulls

Function (MQ call name or CICS EIBFN function) MQCFUNC_NONE Blanks

AbendCode (abend code) None Blanks

Authenticator (password or passticket) None Blanks

Reserved1 (reserved) None Blanks

ReplyToFormat (MQ format name of reply
message)

MQFMT_NONE Blanks

RemoteSysId (remote CICS system Id to use) None Blanks

RemoteTransId (CICS RTRANSID to use) None Blanks

TransactionId (transaction to attach) None Blanks

FacilityLike (terminal emulated attributes) None Blanks

AttentionId (AID key) None Blanks

StartCode (transaction start code) MQCSC_NONE Blanks

CancelCode (abend transaction code) None Blanks

NextTransactionId (next transaction to attach) None Blanks

Reserved2 (reserved) None Blanks

Reserved3 (reserved) None Blanks

Note: The remaining fields are not present if Version is less than MQCIH_VERSION_2.

CursorPosition (cursor position) None 0

ErrorOffset (offset of error in message) None 0

InputItem (input item) None 0

Reserved4 (reserved) None 0

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQCIH_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQCIH MyCIH = {MQCIH_DEFAULT};

298 IBM MQ Developing Applications Reference

Language declarations
C declaration for MQCIH

typedef struct tagMQCIH MQCIH;
struct tagMQCIH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Length of MQCIH structure */
 MQLONG Encoding; /* Reserved */
 MQLONG CodedCharSetId; /* Reserved */
 MQCHAR8 Format; /* MQ format name of data that follows
 MQCIH */
 MQLONG Flags; /* Flags */
 MQLONG ReturnCode; /* Return code from bridge */
 MQLONG CompCode; /* MQ completion code or CICS EIBRESP */
 MQLONG Reason; /* MQ reason or feedback code, or CICS
 EIBRESP2 */
 MQLONG UOWControl; /* Unit-of-work control */
 MQLONG GetWaitInterval; /* Wait interval for MQGET call issued
 by bridge task */
 MQLONG LinkType; /* Link type */
 MQLONG OutputDataLength; /* Output COMMAREA data length */
 MQLONG FacilityKeepTime; /* Bridge facility release time */
 MQLONG ADSDescriptor; /* Send/receive ADS descriptor */
 MQLONG ConversationalTask; /* Whether task can be conversational */
 MQLONG TaskEndStatus; /* Status at end of task */
 MQBYTE8 Facility; /* Bridge facility token */
 MQCHAR4 Function; /* MQ call name or CICS EIBFN
 function */
 MQCHAR4 AbendCode; /* Abend code */
 MQCHAR8 Authenticator; /* Password or passticket */
 MQCHAR8 Reserved1; /* Reserved */
 MQCHAR8 ReplyToFormat; /* MQ format name of reply message */
 MQCHAR4 RemoteSysId; /* Reserved */
 MQCHAR4 RemoteTransId; /* Reserved */
 MQCHAR4 TransactionId; /* Transaction to attach */
 MQCHAR4 FacilityLike; /* Terminal emulated attributes */
 MQCHAR4 AttentionId; /* AID key */
 MQCHAR4 StartCode; /* Transaction start code */
 MQCHAR4 CancelCode; /* Abend transaction code */
 MQCHAR4 NextTransactionId; /* Next transaction to attach */
 MQCHAR8 Reserved2; /* Reserved */
 MQCHAR8 Reserved3; /* Reserved */
 MQLONG CursorPosition; /* Cursor position */
 MQLONG ErrorOffset; /* Offset of error in message */
 MQLONG InputItem; /* Reserved */
 MQLONG Reserved4; /* Reserved */
};

COBOL declaration for MQCIH

** MQCIH structure
 10 MQCIH.
** Structure identifier
 15 MQCIH-STRUCID PIC X(4).
** Structure version number
 15 MQCIH-VERSION PIC S9(9) BINARY.
** Length of MQCIH structure
 15 MQCIH-STRUCLENGTH PIC S9(9) BINARY.
** Reserved
 15 MQCIH-ENCODING PIC S9(9) BINARY.
** Reserved
 15 MQCIH-CODEDCHARSETID PIC S9(9) BINARY.
** MQ format name of data that follows MQCIH
 15 MQCIH-FORMAT PIC X(8).
** Flags
 15 MQCIH-FLAGS PIC S9(9) BINARY.
** Return code from bridge
 15 MQCIH-RETURNCODE PIC S9(9) BINARY.
** MQ completion code or CICS EIBRESP
 15 MQCIH-COMPCODE PIC S9(9) BINARY.
** MQ reason or feedback code, or CICS EIBRESP2
 15 MQCIH-REASON PIC S9(9) BINARY.
** Unit-of-work control
 15 MQCIH-UOWCONTROL PIC S9(9) BINARY.
** Wait interval for MQGET call issued by bridge task

Developing applications reference 299

 15 MQCIH-GETWAITINTERVAL PIC S9(9) BINARY.
** Link type
 15 MQCIH-LINKTYPE PIC S9(9) BINARY.
** Output COMMAREA data length
 15 MQCIH-OUTPUTDATALENGTH PIC S9(9) BINARY.
** Bridge facility release time
 15 MQCIH-FACILITYKEEPTIME PIC S9(9) BINARY.
** Send/receive ADS descriptor
 15 MQCIH-ADSDESCRIPTOR PIC S9(9) BINARY.
** Whether task can be conversational
 15 MQCIH-CONVERSATIONALTASK PIC S9(9) BINARY.
** Status at end of task
 15 MQCIH-TASKENDSTATUS PIC S9(9) BINARY.
** Bridge facility token
 15 MQCIH-FACILITY PIC X(8).
** MQ call name or CICS EIBFN function
 15 MQCIH-FUNCTION PIC X(4).
** Abend code
 15 MQCIH-ABENDCODE PIC X(4).
** Password or passticket
 15 MQCIH-AUTHENTICATOR PIC X(8).
** Reserved
 15 MQCIH-RESERVED1 PIC X(8).
** MQ format name of reply message
 15 MQCIH-REPLYTOFORMAT PIC X(8).
** Reserved
 15 MQCIH-REMOTESYSID PIC X(4).
** Reserved
 15 MQCIH-REMOTETRANSID PIC X(4).
** Transaction to attach
 15 MQCIH-TRANSACTIONID PIC X(4).
** Terminal emulated attributes
 15 MQCIH-FACILITYLIKE PIC X(4).
** AID key
 15 MQCIH-ATTENTIONID PIC X(4).
** Transaction start code
 15 MQCIH-STARTCODE PIC X(4).
** Abend transaction code
 15 MQCIH-CANCELCODE PIC X(4).
** Next transaction to attach
 15 MQCIH-NEXTTRANSACTIONID PIC X(4).
** Reserved
 15 MQCIH-RESERVED2 PIC X(8).
** Reserved
 15 MQCIH-RESERVED3 PIC X(8).
** Cursor position
 15 MQCIH-CURSORPOSITION PIC S9(9) BINARY.
** Offset of error in message
 15 MQCIH-ERROROFFSET PIC S9(9) BINARY.
** Reserved
 15 MQCIH-INPUTITEM PIC S9(9) BINARY.
** Reserved
 15 MQCIH-RESERVED4 PIC S9(9) BINARY.

PL/I declaration for MQCIH

dcl
 1 MQCIH based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 StrucLength fixed bin(31), /* Length of MQCIH structure */
 3 Encoding fixed bin(31), /* Reserved */
 3 CodedCharSetId fixed bin(31), /* Reserved */
 3 Format char(8), /* MQ format name of data that
 follows MQCIH */
 3 Flags fixed bin(31), /* Flags */
 3 ReturnCode fixed bin(31), /* Return code from bridge */
 3 CompCode fixed bin(31), /* MQ completion code or CICS
 EIBRESP */
 3 Reason fixed bin(31), /* MQ reason or feedback code, or
 CICS EIBRESP2 */
 3 UOWControl fixed bin(31), /* Unit-of-work control */
 3 GetWaitInterval fixed bin(31), /* Wait interval for MQGET call
 issued by bridge task */
 3 LinkType fixed bin(31), /* Link type */
 3 OutputDataLength fixed bin(31), /* Output COMMAREA data length */
 3 FacilityKeepTime fixed bin(31), /* Bridge facility release time */
 3 ADSDescriptor fixed bin(31), /* Send/receive ADS descriptor */
 3 ConversationalTask fixed bin(31), /* Whether task can be

300 IBM MQ Developing Applications Reference

 conversational */
 3 TaskEndStatus fixed bin(31), /* Status at end of task */
 3 Facility char(8), /* Bridge facility token */
 3 Function char(4), /* MQ call name or CICS EIBFN
 function */
 3 AbendCode char(4), /* Abend code */
 3 Authenticator char(8), /* Password or passticket */
 3 Reserved1 char(8), /* Reserved */
 3 ReplyToFormat char(8), /* MQ format name of reply
 message */
 3 RemoteSysId char(4), /* Reserved */
 3 RemoteTransId char(4), /* Reserved */
 3 TransactionId char(4), /* Transaction to attach */
 3 FacilityLike char(4), /* Terminal emulated attributes */
 3 AttentionId char(4), /* AID key */
 3 StartCode char(4), /* Transaction start code */
 3 CancelCode char(4), /* Abend transaction code */
 3 NextTransactionId char(4), /* Next transaction to attach */
 3 Reserved2 char(8), /* Reserved */
 3 Reserved3 char(8), /* Reserved */
 3 CursorPosition fixed bin(31), /* Cursor position */
 3 ErrorOffset fixed bin(31), /* Offset of error in message */
 3 InputItem fixed bin(31), /* Reserved */
 3 Reserved4 fixed bin(31); /* Reserved */

High Level Assembler declaration for MQCIH

MQCIH DSECT
MQCIH_STRUCID DS CL4 Structure identifier
MQCIH_VERSION DS F Structure version number
MQCIH_STRUCLENGTH DS F Length of MQCIH structure
MQCIH_ENCODING DS F Reserved
MQCIH_CODEDCHARSETID DS F Reserved
MQCIH_FORMAT DS CL8 MQ format name of data that follows
* MQCIH
MQCIH_FLAGS DS F Flags
MQCIH_RETURNCODE DS F Return code from bridge
MQCIH_COMPCODE DS F MQ completion code or CICS EIBRESP
MQCIH_REASON DS F MQ reason or feedback code, or CICS
* EIBRESP2
MQCIH_UOWCONTROL DS F Unit-of-work control
MQCIH_GETWAITINTERVAL DS F Wait interval for MQGET call issued
* by bridge task
MQCIH_LINKTYPE DS F Link type
MQCIH_OUTPUTDATALENGTH DS F Output COMMAREA data length
MQCIH_FACILITYKEEPTIME DS F Bridge facility release time
MQCIH_ADSDESCRIPTOR DS F Send/receive ADS descriptor
MQCIH_CONVERSATIONALTASK DS F Whether task can be conversational
MQCIH_TASKENDSTATUS DS F Status at end of task
MQCIH_FACILITY DS XL8 Bridge facility token
MQCIH_FUNCTION DS CL4 MQ call name or CICS EIBFN function
MQCIH_ABENDCODE DS CL4 Abend code
MQCIH_AUTHENTICATOR DS CL8 Password or passticket
MQCIH_RESERVED1 DS CL8 Reserved
MQCIH_REPLYTOFORMAT DS CL8 MQ format name of reply message
MQCIH_REMOTESYSID DS CL4 Reserved
MQCIH_REMOTETRANSID DS CL4 Reserved
MQCIH_TRANSACTIONID DS CL4 Transaction to attach
MQCIH_FACILITYLIKE DS CL4 Terminal emulated attributes
MQCIH_ATTENTIONID DS CL4 AID key
MQCIH_STARTCODE DS CL4 Transaction start code
MQCIH_CANCELCODE DS CL4 Abend transaction code
MQCIH_NEXTTRANSACTIONID DS CL4 Next transaction to attach
MQCIH_RESERVED2 DS CL8 Reserved
MQCIH_RESERVED3 DS CL8 Reserved
MQCIH_CURSORPOSITION DS F Cursor position
MQCIH_ERROROFFSET DS F Offset of error in message
MQCIH_INPUTITEM DS F Reserved
MQCIH_RESERVED4 DS F Reserved
*
MQCIH_LENGTH EQU *-MQCIH
 ORG MQCIH
MQCIH_AREA DS CL(MQCIH_LENGTH)

Visual Basic declaration for MQCIH

Type MQCIH

Developing applications reference 301

 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 StrucLength As Long 'Length of MQCIH structure'
 Encoding As Long 'Reserved'
 CodedCharSetId As Long 'Reserved'
 Format As String*8 'MQ format name of data that follows'
 'MQCIH'
 Flags As Long 'Flags'
 ReturnCode As Long 'Return code from bridge'
 CompCode As Long 'MQ completion code or CICS EIBRESP'
 Reason As Long 'MQ reason or feedback code, or CICS'
 'EIBRESP2'
 UOWControl As Long 'Unit-of-work control'
 GetWaitInterval As Long 'Wait interval for MQGET call issued'
 'by bridge task'
 LinkType As Long 'Link type'
 OutputDataLength As Long 'Output COMMAREA data length'
 FacilityKeepTime As Long 'Bridge facility release time'
 ADSDescriptor As Long 'Send/receive ADS descriptor'
 ConversationalTask As Long 'Whether task can be conversational'
 TaskEndStatus As Long 'Status at end of task'
 Facility As MQBYTE8 'Bridge facility token'
 Function As String*4 'MQ call name or CICS EIBFN function'
 AbendCode As String*4 'Abend code'
 Authenticator As String*8 'Password or passticket'
 Reserved1 As String*8 'Reserved'
 ReplyToFormat As String*8 'MQ format name of reply message'
 RemoteSysId As String*4 'Reserved'
 RemoteTransId As String*4 'Reserved'
 TransactionId As String*4 'Transaction to attach'
 FacilityLike As String*4 'Terminal emulated attributes'
 AttentionId As String*4 'AID key'
 StartCode As String*4 'Transaction start code'
 CancelCode As String*4 'Abend transaction code'
 NextTransactionId As String*4 'Next transaction to attach'
 Reserved2 As String*8 'Reserved'
 Reserved3 As String*8 'Reserved'
 CursorPosition As Long 'Cursor position'
 ErrorOffset As Long 'Offset of error in message'
 InputItem As Long 'Reserved'
 Reserved4 As Long 'Reserved'
End Type

Usage
If the application requires values that are the same as the initial values shown in Table 477 on page 297,
and the bridge is running with AUTH=LOCAL or AUTH=IDENTIFY, you can omit the MQCIH structure from
the message. In all other cases, the structure must be present.

The bridge accepts either a version-1 or a version-2 MQCIH structure, but for 3270 transactions, you
must use a version-2 structure.

The application must ensure that fields documented as request fields have appropriate values in the
message sent to the bridge; these fields are input to the bridge.

Fields documented as response fields are set by the CICS bridge in the reply message that the bridge
sends to the application. Error information is returned in the ReturnCode, Function, CompCode,
Reason, and AbendCode fields, but not all of them are set in all cases. The following table shows which
fields are set for different values of ReturnCode.

Table 478. Contents of error information fields in MQCIH structure for MQCIH

ReturnCode Function CompCode Reason AbendCode

MQCRC_OK - - - -

MQCRC_BRIDGE_ERROR - - MQFB_CICS_* -

MQCRC_MQ_API_ERROR
MQCRC_BRIDGE_TIMEOUT

MQ call name MQ CompCode MQ Reason -

302 IBM MQ Developing Applications Reference

Table 478. Contents of error information fields in MQCIH structure for MQCIH (continued)

ReturnCode Function CompCode Reason AbendCode

MQCRC_CICS_EXEC_ERROR
MQCRC_SECURITY_ERROR
MQCRC_PROGRAM_NOT_AVAILABLE
MQCRC_TRANSID_NOT_AVAILABLE

CICS EIBFN CICS EIBRESP CICS
EIBRESP2

-

MQCRC_BRIDGE_ABEND
MQCRC_APPLICATION_ABEND

- - - CICS ABCODE

StrucId (MQCHAR4)
This field is a request field, with an initial value of MQCIH_STRUC_ID.

The value must be:
MQCIH_STRUC_ID

Identifier for CICS information header structure.

For the C programming language, the constant MQCIH_STRUC_ID_ARRAY is also defined; this has the
same value as MQCIH_STRUC_ID, but is an array of characters instead of a string.

Version (MQLONG)
This field is a request field. Its initial value is MQCIH_VERSION_2.

The value must be one of the following:
MQCIH_VERSION_1

Version-1 CICS information header structure.
MQCIH_VERSION_2

Version-2 CICS information header structure.

Fields that exist only in the more-recent version of the structure are identified as such in the descriptions
of the fields. The following constant specifies the version number of the current version:
MQCIH_CURRENT_VERSION

Current version of CICS information header structure.

StrucLength (MQLONG)
This field is a request field, with an initial value of MQCIH_LENGTH_2.

The value must be one of the following:
MQCIH_LENGTH_1

Length of version-1 CICS information header structure.
MQCIH_LENGTH_2

Length of version-2 CICS information header structure.

The following constant specifies the length of the current version:
MQCIH_CURRENT_LENGTH

Length of current version of CICS information header structure.

Encoding (MQLONG)
This field is a reserved field; its value is not significant. Its initial value is 0.

The Encoding for supported structures which follow an MQCIH structure is the same as the Encoding of
the MQCIH structure itself and taken from any preceding IBM MQ header.

Developing applications reference 303

CodedCharSetId (MQLONG)
CodedCharSetId is a reserved field; its value is not significant. The initial value of this field is 0.

The Character Set ID for supported structures which follow an MQCIH structure is the same as the
Character Set ID of the MQCIH structure itself and is taken from any preceding IBM MQ header.

Format (MQCHAR8)
This field shows the IBM MQ format name of the data that follows the MQCIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as the rules for coding the Format field in MQMD.

This format name is also used for the reply message, if the ReplyToFormat field has the value
MQFMT_NONE.

• For DPL requests, Format must be the format name of the COMMAREA.
• For 3270 requests, Format must be CSQCBDCI, and the bridge sets the format to CSQCBDCO for Reply

messages.

The data-conversion exits for these formats must be installed on the queue manager where they are to
run.

If the request message generates an error reply message, the error reply message has a format name of
MQFMT_STRING.

This field is a request field. The length of this field is given by MQ_FORMAT_LENGTH. The initial value of
this field is MQFMT_NONE.

Flags (MQLONG)
This field is a request field. The initial value of this field is MQCIH_NONE.

The value must be:
MQCIH_NONE

No flags.
MQCIH_PASS_EXPIRATION

The reply message contains:

• The same expiry report options as the request message.
• The remaining expiry time from the request message with no adjustment made for the processing

time of the bridge.

If you omit this value, the expiry time is set to unlimited.
MQCIH_REPLY_WITHOUT_NULLS

The reply message length of a CICS DPL program request is adjusted to exclude trailing nulls (X'00')
at the end of the COMMAREA returned by the DPL program. If this value is not set, the nulls might be
significant, and the full COMMAREA is returned.

MQCIH_SYNC_ON_RETURN
The CICS link for DPL requests uses the SYNCONRETURN option, causing CICS to take a sync point
when the program completes if it is shipped to another CICS region. The bridge does not specify to
which CICS region to ship the request; that is controlled by the CICS program definition or workload
balancing facilities.

ReturnCode (MQLONG)
The value of this field is the return code from the CICS bridge describing the outcome of the processing
performed by the bridge. This field is a response field, with an initial value of MQCRC_OK.

The Function, CompCode, Reason, and AbendCode fields might contain additional information (see
Table 478 on page 302). The value is one of the following:

304 IBM MQ Developing Applications Reference

MQCRC_APPLICATION_ABEND
(5, X'005') Application ended abnormally.

MQCRC_BRIDGE_ABEND
(4, X'004') CICS bridge ended abnormally.

MQCRC_BRIDGE_ERROR
(3, X'003') CICS bridge detected an error.

MQCRC_BRIDGE_TIMEOUT
(8, X'008') Second or later message within current unit of work not received within specified time.

MQCRC_CICS_EXEC_ERROR
(1, X'001') EXEC CICS statement detected an error.

MQCRC_MQ_API_ERROR
(2, X'002') MQ call detected an error.

MQCRC_OK
(0, X'000') No error.

MQCRC_PROGRAM_NOT_AVAILABLE
(7, X'007') Program not available.

MQCRC_SECURITY_ERROR
(6, X'006') Security error occurred.

MQCRC_TRANSID_NOT_AVAILABLE
(9, X'009') Transaction not available.

CompCode (MQLONG)
This field is a response field. Its initial value is MQCC_OK

The value returned in this field depends on ReturnCode ; see Table 478 on page 302.

Reason (MQLONG)
This field is a response field. Its initial value is MQRC_NONE.

The value returned in this field depends on ReturnCode ; see Table 478 on page 302.

UOWControl (MQLONG)
This field is a request field which controls the unit-of-work processing performed by the CICS bridge. The
initial value of this field is MQCUOWC_ONLY.

You can request the bridge to run a single transaction, or one or more programs within a unit of work. The
field indicates whether the CICS bridge starts a unit of work, performs the requested function within the
current unit of work, or ends the unit of work by committing it or backing it out. Various combinations are
supported, to optimize the data transmission flows.

The value must be one of the following:
MQCUOWC_ONLY

Start unit of work, perform function, then commit the unit of work.
MQCUOWC_CONTINUE

Additional data for the current unit of work (3270 only).
MQCUOWC_FIRST

Start unit of work and perform function.
MQCUOWC_MIDDLE

Perform function within current unit of work
MQCUOWC_LAST

Perform function, then commit the unit of work.
MQCUOWC_COMMIT

Commit the unit of work (DPL only).

Developing applications reference 305

MQCUOWC_BACKOUT
Back out the unit of work (DPL only).

GetWaitInterval (MQLONG)
This field is a request field. Its initial value is MQCGWI_DEFAULT.

This field applies only when UOWControl has the value MQCUOWC_FIRST. It enables the sending
application to specify the approximate time in milliseconds that the MQGET calls issued by the bridge
will wait for second and subsequent request messages for the unit of work started by this message. This
facility overrides the default wait interval used by the bridge. You can use the following special values:
MQCGWI_DEFAULT

Default wait interval.

This value causes the CICS bridge to wait for the time specified when the bridge was started.

MQWI_UNLIMITED
Unlimited wait interval.

LinkType (MQLONG)
This field is a request field. Its initial value is MQCLT_PROGRAM.

This value indicates the type of object that the bridge tries to link. It must be one of the following values:
MQCLT_PROGRAM

DPL program.
MQCLT_TRANSACTION

3270 transaction.

OutputDataLength (MQLONG)
This field is a request field used only for DPL programs. Its initial value is MQCODL_AS_INPUT.

This value is the length of the user data to be returned to the client in a reply message. This length
includes the 8-byte program name. The length of the COMMAREA passed to the linked program is the
maximum of this field and the length of the user data in the request message, minus 8.

Note: The length of the user data in a message is the length of the message excluding the MQCIH
structure.

If the length of the user data in the request message is smaller than OutputDataLength, the
DATALENGTH option of the LINK command is used, enabling the LINK to be function-shipped efficiently
to another CICS region.

You can use the following special value:
MQCODL_AS_INPUT

Output length is same as input length.

This value might be needed even if no reply is requested, in order to ensure that the COMMAREA
passed to the linked program is of sufficient size.

FacilityKeepTime (MQLONG)
FacilityKeepTime is the length of time in seconds that the bridge facility is kept after the user transaction
ends.

For pseudo-conversational transactions, specify a value that corresponds to the expected duration of
a pseudo-conversation; specify zero for the last transaction of a pseudo-conversation, and for other
transaction types specify zero.

This field is a request field used only for 3270 transactions. The initial value of this field is 0.

ADSDescriptor (MQLONG)
This field is an indicator specifying whether to send ADS descriptors on SEND and RECEIVE BMS requests.

The following values are defined:

306 IBM MQ Developing Applications Reference

MQCADSD_NONE
Do not send or receive ADS descriptors.

MQCADSD_SEND
Send ADS descriptors.

MQCADSD_RECV
Receive ADS descriptors.

MQCADSD_MSGFORMAT
Use message format for the ADS descriptors.

This sends or receives the ADS descriptors using the long form of the ADS descriptor. The long form
has fields that are aligned on 4-byte boundaries.

Set the ADSDescriptor field as follows:

• If you are not using ADS descriptors, set the field to MQCADSD_NONE.
• If you are using ADS descriptors with the same CCSID in each environment, set the field to the sum of

MQCADSD_SEND and MQCADSD_RECV.
• If you are using ADS descriptors with different CCSIDs in each environment, set the field to the sum of

MQCADSD_SEND, MQCADSD_RECV, and MQCADSD_MSGFORMAT.

This is a request field used only for 3270 transactions. The initial value of this field is MQCADSD_NONE.

ConversationalTask (MQLONG)
This field is an indicator specifying whether to allow the task to issue requests for more information, or to
stop the task and issue an abend message.

The value must be one of the following options:
MQCCT_YES

The task is conversational.
MQCCT_NO

The task is not conversational.

This field is a request field used only for 3270 transactions. The initial value of this field is MQCCT_NO.

TaskEndStatus (MQLONG)
This field is a response field, showing the status of the user transaction at end of task. The field is used
only for 3270 transactions, and its initial value is MQCTES_NOSYNC.

One of the following values is returned:
MQCTES_NOSYNC

Not synchronized.

The user transaction has not yet completed and has not syncpointed. The MsgType field in MQMD is
MQMT_REQUEST in this case.

MQCTES_COMMIT
Commit unit of work.

The user transaction has not yet completed, but has syncpointed the first unit of work. The MsgType
field in MQMD is MQMT_DATAGRAM in this case.

MQCTES_BACKOUT
Back out unit of work.

The user transaction has not yet completed. The current unit of work is backed out. The MsgType field
in MQMD is MQMT_DATAGRAM in this case.

MQCTES_ENDTASK
End task.

The user transaction has ended (or abended). The MsgType field in MQMD is MQMT_REPLY in this
case.

Developing applications reference 307

Facility (MQBYTE8)
This field shows the 8-byte bridge facility token.

A bridge facility token enables multiple transactions in a pseudo-conversation to use the same bridge
facility (virtual 3270 terminal). In the first, or only, message in a pseudo-conversation, set a value of
MQCFAC_NONE. This value tells CICS to allocate a new bridge facility for this message. A bridge facility
token is returned in response messages when a nonzero FacilityKeepTime is specified on the input
message. Subsequent input messages within a pseudo-conversation must then use the same bridge
facility token.

The following special value is defined:
MQCFAC_NONE

No facility token specified.

For the C programming language, the constant MQCFAC_NONE_ARRAY is also defined, and has the
same value as MQCFAC_NONE, but is an array of characters instead of a string.

This field is both a request and a response field used only for 3270 transactions. The length of this field is
given by MQ_FACILITY_LENGTH. The initial value of this field is MQCFAC_NONE.

Function (MQCHAR4)
This field is a response field. The length of this field is given by MQ_FUNCTION_LENGTH. The initial value
of this field is MQCFUNC_NONE.

The value returned in this field depends on ReturnCode ; see Table 478 on page 302. The following
values are possible when Function contains an IBM MQ call name:
MQCFUNC_MQCONN

MQCONN call.
MQCFUNC_MQGET

MQGET call.
MQCFUNC_MQINQ

MQINQ call.
MQCFUNC_MQOPEN

MQOPEN call.
MQCFUNC_MQPUT

MQPUT call.
MQCFUNC_MQPUT1

MQPUT1 call.
MQCFUNC_NONE

No call.

In all cases, for the C programming language the constants MQCFUNC_*_ARRAY are also defined; these
constants have the same values as the corresponding MQCFUNC_* constants, but are arrays of characters
instead of strings.

AbendCode (MQCHAR4)
AbendCode is a response field. The length of this field is given by MQ_ABEND_CODE_LENGTH. The initial
value of this field is 4 blank characters.

The value returned in this field is significant only if the ReturnCode field has the value
MQCRC_APPLICATION_ABEND or MQCRC_BRIDGE_ABEND. If it does, AbendCode contains the CICS
ABCODE value.

Authenticator (MQCHAR8)
The value of this field is the password or passticket.

If user-identifier authentication is active for the CICS bridge, Authenticator is used with the user
identifier in the MQMD identity context to authenticate the sender of the message.

308 IBM MQ Developing Applications Reference

This is a request field. The length of this field is given by MQ_AUTHENTICATOR_LENGTH. The initial value
of this field is 8 blanks.

Reserved1 (MQCHAR8)
This field is a reserved field. The value must be 8 blanks.

ReplyToFormat (MQCHAR8)
The value of this field is the IBM MQ format name of the reply message that is sent in response to the
current message.

The rules for coding this field are the same as those rules for coding the Format field in MQMD.

This field is a request field used only for DPL programs. The length of this field is given by
MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

RemoteSysId (MQCHAR4)
This field shows the CICS system identifier of the CICS system processing the request.

If this field is blank, the CICS system request is processed on the same CICS system as the bridge
monitor. The SYSID used is returned in the Reply message.

For a 3270 pseudo-conversation, all subsequent messages in the conversation must specify the remote
SYSID returned in the initial reply. If specified, the SYSID must:

• Be active.
• Have access to the IBM MQ Request queue.
• Be accessible by the CICS ISC links from the CICS system of the bridge monitor.

RemoteTransId (MQCHAR4)
This field is an optional Request field. The length of this field is given by MQ_TRANSACTION_ID_LENGTH.

If specified, the field is used as the RTRANSID value of CICS START.

TransactionId (MQCHAR4)
This field is a request field. Its length is given by MQ_TRANSACTION_ID_LENGTH. The initial value of this
field is four blanks.

If LinkType has the value MQCLT_TRANSACTION, TransactionId is the transaction identifier of the
user transaction to be run; specify a nonblank value in this case.

If LinkType has the value MQCLT_PROGRAM, TransactionId is the transaction code under which all
programs within the unit of work are to be run. If you specify a blank value, the CICS DPL bridge default
transaction code (CKBP) is used. If the value is nonblank, you must have defined it to CICS as a local
transaction with an initial program that is CSQCBP00. This field applies only when UOWControl has the
value MQCUOWC_FIRST or MQCUOWC_ONLY.

FacilityLike (MQCHAR4)
FacilityLike is the name of an installed terminal that is to be used as a model for the bridge facility.

A value of blanks means that FacilityLike is taken from the bridge transaction profile definition, or a
default value is used.

This field is a request field used only for 3270 transactions. The length of this field is given by
MQ_FACILITY_LIKE_LENGTH. The initial value of this field is four blanks.

AttentionId (MQCHAR4)
The value in this field determines the initial value of the AID key when the transaction is started. It is a 1
byte value, left-aligned.

Developing applications reference 309

AttentionId is a request field used only for 3270 transactions. The length of this field is given by
MQ_ATTENTION_ID_LENGTH. The initial value of this field is four blanks.

StartCode (MQCHAR4)
The value of this field is an indicator specifying whether the bridge emulates a terminal transaction or a
transaction initiated with START.

The value must be one of the following:
MQCSC_START

Start.
MQCSC_STARTDATA

Start data.
MQCSC_TERMINPUT

Terminal input.
MQCSC_NONE

None.

In all cases, for the C programming language the constants MQCSC_*_ARRAY are also defined; these
constants have the same values as the corresponding MQCSC_* constants, but are arrays of characters
instead of strings.

In the response from the bridge, this field is set to the start code appropriate to the next transaction ID
contained in the NextTransactionId field. The following start codes are possible in the response:

• MQCSC_START
• MQCSC_STARTDATA
• MQCSC_TERMINPUT

For CICS Transaction Server 1.2, this field is a request field only; its value in the response is undefined.

For CICS Transaction Server 1.3 and subsequent releases, this field is both a request and a response field.

This field is used only for 3270 transactions. The length of this field is given by
MQ_START_CODE_LENGTH. The initial value of this field is MQCSC_NONE.

CancelCode (MQCHAR4)
The value in this field is the abend code to be used to terminate the transaction (normally a
conversational transaction that is requesting more data). Otherwise this field is set to blanks.

This field is a request field used only for 3270 transactions. The length of this field is given by
MQ_CANCEL_CODE_LENGTH. The initial value of this field is four blanks.

NextTransactionId (MQCHAR4)
This value is the name of the next transaction returned by the user transaction (usually by EXEC CICS
RETURN TRANSID). If there is no next transaction, this field is set to blanks.

This field is a response field used only for 3270 transactions. The length of this field is given by
MQ_TRANSACTION_ID_LENGTH. The initial value of this field is four blanks.

Reserved2 (MQCHAR8)
This field is a reserved field. The value must be 8 blanks.

Reserved3 (MQCHAR8)
This field is a reserved field. The value must be 8 blanks.

310 IBM MQ Developing Applications Reference

CursorPosition (MQLONG)
The value in this field shows the initial cursor position when the transaction is started. For conversational
transactions, the cursor position is in the RECEIVE vector.

This field is a request field used only for 3270 transactions. The initial value of this field is 0. This field is
not present if Version is less than MQCIH_VERSION_2.

ErrorOffset (MQLONG)
The ErrorOffset field shows the position of invalid data detected by the bridge exit. This field provides the
offset from the start of the message to the location of the invalid data.

ErrorOffset is a response field used only for 3270 transactions. The initial value of this field is 0. This field
is not present if Version is less than MQCIH_VERSION_2.

InputItem (MQLONG)
This field is a reserved field. The value must be 0.

This field is not present if Version is less than MQCIH_VERSION_2.

Reserved4 (MQLONG)
This field is a reserved field. The value must be 0.

This field is not present if Version is less than MQCIH_VERSION_2.

MQCMHO - Create message handle options
The MQCMHO structure allows applications to specify options that control how message handles are
created. The structure is an input parameter on the MQCRTMH call.

Availability
The MQCMHO structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

• z/OS

and with IBM MQ clients.

Character set and encoding
Data in MQCMHO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 479. Fields in MQCMHO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQCMHO_STRUC_ID 'CMHO'

Developing applications reference 311

Table 479. Fields in MQCMHO (continued)

Field name and description Name of constant Initial value (if any) of
constant

Version (structure version number) MQCMHO_VERSION_1 1

Options (options) MQCMHO_DEFAULT_VAL
IDATION

0

Notes:

1. In the C programming language, the macro variable MQCMHO_DEFAULT contains the values that are
listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQCMHO MyCMHO = {MQCMHO_DEFAULT};

Language declarations
C declaration for MQCMHO

struct tagMQCMHO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of MQCRTMH */
};

COBOL declaration for MQCMHO

** MQCMHO structure
 10 MQCMHO.
** Structure identifier
 15 MQCMHO-STRUCID PIC X(4).
** Structure version number
 15 MQCMHO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQCRTMH
 15 MQCMHO-OPTIONS PIC S9(9) BINARY.

PL/I declaration for MQCMHO

dcl
 1 MQCMHO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action of MQCRTMH */

High Level Assembler declaration for MQCMHO

MQCMHO DSECT
MQCMHO_STRUCID DS CL4 Structure identifier
MQCMHO_VERSION DS F Structure version number
MQCMHO_OPTIONS DS F Options that control the action of
* MQCRTMH
MQCMHO_LENGTH EQU *-MQCMHO
MQCMHO_AREA DS CL(MQCMHO_LENGTH)

StrucId (MQCHAR4)
This field is always an input field. Its initial value is MQCMHO_STRUC_ID.

This is the structure identifier; the value must be:

312 IBM MQ Developing Applications Reference

MQCMHO_STRUC_ID
Identifier for create message handle options structure.

For the C programming language, the constant MQCMHO_STRUC_ID_ARRAY is also defined; this has
the same value as MQCMHO_STRUC_ID, but is an array of characters instead of a string.

Version (MQLONG)
This field is always an input field. Its initial value is MQCMHO_VERSION_1.

This is the structure version number; the value must be:

 MQCMHO_VERSION_1
Version-1 create message handle options structure.

The following constant specifies the version number of the current version:

 MQCMHO_CURRENT_VERSION
Current version of create message handle options structure.

Options (MQLONG)
This field is always an input field. Its initial value is MQCMHO_DEFAULT_VALIDATION.

One of the following options can be specified:
MQCMHO_VALIDATE

When MQSETMP is called to set a property in this message handle, the property name is validated to
ensure that it:

• contains no invalid characters.
• does not begin JMS or usr.JMS except for the following:

– JMSCorrelationID
– JMSReplyTo
– JMSType
– JMSXGroupID
– JMSXGroupSeq

These names are reserved for JMS properties.
• is not one of the following keywords, in any mixture of uppercase or lowercase:

– AND
– BETWEEN
– ESCAPE
– FALSE
– IN
– IS
– LIKE
– NOT
– NULL
– OR
– TRUE

• does not begin Body. or Root. (except for Root.MQMD.).

Developing applications reference 313

If the property is MQ-defined (mq.*) and the name is recognized, the property descriptor fields are
set to the correct values for the property. If the property is not recognized, the Support field of the
property descriptor is set to MQPD_OPTIONAL.

MQCMHO_DEFAULT_VALIDATION

This value specifies that the default level of validation of property names occur.

The default level of validation is equivalent to the level specified by MQCMHO_VALIDATE.

This value is the default value.

MQCMHO_NO_VALIDATION

No validation on the property name occurs. See the description of MQCMHO_VALIDATE.

Default option: If none of the preceding options described is required, the following option can be used:
MQCMHO_NONE

All options assume their default values. Use this value to indicate that no other options have been
specified. MQCMHO_NONE aids program documentation; it is not intended that this option is used with
any other, but as its value is zero, such use cannot be detected.

MQCNO - Connect options
The MQCNO structure allows the application to specify options relating to the connection to the queue
manager. The structure is an input/output parameter on the MQCONNX call.

For more information about using shared handles, and the MQCONNX call, see Shared (thread
independent) connections with MQCONNX.

Availability
All versions of the MQCNO structure, except MQCNO_VERSION_4, are available on the following
platforms:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ MQI clients connected to these systems.

Version
The header, COPY, and INCLUDE files provided for the supported programming languages contain the
most-recent version of MQCNO, but with the initial value of the Version field set to MQCNO_VERSION_1.
To use fields that are not present in the version-1 structure, the application must set the Version field to
the version number that is required.

Character set and encoding
Data in MQCNO must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an IBM MQ MQI client, the structure must be in the character set and encoding of the client.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

314 IBM MQ Developing Applications Reference

Table 480. Fields in MQCNO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQCNO_STRUC_ID 'CNO¬'

Version (structure version number) MQCNO_VERSION_1 1

Options (options that control the action of
MQCONNX)

MQCNO_NONE 0

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_2.

ClientConnOffset (offset of MQCD structure for
client connection)

None 0

ClientConnPtr (address of MQCD structure for
client connection)

None Null pointer or null bytes

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_3.

ConnTag (queue manager connection tag) MQCT_NONE Nulls

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_4.

SSLConfigPtr (address of MQSCO structure for
client connection)

None Null pointer or null bytes

SSLConfigOffset (offset of MQSCO structure for
client connection)

None 0

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_5.

ConnectionId (unique connection ID) None Null pointer or null bytes

SecurityParmsOffset (offset of MQSCO structure
for security parameters)

None Null pointer or null bytes

SecurityParmsPtr (address of MQSCO structure for
security parameters)

None Null pointer or null bytes

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_6.

Reserved (reserved field) None Reserved field to pad
the structure out to a
64-bit boundary.

CCDTUrlLength (CCDT URL length) None Length of string
identified by CCDTUrlPtr
or CCDTUrlOffset

CCDTUrlPtr (CCDT URL pointer) None Pointer to a string which
contains a URL, to
identify the location of
the client connection
channel table to use for
the connection.

Developing applications reference 315

Table 480. Fields in MQCNO (continued)

Field name and description Name of constant Initial value (if any) of
constant

CCDTUrlOffset (CCDT URL offset) None Offset in bytes from a
string which contains a
URL that identifies the
location of the client
connection channel
table to use for the
connection.

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_7.

 ApplName (name set by the
application)

None Name set by the
application to identify
the connection to the
queue manager

 Reserved2 (reserved field) None Reserved field to pad
the structure out to a
64-bit boundary.

Note: The remaining fields are ignored if Version is less than MQCNO_VERSION_8.

 BalanceParms|Offset None Offset in bytes to the
MQBNO structure

BalanceParmsPtr None Pointer to the location of
the MQBNO structure

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQCNO_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQCNO MyCNO = {MQCNO_DEFAULT};

Language declarations
C declaration for MQCNO

typedef struct tagMQCNO MQCNO;
struct tagMQCNO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of
 MQCONNX */
 MQLONG ClientConnOffset; /* Offset of MQCD structure for client
 connection */
 MQPTR ClientConnPtr; /* Address of MQCD structure for client
 connection */
 MQBYTE128 ConnTag; /* Queue managerconnection tag */
 PMQSCO SSLConfigPtr; /* Address of MQSCO structure for client
 connection */
 MQLONG SSLConfigOffset; /* Offset of MQSCO structure for client

316 IBM MQ Developing Applications Reference

 connection */
 MQBYTE24 ConnectionId; /* Unique connection identifier */
 MQLONG SecurityParmsOffset /* Security fields */
 PMQCSP SecurityParmsPtr /* Security parameters */
 MQLONG CCDTUrlLength /* Length of string identified by Ptr or offset */
 MQLONG CCDTUrlOffset /* Offset in bytes to URL of client connection channel */
 PMQURL CCDTUrlPtr /* Address to string containing URL */
 MQBYTE4 Reserved /* Reserved field to pad out to 64 bit boundary */
 MQCHAR28 ApplName /* Name set by the application to identify the connection to
 the queue manager */
 MQBYTE4 Reserved2 /* Reserved field to pad out to 64 bit boundary */
};

typedef struct tagMQCNO MQCNO;
struct tagMQCNO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of
 MQCONNX */
 MQLONG ClientConnOffset; /* Offset of MQCD structure for client
 connection */
 MQPTR ClientConnPtr; /* Address of MQCD structure for client
 connection */
 MQBYTE128 ConnTag; /* Queue managerconnection tag */
 PMQSCO SSLConfigPtr; /* Address of MQSCO structure for client
 connection */
 MQLONG SSLConfigOffset; /* Offset of MQSCO structure for client
 connection */
 MQBYTE24 ConnectionId; /* Unique connection identifier */
 MQLONG SecurityParmsOffset /* Security fields */
 PMQCSP SecurityParmsPtr /* Security parameters */
 MQLONG CCDTUrlLength /* Length of string identified by Ptr or offset */
 MQLONG CCDTUrlOffset /* Offset in bytes to URL of client connection channel */
 PMQURL CCDTUrlPtr /* Address of string containing URL */
 MQBYTE4 Reserved /* Reserved field to pad out to 64 bit boundary */
 MQCHAR28 ApplName /* Name set by the application to identify the connection to
 the queue manager */
 MQBYTE4 Reserved2 /* Reserved field to pad out to 64 bit boundary */
 MQLONG BalanceParmsOffset /* Offset of the MQBMO structure */
 PMQBMO BalanceParmsPtr /* Address of the location of the MQBMO structure */
};

COBOL declaration for MQCNO

** MQCNO structure
 10 MQCNO.
** Structure identifier
 15 MQCNO-STRUCID PIC X(4).
** Structure version number
 15 MQCNO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQCONNX
 15 MQCNO-OPTIONS PIC S9(9) BINARY.
** Offset of MQCD structure for client connection
 15 MQCNO-CLIENTCONNOFFSET PIC S9(9) BINARY.
** Address of MQCD structure for client connection
 15 MQCNO-CLIENTCONNPTR POINTER.
** Queue manager connection tag
 15 MQCNO-CONNTAG PIC X(128).
** Address of MQSCO structure for client connection
 15 MQCNO-SSLCONFIGPTR POINTER.
** Offset of MQSCO structure for client connection
 15 MQCNO-SSLCONFIGOFFSET PIC S9(9) BINARY.
** Unique connection identifier
 15 MQCNO-CONNECTIONID PIC X(24).
** Offset of MQCSP structure for security parameters
 15 MQCNO-SECURITYPARMSOFFSET PIC S9(9) BINARY.
** Address of MQCSP structure for security parameters
 15 MQCNO-SECURITYPARMSPTR POINTER.
** Length of string identified by CCDTUrlPtr or CCDTUrlOffset
 15 MQCNO-CCDTURLLENGTH
** Pointer to a string which contains a URL, to identify the location of the client
connection channel
 15 MQCNO-CCDTURLPTR
** Offset in bytes from a string which contains a URL that identifies the location of the
client connection channel table
 15 MQCNO-CCDTURLOFFSET

Developing applications reference 317

** Reserved field to pad to 64 bit boundary
 15 MQCNO-RESERVED
** Name set by the application to identify the connection to the queue manager
 15 MQCNO-APPLNAME
** Reserved field to pad to 64 bit boundary
 15 MQCNO-RESERVED2

** MQCNO structure
 10 MQCNO.
** Structure identifier
 15 MQCNO-STRUCID PIC X(4).
** Structure version number
 15 MQCNO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQCONNX
 15 MQCNO-OPTIONS PIC S9(9) BINARY.
** Offset of MQCD structure for client connection
 15 MQCNO-CLIENTCONNOFFSET PIC S9(9) BINARY.
** Address of MQCD structure for client connection
 15 MQCNO-CLIENTCONNPTR POINTER.
** Queue manager connection tag
 15 MQCNO-CONNTAG PIC X(128).
** Address of MQSCO structure for client connection
 15 MQCNO-SSLCONFIGPTR POINTER.
** Offset of MQSCO structure for client connection
 15 MQCNO-SSLCONFIGOFFSET PIC S9(9) BINARY.
** Unique connection identifier
 15 MQCNO-CONNECTIONID PIC X(24).
** Offset of MQCSP structure for security parameters
 15 MQCNO-SECURITYPARMSOFFSET PIC S9(9) BINARY.
** Address of MQCSP structure for security parameters
 15 MQCNO-SECURITYPARMSPTR POINTER.
** Length of string identified by CCDTURLOFFSET or CCDTURLPTR
 15 MQCNO-CCDTURLLENGTH
** Pointer to a string which contains a URL, to identify the location of the client
connection channel
 15 MQCNO-CCDTURLPTR
** Address of string which contains a URL that identifies the location of the client
connection channel table
 15 MQCNO-CCDTURLOFFSET
** Reserved field to pad to 64 bit boundary
 15 MQCNO-RESERVED
** Name set by the application to identify the connection to the queue manager
 15 MQCNO-APPLNAME
** Reserved field to pad to 64 bit boundary
 15 MQCNO-RESERVED2
** Address of the MQBMO structure
 15 MQCNO-BALANCEPARMSOFFSET
** Pointer to the MQBMO structure
 15 MQCNO-BALANCEPARMSPTR

PL/I declaration for MQCNO

dcl
 1 MQCNO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action
 of MQCONNX */
 3 ClientConnOffset fixed bin(31), /* Offset of MQCD structure for
 client connection */
 3 ClientConnPtr pointer, /* Address of MQCD structure for
 client connection */
 3 ConnTag char(128), /* Queue managerconnection tag */
 3 SSLConfigPtr pointer, /* Address of MQSCO structure for
 client connection */
 3 SSLConfigOffset fixed bin(31), /* Offset of MQSCO structure for
 client connection */
 3 ConnectionId char(24), /* Unique connection identifier
 3 SecurityParmsOffset fixed bin(31); /* Offset of MQCSP structure for
 security parameters */
 3 SecurityParmsPtr pointer, /* Address of MQCSP structure for
 security parameters */
 3 CCDTUrlLength fixed bin(31) /* Length of string identified by CCDTUrlPtr
 or CCDTUrlOffset */
 3 CCDTUrlOffset fixed bin(31) /* Offset in bytes to URL of client connection channel */
 3 CCDTUrlPtr pointer /* Pointer to string containing URL */

318 IBM MQ Developing Applications Reference

 3 Reserved char(4) /* Reserved field to pad out to 64 bit boundary */
 3 ApplName char(28) /* Name set by the application to identify the
connection to
 the queue manager */
 3 Reserved2 char(4) /* Reserved field to pad out to 64 bit boundary
*/

dcl
 1 MQCNO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action
 of MQCONNX */
 3 ClientConnOffset fixed bin(31), /* Offset of MQCD structure for
 client connection */
 3 ClientConnPtr pointer, /* Address of MQCD structure for
 client connection */
 3 ConnTag char(128), /* Queue managerconnection tag */
 3 SSLConfigPtr pointer, /* Address of MQSCO structure for
 client connection */
 3 SSLConfigOffset fixed bin(31), /* Offset of MQSCO structure for
 client connection */
 3 ConnectionId char(24), /* Unique connection identifier
 3 SecurityParmsOffset fixed bin(31) /* Offset of MQCSP structure for
 security parameters */
 3 SecurityParmsPtr pointer, /* Address of MQCSP structure for
 security parameters */
 3 CCDTUrlLength fixed bin(31) /* Length of string identified by CCDTUrlPtr
 or CCDTUrlOffset */
 3 CCDTUrlOffset fixed bin(31) /* Offset in bytes to URL of client connection channel */
 3 CCDTUrlPtr pointer /* Pointer to string containing URL */
 3 Reserved char(4) /* Reserved field to pad out to 64 bit boundary */
 3 ApplName char(28) /* Name set by the application to identify the
connection to
 the queue manager */
 3 Reserved2 char(4) /* Reserved field to pad out to 64 bit boundary */
 3 BalanceParmsOffset fixed bin(31) /* Offset of the MQBMO structure */
 3 BalanceParmsPtr pointer /* Address of the MQBMO structure */

High Level Assembler declaration for MQCNO

MQCNO DSECT
MQCNO_STRUCID DS CL4 Structure identifier
MQCNO_VERSION DS F Structure version number
MQCNO_OPTIONS DS F Options that control the action of
* MQCONNX
MQCNO_CLIENTCONNOFFSET DS F Offset of MQCD structure for client
* connection
MQCNO_CLIENTCONNPTR DS F Address of MQCD structure for client
* connection
MQCNO_CONNTAG DS XL128 Queue manager connection tag
*
MQCNO_CONNECTIONID DS XL24 Unique connection identifier
*
MQCNO_SSLCONFIGOFFSET DS F Offset of MQCSP structure for security
* parameters
MQCNO_SSLCONFIGPTR DS F Address of MQCSP structure for security
* parameters
MQCNO_LENGTH EQU *-MQCNO
 ORG MQCNO
MQCNO_AREA DS CL(MQCNO_LENGTH)
MQCNO_CCDTURLLENGTH DS F Length of string identified by CCDTURLPTR or
* CCDTURLOFFSET
MQCNO_CCDTURLOFFSET DS F Offset in bytes to URL of client connection channel
MQCNO_CCDTURLPTR DS F Pointer to string containing URL
RESERVED DS XL4 Reserved field to pad out to 64 bit boundary
APPLNAME DS CL28 Name set by the application to identify the connection to
* the queue manager
RESERVED2 DS XL4 Reserved field to pad out to 64 bit boundary

MQCNO DSECT

Developing applications reference 319

MQCNO_STRUCID DS CL4 Structure identifier
MQCNO_VERSION DS F Structure version number
MQCNO_OPTIONS DS F Options that control the action of
* MQCONNX
MQCNO_CLIENTCONNOFFSET DS F Offset of MQCD structure for client
* connection
MQCNO_CLIENTCONNPTR DS F Address of MQCD structure for client
* connection
MQCNO_CONNTAG DS XL128 Queue manager connection tag
MQCNO_CONNECTIONID DS XL24 Unique connection identifier
MQCNO_SSLCONFIGOFFSET DS F Offset of MQCSP structure for security
* parameters
MQCNO_SSLCONFIGPTR DS F Address of MQCSP structure for security
* parameters
MQCNO_LENGTH EQU *-MQCNO
 ORG MQCNO
MQCNO_AREA DS CL(MQCNO_LENGTH)
MQCNO_CCDTURLLENGTH DS F Length of string identified by CCDTURLPTR or
* CCDTURLOFFSET
MQCNO_CCDTURLOFFSET DS F Offset in bytes to URL of client connection channel
MQCNO_CCDTURLPTR DS F Pointer to string containing URL
RESERVED DS XL4 Reserved field to pad out to 64 bit boundary
APPLNAME DS CL28 Name set by the application to identify the connection to
* the queue manager
RESERVED2 DS XL4 Reserved field to pad out to 64 bit boundary
MQCNO_BALANCEPARMSOFFSET DS F Offset of the MQBMO structure
MQCNO_BALANCEPARMSPTR DS F Address of the MQBMO structure

Visual Basic declaration for MQCNO

Type MQCNO
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 Options As Long 'Options that control the action of'
 'MQCONNX'
 ClientConnOffset As Long 'Offset of MQCD structure for client'
 'connection'
 ClientConnPtr As MQPTR 'Address of MQCD structure for client'
 'connection'
 ConnTag As MQBYTE128 'Queue manager connection tag'
 SSLConfigPtr As MQPTR 'Address of MQSCO structure for client'
 'connection'
 SSLConfigOffset As Long 'Offset of MQSCO structure for client'
 'connection'
 ConnectionId As MQBYTE24 'Unique connection identifier'
 SecurityParmsOffset As Long 'Offset of MQCSP structure for security'
 'parameters'
 SecurityParmsPtr As MQPTR 'Address of MQCSP structure for security'
 'parameters'
 CCDTUrlLength As Long 'Length of string identified by CCDTUrlPtr'
 'or CCDTUrlOffset'
 CCDTUrlOffset As Long 'Offset in bytes to URL of client connection channel'
 CCDTUrlPtr As MQPTR 'Pointer to string containing URL'
 Reserved As MQBYTE4 'Reserved field to pad out to 64 bit boundary'
 ApplName As String*28 'Name set by the application to identify the connection to'
 'the queue manager'
 Reserved2 As MQBYTE4 'Reserved field to pad out to 64 bit boundary'
 End Type

Type MQCNO
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 Options As Long 'Options that control the action of'
 'MQCONNX'
 ClientConnOffset As Long 'Offset of MQCD structure for client'
 'connection'
 ClientConnPtr As MQPTR 'Address of MQCD structure for client'
 'connection'
 ConnTag As MQBYTE128 'Queue manager connection tag'
 SSLConfigPtr As MQPTR 'Address of MQSCO structure for client'
 'connection'
 SSLConfigOffset As Long 'Offset of MQSCO structure for client'
 'connection'
 ConnectionId As MQBYTE24 'Unique connection identifier'
 SecurityParmsOffset As Long 'Offset of MQCSP structure for security'
 'parameters'

320 IBM MQ Developing Applications Reference

 SecurityParmsPtr As MQPTR 'Address of MQCSP structure for security'
 'parameters'
 CCDTUrlLength As Long 'Length of string identified by CCDTUrlPtr'
 'or CCDTUrlOffset'
 CCDTUrlOffset As Long 'Offset in bytes to URL of client connection channel'
 CCDTUrlPtr As MQPTR 'Pointer to string containing URL'
 Reserved As MQBYTE4 'Reserved field to pad out to 64 bit boundary'
 ApplName As String*28 'Name set by the application to identify the connection to'
 'the queue manager'
 Reserved2 As MQBYTE4 'Reserved field to pad out to 64 bit boundary'
 BalanceParmsOffset As Long 'Offset in bytes to MQBNO structure'
 BalanceParmsPtr As MQPTR 'Address of MQBNO structure'
 End Type

Related tasks
Using MQCONNX

StrucId (MQCHAR4)
StrucId is always an input field. Its initial value is MQCNO_STRUC_ID.

The value must be:
MQCNO_STRUC_ID

Identifier for connect-options structure.

For the C programming language, the constant MQCNO_STRUC_ID_ARRAY is also defined; this
constant has the same value as MQCNO_STRUC_ID, but is an array of characters instead of a string.

Version (MQLONG)
Version is always an input field. Its initial value is MQCNO_VERSION_1.

The value must be one of the following:
MQCNO_VERSION_1

Version-1 connect-options structure.
MQCNO_VERSION_2

Version-2 connect-options structure.
MQCNO_VERSION_3

Version-3 connect-options structure.
MQCNO_VERSION_4

Version-4 connect-options structure.
MQCNO_VERSION_5

Version-5 connect-options structure.
MQCNO_VERSION_6

Version-6 connect-options structure.
MQCNO_VERSION_7

Version-7 connect-options structure.

MQCNO_VERSION_8
Version-8 connect-options structure.

Fields that exist only in the more-recent versions of the structure are identified as such in the descriptions
of the fields. The following constant specifies the version number of the current version:
MQCNO_CURRENT_VERSION

Current version of connect-options structure.

Options (MQLONG)
Options that control the action of MQCONNX.

Accounting options

Developing applications reference 321

The following options control the type of accounting if the AccountingConnOverride queue manager
attribute is set to MQMON_ENABLED:
MQCNO_ACCOUNTING_MQI_ENABLED

When monitoring data collection is disabled in the queue manager definition by setting the
MQIAccounting attribute to MQMON_OFF, setting this flag enables MQI accounting data collection.

MQCNO_ACCOUNTING_MQI_DISABLED
When monitoring data collection is disabled in the queue manager definition by setting the
MQIAccounting attribute to MQMON_OFF, setting this flag stops MQI accounting data collection.

MQCNO_ACCOUNTING_Q_ENABLED
When queue-accounting data collection is disabled in the queue manager definition by setting the
MQIAccounting attribute to MQMON_OFF, setting this flag enables accounting data collection for
those queues that specify a queue manager in the MQIAccounting field of their queue definition.

MQCNO_ACCOUNTING_Q_DISABLED
When queue-accounting data collection is disabled in the queue manager definition by setting the
MQIAccounting attribute to MQMON_OFF, setting this flag switches off accounting data collection for
those queues that specify a queue manager in the MQIAccounting field of their queue definition.

If none of these flags are defined, the accounting for the connection is as defined in the queue
manager attributes.

Binding options
The following options control the type of IBM MQ binding to use. Specify only one of these options:

MQCNO_STANDARD_BINDING
The application and the local queue manager agent (the component that manages queuing
operations) run in separate units of execution (typically, in separate processes). This arrangement
maintains the integrity of the queue manager; that is, it protects the queue manager from errant
programs.

If the queue manager supports multiple binding types, and you set MQCNO_STANDARD_BINDING,
the queue manager uses the DefaultBindType attribute in the Connection stanza in the qm.ini
file to select the actual type of binding. If this stanza is not defined, or the value cannot be used or
is not appropriate for the application, the queue manager selects an appropriate binding type. The
queue manager sets the actual binding type used in the connect options.

Use MQCNO_STANDARD_BINDING in situations where the application might not have been fully
tested, or might be unreliable or untrustworthy. MQCNO_STANDARD_BINDING is the default.

This option is supported in all environments.

If you are linking to the mqm library, then a standard server connection using the default bind type is
attempted first. If the underlying server library failed to load, a client connection is attempted instead.

• To change the behavior of MQCONN (or MQCONNX if MQCNO_STANDARD_BINDING is specified),
set the MQ_CONNECT_TYPE environment variable to one of the following options. Note that there
is an exception to this: If MQCNO_FASTPATH_BINDING is specified with MQ_CONNECT_TYPE set
to LOCAL or STANDARD, fastpath connections can be downgraded by the administrator without a
related change to the application.

Table 481. Values for MQ_CONNECT_TYPE that change the behavior of MQCONN or MQCONNX

Value Meaning

CLIENT A client connection only is attempted.

FASTPATH This value was supported in previous releases, but is
now ignored if specified.

322 IBM MQ Developing Applications Reference

Table 481. Values for MQ_CONNECT_TYPE that change the behavior of MQCONN or MQCONNX (continued)

Value Meaning

LOCAL A server connection only is attempted. Fastpath
connections are downgraded to a standard server
connection.

STANDARD Supported for compatibility with previous releases.
This value is now treated as LOCAL.

• If the MQ_CONNECT_TYPE environment variable is not set when MQCONNX is called, a standard
server connection using the default bind type is attempted. If the server library fails to load, a client
connection is attempted.

MQCNO_FASTPATH_BINDING
The application and the local queue manager agent are part of the same unit of execution. This is in
contrast to the typical method of binding, where the application and the local queue manager agent
run in separate units of execution.

MQCNO_FASTPATH_BINDING is ignored if the queue manager does not support this type of binding;
processing continues as though the option had not been specified.

MQCNO_FASTPATH_BINDING can be of advantage in situations where multiple processes consume
more resources than the overall resource used by the application. An application that uses the
fastpath binding is known as a trusted application.

Consider the following important points when deciding whether to use the fastpath binding:

• Using the MQCNO_FASTPATH_BINDING option does not prevent an application altering or
corrupting messages and other data areas belonging to the queue manager. Use this option only
in situations where you have fully evaluated these issues.

• The application must not use asynchronous signals or timer interrupts (such as sigkill) with
MQCNO_FASTPATH_BINDING. There are also restrictions on the use of shared memory segments.

• The application must use the MQDISC call to disconnect from the queue manager.
• The application must finish before you end the queue manager with the endmqm command.

• On IBM i, the job must run under a user profile that belongs to the QMQMADM group.
Also, the program must not stop abnormally, otherwise unpredictable results can occur.

• On AIX and Linux, the mqm user identifier must be the effective user
identifier, and the mqm group identifier must be the effective group identifier. To make the
application run in this way, configure the program so that it is owned by the mqm user identifier
and mqm group identifier, and then set the setuid and setgid permission bits on the program.

The IBM MQ Object Authority Manager (OAM) still uses the real user ID for authority checking.

• On Windows, the program must be a member of the mqm group. Fastpath binding is not
supported for 64 bit applications.

The MQCNO_FASTPATH_BINDING option is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

 On z/OS, the option is accepted but ignored.

Developing applications reference 323

For more information about the implications of using trusted applications, see Restrictions for trusted
applications.

MQCNO_SHARED_BINDING

With MQCNO_SHARED_BINDING, the application and the local queue manager agent share some
resources. MQCNO_SHARED_BINDING is ignored if the queue manager does not support this type of
binding. Processing continues as though the option had not been specified.

MQCNO_ISOLATED_BINDING

In this case, the application process and the local queue manager agent are isolated from each other
in that they do not share resources. MQCNO_ISOLATED_BINDING is ignored if the queue manager
does not support this type of binding. Processing continues as though the option had not been
specified.

MQCNO_CLIENT_BINDING

Specify this option to make the application attempt a client connection only. This option has the
following limitations:

• MQCNO_CLIENT_BINDING is ignored on z/OS.
• MQCNO_CLIENT_BINDING is rejected with MQRC_OPTIONS_ERROR if it is specified with any

MQCNO binding option other than MQCNO_STANDARD_BINDING.
• MQCNO_CLIENT_BINDING is not available for Java or .NET as they have their own mechanisms for

choosing the bind type.

MQCNO_LOCAL_BINDING

Specify this option to make the application attempt a server connection. If either
MQCNO_FASTPATH_BINDING, MQCNO_ISOLATED_BINDING, or MQCNO_SHARED_BINDING is also
specified, then the connection is of that type instead, and is documented in this section. Otherwise
a standard server connection is attempted using the default bind type. MQCNO_LOCAL_BINDING has
the following limitations:

• MQCNO_LOCAL_BINDING is ignored on z/OS.
• MQCNO_LOCAL_BINDING is rejected with MQRC_OPTIONS_ERROR if it is specified with any

MQCNO reconnect option other than MQCNO_RECONNECT_AS_DEF.
• MQCNO_LOCAL_BINDING is not available for Java or .NET as they have their own mechanisms for

choosing the bind type.

On the following platforms, you can use the environment variable MQ_CONNECT_TYPE with the bind type
specified by the Options field, to control the type of binding used.

• AIX

• Linux

• Windows

If you specify this environment variable, it must have the value FASTPATH or STANDARD ; if it has a
different value, it is ignored. The value of the environment variable is case sensitive; see MQCONNX
environment variable for more information.

The environment variable and Options field interact as follows:

• If you omit the environment variable, or give it a value that is not supported, use of the fastpath binding
is determined solely by the Options field.

• If you give the environment variable a supported value, the fastpath binding is used only if both the
environment variable and Options field specify the fastpath binding.

324 IBM MQ Developing Applications Reference

Connection-tag options

These options are supported only when connecting to a z/OS queue manager and they
control the use of the connection tag ConnTag. You can specify only one of these options.

The precise implementation of connection tags differs between IBM MQ for z/OS and IBM
MQ for Multiplatforms:

• The following options, apart from MQCNO_GENERATE_CONN_TAG, are supported only
when connecting to a z/OS queue manager and they control the use of the connection tag. You can
specify only one of the supported options.

• MQCNO_GENERATE_CONN_TAG is supported only on platforms other than z/OS.

MQCNO_GENERATE_CONN_TAG
Returns the connection tag that the queue manager has associated with this connection, in the output
MQCNO structure.
The connection tag returned will be identical for all connections which the queue manager considers
as a single Application Instance.

MQCNO_SERIALIZE_CONN_TAG_Q_MGR

This option requests exclusive use of the connection tag within the local queue manager. If the
connection tag is already in use in the local queue manager, the MQCONNX call fails with reason
code MQRC_CONN_TAG_IN_USE. The outcome of the call is not affected by using the connection tag
elsewhere in the queue sharing group to which the local queue manager belongs.

MQCNO_SERIALIZE_CONN_TAG_QSG

This option requests exclusive use of the connection tag within the queue sharing group to which the
local queue manager belongs. If the connection tag is already in use in the queue sharing group, the
MQCONNX call fails with reason code MQRC_CONN_TAG_IN_USE.

MQCNO_RESTRICT_CONN_TAG_Q_MGR

This option requests shared use of the connection tag within the local queue manager. If the
connection tag is already in use in the local queue manager, the MQCONNX call can succeed if the
requesting application is running in the same processing scope as the existing user of the tag. If this
condition is not satisfied, the MQCONNX call fails with reason code MQRC_CONN_TAG_IN_USE. The
outcome of the call is not affected by use of the connection tag elsewhere in the queue sharing group
to which the local queue manager belongs.

• Applications must run within the same MVS address space to share the connection tag. If the
application using the connection tag is a client application, MQCNO_RESTRICT_CONN_TAG_Q_MGR
is not allowed.

MQCNO_RESTRICT_CONN_TAG_QSG

This option requests shared use of the connection tag within the queue sharing group to which the
local queue manager belongs. If the connection tag is already in use in the queue sharing group, the
MQCONNX call can succeed provided the requesting application is running in the same processing
scope and is connected to the same queue manager, as the existing user of the tag.

If these conditions are not satisfied, the MQCONNX call fails with reason code
MQRC_CONN_TAG_IN_USE.

• Applications must run within the same MVS address space to share the connection tag. If the
application using the connection tag is a client application, MQCNO_RESTRICT_CONN_TAG_QSG is
not allowed.

If none of these options are specified, ConnTag is not used. These options are not valid if Version is
less than MQCNO_VERSION_3.

Developing applications reference 325

Handle-sharing options

These options are supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

They control the sharing of handles between different threads (units of parallel processing) within the
same process. You can specify only one of these options:
MQCNO_HANDLE_SHARE_NONE

This option indicates that connection and object handles can be used only by the thread that caused
the handle to be allocated (that is, the thread that issued the MQCONN, MQCONNX , or MQOPEN call).
The handles cannot be used by other threads belonging to the same process.

MQCNO_HANDLE_SHARE_BLOCK

This option indicates that connection and object handles allocated by one thread of a process can be
used by other threads belonging to the same process. However, only one thread at a time can use any
particular handle; that is, only serial use of a handle is permitted. If a thread tries to use a handle that
is already in use by another thread, the call blocks (waits) until the handle becomes available.

MQCNO_HANDLE_SHARE_NO_BLOCK

This is the same as MQCNO_HANDLE_SHARE_BLOCK, except that if the handle is in use by another
thread, the call completes immediately with MQCC_FAILED and MQRC_CALL_IN_PROGRESS instead
of blocking until the handle becomes available.

A thread can have zero or one non-shared handles:

• Each MQCONN or MQCONNX call that specifies MQCNO_HANDLE_SHARE_NONE returns a new
nonshared handle on the first call, and the same non-shared handle on the second and later calls
(assuming no intervening MQDISC call). The reason code is MQRC_ALREADY_CONNECTED for the
second and later calls.

• Each MQCONNX call that specifies MQCNO_HANDLE_SHARE_BLOCK or
MQCNO_HANDLE_SHARE_NO_BLOCK returns a new shared handle on each call.

Object handles inherit the same sharing properties as the connection handle specified on the MQOPEN
call that created the object handle. Also, units of work inherit the same sharing properties as the
connection handle used to start the unit of work; if the unit of work is started in one thread using a
shared handle, the unit of work can be updated in another thread using the same handle.

If you do not specify a handle-sharing option, the default is determined by the environment:

• In the Microsoft Transaction Server (MTS) environment, the default is the same as
MQCNO_HANDLE_SHARE_BLOCK.

• In other environments, the default is the same as MQCNO_HANDLE_SHARE_NONE.

Reconnection options

Reconnection options determine if a connection is reconnectable. Only client connections are
reconnectable.

326 IBM MQ Developing Applications Reference

MQCNO_RECONNECT_AS_DEF

The reconnection option is resolved to its default value. If no default is set, the value of this option
resolves to DISABLED. The value of the option is passed to the server, and can be queried by PCF and
MQSC.

MQCNO_RECONNECT

The application can be reconnected to any queue manager consistent with the value of the QmgrName
parameter of MQCONNX. Use the MQCNO_RECONNECT option only if there is no affinity between the
client application and the queue manager with which it initially established a connection. The value of
the option is passed to the server, and can be queried by PCF and MQSC.

MQCNO_RECONNECT_DISABLED

The application cannot be reconnected. The value of the option is not passed to the server.

MQCNO_RECONNECT_Q_MGR

The application can be reconnected only to the queue manager with which it originally connected. Use
this value if a client can be reconnected, but there is an affinity between the client application and the
queue manager with which it originally established a connection. Choose this value if you want a client
to automatically reconnect to the standby instance of a highly available queue manager. The value of
the option is passed to the server, and can be queried by PCF and MQSC.

Use the options MQCNO_RECONNECT, MQCNO_RECONNECT_DISABLED and
MQCNO_RECONNECT_Q_MGR only for client connections. If the options are used for a
binding connection, MQCONNX fails with completion code MQCC_FAILED and reason code
MQRC_OPTIONS_ERROR. Automatic client reconnect is not supported by IBM MQ classes for Java

Conversation-sharing options

The following options apply only to TCP/IP client connections. For SNA, SPX and NetBios channels, these
values are ignored and the channel runs as in previous versions of the product
MQCNO_NO_CONV_SHARING

This option does not permit conversation sharing.

You might use MQCNO_NO_CONV_SHARING in situations where conversations are heavily loaded and,
therefore, where contention is a possibility on the server-connection end of the channel instance on
which the sharing conversations exist. MQCNO_NO_CNV_SHARING behaves like sharecnv(1) when
connected to a channel that supports conversation sharing, and sharecnv(0) when connected to a
channel that does not support conversation sharing.

MQCNO_ALL_CONVS_SHARE

This option permits conversation sharing; the application does not place any limit on the number of
connections on the channel instance. This option is the default value.

If the application indicates that the channel instance can share, but the SharingConversations
(SHARECNV) definition on the server-connection end of the channel is set to one, no sharing occurs
and no warning is given to the application.

Similarly, if the application indicates that sharing is permitted but the server-connection
SharingConversations definition is set to zero, no warning is given, and the application exhibits
the same behavior as a client in versions earlier than IBM WebSphere MQ 7.0; the application setting
relating to sharing conversations is ignored.

MQCNO_NO_CONV_SHARING and MQCNO_ALL_CONVS_SHARE are mutually exclusive. If both options
are specified on a particular connection, the connection is rejected with a reason code of
MQRC_OPTIONS_ERROR.

Developing applications reference 327

Channel definition options

The following options control the use of the channel definition structure passed in the MQCNO:
MQCNO_CD_FOR_OUTPUT_ONLY

This option permits channel definition structure in the MQCNO to be used only to return the channel
name used on a successful MQCONNX call.

If a valid channel definition structure is not provided, the call fails with the reason code
MQRC_CD_ERROR.

If the application is not running as a client, the option is ignored.

The returned channel name can be used on a subsequent MQCONNX call using the
MQCNO_USE_CD_SELECTION option to reconnect using the same channel definition. This can be
useful when there are multiple applicable channel definitions in the client channel table.

MQCNO_USE_CD_SELECTION

This option permits MQCONNX call to connect using the channel name contained in the channel
definition structure passed in the MQCNO.

If the MQSERVER environment variable is set, the channel definition defined by it is used. If
MQSERVER is not set, the client channel table is used.

If a channel definition with matching channel name and queue manager name is not found, the call
fails with reason code MQRC_Q_MGR_NAME_ERROR.

If a valid channel definition structure is not provided, the call fails with the reason code
MQRC_CD_ERROR.

If the application is not running as a client, the option is ignored.

Default option
If you require none of the options described above, you can use the following option:
MQCNO_NONE

No options are specified.

Use MQCNO_NONE to aid program documentation. It is not intended that this option is used with any
other MQCNO_* option, but because its value is zero, such use cannot be detected.

ClientConnOffset (MQLONG)
ClientConnOffset is the offset in bytes of an MQCD channel definition structure from the start of the
MQCNO structure. The offset can be positive or negative. This field is an input field with an initial value of
0.

Use ClientConnOffset only when the application issuing the MQCONNX call is running as an IBM MQ
MQI client. For information about how to use this field, see the description of the ClientConnPtr field.

This field is ignored if Version is less than MQCNO_VERSION_2.

ClientConnPtr (MQPTR)
ClientConnPtr is an input field. Its initial value is the null pointer in those programming languages that
support pointers, and an all-null byte string otherwise.

Use ClientConnOffset and ClientConnPtr only when the application issuing the MQCONNX call is
running as an IBM MQ MQI client. By specifying one or other of these fields, the application can control
the definition of the client connection channel by providing an MQCD channel definition structure that
contains the values required.

328 IBM MQ Developing Applications Reference

If the application is running as an IBM MQ MQI client, but does not provide an MQCD structure, the
MQSERVER environment variable is used to select the channel definition. If MQSERVER is not set, the client
channel table is used.

If the application is not running as an IBM MQ MQI client, ClientConnOffset and ClientConnPtr are
ignored.

If the application provides an MQCD structure, set the fields listed to the values required; other fields
in MQCD are ignored. You can pad character strings with blanks to the length of the field, or terminated
them with a null character. See “Fields” on page 1468 for more information about the fields in the MQCD
structure.

Table 482. Fields in MQCD

Field in MQCD Value

ChannelName Channel name.

Version Structure version number. Must not be less than MQCD_VERSION_7.

TransportType Any supported transport type.

ModeName LU 6.2 mode name.

TpName LU 6.2 transaction program name.

SecurityExit Name of channel security exit.

SendExit Name of channel send exit.

ReceiveExit Name of channel receive exit.

MaxMsgLength Maximum length in bytes of messages that can be sent over the client
connection channel.

SecurityUserData User data for security exit.

SendUserData User data for send exit.

ReceiveUserData User data for receive exit.

UserIdentifier User identifier to be used to establish an LU 6.2 session.

Password Password to be used to establish an LU 6.2 session.

ConnectionName Connection name.

HeartbeatInterval Time in seconds between heartbeat flows.

StrucLength Length of the MQCD structure.

ExitNameLength Length of exit names addressed by SendExitPtr and
ReceiveExitPtr. Must be greater than zero if SendExitPtr or
ReceiveExitPtr is set to a value that is not the null pointer.

ExitDataLength Length of exit data addressed by SendUserDataPtr and
ReceiveUserDataPtr. Must be greater than zero if SendUserDataPtr
or ReceiveUserDataPtr is set to a value that is not the null pointer.

SendExitsDefined Number of send exits addressed by SendExitPtr. If zero, SendExit
and SendUserData provide the exit name and data. If greater than zero,
SendExitPtr and SendUserDataPtr provide the exit names and data,
and SendExit and SendUserData must be blank.

ReceiveExitsDefined Number of receive exits addressed by ReceiveExitPtr. If zero,
ReceiveExit and ReceiveUserData provide the exit name and data.
If greater than zero, ReceiveExitPtr and ReceiveUserDataPtr
provide the exit names and data, and ReceiveExit and
ReceiveUserData must be blank.

Developing applications reference 329

Table 482. Fields in MQCD (continued)

Field in MQCD Value

SendExitPtr Address of name of first send exit.

SendUserDataPtr Address of data for first send exit.

ReceiveExitPtr Address of name of first receive exit.

ReceiveUserDataPtr Address of data for first receive exit.

LongRemoteUserIdLength Length of long remote user identifier.

LongRemoteUserIdPtr Address of long remote user identifier.

RemoteSecurityId Remote security identifier.

SSLCipherSpec TLS CipherSpec.

SSLPeerNamePtr Address of TLS peer name.

SSLPeerNameLength Length of TLS peer name.

KeepAliveInterval Value passed to the communications stack for keepalive timing for the
channel

LocalAddress The local communications address, including the IP address of the
local network adapter to use, and a range of ports to use for outgoing
connections.

Provide the channel definition structure in one of two ways:

• By using the offset field ClientConnOffset

In this case, the application must declare a compound structure containing an MQCNO followed by the
channel definition structure MQCD, and set ClientConnOffset to the offset of the channel definition
structure from the start of the MQCNO. Ensure that this offset is correct. ClientConnPtr must be set
to the null pointer or null bytes.

Use ClientConnOffset for programming languages that do not support the pointer data type, or that
implement the pointer data type in a way that is not portable to different environments (for example,
the COBOL programming language).

For the Visual Basic programming language, a compound structure called MQCNOCD is provided in the
header file CMQXB.BAS; this structure contains an MQCNO structure followed by an MQCD structure.
Initialize MQCNOCD by invoking the MQCNOCD_DEFAULTS subroutine. MQCNOCD is used with the
MQCONNXAny variant of the MQCONNX call; see the description of the MQCONNX call for further
details.

• By using the pointer field ClientConnPtr

In this case, the application can declare the channel definition structure separately from the
MQCNO structure, and set ClientConnPtr to the address of the channel definition structure. Set
ClientConnOffset to zero.

Use ClientConnPtr for programming languages that support the pointer data type in a way that is
portable to different environments (for example, the C programming language).

In the C programming language, you can use the macro variable MQCD_CLIENT_CONN_DEFAULT to
provide initial values for the structure that are more suitable for use on the MQCONNX call than the
initial values provided by MQCD_DEFAULT.

Whichever technique you choose, you can use only one of ClientConnOffset and ClientConnPtr ;
the call fails with reason code MQRC_CLIENT_CONN_ERROR if both are nonzero.

When the MQCONNX call has completed, the MQCD structure is not referenced again.

This field is ignored if Version is less than MQCNO_VERSION_2.

330 IBM MQ Developing Applications Reference

Note: On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length, with the initial value being the all-null byte string.

ConnTag (MQBYTE128) on Multiplatforms
A connection tag is conceptually similar to a connection identifier, but might span multiple related
connections, identifying them as a single application instance. On Multiplatforms, the connection tag
is generated by the queue manager at connection time.

For more information, see connection identifier and application instance.

Generated connection tags are semi human readable. That is, they can be displayed and filtered in
MQSC as if strings in the local character set. Connections that are known by IBM MQ to be related are
automatically assigned the same connection tag. This assignment is particularly important to application
balancing.

The generated connection tag is visible in three ways:

• In the output MQCNO structure on an MQCONNX call, when MQCNO_GENERATE_CONN_TAG is
specified.

• In the output from DISPLAY CONN (or programmatic equivalents).
• In the output from DISPLAY APSTATUS (or equivalents).

The tag ceases to be valid when the application terminates or issues the MQDISC call.

Related reference
“ConnTag (MQBYTE128) on IBM MQ for z/OS” on page 331
A connection tag is conceptually similar to a connection identifier, but might span multiple related
connections, identifying them as a single application instance. On IBM MQ for z/OS, the connection tag is
an input field, provided by the application and used in conjunction with MQCNO_*_CONN_TAG options to
serialize connections from that application instance

ConnTag (MQBYTE128) on IBM MQ for z/OS
A connection tag is conceptually similar to a connection identifier, but might span multiple related
connections, identifying them as a single application instance. On IBM MQ for z/OS, the connection tag is
an input field, provided by the application and used in conjunction with MQCNO_*_CONN_TAG options to
serialize connections from that application instance

Where there are multiple instances of an application that are intended to be simultaneously connected,
they must each supply a unique value for this field. See the descriptions of these connection tag options
for further details.

Notes:

• On IBM MQ for z/OS, there is no way to administratively determine the connection tag associated with
an application at runtime.

• Connection tag values beginning with MQ in upper, lower, or mixed case in either ASCII or EBCDIC are
reserved for use by IBM products. Do not use connection tag values beginning with these letters.

Use the following special value if you require no tag:
MQCT_NONE

The value is binary zero for the length of the field.

For the C programming language, the constant MQCT_NONE_ARRAY is also defined; this constant has
the same value as MQCT_NONE, but is an array of characters instead of a string.

The ConnTag field is used when connecting to a z/OS queue manager.

The length of this field is given by MQ_CONN_TAG_LENGTH. This field is ignored if Version is less than
MQCNO_VERSION_3.

See “ConnTag (MQBYTE128) on Multiplatforms” on page 331 for information on using the
connection tag on IBM MQ for Multiplatforms.

Developing applications reference 331

SSLConfigPtr (PMQSCO)
SSLConfigPtr is an input field. Its initial value is the null pointer in those programming languages that
support pointers, and an all-null byte string otherwise.

Use SSLConfigPtr and SSLConfigOffset only when the application issuing the MQCONNX call is
running as an IBM MQ MQI client and the channel protocol is TCP/IP. If the application is not running
as an IBM MQ client, or the channel protocol is not TCP/IP, SSLConfigPtr and SSLConfigOffset are
ignored.

By specifying SSLConfigPtr or SSLConfigOffset, plus either ClientConnPtr or
ClientConnOffset, the application can control the use of TLS for the client connection. When the TLS
information is specified in this way, the environment variables MQSSLKEYR and MQSSLCRYP are ignored;
any TLS-related information in the client channel definition table (CCDT) is also ignored.

The TLS information can be specified only on:

• The first MQCONNX call of the client process, or
• A subsequent MQCONNX call when all previous TLS connections to the queue manager have been

concluded using MQDISC.

These are the only states in which the process-wide TLS environment can be initialized. If an MQCONNX
call is issued specifying TLS information when the TLS environment already exists, the TLS information
on the call is ignored and the connection is made using the existing TLS environment; the call returns
completion code MQCC_WARNING and reason code MQRC_SSL_ALREADY_INITIALIZED in this case.

You can provide the MQSCO structure in the same way as the MQCD structure, either by specifying an
address in SSLConfigPtr, or by specifying an offset in SSLConfigOffset ; see the description of
ClientConnPtr for details of how to do this. However, you can use no more than one of SSLConfigPtr
and SSLConfigOffset ; the call fails with reason code MQRC_SSL_CONFIG_ERROR. if both are nonzero.

Once the MQCONNX call has completed, the MQSCO structure is not referenced again.

This field is ignored if Version is less than MQCNO_VERSION_4.

Note: On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length.

SSLConfigOffset (MQLONG)
SSLConfigOffset is the offset in bytes of an MQSCO structure from the start of the MQCNO structure. The
offset can be positive or negative. This field is an input field, with an initial value of 0.

Use SSLConfigOffset only when the application issuing the MQCONNX call is running as an IBM MQ
MQI client. For information about how to use this field, see the description of the SSLConfigPtr field.

This field is ignored if Version is less than MQCNO_VERSION_4.

ConnectionId (MQBYTE24)
ConnectionId is a unique 24-byte identifier that allows IBM MQ to reliably identify an application. An
application can use this identifier for correlation in PUT and GET calls. This output parameter has an initial
value of 24 null bytes in all programming languages.

The queue manager assigns a unique ID to all connections, however they are established. If an MQCONNX
establishes the connection with a version 5 MQCNO, the application can determine the ConnectionId from
the returned MQCNO. The assigned identifier is guaranteed to be unique among all other identifiers that
IBM MQ generates, such as CorrelId, MsgID, and GroupId.

Use the ConnectionId to identify long running units of work using the PCF command Inquire Connection
or the MQSC command DISPLAY CONN. The ConnectionId used by MQSC commands (CONN) is derived
from the ConnectionId returned here. The PCF Inquire and Stop Connection commands can use the
ConnectionId returned here without modification.

332 IBM MQ Developing Applications Reference

You can use the ConnectionId to force the end of a long running unit of work, by specifying the
ConnectionId using the PCF command Stop Connection or the MQSC command STOP CONN. See Stop
Connection and STOP CONN for more information about using these commands.

This field is not returned if Version is less than MQCNO_VERSION_5.

The length of this field is given by MQ_CONNECTION_ID_LENGTH.

SecurityParmsOffset (MQLONG)
SecurityParmsOffset is the offset in bytes of the MQCSP structure from the start of the MQCNO structure.
The offset can be positive or negative. This field is an input field, with an initial value of 0.

This field is ignored if Version is less than MQCNO_VERSION_5.

The MQCSP structure is defined in “MQCSP - Security parameters” on page 335.

SecurityParmsPtr (PMQCSP)
SecurityParmsPtr is the address of the MQCSP structure, used to specify a user ID and password for
authentication by the authorization service. This field is an input field, and its initial value is a null pointer
or null bytes.

This field is ignored if Version is less than MQCNO_VERSION_5.

The MQCSP structure is defined in “MQCSP - Security parameters” on page 335.

Reserved (MQBYTE4)
A reserved field to pad the structure out to a 64-bit boundary. The initial value of the field is binary zero
for the length of the field.

This field is ignored if Version is less than MQCNO_VERSION_6.

CCDTUrlLength (MQLONG)
CCDTUrlLength is the length of the string identified by either CCDTUrlPtr or CCDTUrlOffset which contains
a URL that identifies the location of the client connection channel table to use for the connection. The
initial value of the field is zero.

Use CCDTUrlLength only when the application issuing the MQCONNX call is running as an IBM MQ MQI
client.

This is a programmatic alternative to setting the MQCHLLIB and MQCHLTAB environment variables.

If the application is not running as an client, CCDTUrlLength is ignored.

This field is ignored if Version is less than MQCNO_VERSION_6.

CCDTUrlPtr (PMQCHAR)
CCDTUrlPtr is an optional pointer to a string which contains a URL, to identify the location of the client
connection channel table to use for the connection.. This field is an input field, with an initial value of a
null pointer in programming languages that support pointers, and an all-null byte string otherwise.

Use CCDTUrlPtr only when the application issuing the MQCONNX call is running as an IBM MQ MQI
client.

Important: You can use only one of CCDTUrlPtr and CCDTUrlOffset. The call fails with reason code
MQRC_CCDT_URL_ERROR if both fields are nonzero.

This is a programmatic alternative to setting the MQCHLLIB and MQCHLTAB environment variables.

If the application is not running as an client, CCDTUrlPtr is ignored.

This field is ignored if Version is less than MQCNO_VERSION_6.

Developing applications reference 333

CCDTUrlOffset (MQLONG)
CCDTUrlOffset is the offset in bytes, from the start of the MQCNO structure, to a string which contains a
URL that identifies the location of the client connection channel table to use for the connection. The offset
can be positive or negative and the initial value of the field is zero.

Use CCDTUrlOffset only when the application issuing the MQCONNX call is running as an IBM MQ MQI
client.

Important: You can use only one of CCDTUrlPtr and CCDTUrlOffset. The call fails with reason code
MQRC_CCDT_URL_ERROR if both fields are nonzero.

This is a programmatic alternative to setting the MQCHLLIB and MQCHLTAB environment variables.

If the application is not running as an client, CCDTUrlOffset is ignored.

This field is ignored if Version is less than MQCNO_VERSION_6.

ApplName (MQCHAR28)
The name set by the application to identify the connection to the queue manager. The initial value of the
field is MQAN_NONE_ARRAY (blank characters).

This field is ignored if Version is less than MQCNO_VERSION_7, or if the value is set to blanks.

You cannot set this field on z/OS. If you attempt to do so, you receive the
MQRC_CNO_ERROR reason code back.

Reserved2 (MQBYTE4)
A reserved field to pad the structure out to a 64-bit boundary. The initial value of the field is binary zero
for the length of the field.

This field is ignored if Version is less than MQCNO_VERSION_7.

BalanceParmsOffset (MQLONG)
The memory location for a structure of type MQBNO which contains information about the balancing
behavior of the application. The structure is ignored entirely unless the application is connecting over a
client channel.

This field is ignored if Version is less than MQCNO_VERSION_8.

See MQBNO for more information.

If you provide this field you cannot provide the “BalanceParmsPtr (MQPTR)” on page 334 field. If you
attempt to provide both fields you receive an MQRC_CNO_ERROR. As this field is relevant only to client
connections, providing this field on any other connection type also results in MQRC_CNO_ERROR.

BalanceParmsPtr (MQPTR)
Pointer to the memory location for a structure of type MQBNO which contains information about
the balancing behavior of the application. The structure is ignored entirely unless the application is
connecting over a client channel.

This field is ignored if Version is less than MQCNO_VERSION_8.

See MQBNO for more information.

If you provide this field you cannot provide the “BalanceParmsOffset (MQLONG)” on page 334 field. If you
attempt to provide both fields you receive an MQRC_CNO_ERROR. As this field is relevant only to client
connections, providing this field on any other connection type also results in MQRC_CNO_ERROR.

334 IBM MQ Developing Applications Reference

MQCSP - Security parameters
The MQCSP structure enables the authorization service to authenticate a user ID and password. You
specify the MQCSP connection security parameters structure on an MQCONNX call.

Warning: In some cases, the password in an MQCSP structure for a client application is sent over the
network in plain text. To ensure that client application passwords are protected appropriately, see MQCSP
password protection.

Availability
The MQCSP structure is available on all supported IBM MQ platforms.

Character set and encoding
Data in MQCSP must be in the character set and encoding of the local queue manager, these are given by
the CodedCharSetId queue manager attribute and MQENC_NATIVE, respectively.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 483. Fields in MQCSP

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQCSP_STRUC_ID 'CSP¬'

Version (structure version number) MQCSP_VERSION_1 1

AuthenticationType (type of authentication) None MQCSP_AUTH_NONE

Reserved1 (required for pointer alignment on IBM
i)

None Null string or blanks

CSPUserIdPtr (address of user ID) None Null pointer or null bytes

CSPUserIdOffset (offset of user ID) None 0

CSPUserIdLength (length of user ID) None 0

Reserved2 (required for pointer alignment on IBM
i)

None Null string or blanks

CSPPasswordPtr (address of password) None Null pointer or null bytes

CSPPasswordOffset (offset of password) None 0

CSPPasswordLength (length of password) None 0

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQCSP_DEFAULT contains the values that are

listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQCSP MyCSP = {MQCSP_DEFAULT};

Developing applications reference 335

Language declarations
C declaration for MQCSP

typedef struct tagMQCSP MQCSP;
struct tagMQCSP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG AuthenticationType; /* Type of authentication */
 MQBYTE4 Reserved1; /* Required for IBM i pointer
 alignment */
 MQPTR CSPUserIdPtr; /* Address of user ID */
 MQLONG CSPUserIdOffset; /* Offset of user ID */
 MQLONG CSPUserIdLength; /* Length of user ID */
 MQBYTE8 Reserved2; /* Required for IBM i pointer
 alignment */
 alignment */
 MQPTR CSPPasswordPtr; /* Address of password */
 MQLONG CSPPasswordOffset; /* Offset of password */
 MQLONG CSPPasswordLength; /* Length of password */
 };

COBOL declaration for MQCSP

** MQCSP structure
 10 MQCSP.
** Structure identifier
 15 MQCSP-STRUCID PIC X(4).
** Structure version number
 15 MQCSP-VERSION PIC S9(9) BINARY.
** Type of authentication
 15 MQCSP-AUTHENTICATIONTYPE PIC S9(9) BINARY.
** Required for IBM i pointer alignment
 15 MQCSP-RESERVED1 PIC X(4).
** Address of user ID
 15 MQCSP-CSPUSERIDPTR POINTER.
** Offset of user ID
 15 MQCSP-CSPUSERIDOFFSET PIC S9(9) BINARY.
** Length of user ID
 15 MQCSP-CSPUSERIDLENGTH PIC S9(9) BINARY.
** Required for IBM i pointer alignment
 15 MQCSP-RESERVED2 PIC X(4).
** Address of password
 15 MQCSP-CSPPASSWORDPTR POINTER.
** Offset of password
 15 MQCSP-CSPPASSWORDOFFSET PIC S9(9) BINARY.
** Length of password
 15 MQCSP-CSPPASSWORDLENGTH PIC S9(9) BINARY.

PL/I declaration for MQCSP

dcl
 1 MQCSP based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 AuthenticationType fixed bin(31), /* Type of authentication */
 3 Reserved1 char(4), /* Required for IBM i pointer
 alignment */
 3 CSPUserIdPtr pointer, /* Address of user ID */
 3 CSPUserIdOffset fixed bin(31), /* Offset of user ID */
 3 CSPUserIdLength fixed bin(31), /* Length of user ID */
 3 Reserved2 char(8), /* Required for IBM i pointer
 alignment */
 3 CSPPasswordPtr pointer, /* Address of password */
 3 CSPPasswordOffset fixed bin(31), /* Offset of user ID */
 3 CSPPasswordLength fixed bin(31); /* Length of user ID */

Visual Basic declaration for MQCSP

Type MQCSP
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 AuthenticationType As Long 'Type of authentication'

336 IBM MQ Developing Applications Reference

 Reserved1 As MQBYTE4 'Required for IBM i pointer'
 'alignment'
 CSPUserIdPtr As MQPTR 'Address of user ID'
 CSPUserIdOffset As Long 'Offset of user ID'
 CSPUserIdLength As Long 'Length of user ID'
 Reserved2 As MQBYTE8 'Required for IBM i pointer'
 'alignment'
 CSPPasswordPtr As MQPTR 'Address of password'
 CSPPasswordOffset As Long 'Offset of password'
 CSPPasswordLength As Long 'Length of password'
End Type

StrucId (MQCHAR4)
Structure identifier.

The value must be:
MQCSP_STRUC_ID

Identifier for the security parameters structure.

For the C programming language, the constant MQCSP_STRUC_ID_ARRAY is also defined; this has the
same value as MQCSP_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCSPSTRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:
MQCSP_VERSION_1

Version-1 security parameters structure.

The following constant specifies the version number of the current version:
MQCSP_CURRENT_VERSION

Current version of security parameters structure.

This is always an input field. The initial value of this field is MQCSP_VERSION_1.

AuthenticationType (MQLONG)
AuthenticationType is an input field. Its initial value is MQCSP_AUTH_NONE.

This is the type of authentication to perform. Valid values are:
MQCSP_AUTH_NONE

Do not use user ID and password fields.
MQCSP_AUTH_USER_ID_AND_PWD

Authenticate user ID and password fields.

The default value is MQCSP_AUTH_NONE. With the default setting, no password protection is done.

If you require authentication, you have to set MQCSP.AuthenticationType to
MQCSP_AUTH_USER_ID_AND_PWD.

See MQCSP password protection for more information.

Reserved1 (MQBYTE4)
A reserved field, required for pointer alignment on IBM i.

This is an input field. The initial value of this field is all null.

CSPUserIdPtr (MQPTR)
This is the address in bytes of the user ID to be used in authentication.

Developing applications reference 337

This is an input field. The initial value of this field is the null pointer in those programming languages
that support pointers, and an all-null byte string otherwise. This field is ignored if Version is less than
MQCNO_VERSION_5.

This field can contain an operating system user ID when an AUTHTYPE of IDPWOS is named in the
CONNAUTH field of the queue manager.

On Windows this can be a fully qualified domain user ID.

This field can contain an LDAP User ID when an AUTHTYPE of IDPWLDAP is named in the CONNAUTH field
of the queue manager.

CSPUserIdOffset (MQLONG)
This is the offset in bytes of the user ID to be used in authentication. The offset can be positive or
negative.

This is an input field. The initial value of this field is 0.

CSPUserIdLength (MQLONG)
This field is the length of the user ID to be used in authentication.

The maximum length of the user ID is dependent on the platform, see User IDs. If the length of
the user ID is greater than the maximum length permitted, the authentication request fails with
MQRC_NOT_AUTHORIZED.

This field is an input field. The initial value of this field is 0.

Reserved2 (MQBYTE8)
A reserved field, required for pointer alignment on IBM i.

This is an input field. The initial value of this field is all null.

CSPPasswordPtr (MQPTR)
This is the address in bytes of the password to be used in authentication.

This is an input field. The initial value of this field is the null pointer in those programming languages
that support pointers, and an all-null byte string otherwise. This field is ignored if Version is less than
MQCNO_VERSION_5.

This field can contain an empty password which is rejected by the operating system or LDAP password
checking, depending on setup, but is not rejected by IBM MQ before passing it the authentication method.

CSPPasswordOffset (MQLONG)
This is the offset in bytes of the password to be used in authentication. The offset can be positive or
negative.

This is an input field. The initial value of this field is 0.

CSPPasswordLength (MQLONG)
This field is the length of the password to be used in authentication.

The maximum length of the password is MQ_CSP_PASSWORD_LENGTH, which is 256 characters. If the
length of the password is greater than the maximum length permitted, the authentication request fails
with MQRC_NOT_AUTHORIZED.

This field is an input field. The initial value of this field is 0.

338 IBM MQ Developing Applications Reference

MQCTLO - Control callback options structure
The MQCTLO structure is used to specify options relating to a control callbacks function. The structure is
an input and output parameter on the MQCTL call.

Availability
The MQCTLO structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

• z/OS

and for IBM MQ MQI clients connected to these systems.

Version
The current version of MQCTLO is MQCTLO_VERSION_1.

Character set and encoding
Data in MQCTLO must be in the character set given by the CodedCharSetId queue manager attribute
and encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running
as an MQ MQI client, the structure must be in the character set and encoding of the client.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 484. Fields in MQCTLO

Field name and description Name of constant Initial value (if any) of
constant

StrucID (structure identifier) MQCTLO_STRUC_ID 'CTLO'

Version (structure version number) MQCTLO_VERSION_1 1

Options (options) MQCTLO_NONE Nulls

Options (reserved field) Reserved field

ConnectionArea (field for callback function to use) None Null pointer or null bytes

Notes:

1. In the C programming language, the macro variable MQCTLO_DEFAULT contains the values that are
listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQCTLO MyCTLO = {MQCTLO_DEFAULT};

Developing applications reference 339

Language declarations
C declaration for MQCTLO

typedef struct tagMQCTLO MQCTLO;
 struct tagMQCTLO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of MQCTL */
 MQLONG Reserved; /* Reserved field */

MQPTR ConnectionArea; /* Connection work area passed to the function */
 };

COBOL declaration for MQCTLO

** MQCTLO structure
 10 MQCTLO.
** Structure Identifier
 15 MQCTLO-STRUCID PIC X(4).
** Structure Version
 15 MQCTLO-VERSION PIC S9(9) BINARY.
 ** Options
 15 MQCTLO-OPTIONS PIC S9(9) BINARY.
** Reserved
 15 MQCTLO-RESERVED PIC S9(9) BINARY.
** ConnectionArea
 15 MQCTLO-CONNECTIONAREA POINTER

PL/I declaration for MQCTLO

dcl
 1 MQCTLO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version */
 3 Options fixed bin(31), /* Options */
 3 Reserved fixed bin(31),
 3 ConnectionArea pointer; /* Connection work area */

StrucId (MQCHAR4)
Control options structure - StrucId field

This is the structure identifier; the value must be:
MQCTLO_STRUC_ID

Identifier for Control Options structure.

For the C programming language, the constant MQCTLO_STRUC_ID_ARRAY is also defined; this has
the same value as MQCTLO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQCTLO_STRUC_ID.

Version (MQLONG)
Control options structure - Version field

This is the structure version number; the value must be:
MQCTLO_VERSION_1

Version-1 Control options structure.

The following constant specifies the version number of the current version:
MQCTLO_CURRENT_VERSION

Current version of Control options structure.

This is always an input field. The initial value of this field is MQCTLO_VERSION_1.

340 IBM MQ Developing Applications Reference

Options (MQLONG)
Control options structure - Options field

Options that control the action of MQCTL.

MQCTLO_FAIL_IF_QUIESCING
Force the MQCTL call to fail if the queue manager or connection is in the quiescing state.

Specify MQGMO_FAIL_IF_QUIESCING, in the MQGMO options passed on the MQCB call, to cause
notification to message consumers when they are quiescing.

MQCTLO_THREAD_AFFINITY
This option informs the system that the application requires that all message consumers, for the
same connection, are called on the same thread. This thread will be used for all invocations of the
consumers until the connection is stopped.

Default option: If you do not need any of the options described, use the following option:
MQCTLO_NONE

Use this value to indicate that no other options have been specified; all options assume their default
values. MQCTLO_NONE is defined to aid program documentation; it is not intended that this option be
used with any other, but as its value is zero, such use cannot be detected.

This is an input field. The initial value of the Options field is MQCTLO_NONE.

Reserved (MQLONG)
This is a reserved field. The value must be zero.

ConnectionArea (MQPTR)
Control options structure - ConnectionArea field

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed unchanged to
the ConnectionArea field in the MQCBC structure, which is an input parameter to the callback.

This field is ignored for all operations other than MQOP_START and MQOP_START_WAIT.

This is an input and output field to the callback function. The initial value of this field is a null pointer or
null bytes.

MQDH - Distribution header
The MQDH structure describes the additional data that is present in a message when that message is a
distribution-list message stored on a transmission queue. A distribution-list message is a message that is
sent to multiple destination queues. The additional data consists of the MQDH structure followed by an
array of MQOR records and an array of MQPMR records. This structure is used by specialized applications
that put messages directly on transmission queues, or that remove messages from transmission queues
(for example: message channel agents). Applications that want to put messages to distribution lists must
not use this structure. Instead, they must use the MQOD structure to define the destinations in the
distribution list, and the MQPMO structure to specify message properties or receive information about the
messages sent to the individual destinations.

Availability
The MQDH structure is available on the following platforms:

• AIX

• IBM i

• Linux

Developing applications reference 341

• Windows

and for IBM MQ MQI clients connected to these systems.

Format name
MQFMT_DIST_HEADER

Character set and encoding
Data in MQDH must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE.

Set the character set and encoding of the MQDH into the CodedCharSetId and Encoding fields in:

• The MQMD (if the MQDH structure is at the start of the message data), or
• The header structure that precedes the MQDH structure (all other cases).

Usage
When an application puts a message to a distribution list, and some or all of the destinations are remote,
the queue manager prefixes the application message data with the MQXQH and MQDH structures, and
places the message on the relevant transmission queue. The data therefore occurs in the following
sequence when the message is on a transmission queue:

• MQXQH structure
• MQDH structure plus arrays of MQOR and MQPMR records
• Application message data

Depending on the destinations, the queue manager can generate more than one such message, and
place it on different transmission queues. In this case, the MQDH structures in those messages identify
different subsets of the destinations defined by the distribution list opened by the application.

An application that puts a distribution-list message directly on a transmission queue must conform to the
sequence described earlier, and must ensure that the MQDH structure is correct. If the MQDH structure is
not valid, the queue manager can fail the MQPUT or MQPUT1 call with reason code MQRC_DH_ERROR.

You can store messages on a queue in distribution-list form only if you have defined the queue as being
able to support distribution list messages. See the DistLists queue attribute described in “Attributes
for queues” on page 826. If an application puts a distribution-list message directly on a queue that
does not support distribution lists, the queue manager splits the distribution list message into individual
messages, and places those on the queue instead.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 485. Fields in MQDH for MQDH

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQDH_STRUC_ID 'DH¬¬'

Version (structure version number) MQDH_VERSION_1 1

StrucLength (length of MQDH structure plus
following records)

None 0

Encoding (numeric encoding of data that follows
array of MQPMR records)

None 0

342 IBM MQ Developing Applications Reference

Table 485. Fields in MQDH for MQDH (continued)

Field name and description Name of constant Initial value (if any) of
constant

CodedCharSetId (character set identifier of data
that follows array of MQPMR records)

MQCCSI_UNDEFINED 0

Format (format name of data that follows array of
MQPMR records)

MQFMT_NONE Blanks

Flags (general flags) MQDHF_NONE 0

PutMsgRecFields (flags indicating which MQPMR
fields are present)

MQPMRF_NONE 0

RecsPresent (number of object records present) None 0

ObjectRecOffset (offset of first object record from
start of MQDH)

None 0

PutMsgRecOffset (offset of first put-message
record from start of MQDH)

None 0

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQDH_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQDH MyDH = {MQDH_DEFAULT};

Language declarations
C declaration for MQDH

typedef struct tagMQDH MQDH;
struct tagMQDH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Length of MQDH structure plus following
 MQOR and MQPMR records */
 MQLONG Encoding; /* Numeric encoding of data that follows
 the MQOR and MQPMR records */
 MQLONG CodedCharSetId; /* Character set identifier of data that
 follows the MQOR and MQPMR records */
 MQCHAR8 Format; /* Format name of data that follows the
 MQOR and MQPMR records */
 MQLONG Flags; /* General flags */
 MQLONG PutMsgRecFields; /* Flags indicating which MQPMR fields are
 present */
 MQLONG RecsPresent; /* Number of MQOR records present */
 MQLONG ObjectRecOffset; /* Offset of first MQOR record from start
 of MQDH */
 MQLONG PutMsgRecOffset; /* Offset of first MQPMR record from start
 of MQDH */
};

COBOL declaration for MQDH

** MQDH structure
 10 MQDH.
** Structure identifier
 15 MQDH-STRUCID PIC X(4).
** Structure version number
 15 MQDH-VERSION PIC S9(9) BINARY.

Developing applications reference 343

** Length of MQDH structure plus following MQOR and MQPMR records
 15 MQDH-STRUCLENGTH PIC S9(9) BINARY.
** Numeric encoding of data that follows the MQOR and MQPMR records
 15 MQDH-ENCODING PIC S9(9) BINARY.
** Character set identifier of data that follows the MQOR and MQPMR
** records
 15 MQDH-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of data that follows the MQOR and MQPMR records
 15 MQDH-FORMAT PIC X(8).
** General flags
 15 MQDH-FLAGS PIC S9(9) BINARY.
** Flags indicating which MQPMR fields are present
 15 MQDH-PUTMSGRECFIELDS PIC S9(9) BINARY.
** Number of MQOR records present
 15 MQDH-RECSPRESENT PIC S9(9) BINARY.
** Offset of first MQOR record from start of MQDH
 15 MQDH-OBJECTRECOFFSET PIC S9(9) BINARY.
** Offset of first MQPMR record from start of MQDH
 15 MQDH-PUTMSGRECOFFSET PIC S9(9) BINARY.

PL/I declaration for MQDH

dcl
 1 MQDH based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 StrucLength fixed bin(31), /* Length of MQDH structure plus
 following MQOR and MQPMR
 records */
 3 Encoding fixed bin(31), /* Numeric encoding of data that
 follows the MQOR and MQPMR
 records */
 3 CodedCharSetId fixed bin(31), /* Character set identifier of data
 that follows the MQOR and MQPMR
 records */
 3 Format char(8), /* Format name of data that follows
 the MQOR and MQPMR records */
 3 Flags fixed bin(31), /* General flags */
 3 PutMsgRecFields fixed bin(31), /* Flags indicating which MQPMR
 fields are present */
 3 RecsPresent fixed bin(31), /* Number of MQOR records present */
 3 ObjectRecOffset fixed bin(31), /* Offset of first MQOR record from
 start of MQDH */
 3 PutMsgRecOffset fixed bin(31); /* Offset of first MQPMR record from
 start of MQDH */

Visual Basic declaration for MQDH

Type MQDH
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 StrucLength As Long 'Length of MQDH structure plus following'
 'MQOR and MQPMR records'
 Encoding As Long 'Numeric encoding of data that follows'
 'the MQOR and MQPMR records'
 CodedCharSetId As Long 'Character set identifier of data that'
 'follows the MQOR and MQPMR records'
 Format As String*8 'Format name of data that follows the'
 'MQOR and MQPMR records'
 Flags As Long 'General flags'
 PutMsgRecFields As Long 'Flags indicating which MQPMR fields are'
 'present'
 RecsPresent As Long 'Number of MQOR records present'
 ObjectRecOffset As Long 'Offset of first MQOR record from start'
 'of MQDH'
 PutMsgRecOffset As Long 'Offset of first MQPMR record from start'
 'of MQDH'
End Type

StrucId (MQCHAR4)
The value must be:
MQDH_STRUC_ID

Identifier for distribution header structure.

344 IBM MQ Developing Applications Reference

For the C programming language, the constant MQDH_STRUC_ID_ARRAY is also defined; this has the
same value as MQDH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQDH_STRUC_ID.

Version (MQLONG)
The value must be:
MQDH_VERSION_1

Version number for distribution header structure.

The following constant specifies the version number of the current version:
MQDH_CURRENT_VERSION

Current version of distribution header structure.

The initial value of this field is MQDH_VERSION_1.

StrucLength (MQLONG)
This is the number of bytes from the start of the MQDH structure to the start of the message data
following the arrays of MQOR and MQPMR records. The data occurs in the following sequence:

• MQDH structure
• Array of MQOR records
• Array of MQPMR records
• Message data

The arrays of MQOR and MQPMR records are addressed by offsets contained within the MQDH structure.
If these offsets result in unused bytes between one or more of the MQDH structure, the arrays of records,
and the message data, those unused bytes must be included in the value of StrucLength, but the
content of those bytes is not preserved by the queue manager. It is valid for the array of MQPMR records
to precede the array of MQOR records.

The initial value of this field is 0.

Encoding (MQLONG)
This is the numeric encoding of the data that follows the arrays of MQOR and MQPMR records; it does not
apply to numeric data in the MQDH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is 0.

CodedCharSetId (MQLONG)
This is the character set identifier of the data that follows the arrays of MQOR and MQPMR records; it does
not apply to character data in the MQDH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
You can use the following special value:
MQCCSI_INHERIT

Inherit character-set identifier of this structure.

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-
set identifier of the structure. Provided no error occurs, the MQGET call does not return the value
MQCCSI_INHERIT.

You cannot use MQCCSI_INHERIT if the value of the PutApplType field in MQMD is MQAT_BROKER.

This value is supported in the following environments:

Developing applications reference 345

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ clients connected to these systems.

The initial value of this field is MQCCSI_UNDEFINED.

Format (MQCHAR8)
This is the format name of the data that follows the arrays of MQOD and MQPMR records (whichever
occurs last).

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
You can specify the following flag:
MQDHF_NEW_MSG_IDS

Generate a new message identifier for each destination in the distribution list. Set this only when
there are no put-message records present, or when the records are present but they do not contain
the MsgId field.

Using this flag defers generation of the message identifiers until the moment when the distribution-
list message is finally split into individual messages. This minimizes the amount of control information
that must flow with the distribution-list message.

When an application puts a message to a distribution list, the queue manager sets
MQDHF_NEW_MSG_IDS in the MQDH that it generates when both of the following statements are
true:

• There are no put-message records provided by the application, or the records provided do not
contain the MsgId field.

• The MsgId field in MQMD is MQMI_NONE, or the Options field in MQPMO includes
MQPMO_NEW_MSG_ID

If no flags are needed, specify the following:
MQDHF_NONE

No flags have been specified. MQDHF_NONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value is zero, such use cannot be
detected.

The initial value of this field is MQDHF_NONE.

PutMsgRecFields (MQLONG)
You can specify none or more of the following flags:
MQPMRF_MSG_ID

Message-identifier field is present.
MQPMRF_CORREL_ID

Correlation-identifier field is present.
MQPMRF_GROUP_ID

Group-identifier field is present.

346 IBM MQ Developing Applications Reference

MQPMRF_FEEDBACK
Feedback field is present.

MQPMRF_ACCOUNTING_TOKEN
Accounting-token field is present.

If no MQPMR fields are present, specify the following:
MQPMRF_NONE

No put-message record fields are present. MQPMRF_NONE is defined to aid program documentation.
It is not intended that this constant be used with any other, but as its value is zero, such use cannot be
detected.

The initial value of this field is MQPMRF_NONE.

RecsPresent (MQLONG)
This is the number of destinations. A distribution list must always contain at least one destination, so
RecsPresent must always be greater than zero.

The initial value of this field is 0.

ObjectRecOffset (MQLONG)
This gives the offset in bytes of the first record in the array of MQOR object records containing the names
of the destination queues. There are RecsPresent records in this array. These records (plus any bytes
skipped between the first object record and the previous field) are included in the length given by the
StrucLength field.

A distribution list must always contain at least one destination, so ObjectRecOffset must always be
greater than zero.

The initial value of this field is 0.

PutMsgRecOffset (MQLONG)
This gives the offset in bytes of the first record in the array of MQPMR put message records containing
the message properties. If present, there are RecsPresent records in this array. These records (plus any
bytes skipped between the first put message record and the previous field) are included in the length
given by the StrucLength field.

Put message records are optional; if no records are provided, PutMsgRecOffset is zero, and
PutMsgRecFields has the value MQPMRF_NONE.

The initial value of this field is 0.

MQDLH - Dead letter header
The MQDLH structure describes the information that prefixes the application message data of messages
on the dead letter (undelivered-message) queue. A message can arrive on the dead letter queue either
because the queue manager or message channel agent has redirected it to the queue, or because an
application has put the message directly on the queue.

Format name
MQFMT_DEAD_LETTER_HEADER

Character set and encoding
The fields in the MQDLH structure are in the character set and encoding given by the CodedCharSetId
and Encoding fields. These are specified in the header structure that precedes the MQDLH, or in the
MQMD structure if the MQDLH is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that are valid in queue
names.

Developing applications reference 347

If you are using the IBM MQ classes for Java/JMS, and the code page defined in the MQMD is not
supported by the Java virtual machine, then the MQDLH is written in the UTF-8 character set.

Usage
Applications that put messages directly on the dead letter queue must prefix the message data with an
MQDLH structure, and initialize the fields with appropriate values. However, the queue manager does not
require that an MQDLH structure be present, or that valid values have been specified for the fields.

If a message is too long to put on the dead letter queue, the application must do one of the following:

• Truncate the message data to fit on the dead letter queue.
• Record the message on auxiliary storage and place an exception report message on the dead letter

queue indicating this.
• Discard the message and return an error to its originator. If the message is (or might be) a critical

message, do this only if it is known that the originator still has a copy of the message; for example, a
message received by a message channel agent from a communication channel.

Which of the preceding actions is appropriate (if any) depends on the design of the application.

The queue manager performs special processing when a message that is a segment is put with an MQDLH
structure at the front; see the description of the MQMDE structure for further details.

Putting messages on the dead letter queue
When a message is put on the dead letter queue, the MQMD structure used for the MQPUT or MQPUT1
call must be identical to the MQMD associated with the message (usually the MQMD returned by the
MQGET call), with the exception of the following:

• Set the CodedCharSetId and Encoding fields to whatever character set and encoding are used for
fields in the MQDLH structure.

• Set the Format field to MQFMT_DEAD_LETTER_HEADER to indicate that the data begins with a MQDLH
structure.

• Set the context fields (AccountingToken, ApplIdentityData, ApplOriginData, PutApplName,
PutApplType, PutDate, PutTime, UserIdentifier) by using a context option appropriate to the
circumstances:

– An application putting on the dead letter queue a message that is not related to any preceding
message must use the MQPMO_DEFAULT_CONTEXT option; this causes the queue manager to set all
of the context fields in the message descriptor to their default values.

– A server application putting on the dead letter queue a messagethat it has just received must use the
MQPMO_PASS_ALL_CONTEXT option to preserve the original context information.

– A server application putting on the dead letter queue a reply to a message that it has just received
must use the MQPMO_PASS_IDENTITY_CONTEXT option; this preserves the identity information but
sets the origin information to be that of the server application.

– A message channel agent putting on the dead letter queue a messagethat it received from its
communication channel must use the MQPMO_SET_ALL_CONTEXT option to preserve the original
context information.

In the MQDLH structure itself, set the fields as follows:

• Set the CodedCharSetId, Encoding, and Format fields to the values that describe the data that
follows the MQDLH structure, usually the values from the original message descriptor.

• Set the context fields PutApplType, PutApplName, PutDate, and PutTime to values appropriate to
the application that is putting the message on the dead letter queue; these values are not related to the
original message.

• Set other fields as appropriate.

348 IBM MQ Developing Applications Reference

Ensure that all fields have valid values, and that character fields are padded with blanks to the defined
length of the field; do not end the character data prematurely by using a null character, because the
queue manager does not convert the null and subsequent characters to blanks in the MQDLH structure.

Getting messages from the dead letter queue
Applications that get messages from the dead letter queue must verify that the messages begin
with an MQDLH structure. The application can determine whether an MQDLH structure is present
by examining the Format field in the message descriptor MQMD; if the field has the value
MQFMT_DEAD_LETTER_HEADER, the message data begins with an MQDLH structure. Be aware also that
messages that applications get from the dead letter queue might be truncated if they were originally too
long for the queue.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 486. Fields in MQDLH for MQDLH

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQDLH_STRUC_ID 'DLH¬'

Version (structure version number) MQDLH_VERSION_1 1

Reason (reason message arrived on dead letter
queue)

MQRC_NONE 0

DestQName (name of original destination queue) None Null string or blanks

DestQMgrName (name of original destination
queue manager)

None Null string or blanks

Encoding (numeric encoding of data that follows
MQDLH)

None 0

CodedCharSetId (character set identifier of data
that follows MQDLH)

MQCCSI_UNDEFINED 0

Format (format name of data that follows MQDLH) MQFMT_NONE Blanks

PutApplType (type of application that put message
on dead letter queue)

None 0

PutApplName (name of application that put
message on dead letter queue)

None Null string or blanks

PutDate (date when message was put on dead
letter queue)

None Null string or blanks

PutTime (time when message was put on dead
letter queue)

None Null string or blanks

Developing applications reference 349

Table 486. Fields in MQDLH for MQDLH (continued)

Field name and description Name of constant Initial value (if any) of
constant

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.
3. In the C programming language, the macro variable MQDLH_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQDLH MyDLH = {MQDLH_DEFAULT};

Language declarations
C declaration for MQDLH

typedef struct tagMQDLH MQDLH;
struct tagMQDLH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Reason; /* Reason message arrived on dead-letter
 (undelivered-message) queue */
 MQCHAR48 DestQName; /* Name of original destination queue */
 MQCHAR48 DestQMgrName; /* Name of original destination queue
 manager */
 MQLONG Encoding; /* Numeric encoding of data that follows
 MQDLH */
 MQLONG CodedCharSetId; /* Character set identifier of data that
 follows MQDLH */
 MQCHAR8 Format; /* Format name of data that follows
 MQDLH */
 MQLONG PutApplType; /* Type of application that put message on
 dead-letter (undelivered-message)
 queue */
 MQCHAR28 PutApplName; /* Name of application that put message on
 dead-letter (undelivered-message)
 queue */
 MQCHAR8 PutDate; /* Date when message was put on dead-letter
 (undelivered-message) queue */
 MQCHAR8 PutTime; /* Time when message was put on the
 dead-letter (undelivered-message)
 queue */
};

COBOL declaration for MQDLH

** MQDLH structure
 10 MQDLH.
** Structure identifier
 15 MQDLH-STRUCID PIC X(4).
** Structure version number
 15 MQDLH-VERSION PIC S9(9) BINARY.
** Reason message arrived on dead-letter (undelivered-message) queue
 15 MQDLH-REASON PIC S9(9) BINARY.
** Name of original destination queue
 15 MQDLH-DESTQNAME PIC X(48).
** Name of original destination queue manager
 15 MQDLH-DESTQMGRNAME PIC X(48).
** Numeric encoding of data that follows MQDLH
 15 MQDLH-ENCODING PIC S9(9) BINARY.
** Character set identifier of data that follows MQDLH
 15 MQDLH-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of data that follows MQDLH
 15 MQDLH-FORMAT PIC X(8).
** Type of application that put message on dead-letter
** (undelivered-message) queue

350 IBM MQ Developing Applications Reference

 15 MQDLH-PUTAPPLTYPE PIC S9(9) BINARY.
** Name of application that put message on dead-letter
** (undelivered-message) queue
 15 MQDLH-PUTAPPLNAME PIC X(28).
** Date when message was put on dead-letter (undelivered-message)
** queue
 15 MQDLH-PUTDATE PIC X(8).
** Time when message was put on the dead-letter (undelivered-message)
** queue
 15 MQDLH-PUTTIME PIC X(8).

PL/I declaration for MQDLH

dcl
 1 MQDLH based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Reason fixed bin(31), /* Reason message arrived on
 dead-letter (undelivered-message)
 queue */
 3 DestQName char(48), /* Name of original destination
 queue */
 3 DestQMgrName char(48), /* Name of original destination queue
 manager */
 3 Encoding fixed bin(31), /* Numeric encoding of data that
 follows MQDLH */
 3 CodedCharSetId fixed bin(31), /* Character set identifier of data
 that follows MQDLH */
 3 Format char(8), /* Format name of data that follows
 MQDLH */
 3 PutApplType fixed bin(31), /* Type of application that put
 message on dead-letter
 (undelivered-message) queue */
 3 PutApplName char(28), /* Name of application that put
 message on dead-letter
 (undelivered-message) queue */
 3 PutDate char(8), /* Date when message was put on
 dead-letter (undelivered-message)
 queue */
 3 PutTime char(8); /* Time when message was put on the
 dead-letter (undelivered-message)
 queue */

High Level Assembler declaration for MQDLH

MQDLH DSECT
MQDLH_STRUCID DS CL4 Structure identifier
MQDLH_VERSION DS F Structure version number
MQDLH_REASON DS F Reason message arrived on dead-letter
* (undelivered-message) queue
MQDLH_DESTQNAME DS CL48 Name of original destination queue
MQDLH_DESTQMGRNAME DS CL48 Name of original destination queue
* manager
MQDLH_ENCODING DS F Numeric encoding of data that follows
* MQDLH
MQDLH_CODEDCHARSETID DS F Character set identifier of data that
* follows MQDLH
MQDLH_FORMAT DS CL8 Format name of data that follows MQDLH
MQDLH_PUTAPPLTYPE DS F Type of application that put message on
* dead-letter (undelivered-message) queue
MQDLH_PUTAPPLNAME DS CL28 Name of application that put message on
* dead-letter (undelivered-message) queue
MQDLH_PUTDATE DS CL8 Date when message was put on
* dead-letter (undelivered-message) queue
MQDLH_PUTTIME DS CL8 Time when message was put on the
* dead-letter (undelivered-message) queue
*
MQDLH_LENGTH EQU *-MQDLH
 ORG MQDLH
MQDLH_AREA DS CL(MQDLH_LENGTH)

Visual Basic declaration for MQDLH

Type MQDLH
 StrucId As String*4 'Structure identifier'

Developing applications reference 351

 Version As Long 'Structure version number'
 Reason As Long 'Reason message arrived on dead-letter'
 '(undelivered-message) queue'
 DestQName As String*48 'Name of original destination queue'
 DestQMgrName As String*48 'Name of original destination queue'
 'manager'
 Encoding As Long 'Numeric encoding of data that follows'
 'MQDLH'
 CodedCharSetId As Long 'Character set identifier of data that'
 'follows MQDLH'
 Format As String*8 'Format name of data that follows MQDLH'
 PutApplType As Long 'Type of application that put message on'
 'dead-letter (undelivered-message) queue'
 PutApplName As String*28 'Name of application that put message on'
 'dead-letter (undelivered-message) queue'
 PutDate As String*8 'Date when message was put on dead-letter'
 '(undelivered-message) queue'
 PutTime As String*8 'Time when message was put on the'
 'dead-letter (undelivered-message) queue'
End Type

StrucId (MQCHAR4)
StrucId is the structure identifier.

The value must be:
MQDLH_STRUC_ID

Identifier for dead-letter header structure.

For the C programming language, the constant MQDLH_STRUC_ID_ARRAY is also defined; this has the
same value as MQDLH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQDLH_STRUC_ID.

Version (MQLONG)
Version is the structure version number.

The value must be:
MQDLH_VERSION_1

Version number for dead-letter header structure.

The following constant specifies the version number of the current version:
MQDLH_CURRENT_VERSION

Current version of dead-letter header structure.

The initial value of this field is MQDLH_VERSION_1.

Reason (MQLONG)
The Reason field identifies the reason why the message was placed on the dead-letter queue instead of
on the original destination queue.

This identifies the reason why the message was placed on the dead-letter queue instead of on the original
destination queue. It should be one of the MQFB_* or MQRC_* values (for example, MQRC_Q_FULL). See
the description of the Feedback field in “MQMD - Message descriptor” on page 417 for details of the
common MQFB_* values that can occur.

If the value is in the range MQFB_IMS_FIRST through MQFB_IMS_LAST, the actual IMS error code can be
determined by subtracting MQFB_IMS_ERROR from the value of the Reason field.

Some MQFB_* values occur only in this field. They relate to repository messages, trigger messages, or
transmission-queue messages that have been transferred to the dead-letter queue. These are:
MQFB_APPL_CANNOT_BE_STARTED (X'00000109')

An application processing a trigger message cannot start the application named in the ApplId field of
the trigger message (see “MQTM - Trigger message” on page 593).

On z/OS, the CKTI CICS transaction is an example of an application that processes trigger messages.

352 IBM MQ Developing Applications Reference

MQFB_APPL_TYPE_ERROR (X'0000010B')
An application processing a trigger message cannot start the application because the ApplType field
of the trigger message is not valid (see “MQTM - Trigger message” on page 593).

On z/OS, the CKTI CICS transaction is an example of an application that processes trigger messages.

MQFB_BIND_OPEN_CLUSRCVR_DEL (X'00000119')
The message was on the SYSTEM.CLUSTER.TRANSMIT.QUEUE intended for a cluster queue that was
opened with the MQOO_BIND_ON_OPEN option, but the remote cluster-receiver channel to be used
to transmit the message to the destination queue was deleted before the message could be sent.
Because MQOO_BIND_ON_OPEN was specified, only the channel selected when the queue was
opened can be used to transmit the message. As this channel is no longer available, the message
is placed on the dead-letter queue.

MQFB_NOT_A_REPOSITORY_MSG (X'00000118')
The message is not a repository message.

MQFB_STOPPED_BY_CHAD_EXIT (X'00000115')
The message was stopped by channel auto-definition exit.

MQFB_STOPPED_BY_MSG_EXIT (X'0000010D')
The message was stopped by channel message exit.

MQFB_TM_ERROR (X'0000010A')
The Format field in MQMD specifies MQFMT_TRIGGER, but the message does not begin with a valid
MQTM structure. For example, the StrucId mnemonic eye-catcher might not be valid, the Version
might not be recognized, or the length of the trigger message might be insufficient to contain the
MQTM structure.

On z/OS, the CKTI CICS transaction is an example of an application that processes trigger messages
and can generate this feedback code.

MQFB_XMIT_Q_MSG_ERROR (X'0000010F')
A message channel agent has found that a message on the transmission queue is not in the correct
format. The message channel agent puts the message on the dead-letter queue using this feedback
code.
One common cause is that a message has been put directly to the transmission queue, so the
message does not have the expected XQH header. Messages should be put to a transmission queue
through a remote queue, unless the application builds the MQXQH header.

The initial value of this field is MQRC_NONE.

DestQName (MQCHAR48)
DestQName is the name of the message queue that was the original destination for the message.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

DestQMgrName (MQCHAR48)
DestQMgrName is the name of the queue manager that was the original destination for the message.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages.

Encoding (MQLONG)
Encoding is the numeric encoding of the data that follows the MQDLH structure (usually the data from the
original message); it does not apply to numeric data in the MQDLH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

Developing applications reference 353

The initial value of this field is 0.

CodedCharSetId (MQLONG)
CodedCharSetId is the character set identifier of the data that flows through the MQDLH structure
(usually the data from the original message); it does not apply to character data in the MQDLH structure
itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-
set identifier of the structure. Provided no error occurs, the value MQCCSI_INHERIT is not returned by
the MQGET call.

You cannot use MQCCSI_INHERIT if the value of the PutApplType field in MQMD is MQAT_BROKER.

This value is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ clients connected to these systems.

The initial value of this field is MQCCSI_UNDEFINED.

Format (MQCHAR8)
Format is the format name of the data that follows the MQDLH structure (usually the data from the
original message).

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those rules for coding the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

PutApplType (MQLONG)
PutApplType is the type of application that put the message on the dead-letter (undelivered-message)
queue.

This field has the same meaning as the PutApplType field in the message descriptor MQMD (see “MQMD
- Message descriptor” on page 417 for details).

If the queue manager redirects the message to the dead-letter queue, PutApplType has the value
MQAT_QMGR.

The initial value of this field is 0.

PutApplName (MQCHAR28)
PutApplName is the name of the application that put the message on the dead-letter (undelivered-
message) queue.

The format of the name depends on the PutApplType field. The format can vary release to release. See
the description of the PutApplName field in “MQMD - Message descriptor” on page 417.

354 IBM MQ Developing Applications Reference

If the queue manager redirects the message to the dead-letter queue, PutApplName contains the first 28
characters of the queue manager name, padded with blanks if necessary.

The length of this field is given by MQ_PUT_APPL_NAME_LENGTH. The initial value of this field is the null
string in C, and 28 blank characters in other programming languages.

PutDate (MQCHAR8)
PutDate is the date when the message was put on the dead-letter (undelivered-message) queue.

The format used for the date when this field is generated by the queue manager is:

• YYYYMMDD

where the characters represent:
YYYY

year (four numeric digits)
MM

month of year (01 through 12)
DD

day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields, subject to the system clock
being set accurately to GMT.

The length of this field is given by MQ_PUT_DATE_LENGTH. The initial value of this field is the null string in
C, and eight blank characters in other programming languages.

PutTime (MQCHAR8)
PutTime is the time when the message was put on the dead-letter (undelivered-message) queue.

The format used for the time when this field is generated by the queue manager is:

• HHMMSSTH

where the characters represent:
HH

hours (00 through 23)
MM

minutes (00 through 59)
SS

seconds (00 through 59; see note)
T

tenths of a second (0 through 9)
H

hundredths of a second (0 through 9)

Note: If the system clock is synchronized to an very accurate time standard, it is possible on rare
occasions for 60 or 61 to be returned for the seconds in PutTime. This happens when leap seconds are
inserted into the global time standard.

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields, subject to the system clock
being set accurately to GMT.

The length of this field is given by MQ_PUT_TIME_LENGTH. The initial value of this field is the null string in
C, and eight blank characters in other programming languages.

Developing applications reference 355

MQDMHO - Delete message handle options
The MQDMHO structure allows applications to specify options that control how message handles are
deleted. The structure is an input parameter on the MQDLTMH call.

Character set and encoding
Data in MQDMHO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 487. Fields in MQDMHO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQDMHO_STRUC_ID 'DMHO'

Version (structure version number) MQDMHO_VERSION_1 1

Options (options) MQDMHO_NONE 0

Notes:

1. In the C programming language, the macro variable MQDMHO_DEFAULT contains the values that are
listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQDMHO MyDMHO = {MQDMHO_DEFAULT};

Language declarations
C declaration for MQDMHO

typedef struct tagMQDMHO;
struct tagMQDMHO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of MQDLTMH */
};

COBOL declaration for MQDMHO

** MQDMHO structure
 10 MQDMHO.
** Structure identifier
 15 MQDMHO-STRUCID PIC X(4).
** Structure version number
 15 MQDMHO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQDLTMH
 15 MQDMHO-OPTIONS PIC S9(9) BINARY.

PL/I declaration for MQDMHO

dcl
 1 MQDMHO based,
 3 StrucId char(4), /* Structure identifier */

356 IBM MQ Developing Applications Reference

 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action of MQDLTMH */

High Level Assembler declaration for MQDMHO

MQDMHO DSECT
MQDMHO_STRUCID DS CL4 Structure identifier
MQDMHO_VERSION DS F Structure version number
MQDMHO_OPTIONS DS F Options that control the action of
* MQDLTMH
MQDMHO_LENGTH EQU *-MQDMHO
MQDMHO_AREA DS CL(MQDMHO_LENGTH)

StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQDMHO_STRUC_ID

Identifier for delete message handle options structure.

For the C programming language, the constant MQDMHO_STRUC_ID_ARRAY is also defined; this has
the same value as MQDMHO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQDMHO_STRUC_ID.

Version (MQLONG)

This is the structure version number; the value must be:

MQDMHO_VERSION_1
Version-1 delete message handle options structure.

The following constant specifies the version number of the current version:

MQDMHO_CURRENT_VERSION
Current version of delete message handle options structure.

This is always an input field. The initial value of this field is MQDMHO_VERSION_1.

Options (MQLONG)

The value must be:
MQDMHO_NONE

No options specified.

This is always an input field. The initial value of this field is MQDMHO_NONE.

MQDMPO - Delete message property options
The MQDMPO structure allows applications to specify options that control how properties of messages
are deleted. The structure is an input parameter on the MQDLTMP call.

Character set and encoding
Data in MQDMPO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Developing applications reference 357

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 488. Fields in MQDPMO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQDMPO_STRUC_ID 'DMPO'

Version (structure version number) MQDMPO_VERSION_1 1

Options (options controlling the action of
MQDMPO)

Options that control the
action of MQDLTMP

MQDMPO_NONE

Notes:

1. In the C programming language, the macro variable MQDMPO_DEFAULT contains the values that are
listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQDMPO MyDMPO = {MQDMPO_DEFAULT};

Language declarations
C declaration for MQDMPO

typedef struct tagMQDMPO MQDMPO;
struct tagMQDMPO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of
 MQDLTMP */
};

COBOL declaration for MQDMPO

** MQDMPO structure
 10 MQDMPO.
** Structure identifier
 15 MQDMPO-STRUCID PIC X(4).
** Structure version number
 15 MQDMPO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQDLTMP
 15 MQDMPO-OPTIONS PIC S9(9) BINARY.

PL/I declaration for MQDMPO

Dcl
 1 MQDMPO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action
 of MQDLTMP */

High Level Assembler declaration for MQDMPO

MQDMPO DSECT
MQDMPO_STRUCID DS CL4 Structure identifier
MQDMPO_VERSION DS F Structure version number
MQDMPO_OPTIONS DS F Options that control the
* action of MQDLTMP

358 IBM MQ Developing Applications Reference

MQDMPO_LENGTH EQU *-MQDMPO
MQDMPO_AREA DS CL(MQDMPO_LENGTH)

StrucId (MQCHAR4)
Delete message property options structure - StrucId field

This is the structure identifier. The value must be:
MQDMPO_STRUC_ID

Identifier for delete message property options structure.

For the C programming language, the constant MQDMPO_STRUC_ID_ARRAY is also defined; this has
the same value as MQDMPO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQDMPO_STRUC_ID.

Version (MQLONG)
Delete message property options structure - Version field

This is the structure version number. The value must be:
MQDMPO_VERSION_1

Version number for delete message property options structure.

The following constant specifies the version number of the current version:
MQDMPO_CURRENT_VERSION

Current version of delete message property options structure.

This is always an input field. The initial value of this field is MQDMPO_VERSION_1.

Options (MQLONG)
Delete message property options structure - Options field

Location options: The following options relate to the relative location of the property compared to the
property cursor.
MQDMPO_DEL_FIRST

Deletes the first property that matches the specified name.
MQDMPO_DEL_PROP_UNDER_CURSOR

Deletes the property pointed to by the property cursor; that is the property that was last inquired by
using either the MQIMPO_INQ_FIRST or the MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused. It is also reset when the message
handle is specified in the MsgHandle field of the MQGMO structure on an MQGET call, or MQPMO
structure on an MQPUT call.

If this option is used when the property cursor has not yet been established, the call fails with
completion code MQCC_FAILED and reason MQRC_PROPERTY_NOT_AVAILABLE. If the property
pointed to by the property cursor has already been deleted, the call also fails with completion code
MQCC_FAILED and reason MQRC_PROPERTY_NOT_AVAILABLE.

If neither of thees options is required, the following option can be used:
MQDMPO_NONE

No options specified.

This field is always an input field. The initial value of this field is MQDMPO_DEL_FIRST.

Developing applications reference 359

MQEPH - Embedded PCF header
The MQEPH structure describes the additional data that is present in a message when that message is a
programmable command format (PCF) message. The PCFHeader field defines the PCF parameters that
follow this structure and this allows you to follow the PCF message data with other headers.

Format name
MQFMT_EMBEDDED_PCF

Character set and encoding
Data in MQEPH must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE.

Set the character set and encoding of the MQEPH into the CodedCharSetId and Encoding fields in the
MQMD (if the MQEPH structure is at the start of the message data), or the header structure that precedes
the MQEPH structure (all other cases).

Usage
You cannot use MQEPH structures to send commands to the command server or any other queue
manager PCF-accepting server.

Similarly, the command server or any other queue manager PCF-accepting server do not generate
responses or events containing MQEPH structures.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 489. Fields in MQEPH for MQEPH

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQEPH_STRUC_ID 'EPH¬'

Version (structure version number) MQEPH_VERSION_1 1

StrucLength (length of MQEPH structure plus the
MQCFH and parameter structures that follow it)

MQEPH_STRUC_LENGT
H_FIXED

68

Encoding (numeric encoding of data that follows
last PCF parameter structure)

None 0

CodedCharSetId (character set identifier of data
that follows last PCF parameter structure)

MQCCSI_UNDEFINED 0

Format (format name of data that follows last PCF
parameter structure)

MQFMT_NONE Blanks

Flags (flags) MQEPH_NONE 0

PCFHeader (programmable command format (PCF)
header)

Names and values as
defined in Table 490 on
page 364

0

360 IBM MQ Developing Applications Reference

Table 489. Fields in MQEPH for MQEPH (continued)

Field name and description Name of constant Initial value (if any) of
constant

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQEPH_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQEPH MyEPH = {MQEPH_DEFAULT};

Language declarations
C declaration for MQEPH

typedef struct tagMQEPH MQEPH;
struct tagMQDH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Total length of MQEPH including the MQCFH
 and parameter structures that follow it */
 MQLONG Encoding; /* Numeric encoding of data that follows last
 PCF parameter structure */
 MQLONG CodedCharSetId; /* Character set identifier of data that
 follows last PCF parameter structure */
 MQCHAR8 Format; /* Format name of data that follows last PCF
 parameter structure */
 MQLONG Flags; /* Flags */
 MQCFH PCFHeader; /* Programmable command format header */
 };

COBOL declaration for MQEPH

** MQEPH structure
 10 MQEPH.
** Structure identifier
 15 MQEPH-STRUCID PIC X(4).
** Structure version number
 15 MQEPH-VERSION PIC S9(9) BINARY.
** Total length of MQEPH structure including the MQCFH
** and parameter structures that follow it
 15 MQEPH-STRUCLENGTH PIC S9(9) BINARY.
** Numeric encoding of data that follows last
** PCF structure
 15 MQEPH-ENCODING PIC S9(9) BINARY.
** Character set identifier of data that
** follows last PCF parameter structure
 15 MQEPH-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of data that follows last PCF
** parameter structure
 15 MQEPH-FORMAT PIC X(8).
** Flags
 15 MQEPH-FLAGS PIC S9(9) BINARY.
** Programmable command format header
 15 MQEPH-PCFHEADER.
** Structure type
 20 MQEPH-PCFHEADER-TYPE PIC S9(9) BINARY.
** Structure length
 20 MQEPH-PCFHEADER-STRUCLENGTH PIC S9(9) BINARY.
** Structure version number
 20 MQEPH-PCFHEADER-VERSION PIC S9(9) BINARY.
** Command identifier
 20 MQEPH-PCFHEADER-COMMAND PIC S9(9) BINARY.
** Message sequence number
 20 MQEPH-PCFHEADER-MSGSEQNUMBER PIC S9(9) BINARY.
** Control options
 20 MQEPH-PCFHEADER-CONTROL PIC S9(9) BINARY.
** Completion code

Developing applications reference 361

 20 MQEPH-PCFHEADER-COMPCODE PIC S9(9) BINARY.
** Reason code qualifying completion code
 20 MQEPH-PCFHEADER-REASON PIC S9(9) BINARY.
** Count of parameter structures
 20 MQEPH-PCFHEADER-PARAMETERCOUNT PIC S9(9) BINARY.

PL/I declaration for MQEPH

dcl
 1 MQEPH based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 StrucLength fixed bin(31), /* Total Length of MQEPH including the
 MQCFH and parameter structures that
 follow it
 3 Encoding fixed bin(31), /* Numeric encoding of data that follows
 last PCF parameter structure
 3 CodedCharSetId fixed bin(31), /* Character set identifier of data that
 follows last PCF parameter structure
 3 Format char(8), /* Format name of data that follows last
 PCF parameter structure */
 3 Flags fixed bin(31), /* Flags */
 3 PCFHeader, /* Programmable command format header
 5 Type fixed bin(31), /* Structure type */
 5 StrucLength fixed bin(31), /* Structure length */
 5 Version fixed bin(31), /* Structure version number */
 5 Command fixed bin(31), /* Command identifier */
 5 MsgseqNumber fixed bin(31), /* Message sequence number */
 5 Control fixed bin(31), /* Control options */
 5 CompCode fixed bin(31), /* Completion code */
 5 Reason fixed bin(31), /* Reason code qualifying completion code */
 5 ParameterCount fixed bin(31); /* Count of parameter structures */

High Level Assembler declaration for MQEPH

MQEPH DSECT
MQEPH_STRUCID DS CL4 Structure identifier
MQEPH_VERSION DS F Structure version number
MQEPH_STRUCLENGTH DS F Total length of MQEPH including the
* MQCFH and parameter structures that
 follow it
MQEPH_ENCODING DS F Numeric encoding of data that follows
* last PCF parameter structure
MQEPH_CODEDCHARSETID DS F Character set identifier of data that
* follows last PCF parameter structure
MQEPH_FORMAT DS CL8 Format name of data that follows last
* PCF parameter structure
MQEPH_FLAGS DS F Flags
MQEPH_PCFHEADER DS 0F Force fullword alignment
MQEPH_PCFHEADER_TYPE DS F Structure type
MQEPH_PCFHEADER_STRUCLENGTH DS F Structure length
MQEPH_PCFHEADER_VERSION DS F Structure version number
MQEPH_PCFHEADER_COMMAND DS F Command identifier
MQEPH_PCFHEADER_MSGSEQNUMBER DS F Structure length
MQEPH_PCFHEADER_CONTROL DS F Control options
MQEPH_PCFHEADER_COMPCODE DS F Completion code
MQEPH_PCFHEADER_REASON DS F Reason code qualifying completion code
MQEPH_PCFHEADER_PARAMETER COUNT DS F Count of parameter structures
MQEPH_PCFHEADER_LENGTH EQU *-MQEPH_PCFHEADER
 ORG MQEPH_PCFHEADER
MQEPH_PCFHEADER_AREA DS CL(MQEPH_PCFHEADER_LENGTH)
*
MQEPH_LENGTH EQU *-MQEPH
 ORG MQEPH
MQEPH_AREA DS CL(MQEPH_LENGTH)

Visual Basic declaration for MQEPH

Type MQEPH
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 StrucLength As Long 'Total length of MQEPH structure including the MQCFH'
 'and parameter structures that follow it'
 Encoding As Long 'Numeric encoding of data that follows last'
 'PCF parameter structure'

362 IBM MQ Developing Applications Reference

 CodedCharSetId As Long 'Character set identifier of data that'
 'follows last PCF parameter structure'
 Format As String*8 'Format name of data that follows last PCF'
 'parameter structure'
 Flags As Long 'Flags'
 PCFHeader As MQCFH 'Programmable command format header'
 End Type

Global MQEPH_DEFAULT As MQEPH

StrucId (MQCHAR4)
The value must be:
MQEPH_STRUC_ID

Identifier for distribution header structure.

For the C programming language, the constant MQEPH_STRUC_ID_ARRAY is also defined; this has the
same value as MQDH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQEPH_STRUC_ID.

Version (MQLONG)
The value must be:
MQEPH_VERSION_1

Version number for embedded PCF header structure.

The following constant specifies the version number of the current version:
MQCFH_VERSION_3

Current version of embedded PCF header structure.

The initial value of this field is MQEPH_VERSION_1.

StrucLength (MQLONG)
This is the amount of data preceding the next header structure. It includes:

• The length of the MQEPH header
• The length of all PCF parameters following the header
• Any blank padding following those parameters

StrucLength must be a multiple of 4.

The fixed length part of the structure is defined by MQEPH_STRUC_LENGTH_FIXED.

The initial value of this field is 68.

Encoding (MQLONG)
This is the numeric encoding of the data that follows the MQEPH structure and the associated PCF
parameters; it does not apply to character data in the MQEPH structure itself.

The initial value of this field is 0.

CodedCharSetId (MQLONG)
This is the character set identifier of the data that follows the MQEPH structure and the associated PCF
parameters; it does not apply to character data in the MQEPH structure itself.

The initial value of this field is MQCCSI_UNDEFINED.

Format (MQCHAR8)
This is the format name of the data that follows the MQEPH structure and the associated PCF parameters.

The initial value of this field is MQFMT_NONE.

Developing applications reference 363

Flags (MQLONG)
The following values are available:
MQEPH_NONE

No flags have been specified. MQEPH_NONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value is zero, such use cannot be
detected.

MQEPH_CCSID_EMBEDDED
The character set of the parameters containing character data is specified individually within the
CodedCharSetId field in each structure. The character set of the StrucId and Format fields is defined
by the CodedCharSetId field in the header structure that precedes the MQEPH structure, or by the
CodedCharSetId field in the MQMD if the MQEPH is at the start of the message.

The initial value of this field is MQEPH_NONE.

PCFHeader (MQCFH)
This is the programmable command format (PCF) header, defining the PCF parameters that follow the
MQEPH structure. This enables you to follow the PCF message data with other headers.

The PCF header is initially defined with the following values:

Table 490. Initial values of fields in MQCFH

Field name Name of constant Value of constant

Type MQCFT_NONE 0

StrucLength MQCFH_STRUC_LENGTH 36

Version MQCFH_VERSION_3 3

StrucLength None 0

Command MQCMD_NONE 0

MsgSeqNumber None 1

Control MQCFC_LAST 1

CompCode MQCC_OK 0

Reason MQRC_NONE 0

ParameterCount None 0

The application must change the Type from MQCFT_NONE to a valid structure type for the use it is
making of the embedded PCF header.

MQGMO - Get-message options
The MQGMO structure allows the application to control how messages are removed from queues. The
structure is an input/output parameter on the MQGET call.

Version
The current version of MQGMO is MQGMO_VERSION_4. Certain fields are available only in certain
versions of MQGMO. If you need to port applications between several environments, you must ensure that
the version of MQGMO is consistent across all environments. Fields that exist only in particular versions
of the structure are identified as such in “MQGMO - Get-message options” on page 364 and in the field
descriptions.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the
most recent version of MQGMO that is supported by the environment, but with the initial value of the

364 IBM MQ Developing Applications Reference

Version field set to MQGMO_VERSION_1. To use fields that are not present in the version-1 structure,
set the Version field to the version number of the version required.

Character set and encoding
Data in MQGMO must be in the character set given by the CodedCharSetId queue manager attribute
and encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running
as an MQ MQI client, the structure must be in the character set and encoding of the client.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 491. Fields in MQGMO for MQGMO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQGMO_STRUC_ID 'GMO¬'

Version (structure version number) MQGMO_VERSION_1 1

MQGMO - Options field (options that control the
action of MQGET)

MQGMO_NO_WAIT 0

WaitInterval (wait interval) None 0

Signal1 (signal) None Null pointer on z/OS ; 0
otherwise

Signal2 (signal identifier) None 0

ResolvedQName (resolved name of destination
queue)

None Null string or blanks

Note: The remaining fields are ignored if Version is less than MQGMO_VERSION_2.

MatchOptions (options controlling selection criteria
used for MQGET)

MQMO_MATCH_MSG_ID
+
MQMO_MATCH_CORREL
_ID

3

GroupStatus (flag indicating whether message
retrieved is in a group)

MQGS_NOT_IN_GROUP '¬'

SegmentStatus (flag indicating whether message
retrieved is a segment of a logical message)

MQSS_NOT_A_SEGMEN
T

'¬'

Segmentation (flag indicating whether further
segmentation is allowed for the message retrieved)

MQSEG_INHIBITED '¬'

Reserved1 (reserved) None '¬'

Note: The remaining fields are ignored if Version is less than MQGMO_VERSION_3.

MsgToken (message token) MQMTOK_NONE Nulls

ReturnedLength (length in bytes of message data
returned)

MQRL_UNDEFINED -1

Note: The remaining fields are ignored if Version is less than MQGMO_VERSION_4.

Reserved2 (reserved) None '¬'

Developing applications reference 365

Table 491. Fields in MQGMO for MQGMO (continued)

Field name and description Name of constant Initial value (if any) of
constant

MsgHandle (handle to a message that is to be
populated with the properties of the message
being retrieved from the queue)

MQHM_NONE 0

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.
3. In the C programming language, the macro variable MQGMO_DEFAULT contains the values that are

listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQGMO MyGMO = {MQGMO_DEFAULT};

Language declarations
C declaration for MQGMO

typedef struct tagMQGMO MQGMO;
struct tagMQGMO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of */
 MQGET */
 MQLONG WaitInterval; /* Wait interval */
 MQLONG Signal1; /* Signal */
 MQLONG Signal2; /* Signal identifier */
 MQCHAR48 ResolvedQName; /* Resolved name of destination queue */
 /* Ver:1 */
 MQLONG MatchOptions; /* Options controlling selection */
 criteria used for MQGET */
 MQCHAR GroupStatus; /* Flag indicating whether message */
 retrieved is in a group */
 MQCHAR SegmentStatus; /* Flag indicating whether message */
 retrieved is a segment of a logical */
 message */
 MQCHAR Segmentation; /* Flag indicating whether further */
 segmentation is allowed for the */
 message retrieved */
 MQCHAR Reserved1; /* Reserved */
 /* Ver:2 */
 MQBYTE16 MsgToken; /* Message token */
 MQLONG ReturnedLength; /* Length of message data returned */
 (bytes) */
 /* Ver:3 */
 MQLONG Reserved2; /* Reserved */
 MQHMSG MsgHandle; /* Message handle */
 /* Ver:4 */
};

Note: On z/OS, the Signal1 field is declared as PMQLONG.

COBOL declaration for MQGMO

** MQGMO structure
 10 MQGMO.
** Structure identifier
 15 MQGMO-STRUCID PIC X(4).
** Structure version number
 15 MQGMO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQGET

366 IBM MQ Developing Applications Reference

 15 MQGMO-OPTIONS PIC S9(9) BINARY.
** Wait interval
 15 MQGMO-WAITINTERVAL PIC S9(9) BINARY.
** Signal
 15 MQGMO-SIGNAL1 PIC S9(9) BINARY.
** Signal identifier
 15 MQGMO-SIGNAL2 PIC S9(9) BINARY.
** Resolved name of destination queue
 15 MQGMO-RESOLVEDQNAME PIC X(48).
** Options controlling selection criteria used for MQGET
 15 MQGMO-MATCHOPTIONS PIC S9(9) BINARY.
** Flag indicating whether message retrieved is in a group
 15 MQGMO-GROUPSTATUS PIC X.
** Flag indicating whether message retrieved is a segment of a
** logical message
 15 MQGMO-SEGMENTSTATUS PIC X.
** Flag indicating whether further segmentation is allowed for the
** message retrieved
 15 MQGMO-SEGMENTATION PIC X.
** Reserved
 15 MQGMO-RESERVED1 PIC X.
** Message token
 15 MQGMO-MSGTOKEN PIC X(16).
** Length of message data returned (bytes)
 15 MQGMO-RETURNEDLENGTH PIC S9(9) BINARY.
** Reserved
 15 MQGMO-RESERVED2 PIC S9(9) BINARY.
** Message handle
 15 MQGMO-MSGHANDLE PIC S9(18) BINARY.

Note: On z/OS, the Signal1 field is declared as POINTER.

PL/I declaration for MQGMO

dcl
 1 MQGMO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action of
 MQGET */
 3 WaitInterval fixed bin(31), /* Wait interval */
 3 Signal1 fixed bin(31), /* Signal */
 3 Signal2 fixed bin(31), /* Signal identifier */
 3 ResolvedQName char(48), /* Resolved name of destination
 queue */
 3 MatchOptions fixed bin(31), /* Options controlling selection
 criteria used for MQGET */
 3 GroupStatus char(1), /* Flag indicating whether message
 retrieved is in a group */
 3 SegmentStatus char(1), /* Flag indicating whether message
 retrieved is a segment of a logical
 message */
 3 Segmentation char(1), /* Flag indicating whether further
 segmentation is allowed for the
 message retrieved */
 3 Reserved1 char(1), /* Reserved */
 3 MsgToken char(16), /* Message token */
 3 ReturnedLength fixed bin(31); /* Length of message data returned
 (bytes) */
 3 Reserved2 fixed bin(31); /* Reserved */
 3 MsgHandle fixed bin(63); /* Message handle */

Note: On z/OS, the Signal1 field is declared as pointer.

High Level Assembler declaration for MQGMO

MQGMO DSECT
MQGMO_STRUCID DS CL4 Structure identifier
MQGMO_VERSION DS F Structure version number
MQGMO_OPTIONS DS F Options that control the action of
* MQGET
MQGMO_WAITINTERVAL DS F Wait interval
MQGMO_SIGNAL1 DS F Signal
MQGMO_SIGNAL2 DS F Signal identifier
MQGMO_RESOLVEDQNAME DS CL48 Resolved name of destination queue
MQGMO_MATCHOPTIONS DS F Options controlling selection criteria
* used for MQGET

Developing applications reference 367

MQGMO_GROUPSTATUS DS CL1 Flag indicating whether message
* retrieved is in a group
MQGMO_SEGMENTSTATUS DS CL1 Flag indicating whether message
* retrieved is a segment of a logical
* message
MQGMO_SEGMENTATION DS CL1 Flag indicating whether further
* segmentation is allowed for the message
* retrieved
MQGMO_RESERVED1 DS CL1 Reserved
MQGMO_MSGTOKEN DS XL16 Message token
MQGMO_RETURNEDLENGTH DS F Length of message data returned (bytes)
MQGMO_RESERVED2 DS F Reserved
MQGMO_MSGHANDLE DS D Message handle
MQGMO_LENGTH EQU *-MQGMO
 ORG MQGMO
MQGMO_AREA DS CL(MQGMO_LENGTH)

High Level Assembler declaration for MQGMO

Type MQGMO
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 Options As Long 'Options that control the action of MQGET'
 WaitInterval As Long 'Wait interval'
 Signal1 As Long 'Signal'
 Signal2 As Long 'Signal identifier'
 ResolvedQName As String*48 'Resolved name of destination queue'
 MatchOptions As Long 'Options controlling selection criteria'
 'used for MQGET'
 GroupStatus As String*1 'Flag indicating whether message'
 'retrieved is in a group'
 SegmentStatus As String*1 'Flag indicating whether message'
 'retrieved is a segment of a logical'
 'message'
 Segmentation As String*1 'Flag indicating whether further'
 'segmentation is allowed for the message'
 'retrieved'
 Reserved1 As String*1 'Reserved'
 MsgToken As MQBYTE16 'Message token'
 ReturnedLength As Long 'Length of message data returned (bytes)'
End Type

PROPCTL channel options for MQGMO
Use the PROPCTL channel attribute to control which message properties are included in a message that is
sent from an IBM MQ 9.2 queue manager to a partner queue manager from an earlier version of IBM MQ.

Table 492. Channel message property attribute settings

PROPCTL Description

ALL Use this option if applications connected to the partner queue manager from an earlier version
are able to process any properties placed in a message by an IBM MQ 9.2 application.

All properties are sent to the partner queue manager, in addition to any name-value pairs placed
in the MQRFH2.

You must consider two application design issues:

1. An application connected to the partner queue manager must be able to process messages
containing MQRFH2 headers generated on an IBM MQ 9.2 queue manager.

2. The application connected to the partner queue manager must process new message
properties that are flagged with MQPD_SUPPORT_REQUIRED correctly.

With the ALL channel option set, JMS applications can interoperate between IBM MQ 9.2 and
an earlier version using the channel. New IBM MQ 9.2 applications using message properties
can interoperate with applications from an earlier version, depending on how the earlier version
application handles MQRFH2 headers.

368 IBM MQ Developing Applications Reference

Table 492. Channel message property attribute settings (continued)

PROPCTL Description

COMPAT Use this option to send message properties to applications connected to an earlier version
partner queue manager in some cases, but not all. Message properties are only sent if two
conditions are met:

1. No property must be marked as requiring message property processing.
2. At least one of the message properties must be in a "reserved" folder; see Note.

With the COMPAT channel option set, JMS applications can interoperate between IBM MQ 9.2
and an earlier version using the channel.

The channel is not available to every application using message properties, only to those
applications that use the reserved folders. The rules concerning whether the message or the
property is sent are:

1. If the message has properties, but none of the properties are associated with a "reserved"
folder, then no message properties are sent.

2. If any message property has been created in a "reserved" property folder, all message
properties associated with the message are sent. However:

a. If any of the message properties are marked as support being required,
MQPD_SUPPORT_REQUIRED or MQPD_SUPPORT_REQUIRED_IF_LOCAL, the whole
message is rejected. It is returned, discarded, or sent to the dead letter queue according
to the value of its report options.

b. If no message properties are marked as support being required, an individual property
might not be sent. If any of the message property descriptor fields are set to non-default
values the individual property is not sent. The message is still sent. An example of a
non-default property descriptor field value is MQPD_USER_CONTEXT.

Note: The "reserved" folders names start with mcd., jms., usr., or mqext.. These folders are
created for applications that use the JMS interface. In IBM MQ 9.2 any name-value pairs that
are placed in these folders are treated as message properties.

Message properties are sent in an MQRFH2 header, in addition to any name-value pairs placed in
an MQRFH2 header. Any name-value pairs placed in an MQRFH2 header are sent as long as the
message is not rejected.

NONE Use this option to prevent any message properties being sent to applications connected to an
earlier version partner queue manager. An MQRFH2 that contains name-value pairs and message
properties is still sent, but only with the name-value pairs.

With the NONE channel option set, a JMS message is sent as a JMSTextMessage or a
JMSBytesMessage without any JMS message properties. If it is possible for an earlier version
application to ignore all properties set in an IBM MQ 9.2 application, it can interoperate with it.

PROPCTL queue options for MQGMO
Use the PROPCTL queue attribute to control how message properties are returned to an application that
calls MQGET without setting any MQGMO message property options.

Developing applications reference 369

Table 493. Queue message property attribute settings

PROPCTL Description

ALL Use the ALL option so that different applications reading a message from the same queue
can process the message in different ways.

• An application, migrated unchanged from an earlier version, can continue to read the
MQRFH2 directly. Properties are directly accessible in the MQRFH2 header.

You must modify the application to handle any new properties, and new property
attributes. It is possible that the application might be affected by changes in the layout
and number of MQRFH2 headers. Some folder attributes might be removed, or that IBM
MQ reports an error in the layout of the MQRFH2 header that it ignored in an earlier
version.

• A new or changed application can use the message property MQI to query message
properties, and read name-value pairs in MQRFH2 header directly.

All the properties in the message are returned to the application.

• If the application calls MQCRTMH to create a message handle, it must query the message
properties using MQINQMP. Name-value pairs that are not message properties remain in
the MQRFH2, which is stripped of any message properties.

• If the application does not create a message handle, all the message properties and
name-value pairs remain in the MQRFH2.

ALL only has this effect if the receiving application has not set a MQGMO_PROPERTIES
option, or has set it to MQGMO_PROPERTIES_AS_Q_DEF.

370 IBM MQ Developing Applications Reference

Table 493. Queue message property attribute settings (continued)

PROPCTL Description

COMPAT
(default)

COMPAT is the default option. If GMO_PROPERTIES_* is not set, as in an unmodified
application from an earlier version, COMPAT is assumed. By defaulting to the COMPAT
option, an earlier version application that did not explicitly create an MQRFH2, works
without change on IBM MQ 9.2.

Use this option if you have written an earlier version application MQI application to read
JMS messages.

• The JMS properties, which are stored in an MQRFH2 header, are returned to the
application in an MQRFH2 header in folders with names starting with mcd., jms., usr.,
or mqext.

• If the message has JMS folders, and if an IBM MQ 9.2 application adds new property
folders to the message, these properties are also returned in the MQRFH2. Consequently,
you must modify the application to handle any new properties, and new property
attributes. It is possible that an unmodified application might be affected by changes
in the layout and number of MQRFH2 headers. It might find some folder attributes are
removed, or that IBM MQ finds errors in the layout of the MQRFH2 header that it ignored
in an earlier version.

Note: In this scenario, the behavior of the application is the same whether it is
connected to an earlier version or IBM MQ 9.2 queue manager. If the channel PROPCTL
attribute is set to COMPAT or ALL any new message properties are sent in the message
to the earlier version partner queue manager.

• If the message is not a JMS message, but contains other properties, those properties
are not returned to the application in an MQRFH2 header. 1

• The option also enables earlier version applications that explicitly create an MQRFH2 to
work correctly, in many cases. For example, An MQI program that creates an MQRFH2
containing JMS message properties continues to work correctly. If a message is created
without JMS message properties, but with some other MQRFH2 folders, the folders are
returned to the application. Only if the folders are message property folders are those
specific folders are removed from the MQRFH2. Message property folders are identified
by having the new folder attribute content='properties', or are folders with names
listed in Defined property folder name or Ungrouped property folder name.

• If the application calls MQCRTMH to create a message handle, it must query the message
properties using MQINQMP. Message properties are removed from the MQRFH2 headers.
Name-value pairs that are not message properties remain in the MQRFH2.

• If the application calls MQCRTMH to create a message handle, it can query all message
properties, regardless of whether the message has JMS folders.

• If the application does not create a message handle, all the message properties and
name-value pairs remain in the MQRFH2.

If a message contains new user property folders, you can infer that the message was
created by a new or changed IBM MQ 9.2 application. If the receiving application is to
process these new properties directly in an MQRFH2, you must modify the application
to use the ALL option. With the default COMPAT option set, an unmodified application
continues to process the rest of the MQRFH2, without the IBM MQ 9.2 properties.

The intent of the PROPCTL interface is to support old applications reading MQRFH2
folders, and new and changed applications using the message property interface. Aim for
new applications to use the message property interface for all user message properties,
and to avoid reading and writing MQRFH2 headers directly.

COMPAT only has this effect if the receiving application has not set a MQGMO_PROPERTIES
option, or has set it to MQGMO_PROPERTIES_AS_Q_DEF.

Developing applications reference 371

Table 493. Queue message property attribute settings (continued)

PROPCTL Description

FORCE The FORCE option places all messages properties into MQRFH2 headers. All message
properties and name-value pairs in the MQRFH2 headers remain in the message. Message
properties are not removed from the MQRFH2, and made available through a message
handle. The effect of choosing the FORCE option is to enable a newly migrated application
to read message properties from MQRFH2 headers.

Suppose you have modified an application to process IBM MQ 9.2 message properties,
but have also retained its ability to work directly with MQRFH2 headers, as before. You can
decide when to switch the application over to using message properties by initially setting
the PROPCTL queue attribute to FORCE. Set the PROPCTL queue attribute to another
value when you are ready to start using message properties. If the new function in the
application does not behave as you expected, set the PROPCTL option back to FORCE.

FORCE only has this effect if the receiving application has not set a MQGMO_PROPERTIES
option, or has set it to MQGMO_PROPERTIES_AS_Q_DEF.

NONE Use the NONE option so that an existing application can process a message, ignoring all
message properties, and a new or changed application can query message properties.

• If the application calls MQCRTMH to create a message handle, it must query the message
properties using MQINQMP. Name-value pairs that are not message properties remain in
the MQRFH2, which is stripped of any message properties.

• If the application does not create a message handle, all the message properties are
removed from the MQRFH2. Name-value pairs in the MQRFH2 headers remain in the
message.

NONE only has this effect if the receiving application has not set a MQGMO_PROPERTIES
option, or has set it to MQGMO_PROPERTIES_AS_Q_DEF.

V6COMPAT Use this option to receive an MQRFH2 in the same format as it was sent. If the sending
application, or the queue manager, creates additional message properties, these are
returned in the message handle.

This option has to be set on both the sending and receiving queues, and any intervening
transmission queues. It overrides any other PROPCTL options set on queue definitions in
the queue name resolution path.

Use the V6COMPAT option only in exceptional circumstances. For example, if you are
migrating applications from an earlier version to IBM MQ 9.2, the option is valuable
because it preserves the behavior of the earlier version. The option is likely to have an
impact on message throughput. It is also more difficult to administer; you need to ensure
the option is set on the sender, receiver, and intervening transmission queues.

V6COMPAT only has this effect if the receiving application has not set a
MQGMO_PROPERTIES option, or has set it to MQGMO_PROPERTIES_AS_Q_DEF.

For more information about message properties and name-value pairs, see “NameValueData
(MQCHARn)” on page 529.

Message property options for MQGMO
Use the MQGMO message property options to control how message properties are returned to an
application.

1 The existence of specific property folders created by the IBM MQ classes for JMS indicates a JMS
message. The property folders are mcd., jms., usr., or mqext.

372 IBM MQ Developing Applications Reference

Table 494. MQGMO message property option settings

MQGMO Option Description

MQGMO_PROPERTIES_AS_Q_DEF IBM MQ applications that read from the same queue, and do
not set GMO_PROPERTIES_*, receive the message properties
differently. IBM MQ applications that do not create a message
handle, are controlled by the queue PROPCTL attribute. An
IBM MQ application can choose to receive message properties
in the MQRFH2, or create a message handle and query the
message properties. If the application creates a message
handle, properties are removed from the MQRFH2.

• A new or changed IBM MQ application that
does not set GMO_PROPERTIES_* or sets it to
MQGMO_PROPERTIES_AS_Q_DEF can choose to query
message properties. It must set MQCRTMH to create a
message handle and query message properties using the
MQINQMP MQI call.

• If a new or changed application does not create a message
handle, it must read any message properties it receives
directly from the MQRFH2 headers.

• If the queue attribute PROPCTL is set to FORCE, no
properties are returned in the message handle. All
properties are returned in MQRFH2 headers.

• If the queue attribute PROPCTL is set to NONE, or COMPAT,
an IBM MQ application that creates a message handle,
receives all message properties.

MQGMO_PROPERTIES_IN_HANDLE Force an application to use message properties. Use this
option to detect if a modified application fails to create
message handle. The application might be trying to read
message properties directly from an MQRFH2, rather than call
MQINQMP.

MQGMO_NO_PROPERTIES • All properties are removed. . Queue manager generated
properties, such as JMS properties, are removed.

• Properties are removed even if a message handle is created.
Name-value pairs in other MQRFH2 folders are available in
the message data.

MQGMO_PROPERTIES_FORCE_MQRFH2 Properties are returned in the MQRFH2 headers, even if a
message handle is created.

• MQINQMP returns no message properties, even if a message
handle is created. MQRC_PROPERTY_NOT_AVAILABLE is
returned if a property is inquired upon.

Developing applications reference 373

Table 494. MQGMO message property option settings (continued)

MQGMO Option Description

MQGMO_PROPERTIES_COMPATIBILITY If the message is from a JMS client, the JMS properties
are returned in the MQRFH2 headers. New or modified IBM
MQ applications, that create a message handle, behave
differently.

• All properties in any message property folders are returned
if the message contains a mcd., jms., usr., or mqext
folder.

• If the message contains property folders, but not a mcd.,
jms., usr., or mqext folder, no message properties are
returned in an MQRFH2.

• If a new or modified IBM MQ application creates a message
handle, query message properties using the MQINQMP MQI
call. All message properties are removed from the MQRFH2.

• If a new or modified IBM MQ application creates a message
handle, all properties in the message can be queried. Even
if the message does not contain a mcd., jms., usr., or
mqext folder, all message properties are queriable.

Related reference
PROPCTL
2471 (09A7) (RC2471): MQRC_PROPERTY_NOT_AVAILABLE

StrucId (MQCHAR4)
This is the structure identifier. The value must be:
MQGMO_STRUC_ID

Identifier for get-message options structure.

For the C programming language, the constant MQGMO_STRUC_ID_ARRAY is also defined; this has
the same value as MQGMO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQGMO_STRUC_ID.

Version (MQLONG)
Version is the structure version number.

The value must be one of the following:
MQGMO_VERSION_1

Version-1 get-message options structure.

This version is supported in all environments.

MQGMO_VERSION_2
Version-2 get-message options structure.

This version is supported in all environments.

MQGMO_VERSION_3
Version-3 get-message options structure.

This version is supported in all environments.

MQGMO_VERSION_4
Version-4 get-message options structure.

This version is supported in all environments.

374 IBM MQ Developing Applications Reference

Fields that exist only in the more-recent versions of the structure are identified as such in the descriptions
of the fields. The following constant specifies the version number of the current version:
MQGMO_CURRENT_VERSION

Current version of get-message options structure.

This is always an input field. The initial value of this field is MQGMO_VERSION_1.

Options (MQLONG) for MQGMO
MQGMO options control the action of MQGET. You can specify zero or more of the options. If you need more
than one optional value:

• Add the values (do not add the same constant more than once), or
• Combine the values using the bitwise OR operation (if the programming language supports bit

operations).

Combinations of options that are not valid are noted; all other combinations are valid.

Wait options
The following options relate to waiting for messages to arrive on the queue:
MQGMO_WAIT

The application waits until a suitable message arrives. The maximum time that the application waits is
specified in WaitInterval .

Important: There is no wait, or delay, if a suitable message is available immediately.

If MQGET requests are inhibited, or MQGET requests become inhibited while waiting, the wait
is canceled. The call completes with MQCC_FAILED and reason code MQRC_GET_INHIBITED,
regardless of whether there are suitable messages on the queue.

You can use MQGMO_WAIT with the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT options.

If several applications are waiting on the same shared queue, the following rules select which
application is activated when a suitable message arrives:

Table 495. Rules for activating MQGET calls on a shared queue.

Number of MQGET calls waiting to be
activated

Result
With a BROWSE
option

Without a BROWSE
option 2

None One or more One MQGET call without a BROWSE option is activated.

One or more None All MQGET calls with a BROWSE option are activated.

One or more One or more
One MQGET call without a BROWSE option is activated. The
number of MQGET calls with a BROWSE option that are
activated is unpredictable.

If more than one MQGET call without a BROWSE option is waiting on the same queue, only one is
activated. The queue manager attempts to give priority to waiting calls in the following order:

1. Specific get-wait requests that can be satisfied only by certain messages, for example, ones with a
specific MsgId or CorrelId (or both).

2. General get-wait requests that can be satisfied by any message.

Note:

2 An MQGET call specifying the MQGMO_LOCK option is treated as a nonbrowse call.

Developing applications reference 375

• Within the first category, no additional priority is given to more specific get-wait requests. For
example, requests that specify both MsgId and CorrelId .

• Within either category, it cannot be predicted which application is selected. In particular, the
application waiting longest is not necessarily the one selected.

• Path length, and priority-scheduling considerations of the operating system, can mean that a waiting
application of lower operating system priority than expected retrieves the message.

• It can also happen that an application that is not waiting retrieves the message in preference to one
that is.

On z/OS, the following points apply:

• If you want the application to proceed with other work while waiting for the message to arrive,
consider using the signal option (MQGMO_SET_SIGNAL) instead. However the signal option is
environment-specific; applications that you to port between different environments must not use
it.

• If there is more than one MQGET call waiting for the same message, with a mixture of wait and signal
options, each waiting call is considered equally. It is an error to specify MQGMO_SET_SIGNAL with
MQGMO_WAIT. It is also an error to specify this option with a queue handle for which a signal is
outstanding.

• If you specify MQGMO_WAIT or MQGMO_SET_SIGNAL for a queue that has an IndexType of
MQIT_MSG_TOKEN, no selection criteria are permitted. This means that:

– If you are using a version-1 MQGMO, set the MsgId and CorrelId fields in the MQMD specified on
the MQGET call to MQMI_NONE and MQCI_NONE.

– If you are using a version-2 or later MQGMO, set the MatchOptions field to MQMO_NONE.
• For an MQGET call on a shared queue and the call is a browse request, or a destructive get of a

group message, and neither MsgId nor CorrelId are to be matched, your signal ECB is posted
MQEC_MSG_ARRIVED after 200 milliseconds.

This occurs, even though a suitable message might not have arrived on the queue, until the wait
interval has expired, when the queue is posted with MQEC_WAIT_INTERVAL_EXPIRED. When
MQEC_MSG_ARRIVED is posted, you must reissue a second MQGET call to retrieve the message,
if one is available.

This technique is used to ensure that you are informed in a timely manner of a message arrival, but
can appear as an unexpected processing overhead when compared with a similar call sequence on a
nonshared queue.

MQGMO_WAIT is ignored if specified with MQGMO_BROWSE_MSG_UNDER_CURSOR or
MQGMO_MSG_UNDER_CURSOR ; no error is raised.

MQGMO_NO_WAIT
The application does not wait if no suitable message is available. MQGMO_NO_WAIT is the opposite
of the MQGMO_WAIT. MQGMO_NO_WAIT is defined to aid program documentation. It is the default if
neither is specified.

MQGMO_SET_SIGNAL
Use this option with the Signal1 and Signal2 fields. It allows applications to proceed with other
work while waiting for a message to arrive. It also allows (if suitable operating system facilities are
available) applications to wait for messages arriving on more than one queue.

Note: The MQGMO_SET_SIGNAL option is environment-specific; do not use it for applications that you
want to port.

In two circumstances, the call completes in the same way as if this option had not been specified:

1. If a currently available message satisfies the criteria specified in the message descriptor.
2. If a parameter error or other synchronous error is detected.

If no message satisfying the criteria specified in the message descriptor is currently available, control
returns to the application without waiting for a message to arrive. The CompCode and Reason

376 IBM MQ Developing Applications Reference

parameters are set to MQCC_WARNING and MQRC_SIGNAL_REQUEST_ACCEPTED. Other output fields
in the message descriptor and the output parameters of the MQGET call are not set. When a suitable
message arrives later, the signal is delivered by posting the ECB.

The caller must then reissue the MQGET call to retrieve the message. The application can wait for this
signal, using functions provided by the operating system.

If the operating system provides a multiple wait mechanism, you can use it to wait for a message
arriving on any one of several queues.

If a nonzero WaitInterval is specified, the signal is delivered after the wait interval expires. The
queue manager can also cancel the wait, in which case the signal is delivered.

More than one MQGET call can set a signal for the same message. The order in which applications are
activated is the same as described for MQGMO_WAIT.

If more than one MQGET call is waiting for the same message, each waiting call is considered equally.
The calls can include a mixture of wait and signal options.

Under certain conditions the MQGET call can retrieve a message, and a signal resulting from the arrival
of the same message can be delivered. When a signal is delivered, an application must be prepared
for no message to be available.

A queue handle can have no more than one signal request outstanding.

This option is not valid with any of the following options:

• MQGMO_UNLOCK
• MQGMO_WAIT

For an MQGET call on a shared queue and the call is a browse request, or a destructive get of a
group message, and neither MsgId or CorrelId are to be matched, the user's signal ECB is posted
MQEC_MSG_ARRIVED after 200 milliseconds.

This occurs, even though a suitable message might not have arrived on the queue, until the
wait interval has expired, when the queue is posted with MQEC_WAIT_INTERVAL_EXPIRED. When
MQEC_MSG_ARRIVED is posted, you must reissue a second MQGET call to retrieve the message, if one
is available.

This technique is used to ensure that you are informed in a timely manner of a message arrival, but
can appear as an unexpected processing overhead when compared with a similar call sequence on a
nonshared queue.

This is not an efficient method of message retrieval when messages are added infrequently. To avoid
this overhead for the browse case, specify MsgId (if non-indexed or indexed by MsgId) or CorrelId (if
indexed by CorrelId) matching on the MQGET call.

This option is supported on z/OS only.

MQGMO_FAIL_IF_QUIESCING
Force the MQGET call to fail if the queue manager is in the quiescing state.

On z/OS, this option also forces the MQGET call to fail if the connection (for a CICS or IMS
application) is in the quiescing state.

If this option is specified with MQGMO_WAIT or MQGMO_SET_SIGNAL, and the wait or signal is
outstanding at the time the queue manager enters the quiescing state:

• The wait is canceled and the call returns completion code MQCC_FAILED with reason code
MQRC_Q_MGR_QUIESCING or MQRC_CONNECTION_QUIESCING.

• The signal is canceled with an environment-specific signal completion code.

On z/OS, the signal completes with event completion code MQEC_Q_MGR_QUIESCING
or MQEC_CONNECTION_QUIESCING.

Developing applications reference 377

If MQGMO_FAIL_IF_QUIESCING is not specified and the queue manager or connection enters the
quiescing state, the wait or signal is not canceled.

Sync point options
The following options relate to the participation of the MQGET call within a unit of work:
MQGMO_SYNCPOINT

The request is to operate within the normal unit-of-work protocols. The message is marked as being
unavailable to other applications, but it is deleted from the queue only when the unit of work is
committed. The message is made available again if the unit of work is backed out.

You can leave MQGMO_SYNCPOINT and MQGMO_NO_SYNCPOINT unset. In which case, the inclusion
of the get request in unit-of-work protocols is determined by the environment running the queue
manager. It is not determined by the environment running the application.

• On z/OS, the get request is within a unit of work.
• In all environments except z/OS, the get request is not within a unit of work.

Because of these differences, an application that you want to port must not allow this option to
default; specify MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT explicitly.

This option is not valid with any of the following options:

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_MSG_UNDER_CURSOR
• MQGMO_BROWSE_NEXT
• MQGMO_LOCK
• MQGMO_NO_SYNCPOINT
• MQGMO_SYNCPOINT_IF_PERSISTENT
• MQGMO_UNLOCK

MQGMO_SYNCPOINT_IF_PERSISTENT
The request is to operate within the normal unit-of-work protocols, but only if the message retrieved
is persistent. A persistent message has the value MQPER_PERSISTENT in the Persistence field in
MQMD.

• If the message is persistent, the queue manager processes the call as though the application had
specified MQGMO_SYNCPOINT.

• If the message is not persistent, the queue manager processes the call as though the application
had specified MQGMO_NO_SYNCPOINT.

This option is not valid with any of the following options:

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_MSG_UNDER_CURSOR
• MQGMO_BROWSE_NEXT
• MQGMO_COMPLETE_MSG
• MQGMO_MARK_SKIP_BACKOUT
• MQGMO_NO_SYNCPOINT
• MQGMO_SYNCPOINT
• MQGMO_UNLOCK

This option is supported in the following environments:

• AIX

• IBM i

378 IBM MQ Developing Applications Reference

• Linux

• z/OS

and for IBM MQ MQI clients connected to these systems.

MQGMO_NO_SYNCPOINT
The request is to operate outside the normal unit-of-work protocols. If you get a message without
a browse option, it is deleted from the queue immediately. The message cannot be made available
again by backing out the unit of work.

This option is assumed if you specify MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT.

You can leave MQGMO_SYNCPOINT and MQGMO_NO_SYNCPOINT unset. In which case, the inclusion
of the get request in unit-of-work protocols is determined by the environment running the queue
manager. It is not determined by the environment running the application.

• On z/OS, the get request is within a unit of work.
• In all environments except z/OS, the get request is not within a unit of work.

Because of these differences, an application that you want to port must not allow this option to
default; specify either MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT explicitly.

This option is not valid with any of the following options:

• MQGMO_MARK_SKIP_BACKOUT
• MQGMO_SYNCPOINT
• MQGMO_SYNCPOINT_IF_PERSISTENT

MQGMO_MARK_SKIP_BACKOUT
Back out a unit of work without reinstating on the queue the message that was marked with this
option.

This option is supported only on z/OS.

If this option is specified, MQGMO_SYNCPOINT must also be specified. MQGMO_MARK_SKIP_BACKOUT
is not valid with any of the following options:

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_MSG_UNDER_CURSOR
• MQGMO_BROWSE_NEXT
• MQGMO_LOCK
• MQGMO_NO_SYNCPOINT
• MQGMO_SYNCPOINT_IF_PERSISTENT
• MQGMO_UNLOCK

Note: On IMS and CICS, you might have to issue an extran IBM MQ call after backing out a unit of
work containing a message marked with MQGMO_MARK_SKIP_BACKOUT. You must issue an IBM MQ
call before you commit the new unit of work containing the marked message. The call can be any IBM
MQ call you like.

1. On IMS, if you have not applied IMS APAR PN60855 and you are running an IMS MPP or BMP
application.

2. On CICS, if you are running any application.

In both cases, issue any IBM MQ call before committing the new unit of work containing the backed
out message.

Note: Within a unit of work, there can be only one get request marked as skipping backout, as well as
none or several unmarked get requests.

Developing applications reference 379

If an application backs out of a unit of work, a message that was retrieved using
MQGMO_MARK_SKIP_BACKOUT is not restored to its previous state. Other resource updates are
backed out. The message is treated as if it had been retrieved in a new unit of work started by
the backout request. The message is retrieved without the MQGMO_MARK_SKIP_BACKOUT option.

MQGMO_MARK_SKIP_BACKOUT is useful if, after some resources have been changed, it becomes
apparent that the unit of work cannot complete successfully. If you omit this option, backing out the
unit of work reinstates the message on the queue. The same sequence of events occurs again, when
the message is next retrieved.

However, if you specify MQGMO_MARK_SKIP_BACKOUT on the original MQGET call, backing out the
unit of work backs out the updates to the other resources. The message is treated as if it had been
retrieved under a new unit of work. The application can perform appropriate error handling. It can
send a report message to the sender of the original message, or place the original message on the
dead-letter queue. It can then commit the new unit of work. Committing the new unit of work removes
the message permanently from the original queue.

MQGMO_MARK_SKIP_BACKOUT marks a single physical message. If the message belongs to a message
group, the other messages in the group are not marked. Similarly, if the marked message is a segment
of a logical message, the other segments in the logical message are not marked.

Any message in a group can be marked, but if messages are retrieved using MQGMO_LOGICAL_ORDER,
it is advantageous to mark the first message in the group. If the unit of work is backed out, the first
(marked) message is moved to the new unit of work. The second and later messages in the group are
reinstated on the queue. The messages left on the queue cannot be retrieved by another application
using MQGMO_LOGICAL_ORDER. The first message in the group is no longer on the queue. However,
the application that backed the unit of work out can retrieve the second and later messages into the
new unit of work using the MQGMO_LOGICAL_ORDER option. The first message has been retrieved
already.

Occasionally you might need to back out the new unit of work. For example, because the dead-letter
queue is full and the message must not be discarded. Backing out the new unit of work reinstates
the message on the original queue, which prevents the message being lost. However, in this situation
processing cannot continue. After backing out the new unit of work, the application must inform the
operator or administrator that there is an unrecoverable error, and then finish.

MQGMO_MARK_SKIP_BACKOUT only works if the unit of work containing the get request is interrupted
by the application backing it out. If the unit of work containing the get request is backed out because
the transaction or system fails, MQGMO_MARK_SKIP_BACKOUT is ignored. Any message retrieved
using this option is reinstated on the queue in the same way as messages retrieved without this
option.

Browse options
The following options relate to browsing messages on the queue:
MQGMO_BROWSE_FIRST

When a queue is opened with the MQOO_BROWSE option, a browse cursor is established, positioned
logically before the first message on the queue. You can then use MQGET calls specifying the
MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT, or MQGMO_BROWSE_MSG_UNDER_CURSOR option to
retrieve messages from the queue nondestructively. The browse cursor marks the position, within the
messages on the queue, from which the next MQGET call with MQGMO_BROWSE_NEXT searches for a
suitable message.

MQGMO_BROWSE_FIRST is not valid with any of the following options:

• MQGMO_BROWSE_MSG_UNDER_CURSOR
• MQGMO_BROWSE_NEXT
• MQGMO_MARK_SKIP_BACKOUT
• MQGMO_MSG_UNDER_CURSOR
• MQGMO_SYNCPOINT

380 IBM MQ Developing Applications Reference

• MQGMO_SYNCPOINT_IF_PERSISTENT
• MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

An MQGET call with MQGMO_BROWSE_FIRST ignores the previous position of the browse cursor. The
first message on the queue that satisfies the conditions specified in the message descriptor is
retrieved. The message remains on the queue, and the browse cursor is positioned on this message.

After this call, the browse cursor is positioned on the message that has been returned. The message
might be removed from the queue before the next MQGET call with MQGMO_BROWSE_NEXT is issued.
In this case, the browse cursor remains at the position in the queue that the message occupied, even
though that position is now empty.

Use the MQGMO_MSG_UNDER_CURSOR option with a non-browse MQGET call, to remove the message
from the queue.

The browse cursor is not moved by a non-browse MQGET call, even if using the same Hobj handle. Nor
is it moved by a browse MQGET call that returns a completion code of MQCC_FAILED, or a reason code
of MQRC_TRUNCATED_MSG_FAILED.

Specify the MQGMO_LOCK option with this option, to lock the message that is browsed.

You can specify MQGMO_BROWSE_FIRST with any valid combination of the MQGMO_* and MQMO_*
options that control the processing of messages in groups and segments of logical messages.

If you specify MQGMO_LOGICAL_ORDER, the messages are browsed in logical order. If you omit
that option, the messages are browsed in physical order. If you specify MQGMO_BROWSE_FIRST,
you can switch between logical order and physical order. Subsequent MQGET calls using
MQGMO_BROWSE_NEXT browse the queue in the same order as the most recent call that specified
MQGMO_BROWSE_FIRST for the queue handle.

The queue manager retains two sets of group and segment information for MQGET calls. The group
and segment information for browse calls are retained separately from the information for calls that
remove messages from the queue. If you specify MQGMO_BROWSE_FIRST, the queue manager ignores
the group and segment information for browsing. It scans the queue as though there were no current
group and no current logical message. If the MQGET call is successful, completion code MQCC_OK
or MQCC_WARNING, the group and segment information for browsing is set to that of the message
returned. If the call fails, the group and segment information remain the same as they were before the
call.

MQGMO_BROWSE_NEXT
Advance the browse cursor to the next message on the queue that satisfies the selection criteria
specified on the MQGET call. The message is returned to the application, but remains on the queue.

MQGMO_BROWSE_NEXT is not valid with any of the following options:

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_MSG_UNDER_CURSOR
• MQGMO_MARK_SKIP_BACKOUT
• MQGMO_MSG_UNDER_CURSOR
• MQGMO_SYNCPOINT
• MQGMO_SYNCPOINT_IF_PERSISTENT
• MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_BROWSE_NEXT behaves the same way as MQGMO_BROWSE_FIRST, if it is the first call to
browse a queue, after the queue has been opened for browse.

The message under cursor might be removed from the queue before the next MQGET call with
MQGMO_BROWSE_NEXT is issued. The browse cursor logically remains at the position in the queue
that the message occupied, even though that position is now empty.

Developing applications reference 381

Messages are stored on the queue in one of two ways:

• FIFO within priority (MQMDS_PRIORITY), or
• FIFO regardless of priority (MQMDS_FIFO)

The MsgDeliverySequence queue attribute indicates which method applies (see “Attributes for
queues” on page 826 for details).

A queue might have a MsgDeliverySequence of MQMDS_PRIORITY. A message arrives on the
queue that is of a higher priority than the one currently pointed to by the browse cursor. In
which case, the higher priority message is not found during the current sweep of the queue
using MQGMO_BROWSE_NEXT. It can be found only after the browse cursor has been reset with
MQGMO_BROWSE_FIRST, or by reopening the queue.

The MQGMO_MSG_UNDER_CURSOR option can be used with a non-browse MQGET call if required, to
remove the message from the queue.

The browse cursor is not moved by non-browse MQGET calls using the same Hobj handle.

Specify the MQGMO_LOCK option with this option to lock the message that is browsed.

You can specify MQGMO_BROWSE_NEXT with any valid combination of the MQGMO_* and MQMO_*
options that control the processing of messages in groups and segments of logical messages.

If you specify MQGMO_LOGICAL_ORDER, the messages are browsed in logical order. If you omit
that option, the messages are browsed in physical order. If you specify MQGMO_BROWSE_FIRST,
you can switch between logical order and physical order. Subsequent MQGET calls using
MQGMO_BROWSE_NEXT browse the queue in the same order as the most recent call that
specified MQGMO_BROWSE_FIRST for the queue handle. The call fails with reason code
MQRC_INCONSISTENT_BROWSE if this condition is not satisfied.

Note: Take special care when using an MQGET call to browse beyond the end of a message group
if MQGMO_LOGICAL_ORDER is not specified. For example, suppose that the last message in the
group precedes the first message in the group on the queue. Using MQGMO_BROWSE_NEXT to browse
beyond the end of the group, specifying MQMO_MATCH_MSG_SEQ_NUMBER with MsgSeqNumber set
to 1 returns the first message in the group already browsed. This result can happen immediately, or
a number of MQGET calls later if there are intervening groups. The same consideration applies for a
logical message not in a group.

The group and segment information for browse calls are retained separately from the information for
calls that remove messages from the queue.

MQGMO_BROWSE_MSG_UNDER_CURSOR
Retrieve the message pointed to by the browse cursor nondestructively, regardless of the MQMO_*
options specified in the MatchOptions field in MQGMO.

MQGMO_BROWSE_MSG_UNDER_CURSOR is not valid with any of the following options:

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_NEXT
• MQGMO_MARK_SKIP_BACKOUT
• MQGMO_MSG_UNDER_CURSOR
• MQGMO_SYNCPOINT
• MQGMO_SYNCPOINT_IF_PERSISTENT
• MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

The message pointed to by the browse cursor is the one that was last retrieved using either the
MQGMO_BROWSE_FIRST or the MQGMO_BROWSE_NEXT option. The call fails if neither of these calls has
been issued for this queue since it was opened. The call also fails if the message that was under the
browse cursor has since been retrieved destructively.

382 IBM MQ Developing Applications Reference

The position of the browse cursor is not changed by this call.

The MQGMO_MSG_UNDER_CURSOR option can be used with a non-browse MQGET call, to remove the
message from the queue.

The browse cursor is not moved by a non-browse MQGET call, even if using the same Hobj handle. Nor
is it moved by a browse MQGET call that returns a completion code of MQCC_FAILED, or a reason code
of MQRC_TRUNCATED_MSG_FAILED.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified with MQGMO_LOCK:

• If there is already a message locked, it must be the one under the cursor, so that is returned without
unlocking and locking again. The message remains locked.

• If there is no locked message and there is a message under the browse cursor, it is locked and
returned to the application. If there is no message under the browse cursor, the call fails.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified without MQGMO_LOCK:

• If there is already a message locked, it must be the one under the cursor. The message is returned
to the application and then unlocked. Because the message is now unlocked, there is no guarantee
that it can be browsed again, or retrieved destructively by the same application. It might have been
retrieved destructively by another application getting messages from the queue.

• If there is no locked message and there is a message under the browse cursor, it is returned to the
application. If there is no message under the browse cursor the call fails.

If MQGMO_COMPLETE_MSG is specified with MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse cursor
must identify a message whose Offset field in MQMD is zero. If this condition is not satisfied, the call
fails with reason code MQRC_INVALID_MSG_UNDER_CURSOR.

The group and segment information for browse calls are retained separately from the information for
calls that remove messages from the queue.

MQGMO_MSG_UNDER_CURSOR
Retrieve the message pointed to by the browse cursor, regardless of the MQMO_* options specified in
the MatchOptions field in MQGMO. The message is removed from the queue.

The message pointed to by the browse cursor is the one that was last retrieved using either the
MQGMO_BROWSE_FIRST or the MQGMO_BROWSE_NEXT option.

If MQGMO_COMPLETE_MSG is specified with MQGMO_MSG_UNDER_CURSOR, the browse cursor must
identify a message whose Offset field in MQMD is zero. If this condition is not satisfied, the call fails
with reason code MQRC_INVALID_MSG_UNDER_CURSOR.

This option is not valid with any of the following options:

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_MSG_UNDER_CURSOR
• MQGMO_BROWSE_NEXT
• MQGMO_UNLOCK

It is also an error if the queue was not opened both for browse and for input. If the browse cursor is
not currently pointing to a retrievable message, an error is returned by the MQGET call.

MQGMO_MARK_BROWSE_HANDLE
The message that is returned by a successful MQGET, or identified by the returned MsgToken, is
marked. The mark is specific to the object handle used in the call.

The message is not removed from the queue.

MQGMO_MARK_BROWSE_HANDLE is valid only if one of the following options is also specified:

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_MSG_UNDER_CURSOR
• MQGMO_BROWSE_NEXT

Developing applications reference 383

MQGMO_MARK_BROWSE_HANDLE is not valid with any of the following options:

• MQGMO_ALL_MSGS_AVAILABLE
• MQGMO_ALL_SEGMENTS_AVAILABLE
• MQGMO_COMPLETE_MSG
• MQGMO_LOCK
• MQGMO_LOGICAL_ORDER
• MQGMO_UNLOCK

The message remains in this state until one of the following events occurs:

• The object handle concerned is closed, either normally or otherwise.
• The message is unmarked for this handle by a call to MQGET with the option
MQGMO_UNMARK_BROWSE_HANDLE.

• The message is returned from a call to destructive MQGET, which completes with MQCC_OK or
MQCC_WARNING. The message state remains changed even if the MQGET is later rolled-back.

• The message expires.

MQGMO_MARK_BROWSE_CO_OP
The message that is returned by a successful MQGET, or identified by the returned MsgToken, is
marked for all handles in the cooperating set.

The cooperative level mark is in addition to any handle level mark that might have been set.

The message is not removed from the queue.

MQGMO_MARK_BROWSE_CO_OP is valid only if the object handle used was returned by a call to MQOPEN
that specified MQOO_CO_OP. You must also specify one of the following MQGMO options:

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_MSG_UNDER_CURSOR
• MQGMO_BROWSE_NEXT

This option is not valid with any of the following options:

• MQGMO_ALL_MSGS_AVAILABLE
• MQGMO_ALL_SEGMENTS_AVAILABLE
• MQGMO_COMPLETE_MSG
• MQGMO_LOCK
• MQGMO_LOGICAL_ORDER
• MQGMO_UNLOCK

If the message is already marked, and the option MQGMO_UNMARKED_BROWSE_MSG is not specified,
the call fails with MQCC_FAILED and reason code MQRC_MSG_MARKED_BROWSE_CO_OP.

The message remains in this state until one of the following events occurs:

• All object handles in the cooperating set are closed.
• The message is unmarked for cooperating browsers by a call to MQGET with the option
MQGMO_UNMARK_BROWSE_CO_OP.

• The message is automatically unmarked by the queue manager.
• The message is returned from a call to a non-browse MQGET. The message state remains changed

even if the MQGET is later rolled-back.
• The message expires.

MQGMO_UNMARKED_BROWSE_MSG
A call to MQGET that specifies MQGMO_UNMARKED_BROWSE_MSG returns a message that is considered
to be unmarked for its handle. It does not return a message if the message was marked for its handle.

384 IBM MQ Developing Applications Reference

It also does not return the message if the queue was opened by a call to MQOPEN, with the option
MQOO_CO_OP, and the message has been marked by a member of the cooperating set.

This option is not valid with any of the following options:

• MQGMO_ALL_MSGS_AVAILABLE
• MQGMO_ALL_SEGMENTS_AVAILABLE
• MQGMO_COMPLETE_MSG
• MQGMO_LOCK
• MQGMO_LOGICAL_ORDER
• MQGMO_UNLOCK

MQGMO_UNMARK_BROWSE_CO_OP
After a call to MQGET that specifies this option, the message is no longer considered by any open
handles in the set of cooperating handles to be marked for the cooperating set. The message is still
considered to be marked at handle level if it was marked at handle level before this call.

Using MQGMO_UNMARK_BROWSE_CO_OP is valid only with a handle returned by a successful call to
MQOPEN with the option MQOO_CO_OP. The MQGET succeeds even if the message is not considered to
be marked by the cooperating set of handles.

MQGMO_UNMARK_BROWSE_CO_OP is not valid on a non-browse MQGET call, or with any of the following
options:

• MQGMO_ALL_MSGS_AVAILABLE
• MQGMO_ALL_SEGMENTS_AVAILABLE
• MQGMO_COMPLETE_MSG
• MQGMO_LOCK
• MQGMO_LOGICAL_ORDER
• MQGMO_MARK_BROWSE_CO_OP
• MQGMO_UNLOCK
• MQGMO_UNMARKED_BROWSE_MSG

MQGMO_UNMARK_BROWSE_HANDLE
After a call to MQGET that specifies this option, the message located is no longer considered to be
marked by this handle.

The call succeeds even if the message is not marked for this handle.

This option is not valid on a non-browse MQGET call, or with any of the following options:

• MQGMO_ALL_MSGS_AVAILABLE
• MQGMO_ALL_SEGMENTS_AVAILABLE
• MQGMO_COMPLETE_MSG
• MQGMO_LOCK
• MQGMO_LOGICAL_ORDER
• MQGMO_MARK_BROWSE_CO_OP
• MQGMO_UNLOCK
• MQGMO_UNMARKED_BROWSE_MSG

Lock options
The following options relate to locking messages on the queue:
MQGMO_LOCK

Lock the message that is browsed, so that the message becomes invisible to any other handle open
for the queue. The option can be specified only if one of the following options is also specified:

Developing applications reference 385

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_NEXT
• MQGMO_BROWSE_MSG_UNDER_CURSOR

Only one message can be locked for each queue handle. The message can be a logical message or a
physical message:

• If you specify MQGMO_COMPLETE_MSG, all the message segments that make up the logical message
are locked to the queue handle. The messages must all be present on the queue and available for
retrieval.

• If you omit MQGMO_COMPLETE_MSG, only a single physical message is locked to the queue handle.
If this message happens to be a segment of a logical message, the locked segment prevents other
applications using MQGMO_COMPLETE_MSG to retrieve or browse the logical message.

The locked message is always the one under the browse cursor. The message can be removed from
the queue by a later MQGET call that specifies the MQGMO_MSG_UNDER_CURSOR option. Other MQGET
calls using the queue handle can also remove the message (for example, a call that specifies the
message identifier of the locked message).

If the call returns completion code MQCC_FAILED, or MQCC_WARNING with reason code
MQRC_TRUNCATED_MSG_FAILED, no message is locked.

If the application does not remove the message from the queue, the lock is released by one of the
following actions:

• Issuing another MQGET call for this handle, specifying either MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT. The lock is released if the call completes with MQCC_OK or MQCC_WARNING.
The message remains locked if the call completes with MQCC_FAILED. However, the following
exceptions apply:

– The message is not unlocked if MQCC_WARNING is returned with
MQRC_TRUNCATED_MSG_FAILED.

– The message is unlocked if MQCC_FAILED is returned with MQRC_NO_MSG_AVAILABLE.

If you also specify MQGMO_LOCK, the message returned is locked. If you omit MQGMO_LOCK, there is
no locked message after the call.

If you specify MQGMO_WAIT, and no message is immediately available, the original message is
unlocked before the start of the wait.

• Issuing another MQGET call for this handle, with MQGMO_BROWSE_MSG_UNDER_CURSOR, without
MQGMO_LOCK. The lock is released if the call completes with MQCC_OK or MQCC_WARNING. The
message remains locked if the call completes with MQCC_FAILED. However, the following exception
applies:

– The message is not unlocked if MQCC_WARNING is returned with
MQRC_TRUNCATED_MSG_FAILED.

• Issuing another MQGET call for this handle with MQGMO_UNLOCK.
• Issuing an MQCLOSE call using the handle. The MQCLOSE might be implicit, caused by the application

ending.

No special MQOPEN option is required to specify MQGMO_LOCK, other than MQOO_BROWSE, which is
needed to specify an accompanying browse option.

MQGMO_LOCK is not valid with any of the following options:

• MQGMO_MARK_SKIP_BACKOUT
• MQGMO_SYNCPOINT
• MQGMO_SYNCPOINT_IF_PERSISTENT
• MQGMO_UNLOCK

386 IBM MQ Developing Applications Reference

MQGMO_UNLOCK
The message to be unlocked must have been previously locked by an MQGET call with the
MQGMO_LOCK option. If there is no message locked for this handle, the call completes with
MQCC_WARNING and MQRC_NO_MSG_LOCKED.

The MsgDesc, BufferLength, Buffer, and DataLength parameters are not checked or altered if
you specify MQGMO_UNLOCK. No message is returned in Buffer.

No special open option is required to specify MQGMO_UNLOCK (although MQOO_BROWSE is needed to
issue the lock request in the first place).

This option is not valid with any options except the following:

• MQGMO_NO_WAIT
• MQGMO_NO_SYNCPOINT

Both of these options are assumed whether specified or not.

Message-data options
The following options relate to the processing of the message data when the message is read from the
queue:
MQGMO_ACCEPT_TRUNCATED_MSG

If the message buffer is too small to hold the complete message, allow the MQGET call to fill the buffer.
MQGET fills the buffer with as much of the message it can. It issues a warning completion code, and
completes its processing. This means that:

• When browsing messages, the browse cursor is advanced to the returned message.
• When removing messages, the returned message is removed from the queue.
• Reason code MQRC_TRUNCATED_MSG_ACCEPTED is returned if no other error occurs.

Without this option, the buffer is still filled with as much of the message as it can hold. A warning
completion code is issued, but processing is not completed. This means that:

• When browsing messages, the browse cursor is not advanced.
• When removing messages, the message is not removed from the queue.
• Reason code MQRC_TRUNCATED_MSG_FAILED is returned if no other error occurs.

MQGMO_CONVERT
This option converts the application data in the message to conform to the CodedCharSetId and
Encoding values specified in the MsgDesc parameter on the MQGET call. The data is converted
before it is copied to the Buffer parameter.

The Format field specified when the message was put is assumed by the conversion process to
identify the nature of the data in the message. The message data is converted by the queue manager
for built-in formats, and by a user-written exit for other formats. See “Data-conversion exit” on page
897 for details of the data-conversion exit.

• If conversion is successful, the CodedCharSetId and Encoding fields specified in the MsgDesc
parameter are unchanged on return from the MQGET call.

• If only conversion fails the message data is returned unconverted The CodedCharSetId and
Encoding fields in MsgDesc are set to the values for the unconverted message. The completion
code is MQCC_WARNING in this case.

In either case, these fields describe the character-set identifier and encoding of the message data
that is returned in the Buffer parameter.

See the Format field described in “MQMD - Message descriptor” on page 417 for a list of format
names for which the queue manager performs the conversion.

Developing applications reference 387

Group and segment options
The following options relate to the processing of messages in groups and segments of logical messages.
Before the option descriptions, here are some definitions of important terms:
Physical message

A physical message is the smallest unit of information that can be placed on or removed from a queue.
It often corresponds to the information specified or retrieved on a single MQPUT, MQPUT1, or MQGET
call. Every physical message has its own message descriptor, MQMD. Typically, physical messages
are distinguished by differing values for the message identifier, the MsgId field in MQMD. The queue
manager does not enforce different values.

Logical message
A logical message is a single unit of application information. In the absence of system constraints, a
logical message is the same as a physical message. If logical messages are large, system constraints
might make it advisable or necessary to split a logical message into two or more physical messages,
called segments.

A logical message that has been segmented consists of two or more physical messages that have
the same nonnull group identifier, GroupId field in MQMD. They have the same message sequence
number, MsgSeqNumber field in MQMD. The segments are distinguished by differing values for the
segment offset, Offset field in MQMD. The segment offset is the offset of the data in the physical
message from the start of the data in the logical message. Because each segment is a physical
message, the segments in a logical message typically have different message identifiers.

A logical message that has not been segmented, but for which segmentation has been permitted by
the sending application, also has a nonnull group identifier. In this case there is only one physical
message with that group identifier if the logical message does not belong to a message group. Logical
messages, for which segmentation has been inhibited by the sending application, have a null group
identifier, MQGI_NONE, unless the logical message belongs to a message group.

Message group
A message group is a set of one or more logical messages that have the same nonnull group identifier.
The logical messages in the group are distinguished by different values for the message sequence
number. The sequence number is an integer in the range 1 through n, where n is the number of logical
messages in the group. If one or more of the logical messages is segmented, there are more than n
physical messages in the group.

MQGMO_LOGICAL_ORDER
MQGMO_LOGICAL_ORDER controls the order in which messages are returned by successive MQGET
calls for the queue handle. The option must be specified on each call.

If MQGMO_LOGICAL_ORDER is specified for successive MQGET calls for the same queue handle,
messages in groups are returned in the order of their message sequence numbers. Segments of
logical messages are returned in the order given by their segment offsets. This order might be
different from the order in which those messages and segments occur on the queue.

Note: Specifying MQGMO_LOGICAL_ORDER has no adverse consequences on messages that do
not belong to groups and that are not segments. In effect, such messages are treated as
though each belonged to a message group consisting of only one message. It is safe to specify
MQGMO_LOGICAL_ORDER when retrieving messages from queues that contain a mixture of messages
in groups, message segments, and unsegmented messages not in groups.

To return the messages in the required order, the queue manager retains the group and segment
information between successive MQGET calls. The group and segment information identifies the
current message group and current logical message for the queue handle. It also identifies the current
position within the group and logical message, and whether the messages are being retrieved within
a unit of work. Because the queue manager retains this information, the application does not need
to set the group and segment information before each MQGET call. Specifically, it means that the
application does not need to set the GroupId, MsgSeqNumber, and Offset fields in MQMD. However,
the application must set the MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT option correctly on each
call.

388 IBM MQ Developing Applications Reference

When the queue is opened, there is no current message group and no current logical
message. A message group becomes the current message group when a message that has the
MQMF_MSG_IN_GROUP flag is returned by the MQGET call. With MQGMO_LOGICAL_ORDER specified on
successive calls, that group remains the current group until a message is returned that has:

• MQMF_LAST_MSG_IN_GROUP without MQMF_SEGMENT (that is, the last logical message in the group
is not segmented), or

• MQMF_LAST_MSG_IN_GROUP with MQMF_LAST_SEGMENT (that is, the message returned is the last
segment of the last logical message in the group).

When such a message is returned, the message group is terminated, and on successful completion
of the MQGET call there is no longer a current group. In a similar way, a logical message becomes the
current logical message when a message that has the MQMF_SEGMENT flag is returned by the MQGET
call. The logical message is terminated when the message that has the MQMF_LAST_SEGMENT flag is
returned.

If no selection criteria are specified, successive MQGET calls return, in the correct order, the messages
for the first message group on the queue. They then return the messages for the second message
group, and so on, until there are no more messages available. It is possible to select the particular
message groups returned by specifying one or more of the following options in the MatchOptions
field:

• MQMO_MATCH_MSG_ID
• MQMO_MATCH_CORREL_ID
• MQMO_MATCH_GROUP_ID

However, these options are effective only when there is no current message group or logical message.
See the MatchOptions field described in “MQGMO - Get-message options” on page 364 for further
details.

Table 496 on page 389 shows the values of the MsgId, CorrelId, GroupId, MsgSeqNumber, and
Offset fields that the queue manager looks for when attempting to find a message to return on the
MQGET call. The rules apply both to removing messages from the queue, and browsing messages on
the queue. In the table, Either means Yes or No:
LOG ORD

Indicates whether the MQGMO_LOGICAL_ORDER option is specified on the call.
Cur grp

Indicates whether a current message group exists before the call.
Cur log msg

Indicates whether a current logical message exists before the call.
Other columns

Show the values that the queue manager looks for. Previous denotes the value returned for the
field in the previous message for the queue handle.

Table 496. MQGET options relating to messages in groups and segments of logical messages

Options
you

specify

Group and log-
msg status
before call

Values the queue manager looks for

LOG
ORD

Cur
grp

Cur
log
msg

MsgId CorrelId GroupId MsgSeqNumbe
r

Offset

Yes No No Controlled by
MatchOption

s

Controlled by
MatchOption

s

Controlled by
MatchOption

s

1 0

Developing applications reference 389

Table 496. MQGET options relating to messages in groups and segments of logical messages (continued)

Options
you

specify

Group and log-
msg status
before call

Values the queue manager looks for

Yes No Yes Any message
identifier

Any
correlation
identifier

Previous group
identifier

1 Previous offset
+ previous
segment

length

Yes Yes No Any message
identifier

Any
correlation
identifier

Previous group
identifier

Previous
sequence

number + 1

0

Yes Yes Yes Any message
identifier

Any
correlation
identifier

Previous group
identifier

Previous
sequence
number

Previous offset
+ previous
segment

length

No Either Either Controlled by
MatchOption

s

Controlled by
MatchOption

s

Controlled by
MatchOption

s

Controlled by
MatchOption

s

Controlled by
MatchOption

s

If multiple message groups are present on the queue and eligible for return, the groups are returned
in the order determined by the position on the queue of the first segment of the first logical message
in each group. That is, the physical messages that have message sequence numbers of 1, and offsets
of 0, determine the order in which eligible groups are returned.

The MQGMO_LOGICAL_ORDER option affects units of work as follows:

• If the first logical message or segment in a group is retrieved within a unit of work, all the other
logical messages and segments in the group must be retrieved within a unit of work, if the same
queue handle is used. However, they need not be retrieved within the same unit of work. This allows
a message group consisting of many physical messages to be split across two or more consecutive
units of work for the queue handle.

• If the first logical message or segment in a group is not retrieved within a unit of work, and the
same queue handle is used, none of the other logical messages and segments in the group can be
retrieved within a unit of work.

If these conditions are not satisfied, the MQGET call fails with reason code
MQRC_INCONSISTENT_UOW.

When MQGMO_LOGICAL_ORDER is specified, the MQGMO supplied on the MQGET call must not
be less than MQGMO_VERSION_2, and the MQMD must not be less than MQMD_VERSION_2. If
this condition is not satisfied, the call fails with reason code MQRC_WRONG_GMO_VERSION or
MQRC_WRONG_MD_VERSION, as appropriate.

If MQGMO_LOGICAL_ORDER is not specified for successive MQGET calls for the queue handle,
messages are returned without regard for whether they belong to message groups, or whether they
are segments of logical messages. This means that messages or segments from a particular group
or logical message might be returned out of order, or intermingled with messages or segments from
other groups or logical messages, or with messages that are not in groups and are not segments. In
this situation, the particular messages that are returned by successive MQGET calls is controlled by
the MQMO_* options specified on those calls (see the MatchOptions field described in “MQGMO -
Get-message options” on page 364 for details of these options).

This is the technique that can be used to restart a message group or logical message in the
middle, after a system failure has occurred. When the system restarts, the application can set
the GroupId, MsgSeqNumber, Offset, and MatchOptions fields to the appropriate values, and
then issue the MQGET call with MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT set, but without
specifying MQGMO_LOGICAL_ORDER. If this call is successful, the queue manager retains the

390 IBM MQ Developing Applications Reference

group and segment information, and subsequent MQGET calls using that queue handle can specify
MQGMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager retains for the MQGET call is separate
from the group and segment information that it retains for the MQPUT call. In addition, the queue
manager retains separate information for:

• MQGET calls that remove messages from the queue.
• MQGET calls that browse messages on the queue.

For any given queue handle, the application can mix MQGET calls that specify
MQGMO_LOGICAL_ORDER with MQGET calls that do not. However, note the following points:

• If you omit MQGMO_LOGICAL_ORDER, each successful MQGET call causes the queue manager to set
the saved group and segment information to the values corresponding to the message returned; this
replaces the existing group and segment information retained by the queue manager for the queue
handle. Only the information appropriate to the action of the call (browse or remove) is modified.

• If you omit MQGMO_LOGICAL_ORDER, the call does not fail if there is a current message group or
logical message; the call might succeed with an MQCC_WARNING completion code. Table 497 on
page 391 shows the various cases that can arise. In these cases, if the completion code is not
MQCC_OK, the reason code is one of the following (as appropriate):

– MQRC_INCOMPLETE_GROUP
– MQRC_INCOMPLETE_MSG
– MQRC_INCONSISTENT_UOW

Note: The queue manager does not check the group and segment information when browsing a
queue, or when closing a queue that was opened for browse but not input; in those cases the
completion code is always MQCC_OK (assuming no other errors).

Table 497. Outcome when MQGET or MQCLOSE call is not consistent with group and segment information

Current call is Previous call was MQGET with
MQGMO_LOGICAL_ORDER

Previous call was MQGET without
MQGMO_LOGICAL_ORDER

MQGET with
MQGMO_LOGICAL_ORDER

MQCC_FAILED MQCC_FAILED

MQGET without
MQGMO_LOGICAL_ORDER

MQCC_WARNING MQCC_OK

MQCLOSE with an unterminated
group or logical message

MQCC_WARNING MQCC_OK

Applications that want to retrieve messages and segments in logical order are recommended to
specify MQGMO_LOGICAL_ORDER, as this is the simplest option to use. This option relieves the
application of the need to manage the group and segment information, because the queue manager
manages that information. However, specialized applications might need more control than that
provided by the MQGMO_LOGICAL_ORDER option, and this can be achieved by not specifying that
option. The application must then ensure that the MsgId, CorrelId, GroupId, MsgSeqNumber, and
Offset fields in MQMD, and the MQMO_* options in MatchOptions in MQGMO, are set correctly, before
each MQGET call.

For example, an application that wants to forward physical messages that it receives, without
regard for whether those messages are in groups or segments of logical messages, must not
specify MQGMO_LOGICAL_ORDER. In a complex network with multiple paths between sending and
receiving queue managers, the physical messages might arrive out of order. By specifying neither
MQGMO_LOGICAL_ORDER, nor the corresponding MQPMO_LOGICAL_ORDER on the MQPUT call, the
forwarding application can retrieve and forward each physical message as soon as it arrives, without
having to wait for the next one in logical order to arrive.

Developing applications reference 391

You can specify MQGMO_LOGICAL_ORDER with any of the other MQGMO_* options, and with various of
the MQMO_* options in appropriate circumstances (see preceding section).

• On z/OS, this option is supported for private and shared queues, but the queue must
have an index type of MQIT_GROUP_ID. For shared queues, the CFSTRUCT object that the queue
maps to must be at CFLEVEL(3) or higher.

• This option is supported for all local queues for the following platforms:

– AIX

– Linux

– IBM i

– Windows

and for IBM MQ MQI clients connected to these systems,.

MQGMO_COMPLETE_MSG
Only a complete logical message can be returned by the MQGET call. If the logical message is
segmented, the queue manager reassembles the segments and returns the complete logical message
to the application; the fact that the logical message was segmented is not apparent to the application
retrieving it.

Note: This is the only option that causes the queue manager to reassemble message segments. If not
specified, segments are returned individually to the application if they are present on the queue (and
they satisfy the other selection criteria specified on the MQGET call). Applications that do not want to
receive individual segments must always specify MQGMO_COMPLETE_MSG.

To use this option, the application must provide a buffer that is big enough to accommodate the
complete message, or specify the MQGMO_ACCEPT_TRUNCATED_MSG option.

If the queue contains segmented messages with some of the segments missing (perhaps because
they have been delayed in the network and have not yet arrived), specifying MQGMO_COMPLETE_MSG
prevents the retrieval of segments belonging to incomplete logical messages. However, those
message segments still contribute to the value of the CurrentQDepth queue attribute; this means
that there might be no retrievable logical messages, even though CurrentQDepth is greater than
zero.

For persistent messages, the queue manager can reassemble the segments only within a unit of work:

• If the MQGET call is operating within a user-defined unit of work, that unit of work is used. If the
call fails during the reassembly process, the queue manager reinstates on the queue any segments
that were removed during reassembly. However, the failure does not prevent the unit of work being
committed successfully.

• If the call is operating outside a user-defined unit of work, and there is no user-defined unit of work
in existence, the queue manager creates a unit of work for the duration of the call. If the call is
successful, the queue manager commits the unit of work automatically (the application does not
need to do this). If the call fails, the queue manager backs out the unit of work.

• If the call is operating outside a user-defined unit of work, but a user-defined unit of work
exists, the queue manager cannot reassemble. If the message does not require reassembly, the
call can still succeed. But if the message requires reassembly, the call fails with reason code
MQRC_UOW_NOT_AVAILABLE.

For nonpersistent messages, the queue manager does not require a unit of work to be available to
perform reassembly.

Each physical message that is a segment has its own message descriptor. For the segments
constituting a single logical message, most of the fields in the message descriptor are the same
for all segments in the logical message; typically it is only the MsgId, Offset, and MsgFlags fields
that differ between segments in the logical message. However, if a segment is placed on a dead-letter
queue at an intermediate queue manager, the DLQ handler retrieves the message specifying the

392 IBM MQ Developing Applications Reference

MQGMO_CONVERT option, and this can result in the character set or encoding of the segment being
changed. If the DLQ handler successfully sends the segment on its way, the segment might have
a character set or encoding that differs from the other segments in the logical message when the
segment arrives at the destination queue manager.

A logical message consisting of segments in which the CodedCharSetId and Encoding fields
differ cannot be reassembled by the queue manager into a single logical message. Instead, the
queue manager reassembles and returns the first few consecutive segments at the start of the
logical message that have the same character-set identifiers and encodings, and the MQGET call
completes with completion code MQCC_WARNING and reason code MQRC_INCONSISTENT_CCSIDS
or MQRC_INCONSISTENT_ENCODINGS, as appropriate. This happens regardless of whether
MQGMO_CONVERT is specified. To retrieve the remaining segments, the application must reissue
the MQGET call without the MQGMO_COMPLETE_MSG option, retrieving the segments one by one.
MQGMO_LOGICAL_ORDER can be used to retrieve the remaining segments in order.

An application that puts segments can also set other fields in the message descriptor to values that
differ between segments. However, there is no advantage in doing this if the receiving application
uses MQGMO_COMPLETE_MSG to retrieve the logical message. When the queue manager reassembles
a logical message, it returns in the message descriptor the values from the message descriptor for the
first segment; the only exception is the MsgFlags field, which the queue manager sets to indicate
that the reassembled message is the only segment.

If MQGMO_COMPLETE_MSG is specified for a report message, the queue manager performs special
processing. The queue manager checks the queue to see if all the report messages of that report
type relating to the different segments in the logical message are present on the queue. If they
are, they can be retrieved as a single message by specifying MQGMO_COMPLETE_MSG. For this to be
possible, either the report messages must be generated by a queue manager or MCA which supports
segmentation, or the originating application must request at least 100 bytes of message data (that
is, the appropriate MQRO_*_WITH_DATA or MQRO_*_WITH_FULL_DATA options must be specified). If
less than the full amount of application data is present for a segment, the missing bytes are replaced
by nulls in the report message returned.

If MQGMO_COMPLETE_MSG is specified with MQGMO_MSG_UNDER_CURSOR or
MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse cursor must be positioned on a message whose
Offset field in MQMD has a value of 0. If this condition is not satisfied, the call fails with reason code
MQRC_INVALID_MSG_UNDER_CURSOR.

MQGMO_COMPLETE_MSG implies MQGMO_ALL_SEGMENTS_AVAILABLE, which need not therefore be
specified.

MQGMO_COMPLETE_MSG can be specified with any of the other MQGMO_* options apart
from MQGMO_SYNCPOINT_IF_PERSISTENT, and with any of the MQMO_* options apart from
MQMO_MATCH_OFFSET.

• On z/OS, this option is supported for private and shared queues, but the queue must
have an index type of MQIT_GROUP_ID. For shared queues, the CFSTRUCT object that the queue
map to must be at CFLEVEL(3) or higher.

• On the following platforms:

– AIX

– IBM i

– Linux

– Windows

and for IBM MQ MQI clients connected to these systems, this option is supported for all local
queues.

Developing applications reference 393

MQGMO_ALL_MSGS_AVAILABLE
Messages in a group become available for retrieval only when all messages in the group
are available. If the queue contains message groups with some of the messages missing
(perhaps because they have been delayed in the network and have not yet arrived), specifying
MQGMO_ALL_MSGS_AVAILABLE prevents retrieval of messages belonging to incomplete groups.
However, those messages still contribute to the value of the CurrentQDepth queue attribute;
this means that there may be no retrievable message groups, even though CurrentQDepth
is greater than zero. If there are no other messages that are retrievable, reason code
MQRC_NO_MSG_AVAILABLE is returned after the specified wait interval (if any) has expired.

The processing of MQGMO_ALL_MSGS_AVAILABLE depends on whether MQGMO_LOGICAL_ORDER is
also specified:

• If both options are specified, MQGMO_ALL_MSGS_AVAILABLE has an effect only when there
is no current group or logical message. If there is a current group or logical message,
MQGMO_ALL_MSGS_AVAILABLE is ignored. This means that MQGMO_ALL_MSGS_AVAILABLE can
remain on when processing messages in logical order.

• If MQGMO_ALL_MSGS_AVAILABLE is specified without MQGMO_LOGICAL_ORDER,
MQGMO_ALL_MSGS_AVAILABLE always has an effect. This means that the option must be turned off
after the first message in the group has been removed from the queue, in order to be able to remove
the remaining messages in the group.

Successful completion of an MQGET call specifying MQGMO_ALL_MSGS_AVAILABLE means that at the
time that the MQGET call was issued, all the messages in the group were on the queue. However, be
aware that other applications can still remove messages from the group (the group is not locked to the
application that retrieves the first message in the group).

If you omit this option, messages belonging to groups can be retrieved even when the group is
incomplete.

MQGMO_ALL_MSGS_AVAILABLE implies MQGMO_ALL_SEGMENTS_AVAILABLE, which need not
therefore be specified.

MQGMO_ALL_MSGS_AVAILABLE can be specified with any of the other MQGMO_* options, and with any
of the MQMO_* options.

• On z/OS, this option is supported for private and shared queues, but the queue must
have an index type of MQIT_GROUP_ID. For shared queues, the CFSTRUCT object that the queue
map to must be at CFLEVEL(3) or higher.

• On the following platforms:

– AIX

– IBM i

– Linux

– Windows

and for IBM MQ MQI clients connected to these systems, this option is supported for all local
queues.

MQGMO_ALL_SEGMENTS_AVAILABLE
Segments in a logical message become available for retrieval only when all segments in the
logical message are available. If the queue contains segmented messages with some of the
segments missing (perhaps because they have been delayed in the network and have not yet
arrived), specifying MQGMO_ALL_SEGMENTS_AVAILABLE prevents retrieval of segments belonging
to incomplete logical messages. However, those segments still contribute to the value of the
CurrentQDepth queue attribute; this means that there might be no retrievable logical messages,
even though CurrentQDepth is greater than zero. If there are no other messages that are retrievable,
reason code MQRC_NO_MSG_AVAILABLE is returned after the specified wait interval (if any) has
expired.

394 IBM MQ Developing Applications Reference

The processing of MQGMO_ALL_SEGMENTS_AVAILABLE depends on whether
MQGMO_LOGICAL_ORDER is also specified:

• If both options are specified, MQGMO_ALL_SEGMENTS_AVAILABLE has an effect
only when there is no current logical message. If there is a current
logical message, MQGMO_ALL_SEGMENTS_AVAILABLE is ignored. This means that
MQGMO_ALL_SEGMENTS_AVAILABLE can remain on when processing messages in logical order.

• If MQGMO_ALL_SEGMENTS_AVAILABLE is specified without MQGMO_LOGICAL_ORDER,
MQGMO_ALL_SEGMENTS_AVAILABLE always has an effect. This means that the option must be
turned off after the first segment in the logical message has been removed from the queue, in order
to be able to remove the remaining segments in the logical message.

If this option is not specified, message segments can be retrieved even when the logical message is
incomplete.

While both MQGMO_COMPLETE_MSG and MQGMO_ALL_SEGMENTS_AVAILABLE require all segments to
be available before any of them can be retrieved, the former returns the complete message, whereas
the latter allows the segments to be retrieved one by one.

If MQGMO_ALL_SEGMENTS_AVAILABLE is specified for a report message, the queue manager checks
the queue to see if there is at least one report message for each of the segments that make up the
complete logical message. If there is, the MQGMO_ALL_SEGMENTS_AVAILABLE condition is satisfied.
However, the queue manager does not check the type of the report messages present, and so
there might be a mixture of report types in the report messages relating to the segments of the
logical message. As a result, the success of MQGMO_ALL_SEGMENTS_AVAILABLE does not imply that
MQGMO_COMPLETE_MSG will succeed. If there is a mixture of report types present for the segments of
a particular logical message, those report messages must be retrieved one by one.

You can specify MQGMO_ALL_SEGMENTS_AVAILABLE with any of the other MQGMO_* options, and
with any of the MQMO_* options.

• On z/OS, this option is supported for private and shared queues, but the queue must have an index
type of MQIT_GROUP_ID. For shared queues, the CFSTRUCT object that the queue map to must be
at CFLEVEL(3) or higher.

• On the following platforms:

– AIX

– IBM i

– Linux

– Windows

and for IBM MQ MQI clients connected to these systems, this option is supported for all local
queues.

Property options
The following options relate to the properties of the message:
MQGMO_PROPERTIES_AS_Q_DEF

Properties of the message, except those contained in the message descriptor (or extension) should be
represented as defined by the PropertyControl queue attribute. If a MsgHandle is provided this
option is ignored and the properties of the message are available via the MsgHandle, unless the value
of the PropertyControl queue attribute is MQPROP_FORCE_MQRFH2.

This is the default action if no property options are specified.

Developing applications reference 395

MQGMO_PROPERTIES_IN_HANDLE

Properties of the message should be made available via the MsgHandle. If no message handle is
provided the call fails with reason MQRC_HMSG_ERROR.

Note: If the message is later read by an application that does not create a message handle, the queue
manager places any message properties into an MQRFH2 structure. You might find that the presence of
an unexpected MQRFH2 header disrupts the behavior of an existing application.

MQGMO_NO_PROPERTIES

No properties of the message, except those contained in the message descriptor (or extension) will be
retrieved. If a MsgHandle is provided it will be ignored.

MQGMO_PROPERTIES_FORCE_MQRFH2

Properties of the message, except those contained in the message descriptor (or extension) should be
represented using MQRFH2 headers. This provides compatibility with earlier version for applications
which are expecting to retrieve properties but are unable to be changed to use message handles. If a
MsgHandle is provided it is ignored.

MQGMO_PROPERTIES_COMPATIBILITY
If the message contains a property with a prefix of "mcd.", "jms.", "usr.", or "mqext.", all
message properties are delivered to the application in an MQRFH2 header. Otherwise all properties of
the message, except those contained in the message descriptor (or extension), are discarded and are
no longer accessible to the application.

Default option
If none of the options described is required, the following option can be used:
MQGMO_NONE

Use this value to indicate that no other options have been specified; all options assume their default
values. MQGMO_NONE aids program documentation; it is not intended that this option be used with any
other, but as its value is zero, such use cannot be detected.

The initial value of the Options field is MQGMO_NO_WAIT plus MQGMO_PROPERTIES_AS_Q_DEF.

WaitInterval (MQLONG)
This is the approximate time, expressed in milliseconds, that the MQGET call waits for a suitable message
to arrive (that is, a message satisfying the selection criteria specified in the MsgDesc parameter of the
MQGET call.

Important: There is no wait, or delay, if a suitable message is available immediately.

See the MsgId field described in “MQMD - Message descriptor” on page 417 for more details). If no
suitable message has arrived after this time has elapsed, the call completes with MQCC_FAILED and
reason code MQRC_NO_MSG_AVAILABLE.

On z/OS, the period of time that the MQGET call actually waits is affected by system loading and
work-scheduling considerations, and can vary between the value specified for WaitInterval and
approximately 100 milliseconds greater than WaitInterval.

WaitInterval is used in conjunction with the MQGMO_WAIT or MQGMO_SET_SIGNAL option. It is
ignored if neither of these is specified. If one of these is specified, WaitInterval must be greater than
or equal to zero, or the following special value:
MQWI_UNLIMITED

Unlimited wait interval.

The initial value of this field is 0.

396 IBM MQ Developing Applications Reference

Signal1 (MQLONG)
This is an input field that is used only in conjunction with the MQGMO_SET_SIGNAL option; it identifies a
signal that is to be delivered when a message is available.

Note: The data type and usage of this field are determined by the environment; for this reason,
applications that you want to port between different environments must not use signals.

• On z/OS, this field must contain the address of an Event Control Block (ECB). The ECB must be cleared
by the application before the MQGET call is issued. The storage containing the ECB must not be freed
until the queue is closed. The ECB is posted by the queue manager with one of the signal completion
codes described. These completion codes are set in bits 2 through 31 of the ECB, the area defined in
the z/OS mapping macro IHAECB as being for a user completion code.

• In all other environments, this is a reserved field; its value is not significant.

The signal completion codes are:
MQEC_MSG_ARRIVED

A suitable message has arrived on the queue. This message has not been reserved for the caller; a
second MQGET request must be issued, but another application might retrieve the message before
the second request is made.

MQEC_WAIT_INTERVAL_EXPIRED
The specified WaitInterval has expired without a suitable message arriving.

MQEC_WAIT_CANCELED
The wait was canceled for an indeterminate reason (such as the queue manager terminating or the
queue being disabled). Reissue the request if you want further diagnosis.

MQEC_Q_MGR_QUIESCING
The wait was canceled because the queue manager has entered the quiescing state
(MQGMO_FAIL_IF_QUIESCING was specified on the MQGET call).

MQEC_CONNECTION_QUIESCING
The wait was canceled because the connection has entered the quiescing state
(MQGMO_FAIL_IF_QUIESCING was specified on the MQGET call).

The initial value of this field is determined by the environment:

• On z/OS, the initial value is the null pointer.
• In all other environments, the initial value is 0.

Signal2 (MQLONG)
This is an input field that is used only in conjunction with the MQGMO_SET_SIGNAL option. It is a reserved
field; its value is not significant.

The initial value of this field is 0.

ResolvedQName (MQCHAR48)
This is an output field that the queue manager sets to the local name of the queue from which the
message was retrieved, as defined to the local queue manager. This is different from the name used to
open the queue if:

• An alias queue was opened (in which case, the name of the local queue to which the alias resolved is
returned), or

• A model queue was opened (in which case, the name of the dynamic local queue is returned).

The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

Developing applications reference 397

MatchOptions (MQLONG)
These options allow the application to choose which fields in the MsgDesc parameter to use to select
the message returned by the MQGET call. The application sets the required options in this field, and
then sets the corresponding fields in the MsgDesc parameter to the values required for those fields. Only
messages that have those values in the MQMD for the message are candidates for retrieval using that
MsgDesc parameter on the MQGET call. Fields for which the corresponding match option is not specified
are ignored when selecting the message to be returned. If you specify no selection criteria on the MQGET
call (that is, any message is acceptable), set MatchOptions to MQMO_NONE.

• On z/OS, the selection criteria that can be used might be restricted by the type of index used for the
queue. See the IndexType queue attribute for further details.

If you specify MQGMO_LOGICAL_ORDER, only certain messages are eligible for return by the next MQGET
call:

• If there is no current group or logical message, only messages that have MsgSeqNumber equal to 1 and
Offset equal to 0 are eligible for return. In this situation, you can use one or more of the following
match options to select which of the eligible messages is returned:

– MQMO_MATCH_MSG_ID
– MQMO_MATCH_CORREL_ID
– MQMO_MATCH_GROUP_ID

• If there is a current group or logical message, only the next message in the group or next segment in the
logical message is eligible for return, and this cannot be altered by specifying MQMO_* options.

In both of the preceding cases, you can specify match options that do not apply, but the value of the
relevant field in the MsgDesc parameter must match the value of the corresponding field in the message
to be returned; the call fails with reason code MQRC_MATCH_OPTIONS_ERROR is this condition is not
satisfied.

MatchOptions is ignored if you specify either MQGMO_MSG_UNDER_CURSOR or
MQGMO_BROWSE_MSG_UNDER_CURSOR.

Getting messages based on message property is not done using match options; for more information, see
“SelectionString (MQCHARV)” on page 488.

You can specify one or more of the following match options:
MQMO_MATCH_MSG_ID

The message to be retrieved must have a message identifier that matches the value of the MsgId field
in the MsgDesc parameter of the MQGET call. This match is in addition to any other matches that
might apply (for example, the correlation identifier).

If you omit this option, the MsgId field in the MsgDesc parameter is ignored, and any message
identifier will match.

Note: The message identifier MQMI_NONE is a special value that matches any message identifier in
the MQMD for the message. Therefore, specifying MQMO_MATCH_MSG_ID with MQMI_NONE is the
same as not specifying MQMO_MATCH_MSG_ID.

MQMO_MATCH_CORREL_ID
The message to be retrieved must have a correlation identifier that matches the value of the
CorrelId field in the MsgDesc parameter of the MQGET call. This match is in addition to any other
matches that might apply (for example, the message identifier).

If you omit this option, the CorrelId field in the MsgDesc parameter is ignored, and any correlation
identifier will match.

Note: The correlation identifier MQCI_NONE is a special value that matches any correlation identifier
in the MQMD for the message. Therefore, specifying MQMO_MATCH_CORREL_ID with MQCI_NONE is
the same as not specifying MQMO_MATCH_CORREL_ID.

398 IBM MQ Developing Applications Reference

MQMO_MATCH_GROUP_ID
The message to be retrieved must have a group identifier that matches the value of the GroupId field
in the MsgDesc parameter of the MQGET call. This match is in addition to any other matches that
might apply (for example, the correlation identifier).

If you omit this option, the GroupId field in the MsgDesc parameter is ignored, and any group
identifier will match.

Note: The group identifier MQGI_NONE is a special value that matches any group identifier in the
MQMD for the message. Therefore, specifying MQMO_MATCH_GROUP_ID with MQGI_NONE is the
same as not specifying MQMO_MATCH_GROUP_ID.

MQMO_MATCH_MSG_SEQ_NUMBER
The message to be retrieved must have a message sequence number that matches the value of the
MsgSeqNumber field in the MsgDesc parameter of the MQGET call. This match is in addition to any
other matches that might apply (for example, the group identifier).

If you omit this option, the MsgSeqNumber field in the MsgDesc parameter is ignored, and any
message sequence number will match.

MQMO_MATCH_OFFSET
The message to be retrieved must have an offset that matches the value of the Offset field in the
MsgDesc parameter of the MQGET call. This match is in addition to any other matches that might
apply (for example, the message sequence number).

If you omit this option is not specified, the Offset field in the MsgDesc parameter is ignored, and any
offset will match.

• This option is not supported on z/OS.

MQMO_MATCH_MSG_TOKEN
The message to be retrieved must have a message token that matches the value of the MsgToken
field in the MQGMO structure specified on the MQGET call.

You can specify this option for all local queues. If you specify it for a queue that has an IndexType
of MQIT_MSG_TOKEN (a WLM-managed queue), you can specify no other match options with
MQMO_MATCH_MSG_TOKEN.

You cannot specify MQMO_MATCH_MSG_TOKEN with MQGMO_WAIT or MQGMO_SET_SIGNAL. If
the application wants to wait for a message to arrive on a queue that has an IndexType of
MQIT_MSG_TOKEN, specify MQMO_NONE.

If you omit this option, the MsgToken field in MQGMO is ignored, and any message token will match.

If you specify none of the options described, you can use the following option:
MQMO_NONE

Use no matches in selecting the message to be returned; all messages on the queue
are eligible for retrieval (but subject to control by the MQGMO_ALL_MSGS_AVAILABLE,
MQGMO_ALL_SEGMENTS_AVAILABLE, and MQGMO_COMPLETE_MSG options).

MQMO_NONE aids program documentation. It is not intended that this option be used with any other
MQMO_* option, but as its value is zero, such use cannot be detected.

This is an input field. The initial value of this field is MQMO_MATCH_MSG_ID with
MQMO_MATCH_CORREL_ID. This field is ignored if Version is less than MQGMO_VERSION_2.

Note: The initial value of the MatchOptions field is defined for compatibility with earlier MQSeries®

queue managers. However, when reading a series of messages from a queue without using selection
criteria, this initial value requires the application to reset the MsgId and CorrelId fields to MQMI_NONE
and MQCI_NONE before each MQGET call. Avoid the need to reset MsgId and CorrelId by setting
Version to MQGMO_VERSION_2, and MatchOptions to MQMO_NONE.

Related concepts
Message selectors in JMS

Developing applications reference 399

GroupStatus (MQCHAR)
This flag indicates whether the message retrieved is in a group.

It has one of the following values:
MQGS_NOT_IN_GROUP

Message is not in a group.
MQGS_MSG_IN_GROUP

Message is in a group, but is not the last in the group.
MQGS_LAST_MSG_IN_GROUP

Message is the last in the group.

This is also the value returned if the group consists of only one message.

This is an output field. The initial value of this field is MQGS_NOT_IN_GROUP. This field is ignored if
Version is less than MQGMO_VERSION_2.

SegmentStatus (MQCHAR)
This is a flag that indicates whether the message retrieved is a segment of a logical message. It has one of
the following values:
MQSS_NOT_A_SEGMENT

Message is not a segment.
MQSS_SEGMENT

Message is a segment, but is not the last segment of the logical message.
MQSS_LAST_SEGMENT

Message is the last segment of the logical message.

This is also the value returned if the logical message consists of only one segment.

On z/OS, the queue manager always sets this field to MQSS_NOT_A_SEGMENT.

This is an output field. The initial value of this field is MQSS_NOT_A_SEGMENT. This field is ignored if
Version is less than MQGMO_VERSION_2.

Segmentation (MQCHAR)
This is a flag that indicates whether further segmentation is allowed for the message retrieved. It has one
of the following values:
MQSEG_INHIBITED

Segmentation not allowed.
MQSEG_ALLOWED

Segmentation allowed.

On z/OS, the queue manager always sets this field to MQSEG_INHIBITED.

This is an output field. The initial value of this field is MQSEG_INHIBITED. This field is ignored if Version
is less than MQGMO_VERSION_2.

Reserved1 (MQCHAR)
This is a reserved field. The initial value of this field is a blank character. This field is ignored if Version is
less than MQGMO_VERSION_2.

MsgToken (MQBYTE16)
MsgToken field - MQGMO structure. This field is used by the queue manager to uniquely identify a
message.

This is a byte string that is generated by the queue manager to identify a message uniquely on a queue.
The message token is generated when the message is first placed on the queue manager, and remains

400 IBM MQ Developing Applications Reference

with the message until the message is permanently removed from the queue manager, unless the queue
manager is restarted.

When the message is removed from the queue, the MsgToken that identified that instance of the
message is no longer valid, and is never reused. If the queue manager is restarted, the MsgToken
that identified a message on the queue before restart might not be valid after restart. However, the
MsgToken is never reused to identify a different message instance. The MsgToken is generated by the
queue manager and is not visible to any external application.

When a message is returned by a call to MQGET where a Version 3 or higher MQGMO is supplied, the
MsgToken identifying the message on the queue is returned in the MQGMO by the queue manager. There
is one exception to this: when the message is being removed from the queue outside syncpoint, the queue
manager might not return a MsgToken because it is not useful to identify the returned message on a
subsequent MQGET call. Applications should only use MsgToken to refer to the message on subsequent
MQGET calls.

If a MsgToken is supplied and the MatchOption MQMO_MATCH_MSG_TOKEN is specified and neither
MQGMO_MSG_UNDER_CURSOR nor MQGMO_BROWSE_MSG_UNDER_CURSOR is specified, only the
message identified by that MsgToken can be returned. The option is valid on all local queues regardless
of INDXTYPE, and on z/OS you must use INDXTYPE(MSGTOKEN) only on Workload Manager (WLM)
queues.

Any other MatchOptions specified are checked, and if they do not match, MQRC_NO_MSG_AVAILABLE
is returned. If MQGMO_BROWSE_NEXT is coded with MQMO_MATCH_MSG_TOKEN, the message
identified by the MsgToken is returned only if it is beyond the browse-cursor for the calling handle.

If MQGMO_MSG_UNDER_CURSOR or MQGMO_BROWSE_MSG_UNDER_CURSOR is specified,
MQMO_MATCH_MSG_TOKEN is ignored.

MQMO_MATCH_MSG_TOKEN is not valid with the following get message options:

• MQGMO_WAIT
• MQGMO_SET_SIGNAL

For an MQGET call specifying MQMO_MATCH_MSG_TOKEN, an MQGMO of version 3 or later must be
supplied to the call, otherwise MQRC_WRONG_GMO_VERSION is returned.

If the MsgToken is not valid at this time, MQCC_FAILED with MQRC_NO_MSG_AVAILABLE is returned,
unless there is another error.

ReturnedLength (MQLONG)
This is an output field that the queue manager sets to the length in bytes of the message data returned
by the MQGET call in the Buffer parameter. If the queue manager does not support this capability,
ReturnedLength is set to the value MQRL_UNDEFINED.

When messages are converted between encodings or character sets, the message data can sometimes
change size. On return from the MQGET call:

• If ReturnedLength is not MQRL_UNDEFINED, the number of bytes of message data returned is given
by ReturnedLength.

• If ReturnedLength has the value MQRL_UNDEFINED, the number of bytes of message data returned
is usually given by the smaller of BufferLength and DataLength, but can be less than this if the
MQGET call completes with reason code MQRC_TRUNCATED_MSG_ACCEPTED. If this happens, the
insignificant bytes in the Buffer parameter are set to nulls.

The following special value is defined:
MQRL_UNDEFINED

Length of returned data not defined.

On z/OS, the value returned for the ReturnedLength field is always MQRL_UNDEFINED.

The initial value of this field is MQRL_UNDEFINED. This field is ignored if Version is less than
MQGMO_VERSION_3.

Developing applications reference 401

Reserved2 (MQLONG)

This is a reserved field. The initial value of this field is a blank character. This field is ignored if Version is
less than MQGMO_VERSION_4.

MsgHandle (MQHMSG)

If the MQGMO_PROPERTIES_AS_Q_DEF option is specified and the PropertyControl queue attribute is
not set to MQPROP_FORCE_MQRFH2 then this is the handle to a message which will be populated with
the properties of the message being retrieved from the queue. The handle is created by an MQCRTMH
call. Any properties already associated with the handle will be cleared before retrieving a message.

The following value can also be specified:
MQHM_NONE
No message handle supplied.

No message descriptor is required on the MQGET call if a valid message handle is supplied and used on
output to contain the message properties, the message descriptor associated with the message handle is
used for input fields.

If a message descriptor is specified on the MQGET call, it always takes precedence over the message
descriptor associated with a message handle.

If MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, or the MQGMO_PROPERTIES_AS_Q_DEF is
specified and the PropertyControl queue attribute is MQPROP_FORCE_MQRFH2 then the call fails
with reason code MQRC_MD_ERROR when no message descriptor parameter is specified.

On return from the MQGET call, the properties and message descriptor associated with this message
handle are updated to reflect the state of the message retrieved (as well as the message descriptor if
one was supplied on the MQGET call). The properties of the message can then be inquired using the
MQINQMP call.

Except for message descriptor extensions, when present, a property that can be inquired with the
MQINQMP call is not contained in the message data; if the message on the queue contained properties
in the message data these are removed from the message data before the data is returned to the
application.

If no message handle is provided or Version is less than MQGMO_VERSION_4 then you must supply a
valid message descriptor on the MQGET call. Any message properties (except those contained in the
message descriptor) are returned in the message data subject to the value of the property options in the
MQGMO structure and the PropertyControl queue attribute.

This is an always an input field. The initial value of this field is MQHM_NONE. This field is ignored if
Version is less than MQGMO_VERSION_4.

MQIIH - IMS information header
The MQIIH structure describes the header information for a message sent to IMS across the IMS bridge.
For any IBM MQ supported platform you can create and transmit a message that includes the MQIIH
structure, but only an IBM MQ for z/OS queue manager can use the IMS bridge. Therefore, for the
message to get to IMS from a non-z/OS queue manager, your queue manager network must include at
least one z/OS queue manager through which the message can be routed.

Availability
All IBM MQ systems and IBM MQ clients.

402 IBM MQ Developing Applications Reference

Format name
MQFMT_IMS

Character set and encoding
Special conditions apply to the character set and encoding used for the MQIIH structure and application
message data:

• Applications that connect to the queue manager that owns the IMS bridge queue must provide an
MQIIH structure that is in the character set and encoding of the queue manager. This is because data
conversion of the MQIIH structure is not performed in this case.

• Applications that connect to other queue managers can provide an MQIIH structure that is in any of the
supported character sets and encodings; the receiving message channel agent connected to the queue
manager that owns the IMS bridge queue converts the MQIIH.

• The application message data following the MQIIH structure must be in the same character set and
encoding as the MQIIH structure. Do not use the CodedCharSetId and Encoding fields in the MQIIH
structure to specify the character set and encoding of the application message data.

You must provide a data-conversion exit to convert the application message data if the data is not one of
the built-in formats supported by the queue manager.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 498. Fields in MQIIH for MQIIH

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQIIH_STRUC_ID 'IIH¬'

Version (structure version number) MQIIH_VERSION_1 1

StrucLength (length of MQIIH structure) MQIIH_LENGTH_1 84

Encoding (reserved - see “Character set and
encoding” on page 403)

None 0

CodedCharSetId (reserved - see “Character set
and encoding” on page 403)

None 0

Format (MQ format name of data that follows
MQIIH)

MQFMT_NONE Blanks

Flags (flags) MQIIH_NONE 0

LTermOverride (logical terminal override) None Blanks

MFSMapName (message format services map
name)

None Blanks

ReplyToFormat (MQ format name of reply
message)

MQFMT_NONE Blanks

Authenticator (RACF® password or passticket) MQIAUT_NONE Blanks

TranInstanceId (transaction instance identifier) MQITII_NONE Nulls

TranState (transaction state) MQITS_NOT_IN_CONVE
RSATION

'¬'

Developing applications reference 403

Table 498. Fields in MQIIH for MQIIH (continued)

Field name and description Name of constant Initial value (if any) of
constant

CommitMode (commit mode) MQICM_COMMIT_THEN
_SEND

'0'

SecurityScope (security scope) MQISS_CHECK 'C'

Reserved (reserved) None '¬'

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQIIH_DEFAULT contains the values that are

listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQIIH MyIIH = {MQIIH_DEFAULT};

Language declarations
C declaration for MQIIH

typedef struct tagMQIIH MQIIH;
struct tagMQIIH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Length of MQIIH structure */
 MQLONG Encoding; /* Reserved */
 MQLONG CodedCharSetId; /* Reserved */
 MQCHAR8 Format; /* MQ format name of data that follows
 MQIIH */
 MQLONG Flags; /* Flags */
 MQCHAR8 LTermOverride; /* Logical terminal override */
 MQCHAR8 MFSMapName; /* Message format services map name */
 MQCHAR8 ReplyToFormat; /* MQ format name of reply message */
 MQCHAR8 Authenticator; /* RACF password or passticket */
 MQBYTE16 TranInstanceId; /* Transaction instance identifier */
 MQCHAR TranState; /* Transaction state */
 MQCHAR CommitMode; /* Commit mode */
 MQCHAR SecurityScope; /* Security scope */
 MQCHAR Reserved; /* Reserved */
};

COBOL declaration for MQIIH

** MQIIH structure
 10 MQIIH.
** Structure identifier
 15 MQIIH-STRUCID PIC X(4).
** Structure version number
 15 MQIIH-VERSION PIC S9(9) BINARY.
** Length of MQIIH structure
 15 MQIIH-STRUCLENGTH PIC S9(9) BINARY.
** Reserved
 15 MQIIH-ENCODING PIC S9(9) BINARY.
** Reserved
 15 MQIIH-CODEDCHARSETID PIC S9(9) BINARY.
** MQ format name of data that follows MQIIH
 15 MQIIH-FORMAT PIC X(8).
** Flags
 15 MQIIH-FLAGS PIC S9(9) BINARY.
** Logical terminal override
 15 MQIIH-LTERMOVERRIDE PIC X(8).
** Message format services map name
 15 MQIIH-MFSMAPNAME PIC X(8).
** MQ format name of reply message

404 IBM MQ Developing Applications Reference

 15 MQIIH-REPLYTOFORMAT PIC X(8).
** RACF password or passticket
 15 MQIIH-AUTHENTICATOR PIC X(8).
** Transaction instance identifier
 15 MQIIH-TRANINSTANCEID PIC X(16).
** Transaction state
 15 MQIIH-TRANSTATE PIC X.
** Commit mode
 15 MQIIH-COMMITMODE PIC X.
** Security scope
 15 MQIIH-SECURITYSCOPE PIC X.
** Reserved
 15 MQIIH-RESERVED PIC X.

PL/I declaration for MQIIH

dcl
 1 MQIIH based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 StrucLength fixed bin(31), /* Length of MQIIH structure */
 3 Encoding fixed bin(31), /* Reserved */
 3 CodedCharSetId fixed bin(31), /* Reserved */
 3 Format char(8), /* MQ format name of data that follows
 MQIIH */
 3 Flags fixed bin(31), /* Flags */
 3 LTermOverride char(8), /* Logical terminal override */
 3 MFSMapName char(8), /* Message format services map name */
 3 ReplyToFormat char(8), /* MQ format name of reply message */
 3 Authenticator char(8), /* RACF password or passticket */
 3 TranInstanceId char(16), /* Transaction instance identifier */
 3 TranState char(1), /* Transaction state */
 3 CommitMode char(1), /* Commit mode */
 3 SecurityScope char(1), /* Security scope */
 3 Reserved char(1); /* Reserved */

High Level Assembler declaration for MQIIH

MQIIH DSECT
MQIIH_STRUCID DS CL4 Structure identifier
MQIIH_VERSION DS F Structure version number
MQIIH_STRUCLENGTH DS F Length of MQIIH structure
MQIIH_ENCODING DS F Reserved
MQIIH_CODEDCHARSETID DS F Reserved
MQIIH_FORMAT DS CL8 MQ format name of data that follows
* MQIIH
MQIIH_FLAGS DS F Flags
MQIIH_LTERMOVERRIDE DS CL8 Logical terminal override
MQIIH_MFSMAPNAME DS CL8 Message format services map name
MQIIH_REPLYTOFORMAT DS CL8 MQ format name of reply message
MQIIH_AUTHENTICATOR DS CL8 RACF password or passticket
MQIIH_TRANINSTANCEID DS XL16 Transaction instance identifier
MQIIH_TRANSTATE DS CL1 Transaction state
MQIIH_COMMITMODE DS CL1 Commit mode
MQIIH_SECURITYSCOPE DS CL1 Security scope
MQIIH_RESERVED DS CL1 Reserved
*
MQIIH_LENGTH EQU *-MQIIH
 ORG MQIIH
MQIIH_AREA DS CL(MQIIH_LENGTH)

Visual Basic declaration for MQIIH

Type MQIIH
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 StrucLength As Long 'Length of MQIIH structure'
 Encoding As Long 'Reserved'
 CodedCharSetId As Long 'Reserved'
 Format As String*8 'MQ format name of data that follows MQIIH'
 Flags As Long 'Flags'
 LTermOverride As String*8 'Logical terminal override'
 MFSMapName As String*8 'Message format services map name'
 ReplyToFormat As String*8 'MQ format name of reply message'
 Authenticator As String*8 'RACF password or passticket'

Developing applications reference 405

 TranInstanceId As MQBYTE16 'Transaction instance identifier'
 TranState As String*1 'Transaction state'
 CommitMode As String*1 'Commit mode'
 SecurityScope As String*1 'Security scope'
 Reserved As String*1 'Reserved'
End Type

StrucId (MQCHAR4)
This is the structure identifier. The value must be:
MQIIH_STRUC_ID

Identifier for the IMS information header structure.

For the C programming language, the constant MQIIH_STRUC_ID_ARRAY is also defined; this has the
same value as MQIIH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQIIH_STRUC_ID.

Version (MQLONG)
This is the structure version number. The value must be:
MQIIH_VERSION_1

Version number for IMS information header structure.

The following constant specifies the version number of the current version:
MQIIH_CURRENT_VERSION

Current version of IMS information header structure.

The initial value of this field is MQIIH_VERSION_1.

StrucLength (MQLONG)
This is the length of MQIIH structure. The value must be:
MQIIH_LENGTH_1

Length of the IMS information header structure.

The initial value of this field is MQIIH_LENGTH_1.

Encoding (MQLONG)
This is a reserved field; its value is not significant. The initial value of this field is 0.

The Encoding for supported structures which follow a MQIIH structure is the same as that of the MQIIH
structure itself and taken from any preceding MQ header.

CodedCharSetId (MQLONG)
This is a reserved field; its value is not significant. The initial value of this field is 0.

The Character Set Id for supported structures which follow a MQIIH structure is the same as that of the
MQIIH structure itself and taken from any preceding MQ header.

Format (MQCHAR8)
This specifies the MQ format name of the data that follows the MQIIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
The flags value must be:

406 IBM MQ Developing Applications Reference

MQIIH_NONE
No flags.

MQIIH_PASS_EXPIRATION
The reply message contains:

• The same expiry report options as the request message
• The remaining expiry time from the request message with no adjustment made for the bridge's

processing time

If this value is not set, the expiry time is set to unlimited.
MQIIH_REPLY_FORMAT_NONE

Sets the MQIIH.Format field of the reply to MQFMT_NONE.
MQIIH_IGNORE_PURG

Sets the TMAMIPRG indicator in the OTMA prefix, which requests that OTMA ignores PURG calls on
the TP PCB for CM0 transactions.

MQIIH_CM0_REQUEST_RESPONSE
For Commit Mode 0 (CM0) transactions this flag sets the TMAMHRSP indicator in the OTMA prefix.
Setting this indicator requests that OTMA/IMS generate a DFS2082 RESPONSE MODE TRANSACTION
TERMINATED WITHOUT REPLY message when the original IMS application program does not reply to
the IOPCB nor message switch to another transaction.

The initial value of this field is MQIIH_NONE.

LTermOverride (MQCHAR8)
The logical terminal override, placed in the IO PCB field. It is optional; if it is not specified, the TPIPE
name is used. It is ignored if the first byte is blank, or null.

The length of this field is given by MQ_LTERM_OVERRIDE_LENGTH. The initial value of this field is 8 blank
characters.

MFSMapName (MQCHAR8)
The message format services map name, placed in the IO PCB field. It is optional. On input it represents
the MID, on output it represents the MOD. It is ignored if the first byte is blank or null.

The length of this field is given by MQ_MFS_MAP_NAME_LENGTH. The initial value of this field is 8 blank
characters.

ReplyToFormat (MQCHAR8)
This is the MQ format name of the reply message that is sent in response to the current message. The
length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

To convert the data in the reply message using MQGMO_CONVERT, specify either
MQIIH.replyToFormat=MQFMT_STRING or MQIIH.replyToFormat=MQFMT_IMS_VAR_STRING. For an
explanation of the use of these fields, see “Format (MQCHAR8)” on page 442.

If the default value (MQIIH.replyToFormat=MQFMT_NONE) is used on the request message and the reply
message is retrieved using MQGMO_CONVERT then no data conversion is performed.

Authenticator (MQCHAR8)
This is the RACF password or PassTicket. It is optional; if specified, it is used with the user ID in the
MQMD security context to build a UTOKEN that is sent to IMS to provide a security context. If it is not
specified, the user ID is used without verification. This depends on the setting of the RACF switches,
which might require an authenticator to be present.

This is ignored if the first byte is blank or null. The following special value can be used:
MQIAUT_NONE

No authentication.

Developing applications reference 407

For the C programming language, the constant MQIAUT_NONE_ARRAY is also defined; this has the
same value as MQIAUT_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_AUTHENTICATOR_LENGTH. The initial value of this field is
MQIAUT_NONE.

TranInstanceId (MQBYTE16)
This is the transaction instance identifier. This field is used by output messages from IMS, so is ignored on
first input. If you set TranState to MQITS_IN_CONVERSATION, this must be provided in the next input,
and all subsequent inputs, to enable IMS to correlate the messages to the correct conversation. You can
use the following special value:
MQITII_NONE

No transaction instance identifier.

For the C programming language, the constant MQITII_NONE_ARRAY is also defined; this has the
same value as MQITII_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_TRAN_INSTANCE_ID_LENGTH. The initial value of this field is
MQITII_NONE.

TranState (MQCHAR)
This indicates the IMS conversation state. This is ignored on first input because no conversation exists.
On subsequent inputs it indicates whether a conversation is active or not. On output it is set by IMS. The
value must be one of the following:
MQITS_IN_CONVERSATION

In conversation.
MQITS_NOT_IN_CONVERSATION

Not in conversation.
MQITS_ARCHITECTED

Return transaction state data in architected form.

This value is used only with the IMS /DISPLAY TRAN command. It returns the transaction state data

in the IMS architected form instead of character form. For more information, see Writing
IMS transaction programs through IBM MQ.

The initial value of this field is MQITS_NOT_IN_CONVERSATION.

CommitMode (MQCHAR)
This is the IMS commit mode. See the OTMA Reference for more information about IMS commit modes.
The value must be one of the following:
MQICM_COMMIT_THEN_SEND

Commit then send.

This mode implies double queuing of output, but shorter region occupancy times. Fast-path and
conversational transactions cannot run with this mode.

MQICM_SEND_THEN_COMMIT
Send then commit.

Any IMS transaction initiated as a result of a commit mode of MQICM_SEND_THEN_COMMIT runs in
RESPONSE mode regardless of how the transaction is defined in the IMS system definition (MSGTYPE
parameter in the TRANSACT macro). This also applies to transactions initiated by means of a transaction
switch.

The initial value of this field is MQICM_COMMIT_THEN_SEND.

SecurityScope (MQCHAR)
This indicates the IMS security processing required. The following values are defined:

408 IBM MQ Developing Applications Reference

MQISS_CHECK
Check security scope: an ACEE is built in the control region, but not in the dependent region.

MQISS_FULL
Full security scope: a cached ACEE is built in the control region and a non-cached ACEE is built in the
dependent region. If you use MQISS_FULL, ensure that the user ID for which the ACEE is built has
access to the resources used in the dependent region.

If neither MQISS_CHECK nor MQISS_FULL is specified for this field, MQISS_CHECK is assumed.

The initial value of this field is MQISS_CHECK.

Reserved (MQCHAR)
This is a reserved field; it must be blank.

MQIMPO - Inquire message property options
The MQIMPO structure allows applications to specify options that control how properties of messages are
inquired. The structure is an input parameter on the MQINQMP call.

Availability
All IBM MQ systems and IBM MQ clients.

Character set and encoding
Data in MQIMPO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 499. Fields in MQIPMO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQIMPO_STRUC_ID 'IMPO'

Version (structure version number) MQIMPO_VERSION_1 1

Options (options controlling the action of
MQINQMP)

MQIMPO_INQ_FIRST

RequestedEncoding (encoding into which the
inquired property is to be converted)

MQENC_NATIVE

RequestedCCSID (character set of the inquired
property)

MQCCSI_APPL

ReturnedEncoding (encoding of the returned value) MQENC_NATIVE

ReturnedCCSID 0

Reserved1 (reserved field) blank character (4 byte
field)

ReturnedName (name of the inquired property) MQCHARV_DEFAULT

TypeString (string representation of the data type
of the property)

Null string or blanks

Developing applications reference 409

Table 499. Fields in MQIPMO (continued)

Field name and description Name of constant Initial value (if any) of
constant

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in other
programming languages.

2. In the C programming language, the macro variable MQIMPO_DEFAULT contains the values that are
listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQIMPO MyIMPO = {MQIMPO_DEFAULT};

Language declarations
C declaration for MQIMPO

typedef struct tagMQIMPO MQIMPO;
struct tagMQIMPO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of
 MQINQMP */
 MQLONG RequestedEncoding; /* Requested encoding of Value */
 MQLONG RequestedCCSID; /* Requested character set identifier
 of Value */
 MQLONG ReturnedEncoding; /* Returned encoding of Value */
 MQLONG ReturnedCCSID; /* Returned character set identifier
 of Value */
 MQCHAR Reserved1 /* Reserved field */
 MQCHARV ReturnedName; /* Returned property name */
 MQCHAR8 TypeString; /* Property data type as a string */
};

COBOL declaration for MQIMPO

** MQIMPO structure
 10 MQIMPO.
** Structure identifier
 15 MQIMPO-STRUCID PIC X(4).
** Structure version number
 15 MQIMPO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQINQMP
 15 MQIMPO-OPTIONS PIC S9(9) BINARY.
** Requested encoding of VALUE
 15 MQIMPO-REQUESTEDENCODING PIC S9(9) BINARY.
** Requested character set identifier of VALUE
 15 MQIMPO-REQUESTEDCCSID PIC S9(9) BINARY.
** Returned encoding of VALUE
 15 MQIMPO-RETURNEDENCODING PIC S9(9) BINARY.
** Returned character set identifier of VALUE
 15 MQIMPO-RETURNEDCCSID PIC S9(9) BINARY.
** Reserved field
 15 MQIMPO-RESERVED1
** Returned property name
 15 MQIMPO-RETURNEDNAME.
** Address of variable length string
 20 MQIMPO-RETURNEDNAME-VSPTR POINTER.
** Offset of variable length string
 20 MQIMPO-RETURNEDNAME-VSOFFSET PIC S9(9) BINARY.
** CCSID of variable length string
 20 MQIMPO-RETURNEDNAME-VSCCSID PIC S9(9) BINARY.
** Property data type as string
 15 MQIMPO-TYPESTRING PIC S9(9) BINARY.

410 IBM MQ Developing Applications Reference

PL/I declaration for MQIMPO

dcl
 1 MQIMPO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the
 action of MQINQMP */
 3 RequestedEncoding fixed bin(31), /* Requested encoding of
 Value */
 3 RequestedCCSID fixed bin(31), /* Requested character set
 identifier of Value */
 3 ReturnedEncoding fixed bin(31), /* Returned encoding of
 Value */
 3 ReturnedCCSID fixed bin(31), /* Returned character set
 identifier of Value */
 3 Reserved1 fixed bin(31), /* Reserved field */
 3 ReturnedName, /* Returned property name */
 5 ReturnedName_VSPtr pointer, /* Address of returned
 name */
 5 5 ReturnedName_VSOffset fixed bin(31), /* Offset of returned
 name */
 5 5 ReturnedName_VSCCSID fixed bin(31), /* CCSID of returned
 name */
 3 TypeString char(8); /* Property data type as
 string */

High Level Assembler declaration for MQIMPO

MQIMPO DSECT
MQIMPO_STRUCID DS CL4 Structure identifier
MQIMPO_VERSION DS F Structure version number
MQIMPO_OPTIONS DS F Options that control the
* action of MQINQMP
MQIMPO_REQUESTEDENCODING DS F Requested encoding of VALUE
MQIMPO_REQUESTEDCCSID DS F Requested character set
* identifier of VALUE
MQIMPO_RETURNEDENCODING DS F Returned encoding of VALUE
MQIMPO_RETURNEDCCSID DS F Returned character set
* identifier of VALUE
MQIMPO_RESERVED1 DS F Reserved field
MQIMPO_RETURNEDNAME DS 0F Force fullword alignment
MQIMPO_RETURNEDNAME_VSPTR DS F Address of returned name
MQIMPO_RETURNEDNAME_VSOFFSET DS F Offset of returned name
MQIMPO_RETURNEDNAME_VSLENGTH DS F Length of returned name
MQIMPO_RETURNEDNAME_VSCCSID DS F CCSID of returned name
MQIMPO_RETURNEDNAME_LENGTH EQU *-MQIMPO_RETURNEDNAME
 ORG MQIMPO_RETURNEDNAME
MQIMPO_RETURNEDNAME_AREA DS CL(MQIMPO_RETURNEDNAME_LENGTH)
*
MQIMPO_TYPESTRING DS CL8 Property data type as string
MQIMPO_LENGTH EQU *-MQIMPO
MQIMPO_AREA DS CL(MQIMPO_LENGTH)

StrucId (MQCHAR4)
Inquire message property options structure - StrucId field

This is the structure identifier. The value must be:
MQIMPO_STRUC_ID

Identifier for inquire message property options structure.

For the C programming language, the constant MQIMPO_STRUC_ID_ARRAY is also defined; this has
the same value as MQIMPO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQIMPO_STRUC_ID.

Version (MQLONG)
Inquire message property options structure - Version field

This is the structure version number. The value must be:

Developing applications reference 411

MQIMPO_VERSION_1
Version number for inquire message property options structure.

The following constant specifies the version number of the current version:
MQIMPO_CURRENT_VERSION

Current version of inquire message property options structure.

This is always an input field. The initial value of this field is MQIMPO_VERSION_1.

Options (MQLONG)
Inquire message property options structure - Options field

The following options control the action of MQINQMP. You can specify one or more of these options. To
specify more than one option, either add the values together (do not add the same constant more than
once), or combine the values using the bitwise OR operation (if the programming language supports bit
operations).

Combinations of options that are not valid are noted; all other combinations are valid.

Value data options: The following options relate to the processing of the value data when the property is
retrieved from the message.
MQIMPO_CONVERT_VALUE

This option requests that the value of the property be converted to conform to the RequestedCCSID
and RequestedEncoding values specified before the MQINQMP call returns the property value in
the Value area.

• If conversion is successful, the ReturnedCCSID and ReturnedEncoding fields are set to the
same as RequestedCCSID and RequestedEncoding on return from the MQINQMP call.

• If conversion fails, but the MQINQMP call otherwise completes without error, the property value is
returned unconverted.

If the property is a string, the ReturnedCCSID and ReturnedEncoding fields are set to the
character set and encoding of the unconverted string.

The completion code is MQCC_WARNING in this case, with reason code
MQRC_PROP_VALUE_NOT_CONVERTED. The property cursor is advanced to the returned property.

If the property value expands during conversion, and exceeds the size of the Value parameter,
the value is returned unconverted, with completion code MQCC_FAILED; the reason code is set to
MQRC_PROPERTY_VALUE_TOO_BIG.

The DataLength parameter of the MQINQMP call returns the length that the property value would
have converted to, in order to allow the application to determine the size of the buffer required to
accommodate the converted property value. The property cursor is unchanged.

This option also requests that:

• If the property name contains a wildcard, and
• The ReturnedName field is initialized with an address or offset for the returned name,

then the returned name is converted to conform to the RequestedCCSID and RequestedEncoding
values.

• If conversion is successful, the VSCCSID field of ReturnedName and the encoding of the returned
name are set to the input value of RequestedCCSID and RequestedEncoding.

• If conversion fails, but the MQINQMP call otherwise completes without error or warning, the
returned name is unconverted. The completion code is MQCC_WARNING in this case, with reason
code MQRC_PROP_NAME_NOT_CONVERTED.

The property cursor is advanced to the returned property. MQRC_PROP_VALUE_NOT_CONVERTED is
returned if both the value and the name are not converted.

412 IBM MQ Developing Applications Reference

If the returned name expands during conversion, and exceeds the size of the VSBufsize field of the
RequestedName, the returned string is left unconverted, with completion code MQCC_FAILED and
the reason code is set to MQRC_PROPERTY_NAME_TOO_BIG.

The VSLength field of the MQCHARV structure returns the length that the property value would
have converted to, in order to allow the application to determine the size of the buffer required to
accommodate the converted property value. The property cursor is unchanged.

MQIMPO_CONVERT_TYPE
This option requests that the value of the property be converted from its current data type, into the
data type specified on the Type parameter of the MQINQMP call.

• If conversion is successful, the Type parameter is unchanged on return of the MQINQMP call.
• If conversion fails, but the MQINQMP call otherwise completes without error, the call fails with

reason MQRC_PROP_CONV_NOT_SUPPORTED. The property cursor is unchanged.

If the conversion of the data type causes the value to expand during conversion, and the converted
value exceeds the size of the Value parameter, the value is returned unconverted, with completion
code MQCC_FAILED and the reason code is set to MQRC_PROPERTY_VALUE_TOO_BIG.

The DataLength parameter of the MQINQMP call returns the length that the property value would
have converted to, in order to allow the application to determine the size of the buffer required to
accommodate the converted property value. The property cursor is unchanged.

If the value of the Type parameter of the MQINQMP call is not valid, the call fails with reason
MQRC_PROPERTY_TYPE_ERROR.

If the requested data type conversion is not supported, the call fails with reason
MQRC_PROP_CONV_NOT_SUPPORTED. The following data type conversions are supported:

Table 500. Supported data type conversions

Property data type Supported target data types

MQTYPE_BOOLEAN MQTYPE_STRING, MQTYPE_INT8, MQTYPE_INT16,
MQTYPE_INT32, MQTYPE_INT64

MQTYPE_BYTE_STRING MQTYPE_STRING

MQTYPE_INT8 MQTYPE_STRING, MQTYPE_INT16, MQTYPE_INT32,
MQTYPE_INT64

MQTYPE_INT16 MQTYPE_STRING, MQTYPE_INT32, MQTYPE_INT64

MQTYPE_INT32 MQTYPE_STRING, MQTYPE_INT64

MQTYPE_INT64 MQTYPE_STRING

MQTYPE_FLOAT32 MQTYPE_STRING, MQTYPE_FLOAT64

MQTYPE_FLOAT64 MQTYPE_STRING

MQTYPE_STRING MQTYPE_BOOLEAN, MQTYPE_INT8, MQTYPE_INT16,
MQTYPE_INT32, MQTYPE_INT64, MQTYPE_FLOAT32,
MQTYPE_FLOAT64

MQTYPE_NULL None

The general rules governing the supported conversions are as follows:

• Numeric property values can be converted from one data type to another, provided that no data is
lost during the conversion.

For example, the value of a property with data type MQTYPE_INT32 can be converted into
a value with data type MQTYPE_INT64, but cannot be converted into a value with data type
MQTYPE_INT16.

• A property value of any data type can be converted into a string.

Developing applications reference 413

• A string property value can be converted to any other data type provided the string is formatted
correctly for the conversion. If an application attempts to convert a string property value that is not
formatted correctly, IBM MQ returns reason code MQRC_PROP_NUMBER_FORMAT_ERROR.

• If an application attempts a conversion that is not supported, IBM MQ returns reason code
MQRC_PROP_CONV_NOT_SUPPORTED.

The specific rules for converting a property value from one data type to another are as follows:

• When converting an MQTYPE_BOOLEAN property value to a string, the value TRUE is converted to
the string "TRUE", and the value false is converted to the string "FALSE".

• When converting an MQTYPE_BOOLEAN property value to a numeric data type, the value TRUE is
converted to one, and the value FALSE is converted to zero.

• When converting a string property value to an MQTYPE_BOOLEAN value, the string "TRUE" , or "1" ,
is converted to TRUE, and the string "FALSE", or "0", is converted to FALSE.

Note that the terms "TRUE" and "FALSE" are not case sensitive.

Any other string cannot be converted; IBM MQ returns reason code
MQRC_PROP_NUMBER_FORMAT_ERROR.

• When converting a string property value to a value with data type MQTYPE_INT8, MQTYPE_INT16,
MQTYPE_INT32 or MQTYPE_INT64, the string must have the following format:

[blanks][sign]digits

The meanings of the components of the string are as follows:
blanks

Optional leading blank characters
sign

An optional plus sign (+) or minus sign (-) character.
digits

A contiguous sequence of digit characters (0-9). At least one digit character must be present.

After the sequence of digit characters, the string can contain other characters that are not digit
characters, but the conversion stops as soon as the first of these characters is reached. The string is
assumed to represent a decimal integer.

IBM MQ returns reason code MQRC_PROP_NUMBER_FORMAT_ERROR if the string is not formatted
correctly.

• When converting a string property value to a value with data type MQTYPE_FLOAT32 or
MQTYPE_FLOAT64, the string must have the following format:

[blanks][sign]digits[.digits][e_char[e_sign]e_digits]

The meanings of the components of the string are as follows:
blanks

Optional leading blank characters
sign

An optional plus sign (+) or minus sign (-) character.
digits

A contiguous sequence of digit characters (0-9). At least one digit character must be present.
e_char

An exponent character, which is either "E" or "e".
e_sign

An optional plus sign (+) or minus sign (-) character for the exponent.

414 IBM MQ Developing Applications Reference

e_digits
A contiguous sequence of digit characters (0-9) for the exponent. At least one digit character
must be present if the string contains an exponent character.

After the sequence of digit characters, or the optional characters representing an exponent, the
string can contain other characters that are not digit characters, but the conversion stops as soon as
the first of these characters is reached. The string is assumed to represent a decimal floating point
number with an exponent that is a power of 10.

IBM MQ returns reason code MQRC_PROP_NUMBER_FORMAT_ERROR if the string is not formatted
correctly.

• When converting a numeric property value to a string, the value is converted to the string
representation of the value as a decimal number, not the string containing the ASCII character
for that value. For example, the integer 65 is converted to the string "65", not the string "A".

• When converting a byte string property value to a string, each byte is converted to the two
hexadecimal characters that represent the byte. For example, the byte array {0xF1, 0x12, 0x00,
0xFF} is converted to the string "F11200FF".

MQIMPO_QUERY_LENGTH
Query the type and length of the property value. The length is returned in the DataLength parameter
of the MQINQMP call. The property value is not returned.

If a ReturnedName buffer is specified, the VSLength field of the MQCHARV structure is filled in with
the length of the property name. The property name is not returned.

Iteration options: The following options relate to iterating over properties, using a name with a wildcard
character
MQIMPO_INQ_FIRST

Inquire on the first property that matches the specified name. After this call, a cursor is established on
the property that is returned.

This is the default value.

The MQIMPO_INQ_PROP_UNDER_CURSOR option can subsequently be used with an MQINQMP call,
if required, to inquire on the same property again.

Note that there is only one property cursor; therefore, if the property name, specified in the MQINQMP
call, changes the cursor is reset.

This option is not valid with either of the following options:

MQIMPO_INQ_NEXT
MQIMPO_INQ_PROP_UNDER_CURSOR

MQIMPO_INQ_NEXT
Inquires on the next property that matches the specified name, continuing the search from the
property cursor. The cursor is advanced to the property that is returned.

If this is the first MQINQMP call for the specified name, then the first property that matches the
specified name is returned.

The MQIMPO_INQ_PROP_UNDER_CURSOR option can subsequently be used with an MQINQMP call if
required, to inquire on the same property again.

If the property under the cursor has been deleted, MQINQMP returns the next matching property
following the one that has been deleted.

If a property is added that matches the wildcard, while an iteration is in progress, the property might
or might not be returned during the completion of the iteration. The property is returned once the
iteration restarts using MQIMPO_INQ_FIRST.

A property matching the wildcard that was deleted, while the iteration was in progress, is not returned
subsequent to its deletion.

This option is not valid with either of the following options:

Developing applications reference 415

MQIMPO_INQ_FIRST
MQIMPO_INQ_PROP_UNDER_CURSOR

MQIMPO_INQ_PROP_UNDER_CURSOR
Retrieve the value of the property pointed to by the property cursor. The property pointed to by
the property cursor is the one that was last inquired, using either the MQIMPO_INQ_FIRST or the
MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused, when the message handle is
specified in the MsgHandle field of the MQGMO on an MQGET call, or when the message handle is
specified in OriginalMsgHandle or NewMsgHandle fields of the MQPMO structure on an MQPUT
call.

If this option is used when the property cursor has not yet been established, or if the property pointed
to by the property cursor has been deleted, the call fails with completion code MQCC_FAILED and
reason MQRC_PROPERTY_NOT_AVAILABLE.

This option is not valid with either of the following options:

MQIMPO_INQ_FIRST
MQIMPO_INQ_NEXT

If none of the options previously described is required, the following option can be used:
MQIMPO_NONE

Use this value to indicate that no other options have been specified; all options assume their default
values.

MQIMPO_NONE aids program documentation; it is not intended that this option be used with any
other, but as its value is zero, such use cannot be detected.

This is always an input field. The initial value of this field is MQIMPO_INQ_FIRST.

RequestedEncoding (MQLONG)
Inquire message property options structure - RequestedEncoding field

This is the encoding into which the inquired property value is to be converted when
MQIMPO_CONVERT_VALUE or MQIMPO_CONVERT_TYPE is specified.

The initial value of this field is MQENC_NATIVE.

RequestedCCSID (MQLONG)
Inquire message property options structure - RequestedCCSID field

The character set that the inquired property value is to be converted into if the value is a character
string. This is also the character set into which the ReturnedName is to be converted when
MQIMPO_CONVERT_VALUE or MQIMPO_CONVERT_TYPE is specified.

The initial value of this field is MQCCSI_APPL.

ReturnedEncoding (MQLONG)
Inquire message property options structure - ReturnedEncoding field

On output, this is the encoding of the value returned.

If the MQIMPO_CONVERT_VALUE option is specified and conversion was successful, the
ReturnedEncoding field, on return, is the same value as the value passed in.

The initial value of this field is MQENC_NATIVE.

416 IBM MQ Developing Applications Reference

ReturnedCCSID (MQLONG)
Inquire message property options structure - ReturnedCCSID field

On output, this is the character set of the value returned if the Type parameter of the MQINQMP call is
MQTYPE_STRING.

If the MQIMPO_CONVERT_VALUE option is specified and conversion was successful, the ReturnedCCSID
field, on return, is the same value as the value passed in.

The initial value of this field is zero.

Reserved1 (MQCHAR)
This is a reserved field. The initial value of this field is a blank character (4 byte field).

ReturnedName (MQCHARV)
Inquire message property options structure - ReturnedName field

The actual name of the inquired property.

On input a string buffer can be passed in using the VSPtr or VSOffset field of the MQCHARV structure.
The length of the string buffer is specified using the VSBufsize field of the MQCHARV structure.

On return from the MQINQMP call, the string buffer is completed with the name of the property that was
inquired, provided the string buffer was long enough to fully contain the name. The VSLength field of the
MQCHARV structure is filled in with the length of the property name. The VSCCSID field of the MQCHARV
structure is filled in to indicate the character set of the returned name, whether or not conversion of the
name failed.

This is an input/output field. The initial value of this field is MQCHARV_DEFAULT.

TypeString (MQCHAR8)
Inquire message property options structure - TypeString field

A string representation of the data type of the property.

If the property was specified in an MQRFH2 header and the MQRFH2 dt attribute is not recognized, this
field can be used to determine the data type of the property. TypeString is returned in coded character
set 1208 (UTF-8), and is the first eight bytes of the value of the dt attribute of the property that failed to
be recognized

This is always an output field. The initial value of this field is the null string in the C programming
language, and 8 blank characters in other programming languages.

MQMD - Message descriptor
The MQMD structure contains the control information that accompanies the application data when
a message travels between the sending and receiving applications. The structure is an input/output
parameter on the MQGET, MQPUT, and MQPUT1 calls.

Availability
All IBM MQ systems, plus IBM MQ MQI clients connected to these systems.

Version
The current version of MQMD is MQMD_VERSION_2. Applications that are intended to be portable
between several environments must ensure that the required version of MQMD is supported in all the

Developing applications reference 417

environments concerned. Fields that exist only in the more-recent versions of the structure are identified
as such in the descriptions that follow.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the
most-recent version of MQMD that is supported by the environment, but with the initial value of the
Version field set to MQMD_VERSION_1. To use fields that are not present in the version-1 structure, the
application must set the Version field to the version number of the version required.

A declaration for the version-1 structure is available with the name MQMD1.

Character set and encoding
Data in MQMD must be in the character set and encoding of the local queue manager; these are given
by the CodedCharSetId queue manager attribute and MQENC_NATIVE. However, if the application is
running as an IBM MQ MQI client, the structure must be in the character set and encoding of the client.

If the sending and receiving queue managers use different character sets or encodings, the data in MQMD
is converted automatically. It is not necessary for the application to convert the MQMD.

Using different versions of MQMD
A version-2 MQMD is equivalent to using a version-1 MQMD and prefixing the message data with an
MQMDE structure. However, if all the fields in the MQMDE structure have their default values, the MQMDE
can be omitted. A version-1 MQMD plus MQMDE are used as described:

• On the MQPUT and MQPUT1 calls, if the application provides a version-1 MQMD, the application
can optionally prefix the message data with an MQMDE, setting the Format field in MQMD to
MQFMT_MD_EXTENSION to indicate that an MQMDE is present. If the application does not provide
an MQMDE, the queue manager assumes default values for the fields in the MQMDE.

Note: Several of the fields that exist in the version-2 MQMD but not the version-1 MQMD are input/
output fields on the MQPUT and MQPUT1 calls. However, the queue manager does not return any values
in the equivalent fields in the MQMDE on output from the MQPUT and MQPUT1 calls; if the application
requires those output values, it must use a version-2 MQMD.

• On the MQGET call, if the application provides a version-1 MQMD, the queue manager prefixes the
message returned with an MQMDE, but only if one or more of the fields in the MQMDE has a non-default
value. The Format field in MQMD will have the value MQFMT_MD_EXTENSION to indicate that an
MQMDE is present.

The default values that the queue manager uses for the fields in the MQMDE are the same as the initial
values of those fields, shown in Table 504 on page 469.

When a message is on a transmission queue, some of the fields in MQMD are set to particular values; see
“MQXQH - Transmission-queue header” on page 611 for details.

Message context
Certain fields in MQMD contain the message context. There are two types of message context: identity
context and origin context. Typically:

• Identity context relates to the application that originally put the message
• Origin context relates to the application that most recently put the message.

These two applications can be the same application, but they can also be different applications (for
example, when a message is forwarded from one application to another).

Although identity and origin context typically have the meanings described, the content of both types
of context fields in MQMD depends on the MQPMO_*_CONTEXT options that are specified when the
message is put. As a result, identity context does not necessarily relate to the application that originally
put the message, and origin context does not necessarily relate to the application that most-recently put
the message; it depends on the design of the application suite.

418 IBM MQ Developing Applications Reference

The message channel agent (MCA) never alters message context. MCAs that receive messages from
remote queue managers use the context option MQPMO_SET_ALL_CONTEXT on the MQPUT or MQPUT1
call. This allows the receiving MCA to preserve exactly the message context that traveled with the
message from the sending MCA. However, the result is that the origin context does not relate to either
of the MCAs that sent and received the message. The origin context refers to an earlier application that
put the message. If all the intermediate applications have passed the message context, the origin context
refers to the originating application itself.

In the descriptions, the context fields are described as though they are used as described previously. For
more information about message context, see Message context.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 501. Fields in MQMD for MQMD

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQMD_STRUC_ID 'MD'

Version (structure version number) MQMD_VERSION_1 1

Report (options for report messages) MQRO_NONE 0

MsgType (message type) MQMT_DATAGRAM 8

MQMD - Expiry field (message lifetime) MQEI_UNLIMITED -1

MQMD - Feedback field (feedback or reason code) MQFB_NONE 0

Encoding (numeric encoding of message data) MQENC_NATIVE Depends on
environment

CodedCharSetId (character set identifier of
message data)

MQCCSI_Q_MGR 0

Format (format name of message data) MQFMT_NONE Blanks

Priority (message priority) MQPRI_PRIORITY_AS_
Q_DEF

-1

Persistence (message persistence) MQPER_PERSISTENCE_
AS_Q_DEF

2

MQMD - MsgId field (message identifier) MQMI_NONE Nulls

CorrelId (correlation identifier) MQCI_NONE Nulls

BackoutCount (backout counter) None 0

ReplyToQ (name of reply queue) None Null string or blanks

ReplyToQMgr (name of reply queue manager) None Null string or blanks

UserIdentifier (user identifier) None Null string or blanks

AccountingToken (accounting token) MQACT_NONE Nulls

ApplIdentityData (application data relating to
identity)

None Null string or blanks

PutApplType (type of application that put the
message)

MQAT_NO_CONTEXT 0

Developing applications reference 419

Table 501. Fields in MQMD for MQMD (continued)

Field name and description Name of constant Initial value (if any) of
constant

PutApplName (name of application that put the
message)

None Null string or blanks

PutDate (date when message was put) None Null string or blanks

PutTime (time when message was put) None Null string or blanks

ApplOriginData (application data relating to origin) None Null string or blanks

Note: The remaining fields are ignored if Version is less than MQMD_VERSION_2.

GroupId (group identifier) MQGI_NONE Nulls

MsgSeqNumber (sequence number of logical
message within group)

None 1

Offset (offset of data in physical message from
start of logical message)

None 0

MQMD - MsgFlags field (message flags) MQMF_NONE 0

OriginalLength (length of original message) MQOL_UNDEFINED -1

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in other
programming languages.

2. In the C programming language, the macro variable MQMD_DEFAULT contains the values that are
listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQMD MyMD = {MQMD_DEFAULT};

Language declarations
C declaration for MQMD

typedef struct tagMQMD MQMD;
struct tagMQMD {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Report; /* Options for report messages */
 MQLONG MsgType; /* Message type */
 MQLONG Expiry; /* Message lifetime */
 MQLONG Feedback; /* Feedback or reason code */
 MQLONG Encoding; /* Numeric encoding of message data */
 MQLONG CodedCharSetId; /* Character set identifier of message
 data */
 MQCHAR8 Format; /* Format name of message data */
 MQLONG Priority; /* Message priority */
 MQLONG Persistence; /* Message persistence */
 MQBYTE24 MsgId; /* Message identifier */
 MQBYTE24 CorrelId; /* Correlation identifier */
 MQLONG BackoutCount; /* Backout counter */
 MQCHAR48 ReplyToQ; /* Name of reply queue */
 MQCHAR48 ReplyToQMgr; /* Name of reply queue manager */
 MQCHAR12 UserIdentifier; /* User identifier */
 MQBYTE32 AccountingToken; /* Accounting token */
 MQCHAR32 ApplIdentityData; /* Application data relating to
 identity */
 MQLONG PutApplType; /* Type of application that put the
 message */

420 IBM MQ Developing Applications Reference

 MQCHAR28 PutApplName; /* Name of application that put the
 message */
 MQCHAR8 PutDate; /* Date when message was put */
 MQCHAR8 PutTime; /* Time when message was put */
 MQCHAR4 ApplOriginData; /* Application data relating to origin */
 MQBYTE24 GroupId; /* Group identifier */
 MQLONG MsgSeqNumber; /* Sequence number of logical message
 within group */
 MQLONG Offset; /* Offset of data in physical message
 from start of logical message */
 MQLONG MsgFlags; /* Message flags */
 MQLONG OriginalLength; /* Length of original message */
};

COBOL declaration for MQMD

** MQMD structure
 10 MQMD.
** Structure identifier
 15 MQMD-STRUCID PIC X(4).
** Structure version number
 15 MQMD-VERSION PIC S9(9) BINARY.
** Options for report messages
 15 MQMD-REPORT PIC S9(9) BINARY.
** Message type
 15 MQMD-MSGTYPE PIC S9(9) BINARY.
** Message lifetime
 15 MQMD-EXPIRY PIC S9(9) BINARY.
** Feedback or reason code
 15 MQMD-FEEDBACK PIC S9(9) BINARY.
** Numeric encoding of message data
 15 MQMD-ENCODING PIC S9(9) BINARY.
** Character set identifier of message data
 15 MQMD-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of message data
 15 MQMD-FORMAT PIC X(8).
** Message priority
 15 MQMD-PRIORITY PIC S9(9) BINARY.
** Message persistence
 15 MQMD-PERSISTENCE PIC S9(9) BINARY.
** Message identifier
 15 MQMD-MSGID PIC X(24).
** Correlation identifier
 15 MQMD-CORRELID PIC X(24).
** Backout counter
 15 MQMD-BACKOUTCOUNT PIC S9(9) BINARY.
** Name of reply queue
 15 MQMD-REPLYTOQ PIC X(48).
** Name of reply queue manager
 15 MQMD-REPLYTOQMGR PIC X(48).
** User identifier
 15 MQMD-USERIDENTIFIER PIC X(12).
** Accounting token
 15 MQMD-ACCOUNTINGTOKEN PIC X(32).
** Application data relating to identity
 15 MQMD-APPLIDENTITYDATA PIC X(32).
** Type of application that put the message
 15 MQMD-PUTAPPLTYPE PIC S9(9) BINARY.
** Name of application that put the message
 15 MQMD-PUTAPPLNAME PIC X(28).
** Date when message was put
 15 MQMD-PUTDATE PIC X(8).
** Time when message was put
 15 MQMD-PUTTIME PIC X(8).
** Application data relating to origin
 15 MQMD-APPLORIGINDATA PIC X(4).
** Group identifier
 15 MQMD-GROUPID PIC X(24).
** Sequence number of logical message within group
 15 MQMD-MSGSEQNUMBER PIC S9(9) BINARY.
** Offset of data in physical message from start of logical message
 15 MQMD-OFFSET PIC S9(9) BINARY.
** Message flags
 15 MQMD-MSGFLAGS PIC S9(9) BINARY.
** Length of original message
 15 MQMD-ORIGINALLENGTH PIC S9(9) BINARY.

Developing applications reference 421

PL/I declaration for MQMD

dcl
 1 MQMD based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Report fixed bin(31), /* Options for report messages */
 3 MsgType fixed bin(31), /* Message type */
 3 Expiry fixed bin(31), /* Message lifetime */
 3 Feedback fixed bin(31), /* Feedback or reason code */
 3 Encoding fixed bin(31), /* Numeric encoding of message
 data */
 3 CodedCharSetId fixed bin(31), /* Character set identifier of
 message data */
 3 Format char(8), /* Format name of message data */
 3 Priority fixed bin(31), /* Message priority */
 3 Persistence fixed bin(31), /* Message persistence */
 3 MsgId char(24), /* Message identifier */
 3 CorrelId char(24), /* Correlation identifier */
 3 BackoutCount fixed bin(31), /* Backout counter */
 3 ReplyToQ char(48), /* Name of reply queue */
 3 ReplyToQMgr char(48), /* Name of reply queue manager */
 3 UserIdentifier char(12), /* User identifier */
 3 AccountingToken char(32), /* Accounting token */
 3 ApplIdentityData char(32), /* Application data relating to
 identity */
 3 PutApplType fixed bin(31), /* Type of application that put the
 message */
 3 PutApplName char(28), /* Name of application that put the
 message */
 3 PutDate char(8), /* Date when message was put */
 3 PutTime char(8), /* Time when message was put */
 3 ApplOriginData char(4), /* Application data relating to
 origin */
 3 GroupId char(24), /* Group identifier */
 3 MsgSeqNumber fixed bin(31), /* Sequence number of logical
 message within group */
 3 Offset fixed bin(31), /* Offset of data in physical
 message from start of logical
 message */
 3 MsgFlags fixed bin(31), /* Message flags */
 3 OriginalLength fixed bin(31); /* Length of original message */

High Level Assembler declaration for MQMD

MQMD DSECT
MQMD_STRUCID DS CL4 Structure identifier
MQMD_VERSION DS F Structure version number
MQMD_REPORT DS F Options for report messages
MQMD_MSGTYPE DS F Message type
MQMD_EXPIRY DS F Message lifetime
MQMD_FEEDBACK DS F Feedback or reason code
MQMD_ENCODING DS F Numeric encoding of message data
MQMD_CODEDCHARSETID DS F Character set identifier of message
* data
MQMD_FORMAT DS CL8 Format name of message data
MQMD_PRIORITY DS F Message priority
MQMD_PERSISTENCE DS F Message persistence
MQMD_MSGID DS XL24 Message identifier
MQMD_CORRELID DS XL24 Correlation identifier
MQMD_BACKOUTCOUNT DS F Backout counter
MQMD_REPLYTOQ DS CL48 Name of reply queue
MQMD_REPLYTOQMGR DS CL48 Name of reply queue manager
MQMD_USERIDENTIFIER DS CL12 User identifier
MQMD_ACCOUNTINGTOKEN DS XL32 Accounting token
MQMD_APPLIDENTITYDATA DS CL32 Application data relating to identity
MQMD_PUTAPPLTYPE DS F Type of application that put the
* message
MQMD_PUTAPPLNAME DS CL28 Name of application that put the
* message
MQMD_PUTDATE DS CL8 Date when message was put
MQMD_PUTTIME DS CL8 Time when message was put
MQMD_APPLORIGINDATA DS CL4 Application data relating to origin
MQMD_GROUPID DS XL24 Group identifier
MQMD_MSGSEQNUMBER DS F Sequence number of logical message
* within group
MQMD_OFFSET DS F Offset of data in physical message
* from start of logical message

422 IBM MQ Developing Applications Reference

MQMD_MSGFLAGS DS F Message flags
MQMD_ORIGINALLENGTH DS F Length of original message
*
MQMD_LENGTH EQU *-MQMD
 ORG MQMD
MQMD_AREA DS CL(MQMD_LENGTH)

Visual Basic declaration for MQMD

Type MQMD
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 Report As Long 'Options for report messages'
 MsgType As Long 'Message type'
 Expiry As Long 'Message lifetime'
 Feedback As Long 'Feedback or reason code'
 Encoding As Long 'Numeric encoding of message data'
 CodedCharSetId As Long 'Character set identifier of message'
 'data'
 Format As String*8 'Format name of message data'
 Priority As Long 'Message priority'
 Persistence As Long 'Message persistence'
 MsgId As MQBYTE24 'Message identifier'
 CorrelId As MQBYTE24 'Correlation identifier'
 BackoutCount As Long 'Backout counter'
 ReplyToQ As String*48 'Name of reply queue'
 ReplyToQMgr As String*48 'Name of reply queue manager'
 UserIdentifier As String*12 'User identifier'
 AccountingToken As MQBYTE32 'Accounting token'
 ApplIdentityData As String*32 'Application data relating to identity'
 PutApplType As Long 'Type of application that put the'
 'message'
 PutApplName As String*28 'Name of application that put the'
 'message'
 PutDate As String*8 'Date when message was put'
 PutTime As String*8 'Time when message was put'
 ApplOriginData As String*4 'Application data relating to origin'
 GroupId As MQBYTE24 'Group identifier'
 MsgSeqNumber As Long 'Sequence number of logical message'
 'within group'
 Offset As Long 'Offset of data in physical message'
 'from start of logical message'
 MsgFlags As Long 'Message flags'
 OriginalLength As Long 'Length of original message'
End Type

StrucId (MQCHAR4)
This is the structure identifier, and must be:
MQMD_STRUC_ID

Identifier for message descriptor structure.

For the C programming language, the constant MQMD_STRUC_ID_ARRAY is also defined; this has the
same value as MQMD_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQMD_STRUC_ID.

Version (MQLONG)
This is the structure version number, and must be one of the following:
MQMD_VERSION_1

Version-1 message descriptor structure.

This version is supported in all environments.

MQMD_VERSION_2
Version-2 message descriptor structure.

This version is supported in all IBM MQ V6.0 and later environments, plus IBM MQ MQI clients
connected to these systems.

Developing applications reference 423

Note: When a version-2 MQMD is used, the queue manager performs additional checks on any MQ
header structures that might be present at the beginning of the application message data; for further
details see the usage notes for the MQPUT call.

Fields that exist only in the more-recent version of the structure are identified as such in the descriptions
of the fields. The following constant specifies the version number of the current version:
MQMD_CURRENT_VERSION

Current version of message descriptor structure.

This is always an input field. The initial value of this field is MQMD_VERSION_1.

Report (MQLONG)
A report message is a message about another message, used to inform an application about expected or
unexpected events that relate to the original message. The Report field enables the application sending
the original message to specify which report messages are required, whether the application message
data is to be included in them, and also (for both reports and replies) how the message and correlation
identifiers in the report or reply message are to be set. Any or all (or none) of the following types of report
message can be requested:

• Exception
• Expiration
• Confirm on arrival (COA)
• Confirm on delivery (COD)
• Positive action notification (PAN)
• Negative action notification (NAN)

You can specify one or more of these options. To specify more than one option, either add the values
together (do not add the same constant more than once), or combine the values using the bitwise OR
operation (if the programming language supports bit operations).

The application that receives the report message can determine the reason that the report was generated
by examining the Feedback field in the MQMD; see the Feedback field for more details.

The use of report options when putting a message to a topic can cause zero, one, or many report
messages to be generated and sent to the application. This is because the publication message may be
sent to zero, one, or many subscribing applications.

Exception options: Specify one of the options listed to request an exception report message.
MQRO_EXCEPTION

A message channel agent generates this type of report when a message is sent to another queue
manager and the message cannot be delivered to the specified destination queue. For example, the
destination queue or an intermediate transmission queue might be full, or the message might be too
big for the queue.

Generation of the exception report message depends on the persistence of the original message, and
the speed of the message channel (normal or fast) through which the original message travels:

• For all persistent messages, and for nonpersistent messages traveling through normal message
channels, the exception report is generated only if the action specified by the sending application for
the error condition can be completed successfully. The sending application can specify one of the
following actions to control the disposition of the original message when the error condition arises:

– MQRO_DEAD_LETTER_Q (this places the original message on the dead-letter queue).
– MQRO_DISCARD_MSG (this discards the original message).

If the action specified by the sending application cannot be completed successfully, the original
message is left on the transmission queue, and no exception report message is generated.

• For nonpersistent messages traveling through fast message channels, the original message
is removed from the transmission queue and the exception report generated even if the

424 IBM MQ Developing Applications Reference

specified action for the error condition cannot be completed successfully. For example, if
MQRO_DEAD_LETTER_Q is specified, but the original message cannot be placed on the dead-letter
queue because that queue is full, the exception report message is generated and the original
message discarded.

For more information about normal and fast message channels, see Nonpersistent message speed
(NPMSPEED).

An exception report is not generated if the application that put the original message can be notified
synchronously of the problem by means of the reason code returned by the MQPUT or MQPUT1 call.

Applications can also send exception reports, to indicate that a message cannot be processed (for
example, because it is a debit transaction that would cause the account to exceed its credit limit).

Message data from the original message is not included with the report message.

Do not specify more than one of MQRO_EXCEPTION, MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_DATA
This is the same as MQRO_EXCEPTION, except that the first 100 bytes of the application message
data from the original message are included in the report message. If the original message contains
one or more MQ header structures, they are included in the report message, in addition to the 100
bytes of application data.

Do not specify more than one of MQRO_EXCEPTION, MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_FULL_DATA
Exception reports with full data required.

This is the same as MQRO_EXCEPTION, except that all the application message data from the original
message is included in the report message.

Do not specify more than one of MQRO_EXCEPTION, MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

Expiration options: Specify one of the options listed to request an expiration report message.
MQRO_EXPIRATION

This type of report is generated by the queue manager if the message is discarded before delivery to
an application because its expiry time has passed (see the Expiry field). If this option is not set, no
report message is generated if a message is discarded for this reason (even if you specify one of the
MQRO_EXCEPTION_* options).

Message data from the original message is not included with the report message.

Do not specify more than one of MQRO_EXPIRATION, MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_DATA
This is the same as MQRO_EXPIRATION, except that the first 100 bytes of the application message
data from the original message are included in the report message. If the original message contains
one or more MQ header structures, they are included in the report message, in addition to the 100
bytes of application data.

Do not specify more than one of MQRO_EXPIRATION, MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_FULL_DATA
This is the same as MQRO_EXPIRATION, except that all the application message data from the
original message is included in the report message.

Do not specify more than one of MQRO_EXPIRATION, MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

Developing applications reference 425

Confirm-on-arrival options: Specify one of the options listed to request a confirm-on-arrival report
message.
MQRO_COA

This type of report is generated by the queue manager that owns the destination queue when the
message is placed on the destination queue. Message data from the original message is not included
with the report message.

If the message is put as part of a unit of work, and the destination queue is a local queue, the
COA report message generated by the queue manager can be retrieved only if the unit of work is
committed.

A COA report is not generated if the Format field in the message descriptor is
MQFMT_XMIT_Q_HEADER or MQFMT_DEAD_LETTER_HEADER. This prevents a COA report being
generated if the message is put on a transmission queue, or is undeliverable and put on a dead-letter
queue.

In the case of an IMS bridge queue, the COA report is generated when the message reaches the
IMS queue (acknowledgment received from IMS) and not when the message is put in the MQ bridge
queue. That means that if IMS is not active, no COA report is generated until IMS is started and a
message is queued on the IMS queue.

The user that runs a program that puts a message with MQMD.Report=MQRO_COA must have +passid
authority on the reply queue. If the user does not have +passid authority, the COA report message
does not reach the reply queue. An attempt is made to put the report message on the dead letter
queue.

Do not specify more than one of MQRO_COA, MQRO_COA_WITH_DATA, and
MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_DATA
This is the same as MQRO_COA, except that the first 100 bytes of the application message data from
the original message are included in the report message. If the original message contains one or
more MQ header structures, they are included in the report message, in addition to the 100 bytes of
application data.

Do not specify more than one of MQRO_COA, MQRO_COA_WITH_DATA, and
MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_FULL_DATA
This is the same as MQRO_COA, except that all the application message data from the original
message is included in the report message.

Do not specify more than one of MQRO_COA, MQRO_COA_WITH_DATA, and
MQRO_COA_WITH_FULL_DATA.

Confirm-on-delivery options: Specify one of the options listed to request a confirm-on-delivery report
message.
MQRO_COD

This type of report is generated by the queue manager when an application retrieves the message
from the destination queue in a way that deletes the message from the queue. Message data from the
original message is not included with the report message.

If the message is retrieved as part of a unit of work, the report message is generated within the same
unit of work, so that the report is not available until the unit of work is committed. If the unit of work is
backed out, the report is not sent.

A COD report is not always generated if a message is retrieved with the
MQGMO_MARK_SKIP_BACKOUT option. If the primary unit of work is backed out but the secondary
unit of work is committed, the message is removed from the queue, but a COD report is not generated.

A COD report is not generated if the Format field in the message descriptor is
MQFMT_DEAD_LETTER_HEADER. This prevents a COD report being generated if the message is
undeliverable and put on a dead-letter queue.

426 IBM MQ Developing Applications Reference

MQRO_COD is not valid if the destination queue is an XCF queue.

Do not specify more than one of MQRO_COD, MQRO_COD_WITH_DATA, and
MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_DATA
This is the same as MQRO_COD, except that the first 100 bytes of the application message data from
the original message are included in the report message. If the original message contains one or
more MQ header structures, they are included in the report message, in addition to the 100 bytes of
application data.

If MQGMO_ACCEPT_TRUNCATED_MSG is specified on the MQGET call for the original message, and
the message retrieved is truncated, the amount of application message data placed in the report
message depends on the environment:

• On z/OS, it is the minimum of:

– The length of the original message
– The length of the buffer used to retrieve the message
– 100 bytes.

• In other environments, it is the minimum of:

– The length of the original message
– 100 bytes.

MQRO_COD_WITH_DATA is not valid if the destination queue is an XCF queue.

Do not specify more than one of MQRO_COD, MQRO_COD_WITH_DATA, and
MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_FULL_DATA
This is the same as MQRO_COD, except that all the application message data from the original
message is included in the report message.

MQRO_COD_WITH_FULL_DATA is not valid if the destination queue is an XCF queue.

Do not specify more than one of MQRO_COD, MQRO_COD_WITH_DATA, and
MQRO_COD_WITH_FULL_DATA.

Action-notification options: Specify one or both of the options listed to request that the receiving
application send a positive-action or negative-action report message.
MQRO_PAN

This type of report is generated by the application that retrieves the message and acts upon it. It
indicates that the action requested in the message has been performed successfully. The application
generating the report determines whether any data is to be included with the report.

Other than conveying this request to the application retrieving the message, the queue manager takes
no action based on this option. The retrieving application must generate the report if appropriate.

MQRO_NAN
This type of report is generated by the application that retrieves the message and acts upon it.
It indicates that the action requested in the message has not been performed successfully. The
application generating the report determines whether any data is to be included with the report. For
example, you might want to include some data indicating why the request could not be performed.

Other than conveying this request to the application retrieving the message, the queue manager takes
no action based on this option. The retrieving application must generate the report if appropriate.

The application must determine which conditions correspond to a positive action and which correspond to
a negative action. However, if the request has been only partially performed, generate a NAN report rather
than a PAN report if requested. Every possible condition must correspond to either a positive action, or a
negative action, but not both.

Developing applications reference 427

Message-identifier options: Specify one of the options listed to control how the MsgId of the report
message (or of the reply message) is to be set.
MQRO_NEW_MSG_ID

This is the default action, and indicates that if a report or reply is generated as a result of this
message, a new MsgId is generated for the report or reply message.

MQRO_PASS_MSG_ID
If a report or reply is generated as a result of this message, the MsgId of this message is copied to the
MsgId of the report or reply message.

The MsgId of a publication message will be different for each subscriber that receives a copy of the
publication and therefore the MsgId copied into the report or reply message will be different for each
one.

If this option is not specified, MQRO_NEW_MSG_ID is assumed.

Correlation-identifier options: Specify one of the options listed to control how the CorrelId of the
report message (or of the reply message) is to be set.
MQRO_COPY_MSG_ID_TO_CORREL_ID

This is the default action, and indicates that if a report or reply is generated as a result of this
message, the MsgId of this message is copied to the CorrelId of the report or reply message.
The MsgId of a publication message will be different for each subscriber that receives a copy of the
publication and therefore the MsgId copied into the CorrelId of the report or reply message will be
different for each one.

MQRO_PASS_CORREL_ID
If a report or reply is generated as a result of this message, the CorrelId of this message is copied to
the CorrelId of the report or reply message.

The CorrelId of a publication message will be specific to a subscriber unless it uses the
MQSO_SET_CORREL_ID option and sets the SubCorrelId field in the MQSD to MQCI_NONE. Therefore
it is possible that the CorrelId copied into the CorrelId of the report or reply message will be
different for each one.

If this option is not specified, MQRO_COPY_MSG_ID_TO_CORREL_ID is assumed.

Servers replying to requests or generating report messages must check whether the
MQRO_PASS_MSG_ID or MQRO_PASS_CORREL_ID options were set in the original message. If they were,
the servers must take the action described for those options. If neither is set, the servers must take the
corresponding default action.

Disposition options: Specify one of the options listed to control the disposition of the original message
when it cannot be delivered to the destination queue. The application can set the disposition options
independently of requesting exception reports.
MQRO_DEAD_LETTER_Q

This is the default action, and places the message on the dead-letter queue if the message cannot be
delivered to the destination queue. This happens in the following situations:

• When the application that put the original message cannot be notified synchronously of the problem
by means of the reason code returned by the MQPUT or MQPUT1 call. An exception report message
is generated, if one was requested by the sender.

• When the application that put the original message was putting to a topic

MQRO_DISCARD_MSG
This discards the message if it cannot be delivered to the destination queue. This happens in the
following situations:

• When the application that put the original message cannot be notified synchronously of the problem
by means of the reason code returned by the MQPUT or MQPUT1 call. An exception report message
is generated, if one was requested by the sender.

• When the application that put the original message was putting to a topic

428 IBM MQ Developing Applications Reference

If you want to return the original message to the sender, without the original message
being placed on the dead-letter queue, the sender must specify MQRO_DISCARD_MSG with
MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_PASS_DISCARD_AND_EXPIRY
If this option is set on a message, and a report or reply is generated because of it, the message
descriptor of the report inherits:

• MQRO_DISCARD_MSG if it was set.
• The remaining expiry time of the message (if this is not an expiry report). If this is an expiry report

the expiry time is set to 60 seconds.

Activity option
MQRO_ACTIVITY

Using this value allows the route of any message to be traced throughout a queue manager network.
The report option can be specified on any current user message, instantly allowing you to begin
calculating the route of the message through the network.

If the application generating the message cannot enable activity report generation, reporting can be
enabled using an API crossing exit supplied by queue manager administrators.

Note:

1. The fewer the queue managers in the network that are able to generate activity reports, the less
detailed the route.

2. The activity reports might be difficult to place in the correct order to determine the route taken.
3. The activity reports might not be able to find a route to their requested destination.
4. Messages with this report option set must be accepted by any queue manager, even if they do not

understand the option. This allows the report option to be set on any user message, even if they
are processed by a non-IBM WebSphere MQ 6.0 or later queue manager.

5. If a process, either a queue manager or a user process, performs an activity on a message with this
option set it can choose to generate and put an activity report.

Default option: Specify the following if no report options are required:
MQRO_NONE

Use this value to indicate that no other options have been specified. MQRO_NONE is defined to aid
program documentation. It is not intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

General information:

1. All report types required must be specifically requested by the application sending the original
message. For example, if a COA report is requested but an exception report is not, a COA report is
generated when the message is placed on the destination queue, but no exception report is generated
if the destination queue is full when the message arrives there. If no Report options are set, no report
messages are generated by the queue manager or message channel agent (MCA).

Some report options can be specified even though the local queue manager does not recognize them;
this is useful when the option is to be processed by the destination queue manager. See “Report
options and message flags” on page 893 for more details.

If a report message is requested, the name of the queue to which to send the report must be specified
in the ReplyToQ field. When a report message is received, the nature of the report can be determined
by examining the Feedback field in the message descriptor.

2. If the queue manager or MCA that generates a report message cannot put the report message on the
reply queue (for example, because the reply queue or transmission queue is full), the report message
is placed instead on the dead-letter queue. If that also fails, or there is no dead-letter queue, the
action taken depends on the type of the report message:

• If the report message is an exception report, the message that generated the exception report is left
on its transmission queue; this ensures that the message is not lost.

Developing applications reference 429

• For all other report types, the report message is discarded and processing continues normally. This is
done because either the original message has already been delivered safely (for COA or COD report
messages), or is no longer of any interest (for an expiration report message).

Once a report message has been placed successfully on a queue (either the destination queue or an
intermediate transmission queue), the message is no longer subject to special processing; it is treated
just like any other message.

3. When the report is generated, the ReplyToQ queue is opened and the report message put using the
authority of the UserIdentifier in the MQMD of the message causing the report, except in the
following cases:

• Exception reports generated by a receiving MCA are put with whatever authority the MCA used when
it tried to put the message causing the report.

• COA reports generated by the queue manager are put with whatever authority was used when the
message causing the report was put on the queue manager generating the report. For example, if the
message was put by a receiving MCA using the MCA's user identifier, the queue manager puts the
COA report using the MCA's user identifier.

Applications generating reports must use the same authority as they use to generate a reply; this is
usually the authority of the user identifier in the original message.

If the report has to travel to a remote destination, senders and receivers can decide whether to accept
it, in the same way as they do for other messages.

4. If a report message with data is requested:

• The report message is always generated with the amount of data requested by the sender of the
original message. If the report message is too big for the reply queue, the processing described
above occurs; the report message is never truncated to fit on the reply queue.

• If the Format of the original message is MQFMT_XMIT_Q_HEADER, the data included in the report
does not include the MQXQH. The report data starts with the first byte of the data beyond the
MQXQH in the original message. This occurs whether or not the queue is a transmission queue.

5. If a COA, COD, or expiration report message is received at the reply queue, it is guaranteed that the
original message arrived, was delivered, or expired, as appropriate. However, if one or more of these
report messages is requested and is not received, the reverse cannot be assumed, because one of the
following might have occurred:

a. The report message is held up because a link is down.
b. The report message is held up because a blocking condition exists at an intermediate transmission

queue or at the reply queue (for example, the queue is full or inhibited for puts).
c. The report message is on a dead-letter queue.
d. When the queue manager was attempting to generate the report message, it could neither put

it on the appropriate queue, nor on the dead-letter queue, so the report message could not be
generated.

e. A failure of the queue manager occurred between the action being reported (arrival, delivery, or
expiry), and generation of the corresponding report message. (This does not happen for COD report
messages if the application retrieves the original message within a unit of work, as the COD report
message is generated within the same unit of work.)

Exception report messages can be held up in the same way for reasons 1, 2, and 3 above. However,
when an MCA cannot generate an exception report message (the report message cannot be put either
on the reply queue or the dead-letter queue), the original message remains on the transmission queue
at the sender, and the channel is closed. This occurs irrespective of whether the report message was
to be generated at the sending or the receiving end of the channel.

6. If the original message is temporarily blocked (resulting in an exception report message being
generated and the original message being put on a dead-letter queue), but the blockage clears and
an application then reads the original message from the dead-letter queue and puts it again to its
destination, the following might occur:

430 IBM MQ Developing Applications Reference

• Even though an exception report message has been generated, the original message eventually
arrives successfully at its destination.

• More than one exception report message is generated in respect of a single original message,
because the original message might encounter another blockage later.

Report messages when putting to a topic:

1. Reports can be generated when putting a message to a topic. This message will be sent to all
subscribers to the topic, which could be zero, one, or many. This should be taken into account when
choosing to use report options as many report messages could be generated as a result.

2. When putting a message to a topic, there may be many destination queues that are to be given a copy
of the message. If some of these destination queues have a problem, such as queue full, then the
successful completion of the MQPUT depends on the setting of NPMSGDLV or PMSGDLV (depending on
the persistence of the message). If the setting is such that message delivery to the destination queue
must be successful (for example, it is a persistent message to a durable subscriber and PMSGDLV is
set to ALL or ALLDUR), then success is defined as one of the following criteria being met:

• Successful put to the subscriber queue
• Use of MQRO_DEAD_LETTER_Q and a successful put to the Dead-letter queue if the subscriber

queue cannot take the message
• Use of MQRO_DISCARD_MSG if the subscriber queue cannot take the message.

Report messages for message segments:

1. Report messages can be requested for messages that have segmentation allowed (see the description
of the MQMF_SEGMENTATION_ALLOWED flag). If the queue manager finds it necessary to segment
the message, a report message can be generated for each of the segments that subsequently
encounters the relevant condition. Applications must be prepared to receive multiple report messages
for each type of report message requested. Use the GroupId field in the report message to correlate
the multiple reports with the group identifier of the original message, and the Feedback field identify
the type of each report message.

2. If MQGMO_LOGICAL_ORDER is used to retrieve report messages for segments, be aware that
reports of different types might be returned by the successive MQGET calls. For example, if both
COA and COD reports are requested for a message that is segmented by the queue manager, the
MQGET calls for the report messages might return the COA and COD report messages interleaved
in an unpredictable fashion. Avoid this by using the MQGMO_COMPLETE_MSG option (optionally
with MQGMO_ACCEPT_TRUNCATED_MSG). MQGMO_COMPLETE_MSG causes the queue manager to
reassemble report messages that have the same report type. For example, the first MQGET call
might reassemble all the COA messages relating to the original message, and the second MQGET call
might reassemble all the COD messages. Which is reassembled first depends on which type of report
message occurs first on the queue.

3. Applications that themselves put segments can specify different report options for each segment.
However, note the following points:

• If the segments are retrieved using the MQGMO_COMPLETE_MSG option, only the report options in
the first segment are honored by the queue manager.

• If the segments are retrieved one by one, and most of them have one of the MQRO_COD_* options,
but at least one segment does not, you cannot use the MQGMO_COMPLETE_MSG option to retrieve
the report messages with a single MQGET call, or use the MQGMO_ALL_SEGMENTS_AVAILABLE
option to detect when all the report messages have arrived.

4. In an MQ network, the queue managers can have different capabilities. If a report message for a
segment is generated by a queue manager or MCA that does not support segmentation, the queue
manager or MCA does not by default include the necessary segment information in the report
message, and this might make it difficult to identify the original message that caused the report to
be generated. Avoid this difficulty by requesting data with the report message, that is, by specifying the
appropriate MQRO_*_WITH_DATA or MQRO_*_WITH_FULL_DATA options. However, be aware that if
MQRO_*_WITH_DATA is specified, less than 100 bytes of application message data might be returned

Developing applications reference 431

to the application that retrieves the report message, if the report message is generated by a queue
manager or MCA that does not support segmentation.

Contents of the message descriptor for a report message: When the queue manager or message
channel agent (MCA) generates a report message, it sets the fields in the message descriptor to the
following values, and then puts the message in the normal way.

Table 502. Values used for MQMD fields when a report message is system-generated

Field in MQMD Value used

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_2

Report MQRO_NONE

MsgType MQMT_REPORT

Expiry MQEI_UNLIMITED

Feedback As appropriate for the nature of the report (MQFB_COA, MQFB_COD,
MQFB_EXPIRATION, or an MQRC_* value)

Encoding Copied from the original message descriptor

CodedCharSetId Copied from the original message descriptor

Format Copied from the original message descriptor

Priority Copied from the original message descriptor

Persistence Copied from the original message descriptor

MsgId As specified by the report options in the original message descriptor

CorrelId As specified by the report options in the original message descriptor

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Name of queue manager

UserIdentifier As set by the MQPMO_PASS_IDENTITY_CONTEXT option

AccountingToken As set by the MQPMO_PASS_IDENTITY_CONTEXT option

ApplIdentityData As set by the MQPMO_PASS_IDENTITY_CONTEXT option

PutApplType MQAT_QMGR, or as appropriate for the message channel agent

PutApplName First 28 bytes of the queue manager name or message channel agent
name. For report messages generated by the IMS bridge, this field
contains the XCF group name and XCF member name of the IMS system
to which the message relates.

PutDate Date when report message is sent

PutTime Time when report message is sent

ApplOriginData Blanks

GroupId Copied from the original message descriptor

MsgSeqNumber Copied from the original message descriptor

Offset Copied from the original message descriptor

MsgFlags Copied from the original message descriptor

OriginalLength Copied from the original message descriptor if not MQOL_UNDEFINED,
and set to the length of the original message data otherwise

432 IBM MQ Developing Applications Reference

An application generating a report is recommended to set similar values, except for the following:

• The ReplyToQMgr field can be set to blanks (the queue manager changes this to the name of the local
queue manager when the message is put).

• Set the context fields using the option that would have been used for a reply, normally
MQPMO_PASS_IDENTITY_CONTEXT.

Analyzing the report field: The Report field contains subfields; because of this, applications that need
to check whether the sender of the message requested a particular report must use one of the techniques
described in “Analyzing the report field” on page 894.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial
value of this field is MQRO_NONE.

MsgType (MQLONG)
This indicates the type of the message. Message types are grouped as follows:
MQMT_SYSTEM_FIRST

Lowest value for system-defined message types.
MQMT_SYSTEM_LAST

Highest value for system-defined message types.

The following values are currently defined within the system range:
MQMT_DATAGRAM

The message is one that does not require a reply.
MQMT_REQUEST

The message is one that requires a reply.

Specify the name of the queue to which to send the reply in the ReplyToQ field. The Report field
indicates how to set the MsgId and CorrelId of the reply.

MQMT_REPLY
The message is the reply to an earlier request message (MQMT_REQUEST). The message must be
sent to the queue indicated by the ReplyToQ field of the request message. Use the Report field of
the request to control how to set the MsgId and CorrelId of the reply.

Note: The queue manager does not enforce the request-reply relationship; this is an application
responsibility.

MQMT_REPORT
The message is reporting on some expected or unexpected occurrence, usually related to some other
message (for example, a request message was received that contained data that was not valid). Send
the message to the queue indicated by the ReplyToQ field of the message descriptor of the original
message. Set the Feedback field s to indicate the nature of the report. Use the Report field of the
original message to control how to set the MsgId and CorrelId of the report message.

Report messages generated by the queue manager or message channel agent are always sent to the
ReplyToQ queue, with the Feedback and CorrelId fields set as described above.

Application-defined values can also be used. They must be within the following range:
MQMT_APPL_FIRST

Lowest value for application-defined message types.
MQMT_APPL_LAST

Highest value for application-defined message types.

For the MQPUT and MQPUT1 calls, the MsgType value must be within either the system-defined range or
the application-defined range; if it is not, the call fails with reason code MQRC_MSG_TYPE_ERROR.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls. The initial
value of this field is MQMT_DATAGRAM.

Developing applications reference 433

Expiry (MQLONG)
This is a period of time expressed in tenths of a second, set by the application that puts the message. The
message becomes eligible to be discarded if it has not been removed from the destination queue before
this period of time elapses.

For example, to set one minute for the expiry time, you need to set MQMD.Expiry to 600.

The value is decremented to reflect the time that the message spends on the destination queue, and also
on any intermediate transmission queues if the put is to a remote queue. It can also be decremented by
message channel agents to reflect transmission times, if these are significant. Likewise, an application
forwarding this message to another queue might decrement the value if necessary, if it has retained the
message for a significant time. However, the expiration time is treated as approximate, and the value need
not be decremented to reflect small time intervals.

When the message is retrieved by an application using the MQGET call, the Expiry field represents the
expiry time that still remains.

After a message's expiry time has elapsed, it becomes eligible to be discarded by the queue manager.
The message is discarded when a browse or nonbrowse MQGET call occurs that would have returned the
message had it not already expired. For example, a nonbrowse MQGET call with the MatchOptions field
in MQGMO set to MQMO_NONE reading from a FIFO ordered queue discards all the expired messages up
to the first unexpired message. With a priority ordered queue, the same call will discard expired messages
of higher priority and messages of an equal priority that arrived on the queue before the first unexpired
message.

A message that has expired is never returned to an application (either by a browse or a non-browse
MQGET call), so the value in the Expiry field of the message descriptor after a successful MQGET call is
either greater than zero, or the special value MQEI_UNLIMITED.

If a message is put on a remote queue, the message might expire (and be discarded) while it is on an
intermediate transmission queue, before the message reaches the destination queue.

A report is generated when an expired message is discarded, if the message specified one of the
MQRO_EXPIRATION_* report options. If none of these options is specified, no such report is generated;
the message is assumed to be no longer relevant after this time period (perhaps because a later message
has superseded it).

For a message put within syncpoint, the expiry interval begins at the time the message is put, not the
time the syncpoint is committed. It is possible that the expiry interval can pass before the syncpoint is
committed. In this case the message will be discarded at some time after the commit operation and the
message will not be returned to an application in response to an MQGET operation.

Any other program that discards messages based on expiry time must also send an appropriate report
message if one was requested.

Notes:

1. If a message is put with an Expiry time of zero or a number greater than 999 999 999, the MQPUT
or MQPUT1 call fails with reason code MQRC_EXPIRY_ERROR; no report message is generated in this
case.

To enable reason code 2013, MQRC_EXPIRY_ERROR, you must enable the environment variable
AMQ_ENFORCE_MAX_EXPIRY_ERROR.

The following uses an example for Linux:

$ export AMQ_ENFORCE_MAX_EXPIRY_ERROR=True

Note that the:

• Important thing is to export the variable
• Actual value is ignored, however, using True might be helpful when reviewing the setup.

2. Because a message with an expiry time that has elapsed might not be discarded until later, there
might be messages on a queue that have passed their expiry time, and that are not therefore eligible

434 IBM MQ Developing Applications Reference

for retrieval. These messages nevertheless count toward the number of messages on the queue for
all purposes, including depth triggering.

If a subscriber/consumer (client) tries to get a message, and that message has expired, the client
does not receive anything as the message was discarded as it was too old. In addition, the client will
not receive any error message.

3. An expiration report is generated, if requested, when the message is discarded, not when it becomes
eligible for discarding.

4. Discarding an expired message, and generating an expiration report if requested, are never part of the
application's unit of work, even if the message was scheduled for discarding as a result of an MQGET
call operating within a unit of work.

5. If a nearly-expired message is retrieved by an MQGET call within a unit of work, and the unit of work
is subsequently backed out, the message might become eligible to be discarded before it can be
retrieved again.

6. If a nearly-expired message is locked by an MQGET call with MQGMO_LOCK, the message
might become eligible to be discarded before it can be retrieved by an MQGET call with
MQGMO_MSG_UNDER_CURSOR; reason code MQRC_NO_MSG_UNDER_CURSOR is returned on this
subsequent MQGET call if that happens.

7. When a request message with an expiry time greater than zero is retrieved, the application can take
one of the following actions when it sends the reply message:

• Copy the remaining expiry time from the request message to the reply message.
• Set the expiry time in the reply message to an explicit value greater than zero.
• Set the expiry time in the reply message to MQEI_UNLIMITED.

The action to take depends on the design of the application. However, the default action for putting
messages to a dead-letter (undelivered-message) queue must be to preserve the remaining expiry
time of the message, and to continue to decrement it.

8. Trigger messages are always generated with MQEI_UNLIMITED.
9. A message (normally on a transmission queue) that has a Format name of

MQFMT_XMIT_Q_HEADER has a second message descriptor within the MQXQH. It therefore has two
Expiry fields associated with it. The following additional points should be noted in this case:

• When an application puts a message on a remote queue, the queue manager places the message
initially on a local transmission queue, and prefixes the application message data with an MQXQH
structure. The queue manager sets the values of the two Expiry fields to be the same as that
specified by the application.

If an application puts a message directly on a local transmission queue, the message data must
already begin with an MQXQH structure, and the format name must be MQFMT_XMIT_Q_HEADER.
In this case, the application need not set the values of these two Expiry fields to be the same.
(The queue manager checks that the Expiry field within the MQXQH contains a valid value, and
that the message data is long enough to include it). For an application that can write directly
to the transmission queue, the application has to create a transmission queue header with the
embedded message descriptor. However, if the expiry value in the message descriptor written to
the transmission queue is inconsistent with the value in the embedded message descriptor, an
expiry error rejection occurs.

• When a message with a Format name of MQFMT_XMIT_Q_HEADER is retrieved from a queue
(whether this is a normal or a transmission queue), the queue manager decrements both these
Expiry fields with the time spent waiting on the queue. No error is raised if the message data is
not long enough to include the Expiry field in the MQXQH.

• The queue manager uses the Expiry field in the separate message descriptor (that is, not the one
in the message descriptor embedded within the MQXQH structure) to test whether the message is
eligible for discarding.

• If the initial values of the two Expiry fields are different, the Expiry time in the separate
message descriptor when the message is retrieved might be greater than zero (so the message

Developing applications reference 435

is not eligible for discarding), while the time according to the Expiry field in the MQXQH has
elapsed. In this case the Expiry field in the MQXQH is set to zero.

10. The expiry time on a reply message returned from the IMS bridge is unlimited unless
MQIIH_PASS_EXPIRATION is set in the Flags field of the MQIIH. See Flags for more information.

The following special value is recognized:
MQEI_UNLIMITED

The message has an unlimited expiration time.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial
value of this field is MQEI_UNLIMITED.

Expired messages on z/OS
On IBM MQ for z/OS, messages that have expired are discarded by the next appropriate MQGET call.

However, if no such call occurs, the expired message is not discarded, and, for some queues, a large
number of expired messages can accumulate. To remedy this, set the queue manager to scan queues
periodically and discard expired messages on one or more queues in one of the following ways:
Periodic scan

You can specify a period using the EXPRYINT (expiry interval) queue manager attribute. Each time the
expiry interval is reached, the queue manager looks for candidate queues that are worth scanning to
discard expired messages.

The queue manager maintains information about the expired messages on each queue, and knows
whether a scan for expired messages is worthwhile. So, only a selection of queues is scanned at any
time.

Shared queues are scanned by only one queue manager in a queue sharing group. Generally, it is the
first queue manager to restart, or the first to have EXPRYINT set. If this queue manager terminates,
another queue manager in the queue sharing group takes over the queue scanning. Set the expiry
interval value for all queue managers within a queue sharing group to the same value.

Note that expiry processing takes place for every queue when a queue manager restarts, regardless of
the EXPRYINT setting.

Explicit request
Issue the REFRESH QMGR TYPE(EXPIRY) command, specifying the queue or queues that you want
scanned.

Enforcing lower expiration times
Administrators can limit the expiry time of any message put to a queue or topic by using the CAPEXPRY
attribute specified in the CUSTOM attribute on the queue or topic.

An expiry time specified in the Expiry field of the MQMD, by an application,which is greater than
the CAPEXPRY value specified in the CUSTOM attribute on the queue or topic will be replaced by that
CAPEXPRY value. An expiry time specified by an application, which is lower than the CAPEXPRY value will
be used.

Note that the value of CAPEXPRY is expressed in tenths of seconds, so one minute has a value of 600.

If more than one object is used on the resolution path, for example, when a message is put to an alias or
remote queue, then the lowest of all the CAPEXPRY values is used as the upper limit for message expiry.

Changes to the CAPEXPRY values take effect immediately. The expiry value is evaluated for each put to a
queue or topic and so is sensitive to the object resolution, which may differ between each put operation.

However, note that existing messages in the queue, prior to a change in CAPEXPRY, are not affected by
the change (that is, their expiry time remains intact). Only new messages that are put into the queue after
the change in CAPEXPRY have the new expiry time.

For example, in a cluster where a put is performed to a queue opened with MQOO_BIND_NOT_FIXED,
messages can be assigned different expiry values on each put, depending on the CAPEXPRY value set

436 IBM MQ Developing Applications Reference

for the transmission queue, used by the channel, that sends the message to the selected target queue
manager.

Note that a put to a queue or topic by a JMS application specifying a delivery delay fails with
MQRC_EXPIRY_ERROR, if the delivery delay is beyond the resolved expiry time for the target queue
or topic. A CAPEXPRY attribute set on a queue resolved for a JMS destination can cause this error.

Note: CAPEXPRY must not be used on any queues that will hold IBM MQ internally-generated messages
such as any SYSTEM.CLUSTER.* queue and the SYSTEM.PROTECTION.POLICY.QUEUE.

Related reference
DEFINE queues
DEFINE topic

Feedback (MQLONG)
The Feedback field is used with a message of type MQMT_REPORT to indicate the nature of the report,
and is only meaningful with that type of message.

The field can contain one of the MQFB_* values, or one of the MQRC_* values. Feedback codes are
grouped as follows:
MQFB_NONE

No feedback provided.
MQFB_SYSTEM_FIRST

Lowest value for system-generated feedback.
MQFB_SYSTEM_LAST

Highest value for system-generated feedback.

The range of system-generated feedback codes MQFB_SYSTEM_FIRST through MQFB_SYSTEM_LAST
includes the general feedback codes listed in this topic (MQFB_*), and also the reason codes
(MQRC_*) that can occur when the message cannot be put on the destination queue.

MQFB_APPL_FIRST
Lowest value for application-generated feedback.

MQFB_APPL_LAST
Highest value for application-generated feedback.

Applications that generate report messages must not use feedback codes in the system range (other than
MQFB_QUIT), unless they want to simulate report messages generated by the queue manager or message
channel agent.

On the MQPUT or MQPUT1 calls, the value specified must either be MQFB_NONE, or be within the system
range or application range. This is checked whatever the value of MsgType.

General feedback codes:
MQFB_COA

Confirmation of arrival on the destination queue (see MQRO_COA).
MQFB_COD

Confirmation of delivery to the receiving application (see MQRO_COD).
MQFB_EXPIRATION

Message was discarded because it had not been removed from the destination queue before its expiry
time had elapsed.

MQFB_PAN
Positive action notification (see MQRO_PAN).

MQFB_NAN
Negative action notification (see MQRO_NAN).

MQFB_QUIT
End application.

Developing applications reference 437

This can be used by a workload scheduling program to control the number of instances of an
application program that are running. Sending an MQMT_REPORT message with this feedback code
to an instance of the application program indicates to that instance that it should stop processing.
However, adherence to this convention is a matter for the application; it is not enforced by the queue
manager.

Channel feedback codes:
MQFB_CHANNEL_COMPLETED

A channel ended normally.
MQFB_CHANNEL_FAIL

A channel ended abnormally and goes into STOPPED state.
MQFB_CHANNEL_FAIL_RETRY

A channel ended abnormally and goes into RETRY state.

IMS-bridge feedback codes

These codes are used when an unexpected IMS-OTMA sense code is received. The sense code or, when
the sense code is 0x1A the reason code associated with that sense code, is indicated in the Feedback.

1. For Feedback codes in range MQFB_IMS_FIRST (300) through MQFB_IMS_LAST (399), a sense
code other than 0x1A was received. The sense code is given by the expression (Feedback -
MQFB_IMS_FIRST+1)

2. For Feedback codes in range MQFB_IMS_NACK_1A_REASON_FIRST (600) through
MQFB_IMS_NACK_1A_REASON_LAST (855), a sense code of 0x1A was received. The
reason code associated with the sense code is given by the expression (Feedback -
MQFB_IMS_NACK_1A_REASON_FIRST)

The meaning of the IMS-OTMA sense codes and corresponding reason codes are described in Open
Transaction Manager Access Guide and Reference.

The following feedback codes can be generated by the IMS bridge:
MQFB_DATA_LENGTH_ZERO

A segment length was zero in the application data of the message.
MQFB_DATA_LENGTH_NEGATIVE

A segment length was negative in the application data of the message.
MQFB_DATA_LENGTH_TOO_BIG

A segment length was too large in the application data of the message.
MQFB_BUFFER_OVERFLOW

The value of one of the length fields would cause the data to overflow the message buffer.
MQFB_LENGTH_OFF_BY_ONE

The value of one of the length fields was 1 byte too short.
MQFB_IIH_ERROR

The Format field in MQMD specifies MQFMT_IMS, but the message does not begin with a valid MQIIH
structure.

MQFB_NOT_AUTHORIZED_FOR_IMS
The user ID contained in the message descriptor MQMD, or the password contained in the
Authenticator field in the MQIIH structure, failed the validation performed by the IMS bridge.
As a result the message was not passed to IMS.

MQFB_IMS_ERROR
An unexpected error was returned by IMS. Consult the IBM MQ error log on the system on which the
IMS bridge resides for more information about the error.

MQFB_IMS_FIRST
When the IMS-OTMA sense code is not 0x1A, IMS-generated feedback codes are in the range
MQFB_IMS_FIRST (300) through MQFB_IMS_LAST (399). The IMS-OTMA sense code itself is
Feedback minus MQFB_IMS_ERROR.

438 IBM MQ Developing Applications Reference

MQFB_IMS_LAST
Highest value for IMS-generated feedback when the sense code is not 0x1A.

MQFB_IMS_NACK_1A_REASON_FIRST
When the sense code is 0x1A, IMS-generated feedback codes are in the range
MQFB_IMS_NACK_1A_REASON_FIRST (600) through MQFB_IMS_NACK_1A_REASON_LAST (855).

MQFB_IMS_NACK_1A_REASON_LAST
Highest value for IMS-generated feedback when the sense code is 0x1A

CICS-bridge feedback codes: The following feedback codes can be generated by the CICS bridge:
MQFB_CICS_APPL_ABENDED

The application program specified in the message abnormally ended. This feedback code occurs only
in the Reason field of the MQDLH structure.

MQFB_CICS_APPL_NOT_STARTED
The EXEC CICS LINK for the application program specified in the message failed. This feedback code
occurs only in the Reason field of the MQDLH structure.

MQFB_CICS_BRIDGE_FAILURE
CICS bridge terminated abnormally without completing normal error processing.

MQFB_CICS_CCSID_ERROR
Character set identifier not valid.

MQFB_CICS_CIH_ERROR
CICS information header structure missing or not valid.

MQFB_CICS_COMMAREA_ERROR
Length of CICS COMMAREA not valid.

MQFB_CICS_CORREL_ID_ERROR
Correlation identifier not valid.

MQFB_CICS_DLQ_ERROR
The CICS bridge task was unable to copy a reply to this request to the dead-letter queue. The request
was backed out.

MQFB_CICS_ENCODING_ERROR
Encoding not valid.

MQFB_CICS_INTERNAL_ERROR
CICS bridge encountered an unexpected error.

This feedback code occurs only in the Reason field of the MQDLH structure.

MQFB_CICS_NOT_AUTHORIZED
User identifier not authorized or password not valid.

This feedback code occurs only in the Reason field of the MQDLH structure.

MQFB_CICS_UOW_BACKED_OUT
The unit of work was backed out, for one of the following reasons:

• A failure was detected while processing another request within the same unit of work.
• A CICS abend occurred while the unit of work was in progress.

MQFB_CICS_UOW_ERROR
Unit-of-work control field UOWControl not valid.

Trace-route message feedback codes:
MQFB_ACTIVITY

Used with the MQFMT_EMBEDDED_PCF format to allow the option of user data following activity
reports.

Developing applications reference 439

MQFB_MAX_ACTIVITIES
Returned when the trace-route message is discarded because the number of activities the message
has been involved in exceeds the maximum activities limit.

MQFB_NOT_FORWARDED
Returned when the trace-route message is discarded because it is about to be sent to a remote queue
manager that does not support trace-route messages.

MQFB_NOT_DELIVERED
Returned when the trace-route message is discarded because it is about to be put on a local queue.

MQFB_UNSUPPORTED_FORWARDING
Returned when the trace-route message is discarded because a value in the forwarding parameter is
unrecognized, and is in the rejected bit mask.

MQFB_UNSUPPORTED_DELIVERY
Returned when the trace-route message is discarded because a value in the delivery parameter is
unrecognized, and is in the rejected bit mask.

IBM MQ reason codes: For exception report messages, Feedback contains an IBM MQ reason code.
Among possible reason codes are:
MQRC_PUT_INHIBITED

(2051, X'803') Put calls inhibited for the queue.
MQRC_Q_FULL

(2053, X'805') Queue already contains maximum number of messages.
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_Q_SPACE_NOT_AVAILABLE

(2056, X'808') No space available on disk for queue.
MQRC_PERSISTENT_NOT_ALLOWED

(2048, X'800') Queue does not support persistent messages.
MQRC_MSG_TOO_BIG_FOR_Q_MGR

(2031, X'7EF') Message length greater than maximum for queue manager.
MQRC_MSG_TOO_BIG_FOR_Q

(2030, X'7EE') Message length greater than maximum for queue.

For a full list of reason codes, see:

• For IBM MQ for z/OS, see API completion and reason codes.
• For all other platforms, see API completion and reason codes.

.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls. The initial
value of this field is MQFB_NONE.

Encoding (MQLONG)
This specifies the numeric encoding of numeric data in the message; it does not apply to numeric data
in the MQMD structure itself. The numeric encoding defines the representation used for binary integers,
packed-decimal integers, and floating-point numbers.

On z/OS, the binary integer portion of the Encoding field is also used to specify the integer encoding
of character data in the message body when the corresponding character set identifier indicates that
the representation of the character set is dependent on the encoding used for binary integers. This only
affects certain multibyte character sets (for example UTF-16 character sets).

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The queue manager does not check that the field is valid. The following special value is defined:

440 IBM MQ Developing Applications Reference

MQENC_NATIVE
The encoding is the default for the programming language and machine on which the application is
running.

Note: The value of this constant depends on the programming language and environment. For this
reason, applications must be compiled using the header, macro, COPY, or INCLUDE files appropriate
to the environment in which the application will run.

Applications that put messages usually specify MQENC_NATIVE. Applications that retrieve messages
must compare this field against the value MQENC_NATIVE; if the values differ, the application might need
to convert numeric data in the message. Use the MQGMO_CONVERT option to request the queue manager
to convert the message as part of the processing of the MQGET call. See “Machine encodings” on page
890 for details of how the Encoding field is constructed.

If you specify the MQGMO_CONVERT option on the MQGET call, this field is an input/output field. The
value specified by the application is the encoding to which to convert the message data if necessary.
If conversion is successful or unnecessary, the value is unchanged. If conversion is unsuccessful, the
value after the MQGET call represents the encoding of the unconverted message that is returned to the
application.

In other cases, this is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1
calls. The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
This field specifies the character set identifier of character data within the message body.

Note: Character data in MQMD and the other MQ data structures that are parameters on calls must be
in the character set of the queue manager. This is defined by the queue manager's CodedCharSetId
attribute; see “Attributes for the queue manager” on page 789 for details of this attribute.

If this field is set to MQCCSI_Q_MGR when calling MQGET with MQGMO_CONVERT in the options, the
behavior is different between client and server applications. For server applications, the code page used
for character conversion is the CodedCharSetId of the queue manager; for client applications, the code
page used for character conversion is the current locale code page.

For client applications, MQCCSI_Q_MGR is filled in, based on the locale of the client rather than the one
on the queue manager. The exception to that rule is when you put a message to an IMS bridge queue;
what is returned, in the CodedCharSetId field of MQMD, is the CCSID of the queue manager.

You must not use the following special value:

MQCCSI_APPL
This results in an incorrect value in the CodedCharSetId field of the MQMD and causes a return
code of MQRC_SOURCE_CCSID_ERROR (or MQRC_FORMAT_ERROR for z/OS) when the message is
received using the MQGET call with the MQGMO_CONVERT option.

You can use the following special values:
MQCCSI_Q_MGR

Character data in the message is in the queue manager's character set.

On the MQPUT and MQPUT1 calls, the queue manager changes this value in the MQMD that is sent
with the message to the true character set identifier of the queue manager. As a result, the value
MQCCSI_Q_MGR is never returned by the MQGET call.

MQCCSI_DEFAULT
The CodedCharSetId of the data in the String field is defined by the CodedCharSetId field in the
header structure that precedes the MQCFH structure, or by the CodedCharSetId field in the MQMD if
the MQCFH is at the start of the message.

MQCCSI_INHERIT
Character data in the message is in the same character set as this structure; this is the
queue manager's character set. (For MQMD only, MQCCSI_INHERIT has the same meaning as
MQCCSI_Q_MGR).

Developing applications reference 441

The queue manager changes this value in the MQMD that is sent with the message to the actual
character set identifier of MQMD. Provided no error occurs, the value MQCCSI_INHERIT is not
returned by the MQGET call.

Do not use MQCCSI_INHERIT if the value of the PutApplType field in MQMD is MQAT_BROKER.

MQCCSI_EMBEDDED
Character data in the message is in a character set with the identifier that is contained within the
message data itself. There can be any number of character set identifiers embedded within the
message data, applying to different parts of the data. This value must be used for PCF messages
(with a format of MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF) that contain data in a mixture of
character sets. Each MQCFST, MQCFSL, and MQCFSF structure contained within the PCF message
must have an explicit character set identifier specified and not MQCCSI_DEFAULT.

If a message of format MQFMT_EMBEDDED_PCF is to contain data in a mixture of character sets,
do not use MQCCSI_EMBEDDED. Instead set MQEPH_CCSID_EMBEDDED in the Flags field in the
MQEPH structure. This is equivalent to setting MQCCSI_EMBEDDED in the preceding structure. Each
MQCFST, MQCFSL, and MQCFSF structure contained within the PCF message must then have an
explicit character set identifier specified and not MQCCSI_DEFAULT. For more information on the
MQEPH structure, see “MQEPH - Embedded PCF header” on page 360.

Specify this value only on the MQPUT and MQPUT1 calls. If it is specified on the MQGET call, it
prevents conversion of the message.

On the MQPUT and MQPUT1 calls, the queue manager changes the values MQCCSI_Q_MGR and
MQCCSI_INHERIT in the MQMD that is sent with the message as described above, but does not change
the MQMD specified on the MQPUT or MQPUT1 call. No other check is carried out on the value specified.

Applications that retrieve messages must compare this field against the value the application is
expecting; if the values differ, the application might need to convert character data in the message.

On z/OS, the Encoding field of the MQMD is used to specify the integer encoding of character data in
the message body, when the CodedCharSetId field of the MQMD indicates that the representation of the
character set is dependent on the encoding used for binary integers. On Multiplatforms, the byte order of
character data is assumed to be the same as the native integer encoding for the platform where the queue
manager is running. This only affects certain multibyte character sets (for example UTF-16 character
sets).

If you specify the MQGMO_CONVERT option on the MQGET call, this field is an input/output field.
The value specified by the application is the coded character set identifier to which to convert the
message data if necessary. If conversion is successful or unnecessary, the value is unchanged (except
that the value MQCCSI_Q_MGR or MQCCSI_INHERIT is converted to the actual value). If conversion
is unsuccessful, the value after the MQGET call represents the coded character set identifier of the
unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls.
The initial value of this field is MQCCSI_Q_MGR.

Format (MQCHAR8)
This is a name that the sender of the message uses to indicate to the receiver the nature of the data in
the message. Any characters that are in the character set of the queue manager can be specified for the
name, but you must restrict the name to the following:

• Uppercase A through Z
• Numeric digits 0 through 9

If other characters are used, it might not be possible to translate the name between the character sets of
the sending and receiving queue managers.

Pad the name with blanks to the length of the field, or use a null character to terminate the name before
the end of the field; the null and any subsequent characters are treated as blanks. Do not specify a name
with leading or embedded blanks. For the MQGET call, the queue manager returns the name padded with
blanks to the length of the field.

442 IBM MQ Developing Applications Reference

The queue manager does not check that the name complies with the recommendations described above.

Names beginning MQ in upper, lower, and mixed case have meanings that are defined by the queue
manager; do not use names beginning with these letters for your own formats. The queue manager
built-in formats are:
MQFMT_NONE

The nature of the data is undefined: the data cannot be converted when the message is retrieved from
a queue using the MQGMO_CONVERT option.

If you specify MQGMO_CONVERT on the MQGET call, and the character set or encoding of data in
the message differs from that specified in the MsgDesc parameter, the message is returned with the
following completion and reason codes (assuming no other errors):

• Completion code MQCC_WARNING and reason code MQRC_FORMAT_ERROR if the MQFMT_NONE
data is at the beginning of the message.

• Completion code MQCC_OK and reason code MQRC_NONE if the MQFMT_NONE data is at the end
of the message (that is, preceded by one or more MQ header structures). The MQ header structures
are converted to the requested character set and encoding in this case.

For the C programming language, the constant MQFMT_NONE_ARRAY is also defined; this has the
same value as MQFMT_NONE, but is an array of characters instead of a string.

MQFMT_ADMIN
The message is a command-server request or reply message in programmable command format
(PCF). Messages of this format can be converted if the MQGMO_CONVERT option is specified on
the MQGET call. See Using Programmable Command Formats for more information about using
programmable command format messages.

For the C programming language, the constant MQFMT_ADMIN_ARRAY is also defined; this has the
same value as MQFMT_ADMIN, but is an array of characters instead of a string.

MQFMT_CICS
The message data begins with the CICS information header MQCIH, followed by the application data.
The format name of the application data is given by the Format field in the MQCIH structure.

On z/OS, specify the MQGMO_CONVERT option on the MQGET call to convert messages
that have format MQFMT_CICS.

For the C programming language, the constant MQFMT_CICS_ARRAY is also defined; this has the
same value as MQFMT_CICS, but is an array of characters instead of a string.

MQFMT_COMMAND_1
The message is an MQSC command-server reply message containing the object count, completion
code, and reason code. Messages of this format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

For the C programming language, the constant MQFMT_COMMAND_1_ARRAY is also defined; this has
the same value as MQFMT_COMMAND_1, but is an array of characters instead of a string.

MQFMT_COMMAND_2
The message is an MQSC command-server reply message containing information about the objects
requested. Messages of this format can be converted if the MQGMO_CONVERT option is specified on
the MQGET call.

For the C programming language, the constant MQFMT_COMMAND_2_ARRAY is also defined; this has
the same value as MQFMT_COMMAND_2, but is an array of characters instead of a string.

MQFMT_DEAD_LETTER_HEADER
The message data begins with the dead-letter header MQDLH. The data from the original message
immediately follows the MQDLH structure. The format name of the original message data is given
by the Format field in the MQDLH structure; see “MQDLH - Dead letter header” on page 347 for
details of this structure. Messages of this format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

Developing applications reference 443

COA and COD reports are not generated for messages that have a Format of
MQFMT_DEAD_LETTER_HEADER.

For the C programming language, the constant MQFMT_DEAD_LETTER_HEADER_ARRAY is also
defined; this has the same value as MQFMT_DEAD_LETTER_HEADER, but is an array of characters
instead of a string.

MQFMT_DIST_HEADER
The message data begins with the distribution-list header MQDH; this includes the arrays of MQOR
and MQPMR records. The distribution-list header can be followed by additional data. The format of the
additional data (if any) is given by the Format field in the MQDH structure; see “MQDH - Distribution
header” on page 341 for details of this structure. Messages with format MQFMT_DIST_HEADER can
be converted if the MQGMO_CONVERT option is specified on the MQGET call.

This format is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ MQI clients connected to these systems.

For the C programming language, the constant MQFMT_DIST_HEADER_ARRAY is also defined; this
has the same value as MQFMT_DIST_HEADER, but is an array of characters instead of a string.

MQFMT_EMBEDDED_PCF
Format for a trace-route message, provided that the PCF command value is set to
MQCMD_TRACE_ROUTE. Using this format allows user data to be sent along with the trace-route
message, provided that their applications can cope with preceding PCF parameters.

The PCF header must be the first header, or the message will not be treated as a trace-route
message. This means that the message cannot be in a group, and that trace-route messages cannot
be segmented. If a trace-route message is sent in a group the message is rejected with reason code
MQRC_MSG_NOT_ALLOWED_IN_GROUP.

Note that MQFMT_ADMIN can also be used for the format of a trace-route message, but in this case
no user data can be sent along with the trace-route message.

MQFMT_EVENT
The message is an MQ event message that reports an event that occurred. Event messages have
the same structure as programmable commands; see PCF command messages for more information
about this structure, and Event monitoring for information about events.

Version-1 event messages can be converted in all environments if the MQGMO_CONVERT option is
specified on the MQGET call. Version-2 event messages can be converted only on z/OS.

For the C programming language, the constant MQFMT_EVENT_ARRAY is also defined; this has the
same value as MQFMT_EVENT, but is an array of characters instead of a string.

MQFMT_IMS
The message data begins with the IMS information header MQIIH, which is followed by the
application data. The format name of the application data is given by the Format field in the MQIIH
structure.

For details of how MQIIH structure is handled when using MQGET with MQGMO_CONVERT, see
“Format (MQCHAR8)” on page 406 and “ReplyToFormat (MQCHAR8)” on page 407.

For the C programming language, the constant MQFMT_IMS_ARRAY is also defined; this has the same
value as MQFMT_IMS, but is an array of characters instead of a string.

MQFMT_IMS_VAR_STRING
The message is an IMS variable string, which is a string of the form llzzccc, where:

444 IBM MQ Developing Applications Reference

ll
is a 2-byte length field specifying the total length of the IMS variable string item. This length is
equal to the length of ll (2 bytes), plus the length of zz (2 bytes), plus the length of the character
string itself. ll is a 2-byte binary integer in the encoding specified by the Encoding field.

zz
is a 2-byte field containing flags that are significant to IMS. zz is a byte string consisting of two
MQBYTE fields, and is transmitted without change from sender to receiver (that is, zz is not
subject to any conversion).

ccc
is a variable-length character string containing ll-4 characters. ccc is in the character set
specified by the CodedCharSetId field.

On z/OS, the message data can consist of a sequence of IMS variable strings butted together,
with each string being of the form llzzccc. There must be no bytes skipped between successive
IMS variable strings. This means that if the first string has an odd length, the second string will
be misaligned, that is, it will not begin on a boundary that is a multiple of two. Take care when
constructing such strings on machines that require alignment of elementary data types.

Use the MQGMO_CONVERT option on the MQGET call to convert messages that have format
MQFMT_IMS_VAR_STRING.

For the C programming language, the constant MQFMT_IMS_VAR_STRING_ARRAY is also defined; this
has the same value as MQFMT_IMS_VAR_STRING, but is an array of characters instead of a string.

MQFMT_MD_EXTENSION
The message data begins with the message-descriptor extension MQMDE, and is optionally followed
by other data (usually the application message data). The format name, character set, and encoding of
the data that follow the MQMDE are given by the Format, CodedCharSetId, and Encoding fields in
the MQMDE. See “MQMDE - Message descriptor extension” on page 467 for details of this structure.
Messages of this format can be converted if the MQGMO_CONVERT option is specified on the MQGET
call.

For the C programming language, the constant MQFMT_MD_EXTENSION_ARRAY is also defined; this
has the same value as MQFMT_MD_EXTENSION, but is an array of characters instead of a string.

MQFMT_PCF
The message is a user-defined message that conforms to the structure of a programmable command
format (PCF) message. Messages of this format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call. See Using Programmable Command Formats for more information about
using programmable command format messages.

For the C programming language, the constant MQFMT_PCF_ARRAY is also defined; this has the same
value as MQFMT_PCF, but is an array of characters instead of a string.

MQFMT_REF_MSG_HEADER
The message data begins with the reference message header MQRMH, and is optionally followed
by other data. The format name, character set, and encoding of the data is given by the Format,
CodedCharSetId, and Encoding fields in the MQRMH. See “MQRMH - Reference message
header” on page 543 for details of this structure. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

This format is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ MQI clients connected to these systems.

Developing applications reference 445

For the C programming language, the constant MQFMT_REF_MSG_HEADER_ARRAY is also defined;
this has the same value as MQFMT_REF_MSG_HEADER, but is an array of characters instead of a
string.

MQFMT_RF_HEADER
The message data begins with the rules and formatting header MQRFH, and is optionally followed by
other data. The format name, character set, and encoding of the data (if any) are given by the Format,
CodedCharSetId, and Encoding fields in the MQRFH. Messages of this format can be converted if
the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_RF_HEADER_ARRAY is also defined; this has
the same value as MQFMT_RF_HEADER, but is an array of characters instead of a string.

MQFMT_RF_HEADER_2
The message data begins with the version-2 rules and formatting header MQRFH2, and is optionally
followed by other data. The format name, character set, and encoding of the optional data (if any)
are given by the Format, CodedCharSetId, and Encoding fields in the MQRFH2. Messages of this
format can be converted if the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_RF_HEADER_2_ARRAY is also defined; this
has the same value as MQFMT_RF_HEADER_2, but is an array of characters instead of a string.

MQFMT_STRING
The application message data can be either an SBCS string (single-byte character set), or a DBCS
string (double-byte character set). Messages of this format can be converted if the MQGMO_CONVERT
option is specified on the MQGET call.

For the C programming language, the constant MQFMT_STRING_ARRAY is also defined; this has the
same value as MQFMT_STRING, but is an array of characters instead of a string.

MQFMT_TRIGGER
The message is a trigger message, described by the MQTM structure; see “MQTM - Trigger
message” on page 593 for details of this structure. Messages of this format can be converted if
the MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant MQFMT_TRIGGER_ARRAY is also defined; this has the
same value as MQFMT_TRIGGER, but is an array of characters instead of a string.

MQFMT_WORK_INFO_HEADER
The message data begins with the work information header MQWIH, which is followed by the
application data. The format name of the application data is given by the Format field in the MQWIH
structure.

On z/OS, specify the MQGMO_CONVERT option on the MQGET call to convert the user
data in messages that have format MQFMT_WORK_INFO_HEADER. However, the MQWIH structure
itself is always returned in the queue manager's character set and encoding (that is, the MQWIH
structure is converted whether or not the MQGMO_CONVERT option is specified).

For the C programming language, the constant MQFMT_WORK_INFO_HEADER_ARRAY is also defined;
this has the same value as MQFMT_WORK_INFO_HEADER, but is an array of characters instead of a
string.

MQFMT_XMIT_Q_HEADER
The message data begins with the transmission queue header MQXQH. The data from the original
message immediately follows the MQXQH structure. The format name of the original message data
is given by the Format field in the MQMD structure, which is part of the transmission queue header
MQXQH. See “MQXQH - Transmission-queue header” on page 611 for details of this structure.

COA and COD reports are not generated for messages that have a Format of
MQFMT_XMIT_Q_HEADER.

For the C programming language, the constant MQFMT_XMIT_Q_HEADER_ARRAY is also defined; this
has the same value as MQFMT_XMIT_Q_HEADER, but is an array of characters instead of a string.

446 IBM MQ Developing Applications Reference

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The length
of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Priority (MQLONG)
For the MQPUT and MQPUT1 calls, the value must be greater than or equal to zero; zero is the lowest
priority. The following special value can also be used:
MQPRI_PRIORITY_AS_Q_DEF

• If the queue is a cluster queue, the priority for the message is taken from the DefPriority
attribute defined at the destination queue manager that owns the particular instance of the queue
on which the message is placed.

When there are multiple instances of the cluster queue, and they differ in this attribute, the value
from one of them is picked and it cannot be predicted which one will be used. You should therefore
set this attribute to the same value on all instances. If this is not the case, error message AMQ9407
is issued to the queue manager logs. See also How are destination object attributes resolved for
aliases, remote and cluster queues?

The value of DefPriority is copied into the Priority field when the message is placed on the
destination queue. If DefPriority is changed subsequently, messages that have already been
placed on the queue are not affected.

• If the queue is not a cluster queue, the priority for the message is taken from the DefPriority
attribute defined at the local queue manager, even if the destination queue manager is remote.

If there is more than one definition in the queue-name resolution path, the default priority is taken
from the value of this attribute in the first definition in the path. This can be:

– An alias queue
– A local queue
– A local definition of a remote queue
– A queue manager alias
– A transmission queue (for example, the DefXmitQName queue)

The value of DefPriority is copied into the Priority field when the message is put. If
DefPriority is changed subsequently, messages that have already been put are not affected.

The value returned by the MQGET call is always greater than or equal to zero; the value
MQPRI_PRIORITY_AS_Q_DEF is never returned.

If a message is put with a priority greater than the maximum supported by the local queue manager (this
maximum is given by the MaxPriority queue manager attribute), the message is accepted by the queue
manager, but placed on the queue at the queue manager's maximum priority; the MQPUT or MQPUT1 call
completes with MQCC_WARNING and reason code MQRC_PRIORITY_EXCEEDS_MAXIMUM. However, the
Priority field retains the value specified by the application that put the message.

On z/OS, if a message with a MsgSeqNumber of 1 is put to a queue that has a message delivery sequence
of MQMDS_PRIORITY and an index type of MQIT_GROUP_ID, the queue might treat the message with
a different priority. If the message was placed on the queue with a priority of 0 or 1, it is processed
as though it has a priority of 2. This is because the order of messages placed on this type of queue is
optimized to enable efficient group completeness tests. For more information on the message delivery
sequence MQMDS_PRIORITY and the index type MQIT_GROUP_ID, see MsgDeliverySequence attribute.

When replying to a message, applications must use the priority of the request message for the reply
message. In other situations, specifying MQPRI_PRIORITY_AS_Q_DEF allows priority tuning to be carried
out without changing the application.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial
value of this field is MQPRI_PRIORITY_AS_Q_DEF.

Developing applications reference 447

Persistence (MQLONG)
This indicates whether the message survives system failures and restarts of the queue manager. For the
MQPUT and MQPUT1 calls, the value must be one of the following:
MQPER_PERSISTENT

The message survives system failures and restarts of the queue manager. Once the message has been
put, and the unit of work in which it was put has been committed (if the message is put as part of
a unit of work), the message is preserved on auxiliary storage. It remains there until the message is
removed from the queue, and the unit of work in which it was got has been committed (if the message
is retrieved as part of a unit of work).

When a persistent message is sent to a remote queue, a store-and-forward mechanism holds the
message at each queue manager along the route to the destination, until the message is known to
have arrived at the next queue manager.

Persistent messages cannot be placed on:

• Temporary dynamic queues
• Shared queues that map to a CFSTRUCT object at CFLEVEL(2) or below, or where the CFSTRUCT

object is defined as RECOVER(NO).

Persistent messages can be placed on permanent dynamic queues, and predefined queues.

MQPER_NOT_PERSISTENT
The message does not usually survive system failures or queue manager restarts. This applies even if
an intact copy of the message is found on auxiliary storage when the queue manager restarts.

In the case of NPMCLASS (HIGH) queues nonpersistent messages survive a normal queue manager
shutdown and restart.

In the case of shared queues, nonpersistent messages survive queue manager restarts in the queue
sharing group, but do not survive failures of the coupling facility used to store messages on the shared
queues.

MQPER_PERSISTENCE_AS_Q_DEF

• If the queue is a cluster queue, the persistence of the message is taken from the DefPersistence
attribute defined at the destination queue manager that owns the particular instance of the queue
on which the message is placed.

When there are multiple instances of the cluster queue, and they differ in this attribute, the value
from one of them is picked and it cannot be predicted which one will be used. You should therefore
set this attribute to the same value on all instances. If this is not the case, error message AMQ9407
is issued to the queue manager logs. See also How are destination object attributes resolved for
aliases, remote and cluster queues?

The value of DefPersistence is copied into the Persistence field when the message is placed
on the destination queue. If DefPersistence is changed subsequently, messages that have
already been placed on the queue are not affected.

• If the queue is not a cluster queue, the persistence of the message is taken from the
DefPersistence attribute defined at the local queue manager, even if the destination queue
manager is remote.

If there is more than one definition in the queue-name resolution path, the default persistence is
taken from the value of this attribute in the first definition in the path. This can be:

– An alias queue
– A local queue
– A local definition of a remote queue
– A queue manager alias
– A transmission queue (for example, the DefXmitQName queue)

448 IBM MQ Developing Applications Reference

The value of DefPersistence is copied into the Persistence field when the message is put. If
DefPersistence is changed subsequently, messages that have already been put are not affected.

Both persistent and nonpersistent messages can exist on the same queue.

When replying to a message, applications must use the persistence of the request message for the reply
message.

For an MQGET call, the value returned is either MQPER_PERSISTENT or MQPER_NOT_PERSISTENT.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The initial
value of this field is MQPER_PERSISTENCE_AS_Q_DEF.

MsgId (MQBYTE24)
This is a byte string that is used to distinguish one message from another. Generally, no two messages
should have the same message identifier, although this is not disallowed by the queue manager. The
message identifier is a permanent property of the message, and persists across restarts of the queue
manager. Because the message identifier is a byte string and not a character string, the message identifier
is not converted between character sets when the message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, if MQMI_NONE or MQPMO_NEW_MSG_ID is specified by the
application, the queue manager generates a unique message identifier 3 when the message is put, and
places it in the message descriptor sent with the message. The queue manager also returns this message
identifier in the message descriptor belonging to the sending application. The application can use this
value to record information about particular messages, and to respond to queries from other parts of the
application.

If the message is being put to a topic, the queue manager generates unique message identifiers as
necessary for each message published. If MQPMO_NEW_MSG_ID is specified by the application, the
queue manager generates a unique message identifier to return on output. If MQMI_NONE is specified by
the application, the value of the MsgId field in the MQMD is unchanged on return from the call.

See the description of MQPMO_RETAIN in “MQPMO options (MQLONG)” on page 500 for more details
about retained publications.

If the message is being put to a distribution list, the queue manager generates unique message identifiers
as necessary, but the value of the MsgId field in MQMD is unchanged on return from the call, even if
MQMI_NONE or MQPMO_NEW_MSG_ID was specified. If the application needs to know the message
identifiers generated by the queue manager, the application must provide MQPMR records containing the
MsgId field.

The sending application can also specify a value for the message identifier other than MQMI_NONE; this
stops the queue manager generating a unique message identifier. An application that is forwarding a
message can use this to propagate the message identifier of the original message.

The queue manager does not use this field except to:

• Generate a unique value if requested, as described above
• Deliver the value to the application that issues the get request for the message
• Copy the value to the CorrelId field of any report message that it generates about this message

(depending on the Report options)

3 A MsgId generated by the queue manager consists of a 4-byte product identifier (AMQ¬ or CSQ¬ in either
ASCII or EBCDIC, where ¬ represents a blank character), followed by a product-specific implementation of
a unique string. In IBM MQ this contains the first 12 characters of the queue manager name, and a value
derived from the system clock. All queue managers that can intercommunicate must therefore have names
that differ in the first 12 characters, in order to ensure that message identifiers are unique. The ability
to generate a unique string also depends on the system clock not being changed backward. To eliminate
the possibility of a message identifier generated by the queue manager duplicating one generated by the
application, the application must avoid generating identifiers with initial characters in the range A through I
in ASCII or EBCDIC (X'41' through X'49' and X'C1' through X'C9'). However, the application is not prevented
from generating identifiers with initial characters in these ranges.

Developing applications reference 449

When the queue manager or a message channel agent generates a report message, it sets the MsgId
field in the way specified by the Report field of the original message, either MQRO_NEW_MSG_ID or
MQRO_PASS_MSG_ID. Applications that generate report messages must also do this.

For the MQGET call, MsgId is one of the five fields that can be used to retrieve a particular message from
the queue. Normally the MQGET call returns the next message on the queue, but a particular message can
be obtained by specifying one or more of the five selection criteria, in any combination; these fields are:

• MsgId
• CorrelId
• GroupId
• MsgSeqNumber
• Offset

The application sets one or more of these field to the values required, and then sets the corresponding
MQMO_* match options in the MatchOptions field in MQGMO to use those fields as selection criteria.
Only messages that have the specified values in those fields are candidates for retrieval. The default for
the MatchOptions field (if not altered by the application) is to match both the message identifier and the
correlation identifier.

On z/OS, the selection criteria that you can use are restricted by the type of index used for the queue. See
the IndexType queue attribute for further details.

Normally, the message returned is the first message on the queue that satisfies the selection criteria.
But if MQGMO_BROWSE_NEXT is specified, the message returned is the next message that satisfies the
selection criteria; the scan for this message starts with the message following the current cursor position.

Note: The queue is scanned sequentially for a message that satisfies the selection criteria, so retrieval
times are slower than if no selection criteria are specified, especially if many messages have to be
scanned before a suitable one is found. The exceptions to this are:

• an MQGET call by CorrelId on 64-bit Multiplatforms where the CorrelId index eliminates
the need to perform a true sequential scan.

• an MQGET call by IndexType on z/OS.

In both these cases, retrieval performance is improved.

See Table 496 on page 389 for more information about how selection criteria are used in various
situations.

Specifying MQMI_NONE as the message identifier has the same effect as not specifying
MQMO_MATCH_MSG_ID, that is, any message identifier matches.

This field is ignored if the MQGMO_MSG_UNDER_CURSOR option is specified in the GetMsgOpts
parameter on the MQGET call.

On return from an MQGET call, the MsgId field is set to the message identifier of the message returned (if
any).

The following special value can be used:
MQMI_NONE

No message identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQMI_NONE_ARRAY is also defined; this has the same
value as MQMI_NONE, but is an array of characters instead of a string.

This is an input/output field for the MQGET, MQPUT, and MQPUT1 calls. The length of this field is given by
MQ_MSG_ID_LENGTH. The initial value of this field is MQMI_NONE.

450 IBM MQ Developing Applications Reference

CorrelId (MQBYTE24)
The CorrelId field is property in the message header that may be used to identify a specific message or
group of messages.

This is a byte string that the application can use to relate one message to another, or to relate the
message to other work that the application is performing. The correlation identifier is a permanent
property of the message, and persists across restarts of the queue manager. Because the correlation
identifier is a byte string and not a character string, the correlation identifier is not converted between
character sets when the message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, the application can specify any value. The queue manager transmits
this value with the message and delivers it to the application that issues the get request for the message.

If the application specifies MQPMO_NEW_CORREL_ID, the queue manager generates a unique correlation
identifier which is sent with the message, and also returned to the sending application on output from the
MQPUT or MQPUT1 call.

A correlation identifier generated by the queue manager consists of a 3-byte product identifier (AMQ or
CSQ in either ASCII or EBCDIC), followed by one reserved byte and a product-specific implementation of
a unique string. In IBM MQ this product-specific implementation string contains the first 12 characters
of the queue manager name, and a value derived from the system clock. All queue managers that can
intercommunicate must therefore have names that differ in the first 12 characters to ensure that message
identifiers are unique. The ability to generate a unique string also depends on the system clock not being
changed backward. To eliminate the possibility of a message identifier generated by the queue manager
duplicating one generated by the application, the application must avoid generating identifiers with initial
characters in the range A through I in ASCII or EBCDIC (X'41' through X'49' and X'C1' through X'C9').
However, the application is not prevented from generating identifiers with initial characters in these
ranges.

This generated correlation identifier is kept with the message if it is retained, and is used as the
correlation identifier when the message is sent as a publication to subscribers who specify MQCI_NONE
in the SubCorrelId field in the MQSD passed on the MQSUB call. See MQPMO options for more details
about retained publications.

When the queue manager or a message channel agent generates a report message, it sets
the CorrelId field in the way specified by the Report field of the original message, either
MQRO_COPY_MSG_ID_TO_CORREL_ID or MQRO_PASS_CORREL_ID. Applications that generate report
messages must also do this.

For the MQGET call, CorrelId is one of the five fields that can be used to select a particular message to
be retrieved from the queue. See the description of the MsgId field for details of how to specify values for
this field.

Specifying MQCI_NONE as the correlation identifier has the same effect as not specifying
MQMO_MATCH_CORREL_ID, that is, any correlation identifier will match.

If the MQGMO_MSG_UNDER_CURSOR option is specified in the GetMsgOpts parameter on the MQGET
call, this field is ignored.

On return from an MQGET call, the CorrelId field is set to the correlation identifier of the message
returned (if any).

The following special values can be used:
MQCI_NONE

No correlation identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQCI_NONE_ARRAY is also defined; this has the same
value as MQCI_NONE, but is an array of characters instead of a string.

MQCI_NEW_SESSION
Message is the start of a new session.

Developing applications reference 451

This value is recognized by the CICS bridge as indicating the start of a new session, that is, the start of
a new sequence of messages.

For the C programming language, the constant MQCI_NEW_SESSION_ARRAY is also defined; this has
the same value as MQCI_NEW_SESSION, but is an array of characters instead of a string.

For the MQGET call, this is an input/output field. For the MQPUT and MQPUT1 calls, this is an input field if
MQPMO_NEW_CORREL_ID is not specified, and an output field if MQPMO_NEW_CORREL_ID is specified.
The length of this field is given by MQ_CORREL_ID_LENGTH. The initial value of this field is MQCI_NONE.

Note:

You cannot pass the correlation identifier of a publication in a hierarchy. The field is used by the queue
manager.

BackoutCount (MQLONG)
This is a count of the number of times that the message has been previously returned by the MQGET
call as part of a unit of work, and subsequently backed out. It helps the application to detect processing
errors that are based on message content. The count excludes MQGET calls that specify any of the
MQGMO_BROWSE_* options.

The accuracy of this count is affected by the HardenGetBackout queue attribute; see “Attributes for
queues” on page 826.

On z/OS, a value of 255 means that the message has been backed out 255 or more times; the value
returned is never greater than 255.

This is an output field for the MQGET call. It is ignored for the MQPUT and MQPUT1 calls. The initial value
of this field is 0.

ReplyToQ (MQCHAR48)
This is the name of the message queue to which the application that issued the get request for the
message sends MQMT_REPLY and MQMT_REPORT messages. The name is the local name of a queue that
is defined on the queue manager identified by ReplyToQMgr. This queue must not be a model queue,
although the sending queue manager does not verify this when the message is put.

For the MQPUT and MQPUT1 calls, this field must not be blank if the MsgType field has the value
MQMT_REQUEST, or if any report messages are requested by the Report field. However, the value
specified (or substituted) is passed on to the application that issues the get request for the message,
whatever the message type.

If the ReplyToQMgr field is blank, the local queue manager looks up the ReplyToQ name in its own
queue definitions. If a local definition of a remote queue exists with this name, the ReplyToQ value in
the transmitted message is replaced by the value of the RemoteQName attribute from the definition of
the remote queue, and this value is returned in the message descriptor when the receiving application
issues an MQGET call for the message. If a local definition of a remote queue does not exist, ReplyToQ is
unchanged.

If the name is specified, it can contain trailing blanks; the first null character and characters following it
are treated as blanks. Otherwise no check is made that the name satisfies the naming rules for queues;
this is also true for the name transmitted, if the ReplyToQ is replaced in the transmitted message. The
only check made is that a name has been specified, if the circumstances require it.

If a reply-to queue is not required, set the ReplyToQ field to blanks, or (in the C programming language)
to the null string, or to one or more blanks followed by a null character; do not leave the field uninitialized.

For the MQGET call, the queue manager always returns the name padded with blanks to the length of the
field.

If a message that requires a report message cannot be delivered, and the report message also cannot be
delivered to the queue specified, both the original message and the report message go to the dead-letter
(undelivered-message) queue (see the DeadLetterQName attribute described in “Attributes for the
queue manager” on page 789).

452 IBM MQ Developing Applications Reference

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The length
of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in C, and 48
blank characters in other programming languages.

ReplyToQMgr (MQCHAR48)
This is the name of the queue manager to which to send the reply message or report message. ReplyToQ
is the local name of a queue that is defined on this queue manager.

If the ReplyToQMgr field is blank, the local queue manager looks up the ReplyToQ name in its queue
definitions. If a local definition of a remote queue exists with this name, the ReplyToQMgr value in the
transmitted message is replaced by the value of the RemoteQMgrName attribute from the definition of the
remote queue, and this value is returned in the message descriptor when the receiving application issues
an MQGET call for the message. If a local definition of a remote queue does not exist, the ReplyToQMgr
that is transmitted with the message is the name of the local queue manager.

If the name is specified, it can contain trailing blanks; the first null character and characters following it
are treated as blanks. Otherwise no check is made that the name satisfies the naming rules for queue
managers, or that this name is known to the sending queue manager; this is also true for the name
transmitted, if the ReplyToQMgr is replaced in the transmitted message.

If a reply-to queue is not required, set the ReplyToQMgr field to blanks, or (in the C programming
language) to the null string, or to one or more blanks followed by a null character; do not leave the field
uninitialized.

For the MQGET call, the queue manager always returns the name padded with blanks to the length of the
field.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The length
of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null string in C, and
48 blank characters in other programming languages.

UserIdentifier (MQCHAR12)
This is part of the identity context of the message. For more information about message context, see
“MQMD - Message descriptor” on page 417 and Message context.

UserIdentifier specifies the user identifier of the application that originated the message. The queue
manager treats this information as character data, but does not define the format of it.

After a message has been received, use UserIdentifier in the AlternateUserId field of the
ObjDesc parameter of a subsequent MQOPEN or MQPUT1 call to perform the authorization check for
the UserIdentifier user instead of the application performing the open.

When the queue manager generates this information for an MQPUT or MQPUT1 call:

• On z/OS, the queue manager uses the AlternateUserId from the ObjDesc parameter
of the MQOPEN or MQPUT1 call if the MQOO_ALTERNATE_USER_AUTHORITY or
MQPMO_ALTERNATE_USER_AUTHORITY option was specified. If the relevant option was not specified,
the queue manager uses a user identifier determined from the environment.

• In other environments, the queue manager always uses a user identifier determined from the
environment.

When the user identifier is determined from the environment:

• On z/OS, the queue manager uses:

– For MVS (batch), the user identifier from the JES JOB card or started task
– For TSO, the user identifier propagated to the job during job submission
– For CICS, the user identifier associated with the task
– For IMS, the user identifier depends on the type of application:

- For:

Developing applications reference 453

• Nonmessage BMP regions
• Nonmessage IFP regions
• Message BMP and message IFP regions that have not issued a successful GU call

the queue manager uses the user identifier from the region JES JOB card or the TSO user identifier.
If these are blank or null, it uses the name of the program specification block (PSB).

- For:

• Message BMP and message IFP regions that have issued a successful GU call
• MPP regions

the queue manager uses one of:

• The signed-on user identifier associated with the message
• The logical terminal (LTERM) name
• The user identifier from the region JES JOB card
• The TSO user identifier
• The PSB name

• On IBM i, the queue manager uses the name of the user profile associated with the application job.
• On AIX and Linux, the queue manager uses:

– The application's logon name
– The effective user identifier of the process if no logon is available
– The user identifier associated with the transaction, if the application is a CICS transaction

• On Windows systems, the queue manager uses the first 12 characters of the logged-on user name.

This field is normally an output field generated by the queue manager but for an MQPUT or MQPUT1
call you can make this field an input/output field and specify the UserIdentification field instead of
letting the queue manager generate this information. Specify either MQPMO_SET_IDENTITY_CONTEXT or
MQPMO_SET_ALL_CONTEXT in the PutMsgOpts parameter and specify a user ID in the UserIdentifier field
if you do not want the queue manager to generate the UserIdentifier field for an MQPUT or MQPUT1 call.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_IDENTITY_CONTEXT
or MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter. Any information following a
null character within the field is discarded. The queue manager converts the null character and any
following characters to blanks. If MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
not specified, this field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the UserIdentifier
that was transmitted with the message if it was put to a queue. This will be the value of UserIdentifier
that is kept with the message if it is retained (see description of MQPMO_RETAIN for more details about
retained publications) but is not used as the UserIdentifier when the message is sent as a publication
to subscribers because they provide a value to override UserIdentifier in all publications sent to
them. If the message has no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by MQ_USER_ID_LENGTH. The
initial value of this field is the null string in C, and 12 blank characters in other programming languages.

AccountingToken (MQBYTE32)
This is the accounting token, part of the identity context of the message. For more information about
message context, see “MQMD - Message descriptor” on page 417 ; also see Message context.

AccountingToken allows an application to charge appropriately for work done as a result of the
message. The queue manager treats this information as a string of bits and does not check its content.

The queue manager generates this information as follows:

• The first byte of the field is set to the length of the accounting information present in the bytes that
follow; this length is in the range zero through 30, and is stored in the first byte as a binary integer.

454 IBM MQ Developing Applications Reference

• The second and subsequent bytes (as specified by the length field) are set to the accounting
information appropriate to the environment.

– On z/OS the accounting information is set to:

- For z/OS batch, the accounting information from the JES JOB card or from a JES ACCT statement in
the EXEC card (comma separators are changed to X'FF'). This information is truncated, if necessary,
to 31 bytes.

- For TSO, the user's account number.
- For CICS, the LU 6.2 unit of work identifier (UEPUOWDS) (26 bytes).
- For IMS, the 8-character PSB name concatenated with the 16-character IMS recovery token.

– On IBM i, the accounting information is set to the accounting code for the job.

– On AIX and Linux, the accounting information is set to the numeric user
identifier, in ASCII characters.

– On Windows, the accounting information is set to a Windows security identifier (SID) in
a compressed format. The SID uniquely identifies the user identifier stored in the UserIdentifier
field. When the SID is stored in the AccountingToken field, the 6-byte Identifier Authority (located
in the third and subsequent bytes of the SID) is omitted. For example, if the Windows SID is 28 bytes
long, 22 bytes of SID information are stored in the AccountingToken field.

• The last byte (byte 32) of the accounting field is set to the accounting token type (in this case
MQACTT_NT_SECURITY_ID, x '0b'):
MQACTT_CICS_LUOW_ID

CICS LUOW identifier.

MQACTT_NT_SECURITY_ID
Windows security identifier.

MQACTT_OS400_ACCOUNT_TOKEN
IBM i accounting token.

MQACTT_UNIX_NUMERIC_ID
UNIX numeric identifier.

MQACTT_USER
User-defined accounting token.

MQACTT_UNKNOWN
Unknown accounting-token type.

The accounting-token type is set to an explicit value only in the following environments:

– AIX

– IBM i

– Linux

– Windows

and for IBM MQ MQI clients connected to these systems. In other environments, the accounting-token
type is set to the value MQACTT_UNKNOWN. In these environments use the PutApplType field to
deduce the type of accounting token received.

• All other bytes are set to binary zero.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_IDENTITY_CONTEXT
or MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter. If neither
MQPMO_SET_IDENTITY_CONTEXT nor MQPMO_SET_ALL_CONTEXT is specified, this field is ignored on
input and is an output-only field. For more information about message context, see Message context.

Developing applications reference 455

After the successful completion of an MQPUT or MQPUT1 call, this field contains the AccountingToken
that was transmitted with the message if it was put to a queue. This will be the value of
AccountingToken that is kept with the message if it is retained (see description of MQPMO_RETAIN
in “MQPMO options (MQLONG)” on page 500 for more details about retained publications) but is not used
as the AccountingToken when the message is sent as a publication to subscribers since they provide a
value to override AccountingToken in all publications sent to them. If the message has no context, the
field is entirely binary zero.

This is an output field for the MQGET call.

This field is not subject to any translation based on the character set of the queue manager; the field is
treated as a string of bits, and not as a string of characters.

The queue manager does nothing with the information in this field. The application must interpret the
information if it wants to use the information for accounting purposes.

You can use the following special value for the AccountingToken field:
MQACT_NONE

No accounting token is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQACT_NONE_ARRAY is also defined; this has the
same value as MQACT_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_ACCOUNTING_TOKEN_LENGTH. The initial value of this field is
MQACT_NONE.

ApplIdentityData (MQCHAR32)
This is part of the identity context of the message. For more information about message context, see
“MQMD - Message descriptor” on page 417 and Message context.

ApplIdentityData is information that is defined by the application suite, and can be used to provide
additional information about the message or its originator. The queue manager treats this information as
character data, but does not define the format of it. When the queue manager generates this information,
it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_IDENTITY_CONTEXT or
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter. If a null character is present,
the null and any following characters are converted to blanks by the queue manager. If neither
MQPMO_SET_IDENTITY_CONTEXT nor MQPMO_SET_ALL_CONTEXT is specified, this field is ignored on
input and is an output-only field. For more information about message context, see Message context.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the
ApplIdentityData that was transmitted with the message if it was put to a queue. This
will be the value of ApplIdentityData that is kept with the message if it is retained (see
description of MQPMO_RETAIN for more details about retained publications) but is not used as the
ApplIdentityData when the message is sent as a publication to subscribers because they provide a
value to override ApplIdentityData in all publications sent to them. If the message has no context, the
field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by
MQ_APPL_IDENTITY_DATA_LENGTH. The initial value of this field is the null string in C, and 32 blank
characters in other programming languages.

PutApplType (MQLONG)

This is the type of application that put the message, and is part of the origin context of the message. For
more information about message context, see “MQMD - Message descriptor” on page 417 and Message
context.

PutApplType can have one of the following standard types. You can also define your own types, but only
with values in the range MQAT_USER_FIRST through MQAT_USER_LAST.

456 IBM MQ Developing Applications Reference

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_AMQP
AMQP protocol application

MQAT_BROKER
Broker.

MQAT_CICS
CICS transaction.

MQAT_CICS_BRIDGE
CICS bridge.

MQAT_CICS_VSE
CICS/VSE transaction.

MQAT_DOS
IBM MQ MQI client application on PC DOS.

MQAT_DQM
Distributed queue manager agent.

MQAT_GUARDIAN
Tandem Guardian application (same value as MQAT_NSK).

MQAT_IMS
IMS application.

MQAT_IMS_BRIDGE
IMS bridge.

MQAT_JAVA
Java.

MQAT_MVS
MVS or TSO application (same value as MQAT_ZOS).

MQAT_NOTES_AGENT
Lotus Notes® Agent application.

MQAT_OS390
OS/390® application (same value as MQAT_ZOS).

MQAT_OS400
IBM i application.

MQAT_QMGR
Queue manager.

MQAT_UNIX
UNIX application.

MQAT_VOS
Stratus VOS application.

MQAT_WINDOWS
16-bit Windows application.

MQAT_WINDOWS_NT
32-bit Windows application.

MQAT_WLM
z/OS workload manager application.

MQAT_XCF
XCF.

MQAT_ZOS
z/OS application.

MQAT_DEFAULT
Default application type.

Developing applications reference 457

This is the default application type for the platform on which the application is running.

Note: The value of this constant is environment-specific. Because of this, always compile the
application using the header, include, or COPY files that are appropriate to the platform on which
the application will run.

MQAT_UNKNOWN
Use this value to indicate that the application type is unknown, even though other context information
is present.

MQAT_USER_FIRST
Lowest value for user-defined application type.

MQAT_USER_LAST
Highest value for user-defined application type.

The following special value can also occur:
MQAT_NO_CONTEXT

This value is set by the queue manager when a message is put with no context (that is, the
MQPMO_NO_CONTEXT context option is specified).

When a message is retrieved, PutApplType can be tested for this value to decide whether the
message has context (it is recommended that PutApplType is never set to MQAT_NO_CONTEXT, by
an application using MQPMO_SET_ALL_CONTEXT, if any of the other context fields are nonblank).

When the queue manager generates this information as a result of an application put, the field is set to a
value that is determined by the environment. On IBM i, it is set to MQAT_OS400; the queue manager never
uses MQAT_CICS on IBM i.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is specified
in the PutMsgOpts parameter. If MQPMO_SET_ALL_CONTEXT is not specified, this field is ignored on
input and is an output-only field.

This is an output field for the MQGET call. The initial value of this field is MQAT_NO_CONTEXT.

PutApplName (MQCHAR28)
This is the name of application that put the message, and is part of the origin context of the message. The
contents differ between platforms, and might differ between releases.

For more information about message context, see “MQMD - Message descriptor” on page 417 and
Message context.

From IBM MQ 9.1.2 you can specify the application name in additional programming
languages. See specifying the application name in supported programming languages for more
information.

The format of PutApplName depends on the value of PutApplType and can change from one release to
another. Changes are rare, but do happen if the environment changes.

When the queue manager sets this field (that is, for all options except MQPMO_SET_ALL_CONTEXT), it
sets the field to a value that is determined by the environment:

• On z/OS, the queue manager uses:

– For z/OS batch, the 8-character job name from the JES JOB card
– For TSO, the 7-character TSO user identifier
– For CICS, the 8-character applid, followed by the 4-character tranid
– For IMS, the 8-character IMS system identifier, followed by the 8-character PSB name
– For XCF, the 8-character XCF group name, followed by the 16-character XCF member name
– For a message generated by a queue manager, the first 28 characters of the queue manager name

458 IBM MQ Developing Applications Reference

– For distributed queuing without CICS, the 8-character jobname of the channel initiator followed by
the 8-character name of the module putting to the dead-letter queue followed by an 8-character task
identifier.

The name or names are each padded to the right with blanks, as is any space in the remainder of the
field. Where there is more than one name, there is no separator between them.

• On Windows systems, the queue manager uses the following names:

– For a CICS application, the CICS transaction name
– For a non-CICS application, the rightmost 28 characters of the fully-qualified name of the executable

• On IBM i, the queue manager uses the fully-qualified job name.

• On AIX and Linux, the queue manager uses the following names:

– For a CICS application, the CICS transaction name
– For a non-CICS application, MQ asks the operating system for the name of the process. This is

returned as the program file name, without full path. Then MQ places this process name in the
MQMD.PutApplName field as follows:

AIX
If the name is less than or equal to 28 bytes, then the name is inserted, padded to the right with
spaces.
If the name is greater than 28 bytes, then the leftmost 28 bytes of the name are inserted.

Linux
If the name is less than or equal to 15 bytes, then the name is inserted, padded to the right with
spaces.
If the name is greater than 15 bytes, then the leftmost 15 bytes of the name are inserted, padded
to the right with spaces.

For example, if you run /opt/mqm/samp/bin/amqsput QNAME QMNAME, then the PutApplName
is 'amqsput '. There are 21 space characters of padding in
this MQCHAR28 field. Note that the full path including /opt/mqm/samp/bin is not included in the
PutApplName.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is specified
in the PutMsgOpts parameter. Any information following a null character within the field is discarded.
The null character and any following characters are converted to blanks by the queue manager. If
MQPMO_SET_ALL_CONTEXT is not specified, this field is ignored on input and is an output-only field.

PutDate (MQCHAR8)
This is the date when the message was put, and is part of the origin context of the message. For
more information about message context, see “MQMD - Message descriptor” on page 417 and Message
context.

The format used for the date when this field is generated by the queue manager is:

• YYYYMMDD

where the characters represent:
YYYY

year (four numeric digits)
MM

month of year (01 through 12)
DD

day of month (01 through 31)

Developing applications reference 459

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields, subject to the system clock
being set accurately to GMT.

If the message was put as part of a unit of work, the date is that when the message was put, and not the
date when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is specified
in the PutMsgOpts parameter. The contents of the field are not checked by the queue manager, except
that any information following a null character within the field is discarded. The queue manager converts
the null character and any following characters to blanks. If MQPMO_SET_ALL_CONTEXT is not specified,
this field is ignored on input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by MQ_PUT_DATE_LENGTH. The
initial value of this field is the null string in C, and 8 blank characters in other programming languages.

PutTime (MQCHAR8)

This is the time when the message was put, and is part of the origin context of the message. For
more information about message context, see “MQMD - Message descriptor” on page 417 and Message
context.

The format used for the time when this field is generated by the queue manager is:

• HHMMSSTH

where the characters represent (in order):
HH

hours (00 through 23)
MM

minutes (00 through 59)
SS

seconds (00 through 59; see note)
T

tenths of a second (0 through 9)
H

hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard, it is possible on rare occasions
for 60 or 61 to be returned for the seconds in PutTime. This happens when leap seconds are inserted
into the global time standard.

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields, subject to the system clock
being set accurately to GMT.

If the message was put as part of a unit of work, the time is that when the message was put, and not the
time when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is specified
in the PutMsgOpts parameter. The queue manager does not check the contents of the field, except that
any information following a null character within the field is discarded. The queue manager converts the
null character and any following characters to blanks. If MQPMO_SET_ALL_CONTEXT is not specified, this
field is ignored on input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by MQ_PUT_TIME_LENGTH. The
initial value of this field is the null string in C, and 8 blank characters in other programming languages.

ApplOriginData (MQCHAR4)
This is part of the origin context of the message. For more information about message context, see
“MQMD - Message descriptor” on page 417 and Message context.

460 IBM MQ Developing Applications Reference

ApplOriginData is information that is defined by the application suite that can be used to provide
additional information about the origin of the message. For example, it could be set by applications
running with suitable user authority to indicate whether the identity data is trusted.

The queue manager treats this information as character data, but does not define the format of it. When
the queue manager generates this information, it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if MQPMO_SET_ALL_CONTEXT is
specified in the PutMsgOpts parameter. Any information following a null character within the field is
discarded. The queue manager converts the null character and any following characters to blanks. If
MQPMO_SET_ALL_CONTEXT is not specified, this field is ignored on input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by
MQ_APPL_ORIGIN_DATA_LENGTH. The initial value of this field is the null string in C, and 4 blank
characters in other programming languages.

When the message is published, although ApplOriginData is set, it is blank in the subscription that it
receives.

GroupId (MQBYTE24)
This is a byte string that is used to identify the particular message group or logical message to which the
physical message belongs. GroupId is also used if segmentation is allowed for the message. In all these
cases, GroupId has a non-null value, and one or more of the following flags is set in the MsgFlags field:

• MQMF_MSG_IN_GROUP
• MQMF_LAST_MSG_IN_GROUP
• MQMF_SEGMENT
• MQMF_LAST_SEGMENT
• MQMF_SEGMENTATION_ALLOWED

If none of these flags is set, GroupId has the special null value MQGI_NONE.

The application does not need to set this field on the MQPUT or MQGET call if:

• On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
• On the MQGET call, MQMO_MATCH_GROUP_ID is not specified.

These are the recommended ways of using these calls for messages that are not report messages.
However, if the application requires more control, or the call is MQPUT1, the application must ensure that
GroupId is set to an appropriate value.

Message groups and segments can be processed correctly only if the group identifier is unique. For this
reason, applications must not generate their own group identifiers ; instead, applications must do one of
the following:

• If MQPMO_LOGICAL_ORDER is specified, the queue manager automatically generates a unique group
identifier for the first message in the group or segment of the logical message, and uses that group
identifier for the remaining messages in the group or segments of the logical message, so the
application does not need to take any special action. This is the recommended procedure.

• If MQPMO_LOGICAL_ORDER is not specified, the application must request the queue manager to
generate the group identifier, by setting GroupId to MQGI_NONE on the first MQPUT or MQPUT1 call
for a message in the group or segment of the logical message. The group identifier returned by the
queue manager on output from that call must then be used for the remaining messages in the group or
segments of the logical message. If a message group contains segmented messages, the same group
identifier must be used for all segments and messages in the group.

When MQPMO_LOGICAL_ORDER is not specified, messages in groups and segments of logical
messages can be put in any order (for example, in reverse order), but the group identifier must be
allocated by the first MQPUT or MQPUT1 call that is issued for any of those messages.

Developing applications reference 461

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value described in Physical order
on a queue. On output from the MQPUT and MQPUT1 calls, the queue manager sets this field to the
value that was sent with the message if the object opened is a single queue and not a distribution list,
but leaves it unchanged if the object opened is a distribution list. In the latter case, if the application
needs to know the group identifiers generated, the application must provide MQPMR records containing
the GroupId field.

On input to the MQGET call, the queue manager uses the value described in Table 496 on page 389. On
output from the MQGET call, the queue manager sets this field to the value for the message retrieved.

The following special value is defined:
MQGI_NONE

No group identifier specified.

The value is binary zero for the length of the field. This is the value that is used for messages that are
not in groups, not segments of logical messages, and for which segmentation is not allowed.

For the C programming language, the constant MQGI_NONE_ARRAY is also defined; this has the same
value as MQGI_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_GROUP_ID_LENGTH. The initial value of this field is MQGI_NONE.
This field is ignored if Version is less than MQMD_VERSION_2.

MsgSeqNumber (MQLONG)
This is the sequence number of a logical message within a group.

Sequence numbers start at 1, and increase by 1 for each new logical message in the group, up to a
maximum of 999 999 999. A physical message that is not in a group has a sequence number of 1.

The application does not have to set this field on the MQPUT or MQGET call if:

• On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
• On the MQGET call, MQMO_MATCH_MSG_SEQ_NUMBER is not specified.

These are the recommended ways of using these calls for messages that are not report messages.
However, if the application requires more control, or the call is MQPUT1, the application must ensure that
MsgSeqNumber is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value described in Physical order
on a queue. On output from the MQPUT and MQPUT1 calls, the queue manager sets this field to the value
that was sent with the message.

On input to the MQGET call, the queue manager uses the value shown in Table 496 on page 389. On
output from the MQGET call, the queue manager sets this field to the value for the message retrieved.

The initial value of this field is one. This field is ignored if Version is less than MQMD_VERSION_2.

Offset (MQLONG)
This is the offset in bytes of the data in the physical message from the start of the logical message of
which the data forms part. This data is called a segment. The offset is in the range 0 through 999 999 999.
A physical message that is not a segment of a logical message has an offset of zero.

The application does not need to set this field on the MQPUT or MQGET call if:

• On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
• On the MQGET call, MQMO_MATCH_OFFSET is not specified.

These are the recommended ways of using these calls for messages that are not report messages.
However, if the application does not comply with these conditions, or the call is MQPUT1, the application
must ensure that Offset is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value described in Physical order
on a queue. On output from the MQPUT and MQPUT1 calls, the queue manager sets this field to the value
that was sent with the message.

462 IBM MQ Developing Applications Reference

For a report message reporting on a segment of a logical message, the OriginalLength field (provided
it is not MQOL_UNDEFINED) is used to update the offset in the segment information retained by the
queue manager.

On input to the MQGET call, the queue manager uses the value shown in Table 496 on page 389. On
output from the MQGET call, the queue manager sets this field to the value for the message retrieved.

The initial value of this field is zero. This field is ignored if Version is less than MQMD_VERSION_2.

MsgFlags (MQLONG)
MsgFlags are flags that specify attributes of the message, or control its processing.

MsgFlags are divided into the following categories:

• Segmentation flags
• Status flags

Segmentation flags: When a message is too big for a queue, an attempt to put the message on the
queue typically fails. Segmentation is a technique whereby the queue manager or application splits the
message into smaller pieces called segments, and places each segment on the queue as a separate
physical message. The application that retrieves the message can either retrieve the segments one by
one, or request the queue manager to reassemble the segments into a single message that is returned by
the MQGET call. The latter is achieved by specifying the MQGMO_COMPLETE_MSG option on the MQGET
call, and supplying a buffer that is big enough to accommodate the complete message. (See “MQGMO -
Get-message options” on page 364 for details of the MQGMO_COMPLETE_MSG option.) A message can
be segmented at the sending queue manager, at an intermediate queue manager, or at the destination
queue manager.

You can specify one of the following to control the segmentation of a message:
MQMF_SEGMENTATION_INHIBITED

This option prevents the message being broken into segments by the queue manager. If specified
for a message that is already a segment, this option prevents the segment being broken into smaller
segments.

The value of this flag is binary zero. This is the default.

MQMF_SEGMENTATION_ALLOWED
This option allows the message to be broken into segments by the queue manager. If specified
for a message that is already a segment, this option allows the segment to be broken into
smaller segments. MQMF_SEGMENTATION_ALLOWED can be set without either MQMF_SEGMENT or
MQMF_LAST_SEGMENT being set.

• On z/OS, the queue manager does not support the segmentation of messages. If a message is too
big for the queue, the MQPUT or MQPUT1 call fails with reason code MQRC_MSG_TOO_BIG_FOR_Q.
However, the MQMF_SEGMENTATION_ALLOWED option can still be specified, and allows the
message to be segmented at a remote queue manager.

When the queue manager segments a message, the queue manager turns on the MQMF_SEGMENT
flag in the copy of the MQMD that is sent with each segment, but does not alter the settings of these
flags in the MQMD provided by the application on the MQPUT or MQPUT1 call. For the last segment in
the logical message, the queue manager also turns on the MQMF_LAST_SEGMENT flag in the MQMD
that is sent with the segment.

Note: Take care when putting messages with MQMF_SEGMENTATION_ALLOWED but without
MQPMO_LOGICAL_ORDER. If the message is:

• Not a segment, and
• Not in a group, and
• Not being forwarded,

Developing applications reference 463

the application must reset the GroupId field to MQGI_NONE before each MQPUT or MQPUT1 call, so
that the queue manager can generate a unique group identifier for each message. If this is not done,
unrelated messages can have the same group identifier, which might lead to incorrect processing
subsequently. See the descriptions of the GroupId field and the MQPMO_LOGICAL_ORDER option for
more information about when to reset the GroupId field.

The queue manager splits messages into segments as necessary so that the segments (plus any
required header data) fit on the queue. However, there is a lower limit for the size of a segment
generated by the queue manager, and only the last segment created from a message can be smaller
than this limit (the lower limit for the size of an application-generated segment is one byte). Segments
generated by the queue manager might be of unequal length. The queue manager processes the
message as follows:

• User-defined formats are split on boundaries that are multiples of 16 bytes; the queue manager
does not generate segments that are smaller than 16 bytes (other than the last segment).

• Built-in formats other than MQFMT_STRING are split at points appropriate to the nature of the
data present. However, the queue manager never splits a message in the middle of an IBM MQ
header structure. This means that a segment containing a single MQ header structure cannot be
split further by the queue manager, and as a result the minimum possible segment size for that
message is greater than 16 bytes.

The second or later segment generated by the queue manager begins with one of the following:

– An MQ header structure
– The start of the application message data
– Part of the way through the application message data

• MQFMT_STRING is split without regard for the nature of the data present (SBCS, DBCS, or
mixed SBCS/DBCS). When the string is DBCS or mixed SBCS/DBCS, this might result in segments
that cannot be converted from one character set to another. The queue manager never splits
MQFMT_STRING messages into segments that are smaller than 16 bytes (other than the last
segment).

• The queue manager sets the Format, CodedCharSetId, and Encoding fields in the MQMD of
each segment to describe correctly the data present at the start of the segment; the format name is
either the name of a built-in format, or the name of a user-defined format.

• The Report field in the MQMD of segments with Offset greater than zero is modified. For each
report type, if the report option is MQRO_*_WITH_DATA, but the segment cannot contain any of the
first 100 bytes of user data (that is, the data following any IBM MQ header structures that may be
present), the report option is changed to MQRO_*.

The queue manager follows the above rules, but otherwise splits messages unpredictably; do not
make assumptions about where a message is split.

For persistent messages, the queue manager can perform segmentation only within a unit of work:

• If the MQPUT or MQPUT1 call is operating within a user-defined unit of work, that unit of work is
used. If the call fails during the segmentation process, the queue manager removes any segments
that were placed on the queue as a result of the failing call. However, the failure does not prevent
the unit of work being committed successfully.

• If the call is operating outside a user-defined unit of work, and there is no user-defined unit of work
in existence, the queue manager creates a unit of work just for the duration of the call. If the call is
successful, the queue manager commits the unit of work automatically. If the call fails, the queue
manager backs out the unit of work.

• If the call is operating outside a user-defined unit of work, but a user-defined unit of work exists,
the queue manager cannot perform segmentation. If the message does not require segmentation,
the call can still succeed. But if the message requires segmentation, the call fails with reason code
MQRC_UOW_NOT_AVAILABLE.

For nonpersistent messages, the queue manager does not require a unit of work to be available in
order to perform segmentation.

464 IBM MQ Developing Applications Reference

Take special care when converting data in messages that might be segmented:

• If the receiving application converts data on the MQGET call, and specifies the
MQGMO_COMPLETE_MSG option, the data-conversion exit is passed the complete message for the
exit to convert, and the fact that the message was segmented is apparent to the exit.

• If the receiving application retrieves one segment at a time, the data-conversion exit is invoked to
convert one segment at a time. The exit must therefore convert the data in a segment independently
of the data in any of the other segments.

If the nature of the data in the message is such that arbitrary segmentation of the data on 16-
byte boundaries might result in segments that cannot be converted by the exit, or the format is
MQFMT_STRING and the character set is DBCS or mixed SBCS/DBCS, the sending application must
create and put the segments, specifying MQMF_SEGMENTATION_INHIBITED to suppress further
segmentation. In this way, the sending application can ensure that each segment contains sufficient
information to allow the data-conversion exit to convert the segment successfully.

• If sender conversion is specified for a sending message channel agent (MCA), the MCA converts only
messages that are not segments of logical messages; the MCA never attempts to convert messages
that are segments.

This flag is an input flag on the MQPUT and MQPUT1 calls, and an output flag on the MQGET call. On the
latter call, the queue manager also echoes the value of the flag to the Segmentation field in MQGMO.

The initial value of this flag is MQMF_SEGMENTATION_INHIBITED.

Status flags: These are flags that indicate whether the physical message belongs to a message group,
is a segment of a logical message, both, or neither. One or more of the following can be specified on the
MQPUT or MQPUT1 call, or returned by the MQGET call:
MQMF_MSG_IN_GROUP

Message is a member of a group.
MQMF_LAST_MSG_IN_GROUP

Message is the last logical message in a group.

If this flag is set, the queue manager turns on MQMF_MSG_IN_GROUP in the copy of MQMD that is
sent with the message, but does not alter the settings of these flags in the MQMD provided by the
application on the MQPUT or MQPUT1 call.

It is valid for a group to consist of only one logical message. If this is the case,
MQMF_LAST_MSG_IN_GROUP is set, but the MsgSeqNumber field has the value one.

MQMF_SEGMENT
Message is a segment of a logical message.

When MQMF_SEGMENT is specified without MQMF_LAST_SEGMENT, the length of the application
message data in the segment (excluding the lengths of any IBM MQ header structures that might be
present) must be at least one. If the length is zero, the MQPUT or MQPUT1 call fails with reason code
MQRC_SEGMENT_LENGTH_ZERO.

On z/OS, this option is not supported if the message is being put on a queue that has an index type of
MQIT_GROUP_ID.

MQMF_LAST_SEGMENT
Message is the last segment of a logical message.

If this flag is set, the queue manager turns on MQMF_SEGMENT in the copy of MQMD that is sent with
the message, but does not alter the settings of these flags in the MQMD provided by the application on
the MQPUT or MQPUT1 call.

A logical message can consist of only one segment. If so, MQMF_LAST_SEGMENT is set, but the
Offset field has the value zero.

When MQMF_LAST_SEGMENT is specified, the length of the application message data in the segment
(excluding the lengths of any header structures that might be present) can be zero.

Developing applications reference 465

On z/OS, this option is not supported if the message is being put on a queue that has an index type of
MQIT_GROUP_ID.

The application must ensure that these flags are set correctly when putting messages. If
MQPMO_LOGICAL_ORDER is specified, or was specified on the preceding MQPUT call for the queue
handle, the settings of the flags must be consistent with the group and segment information retained by
the queue manager for the queue handle. The following conditions apply to successive MQPUT calls for
the queue handle when MQPMO_LOGICAL_ORDER is specified:

• If there is no current group or logical message, all these flags (and combinations of them) are valid.
• Once MQMF_MSG_IN_GROUP has been specified, it must remain on until

MQMF_LAST_MSG_IN_GROUP is specified. The call fails with reason code MQRC_INCOMPLETE_GROUP
if this condition is not satisfied.

• Once MQMF_SEGMENT has been specified, it must remain on until MQMF_LAST_SEGMENT is specified.
The call fails with reason code MQRC_INCOMPLETE_MSG if this condition is not satisfied.

• Once MQMF_SEGMENT has been specified without MQMF_MSG_IN_GROUP, MQMF_MSG_IN_GROUP
must remain off until after MQMF_LAST_SEGMENT has been specified. The call fails with reason code
MQRC_INCOMPLETE_MSG if this condition is not satisfied.

Physical order on a queue shows the valid combinations of the flags, and the values used for various
fields.

These flags are input flags on the MQPUT and MQPUT1 calls, and output flags on the MQGET call.
On the latter call, the queue manager also echoes the values of the flags to the GroupStatus and
SegmentStatus fields in MQGMO.

You cannot use grouped or segmented messages with Publish/Subscribe.

Default flags: The following can be specified to indicate that the message has default attributes:
MQMF_NONE

No message flags (default message attributes).

This inhibits segmentation, and indicates that the message is not in a group and is not a segment of
a logical message. MQMF_NONE is defined to aid program documentation. It is not intended that this
flag be used with any other, but as its value is zero, such use cannot be detected.

The MsgFlags field is partitioned into subfields; for details see “Report options and message flags” on
page 893.

The initial value of this field is MQMF_NONE. This field is ignored if Version is less than
MQMD_VERSION_2.

OriginalLength (MQLONG)
This field is relevant only for report messages that are segments. It specifies the length of the message
segment to which the report message relates; it does not specify the length of the logical message of
which the segment forms part, or the length of the data in the report message.

Note: When generating a report message for a message that is a segment, the queue manager and
message channel agent copy into the MQMD for the report message the GroupId, MsgSeqNumber,
Offset, and MsgFlags, fields from the original message. As a result, the report message is also a
segment. Applications that generate report messages must do the same, and set the OriginalLength
field correctly.

The following special value is defined:
MQOL_UNDEFINED

Original length of message not defined.

OriginalLength is an input field on the MQPUT and MQPUT1 calls, but the value that the application
provides is accepted only in particular circumstances:

• If the message being put is a segment and is also a report message, the queue manager accepts the
value specified. The value must be:

466 IBM MQ Developing Applications Reference

– Greater than zero if the segment is not the last segment
– Not less than zero if the segment is the last segment
– Not less than the length of data present in the message

If these conditions are not satisfied, the call fails with reason code MQRC_ORIGINAL_LENGTH_ERROR.
• If the message being put is a segment but not a report message, the queue manager ignores the field

and uses the length of the application message data instead.
• In all other cases, the queue manager ignores the field and uses the value MQOL_UNDEFINED instead.

This is an output field on the MQGET call.

The initial value of this field is MQOL_UNDEFINED. This field is ignored if Version is less than
MQMD_VERSION_2.

MQMDE - Message descriptor extension
The MQMDE structure describes the data that sometimes occurs preceding the application message data.
The structure contains those MQMD fields that exist in the version-2 MQMD, but not in the version-1
MQMD.

Availability
All IBM MQ systems, plus IBM MQ MQI clients connected to these systems.

Format name
MQFMT_MD_EXTENSION

Character set and encoding
Data in MQMDE must be in the character set and encoding of the local queue manager; these are given by
the CodedCharSetId queue manager attribute and MQENC_NATIVE for the C programming language.

Set the character set and encoding of the MQMDE into the CodedCharSetId and Encoding fields in:

• The MQMD (if the MQMDE structure is at the start of the message data), or
• The header structure that precedes the MQMDE structure (all other cases).

If the MQMDE is not in the queue manager's character set and encoding, the MQMDE is accepted but not
honored, that is, the MQMDE is treated as message data.

Note: On Windows, applications compiled with Micro Focus COBOL use a value of MQENC_NATIVE that
is different from the queue manager's encoding. Although numeric fields in the MQMD structure on the
MQPUT, MQPUT1, and MQGET calls must be in the Micro Focus COBOL encoding, numeric fields in the
MQMDE structure must be in the queue manager's encoding. This latter is given by MQENC_NATIVE for
the C programming language, and has the value 546.

Usage
Applications that use a version-2 MQMD will not encounter an MQMDE structure. However, specialized
applications, and applications that continue to use a version-1 MQMD, might encounter an MQMDE in
some situations. The MQMDE structure can occur in the following circumstances:

• Specified on the MQPUT and MQPUT1 calls
• Returned by the MQGET call
• In messages on transmission queues

Developing applications reference 467

MQMDE specified on MQPUT and MQPUT1 calls
On the MQPUT and MQPUT1 calls, if the application provides a version-1 MQMD, the application
can optionally prefix the message data with an MQMDE, setting the Format field in MQMD to
MQFMT_MD_EXTENSION to indicate that an MQMDE is present. If the application does not provide an
MQMDE, the queue manager assumes default values for the fields in the MQMDE. The default values that
the queue manager uses are the same as the initial values for the structure; see Table 504 on page 469.

If the application provides a version-2 MQMD and prefixes the application message data with an MQMDE,
the structures are processed as shown in the following table.

Table 503. Queue manager action when MQMDE specified on MQPUT or MQPUT1 for MQMDE

MQMD version Values of
version-2
fields

Values of corresponding fields
in MQMDE

Action taken by queue manager

1 - Valid MQMDE is honored

2 Default Valid MQMDE is honored

2 Not default Valid MQMDE is treated as message
data

1 or 2 Any Not valid Call fails with an appropriate
reason code

1 or 2 Any MQMDE is in the wrong character
set or encoding, or is an
unsupported version

MQMDE is treated as message
data

Note: On z/OS, if the application specifies a version-1 MQMD with an MQMDE, the queue manager
validates the MQMDE only if the queue has an IndexType of MQIT_GROUP_ID.

There is one special case. If the application uses a version-2 MQMD to put a message that is a segment
(that is, the MQMF_SEGMENT or MQMF_LAST_SEGMENT flag is set), and the format name in the MQMD
is MQFMT_DEAD_LETTER_HEADER, the queue manager generates an MQMDE structure and inserts it
between the MQDLH structure and the data that follows it. In the MQMD that the queue manager retains
with the message, the version-2 fields are set to their default values.

Several of the fields that exist in the version-2 MQMD but not the version-1 MQMD are input/output fields
on MQPUT and MQPUT1. However, the queue manager does not return any values in the equivalent fields
in the MQMDE on output from the MQPUT and MQPUT1 calls; if the application requires those output
values, it must use a version-2 MQMD.

MQMDE returned by MQGET call
On the MQGET call, if the application provides a version-1 MQMD, the queue manager prefixes the
message returned with an MQMDE, but only if one or more of the fields in the MQMDE has a nondefault
value. The queue manager sets the Format field in MQMD to the value MQFMT_MD_EXTENSION to
indicate that an MQMDE is present.

If the application provides an MQMDE at the start of the Buffer parameter, the MQMDE is ignored.
On return from the MQGET call, it is replaced by the MQMDE for the message (if one is needed), or
overwritten by the application message data (if the MQMDE is not needed).

If the MQGET call returns an MQMDE, the data in the MQMDE is usually in the queue manager's character
set and encoding. However the MQMDE might be in some other character set and encoding if:

• The MQMDE was treated as data on the MQPUT or MQPUT1 call (see Table 503 on page 468 for the
circumstances that can cause this).

• The message was received from a remote queue manager connected by a TCP connection, and the
receiving message channel agent (MCA) was not set up correctly.

468 IBM MQ Developing Applications Reference

Note: On Windows, applications compiled with Micro Focus COBOL use a value of MQENC_NATIVE that is
different from the queue manager's encoding (see above).

MQMDE in messages on transmission queues
Messages on transmission queues are prefixed with the MQXQH structure, which contains within it a
version-1 MQMD. An MQMDE might also be present, positioned between the MQXQH structure and
application message data, but it is usually present only if one or more of the fields in the MQMDE has a
non-default value.

Other MQ header structures can also occur between the MQXQH structure and the application message
data. For example, when the dead-letter header MQDLH is present, and the message is not a segment, the
order is:

• MQXQH (containing a version-1 MQMD)
• MQMDE
• MQDLH
• application message data

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 504. Fields in MQMDE for MQMDE

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQMDE_STRUC_ID 'MDE¬'

Version (structure version number) MQMDE_VERSION_2 2

StrucLength (length of MQMDE structure) MQMDE_LENGTH_2 72

Encoding (numeric encoding of data that follows
MQMDE)

MQENC_NATIVE Depends on
environment

CodedCharSetId (character set identifier of data
that follows MQMDE)

MQCCSI_UNDEFINED 0

Format (format name of data that follows MQMDE) MQFMT_NONE Blanks

Flags (general flags) MQMDEF_NONE 0

GroupId (group identifier) MQGI_NONE Nulls

MsgSeqNumber (sequence number of logical
message within group)

None 1

Offset (offset of data in physical message from
start of logical message)

None 0

MsgFlags (message flags) MQMF_NONE 0

OriginalLength (length of original message) MQOL_UNDEFINED -1

Developing applications reference 469

Table 504. Fields in MQMDE for MQMDE (continued)

Field name and description Name of constant Initial value (if any) of
constant

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQMDE_DEFAULT contains the values that are

listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQMDE MyMDE = {MQMDE_DEFAULT};

Language declarations
C declaration for MQMDE

typedef struct tagMQMDE MQMDE;
struct tagMQMDE {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Length of MQMDE structure */
 MQLONG Encoding; /* Numeric encoding of data that follows
 MQMDE */
 MQLONG CodedCharSetId; /* Character-set identifier of data that
 follows MQMDE */
 MQCHAR8 Format; /* Format name of data that follows
 MQMDE */
 MQLONG Flags; /* General flags */
 MQBYTE24 GroupId; /* Group identifier */
 MQLONG MsgSeqNumber; /* Sequence number of logical message
 within group */
 MQLONG Offset; /* Offset of data in physical message from
 start of logical message */
 MQLONG MsgFlags; /* Message flags */
 MQLONG OriginalLength; /* Length of original message */
};

COBOL declaration for MQMDE

** MQMDE structure
 10 MQMDE.
** Structure identifier
 15 MQMDE-STRUCID PIC X(4).
** Structure version number
 15 MQMDE-VERSION PIC S9(9) BINARY.
** Length of MQMDE structure
 15 MQMDE-STRUCLENGTH PIC S9(9) BINARY.
** Numeric encoding of data that follows MQMDE
 15 MQMDE-ENCODING PIC S9(9) BINARY.
** Character-set identifier of data that follows MQMDE
 15 MQMDE-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of data that follows MQMDE
 15 MQMDE-FORMAT PIC X(8).
** General flags
 15 MQMDE-FLAGS PIC S9(9) BINARY.
** Group identifier
 15 MQMDE-GROUPID PIC X(24).
** Sequence number of logical message within group
 15 MQMDE-MSGSEQNUMBER PIC S9(9) BINARY.
** Offset of data in physical message from start of logical message
 15 MQMDE-OFFSET PIC S9(9) BINARY.
** Message flags
 15 MQMDE-MSGFLAGS PIC S9(9) BINARY.
** Length of original message
 15 MQMDE-ORIGINALLENGTH PIC S9(9) BINARY.

470 IBM MQ Developing Applications Reference

PL/I declaration for MQMDE

dcl
 1 MQMDE based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 StrucLength fixed bin(31), /* Length of MQMDE structure */
 3 Encoding fixed bin(31), /* Numeric encoding of data that
 follows MQMDE */
 3 CodedCharSetId fixed bin(31), /* Character-set identifier of data
 that follows MQMDE */
 3 Format char(8), /* Format name of data that follows
 MQMDE */
 3 Flags fixed bin(31), /* General flags */
 3 GroupId char(24), /* Group identifier */
 3 MsgSeqNumber fixed bin(31), /* Sequence number of logical message
 within group */
 3 Offset fixed bin(31), /* Offset of data in physical message
 from start of logical message */
 3 MsgFlags fixed bin(31), /* Message flags */
 3 OriginalLength fixed bin(31); /* Length of original message */

High Level Assembler declaration for MQMDE

MQMDE DSECT
MQMDE_STRUCID DS CL4 Structure identifier
MQMDE_VERSION DS F Structure version number
MQMDE_STRUCLENGTH DS F Length of MQMDE structure
MQMDE_ENCODING DS F Numeric encoding of data that follows
* MQMDE
MQMDE_CODEDCHARSETID DS F Character-set identifier of data that
* follows MQMDE
MQMDE_FORMAT DS CL8 Format name of data that follows MQMDE
MQMDE_FLAGS DS F General flags
MQMDE_GROUPID DS XL24 Group identifier
MQMDE_MSGSEQNUMBER DS F Sequence number of logical message
* within group
MQMDE_OFFSET DS F Offset of data in physical message from
* start of logical message
MQMDE_MSGFLAGS DS F Message flags
MQMDE_ORIGINALLENGTH DS F Length of original message
*
MQMDE_LENGTH EQU *-MQMDE
 ORG MQMDE
MQMDE_AREA DS CL(MQMDE_LENGTH)

Visual Basic declaration for MQMDE

Type MQMDE
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 StrucLength As Long 'Length of MQMDE structure'
 Encoding As Long 'Numeric encoding of data that follows'
 'MQMDE'
 CodedCharSetId As Long 'Character-set identifier of data that'
 'follows MQMDE'
 Format As String*8 'Format name of data that follows MQMDE'
 Flags As Long 'General flags'
 GroupId As MQBYTE24 'Group identifier'
 MsgSeqNumber As Long 'Sequence number of logical message within'
 'group'
 Offset As Long 'Offset of data in physical message from'
 'start of logical message'
 MsgFlags As Long 'Message flags'
 OriginalLength As Long 'Length of original message'
End Type

StrucId (MQCHAR4)
The value must be:
MQMDE_STRUC_ID

Identifier for message descriptor extension structure.

Developing applications reference 471

For the C programming language, the constant MQMDE_STRUC_ID_ARRAY is also defined; this has
the same value as MQMDE_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQMDE_STRUC_ID.

Version (MQLONG)
This is the structure version number; the value must be:
MQMDE_VERSION_2

Version-2 message descriptor extension structure.

The following constant specifies the version number of the current version:
MQMDE_CURRENT_VERSION

Current version of message descriptor extension structure.

The initial value of this field is MQMDE_VERSION_2.

StrucLength (MQLONG)
This is the length of the MQMDE structure; the following value is defined:
MQMDE_LENGTH_2

Length of version-2 message descriptor extension structure.

The initial value of this field is MQMDE_LENGTH_2.

Encoding (MQLONG)
This specifies the numeric encoding of the data that follows the MQMDE structure; it does not apply to
numeric data in the MQMDE structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The queue manager does not check that the field is valid. See the Encoding field described in “MQMD -
Message descriptor” on page 417 for more information about data encodings.

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
This specifies the character set identifier of the data that follows the MQMDE structure; it does not apply
to character data in the MQMDE structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The queue manager does not check that this field is valid. The following special value can be used:
MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-
set identifier of the structure. Provided no error occurs, the value MQCCSI_INHERIT is not returned by
the MQGET call.

MQCCSI_INHERIT cannot be used if the value of the PutApplType field in MQMD is MQAT_BROKER.

This value is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ clients connected to these systems.

472 IBM MQ Developing Applications Reference

The initial value of this field is MQCCSI_UNDEFINED.

Format (MQCHAR8)
This specifies the format name of the data that follows the MQMDE structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The queue manager does not check that this field is valid. See the Format field described in“MQMD -
Message descriptor” on page 417for more information about format names.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
The following flag can be specified:
MQMDEF_NONE

No flags.

The initial value of this field is MQMDEF_NONE.

GroupId (MQBYTE24)
See the GroupId field described in“MQMD - Message descriptor” on page 417. The initial value of this
field is MQGI_NONE.

MsgSeqNumber (MQLONG)
See the MsgSeqNumber field described in“MQMD - Message descriptor” on page 417. The initial value of
this field is 1.

Offset (MQLONG)
See the Offset field described in“MQMD - Message descriptor” on page 417. The initial value of this field
is 0.

MsgFlags (MQLONG)
See the MsgFlags field described in “MQMD - Message descriptor” on page 417. The initial value of this
field is MQMF_NONE.

OriginalLength (MQLONG)
See the OriginalLength field described in“MQMD - Message descriptor” on page 417. The initial value
of this field is MQOL_UNDEFINED.

MQMHBO - Message handle to buffer options
The MQMHBO structure allows applications to specify options that control how buffers are produced from
message handles. The structure is an input parameter on the MQMHBUF call.

Character set and encoding
Data in MQMHBO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Developing applications reference 473

Table 505. Fields in MQMHBO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQMHBO_STRUC_ID 'MHBO'

Version (structure version number) MQMHBO_VERSION_1 1

Options (options controlling the action of MQMHBUF) MQMHBO_PROPERTIES_I
N_MQRFH2

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in other programming
languages.

2. In the C programming language, the macro variable MQMHBO_DEFAULT contains the values that are listed
in the table. Use it in the following way to provide initial values for the fields in the structure:

MQMHBO MyMHBO = {MQMHBO_DEFAULT};

Language declarations
C declaration for MQMHBO

typedef struct tagMQMHBO MQMHBO;
struct tagMQMHBO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of
 MQMHBUF */
};

COBOL declaration for MQMHBO

** MQMHBO structure
 10 MQMHBO.
** Structure identifier
 15 MQMHBO-STRUCID PIC X(4).
** Structure version number
 15 MQMHBO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQMHBUF
 15 MQMHBO-OPTIONS PIC S9(9) BINARY.

PL/I declaration for MQMHBO

Dcl
 1 MQMHBO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action
 of MQMHBUF */

High Level Assembler declaration for MQMHBO

MQMHBO DSECT
MQMHBO_STRUCID DS CL4 Structure identifier
MQMHBO_VERSION DS F Structure version number
MQMHBO_OPTIONS DS F Options that control the
* action of MQMHBUF
MQMHBO_LENGTH EQU *-MQMHBO
MQMHBO_AREA DS CL(MQMHBO_LENGTH)

474 IBM MQ Developing Applications Reference

StrucId (MQCHAR4)
Message handle to buffer options structure - StrucId field

This is the structure identifier. The value must be:
MQMHBO_STRUC_ID

Identifier for message handle to buffer options structure.

For the C programming language, the constant MQMHBO_STRUC_ID_ARRAY is also defined; this has
the same value as MQMHBO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQMHBO_STRUC_ID.

Version (MQLONG)
Message handle to buffer options structure - Version field

This is the structure version number. The value must be:
MQMHBO_VERSION_1

Version number for message handle to buffer options structure.

The following constant specifies the version number of the current version:
MQMHBO_CURRENT_VERSION

Current version of message handle to buffer options structure.

This is always an input field. The initial value of this field is MQMHBO_VERSION_1.

Options (MQLONG)
Message handle to buffer options structure - Options field

These options control the action of MQMHBUF.

You must specify the following option:
MQMHBO_PROPERTIES_IN_MQRFH2

When converting properties from a message handle into a buffer, convert them into the MQRFH2
format.

Optionally, you can also specify the following option. To specify more than one option, either add the
values together (do not add the same constant more than once), or combine the values using the bitwise
OR operation (if the programming language supports bit operations).
MQMHBO_DELETE_PROPERTIES

Properties that are added to the buffer are deleted from the message handle. If the call fails no
properties are deleted.

This is always an input field. The initial value of this field is MQMHBO_PROPERTIES_IN_MQRFH2.

MQOD - Object descriptor
The MQOD structure is used to specify an object by name. The structure is an input/output parameter on
the MQOPEN and MQPUT1 calls.
The following types of object are valid:

• Queue or distribution list
• Namelist
• Process definition
• Queue manager
• Topic

Availability
All IBM MQ systems, plus IBM MQ MQI clients connected to those systems.

Developing applications reference 475

Version
The current version of MQOD is MQOD_VERSION_4. Applications that you want to port between several
environments must ensure that the required version of MQOD is supported in all the environments
concerned. Fields that exist only in the more-recent versions of the structure are identified as such in the
descriptions that follow.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the
most-recent version of MQOD that is supported by the environment, but with the initial value of the
Version field set to MQOD_VERSION_1. To use fields that are not present in the version-1 structure, the
application must set the Version field to the version number of the version required.

To open a distribution list, Version must be MQOD_VERSION_2 or greater.

Character set and encoding
Data in MQOD must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ MQI client, the structure must be in the character set and encoding of the client.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQOD_STRUC_ID 'OD¬¬'

Version (structure version number) MQOD_VERSION_1 1

ObjectType (object type) MQOT_Q 1

ObjectName (object name) None Null string or blanks

ObjectQMgrName (object queue manager name) None Null string or blanks

DynamicQName (dynamic queue name) None 'CSQ.*' on z/OS ;
'AMQ.*' otherwise

AlternateUserId (alternate user identifier) None Null string or blanks

Note: The remaining fields are ignored if Version is less than MQOD_VERSION_2.

RecsPresent (number of object records present) None 0

KnownDestCount (number of local queues opened
successfully)

None 0

UnknownDestCount (number of remote queues
opened successfully)

None 0

InvalidDestCount (number of queues that failed to
open)

None 0

ObjectRecOffset (offset of first object record from
start of MQOD)

None 0

ResponseRecOffset (offset of first response record
from start of MQOD)

None 0

ObjectRecPtr (address of first object record) None Null pointer or null bytes

ResponseRecPtr (address of first response record) None Null pointer or null bytes

476 IBM MQ Developing Applications Reference

Field name and description Name of constant Initial value (if any) of
constant

Note: The remaining fields are ignored if Version is less than MQOD_VERSION_3.

AlternateSecurityId (alternate security identifier) MQSID_NONE Nulls

ResolvedQName (resolved queue name) None Null string or blanks

ResolvedQMgrName (resolved queue manager
name)

None Null string or blanks

Note: The remaining fields are ignored if Version is less than MQOD_VERSION_4.

ObjectString (long object name) MQCHARV_DEFAULT As defined for
MQCHARV

SelectionString (selection string) MQCHARV_DEFAULT As defined for
MQCHARV

ResObjectString (resolved long object name) MQCHARV_DEFAULT As defined for
MQCHARV

ResolvedType (resolved object type) MQOT_NONE 0

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.
3. In the C programming language, the macro variable MQOD_DEFAULT contains the values that are

listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQOD MyOD = {MQOD_DEFAULT};

Language declarations
C declaration for MQOD

typedef struct tagMQOD MQOD;
struct tagMQOD {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG ObjectType; /* Object type */
 MQCHAR48 ObjectName; /* Object name */
 MQCHAR48 ObjectQMgrName; /* Object queue manager name */
 MQCHAR48 DynamicQName; /* Dynamic queue name */
 MQCHAR12 AlternateUserId; /* Alternate user identifier */
 /* Ver:1 */
 MQLONG RecsPresent; /* Number of object records present */
 MQLONG KnownDestCount; /* Number of local queues opened
 successfully */
 MQLONG UnknownDestCount; /* Number of remote queues opened
 successfully */
 MQLONG InvalidDestCount; /* Number of queues that failed to
 open */
 MQLONG ObjectRecOffset; /* Offset of first object record from
 start of MQOD */
 MQLONG ResponseRecOffset; /* Offset of first response record
 from start of MQOD */
 MQPTR ObjectRecPtr; /* Address of first object record */
 MQPTR ResponseRecPtr; /* Address of first response record */
 /* Ver:2 */
 MQBYTE40 AlternateSecurityId; /* Alternate security identifier */
 MQCHAR48 ResolvedQName; /* Resolved queue name */

Developing applications reference 477

 MQCHAR48 ResolvedQMgrName; /* Resolved queue manager name */
 /* Ver:3 */
 MQCHARV ObjectString; /* Object Long name */
 MQCHARV SelectionString; /* Message Selector */
 MQCHARV ResObjectString; /* Resolved Long object name*/
 MQLONG ResolvedType /* Alias queue resolved
 oject type */
 /* Ver:4 */
};

COBOL declaration for MQOD

** MQOD structure
 10 MQOD.
** Structure identifier
 15 MQOD-STRUCID PIC X(4).
** Structure version number
 15 MQOD-VERSION PIC S9(9) BINARY.
** Object type
 15 MQOD-OBJECTTYPE PIC S9(9) BINARY.
** Object name
 15 MQOD-OBJECTNAME PIC X(48).
** Object queue manager name
 15 MQOD-OBJECTQMGRNAME PIC X(48).
** Dynamic queue name
 15 MQOD-DYNAMICQNAME PIC X(48).
** Alternate user identifier
 15 MQOD-ALTERNATEUSERID PIC X(12).
** Number of object records present
 15 MQOD-RECSPRESENT PIC S9(9) BINARY.
** Number of local queues opened successfully
 15 MQOD-KNOWNDESTCOUNT PIC S9(9) BINARY.
** Number of remote queues opened successfully
 15 MQOD-UNKNOWNDESTCOUNT PIC S9(9) BINARY.
** Number of queues that failed to open
 15 MQOD-INVALIDDESTCOUNT PIC S9(9) BINARY.
** Offset of first object record from start of MQOD
 15 MQOD-OBJECTRECOFFSET PIC S9(9) BINARY.
** Offset of first response record from start of MQOD
 15 MQOD-RESPONSERECOFFSET PIC S9(9) BINARY.
** Address of first object record
 15 MQOD-OBJECTRECPTR POINTER.
** Address of first response record
 15 MQOD-RESPONSERECPTR POINTER.
** Alternate security identifier
 15 MQOD-ALTERNATESECURITYID PIC X(40).
** Resolved queue name
 15 MQOD-RESOLVEDQNAME PIC X(48).
** Resolved queue manager name
 15 MQOD-RESOLVEDQMGRNAME PIC X(48).
** Object Long name
 15 MQOD-OBJECTSTRING.
** Address of variable length string
 20 MQOD-OBJECTSTRING-VSPTR POINTER.
** Offset of variable length string
 20 MQOD-OBJECTSTRING-VSOFFSET PIC S9(9) BINARY.
** size of buffer
 20 MQOD-OBJECTSTRING-VSBUFSIZE PIC S9(9) BINARY.
** Length of variable length string
 20 MQOD-OBJECTSTRING-VSLENGTH PIC S9(9) BINARY.
** CCSID of variable length string
 20 MQOD-OBJECTSTRING-VSCCSID PIC S9(9) BINARY.
** Message Selector
 15 MQOD-SELECTIONSTRING.
** Address of variable length string
 20 MQOD-SELECTIONSTRING-VSPTR POINTER.
** Offset of variable length string
 20 MQOD-SELECTIONSTRING-VSOFFSET PIC S9(9) BINARY.
** size of buffer
 20 MQOD-SELECTIONSTRING-VSBUFSIZE PIC S9(9) BINARY.
** Length of variable length string
 20 MQOD-SELECTIONSTRING-VSLENGTH PIC S9(9) BINARY.
** CCSID of variable length string
 20 MQOD-SELECTIONSTRING-VSCCSID PIC S9(9) BINARY.
** Resolved Long object name
 15 MQOD-RESOBJECTSTRING.
** Address of variable length string
 20 MQOD-RESOBJECTSTRING-VSPTR POINTER.
** Offset of variable length string

478 IBM MQ Developing Applications Reference

 20 MQOD-RESOBJECTSTRING-VSOFFSET PIC S9(9) BINARY.
** size of buffer
 20 MQOD-RESOBJECTSTRING-VSBUFSIZE PIC S9(9) BINARY.
** Length of variable length string
 20 MQOD-RESOBJECTSTRING-VSLENGTH PIC S9(9) BINARY.
** CCSID of variable length string
 20 MQOD-RESOBJECTSTRING-VSCCSID PIC S9(9) BINARY.
** Alias queue resolved object type
 15 MQOD-RESOLVEDTYPE PIC S9(9) BINARY.

PL/I declaration for MQOD

dcl
 1 MQOD based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 ObjectType fixed bin(31), /* Object type */
 3 ObjectName char(48), /* Object name */
 3 ObjectQMgrName char(48), /* Object queue manager name */
 3 DynamicQName char(48), /* Dynamic queue name */
 3 AlternateUserId char(12), /* Alternate user identifier */
 3 RecsPresent fixed bin(31), /* Number of object records
 present */
 3 KnownDestCount fixed bin(31), /* Number of local queues opened
 successfully */
 3 UnknownDestCount fixed bin(31), /* Number of remote queues opened
 successfully */
 3 InvalidDestCount fixed bin(31), /* Number of queues that failed to
 open */
 3 ObjectRecOffset fixed bin(31), /* Offset of first object record
 from start of MQOD */
 3 ResponseRecOffset fixed bin(31), /* Offset of first response record
 from start of MQOD */
 3 ObjectRecPtr pointer, /* Address of first object record */
 3 ResponseRecPtr pointer, /* Address of first response
 record */
 3 AlternateSecurityId char(40), /* Alternate security identifier */
 3 ResolvedQName char(48), /* Resolved queue name */
 3 ResolvedQMgrName char(48), /* Resolved queue manager name */
 3 ObjectString, /* Object Long name */
 5 VSPtr pointer, /* Address of variable length string */
 5 VSOffset fixed bin(31), /* Offset of variable length string */
 5 VSBufSize fixed bin(31), /* size of buffer */
 5 VSLength fixed bin(31), /* Length of variable length string */
 5 VSCCSID fixed bin(31), /* CCSID of variable length string */
 3 SelectionString, /* Message Selection */
 5 VSPtr pointer, /* Address of variable length string */
 5 VSOffset fixed bin(31), /* Offset of variable length string */
 5 VSBufSize fixed bin(31), /* size of buffer */
 5 VSLength fixed bin(31), /* Length of variable length string */
 5 VSCCSID fixed bin(31), /* CCSID of variable length string */
 3 ResObjectString, /* Resolved Long object name */
 5 VSPtr pointer, /* Address of variable length string */
 5 VSOffset fixed bin(31), /* Offset of variable length string */
 5 VSBufSize fixed bin(31), /* size of buffer */
 5 VSLength fixed bin(31), /* Length of variable length string */
 5 VSCCSID fixed bin(31), /* CCSID of variable length string */
 3 ResolvedType fixed bin(31); /* Alias queue resolved object type */

High Level Assembler declaration for MQOD

MQOD DSECT
MQOD_STRUCID DS CL4 Structure identifier
MQOD_VERSION DS F Structure version number
MQOD_OBJECTTYPE DS F Object type
MQOD_OBJECTNAME DS CL48 Object name
MQOD_OBJECTQMGRNAME DS CL48 Object queue manager name
MQOD_DYNAMICQNAME DS CL48 Dynamic queue name
MQOD_ALTERNATEUSERID DS CL12 Alternate user identifier
MQOD_RECSPRESENT DS F Number of object records present
MQOD_KNOWNDESTCOUNT DS F Number of local queues opened
* successfully
MQOD_UNKNOWNDESTCOUNT DS F Number of remote queues opened
* successfully
MQOD_INVALIDDESTCOUNT DS F Number of queues that failed to
* open
MQOD_OBJECTRECOFFSET DS F Offset of first object record from

Developing applications reference 479

* start of MQOD
MQOD_RESPONSERECOFFSET DS F Offset of first response record
* from start of MQOD
MQOD_OBJECTRECPTR DS F Address of first object record
MQOD_RESPONSERECPTR DS F Address of first response record
MQOD_ALTERNATESECURITYID DS XL40 Alternate security identifier
MQOD_RESOLVEDQNAME DS CL48 Resolved queue name
MQOD_RESOLVEDQMGRNAME DS CL48 Resolved queue manager name
MQOD_OBJECTSTRING DS F Object Long name
MQOD_OBJECTSTRING_VSPTR DS F Address of variable length string
MQOD_OBJECTSTRING_VSOFFSET DS F Offset of variable length string
MQOD_OBJECTSTRING_VSBUFSIZE DS F size of buffer
MQOD_OBJECTSTRING_VSLENGTH DS F Length of variable length string
MQOD_OBJECTSTRING_VSCCSID DS F CCSID of variable length string
MQOD_OBJECTSTRING_LENGTH EQU *- MQOD_OBJECTSTRING
 ORG MQOD_OBJECTSTRING
MQOD_OBJECTSTRING_AREA DS CL(MQOD_OBJECTSTRING_LENGTH)
*
MQOD_SELECTIONSTRING DS F Message Selector
MQOD_SELECTIONSTRING_VSPTR DS F Address of variable length string
MQOD_SELECTIONSTRING_VSOFFSET DS F Offset of variable length string
MQOD_SELECTIONSTRING_VSBUFSIZE DS F size of buffer
MQOD_SELECTIONSTRING_VSLENGTH DS F Length of variable length string
MQOD_SELECTIONSTRING_VSCCSID DS F CCSID of variable length string
MQOD_SELECTIONSTRING_LENGTH EQU *- MQOD_SELECTIONSTRING
 ORG MQOD_SELECTIONSTRING
MQOD_SELECTIONSTRING_AREA DS CL(MQOD_SELECTIONSTRING_LENGTH)
*
MQOD_RESOBJECTSTRING DS F Resolved Long object name
MQOD_RESOBJECTSTRING_VSPTR DS F Address of variable length string
MQOD_RESOBJECTSTRING_VSOFFSET DS F Offset of variable length string
MQOD_RESOBJECTSTRING_VSBUFSIZE DS F size of buffer
MQOD_RESOBJECTSTRING_VSLENGTH DS F Length of variable length string
MQOD_RESOBJECTSTRING_VSCCSID DS F CCSID of variable length string
MQOD_RESOBJECTSTRING_LENGTH EQU *- MQOD_RESOBJECTSTRING
 ORG MQOD_RESOBJECTSTRING
MQOD_RESOBJECTSTRING_AREA DS CL(MQOD_RESOBJECTSTRING_LENGTH)
MQOD_RESOLVEDTYPE DS F Alias queue object resolved type
*
MQOD_LENGTH EQU *-MQOD
 ORG MQOD
MQOD_AREA DS CL(MQOD_LENGTH)

Visual Basic declaration for MQOD

Type MQOD
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 ObjectType As Long 'Object type'
 ObjectName As String*48 'Object name'
 ObjectQMgrName As String*48 'Object queue manager name'
 DynamicQName As String*48 'Dynamic queue name'
 AlternateUserId As String*12 'Alternate user identifier'
 RecsPresent As Long 'Number of object records present'
 KnownDestCount As Long 'Number of local queues opened'
 'successfully'
 UnknownDestCount As Long 'Number of remote queues opened'
 'successfully'
 InvalidDestCount As Long 'Number of queues that failed to'
 'open'
 ObjectRecOffset As Long 'Offset of first object record from'
 'start of MQOD'
 ResponseRecOffset As Long 'Offset of first response record'
 'from start of MQOD'
 ObjectRecPtr As MQPTR 'Address of first object record'
 ResponseRecPtr As MQPTR 'Address of first response record'
 AlternateSecurityId As MQBYTE40 'Alternate security identifier'
 ResolvedQName As String*48 'Resolved queue name'
 ResolvedQMgrName As String*48 'Resolved queue manager name'
End Type

StrucId (MQCHAR4)

This is the structure identifier; the value must be:

480 IBM MQ Developing Applications Reference

MQOD_STRUC_ID
Identifier for object descriptor structure.

For the C programming language, the constant MQOD_STRUC_ID_ARRAY is also defined; this has the
same value as MQOD_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQOD_STRUC_ID.

Version (MQLONG)
This is the structure version number; the value must be one of the following:
MQOD_VERSION_1

Version-1 object descriptor structure.
MQOD_VERSION_2

Version-2 object descriptor structure.
MQOD_VERSION_3

Version-3 object descriptor structure.
MQOD_VERSION_4

Version-4 object descriptor structure.

All versions are supported in all IBM MQ V7.0 environments.

Fields that exist only in the more-recent versions of the structure are identified as such in the descriptions
of the fields. The following constant specifies the version number of the current version:
MQOD_CURRENT_VERSION

Current version of object descriptor structure.

This is always an input field. The initial value of this field is MQOD_VERSION_1.

ObjectType (MQLONG)
The type of object being named in the object descriptor. Possible values are:
MQOT_CLNTCONN_CHANNEL

Client connection channel. The name of the object is found in the ObjectName field.
MQOT_Q

Queue. The name of the object is found in the ObjectName field.
MQOT_NAMELIST

Namelist. The name of the object is found in the ObjectName field
MQOT_PROCESS

Process definition. The name of the object is found in the ObjectName field
MQOT_Q_MGR

Queue manager. The name of the object is found in the ObjectName field
MQOT_TOPIC

Topic. The full topic name can be built from two different fields: ObjectName and ObjectString.
For details of how those two fields are used, see Combining topic strings.

This is always an input field. The initial value of this field is MQOT_Q.

ObjectName (MQCHAR48)
This is the local name of the object as defined on the queue manager identified by ObjectQMgrName. The
name can contain the following characters:

• Uppercase alphabetic characters (A through Z)
• Lowercase alphabetic characters (a through z)
• Numeric digits (0 through 9)
• Period (.), forward slash (/), underscore (_), percent (%)

Developing applications reference 481

The name must not contain leading or embedded blanks, but can contain trailing blanks. Use a null
character to indicate the end of significant data in the name; the null and any characters following it are
treated as blanks. The following restrictions apply in the environments indicated:

• On systems that use EBCDIC Katakana, lowercase characters cannot be used.
• On z/OS:

– Avoid names that begin or end with an underscore; they cannot be processed by the operations and
control panels.

– The percent character has a special meaning to RACF. If RACF is used as the external security
manager, names must not contain the percent. If they do, those names are not included in any
security checks when RACF generic profiles are used.

• On IBM i, names containing lowercase characters, forward slash, or percent, must be enclosed in
quotation marks when specified on commands. These quotation marks must not be specified for names
that occur as fields in structures or as parameters on calls.

The full topic name can be built from two different fields: ObjectName and ObjectString. For details of
how these two fields are used, see Combining topic strings.

The following points apply to the types of object indicated:

• If ObjectName is the name of a model queue, the queue manager creates a dynamic queue with the
attributes of the model queue, and returns in the ObjectName field the name of the queue created. A
model queue can be specified only on the MQOPEN call; a model queue is not valid on the MQPUT1 call.

• If ObjectName is the name of an alias queue with TARGTYPE(TOPIC), a security check is first made on
the named alias queue; this is normal when alias queues are used. When the security check completes
successfully, the MQOPEN call will continue and will behave like an MQOPEN call on an MQOT_TOPIC;
this includes making a security check against the administrative topic object.

• If ObjectName and ObjectQMgrName identify a shared queue owned by the queue sharing group to
which the local queue manager belongs, there must not also be a queue definition of the same name
on the local queue manager. If there is such a definition (a local queue, alias queue, remote queue, or
model queue), the call fails with reason code MQRC_OBJECT_NOT_UNIQUE.

• If the object being opened is a distribution list (that is, RecsPresent is present and greater than zero),
ObjectName must be blank or the null string. If this condition is not satisfied, the call fails with reason
code MQRC_OBJECT_NAME_ERROR.

• If ObjectType is MQOT_Q_MGR, special rules apply; in this case the name must be entirely blank up to
the first null character or the end of the field.

This is an input/output field for the MQOPEN call when ObjectName is the name of a model queue, and
an input-only field in all other cases. The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other programming languages.

ObjectQMgrName (MQCHAR48)
This is the name of the queue manager on which the ObjectName object is defined. The characters that
are valid in the name are the same as those for ObjectName (see “ObjectName (MQCHAR48)” on page
481). A name that is entirely blank up to the first null character or the end of the field denotes the queue
manager to which the application is connected (the local queue manager).

The following points apply to the types of object indicated:

• If ObjectType is MQOT_TOPIC, MQOT_NAMELIST, MQOT_PROCESS, or MQOT_Q_MGR,
ObjectQMgrName must be blank or the name of the local queue manager.

• If ObjectName is the name of a model queue, the queue manager creates a dynamic queue with
the attributes of the model queue, and returns in the ObjectQMgrName field the name of the queue
manager on which the queue is created; this is the name of the local queue manager. A model queue
can be specified only on the MQOPEN call; a model queue is not valid on the MQPUT1 call.

482 IBM MQ Developing Applications Reference

• If ObjectName is the name of a cluster queue, and ObjectQMgrName is blank, the destination of
messages sent using the queue handle returned by the MQOPEN call is chosen by the queue manager
(or cluster workload exit, if one is installed) as follows:

– If MQOO_BIND_ON_OPEN is specified, the queue manager selects a particular instance of the cluster
queue while processing the MQOPEN call, and all messages put using this queue handle are sent to
that instance.

– If MQOO_BIND_NOT_FIXED is specified, the queue manager can choose a different instance of the
destination queue (residing on a different queue manager in the cluster) for each successive MQPUT
call that uses this queue handle.

If the application needs to send a message to a specific instance of a cluster queue (that is, a queue
instance that resides on a particular queue manager in the cluster), the application must specify the
name of that queue manager in the ObjectQMgrName field. This forces the local queue manager to
send the message to the specified destination queue manager.

• If ObjectName is the name of a shared queue that is owned by the queue sharing group to which
the local queue manager belongs, ObjectQMgrName can be the name of the queue sharing group, the
name of the local queue manager, or blank; the message is placed on the same queue whichever of
these values is specified.

Queue sharing groups are supported only on z/OS.
• If ObjectName is the name of a shared queue that is owned by a remote queue sharing group (that

is, a queue sharing group to which the local queue manager does not belong), ObjectQMgrName must
be the name of the queue sharing group. You can use the name of a queue manager that belongs to
that group, but this can delay the message if that particular queue manager is not available when the
message arrives at the queue sharing group.

• If the object being opened is a distribution list (that is, RecsPresent is greater than zero),
ObjectQMgrName must be blank or the null string. If this condition is not satisfied, the call fails with
reason code MQRC_OBJECT_Q_MGR_NAME_ERROR.

This is an input/output field for the MQOPEN call when ObjectName is the name of a model queue, and
an input-only field in all other cases. The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The
initial value of this field is the null string in C, and 48 blank characters in other programming languages.

DynamicQName (MQCHAR48)
This is the name of a dynamic queue that is to be created by the MQOPEN call. This is of relevance only
when ObjectName specifies the name of a model queue; in all other cases DynamicQName is ignored.

The characters that are valid in the name are the same as those for ObjectName, except that an asterisk
is also valid. A name that is blank (or one in which only blanks occur before the first null character) is not
valid if ObjectName is the name of a model queue.

If the last nonblank character in the name is an asterisk (*), the queue manager replaces the asterisk
with a string of characters that guarantees that the name generated for the queue is unique at the local
queue manager. To allow a sufficient number of characters for this, the asterisk is valid only in positions 1
through 33. There must be no characters other than blanks or a null character following the asterisk.

It is valid for the asterisk to occur in the first character position, in which case the name consists solely of
the characters generated by the queue manager.

On z/OS, do not use a name with the asterisk in the first character position, as there can be no security
checks made on a queue with a full name that is generated automatically.

This is an input field. The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this
field is determined by the environment:

• On z/OS, the value is 'CSQ.*'.
• On other platforms, the value is 'AMQ.*'.

The value is a null-terminated string in C, and a blank-padded string in other programming languages.

Developing applications reference 483

AlternateUserId (MQCHAR12)
If you specify MQOO_ALTERNATE_USER_AUTHORITY for the MQOPEN call, or
MQPMO_ALTERNATE_USER_AUTHORITY for the MQPUT1 call, this field contains an alternative user
identifier that is used to check the authorization for the open, in place of the user identifier that the
application is currently running under. Some checks, however, are still carried out with the current user
identifier (for example, context checks).

If MQOO_ALTERNATE_USER_AUTHORITY or MQPMO_ALTERNATE_USER_AUTHORITY is specified and
this field is entirely blank up to the first null character or the end of the field, the open can succeed only if
no user authorization is needed to open this object with the options specified.

If neither MQOO_ALTERNATE_USER_AUTHORITY nor MQPMO_ALTERNATE_USER_AUTHORITY is
specified, this field is ignored.

The following differences exist in the environments indicated:

• On z/OS, only the first 8 characters of AlternateUserId are used to check the authorization for the
open. However, the current user identifier must be authorized to specify this particular alternative user
identifier; all 12 characters of the alternative user identifier are used for this check. The user identifier
must contain only characters allowed by the external security manager.

If AlternateUserId is specified for a queue, the value can be used subsequently by the queue
manager when messages are put. If the MQPMO_*_CONTEXT options specified on the MQPUT or
MQPUT1 call cause the queue manager to generate the identity context information, the queue manager
places the AlternateUserId into the UserIdentifier field in the MQMD of the message, in place of
the current user identifier.

• In other environments, AlternateUserId is used only for access control checks on the object
being opened. If the object is a queue, AlternateUserId does not affect the content of the
UserIdentifier field in the MQMD of messages sent using that queue handle.

This is an input field. The length of this field is given by MQ_USER_ID_LENGTH. The initial value of this
field is the null string in C, and 12 blank characters in other programming languages.

RecsPresent (MQLONG)
This is the number of MQOR object records that have been provided by the application. If this number
is greater than zero, it indicates that a distribution list is being opened, with RecsPresent being the
number of destination queues in the list. A distribution list can contain only one destination.

The value of RecsPresent must not be less than zero, and if it is greater than zero ObjectType must
be MQOT_Q; the call fails with reason code MQRC_RECS_PRESENT_ERROR if these conditions are not
satisfied.

On z/OS, this field must be zero.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than
MQOD_VERSION_2.

KnownDestCount (MQLONG)
This is the number of queues in the distribution list that resolve to local queues and that were opened
successfully. The count does not include queues that resolve to remote queues (even though a local
transmission queue is used initially to store the message). If present, this field is also set when opening a
single queue that is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is ignored if Version is less than
MQOD_VERSION_1.

UnknownDestCount (MQLONG)
This is the number of queues in the distribution list that resolve to remote queues and that were opened
successfully. If present, this field is also set when opening a single queue that is not in a distribution list.

484 IBM MQ Developing Applications Reference

This is an output field. The initial value of this field is 0. This field is ignored if Version is less than
MQOD_VERSION_1.

InvalidDestCount (MQLONG)
This is the number of queues in the distribution list that failed to open successfully. If present, this field is
also set when opening a single queue that is not in a distribution list.

Note: If present, this field is set only if the CompCode parameter on the MQOPEN or MQPUT1 call is
MQCC_OK or MQCC_WARNING; it is not set if the CompCode parameter is MQCC_FAILED.

This is an output field. The initial value of this field is 0. This field is ignored if Version is less than
MQOD_VERSION_1.

ObjectRecOffset (MQLONG)
This is the offset in bytes of the first MQOR object record from the start of the MQOD structure. The offset
can be positive or negative. ObjectRecOffset is used only when a distribution list is being opened. The
field is ignored if RecsPresent is zero.

When a distribution list is being opened, an array of one or more MQOR object records must be provided
in order to specify the names of the destination queues in the distribution list. This can be done in one of
two ways:

• By using the offset field ObjectRecOffset.

In this case, the application must declare its own structure containing an MQOD followed by the array of
MQOR records (with as many array elements as are needed), and set ObjectRecOffset to the offset
of the first element in the array from the start of the MQOD. Ensure that this offset is correct and has
a value that can be accommodated within an MQLONG (the most restrictive programming language is
COBOL, for which the valid range is -999 999 999 through +999 999 999).

Use ObjectRecOffset for programming languages that do not support the pointer data type, or that
implement the pointer data type in a way that is not portable to different environments (for example,
the COBOL programming language).

• By using the pointer field ObjectRecPtr.

In this case, the application can declare the array of MQOR structures separately from the MQOD
structure, and set ObjectRecPtr to the address of the array.

Use ObjectRecPtr for programming languages that support the pointer data type in a way that is
portable to different environments (for example, the C programming language).

Whatever technique you choose, use one of ObjectRecOffset and ObjectRecPtr ; the call fails with
reason code MQRC_OBJECT_RECORDS_ERROR if both are zero, or both are nonzero.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than
MQOD_VERSION_2.

ResponseRecOffset (MQLONG)
This is the offset in bytes of the first MQRR response record from the start of the MQOD structure. The
offset can be positive or negative. ResponseRecOffset is used only when a distribution list is being
opened. The field is ignored if RecsPresent is zero.

When a distribution list is being opened, you can provide an array of one or more MQRR response records
in order to identify the queues that failed to open (CompCode field in MQRR), and the reason for each
failure (Reason field in MQRR). The data is returned in the array of response records in the same order as
the queue names occur in the array of object records. The queue manager sets the response records only
when the outcome of the call is mixed (that is, some queues were opened successfully while others failed,
or all failed but for different reasons); reason code MQRC_MULTIPLE_REASONS from the call indicates
this case. If the same reason code applies to all queues, that reason is returned in the Reason parameter
of the MQOPEN or MQPUT1 call, and the response records are not set. Response records are optional, but
if they are supplied there must be RecsPresent of them.

Developing applications reference 485

The response records can be provided in the same way as the object records, either by specifying
an offset in ResponseRecOffset, or by specifying an address in ResponseRecPtr ; for details
of how to do this, see “ObjectRecOffset (MQLONG)” on page 485. However, no more than one
of ResponseRecOffset and ResponseRecPtr can be used; the call fails with reason code
MQRC_RESPONSE_RECORDS_ERROR if both are nonzero.

For the MQPUT1 call, these response records are used to return information about errors that occur when
the message is sent to the queues in the distribution list, as well as errors that occur when the queues
are opened. The completion code and reason code from the put operation for a queue replace those
from the open operation for that queue only if the completion code from the latter was MQCC_OK or
MQCC_WARNING.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than
MQOD_VERSION_2.

ObjectRecPtr (MQPTR)
This is the address of the first MQOR object record. ObjectRecPtr is used only when a distribution list is
being opened. The field is ignored if RecsPresent is zero.

You can use either ObjectRecPtr or ObjectRecOffset to specify the object records, but not both; for
the description of the ObjectRecOffset field, see “ObjectRecOffset (MQLONG)” on page 485. If you do
not use ObjectRecPtr, set it to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in those programming languages
that support pointers, and an all-null byte string otherwise. This field is ignored if Version is less than
MQOD_VERSION_2.

Note: On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length, with the initial value being the all-null byte string.

ResponseRecPtr (MQPTR)
This is the address of the first MQRR response record. ResponseRecPtr is used only when a distribution
list is being opened. The field is ignored if RecsPresent is zero.

Use either ResponseRecPtr or ResponseRecOffset to specify the response records, but not both; for
details, see “ResponseRecOffset (MQLONG)” on page 485. If you do not use ResponseRecPtr, set it to
the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in those programming languages
that support pointers, and an all-null byte string otherwise. This field is ignored if Version is less than
MQOD_VERSION_2.

Note: On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length, with the initial value being the all-null byte string.

AlternateSecurityId (MQBYTE40)
This is a security identifier that is passed with the AlternateUserId to the authorization service to
allow appropriate authorization checks to be performed. AlternateSecurityId is used only if:

• MQOO_ALTERNATE_USER_AUTHORITY is specified on the MQOPEN call, or
• MQPMO_ALTERNATE_USER_AUTHORITY is specified on the MQPUT1 call,

and the AlternateUserId field is not entirely blank up to the first null character or the end of the field.

On Windows, AlternateSecurityId can be used to supply the Windows security identifier (SID) that
uniquely identifies the AlternateUserId. The SID for a user can be obtained from the Windows system
by use of the LookupAccountName() Windows API call.

On z/OS, this field is ignored.

The AlternateSecurityId field has the following structure:

486 IBM MQ Developing Applications Reference

• The first byte is a binary integer containing the length of the significant data that follows; the value
excludes the length byte itself. If no security identifier is present, the length is zero.

• The second byte indicates the type of security identifier that is present; the following values are
possible:
MQSIDT_NT_SECURITY_ID

Windows security identifier.
MQSIDT_NONE

No security identifier.
• The third and subsequent bytes up to the length defined by the first byte contain the security identifier

itself.
• Remaining bytes in the field are set to binary zero.

You can use the following special value:
MQSID_NONE

No security identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQSID_NONE_ARRAY is also defined; this has the
same value as MQSID_NONE, but is an array of characters instead of a string.

This is an input field. The length of this field is given by MQ_SECURITY_ID_LENGTH. The initial value of
this field is MQSID_NONE. This field is ignored if Version is less than MQOD_VERSION_3.

ResolvedQName (MQCHAR48)
This is the name of the destination queue after the local queue manager resolves the name. The name
returned is the name of a queue that exists on the queue manager identified by ResolvedQMgrName.

A nonblank value is returned only if the object is a single queue opened for browse, input, or output (or
any combination). If the object opened is any of the following, ResolvedQName is set to blanks:

• Not a queue
• A queue, but not opened for browse, input, or output
• A distribution list
• An alias queue that references a topic object (refer to ResObjectString instead).
• An alias queue that resolves to a topic object.

This is an output field. The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this
field is the null string in C, and 48 blank characters in other programming languages. This field is ignored if
Version is less than MQOD_VERSION_3.

ResolvedQMgrName (MQCHAR48)
This is the name of the destination queue manager after the local queue manager resolves the name. The
name returned is the name of the queue manager that owns the queue identified by ResolvedQName.
ResolvedQMgrName can be the name of the local queue manager.

If ResolvedQName is a shared queue that is owned by the queue sharing group to which the local queue
manager belongs, ResolvedQMgrName is the name of the queue sharing group. If the queue is owned
by some other queue sharing group, ResolvedQName can be the name of the queue sharing group or the
name of a queue manager that is a member of the queue sharing group (the nature of the value returned
is determined by the queue definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue opened for browse, input, or output (or
any combination). If the object opened is any of the following, ResolvedQMgrName is set to blanks:

• Not a queue
• A queue, but not opened for browse, input, or output

Developing applications reference 487

• A cluster queue with MQOO_BIND_NOT_FIXED specified (or with MQOO_BIND_AS_Q_DEF in effect
when the DefBind queue attribute has the value MQBND_BIND_NOT_FIXED)

• A distribution list

This is an output field. The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this
field is the null string in C, and 48 blank characters in other programming languages. This field is ignored if
Version is less than MQOD_VERSION_3.

ObjectString (MQCHARV)
The ObjectString field specifies the long object name.

This specifies the long object name to be used. This field is only referenced for certain values of
ObjectType, and is ignored for all other values. See the description of ObjectType for details of which
values indicate that this field is used.

If ObjectString is specified incorrectly, according to the description of how to use the
MQCHARV structure, or if it exceeds the maximum length, the call fails with reason code
MQRC_OBJECT_STRING_ERROR.

This is an input field. The initial values of the fields in this structure are the same as those in the
MQCHARV structure.

The full topic name can be built from two different fields: ObjectName and ObjectString. For details of
how these two fields are used, see Combining topic strings.

SelectionString (MQCHARV)
This is the string used to provide the selection criteria used when retrieving messages off a queue.

SelectionString must not be provided in the following cases:

• If ObjectType is not MQOT_Q
• If the queue being opened is not being opened using one of the MQOO_BROWSE, or MQOO_INPUT_*

options

If SelectionString is provided in these cases, the call fails with reason code
MQRC_SELECTOR_INVALID_FOR_TYPE.

If SelectionString is specified incorrectly, according to the description of how to use the “MQCHARV
- Variable Length String” on page 292 structure, or if it exceeds the maximum length, the call fails
with reason code MQRC_SELECTION_STRING_ERROR. The maximum length of SelectionString is
MQ_SELECTOR_LENGTH.

SelectionString usage is described in Selectors.

ResObjectString (MQCHARV)
The ResObjectString field is the long object name after the queue manager resolves the name provided in
the ObjectName field.

This field is returned only for topics and queue aliases that reference a topic object.

If the long object name is provided in ObjectString and nothing is provided in ObjectName, then the
value returned in this field is the same as provided in ObjectString.

If this field is omitted (that is ResObjectString.VSBufSize is zero) then the ResObjectString will not be
returned, but the length will be returned in ResObjectString.VSLength.

If the buffer length (provided in ResObjectStrng.VSBufSize) is shorter than the full ResObjectString,
the string will be truncated and will return as many of the rightmost characters as can fit in the provided
buffer.

If ResObjectString is specified incorrectly, according to the description of how to use the
MQCHARV structure, or if it exceeds the maximum length, the call fails with reason code
MQRC_RES_OBJECT_STRING_ERROR.

488 IBM MQ Developing Applications Reference

ResolvedType (MQLONG)
The type of the resolved (base) object being opened.

The possible values are:
MQOT_Q

The resolved object is a queue. This value applies when a queue is opened directly or when an alias
queue pointing to a queue is opened.

MQOT_TOPIC
The resolved object is a topic. This value applies when a topic is opened directly or when an alias
queue pointing to a topic object is opened.

MQOT_NONE
The resolved type is neither a queue nor a topic.

MQOR - Object record
Use the MQOR structure to specify the queue name and queue manager name of a single destination
queue. MQOR is an input structure for the MQOPEN and MQPUT1 calls.

Availability
The MQOR structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ MQI clients connected to these systems.

Character set and encoding
Data in MQOR must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ MQI client, the structure must be in the character set and encoding of the client.

Usage
By providing an array of these structures on the MQOPEN call, you can open a list of queues; this list
is called a distribution list. Each message put using the queue handle returned by that MQOPEN call is
placed on each of the queues in the list, provided that the queue was opened successfully.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 506. Fields in MQOR for MQOR

Field name and description Name of constant Initial value (if any) of
constant

ObjectName (object name) None Null string or blanks

ObjectQMgrName (object queue manager name) None Null string or blanks

Developing applications reference 489

Table 506. Fields in MQOR for MQOR (continued)

Field name and description Name of constant Initial value (if any) of
constant

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in other
programming languages.

2. In the C programming language, the macro variable MQOR_DEFAULT contains the values that are
listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQOR MyOR = {MQOR_DEFAULT};

Language declarations
C declaration for MQOR

typedef struct tagMQOR MQOR;
struct tagMQOR {
 MQCHAR48 ObjectName; /* Object name */
 MQCHAR48 ObjectQMgrName; /* Object queue manager name */
};

COBOL declaration for MQOR

** MQOR structure
 10 MQOR.
** Object name
 15 MQOR-OBJECTNAME PIC X(48).
** Object queue manager name
 15 MQOR-OBJECTQMGRNAME PIC X(48).

PL/I declaration for MQOR

dcl
 1 MQOR based,
 3 ObjectName char(48), /* Object name */
 3 ObjectQMgrName char(48); /* Object queue manager name */

Visual Basic declaration for MQOR

Type MQOR
 ObjectName As String*48 'Object name'
 ObjectQMgrName As String*48 'Object queue manager name'
End Type

ObjectName (MQCHAR48)
This is the same as the ObjectName field in the MQOD structure (see MQOD for details), except that:

• It must be the name of a queue.
• It must not be the name of a model queue.

This is always an input field. The initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

ObjectQMgrName (MQCHAR48)
This is the same as the ObjectQMgrName field in the MQOD structure (see MQOD for details).

490 IBM MQ Developing Applications Reference

This is always an input field. The initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

MQPD - Property descriptor
The MQPD structure is used to define the attributes of a property. The structure is an input/output
parameter on the MQSETMP call and an output parameter on the MQINQMP call.

Availability
The MQPD structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

• z/OS

and for IBM MQ MQI clients.

Character set and encoding
Data in MQPD must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 507. Fields in MQPD

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQPD_STRUC_ID 'PD'

Version (structure version number) MQPD_VERSION_1 1

Options (options) MQPD_NONE 0

Support (required support for message property) MQPD_SUPPORT_OPTIO
NAL

0

Context (message context to which property
belongs)

MQPD_NO_CONTEXT 0

CopyOptions (copy options to which property
belongs)

MQCOPY_DEFAULT 0

Notes:

1. In the C programming language, the macro variable MQPD_DEFAULT contains the values that are
listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQPD MyPD = {MQPD_DEFAULT};

Developing applications reference 491

Language declarations
C declaration for MQPD

typedef struct tagMQPD MQPD;
struct tagMQPD {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of
 MQSETMP and MQINQMP */
 MQLONG Support; /* Property support option */
 MQLONG Context; /* Property context */
 MQLONG CopyOptions; /* Property copy options */
};

COBOL declaration for MQPD

** MQPD structure
 10 MQPD.
** Structure identifier
 15 MQPD-STRUCID PIC X(4).
** Structure version number
 15 MQPD-VERSION PIC S9(9) BINARY.
** Options that control the action of MQSETMP and
** MQINQMP
 15 MQPD-OPTIONS PIC S9(9) BINARY.
** Property support option
 15 MQPD-SUPPORT PIC S9(9) BINARY.
** Property context
 15 MQPD-CONTEXT PIC S9(9) BINARY.
** Property copy options
 15 MQPD-COPYOPTIONS PIC S9(9) BINARY.

PL/I declaration for MQPD

dcl
 1 MQPD based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action
 of MQSETMP and MQINQMP */
 3 Support fixed bin(31), /* Property support option */
 3 Context fixed bin(31), /* Property context */
 3 CopyOptions fixed bin(31); /* Property copy options */

High Level Assembler declaration for MQPD

MQPD DSECT
MQPD_STRUCID DS CL4 Structure identifier
MQPD_VERSION DS F Structure version number
MQPD_OPTIONS DS F Options that control the
* action of MQSETMP and MQINQMP
MQPD_SUPPORT DS F Property support option
MQPD_CONTEXT DS F Property context
MQPD_COPYOPTIONS DS F Property copy options
MQPD_LENGTH EQU *-MQPD
MQPD_AREA DS CL(MQPD_LENGTH)

StrucId (MQCHAR4)
This is the structure identifier; the value must be:
MQPD_STRUC_ID

Identifier for property descriptor structure.

For the C programming language, the constant MQPD_STRUC_ID_ARRAY is also defined; this has the
same value as MQPD_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQPD_STRUC_ID.

492 IBM MQ Developing Applications Reference

Version (MQLONG)
This is the structure version number; the value must be:

 MQPD_VERSION_1
Version-1 property descriptor structure.

The following constant specifies the version number of the current version:

 MQPD_CURRENT_VERSION
Current version of property descriptor structure.

This is always an input field. The initial value of this field is MQPD_VERSION_1.

Options (MQLONG)

The value must be:
MQPD_NONE

No options specified
This is always an input field. The initial value of this field is MQPD_NONE.

Support (MQLONG)
This field describes what level of support for the message property is required of the queue manager, in
order for the message containing this property to be put to a queue. This applies only to IBM MQ-defined
properties; support for all other properties is optional.

The field is automatically set to the correct value when the IBM MQ-defined property is known by the
queue manager. If the property is not recognized, MQPD_SUPPORT_OPTIONAL is assigned. When a queue
manager receives a message containing an IBM MQ-defined property that the queue manager recognizes
as being incorrect, the queue manager corrects the value of the Support field.

When setting an IBM MQ-defined property using the MQSETMP call on a message handle where the
MQCMHO_NO_VALIDATION option was set, Support becomes an input field. This allows an application
to put an IBM MQ-defined property, with the correct value, where the property is unsupported by the
connected queue manager, but where the message is intended to be processed on another queue
manager.

The value MQPD_SUPPORT_OPTIONAL is always assigned to properties that are not IBM MQ-defined
properties.

If an IBM WebSphere MQ 7.0 queue manager, that supports message properties, receives a property that
contains an unrecognized Support value, the property is treated as if:

• MQPD_SUPPORT_REQUIRED was specified if any of the unrecognized values are contained in the
MQPD_REJECT_UNSUP_MASK.

• MQPD_SUPPORT_REQUIRED_IF_LOCAL was specified if any of the unrecognized values are contained in
the MQPD_ACCEPT_UNSUP_IF_XMIT_MASK

• MQPD_SUPPORT_OPTIONAL was specified otherwise.

One of the following values is returned by the MQINQMP call, or one of the values can be specified, when
using the MQSETMP call on a message handle where the MQCMHO_NO_VALIDATION option is set:
MQPD_SUPPORT_OPTIONAL

The property is accepted by a queue manager even if it is not supported. The property can be
discarded in order for the message to flow to a queue manager that does not support message
properties. This value is also assigned to properties that are not IBM MQ-defined.

Developing applications reference 493

MQPD_SUPPORT_REQUIRED
Support for the property is required. The message is rejected by a queue manager that does not
support the IBM MQ-defined property. The MQPUT or MQPUT1 call fails with completion code
MQCC_FAILED and reason code MQRC_UNSUPPORTED_PROPERTY.

MQPD_SUPPORT_REQUIRED_IF_LOCAL
The message is rejected by a queue manager that does not support the IBM MQ-defined property if
the message is destined for a local queue. The MQPUT or MQPUT1 call fails with completion code
MQCC_FAILED and reason code MQRC_UNSUPPORTED_PROPERTY.

The MQPUT or MQPUT1 call succeeds if the message is destined for a remote queue manager.

This is an output field on the MQINQMP call and an input field on the MQSETMP call if the message
handle was created with the MQCMHO_NO_VALIDATION option set. The initial value of this field is
MQPD_SUPPORT_OPTIONAL.

Context (MQLONG)
This describes what message context the property belongs to.

When a queue manager receives a message containing an IBM MQ-defined property that the queue
manager recognizes as being incorrect, the queue manager corrects the value of the Context field.

The following option can be specified:
MQPD_USER_CONTEXT

The property is associated with the user context.

No special authorization is required to be able to set a property associated with the user context using
the MQSETMP call.

On an IBM WebSphere MQ 7.0 queue manager, a property associated with the user context is saved
as described for MQOO_SAVE_ALL_CONTEXT. An MQPUT call with MQPMO_PASS_ALL_CONTEXT
specified, causes the property to be copied from the saved context into the new message.

If the option previously described is not required, the following option can be used:
MQPD_NO_CONTEXT

The property is not associated with a message context.

An unrecognized value is rejected with a Reason code of MQRC_PD_ERROR

This is an input/output field to the MQSETMP call and an output field from the MQINQMP call. The initial
value of this field is MQPD_NO_CONTEXT.

CopyOptions (MQLONG)
This describes which type of messages the property should be copied into. This is an output only field for
recognized IBM MQ defined properties; IBM MQ sets the appropriate value.

When a queue manager receives a message containing an IBM MQ defined property that the queue
manager recognizes as being incorrect, the queue manager corrects the value of the CopyOptions field.

You can specify one or more of these options. To specify more than one option, either add the values
together (do not add the same constant more than once), or combine the values using the bitwise OR
operation (if the programming language supports bit operations).
MQCOPY_FORWARD

This property is copied into a message being forwarded.
MQCOPY_PUBLISH

This property is copied into the message received by a subscriber when a message is being published.
MQCOPY_REPLY

This property is copied into a reply message.
MQCOPY_REPORT

This property is copied into a report message.

494 IBM MQ Developing Applications Reference

MQCOPY_ALL
This property is copied into all types of subsequent messages.

Default option: The following option can be specified to supply the default set of copy options:
MQCOPY_DEFAULT

This property is copied into a message being forwarded, into a report message, or into a message
received by a subscriber when a message is being published.

This is equivalent to specifying the combination of options MQCOPY_FORWARD, plus
MQCOPY_REPORT, plus MQCOPY_PUBLISH.

If none of the options that are described previously is required, use the following option:
MQCOPY_NONE

Use this value to indicate that no other copy options are specified; programmatically no relationship
exists between this property and subsequent messages. This is always returned for message
descriptor properties.

This is an input/output field to the MQSETMP call and an output field from the MQINQMP call. The initial
value of this field is MQCOPY_DEFAULT.

MQPMO - Put message options
The MQPMO structure allows the application to specify options that control how messages are placed on
queues, or published to topics. The structure is an input/output parameter on the MQPUT and MQPUT1
calls.

Version
The current version of MQPMO is MQPMO_VERSION_3. Certain fields are available only in certain versions
of MQPMO. If you need to port applications between several environments, you must ensure that the
version of MQPMO is consistent across all environments. Fields that exist only in particular versions of the
structure are identified as such in this topic and in the field descriptions.

The header, COPY, and INCLUDE files provided for the supported programming languages contain the
most-recent version of MQPMO that is supported by the environment, but with the initial value of the
Version field set to MQPMO_VERSION_1. To use fields that are not present in the version-1 structure,
the application must set the Version field to the version number of the version required.

Character set and encoding
Data in MQPMO must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ MQI client, the structure must be in the character set and encoding of the client.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 508. Fields in MQPMO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQPMO_STRUC_ID 'PMO¬'

Version (structure version number) MQPMO_VERSION_1 1

Options (options that control the action of MQPUT
and MQPUT1)

MQPMO_NONE 0

Timeout (reserved) None -1

Developing applications reference 495

Table 508. Fields in MQPMO (continued)

Field name and description Name of constant Initial value (if any) of
constant

Context (object handle of input queue) None 0

KnownDestCount (number of messages sent
successfully to local queues)

None 0

UnknownDestCount (number of messages sent
successfully to remote queues)

None 0

InvalidDestCount (number of messages that could
not be sent)

None 0

ResolvedQName (resolved name of destination
queue)

None Null string or blanks

ResolvedQMgrName (resolved name of destination
queue manager)

None Null string or blanks

Note: The remaining fields are ignored if Version is less than MQPMO_VERSION_2.

RecsPresent (number of put message records or
response records present)

None 0

PutMsgRecFields (flags indicating which MQPMR
fields are present)

MQPMRF_NONE 0

PutMsgRecOffset (offset of first put message
record from start of MQPMO)

None 0

ResponseRecOffset (offset of first response record
from start of MQPMO)

None 0

PutMsgRecPtr (address of first put message
record)

None Null pointer or null bytes

ResponseRecPtr (address of first response record) None Null pointer or null bytes

Note: The remaining fields are ignored if Version is less than MQPMO_VERSION_3.

OriginalMsgHandle (original message handle) MQHM_NONE 0

NewMsgHandle (new message handle) MQHM_NONE 0

Action (type of put being performed and
the relationship between the original message
specified by the OriginalMsgHandle field and
the new message specified by the NewMsgHandle
field)

MQACTP_NEW 0

PubLevel (level of subscription targeted by the
publication)

None 9

496 IBM MQ Developing Applications Reference

Table 508. Fields in MQPMO (continued)

Field name and description Name of constant Initial value (if any) of
constant

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.
3. In the C programming language, the macro variable MQPMO_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQPMO MyPMO = {MQPMO_DEFAULT};

Language declarations
C declaration for MQPMO

typedef struct tagMQPMO MQPMO;
struct tagMQPMO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of
 MQPUT and MQPUT1 */
 MQLONG Timeout; /* Reserved */
 MQHOBJ Context; /* Object handle of input queue */
 MQLONG KnownDestCount; /* Number of messages sent
 successfully to local queues */
 MQLONG UnknownDestCount; /* Number of messages sent
 successfully to remote queues */
 MQLONG InvalidDestCount; /* Number of messages that could not
 be sent */
 MQCHAR48 ResolvedQName; /* Resolved name of destination
 queue */
 MQCHAR48 ResolvedQMgrName; /* Resolved name of destination queue
 manager */
 /* Ver:1 */
 MQLONG RecsPresent; /* Number of put message records or
 response records present */
 MQLONG PutMsgRecFields; /* Flags indicating which MQPMR fields
 are present */
 MQLONG PutMsgRecOffset; /* Offset of first put message record
 from start of MQPMO */
 MQLONG ResponseRecOffset; /* Offset of first response record
 from start of MQPMO */
 MQPTR PutMsgRecPtr; /* Address of first put message
 record */
 MQPTR ResponseRecPtr; /* Address of first response record */
 /* Ver:2 */
 MQHMSG OriginalMsgHandle; /* Original message handle */
 MQHMSG NewMsgHandle; /* New message handle */
 MQLONG Action; /* The action being performed */
 MQLONG PubLevel; /* Subscription level */
 /* Ver:3 */
};

COBOL declaration for MQPMO

** MQPMO structure
 10 MQPMO.
** Structure identifier
 15 MQPMO-STRUCID PIC X(4).
** Structure version number
 15 MQPMO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQPUT and MQPUT1
 15 MQPMO-OPTIONS PIC S9(9) BINARY.
** Reserved
 15 MQPMO-TIMEOUT PIC S9(9) BINARY.

Developing applications reference 497

** Object handle of input queue
 15 MQPMO-CONTEXT PIC S9(9) BINARY.
** Number of messages sent successfully to local queues
 15 MQPMO-KNOWNDESTCOUNT PIC S9(9) BINARY.
** Number of messages sent successfully to remote queues
 15 MQPMO-UNKNOWNDESTCOUNT PIC S9(9) BINARY.
** Number of messages that could not be sent
 15 MQPMO-INVALIDDESTCOUNT PIC S9(9) BINARY.
** Resolved name of destination queue
 15 MQPMO-RESOLVEDQNAME PIC X(48).
** Resolved name of destination queue manager
 15 MQPMO-RESOLVEDQMGRNAME PIC X(48).
** Number of put message records or response records present
 15 MQPMO-RECSPRESENT PIC S9(9) BINARY.
** Flags indicating which MQPMR fields are present
 15 MQPMO-PUTMSGRECFIELDS PIC S9(9) BINARY.
** Offset of first put message record from start of MQPMO
 15 MQPMO-PUTMSGRECOFFSET PIC S9(9) BINARY.
** Offset of first response record from start of MQPMO
 15 MQPMO-RESPONSERECOFFSET PIC S9(9) BINARY.
** Address of first put message record
 15 MQPMO-PUTMSGRECPTR POINTER.
** Address of first response record
 15 MQPMO-RESPONSERECPTR POINTER.
** Original message handle
 15 MQPMO-ORIGINALMSGHANDLE PIC S9(18) BINARY.
** New message handle
 15 MQPMO-NEWMSGHANDLE PIC S9(18) BINARY.
** The action being performed
 15 MQPMO-ACTION PIC S9(9) BINARY.
** Publish level
 15 MQPMO-PUBLEVEL PIC S9(9) BINARY.

PL/I declaration for MQPMO

dcl
 1 MQPMO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action
 of MQPUT and MQPUT1 */
 3 Timeout fixed bin(31), /* Reserved */
 3 Context fixed bin(31), /* Object handle of input queue */
 3 KnownDestCount fixed bin(31), /* Number of messages sent
 successfully to local queues */
 3 UnknownDestCount fixed bin(31), /* Number of messages sent
 successfully to remote queues */
 3 InvalidDestCount fixed bin(31), /* Number of messages that could
 not be sent */
 3 ResolvedQName char(48), /* Resolved name of destination
 queue */
 3 ResolvedQMgrName char(48), /* Resolved name of destination
 queue manager */
 3 RecsPresent fixed bin(31), /* Number of put message records or
 response records present */
 3 PutMsgRecFields fixed bin(31), /* Flags indicating which MQPMR
 fields are present */
 3 PutMsgRecOffset fixed bin(31), /* Offset of first put message
 record from start of MQPMO */
 3 ResponseRecOffset fixed bin(31), /* Offset of first response record
 from start of MQPMO */
 3 PutMsgRecPtr pointer, /* Address of first put message
 record */
 3 ResponseRecPtr pointer, /* Address of first response
 record */
 3 OriginalMsgHandle fixed bin(63), /* Original message handle */
 3 NewMsgHandle fixed bin(63); /* New message handle */
 3 Action fixed bin(31); /* The action being performed */
 3 PubLevel fixed bin(31); /* Publish level */

High Level Assembler declaration for MQPMO

MQPMO DSECT
MQPMO_STRUCID DS CL4 Structure identifier
MQPMO_VERSION DS F Structure version number
MQPMO_OPTIONS DS F Options that control the action of
* MQPUT and MQPUT1

498 IBM MQ Developing Applications Reference

MQPMO_TIMEOUT DS F Reserved
MQPMO_CONTEXT DS F Object handle of input queue
MQPMO_KNOWNDESTCOUNT DS F Number of messages sent successfully
* to local queues
MQPMO_UNKNOWNDESTCOUNT DS F Number of messages sent successfully
* to remote queues
MQPMO_INVALIDDESTCOUNT DS F Number of messages that could not be
* sent
MQPMO_RESOLVEDQNAME DS CL48 Resolved name of destination queue
MQPMO_RESOLVEDQMGRNAME DS CL48 Resolved name of destination queue
* manager
MQPMO_RECSPRESENT DS F Number of put message records or
* response records present
MQPMO_PUTMSGRECFIELDS DS F Flags indicating which MQPMR
* fields are present
MQPMO_PUTMSGRECOFFSET DS F Offset of first put message record
* from start of MQPMO
MQPMO_RESPONSERECOFFSET DS F Offset of first response record
* from start of MQPMO
MQPMO_PUTMSGRECPTR DS F Address of first put message
* record
MQPMO_RESPONSERECPTR DS F Address of first response record
MQPMO_ORIGINALMSGHANDLE DS D Original message handle
MQPMO_NEWMSGHANDLE DS D New message handle
MQPMO_ACTION DS F The action being performed
MQPMO_PUBLEVEL DS F Publish level
*
MQPMO_LENGTH EQU *-MQPMO
 ORG MQPMO
MQPMO_AREA DS CL(MQPMO_LENGTH)

Visual Basic declaration for MQPMO

Type MQPMO
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 Options As Long 'Options that control the action of'
 'MQPUT and MQPUT1'
 Timeout As Long 'Reserved'
 Context As Long 'Object handle of input queue'
 KnownDestCount As Long 'Number of messages sent successfully'
 'to local queues'
 UnknownDestCount As Long 'Number of messages sent successfully'
 'to remote queues'
 InvalidDestCount As Long 'Number of messages that could not be'
 'sent'
 ResolvedQName As String*48 'Resolved name of destination queue'
 ResolvedQMgrName As String*48 'Resolved name of destination queue'
 'manager'
 RecsPresent As Long 'Number of put message records or'
 'response records present'
 PutMsgRecFields As Long 'Flags indicating which MQPMR fields'
 'are present'
 PutMsgRecOffset As Long 'Offset of first put message record'
 'from start of MQPMO'
 ResponseRecOffset As Long 'Offset of first response record from'
 'start of MQPMO'
 PutMsgRecPtr As MQPTR 'Address of first put message record'
 ResponseRecPtr As MQPTR 'Address of first response record'
End Type

StrucId (MQCHAR4)

This is the structure identifier; the value must be:
MQPMO_STRUC_ID

Identifier for put-message options structure.

For the C programming language, the constant MQPMO_STRUC_ID_ARRAY is also defined; this has
the same value as MQPMO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQPMO_STRUC_ID.

Developing applications reference 499

Version (MQLONG)
Structure version number.

The value must be one of the following:
MQPMO_VERSION_1

Version-1 put-message options structure.

This version is supported in all environments.

MQPMO_VERSION_2
Version-2 put-message options structure.

This version is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ MQI clients connected to these systems.

MQPMO_VERSION_3
Version-3 put-message options structure.

This version is supported in all environments.

Fields that exist only in the more-recent version of the structure are identified as such in the descriptions
of the fields. The following constant specifies the version number of the current version:
MQPMO_CURRENT_VERSION

Current version of put-message options structure.

This is always an input field. The initial value of this field is MQPMO_VERSION_1.

MQPMO options (MQLONG)
The Options field controls the operation of MQPUT and MQPUT1 calls.

Scope option. You can specify any or none of the MQPMO options. To specify more than one option, either
add the values together (do not add the same constant more than once), or combine the values using the
bitwise OR operation (if the programming language supports bit operations). Combinations that are not
valid are noted; any other combinations are valid.

The following option controls the scope of the publications sent:
MQPMO_SCOPE_QMGR

The publication is sent only to subscribers that have subscribed on this queue manager. The
publication is not forwarded to any remote publish/subscribe queue managers that have made
a subscription to this queue manager, which overrides any behavior that has been set using the
PUBSCOPE topic attribute.

Note: If not set, the publication scope is determined by the PUBSCOPE topic attribute.

Publishing options. The following options control the way messages are published to a topic:
MQPMO_SUPPRESS_REPLYTO

Any information specified in the ReplyToQ and ReplyToQMgr fields of the MQMD of this publication
is not passed on to subscribers. If this option is used with a report option that requires a ReplyToQ,
the call fails with MQRC_MISSING_REPLY_TO_Q.

500 IBM MQ Developing Applications Reference

MQPMO_RETAIN

The publication being sent is to be retained by the queue manager. This retention allows a subscriber
to request a copy of this publication after the time it was published, by using the MQSUBRQ
call. It also allows a publication to be sent to applications which make their subscription after
the time this publication was made (unless they choose not to be sent it by using the option
MQSO_NEW_PUBLICATIONS_ONLY). If an application is sent a publication which was retained, it is
indicated by the MQIsRetained message property of that publication.

Only one publication can be retained at each node of the topic tree. Therefore, if there already
is a retained publication for this topic, published by any other application, it is replaced with this
publication. It is therefore better to avoid having more than one publisher retaining messages on the
same topic.

When retained publications are requested by a subscriber, the subscription used might contain a
wildcard in the topic, in which case a number of retained publications might match (at various nodes
in the topic tree) and several publications might be sent to the requesting application. See the
description of the “MQSUBRQ - Subscription request” on page 786 call for more details.

For information about how retained publications interact with subscription levels, see Intercepting
publications.

If this option is used and the publication cannot be retained, the message is not published and the call
fails with MQRC_PUT_NOT_RETAINED.

MQPMO_NOT_OWN_SUBS
Tells the queue manager that the application does not want to send any of its publications to
subscriptions it owns. Subscriptions are considered to be owned by the same application if the
connection handles are the same.

MQPMO_WARN_IF_NO_SUBS_MATCHED
If no subscription matches the publication, return a completion code (CompCode) of MQCC_WARNING
and reason code MQRC_NO_SUBS_MATCHED.

If MQRC_NO_SUBS_MATCHED is returned by the put operation, the publication was not delivered
to any subscriptions. However, if the MQPMO_RETAIN option is specified on the put operation, the
message is retained and delivered to any subsequently defined matching subscription.

A subscription on the topic matches the publication if any of the following conditions are met:

• The message is delivered to the subscription queue
• The message would have been delivered to the subscription queue but a problem with the queue

means that the message cannot be put to the queue, and it was consequently placed on the dead
letter queue or discarded.

• A routing exit is defined that suppresses delivery of the message to the subscription

A subscription on the topic does not match the publication if any of the following conditions are met:

• The subscription has a selection string that does not match the publication
• The subscription specified the MQSO_PUBLICATION_ON_REQUEST option
• The publication is not delivered because the MQPMO_NOT_OWN_SUBS option was specified on the

put operation and the subscription matches the identity of the publisher

Syncpoint options. The following options relate to the participation of the MQPUT or MQPUT1 call within
a unit of work:
MQPMO_SYNCPOINT

The request is to operate within the normal unit-of-work protocols. The message is not visible outside
the unit of work until the unit of work is committed. If the unit of work is backed out, the message is
deleted.

If MQPMO_SYNCPOINT and MQPMO_NO_SYNCPOINT are not specified, the inclusion of the put
request in unit-of-work protocols is determined by the environment running the queue manager and

Developing applications reference 501

not the environment running the application. On z/OS, the put request is within a unit of work. In all
other environments, the put request is not within a unit of work.

Because of these differences, an application that you want to port must not allow this option to
default; specify either MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT explicitly.

Do not specify MQPMO_SYNCPOINT with MQPMO_NO_SYNCPOINT.

MQPMO_NO_SYNCPOINT
The request is to operate outside the normal unit-of-work protocols. The message is available
immediately, and it cannot be deleted by backing out a unit of work.

If MQPMO_NO_SYNCPOINT and MQPMO_SYNCPOINT are not specified, the inclusion of the put
request in unit-of-work protocols is determined by the environment running the queue manager and
not the environment running the application. On z/OS, the put request is within a unit of work. In all
other environments, the put request is not within a unit of work.

Because of these differences, an application that you want to port must not allow this option to
default; specify either MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT explicitly.

Do not specify MQPMO_NO_SYNCPOINT with MQPMO_SYNCPOINT.

Message-identifier and correlation-identifier options. The following options request the queue manager
to generate a new message identifier or correlation identifier:
MQPMO_NEW_MSG_ID

The queue manager replaces the contents of the MsgId field in MQMD with a new message identifier.
This message identifier is sent with the message, and returned to the application on output from the
MQPUT or MQPUT1 call.

The MQPMO_NEW_MSG_ID option can also be specified when the message is being put to a
distribution list; see the description of the MsgId field in the MQPMR structure for details.

Using this option relieves the application of the need to reset the MsgId field to MQMI_NONE before
each MQPUT or MQPUT1 call.

MQPMO_NEW_CORREL_ID
The queue manager replaces the contents of the CorrelId field in MQMD with a new correlation
identifier. This correlation identifier is sent with the message, and returned to the application on
output from the MQPUT or MQPUT1 call.

The MQPMO_NEW_CORREL_ID option can also be specified when the message is being put to a
distribution list; see the description of the CorrelId field in the MQPMR structure for details.

MQPMO_NEW_CORREL_ID is useful in situations where the application requires a unique correlation
identifier.

Group and segment options. The following options relate to the processing of messages in groups and
segments of logical messages. Read the definitions that follow to help you to understand the option.

Attention: You cannot use segmented or grouped messages with Publish/
Subscribe.

Physical message
The is the smallest unit of information that can be placed on or removed from a queue; it often
corresponds to the information specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD). Generally, physical messages are
distinguished by differing values for the message identifier (MsgId field in MQMD), although this is not
enforced by the queue manager.

Logical message
A logical message is a single unit of application information for non- z/OS platforms only. In the
absence of system constraints, a logical message is the same as a physical message. But where
logical messages are extremely large, system constraints might make it advisable or necessary to split
a logical message into two or more physical messages, called segments.

502 IBM MQ Developing Applications Reference

A logical message that has been segmented consists of two or more physical messages that have the
same non-null group identifier (GroupId field in MQMD), and the same message sequence number
(MsgSeqNumber field in MQMD). The segments are distinguished by differing values for the segment
offset (Offset field in MQMD), which gives the offset of the data in the physical message from the
start of the data in the logical message. Because each segment is a physical message, the segments in
a logical message usually have differing message identifiers.

A logical message that has not been segmented, but for which segmentation has been permitted
by the sending application, also has a non-null group identifier, although in this case there is only
one physical message with that group identifier if the logical message does not belong to a message
group. Logical messages for which segmentation has been inhibited by the sending application have a
null group identifier (MQGI_NONE), unless the logical message belongs to a message group.

Message group
A message group is a set of one or more logical messages that have the same non-null group
identifier. The logical messages in the group are distinguished by differing values for the message
sequence number, which is an integer in the range 1 through n, where n is the number of logical
messages in the group. If one or more of the logical messages is segmented, there are more than n
physical messages in the group.

MQPMO_LOGICAL_ORDER
This option tells the queue manager how the application puts messages in groups and segments of
logical messages. It can be specified only on the MQPUT call; it is not valid on the MQPUT1 call.

If MQPMO_LOGICAL_ORDER is specified, it indicates that the application uses successive MQPUT
calls to:

1. Put the segments in each logical message in the order of increasing segment offset, starting from
0, with no gaps.

2. Put all the segments in one logical message before putting the segments in the next logical
message.

3. Put the logical messages in each message group in the order of increasing message sequence
number, starting from 1, with no gaps. IBM MQ increments the message sequence number
automatically.

4. Put all the logical messages in one message group before putting logical messages in the next
message group.

For detailed information about MQPMO_LOGICAL_ORDER, see Logical and physical ordering

Context options. The following options control the processing of message context:
MQPMO_NO_CONTEXT

Both identity and origin context are set to indicate no context. This means that the context fields in
MQMD are set to:

• Blanks for character fields
• Nulls for byte fields
• Zeros for numeric fields

MQPMO_DEFAULT_CONTEXT
The message is to have default context information associated with it, for both identity and origin. The
queue manager sets the context fields in the message descriptor as follows:

Table 509. Default context information values for MQMD fields

Field in MQMD Value used

UserIdentifier Determined from the environment if possible; set to blanks otherwise.

AccountingToken Determined from the environment if possible; set to MQACT_NONE
otherwise.

ApplIdentityData Set to blanks.

Developing applications reference 503

Table 509. Default context information values for MQMD fields (continued)

Field in MQMD Value used

PutApplType Determined from the environment.

PutApplName Determined from the environment if possible; set to blanks otherwise.

PutDate Set to the date when message is put.

PutTime Set to the time when message is put.

ApplOriginData Set to blanks.

For more information about message context, see Message context.

These are the default values and actions if no context options are specified.

MQPMO_PASS_IDENTITY_CONTEXT
The message is to have context information associated with it. Identity context is taken from the
queue handle specified in the Context field. Origin context information is generated by the queue
manager in the same way that it is for MQPMO_DEFAULT_CONTEXT (see the preceding table for
values). For more information about message context, see Message context.

For the MQPUT call, the queue must have been opened with the MQOO_PASS_IDENTITY_CONTEXT
option (or an option that implies it). For the MQPUT1 call, the same authorization check is carried out
as for the MQOPEN call with the MQOO_PASS_IDENTITY_CONTEXT option.

MQPMO_PASS_ALL_CONTEXT
The message is to have context information associated with it. Context is taken from the queue handle
specified in the Context field. For more information about message context, see Controlling context
information.

For the MQPUT call, the queue must have been opened with the MQOO_PASS_ALL_CONTEXT option
(or an option that implies it). For the MQPUT1 call, the same authorization check is carried out as for
the MQOPEN call with the MQOO_PASS_ALL_CONTEXT option.

MQPMO_SET_IDENTITY_CONTEXT
The message is to have context information associated with it. The application specifies the identity
context in the MQMD structure. Origin context information is generated by the queue manager in the
same way that it is for MQPMO_DEFAULT_CONTEXT (see the preceding table for values). For more
information about message context, see Message context.

For the MQPUT call, the queue must have been opened with the MQOO_SET_IDENTITY_CONTEXT
option (or an option that implies it). For the MQPUT1 call, the same authorization check is carried out
as for the MQOPEN call with the MQOO_SET_IDENTITY_CONTEXT option.

MQPMO_SET_ALL_CONTEXT
The message is to have context information associated with it. The application specifies the identity,
origin, and user context in the MQMD structure. For more information about message context, see
Message context.

For the MQPUT call, the queue must have been opened with the MQOO_SET_ALL_CONTEXT option.
For the MQPUT1 call, the same authorization check is carried out as for the MQOPEN call with the
MQOO_SET_ALL_CONTEXT option.

You can specify only one of the MQPMO_*_CONTEXT context options. If you specify none,
MQPMO_DEFAULT_CONTEXT is assumed.

Property options. The following option relates to the properties of the message:
MQPMO_MD_FOR_OUTPUT_ONLY

The message descriptor parameter must only be used for output to return the message descriptor
of the message that was put. The message descriptor fields associated with the NewMsgHandle,
OriginalMsgHandle, or both fields, of the MQPMO structure must be used for input.

If a valid message handle is not provided then the call fails with reason code MQRC_MD_ERROR.

504 IBM MQ Developing Applications Reference

Put response options. The following options control the response returned to an MQPUT or MQPUT1 call.
You can specify only one of these options. If MQPMO_ASYNC_RESPONSE and MQPMO_SYNC_RESPONSE
are not specified, MQPMO_RESPONSE_AS_Q_DEF or MQPMO_RESPONSE_AS_TOPIC_DEF is assumed.
MQPMO_ASYNC_RESPONSE

The MQPMO_ASYNC_RESPONSE option requests that an MQPUT or MQPUT1 operation is completed
without the application waiting for the queue manager to complete the call. Using this option can
improve messaging performance, particularly for applications using client bindings. An application
can periodically check, using the MQSTAT verb, whether an error has occurred during any previous
asynchronous calls.
With this option, only the following fields are guaranteed to be completed in the MQMD;

• ApplIdentityData
• PutApplType
• PutApplName
• ApplOriginData

Additionally, if either or both of MQPMO_NEW_MSG_ID or MQPMO_NEW_CORREL_ID are specified
as options, the MsgId and CorrelId returned are also completed. (MQPMO_NEW_MSG_ID can be
implicitly specified by specifying a blank MsgId field).
Only the preceding specified fields are completed. Other information that would normally be returned
in the MQMD or MQPMO structure is undefined.
When requesting asynchronous put response for MQPUT1, the ResolvedQName and
ResolvedQMgrName returned in the MQOD structure are undefined.
When requesting asynchronous put response for MQPUT or MQPUT1, a CompCode and Reason of
MQCC_OK and MQRC_NONE does not necessarily mean that the message was successfully put to
a queue. When developing an MQI application that uses asynchronous put response and requires
confirmation that messages have been put to a queue you must check both CompCode and Reason
codes from the put operations and also use MQSTAT to query asynchronous error information.
Although the success or failure of each individual MQPUT or MQPUT1 call mightnot be returned
immediately, the first error that occurred under an asynchronous call can be determined later through
a call to MQSTAT.
If a persistent message under syncpoint fails to be delivered using asynchronous put response, and
you attempt to commit the transaction, the commit fails and the transaction is backed out with a
completion code of MQCC_FAILED and a reason of MQRC_BACKED_OUT. The application can make a
call to MQSTAT to determine the cause of a previous MQPUT or MQPUT1 failure.

MQPMO_SYNC_RESPONSE
Specifying this put response type ensures that the MQPUT or MQPUT1 operation is always issued
synchronously. If the put operation is successful, all fields in the MQMD and MQPMO are completed.
This option ensures a synchronous response irrespective of the default put response value defined on
the queue or topic object.

MQPMO_RESPONSE_AS_Q_DEF
If this value is specified for an MQPUT call, the put response type used is taken from the DEFPRESP
value specified on the queue when it was first opened by the application.

• If the queue is a cluster queue, and this value is specified for an MQPUT call, the put response type
used is taken from the DEFPRESP attribute defined at the destination queue manager that owns the
particular instance of the queue on which the message is placed.

When there are multiple instances of the cluster queue, and they differ in this attribute, the value
from one of them is picked and it cannot be predicted which one will be used. You should therefore
set this attribute to the same value on all instances. If this is not the case, error message AMQ9407
is issued to the queue manager logs. See also How are destination object attributes resolved for
aliases, remote and cluster queues?

Developing applications reference 505

• If the queue is not a cluster queue, and this value is specified for an MQPUT call, the put response
type used is taken from the DEFPRESP attribute defined at the local queue manager, even if the
destination queue manager is remote.

If a client application is connected to a queue manager at a level earlier than IBM WebSphere MQ 7.0,
it behaves as if MQPMO_SYNC_RESPONSE was specified.
If this option is specified for an MQPUT1 call, the value of the DEFPRESP attribute is not known
before the request is sent to the server. By default, if the MQPUT1 call is using MQPMO_SYNCPOINT
it behaves as for MQPMO_ASYNC_RESPONSE, and if it is using MQPMO_NO_SYNCPOINT it behaves
as for MQPMO_SYNC_RESPONSE. However, you can override this default behavior by setting the
Put1DefaultAlwaysSync property in the client configuration file, see CHANNELS stanza of the client
configuration file.

MQPMO_RESPONSE_AS_TOPIC_DEF
MQPMO_RESPONSE_AS_TOPIC_DEF is a synonym for MQPMO_RESPONSE_AS_Q_DEF for use with
topic objects.

Other options. The following options control authorization checking, what happens when the queue
manager is quiescing, and resolving queue and queue manager names:
MQPMO_ALTERNATE_USER_AUTHORITY

MQPMO_ALTERNATE_USER_AUTHORITY indicates that the AlternateUserId field in the ObjDesc
parameter of the MQPUT1 call contains a user identifier that is to be used to validate authority
to put messages on the queue. The call can succeed only if AlternateUserId is authorized to
open the queue with the specified options, regardless of whether the user identifier under which the
application is running is authorized to do so. (This does not apply to the context options specified,
however, which are always checked against the user identifier under which the application is running.)

This option is valid only with the MQPUT1 call.

MQPMO_FAIL_IF_QUIESCING
This option forces the MQPUT or MQPUT1 call to fail if the queue manager is in the quiescing state.

On z/OS, this option also forces the MQPUT or MQPUT1 call to fail if the connection (for a CICS or IMS
application) is in the quiescing state.

The call returns completion code MQCC_FAILED with reason code MQRC_Q_MGR_QUIESCING or
MQRC_CONNECTION_QUIESCING.

MQPMO_RESOLVE_LOCAL_Q
Use this option to fill ResolvedQName in the MQPMO structure with the name of the local queue
to which the message is put, and ResolvedQMgrName with the name of the local queue manager
that hosts the local queue. For more information about MQPMO_RESOLVE_LOCAL_Q, see topic
MQOO_RESOLVE_LOCAL_Q.

If you are authorized to put to a queue, you have the required authority to specify this flag on the
MQPUT call; no special authority is needed.

Default option. If you need none of the options described, use the following option:
MQPMO_NONE

Use this value to indicate that no other options have been specified; all options assume their default
values. MQPMO_NONE is defined to aid program documentation; it is not intended that this option be
used with any other, but as its value is zero, such use cannot be detected.

MQPMO_NONE is an input field. The initial value of the Options field is MQPMO_NONE.

Timeout (MQLONG)
This is a reserved field; its value is not significant. The initial value of this field is -1.

506 IBM MQ Developing Applications Reference

Context (MQHOBJ)
If MQPMO_PASS_IDENTITY_CONTEXT or MQPMO_PASS_ALL_CONTEXT is specified, this field must
contain the input queue handle from which context information to be associated with the message being
put is taken.

If neither MQPMO_PASS_IDENTITY_CONTEXT nor MQPMO_PASS_ALL_CONTEXT is specified, this field is
ignored.

This is an input field. The initial value of this field is 0.

KnownDestCount (MQLONG)
This is the number of messages that the current MQPUT or MQPUT1 call has sent successfully to queues
in the distribution list that are local queues. The count does not include messages sent to queues that
resolve to remote queues (even though a local transmission queue is used initially to store the message).
This field is also set when putting a message to a single queue that is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not set if Version is less than
MQPMO_VERSION_1.

This field is undefined on z/OS because distribution lists are not supported.

UnknownDestCount (MQLONG)
This is the number of messages that the current MQPUT or MQPUT1 call has sent successfully to
queues in the distribution list that resolve to remote queues. Messages that the queue manager retains
temporarily in distribution-list form count as the number of individual destinations that those distribution
lists contain. This field is also set when putting a message to a single queue that is not in a distribution
list.

This is an output field. The initial value of this field is 0. This field is not set if Version is less than
MQPMO_VERSION_1.

This field is undefined on z/OS because distribution lists are not supported.

InvalidDestCount (MQLONG)
This is the number of messages that could not be sent to queues in the distribution list. The count
includes queues that failed to open, as well as queues that were opened successfully but for which the
put operation failed. This field is also set when putting a message to a single queue that is not in a
distribution list.

Note: This field is set if the CompCode parameter on the MQPUT or MQPUT1 call is MQCC_OK or
MQCC_WARNING; it might be set if the CompCode parameter is MQCC_FAILED, but do not rely on this in
application code.

This is an output field. The initial value of this field is 0. This field is not set if Version is less than
MQPMO_VERSION_1.

This field is undefined on z/OS because distribution lists are not supported.

ResolvedQName (MQCHAR48)
This is the name of the destination queue after name resolution has been performed by the local queue
manager. The name returned is the name of a queue that exists on the queue manager identified by
ResolvedQMgrName.

A nonblank value is returned only if the object is a single queue; if the object is a distribution list or a topic,
the value returned is undefined.

This is an output field. The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this
field is the null string in C, and 48 blank characters in other programming languages.

Developing applications reference 507

ResolvedQMgrName (MQCHAR48)
This is the name of the destination queue manager after name resolution has been performed by the local
queue manager. The name returned is the name of the queue manager that owns the queue identified by
ResolvedQName, and can be the name of the local queue manager.

If ResolvedQName is a shared queue that is owned by the queue sharing group to which the local queue
manager belongs, ResolvedQMgrName is the name of the queue sharing group. If the queue is owned
by some other queue sharing group, ResolvedQName can be the name of the queue sharing group or the
name of a queue manager that is a member of the queue sharing group (the nature of the value returned
is determined by the queue definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue; if the object is a distribution list or a topic,
the value returned is undefined.

This is an output field. The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial value of
this field is the null string in C, and 48 blank characters in other programming languages.

RecsPresent (MQLONG)
This is the number of MQPMR put message records or MQRR response records that have been provided
by the application. This number can be greater than zero only if the message is being put to a distribution
list. Put message records and response records are optional; the application need not provide any
records, or it can choose to provide records of only one type. However, if the application provides records
of both types, it must provide RecsPresent records of each type.

The value of RecsPresent need not be the same as the number of destinations in the distribution list.
If too many records are provided, the excess are not used; if too few records are provided, default values
are used for the message properties for those destinations that do not have put message records (see
PutMsgRecOffset).

If RecsPresent is less than zero, or is greater than zero but the message is not being put to a distribution
list, the call fails with reason code MQRC_RECS_PRESENT_ERROR.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than
MQPMO_VERSION_2.

PutMsgRecFields (MQLONG)
This field contains flags that indicate which MQPMR fields are present in the put message records
provided by the application. Use PutMsgRecFields only when the message is being put to a distribution
list. The field is ignored if RecsPresent is zero, or both PutMsgRecOffset and PutMsgRecPtr are
zero.

For fields that are present, the queue manager uses for each destination the values from the fields in the
corresponding put message record. For fields that are absent, the queue manager uses the values from
the MQMD structure.

Use one or more of the following flags to indicate which fields are present in the put message records:
MQPMRF_MSG_ID

Message-identifier field is present.
MQPMRF_CORREL_ID

Correlation-identifier field is present.
MQPMRF_GROUP_ID

Group-identifier field is present.
MQPMRF_FEEDBACK

Feedback field is present.
MQPMRF_ACCOUNTING_TOKEN

Accounting-token field is present.

508 IBM MQ Developing Applications Reference

If you specify this flag, specify either MQPMO_SET_IDENTITY_CONTEXT or
MQPMO_SET_ALL_CONTEXT in the Options field; if this condition is not satisfied, the call fails with
reason code MQRC_PMO_RECORD_FLAGS_ERROR.

If no MQPMR fields are present, the following can be specified:
MQPMRF_NONE

No put-message record fields are present.

If this value is specified, either RecsPresent must be zero, or both PutMsgRecOffset and
PutMsgRecPtr must be zero.

MQPMRF_NONE is defined to aid program documentation. It is not intended that this constant be
used with any other, but as its value is zero, such use cannot be detected.

If PutMsgRecFields contains flags that are not valid, or put message records are provided
but PutMsgRecFields has the value MQPMRF_NONE, the call fails with reason code
MQRC_PMO_RECORD_FLAGS_ERROR.

This is an input field. The initial value of this field is MQPMRF_NONE. This field is ignored if Version is
less than MQPMO_VERSION_2.

PutMsgRecOffset (MQLONG)
This is the offset in bytes of the first MQPMR put message record from the start of the MQPMO structure.
The offset can be positive or negative. PutMsgRecOffset is used only when the message is being put to
a distribution list. The field is ignored if RecsPresent is zero.

When the message is being put to a distribution list, an array of one or more MQPMR put message records
can be provided in order to specify certain properties of the message for each destination individually;
these properties are:

• Message identifier
• Correlation identifier
• Group identifier
• Feedback value
• Accounting token

You do not need to specify all these properties, but whatever subset you choose, specify the fields in the
correct order. See the description of the MQPMR structure for further details.

Usually, there must be as many put message records as there are object records specified by MQOD
when the distribution list is opened; each put message record supplies the message properties for the
queue identified by the corresponding object record. Queues in the distribution list that fail to open must
still have put message records allocated for them at the appropriate positions in the array, although the
message properties are ignored in this case.

The number of put message records can differ from the number of object records. If there are fewer put
message records than object records, the message properties for the destinations that do not have put
message records are taken from the corresponding fields in the message descriptor MQMD. If there are
more put message records than object records, the excess are not used (although it must still be possible
to access them). Put message records are optional, but if they are supplied there must be RecsPresent
of them.

Provide the put message records in a similar way to the object records in MQOD, either by specifying an
offset in PutMsgRecOffset, or by specifying an address in PutMsgRecPtr ; for details of how to do this,
see the ObjectRecOffset field described in“MQOD - Object descriptor” on page 475.

No more than one of PutMsgRecOffset and PutMsgRecPtr can be used; the call fails with reason code
MQRC_PUT_MSG_RECORDS_ERROR if both are nonzero.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than
MQPMO_VERSION_2.

Developing applications reference 509

ResponseRecOffset (MQLONG)
This is the offset in bytes of the first MQRR response record from the start of the MQPMO structure. The
offset can be positive or negative. ResponseRecOffset is used only when the message is being put to a
distribution list. The field is ignored if RecsPresent is zero.

When putting the message to a distribution list, you can provide an array of one or more MQRR
response records to identify the queues to which the message was not sent successfully (CompCode
field in MQRR), and the reason for each failure (Reason field in MQRR). The message might not
have been sent either because the queue failed to open, or because the put operation failed. The
queue manager sets the response records only when the outcome of the call is mixed (that is, some
messages were sent successfully while others failed, or all failed but for differing reasons); reason
code MQRC_MULTIPLE_REASONS from the call indicates this case. If the same reason code applies to
all queues, that reason is returned in the Reason parameter of the MQPUT or MQPUT1 call, and the
response records are not set.

Usually, there are as many response records as there are object records specified by MQOD when the
distribution list is opened; when necessary, each response record is set to the completion code and
reason code for the put to the queue identified by the corresponding object record. Queues in the
distribution list that fail to open must still have response records allocated for them at the appropriate
positions in the array, although they are set to the completion code and reason code resulting from the
open operation, rather than the put operation.

The number of response records can differ from the number of object records. If there are fewer response
records than object records, the application might not be able to identify all the destinations for which
the put operation failed, or the reasons for the failures. If there are more response records than object
records, the excess are not used (although it must still be possible to access them). Response records are
optional, but if they are supplied there must be RecsPresent of them.

Provide the response records in a similar way to the object records in MQOD, either by specifying an
offset in ResponseRecOffset, or by specifying an address in ResponseRecPtr ; for details of how to
do this, see the ObjectRecOffset field described in “MQOD - Object descriptor” on page 475. However,
use no more than one of ResponseRecOffset and ResponseRecPtr ; the call fails with reason code
MQRC_RESPONSE_RECORDS_ERROR if both are nonzero.

For the MQPUT1 call, this field must be zero. This is because the response information (if requested) is
returned in the response records specified by the object descriptor MQOD.

This is an input field. The initial value of this field is 0. This field is ignored if Version is less than
MQPMO_VERSION_2.

PutMsgRecPtr (MQPTR)
This is the address of the first MQPMR put message record. Use PutMsgRecPtr only when the message
is being put to a distribution list. The field is ignored if RecsPresent is zero.

You can use either PutMsgRecPtr or PutMsgRecOffset can be used to specify the put message
records, but not both; for details, see “PutMsgRecOffset (MQLONG)” on page 509. If you do not use
PutMsgRecPtr, set it to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in those programming languages
that support pointers, and an all-null byte string otherwise. This field is ignored if Version is less than
MQPMO_VERSION_2.

Note: On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length, with the initial value being the all-null byte string.

ResponseRecPtr (MQPTR)
This is the address of the first MQRR response record. ResponseRecPtr is used only when the message
is being put to a distribution list. The field is ignored if RecsPresent is zero.

510 IBM MQ Developing Applications Reference

Use either ResponseRecPtr or ResponseRecOffset to specify the response records, but not both; for
details, see “ResponseRecOffset (MQLONG)” on page 510. If you do not use ResponseRecPtr set it to
the null pointer or null bytes.

For the MQPUT1 call, this field must be the null pointer or null bytes. This is because the response
information (if requested) is returned in the response records specified by the object descriptor MQOD.

This is an input field. The initial value of this field is the null pointer in those programming languages
that support pointers, and an all-null byte string otherwise. This field is ignored if Version is less than
MQPMO_VERSION_2.

Note: On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length, with the initial value being the all-null byte string.

OriginalMsgHandle (MQHMSG)

This is an optional handle to a message. It might have been previously retrieved from a queue. The use of
this handle is subject to the value of the Action field; see also NewMsgHandle.

The contents of the original message handle will not be altered by the MQPUT or MQPUT1 call.

This is an input field. The initial value of this field is MQHM_NONE. This field is ignored if Version is less than
MQPMO_VERSION_3.

NewMsgHandle (MQHMSG)

This is an optional handle to the message being put subject to the value of the Action field. It defines the
properties of the message and overrides the values of the OriginalMsgHandle, if specified.

On return from the MQPUT or MQPUT1 call, the contents of the handle reflect the message that was
actually put.

This is an input field. The initial value of this field is MQHM_NONE. This field is ignored if Version is less than
MQPMO_VERSION_3.

Action (MQLONG)
This specifies the type of put being performed and the relationship between the original message
specified by the OriginalMsgHandle field and the new message specified by the NewMsgHandle field.
The properties of the message are chosen by the queue manager according to the value of the Action
specified.

You can choose to supply the contents of the message descriptor using the MsgDesc parameter on the
MQPUT or MQPUT1 calls. Alternatively it is possible not to supply the MsgDesc parameter, or to specify
that it is output-only by including MQPMO_MD_FOR_OUTPUT_ONLY in the Options field of the MQPMO
structure.

If the MsgDesc parameter is not supplied, or if it is specified to be output-only, then the message
descriptor for the new message is populated from the message handle fields of the MQPMO, according to
the rules described in this topic.

The context setting and passing activities described in Controlling context information take effect after
the message descriptor has been composed.

If an incorrect action value is specified, the call fails with the reason code MQRC_ACTION_ERROR.

Any one of the following actions can be specified:
MQACTP_NEW

A new message is being put, and no relationship to a previous message is being specified by the
program. The message descriptor is composed as follows:

Developing applications reference 511

• If a MsgDesc is supplied on the MQPUT or MQPUT1 call, and MQPMO_MD_FOR_OUTPUT_ONLY is
not in the MQPMO.Options, this is used as the message descriptor unmodified.

• If a MsgDesc is not supplied, or MQPMO_MD_FOR_OUTPUT_ONLY is in the MQPMO.Options then
the queue manager generates the message descriptor using a combination of properties from
OriginalMsgHandle and NewMsgHandle. Any message descriptor fields explicitly set on the new
message handle take precedence over those in the original message handle.

Message data is taken from the MQPUT or MQPUT1 Buffer parameter.
MQACTP_FORWARD

A previously retrieved message is being forwarded. The original message handle specifies the
message that was previously retrieved.

The new message handle specifies any modifications to the properties (including any in the message
descriptor) in the original message handle.

The message descriptor is composed as follows:

• If a MsgDesc is supplied on the MQPUT or MQPUT1 call, and MQPMO_MD_FOR_OUTPUT_ONLY is
not in the MQPMO.Options, this is used as the message descriptor unmodified.

• If a MsgDesc is not supplied, or MQPMO_MD_FOR_OUTPUT_ONLY is in the MQPMO.Options then
the queue manager generates the message descriptor using a combination of properties from
OriginalMsgHandle and NewMsgHandle. Any message descriptor fields explicitly set on the new
message handle take precedence over those in the original message handle.

• If MQPMO_NEW_MSG_ID or MQPMO_NEW_CORREL_ID are specified in the MQPMO.Options, then
these are honoured.

The message properties are composed as follows:

• All properties from the original message handle which have MQCOPY_FORWARD in the
MQPD.CopyOptions

• All properties from the new message handle. For each property in the new message handle that
has the same name as a property in the original message handle, the value is taken from the new
message handle. The only exception to this rule is the special case when the property in the new
message handle has the same name as a property in the original message handle, but the value of
the property is null. In this case the property is removed from the message.

The message data to be forwarded is taken from the MQPUT or MQPUT1 Buffer parameter.

MQACTP_REPLY
A reply is being made to a previously retrieved message. The original message handle specifies the
message that was previously retrieved.

The new message handle specifies any modifications to the properties (including any in the message
descriptor) in the original message handle.

The message descriptor is composed as follows:

• If a MsgDesc is supplied on the MQPUT or MQPUT1 call, and MQPMO_MD_FOR_OUTPUT_ONLY is
not in the MQPMO.Options, this is used as the message descriptor unmodified.

• If a MsgDesc is not supplied, or MQPMO_MD_FOR_OUTPUT_ONLY is in the MQPMO.Options, then
initial message descriptor fields are chosen as follows:

Table 510. Reply message handle transformation

Field in MQMD Value used

Report If MQRO_PASS_DISCARD_AND_EXPIRY
and MQRO_DISCARD_MSG are set:
MQRO_DISCARD_MSG
otherwise
MQRO_NONE

512 IBM MQ Developing Applications Reference

Table 510. Reply message handle transformation (continued)

Field in MQMD Value used

MsgType MQMT_REPLY

Expiry If MQRO_PASS_DISCARD_AND_EXPIRY
is set:
Copied from the input message
otherwise
MQEI_UNLIMITED

Feedback MQFB_NONE

MsgId If MQPMO_NEW_MSG_ID is set:
A new message identifier is generated
else if MQRO_PASS_MSG_ID is set:
Copied from the input message
otherwise
MQMI_NONE

CorrelId If MQPMO_NEW_CORREL_ID is set:
A new correlation identifier is generated
else if MQRO_COPY_MSG_ID_TO_CORREL_ID is set:
Copied from the MsgId field of the
input message
else if MQRO_PASS_CORREL_ID is set:
Copied from the CorrelId field of the
input message
otherwise
MQCI_NONE

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Blanks

GroupId MQGI_NONE

MsgSeqNumber 1

Offset 0

MsgFlags MQMF_NONE

OriginalLength MQOL_UNDEFINED

• The message descriptor is then modified by the new message handle - any message descriptor
fields explicitly set as properties in the new message handle take precedence over the message
descriptor fields as described previously.

The message properties are composed as follows:

• All properties from the original message handle which have MQCOPY_REPLY in the
MQPD.CopyOptions

• All properties from the new message handle. For each property in the new message handle that
has the same name as a property in the original message handle, the value is taken from the new
message handle. The only exception to this rule is the special case when the property in the new
message handle has the same name as a property in the original message handle, but the value of
the property is null. In this case the property is removed from the message.

Developing applications reference 513

The message data to be forwarded is taken from the MQPUT/MQPUT1 Buffer parameter.
MQACTP_REPORT

A report is being generated as a result of a previously retrieved message. The original message handle
specifies the message causing the report to be generated.

The new message handle specifies any modifications to the properties (including any in the message
descriptor) in the original message handle.

The message descriptor is composed as follows:

• If a MsgDesc is supplied on the MQPUT or MQPUT1 call, and MQPMO_MD_FOR_OUTPUT_ONLY is
not in the MQPMO.Options, this is used as the message descriptor unmodified.

• If a MsgDesc is not supplied, or MQPMO_MD_FOR_OUTPUT_ONLY is in the MQPMO.Options then
initial message descriptor fields are chosen as follows:

Table 511. Report message handle transformation

Field in MQMD Value used

Report If MQRO_PASS_DISCARD_AND_EXPIRY and
MQRO_DISCARD_MSG are set:
MQRO_DISCARD_MSG
otherwise
MQRO_NONE

MsgType MQMT_REPORT

Expiry If MQRO_PASS_DISCARD_AND_EXPIRY
is set:
Copied from the input message
otherwise
MQEI_UNLIMITED

MsgId If MQPMO_NEW_MSG_ID is set:
A new message identifier is generated
else if MQRO_PASS_MSG_ID is set:
Copied from the input message
otherwise
MQMI_NONE

CorrelId If MQPMO_NEW_CORREL_ID is set:
A new correlation identifier is generated
else if MQRO_COPY_MSG_ID_TO_CORREL_ID is set:
Copied from the MsgId field of the
input message
else if MQRO_PASS_CORREL_ID is set:
Copied from the CorrelId field of the
input message
otherwise
MQCI_NONE

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Blanks

OriginalLength Set to the BufferLength

514 IBM MQ Developing Applications Reference

• The message descriptor is then modified by the new message handle - any message descriptor
fields explicitly set as properties in the new message handle take precedence over the message
descriptor fields as described previously.

The message properties are composed as follows:

• All properties from the original message handle which have MQCOPY_REPORT in the
MQPD.CopyOptions

• All properties from the new message handle. For each property in the new message handle that
has the same name as a property in the original message handle, the value is taken from the new
message handle. The only exception to this rule is the special case when the property in the new
message handle has the same name as a property in the original message handle, but the value of
the property is null. In this case the property is removed from the message.

The Feedback field in the resultant MQMD represents the report that is to be generated. A
Feedback value of MQFB_NONE causes the MQPUT or MQPUT1 call to fail with reason code
MQRC_FEEDBACK_ERROR.

To choose the user data of the report message, IBM MQ consults the Report and Feedback fields in
the resultant MQMD, and the Buffer and BufferLength parameters of the MQPUT or MQPUT1 call.

• If Feedback is MQFB_COA, MQFB_COD or MQFB_EXPIRATION then the value of Report is inspected.
• If any of the following cases is true, the full message data from Buffer for a length of BufferLength is

used.

– Feedback is MQFB_EXPIRATION and Report contains MQRO_EXPIRATION_WITH_FULL_DATA
– Feedback is MQFB_COD and Report contains MQRO_COD_WITH_FULL_DATA
– Feedback is MQFB_COA and Report contains MQRO_COA_WITH_FULL_DATA

• If any of the following cases is true, the first 100 bytes of the message (or BufferLength if this is less
than 100) from Buffer are used

– Feedback is MQFB_EXPIRATION and Report contains MQRO_EXPIRATION_WITH_DATA
– Feedback is MQFB_COD and Report contains MQRO_COD_WITH_DATA
– Feedback is MQFB_COA and Report contains MQRO_COA_WITH_DATA

• If Feedback is MQFB_EXPIRATION, MQFB_COD or MQFB_COA, and Report does not contain the
*_WITH_FULL_DATA or *_WITH_DATA options relevant to that Feeback value, then no user data is
included with the message.

• If Feedback takes a different value from those listed above, then Buffer and BufferLength are used
as normal.

The derivation of the user data described in the previous list is also shown in the following table:

Table 512. Source of user data

MQFB_COA MQFB_COD MQFB_EXPIRATION

MQRO_EXPIRATION
_WITH_FULL_DATA

None None Buffer(Bufferlength)

MQRO_COD_WITH
_FULL_DATA

None Buffer(Bufferlength) None

MQRO_COA_WITH
_FULL_DATA

Buffer(Bufferlength) None None

MQRO_EXPIRATION
_WITH_DATA

None None Buffer(First 100 bytes)

MQRO_COD_WITH_DA
TA

None Buffer(First 100 bytes) None

Developing applications reference 515

Table 512. Source of user data (continued)

MQFB_COA MQFB_COD MQFB_EXPIRATION

MQRO_COA_WITH_DA
TA

Buffer(First 100 bytes) None None

PubLevel (MQLONG)
The initial value of this field is 9. The level of subscription targeted by this publication. Only those
subscriptions with the highest SubLevel less than or equal to this value receive this publication. This value
must be in the range zero to 9; zero is the lowest level. However, if a publication has been retained, it is no
longer available to subscribers at higher levels because it is republished at PubLevel 1.

For information, see Intercepting publications.

MQPMR - Put-message record
Use the MQPMR structure to specify various message properties for a single destination when putting a
message to a distribution list. MQPMR is an input/output structure for the MQPUT and MQPUT1 calls.

Availability
The MQPMR structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ clients connected to these systems.

Character set and encoding
Data in MQPMR must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ client, the structure must be in the character set and encoding of the client.

Usage
By providing an array of these structures on the MQPUT or MQPUT1 call, you can specify different values
for each destination queue in a distribution list. Some of the fields are input only, others are input/output.

Note: This structure is unusual in that it does not have a fixed layout. The fields in this structure are
optional, and the presence or absence of each field is indicated by the flags in the PutMsgRecFields
field in MQPMO. Fields that are present must occur in the following order :

• MsgId
• CorrelId
• GroupId
• Feedback
• AccountingToken

Fields that are absent occupy no space in the record.

Because MQPMR does not have a fixed layout, no definition of it is provided in the header, COPY,
and INCLUDE files for the supported programming languages. The application programmer must
create a declaration containing the fields that are required by the application, and set the flags in
PutMsgRecFields to indicate the fields that are present.

516 IBM MQ Developing Applications Reference

Fields
There are no initial values defined for this structure, as no structure declarations are provided in the
header, COPY, and INCLUDE files for the supported programming languages. The sample declarations
show how to declare the structure if all the fields are required.

Table 513. Fields in MQPMR

Field name Field description

MsgId Message identifier

CorrelId Correlation identifier

GroupId Group identifier

Feedback Feedback or reason code

AccountingToken Accounting token

Language declarations
C declaration for MQPMR

typedef struct tagMQPMR MQPMR;
struct tagMQPMR {
 MQBYTE24 MsgId; /* Message identifier */
 MQBYTE24 CorrelId; /* Correlation identifier */
 MQBYTE24 GroupId; /* Group identifier */
 MQLONG Feedback; /* Feedback or reason code */
 MQBYTE32 AccountingToken; /* Accounting token */
};

COBOL declaration for MQPMR

** MQPMR structure
 10 MQPMR.
** Message identifier
 15 MQPMR-MSGID PIC X(24).
** Correlation identifier
 15 MQPMR-CORRELID PIC X(24).
** Group identifier
 15 MQPMR-GROUPID PIC X(24).
** Feedback or reason code
 15 MQPMR-FEEDBACK PIC S9(9) BINARY.
** Accounting token
 15 MQPMR-ACCOUNTINGTOKEN PIC X(32).

PL/I declaration for MQPMR

dcl
 1 MQPMR based,
 3 MsgId char(24), /* Message identifier */
 3 CorrelId char(24), /* Correlation identifier */
 3 GroupId char(24), /* Group identifier */
 3 Feedback fixed bin(31), /* Feedback or reason code */
 3 AccountingToken char(32); /* Accounting token */

Visual Basic declaration for MQPMR

Type MQPMR
 MsgId As MQBYTE24 'Message identifier'
 CorrelId As MQBYTE24 'Correlation identifier'
 GroupId As MQBYTE24 'Group identifier'
 Feedback As Long 'Feedback or reason code'
 AccountingToken As MQBYTE32 'Accounting token'
End Type

Developing applications reference 517

MsgId (MQBYTE24)
This is the message identifier to be used for the message sent to the queue with a name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call. It is processed in the same way as the MsgId field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR records than destinations, the
value in MQMD is used for those destinations that do not have an MQPMR record containing a MsgId field.
If that value is MQMI_NONE, a new message identifier is generated for each of those destinations (that is,
no two of those destinations have the same message identifier).

If MQPMO_NEW_MSG_ID is specified, new message identifiers are generated for all the destinations in
the distribution list, regardless of whether they have MQPMR records. This is different from the way that
MQPMO_NEW_CORREL_ID is processed (see CorrelId field).

This is an input/output field.

CorrelId (MQBYTE24)
This is the correlation identifier to be used for the message sent to the queue with a name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call. It is processed in the same way as the CorrelId field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR records than destinations, the
value in MQMD is used for those destinations that do not have an MQPMR record containing a CorrelId
field.

If MQPMO_NEW_CORREL_ID is specified, a single new correlation identifier is generated and used for all
the destinations in the distribution list, regardless of whether they have MQPMR records. This is different
from the way that MQPMO_NEW_MSG_ID is processed (see MsgId field).

This is an input/output field.

GroupId (MQBYTE24)
GroupId is the group identifier to be used for the message sent to the queue with the name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call. It is processed in the same way as the GroupId field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR records than destinations,
the value in MQMD is used for those destinations that do not have an MQPMR record containing a
GroupId field. The value is processed as documented in Physical order on a queue, but with the following
differences:

• GroupId is created from the QMName and a timestamp. Therefore to keep a GroupId unique keep
queue manager names unique too. Also do not set the clocks back on the queue managers machine.

• In those cases where a new group identifier would be used, the queue manager generates a different
group identifier for each destination (that is, no two destinations have the same group identifier).

• In those cases where the value in the field would be used, the call fails with reason code
MQRC_GROUP_ID_ERROR

This is an input/output field.

Feedback (MQLONG)
This is the feedback code to be used for the message sent to the queue with the name that was specified
by the corresponding element in the array of MQOR structures provided on the MQOPEN or MQPUT1 call.
It is processed in the same way as the Feedback field in MQMD for a put to a single queue.

If this field is not present, the value in MQMD is used.

This is an input field.

518 IBM MQ Developing Applications Reference

AccountingToken (MQBYTE32)
This is the accounting token to be used for the message sent to the queue with the name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call. It is processed in the same way as the AccountingToken field in MQMD for a put to a
single queue. See the description of AccountingToken in “MQMD - Message descriptor” on page 417
for information about the content of this field.

If this field is not present, the value in MQMD is used.

This is an input field.

MQRFH - Rules and formatting header
The MQRFH structure defines the layout of the rules and formatting header. Use this header to send string
data in the form of name-value pairs.

Availability
All IBM MQ systems, plus IBM MQ MQI clients connected to these systems.

Format name
MQFMT_RF_HEADER

Character set and encoding
The fields in the MQRFH structure (including NameValueString) are in the character set and encoding
given by the CodedCharSetId and Encoding fields in the header structure that precedes the MQRFH, or
by those fields in the MQMD structure if the MQRFH is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that are valid in queue
names.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 514. Fields in MQRFH for MQRFH

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQRFH_STRUC_ID 'RFH¬'

Version (structure version number) MQRFH_VERSION_1 1

StrucLength (length in bytes of the MQRFH
structure)

MQRFH_STRUC_LENGT
H_FIXED

32

Encoding (numeric encoding of the data that
follows NameValueString)

MQENC_NATIVE Depends on
environment

CodedCharSetId (specifies the character
set identifier of the data that follows
NameValueString)

MQCCSI_UNDEFINED 0

Format (format name of the data that follows
NameValueString)

MQFMT_NONE Blanks

Flags (flags) MQRFH_NONE 0

Developing applications reference 519

Table 514. Fields in MQRFH for MQRFH (continued)

Field name and description Name of constant Initial value (if any) of
constant

NameValueString (variable-length character string
containing name-value pairs)

none none

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQRFH_DEFAULT contains the values that are

listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQRFH MyRFH = {MQRFH_DEFAULT};

Language declarations
C declaration for MQRFH

typedef struct tagMQRFH MQRFH;
struct tagMQRFH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Total length of MQRFH including
 NameValueString */
 MQLONG Encoding; /* Numeric encoding of data that follows
 NameValueString */
 MQLONG CodedCharSetId; /* Character set identifier of data that
 follows NameValueString */
 MQCHAR8 Format; /* Format name of data that follows
 NameValueString */
 MQLONG Flags; /* Flags */
};

COBOL declaration for MQRFH

** MQRFH structure
 10 MQRFH.
** Structure identifier
 15 MQRFH-STRUCID PIC X(4).
** Structure version number
 15 MQRFH-VERSION PIC S9(9) BINARY.
** Total length of MQRFH including NAMEVALUESTRING
 15 MQRFH-STRUCLENGTH PIC S9(9) BINARY.
** Numeric encoding of data that follows NAMEVALUESTRING
 15 MQRFH-ENCODING PIC S9(9) BINARY.
** Character set identifier of data that follows NAMEVALUESTRING
 15 MQRFH-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of data that follows NAMEVALUESTRING
 15 MQRFH-FORMAT PIC X(8).
** Flags
 15 MQRFH-FLAGS PIC S9(9) BINARY.

PL/I declaration for MQRFH

dcl
 1 MQRFH based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 StrucLength fixed bin(31), /* Total length of MQRFH including
 NameValueString */
 3 Encoding fixed bin(31), /* Numeric encoding of data that
 follows NameValueString */
 3 CodedCharSetId fixed bin(31), /* Character set identifier of data
 that follows NameValueString */

520 IBM MQ Developing Applications Reference

 3 Format char(8), /* Format name of data that follows
 NameValueString */
 3 Flags fixed bin(31); /* Flags */

High Level Assembler declaration for MQRFH

MQRFH DSECT
MQRFH_STRUCID DS CL4 Structure identifier
MQRFH_VERSION DS F Structure version number
MQRFH_STRUCLENGTH DS F Total length of MQRFH including
* NAMEVALUESTRING
MQRFH_ENCODING DS F Numeric encoding of data that follows
* NAMEVALUESTRING
MQRFH_CODEDCHARSETID DS F Character set identifier of data that
* follows NAMEVALUESTRING
MQRFH_FORMAT DS CL8 Format name of data that follows
* NAMEVALUESTRING
MQRFH_FLAGS DS F Flags
*
MQRFH_LENGTH EQU *-MQRFH
 ORG MQRFH
MQRFH_AREA DS CL(MQRFH_LENGTH)

Visual Basic declaration for MQRFH

Type MQRFH
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 StrucLength As Long 'Total length of MQRFH including'
 'NameValueString'
 Encoding As Long 'Numeric encoding of data that follows'
 'NameValueString'
 CodedCharSetId As Long 'Character set identifier of data that'
 'follows NameValueString'
 Format As String*8 'Format name of data that follows'
 'NameValueString'
 Flags As Long 'Flags'
End Type

StrucId (MQCHAR4)

This is the structure identifier; the value must be:
MQRFH_STRUC_ID

Identifier for rules and formatting header structure.

For the C programming language, the constant MQRFH_STRUC_ID_ARRAY is also defined; this has the
same value as MQRFH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQRFH_STRUC_ID.

Version (MQLONG)

This is the structure version number; the value must be:
MQRFH_VERSION_1

Version-1 rules and formatting header structure.

The initial value of this field is MQRFH_VERSION_1.

StrucLength (MQLONG)
This is the length in bytes of the MQRFH structure, including the NameValueString field at the end of
the structure. The length does not include any user data that follows the NameValueString field.

To avoid problems converting the user data in some environments, StrucLength must be a multiple of
four.

Developing applications reference 521

The following constant gives the length of the fixed part of the structure, that is, the length excluding the
NameValueString field:
MQRFH_STRUC_LENGTH_FIXED

Length of fixed part of MQRFH structure.

The initial value of this field is MQRFH_STRUC_LENGTH_FIXED.

Encoding (MQLONG)
This specifies the numeric encoding of the data that follows NameValueString ; it does not apply to
numeric data in the MQRFH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
This specifies the character set identifier of the data that follows NameValueString ; it does not apply to
character data in the MQRFH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-
set identifier of the structure. Provided no error occurs, the value MQCCSI_INHERIT is not returned by
the MQGET call.

MQCCSI_INHERIT cannot be used if the value of the PutApplType field in MQMD is MQAT_BROKER.

The initial value of this field is MQCCSI_UNDEFINED.

Format (MQCHAR8)
This specifies the format name of the data that follows NameValueString.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
The following can be specified:
MQRFH_NONE

No flags.

The initial value of this field is MQRFH_NONE.

NameValueString (MQCHARn)
This is a variable-length character string containing name-value pairs in the form:

name1 value1 name2 value2 name3 value3 ...

Each name or value must be separated from the adjacent name or value by one or more blank characters;
these blanks are not significant. A name or value can contain significant blanks by prefixing and suffixing
the name or value with double quotation marks; all characters between the open double quotation mark

522 IBM MQ Developing Applications Reference

and the matching closing double quotation mark are treated as significant. In the following example, the
name is FAMOUS_WORDS, and the value is Hello World:

FAMOUS_WORDS "Hello World"

A name or value can contain any characters other than the null character (which acts as a delimiter for
NameValueString). However, to assist interoperability an application can restrict names to the following
characters:

• First character: upper or lowercase alphabetic (A through Z, or a through z), or underscore.
• Subsequent characters: upper or lowercase alphabetic, decimal digit (0 through 9), underscore, hyphen,

or dot.

If a name or value contains one or more double quotation marks, the name or value must be enclosed in
double quotation marks, and each double quotation mark within the string must be doubled:

Famous_Words "The program displayed ""Hello World"""

Names and values are case sensitive, that is, lowercase letters are not considered to be the same as
uppercase letters. For example, FAMOUS_WORDS and Famous_Words are two different names.

The length in bytes of NameValueString is equal to StrucLength minus
MQRFH_STRUC_LENGTH_FIXED. To avoid problems converting the user data in some environments,
make this length a multiple of four. Pad NameValueString with blanks to this length, or terminate it
earlier by placing a null character following the last significant character in the string. The null character
and the bytes following it, up to the specified length of NameValueString, are ignored.

Note: Because the length of this field is not fixed, the field is omitted from the declarations of the
structure that are provided for the supported programming languages.

MQRFH2 - Rules and formatting header 2
The MQRFH2 header is based on the MQRFH header, but it allows Unicode strings to be transported
without translation, and it can carry numeric data types. The MQRFH2 structure defines the format of the
version-2 rules and formatting header. You use this header to send data that has been encoded using
an XML-like syntax. A message can contain two or more MQRFH2 structures in series, with user data
optionally following the last MQRFH2 structure in the series.

Availability
All IBM MQ systems, plus IBM MQ MQI clients connected to these systems.

Format name
MQFMT_RF_HEADER_2

Syntax
IBM MQ Message

MQRFH2 header

ChainableHeader

Unformatted data

String data

Formatted data

Unchainable header

MQRFH2 header

Developing applications reference 523

Standard part Special part

NameValueLength NameValueData

Standard part

RFH¬

2

Version

36

StructLength

MQENC_NATIVE

Encoding

-2

CodedCharSetId

¬¬¬¬¬¬S¬¬

Format

Special part
0

Flags

1208

1200

13488

17584

Character set and encoding
Special rules apply to the character set and encoding used for the MQRFH2 structure:

• Fields other than NameValueData are in the character set and encoding given by the
CodedCharSetId and Encoding fields in the header structure that precedes MQRFH2, or by those
fields in the MQMD structure if the MQRFH2 is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that are valid in queue
names.

When MQGMO_CONVERT is specified on the MQGET call, the queue manager converts the MQRFH2 fields,
other than NameValueData, to the requested character set and encoding.

• NameValueData is in the character set given by the NameValueCCSID field. Only the listed Unicode
character sets are valid for NameValueCCSID ; see the description of NameValueCCSID for details.

Some character sets have a representation that depends on the encoding. If NameValueCCSID is one
of these character sets, NameValueData must be in the same encoding as the other fields in the
MQRFH2.

When MQGMO_CONVERT is specified on the MQGET call, the queue manager converts NameValueData to
the requested encoding, but does not change its character set.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 515. Fields in MQRFH2 for MQRFH2

Field name Name of constant Value of constant

StrucId (structure
identifier)

MQRFH_STRUC_ID 'RFH¬'

Version (structure
version number)

MQRFH_VERSION_2 2

524 IBM MQ Developing Applications Reference

Table 515. Fields in MQRFH2 for MQRFH2 (continued)

Field name Name of constant Value of constant

StrucLength (length in
bytes of the MQRFH2
structure)

MQRFH_STRUC_LENGTH_FIXED_2 36

Encoding (numeric
encoding of the data
that follows the last
NameValueData field)

MQENC_NATIVE Depends on
environment

CodedCharSetId
(character set identifier
of the data that
follows the last
NameValueData field)

MQCCSI_INHERIT -2

Format (format name of
the data that follows the
last NameValueData
field)

MQFMT_NONE Blanks

Flags (flags) MQRFH_NONE 0

NameValueCCSID
(coded character set
identifier of the data
in the NameValueData
field)

None 1208

NameValueLength
(length in bytes of
the data in the
NameValueData field)

None None

NameValueData (name-
value pairs of message
properties)

None None

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQRFH2_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQRFH2 MyRFH2 = {MQRFH2_DEFAULT};

Language declarations
C declaration for MQRFH2

typedef struct tagMQRFH2 MQRFH2;
struct tagMQRFH2 {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Total length of MQRFH2 including all
 NameValueLength and NameValueData
 fields */
 MQLONG Encoding; /* Numeric encoding of data that follows
 last NameValueData field */

Developing applications reference 525

 MQLONG CodedCharSetId; /* Character set identifier of data that
 follows last NameValueData field */
 MQCHAR8 Format; /* Format name of data that follows last
 NameValueData field */
 MQLONG Flags; /* Flags */
 MQLONG NameValueCCSID; /* Character set identifier of
 NameValueData */
};

COBOL declaration for MQRFH2

** MQRFH2 structure
 10 MQRFH2.
** Structure identifier
 15 MQRFH2-STRUCID PIC X(4).
** Structure version number
 15 MQRFH2-VERSION PIC S9(9) BINARY.
** Total length of MQRFH2 including all NAMEVALUELENGTH and
** NAMEVALUEDATA fields
 15 MQRFH2-STRUCLENGTH PIC S9(9) BINARY.
** Numeric encoding of data that follows last NAMEVALUEDATA field
 15 MQRFH2-ENCODING PIC S9(9) BINARY.
** Character set identifier of data that follows last NAMEVALUEDATA
** field
 15 MQRFH2-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of data that follows last NAMEVALUEDATA field
 15 MQRFH2-FORMAT PIC X(8).
** Flags
 15 MQRFH2-FLAGS PIC S9(9) BINARY.
** Character set identifier of NAMEVALUEDATA
 15 MQRFH2-NAMEVALUECCSID PIC S9(9) BINARY.

PL/I declaration for MQRFH2

dcl
 1 MQRFH2 based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 StrucLength fixed bin(31), /* Total length of MQRFH2 including
 all NameValueLength and
 NameValueData fields */
 3 Encoding fixed bin(31), /* Numeric encoding of data that
 follows last NameValueData field */
 3 CodedCharSetId fixed bin(31), /* Character set identifier of data
 that follows last NameValueData
 field */
 3 Format char(8), /* Format name of data that follows
 last NameValueData field */
 3 Flags fixed bin(31), /* Flags */
 3 NameValueCCSID fixed bin(31); /* Character set identifier of
 NameValueData */

High Level Assembler declaration for MQRFH2

MQRFH DSECT
MQRFH_STRUCID DS CL4 Structure identifier
MQRFH_VERSION DS F Structure version number
MQRFH_STRUCLENGTH DS F Total length of MQRFH2 including all
* NAMEVALUELENGTH and NAMEVALUEDATA fields
MQRFH_ENCODING DS F Numeric encoding of data that follows
* last NAMEVALUEDATA field
MQRFH_CODEDCHARSETID DS F Character set identifier of data that
* follows last NAMEVALUEDATA field
MQRFH_FORMAT DS CL8 Format name of data that follows last
* NAMEVALUEDATA field
MQRFH_FLAGS DS F Flags
MQRFH_NAMEVALUECCSID DS F Character set identifier of
* NAMEVALUEDATA
*
MQRFH_LENGTH EQU *-MQRFH
 ORG MQRFH
MQRFH_AREA DS CL(MQRFH_LENGTH)

526 IBM MQ Developing Applications Reference

Visual Basic declaration for MQRFH2

Type MQRFH2
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 StrucLength As Long 'Total length of MQRFH2 including all'
 'NameValueLength and NameValueData fields'
 Encoding As Long 'Numeric encoding of data that follows'
 'last NameValueData field'
 CodedCharSetId As Long 'Character set identifier of data that'
 'follows last NameValueData field'
 Format As String*8 'Format name of data that follows last'
 'NameValueData field'
 Flags As Long 'Flags'
 NameValueCCSID As Long 'Character set identifier of NameValueData'
End Type

StrucId (MQCHAR4)
This is the structure identifier; the value must be:
MQRFH_STRUC_ID

Identifier for rules and formatting header structure.

For the C programming language, the constant MQRFH_STRUC_ID_ARRAY is also defined; this has the
same value as MQRFH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQRFH_STRUC_ID.

Version (MQLONG)

This is the structure version number; the value must be:
MQRFH_VERSION_2

Version-2 rules and formatting header structure.

The initial value of this field is MQRFH_VERSION_2.

StrucLength (MQLONG)
This is the length in bytes of the MQRFH2 structure, including the NameValueLength and
NameValueData fields at the end of the structure. It is valid for there to be multiple pairs of
NameValueLength and NameValueData fields at the end of the structure, in the sequence:

length1, data1, length2, data2, ...

StrucLength does not include any user data that might follow the last NameValueData field at the end
of the structure.

To avoid problems with converting the user data in some environments, StrucLength must be a multiple
of four.

The following constant gives the length of the fixed part of the structure, that is, the length excluding the
NameValueLength and NameValueData fields:
MQRFH_STRUC_LENGTH_FIXED_2

Length of fixed part of MQRFH2 structure.

The initial value of this field is MQRFH_STRUC_LENGTH_FIXED_2.

Encoding (MQLONG)
This specifies the numeric encoding of the data that follows the last NameValueData field; it does not
apply to numeric data in the MQRFH2 structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

Developing applications reference 527

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
This specifies the character set identifier of the data that follows the last NameValueData field; it does
not apply to character data in the MQRFH2 structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-
set identifier of the structure. Provided no error occurs, the value MQCCSI_INHERIT is not returned by
the MQGET call.

MQCCSI_INHERIT cannot be used if the value of the PutApplType field in MQMD is MQAT_BROKER.

The initial value of this field is MQCCSI_INHERIT.

Format (MQCHAR8)
This specifies the format name of the data that follows the last NameValueData field.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
The initial value of this field is MQRFH_NONE. MQRFH_NONE must be specified.

MQRFH_NONE
No flags.

MQRFH_INTERNAL
The MQRFH2 header contains internally set properties.

MQRFH_INTERNAL is for queue manager use.

The top 16 bits, MQRFH_FLAGS_RESTRICTED_MASK, are reserved for flags the queue manager sets. Flags
that a user might set are defined in the bottom 16 bits.

NameValueCCSID (MQLONG)
This specifies the coded character set identifier of the data in the NameValueData field. This is different
from the character set of the other strings in the MQRFH2 structure, and can be different from the
character set of the data (if any) that follows the last NameValueData field at the end of the structure.

NameValueCCSID must have one of the following values:

CCSID Meaning

1200 UTF-16, most recent Unicode version supported

13488 UTF-16, Unicode version 2.0 subset

17584 UTF-16, Unicode version 3.0 subset (includes the Euro
symbol)

1208 UTF-8, most recent Unicode version supported

For the UTF-16 character sets, the encoding (byte order) of the NameValueData must be the same as the
encoding of the other fields in the MQRFH2 structure.

528 IBM MQ Developing Applications Reference

Characters beyond the Unicode Basic Multilingual Plane (those above U+FFFF), represented in UTF-16 by
surrogate code points (X'D800' through X'DFFF'), or four bytes in UTF-8, are not supported.

Note: If NameValueCCSID does not have one of the values listed above, and the MQRFH2
structure requires conversion on the MQGET call, the call completes with reason code
MQRC_SOURCE_CCSID_ERROR and the message is returned unconverted.

The initial value of this field is 1208.

NameValueLength (MQLONG)
The length of the corresponding NameValueData field

This specifies the length in bytes of the data in the NameValueData field. NameValueLength must be a
multiple of four.

Note: The NameValueLength and NameValueData fields are optional, but if present they must occur as
a pair and be adjacent. The pair of fields can be repeated as many times as required, for example:

length1 data1 length2 data2 length3 data3

Because these fields are optional, they are omitted from the declarations of the structure that are
provided for the various programming languages supported.

NameValueData (MQCHARn)
NameValueData is a variable length field that contains a folder containing name-value pairs of message
properties. A folder is a variable-length character string containing data encoded using an XML-like
syntax. The length in bytes of the character string is given by the NameValueLength field that precedes the
NameValueData field. The length must be a multiple of four.

The NameValueLength and NameValueData fields are optional, but if present they must occur as a pair
and be adjacent. The pair of fields can be repeated as many times as required, for example:

length1 data1 length2 data2 length3 data3

NameValueData is not converted to the character set specified on the MQGET call. Even if the message is
retrieved with the MQGMO_CONVERT option in effect NameValueData remains in its original character set.
However, NameValueData is converted to the encoding specified on the MQGET call.

Notes:

• Because these fields are optional, they are omitted from the declarations of the structure that are
provided for the various programming languages supported.

• The terms "defined" and "reserved" are used in the syntax diagram. "Defined" means that the name is
used by IBM MQ. "Reserved" means that the name is reserved for future use by IBM MQ.

NameValueData syntax
< Folder name > Name-value pairs </ Folder name >

< Defined folder name > Name-value pairs </ Defined folder name >

< Folder name content = 'properties'
1

> Properties </ Folder name >

< Defined property folder name > Properties </ Defined property folder name >

< Ungrouped property folder name >

Property
2

</Ungrouped property folder name >

Folder name

Developing applications reference 529

Name

Defined folder name
34

psc

pscr

Defined property folder name
3

jms

mcd

mq_usr

sib
5

sib_context

sib_usr

usr
6

Ungrouped property folder name
ibm

mq
7

mqema

mqext

mqps

mq_svc

mqtt

Name
8

Letters
_ Letters

Numerals

Underscores

Hyphens

Dots

Letters

Numerals

Underscores

Hyphens

Letters
_

Name-value pairs

<Group name >

Name-value pairs

</Group name >

<Element name >

Element value

</Element name >

Group name

530 IBM MQ Developing Applications Reference

Name

Element name
Name

Element value

anyChar
9

&
10

<
10

>

"

'

Properties

< Group name >

Properties

</ Group name >

Property

2

Property
1

< Element name

Property attribute

dt=' Data types 'xsi:nil='true' >

< Element name

Property attribute dt=' Data types '

>

Element value

</Element name >

Property attribute

support='

sa

sr

sx

'
11

context='

none

user '

copy='

default

all

none
,

forward

reply

report

publish

'

Developing applications reference 531

Data types
string

boolean

bin.hex

i1

i2

i4

i8

int

r4

r8

Notes:
1 Double quotation marks or single quotation marks are valid.
2 Do not use an invalid property name; see “Invalid property name” on page 543. Use a reserved
property name only for its defined purpose; see “Defined property names” on page 543.
3 The name must be in lowercase.
4 Only one psc and pscr folder is supported.
5 WebSphere Application Server Service Integration Bus ignores sib, sib_context, and sib_usr folders in
subsequent MQRFH2 headers, and only properties in the first MQRFH2 header are significant.
6 Not more than one usr folder must be present in an MQRFH2. Properties in the usr folder must occur
no more than once.
7 Only properties in the first mq folder are significant. If the folder is UTF-8, only single byte UTF-8
characters are supported. The only white space character is Unicode U+0020.
8 Valid characters are defined in the W3C XML specification, and consist essentially of Unicode
categories Ll, Lu, Lo, Lt, Nl, Mc, Mn, Lm, and Nd. See Unicode character categories.
9 All characters are significant. Leading and trailing blanks are part of the element value.
10 Do not use an invalid character; see “Invalid characters” on page 542. Use an escape sequence,
rather than these invalid characters.
11 The support property attribute is only valid on the mq folder

Folder name
NameValueData contains a single folder. To create multiple folders, create multiple NameValueData fields.
You can create multiple NameValueData fields in a single MQRFH2 header within a message. Alternatively
you can create multiple chained MQRFH2 headers, each containing multiple NameValueData fields.

The order of MQRFH2 headers, and the order of NameValueData fields makes no difference to the logical
contents of a folder. If the same folder is present more than once in a message the folder is parsed as a
whole. If the same property occurs in multiple instances of the same folder, it is parsed as a list.

A correct parse of an MQRFH2 is not affected by the alternative ways a folder can be physically stored in a
message.

Four folders do not follow this rule. Only the first instance of the mq, sib, sib_context, and sib_usr
folder are parsed.

If the same property occurs more than once in the combined contents of the chained MQRFH2 headers,
only the first instance of the property is parsed. If a property is set using an API call, such as MQSETMP,
and added to an MQRFH2 directly by an application, the API call takes precedence.

A folder name is the name of a folder containing name-value pairs or groups. Groups and name-value
pairs can be mixed at the same level in the folder tree. See Figure 1 on page 533. Do not combine a
group name and an element name; see Figure 2 on page 533.

532 IBM MQ Developing Applications Reference

https://www.fileformat.info/info/unicode/category/

<group1><nvp1>value</nvp1></group1><group2><nvp2>value</nvp2></group2>
<group3><nvp1>value</nvp1></group3><nvp3>value</nvp3>

Figure 1. Correct uses of groups and name-value pairs

<group1><nvp1>value</nvp1>value</group1>

Figure 2. Incorrect use of groups and name-value pairs

Do not use an invalid or reserved folder name; see “Invalid path name” on page 542 and “Reserved
folder or property folder name” on page 542. Use a defined folder name only for its defined purpose; see
“Defined folder name” on page 534.

If you add the attribute 'content=properties' to the folder name tag, the folder becomes a property
folder; see Figure 3 on page 533.

<myFolder></myfolder>
<myPropertyFolder contents='properties'></myPropertyFolder>

Figure 3. Example of a folder and a property folder

Folder names are case-sensitive. Folder names and property folder names share the same namespace.
They must have different names. For example Folder1 in Figure 4 on page 533 must be a different
name to Folder2 in Figure 5 on page 533.

<Folder1><NVP1>value</NVP1></Folder1>

Figure 4. Folder1 namespace

<Folder2 content='properties'><Property1>value</Property1></Folder2>

Figure 5. Folder2 namespace

Groups, properties, and name-value pairs in different folders have different namespaces. Property1 in
Figure 5 on page 533 is a different property to Property1 in Figure 6 on page 533.

<Folder3 content='properties'><Property1>value</Property1></Folder3>

Figure 6. Folder3 namespace

Property folders are different to non-property folders in two important respects:

1. Property folders contain properties, and non-property folders contain name-value pairs. The folders
differ slightly, syntactically.

Developing applications reference 533

2. Use the defined interfaces, such as the properties MQI, or JMS message properties, to access
message properties. The interfaces ensure the property folders in the MQRFH2 are well-formed. A
well-formed property folder is interoperable between queue managers on different platforms and
different releases.

The message property MQI is a robust way to read and write an MQRFH2, and avoids the difficulties of
parsing an MQRFH2 correctly.

Defined folder name
A defined folder name is the name of a folder that is reserved for use by IBM MQ, or another product.
Do not create a folder of the same name, and do not add your own name-value pairs to the folders. The
defined folders are psc and pscr.

psc and pscr are used by queued publish/subscribe.

A segmented message put with either MQMF_SEGMENT or MQMF_SEGMENTATION_ALLOWED cannot
contain an MQRFH2 with a defined folder name. The MQPUT fails with reason code 2443,
MQRC_SEGMENTATION_NOT_ALLOWED.

Defined property folder name
A defined property folder name is the name of a property folder that is used by IBM MQ, or another
product. For the names of the folders and their contents, see Property folders. Defined property folder
names are a subset of all the folder names reserved by IBM MQ. See “Reserved folder or property folder
name” on page 542.

Any element stored in a defined property folder is a property. An element stored in a defined property
folder must not have a content='properties' attribute.

You can add properties only to the defined property folders usr, mq_usr, and sib_usr. In other property
folders, such as mq and sib, IBM MQ ignores or throws away properties it does not recognize.

The description of each defined property folder lists the properties that IBM MQ has defined that can be
used by application programs. Some of the properties are accessed indirectly by setting or getting a JMS
property, and some are accessed directly using the MQSETMP and MQINQMP MQI calls.

The defined property folders also contain other properties that IBM MQ has reserved, but which
applications do not have access to. The names of the reserved properties are not listed. No reserved
properties are present in the usr, mq_usr, and sib_usr property folders. But do not create properties
with invalid property names; see “Invalid property name” on page 543.

Property folders
jms

jms contains JMS header fields, and JMSX properties that cannot be fully expressed in the MQMD. The
jms folder is always present in a JMS MQRFH2.

Table 516. JMS property name, synonym, data type, and folder

Property
synonym

Property
name

Data
type Folder

JMSDestin
ation

jms.Dst strin
g

<jms><Dst>destination</Dst></jms>

JMSExpira
tion

jms.Exp i8 <jms><Exp>expiration</Exp></jms>

JMSCorrel
ation

jms.Cid strin
g

<jms><Cid>correlationId</Cid></jms>

534 IBM MQ Developing Applications Reference

Table 516. JMS property name, synonym, data type, and folder (continued)

Property
synonym

Property
name

Data
type Folder

JMSDelive
ry

jms.Dlv i4 <jms><Dlv>delivery</Dlv></jms>

JMSPriori
ty

jms.Pri i4 <jms><Pri>priority</Pri></jms>

JMSReplyT
o

jms.Rto strin
g

<jms><Rto>replyToURI</Rto></jms>

JMSTimeSt
amp

jms.Tms i8 <jms><Tms>timestamp</Tms></jms>

JMSXGroup
ID

jms.Gid strin
g

<jms><Gid>groupId</Gid></jms>

JMSXGroup
Seq

jms.Seq i4 <jms><Seq>messageSequenceNo</Seq></jms>

Do not add your own properties in the jms folder.

mcd

mcd contains properties that describe the format of the message. For example, the message service
domain Msd property identifies a JMS message as being JMSTextMessage, JMSBytesMessage,
JMSStreamMessage, JMSMapMessage, JMSObjectMessage, or null.

The mcd folder is always present in a JMS message containing an MQRFH2.

It is always present in a message containing an MQRFH2 sent from IBM Integration Bus. It describes
the domain, format, type, and message set of a message.

Table 517. mcd property name, synonym, data type, and folder

Property
synonym

Property
name

Data
type Folder

mcd.Msd strin
g

<mcd><Msd>messageDomain</Msd></mcd>

mcd.Set strin
g

<mcd><Set>messageDomain</Set></mcd>

mcd.Type strin
g

<mcd><Type>messageDomain</Type></mcd>

mcd.Fmt strin
g

<mcd><Fmt>messageDomain</Fmt></mcd>

Do not add your own properties in the mcd folder.

mq_usr

mq_usr contains application-defined properties that are not exposed as JMS user-defined properties.
Properties that do not meet JMS requirements can be placed in this folder.

You can create properties in the mq_usr folder. Properties you create in the mq_usr are like
properties you create in new folders with the content='properties' attribute.

sib

sib contains WebSphere Application Server service integration bus (WAS/SIB) system message
properties. sib properties are not exposed as JMS properties to IBM MQ JMS applications because

Developing applications reference 535

they are not of the supported types. For example, some sib properties cannot be exposed as JMS
properties because they are byte arrays. Some sib properties are exposed to WAS/SIB applications
as JMS_IBM_* properties; these include forward and reverse routing paths properties.

Do not add your own properties in the sib folder.

sib_context

sib_context contains WAS/SIB system message properties that are not exposed to WAS/SIB user
applications or as JMS properties. sib_context contains security and transactional properties that
are used for web services.

Do not add your own properties in the sib_context folder.

sib_usr

sib_usr contains WAS/SIB user message properties that are not exposed as JMS user properties
because they are not of supported types. sib_usr is exposed to WAS/SIB applications in the
SIMessage interface. See Developing Service Integration.

The type of a sib_usr property must be bin.hex, and the value must be in the correct format.
If an IBM MQ application writes a bin.hex typed element to the folder in the wrong format, the
application receives an IOException. If the data type of the property is not bin.hex the application
receives a ClassCastException.

Do not attempt to make JMS user properties available to WAS/SIB by using this folder; instead use the
usr folder.

You can create properties in the sib_usr folder.

usr

usr contains application-defined JMS properties associated with the message. The usr folder is
present only if an application has set an application-defined property.

usr is the default property folder. If a property is set without a folder name, it is placed in the usr
folder.

Table 518. usr property name, synonym, data type, and folder

Prope
rty
synon
ym Property name

Data
type Folder

usr.contentType stri
ng

<usr><contentType>text/xml;charset=utf-8</
contentType></usr>

usr.endPointURL stri
ng

<usr><endPointURL>URI</endPointURL></usr>

usr.targetServi
ce

stri
ng

<usr><targetService>serviceName</
targetService></usr>

usr.soapAction stri
ng

<usr><soapAction>name</soapAction></usr>

usr.transportVe
rsion

stri
ng

<usr><transportVersion>version</
transportVersion></usr>

You can create properties in the usr folder.

A segmented message put with either MQMF_SEGMENT or MQMF_SEGMENTATION_ALLOWED cannot
contain an MQRFH2 with a defined property folder name. The MQPUT fails with reason code 2443,
MQRC_SEGMENTATION_NOT_ALLOWED.

536 IBM MQ Developing Applications Reference

Ungrouped property folder name
ibm

ibm contains properties that are used only by IBM MQ.

Table 519. ibm property name, synonym, data type, and folder

Property
synonym

Property
name

Data
type Folder

ibm.rfp strin
g

<ibm><rfp>fingerprint</rfp></ibm>

Do not add your own properties in the ibm folder.

mq

mq contains properties that are used only by IBM MQ.

The following restrictions apply to properties in the mq folder:

• Only properties in the first significant mq folder in the message are acted upon by MQ; properties in
any other mq folder in the message are ignored.

• Only single-byte UTF-8 characters are allowed in the folder. A multi-byte character in the folder, can
cause parsing to fail, and the message to be rejected.

• Do not use escape strings in the folder. An escape string is treated as the actual value of the
element.

• Only Unicode character U+0020 is treated as white space within the folder. All other characters are
treated as significant and can cause parsing of the folder to fail, and the message to be rejected.

If parsing of the mq folder fails, or if the folder does not observe these restrictions, the message is
rejected with reason code 2527, MQRC_RFH_RESTRICTED_FORMAT_ERR.

Do not add your own properties in the mq folder.

mqema

mqema contains properties that are used only by WebSphere Application Server. The folder has been
replaced by mqext.

Do not add your own properties in the mqema folder.

mqext

mqext contains the following types of property:

• Properties that are used only by WebSphere Application Server.
• Properties relating to delayed delivery of messages.

The folder is present if the application has either set at least one of the IBM defined properties or
used delivery delay.

Table 520. mqext property name, synonym, data type, and folder

Property synonym
Property
name

Data
type Folder

JMSArmCorrelator mqext.Arm string <mqext><Arm>armCorrelator</Arm></
mqext>

JMSRMCorrelator mqext.Wrm string <mqext><Wrm>wrmCorrelator</Wrm></
mqext>

JMSDeliveryTime mqext.Dlt i8 <mqext><Dlt>DeliveryTime</Dlt></mqext>

Developing applications reference 537

Table 520. mqext property name, synonym, data type, and folder (continued)

Property synonym
Property
name

Data
type Folder

JMSDeliveryDelay mqext.Dly i8 <mqext><Dly>DeliveryTime</Dly></mqext>

Do not add your own properties in the mqext folder.

mqps

mqps contains properties that are used only by IBM MQ publish/subscribe. The folder is present only
if the application has set at least one of the integrated publish/subscribe properties.

Table 521. mqps property name, synonym, data type, and folder

Property
synonym

Property
name

Data
type Folder

MQTopicStr
ing

mqps.Top strin
g

<mqps><Top>topicString</Top></mqps>

MQSubUserD
ata

mqps.Sud strin
g

<mqps><Sud>subscriberUserData...</Sud></mqps>

MQIsRetain
ed

mqps.Ret boole
an

<mqps><Ret>isRetained</Ret></mqps>

MQPubOptio
ns

mqps.Pub i8 <mqps><Pub>publicationOptions</Pub></mqps>

MQPubLevel mqps.Pbl i8 <mqps><Pbl>publicationLevel</Pbl></mqps>

MQPubTime mqpse.Pts strin
g

<mqps><Pts>publicationTime</Pts></mqps>

MQPubSeqNu
m

mqpse.Seq i8 <mqps><Seq>publicationSequenceNumber</Seq></
mqps>

MQPubStrIn
tData

mqpse.Sid strin
g

<mqps><Sid>publicationData</Sid></mqps>

MQPubForma
t

mqpse.Pfm
t

i8 <mqps><Pfmt>messageFormat</Pfmt></mqps>

Do not add your own properties in the mqps folder.

mq_svc

mq_svc contains properties used by SupportPac MA93.

Do not add your own properties in the mq_svc folder.

mqtt

mqtt contains properties use by MQ Telemetry

Table 522. mqtt property name, synonym, data type, and folder

Property
synonym

Property
name

Data
type Folder

mqtt.clien
tId

string <mqtt><clientId>topicString</clientId></mqtt>

mqtt.qos i4 <mqtt><qos>qualityOfService</qos></mqtt>

538 IBM MQ Developing Applications Reference

Table 522. mqtt property name, synonym, data type, and folder (continued)

Property
synonym

Property
name

Data
type Folder

mqtt.msgid string <mqtt><msgid>messageIdentifier</msgid></mqtt>

Do not add your own properties in the mqtt folder.

A segmented message put with either MQMF_SEGMENT or MQMF_SEGMENTATION_ALLOWED cannot
contain an MQRFH2 with an ungrouped property folder name. The MQPUT fails with reason code 2443,
MQRC_SEGMENTATION_NOT_ALLOWED.

Name-value pairs
In the syntax diagram, "Name-value pairs" describes the content of an ordinary folder. An ordinary folder
contains groups, and elements. An element is a name-value pair. A group contains elements and other
groups.

In terms of trees, elements are leaf nodes, and groups are internal nodes. An internal node, and the
folder, which is the root node, can contain a mixture of internal nodes and leaf nodes. A node cannot be
both an internal node and a leaf node at the same time; see Figure 2 on page 533.

Properties
In the syntax diagram, "Properties" describes the content of a property folder. A property folder contains
groups, and properties. A property is a name-value pair with an optional data type attribute. A group
contains properties and other groups.

In terms of trees, properties are leaf nodes, and groups are internal nodes. An internal node, and the
property folder, which is the root node, can contain a mixture of internal nodes and leaf nodes. A node
cannot be both an internal node and a leaf node at the same time; see Figure 2 on page 533.

Property
A message property is a name-value pair in a property folder. It can optionally include a data type
attribute and a property attribute; for an example, see the following code. If the data type attribute is
omitted, the property type is string.

<pf><p1 dt='i8'>value</p1></pf>

The name of a message property is its full path name, with the XML-like, <> syntax, replaced by dots. For
example, myPropertyFolder1.myGroup1.myGroup2.myProperty1 is mapped to a NameValueData
string as follows. The string is formatted for easier reading.

<myPropertyFolder1>
 <myGroup1>
 <myGroup2>
 <myProperty1>value</myProperty1>
 </myGroup2>
 </myGroup1>
</myPropertyFolder1>

A property folder can contain multiple properties. For example the properties in Figure 7 on page 540
are mapped to the property folder in Figure 8 on page 540

Developing applications reference 539

 myPropertyFolder1.myProperty4
myPropertyFolder1.myGroup1.myGroup2.myProperty1
myPropertyFolder1.myGroup1.myGroup2.myProperty2
myPropertyFolder1.myGroup1.myProperty3

Figure 7. Multiple properties with the same root name

<myPropertyFolder1>
 <myProperty4>value</myProperty4>
 <myGroup1>
 <myGroup2>
 <myProperty1>value</myProperty1>
 <myProperty2>value</myProperty2>
 </myGroup2>
 <myProperty3>value</myProperty3>
 </myGroup1>
</myPropertyFolder1>

Figure 8. Multiple property name mapping

Name
A name must begin with a Letter or an Underscore. It must not contain a Colon, not end in a Period and
contain only Letters, Numerals, Underscores, Hyphens, and Dots. Valid characters are defined in the W3C
XML specification, and consist essentially of Unicode categories Ll, Lu, Lo, Lt, Nl, Mc, Mn, Lm,
and Nd. See Unicode character categories.

The complete path of a property or name-value pair must not break the rule described in “Invalid
path name” on page 542. Paths are restricted to 4095 bytes, must not contain Unicode compatibility
characters, and must not start with the string XML.

Group name
A group name has the same syntax as a name. Group names are optional. Properties and name-value
pairs can be placed in the root of a folder. Use groups if it helps to organize properties and name-value
pairs.

Element name
An element name has the same syntax as a name.

Element value
An element value includes all the white space between the <Element name> tag and the </Element
name> tag. Do not use the two characters < and & in a value. Replace then with < and &.

Property attributes
The property attributes map property descriptor fields. The mappings are as follows:
Support

sa (default)
MQPD_SUPPORT_OPTIONAL

sr
MQPD_SUPPORT_REQUIRED

540 IBM MQ Developing Applications Reference

https://www.fileformat.info/info/unicode/category/

sx
MQPD_SUPPORT_REQUIRED_IF_LOCAL

Context
none (default)

MQPD_NO_CONTEXT
user

MQPD_USER _CONTEXT
CopyOptions

forward
MQPD_COPY_FORWARD

reply
MQPD_COPY_REPLY

report
MQPD_COPY_REPORT

publish
MQPD_COPY_PUBLISH

all
MQPD_COPY_ALL

Do not use all in combination with other options.

default
MQPD_COPY_DEFAULT

Do not use default in combination with other options. default is the same as forward +
report + publish.

none
MQPD_COPY_NONE

Do not use none in combination with other options.

The Support property attributes are applicable only to properties in the mq folder.

The Context and CopyOptions property attributes are applicable to all property folders.

Data types
MQRFH2 data types map to message property types as follows:

Table 523. Data type mappings

MQRFH2 data type Message property type

bin.hex MQBYTE[]

boolean MQBOOL

i1 MQINT8

i2 MQINT16

i4 MQINT32

i8 MQINT64

r4 MQFLOAT32

r8 MQFLOAT64

string MQCHAR[]

Developing applications reference 541

Any element without a data type is assumed to be of type string.

A null value is indicated by the element attribute xsi:nil='true'. Do not use the attribute
xsi:nil='false' for non-null values. For example, the following property has a null value:

<NullProperty xsi:nil='true'></NullProperty>

A byte or character string property can have an empty value. An empty value is represented by an MQRFH2
element with a zero length element value. For example, the following property has an empty value:

<EmptyProperty></EmptyProperty>

Reserved folder or property folder name
Restrict the name of a folder or property folder not to start with any of the following strings. The prefixes
are reserved for folder or property names created by IBM.

1

body

jms

mcd

properties

psc

pscr

root

usr

ibm

mq

sib

wmq

anyChar

Notes:
1 A reserved folder or property name contains any mixture of lower and uppercase letters.

Invalid path name
Restrict the complete path of a name-value pair or a property not to include any of the following strings.

XML  anyChar

Unicode compatibility character

Names longer than 4095 characters

Invalid characters
Always use the escape sequences & and < instead of the literals "&" and "<".

542 IBM MQ Developing Applications Reference

&

<

Defined property names
Defined property names are the names of properties that are defined by IBM MQ, or other products, and
used by IBM MQ and user applications. Defined properties exist only in defined property folders. Defined
property names are described in the description of property folders; see Property folders.

Invalid property name
Do not construct property names that match the following rule. The rule applies to the full property path
that names a property, and not only to the property element name.

1

NULL

TRUE

FALSE

NOT

AND

OR

BETWEEN

LIKE

IN

IS

ESCAPE

usr.JMS

anyChar

Java keywords

Notes:
1 An invalid property name can contain any combination of upper and lowercase.

Invalid attributes
Property folders and properties can include only supported “Property attributes” on page 540 and “Data
types” on page 541.

Any non-supported XML-like attributes, for example,names with quoted string values, that are included in
property folders or properties might be removed.

XML-like attributes included in non-property folders or non-property elements that remain in MQRFH2
headers.

MQRMH - Reference message header
The MQRMH structure defines the format of a reference message header. This header is used with
user-written message channel exits to send extremely large amounts of data (called bulk data) from one
queue manager to another. The difference compared to normal messaging is that the bulk data is not
stored on a queue; instead, only a reference to the bulk data is stored on the queue. This reduces the
possibility of IBM MQ resources being exhausted by a small number of extremely large messages.

Developing applications reference 543

Availability
The MQRMH structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ clients connected to these systems.

Format name
MQFMT_REF_MSG_HEADER

Character set and encoding
Character data in MQRMH, and the strings addressed by the offset fields, must be in the character set of
the local queue manager; this is given by the CodedCharSetId queue manager attribute. Numeric data
in MQRMH must be in the native machine encoding; this is given by the value of MQENC_NATIVE for the C
programming language.

Set the character set and encoding of the MQRMH into the CodedCharSetId and Encoding fields in:

• The MQMD (if the MQRMH structure is at the start of the message data), or
• The header structure that precedes the MQRMH structure (all other cases).

Usage
An application puts a message consisting of an MQRMH, but omitting the bulk data. When a message
channel agent (MCA) reads the message from the transmission queue, a user-supplied message exit is
invoked to process the reference message header. The exit can append to the reference message the bulk
data identified by the MQRMH structure, before the MCA sends the message through the channel to the
next queue manager.

At the receiving end, a message exit that waits for reference messages must exist. When a reference
message is received, the exit must create the object from the bulk data that follows the MQRMH in the
message, and then pass on the reference message without the bulk data. The reference message can
later be retrieved by an application reading the reference message (without the bulk data) from a queue.

Normally, the MQRMH structure is all that is in the message. However, if the message is on a transmission
queue, one or more additional headers precede the MQRMH structure.

A reference message can also be sent to a distribution list. In this case, the MQDH structure and its
related records precede the MQRMH structure when the message is on a transmission queue.

Note: Do not send a reference message as a segmented message, because the message exit cannot
process it correctly.

Data conversion
For data conversion purposes, converting the MQRMH structure includes conversion of the source
environment data, source object name, destination environment data, and destination object name.
Any other bytes within StrucLength bytes of the start of the structure are either discarded or have
undefined values after data conversion. The bulk data is converted provided that all the following
statements are true:

• The bulk data is present in the message when the data conversion is performed.
• The Format field in MQRMH has a value other than MQFMT_NONE.

544 IBM MQ Developing Applications Reference

• A user-written data-conversion exit exists with the format name specified.

Be aware, however, that usually the bulk data is not present in the message when the message is on a
queue, and that as a result the bulk data is converted by the MQGMO_CONVERT option.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 524. Fields in MQRMH for MQRMH

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQRMH_STRUC_ID 'RMH¬'

Version (structure version number) MQRMH_VERSION_1 1

StrucLength (total length of MQRMH, including
strings at end of fixed fields, but not the bulk data)

None 0

Encoding (numeric encoding of bulk data) MQENC_NATIVE Depends on
environment

CodedCharSetId (character set identifier of bulk
data)

MQCCSI_UNDEFINED 0

Format (format name of bulk data) MQFMT_NONE Blanks

Flags (reference message flags) MQRMHF_NOT_LAST 0

ObjectType (object type) None Blanks

ObjectInstanceId (object instance identifier) MQOII_NONE Nulls

SrcEnvLength (length of source environment data) None 0

SrcEnvOffset (offset of source environment data) None 0

SrcNameLength (length of source object name) None 0

SrcNameOffset (offset of source object name) None 0

DestEnvLength (length of destination environment
data)

None 0

DestEnvOffset (offset of destination environment
data)

None 0

DestNameLength (length of destination object
name)

None 0

DestNameOffset (offset of destination object
name)

None 0

DataLogicalLength (length of bulk data) None 0

DataLogicalOffset (low offset of bulk data) None 0

DataLogicalOffset2 (high offset of bulk data) None 0

Developing applications reference 545

Table 524. Fields in MQRMH for MQRMH (continued)

Field name and description Name of constant Initial value (if any) of
constant

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQRMH_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQRMH MyRMH = {MQRMH_DEFAULT};

Language declarations
C declaration for MQRMH

typedef struct tagMQRMH MQRMH;
struct tagMQRMH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Total length of MQRMH, including
 strings at end of fixed fields, but
 not the bulk data */
 MQLONG Encoding; /* Numeric encoding of bulk data */
 MQLONG CodedCharSetId; /* Character set identifier of bulk
 data */
 MQCHAR8 Format; /* Format name of bulk data */
 MQLONG Flags; /* Reference message flags */
 MQCHAR8 ObjectType; /* Object type */
 MQBYTE24 ObjectInstanceId; /* Object instance identifier */
 MQLONG SrcEnvLength; /* Length of source environment data */
 MQLONG SrcEnvOffset; /* Offset of source environment data */
 MQLONG SrcNameLength; /* Length of source object name */
 MQLONG SrcNameOffset; /* Offset of source object name */
 MQLONG DestEnvLength; /* Length of destination environment
 data */
 MQLONG DestEnvOffset; /* Offset of destination environment
 data */
 MQLONG DestNameLength; /* Length of destination object name */
 MQLONG DestNameOffset; /* Offset of destination object name */
 MQLONG DataLogicalLength; /* Length of bulk data */
 MQLONG DataLogicalOffset; /* Low offset of bulk data */
 MQLONG DataLogicalOffset2; /* High offset of bulk data */
};

COBOL declaration for MQRMH

** MQRMH structure
 10 MQRMH.
** Structure identifier
 15 MQRMH-STRUCID PIC X(4).
** Structure version number
 15 MQRMH-VERSION PIC S9(9) BINARY.
** Total length of MQRMH, including strings at end of fixed fields,
** but not the bulk data
 15 MQRMH-STRUCLENGTH PIC S9(9) BINARY.
** Numeric encoding of bulk data
 15 MQRMH-ENCODING PIC S9(9) BINARY.
** Character set identifier of bulk data
 15 MQRMH-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of bulk data
 15 MQRMH-FORMAT PIC X(8).
** Reference message flags
 15 MQRMH-FLAGS PIC S9(9) BINARY.
** Object type
 15 MQRMH-OBJECTTYPE PIC X(8).
** Object instance identifier
 15 MQRMH-OBJECTINSTANCEID PIC X(24).
** Length of source environment data

546 IBM MQ Developing Applications Reference

 15 MQRMH-SRCENVLENGTH PIC S9(9) BINARY.
** Offset of source environment data
 15 MQRMH-SRCENVOFFSET PIC S9(9) BINARY.
** Length of source object name
 15 MQRMH-SRCNAMELENGTH PIC S9(9) BINARY.
** Offset of source object name
 15 MQRMH-SRCNAMEOFFSET PIC S9(9) BINARY.
** Length of destination environment data
 15 MQRMH-DESTENVLENGTH PIC S9(9) BINARY.
** Offset of destination environment data
 15 MQRMH-DESTENVOFFSET PIC S9(9) BINARY.
** Length of destination object name
 15 MQRMH-DESTNAMELENGTH PIC S9(9) BINARY.
** Offset of destination object name
 15 MQRMH-DESTNAMEOFFSET PIC S9(9) BINARY.
** Length of bulk data
 15 MQRMH-DATALOGICALLENGTH PIC S9(9) BINARY.
** Low offset of bulk data
 15 MQRMH-DATALOGICALOFFSET PIC S9(9) BINARY.
** High offset of bulk data
 15 MQRMH-DATALOGICALOFFSET2 PIC S9(9) BINARY.

PL/I declaration for MQRMH

dcl
 1 MQRMH based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 StrucLength fixed bin(31), /* Total length of MQRMH,
 including strings at end of
 fixed fields, but not the bulk
 data */
 3 Encoding fixed bin(31), /* Numeric encoding of bulk
 data */
 3 CodedCharSetId fixed bin(31), /* Character set identifier of
 bulk data */
 3 Format char(8), /* Format name of bulk data */
 3 Flags fixed bin(31), /* Reference message flags */
 3 ObjectType char(8), /* Object type */
 3 ObjectInstanceId char(24), /* Object instance identifier */
 3 SrcEnvLength fixed bin(31), /* Length of source environment
 data */
 3 SrcEnvOffset fixed bin(31), /* Offset of source environment
 data */
 3 SrcNameLength fixed bin(31), /* Length of source object name */
 3 SrcNameOffset fixed bin(31), /* Offset of source object name */
 3 DestEnvLength fixed bin(31), /* Length of destination
 environment data */
 3 DestEnvOffset fixed bin(31), /* Offset of destination
 environment data */
 3 DestNameLength fixed bin(31), /* Length of destination object
 name */
 3 DestNameOffset fixed bin(31), /* Offset of destination object
 name */
 3 DataLogicalLength fixed bin(31), /* Length of bulk data */
 3 DataLogicalOffset fixed bin(31), /* Low offset of bulk data */
 3 DataLogicalOffset2 fixed bin(31); /* High offset of bulk data */

High Level Assembler declaration for MQRMH

MQRMH DSECT
MQRMH_STRUCID DS CL4 Structure identifier
MQRMH_VERSION DS F Structure version number
MQRMH_STRUCLENGTH DS F Total length of MQRMH, including
* strings at end of fixed fields, but
* not the bulk data
MQRMH_ENCODING DS F Numeric encoding of bulk data
MQRMH_CODEDCHARSETID DS F Character set identifier of bulk
* data
MQRMH_FORMAT DS CL8 Format name of bulk data
MQRMH_FLAGS DS F Reference message flags
MQRMH_OBJECTTYPE DS CL8 Object type
MQRMH_OBJECTINSTANCEID DS XL24 Object instance identifier
MQRMH_SRCENVLENGTH DS F Length of source environment data
MQRMH_SRCENVOFFSET DS F Offset of source environment data
MQRMH_SRCNAMELENGTH DS F Length of source object name
MQRMH_SRCNAMEOFFSET DS F Offset of source object name

Developing applications reference 547

MQRMH_DESTENVLENGTH DS F Length of destination environment
* data
MQRMH_DESTENVOFFSET DS F Offset of destination environment
* data
MQRMH_DESTNAMELENGTH DS F Length of destination object name
MQRMH_DESTNAMEOFFSET DS F Offset of destination object name
MQRMH_DATALOGICALLENGTH DS F Length of bulk data
MQRMH_DATALOGICALOFFSET DS F Low offset of bulk data
MQRMH_DATALOGICALOFFSET2 DS F High offset of bulk data
*
MQRMH_LENGTH EQU *-MQRMH
 ORG MQRMH
MQRMH_AREA DS CL(MQRMH_LENGTH)

Visual Basic declaration for MQRMH

Type MQRMH
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 StrucLength As Long 'Total length of MQRMH, including'
 'strings at end of fixed fields, but'
 'not the bulk data'
 Encoding As Long 'Numeric encoding of bulk data'
 CodedCharSetId As Long 'Character set identifier of bulk data'
 Format As String*8 'Format name of bulk data'
 Flags As Long 'Reference message flags'
 ObjectType As String*8 'Object type'
 ObjectInstanceId As MQBYTE24 'Object instance identifier'
 SrcEnvLength As Long 'Length of source environment data'
 SrcEnvOffset As Long 'Offset of source environment data'
 SrcNameLength As Long 'Length of source object name'
 SrcNameOffset As Long 'Offset of source object name'
 DestEnvLength As Long 'Length of destination environment'
 'data'
 DestEnvOffset As Long 'Offset of destination environment'
 'data'
 DestNameLength As Long 'Length of destination object name'
 DestNameOffset As Long 'Offset of destination object name'
 DataLogicalLength As Long 'Length of bulk data'
 DataLogicalOffset As Long 'Low offset of bulk data'
 DataLogicalOffset2 As Long 'High offset of bulk data'
End Type

StrucId (MQCHAR4)
This is the structure identifier; the value must be:
MQRMH_STRUC_ID

Identifier for reference message header structure.

For the C programming language, the constant MQRMH_STRUC_ID_ARRAY is also defined; this has
the same value as MQRMH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQRMH_STRUC_ID.

Version (MQLONG)
The structure version number. The value must be:
MQRMH_VERSION_1

Version-1 reference message header structure.

The following constant specifies the version number of the current version:
MQRMH_CURRENT_VERSION

Current version of reference message header structure.

The initial value of this field is MQRMH_VERSION_1.

StrucLength (MQLONG)
The total length of MQRMH, including strings at the end of fixed fields, but not the bulk data.

548 IBM MQ Developing Applications Reference

The initial value of this field is zero.

Encoding (MQLONG)
This specifies the numeric encoding of the bulk data; it does not apply to numeric data in the MQRMH
structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
This specifies the character set identifier of the bulk data; it does not apply to character data in the
MQRMH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-
set identifier of the structure. Provided no error occurs, the value MQCCSI_INHERIT is not returned by
the MQGET call.

Do not use MQCCSI_INHERIT if the value of the PutApplType field in MQMD is MQAT_BROKER.

This value is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ clients connected to these systems.

The initial value of this field is MQCCSI_UNDEFINED.

Format (MQCHAR8)
This specifies the format name of the bulk data.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the Format field in MQMD.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
These are reference message flags. The following flags are defined:
MQRMHF_LAST

This flag indicates that the reference message represents or contains the last part of the referenced
object.

MQRMHF_NOT_LAST
Reference message does not contain or represent last part of object. MQRMHF_NOT_LAST aids
program documentation. It is not intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

The initial value of this field is MQRMHF_NOT_LAST.

Developing applications reference 549

ObjectType (MQCHAR8)
This is a name that the message exit can use to recognize types of reference message that it supports.
The name must conform to the same rules as the Format field, see “Format (MQCHAR8)” on page 549.

The initial value of this field is 8 blanks.

ObjectInstanceId (MQBYTE24)
Use this field to identify a specific instance of an object. If it is not needed, set it to the following value:
MQOII_NONE

No object instance identifier specified. The value is binary zero for the length of the field.

For the C programming language, the constant MQOII_NONE_ARRAY is also defined; this has the
same value as MQOII_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_OBJECT_INSTANCE_ID_LENGTH. The initial value of this field is
MQOII_NONE.

SrcEnvLength (MQLONG)
The length of the source environment data. If this field is zero, there is no source environment data, and
SrcEnvOffset is ignored.

The initial value of this field is 0.

SrcEnvOffset (MQLONG)
This field specifies the offset of the source environment data from the start of the MQRMH structure.
Source environment data can be specified by the creator of the reference message, if that data is known
to the creator. For example, on Windows the source environment data might be the directory path of the
object containing the bulk data. However, if the creator does not know the source environment data, the
user-supplied message exit must determine any environment information needed.

The length of the source environment data is given by SrcEnvLength ; if this length is zero, there is no
source environment data, and SrcEnvOffset is ignored. If present, the source environment data must
reside completely within StrucLength bytes from the start of the structure.

Applications must not assume that the environment data starts immediately after the last fixed field
in the structure or that it is contiguous with any of the data addressed by the SrcNameOffset,
DestEnvOffset, and DestNameOffset fields.

The initial value of this field is 0.

SrcNameLength (MQLONG)
The length of the source object name. If this field is zero, there is no source object name, and
SrcNameOffset is ignored.

The initial value of this field is 0.

SrcNameOffset (MQLONG)
This field specifies the offset of the source object name from the start of the MQRMH structure. The
source object name can be specified by the creator of the reference message, if that data is known to the
creator. However, if the creator does not know the source object name, the user-supplied message exit
must identify the object to be accessed.

The length of the source object name is given by SrcNameLength ; if this length is zero, there is no
source object name, and SrcNameOffset is ignored. If present, the source object name must reside
completely within StrucLength bytes from the start of the structure.

Applications must not assume that the source object name is contiguous with any of the data addressed
by the SrcEnvOffset, DestEnvOffset, and DestNameOffset fields.

550 IBM MQ Developing Applications Reference

The initial value of this field is 0.

DestEnvLength (MQLONG)
This is the length of the destination environment data. If this field is zero, there is no destination
environment data, and DestEnvOffset is ignored.

DestEnvOffset (MQLONG)
This field specifies the offset of the destination environment data from the start of the MQRMH structure.
Destination environment data can be specified by the creator of the reference message, if that data is
known to the creator. For example, on Windows the destination environment data might be the directory
path of the object where the bulk data is to be stored. However, if the creator does not know the
destination environment data, it is the responsibility of the user-supplied message exit to determine any
environment information needed.

The length of the destination environment data is given by DestEnvLength ; if this length is zero,
there is no destination environment data, and DestEnvOffset is ignored. If present, the destination
environment data must reside completely within StrucLength bytes from the start of the structure.

Applications must not assume that the destination environment data is contiguous with any of the data
addressed by the SrcEnvOffset, SrcNameOffset, and DestNameOffset fields.

The initial value of this field is 0.

DestNameLength (MQLONG)
The length of the destination object name. If this field is zero, there is no destination object name, and
DestNameOffset is ignored.

DestNameOffset (MQLONG)
This field specifies the offset of the destination object name from the start of the MQRMH structure. The
destination object name can be specified by the creator of the reference message, if that data is known to
the creator. However, if the creator does not know the destination object name, it is the responsibility of
the user-supplied message exit to identify the object to be created or modified.

The length of the destination object name is given by DestNameLength ; if this length is zero, there is no
destination object name, and DestNameOffset is ignored. If present, the destination object name must
reside completely within StrucLength bytes from the start of the structure.

Applications must not assume that the destination object name is contiguous with any of the data
addressed by the SrcEnvOffset, SrcNameOffset, and DestEnvOffset fields.

The initial value of this field is 0.

DataLogicalLength (MQLONG)
The DataLogicalLength field specifies the length of the bulk data referenced by the MQRMH structure.

If the bulk data is actually present in the message, the data begins at an offset of StrucLength bytes
from the start of the MQRMH structure. The length of the entire message minus StrucLength gives the
length of the bulk data present.

If data is present in the message, DataLogicalLength specifies the amount of that data that is
relevant. The normal case is for DataLogicalLength to have the same value as the length of data
present in the message.

If the MQRMH structure represents the remaining data in the object (starting from the specified logical
offset), you can use the value zero for DataLogicalLength, provided that the bulk data is not actually
present in the message.

If no data is present, the end of MQRMH coincides with the end of the message.

The initial value of this field is 0.

Developing applications reference 551

DataLogicalOffset (MQLONG)
This field specifies the low offset of the bulk data from the start of the object of which the bulk data
forms part. The offset of the bulk data from the start of the object is called the logical offset. This is
not the physical offset of the bulk data from the start of the MQRMH structure; that offset is given by
StrucLength.

To allow large objects to be sent using reference messages, the logical offset is divided into two fields,
and the actual logical offset is given by the sum of these two fields:

• DataLogicalOffset represents the remainder obtained when the logical offset is divided by 1 000
000 000. It is thus a value in the range 0 through 999 999 999.

• DataLogicalOffset2 represents the result obtained when the logical offset is divided by 1 000 000
000. It is thus the number of complete multiples of 1 000 000 000 that exist in the logical offset. The
number of multiples is in the range 0 through 999 999 999.

The initial value of this field is 0.

DataLogicalOffset2 (MQLONG)
This field specifies the high offset of the bulk data from the start of the object of which the bulk data forms
part. It is a value in the range 0 through 999 999 999. See DataLogicalOffset for details.

The initial value of this field is 0.

MQRR - Response record
Use the MQRR structure to receive the completion code and reason code resulting from the open or put
operation for a single destination queue, when the destination is a distribution list. MQRR is an output
structure for the MQOPEN, MQPUT, and MQPUT1 calls.

Availability
The MQRR structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ clients connected to these systems.

Character set and encoding
Data in MQRR must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ MQI client, the structure must be in the character set and encoding of the client.

Usage
By providing an array of these structures on the MQOPEN and MQPUT calls, or on the MQPUT1 call, you
can determine the completion codes and reason codes for all the queues in a distribution list when the
outcome of the call is mixed, that is, when the call succeeds for some queues in the list but fails for
others. Reason code MQRC_MULTIPLE_REASONS from the call indicates that the response records (if
provided by the application) have been set by the queue manager.

552 IBM MQ Developing Applications Reference

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 525. Fields in MQRR

Field name and description Name of constant Initial value (if any) of
constant

CompCode (completion code for queue) MQCC_OK 0

Reason (reason code for queue) MQRC_NONE 0

Notes:

1. In the C programming language, the macro variable MQRR_DEFAULT contains the values that are
listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQRR MyRR = {MQRR_DEFAULT};

Language declarations
C declaration for MQRR

typedef struct tagMQRR MQRR;
struct tagMQRR {
 MQLONG CompCode; /* Completion code for queue */
 MQLONG Reason; /* Reason code for queue */
};

COBOL declaration for MQRR

** MQRR structure
 10 MQRR.
** Completion code for queue
 15 MQRR-COMPCODE PIC S9(9) BINARY.
** Reason code for queue
 15 MQRR-REASON PIC S9(9) BINARY.

PL/I declaration for MQRR

dcl
 1 MQRR based,
 3 CompCode fixed bin(31), /* Completion code for queue */
 3 Reason fixed bin(31); /* Reason code for queue */

Visual Basic declaration for MQRR

Type MQRR
 CompCode As Long 'Completion code for queue'
 Reason As Long 'Reason code for queue'
End Type

CompCode (MQLONG)
This is the completion code resulting from the open or put operation for the queue with the name that
was specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call.

This is always an output field. The initial value of this field is MQCC_OK.

Developing applications reference 553

Reason (MQLONG)
This is the reason code resulting from the open or put operation for the queue with the name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call.

This is always an output field. The initial value of this field is MQRC_NONE.

MQSCO - SSL/TLS configuration options
The MQSCO structure, in conjunction with the TLS fields in the MQCD structure, allows an application
running as an IBM MQ MQI client to specify configuration options that control the use of TLS for the client
connection when the channel protocol is TCP/IP. The structure is an input parameter on the MQCONNX
call.

Availability
The MQSCO structure is available on the following clients:

• AIX

• IBM i

• Linux

• Windows

If the channel protocol for the client channel is not TCP/IP, the MQSCO structure is ignored.

Character set and encoding
Data in MQSCO must be in the character set given by the CodedCharSetId queue manager attribute, and
encoding of the local queue manager given by MQENC_NATIVE.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 526. Fields in MQSCO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQSCO_STRUC_ID 'SCO¬'

Version (structure version number) MQSCO_CURRENT_VERS
ION

1

KeyRepository (location of key repository) None Null string or blanks

CryptoHardware (details of cryptographic
hardware)

None Null string or blanks

AuthInfoRecCount (number of MQAIR records
present)

None 0

AuthInfoRecOffset (offset of first MQAIR record
from start of MQSCO)

None 0

AuthInfoRecPtr (address of first MQAIR record) None Null pointer or null bytes

Note: The following two fields are ignored if Version is less than MQSCO_VERSION_2.

554 IBM MQ Developing Applications Reference

Table 526. Fields in MQSCO (continued)

Field name and description Name of constant Initial value (if any) of
constant

KeyResetCount (TLS secret key reset count) MQSCO_RESET_COUNT_
DEFAULT

0

“FipsRequired (MQLONG)” on page 559 (use
FIPS-certified cryptographic algorithms in IBM MQ)

MQSSL_FIPS_NO 0

Note: The following two fields are ignored if Version is less than MQSCO_VERSION_3.

EncryptionPolicySuiteB (use only Suite B
cryptographic algorithms)

 MQ_SUITE_B_NONE,
MQ_SUITE_B_NOT_AVA
ILABLE,
MQ_SUITE_B_NOT_AVA
ILABLE,
MQ_SUITE_B_NOT_AVA
ILABLE

 1,
0,
0,
0

Note: The following two fields are ignored if Version is less than MQSCO_VERSION_4.

CertificateValPolicy (certificate validation policy) MQ_CERT_VAL_POLICY
_DEFAULT

0

Note: The following two fields are ignored if Version is less than MQSCO_VERSION_5.

CertificateLabel (details the certificate label that is
being used)

None Null string or blanks

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQSCO_DEFAULT contains the values listed in the

table. Use it in the following way to provide initial values for the fields in the structure:

MQSCO MySCO = {MQSCO_DEFAULT};

Language declarations
C declaration for MQSCO

typedef struct tagMQSCO MQSCO;
struct tagMQSCO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQCHAR256 KeyRepository; /* Location of TLS key */
 /* repository */
 MQCHAR256 CryptoHardware; /* Cryptographic hardware */
 /* configuration string */
 MQLONG AuthInfoRecCount; /* Number of MQAIR records */
 /* present */
 MQLONG AuthInfoRecOffset; /* Offset of first MQAIR */
 /* record from start of */
 /* MQSCO structure */
 PMQAIR AuthInfoRecPtr; /* Address of first MQAIR */
 /* record */
/* Ver:1 */
 MQLONG KeyResetCount; /* Number of unencrypted */
 /* bytes sent/received */
 /* before secret key is */
 /* reset */

Developing applications reference 555

 MQLONG FipsRequired; /* Using FIPS-certified */
/* Ver:2 */
 /* algorithms */
 MQLONG EncryptionPolicySuiteB[4]; /* Use only Suite B */
/* Ver:3 */
 /* cryptographic algorithms */
 MQLONG CertificateValPolicy; /* Certificate validation */
 /* policy */
/* Ver:4 */
 MQCHAR64 CertificateLabel; /* Certificate label */
/* Ver:5 */

 };

COBOL declaration for MQSCO

** MQSCO structure
 10 MQSCO.
** Structure identifier
 15 MQSCO-STRUCID PIC X(4).
** Structure version number
 15 MQSCO-VERSION PIC S9(9) BINARY.
** Location of TLS key repository
 15 MQSCO-KEYREPOSITORY PIC X(256).
** Cryptographic hardware configuration string
 15 MQSCO-CRYPTOHARDWARE PIC X(256).
** Number of MQAIR records present
 15 MQSCO-AUTHINFORECCOUNT PIC S9(9) BINARY.
** Offset of first MQAIR record from start of MQSCO structure
 15 MQSCO-AUTHINFORECOFFSET PIC S9(9) BINARY.
** Address of first MQAIR record
 15 MQSCO-AUTHINFORECPTR POINTER.
** Version 1 **
** Number of unencrypted bytes sent/received before secret key is
** reset
 15 MQSCO-KEYRESETCOUNT PIC S9(9) BINARY.
** Using FIPS-certified algorithms
 15 MQSCO-FIPSREQUIRED PIC S9(9) BINARY.
** Version 2 **
** Use only Suite B cryptographic algorithms
 15 MQSCO-ENCRYPTIONPOLICYSUITEB PIC S9(9) BINARY OCCURS 4.
** Version 3 **
** Certificate validation policy setting
 15 MQSCO-CERTIFICATEVALPOLICY PIC S9(9) BINARY.
** Version 4 **
** SSL/TLS certificate label
 15 MQSCO-CERTIFICATELABEL PIC X(64).
** Version 5 **

PL/I declaration for MQSCO

dcl
 1 MQSCO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 KeyRepository char(256), /* Location of TLS key
 repository */
 3 CryptoHardware char(256), /* Cryptographic hardware
 configuration string */
 3 AuthInfoRecCount fixed bin(31), /* Number of MQAIR records
 present */
 3 AuthInfoRecOffset fixed bin(31), /* Offset of first MQAIR record
 from start of MQSCO structure */
 3 AuthInfoRecPtr pointer, /* Address of first MQAIR record */
 3 KeyResetCount fixed bin(31), /* Key reset count */
/* Version 1 */
 3 FipsRequired fixed bin(31), /* FIPS required */
/* Version 2 */
 3 EncryptionPolicySuiteB (4) fixed bin(31), /* Suite B encryption policy */
/* Version 3 */
 3 CertificateValPolicy fixed bin(31), /* Certificate validation policy */
/* Version 4 */
 3 CertificateLabel char(64), /* SSL/TLS certificate label */
/* Version 5 */

556 IBM MQ Developing Applications Reference

Visual Basic declaration for MQSCO

Type MQSCO
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 KeyRepository As String*256 'Location of TLS key repository'
 CryptoHardware As String*256 'Cryptographic hardware configuration'
 'string'
 AuthInfoRecCount As Long 'Number of MQAIR records present'
 AuthInfoRecOffset As Long 'Offset of first MQAIR record from'
 'start of MQSCO structure'
 AuthInfoRecPtr As MQPTR 'Address of first MQAIR record'
 KeyResetCount As Long 'Number of unencrypted bytes sent/received before secret key
is reset'
'Version 1'
 FipsRequired As Long 'Mandatory FIPS CipherSpecs?'
'Version 2'
End Type

Related reference
“MQCNO - Connect options” on page 314
The MQCNO structure allows the application to specify options relating to the connection to the queue
manager. The structure is an input/output parameter on the MQCONNX call.

StrucId (MQCHAR4)
This is the structure identifier; the value must be:
MQSCO_STRUC_ID

Identifier for TLS configuration options structure.

For the C programming language, the constant MQSCO_STRUC_ID_ARRAY is also defined; this has the
same value as MQSCO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQSCO_STRUC_ID.

Version (MQLONG)

This is the structure version number; the value must be:
MQSCO_VERSION_1

Version-1 TLS configuration options structure.
MQSCO_VERSION_2

Version-2 TLS configuration options structure.
MQSCO_VERSION_3

Version-3 TLS configuration options structure.
MQSCO_VERSION_4

Version-4 TLS configuration options structure.
MQSCO_VERSION_5

Version-5 TLS configuration options structure.

The following constant specifies the version number of the current version:
MQSCO_CURRENT_VERSION

Current version of TLS configuration options structure.

This is always an input field. The initial value of this field is MQSCO_VERSION_1.

KeyRepository (MQCHAR256)
This field is relevant only for IBM MQ MQI clients running on AIX, Linux, and Windows systems. It
specifies the location of the key database file in which keys and certificates are stored. The key database
file must have a file name of the form zzz.kdb, where zzz is user-selectable. The KeyRepository field

Developing applications reference 557

contains the path to this file, along with the file name stem (all characters in the file name up to but not
including the final .kdb). The .kdb file suffix is added automatically.

Each key database file has an associated password stash file. This holds encoded passwords that are
used to allow programmatic access to the key database. The password stash file must reside in the same
directory and have the same file stem as the key database, and must end with the suffix .sth.

For example, if the KeyRepository field has the value /xxx/yyy/key, the key database file must
be /xxx/yyy/key.kdb, and the password stash file must be /xxx/yyy/key.sth, where xxx and yyy
represent directory names.

If the value is shorter than the length of the field, terminate the value with a null character, or pad it
with blanks to the length of the field. The value is not checked; if there is an error in accessing the key
repository, the call fails with reason code MQRC_KEY_REPOSITORY_ERROR.

To run a TLS connection from an IBM MQ MQI client, set KeyRepository to a valid key database file
name.

This is an input field. The length of this field is given by MQ_SSL_KEY_REPOSITORY_LENGTH. The initial
value of this field is the null string in C, and blank characters in other programming languages.

CryptoHardware (MQCHAR256)
This field gives configuration details for cryptographic hardware connected to the client system.

Set the field to a string of the following format, or leave it blank or null:

GSK_PKCS11=the PKCS #11 driver path and file name;the PKCS #11
token label;the PKCS #11 token password;symmetric cipher setting;

To use cryptographic hardware which conforms to the PKCS #11 interface, for example, the IBM 4960 or
IBM 4764, the PKCS #11 driver path, PKCS #11 token label, and PKCS #11 token password strings must
be specified, each terminated by a semi-colon.

The PKCS #11 driver path is an absolute path to the shared library providing support for the PKCS #11
card. The PKCS #11 driver file name is the name of the shared library. An example of the value required
for the PKCS #11 path and file name is:

/usr/lib/pkcs11/PKCS11_API.so

The PKCS #11 token label must match the label you configured your hardware with.

If no cryptographic hardware configuration is required, set the field to blank or null.

If the value is shorter than the length of the field, terminate the value with a null character, or pad it with
blanks to the length of the field. If the value is not valid, or leads to a failure when used to configure the
cryptographic hardware, the call fails with reason code MQRC_CRYPTO_HARDWARE_ERROR.

This is an input field. The length of this field is given by MQ_SSL_CRYPTO_HARDWARE_LENGTH. The
initial value of this field is the null string in C, and blank characters in other programming languages.

AuthInfoRecCount (MQLONG)
This is the number of authentication information (MQAIR) records addressed by the AuthInfoRecPtr
or AuthInfoRecOffset fields. For more information, see“MQAIR - Authentication information record”
on page 268. The value must be zero or greater. If the value is not valid, the call fails with reason code
MQRC_AUTH_INFO_REC_COUNT_ERROR.

This is an input field. The initial value of this field is 0.

AuthInfoRecOffset (MQLONG)

558 IBM MQ Developing Applications Reference

This is the offset in bytes of the first authentication information record from the start of the MQSCO
structure. The offset can be positive or negative. The field is ignored if AuthInfoRecCount is zero.

You can use either AuthInfoRecOffset or AuthInfoRecPtr to specify the MQAIR records, but not
both; see the description of the AuthInfoRecPtr field for details.

This is an input field. The initial value of this field is 0.

AuthInfoRecPtr (PMQAIR)
This is the address of the first authentication information record. The field is ignored if
AuthInfoRecCount is zero.

You can provide the array of MQAIR records in one of two ways:

• By using the pointer field AuthInfoRecPtr

In this case, the application can declare an array of MQAIR records that is separate from the MQSCO
structure, and set AuthInfoRecPtr to the address of the array.

Consider using AuthInfoRecPtr for programming languages that support the pointer data type in a
fashion that is portable to different environments (for example, the C programming language).

• By using the offset field AuthInfoRecOffset

In this case, the application must declare a compound structure containing an MQSCO followed by the
array of MQAIR records, and set AuthInfoRecOffset to the offset of the first record in the array
from the start of the MQSCO structure. Ensure that this value is correct, and has a value that can be
accommodated within an MQLONG (the most restrictive programming language is COBOL, for which the
valid range is -999 999 999 through +999 999 999).

Consider using AuthInfoRecOffset for programming languages that do not support the pointer data
type, or that implement the pointer data type in a fashion that is not portable to different environments
(for example, the COBOL programming language).

Whatever technique you choose, only one of AuthInfoRecPtr and AuthInfoRecOffset can be used;
the call fails with reason code MQRC_AUTH_INFO_REC_ERROR if both are nonzero.

This is an input field. The initial value of this field is the null pointer in those programming languages that
support pointers, and an all-null byte string otherwise.

Note: On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length.

KeyResetCount (MQLONG)
This represents the total number of unencrypted bytes sent and received within a TLS conversation before
the secret key is renegotiated.

The number of bytes includes control information sent by the MCA.

If you specify a TLS secret key reset count in the range 1 byte through 32 KB, TLS channels will use a
secret key reset count of 32 KB. This is to avoid the processing cost of excessive key resets which would
occur for small TLS secret key reset values.

This is an input field. The value is a number in the range 0 through 999 999 999, with a default value of 0.
Use a value of 0 to indicate that secret keys are never renegotiated.

FipsRequired (MQLONG)
IBM MQ can be configured with cryptographic hardware so that the cryptography modules used are those
provided by the hardware product; these can be FIPS-certified to a particular level depending on the
cryptographic hardware product in use. Use this field to specify that only FIPS-certified algorithms are
used if the cryptography is provided in IBM MQ-provided software.

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A

Developing applications reference 559

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064

replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

When IBM MQ is installed an implementation of TLS cryptography is also installed which provides some
FIPS-certified modules.

The values can be:
MQSSL_FIPS_NO

This is the default value. When set to this value:

• Any CipherSpec supported on a particular platform can be used.
• If run without use of cryptographic hardware, the CipherSpecs run using FIPS 140-2 certified

cryptography on the IBM MQ platforms.

For a list of FIPS certified CipherSpecs, see the table described in Enabling CipherSpecs.

MQSSL_FIPS_YES
When set to this value, unless you are using cryptographic hardware to perform the cryptography, you
can be sure that

• Only FIPS-certified cryptographic algorithms can be used in the CipherSpec applying to this client
connection.

• Inbound and outbound TLS channel connections only succeed, if certain Cipher Specs are used.

See Enabling CipherSpecs for more information.

Note: Where possible, if FIPS-only CipherSpecs are configured then the MQI client rejects connections
which specify a non-FIPS CipherSpec with MQRC_SSL_INITIALIZATION_ERROR. IBM MQ does not
guarantee to reject all such connections and it is your responsibility to determine whether your IBM
MQ configuration is FIPS-compliant.

EncryptionPolicySuiteB(MQLONG)
This field Specifies whether Suite B compliant cryptography is used and what level of strength is
employed. The value can be one or more of:

• MQ_SUITE_B_NONE

Suite B compliant cryptography is not used.
• MQ_SUITE_B_128_BIT

Suite B 128-bit strength security is used.
• MQ_SUITE_B_192_BIT

Suite B 192-bit strength security is used.

Note: Using the MQ_SUITE_B_NONE with any other value in this field is invalid.

CertificateValPolicy (MQLONG)
This field specifies what type of certificate validation policy is used. The field can be set to one of the
following values:
MQ_CERT_VAL_POLICY_ANY

Apply each of the certificate validation policies supported by the secure sockets library. Accept the
certificate chain if any of the policies considers the certificate chain valid.

MQ_CERT_VAL_POLICY_RFC5280
Apply only the RFC5280 compliant certificate validation policy. This setting provides stricter validation
than the ANY setting, but rejects some older digital certificates.

The initial value of this field is MQ_CERT_VAL_POLICY_ANY

560 IBM MQ Developing Applications Reference

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

CertificateLabel (MQCHAR64)
This field gives details of the certificate label being used.

IBM MQ initializes the default value for the CertificateLabel field as blanks.

This is interpreted at runtime as the default value, and is backwards compatible.

For example, specifying a MQSCO version less than 5.0, or using the default value of blanks for the
CertificateLabel field, uses the preexisting default value of ibmwebspheremquser_id.

MQSD - Subscription descriptor
The MQSD structure is used to specify details about the subscription being made. The structure is an
input/output parameter on the MQSUB call. For more information, see MQSUB usage notes.

Availability
The MQSD structure is available on the following platforms:

• AIX

• IBM i

• Linux

• Windows

• z/OS

and for IBM MQ MQI clients connected to these systems.

Version
The current version of MQSD is MQSD_VERSION_1.

Character set and encoding
Data in MQSD must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ MQI client, the structure must be in the character set and encoding of the client.

Managed subscriptions
If an application has no specific need to use a particular queue as the destination for those publications
that match its subscription, it can use the managed subscription feature. If an application elects to
use a managed subscription, the queue manager informs the subscriber about the destination where
published messages are sent, by providing an object handle as an output from the MQSUB call. For more
information, see Hobj (MQHOBJ) - input/output.

When the subscription is removed, the queue manager also undertakes to clean up messages that have
not been retrieved from the managed destination, in the following situations:

• When the subscription is removed - by use of MQCLOSE with MQCO_REMOVE_SUB - and the managed
Hobj is closed.

• By implicit means when the connection is lost to an application using a non-durable subscription
(MQSO_NON_DURABLE)

• By expiration when a subscription is removed because it has expired and the managed Hobj is closed.

You must use managed subscriptions with non-durable subscriptions, so that this clean up can occur,
and so that messages for closed non-durable subscriptions do not take up space in your queue manager.
Durable subscriptions can also use managed destinations.

Developing applications reference 561

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQSD_STRUC_ID 'SD¬¬'

Version (structure version number) MQSD_VERSION_1 1

Options (options) MQSO_NON_DURABLE 0

ObjectName (object name) None Null string or blanks

AlternateUserId (alternate user ID) None Null string or blanks

AlternateSecurityId (alternate security ID) MQSID_NONE Nulls

SubExpiry (subscription expiry) MQEI_UNLIMITED -1

ObjectString (object string) None Names and values as
defined for MQCHARV

SubName (subscription name) None Names and values as
defined for MQCHARV

SubUserData (subscription user data) None Names and values as
defined for MQCHARV

SubCorrelId (subscription correlation ID) MQCI_NONE Nulls

PubPriority (publication priority) MQPRI_PRIORITY_AS_
Q_DEF

-3

PubAccountingToken (publication accounting
token)

MQACT_NONE Nulls

PubAppIdentityData (publication application
identity data)

None Null string or blanks

SelectionString (string providing selection criteria) None Names and values as
defined for MQCHARV

SubLevel (subscription level) None 1

ResObjectString (long object name) None Names and values as
defined for MQCHARV

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.
3. In the C programming language, the macro variable MQSD_DEFAULT contains the values that are

listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQSD MySD = {MQSD_DEFAULT};

562 IBM MQ Developing Applications Reference

Language declarations
C declaration for MQSD

typedef struct tagMQSD MQSD;
struct tagMQSD {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options associated with subscribing */
 MQCHAR48 ObjectName; /* Object name */
 MQCHAR12 AlternateUserId; /* Alternate user identifier */
 MQBYTE40 AlternateSecurityId; /* Alternate security identifier */
 MQLONG SubExpiry; /* Expiry of Subscription */
 MQCHARV ObjectString; /* Object Long name */
 MQCHARV SubName; /* Subscription name */
 MQCHARV SubUserData; /* Subscription User data */
 MQBYTE24 SubCorrelId; /* Correlation Id related to this subscription */
 MQLONG PubPriority; /* Priority set in publications */
 MQBYTE32 PubAccountingToken; /* Accounting Token set in publications */
 MQCHAR32 PubApplIdentityData; /* Appl Identity Data set in publications */
 MQCHARV SelectionString; /* Message selector structure */
 MQLONG SubLevel; /* Subscription level */
 MQCHARV ResObjectString; /* Resolved Long object name*/
 /* Ver:1 */
};

COBOL declaration for MQSD

** Address of variable length string
 20 MQSD-OBJECTSTRING-VSPTR POINTER.
** Offset of variable length string
 20 MQSD-OBJECTSTRING-VSOFFSET PIC S9(9) BINARY.
** size of buffer
 20 MQSD-OBJECTSTRING-VSBUFSIZE PIC S9(9) BINARY.
** Length of variable length string
 20 MQSD-OBJECTSTRING-VSLENGTH PIC S9(9) BINARY.
** CCSID of variable length string
 20 MQSD-OBJECTSTRING-VSCCSID PIC S9(9) BINARY.
** Subscription name
 15 MQSD-SUBNAME.
** Address of variable length string
 20 MQSD-SUBNAME-VSPTR POINTER.
** Offset of variable length string
 20 MQSD-SUBNAME-VSOFFSET PIC S9(9) BINARY.
** size of buffer
 20 MQSD-SUBNAME-VSBUFSIZE PIC S9(9) BINARY.
** Length of variable length string
 20 MQSD-SUBNAME-VSLENGTH PIC S9(9) BINARY.
** CCSID of variable length string
 20 MQSD-SUBNAME-VSCCSID PIC S9(9) BINARY.
** Subscription User data
 15 MQSD-SUBUSERDATA.
** Address of variable length string
 20 MQSD-SUBUSERDATA-VSPTR POINTER.
** Offset of variable length string
 20 MQSD-SUBUSERDATA-VSOFFSET PIC S9(9) BINARY.
** size of buffer
 20 MQSD-SUBUSERDATA-VSBUFSIZE PIC S9(9) BINARY.
** Length of variable length string
 20 MQSD-SUBUSERDATA-VSLENGTH PIC S9(9) BINARY.
** CCSID of variable length string
 20 MQSD-SUBUSERDATA-VSCCSID PIC S9(9) BINARY.
** Correlation Id related to this subscription
 15 MQSD-SUBCORRELID PIC X(24).
** Priority set in publications
 15 MQSD-PUBPRIORITY PIC S9(9) BINARY.
** Accounting Token set in publications
 15 MQSD-PUBACCOUNTINGTOKEN PIC X(32).
** Appl Identity Data set in publications
 15 MQSD-PUBAPPLIDENTITYDATA PIC X(32).
** Message Selector
 15 MQSD-SELECTIONSTRING.
** Address of variable length string
 20 MQSD-SELECTIONSTRING-VSPTR POINTER.
** Offset of variable length string
 20 MQSD-SELECTIONSTRING-VSOFFSET PIC S9(9) BINARY.
** size of buffer

Developing applications reference 563

 20 MQSD-SELECTIONSTRING-VSBUFSIZE PIC S9(9) BINARY.
** Length of variable length string
 20 MQSD-SELECTIONSTRING-VSLENGTH PIC S9(9) BINARY.
** CCSID of variable length string
 20 MQSD-SELECTIONSTRING-VSCCSID PIC S9(9) BINARY.
** Selection criteria
 20 MQSD-SELECTIONSTRING-SUBLEVEL PIC S9(9) BINARY.
** Long object name
 20 MQSD-SELECTIONSTRING-RESOBJSTRING PIC S9(9) BINARY.

PL/I declaration for MQSD

dcl
1 MQSD based,
3 StrucId char(4), /* Structure identifier */
3 Version fixed bin(31), /* Structure version number */
3 Options fixed bin(31), /* Options associated with subscribing */
3 ObjectName char(48), /* Object name */
3 AlternateUserId char(12), /* Alternate user identifier */
3 AlternateSecurityId char(40), /* Alternate security identifier */
3 SubExpiry fixed bin(31), /* Expiry of Subscription */
3 ObjectString, /* Object Long name */
5 VSPtr pointer, /* Address of variable length string */
5 VSOffset fixed bin(31), /* Offset of variable length string */
5 VSBufSize fixed bin(31), /* size of buffer */
5 VSLength fixed bin(31), /* Length of variable length string */
5 VSCCSID fixed bin(31); /* CCSID of variable length string */
3 SubName, /* Subscription name */
5 VSPtr pointer, /* Address of variable length string */
5 VSOffset fixed bin(31), /* Offset of variable length string */
5 VSBufSize fixed bin(31), /* size of buffer */
5 VSLength fixed bin(31), /* Length of variable length string */
5 VSCCSID fixed bin(31); /* CCSID of variable length string */
3 SubUserData, /* Subscription User data */
5 VSPtr pointer, /* Address of variable length string */
5 VSOffset fixed bin(31), /* Offset of variable length string */
5 VSBufSize fixed bin(31), /* size of buffer */
5 VSLength fixed bin(31), /* Length of variable length string */
5 VSCCSID fixed bin(31), /* CCSID of variable length string */
3 SubCorrelId char(24), /* Correlation Id related to this subscription */
3 PubPriority fixed bin(31), /* Priority set in publications */
3 PubAccountingToken char(32), /* Accounting Token set in publications */
3 PubApplIdentityData char(32), /* Appl Identity Data set in publications */
3 SelectionString, /* Message Selection */
5 VSPtr pointer, /* Address of variable length string */
5 VSOffset fixed bin(31), /* Offset of variable length string */
5 VSBufSize fixed bin(31), /* size of buffer */
5 VSLength fixed bin(31), /* Length of variable length string */
5 VSCCSID fixed bin(31), /* CCSID of variable length string */
3 SubLevel fixed bin(31), /* Subscription level */
3 ResObjectString, /* Resolved Long object name */
5 VSPtr pointer, /* Address of variable length string */
5 VSOffset fixed bin(31), /* Offset of variable length string */
5 VSBufSize fixed bin(31), /* size of buffer */
5 VSLength fixed bin(31), /* Length of variable length string */
5 VSCCSID fixed bin(31); /* CCSID of variable length string */

High Level Assembler declaration for MQSD

MQSD DSECT
MQSD_STRUCID DS CL4 Structure identifier
MQSD_VERSION DS F Structure version number
MQSD-OPTIONS DS F Options associated with subscribing
MQSD_OBJECTNAME DS CL48 Object name
MQSD_ALTERNATEUSERID DS CL12 Alternate user identifier
MQSD_ALTERNATESECURITYID DS CL40 Alternate security identifier
MQSD_SUBEXPIRY DS F Expiry of Subscription
MQSD_OBJECTSTRING DS 0F Object Long name
MQSD_OBJECTSTRING_VSPTR DS F Address of variable length string
MQSD_OBJECTSTRING_VSOFFSET DS F Offset of variable length string
MQSD_OBJECTSTRING_VSBUFSIZE DS F size of buffer
MQSD_OBJECTSTRING_VSLENGTH DS F Length of variable length string
MQSD_OBJECTSTRING_VSCCSID DS F CCSID of variable length string
MQSD_OBJECTSTRING_LENGTH EQU *-MQSD_OBJECTSTRING
ORG MQSD_OBJECTSTRING
MQSD_OBJECTSTRING_AREA DS CL(MQSD_OBJECTSTRING_LENGTH)
*
MQSD_SUBNAME DS 0F Subscription name
MQSD_SUBNAME_VSPTR DS F Address of variable length string

564 IBM MQ Developing Applications Reference

MQSD_SUBNAME_VSOFFSET DS F Offset of variable length string
MQSD_SUBNAME_VSBUFSIZE DS F size of buffer
MQSD_SUBNAME_VSLENGTH DS F Length of variable length string
MQSD_SUBNAME_VSCCSID DS F CCSID of variable length string
MQSD_SUBNAME_LENGTH EQU *-MQSD_SUBNAME
ORG MQSD_SUBNAME
MQSD_SUBNAME_AREA DS CL(MQSD_SUBNAME_LENGTH)
*
MQSD_SUBUSERDATA DS 0F Subscription User data
MQSD_SUBUSERDATA_VSPTR DS F Address of variable length string
MQSD_SUBUSERDATA_VSOFFSET DS F Offset of variable length string
MQSD_SUBUSERDATA_VSBUFSIZE DS F size of buffer
MQSD_SUBUSERDATA_VSLENGTH DS F Length of variable length string
MQSD_SUBUSERDATA_VSCCSID DS F CCSID of variable length string
MQSD_SUBUSERDATA_LENGTH EQU *-MQSD_SUBUSERDATA
ORG MQSD_SUBUSERDATA
MQSD_SUBUSERDATA_AREA DS CL(MQSD_SUBUSERDATA_LENGTH)
*
MQSD_SUBCORRELID DS CL24 Correlation Id related to this subscription
MQSD_PUBPRIORITY DS F Priority set in publications
MQSD_PUBACCOUNTINGTOKEN DS CL32 Accounting Token set in publications
MQSD_PUBAPPLIDENTITYDATA DS CL32 Appl Identity Data set in publications
*
MQSD_SELECTIONSTRING DS F Message Selector
MQSD_SELECTIONSTRING_VSPTR DS F Address of variable length string
MQSD_SELECTIONSTRING_VSOFFSET DS F Offset of variable length string
MQSD_SELECTIONSTRING_VSBUFSIZE DS F size of buffer
MQSD_SELECTIONSTRING_VSLENGTH DS F Length of variable length string
MQSD_SELECTIONSTRING_VSCCSID DS F CCSID of variable length string
MQSD_SELECTIONSTRING_LENGTH EQU *- MQSD_SELECTIONSTRING
ORG MQSD_SELECTIONSTRING
MQSD_SELECTIONSTRING_AREA DS CL(MQSD_SELECTIONSTRING_LENGTH)
*
MQSD-SUBLEVEL DS F Subscription level
*
MQSD_RESOBJECTSTRING DS F Resolved Long object name
MQSD_RESOBJECTSTRING_VSPTR DS F Address of variable length string
MQSD_RESOBJECTSTRING_VSOFFSET DS F Offset of variable length string
MQSD_RESOBJECTSTRING_VSBUFSIZE DS F size of buffer
MQSD_RESOBJECTSTRING_VSLENGTH DS F Length of variable length string
MQSD_RESOBJECTSTRING_VSCCSID DS F CCSID of variable length string
MQSD_RESOBJECTSTRING_LENGTH EQU *- MQSD_RESOBJECTSTRING
ORG MQSD_RESOBJECTSTRING
MQSD_RESOBJECTSTRING_AREA DS CL(MQSD_RESOBJECTSTRING_LENGTH)
*
MQSD_LENGTH EQU *-MQSD
ORG MQSD
MQSD_AREA DS CL(MQSD_LENGTH)

StrucId (MQCHAR4)

This is the structure identifier; the value must be:
MQSD_STRUC_ID

Identifier for Subscription Descriptor structure.

For the C programming language, the constant MQSD_STRUC_ID_ARRAY is also defined; this has the
same value as MQSD_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQSD_STRUC_ID.

Version (MQLONG)
This is the structure version number; the value must be:
MQSD_VERSION_1

Version-1 Subscription Descriptor structure.

The following constant specifies the version number of the current version:
MQSD_CURRENT_VERSION

Current version of Subscription Descriptor structure.

This is always an input field. The initial value of this field is MQSD_VERSION_1.

Developing applications reference 565

Options (MQLONG)
This provides options to control the action of the MQSUB call.

You must specify at least one of the following options:

• MQSO_ALTER
• MQSO_RESUME
• MQSO_CREATE

To specify more than one option, either add the values together (do not add the same constant more than
once), or combine the values using the bitwise OR operation (if the programming language supports bit
operations).

Combinations that are not valid are noted in this topic; any other combinations are valid.

Access or creation options: Access and creation options control whether a subscription is created, or
whether an existing subscription is returned or altered. You must specify at least one of these options.

Table 527. Valid combinations of access and creation options

Combination of options Notes

MQSO_CREATE Creates a subscription if one does not exist. This
combination fails if the subscription exists.

MQSO_RESUME Resumes an existing subscription. This combination
fails if no subscription exists.

MQSO_CREATE + MQSO_RESUME Creates a subscription if one does not exist and
resumes a matching one, if it does exist. This
combination is useful when it is used in an application
that is run a number of times.

MQSO_ALTER (see note) Resumes an existing subscription, altering any fields
to match that specified in the MQSD. This combination
fails if no subscription exists.

MQSO_CREATE + MQSO_ALTER (see note) Creates a subscription if one does not exist and
resumes a matching one, if it does exist, altering
any fields to match that specified in the MQSD. This
combination is useful combination when used in an
application that wants to ensure that its subscription
is in a certain state before proceeding.

Note:

Options specifying MQSO_ALTER can also specify MQSO_RESUME, but this combination has no additional
effect to specifying MQSO_ALTER alone. MQSO_ALTER implies MQSO_RESUME, because calling MQSUB
to alter a subscription implies that the subscription will also be resumed. The opposite is not true,
however: resuming a subscription does not imply it is to be altered.

MQSO_CREATE

Create a new subscription for the topic specified. If a subscription using the same SubName exists,
the call fails with MQRC_SUB_ALREADY_EXISTS. This failure can be avoided by combining the
MQSO_CREATE option with MQSO_RESUME. The SubName is not always necessary. For more details,
see the description of that field.

Combining MQSO_CREATE with MQSO_RESUME returns a handle to a pre-existing subscription for the
specified SubName if one is found; if there is no existing subscription, a new one is created using all
the fields provided in the MQSD.

MQSO_CREATE can also be combined with MQSO_ALTER to similar effect.

566 IBM MQ Developing Applications Reference

MQSO_RESUME

Return a handle to a pre-existing subscription which matches that specified by SubName. No changes
are made to the matching subscriptions attributes and they are returned on output in the MQSD
structure. Only the following MQSD fields are used: StrucId, Version, Options, AlternateUserId and
AlternateSecurityId, and SubName.

The call fails with reason code MQRC_NO_SUBSCRIPTION if a subscription does not exist matching
the full subscription name. This failure can be avoided by combining the MQSO_CREATE option with
MQSO_RESUME.

The user ID of the subscription is the user ID that created the subscription, or if it has been later
altered by a different user ID, it is the user ID of the most recent successful alteration. If an
AlternateUserId is used, and use of alternate user IDs is allowed for that user, the alternate user
ID is recorded as the user ID that created the subscription instead of the user ID under which the
subscription was made.

If a matching subscription exists that was created without the MQSO_ANY_USERID option, and
the user ID of the subscription is different from that of the application requesting a handle to the
subscription, the call fails with reason code MQRC_IDENTITY_MISMATCH.

If a matching subscription exists and is currently in use, the call fails with
MQRC_SUBSCRIPTION_IN_USE.

If the subscription named in SubName is not a valid subscription to resume or alter from an
application, the call fails with MQRC_INVALID_SUBSCRIPTION.

MQSO_RESUME is implied by MQSO_ALTER so you do not need to combine it with that option.
However, combining the two options does not cause an error.

MQSO_ALTER

Return a handle to a pre-existing subscription with the full subscription name matching that specified
by the name in SubName. Any attributes of the subscription that are different from that specified in
the MQSD are altered in the subscription unless alteration is disallowed for that attribute. Details are
noted in the description of each attribute and are summarized in the following table. If you try to alter
an attribute that cannot be changed, or to alter a subscription that has set the MQSO_IMMUTABLE
option, the call fails with the reason code shown in the following table.

The call fails with reason code MQRC_NO_SUBSCRIPTION if a subscription matching the full
subscription name does not exist. You can avoid this failure by combining the MQSO_CREATE option
with MQSO_ALTER.

Combining MQSO_CREATE with MQSO_ALTER returns a handle to a pre-existing subscription for the
specified SubName if one is found; if there is no existing subscription, a new one is created using all
the fields provided in the MQSD.

The user ID of the subscription is the user ID that created the subscription, or if it is later altered by
a different user ID, it is the user ID of the most recent, successful alteration. If an AlternateUserId
is used, and use of alternate user IDs is allowed for that user, then the alternate user ID is recorded
as the user ID that created the subscription instead of the user ID under which the subscription was
made.

If a matching subscription exists that was created without the option MQSO_ANY_USERID and the
user ID of the subscription is different from that of the application requesting a handle to the
subscription, the call fails with reason code MQRC_IDENTITY_MISMATCH.

If a matching subscription exists and is currently in use, the call fails with
MQRC_SUBSCRIPTION_IN_USE.

If the subscription named in SubName is not a valid subscription to resume or alter from an
application, the call fails with MQRC_INVALID_SUBSCRIPTION.

The following table shows the ability of MQSO_ALTER to alter attribute values in MQSD and MQSUB.

Developing applications reference 567

Table 528. Attributes in MQSD and MQSUB that can be altered

Data type descriptor or
function call Field name

Can this attribute
be altered using
MQSO_ALTER Reason code

MQSD Durability options No MQRC_DURABILITY_NOT_ALTERABLE

MQSD Destination Options Yes None

MQSD Registration options Yes (see note “1” on page
568)

MQRC_GROUPING_NOT_ALTERABLE if you try to alter
MQSO_GROUP_SUB

MQSD Publication options Yes (see note “2” on page
568)

None

MQSD Wildcard options No MQRC_TOPIC_NOT_ALTERABLE

MQSD Other options No (see note “3” on page
568)

None

MQSD ObjectName No MQRC_TOPIC_NOT_ALTERABLE

MQSD AlternateUserId No (see note “4” on page
568)

None

MQSD AlternateSecurityId No (see note “4” on page
568)

None

MQSD SubExpiry Yes None

MQSD ObjectString No MQRC_TOPIC_NOT_ALTERABLE

MQSD SubName No (see note “5” on page
568)

None

MQSD SubUserData Yes None

MQSD SubCorrelId Yes (see note “6” on page
568)

MQRC_GROUPING_NOT_ALTERABLE when in a grouped subscription

MQSD PubPriority Yes None

MQSD PubAccountingToken Yes None

MQSD PubApplIdentityData Yes None

MQSD SubLevel No MQRC_SUBLEVEL_NOT_ALTERABLE

MQSUB Hobj Yes (see note “6” on page
568)

MQRC_GROUPING_NOT_ALTERABLE when in a grouped subscription

Notes:

1. MQSO_GROUP_SUB cannot be altered.
2. MQSO_NEW_PUBLICATIONS_ONLY cannot be altered because it is not part of the subscription
3. These options are not part of the subscription
4. This attribute is not part of the subscription
5. This attribute is the identity of the subscription being altered
6. Alterable except when part of a grouped sub (MQSO_GROUP_SUB)

Durability options: The following options control how durable the subscription is. You can specify only
one of these options. If you are altering an existing subscription using the MQSO_ALTER option, you
cannot change the durability of the subscription. On return from an MQSUB call using MQSO_RESUME, the
appropriate durability option is set.

MQSO_DURABLE
Request that the subscription to this topic remains until it is explicitly removed using MQCLOSE with
the MQCO_REMOVE_SUB option. If this subscription is not explicitly removed it will remain even after
this applications connection to the queue manager is closed.
If a durable subscription is requested to a topic that is defined as not allowing durable subscriptions,
the call fails with MQRC_DURABILITY_NOT_ALLOWED.

568 IBM MQ Developing Applications Reference

MQSO_NON_DURABLE
Request that the subscription to this topic is removed when the applications connection to the queue
manager is closed, if it is not already explicitly removed. MQSO_NON_DURABLE is the opposite of the
MQSO_DURABLE option, and is defined to aid program documentation. It is the default if neither is
specified.

Destination options: The following option controls the destination that publications for a topic that has
been subscribed to are sent to. If altering an existing subscription using the MQSO_ALTER option, the
destination used for publications for the subscription can be changed. On return from an MQSUB call
using MQSO_RESUME, this option is set if appropriate.

MQSO_MANAGED

Request that the destination that the publications are sent to is managed by the queue manager.

The object handle returned in Hobj represents a queue manager managed queue and is for use with
subsequent MQGET, MQCB, MQINQ, or MQCLOSE calls.

An object handle returned from a previous MQSUB call cannot be provided in the Hobj parameter
when MQSO_MANAGED is not specified.

MQSO_NO_MULTICAST

Request that the destination that the publications are sent to is not a multicast group address. This
option is only valid when combined with the MQSO_MANAGED option. When a handle to a queue is
provided in the Hobj parameter, multicast cannot be used for this subscription, and the option is not
valid.

If the topic is defined to only allow multicast subscriptions, using the MCAST(ONLY) setting, then the
call fails with reason code MQRC_MULTICAST_REQUIRED.

Scope Option: The following option controls the scope of the subscription being made. If altering an
existing subscription using the MQSO_ALTER option, this subscription scope option cannot be changed.
On returning from an MQSUB call using MQSO-RESUME, the appropriate scope option is set.

MQSO_SCOPE_QMGR
This subscription is made only on the local queue manager. No proxy subscription is distributed to
other queue managers in the network. Only publications that are published at this queue manager are
sent to this subscriber. This overrides any behavior set using the SUBSCOPE topic attribute.

Note: If not set, the subscription scope is determined by the SUBSCOPE topic attribute.

Registration options: The following options control the details of the registration that is made to the
queue manager for this subscription. If altering an existing subscription using the MQSO_ALTER option,
these registration options can be changed. On return from an MQSUB call using MQSO_RESUME the
appropriate registration options is set.

MQSO_GROUP_SUB

This subscription is to be grouped with other subscriptions of the same SubLevel using the same
queue and specifying the same correlation ID so that any publications to topics that would cause
more than one publication message to be provided to the group of subscriptions, due to an
overlapping set of topic strings being used, only causes one message to be delivered to the queue.
If this option is not used, then each unique subscription (identified by SubName) that matches is
provided with a copy of the publication which could mean more than one copy of the publication may
be placed on the queue shared by a number of subscriptions.

Only the most significant subscription in the group is provided with a copy of the publication. The most
significant subscription is based on the Full topic name up to the point where a wildcard is found. If a
mixture of wildcard schemes is used within the group, only the position of the wildcard is important.
You are advised not to combine different wildcard schemes within a group of subscriptions that share
the same queue.

When creating a new grouped subscription it must still have a unique SubName, but if it
matches the full topic name of an existing subscription in the group, the call fails with
MQRC_DUPLICATE_GROUP_SUB.

Developing applications reference 569

If the most significant subscription in group also specifies MQSO_NOT_OWN_PUBS and this is a
publication from the same application, then no publication is delivered to the queue.

When altering a subscription made with this option, the fields which imply the grouping, Hobj on
the MQSUB call (representing the queue and queue manager name), and the SubCorrelId cannot be
changed. Attempting to alter them causes the call to fail with MQRC_GROUPING_NOT_ALTERABLE.

This option must be combined with MQSO_SET_CORREL_ID with a SubCorrelId that is not set to
MQCI_NONE, and cannot be combined with MQSO_MANAGED.

MQSO_ANY_USERID

When MQSO_ANY_USERID is specified, the identity of the subscriber is not restricted to a single user
ID. This allows any user to alter or resume the subscription when they have suitable authority. Only
a single user may have the subscription at any one time. An attempt to resume use of a subscription
currently in use by another application causes the call to fail with MQRC_SUBSCRIPTION_IN_USE.

To add this option to an existing subscription the MQSUB call (using MQSO_ALTER) must come from
the same user ID as the original subscription itself.

If an MQSUB call refers to an existing subscription with MQSO_ANY_USERID set, and the user ID
differs from the original subscription, the call succeeds only if the new user ID has authority to
subscribe to the topic. On successful completion, future publications to this subscriber are put to the
subscribers queue with the new user ID set in the publication message.

Do not specify both MQSO_ANY_USERID and MQSO_FIXED_USERID. If neither is specified, the
default is MQSO_FIXED_USERID.

MQSO_FIXED_USERID

When MQSO_FIXED_USERID is specified, the subscription can be altered or resumed by only the last
user ID to alter the subscription. If the subscription has not been altered, it is the user ID that created
the subscription.

If an MQSUB verb refers to an existing subscription with MQSO_ANY_USERID set and alters the
subscription using MQSO_ALTER to use option MQSO_FIXED_USERID, the user ID of the subscription
is now fixed at this new user ID. The call succeeds only if the new user ID has authority to subscribe to
the topic.

If a user ID other than the one recorded as owning a subscription tries to resume or alter an
MQSO_FIXED_USERID subscription, the call fails with MQRC_IDENTITY_MISMATCH. The owning user
ID of a subscription can be viewed using the DISPLAY SBSTATUS command.

Do not specify both MQSO_ANY_USERID and MQSO_FIXED_USERID. If neither is specified, the
default is MQSO_FIXED_USERID.

Publication options: The following options control the way publications are sent to this subscriber.
If altering an existing subscription using the MQSO_ALTER option, these publication options can be
changed.

MQSO_NOT_OWN_PUBS
Tells the broker that the application does not want to see any of its own publications. Publications are
considered to originate from the same application if the connection handles are the same. On return
from an MQSUB call using MQSO_RESUME, this option is set if appropriate.

MQSO_NEW_PUBLICATIONS_ONLY
No currently retained publications are to be sent, when this subscription is created, only new
publications. This option only applies when MQSO_CREATE is specified. Any subsequent changes
to a subscription do not alter the flow of publications and so any publications retained on a topic, will
have already been sent to the subscriber as new publications.
If this option is specified without MQSO_CREATE the call fails with MQRC_OPTIONS_ERROR. On
return from an MQSUB call using MQSO_RESUME, this option is not set even if the subscription was
created using this option.

570 IBM MQ Developing Applications Reference

If this option is not used, previously retained messages are sent to the destination queue
provided. If this action fails due to an error, either MQRC_RETAINED_MSG_Q_ERROR or
MQRC_RETAINED_NOT_DELIVERED, the creation of the subscription fails.

MQSO_PUBLICATIONS_ON_REQUEST
Setting this option indicates that the subscriber will request information specifically when required.
The queue manager does not send unsolicited messages to the subscriber. The retained publication
(or possibly multiple publications if a wildcard is specified in the topic) is sent to the subscriber each
time an MQSUBRQ call is made using the Hsub handle from a previous MQSUB call. No publications
are sent as a result of the MQSUB call using this option. On return from an MQSUB call using
MQSO_RESUME, this option is set if appropriate.
This option is not valid in combination with a SubLevel greater than 1.

Read ahead options: The following options control whether non-persistent messages are sent to an
application ahead of the application requesting them.

MQSO_READ_AHEAD_AS_Q_DEF
If the MQSUB call uses a managed handle, the default read ahead attribute of the model queue
associated with the topic subscribed to determines whether messages are sent to the application
before the application requests them.
This is the default value.

MQSO_NO_READ_AHEAD
If the MQSUB call uses a managed handle, messages are not sent to the application before the
application requests them.

MQSO_READ_AHEAD
If the MQSUB call uses a managed handle, messages might be sent to the application before the
application requests them.

Note:

The following notes apply to the read ahead options:

1. Only one of these options can be specified. If both MQOO_READ_AHEAD and
MQOO_NO_READ_AHEAD are specified, reason code MQRC_OPTIONS_ERROR is returned. These
options are only applicable if MQSO_MANAGED is specified.

2. They are not applicable for MQSUB when a queue is passed which has been opened previously. Read
ahead might not be enabled when requested. The MQGET options used on the first MQGET call might
prevent read ahead from being enabled. Also, read ahead is disabled when the client is connecting to
a queue manager where read ahead is not supported. If the application is not running as an IBM MQ
client, these options are ignored.

Wildcard options: The following options control how wildcards are interpreted in the string provided
in the ObjectString field of the MQSD. You can specify only one of these options. If altering an existing
subscription using the MQSO_ALTER option, these wildcard options cannot be changed. On return from an
MQSUB call using MQSO_RESUME, the appropriate wildcard option is set.

MQSO_WILDCARD_CHAR
Wildcards only operate on characters within the topic string.
The behavior defined by MQSO_WILDCARD_CHAR is shown in the following table.

Table 529. How wildcards are interpreted

Special Character Behavior

Forward slash (/) No significance, just another character

Asterisk (*) Wildcard, zero or more characters

Question mark (?) Wildcard, 1 character

Developing applications reference 571

Table 529. How wildcards are interpreted (continued)

Special Character Behavior

Percent sign (%) Escape character to allow the characters (*), (?) or
(%) to be used in a string and not be interpreted as a
special character, for example, (%*), (%?) or (%%).

For example, publishing on the following topic:

/level0/level1/level2/level3/level4

matches subscribers using the following topics:

*
/*
/ level0/level1/level2/level3/*
/ level0/level1/*/level3/level4
/ level0/level1/le?el2/level3/level4

Note: This use of wildcards supplies exactly the meaning provided in IBM MQ V6 and WebSphere MB
V6 when using MQRFH1 formatted messages for publish/subscribe. It is recommended that this is
not used for newly written applications and is only used for applications that were previously running
against that version and have not been changed to use the default wildcard behavior as described in
MQSO_WILDCARD_TOPIC.

MQSO_WILDCARD_TOPIC

Wildcards only operate on topic elements within the topic string. This is the default behavior if none is
chosen.

The behavior required by MQSO_WILDCARD_TOPIC is shown in the following table:

Table 530. How wildcards are interpreted

Special Character Behavior

(/) Topic level separator

Number sign (#) Wildcard: multiple topic level

Plus sign (+) Wildcard: single topic level

Notes:

The (+) and (#) are not treated as wildcards if they are mixed in with other characters (including
themselves) within a topic level. In the following string, the (#) and (+) characters are treated as
ordinary characters.

level0/level1/#+/level3/level#

For example, publishing on the following topic:

/level0/level1/level2/level3/level4

matches subscribers using the following topics:

#
/#
/ level0/level1/level2/level3/#
/ level0/level1/+/level3/level4

572 IBM MQ Developing Applications Reference

Other options: The following options control the way the API call is issued rather than the subscription.
On return from an MQSUB call using MQSO_RESUME, these options are unchanged. See “AlternateUserId
(MQCHAR12)” on page 574 for more details.

MQSO_ALTERNATE_USER_AUTHORITY

The AlternateUserId field contains a user identifier to use to validate this MQSUB call. The call can
succeed only if this AlternateUserId is authorized to open the object with the specified access options,
regardless of whether the user identifier under which the application is running is authorized to do so.

MQSO_SET_CORREL_ID

The subscription is to use the correlation identifier supplied in the SubCorrelId field. If this
option is not specified, a correlation identifier is automatically created by the queue manager at
subscription time and is returned to the application in the SubCorrelId field. For more information,
see “SubCorrelId (MQBYTE24)” on page 576 for more information.

This option cannot be combined with MQSO_MANAGED.

MQSO_SET_IDENTITY_CONTEXT

The subscription is to use the accounting token and application identity data supplied in the
PubAccountingToken and PubApplIdentityData fields.

If this option is specified, the same authorization check is carried out as if the destination queue was
accessed using an MQOPEN call with MQOO_SET_IDENTITY_CONTEXT, except in the case where the
MQSO_MANAGED option is also used in which case there is no authorization check on the destination
queue.

If this option is not specified, the publications sent to this subscriber have default context information
associated with them as follows:

Table 531. Default context information for publications sent to this subscriber

Field in MQMD Value used

UserIdentifier The user ID associated with the subscription at the
time the subscription was made.

AccountingToken Determined from the environment if possible; Set to
MQACT_NONE if not.

ApplIdentityData Set to blanks

This option is only valid with MQSO_CREATE and MQSO_ALTER. If used with MQSO_RESUME, the
PubAccountingToken and PubApplIdentityData fields are ignored, so this option has no effect.

If a subscription is altered without using this option where previously the subscription supplied
identity context information, default context information is generated for the altered subscription.

If a subscription allowing different user IDs to use it with option MQSO_ANY_USERID, is resumed
by a different user ID, default identity context is generated for the new user ID now owning the
subscription and any subsequent publications are delivered containing the new identity context.

MQSO_FAIL_IF_QUIESCING

The MQSUB call fails if the queue manager is in quiescing state. On z/OS, for a CICS or IMS
application, this option also forces the MQSUB call to fail if the connection is in quiescing state.

ObjectName (MQCHAR48)

This is the name of the topic object as defined on the local queue manager.

The name can contain the following characters:

• Uppercase alphabetic characters (A through Z)

Developing applications reference 573

• Lowercase alphabetic characters (a through z)
• Numeric digits (0 through 9)
• Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but can contain trailing blanks. Use a null
character to indicate the end of significant data in the name; the null and any characters following it are
treated as blanks. The following restrictions apply in the environments indicated:

• On systems that use EBCDIC Katakana, lowercase characters cannot be used.
• On z/OS:

– Avoid names that begin or end with an underscore; they cannot be processed by the operations and
control panels.

– The percent character has a special meaning to RACF. If RACF is used as the external security
manager, names must not contain the percent. If they do, those names are not included in any
security checks when RACF generic profiles are used.

• On IBM i, names containing lowercase characters, forward slash, or percent, must be enclosed in
quotation marks when specified on commands. These quotation marks must not be specified for names
that occur as fields in structures or as parameters on calls.

The ObjectName is used to form the full topic name.

The full topic name can be built from two different fields: ObjectName and ObjectString. For details of
how these two fields are used, see Combining topic strings.

If the object identified by the ObjectName field cannot be found, the call fails with reason code
MQRC_UNKNOWN_OBJECT_NAME even if there is a string specified in ObjectString.

On return from an MQSUB call using the MQSO_RESUME option this field is unchanged.

The length of this field is given by MQ_TOPIC_NAME_LENGTH. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages.

If altering an existing subscription using the MQSO_ALTER option, the name of the topic object
subscribed to cannot be changed. This field and the ObjectString field can be omitted. If they
are provided, they must resolve to the same full topic name. If they do not, the call fails with
MQRC_TOPIC_NOT_ALTERABLE.

AlternateUserId (MQCHAR12)

If you specify MQSO_ALTERNATE_USER_AUTHORITY, this field contains an alternative user identifier that
is used to check the authorization for the subscription and for output to the destination queue (specified
in the Hobj parameter of the MQSUB call), in place of the user identifier that the application is currently
running under.

If successful, the user identifier specified in this field is recorded as the subscription owning user
identifier in place of the user identifier that the application is currently running under.

If MQSO_ALTERNATE_USER_AUTHORITY is specified and this field is entirely blank up to the first null
character or the end of the field, the subscription can succeed only if no user authorization is needed to
subscribe to this topic with the options specified or the destination queue for output.

If MQSO_ALTERNATE_USER_AUTHORITY is not specified, this field is ignored.

The following differences exist in the environments indicated:

• On z/OS, only the first 8 characters of AlternateUserId are used to check the authorization for
the subscription. However, the current user identifier must be authorized to specify this particular
alternative user identifier; all 12 characters of the alternative user identifier are used for this check. The
user identifier must contain only characters allowed by the external security manager.

On return from an MQSUB call using MQSO_RESUME, this field is unchanged.

574 IBM MQ Developing Applications Reference

This is an input field. The length of this field is given by MQ_USER_ID_LENGTH. The initial value of this
field is the null string in C, and 12 blank characters in other programming languages.

AlternateSecurityId (MQBYTE40)

This is a security identifier that is passed with the AlternateUserId to the authorization service to allow
appropriate authorization checks to be performed.

AlternateSecurityId is used only if MQSO_ALTERNATE_USER_AUTHORITY is specified, and the
AlternateUserId field is not entirely blank up to the first null character or the end of the field.

On return from an MQSUB call using MQSO_RESUME, this field is unchanged.

See the description of “AlternateSecurityId (MQBYTE40)” on page 486 in the MQOD data type for more
information.

SubExpiry (MQLONG)
This is the time expressed in tenths of a second after which the subscription expires. No more
publications will match this subscription after this interval has passed. As soon as a subscription expires,
publications are no longer sent to the queue. However, the publications that are already there are not
affected in any way. SubExpiry has no effect on publication expiry.

The following special value is recognized:
MQEI_UNLIMITED

The subscription has an unlimited expiration time.

If altering an existing subscription using the MQSO_ALTER option, the expiry of the subscription can be
changed.

On return from an MQSUB call using the MQSO_RESUME option this field is set to the original expiry of the
subscription and not the remaining expiry time.

ObjectString (MQCHARV)

This is the long object name to be used.

The ObjectString is used to form the Full topic name.

The full topic name can be built from two different fields: ObjectName and ObjectString. For details of
how these two fields are used, see Combining topic strings.

The maximum length of ObjectString is 10240.

If ObjectString is not specified correctly, according to the description of how to use the
MQCHARV structure, or if it exceeds the maximum length, the call fails with reason code
MQRC_OBJECT_STRING_ERROR.

This is an input field. The initial values of the fields in this structure are the same as those in the
MQCHARV structure.

If there are wildcards in the ObjectString the interpretation of those wildcards can be controlled using
the Wildcard options specified in the Options field of the MQSD.

On return from an MQSUB call using the MQSO_RESUME option this field is unchanged. The full topic
name used is returned in the ResObjectString field if a buffer is provided.

If altering an existing subscription using the MQSO_ALTER option, the long name of the topic
object subscribed to cannot be changed. This field and the ObjectName field can be omitted.
If they are provided they must resolve to the same full topic name or the call fails with
MQRC_TOPIC_NOT_ALTERABLE.

Developing applications reference 575

SubName (MQCHARV)

This specifies the subscription name. This field is only required if Options specifies the option
MQSO_DURABLE, but if provided will be used by the queue manager for MQSO_NON_DURABLE as well.

If specified, SubName must be unique within the queue manager, because it is the method used to
identify the subscription.

The maximum length of SubName is 10240.

This field serves two purposes. For an MQSO_DURABLE subscription, you use this field to identify
a subscription so you can resume it after it has been created if you have either closed the handle
to the subscription (using the MQCO_KEEP_SUB option) or have been disconnected from the queue
manager. This is done using the MQSUB call with the MQSO_RESUME option. It is also displayed in the
administrative view of subscriptions in the SUBID field in DISPLAY SBSTATUS.

If SubName is specified incorrectly, according to the description of how to use the MQCHARV structure, is
left out when it is required (that is SubName. VSLength is zero), or if it exceeds the maximum length, the
call fails with reason code MQRC_SUB_NAME_ERROR.

This is an input field. The initial values of the fields in this structure are the same as those in the
MQCHARV structure.

If altering an existing subscription using the MQSO_ALTER option, the subscription name cannot be
changed, because it is the identifying field used to find the referenced subscription. It is not changed on
output from an MQSUB call with the MQSO_RESUME option.

SubUserData (MQCHARV)

This specifies the subscription user data. The data provided on the subscription in this field will be
included as the MQSubUserData message property of every publication sent to this subscription.

The maximum length of SubUserData is 10240.

If SubUserData is specified incorrectly, according to the description of how to use the
MQCHARV structure, or if it exceeds the maximum length, the call fails with reason code
MQRC_SUB_USER_DATA_ERROR.

This is an input field. The initial values of the fields in this structure are the same as those in the
MQCHARV structure.

If altering an existing subscription using the MQSO_ALTER option, the subscription user data can be
changed.

This variable length field is returned on output from an MQSUB call using the MQSO_RESUME option, if a
buffer is provided and there is a positive buffer length in VSBufLen. If no buffer is provided on the call,
only the length of the subscription user date is returned in the VSLength field of the MQCHARV. If the
buffer provided is smaller than the space required to return the field, only VSBufLen bytes are returned in
the provided buffer.

SubCorrelId (MQBYTE24)
This field contains a correlation identifier common to all publications matching this subscription.

Attention: a correlation identifier can only be passed between queue managers in a publish/
subscribe cluster, not a hierarchy.

All publications sent to match this subscription contain this correlation identifier in the message
descriptor. If multiple subscriptions get their publications from the same queue, using MQGET by
correlation identifier allows only publications for a specific subscription to be obtained. This correlation
identifier can either be generated by the queue manager or by the user.

If the option MQSO_SET_CORREL_ID is not specified, the correlation identifier is generated by the queue
manager and this field is an output field containing the correlation identifier that will be set in each

576 IBM MQ Developing Applications Reference

message published for this subscription. The generated correlation identifier consists of a 4-byte product
identifier (AMQX or CSQM in either ASCII or EBCDIC) followed by a product specific implementation of a
unique string.

If the option MQSO_SET_CORREL_ID is specified, the correlation identifier is generated by the user
and this field is an input field containing the correlation identifier to be set in each publication for this
subscription. In this case, if the field contains MQCI_NONE, the correlation identifier that is set in each
message published for this subscription is the correlation identifier created by the original put of the
message.

If the option MQSO_GROUP_SUB is specified and the correlation identifier specified is the same as an
existing grouped subscription using the same queue and an overlapping topic string, only the most
significant subscription in the group is provided with a copy of the publication.

The length of this field is given by MQ_CORREL_ID_LENGTH. The initial value of this field is MQCI_NONE.

If you are altering an existing subscription using the MQSO_ALTER option, and this field is an input
field, then the subscription correlation identifier can be changed, unless the subscription is a grouped
subscription, that is, it has been created using the option MQSO_GROUP_SUB, in which case the
subscription correlation identifier cannot be changed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the current correlation identifier
for the subscription.

PubPriority (MQLONG)

This is the value that will be in the Priority field of the Message Descriptor (MQMD) of all publication
messages matching this subscription. For more information about the Priority field in the MQMD, see
“Priority (MQLONG)” on page 447.

The value must be greater than or equal to zero; zero is the lowest priority. The following special values
can also be used:
MQPRI_PRIORITY_AS_Q_DEF

When a subscription queue is provided in the Hobj field in the MQSUB call, and is not a managed
handle, then the priority for the message is taken from the DefPriority attribute of this queue. If
the queue is a cluster queue or there is more than one definition in the queue-name resolution path
then the priority is determined when the publication message is put to the queue as described for
“Priority (MQLONG)” on page 447.

If the MQSUB call uses a managed handle, the priority for the message is taken from the
DefPriority attribute of the model queue associated with the topic subscribed to.

MQPRI_PRIORITY_AS_PUBLISHED

The priority for the message is the priority of the original publication. This is the initial value of the
field.

If altering an existing subscription using the MQSO_ALTER option, the Priority of any future publication
messages can be changed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the current priority being used for
the subscription.

PubAccountingToken (MQBYTE32)

This is the value that will be in the AccountingToken field of the Message Descriptor (MQMD) of all
publication messages matching this subscription. AccountingToken is part of the identity context of the
message. For more information about message context, see Message context. For more information about
the AccountingToken field in the MQMD, see “AccountingToken (MQBYTE32)” on page 454

You can use the following special value for the PubAccountingToken field:

Developing applications reference 577

MQACT_NONE

No accounting token is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQACT_NONE_ARRAY is also defined; this has the
same value as MQACT_NONE, but is an array of characters instead of a string.

If the option MQSO_SET_IDENTITY_CONTEXT is not specified, the accounting token is generated by
the queue manager as default context information and this field is an output field which contains the
AccountingToken which will be set in each message published for this subscription.

If the option MQSO_SET_IDENTITY_CONTEXT is specified, the accounting token is being generated by the
user and this field is an input field which contains the AccountingToken to be set in each publication for
this subscription.

The length of this field is given by MQ_ACCOUNTING_TOKEN_LENGTH. The initial value of this field is
MQACT_NONE.

If altering an existing subscription using the MQSO_ALTER option, the value of AccountingToken in any
future publication messages can be changed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the current AccountingToken
being used for the subscription.

PubApplIdentityData (MQCHAR32)

This is the value that is in the ApplIdentityData field of the Message Descriptor (MQMD) of all
publication messages matching this subscription. ApplIdentityData is part of the identity context of
the message. For more information about message context, see Message context. For more information
about the ApplIdentityData field in the MQMD, see “ApplIdentityData (MQCHAR32)” on page 456

If the option MQSO_SET_IDENTITY_CONTEXT is not specified, the ApplIdentityData which is set in
each message published for this subscription is blanks, as default context information.

If the option MQSO_SET_IDENTITY_CONTEXT is specified, the PubApplIdentityData is being
generated by the user and this field is an input field which contains the ApplIdentityData to be set in
each publication for this subscription.

The length of this field is given by MQ_APPL_IDENTITY_DATA_LENGTH. The initial value of this field is the
null string in C, and 32 blank characters in other programming languages.

If altering an existing subscription using the MQSO_ALTER option, the ApplIdentityData of any future
publication messages can be changed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the current ApplIdentityData
being used for the subscription.

SelectionString (MQCHARV)
This is the string used to provide the selection criteria used when subscribing for messages from a topic.

This variable length field will be returned on output from an MQSUB call using the MQSO_RESUME option,
if a buffer is provided, and also there is a positive buffer length in VSBufSize. If no buffer is provided on
the call, only the length of the selection string will be returned in the VSLength field of the MQCHARV.
If the buffer provided is smaller than the space required to return the field, only VSBufSize bytes are
returned in the provided buffer.

If SelectionString is specified incorrectly, according to the description of how to use the “MQCHARV
- Variable Length String” on page 292 structure, or if it exceeds the maximum length, the call fails with
reason code MQRC_SELECTION_STRING_ERROR.

SelectionString usage is described in Selectors.

578 IBM MQ Developing Applications Reference

SubLevel (MQLONG)
This is the level associated with the subscription. Publications are only delivered to this subscription if it
is in the set of subscriptions with the highest SubLevel value less than or equal to the PubLevel used at
publication time. However, if a publication has been retained, it is no longer available to subscribers at
higher levels because it is republished at PubLevel 1.

The value must be in the range zero to 9. Zero is the lowest level.

The initial value of this field is 1.

For more information see Intercepting publications.

If altering an existing subscription using the MQSO_ALTER option, then the SubLevel cannot be changed.

Combining a SubLevel with a value greater than 1 with the option MQSO_PUBLICATIONS_ON_REQUEST is
not allowed.

On return from an MQSUB call using MQSO_RESUME, this field is set to the current level being used for
the subscription.

ResObjectString (MQCHARV)
This is the long object name after the queue manager resolves the name provided in ObjectName.

If the long object name is provided in ObjectString and nothing is provided in ObjectName, then the
value returned in this field is the same as provided in ObjectString.

If this field is omitted (that is ResObjectString.VSBufSize is zero) then the ResObjectString is not
returned, but the length is returned in ResObjectString.VSLength. If the length is shorter than the full
ResObjectString then it is truncated and returns as many of the rightmost characters as can fit in the
provided length.

If ResObjectString is specified incorrectly, according to the description of how to use the
MQCHARV structure, or if it exceeds the maximum length, the call fails with reason code
MQRC_RES_OBJECT_STRING_ERROR.

MQSMPO - Set message property options
The MQSMPO structure allows applications to specify options that control how properties of messages are
set. The structure is an input parameter on the MQSETMP call.

Availability
All IBM MQ systems and IBM MQ clients.

Character set and encoding
Data in MQSMPO must be in the character set of the application and encoding of the application
(MQENC_NATIVE).

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 532. Fields in MQSMPO

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQSMPO_STRUC_ID 'SMPO'

Version (structure version number) MQSMPO_VERSION_1 1

Developing applications reference 579

Table 532. Fields in MQSMPO (continued)

Field name and description Name of constant Initial value (if any) of
constant

Options (options) MQSMPO_NONE 0

ValueEncoding (property value encoding) MQENC_NATIVE Depends on
environment

ValueCCSID (property value character set) MQCCSI_APPL -3

Notes:

1. The value Null string or blanks denotes the null string in C, and blank characters in other
programming languages.

2. In the C programming language, the macro variable MQSMPO_DEFAULT contains the values that are
listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQSMPO MySMPO = {MQSMPO_DEFAULT};

Language declarations
C declaration for MQSMPO

typedef struct tagMQSMPO MQSMPO;
struct tagMQSMPO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of MQSETMP */
 MQLONG ValueEncoding; /* Encoding of Value */
 MQLONG ValueCCSID; /* Character set identifier of Value */
};

COBOL declaration for MQSMPO

** MQSMPO structure
 10 MQSMPO.
** Structure identifier
 15 MQSMPO-STRUCID PIC X(4).
** Structure version number
 15 MQSMPO-VERSION PIC S9(9) BINARY.
** Options that control the action of MQSETMP
 15 MQSMPO-OPTIONS PIC S9(9) BINARY.
** Encoding of VALUE
 15 MQSMPO-VALUEENCODING PIC S9(9) BINARY.
** Character set identifier of VALUE
 15 MQSMPO-VALUECCSID PIC S9(9) BINARY.

PL/I declaration for MQSMPO

dcl
 1 MQSMPO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action of MQSETMP */
 3 ValueEncoding fixed bin(31), /* Encoding of Value */
 3 ValueCCSID fixed bin(31), /* Character set identifier of Value */

High Level Assembler declaration for MQSMPO

MQSMPO DSECT
MQSMPO_STRUCID DS CL4 Structure identifier

580 IBM MQ Developing Applications Reference

MQSMPO_VERSION DS F Structure version number
MQSMPO_OPTIONS DS F Options that control the action of
* MQSETMP
MQSMPO_VALUEENCODING DS F Encoding of VALUE
MQSMPO_VALUECCSID DS F Character set identifier of VALUE
MQSMPO_LENGTH EQU *-MQSMPO
MQSMPO_AREA DS CL(MQSMPO_LENGTH)

StrucId (MQCHAR4)

This is the structure identifier; the value must be:

MQSMPO_STRUC_ID

Identifier for set message property options structure.

For the C programming language, the constant MQSMPO_STRUC_ID_ARRAY is also defined; this has
the same value as MQSMPO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQSMPO_STRUC_ID.

Version (MQLONG)

This is the structure version number; the value must be:

MQSMPO_VERSION_1
Version-1 set message property options structure.

The following constant specifies the version number of the current version:

MQSMPO_CURRENT_VERSION
Current version of set message property options structure.

This is always an input field. The initial value of this field is MQSMPO_VERSION_1.

Options (MQLONG)

Location options
The following options relate to the relative location of the property compared to the property cursor:
MQSMPO_SET_FIRST

Sets the value of the first property that matches the specified name, or if it does not exist, adds a new
property after all other properties with a matching hierarchy.

MQSMPO_SET_PROP_UNDER_CURSOR
Sets the value of the property pointed to by the property cursor. The property pointed to by the
property cursor is the one that was last inquired using either the MQIMPO_INQ_FIRST or the
MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused on an MQGET call, or when the
message handle is specified in the MsgHandle field of the MQGMO or MQPMO structure on an MQPUT
call.

If this option is used when the property cursor has not yet been established or if the property pointer
to by the property cursor has been deleted, the call fails with completion code MQCC_FAILED and
reason code MQRC_PROPERTY_NOT_AVAILABLE.

MQSMPO_SET_PROP_BEFORE_CURSOR
Sets a new property before the property pointed to by the property cursor. The property pointed to
by the property cursor is the one that was last inquired using either the MQIMPO_INQ_FIRST or the
MQIMPO_INQ_NEXT option.

Developing applications reference 581

The property cursor is reset when the message handle is reused on an MQGET call, or when the
message handle is specified in the MsgHandle field of the MQGMO or MQPMO structure on an MQPUT
call.

If this option is used when the property cursor has not yet been established or if the property pointer
to by the property cursor has been deleted, the call fails with completion code MQCC_FAILED and
reason code MQRC_PROPERTY_NOT_AVAILABLE.

MQSMPO_SET_PROP_AFTER_CURSOR
Sets a new property after the property pointed to by the property cursor. The property pointed to
by the property cursor is the one that was last inquired using either the MQIMPO_INQ_FIRST or the
MQIMPO_INQ_NEXT option.

The property cursor is reset when the message handle is reused on an MQGET call, or when the
message handle is specified in the MsgHandle field of the MQGMO or MQPMO structure on an MQPUT
call.

If this option is used when the property cursor has not yet been established or if the property pointer
to by the property cursor has been deleted, the call fails with completion code MQCC_FAILED and
reason code MQRC_PROPERTY_NOT_AVAILABLE.

MQSMPO_APPEND_PROPERTY
Causes a new property to be added after all other properties with a matching hierarchy. If at least one
property exists which matches the specified name, then a new property is added at the end after the
end of that list of properties.

This option allows a list of properties with the same name to be created.

If you need none of the options described, use the following option:
MQSMPO_NONE

No options specified.

This is always an input field. The initial value of this field is MQSMPO_SET_FIRST.

ValueEncoding (MQLONG)

The encoding of the property value to be set if the value is numeric.

This is always an input field. The initial value of this field is MQENC_NATIVE.

ValueCCSID (MQLONG)

The character set of the property value to be set if the value is a character string.

This is always an input field. The initial value of this field is MQCCSI_APPL.

MQSRO - Subscription request options
The MQSRO structure allows the application to specify options that control how a subscription request is
made. The structure is an input/output parameter on the MQSUBRQ call.

Availability
The MQSRO structure is available on the following platforms:

• AIX

• IBM i

• Linux

582 IBM MQ Developing Applications Reference

• Windows

• z/OS

and for IBM MQ MQI clients connected to these systems.

Version
The current version of MQSRO is MQSRO_VERSION_1.

Character set and encoding
Data in MQSRO must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE. However, if the application is running as
an MQ MQI client, the structure must be in the character set and encoding of the client.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQSRO_STRUC_ID 'SRO¬'

Version (structure version number) MQSRO_VERSION_1 1

Options (options) MQSRO_NONE 0

NumPubs (number of publications) None 0

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQSRO_DEFAULT contains the values that are

listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQSRO MySRO = {MQSRO_DEFAULT};

Language declarations
C declaration for MQSRO

typedef struct tagMQSRO MQSRO;
struct tagMQSRO {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Options; /* Options that control the action of MQSUBRQ */
 MQLONG NumPubs; /* Number of publications sent */
 /* Ver:1 */
};

COBOL declaration for MQSRO

** MQSRO structure
 10 MQSRO.
** Structure identifier
 15 MQSRO-STRUCID PIC X(4).
** Structure version number
 15 MQSRO-VERSION PIC S9(9) BINARY.

Developing applications reference 583

** Options that control the action of MQSUBRQ
 15 MQSRO-OPTIONS PIC S9(9) BINARY.
** Number of publications sent
 15 MQSRO-NUMPUBS PIC S9(9) BINARY.

PL/I declaration for MQSRO

dcl
 1 MQSRO based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 Options fixed bin(31), /* Options that control the action of MQSUBRQ */
 3 NumPubs fixed bin(31); /* Number of publications sent */

High Level Assembler declaration for MQSRO

MQSRO DSECT
MQSRO_STRUCID DS CL4 Structure identifier
MQSRO_VERSION DS F Structure version number
MQSRO_OPTIONS DS F Options that control the action of MQSUBRQ
MQSRO_NUMPUBS DS F Number of publications sent
*
MQSRO_LENGTH EQU *-MQSRO
 ORG MQSRO
MQSRO_AREA DS CL(MQSRO_LENGTH)

StrucId (MQCHAR4)

This is the structure identifier; the value must be:
MQSRO_STRUC_ID

Identifier for Subscription Request Options structure.

For the C programming language, the constant MQSRO_STRUC_ID_ARRAY is also defined; this has the
same value as MQSRO_STRUC_ID, but is an array of characters instead of a string.

This is always an input field. The initial value of this field is MQSRO_STRUC_ID.

Version (MQLONG)
This is the structure version number; the value must be:
MQSRO_VERSION_1

Version-1 Subscription Request Options structure.

The following constant specifies the version number of the current version:
MQSRO_CURRENT_VERSION

Current version of Subscription Request Options structure.

This is always an input field. The initial value of this field is MQSRO_VERSION_1.

Options (MQLONG)

One of the following options must be specified. Only one option can be specified.

MQSRO_FAIL_IF_QUIESCING

The MQSUBRQ call fails if the queue manager is in the quiescing state. On z/OS, for a CICS or IMS
application, this option also forces the MQSUBRQ call to fail if the connection is in a quiescing state.

Default option: If the option described previously is not required, the following option must be used:
MQSRO_NONE

Use this value to indicate that no other options have been specified; all options assume their default
values.

584 IBM MQ Developing Applications Reference

MQSRO_NONE helps program documentation. Although it is not intended that this option be used
with any other, because its value is zero, this use cannot be detected.

NumPubs (MQLONG)
This is an output field, returned to the application to indicate the number of publications sent to the
subscription queue as a result of this call. Although this number of publications have been sent as a result
of this call, there is no guarantee that this many messages will be available for the application to get,
especially if they are non-persistent messages.

There might be more than one publication if the topic subscribed to contained a wildcard. If no wildcards
were present in the topic string when the subscription represented by Hsub was created, then at most one
publication is sent as a result of this call.

MQSTS - Status reporting structure
The MQSTS structure is an output parameter from the MQSTAT command. The MQSTAT command is used
to retrieve status information. This information is returned in an MQSTS structure.

Character set and encoding
Character data in MQSTS is in the character set of the local queue manager; this is given by the
CodedCharSetId queue manager attribute. Numeric data in MQSTS is in the native machine encoding;
this is given by Encoding.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 533. Fields in MQSTS

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQSTS_STRUC_ID 'STAT¬'

Version (structure version number) MQSTS_VERSION_1 1

CompCode (completion code of first error) MQCC_OK 0

Reason (reason code of first error) MQRC_NONE 0

PutSuccessCount (number of successful
asynchronous put calls)

None 0

PutWarningCount (number of asynchronous put
calls that had warnings)

None 0

PutFailureCount (number of failed asynchronous
put calls)

None 0

ObjectType (type of failing object) MQOT_Q 1

ObjectName (name of failing object) None Null string or blanks

ObjectQMgrName (name of queue manager that
owns the failing object

None Null string or blanks

ResolvedObjectName (resolved name of
destination queue)

None Null string or blanks

ResolvedQMgrName (resolved name of destination
queue manager)

None Null string or blanks

Developing applications reference 585

Table 533. Fields in MQSTS (continued)

Field name and description Name of constant Initial value (if any) of
constant

Note: The remaining fields are ignored if Version is less than MQSTS_VERSION_2.

ObjectString (long object name of failing object) MQCHARV_DEFAULT {NULL,0,0,0,-3}

SubName (subscription name of failing
subscription)

MQCHARV_DEFAULT {NULL,0,0,0,-3}

OpenOptions (open options associated with the
failure)

None 0

SubOptions(subscription options associated with
the failure)

None 0

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.
3. In the C programming language, the macro variable MQSTS_DEFAULT contains the values that are

listed in the table. It can be used in the following way to provide initial values for the fields in the
structure:

MQSTS MySTS = {MQSTS_DEFAULT};

Language declarations
C declaration for MQSTS

typedef struct tagMQSTS MQSTS;
struct tagMQSTS {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG CompCode; /* Completion Code of first error */
 MQLONG Reason; /* Reason Code of first error */
 MQLONG PutSuccessCount; /* Number of Async calls succeeded */
 MQLONG PutWarningCount; /* Number of Async calls had warnings */
 MQLONG PutFailureCount; /* Number of Async calls had failures */
 MQLONG ObjectType; /* Failing object type */
 MQCHAR48 ObjectName; /* Failing object name */
 MQCHAR48 ObjectQMgrName; /* Failing object queue manager name */
 MQCHAR48 ResolvedObjectName; /* Resolved name of destination queue */
 MQCHAR48 ResolvedQMgrName; /* Resolved name of destination qmgr */
/* Ver:1 */
 MQCHARV ObjectString; /* Failing object long name */
 MQCHARV SubName; /* Failing subscription name */
 MQLONG OpenOptions; /* Failing open options */
 MQLONG SubOptions; /* Failing subscription options */
/* Ver:2 */
};

COBOL declaration for MQSTS

 ** MQSTS structure
 10 MQSTS.
 ** Structure identifier
 15 MQSTS-STRUCID PIC X(4).
 ** Structure version number
 15 MQSTS-VERSION PIC S9(9) BINARY.
 ** Completion Code of first error
 15 MQSTS-COMPCODE PIC S9(9) BINARY.

586 IBM MQ Developing Applications Reference

 ** Reason Code of first error
 15 MQSTS-REASON PIC S9(9) BINARY.
 ** Number of Async put calls succeeded
 15 MQSTS-PUTSUCCESSCOUNT PIC S9(9) BINARY.
 ** Number of Async put calls had warnings
 15 MQSTS-PUTWARNINGCOUNT PIC S9(9) BINARY.
 ** Number of Async put calls had failures
 15 MQSTS-PUTFAILURECOUNT PIC S9(9) BINARY.
 ** Failing object type
 15 MQSTS-OBJECTTYPE PIC S9(9) BINARY.
 ** Failing object name
 15 MQSTS-OBJECTNAME PIC X(48).
 ** Failing object queue manager
 15 MQSTS-OBJECTQMGRNAME PIC X(48).
 ** Resolved name of destination queue
 15 MQSTS-RESOLVEDOBJECTNAME PIC X(48).
 ** Resolved name of destination qmgr
 15 MQSTS-RESOLVEDQMGRNAME PIC X(48).
 ** Ver:1 **
 ** Failing object long name
 15 MQSTS-OBJECTSTRING.
 ** Address of variable length string
 20 MQSTS-OBJECTSTRING-VSPTR POINTER.
 ** Offset of variable length string
 20 MQSTS-OBJECTSTRING-VSOFFSET PIC S9(9) BINARY.
 ** Size of buffer
 20 MQSTS-OBJECTSTRING-VSBUFSIZE PIC S9(9) BINARY.
 ** Length of variable length string
 20 MQSTS-OBJECTSTRING-VSLENGTH PIC S9(9) BINARY.
 ** CCSID of variable length string
 20 MQSTS-OBJECTSTRING-VSCCSID PIC S9(9) BINARY.
 ** Failing subscription name
 15 MQSTS-SUBNAME.
 ** Address of variable length string
 20 MQSTS-SUBNAME-VSPTR POINTER.
 ** Offset of variable length string
 20 MQSTS-SUBNAME-VSOFFSET PIC S9(9) BINARY.
 ** Size of buffer
 20 MQSTS-SUBNAME-VSBUFSIZE PIC S9(9) BINARY.
 ** Length of variable length string
 20 MQSTS-SUBNAME-VSLENGTH PIC S9(9) BINARY.
 ** CCSID of variable length string
 20 MQSTS-SUBNAME-VSCCSID PIC S9(9) BINARY.
 ** Failing open options
 15 MQSTS-OPENOPTIONS PIC S9(9) BINARY.
 ** Failing subscription options
 15 MQSTS-SUBOPTIONS PIC S9(9) BINARY.
 ** Ver:2 **

PL/I declaration for MQSTS

dcl
 1 MQSTS based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 CompCode fixed bin(31), /* Completion code */
 3 Reason fixed bin(31), /* Reason code */
 3 PutSuccessCount fixed bin(31), /* Put success count */
 3 PutWarningCount fixed bin(31), /* Put warning count */
 3 PutFailureCount fixed bin(31), /* Put failure count */
 3 ObjectType fixed bin(31), /* Object type */
 3 ObjectName char(48), /* Object name */
 3 ObjectQmgrName char(48), /* Object queue manager */
 3 ResolvedObjectName char(48), /* Resolved Object name */
 3 ResolvedQmgrName char(48); /* Resolved Object queue manager */
 /* Ver:1 */
 3 ObjectString, /* Failing object long name */
 5 VSPtr pointer, /* Address of variable length string */
 5 VSOffset fixed bin(31), /* Offset of variable length string */
 5 VSBufSize fixed bin(31), /* Size of buffer */
 5 VSLength fixed bin(31), /* Length of variable length string */
 5 VSCCSID fixed bin(31); /* CCSID of variable length string */
 3 SubName, /* Failing subscription name */
 5 VSPtr pointer, /* Address of variable length string */
 5 VSOffset fixed bin(31), /* Offset of variable length string */
 5 VSBufSize fixed bin(31), /* Size of buffer */
 5 VSLength fixed bin(31), /* Length of variable length string */
 5 VSCCSID fixed bin(31); /* CCSID of variable length string */
 3 OpenOptions fixed bin(31), /* Failing open options */

Developing applications reference 587

 3 SubOptions fixed bin(31); /* Failing subscription options */
 /* Ver:2 */

High Level Assembler declaration for MQSTS

 MQSTS DSECT
 MQSTS_STRUCID DS CL4 Structure identifier
 MQSTS_VERSION DS F Structure version number
 MQSTS_COMPCODE DS F Completion code
 MQSTS_REASON DS F Reason code
 MQSTS_PUTSUCCESSCOUNT DS F Success count
 MQSTS_PUTWARNINGCOUNT DS F Warning count
 MQSTS_PUTFAILURECOUNT DS F Failure count
 MQSTS_OBJTYPE DS F Object type
 MQSTS_OBJNAME DS CL48 Object name
 MQSTS_OBJQMGR DS CL48 Object queue manager
 MQSTS_ROBJNAME DS CL48 Resolved object name
 MQSTS_ROBJQMGR DS CL48 Resolved object queue manager
 MQSTS_OBJECTSTRING DS 0F Force fullword alignment
 MQSTS_OBJECTSTRING_VSPTR DS A Address of variable length string
 MQSTS_OBJECTSTRING_VSOFFSET DS F Offset of variable length string
 MQSTS_OBJECTSTRING_VSBUFSIZE DS F Size of buffer
 MQSTS_OBJECTSTRING_VSLENGTH DS F Length of variable length string
 MQSTS_OBJECTSTRING_VSCCSID DS F CCSID of variable length string
 MQSTS_OBJECTSTRING_LENGTH EQU *-MQSTS_OBJECTSTRING
 ORG MQSTS_OBJECTSTRING
 MQSTS_OBJECTSTRING_AREA DS CL(MQSTS_OBJECTSTRING_LENGTH)
 *
 MQSTS_SUBNAME DS 0F Force fullword alignment
 MQSTS_SUBNAME_VSPTR DS A Address of variable length string
 MQSTS_SUBNAME_VSOFFSET DS F Offset of variable length string
 MQSTS_SUBNAME_VSBUFSIZE DS F Size of buffer
 MQSTS_SUBNAME_VSLENGTH DS F Length of variable length string
 MQSTS_SUBNAME_VSCCSID DS F CCSID of variable length string
 MQSTS_SUBNAME_LENGTH EQ *-MQSTS_SUBNAME
 ORG MQSTS_SUBNAME
 MQSTS_SUBNAME_AREA DS CL(MQSTS_SUBNAME_LENGTH)
 *
 MQSTS_OPENOPTIONS DS F Failing open options
 MQSTS_SUBOPTIONS DS F Failing subscription option
 MQSTS_LENGTH EQU *-MQSTS
 ORG MQSTS
 MQSTS_AREA DS CL(MQSTS_LENGTH)

Related reference
“MQSTAT - Retrieve status information” on page 775
Use the MQSTAT call to retrieve status information. The type of status information returned is determined
by the Type value specified on the call.

StrucId (MQCHAR4)
The identifier for the status reporting structure, MQSTS.

StrucId is the structure identifier. The value must be:
MQSTS_STRUC_ID

Identifier for status reporting structure.

For the C programming language, the constant MQSTS_STRUC_ID_ARRAY is also defined; this has the
same value as MQSTS_STRUC_ID, but is an array of characters instead of a string.

StrucId is always an input field. Its initial value is MQSTS_STRUC_ID.

Version (MQLONG)
The structure version number.

The value must be either:
MQSTS_VERSION_1

Version 1 status reporting structure.
MQSTS_VERSION_2

Version 2 status reporting structure.

588 IBM MQ Developing Applications Reference

The following constant specifies the version number of the current version:
MQSTS_CURRENT_VERSION

Current version of status reporting structure. The current version is MQSTS_VERSION_2.

Version is always an input field. Its initial value is MQSTS_VERSION_1.

CompCode (MQLONG)
The completion code of the operation being reported on.

The interpretation of CompCode depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

This is the completion code resulting from a previous asynchronous put operation on the object
specified in ObjectName.

MQSTAT_TYPE_RECONNECTION

If the connection is reconnecting or failed to reconnect this is the completion code that caused the
connection to begin reconnecting.

If the connection is currently connected the value is MQCC_OK.

MQSTAT_TYPE_RECONNECTION_ERROR

If the connection failed to reconnect this is the completion code that caused the reconnection to fail.

If the connection is currently connected, or reconnecting, the value is MQCC_OK.

CompCode is always an output field. Its initial value is MQCC_OK.

Reason (MQLONG)
The reason code of the operation being reported on.

The interpretation of Reason depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

This is the reason code resulting from a previous asynchronous put operation on the object specified
in ObjectName.

MQSTAT_TYPE_RECONNECTION

If the connection is reconnecting or failed to reconnect this is the reason code that caused the
reconnection to begin reconnecting.

If the connection is currently connected the value is MQRC_NONE.

MQSTAT_TYPE_RECONNECTION_ERROR

If the connection failed to reconnect this is the reason code that caused the reconnection to fail.

If the connection is currently connected, or reconnecting, the value is MQRC_NONE.

Reason is an output field. Its initial value is MQRC_NONE.

PutSuccessCount (MQLONG)
The number of asynchronous put operations that succeeded.

The value of PutSuccessCount depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

The number of asynchronous put operations to the object named in the MQSTS structure that
completed with MQCC_OK.

Developing applications reference 589

MQSTAT_TYPE_RECONNECTION

Zero.

MQSTAT_TYPE_RECONNECTION_ERROR

Zero.

PutSuccessCount is an output field. Its initial value is zero.

PutWarningCount (MQLONG)
The number of asynchronous put operations that ended with a warning.

The value of PutWarningCount depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

The number of asynchronous put operations to the object named in the MQSTS structure that
completed with MQCC_WARNING.

MQSTAT_TYPE_RECONNECTION

Zero.

MQSTAT_TYPE_RECONNECTION_ERROR

Zero.

PutWarningCount is an output field. Its initial value is zero.

PutFailureCount (MQLONG)
The number of asynchronous put operations that failed.

The value of PutFailureCount depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

The number of asynchronous put operations to the object named in the MQSTS structure that
completed with MQCC_FAILED.

MQSTAT_TYPE_RECONNECTION

Zero.

MQSTAT_TYPE_RECONNECTION_ERROR

Zero.

PutFailureCount is an output field. Its initial value is zero.

ObjectType (MQLONG)
The type of the object named in ObjectName being reported on.

Possible values of ObjectType are listed in “MQOT_* (Object Types and Extended Object Types)” on
page 164.

ObjectType is an output field. Its initial value is MQOT_Q.

ObjectName (MQCHAR48)
The name of the object being reported on.

The interpretation of ObjectName depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

This is the name of the queue or topic used in the put operation, the failure of which is reported in the
CompCode and Reason fields in the MQSTS structure.

590 IBM MQ Developing Applications Reference

MQSTAT_TYPE_RECONNECTION

If the connection is reconnecting, this is the name of the queue manager associated with the
connection.

MQSTAT_TYPE_RECONNECTION_ERROR

If the connection failed to reconnect, this is the name of the object which caused reconnection to fail.
The reason for the failure is reported in the CompCode and Reason fields in the MQSTS structure.

ObjectName is an output field. Its initial value is the null string in C, and 48 blank characters in other
programming languages.

ObjectQMgrName (MQCHAR48)
The name of the queue manager being reported on.

The interpretation of ObjectQMgrName depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

This is the name of the queue manager on which the ObjectName object is defined. A name that is
entirely blank up to the first null character or the end of the field denotes the queue manager to which
the application is connected (the local queue manager).

MQSTAT_TYPE_RECONNECTION

The ObjectQMgrName field contains the name of a queue manager to which reconnection is being
requested, or blank if no queue manager is specified. If possible, the client attempts to reconnect to a
queue manager of that name.

Blank.

MQSTAT_TYPE_RECONNECTION_ERROR

If the connection failed to reconnect, this is the name of the object which caused reconnection to fail.
The reason for the failure is reported in the CompCode and Reason fields in the MQSTS structure.

ObjectQMgrName is an output field. Its value is the null string in C, and 48 blank characters in other
programming languages.

ResolvedObjectName (MQCHAR48)
The name of the object named in ObjectName after the local queue manager resolves the name.

The interpretation of ResolvedObjectName depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

ResolvedObjectName is the name of the object named in ObjectName after the local queue
manager resolves the name. The name returned is the name of an object that exists on the queue
manager identified by ResolvedQMgrName.

MQSTAT_TYPE_RECONNECTION

Blank.

MQSTAT_TYPE_RECONNECTION_ERROR

Blank.

ResolvedObjectName is an output field. Its initial value is the null string in C, and 48 blank characters in
other programming languages.

Developing applications reference 591

ResolvedQMgrName (MQCHAR48)
The name of the destination queue manager after the local queue manager resolves the name.

The interpretation of ResolvedQMgrName depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

ResolvedQMgrName is the name of the destination queue manager after the local queue manager
resolves the name. The name returned is the name of the queue manager that owns the object
identified by ResolvedObjectName. ResolvedQMgrName might be the name of the local queue
manager.

MQSTAT_TYPE_RECONNECTION

Blank.

MQSTAT_TYPE_RECONNECTION_ERROR

Blank.

ResolvedQMgrName is always an output field. Its initial value is the null string in C, and 48 blank
characters in other programming languages.

ObjectString (MQCHARV)
Long object name of failing object being reported on. Present only in version 2 of MQSTS or higher.

The interpretation of ObjectString depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

This is the long object name of the queue or topic used in the MQPUT operation, which failed.

MQSTAT_TYPE_RECONNECTION

Zero length string

MQSTAT_TYPE_RECONNECTION_ERROR

This is the long object name of the object that caused the reconnection to fail.

ObjectString is an output field. Its initial value is a zero length string.

SubName (MQCHARV)
The name of the failing subscription. Present only in version 2 of MQSTS or higher.

The interpretation of SubName depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

Zero length string.

MQSTAT_TYPE_RECONNECTION

Zero length string.

MQSTAT_TYPE_RECONNECTION_ERROR

The name of the subscription that caused reconnection to fail. If no subscription name is available, or
the failure is not related to a subscription, this is a zero-length string.

SubName is an output field. Its initial value is a zero length string.

OpenOptions (MQLONG)
The OpenOptions used to open the object being reported upon. Present only in version 2 of MQSTS or
higher.

The value of OpenOptions depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

Zero.

592 IBM MQ Developing Applications Reference

MQSTAT_TYPE_RECONNECTION

Zero.

MQSTAT_TYPE_RECONNECTION_ERROR

The OpenOptions used when the failure occurred. The reason for the failure is reported in the
CompCode and Reason fields in the MQSTS structure.

OpenOptions is an output field. Its initial value is zero.

SubOptions (MQLONG)
The SubOptions used to open the failing subscription. Present only in version 2 of MQSTS or higher.

The interpretation of SubOptions depends on the value of the MQSTAT Type parameter.
MQSTAT_TYPE_ASYNC_ERROR

Zero.

MQSTAT_TYPE_RECONNECTION

Zero.

MQSTAT_TYPE_RECONNECTION_ERROR

The SubOptions used when the failure occurred. If the failure is not related to subscribing to a topic,
the value returned is zero.

SubOptions is an output field. Its initial value is zero.

MQTM - Trigger message
The MQTM structure describes the data in the trigger message that is sent by the queue manager to a
trigger-monitor application when a trigger event occurs for a queue. This structure is part of the IBM MQ
Trigger Monitor Interface (TMI), which is one of the IBM MQ framework interfaces.

Format name
MQFMT_TRIGGER.

Character set and encoding
Character data in MQTM is in the character set of the queue manager that generates the MQTM. Numeric
data in MQTM is in the machine encoding of the queue manager that generates the MQTM.

The character set and encoding of the MQTM are given by the CodedCharSetId and Encoding fields in:

• The MQMD (if the MQTM structure is at the start of the message data), or
• The header structure that precedes the MQTM structure (all other cases).

Usage
A trigger-monitor application might need to pass some or all of the information in the trigger message
to the application that the trigger-monitor application starts. Information that might be needed by the
started application includes QName, TriggerData, and UserData. The trigger-monitor application can
pass the MQTM structure directly to the started application, or pass an MQTMC2 structure instead,
depending on what is permitted by the environment and convenient for the started application. For
information about MQTMC2, see “MQTMC2 - Trigger message 2 (character format)” on page 599.

• On z/OS, for an MQAT_CICS application that is started using the CKTI transaction, the
entire trigger message structure MQTM is made available to the started transaction; the information can
be retrieved by using the EXEC CICS RETRIEVE command.

Developing applications reference 593

• On IBM i, the trigger-monitor application provided with IBM MQ passes an MQTMC2
structure to the started application.

For information about using triggers, see Starting IBM MQ applications using triggers.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 534. Fields in MQTM for MQTM

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQTM_STRUC_ID 'TM¬¬'

Version (structure version number) MQTM_VERSION_1 1

QName (name of triggered queue) None Null string or blanks

ProcessName (name of process object) None Null string or blanks

TriggerData (trigger data) None Null string or blanks

ApplType (application type None 0

ApplId (application identifier) None Null string or blanks

EnvData (environment data) None Null string or blanks

UserData (user data) None Null string or blanks

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.
3. In the C programming language, the macro variable MQTM_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQTM MyTM = {MQTM_DEFAULT};

Language declarations
C declaration for MQTM

typedef struct tagMQTM MQTM;
struct tagMQTM {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQCHAR48 QName; /* Name of triggered queue */
 MQCHAR48 ProcessName; /* Name of process object */
 MQCHAR64 TriggerData; /* Trigger data */
 MQLONG ApplType; /* Application type */
 MQCHAR256 ApplId; /* Application identifier */
 MQCHAR128 EnvData; /* Environment data */
 MQCHAR128 UserData; /* User data */
};

COBOL declaration for MQTM

** MQTM structure

594 IBM MQ Developing Applications Reference

 10 MQTM.
** Structure identifier
 15 MQTM-STRUCID PIC X(4).
** Structure version number
 15 MQTM-VERSION PIC S9(9) BINARY.
** Name of triggered queue
 15 MQTM-QNAME PIC X(48).
** Name of process object
 15 MQTM-PROCESSNAME PIC X(48).
** Trigger data
 15 MQTM-TRIGGERDATA PIC X(64).
** Application type
 15 MQTM-APPLTYPE PIC S9(9) BINARY.
** Application identifier
 15 MQTM-APPLID PIC X(256).
** Environment data
 15 MQTM-ENVDATA PIC X(128).
** User data
 15 MQTM-USERDATA PIC X(128).

PL/I declaration for MQTM

dcl
 1 MQTM based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 QName char(48), /* Name of triggered queue */
 3 ProcessName char(48), /* Name of process object */
 3 TriggerData char(64), /* Trigger data */
 3 ApplType fixed bin(31), /* Application type */
 3 ApplId char(256), /* Application identifier */
 3 EnvData char(128), /* Environment data */
 3 UserData char(128); /* User data */

High Level Assembler declaration for MQTM

MQTM DSECT
MQTM_STRUCID DS CL4 Structure identifier
MQTM_VERSION DS F Structure version number
MQTM_QNAME DS CL48 Name of triggered queue
MQTM_PROCESSNAME DS CL48 Name of process object
MQTM_TRIGGERDATA DS CL64 Trigger data
MQTM_APPLTYPE DS F Application type
MQTM_APPLID DS CL256 Application identifier
MQTM_ENVDATA DS CL128 Environment data
MQTM_USERDATA DS CL128 User data
*
MQTM_LENGTH EQU *-MQTM
 ORG MQTM
MQTM_AREA DS CL(MQTM_LENGTH)

Visual Basic declaration for MQTM

Type MQTM
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 QName As String*48 'Name of triggered queue'
 ProcessName As String*48 'Name of process object'
 TriggerData As String*64 'Trigger data'
 ApplType As Long 'Application type'
 ApplId As String*256 'Application identifier'
 EnvData As String*128 'Environment data'
 UserData As String*128 'User data'
End Type

MQMD for a trigger message
Table 535. Settings for the fields in the MQMD of a trigger message generated by the queue manager

Field in MQMD Value used

StrucId MQMD_STRUC_ID

Developing applications reference 595

Table 535. Settings for the fields in the MQMD of a trigger message generated by the queue manager (continued)

Field in MQMD Value used

Version MQMD_VERSION_1

Report MQRO_NONE

MsgType MQMT_DATAGRAM

Expiry MQEI_UNLIMITED

Feedback MQFB_NONE

Encoding MQENC_NATIVE

CodedCharSetId Queue manager's CodedCharSetId attribute

Format MQFMT_TRIGGER

Priority Initiation queue's DefPriority attribute

Persistence MQPER_NOT_PERSISTENT

MsgId A unique value

CorrelId MQCI_NONE

BackoutCount 0

ReplyToQ Blanks

ReplyToQMgr Name of queue manager

UserIdentifier Blanks

AccountingToken MQACT_NONE

ApplIdentityData Blanks

PutApplType MQAT_QMGR, or as appropriate for the message channel agent

PutApplName First 28 bytes of the queue manager name

PutDate Date when trigger message is sent

PutTime Time when trigger message is sent

ApplOriginData Blanks

An application that generates a trigger message is recommended to set similar values, except for the
following:

• The Priority field can be set to MQPRI_PRIORITY_AS_Q_DEF (the queue manager will change this to
the default priority for the initiation queue when the message is put).

• The ReplyToQMgr field can be set to blanks (the queue manager will change this to the name of the
local queue manager when the message it put).

• Set the context fields as appropriate for the application.

StrucId (MQCHAR4)
This is the structure identifier. The value must be:
MQTM_STRUC_ID

Identifier for trigger message structure.

For the C programming language, the constant MQTM_STRUC_ID_ARRAY is also defined; this has the
same value as MQTM_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQTM_STRUC_ID.

596 IBM MQ Developing Applications Reference

Version (MQLONG)
This is the structure version number. The value must be:
MQTM_VERSION_1

Version number for trigger message structure.

The following constant specifies the version number of the current version:
MQTM_CURRENT_VERSION

Current version of trigger message structure.

The initial value of this field is MQTM_VERSION_1.

QName (MQCHAR48)
This is the name of the queue for which a trigger event occurred, and is used by the application started
by the trigger-monitor application. The queue manager initializes this field with the value of the QName
attribute of the triggered queue; see“Attributes for queues” on page 826for details of this attribute.

Names that are shorter than the defined length of the field are padded to the right with blanks; they are
not ended prematurely by a null character.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

ProcessName (MQCHAR48)
This is the name of the queue manager process object specified for the triggered queue, and can be
used by the trigger-monitor application that receives the trigger message. The queue manager initializes
this field with the value of the ProcessName attribute of the queue identified by the QName field;
see“Attributes for queues” on page 826for details of this attribute.

Names that are shorter than the defined length of the field are always padded to the right with blanks;
they are not ended prematurely by a null character.

The length of this field is given by MQ_PROCESS_NAME_LENGTH. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages.

TriggerData (MQCHAR64)
This is free-format data for use by the trigger-monitor application that receives the trigger message. The
queue manager initializes this field with the value of the TriggerData attribute of the queue identified
by the QName field; see “Attributes for queues” on page 826 for details of this attribute. The content of
this data is of no significance to the queue manager.

On z/OS, for a CICS application started using the CKTI transaction, this information is not used.

The length of this field is given by MQ_TRIGGER_DATA_LENGTH. The initial value of this field is the null
string in C, and 64 blank characters in other programming languages.

ApplType (MQLONG)
This identifies the nature of the program to be started, and is used by the trigger-monitor application
that receives the trigger message. The queue manager initializes this field with the value of the
ApplType attribute of the process object identified by the ProcessName field; see “Attributes for
process definitions” on page 861 for details of this attribute. The content of this data is of no significance
to the queue manager.

ApplType can have one of the following standard values. User-defined types can also be used, but
should be restricted to values in the range MQAT_USER_FIRST through MQAT_USER_LAST:

MQAT_AIX
AIX application (same value as MQAT_UNIX).

Developing applications reference 597

MQAT_BATCH
Batch application

MQAT_BROKER
Broker application

MQAT_CICS
CICS transaction.

MQAT_CICS_BRIDGE
CICS bridge application.

MQAT_CICS_VSE
CICS/VSE transaction.

MQAT_DOS
IBM MQ MQI client application on PC DOS.

MQAT_IMS
IMS application.

MQAT_IMS_BRIDGE
IMS bridge application.

MQAT_JAVA
Java application.

MQAT_MVS
MVS or TSO application (same value as MQAT_ZOS).

MQAT_NOTES_AGENT
Lotus Notes Agent application.

MQAT_OS390
OS/390 application (same value as MQAT_ZOS).

MQAT_OS400
IBM i application.

MQAT_RRS_BATCH
RRS batch application.

MQAT_UNIX
UNIX application.

MQAT_UNKNOWN
Application of unknown type.

MQAT_USER
User-defined application type.

MQAT_VOS
Stratus VOS application.

MQAT_WINDOWS
16-bit Windows application.

MQAT_WINDOWS_NT
32-bit Windows application.

MQAT_WLM
z/OS workload manager application.

MQAT_XCF
XCF.

MQAT_ZOS
z/OS application.

MQAT_USER_FIRST
Lowest value for user-defined application type.

MQAT_USER_LAST
Highest value for user-defined application type.

598 IBM MQ Developing Applications Reference

The initial value of this field is 0.

ApplId (MQCHAR256)
This is a character string that identifies the application to be started, and is used by the trigger-monitor
application that receives the trigger message. The queue manager initializes this field with the value of the
ApplId attribute of the process object identified by the ProcessName field; see “Attributes for process
definitions” on page 861 for details of this attribute. The content of this data is of no significance to the
queue manager.

The meaning of ApplId is determined by the trigger-monitor application. The trigger monitor provided
by IBM MQ requires ApplId to be the name of an executable program. The following notes apply to the
environments indicated:

• On z/OS, ApplId is:

– A CICS transaction identifier, for applications started using the CICS trigger-monitor transaction CKTI
– An IMS transaction identifier, for applications started using the IMS trigger monitor CSQQTRMN

• On Windows systems, the program name can be prefixed with a drive and directory path.
• On IBM i, the program name can be prefixed with a library name and / character.
• On AIX and Linux, the program name can be prefixed with a directory path.

The length of this field is given by MQ_PROCESS_APPL_ID_LENGTH. The initial value of this field is the
null string in C, and 256 blank characters in other programming languages.

EnvData (MQCHAR128)
This is a character string that contains environment-related information pertaining to the application to
be started, and is used by the trigger-monitor application that receives the trigger message. The queue
manager initializes this field with the value of the EnvData attribute of the process object identified by
the ProcessName field; see “Attributes for process definitions” on page 861 for details of this attribute.
The content of this data is of no significance to the queue manager.

On z/OS, for a CICS application started using the CKTI transaction, or an IMS application to be started
using the CSQQTRMN transaction, this information is not used.

The length of this field is given by MQ_PROCESS_ENV_DATA_LENGTH. The initial value of this field is the
null string in C, and 128 blank characters in other programming languages.

UserData (MQCHAR128)
This is a character string that contains user information relevant to the application to be started, and is
used by the trigger-monitor application that receives the trigger message. The queue manager initializes
this field with the value of the UserData attribute of the process object identified by the ProcessName
field; see “Attributes for process definitions” on page 861 for details of this attribute. The content of this
data is of no significance to the queue manager.

For Microsoft Windows, the character string must not contain double quotation marks if the process
definition is going to be passed to runmqtrm.

The length of this field is given by MQ_PROCESS_USER_DATA_LENGTH. The initial value of this field is the
null string in C, and 128 blank characters in other programming languages.

MQTMC2 - Trigger message 2 (character format)
When a trigger-monitor application retrieves a trigger message (MQTM) from an initiation queue, the
trigger monitor might need to pass some or all of the information in the trigger message to the application
that the trigger monitor starts.

Information that the started application might need includes QName, TriggerData, and UserData. The
trigger monitor application can pass the MQTM structure directly to the started application, or pass an

Developing applications reference 599

MQTMC2 structure instead, depending on what is permitted by the environment and convenient for the
started application.

This structure is part of the IBM MQ Trigger Monitor Interface (TMI), which is one of the IBM MQ
framework interfaces.

Character set and encoding
Character data in MQTMC2 is in the character set of the local queue manager; this is given by the
CodedCharSetId queue manager attribute.

Usage
The MQTMC2 structure is very similar to the format of the MQTM structure. The difference is that the
non-character fields in MQTM are changed in MQTMC2 to character fields of the same length, and the
queue manager name is added at the end of the structure.

• On z/OS, for an MQAT_IMS application that is started using the CSQQTRMN application, an
MQTMC2 structure is made available to the started application.

• On IBM i, the trigger monitor application provided with IBM MQ passes an MQTMC2
structure to the started application.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 536. Fields in MQTMC2

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQTMC_STRUC_ID 'TMC¬'

Version (structure version number) MQTMC_VERSION_2 '¬¬¬2'

QName (name of triggered queue) None Null string or blanks

ProcessName (name of process object) None Null string or blanks

TriggerData (trigger data) None Null string or blanks

ApplType (application type) None Blanks

ApplId (application identifier) None Null string or blanks

EnvData (environment data) None Null string or blanks

UserData (user data) None Null string or blanks

QMgrName (queue manager name) None Null string or blanks

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.
3. In the C programming language, the macro variable MQTMC2_DEFAULT contains the values listed

above. Use it in the following way to provide initial values for the fields in the structure:

MQTMC2 MyTMC = {MQTMC2_DEFAULT};

600 IBM MQ Developing Applications Reference

Language declarations
C declaration for MQTMC2

typedef struct tagMQTMC2 MQTMC2;
struct tagMQTMC2 {
 MQCHAR4 StrucId; /* Structure identifier */
 MQCHAR4 Version; /* Structure version number */
 MQCHAR48 QName; /* Name of triggered queue */
 MQCHAR48 ProcessName; /* Name of process object */
 MQCHAR64 TriggerData; /* Trigger data */
 MQCHAR4 ApplType; /* Application type */
 MQCHAR256 ApplId; /* Application identifier */
 MQCHAR128 EnvData; /* Environment data */
 MQCHAR128 UserData; /* User data */
 MQCHAR48 QMgrName; /* Queue manager name */
};

COBOL declaration for MQTMC2

** MQTMC2 structure
 10 MQTMC2.
** Structure identifier
 15 MQTMC2-STRUCID PIC X(4).
** Structure version number
 15 MQTMC2-VERSION PIC X(4).
** Name of triggered queue
 15 MQTMC2-QNAME PIC X(48).
** Name of process object
 15 MQTMC2-PROCESSNAME PIC X(48).
** Trigger data
 15 MQTMC2-TRIGGERDATA PIC X(64).
** Application type
 15 MQTMC2-APPLTYPE PIC X(4).
** Application identifier
 15 MQTMC2-APPLID PIC X(256).
** Environment data
 15 MQTMC2-ENVDATA PIC X(128).
** User data
 15 MQTMC2-USERDATA PIC X(128).
** Queue manager name
 15 MQTMC2-QMGRNAME PIC X(48).

PL/I declaration for MQTMC2

dcl
 1 MQTMC2 based,
 3 StrucId char(4), /* Structure identifier */
 3 Version char(4), /* Structure version number */
 3 QName char(48), /* Name of triggered queue */
 3 ProcessName char(48), /* Name of process object */
 3 TriggerData char(64), /* Trigger data */
 3 ApplType char(4), /* Application type */
 3 ApplId char(256), /* Application identifier */
 3 EnvData char(128), /* Environment data */
 3 UserData char(128), /* User data */
 3 QMgrName char(48); /* Queue manager name */

High Level Assembler declaration for MQTMC2

MQTMC2 DSECT
MQTMC2_STRUCID DS CL4 Structure identifier
MQTMC2_VERSION DS CL4 Structure version number
MQTMC2_QNAME DS CL48 Name of triggered queue
MQTMC2_PROCESSNAME DS CL48 Name of process object
MQTMC2_TRIGGERDATA DS CL64 Trigger data
MQTMC2_APPLTYPE DS CL4 Application type
MQTMC2_APPLID DS CL256 Application identifier
MQTMC2_ENVDATA DS CL128 Environment data
MQTMC2_USERDATA DS CL128 User data
MQTMC2_QMGRNAME DS CL48 Queue manager name
*
MQTMC2_LENGTH EQU *-MQTMC2

Developing applications reference 601

 ORG MQTMC2
MQTMC2_AREA DS CL(MQTMC2_LENGTH)

Visual Basic declaration for MQTMC2

Type MQTMC2
 StrucId As String*4 'Structure identifier'
 Version As String*4 'Structure version number'
 QName As String*48 'Name of triggered queue'
 ProcessName As String*48 'Name of process object'
 TriggerData As String*64 'Trigger data'
 ApplType As String*4 'Application type'
 ApplId As String*256 'Application identifier'
 EnvData As String*128 'Environment data'
 UserData As String*128 'User data'
 QMgrName As String*48 'Queue manager name'
End Type

StrucId (MQCHAR4)
Structure identifier.

The value must be:
MQTMC_STRUC_ID

Identifier for trigger message (character format) structure.

For the C programming language, the constant MQTMC_STRUC_ID_ARRAY is also defined; this has the
same value as MQTMC_STRUC_ID, but is an array of characters instead of a string.

Version (MQCHAR4)
Structure version number.

The value must be:
MQTMC_VERSION_2

Version 2 trigger message (character format) structure.

For the C programming language, the constant MQTMC_VERSION_2_ARRAY is also defined; this has
the same value as MQTMC_VERSION_2, but is an array of characters instead of a string.

The following constant specifies the version number of the current version:
MQTMC_CURRENT_VERSION

Current version of trigger message (character format) structure.

QName (MQCHAR48)
Name of triggered queue.

See the QName field in the MQTM structure.

ProcessName (MQCHAR48)
Name of process object.

See the ProcessName field in the MQTM structure.

TriggerData (MQCHAR64)
Trigger data.

See the TriggerData field in the MQTM structure.

ApplType (MQCHAR4)
Application type.

602 IBM MQ Developing Applications Reference

This field always contains blanks, whatever the value in the ApplType field in the MQTM structure of the
original trigger message.

ApplId (MQCHAR256)
Application identifier.

See the ApplId field in the MQTM structure.

EnvData (MQCHAR128)
Environment data.

See the EnvData field in the MQTM structure.

UserData (MQCHAR128)
User data.

See the UserData field in the MQTM structure.

QMgrName (MQCHAR48)
Queue manager name.

This is the name of the queue manager at which the trigger event occurred.

MQWIH - Work information header
If a message is to be processed by the z/OS workload manager (WLM), the message must begin with an
MQWIH structure. This structure describes the information that must be present at the start of a message
that is to be handled by WLM.

Availability
All IBM MQ systems, plus IBM MQ clients connected to these systems.

Format name
MQFMT_WORK_INFO_HEADER.

Character set and encoding
The fields in the MQWIH structure are in the character set and encoding given by the CodedCharSetId
and Encoding fields in the header structure that precedes MQWIH, or by those fields in the MQMD
structure if the MQWIH is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that are valid in queue
names.

Usage
For any IBM MQ supported platform you can create and transmit a message that includes the MQWIH
structure, but only an IBM MQ for z/OS queue manager can interact with WLM. Therefore, for the message
to get to WLM from a non-z/OS queue manager, your queue manager network must include at least one
z/OS queue manager through which the message can be routed.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Developing applications reference 603

Table 537. Fields in MQWIH

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQWIH_STRUC_ID 'WIH¬'

Version (structure version number) MQWIH_VERSION_1 1

StrucLength (length of MQWIH structure) MQWIH_LENGTH_1 120

Encoding (numeric encoding of data that follows
MQWIH)

None 0

CodedCharSetId (character-set identifier of data
that follows MQWIH)

MQCCSI_UNDEFINED 0

Format (format name of data that follows MQWIH) MQFMT_NONE Blanks

Flags (flags) MQWIH_NONE 0

ServiceName (service name) None Blanks

ServiceStep (service step name) None Blanks

MsgToken (message token) MQMTOK_NONE Nulls

Reserved (reserved) None Blanks

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQWIH_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQWIH MyWIH = {MQWIH_DEFAULT};

Language declarations
C declaration for MQWIH

typedef struct tagMQWIH MQWIH;
struct tagMQWIH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Length of MQWIH structure */
 MQLONG Encoding; /* Numeric encoding of data that follows
 MQWIH */
 MQLONG CodedCharSetId; /* Character-set identifier of data that
 follows MQWIH */
 MQCHAR8 Format; /* Format name of data that follows
 MQWIH */
 MQLONG Flags; /* Flags */
 MQCHAR32 ServiceName; /* Service name */
 MQCHAR8 ServiceStep; /* Service step name */
 MQBYTE16 MsgToken; /* Message token */
 MQCHAR32 Reserved; /* Reserved */
};

COBOL declaration for MQWIH

** MQWIH structure
 10 MQWIH.
** Structure identifier
 15 MQWIH-STRUCID PIC X(4).
** Structure version number
 15 MQWIH-VERSION PIC S9(9) BINARY.

604 IBM MQ Developing Applications Reference

** Length of MQWIH structure
 15 MQWIH-STRUCLENGTH PIC S9(9) BINARY.
** Numeric encoding of data that follows MQWIH
 15 MQWIH-ENCODING PIC S9(9) BINARY.
** Character-set identifier of data that follows MQWIH
 15 MQWIH-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of data that follows MQWIH
 15 MQWIH-FORMAT PIC X(8).
** Flags
 15 MQWIH-FLAGS PIC S9(9) BINARY.
** Service name
 15 MQWIH-SERVICENAME PIC X(32).
** Service step name
 15 MQWIH-SERVICESTEP PIC X(8).
** Message token
 15 MQWIH-MSGTOKEN PIC X(16).
** Reserved
 15 MQWIH-RESERVED PIC X(32).

PL/I declaration for MQWIH

dcl
 1 MQWIH based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 StrucLength fixed bin(31), /* Length of MQWIH structure */
 3 Encoding fixed bin(31), /* Numeric encoding of data that
 follows MQWIH */
 3 CodedCharSetId fixed bin(31), /* Character-set identifier of data
 that follows MQWIH */
 3 Format char(8), /* Format name of data that follows
 MQWIH */
 3 Flags fixed bin(31), /* Flags */
 3 ServiceName char(32), /* Service name */
 3 ServiceStep char(8), /* Service step name */
 3 MsgToken char(16), /* Message token */
 3 Reserved char(32); /* Reserved */

High Level Assembler declaration for MQWIH

MQWIH DSECT
MQWIH_STRUCID DS CL4 Structure identifier
MQWIH_VERSION DS F Structure version number
MQWIH_STRUCLENGTH DS F Length of MQWIH structure
MQWIH_ENCODING DS F Numeric encoding of data that follows
* MQWIH
MQWIH_CODEDCHARSETID DS F Character-set identifier of data that
* follows MQWIH
MQWIH_FORMAT DS CL8 Format name of data that follows MQWIH
MQWIH_FLAGS DS F Flags
MQWIH_SERVICENAME DS CL32 Service name
MQWIH_SERVICESTEP DS CL8 Service step name
MQWIH_MSGTOKEN DS XL16 Message token
MQWIH_RESERVED DS CL32 Reserved
*
MQWIH_LENGTH EQU *-MQWIH
 ORG MQWIH
MQWIH_AREA DS CL(MQWIH_LENGTH)

Visual Basic declaration for MQWIH

Type MQWIH
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 StrucLength As Long 'Length of MQWIH structure'
 Encoding As Long 'Numeric encoding of data that follows'
 'MQWIH'
 CodedCharSetId As Long 'Character-set identifier of data that'
 'follows MQWIH'
 Format As String*8 'Format name of data that follows MQWIH'
 Flags As Long 'Flags'
 ServiceName As String*32 'Service name'
 ServiceStep As String*8 'Service step name'
 MsgToken As MQBYTE16 'Message token'

Developing applications reference 605

 Reserved As String*32 'Reserved'
End Type

StrucId (MQCHAR4)
This is the structure identifier. The value must be:
MQWIH_STRUC_ID

Identifier for work information header structure.

For the C programming language, the constant MQWIH_STRUC_ID_ARRAY is also defined; this has the
same value as MQWIH_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQWIH_STRUC_ID.

Version (MQLONG)
This is the structure version number. The value must be:
MQWIH_VERSION_1

Version-1 work information header structure.

The following constant specifies the version number of the current version:
MQWIH_CURRENT_VERSION

Current version of work information header structure.

The initial value of this field is MQWIH_VERSION_1.

StrucLength (MQLONG)
This is the length of the MQWIH structure. The value must be:
MQWIH_LENGTH_1

Length of version-1 work information header structure.

The following constant specifies the length of the current version:
MQWIH_CURRENT_LENGTH

Length of current version of work information header structure.

The initial value of this field is MQWIH_LENGTH_1.

Encoding (MQLONG)
This specifies the numeric encoding of the data that follows the MQWIH structure; it does not apply to
numeric data in the MQWIH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is 0.

CodedCharSetId (MQLONG)
This specifies the character set identifier of the data that follows the MQWIH structure; it does not apply
to character data in the MQWIH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
You can use the following special value:
MQCCSI_INHERIT

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual character-
set identifier of the structure. Provided no error occurs, the value MQCCSI_INHERIT is not returned by
the MQGET call.

MQCCSI_INHERIT cannot be used if the value of the PutApplType field in MQMD is MQAT_BROKER.

606 IBM MQ Developing Applications Reference

The initial value of this field is MQCCSI_UNDEFINED.

Format (MQCHAR8)
This specifies the format name of the data that follows the MQWIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
The value must be:
MQWIH_NONE

No flags.

The initial value of this field is MQWIH_NONE.

ServiceName (MQCHAR32)
This is the name of the service that is to process the message.

The length of this field is given by MQ_SERVICE_NAME_LENGTH. The initial value of this field is 32 blank
characters.

ServiceStep (MQCHAR8)
This is the name of the step of ServiceName to which the message relates.

The length of this field is given by MQ_SERVICE_STEP_LENGTH. The initial value of this field is 8 blank
characters.

MsgToken (MQBYTE16)
This is a message token that uniquely identifies the message.

For the MQPUT and MQPUT1 calls, this field is ignored. The length of this field is given by
MQ_MSG_TOKEN_LENGTH. The initial value of this field is MQMTOK_NONE.

Reserved (MQCHAR32)
This is a reserved field; it must be blank.

MQXP - Exit parameter block
The MQXP structure is used as an input/output parameter to the API-crossing exit. For more information
about this exit, see The API-crossing exit.

Character set and encoding
Character data in MQXP is in the character set of the local queue manager; this is given by the
CodedCharSetId queue manager attribute. Numeric data in MQXP is in the native machine encoding;
this is given by MQENC_NATIVE.

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Developing applications reference 607

Table 538. Fields in MQXP

Field name and description Name of constant

StrucId (structure identifier) MQXP_STRUC_ID

Version (structure version number) MQXP_VERSION_1

ExitId (exit identifier) MQXT_API_CROSSING_EXIT

ExitReason (reason for invocation of
exit)

None

ExitResponse (response from exit) None

ExitCommand (API call code) None

ExitParmCount (parameter count) None

Reserved (reserved) None

ExitUserArea (user area) None

Language declarations
C declaration for MQXP

typedef struct tagMQXP MQXP;
struct tagMQXP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG ExitId; /* Exit identifier */
 MQLONG ExitReason; /* Reason for invocation of exit */
 MQLONG ExitResponse; /* Response from exit */
 MQLONG ExitCommand; /* API call code */
 MQLONG ExitParmCount; /* Parameter count */
 MQLONG Reserved; /* Reserved */
 MQBYTE16 ExitUserArea; /* User area */
};

COBOL declaration for MQXP

** MQXP structure
 10 MQXP.
** Structure identifier
 15 MQXP-STRUCID PIC X(4).
** Structure version number
 15 MQXP-VERSION PIC S9(9) BINARY.
** Exit identifier
 15 MQXP-EXITID PIC S9(9) BINARY.
** Reason for invocation of exit
 15 MQXP-EXITREASON PIC S9(9) BINARY.
** Response from exit
 15 MQXP-EXITRESPONSE PIC S9(9) BINARY.
** API call code
 15 MQXP-EXITCOMMAND PIC S9(9) BINARY.
** Parameter count
 15 MQXP-EXITPARMCOUNT PIC S9(9) BINARY.
** Reserved
 15 MQXP-RESERVED PIC S9(9) BINARY.
** User area
 15 MQXP-EXITUSERAREA PIC X(16).

PL/I declaration for MQXP

dcl
 1 MQXP based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 ExitId fixed bin(31), /* Exit identifier */

608 IBM MQ Developing Applications Reference

 3 ExitReason fixed bin(31), /* Reason for invocation of exit */
 3 ExitResponse fixed bin(31), /* Response from exit */
 3 ExitCommand fixed bin(31), /* API call code */
 3 ExitParmCount fixed bin(31), /* Parameter count */
 3 Reserved fixed bin(31), /* Reserved */
 3 ExitUserArea char(16); /* User area */

High Level Assembler declaration for MQXP

MQXP DSECT
MQXP_STRUCID DS CL4 Structure identifier
MQXP_VERSION DS F Structure version number
MQXP_EXITID DS F Exit identifier
MQXP_EXITREASON DS F Reason for invocation of exit
MQXP_EXITRESPONSE DS F Response from exit
MQXP_EXITCOMMAND DS F API call code
MQXP_EXITPARMCOUNT DS F Parameter count
MQXP_RESERVED DS F Reserved
MQXP_EXITUSERAREA DS XL16 User area
*
MQXP_LENGTH EQU *-MQXP
 ORG MQXP
MQXP_AREA DS CL(MQXP_LENGTH)

StrucId (MQCHAR4)
This is the structure identifier. The value must be:
MQXP_STRUC_ID

Identifier for exit parameter structure.

For the C programming language, the constant MQXP_STRUC_ID_ARRAY is also defined; this has the
same value as MQXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG)
This is the structure version number. The value must be:
MQXP_VERSION_1

Version number for exit parameter-block structure.

Note: When a new version of this structure is introduced, the layout of the existing part is not changed.
The exit must therefore check that the version number is equal to or greater than the lowest version that
contains the fields that the exit needs to use.

This is an input field to the exit.

ExitId (MQLONG)
This is set on entry to the exit routine, and indicates the type of exit:
MQXT_API_CROSSING_EXIT

API-crossing exit for CICS.

This is an input field to the exit.

ExitReason (MQLONG)
This is set on entry to the exit routine. For the API-crossing exit it indicates whether the routine is called
before or after execution of the API call:
MQXR_BEFORE

Before API execution.
MQXR_AFTER

After API execution.

This is an input field to the exit.

Developing applications reference 609

ExitResponse (MQLONG)
The value is set by the exit to communicate with the caller. The following values are defined:
MQXCC_OK

Exit completed successfully.
MQXCC_SUPPRESS_FUNCTION

Suppress function.

When this value is set by an API-crossing exit called before the API call, the API call is
not performed. The CompCode for the call is set to MQCC_FAILED, the Reason is set to
MQRC_SUPPRESSED_BY_EXIT, and all other parameters remain as the exit left them.

When this value is set by an API-crossing exit called after the API call, it is ignored by the queue
manager.

MQXCC_SKIP_FUNCTION
Skip function.

When this value is set by an API-crossing exit called before the API call, the API call is not performed;
the CompCode and Reason and all other parameters remain as the exit left them.

When this value is set by an API-crossing exit called after the API call, it is ignored by the queue
manager.

This is an output field from the exit.

ExitCommand (MQLONG)
This field is set on entry to the exit routine. It identifies the API call that caused the exit to be invoked:
MQXC_CALLBACK

The CALLBACK call.
MQXC_MQBACK

The MQBACK call.
MQXC_MQCB

The MQCB call.
MQXC_MQCLOSE

The MQCLOSE call.
MQXC_MQCMIT

The MQCMIT call.
MQXC_MQCTL

The MQCTL call.
MQXC_MQGET

The MQGET call.
MQXC_MQINQ

The MQINQ call.
MQXC_MQOPEN

The MQOPEN call.
MQXC_MQPUT

The MQPUT call.
MQXC_MQPUT1

The MQPUT1 call.
MQXC_MQSET

The MQSET call.
MQXC_MQSTAT

The MQSTAT call.

610 IBM MQ Developing Applications Reference

MQXC_MQSUB
The MQSUB call.

MQXC_MQSUBRQ
The MQSUBRQ call.

This is an input field to the exit.

ExitParmCount (MQLONG)
This field is set on entry to the exit routine. It contains the number of parameters that the MQ call takes.

Table 539. Number of parameters for each MQ call

Call name Number of parameters

MQBACK 3

MQCLOSE 5

MQCMIT 3

MQGET 9

MQINQ 10

MQOPEN 6

MQPUT 8

MQPUT1 8

MQSET 10

This is an input field to the exit.

Reserved (MQLONG)
This is a reserved field. Its value is not significant to the exit.

ExitUserArea (MQBYTE16)
This is a field that is available for the exit to use. It is initialized to binary zero for the length of the field
before the first invocation of the exit for the task, and thereafter any changes made to this field by the exit
are preserved across invocations of the exit. The following value is defined:
MQXUA_NONE

No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant MQXUA_NONE_ARRAY is also defined; this has the
same value as MQXUA_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is an input/output field to the exit.

MQXQH - Transmission-queue header
The MQXQH structure describes the information that is prefixed to the application message data of
messages when they are on transmission queues. A transmission queue is a special type of local queue
that temporarily holds messages destined for remote queues (that is, destined for queues that do not
belong to the local queue manager). A transmission queue is denoted by the Usage queue attribute
having the value MQUS_TRANSMISSION.

Format name
MQFMT_XMIT_Q_HEADER

Developing applications reference 611

Character set and encoding
Data in MQXQH must be in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by MQENC_NATIVE.

Set the character set and encoding of the MQXQH into the CodedCharSetId and Encoding fields in:

• The separate MQMD (if the MQXQH structure is at the start of the message data), or
• The header structure that precedes the MQXQH structure (all other cases).

Fields
Note: In the following table, the fields are grouped by usage rather than alphabetically. The child topics
follow the same sequence.

Table 540. Fields in MQXQH for MQXQH

Field name and description Name of constant Initial value (if any) of
constant

StrucId (structure identifier) MQXQH_STRUC_ID 'XQH¬'

Version (structure version number) MQXQH_VERSION_1 1

RemoteQName (name of destination queue) None Null string or blanks

RemoteQMgrName (name of destination queue
manager)

None Null string or blanks

MsgDesc (original message descriptor) Same names and values
as MQMD; see Table 501
on page 419

-

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.
3. In the C programming language, the macro variable MQXQH_DEFAULT contains the values that are

listed in the table. Use it in the following way to provide initial values for the fields in the structure:

MQXQH MyXQH = {MQXQH_DEFAULT};

Language declarations
C declaration for MQXQH

typedef struct tagMQXQH MQXQH;
struct tagMQXQH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQCHAR48 RemoteQName; /* Name of destination queue */
 MQCHAR48 RemoteQMgrName; /* Name of destination queue manager */
 MQMD1 MsgDesc; /* Original message descriptor */
};

COBOL declaration for MQXQH

** MQXQH structure
 10 MQXQH.
** Structure identifier
 15 MQXQH-STRUCID PIC X(4).

612 IBM MQ Developing Applications Reference

** Structure version number
 15 MQXQH-VERSION PIC S9(9) BINARY.
** Name of destination queue
 15 MQXQH-REMOTEQNAME PIC X(48).
** Name of destination queue manager
 15 MQXQH-REMOTEQMGRNAME PIC X(48).
** Original message descriptor
 15 MQXQH-MSGDESC.
** Structure identifier
 20 MQXQH-MSGDESC-STRUCID PIC X(4).
** Structure version number
 20 MQXQH-MSGDESC-VERSION PIC S9(9) BINARY.
** Report options
 20 MQXQH-MSGDESC-REPORT PIC S9(9) BINARY.
** Message type
 20 MQXQH-MSGDESC-MSGTYPE PIC S9(9) BINARY.
** Expiry time
 20 MQXQH-MSGDESC-EXPIRY PIC S9(9) BINARY.
** Feedback or reason code
 20 MQXQH-MSGDESC-FEEDBACK PIC S9(9) BINARY.
** Numeric encoding of message data
 20 MQXQH-MSGDESC-ENCODING PIC S9(9) BINARY.
** Character set identifier of message data
 20 MQXQH-MSGDESC-CODEDCHARSETID PIC S9(9) BINARY.
** Format name of message data
 20 MQXQH-MSGDESC-FORMAT PIC X(8).
** Message priority
 20 MQXQH-MSGDESC-PRIORITY PIC S9(9) BINARY.
** Message persistence
 20 MQXQH-MSGDESC-PERSISTENCE PIC S9(9) BINARY.
** Message identifier
 20 MQXQH-MSGDESC-MSGID PIC X(24).
** Correlation identifier
 20 MQXQH-MSGDESC-CORRELID PIC X(24).
** Backout counter
 20 MQXQH-MSGDESC-BACKOUTCOUNT PIC S9(9) BINARY.
** Name of reply-to queue
 20 MQXQH-MSGDESC-REPLYTOQ PIC X(48).
** Name of reply queue manager
 20 MQXQH-MSGDESC-REPLYTOQMGR PIC X(48).
** User identifier
 20 MQXQH-MSGDESC-USERIDENTIFIER PIC X(12).
** Accounting token
 20 MQXQH-MSGDESC-ACCOUNTINGTOKEN PIC X(32).
** Application data relating to identity
 20 MQXQH-MSGDESC-APPLIDENTITYDATA PIC X(32).
** Type of application that put the message
 20 MQXQH-MSGDESC-PUTAPPLTYPE PIC S9(9) BINARY.
** Name of application that put the message
 20 MQXQH-MSGDESC-PUTAPPLNAME PIC X(28).
** Date when message was put
 20 MQXQH-MSGDESC-PUTDATE PIC X(8).
** Time when message was put
 20 MQXQH-MSGDESC-PUTTIME PIC X(8).
** Application data relating to origin
 20 MQXQH-MSGDESC-APPLORIGINDATA PIC X(4).

PL/I declaration for MQXQH

dcl
 1 MQXQH based,
 3 StrucId char(4), /* Structure identifier */
 3 Version fixed bin(31), /* Structure version number */
 3 RemoteQName char(48), /* Name of destination queue */
 3 RemoteQMgrName char(48), /* Name of destination queue
 manager */
 3 MsgDesc, /* Original message descriptor */
 5 StrucId char(4), /* Structure identifier */
 5 Version fixed bin(31), /* Structure version number */
 5 Report fixed bin(31), /* Report options */
 5 MsgType fixed bin(31), /* Message type */
 5 Expiry fixed bin(31), /* Expiry time */
 5 Feedback fixed bin(31), /* Feedback or reason code */
 5 Encoding fixed bin(31), /* Numeric encoding of message
 data */
 5 CodedCharSetId fixed bin(31), /* Character set identifier of
 message data */
 5 Format char(8), /* Format name of message data */
 5 Priority fixed bin(31), /* Message priority */

Developing applications reference 613

 5 Persistence fixed bin(31), /* Message persistence */
 5 MsgId char(24), /* Message identifier */
 5 CorrelId char(24), /* Correlation identifier */
 5 BackoutCount fixed bin(31), /* Backout counter */
 5 ReplyToQ char(48), /* Name of reply-to queue */
 5 ReplyToQMgr char(48), /* Name of reply queue manager */
 5 UserIdentifier char(12), /* User identifier */
 5 AccountingToken char(32), /* Accounting token */
 5 ApplIdentityData char(32), /* Application data relating to
 identity */
 5 PutApplType fixed bin(31), /* Type of application that put the
 message */
 5 PutApplName char(28), /* Name of application that put the
 message */
 5 PutDate char(8), /* Date when message was put */
 5 PutTime char(8), /* Time when message was put */
 5 ApplOriginData char(4); /* Application data relating to
 origin */

High Level Assembler declaration for MQXQH

MQXQH DSECT
MQXQH_STRUCID DS CL4 Structure identifier
MQXQH_VERSION DS F Structure version number
MQXQH_REMOTEQNAME DS CL48 Name of destination queue
MQXQH_REMOTEQMGRNAME DS CL48 Name of destination queue
* manager
MQXQH_MSGDESC DS 0F Force fullword alignment
MQXQH_MSGDESC_STRUCID DS CL4 Structure identifier
MQXQH_MSGDESC_VERSION DS F Structure version number
MQXQH_MSGDESC_REPORT DS F Report options
MQXQH_MSGDESC_MSGTYPE DS F Message type
MQXQH_MSGDESC_EXPIRY DS F Expiry time
MQXQH_MSGDESC_FEEDBACK DS F Feedback or reason code
MQXQH_MSGDESC_ENCODING DS F Numeric encoding of message
* data
MQXQH_MSGDESC_CODEDCHARSETID DS F Character set identifier of
* message data
MQXQH_MSGDESC_FORMAT DS CL8 Format name of message data
MQXQH_MSGDESC_PRIORITY DS F Message priority
MQXQH_MSGDESC_PERSISTENCE DS F Message persistence
MQXQH_MSGDESC_MSGID DS XL24 Message identifier
MQXQH_MSGDESC_CORRELID DS XL24 Correlation identifier
MQXQH_MSGDESC_BACKOUTCOUNT DS F Backout counter
MQXQH_MSGDESC_REPLYTOQ DS CL48 Name of reply-to queue
MQXQH_MSGDESC_REPLYTOQMGR DS CL48 Name of reply queue manager
MQXQH_MSGDESC_USERIDENTIFIER DS CL12 User identifier
MQXQH_MSGDESC_ACCOUNTINGTOKEN DS XL32 Accounting token
MQXQH_MSGDESC_APPLIDENTITYDATA DS CL32 Application data relating to
* identity
MQXQH_MSGDESC_PUTAPPLTYPE DS F Type of application that put
* the message
MQXQH_MSGDESC_PUTAPPLNAME DS CL28 Name of application that put
* the message
MQXQH_MSGDESC_PUTDATE DS CL8 Date when message was put
MQXQH_MSGDESC_PUTTIME DS CL8 Time when message was put
MQXQH_MSGDESC_APPLORIGINDATA DS CL4 Application data relating to
* origin
MQXQH_MSGDESC_LENGTH EQU *-MQXQH_MSGDESC
 ORG MQXQH_MSGDESC
MQXQH_MSGDESC_AREA DS CL(MQXQH_MSGDESC_LENGTH)
*
MQXQH_LENGTH EQU *-MQXQH
 ORG MQXQH
MQXQH_AREA DS CL(MQXQH_LENGTH)

Visual Basic declaration for MQXQH

Type MQXQH
 StrucId As String*4 'Structure identifier'
 Version As Long 'Structure version number'
 RemoteQName As String*48 'Name of destination queue'
 RemoteQMgrName As String*48 'Name of destination queue manager'
 MsgDesc As MQMD1 'Original message descriptor'
End Type

614 IBM MQ Developing Applications Reference

Fields in the separate message descriptor
A message that is on a transmission queue has two message descriptors:

• One message descriptor is stored separately from the message data; this is called the separate message
descriptor, and is generated by the queue manager when the message is placed on the transmission
queue. Some of the fields in the separate message descriptor are copied from the message descriptor
provided by the application on the MQPUT or MQPUT1 call.

The separate message descriptor is the one that is returned to the application in the MsgDesc
parameter of the MQGET call when the message is removed from the transmission queue.

• A second message descriptor is stored within the MQXQH structure as part of the message data; this is
called the embedded message descriptor, and is a copy of the message descriptor that was provided by
the application on the MQPUT or MQPUT1 call (with minor variations).

The embedded message descriptor is always a version-1 MQMD. If the message put by the application
has nondefault values for one or more of the version-2 fields in the MQMD, an MQMDE structure follows
the MQXQH, and is in turn followed by the application message data (if any). The MQMDE is either:

– Generated by the queue manager (if the application uses a version-2 MQMD to put the message), or
– Already present at the start of the application message data (if the application uses a version-1

MQMD to put the message).

The embedded message descriptor is the one that is returned to the application in the MsgDesc
parameter of the MQGET call when the message is removed from the final destination queue.

The fields in the separate message descriptor are set by the queue manager as shown. If the queue
manager does not support the version-2 MQMD, a version-1 MQMD is used without loss of function.

Table 541. Values used for fields in the separate MQMD

Field in separate MQMD Value used

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_2

Report Copied from the embedded message descriptor, but with the bits
identified by MQRO_ACCEPT_UNSUP_IF_XMIT_MASK set to zero. (This
prevents a COA or COD report message being generated when a message
is placed on or removed from a transmission queue.)

MsgType Copied from the embedded message descriptor.

Expiry Copied from the embedded message descriptor.

Feedback Copied from the embedded message descriptor.

Encoding MQENC_NATIVE (see note)

CodedCharSetId Queue manager's CodedCharSetId attribute.

Format MQFMT_XMIT_Q_HEADER

Priority Copied from the embedded message descriptor.

Persistence Copied from the embedded message descriptor.

MsgId A new value is generated by the queue manager. This message identifier
is different from the MsgId that the queue manager may have generated
for the embedded message descriptor described previously.

CorrelId The MsgId from the embedded message descriptor. For messages being
put to the SYSTEM.CLUSTER.TRANSMIT.QUEUE, CorrelId is reserved
for internal use.

BackoutCount 0

Developing applications reference 615

Table 541. Values used for fields in the separate MQMD (continued)

Field in separate MQMD Value used

ReplyToQ Copied from the embedded message descriptor.

ReplyToQMgr Copied from the embedded message descriptor.

UserIdentifier Copied from the embedded message descriptor.

AccountingToken Copied from the embedded message descriptor. For messages being
put to the SYSTEM.CLUSTER.TRANSMIT.QUEUE, AccountingToken is
reserved for internal use.

ApplIdentityData Copied from the embedded message descriptor.

PutApplType MQAT_QMGR

PutApplName First 28 bytes of the queue manager name.

PutDate Date when message was put on transmission queue.

PutTime Time when message was put on transmission queue.

ApplOriginData Blanks

GroupId MQGI_NONE

MsgSeqNumber 1

Offset 0

MsgFlags MQMF_NONE

OriginalLength MQOL_UNDEFINED

• On Windows, the value of MQENC_NATIVE for Micro Focus COBOL differs from the value for C. The
value in the Encoding field in the separate message descriptor is always the value for C in these
environments; this value is 546 in decimal. Also, the integer fields in the MQXQH structure are in the
encoding that corresponds to this value (the native Intel encoding).

Fields in the embedded message descriptor
The fields in the embedded message descriptor have the same values as those in the MsgDesc parameter
of the MQPUT or MQPUT1 call, except for the following:

• The Version field always has the value MQMD_VERSION_1.
• If the Priority field has the value MQPRI_PRIORITY_AS_Q_DEF, it is replaced by the value of the

queue's DefPriority attribute.
• If the Persistence field has the value MQPER_PERSISTENCE_AS_Q_DEF, it is replaced by the value of

the queue's DefPersistence attribute.
• If the MsgId field has the value MQMI_NONE, or the MQPMO_NEW_MSG_ID option was specified, or

the message is a distribution-list message, MsgId is replaced by a new message identifier generated by
the queue manager.

When a distribution-list message is split into smaller distribution-list messages placed on different
transmission queues, the MsgId field in each of the new embedded message descriptors is the same as
that in the original distribution-list message.

• If the MQPMO_NEW_CORREL_ID option was specified, CorrelId is replaced by a new correlation
identifier generated by the queue manager.

• The context fields are set as indicated by the MQPMO_*_CONTEXT options specified in the PutMsgOpts
parameter; the context fields are:

– AccountingToken
– ApplIdentityData

616 IBM MQ Developing Applications Reference

– ApplOriginData
– PutApplName
– PutApplType
– PutDate
– PutTime
– UserIdentifier

• The version-2 fields (if they were present) are removed from the MQMD, and moved into an MQMDE
structure, if one or more of the version-2 fields has a nondefault value.

Putting messages on remote queues
When an application puts a message on a remote queue (either by specifying the name of the remote
queue directly, or by using a local definition of the remote queue), the local queue manager:

• Creates an MQXQH structure containing the embedded message descriptor
• Appends an MQMDE if one is needed and is not already present
• Appends the application message data
• Places the message on an appropriate transmission queue

Putting messages directly on transmission queues
An application can also put a message directly on a transmission queue. In this case the application must
prefix the application message data with an MQXQH structure, and initialize the fields with appropriate
values. In addition, the Format field in the MsgDesc parameter of the MQPUT or MQPUT1 call must have
the value MQFMT_XMIT_Q_HEADER.

Character data in the MQXQH structure created by the application must be in the character set of the
local queue manager (defined by the CodedCharSetId queue manager attribute), and integer data must
be in the native machine encoding. In addition, character data in the MQXQH structure must be padded
with blanks to the defined length of the field; the data must not be ended prematurely by using a null
character, because the queue manager does not convert the null and subsequent characters to blanks in
the MQXQH structure.

However, the queue manager does not check that an MQXQH structure is present, or that valid values
have been specified for the fields.

Applications should not put their messages directly to the SYSTEM.CLUSTER.TRANSMIT.QUEUE.

Getting messages from transmission queues
Applications that get messages from a transmission queue must process the information in the MQXQH
structure in an appropriate fashion. The presence of the MQXQH structure at the beginning of the
application message data is indicated by the value MQFMT_XMIT_Q_HEADER being returned in the
Format field in the MsgDesc parameter of the MQGET call. The values returned in the CodedCharSetId
and Encoding fields in the MsgDesc parameter indicate the character set and encoding of the character
and integer data in the MQXQH structure. The character set and encoding of the application message data
are defined by the CodedCharSetId and Encoding fields in the embedded message descriptor.

StrucId (MQCHAR4)

This is the structure identifier. The value must be:
MQXQH_STRUC_ID

Identifier for transmission-queue header structure.

For the C programming language, the constant MQXQH_STRUC_ID_ARRAY is also defined; this has the
same value as MQXQH_STRUC_ID, but is an array of characters instead of a string.

Developing applications reference 617

The initial value of this field is MQXQH_STRUC_ID.

Version (MQLONG)

This is the structure version number. The value must be:
MQXQH_VERSION_1

Version number for transmission-queue header structure.

The following constant specifies the version number of the current version:
MQXQH_CURRENT_VERSION

Current version of transmission-queue header structure.

The initial value of this field is MQXQH_VERSION_1.

RemoteQName (MQCHAR48)
This is the name of the message queue that is the apparent eventual destination for the message (this
might prove not to be the eventual destination if, for example, this queue is defined at RemoteQMgrName
to be a local definition of another remote queue).

If the message is a distribution-list message (that is, the Format field in the embedded message
descriptor is MQFMT_DIST_HEADER), RemoteQName is blank.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

RemoteQMgrName (MQCHAR48)
This is the name of the queue manager or queue sharing group that owns the queue that is the apparent
eventual destination for the message.

If the message is a distribution-list message, RemoteQMgrName is blank.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages.

MsgDesc (MQMD1)
This is the embedded message descriptor, and is a close copy of the message descriptor MQMD that was
specified as the MsgDesc parameter on the MQPUT or MQPUT1 call when the message was originally put
to the remote queue.

Note: This is a version-1 MQMD.

The initial values of the fields in this structure are the same as those in the MQMD structure.

Function calls
This section gives information on all of the MQI calls that are possible. Descriptions, syntax, parameter
information, usage notes, and language invocations for each possible language are given for each of the
different calls.
Related reference

Examples of CEDF output from MQI calls

Call descriptions
This section describes MQI calls.

• “MQBACK - Back out changes” on page 621
• “MQBEGIN - Begin unit of work” on page 625
• “MQBUFMH - Convert buffer into message handle” on page 628

618 IBM MQ Developing Applications Reference

• “MQCB - Manage callback” on page 631
• “MQCB_FUNCTION - Callback function” on page 641
• “MQCLOSE - Close object” on page 642
• “MQCMIT - Commit changes” on page 650
• “MQCONN - Connect queue manager” on page 654
• “MQCONNX - Connect queue manager (extended)” on page 661
• “MQCRTMH - Create message handle” on page 667
• “MQCTL - Control callbacks” on page 670
• “MQDISC - Disconnect queue manager” on page 676
• “MQDLTMH - Delete message handle” on page 680
• “MQDLTMP - Delete message property” on page 682
• “MQGET - Get message” on page 685
• “MQINQ - Inquire object attributes” on page 697
• “MQINQMP - Inquire message property” on page 714
• “MQMHBUF - Convert message handle into buffer” on page 719
• “MQOPEN - Open object” on page 723
• “MQPUT - Put message” on page 741
• “MQPUT1 - Put one message” on page 754
• “MQSET - Set object attributes” on page 764
• “MQSETMP - Set message property” on page 771
• “MQSTAT - Retrieve status information” on page 775
• “MQMHBUF - Convert message handle into buffer” on page 719
• “MQSUB - Register subscription” on page 779
• “MQSUBRQ - Subscription request” on page 786

Online help on UNIX platforms, in the form of man pages, is available for these calls.

Note: The calls associated with data conversion, MQXCNVC and MQ_DATA_CONV_EXIT, are in “Data-
conversion exit” on page 897.

Conventions used in the call descriptions
For each call, this collection of topics gives a description of the parameters and usage of the call in a
format that is independent of programming language. This is followed by typical invocations of the call,
and typical declarations of its parameters, in each of the supported programming languages.

Important: When coding IBM MQ API calls you must ensure that all relevant parameters (as described in
the following sections) are provided. Failure to do so can produce unpredictable results.

The description of each call contains the following sections:
Call name

The call name, followed by a brief description of the purpose of the call.
Parameters

For each parameter, the name is followed by its data type in parentheses () and one of the following:
input

You supply information in the parameter when you make the call.
output

The queue manager returns information in the parameter when the call completes or fails.

Developing applications reference 619

input/output
You supply information in the parameter when you make the call, and the queue manager changes
the information when the call completes or fails.

For example:

 Compcode (MQLONG) - output

In some cases, the data type is a structure. In all cases, there is more information about the data type
or structure in “Elementary data types” on page 235.

The last two parameters in each call are a completion code and a reason code. The completion code
indicates whether the call completed successfully, partially, or not at all. Further information about
the partial success or the failure of the call is given in the reason code. For more information about
each completion and reason code, see “Return codes” on page 864.

Usage notes
Additional information about the call, describing how to use it and any restrictions on its use.

Assembler language invocation
Typical invocation of the call, and declaration of its parameters, in assembler language.

C invocation
Typical invocation of the call, and declaration of its parameters, in C.

COBOL invocation
Typical invocation of the call, and declaration of its parameters, in COBOL.

PL/I invocation
Typical invocation of the call, and declaration of its parameters, in PL/I.

All parameters are passed by reference.

Visual Basic invocation
Typical invocation of the call, and declaration of its parameters, in Visual Basic.

Other notation conventions are:
Constants

Names of constants are shown in uppercase; for example, MQOO_OUTPUT. A set of constants having
the same prefix is shown as follows: MQIA_*. See “Constants” on page 61 for the value of a constant.

Arrays
In some calls, parameters are arrays of character strings that do not have fixed sizes. In the
descriptions of these parameters, a lowercase n represents a numeric constant. When you code the
declaration for that parameter, replace the n with the numeric value that you require.

Using the calls in the C language
Parameters that are input only and of type MQHCONN, MQHOBJ, MQHMSG, or MQLONG are passed by
value. For all other parameters, the address of the parameter is passed by value.

You do not need to specify all parameters that are passed by address every time that you invoke a
function. Where you do not need a particular parameter, specify a null pointer as the parameter on the
function invocation, in place of the address of parameter data. Parameters for which this is possible are
identified in the call descriptions.

No parameter is returned as the value of the call; in C terminology, this means that all calls return void.

Declaring the Buffer parameter

The MQGET, MQPUT, and MQPUT1 calls each have one parameter that has an undefined data type: the
Buffer parameter. Use this parameter to send and receive the application's message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. You can declare the
parameters in this way, but it is usually more convenient to declare them as the particular structure
that describes the layout of the data in the message. The function prototype declares the parameter as

620 IBM MQ Developing Applications Reference

a pointer-to-void, so that you can specify the address of any sort of data as the parameter on the call
invocation.

Pointer-to-void is a pointer to data of undefined format. It is defined as:

typedef void *PMQVOID;

MQBACK - Back out changes
The MQBACK call indicates to the queue manager that all the message gets and puts that have occurred
since the last sync point are to be backed out.

Messages put as part of a unit of work are deleted; messages retrieved as part of a unit of work are
reinstated on the queue.

• On z/OS, this call is used only by batch programs (including IMS batch DL/I programs).

Syntax
MQBACK (Hconn, Compcode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

Compcode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_OUTCOME_PENDING

(2124, X'84C') Result of back-out operation is pending.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

Developing applications reference 621

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CF_STRUC_IN_USE
(2346, X'92A') Coupling-facility structure in use.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OUTCOME_MIXED
(2123, X'84B') Result of commit or back-out operation is mixed.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_MEDIUM_FULL
(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes

Usage notes
1. You can use this call only when the queue manager itself coordinates the unit of work. This can be:

• A local unit of work, where the changes affect only MQ resources.
• A global unit of work, where the changes can affect resources belonging to other resource managers,

as well as affecting MQ resources.

For further details about local and global units of work, see “MQBEGIN - Begin unit of work” on page
625.

2. In environments where the queue manager does not coordinate the unit of work, use the appropriate
back-out call instead of MQBACK. The environment might also support an implicit back out caused by
the application terminating abnormally.

• On z/OS, use the following calls:

– Batch programs (including IMS batch DL/I programs) can use the MQBACK call if the unit of work
affects only MQ resources. However, if the unit of work affects both MQ resources and resources
belonging to other resource managers (for example, Db2®), use the SRRBACK call provided by
the z/OS Recoverable Resource Service (RRS). The SRRBACK call backs out changes to resources
belonging to the resource managers that have been enabled for RRS coordination.

– CICS applications must use the EXEC CICS SYNCPOINT ROLLBACK command to back out the
unit of work. Do not use the MQBACK call for CICS applications.

– IMS applications (other than batch DL/I programs) must use IMS calls such as ROLB to back
out the unit of work. Do not use the MQBACK call for IMS applications (other than batch DL/I
programs).

622 IBM MQ Developing Applications Reference

• On IBM i, use this call for local units of work coordinated by the queue manager. This means that
a commitment definition must not exist at job level, that is, the STRCMTCTL command with the
CMTSCOPE(*JOB) parameter must not have been issued for the job.

3. If an application ends with uncommitted changes in a unit of work, the disposition of those changes
depends on whether the application ends normally or abnormally. See the usage notes in “MQDISC -
Disconnect queue manager” on page 676 for further details.

4. When an application puts or gets messages in groups or segments of logical messages, the queue
manager retains information relating to the message group and logical message for the last successful
MQPUT and MQGET calls. This information is associated with the queue handle, and includes such
things as:

• The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in MQMD.
• Whether the message is part of a unit of work.
• For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set for each of the
following:

• The last successful MQPUT call (this can be part of a unit of work).
• The last successful MQGET call that removed a message from the queue (this can be part of a unit of

work).
• The last successful MQGET call that browsed a message on the queue (this cannot be part of a unit

of work).

5. The information associated with the MQGET call is restored to the value that it had before the first
successful MQGET call for that queue handle in the current unit of work.

Queues that were updated by the application after the unit of work started, but outside the scope of
the unit of work, do not have their group and segment information restored if the unit of work is backed
out.

Restoring the group and segment information to its previous value when a unit of work is backed out
allows the application to spread a large message group or large logical message consisting of many
segments across several units of work, and to restart at the correct point in the message group or
logical message if one of the units of work fails.

Using several units of work might be advantageous if the local queue manager has only limited queue
storage. However, the application must maintain sufficient information to be able to restart putting or
getting messages at the correct point if a system failure occurs.

For details of how to restart at the correct point after a system failure, see the
MQPMO_LOGICAL_ORDER option described in “MQPMO - Put message options” on page 495, and
the MQGMO_LOGICAL_ORDER option described in “MQGMO - Get-message options” on page 364.

The remaining usage notes apply only when the queue manager coordinates the units of work.
6. A unit of work has the same scope as a connection handle. All MQ calls that affect a particular unit of

work must be performed using the same connection handle. Calls issued using a different connection
handle (for example, calls issued by another application) affect a different unit of work. See the Hconn
parameter described in “MQCONN - Connect queue manager” on page 654 for information about the
scope of connection handles.

7. Only messages that were put or retrieved as part of the current unit of work are affected by this call.
8. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls within a unit of work, but that

never issues a commit or backout call, can fill queues with messages that are not available to other
applications. To guard against this possibility, the administrator must set the MaxUncommittedMsgs
queue manager attribute to a value that is low enough to prevent runaway applications filling the
queues, but high enough to allow the expected messaging applications to work correctly.

Developing applications reference 623

C invocation

MQBACK (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQBACK' USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQBACK (Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQBACK,(HCONN,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQBACK Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

624 IBM MQ Developing Applications Reference

MQBEGIN - Begin unit of work
The MQBEGIN call begins a unit of work that is coordinated by the queue manager, and that can involve
external resource managers.

Syntax
MQBEGIN (Hconn, BeginOptions, Compcode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

Hconn must be a nonshared connection handle. If a shared connection handle is specified, the call
fails with reason code MQRC_HCONN_ERROR. See the description of the MQCNO_HANDLE_SHARE_*
options in “MQCNO - Connect options” on page 314 for more information about shared and
nonshared handles.

BeginOptions
Type: MQBO - input/output

These are options that control the action of MQBEGIN, as described in “MQBO - Begin options” on
page 277.

If no options are required, programs written in C or S/390 assembler can specify a null parameter
address, instead of specifying the address of an MQBO structure.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_NO_EXTERNAL_PARTICIPANTS

(2121, X'849') No participating resource managers registered.
MQRC_PARTICIPANT_NOT_AVAILABLE

(2122, X'84A') Participating resource manager not available.

If CompCode is MQCC_FAILED:
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.

Developing applications reference 625

MQRC_BO_ERROR
(2134, X'856') Begin-options structure not valid.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UOW_IN_PROGRESS
(2128, X'850') Unit of work already started.

For more information about these codes, see Messages and reason codes.

Usage notes
1. Use the MQBEGIN call to start a unit of work that is coordinated by the queue manager and that might

involve changes to resources owned by other resource managers. The queue manager supports three
types of unit-of-work:

• Queue manager-coordinated local unit of work: A unit of work in which the queue manager is the
only resource manager participating, and so the queue manager acts as the unit-of-work coordinator.

– To start this type of unit of work, specify the MQPMO_SYNCPOINT or MQGMO_SYNCPOINT option
on the first MQPUT, MQPUT1, or MQGET call in the unit of work.

– To commit or back out this type of unit of work, use the MQCMIT or MQBACK call.
• Queue manager-coordinated global unit of work: A unit of work in which the queue manager acts

as the unit-of-work coordinator, both for MQ resources and for resources belonging to other resource
managers. Those resource managers cooperate with the queue manager to ensure that all changes
to resources in the unit of work are committed or backed out together.

– To start this type of unit of work, use the MQBEGIN call.
– To commit or back out this type of unit of work, use the MQCMIT and MQBACK calls.

• Externally-coordinated global unit of work: A unit of work in which the queue manager is a
participant, but the queue manager does not act as the unit-of-work coordinator. Instead, there is an
external unit-of-work coordinator with which the queue manager cooperates.

– To start this type of unit of work, use the relevant call provided by the external unit-of-work
coordinator.

If the MQBEGIN call is used to try to start the unit of work, the call fails with reason code
MQRC_ENVIRONMENT_ERROR.

– To commit or back out this type of unit of work, use the commit and back-out calls provided by the
external unit-of-work coordinator.

626 IBM MQ Developing Applications Reference

If you use the MQCMIT or MQBACK call to commit or back out the unit of work, the call fails with
reason code MQRC_ENVIRONMENT_ERROR.

2. If the application ends with uncommitted changes in a unit of work, the disposition of those changes
depends on whether the application ends normally or abnormally. See the usage notes in “MQDISC -
Disconnect queue manager” on page 676 for further details.

3. An application can participate in only one unit of work at a time. The MQBEGIN call fails with reason
code MQRC_UOW_IN_PROGRESS if there is already a unit of work in existence for the application,
regardless of which type of unit of work it is.

4. The MQBEGIN call is not valid in an MQ MQI client environment. An attempt to use the call fails with
reason code MQRC_ENVIRONMENT_ERROR.

5. When the queue manager is acting as the unit-of-work coordinator for global units of work, the
resource managers that can participate in the unit of work are defined in the queue manager
configuration file.

6. On IBM i, the three types of unit of work are supported as follows:

• Queue manager-coordinated local unit of work can be used only when a commitment definition
does not exist at the job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB)
parameter must not have been issued for the job.

• Queue manager-coordinated global unit of work is not supported.
• Externally-coordinated global unit of work can be used only when a commitment definition exists

at job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter must have
been issued for the job. If this has been done, the IBM i COMMIT and ROLLBACK operations apply to
MQ resources as well as to resources belonging to other participating resource managers.

C invocation

MQBEGIN (Hconn, &BeginOptions, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQBO BeginOptions; /* Options that control the action of MQBEGIN */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQBEGIN' USING HCONN, BEGINOPTIONS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Options that control the action of MQBEGIN
 01 BEGINOPTIONS.
 COPY CMQBOV.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQBEGIN (Hconn, BeginOptions, CompCode, Reason);

Developing applications reference 627

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl BeginOptions like MQBO; /* Options that control the action of
 MQBEGIN */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Visual Basic invocation

MQBEGIN Hconn, BeginOptions, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim BeginOptions As MQBO 'Options that control the action of MQBEGIN'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQBUFMH - Convert buffer into message handle
The MQBUFMH function call converts a buffer into a message handle and is the inverse of the MQMHBUF
call.

This call takes a message descriptor and MQRFH2 properties in the buffer and makes them available
through a message handle. The MQRFH2 properties in the message data are, optionally, removed. The
Encoding, CodedCharSetId, and Format fields of the message descriptor are updated, if necessary, to
correctly describe the contents of the buffer after the properties have been removed.

Syntax
MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, BufferLength, Buffer, DataLength, Compcode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn must match the
connection handle that was used to create the message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN, a valid connection must
be established on the thread converting a buffer into a message handle. If a valid connection is not
established, the call fails with MQRC_CONNECTION_BROKEN.

Hmsg
Type: MQHMQSG - input

This is the message handle for which a buffer is required. The value was returned by a previous
MQCRTMH call.

BufMsgHOpts
Type: MQBMHO - input

The MQBMHO structure allows applications to specify options that control how message handles are
produced from buffers.

See “MQBMHO - Buffer to message handle options” on page 272 for details.

MsgDesc
Type: MQMD - input/output

628 IBM MQ Developing Applications Reference

The MsgDesc structure contains the message descriptor properties and describes the contents of the
buffer area.

On output from the call, the properties are optionally removed from the buffer area and, in this case,
the message descriptor is updated to correctly describe the buffer area.

Data in this structure must be in the character set and encoding of the application.

BufferLength
Type: MQLONG - input

BufferLength is the length of the Buffer area, in bytes.

A BufferLength of zero bytes is valid, and indicates that the buffer area contains no data.

Buffer
Type: MQBYTExBufferLength - input/output

These are options that control the action of MQBEGIN, as described in “MQBEGIN - Begin unit of
work” on page 625.

Buffer defines the area containing the message buffer. For most data, you should align the buffer on
a 4-byte boundary.

If Buffer contains character or numeric data, set the CodedCharSetId and Encoding fields in the
MsgDesc parameter to the values appropriate to the data; this enables the data to be converted, if
necessary.

If properties are found in the message buffer they are optionally removed; they later become available
from the message handle on return from the call.

In the C programming language, the parameter is declared as a pointer-to-void, which means the
address of any type of data can be specified as the parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this case, the parameter
address passed by programs written in C or System/390 assembler can be null.

DataLength
Type: MQLONG - output

The length, in bytes, of the buffer which might have the properties removed.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.

Developing applications reference 629

MQRC_BMHO_ERROR
(2489, X'09B9') Buffer to message handle options structure not valid.

MQRC_BUFFER_ERROR
(2004, X'07D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'07D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS
(2219, X'08AB') MQI call entered before previous call completed.

MQRC_CONNECTION_BROKEN
(2009, X'07D9') Connection to queue manager lost.

MQRC_HMSG_ERROR
(2460, X'099C') Message handle not valid.

MQRC_MD_ERROR
(2026, X'07EA') Message descriptor not valid.

MQRC_MSG_HANDLE_IN_USE
(2499, X'09C3') Message handle already in use.

MQRC_OPTIONS_ERROR
(2046, X'07FE') Options not valid or not consistent.

MQRC_RFH_ERROR
(2334, X'091E') MQRFH2 structure not valid.

MQRC_RFH_FORMAT_ERROR
(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

Usage notes
MQBUFMH calls cannot be intercepted by API exits - a buffer is converted into a message handle in the
application space; the call does not reach the queue manager.

C invocation

MQBUFMH (Hconn, Hmsg, &BufMsgHOpts, &MsgDesc, BufferLength, Buffer,
 &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQBMHO BufMsgHOpts; /* Options that control the action of MQBUFMH */
MQMD MsgDesc; /* Message descriptor */
MQLONG BufferLength; /* Length in bytes of the Buffer area */
MQBYTE Buffer[n]; /* Area to contain the message buffer */
MQLONG DataLength; /* Length of the output buffer */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQBUFMH' USING HCONN, HMSG, BUFMSGHOPTS, MSGDESC, BUFFERLENGTH,
 BUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

630 IBM MQ Developing Applications Reference

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Message handle
 01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQBUFMH
 01 BUFMSGHOPTS.
 COPY CMQBMHOV.
** Message descriptor
 01 MSGDESC.
 COPY CMQMD.
** Length in bytes of the Buffer area
 01 BUFFERLENGTH PIC S9(9) BINARY.
** Area to contain the message buffer
 01 BUFFER PIC X(n).
** Length of the output buffer
 01 DATALENGTH PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, BufferLength, Buffer,
DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg fixed bin(63); /* Message handle */
dcl BufMsgHOpts like MQBMHO; /* Options that control the action of
 MQBUFMH */
dcl MsgDesc like MQMD; /* Message descriptor */
dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer area */
dcl Buffer char(n); /* Area to contain the message buffer */
dcl DataLength fixed bin(31); /* Length of the output buffer */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQBUFMH,(HCONN,HMSG,BUFMSGHOPTS,MSGDESC,BUFFERLENGTH,BUFFER,
 DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HMSG DS D Message handle
BUFMSGHOPTS CMQBMHOA , Options that control the action of MQBUFMH
MSGDESC CMQMDA , Message descriptor
BUFFERLENGTH DS F Length in bytes of the BUFFER area
BUFFER DS CL(n) Area to contain the properties
DATALENGTH DS F Length of the output buffer
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQCB - Manage callback
The MQCB call registers a callback for the specified object handle and controls activation and changes to
the callback.

A callback is a piece of code (specified as either the name of a function that can be dynamically linked or
as function pointer) that is called by IBM MQ when certain events occur.

Developing applications reference 631

To use MQCB and MQCTL on a client you must be connected to a server where the negotiated SHARECNV
parameter of the channel has agreed a non-zero value.

The types of callback that can be defined are:
Message consumer

A message consumer callback function is called when a message, meeting the selection criteria
specified, is available on an object handle.

Only one callback function can be registered against each object handle. If a single queue is to be
read with multiple selection criteria then the queue must be opened multiple times and a consumer
function registered on each handle.

Event handler
The event handler is called for conditions that affect the whole callback environment.

The function is called when an event condition occurs, for example, a queue manager or connection
stopping or quiescing.

The function is not called for conditions that are specific to a single message consumer, for example
MQRC_GET_INHIBITED; it is called however if a callback function does not end normally.

Syntax
MQCB (Hconn, Operation, CallbackDesc, Hobj, MsgDesc, GetMsgOpts, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications you can specify the following special value for MQHC_DEF_HCONN to
use the connection handle associated with this execution unit.

Operation
Type: MQLONG - input

The operation being processed on the callback defined for the specified object handle. You must
specify one of the following options. To specify more than one option, either add the values together
(do not add the same constant more than once), or combine the values using the bitwise OR operation
(if the programming language supports bit operations).
MQOP_REGISTER

Define the callback function for the specified object handle. This operation defines the function to
be called and the selection criteria to be used.

If a callback function is already defined for the object handle the definition is replaced. If an error
is detected while replacing the callback, the function is deregistered.

If a callback is registered in the same callback function in which it was previously deregistered,
this is treated as a replace operation; any initial or final calls are not invoked.

You can use MQOP_REGISTER with MQOP_SUSPEND or MQOP_RESUME.

MQOP_DEREGISTER
Stop the consuming of messages for the object handle and removes the handle from those eligible
for a callback.

A callback is automatically deregistered if the associated handle is closed.

If MQOP_DEREGISTER is called from within a consumer, and the callback has a stop call defined,
it is invoked upon return from the consumer.

632 IBM MQ Developing Applications Reference

If this operation is issued against an Hobj with no registered consumer, the call returns with
MQRC_CALLBACK_NOT_REGISTERED.

MQOP_SUSPEND
Suspends the consuming of messages for the object handle.

If this operation is applied to an event handler, the event handler does not get events while
suspended, and any events missed while in the suspended state are not provided to the operation
when it is resumed.

While suspended, the consumer function continues to get the control type callbacks.

MQOP_RESUME
Resume the consuming of messages for the object handle.

If this operation is applied to an event handler, the event handler does not get events while
suspended, and any events missed while in the suspended state are not provided to the operation
when it is resumed.

CallbackDesc
Type: MQCBD - input

This is a structure that identifies the callback function that is being registered by the application and
the options used when registering it.

See MQCBD for details of the structure.

Callback descriptor is required only for the MQOP_REGISTER option; if the descriptor is not required,
the parameter address passed can be null.

Hobj
Type: MQHOBJ - input

This handle represents the access that has been established to the object from which a message is to
be consumed. This is a handle that has been returned from a previous MQOPEN or MQSUB call (in the
Hobj parameter).

Hobj is not required when defining an event handler routine (MQCBT_EVENT_HANDLER) and should
be specified as MQHO_NONE.

If Hobj has been returned from an MQOPEN call, the queue must have been opened with one or more
of the following options:

• MQOO_INPUT_SHARED
• MQOO_INPUT_EXCLUSIVE
• MQOO_INPUT_AS_Q_DEF
• MQOO_BROWSE

MsgDesc
Type: MQMD - input

This structure describes the attributes of the message required, and the attributes of the message
retrieved.

The MsgDesc parameter defines the attributes of the messages required by the consumer, and the
version of the MQMD to be passed to the message consumer.

The MsgId, CorrelId, GroupId, MsgSeqNumber, and Offset in the MQMD are used for message
selection, depending on the options specified in the GetMsgOpts parameter.

The Encoding and CodedCharSetId are used for message conversion if you specify the
MQGMO_CONVERT option.

See MQMD for details.

MsgDesc is used for MQOP_REGISTER and if you require values other than the default for any fields.
MsgDesc is not used for an event handler.

Developing applications reference 633

If the descriptor is not required the parameter address passed can be null.

Note, that if multiple consumers are registered against the same queue with overlapping selectors,
the chosen consumer for each message is undefined.

GetMsgOpts
Type: MQGMO - input

The GetMsgOpts parameter controls how the message consumer gets messages. All options of this
parameter have meanings as described in “MQGMO - Get-message options” on page 364, when used
on an MQGET call, except:
MQGMO_SET_SIGNAL

This option is not permitted.
MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT, MQGMO_MARK_*

The order of messages delivered to a browsing consumer is dictated by the combinations of these
options. Significant combinations are:
MQGMO_BROWSE_FIRST

The first message on the queue is delivered repeatedly to the consumer. This is useful when
the consumer destructively consumes the message in the callback. Use this option with care.

MQGMO_BROWSE_NEXT
The consumer is given each message on the queue, from the current cursor position until the
end of the queue is reached.

MQGMO_BROWSE_FIRST + MQGMO_BROWSE_NEXT
The cursor is reset to the start of the queue. The consumer is then given each message until
the cursor reaches the end of the queue.

MQGMO_BROWSE_FIRST + MQGMO_MARK_*
Starting at the beginning of the queue, the consumer is given the first nonmarked message
on the queue, which is then marked for this consumer. This combination ensures that the
consumer can receive new messages added behind the current cursor point.

MQGMO_BROWSE_NEXT + MQGMO_MARK_*
Starting at the cursor position, the consumer is given the next nonmarked message on the
queue, which is then marked for this consumer. Use this combination with care because
messages can be added to the queue behind the current cursor position.

MQGMO_BROWSE_FIRST + MQGMO_BROWSE_NEXT + MQGMO_MARK_*
This combination is not permitted. If used the call returns MQRC_OPTIONS_ERROR.

MQGMO_NO_WAIT, MQGMO_WAIT, and WaitInterval
These options control how the consumer is invoked.
MQGMO_NO_WAIT

The consumer is never called with MQRC_NO_MSG_AVAILABLE. The consumer is only called
for messages and events.

MQGMO_WAIT with a zero WaitInterval
The MQRC_NO_MSG_AVAILABLE code is passed to the consumer when there are no
messages available and either the consumer has been started or the consumer has been
delivered at least one message since the last "no messages" reason code.
This prevents the consumer from polling in a busy loop when a zero wait interval is specified.

MQGMO_WAIT and a positive WaitInterval
The consumer is called after the specified wait interval with reason code
MQRC_NO_MSG_AVAILABLE. This call is made regardless of whether any messages have
been delivered to the consumer. This allows the user to perform heartbeat or batch type
processing.

MQGMO_WAIT and WaitInterval of MQWI_UNLIMITED
This specifies an infinite wait before returning MQRC_NO_MSG_AVAILABLE. The consumer is
never called with MQRC_NO_MSG_AVAILABLE.

634 IBM MQ Developing Applications Reference

GetMsgOpts is used only for MQOP_REGISTER and if you require values other than the default for
any fields. GetMsgOpts is not used for an event handler.

If the GetMsgOpts are not required, the parameter address passed can be null. Using this parameter
is the same as specifying MQGMO_DEFAULT together with MQGMO_FAIL_IF_QUIESCING.

If a message properties handle is provided in the MQGMO structure, a copy is provided in the MQGMO
structure that is passed into the consumer callback. On return from the MQCB call, the application can
delete the message properties handle.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

The reason codes in the following list are the ones that the queue manager can return for the Reason
parameter.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_CONV_LOAD_ERROR

(2133, X'855') Unable to load data conversion services modules.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.
MQRC_CALLBACK_LINK_ERROR

(2487, X'9B7') Incorrect callback type field.
MQRC_CALLBACK_NOT_REGISTERED

(2448, X'990') Unable to unregister, suspend, or resume because there is no registered callback.
MQRC_CALLBACK_ROUTINE_ERROR

(2486, X'9B6') Either CallbackFunction or CallbackName must be specified but not both.
MQRC_CALLBACK_TYPE_ERROR

(2483, X'9B3') Incorrect callback type field.

Developing applications reference 635

MQRC_CBD_OPTIONS_ERROR
(2484, X'9B4') Incorrect MQCBD options field.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_CORREL_ID_ERROR
(2207, X'89F') Correlation-identifier error.

MQRC_DATA_LENGTH_ERROR
(2010, X'7DA') Data length parameter not valid.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

MQRC_FUNCTION_NOT_SUPPORTED
(2298, X'8FA') The function requested is not available in the current environment.

MQRC_GET_INHIBITED
(2016, X'7E0') Gets inhibited for the queue.

MQRC_GLOBAL_UOW_CONFLICT
(2351, X'92F') Global units of work conflict.

MQRC_GMO_ERROR
(2186, X'88A') Get-message options structure not valid.

MQRC_HANDLE_IN_USE_FOR_UOW
(2353, X'931') Handle in use for global unit of work.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_INCONSISTENT_BROWSE
(2259, X'8D3') Inconsistent browse specification.

MQRC_INCONSISTENT_UOW
(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_INVALID_MSG_UNDER_CURSOR
(2246, X'8C6') Message under cursor not valid for retrieval.

MQRC_LOCAL_UOW_CONFLICT
(2352, X'930') Global unit of work conflicts with local unit of work.

MQRC_MATCH_OPTIONS_ERROR
(2247, X'8C7') Match options not valid.

MQRC_MAX_MSG_LENGTH_ERROR
(2485, X'9B4') Incorrect MaxMsgLength field.

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

MQRC_MODULE_ENTRY_NOT_FOUND
(2497, X'9C1') The specified function entry point could not be found in the module.

636 IBM MQ Developing Applications Reference

MQRC_MODULE_INVALID
(2496, X'9C0') Module found, however it is of the wrong type; not 32 bit, 64 bit, or a valid dynamic
link library.

MQRC_MODULE_NOT_FOUND
(2495, X'9BF') Module not found in the search path or not authorized to load.

MQRC_MSG_SEQ_NUMBER_ERROR
(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOKEN_ERROR
(2331, X'91B') Use of message token not valid.

MQRC_NO_MSG_AVAILABLE
(2033, X'7F1') No message available.

MQRC_NO_MSG_UNDER_CURSOR
(2034, X'7F2') Browse cursor not positioned on message.

MQRC_NOT_OPEN_FOR_BROWSE
(2036, X'7F4') Queue not open for browse.

MQRC_NOT_OPEN_FOR_INPUT
(2037, X'7F5') Queue not open for input.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OPERATION_ERROR
(2206, X'89E') Incorrect operation code on API Call.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_INDEX_TYPE_ERROR
(2394, X'95A') Queue has wrong index type.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SIGNAL_OUTSTANDING
(2069, X'815') Signal outstanding for this handle.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED
(2024, X'7E8') No more messages can be handled within current unit of work.

Developing applications reference 637

MQRC_SYNCPOINT_NOT_AVAILABLE
(2072, X'818') Sync point support not available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UOW_ENLISTMENT_ERROR
(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED
(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE
(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WAIT_INTERVAL_ERROR
(2090, X'82A') Wait interval in MQGMO not valid.

MQRC_WRONG_GMO_VERSION
(2256, X'8D0') Wrong version of MQGMO supplied.

MQRC_WRONG_MD_VERSION
(2257, X'8D1') Wrong version of MQMD supplied.

For detailed information about these codes, see Messages and reason codes.

Usage notes
1. MQCB is used to define the action to be invoked for each message, matching the specified criteria,

available on the queue. When the action is processed, either the message is removed from the queue
and passed to the defined message consumer, or a message token is provided, which is used to
retrieve the message.

2. MQCB can be used to define callback routines before starting consumption with MQCTL or it can be
used from within a callback routine.

3. To use MQCB from outside of a callback routine, you must first suspend message consumption by
using MQCTL and resume consumption afterward.

4. MQCB is not supported within the IMS adapter.

Message consumer callback sequence
You can configure a consumer to invoke callback at key points during the lifecycle of the consumer. For
example:

• when the consumer is first registered,
• when the connection is started,
• when the connection is stopped and
• when the consumer is deregistered, either explicitly, or implicitly by an MQCLOSE.

Table 542. MQCTL verb definitions

Verb Meaning

MQCTL(START) MQCTL call using the MQOP_START Operation

MQCTL(STOP) MQCTL call using the MQOP_STOP Operation

MQCTL(WAIT) MQCTL call using the MQOP_START_WAIT Operation

This allows the consumer to maintain state associated with the consumer. When a callback is requested
by an application, the rules for consumer invocation are as follows:
REGISTER

Is always the first type of invocation of the callback.

638 IBM MQ Developing Applications Reference

Is always called on the same thread, as the MQCB(REGISTER) call.
START

Is always called synchronously with the MQCTL(START) verb.

• All START callbacks are completed before the MQCTL(START) verb returns.

Is on the same thread as the message delivery if THREAD_AFFINITY is requested.
The call with start is not guaranteed if, for example, a previous callback issues MQCTL(STOP) during
the MQCTL(START).

STOP
No further messages or events are delivered after this call until the connection is restarted.
A STOP is guaranteed if the application was previously called for START, or a message, or an event.

DEREGISTER
Is always the last type of invocation of the callback.

Ensure that your application performs thread-based initialization and cleanup in the START and STOP
callbacks. You can do non-thread based initialization and cleanup with REGISTER and DEREGISTER
callbacks.

Do not make any assumptions about the life and availability of the thread other than what is stated.
For example, do not rely on a thread staying alive beyond the last call to DEREGISTER. Similarly, when
you have chosen not to use THREAD_AFFINITY, do not assume that the thread exists whenever the
connection is started.

If your application has particular requirements for thread characteristics, it can always create a thread
accordingly, then use MQCTL(WAIT). This has the effect of 'donating' the thread to IBM MQ for
asynchronous message delivery.

Message consumer connection usage
You can configure a consumer to invoke callback at key points during the lifecycle of the consumer. For
example:

• when the consumer is first registered,
• when the connection is started,
• when the connection is stopped and
• when the consumer is deregistered, either explicitly, or implicitly by an MQCLOSE.

Table 543. MQCTL verb definitions

Verb Meaning

MQCTL(START) MQCTL call using the MQOP_START Operation

MQCTL(STOP) MQCTL call using the MQOP_STOP Operation

MQCTL(WAIT) MQCTL call using the MQOP_START_WAIT Operation

This allows the consumer to maintain state associated with the consumer. When a callback is requested
by an application, the rules for consumer invocation are as follows:
REGISTER

Is always the first type of invocation of the callback.
Is always called on the same thread, as the MQCB(REGISTER) call.

START
Is always called synchronously with the MQCTL(START) verb.

• All START callbacks are completed before the MQCTL(START) verb returns.

Is on the same thread as the message delivery if THREAD_AFFINITY is requested.

Developing applications reference 639

The call with start is not guaranteed if, for example, a previous callback issues MQCTL(STOP) during
the MQCTL(START).

STOP
No further messages or events are delivered after this call until the connection is restarted.
A STOP is guaranteed if the application was previously called for START, or a message, or an event.

DEREGISTER
Is always the last type of invocation of the callback.

Ensure that your application performs thread-based initialization and cleanup in the START and STOP
callbacks. You can do non-thread based initialization and cleanup with REGISTER and DEREGISTER
callbacks.

Do not make any assumptions about the life and availability of the thread other than what is stated.
For example, do not rely on a thread staying alive beyond the last call to DEREGISTER. Similarly, when
you have chosen not to use THREAD_AFFINITY, do not assume that the thread exists whenever the
connection is started.

If your application has particular requirements for thread characteristics, it can always create a thread
accordingly, then use MQCTL(WAIT). This has the effect of 'donating' the thread to IBM MQ for
asynchronous message delivery.

C invocation

MQCB (Hconn, Operation, CallbackDesc, Hobj, MsgDesc,
GetMsgOpts, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQLONG Operation; /* Operation being processed */
MQCBD CallbackDesc; /* Callback descriptor */
MQHOBJ HObj /* Object handle */
MQMD MsgDesc /* Message descriptor attributes */
MQGMO GetMsgOpts /* Message options */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQCB' USING HCONN, OPERATION, CBDESC, HOBJ, MSGDESC,
 GETMSGOPTS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Operation
 01 OPERATION PIC S9(9) BINARY.
** Callback Descriptior
 01 CBDESC.
 COPY CMQCBDV.
01 HOBJ PIC S9(9) BINARY.
** Message Descriptior
 01 MSGDESC.
 COPY CMQMDV.
** Get Message Options
 01 GETMSGOPTS.
 COPY CMQGMOV.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

640 IBM MQ Developing Applications Reference

PL/I invocation

call MQCB(Hconn, Operation, CallbackDesc, Hobj, MsgDesc, GetMsgOpts,
 CompCode, Reason)

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Operation fixed bin(31); /* Operation */
dcl CallbackDesc like MQCBD; /* Callback Descriptor */
dcl Hobj fixed bin(31); /* Object Handle */
dcl MsgDesc like MQMD; /* Message Descriptor */
dcl GetMsgOpts like MQGMO; /* Get Message Options */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

MQCB_FUNCTION - Callback function
The MQCB_FUNCTION function call is the callback function for event handling and asynchronous
message consumption.

The MQCB_FUNCTION call definition is provided solely to describe the parameters that are passed to the
callback function. No entry point called MQCB_FUNCTION is provided by the queue manager.

The specification of the actual function to be called is an input to the MQCB call and is passed in through
the MQCBD structure.

Syntax
MQCB_FUNCTION (Hconn, MsgDesc, GetMsgOpts, Buffer, Context)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call. On z/OS for CICS applications the MQCONN call can be omitted,
and the following value specified for Hconn:

MQHC_DEF_CONN

Default connection handle.

MsgDesc
Type: MQMD - input

This structure describes the attributes of the message retrieved.

See “MQMD - Message descriptor” on page 417 for details.

The version of MQMD passed is the same version as passed on the MQCB call that defined the
consumer function.

The address of the MQMD is passed as null characters if a version 4 MQGMO was used to request that
a Message Handle be returned instead of an MQMD.

This is an input field to the message consumer function; it is not relevant to an event handler function.

GetMsgOpts
Type: MQGMO - input

Options used to control the actions of the message consumer. This parameter also contains additional
information about the message returned.

See MQGMO for details.

Developing applications reference 641

The version of MQGMO passed is the latest version supported.

This is an input field to the message consumer function; it is not relevant to an event handler function.

Buffer
Type: MQBYTExBufferLength - input

This is the area containing the message data.

If no message is available for this call, or if the message contains no message data, the address of the
Buffer is passed as nulls.

This is an input field to the message consumer function; it is not relevant to an event handler function.

Context
Type: MQCBC - input/output

This structure provides context information to the callback functions. See “MQCBC - Callback context”
on page 279 for details.

Usage notes
1. Be aware that if your callback routines use services that could delay or block the thread, for example,

MQGET with wait, could delay the dispatch of other callbacks.
2. A separate unit of work is not automatically established for each invocation of a callback routine, so

routines can either issue a commit call, or defer committing, until a logical batch of work has been
processed. When the batch of work is committed, it commits the messages for all callback functions
that have been invoked since the last sync point.

3. Programs invoked by CICS LINK or CICS START retrieve parameters using CICS services through
named objects known as channel containers. The container names are the same as the parameter
names. For more information, see your CICS documentation.

4. Callback routines can issue an MQDISC call, but not for their own connection. For example, if a
callback routine has created a connection, then it can also disconnect the connection.

5. A callback routine should not, in general, rely on being invoked from the same thread each time. If
required, use the MQCTLO_THREAD_AFFINITY when the connection is started.

6. When a callback routine receives a nonzero reason code, it must take appropriate action.
7. MQCB_FUNCTION is not supported within the IMS adapter.

MQCLOSE - Close object
The MQCLOSE call relinquishes access to an object, and is the inverse of the MQOPEN and MQSUB calls.

Syntax
MQCLOSE (Hconn, Hobj, Options, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications you can omit the MQCONN call, and specify the following value for
Hconn :
MQHC_DEF_HCONN

Default connection handle.

Hobj
Type: MQHOBJ - input/output

642 IBM MQ Developing Applications Reference

This handle represents the object that is being closed. The object can be of any type. The value of
Hobj was returned by a previous MQOPEN call.

On successful completion of the call, the queue manager sets this parameter to a value that is not a
valid handle for the environment. This value is:
MQHO_UNUSABLE_HOBJ

Unusable object handle.

On z/OS, Hobj is set to a value that is undefined.

Options
Type: MQLONG - input

This parameter controls how the object is closed.

Only permanent dynamic queues and subscriptions can be closed in more than one way, because
they must be either retained or deleted; these are queues with the DefinitionType attribute
that has the value MQQDT_PERMANENT_DYNAMIC (see the DefinitionType attribute described in
“Attributes for queues” on page 826). The close options are summarized in this topic.

Durable subscriptions can either be kept or removed; these are created using the MQSUB call with the
MQSO_DURABLE option.

When closing the handle to a managed destination (that is the Hobj parameter returned on an MQSUB
call which used the MQSO_MANAGED option) the queue manager cleans up any publications that
have not been retrieved when the associated subscription has also been removed. The subscription is
removed using the MQCO_REMOVE_SUB option on the Hsub parameter returned on an MQSUB call.
Note MQCO_REMOVE_SUB is the default behavior on MQCLOSE for a non-durable subscription.

When closing a handle to a non-managed destination you are responsible for cleaning up the queue
where publications are sent. Close the subscription using MQCO_REMOVE_SUB first and then process
messages off the queue until none remain.

You must specify one option only from the following:

Dynamic queue options: These options control how permanent dynamic queues are closed.
MQCO_DELETE

The queue is deleted if either of the following is true:

• It is a permanent dynamic queue, created by a previous MQOPEN call, and there are no
messages on the queue and no uncommitted get or put requests outstanding for the queue
(either for the current task or any other task).

• It is the temporary dynamic queue that was created by the MQOPEN call that returned Hobj. In
this case, all the messages on the queue are purged.

In all other cases, including the case where the Hobj was returned on an MQSUB call, the call fails
with reason code MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not deleted.

On z/OS, if the queue is a dynamic queue that has been logically deleted, and this is the last
handle for it, the queue is physically deleted. See “Usage notes” on page 648 for further details.

MQCO_DELETE_PURGE
The queue is deleted, and any messages on it purged, if either of the following is true:

• It is a permanent dynamic queue, created by a previous MQOPEN call, and there are no
uncommitted get or put requests outstanding for the queue (either for the current task or any
other task).

• It is the temporary dynamic queue that was created by the MQOPEN call that returned Hobj.

In all other cases, including the case where the Hobj was returned on an MQSUB call, the call fails
with reason code MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not deleted.

Developing applications reference 643

Table 544. Close options for different object types

Type of object or queue MQCO_NONE MQCO_DELETE MQCO_DELETE_PURGE

Object other than a queue Retained Not valid Not valid

Predefined queue Retained Not valid Not valid

Permanent dynamic queue Retained Deleted if empty
and no pending
updates

Messages deleted; queue
deleted if no pending
updates

Temporary dynamic queue
(call issued by creator of
queue)

Deleted Deleted Deleted

Temporary dynamic queue
(call not issued by creator of
queue)

Retained Not valid Not valid

Distribution list Retained Not valid Not valid

Managed subscription
destination

Retained Not valid Not valid

Distribution list (subscription
has been removed)

Messages
deleted; queue
deleted

Not valid Not valid

Subscription closure options: These options control whether durable subscriptions are removed
when the handle is closed, and whether publications still waiting to be read by the application are
cleaned up. These options are only valid for use with an object handle returned in the Hsub parameter
of an MQSUB call.
MQCO_KEEP_SUB

The handle to the subscription is closed but the subscription made is kept. Publications continue
to be sent to the destination specified in the subscription. This option is only valid if the
subscription was made with the option MQSO_DURABLE.
MQCO_KEEP_SUB is the default if the subscription is durable

MQCO_REMOVE_SUB
The subscription is removed and the handle to the subscription is closed.
The Hobj parameter of the MQSUB call is not invalidated by closure of the Hsub parameter and
might continue to be used for MQGET or MQCB to receive the remaining publications. When the
Hobj parameter of the MQSUB call is also closed, if it was a managed destination any unretrieved
publications are removed.
MQCO_REMOVE_SUB is the default if the subscription is non-durable.
Successful completion of MQCO_REMOVE_SUB does not mean that the action completed. To
check that this call has completed, see the DELETE SUB step in Checking that async commands
for distributed networks have finished.

These subscription closure options are summarized in the following tables.

Table 545. Options to close a durable subscription handle but retain the subscription

Task Subscription closure option

Keep publications on an MQOPENed handle MQCO_KEEP_SUB

Remove publications on an MQOPENed handle Action not allowed

Keep publications on an MQSO_MANAGED handle MQCO_KEEP_SUB

644 IBM MQ Developing Applications Reference

Table 545. Options to close a durable subscription handle but retain the subscription (continued)

Task Subscription closure option

Remove publications on an MQSO_MANAGED handle Action not allowed

To unsubscribe, either by closing a durable subscription handle and unsubscribing it or closing a
non-durable subscription handle, use the following subscription closure options:

Table 546. Options to unsubscribe

Task Subscription closure option

Keep publications on an MQOPENed handle MQCO_REMOVE_SUB

Remove publications on an MQOPENed handle Action not allowed

Keep publications on an MQSO_MANAGED handle MQCO_REMOVE_SUB

Read ahead options: The following options control what happens to non-persistent messages which
have been sent to the client before an application requested them and have not yet been consumed
by the application. These messages are stored in the client read ahead buffer waiting to be requested
by the application and can either be discarded or consumed from the queue before the MQCLOSE is
completed.
MQCO_IMMEDIATE

The object is closed immediately and any messages which have been sent to the client before
an application requested them are discarded and are not available to be consumed by any
application. This is the default value.

MQCO_QUIESCE
A request to close the object is made, but if any messages which have been sent to the client
before an application requested them, still reside in the client read ahead buffer, the MQCLOSE
call returns with a warning of MQRC_READ_AHEAD_MSGS and the object handle remains valid.

The application can then continue to use the object handle to retrieve messages until no more are
available, and then close the object again. No more messages are sent to the client ahead of an
application requesting them, read ahead is now turned off.

Applications are advised to use MQCO_QUIESCE rather than trying to reach a point where there
are no more messages in the client read ahead buffer, because a message could arrive between
the last MQGET call and the following MQCLOSE which would be discarded if MQCO_IMMEDIATE
was used.

If an MQCLOSE with MQCO_QUIESCE is issued from within an asynchronous callback function, the
same behavior of reading ahead messages applies. If the warning MQRC_READ_AHEAD_MSGS
is returned, then the callback function is called at least one more time. When the last
remaining message that was read ahead has been passed to the callback function the MQCBC
ConsumerFlags field is set to MQCBCF_READA_BUFFER_EMPTY.

Default option: If you require none of the options described previously, you can use the following
option:

MQCO_NONE
No optional close processing required.

This must be specified for:

• Objects other than queues
• Predefined queues
• Temporary dynamic queues (but only in those cases where Hobj is not the handle returned by

the MQOPEN call that created the queue).
• Distribution lists

Developing applications reference 645

In all the above cases, the object is retained and not deleted.

If this option is specified for a temporary dynamic queue:

• The queue is deleted, if it was created by the MQOPEN call that returned Hobj ; any messages
that are on the queue are purged.

• In all other cases the queue (and any messages on it) are retained.

If this option is specified for a permanent dynamic queue, the queue is retained and not deleted.

On z/OS, if the queue is a dynamic queue that has been logically deleted, and this is the last
handle for it, the queue is physically deleted. See “Usage notes” on page 648 for further details.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

The reason codes listed are the ones that the queue manager can return for the Reason parameter.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_INCOMPLETE_GROUP

(2241, X'8C1') Message group not complete.
MQRC_INCOMPLETE_MSG

(2242, X'8C2') Logical message not complete.
MQRC_READ_AHEAD_MSGS

(nnnn, X'xxx') The client has read ahead messages that have not yet been consumed by the
application.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.
MQRC_CF_NOT_AVAILABLE

(2345, X'929') Coupling facility not available.

646 IBM MQ Developing Applications Reference

MQRC_CF_STRUC_FAILED
(2373, X'945') Coupling-facility structure failed.

MQRC_CF_STRUC_IN_USE
(2346, X'92A') Coupling-facility structure in use.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_DB2_NOT_AVAILABLE
(2342, X'926') Db2 subsystem not available.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OPTION_NOT_VALID_FOR_TYPE
(2045, X'7FD') On an MQOPEN or MQCLOSE call: option not valid for object type.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_Q_NOT_EMPTY
(2055, X'807') Queue contains one or more messages or uncommitted put or get requests.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

Developing applications reference 647

Usage notes
1. When an application issues the MQDISC call, or ends either normally or abnormally, any objects that

were opened by the application and are still open are closed automatically with the MQCO_NONE
option.

2. The following points apply if the object being closed is a queue:

• If operations on the queue are performed as part of a unit of work, the queue can be closed before or
after the sync point occurs without affecting the outcome of the sync point. If the queue is triggered,
performing a rollback before closing the queue can cause a trigger message to be issued. For more
information about trigger messages, see Properties of trigger messages.

• If the queue was opened with the MQOO_BROWSE option, the browse cursor is destroyed. If the
queue is then reopened with the MQOO_BROWSE option, a new browse cursor is created (see
MQOO_BROWSE).

• If a message is currently locked for this handle at the time of the MQCLOSE call, the lock is released
(see MQGMO_LOCK).

• On z/OS, if there is an MQGET request with the MQGMO_SET_SIGNAL option outstanding against
the queue handle being closed, the request is canceled (see MQGMO_SET_SIGNAL). Signal requests
for the same queue but lodged against different handles (Hobj) are not affected (unless a dynamic
queue is being deleted, in which case they are also canceled).

3. The following points apply if the object being closed is a dynamic queue (either permanent or
temporary):

• For a dynamic queue, you can specify the MQCO_DELETE and MQCO_DELETE_PURGE options
regardless of the options specified on the corresponding MQOPEN call.

• When a dynamic queue is deleted, all MQGET calls with the MQGMO_WAIT option that are
outstanding against the queue are canceled and reason code MQRC_Q_DELETED is returned. See
MQGMO_WAIT.

Although applications cannot access a deleted queue, the queue is not removed from the system,
and associated resources are not freed, until all handles that reference the queue have been closed,
and all units of work that affect the queue have been either committed or backed out.

On z/OS, a queue that has been logically deleted but not yet removed from the system prevents
the creation of a new queue with the same name as the deleted queue; the MQOPEN call fails
with reason code MQRC_NAME_IN_USE in this case. Also, such a queue can still be displayed using
MQSC commands, even though it cannot be accessed by applications.

• When a permanent dynamic queue is deleted, if the Hobj handle specified on the MQCLOSE call is
not the one that was returned by the MQOPEN call that created the queue, a check is made that the
user identifier that was used to validate the MQOPEN call is authorized to delete the queue. If the
MQOO_ALTERNATE_USER_AUTHORITY option was specified on the MQOPEN call, the user identifier
checked is the AlternateUserId.

This check is not performed if:

– The handle specified is the one returned by the MQOPEN call that created the queue.
– The queue being deleted is a temporary dynamic queue.

• When a temporary dynamic queue is closed, if the Hobj handle specified on the MQCLOSE call is the
one that was returned by the MQOPEN call that created the queue, the queue is deleted. This occurs
regardless of the close options specified on the MQCLOSE call. If there are messages on the queue,
they are discarded; no report messages are generated.

If there are uncommitted units of work that affect the queue, the queue and its messages are still
deleted, but the units of work do not fail. However, as described previously, the resources associated
with the units of work are not freed until each of the units of work has been either committed or
backed out.

4. The following points apply if the object being closed is a distribution list:

648 IBM MQ Developing Applications Reference

• The only valid close option for a distribution list is MQCO_NONE; the call fails with reason
code MQRC_OPTIONS_ERROR or MQRC_OPTION_NOT_VALID_FOR_TYPE if any other options are
specified.

• When a distribution list is closed, individual completion codes and reason codes are not returned
for the queues in the list; only the CompCode and Reason parameters of the call are available for
diagnostic purposes.

If a failure occurs closing one of the queues, the queue manager continues processing and attempts
to close the remaining queues in the distribution list. The CompCode and Reason parameters of
the call are set to return information describing the failure. It is possible for the completion code
to be MQCC_FAILED, even though most of the queues were closed successfully. The queue that
encountered the error is not identified.

If there is a failure on more than one queue, it is not defined which failure is reported in the
CompCode and Reason parameters.

C invocation

MQCLOSE (Hconn, &Hobj, Options, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hobj; /* Object handle */
MQLONG Options; /* Options that control the action of MQCLOSE */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

 CALL 'MQCLOSE' USING HCONN, HOBJ, OPTIONS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Object handle
 01 HOBJ PIC S9(9) BINARY.
** Options that control the action of MQCLOSE
 01 OPTIONS PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQCLOSE (Hconn, Hobj, Options, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hobj fixed bin(31); /* Object handle */
dcl Options fixed bin(31); /* Options that control the action of
 MQCLOSE */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

Developing applications reference 649

High Level Assembler invocation

CALL MQCLOSE,(HCONN,HOBJ,OPTIONS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
OPTIONS DS F Options that control the action of MQCLOSE
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQCLOSE Hconn, Hobj, Options, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim Options As Long 'Options that control the action of MQCLOSE'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQCMIT - Commit changes
The MQCMIT call indicates to the queue manager that the application has reached a sync point, and that
all the message gets and puts that have occurred since the last sync point are to be made permanent.

Messages put as part of a unit of work are made available to other applications; messages retrieved as
part of a unit of work are deleted.

• On z/OS, the call is used only by batch programs (including IMS batch DL/I programs).

Syntax
MQCMIT (Hconn, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

650 IBM MQ Developing Applications Reference

Reason
Type: MQLONG - output

The reason codes listed are the ones that the queue manager can return for the Reason parameter.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_BACKED_OUT

(2003, X'7D3') Unit of work backed out.
MQRC_OUTCOME_PENDING

(2124, X'84C') Result of commit operation is pending.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.
MQRC_CALL_INTERRUPTED

(2549, X'9F5') MQPUT or MQCMIT was interrupted and reconnection processing cannot
reestablish a definite outcome.

MQRC_CF_STRUC_IN_USE
(2346, X'92A') Coupling-facility structure in use.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OUTCOME_MIXED
(2123, X'84B') Result of commit or back-out operation is mixed.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RECONNECT_FAILED
(2548, X'9F4') After reconnecting, an error occurred reinstating the handles for a reconnectable
connection.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_MEDIUM_FULL
(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

Developing applications reference 651

For detailed information about these codes, see Messages and reason codes.

Usage notes
1. Use this call only when the queue manager itself coordinates the unit of work. This can be:

• A local unit of work, where the changes affect only IBM MQ resources.
• A global unit of work, where the changes can affect resources belonging to other resource managers,

as well as affecting IBM MQ resources.

For further details about local and global units of work, see “MQBEGIN - Begin unit of work” on page
625.

2. In environments where the queue manager does not coordinate the unit of work, the appropriate
commit call must be used instead of MQCMIT. The environment might also support an implicit commit
caused by the application terminating normally.

• On z/OS, use the following calls:

– Batch programs (including IMS batch DL/I programs) can use the MQCMIT call if the unit of
work affects only IBM MQ resources. However, if the unit of work affects both IBM MQ resources
and resources belonging to other resource managers (for example, Db2), use the SRRCMIT call
provided by the z/OS Recoverable Resource Service (RRS). The SRRCMIT call commits changes to
resources belonging to the resource managers that have been enabled for RRS coordination.

– CICS applications must use the EXEC CICS SYNCPOINT command to commit the unit of work
explicitly. Alternatively, ending the transaction results in an implicit commit of the unit of work.
The MQCMIT call cannot be used for CICS applications.

– IMS applications (other than batch DL/I programs) must use IMS calls such as GU and CHKP to
commit the unit of work. The MQCMIT call cannot be used for IMS applications (other than batch
DL/I programs).

• On IBM i, use this call for local units of work coordinated by the queue manager. This means that
a commitment definition must not exist at job level, that is, the STRCMTCTL command with the
CMTSCOPE(*JOB) parameter must not have been issued for the job.

3. If an application ends with uncommitted changes in a unit of work, the disposition of those changes
depends on whether the application ends normally or abnormally. See MQDISC usage notes for further
details.

4. When an application puts or gets messages in groups or segments of logical messages, the queue
manager retains information relating to the message group and logical message for the last successful
MQPUT and MQGET calls. This information is associated with the queue handle, and includes such
things as:

• The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in MQMD.
• Whether the message is part of a unit of work.
• For the MQPUT call: whether the message is persistent or nonpersistent.

When a unit of work is committed, the queue manager retains the group and segment information,
and the application can continue putting or getting messages in the current message group or logical
message.

Retaining the group and segment information when a unit of work is committed allows the application
to spread a large message group or large logical message consisting of many segments across several
units of work. Using several units of work is advantageous if the local queue manager has only limited
queue storage. However, the application must maintain sufficient information to restart putting or
getting messages at the correct point if a system failure occurs. For details of how to restart at the
correct point after a system failure, see MQPMO_LOGICAL_ORDER and MQGMO_LOGICAL_ORDER.

The remaining usage notes apply only when the queue manager coordinates the units of work:
5. A unit of work has the same scope as a connection handle; all IBM MQ calls that affect a particular

unit of work must be performed using the same connection handle. Calls issued using a different

652 IBM MQ Developing Applications Reference

connection handle (for example, calls issued by another application) affect a different unit of work. See
the Hconn parameter described in MQCONN for information about the scope of connection handles.

6. Only messages that were put or retrieved as part of the current unit of work are affected by this call.
7. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls within a unit of work, but that

never issues a commit or back-out call, can fill queues with messages that are not available to other
applications. To guard against this, the administrator must set the MaxUncommittedMsgs queue
manager attribute to a value that is low enough to prevent runaway applications filling the queues, but
high enough to allow the expected messaging applications to work correctly.

8. On AIX, Linux, and Windows systems, if the Reason parameter is
MQRC_CONNECTION_BROKEN (with a CompCode of MQCC_FAILED), or MQRC_UNEXPECTED_ERROR
it is possible that the unit of work was successfully committed.

C invocation

MQCMIT (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQCMIT' USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQCMIT (Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQCMIT,(HCONN,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle

Developing applications reference 653

COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQCMIT Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQCONN - Connect queue manager
The MQCONN call connects an application program to a queue manager.

It provides a queue manager connection handle, which the application uses on subsequent message
queuing calls.

• On z/OS, CICS applications do not have to issue this call. These applications are connected
automatically to the queue manager to which the CICS system is connected. However, the MQCONN
and MQDISC calls are still accepted from CICS applications.

• On IBM i, applications must use the MQCONN or MQCONNX call to connect to the queue manager, and
the MQDISC call to disconnect from the queue manager.

A client connection cannot be made on a server only installation, and a local connection cannot be made
on a client only installation.

Syntax
MQCONN (QMgrName, Hconn, CompCode, Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

This is the name of the queue manager to which the application wants to connect. The name can
contain the following characters:

• Uppercase alphabetic characters (A through Z)
• Lowercase alphabetic characters (a through z)
• Numeric digits (0 through 9)
• Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but can contain trailing blanks. A null
character can be used to indicate the end of significant data in the name; the null and any characters
following it are treated as blanks. The following restrictions apply in the environments indicated:

• On systems that use EBCDIC Katakana, lowercase characters cannot be used.
• On z/OS, names that begin or end with an underscore cannot be processed by the operations and

control panels. For this reason, avoid such names.
• On IBM i, enclose names containing lowercase characters, forward slash, or percent in quotation

marks when specified on commands. Do not specify these quotation marks in the QMgrName
parameter.

If the name consists entirely of blanks, the name of the default queue manager is used. However, note
the use of blank queue manager names described in the section on IBM MQ MQI client applications.

654 IBM MQ Developing Applications Reference

The name specified for QMgrName must be the name of a connectable queue manager or, if queue
manager groups are being used, the name of the queue manager group..

On z/OS, the queue managers to which it is possible to connect are determined by the environment:

• For CICS, you can use only the queue manager to which the CICS system is connected. The
QMgrName parameter must still be specified, but its value is ignored; blank characters are a suitable
option.

• For IMS, only queue managers that are listed in the subsystem definition table (CSQQDEFV), and
listed in the SSM table in IMS, are connectable (see usage note 6).

• For z/OS batch and TSO, only queue managers that reside on the same system as the application are
connectable (see usage note 6).

Queue sharing groups: On systems where several queue managers exist and are configured to form
a queue sharing group, the name of the queue sharing group can be specified for QMgrName in place
of the name of a queue manager. This allows the application to connect to any queue manager that
is available in the queue sharing group and that is on the same z/OS image as the application. The
system can also be configured so that using a blank QMgrName connects to the queue sharing group
instead of to the default queue manager.

If QMgrName specifies the name of the queue sharing group, but there is also a queue manager with
that name on the system, connection is made to the latter in preference to the former. Only if that
connection fails is connection to one of the queue managers in the queue sharing group attempted.

If the connection is successful, you can use the handle returned by the MQCONN or MQCONNX call
to access all the resources (both shared and nonshared) that belong to the queue manager to which
connection has been made. Access to these resources is subject to the typical authorization controls.

If the application issues two MQCONN or MQCONNX calls to establish concurrent connections, and
one or both calls specifies the name of the queue sharing group, the second call returns completion
code MQCC_WARNING and reason code MQRC_ALREADY_CONNECTED when it connects to the same
queue manager as the first call.

Queue sharing groups are supported only on z/OS. Connection to a queue sharing group is supported
only in the batch, RRS batch, CICS, and TSO environments. For CICS, you can use only the queue
sharing group to which the CICS system is connected. You must still specify the QMgrName parameter,
but its value is ignored; blank characters are a suitable option.

Attention: IMS is unable to connect to a queue sharing group.

IBM MQ MQI client applications: For IBM MQ MQI client applications, a connection is attempted
for each client-connection channel definition with the specified queue manager name, until one is
successful. The queue manager, however, must have the same name as the specified name. If an
all-blank name is specified, each client-connection channel with an all-blank queue manager name
is tried until one is successful; in this case there is no check against the actual name of the queue
manager.

IBM MQ client applications are not supported in z/OS, but z/OS can act as an IBM MQ server, to which
IBM MQ client applications can connect.

IBM MQ MQI client queue manager groups: If the specified name starts with an asterisk (*), the
queue manager to which connection is made might have a different name from that specified by the
application. The specified name (without the asterisk) defines a group of queue managers that are
eligible for connection. The implementation selects one from the group by trying each one in turn
until one is found to which a connection can be made. The order in which connections are attempted
is influenced by the client channel weight and connection affinity values of the candidate channels.
If none of the queue managers in the group is available for connection, the call fails. Each queue
manager is tried once only. If an asterisk alone is specified for the name, an implementation-defined
default queue manager group is used.

Queue manager groups are supported only for applications running in an MQ-client environment;
the call fails if a non-client application specifies a queue manager name beginning with an asterisk.

Developing applications reference 655

A group is defined by providing several client connection channel definitions with the same queue
manager name (the specified name without the asterisk), to communicate with each of the queue
managers in the group. The default group is defined by providing one or more client connection
channel definitions, each with a blank queue manager name (specifying an all-blank name therefore
has the same effect as specifying a single asterisk for the name for a client application).

After connecting to one queue manager of a group, an application can specify blanks in the typical
way in the queue manager name fields in the message and object descriptors to mean the name of the
queue manager to which the application has connected (the local queue manager). If the application
needs to know this name, use the MQINQ call to inquire the QMgrName queue manager attribute.

Prefixing an asterisk to the connection name implies that the application does not depend on
connecting to a particular queue manager in the group. Suitable applications are:

• Applications that put messages but do not get messages.
• Applications that put request messages and then get the reply messages from a temporary dynamic

queue.

Unsuitable applications are ones that need to get messages from a particular queue at a particular
queue manager; such applications must not prefix the name with an asterisk.

If you specify an asterisk, the maximum length of the remainder of the name is 47 characters.

The length of this parameter is given by MQ_Q_MGR_NAME_LENGTH.

Hconn
Type: MQHCONN - output

This handle represents the connection to the queue manager. Specify it on all subsequent message
queuing calls issued by the application. It ceases to be valid when the MQDISC call is issued, or when
the unit of processing that defines the scope of the handle terminates.

IBM MQ now supplies the mqm library with client packages as well as server packages. This means
that when an MQI call that is found in the mqm library is made, the connection type is checked to see
if it is a client or server connection, and then the correct underlying call is made. Therefore an exit
which is passed an Hconn can now be linked against the mqm library, but used on a client installation.

Handle scope: The scope of the handle returned depends on the call used to connect to the queue
manager (MQCONN or MQCONNX). If the call used is MQCONNX, the scope of the handle also
depends on the MQCNO_HANDLE_SHARE_* option specified in the Options field of the MQCNO
structure.

• If the call is MQCONN, or the MQCNO_HANDLE_SHARE_NONE option is specified, the handle
returned is a nonshared handle.

The scope of a nonshared handle is the smallest unit of parallel processing supported by the
platform on which the application is running (see Table 547 on page 657 for details); the handle is
not valid outside the unit of parallel processing from which the call was issued.

• If you specify the MQCNO_HANDLE_SHARE_BLOCK or MQCNO_HANDLE_SHARE_NO_BLOCK
option, the handle returned is a shared handle.

The scope of a shared handle is the process that owns the thread from which the call was issued;
the handle can be used from any thread that belongs to that process. Not all platforms support
threads.

• If the MQCONN or MQCONNX call fails with completion code equal to MQCC_FAILED, then the
Hconn value is undefined.

656 IBM MQ Developing Applications Reference

Table 547. Scope of nonshared handles on various platforms

Platform Scope of nonshared handle

z/OS • CICS: the CICS task
• IMS: the task, up to the next sync point

(excluding subtasks of the task)
• z/OS batch and TSO: the task (excluding

subtasks of the task)

IBM i Job

AIX and Linux Thread

32 bit Windows applications Thread

64 bit Windows applications Thread

On z/OS for CICS applications the value returned is:
MQHC_DEF_HCONN

Default connection handle.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_ALREADY_CONNECTED

(2002, X'7D2') Application already connected.
MQRC_CLUSTER_EXIT_LOAD_ERROR

(2267, X'8DB') Unable to load cluster workload exit.
MQRC_SSL_ALREADY_INITIALIZED

(2391, X'957') SSL already initialized.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_CONN_LOAD_ERROR

(2129, X'851') Unable to load adapter connection module.
MQRC_ADAPTER_DEFS_ERROR

(2131, X'853') Adapter subsystem definition module not valid.
MQRC_ADAPTER_DEFS_LOAD_ERROR

(2132, X'854') Unable to load adapter subsystem definition module.
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

Developing applications reference 657

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_ADAPTER_STORAGE_SHORTAGE
(2127, X'84F') Insufficient storage for adapter.

MQRC_ANOTHER_Q_MGR_CONNECTED
(2103, X'837') Another queue manager already connected.

MQRC_API_EXIT_ERROR
(2374, X'946') API exit failed.

MQRC_API_EXIT_INIT_ERROR
(2375, X'947') API exit initialization failed.

MQRC_API_EXIT_TERM_ERROR
(2376, X'948') API exit termination failed.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CONN_ID_IN_USE
(2160, X'870') Connection identifier already in use.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_ERROR
(2273, X'8E1') Error processing MQCONN call.

MQRC_CONNECTION_NOT_AVAILABLE
(2568, X'A08') Occurs on an MQCONN or MQCONNX call when the queue manager is unable
to provide a connection of the requested connection type on the current installation. A client
connection cannot be made on a server only installation. A local connection cannot be made on a
client only installation.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_CRYPTO_HARDWARE_ERROR
(2382, X'94E') Cryptographic hardware configuration error.

MQRC_DUPLICATE_RECOV_COORD
(2163, X'873') Recovery coordinator exists.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

Additionally, on the MQCONNX call, passing the “MQCSP - Security parameters” on page 335
control block from a CICS or IMS application.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOST_NOT_AVAILABLE
(2538, X'9EA') An MQCONN call was issued from a client to connect to a queue manager but the
attempt to allocate a conversation to the remote system failed.

MQRC_INSTALLATION_MISMATCH
(2583, X'A17') Mismatch between queue manager installation and selected library.

MQRC_KEY_REPOSITORY_ERROR
(2381, X'94D') Key repository not valid.

658 IBM MQ Developing Applications Reference

MQRC_MAX_CONNS_LIMIT_REACHED
(2025, X'7E9') Maximum number of connections reached.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_OPEN_FAILED
(2137, X'859') Object not opened successfully.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

MQRC_SSL_INITIALIZATION_ERROR
(2393, X'959') SSL initialization error.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

Usage notes
1. The queue manager to which connection is made using the MQCONN call is called the local queue

manager.
2. Queues that are owned by the local queue manager appear to the application as local queues. It is

possible to put messages on and get messages from these queues.

Shared queues that are owned by the queue sharing group to which the local queue manager belongs
appear to the application as local queues. It is possible to put messages on and get messages from
these queues.

Queues that are owned by remote queue managers appear as remote queues. It is possible to put
messages on these queues, but not to get messages from these queues.

3. If the queue manager fails while an application is running, the application must issue the MQCONN call
again to obtain a new connection handle to use on subsequent IBM MQ calls. The application can issue
the MQCONN call periodically until the call succeeds.

If an application is not sure whether it is connected to the queue manager, the application can safely
issue an MQCONN call to obtain a connection handle. If the application is already connected, the
handle returned is the same as that returned by the previous MQCONN call, but with completion code
MQCC_WARNING and reason code MQRC_ALREADY_CONNECTED.

4. When the application has finished using IBM MQ calls, the application must use the MQDISC call to
disconnect from the queue manager.

5. If the MQCONN call fails with completion code equal to MQCC_FAILED, then the Hconn value is
undefined.

6. On z/OS:

Developing applications reference 659

• Batch, TSO, and IMS applications must issue the MQCONN call to use the other IBM MQ calls. These
applications can connect to more than one queue manager concurrently.

If the queue manager fails, the application must issue the call again after the queue manager has
restarted to obtain a new connection handle.

Although IMS applications can issue the MQCONN call repeatedly, even when already connected,
this is not recommended for online message processing programs (MPPs).

• CICS applications do not have to issue the MQCONN call to use the other IBM MQ calls, but can do so
if they want; both the MQCONN call and the MQDISC call are accepted. However, it is not possible to
connect to more than one queue manager concurrently.

If the queue manager fails, these applications are automatically reconnected when the queue
manager restarts, and so do not need to issue the MQCONN call.

7. On z/OS, to define the available queue managers:

• For batch applications, system programmers can use the CSQBDEF macro to create a module
(CSQBDEFV) that defines the default queue manager name, or queue sharing group name.

• For IMS applications, system programmers can use the CSQQDEFX macro to create a module
(CSQQDEFV) that defines the names of the available queue managers and specifies the default
queue manager.

In addition, each queue manager must be defined to the IMS control region and to each dependent
region accessing that queue manager. To do this, you must create a subsystem member in the
IMS.PROCLIB library and identify the subsystem member to the applicable IMS regions. If an
application attempts to connect to a queue manager that is not defined in the subsystem member for
its IMS region, the application abends.

For more information about using these macros, see Macros intended for customer use.
8. On IBM i, programs that end abnormally are not automatically disconnected from the queue manager.

Write applications to allow for the possibility of the MQCONN or MQCONNX call returning completion
code MQCC_WARNING and reason code MQRC_ALREADY_CONNECTED. Use the connection handle
returned in this situation as normal.

C invocation

MQCONN (QMgrName, &Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /* Name of queue manager */
MQHCONN Hconn; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQCONN' USING QMGRNAME, HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Name of queue manager
 01 QMGRNAME PIC X(48).
** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.

660 IBM MQ Developing Applications Reference

** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQCONN (QMgrName, Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl QMgrName char(48); /* Name of queue manager */
dcl Hconn fixed bin(31); /* Connection handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQCONN,(QMGRNAME,HCONN,COMPCODE,REASON)

Declare the parameters as follows:

QMGRNAME DS CL48 Name of queue manager
HCONN DS F Connection handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQCONN QMgrName, Hconn, CompCode, Reason

Declare the parameters as follows:

Dim QMgrName As String*48 'Name of queue manager'
Dim Hconn As Long 'Connection handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQCONNX - Connect queue manager (extended)
The MQCONNX call connects an application program to a queue manager. It provides a queue manager
connection handle, which is used by the application on subsequent IBM MQ calls.

The MQCONNX call is like the MQCONN call, except that MQCONNX allows options to be specified to
control the way that the call works.

• This call is supported on all IBM MQ systems, and IBM MQ clients connected to these systems.

A client connection cannot be made on a server only installation, and a local connection cannot be made
on a client only installation.

Syntax
MQCONNX (QMgrName, ConnectOpts, Hconn, CompCode, Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Developing applications reference 661

See the QMgrName parameter described in “MQCONN - Connect queue manager” on page 654 for
details.

ConnectOpts
Type: MQCNO - input/output

See “MQCNO - Connect options” on page 314 for details.

Hconn
Type: MQHCONN - output

This handle represents the connection to the queue manager. Specify it on all subsequent message
queuing calls issued by the application. It ceases to be valid when the MQDISC call is issued, or when
the unit of processing that defines the scope of the handle terminates.

IBM MQ now supplies the mqm library with client packages as well as server packages. This means
that when an MQI call that is found in the mqm library is made, the connection type is checked to see
if it is a client or server connection, and then the correct underlying call is made. Therefore an exit
which is passed an Hconn can now be linked against the mqm library, but used on a client installation.

Handle scope: The scope of the handle returned depends on the call used to connect to the queue
manager (MQCONN or MQCONNX). If the call used is MQCONNX, the scope of the handle also
depends on the MQCNO_HANDLE_SHARE_* option specified in the Options field of the MQCNO
structure.

• If the call is MQCONN, or the MQCNO_HANDLE_SHARE_NONE option is specified, the handle
returned is a nonshared handle.

The scope of a nonshared handle is the smallest unit of parallel processing supported by the
platform on which the application is running (see Table 548 on page 662 for details); the handle is
not valid outside the unit of parallel processing from which the call was issued.

• If you specify the MQCNO_HANDLE_SHARE_BLOCK or MQCNO_HANDLE_SHARE_NO_BLOCK
option, the handle returned is a shared handle.

The scope of a shared handle is the process that owns the thread from which the call was issued;
the handle can be used from any thread that belongs to that process. Not all platforms support
threads.

• If the MQCONN or MQCONNX call fails with completion code equal to MQCC_FAILED, then the
Hconn value is undefined.

Table 548. Scope of nonshared handles on various platforms

Platform Scope of nonshared handle

z/OS • CICS: the CICS task
• IMS: the task, up to the next sync point

(excluding subtasks of the task)
• z/OS batch and TSO: the task (excluding

subtasks of the task)

IBM i Job

AIX and Linux Thread

32 bit Windows applications Thread

64 bit Windows applications Thread

On z/OS for CICS applications the value returned is:
MQHC_DEF_HCONN

Default connection handle.

662 IBM MQ Developing Applications Reference

CompCode
Type: MQLONG - output

See the CompCode parameter described in “MQCONN - Connect queue manager” on page 654 for
details.

Reason
Type: MQLONG - output

The following codes can be returned by the MQCONN and MQCONNX calls. For a list of additional
codes that can be returned by the MQCONNX call, see the following codes.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_ALREADY_CONNECTED

(2002, X'7D2') Application already connected.
MQRC_CLUSTER_EXIT_LOAD_ERROR

(2267, X'8DB') Unable to load cluster workload exit.
MQRC_SSL_ALREADY_INITIALIZED

(2391, X'957') SSL already initialized.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_CONN_LOAD_ERROR

(2129, X'851') Unable to load adapter connection module.
MQRC_ADAPTER_DEFS_ERROR

(2131, X'853') Adapter subsystem definition module not valid.
MQRC_ADAPTER_DEFS_LOAD_ERROR

(2132, X'854') Unable to load adapter subsystem definition module.
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_ADAPTER_STORAGE_SHORTAGE

(2127, X'84F') Insufficient storage for adapter.
MQRC_ANOTHER_Q_MGR_CONNECTED

(2103, X'837') Another queue manager already connected.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_API_EXIT_INIT_ERROR

(2375, X'947') API exit initialization failed.
MQRC_API_EXIT_TERM_ERROR

(2376, X'948') API exit termination failed.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.
MQRC_CONN_ID_IN_USE

(2160, X'870') Connection identifier already in use.

Developing applications reference 663

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_ERROR
(2273, X'8E1') Error processing MQCONN call.

MQRC_CONNECTION_NOT_AVAILABLE
(2568, X'A08') Occurs on an MQCONN or MQCONNX call when the queue manager is unable
to provide a connection of the requested connection type on the current installation. A client
connection cannot be made on a server only installation. A local connection cannot be made on a
client only installation.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_CRYPTO_HARDWARE_ERROR
(2382, X'94E') Cryptographic hardware configuration error.

MQRC_DUPLICATE_RECOV_COORD
(2163, X'873') Recovery coordinator exists.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

Additionally, on the MQCONNX call, passing the “MQCSP - Security parameters” on page 335
control block from a CICS or IMS application.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOST_NOT_AVAILABLE
(2538, X'9EA') An MQCONN call was issued from a client to connect to a queue manager but the
attempt to allocate a conversation to the remote system failed.

MQRC_INSTALLATION_MISMATCH
(2583, X'A17') Mismatch between queue manager installation and selected library.

MQRC_KEY_REPOSITORY_ERROR
(2381, X'94D') Key repository not valid.

MQRC_MAX_CONNS_LIMIT_REACHED
(2025, X'7E9') Maximum number of connections reached.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_OPEN_FAILED
(2137, X'859') Object not opened successfully.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

MQRC_SSL_INITIALIZATION_ERROR
(2393, X'959') SSL initialization error.

664 IBM MQ Developing Applications Reference

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

The following additional reason codes can be returned by the MQCONNX call:

If CompCode is MQCC_FAILED:
MQRC_AIR_ERROR

(2385, X'951') Authentication information record not valid.
MQRC_AUTH_INFO_CONN_NAME_ERROR

(2387, X'953') Authentication information connection name not valid.
MQRC_AUTH_INFO_REC_COUNT_ERROR

(2383, X'94F') Authentication information record count not valid.
MQRC_AUTH_INFO_REC_ERROR

(2384, X'950') Authentication information record fields not valid.
MQRC_AUTH_INFO_TYPE_ERROR

(2386, X'952') Authentication information type not valid.
MQRC_CD_ERROR

(2277, X'8E5') Channel definition not valid.
MQRC_CLIENT_CONN_ERROR

(2278, X'8E6') Client connection fields not valid.
MQRC_CNO_ERROR

(2139, X'85B') Connect-options structure not valid.
MQRC_CONN_TAG_IN_USE

(2271, X'8DF') Connection tag in use.
MQRC_CONN_TAG_NOT_USABLE

(2350, X'92E') Connection tag not usable.
MQRC_LDAP_PASSWORD_ERROR

(2390, X'956') LDAP password not valid.
MQRC_LDAP_USER_NAME_ERROR

(2388, X'954') LDAP user name fields not valid.
MQRC_LDAP_USER_NAME_LENGTH_ERR

(2389, X'955') LDAP user name length not valid.
MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.
MQRC_SCO_ERROR

(2380, X'94C') SSL configuration options structure not valid.
MQRC_SSL_CONFIG_ERROR

(2392, X'958') SSL configuration error.

For detailed information about these codes, see Messages and reason codes.

Usage notes
For the Visual Basic programming language, the following point applies:

• The ConnectOpts parameter is declared as being of type MQCNO. If the application is running as an
IBM MQ MQI client, and you want to specify the parameters of the client-connection channel, declare
the ConnectOpts parameter as being of type Any, so that the application can specify an MQCNOCD
structure on the call in place of an MQCNO structure. However, this means that the ConnectOpts
parameter cannot be checked to ensure that it is the correct data type.

Developing applications reference 665

C invocation

MQCONNX (QMgrName, &ConnectOpts, &Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /* Name of queue manager */
MQCNO ConnectOpts; /* Options that control the action of MQCONNX */
MQHCONN Hconn; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQCONNX' USING QMGRNAME, CONNECTOPTS, HCONN, COMPCODE,
REASON.

Declare the parameters as follows:

** Name of queue manager
 01 QMGRNAME PIC X(48).
** Options that control the action of MQCONNX
 01 CONNECTOPTS.
 COPY CMQCNOV.
** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQCONNX (QMgrName, ConnectOpts, Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl QMgrName char(48); /* Name of queue manager */
dcl ConnectOpts like MQCNO; /* Options that control the action of
 MQCONNX */
dcl Hconn fixed bin(31); /* Connection handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQCONNX,(QMGRNAME,CONNECTOPTS,HCONN,COMPCODE,REASON)

Declare the parameters as follows:

QMGRNAME DS CL48 Name of queue manager
CONNECTOPTS CMQCNOA , Options that control the action of MQCONNX
HCONN DS F Connection handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

666 IBM MQ Developing Applications Reference

Visual Basic invocation

MQCONNX QMgrName, ConnectOpts, Hconn, CompCode, Reason

Declare the parameters as follows:

Dim QMgrName As String*48 'Name of queue manager'
Dim ConnectOpts As MQCNO 'Options that control the action of'
 'MQCONNX'
Dim Hconn As Long 'Connection handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQCRTMH - Create message handle
The MQCRTMH call returns a message handle.

An application can use the MQCRTMH call on subsequent message queuing calls:

• Use the MQSETMP call to set a property of the message handle.
• Use the MQINQMP call to inquire on the value of a property of the message handle.
• Use the MQDLTMP call to delete a property of the message handle.

The message handle can be used on the MQPUT and MQPUT1 calls to associate the properties of the
message handle with those of the message being put. Similarly by specifying a message handle on the
MQGET call, the properties of the message being retrieved can be accessed using the message handle
when the MQGET call completes.

Use MQDLTMH to delete the message handle.

Syntax
MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by
a previous MQCONN or MQCONNX call. If the connection to the queue manager ceases to be valid
and no IBM MQ call is operating on the message handle, MQDLTMH is implicitly called to delete the
message.

Alternatively, you can specify the following value:
MQHC_UNASSOCIATED_HCONN

The connection handle does not represent a connection to any particular queue manager.

When this value is used, the message handle must be deleted with an explicit call to MQDLTMH in
order to release any storage allocated to it; IBM MQ never implicitly deletes the message handle.

There must be at least one valid connection to a queue manager established on the thread
creating the message handle, otherwise the call fails with MQRC_HCONN_ERROR.

In an environment with multiple installations on a single system, the
MQHC_UNASSOCIATED_HCONN value is limited to use with the first installation loaded into the
process. The reason code MQRC_HMSG_NOT_AVAILABLE is returned if the message handle is
supplied to a different installation.

On z/OS for CICS applications the MQCONN call can be omitted, and you can specify the following
value for Hconn :

Developing applications reference 667

MQHC_DEF_CONN
Default connection handle

CrtMsgHOpts
Type: MQCMHO - input

The options that control the action of MQCRTMH. See MQCMHO for details.

Hmsg
Type: MQHMSG - output

On output a message handle is returned that can be used to set, inquire, and delete properties of the
message handle. Initially the message handle contains no properties.

A message handle also has an associated message descriptor. Initially this contains the default
values. The values of the associated message descriptor fields can be set and inquired using the
MQSETMP and MQINQMP calls. The MQDLTMP call resets a field of the message descriptor back to its
default value.

If the Hconn parameter is specified as the value MQHC_UNASSOCIATED_HCONN then the returned
message handle can be used on MQGET, MQPUT, or MQPUT1 calls with any connection within the unit
of processing, but can only be in use by one IBM MQ call at a time. If the handle is in use when a
second IBM MQ call attempts to use the same message handle, the second IBM MQ call fails with
reason code MQRC_MSG_HANDLE_IN_USE.

If the Hconn parameter is not MQHC_UNASSOCIATED_HCONN then the returned message handle can
only be used on the specified connection.

The same Hconn parameter value must be used on the subsequent MQI calls where this message
handle is used:

• MQDLTMH
• MQSETMP
• MQINQMP
• MQDLTMP
• MQMHBUF
• MQBUFMH

The returned message handle ceases to be valid when the MQDLTMH call is issued for the message
handle, or when the unit of processing that defines the scope of the handle terminates. MQDLTMH
is called implicitly if a specific connection is supplied when the message handle is created and the
connection to the queue manager ceases to be valid, for example, if MQDBC is called.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.

668 IBM MQ Developing Applications Reference

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS
(2219, X'08AB') MQI call entered before previous call completed.

MQRC_CMHO_ERROR
(2461, X'099D') Create message handle options structure not valid.

MQRC_CONNECTION_BROKEN
(2273, X'7D9') Connection to queue manager lost.

MQRC_HANDLE_NOT_AVAILABLE
(2017, X'07E1') No more handles available.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HMSG_ERROR
(2460, X'099C') Message handle pointer not valid.

MQRC_OPTIONS_ERROR
(2046, X'07FE') Options not valid or not consistent.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

C

MQCRTMH (Hconn, &CrtMsgHOpts, &Hmsg, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQCMHO CrtMsgHOpts; /* Options that control the action of MQCRTMH */
MQHMSG Hmsg; /* Message handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL

CALL 'MQCRTMH' USING HCONN, CRTMSGHOPTS, HMSG, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Options that control the action of MQCRTMH
 01 CRTMSGHOPTS.
 COPY CMQCMHOV.
** Message handle
 01 HMSG PIC S9(18) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

Developing applications reference 669

PL/I

call MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl CrtMsgHOpts like MQCMHO; /* Options that control the action of MQCRTMH */
dcl Hmsg fixed bin(63); /* Message handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler

CALL MQCRTMH,(HCONN,CRTMSGHOPTS,HMSG,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
CRTMSGHOPTS CMQCMHOA , Options that control the action of MQCRTMH
HMSG DS D Message handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQCTL - Control callbacks
The MQCTL call performs controlling actions on callbacks and the object handles opened for a connection.

Syntax
MQCTL (Hconn, Operation, ControlOpts, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications the MQCONN call can be omitted, and you can specify the following
special value for Hconn :
MQHC_DEF_HCONN

Default connection handle.

Operation
Type: MQLONG - input

The operation being processed on the callback defined for the specified object handle. You must
specify one, and one only, of the following options:
MQOP_START

Start the consuming of messages for all defined message consumer functions for the specified
connection handle.

Callbacks run on a thread started by the system, which is different from any of the application
threads.

This operation gives control of the provided connection handle to system. The only MQI calls
which can be issued by a thread other than the consumer thread are:

670 IBM MQ Developing Applications Reference

• MQCTL with Operation MQOP_STOP
• MQCTL with Operation MQOP_SUSPEND
• MQDISC - Performs MQCTL with Operation MQOP_STOP before disconnection the HConn.

MQRC_HCONN_ASYNC_ACTIVE is returned if an IBM MQ API call is issued while the connection
handle is started, and the call does not originate from a message consumer function.

If a message consumer stops the connection during the MQCBCT_START_CALL then the MQCTL
call returns with a failure reason code of MQRC_CONNECTION_STOPPED.

This can be issued in a consumer function. For the same connection as the callback routine, its
only purpose is to cancel a previously issued MQOP_STOP operation.

This option is not supported in the following environments: CICS on z/OS or if the application is
bound with a nonthreaded IBM MQ library.

MQOP_START_WAIT
Start the consuming of messages for all defined message consumer functions for the specified
connection handle.

Message consumers run on the same thread and control is not returned to the caller of MQCTL
until:

• Released by the use of the MQCTL MQOP_STOP or MQOP_SUSPEND operations, or
• All consumer routines have been deregistered or suspended.

If all consumers are deregistered or suspended, an implicit MQOP_STOP operation is issued.

This option cannot be used from within a callback routine, either for the current
connection handle or any other connection handle. If the call is attempted it returns with
MQRC_ENVIRONMENT_ERROR.

If, at any time during an MQOP_START_WAIT operation there are no registered, non-suspended
consumers the call fails with a reason code of MQRC_NO_CALLBACKS_ACTIVE.

If, during an MQOP_START_WAIT operation, the connection is suspended, the MQCTL call returns
a warning reason code of MQRC_CONNECTION_SUSPENDED; the connection remains 'started'.

The application can choose to issue MQOP_STOP or MQOP_RESUME. In this instance, the
MQOP_RESUME operation blocks.

This option is not supported in a single threaded client.

MQOP_STOP
Stop the consuming of messages, and wait for all consumers to complete their operations before
this option completes. This operation releases the connection handle.

If issued from within a callback routine, this option does not take effect until the routine exits.
No more message consumer routines are called after the consumer routines for messages already
read have completed, and after stop calls (if requested) to callback routines have been made.

If issued outside a callback routine, control does not return to the caller until the consumer
routines for messages already read have completed, and after stop calls (if requested) to
callbacks have been made. The callbacks themselves, however, remain registered.

This function has no effect on read ahead messages. You must ensure that consumers run
MQCLOSE(MQCO_QUIESCE), from within the callback function, to determine whether there are
any further messages available to be delivered.

MQOP_SUSPEND
Pause the consuming of messages. This operation releases the connection handle.

This does not have any effect on the reading ahead of messages for the application. If you intend
to stop consuming messages for a long time, consider closing the queue and reopening it when
consumption continues.

Developing applications reference 671

If issued from within a callback routine, it does not take effect until the routine exits. No more
message consumer routines will be called after the current routine exits.

If issued outside a callback, control does not return to the caller until the current consumer
routine has completed and no more are called.

MQOP_RESUME
Resume the consuming of messages.

This option is normally issued from the main application thread, but it can also be used from
within a callback routine to cancel an earlier suspension request issued in the same routine.

If the MQOP_RESUME is used to resume an MQOP_START_WAIT then the operation blocks.

ControlOpts
Type: MQCTLO - input

Options that control the action of MQCTL

See MQCTLO for details of the structure.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_CONV_LOAD_ERROR

(2133, X'855') Unable to load data conversion services modules.
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_CALLBACK_LINK_ERROR

(2487, X'9B7') Unable to call the callback routine
MQRC_CALLBACK_NOT_ REGISTERED

(2448, X'990') Unable to Deregister, Suspend, or Resume because there is no registered callback

672 IBM MQ Developing Applications Reference

MQRC_CALLBACK_ROUTINE_ERROR
(2486, X'9B6') Either, both CallbackFunction and CallbackName have been specified on an
MQOP_REGISTER call.
Or either CallbackFunction or CallbackName have been specified but does not match the currently
registered callback function.

MQRC_CALLBACK_TYPE_ERROR
(2483, X'9B3') Incorrect CallBackType field.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CBD_ERROR
(2444, X'98C') Option block is incorrect.

MQRC_CBD_OPTIONS_ERROR
(2484, X'9B4') Incorrect MQCBD options field.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_CORREL_ID_ERROR
(2207, X'89F') Correlation-identifier error.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

MQRC_FUNCTION_NOT_SUPPORTED
(2298, X'8FA') The function requested is not available in the current environment.

MQRC_GET_INHIBITED
(2016, X'7E0') Gets inhibited for the queue.

MQRC_GLOBAL_UOW_CONFLICT
(2351, X'92F') Global units of work conflict.

MQRC_GMO_ERROR
(2186, X'88A') Get-message options structure not valid.

MQRC_HANDLE_IN_USE_FOR_UOW
(2353, X'931') Handle in use for global unit of work.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_INCONSISTENT_BROWSE
(2259, X'8D3') Inconsistent browse specification.

MQRC_INCONSISTENT_UOW
(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_INVALID_MSG_UNDER_CURSOR
(2246, X'8C6') Message under cursor not valid for retrieval.

MQRC_LOCAL_UOW_CONFLICT
(2352, X'930') Global unit of work conflicts with local unit of work.

Developing applications reference 673

MQRC_MATCH_OPTIONS_ERROR
(2247, X'8C7') Match options not valid.

MQRC_MAX_MSG_LENGTH_ERROR
(2485, X'9B5') Incorrect MaxMsgLength field

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

MQRC_MODULE_ENTRY_NOT_FOUND
(2497, X'9C1')The specified function entry point could not be found in the module.

MQRC_MODULE_INVALID
(2496, X'9C0') Module is found but is of the wrong type (32 bit/64 bit) or is not a valid dll.

MQRC_MODULE_NOT_FOUND
(2495, X'9BF') Module not found in the search path or not authorized to load.

MQRC_MSG_ID_ERROR
(2206, X'89E') Message-identifier error.

MQRC_MSG_SEQ_NUMBER_ERROR
(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOKEN_ERROR
(2331, X'91B') Use of message token not valid.

MQRC_NOT_OPEN_FOR_BROWSE
(2036, X'7F4') Queue not open for browse.

MQRC_NOT_OPEN_FOR_INPUT
(2037, X'7F5') Queue not open for input.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OPERATION_ERROR
(2488, X'9B8') Incorrect Operation code on API Call

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_INDEX_TYPE_ERROR
(2394, X'95A') Queue has wrong index type.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SIGNAL_OUTSTANDING
(2069, X'815') Signal outstanding for this handle.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

674 IBM MQ Developing Applications Reference

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_NOT_AVAILABLE
(2072, X'818') Syncpoint support not available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UOW_ENLISTMENT_ERROR
(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED
(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE
(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WAIT_INTERVAL_ERROR
(2090, X'82A') Wait interval in MQGMO not valid.

MQRC_WRONG_GMO_VERSION
(2256, X'8D0') Wrong version of MQGMO supplied.

MQRC_WRONG_MD_VERSION
(2257, X'8D1') Wrong version of MQMD supplied.

For detailed information about these codes, see Messages and reason codes.

Usage notes
1. Callback routines must check the responses from all services they invoke, and if the routine detects

a condition that cannot be resolved, it must issue an MQCB MQOP_DEREGISTER command to prevent
repeated calls to the callback routine.

2. If you are using asynchronous consume in an application where an XA Transaction Manager is
managing global transactions, including updates to IBM MQ, you need to consider the following
additional points:

a. It is not valid to call MQCTL(MQOP_START) for an HConn, after it has been created, after calling
xa_open.

The reason is, that the HConn has become attached to an XA context, and so cannot then be
accessed on the separate thread, or threads, in use by the asynchronous consume mechanism.

b. If you call MQCTL(MQOP_START) in that scenario the call fails with reason code
MQRC_ASYNC_XA_CONFLICT (2350).

c. It is valid to call MQCTL(MQOP_START_WAIT) for an HConn, after it has been created, after calling
xa_open.

The reason is, that this method of starting the asynchronous consume mechanism causes all
further callbacks for the HConn to run on the thread where the MQCTL call is made. Therefore, the
link between the HConn and the thread is not lost.

3. On z/OS, when Operation is MQOP_START:

• Programs which use asynchronous callback routines must be authorized to use z/OS UNIX System
Services (z/OS UNIX).

• Language Environment (LE) programs which use asynchronous callback routines must use the LE
runtime option POSIX(ON).

• Non-LE programs which use asynchronous callback routines must not use the z/OS UNIX
pthread_create interface (callable service BPX1PTC).

4. MQCTL is not supported within the IMS adapter.

Note: In CICS, MQOP_START is not supported. Instead, use the MQOP_START_WAIT function call.

Developing applications reference 675

C invocation

MQCTL (Hconn, Operation, &ControlOpts, &CompCode, &Reason)

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQLONG Operation; /* Operation being processed */
MQCTLO ControlOpts /* Options that control the action of MQCTL */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQCTL' USING HCONN, OPERATION, CTLOPTS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Operation
 01 OPERATION PIC S9(9) BINARY.
** Control Options
 01 CTLOPTS.
 COPY CMQCTLOV.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQCTL(Hconn, Operation, CtlOpts, CompCode, Reason)

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Operation fixed bin(31); /* Operation */
dcl CtlOpts like MQCTLO; /* Options that control the action of MQCTL */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

MQDISC - Disconnect queue manager
The MQDISC call breaks the connection between the queue manager and the application program, and is
the inverse of the MQCONN or MQCONNX call.

• On z/OS, all applications that use asynchronous message consumption, event handling or callback, the
main control thread must issue an MQDISC call before ending. See Asynchronous consumption of IBM
MQ messages for more details.

• On z/OS, CICS applications do not need to issue this call to disconnect from the queue manager.

If a CICS application does make this call it has no effect unless an earlier MQCONNX call was made,
specifying one of the:

MQCNO_SERIALIZE_CONN_TAG_Q_MGR
MQCNO_SERIALIZE_CONN_TAG_QSG
MQCNO_RESTRICT_CONN_TAG_Q_MGR or
MQCNO_RESTRICT_CONN_TAG_QSG

676 IBM MQ Developing Applications Reference

options, in which case all currently open object handles are closed.

Syntax
MQDISC (Hconn, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input/output

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications you can omit the MQCONN call, and specify the following value for
Hconn :
MQHC_DEF_HCONN

Default connection handle.

On successful completion of the call, the queue manager sets Hconn to a value that is not a valid
handle for the environment. This value is:
MQHC_UNUSABLE_HCONN

Unusable connection handle.

On z/OS, Hconn is set to a value that is undefined.

CompCode
Type: MQLONG - output

The completion code; it is one of the following codes:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_BACKED_OUT

(2003, X'7D3') Unit of work backed out.
MQRC_CONN_TAG_NOT_RELEASED

(2344, X'928') Connection tag not released.
MQRC_OUTCOME_PENDING

(2124, X'84C') Result of commit operation is pending.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_DISC_LOAD_ERROR

(2138, X'85A') Unable to load adapter disconnection module.
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.

Developing applications reference 677

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR
(2374, X'946') API exit failed.

MQRC_API_EXIT_INIT_ERROR
(2375, X'947') API exit initialization failed.

MQRC_API_EXIT_TERM_ERROR
(2376, X'948') API exit termination failed.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_OUTCOME_MIXED
(2123, X'84B') Result of commit or back-out operation is mixed.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

Usage notes
1. If an MQDISC call is issued when the connection still has objects open under that connection, the

queue manager closes those objects, with the close options set to MQCO_NONE.
2. If the application ends with uncommitted changes in a unit of work, the disposition of those changes

depends on how the application ends:

a. If the application issues the MQDISC call before ending:

• For a queue manager-coordinated unit of work, the queue manager issues the MQCMIT call on
behalf of the application. The unit of work is committed if possible, and backed out if not.

• For an externally coordinated unit of work, there is no change in the status of the unit of work;
however, the queue manager typically indicates that the unit of work must be committed when
asked by the unit-of-work coordinator.

On z/OS, CICS, IMS (other than batch DL/1 programs), and RRS applications are like this.

678 IBM MQ Developing Applications Reference

b. If the application ends normally but without issuing the MQDISC call, the action taken depends on
the environment:

• On z/OS, except for MQ Java or MQ JMS applications, the actions described in note 2a occur.
• In all other cases, the actions described in note 2c occur.

Because of the differences between environments, ensure that applications that you want to port
either commit or back out the unit of work before they end.

c. If the application ends abnormally without issuing the MQDISC call, the unit of work is backed out.
3. On z/OS, the following points apply:

• CICS applications do not have to issue the MQDISC call to disconnect from the queue manager,
because the CICS system itself connects to the queue manager, and the MQDISC call has no effect
on this connection.

• CICS, IMS (other than batch DL/1 programs), and RRS applications use units of work that are
coordinated by an external unit-of-work coordinator. As a result, the MQDISC call does not affect the
status of the unit of work (if any) that exists when the call is issued.

However the MQDISC call does indicate the end of use of the connection tag ConnTag that
was associated with the connection by an earlier MQCONNX call issued by the application.
If there is an active unit of work that references the connection tag when the MQDISC
call is issued, the call completes with completion code MQCC_WARNING and reason code
MQRC_CONN_TAG_NOT_RELEASED. The connection tag does not become available for reuse until
the external unit-of-work coordinator has resolved the unit of work.

Note: In CICS, MQOP_START is not supported. Instead, use the MQOP_START_WAIT function call.

C invocation

MQDISC (&Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQDISC' USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQDISC (Hconn, CompCode, Reason);

Declare the parameters as follows:

Developing applications reference 679

dcl Hconn fixed bin(31); /* Connection handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

System/390 assembler invocation

CALL MQDISC,(HCONN,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQDISC Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQDLTMH - Delete message handle
The MQDLTMH call deletes a message handle and is the inverse of the MQCRTMH call.

Syntax
MQDLTMH (Hconn, Hmsg, DltMsgHOpts, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager.

The value must match the connection handle that was used to create the message handle specified in
the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN then a valid connection
must be established on the thread deleting the message handle, otherwise the call fails with
MQRC_CONNECTION_BROKEN.

Hmsg
Type: MQHMSG - input/output

This is the message handle to be deleted. The value was returned by a previous MQCRTMH call.

On successful completion of the call, the handle is set to an invalid value for the environment. This
value is:
MQHM_UNUSABLE_HMSG

Unusable message handle.
The message handle cannot be deleted if another IBM MQ call is in progress that was passed the
same message handle.

680 IBM MQ Developing Applications Reference

DltMsgHOpts
Type: MQDMHO - input

See MQDMHO for details.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.
MQRC_CONNECTION_BROKEN

(2009, X'07D9') Connection to queue manager lost.
MQRC_DMHO_ERROR

(2462, X'099E') Delete message handle options structure not valid.
MQRC_HMSG_ERROR

(2460, X'099C') Message handle pointer not valid.
MQRC_MSG_HANDLE_IN_USE

(2499, X'09C3') Message handle already in use.
MQRC_OPTIONS_ERROR

(2046, X'07FE') Options not valid or not consistent.
MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.
MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

C invocation

MQDLTMH (Hconn, &Hmsg, &DltMsgHOpts, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */

Developing applications reference 681

MQDMHO DltMsgHOpts; /* Options that control the action of MQDLTMH */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQDLTMH' USING HCONN, HMSG, DLTMSGHOPTS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
01 HCONN PIC S9(9) BINARY.

** Options that control the action of MQDLTMH
01 DLTMSGHOPTS.
COPY CMQDMHOL.

** Completion code
01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQDLTMH (Hconn, Hmsg, DltMsgHOpts, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn /* Connection handle */
dcl Hmsg /* Message handle */
dcl DltMsgHOpts like MQDMHO; /* Options that control the action of MQDLTMH */
dcl CompCode /* Completion code */
dcl Reason /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQDLTMH,(HCONN,HMSG,DLTMSGHOPTS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HMSG DS D Message handle
DLTMSGHOPTS CMQDMHOA , Options that control the action of MQDLTMH
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQDLTMP - Delete message property
The MQDLTMP call deletes a property from a message handle and is the inverse of the MQSETMP call.

Syntax
MQDLTMP (Hconn, Hmsg, DltPropOpts, Name, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

682 IBM MQ Developing Applications Reference

This handle represents the connection to the queue manager. The value must match the connection
handle that was used to create the message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN then a valid connection
must be established on the thread deleting the message handle otherwise the call fails with
MQRC_CONNECTION_BROKEN.

Hmsg
Type: MQHMSG - input

This is the message handle containing the property to be deleted. The value was returned by a
previous MQCRTMH call.

DltPropOpts
Type: MQDMPO - input

See the MQDMPO data type for details.

Name
Type: MQCHARV - input

The name of the property to delete. See Property names for further information about property
names.

Wildcards are not allowed in the property name.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_PROPERTY_NOT_AVAILABLE

(2471, X'09A7') Property not available.
MQRC_RFH_FORMAT_ERROR

(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'0852') Unable to load adapter service module.
MQRC_ASID_MISMATCH

(2157, X'086D') Primary and home ASIDs differ.
MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.
MQRC_CONNECTION_BROKEN

(2009, X'07D9') Connection to queue manager lost.

Developing applications reference 683

MQRC_DMPO_ERROR
(2481, X'09B1') Delete message property options structure not valid.

MQRC_HMSG_ERROR
(2460, X'099C') Message handle not valid.

MQRC_MSG_HANDLE_IN_USE
(2499, X'09C3') Message handle already in use.

MQRC_OPTIONS_ERROR
(2046, X'07FE') Options not valid or not consistent.

MQRC_PROPERTY_NAME_ERROR
(2442, X'098A') Invalid property name.

MQRC_SOURCE_CCSID_ERROR
(2111, X'083F') Property name coded character set identifier not valid.

MQRC_UNEXPECTED_ERROR
(2195, X'0893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

C invocation

MQDLTMP (Hconn, Hmsg, &DltPropOpts, &Name, &CompCode, &Reason)

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQDMPO DltPropOpts; /* Options that control the action of MQDLTMP */
MQCHARV Name; /* Property name */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQDLTMP' USING HCONN, HMSG, DLTPROPOPTS, NAME, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Message handle
 01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQDLTMP
 01 DLTPROPOPTS.
 COPY CMQDMPOV.
** Property name
 01 NAME.
 COPY CMQCHRVV.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQDLTMP (Hconn, Hmsg, DltPropOpts, Name, CompCode, Reason);

Declare the parameters as follows:

684 IBM MQ Developing Applications Reference

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg fixed bin(63); /* Message handle */
dcl DltPropOpts like MQDMPO; /* Options that control the action of MQDLTMP */
dcl Name like MQCHARV; /* Property name */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQDLTMP,(HCONN,HMSG,DLTPROPOPTS,NAME,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HMSG DS D Message handle
DLTPROPOPTS CMQDMPOA , Options that control the action of MQDLTMP
NAME CMQCHRVA , Property name
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQGET - Get message
The MQGET call retrieves a message from a local queue that has been opened using the MQOPEN call.

Syntax
MQGET (Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer, DataLength, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications the MQCONN call can be omitted, and the following value specified for
Hconn :
MQHC_DEF_HCONN

Default connection handle.

Hobj
Type: MQHOBJ - input

This handle represents the queue from which a message is to be retrieved. The value of Hobj was
returned by a previous MQOPEN call. The queue must have been opened with one or more of the
following options (see “MQOPEN - Open object” on page 723 for details):

• MQOO_INPUT_SHARED
• MQOO_INPUT_EXCLUSIVE
• MQOO_INPUT_AS_Q_DEF
• MQOO_BROWSE

MsgDesc
Type: MQMD - input/output

This structure describes the attributes of the message required, and the attributes of the message
retrieved. See “MQMD - Message descriptor” on page 417 for details.

Developing applications reference 685

If BufferLength is less than the message length, MsgDesc is filled by the queue manager, whether
MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts parameter (see MQGMO -
Options field).

If the application provides a version-1 MQMD, the message returned has an MQMDE prefixed to
the application message data, but only if one or more of the fields in the MQMDE has a nondefault
value. If all the fields in the MQMDE have default values, the MQMDE is omitted. A format name of
MQFMT_MD_EXTENSION in the Format field in MQMD indicates that an MQMDE is present.

The application does not need to provide an MQMD structure if a valid message handle is supplied in
the MsgHandle field. If nothing is provided in this field, the descriptor of the message is taken from the
descriptor associated with the message handles.

If the application provides a message handle rather than an MQMD structure, and specifies
MQGMO_PROPERTIES_FORCE_MQRFH2, the call fails with reason code MQRC_MD_ERROR. The call
also fails, with reason code MQRC_MD_ERROR, if the application does not provide an MQMD structure
and specifies MQGMO_PROPERTIES_AS_Q_DEF, and the PropertyControl queue attribute is
MQPROP_FORCE_MQRFH2.

If match options are specified and the message descriptor associated with the message handle is
being used, the input fields used for matching come from the message handle.

GetMsgOpts
Type: MQGMO - input/output

See “MQGMO - Get-message options” on page 364 for details.

BufferLength
Type: MQLONG - input

This is the length in bytes of the Buffer area. Specify zero for messages that have no data,
or if the message is to be removed from the queue and the data discarded (you must specify
MQGMO_ACCEPT_TRUNCATED_MSG in this case).

Note: The length of the longest message that it is possible to read from the queue is given by the
MaxMsgLength queue attribute; see “Attributes for queues” on page 826.

Buffer
Type: MQBYTExBufferLength - output

This is the area to contain the message data. Align the buffer on a boundary appropriate to the nature
of the data in the message. 4 byte alignment is suitable for most messages (including messages
containing IBM MQ header structures), but some messages might require more stringent alignment.
For example, a message containing a 64 bit binary integer might require 8-byte alignment.

If BufferLength is less than the message length, as much of the message as possible is moved into
Buffer. This happens whether MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts
parameter (see MQGMO - Options field for more information).

The character set and encoding of the data in Buffer are given by the CodedCharSetId and
Encoding fields returned in the MsgDesc parameter. If these values are different from the values
required by the receiver, the receiver must convert the application message data to the character
set and encoding required. The MQGMO_CONVERT option can be used (with a user-written exit if
necessary) to convert the message data; see “MQGMO - Get-message options” on page 364 for
details of this option.

Note: All the other parameters on the MQGET call are in the character set and encoding of the local
queue manager (given by the CodedCharSetId queue manager attribute and MQENC_NATIVE).

If the call fails, the contents of the buffer might still have changed.

In the C programming language, the parameter is declared as a pointer-to-void: the address of any
type of data can be specified as the parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this case, the parameter
address passed by programs written in C or System/390 assembler can be null.

686 IBM MQ Developing Applications Reference

DataLength
Type: MQLONG - output

This is the length in bytes of the application data in the message. If this value is greater than
BufferLength, only BufferLength bytes are returned in the Buffer parameter (that is, the
message is truncated). If the value is zero, the message contains no application data.

If BufferLength is less than the message length, DataLength is still completed by the queue
manager, whether MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts parameter
(see MQGMO - Options field for more information). This allows the application to determine the size of
the buffer required to accommodate the message data, and then reissue the call with a buffer of the
appropriate size.

However, if the MQGMO_CONVERT option is specified, and the converted message data is too long to
fit in Buffer, the value returned for DataLength is:

• The length of the unconverted data, for queue manager defined formats.

In this case, if the nature of the data causes it to expand during conversion, the application must
allocate a buffer bigger than the value returned by the queue manager for DataLength.

• The value returned by the data-conversion exit, for application-defined formats.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

The reason codes listed are the ones that the queue manager can return for the Reason parameter.
If the application specifies the MQGMO_CONVERT option, and a user-written exit is invoked to convert
some or all the message data, the exit decides what value is returned for the Reason parameter. As a
result, values other than those values documented are possible.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_CONVERTED_MSG_TOO_BIG

(2120, X'848') Converted data too large for buffer.
MQRC_CONVERTED_STRING_TOO_BIG

(2190, X'88E') Converted string too large for field.
MQRC_DBCS_ERROR

(2150, X'866') DBCS string not valid.
MQRC_FORMAT_ERROR

(2110, X'83E') Message format not valid.
MQRC_INCOMPLETE_GROUP

(2241, X'8C1') Message group not complete.
MQRC_INCOMPLETE_MSG

(2242, X'8C2') Logical message not complete.

Developing applications reference 687

MQRC_INCONSISTENT_CCSIDS
(2243, X'8C3') Message segments have differing CCSIDs.

MQRC_INCONSISTENT_ENCODINGS
(2244, X'8C4') Message segments have differing encodings.

MQRC_INCONSISTENT_UOW
(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_MSG_TOKEN_ERROR
(2331, X'91B') Invalid use of message token.

MQRC_NO_MSG_LOCKED
(2209, X'8A1') No message locked.

MQRC_NOT_CONVERTED
(2119, X'847') Message data not converted.

MQRC_OPTIONS_CHANGED
(nnnn, X'xxx') Options that were required to be consistent have been changed.

MQRC_PARTIALLY_CONVERTED
(2272, X'8E0') Message data partially converted.

MQRC_SIGNAL_REQUEST_ACCEPTED
(2070, X'816') No message returned (but signal request accepted).

MQRC_SOURCE_BUFFER_ERROR
(2145, X'861') Source buffer parameter not valid.

MQRC_SOURCE_CCSID_ERROR
(2111, X'83F') Source coded character set identifier not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR
(2113, X'841') Packed-decimal encoding in message not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR
(2114, X'842') Floating-point encoding in message not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR
(2112, X'840') Source integer encoding not recognized.

MQRC_SOURCE_LENGTH_ERROR
(2143, X'85F') Source length parameter not valid.

MQRC_TARGET_BUFFER_ERROR
(2146, X'862') Target buffer parameter not valid.

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR
(2117, X'845') Packed-decimal encoding specified by receiver not recognized.

MQRC_TARGET_FLOAT_ENC_ERROR
(2118, X'846') Floating-point encoding specified by receiver not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844') Target integer encoding not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED
(2079, X'81F') Truncated message returned (processing completed).

MQRC_TRUNCATED_MSG_FAILED
(2080, X'820') Truncated message returned (processing not completed).

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_CONV_LOAD_ERROR

(2133, X'855') Unable to load data conversion services modules.

688 IBM MQ Developing Applications Reference

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_ERROR
(2374, X'946') API exit failed.

MQRC_API_EXIT_LOAD_ERROR
(2183, X'887') Unable to load API exit.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_BACKED_OUT
(2003, X'7D3') Unit of work backed out.

MQRC_BUFFER_ERROR
(2004, X'7D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call entered before previous call complete.

MQRC_CF_NOT_AVAILABLE
(2345, X'929') Coupling facility not available.

MQRC_CF_STRUC_FAILED
(2373, X'945') Coupling-facility structure failed.

MQRC_CF_STRUC_IN_USE
(2346, X'92A') Coupling-facility structure in use.

MQRC_CF_STRUC_LIST_HDR_IN_USE
(2347, X'92B') Coupling-facility structure list-header in use.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_CORREL_ID_ERROR
(2207, X'89F') Correlation-identifier error.

MQRC_DATA_LENGTH_ERROR
(2010, X'7DA') Data length parameter not valid.

MQRC_DB2_NOT_AVAILABLE
(2342, X'926') Db2 subsystem not available.

MQRC_GET_INHIBITED
(2016, X'7E0') Gets inhibited for the queue.

MQRC_GLOBAL_UOW_CONFLICT
(2351, X'92F') Global units of work conflict.

MQRC_GMO_ERROR
(2186, X'88A') Get-message options structure not valid.

MQRC_HANDLE_IN_USE_FOR_UOW
(2353, X'931') Handle in use for global unit of work.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

Developing applications reference 689

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_INCONSISTENT_BROWSE
(2259, X'8D3') Inconsistent browse specification.

MQRC_INCONSISTENT_UOW
(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_INVALID_MSG_UNDER_CURSOR
(2246, X'8C6') Message under cursor not valid for retrieval.

MQRC_LOCAL_UOW_CONFLICT
(2352, X'930') Global unit of work conflicts with local unit of work.

MQRC_MATCH_OPTIONS_ERROR
(2247, X'8C7') Match options not valid.

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

MQRC_MSG_ID_ERROR
(2206, X'89E') Message-identifier error.

MQRC_MSG_SEQ_NUMBER_ERROR
(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOKEN_ERROR
(2331, X'91B') Use of message token not valid.

MQRC_NO_MSG_AVAILABLE
(2033, X'7F1') No message available.

MQRC_NO_MSG_UNDER_CURSOR
(2034, X'7F2') Browse cursor not positioned on message.

MQRC_NOT_OPEN_FOR_BROWSE
(2036, X'7F4') Queue not open for browse.

MQRC_NOT_OPEN_FOR_INPUT
(2037, X'7F5') Queue not open for input.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_INDEX_TYPE_ERROR
(2394, X'95A') Queue has wrong index type.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

690 IBM MQ Developing Applications Reference

MQRC_SECOND_MARK_NOT_ALLOWED
(2062, X'80E') A message is already marked.

MQRC_SIGNAL_OUTSTANDING
(2069, X'815') Signal outstanding for this handle.

MQRC_SIGNAL1_ERROR
(2099, X'833') Signal field not valid.

MQRC_STORAGE_MEDIUM_FULL
(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED
(2024, X'7E8') No more messages can be handled within current unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE
(2072, X'818') sync point support not available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UOW_ENLISTMENT_ERROR
(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED
(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE
(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WAIT_INTERVAL_ERROR
(2090, X'82A') Wait interval in MQGMO not valid.

MQRC_WRONG_GMO_VERSION
(2256, X'8D0') Wrong version of MQGMO supplied.

MQRC_WRONG_MD_VERSION
(2257, X'8D1') Wrong version of MQMD supplied.

For detailed information about these codes, see Messages and reason codes.

Usage notes
1. The message retrieved is normally deleted from the queue. This deletion can occur as part of the

MQGET call itself, or as part of a sync point.

The browse options are: MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT, and
MQGMO_BROWSE_MSG_UNDER_CURSOR.

2. If the MQGMO_LOCK option is specified with one of the browse options, the browsed message is
locked so that it is visible only to this handle.

If the MQGMO_UNLOCK option is specified, a previously locked message is unlocked. No message is
retrieved in this case, and the MsgDesc, BufferLength, Buffer, and DataLength parameters are
not checked or altered.

3. For applications issuing an MQGET call, the message retrieved can be lost if the application
terminates abnormally or the connection is severed while processing the call. This issue arises
because the surrogate running on the same platform as the queue manager that issues the MQGET
call on behalf of the application cannot detect the loss of the application until the surrogate is about
to return the message to the application, after the message has been removed from the queue. This
issue can occur for both persistent messages and nonpersistent messages.

Developing applications reference 691

To eliminate the risk of losing messages in this way, always retrieve messages within units of work.
That is, by specifying the MQGMO_SYNCPOINT option on the MQGET call, and using the MQCMIT
or MQBACK calls to commit or back out the unit of work when message processing is complete. If
MQGMO_SYNCPOINT is specified, and the client terminates abnormally or the connection is severed,
the surrogate backs out the unit of work on the queue manager and the message is reinstated
on the queue. For more information about sync points, see Syncpoint considerations in IBM MQ
applications.

This situation can arise with IBM MQ clients as well as with applications that are running on the same
platform as the queue manager.

4. If an application puts a sequence of messages on a particular queue within a single unit of work, and
then commits that unit of work successfully, the messages become available for retrieval as follows:

• If the queue is a nonshared queue (that is, a local queue), all messages within the unit of work
become available at the same time.

• If the queue is a shared queue, messages within the unit of work become available in the order in
which they were put, but not all at the same time. When the system is heavily laden, it is possible
for the first message in the unit of work to be retrieved successfully, but for the MQGET call for the
second or subsequent message in the unit of work to fail with MQRC_NO_MSG_AVAILABLE. If this
issue occurs, the application must wait a short while and then try the operation again.

5. If an application puts a sequence of messages on the same queue without using message groups, the
order of those messages is preserved if certain conditions are satisfied. See MQPUT usage notes for
details. If the conditions are satisfied, the messages are presented to the receiving application in the
order in which they were sent, if:

• Only one receiver is getting messages from the queue.

If there are two or more applications getting messages from the queue, they must agree with the
sender the mechanism to be used to identify messages that belong to a sequence. For example, the
sender might set all the CorrelId fields in the messages in a sequence to a value that was unique
to that sequence of messages.

• The receiver does not deliberately change the order of retrieval, for example by specifying a
particular MsgId or CorrelId.

If the sending application puts the messages as a message group, the messages are presented
to the receiving application in the correct order if the receiving application specifies the
MQGMO_LOGICAL_ORDER option on the MQGET call. For more information about message groups,
see:

• MQMD - MsgFlags field
• MQPMO_LOGICAL_ORDER
• MQGMO_LOGICAL_ORDER

If the user is getting messages in a group under sync point, they must ensure that the complete group
is processed before attempting to finish the transaction.

6. Applications must test for the feedback code MQFB_QUIT in the Feedback field of the MsgDesc
parameter, and end if they find this value. See MQMD - Feedback field for more information.

7. If the queue identified by Hobj was opened with the MQOO_SAVE_ALL_CONTEXT option, and the
completion code from the MQGET call is MQCC_OK or MQCC_WARNING, the context associated with
the queue handle Hobj is set to the context of the message that has been retrieved (unless the
MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT, or MQGMO_BROWSE_MSG_UNDER_CURSOR
option is set, in which case the context is marked as not available).

You can use the saved context on a subsequent MQPUT or MQPUT1 call by specifying the
MQPMO_PASS_IDENTITY_CONTEXT or MQPMO_PASS_ALL_CONTEXT options. This enables the
context of the message received to be transferred in whole or in part to another message (for
example, when the message is forwarded to another queue). For more information about message
context, see Message context.

692 IBM MQ Developing Applications Reference

8. If you include the MQGMO_CONVERT option in the GetMsgOpts parameter, the application message
data is converted to the representation requested by the receiving application, before the data is
placed in the Buffer parameter:

• The Format field in the control information in the message identifies the structure of the
application data, and the CodedCharSetId and Encoding fields in the control information in
the message specify its character-set identifier and encoding.

• The application issuing the MQGET call specifies in the CodedCharSetId and Encoding fields
in the MsgDesc parameter the character-set identifier and encoding to which to convert the
application message data.

When conversion of the message data is necessary, the conversion is performed either by the queue
manager itself or by a user-written exit, depending on the value of the Format field in the control
information in the message:

• The following format names are formats that are converted by the queue manager; these formats
are called "built-in" formats:

– MQFMT_ADMIN
– MQFMT_CICS (z/OS only)
– MQFMT_COMMAND_1
– MQFMT_COMMAND_2
– MQFMT_DEAD_LETTER_HEADER
– MQFMT_DIST_HEADER
– MQFMT_EVENT version 1
– MQFMT_EVENT version 2 (z/OS only)
– MQFMT_IMS
– MQFMT_IMS_VAR_STRING
– MQFMT_MD_EXTENSION
– MQFMT_PCF
– MQFMT_REF_MSG_HEADER
– MQFMT_RF_HEADER
– MQFMT_RF_HEADER_2
– MQFMT_STRING
– MQFMT_TRIGGER
– MQFMT_WORK_INFO_HEADER (z/OS only)
– MQFMT_XMIT_Q_HEADER

• The format name MQFMT_NONE is a special value that indicates that the nature of the data in the
message is undefined. As a consequence, the queue manager does not attempt conversion when
the message is retrieved from the queue.

Note: If MQGMO_CONVERT is specified on the MQGET call for a message that has a format name
of MQFMT_NONE, and the character set or encoding of the message differs from that specified
in the MsgDesc parameter, the message is returned in the Buffer parameter (assuming no
other errors), but the call completes with completion code MQCC_WARNING and reason code
MQRC_FORMAT_ERROR.

You can use MQFMT_NONE either when the nature of the message data means that it does
not require conversion, or when the sending and receiving applications have agreed between
themselves the form in which to send the message data.

• All other format names pass the message to a user-written exit for conversion. The exit has the
same name as the format, apart from environment-specific additions. User-specified format names
must not begin with the letters IBM MQ.

Developing applications reference 693

See “Data-conversion exit” on page 897 for details of the data-conversion exit.

User data in the message can be converted between any supported character sets and
encodings. However, be aware that, if the message contains one or more IBM MQ header
structures, the message cannot be converted from or to a character set that has double-byte
or multi-byte characters for any of the characters that are valid in queue names. Reason code
MQRC_SOURCE_CCSID_ERROR or MQRC_TARGET_CCSID_ERROR results if this is attempted, and the
message is returned unconverted. Unicode character set UTF-16 is an example of such a character
set.

On return from MQGET, the following reason code indicates that the message was converted
successfully:

• MQRC_NONE

The following reason code indicates that the message might have been converted successfully; the
application must check the CodedCharSetId and Encoding fields in the MsgDesc parameter to
find out:

• MQRC_TRUNCATED_MSG_ACCEPTED

All other reason codes indicate that the message was not converted.

Note: The interpretation of this reason code is true for conversions performed by a user-written exit
only if the exit conforms to the processing guidelines described in “Data-conversion exit” on page
897.

9. When using the object-oriented interface to get messages, you can choose not to specify a buffer to
hold the message data for an MQGET call. However, in versions of IBM MQ, prior to IBM WebSphere
MQ 7.0, it was possible for MQGET to fail with reason code MQRC_CONVERTED_MSG_TO_BIG, even
when a buffer was not specified. From IBM WebSphere MQ 7.0, when you get a message using an
object-oriented application without restricting the size of the receive message buffer, the application
does not fail with MQRC_CONVERTED_MSG_TOO_BIG, and receives the converted message. This is
true of the following environments:

• .NET, including fully managed applications
• C++
• Java (IBM MQ classes for Java)

Note: For all clients, if the value of sharingConversations is zero, the channel operates as it did
before IBM WebSphere MQ 7.0, and message handling reverts to IBM WebSphere MQ 6 behavior.
In this situation, if the buffer is too small to receive the converted message, the unconverted
message is returned, with reason code MQRC_CONVERTED_MSG_TOO_BIG. For more information
about sharingConversations, see Using sharing conversations in a client application.

10. For the built-in formats, the queue manager can perform default conversion of character strings
in the message when the MQGMO_CONVERT option is specified. Default conversion allows the
queue manager to use an installation-specified default character set that approximates the
actual character set, when converting string data. As a result, the MQGET call can succeed
with completion code MQCC_OK, instead of completing with MQCC_WARNING and reason code
MQRC_SOURCE_CCSID_ERROR or MQRC_TARGET_CCSID_ERROR.

Note: The result of using an approximate character set to convert string data is that some characters
might be converted incorrectly. To avoid this, use characters in the string that are common to both the
actual character set and the default character set.

Default conversion applies both to the application message data and to character fields in the MQMD
and MQMDE structures:

• Default conversion of the application message data occurs only when all the following statements
are true:

– The application specifies MQGMO_CONVERT.

694 IBM MQ Developing Applications Reference

– The message contains data that must be converted either from or to a character set that is not
supported.

– Default conversion was enabled when the queue manager was installed or restarted.
• Default conversion of the character fields in the MQMD and MQMDE structures occurs as necessary,

if default conversion is enabled for the queue manager. The conversion is performed even if the
MQGMO_CONVERT option is not specified by the application on the MQGET call.

11. For the Visual Basic programming language, the following points apply:

• If the size of the Buffer parameter is less than the length specified by the BufferLength
parameter, the call fails with reason code MQRC_STORAGE_NOT_AVAILABLE.

• The Buffer parameter is declared as being of type String. If the data to be retrieved from the
queue is not of type String, use the MQGETAny call in place of MQGET.

The MQGETAny call has the same parameters as the MQGET call, except that the Buffer
parameter is declared as being of type Any, allowing any type of data to be retrieved. However,
this means that Buffer cannot be checked to ensure that it is at least BufferLength bytes in
size.

12. Not all MQGET options are supported when read ahead is enabled. The following table indicated
which options are allowed and whether they can be altered between MQGET calls.

Table 549. MQGET options permitted when read ahead is enabled

Permitted when read ahead is enabled and can be altered
between MQGET calls

Permitted when read ahead is enabled but cannot be
altered between MQGET calls a

MQGET options that are not permitted when read ahead
is enabled b

MQGET MD values MsgId c
CorrelId c

Encoding
CodedCharSetId

MQGET MQGMO options MQGMO_WAIT
MQGMO_NO_WAIT
MQGMO_FAIL_IF_QUIESCING
MQGMO_BROWSE_FIRST d
MQGMO_BROWSE_NEXT d
MQGMO_BROWSE_MESSAGE
_UNDER_CURSOR d

MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_NO_SYNCPOINT
MQGMO_ACCEPT_TRUNCATED_MSG
MQGMO_CONVERT
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MSG
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_MARK_BROWSE_HANDLE
MQGMO_MARK_BROWSE_CO_OP
MQGMO_UNMARK_BROWSE_CO_OP
MQGMO_UNMARK_BROWSE_HANDLE
MQGMO_UNMARKED_BROWSE_MSG
MQGMO_PROPERTIES_FORCE_MQRFH2
MQGMO_NO_PROPERTIES
MQGMO_PROPERTIES_IN_HANDLE
MQGMO_PROPERTIES_COMPATIBILITY

MQGMO_SET_SIGNAL
MQGMO_SYNCPOINT
MQGMO_MARK_SKIP
_BACKOUT
MQGMO_MSG_UNDER
_CURSOR d
MQGMO_LOCK
MQGMO_UNLOCK

MQGMO values MsgHandle

a. If these options are altered between MQGET calls an MQRC_OPTIONS_CHANGED reason code is
returned.

b. If these options are specified on the first MQGET call then read ahead is disabled. If these options
are specified on a subsequent MQGET call a reason code MQRC_OPTIONS_ERROR is returned.

c. The client applications need to be aware that if the MsgId and CorrelId values are altered between
MQGET calls messages with the previous values might have already been sent to the client and
remain in the client read ahead buffer until consumed (or automatically purged).

d. The first MQGET call determines whether messages are to be browsed or got from a queue when
read ahead is enabled. If the application attempts to use a combination of browse and get an
MQRC_OPTIONS_CHANGED reason code is returned.

e. MQGMO_MSG_UNDER_CURSOR is not possible with read ahead. Messages can be browsed or got
when read ahead is enabled but not a combination of both.

13. Applications can destructively get uncommitted messages only if those messages are put in the same
local unit of work as the get. Applications cannot get uncommitted messages nondestructively.

14. Messages under a browse cursor can be retrieved in a unit of work. It is not possible to retrieve an
uncommitted message in this way.

Developing applications reference 695

C invocation

MQGET (Hconn, Hobj, &MsgDesc, &GetMsgOpts, BufferLength, Buffer,
 &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hobj; /* Object handle */
MQMD MsgDesc; /* Message descriptor */
MQGMO GetMsgOpts; /* Options that control the action of MQGET */
MQLONG BufferLength; /* Length in bytes of the Buffer area */
MQBYTE Buffer[n]; /* Area to contain the message data */
MQLONG DataLength; /* Length of the message */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQGET' USING HCONN, HOBJ, MSGDESC, GETMSGOPTS, BUFFERLENGTH,
BUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Object handle
 01 HOBJ PIC S9(9) BINARY.
** Message descriptor
 01 MSGDESC.
 COPY CMQMDV.
** Options that control the action of MQGET
 01 GETMSGOPTS.
 COPY CMQGMOV.
** Length in bytes of the BUFFER area
 01 BUFFERLENGTH PIC S9(9) BINARY.
** Area to contain the message data
 01 BUFFER PIC X(n).
** Length of the message
 01 DATALENGTH PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQGET (Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer,
 DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hobj fixed bin(31); /* Object handle */
dcl MsgDesc like MQMD; /* Message descriptor */
dcl GetMsgOpts like MQGMO; /* Options that control the action of
 MQGET */
dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer
 area */
dcl Buffer char(n); /* Area to contain the message data */
dcl DataLength fixed bin(31); /* Length of the message */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

696 IBM MQ Developing Applications Reference

High Level Assembler invocation

 CALL MQGET,(HCONN,HOBJ,MSGDESC,GETMSGOPTS,BUFFERLENGTH,
 BUFFER,DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
MSGDESC CMQMDA , Message descriptor
GETMSGOPTS CMQGMOA , Options that control the action of MQGET
BUFFERLENGTH DS F Length in bytes of the BUFFER area
BUFFER DS CL(n) Area to contain the message data
DATALENGTH DS F Length of the message
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQGET Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer,
DataLength, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim MsgDesc As MQMD 'Message descriptor'
Dim GetMsgOpts As MQGMO 'Options that control the action of MQGET'
Dim BufferLength As Long 'Length in bytes of the Buffer area'
Dim Buffer As String 'Area to contain the message data'
Dim DataLength As Long 'Length of the message'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQINQ - Inquire object attributes
The MQINQ call returns an array of integers and a set of character strings containing the attributes of an
object.

The following types of object are valid:

• Queue manager
• Queue
• Namelist
• Process definition

Syntax
MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs, CharAttrLength, CharAttrs,
CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications the MQCONN call can be omitted, and the following value specified for
Hconn :

Developing applications reference 697

MQHC_DEF_HCONN
Default connection handle.

Hobj
Type: MQHOBJ - input

This handle represents the object (of any type) with attributes that are required. The handle must be
returned by a previous MQOPEN call that specified the MQOO_INQUIRE option.

SelectorCount
Type: MQLONG - input

This is the count of selectors that are supplied in the Selectors array. It is the number of attributes
that are to be returned. Zero is a valid value. The maximum number allowed is 256.

Selectors
Type: MQLONG x SelectorCount - input

This is an array of SelectorCount attribute selectors; each selector identifies an attribute (integer or
character) with a value that is required.

Each selector must be valid for the type of object that Hobj represents, otherwise the call fails with
completion code MQCC_FAILED and reason code MQRC_SELECTOR_ERROR.

In the special case of queues:

• If the selector is not valid for queues of any type, the call fails with completion code MQCC_FAILED
and reason code MQRC_SELECTOR_ERROR.

• If the selector applies only to queues of types other than the type of the object, the call succeeds
with completion code MQCC_WARNING and reason code MQRC_SELECTOR_NOT_FOR_TYPE.

• If the queue being inquired is a cluster queue, the selectors that are valid depend on how the queue
was resolved; see “Usage notes” on page 711 for further details.

You can specify selectors in any order. Attribute values that correspond to integer attribute selectors
(MQIA_* selectors) are returned in IntAttrs in the same order in which these selectors occur in
Selectors. Attribute values that correspond to character attribute selectors (MQCA_* selectors) are
returned in CharAttrs in the same order in which those selectors occur. MQIA_* selectors can be
interleaved with the MQCA_* selectors; only the relative order within each type is important.

Note:

1. The integer and character attribute selectors are allocated within two different ranges; the MQIA_*
selectors reside within the range MQIA_FIRST through MQIA_LAST, and the MQCA_* selectors
within the range MQCA_FIRST through MQCA_LAST.

For each range, the constants MQIA_LAST_USED and MQCA_LAST_USED define the highest value
that the queue manager accepts.

2. If all the MQIA_* selectors occur first, the same element numbers can be used to address
corresponding elements in the Selectors and IntAttrs arrays.

3. If the SelectorCount parameter is zero, Selectors is not referred to. In this case, the
parameter address passed by programs written in C or S/390 assembler might be null.

The attributes that can be inquired are listed in the following tables. For the MQCA_* selectors,
the constant that defines the length in bytes of the resulting string in CharAttrs is provided in
parentheses.

The tables that follow list the selectors, by object, in alphabetical order, as follows:

• Table 550 on page 699 MQINQ attribute selectors for queues
• Table 551 on page 701 MQINQ attribute selectors for namelists
• Table 552 on page 701 MQINQ attribute selectors for process definitions
• Table 553 on page 702 MQINQ attribute selectors for the queue manager

698 IBM MQ Developing Applications Reference

All selectors are supported on all IBM MQ platforms, except where indicated in the Note column as
follows:
Not z/OS

Supported on all platforms except z/OS
z/OS

Supported only on z/OS

Table 550. MQINQ attribute selectors for queues

Selector Length of field Description Note

MQCA_ALTERATION_DATE MQ_DATE_LENGTH Date of most recent alteration

MQCA_ALTERATION_TIME MQ_TIME_LENGTH Time of most recent alteration

MQCA_BACKOUT_REQ_Q_NAME MQ_Q_NAME_LENGTH Excessive backout requeue name

MQCA_BASE_Q_NAME MQ_Q_NAME_LENGTH Name of queue that alias resolves to

MQCA_CF_STRUC_NAME MQ_CF_STRUC_NAME_LEN
GTH

Coupling facility structure name z/OS

MQCA_CLUS_CHL_NAME MQ_CHANNEL_NAME_LENG
TH

Name of the cluster-sender channel
that uses this queue as a transmission
queue.

MQCA_CLUSTER_NAME MQ_CLUSTER_NAME_LENG
TH

Cluster name

MQCA_CLUSTER_NAMELIST MQ_NAMELIST_NAME_LEN
GTH

Cluster namelist

MQCA_CREATION_DATE MQ_CREATION_DATE_LEN
GTH

Queue creation date

MQCA_CREATION_TIME MQ_CREATION_TIME_LEN
GTH

Queue creation time

MQCA_CUSTOM MQ_CUSTOM_LENGTH The custom attribute for new features

MQCA_INITIATION_Q_NAME MQ_Q_NAME_LENGTH Initiation queue name

MQCA_PROCESS_NAME MQ_PROCESS_NAME_LENG
TH

Name of process definition

MQCA_Q_DESC MQ_Q_DESC_LENGTH Queue description

MQCA_Q_NAME MQ_Q_NAME_LENGTH Queue name

MQCA_REMOTE_Q_MGR_NAME MQ_Q_MGR_NAME_LENGTH Name of remote queue manager

MQCA_REMOTE_Q_NAME MQ_Q_NAME_LENGTH Name of remote queue as known on
remote queue manager

MQCA_STORAGE_CLASS MQ_STORAGE_CLASS_LEN
GTH

Name of storage class z/OS

MQCA_TRIGGER_DATA MQ_TRIGGER_DATA_LENG
TH

Trigger data

MQCA_XMIT_Q_NAME MQ_Q_NAME_LENGTH Transmission queue name

MQIA_ACCOUNTING_Q MQLONG Controls collection of accounting data
for queue

Not
z/OS

MQIA_BACKOUT_THRESHOLD MQLONG Backout threshold

Developing applications reference 699

Table 550. MQINQ attribute selectors for queues (continued)

Selector Length of field Description Note

MQIA_CLWL_Q_PRIORITY MQLONG Priority of queue

MQIA_CLWL_Q_RANK MQLONG Rank of queue

MQIA_CLWL_USEQ MQLONG Use remote queues

MQIA_CURRENT_Q_DEPTH MQLONG Number of messages on queue

MQIA_DEF_BIND MQLONG Default binding

MQIA_DEF_INPUT_OPEN_OPTI
ON

MQLONG Default open-for-input option

MQIA_DEF_PERSISTENCE MQLONG Default message persistence

MQIA_DEF_PRIORITY MQLONG Default message priority

MQIA_DEFINITION_TYPE MQLONG Queue definition type

MQIA_DIST_LISTS MQLONG Distribution list support Not
z/OS

MQIA_HARDEN_GET_BACKOUT MQLONG Whether to harden backout count

MQIA_INDEX_TYPE MQLONG Type of index maintained for queue z/OS

MQIA_INHIBIT_GET MQLONG Whether get operations are allowed

MQIA_INHIBIT_PUT MQLONG Whether put operations are allowed

MQIA_MAX_MSG_LENGTH MQLONG Maximum message length

MQIA_MAX_Q_DEPTH MQLONG Maximum number of messages allowed
on queue

MQIA_MSG_DELIVERY_SEQUEN
CE

MQLONG Whether message priority is relevant

MQIA_NPM_CLASS MQLONG Level of reliability for nonpersistent
messages

MQIA_OPEN_INPUT_COUNT MQLONG Number of MQOPEN calls that have the
queue open for input

MQIA_OPEN_OUTPUT_COUNT MQLONG Number of MQOPEN calls that have the
queue open for output

MQIA_PROPERTY_CONTROL MQLONG Property control attribute

MQIA_Q_DEPTH_HIGH_EVENT MQLONG Control attribute for queue depth high
events

Not
z/OS

MQIA_Q_DEPTH_HIGH_LIMIT MQLONG High limit for queue depth Not
z/OS

MQIA_Q_DEPTH_LOW_EVENT MQLONG Control attribute for queue depth low
events

Not
z/OS

MQIA_Q_DEPTH_LOW_LIMIT MQLONG Low limit for queue depth Not
z/OS

MQIA_Q_DEPTH_MAX_EVENT MQLONG Control attribute for queue depth max
events

Not
z/OS

700 IBM MQ Developing Applications Reference

Table 550. MQINQ attribute selectors for queues (continued)

Selector Length of field Description Note

MQIA_Q_SERVICE_INTERVAL MQLONG Limit for queue service interval Not
z/OS

MQIA_Q_SERVICE_INTERVAL_
EVENT

MQLONG Control attribute for queue service
interval events

Not
z/OS

MQIA_Q_TYPE MQLONG Queue type

MQIA_QSG_DISP MQLONG Queue sharing group disposition z/OS

MQIA_RETENTION_INTERVAL MQLONG Queue retention interval

MQIA_SCOPE MQLONG Queue definition scope Not
z/OS

MQIA_SHAREABILITY MQLONG Whether queue can be shared for input

MQIA_STATISTICS_Q MQLONG Controls collection of statistics data for
queue

Not
z/OS

MQIA_TRIGGER_CONTROL MQLONG Trigger control

MQIA_TRIGGER_DEPTH MQLONG Trigger depth

MQIA_TRIGGER_MSG_PRIORIT
Y

MQLONG Threshold message priority for triggers

MQIA_TRIGGER_TYPE MQLONG Trigger type

MQIA_USAGE MQLONG Usage

Table 551. MQINQ attribute selectors for namelists

Selector Length of field Description Note

MQCA_ALTERATION_DATE MQ_DATE_LENGTH Date of most-recent alteration

MQCA_ALTERATION_TIME MQ_TIME_LENGTH Time of most-recent alteration

MQCA_NAMELIST_DESC MQ_NAMELIST_DESC_LEN
GTH

Namelist description

MQCA_NAMELIST_NAME MQ_NAMELIST_NAME_LEN
GTH

Name of namelist object

MQIA_NAMELIST_TYPE MQLONG Namelist type z/OS

MQCA_NAMES MQ_Q_NAME_LENGTH
x Number of names in
the list

Names in the namelist

MQIA_NAME_COUNT MQLONG Number of names in the namelist

MQIA_QSG_DISP MQLONG Queue sharing group disposition z/OS

Table 552. MQINQ attribute selectors for process definitions

Selector Length of field Description Not
e

MQCA_ALTERATION_DATE MQ_DATE_LENGTH Date of most-recent alteration

MQCA_ALTERATION_TIME MQ_TIME_LENGTH Time of most-recent alteration

Developing applications reference 701

Table 552. MQINQ attribute selectors for process definitions (continued)

Selector Length of field Description Not
e

MQCA_APPL_ID MQ_PROCESS_APPL_ID_LE
NGTH

Application identifier

MQCA_ENV_DATA MQ_PROCESS_ENV_DATA_L
ENGTH

Environment data

MQCA_PROCESS_DESC MQ_PROCESS_DESC_LENGT
H

Description of process definition

MQCA_PROCESS_NAME MQ_PROCESS_NAME_LENGT
H

Name of process definition

MQCA_USER_DATA MQ_PROCESS_USER_DATA_
LENGTH

User data

MQIA_APPL_TYPE MQLONG Application type

MQIA_QSG_DISP MQLONG Queue sharing group disposition z/O
S

Table 553. MQINQ attribute selectors for the queue manager

Selector Length of field Description Note

MQCA_ALTERATION_DATE MQ_DATE_LENGTH Date of most-recent alteration

MQCA_ALTERATION_TIME MQ_TIME_LENGTH Time of most-recent alteration

MQCA_CHANNEL_AUTO_DEF_EX
IT

MQ_EXIT_NAME_LENGTH Automatic channel definition exit
name

MQCA_CHINIT_SERVICE_PARM Reserved for use by IBM

MQCA_CLUSTER_WORKLOAD_DA
TA

MQ_EXIT_DATA_LENGTH Data passed to cluster workload exit

MQCA_CLUSTER_WORKLOAD_EX
IT

MQ_EXIT_NAME_LENGTH Name of cluster workload exit

MQCA_COMMAND_INPUT_Q_NAM
E

MQ_Q_NAME_LENGTH System command input queue name

MQCA_CUSTOM MQ_CUSTOM_LENGTH The custom attribute for new features

MQCA_DEAD_LETTER_Q_NAME MQ_Q_NAME_LENGTH Name of dead-letter queue

MQCA_DEF_XMIT_Q_NAME MQ_Q_NAME_LENGTH Default transmission queue name

MQCA_DNS_GROUP MQ_DNS_GROUP_NAME_LEN
GTH

Name of the group for the TCP listener
that handles inbound transmissions
for the queue sharing group to
join. The name applies when using
Workload Manager Dynamic Domain
Name Services.

z/OS

MQCA_IGQ_USER_ID MQ_USER_ID_LENGTH Intra-group queuing user identifier z/OS

MQCA_INSTALLATION_DESC MQ_INSTALLATION_DESC_
LENGTH

Description of the associated
installation

Not
z/OS
. Not
IBM i

702 IBM MQ Developing Applications Reference

Table 553. MQINQ attribute selectors for the queue manager (continued)

Selector Length of field Description Note

MQCA_INSTALLATION_NAME MQ_INSTALLATION_NAME_
LENGTH

Name of the installation associated
with the queue manager

Not
z/OS
. Not
IBM i

MQCA_INSTALLATION_PATH MQ_INSTALLATION_PATH_
LENGTH

Path where the associated IBM MQ is
installed

Not
z/OS
. Not
IBM i

MQCA_LU_GROUP_NAME MQ_LU_NAME_LENGTH Generic LU name for the LU
6.2 listener that handles inbound
transmissions for the queue sharing
group to use

z/OS

MQCA_LU_NAME MQ_LU_NAME_LENGTH Name of the LU to use for outbound
LU 6.2 transmissions. Set this name to
the same LU that the listener uses for
inbound transmissions

z/OS

MQCA_LU62_ARM_SUFFIX MQ_ARM_SUFFIX_LENGTH Suffix of the SYS1.PARMLIB member
APPCPM xx, that nominates the
LUADD for this channel initiator

z/OS

MQCA_PARENT MQ_Q_MGR_NAME_LENGTH Name of a hierarchically connected
queue manager that is nominated as
the parent of this queue manager

MQCA_Q_MGR_DESC MQ_Q_MGR_DESC_LENGTH Queue manager description

MQCA_Q_MGR_IDENTIFIER MQ_Q_MGR_IDENTIFIER_L
ENGT

Queue manager identifier (H)

MQCA_Q_MGR_NAME MQ_Q_MGR_NAME_LENGTH Name of local queue manager

MQCA_QSG_NAME MQ_QSG_NAME_LENGTH Queue sharing group name z/OS

MQCA_REPOSITORY_NAME MQ_CLUSTER_NAME_LENGT
H

Name of cluster for which queue
manager provides repository services

MQCA_REPOSITORY_NAMELIST MQ_NAMELIST_NAME_LENG
TH

Name of namelist object containing
names of clusters for which queue
manager provides repository services

MQCA_TCP_NAME MQ_TCP_NAME_LENGTH Name of the TCP/IP system that you
are using

z/OS

MQIA_ACCOUNTING_CONN_OVE
RRIDE

MQLONG Override accounting settings Not
z/OS

MQIA_ACCOUNTING_INTERVAL MQLONG How often to write intermediate
accounting records

Not
z/OS

MQIA_ACCOUNTING_MQI MQLONG Controls collection of accounting
information for MQI data

Not
z/OS

MQIA_ACCOUNTING_Q MQLONG Controls collection of accounting
information for queues

Not
z/OS

MQIA_ACTIVE_CHANNELS MQLONG Maximum number of channels that
can be active at any time

z/OS

Developing applications reference 703

Table 553. MQINQ attribute selectors for the queue manager (continued)

Selector Length of field Description Note

MQIA_ADOPTNEWMCA_CHECK MQLONG Elements that are checked to
determine whether to adopt an MCA.
The check is performed when a new
inbound channel is detected that has
the same name as an MCA that is
already active.

z/OS

MQIA_ADOPTNEWMCA_INTERVA
L

MQLONG Amount of time, in seconds, that the
new channel waits for the orphaned
channel to end

Not
z/OS

MQIA_ADOPTNEWMCA_TYPE MQLONG Whether to restart an orphaned
instance of an MCA of a particular
channel type automatically when
a new inbound channel request
matching the AdoptNewMCACheck
parameters is detected

z/OS

MQIA_AUTHORITY_EVENT MQLONG Control attribute for authority events Not
z/OS

MQIA_BRIDGE_EVENT MQLONG Control attribute for IMS bridge events z/OS

MQIA_CHANNEL_AUTO_DEF MQLONG Control attribute for automatic
channel definition

Not
z/OS

MQIA_CHANNEL_AUTO_DEF_EV
ENT

MQLONG Control attribute for automatic
channel definition events

Not
z/OS

MQIA_CHANNEL_EVENT MQLONG Control attribute for channel events

MQIA_CHINIT_ADAPTERS MQLONG Number of adapter subtasks to use for
processing IBM MQ calls

z/OS

MQIA_CHINIT_DISPATCHERS MQLONG Number of dispatchers to use for the
channel initiator

z/OS

MQIA_CHINIT_TRACE_AUTO_S
TART

MQLONG Whether to start channel initiator
trace automatically

z/OS

MQIA_CHINIT_TRACE_TABLE_
SIZE

MQLONG Size of the trace data space (in MB) of
the channel initiator

z/OS

MQIA_CLUSTER_WORKLOAD_LE
NGTH

MQLONG Cluster workload length.

MQIA_CLWL_MRU_CHANNELS MQLONG Number of most recently used
channels for cluster workload
balancing

MQIA_CLWL_USEQ MQLONG Use remote queues

MQIA_CODED_CHAR_SET_ID MQLONG Coded character set identifier

MQIA_COMMAND_EVENT MQLONG Control attribute for command events

MQIA_COMMAND_LEVEL MQLONG Command level supported by queue
manager

MQIA_CONFIGURATION_EVENT MQLONG Control attribute for configuration
events

Not
z/OS

704 IBM MQ Developing Applications Reference

Table 553. MQINQ attribute selectors for the queue manager (continued)

Selector Length of field Description Note

MQIA_DEF_CLUSTER_XMIT_Q_
TYPE

MQLONG Default transmission queue type to be
used for cluster-sender channels.

MQIA_DIST_LISTS MQLONG Distribution list support Not
z/OS

MQIA_DNS_WLM MQLONG Whether the TCP listener that handles
inbound transmissions for the queue
sharing group registers with Workload
Manager for Dynamic Domain Name
Services

z/OS

MQIA_EXPIRY_INTERVAL MQLONG Interval between scans for expired
messages

z/OS

MQIA_GROUP_UR MQLONG Control attribute for whether GROUP
units of recovery are enabled for this
queue manager. The GROUP unit of
recovery disposition is only available
if the queue manager is a member of a
queue sharing group

z/OS

MQIA_IGQ_PUT_AUTHORITY MQLONG Intra-group queuing put authority z/OS

MQIA_INHIBIT_EVENT MQLONG Control attribute for inhibit events Not
z/OS

MQIA_INTRA_GROUP_queuing MQLONG Intra-group queuing support z/OS

MQIA_LISTENER_TIMER MQLONG Time interval (in seconds) between
IBM MQ attempts to restart the
listener if APPC or TCP/IP failed.

z/OS

MQIA_LOCAL_EVENT MQLONG Control attribute for local events Not
z/OS

MQIA_LOGGER_EVENT MQLONG Control attribute for inhibit events Not
z/OS

MQIA_LU62_CHANNELS MQLONG Maximum number of channels that
can be current, or clients that can
be connected, using the LU 6.2
transmission protocol

z/OS

MQIA_MSG_MARK_BROWSE_INT
ERVAL

MQLONG Time interval (in milliseconds) after
which the queue manager can
automatically remove a mark from
browse messages.

Attention: You should not set
this value below the default of
5000.

MQIA_MAX_CHANNELS MQLONG Maximum number of channels that
can be current (including server-
connection channels with connected
clients)

z/OS

MQIA_MAX_HANDLES MQLONG Maximum number of handles

Developing applications reference 705

Table 553. MQINQ attribute selectors for the queue manager (continued)

Selector Length of field Description Note

MQIA_MAX_MSG_LENGTH MQLONG Maximum message length

MQIA_MAX_PRIORITY MQLONG Maximum priority

MQIA_MAX_UNCOMMITTED_MSG
S

MQLONG Maximum number of uncommitted
messages within a unit of work

MQIA_OUTBOUND_PORT_MAX MQLONG With MQIA_OUTBOUND_PORT_MIN,
defines range of port numbers to use
when binding outgoing channels

z/OS

MQIA_OUTBOUND_PORT_MIN MQLONG With MQIA_OUTBOUND_PORT_MAX,
defines range of port numbers to use
when binding outgoing channels

z/OS

MQIA_PERFORMANCE_EVENT MQLONG Control attribute for performance
events

Not
z/OS

MQIA_PLATFORM MQLONG Platform on which the queue manager
resides

MQIA_PROT_POLICY_CAPABIL
ITY

MQLONG Indicates whether security
capabilities of Advanced Message
Security are available for a queue
manager.

MQIA_PUBSUB_MAXMSG_RETRY
_COUNT

MQLONG The number of attempts to reprocess
a failed command message under
sync point

MQIA_PUBSUB_MODE MQLONG Whether the publish/subscribe engine
and the queued publish/subscribe
interface are running. Applications
to publish or subscribe using the
application programming interface
require the publish/subscribe engine.
Queues that are monitored by the
queued publish/subscribe interface
require the queued publish/subscribe
interface to be running.

MQIA_PUBSUB_NP_MSG MQLONG Whether to discard (or keep) an
undelivered input message

MQIA_PUBSUB_NP_RESP MQLONG Controls the behavior of undelivered
response messages

MQIA_PUBSUB_SYNC_PT MQLONG Whether only persistent (or all)
messages are processed under sync
point

MQIA_QMGR_CFCONLOS MQLONG Specifies the action to be taken when
the queue manager loses connectivity
to the administration structure or any
CF structures with CFCONLOS set to
ASQMGR

z/OS

706 IBM MQ Developing Applications Reference

Table 553. MQINQ attribute selectors for the queue manager (continued)

Selector Length of field Description Note

MQIA_RECEIVE_TIMEOUT MQLONG Approximately how long a TCP/IP
channel waits to receive data,
including heartbeats, from its partner,
before returning to the inactive state.
The value is numeric, qualified by
MQIA_RECEIVE_TIMEOUT_TYPE.

z/OS

MQIA_RECEIVE_TIMEOUT_MIN MQLONG Minimum time that a TCP/IP channel
waits to receive data, including
heartbeats, from its partner, before
returning to the inactive state

z/OS

MQIA_RECEIVE_TIMEOUT_TYP
E

MQLONG Approximately how long a TCP/IP
channel waits to receive data,
including heartbeats, from its partner,
before returning to the inactive state.
MQIA_RECEIVE_TIMEOUT_TYPE is
the qualifier applied to
MQIA_RECEIVE_TIMEOUT.

z/OS

MQIA_REMOTE_EVENT MQLONG Control attribute for remote events Not
z/OS

MQIA_SECURITY_CASE MQLONG Case of security profiles z/OS

MQIA_SSL_EVENT MQLONG Control attribute for channel events

MQIA_SSL_FIPS_REQUIRED MQLONG Use only FIPS-certified algorithms for
cryptography

MQIA_SSL_RESET_COUNT MQLONG TLS key reset count

MQIA_START_STOP_EVENT MQLONG Control attribute for start stop events Not
z/OS

MQIA_STATISTICS_AUTO_CLU
SSDR

MQLONG Controls collection of statistics
monitoring information for cluster
sender channels

MQIA_STATISTICS_CHANNEL MQLONG Controls collection of statistics data
for channels

MQIA_STATISTICS_INTERVAL MQLONG How often to write statistics
monitoring data

Not
z/OS

MQIA_STATISTICS_MQI MQLONG Controls collection of statistics
monitoring information for queue
manager

Not
z/OS

MQIA_STATISTICS_Q MQLONG Controls collection of statistics data
for queues

Not
z/OS

MQIA_SYNCPOINT MQLONG sync point availability

MQIA_TCP_CHANNELS MQLONG Maximum number of channels that
can be current, or clients that can
be connected, using the TCP/IP
transmission protocol

z/OS

Developing applications reference 707

Table 553. MQINQ attribute selectors for the queue manager (continued)

Selector Length of field Description Note

MQIA_TCP_KEEP_ALIVE MQLONG Whether to use the TCP KEEPALIVE
facility to check that the other end of
the connection is still available

z/OS

MQIA_TCP_STACK_TYPE MQLONG Whether the channel initiator can
use only the TCP/IP address space
specified in TCPNAME, or can
optionally bind to any selected TCP/IP
address

z/OS

MQIA_TRACE_ROUTE_RECORDI
NG

MQLONG Controls recording of trace-route
information

z/OS

MQIA_TREE_LIFE_TIME MQLONG Lifetime of unused non-administrative
topics

MQIA_TRIGGER_INTERVAL MQLONG Trigger interval

IntAttrCount
Type: MQLONG - input

This is the number of elements in the IntAttrs array. Zero is a valid value.

If IntAttrCount is at least the number of MQIA_* selectors in the Selectors parameter, all integer
attributes requested are returned.

IntAttrs
Type: MQLONG x IntAttrCount - output

This is an array of IntAttrCount integer attribute values.

Integer attribute values are returned in the same order as the MQIA_* selectors in the Selectors
parameter. If the array contains more elements than the number of MQIA_* selectors, the excess
elements are unchanged.

If Hobj represents a queue, but an attribute selector does not apply to that type of queue, the
specific value MQIAV_NOT_APPLICABLE is returned. It is returned for the corresponding element in
the IntAttrs array.

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not referred to. In this
case, the parameter address passed by programs written in C or S/390 assembler might be null.

CharAttrLength
Type: MQLONG - input

This is the length in bytes of the CharAttrs parameter.

CharAttrLength must be at least the sum of the lengths of the requested character attributes (see
Selectors). Zero is a valid value.

CharAttrs
Type: MQCHAR x CharAttrLength - output

This is the buffer in which the character attributes are returned, concatenated together. The length of
the buffer is given by the CharAttrLength parameter.

Character attributes are returned in the same order as the MQCA_* selectors in the Selectors
parameter. The length of each attribute string is fixed for each attribute (see Selectors), and the value
in it is padded to the right with blanks if necessary. You can provider a buffer larger than needed to
contain all the requested character attributes and padding. The bytes beyond the last attribute value
returned are unchanged.

708 IBM MQ Developing Applications Reference

If Hobj represents a queue, but an attribute selector does not apply to that type of queue, a character
string consisting entirely of asterisks (*) is returned. The asterisk is returned as the value of that
attribute in CharAttrs.

If the CharAttrLength or SelectorCount parameter is zero, CharAttrs is not referred to. In this
case, the parameter address passed by programs written in C or S/390 assembler might be null.

CompCode
Type: MQLONG - output

The completion code:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_CHAR_ATTRS_TOO_SHORT

(2008, X'7D8') Not enough space allowed for character attributes.
MQRC_INT_ATTR_COUNT_TOO_SMALL

(2022, X'7E6') Not enough space allowed for integer attributes.
MQRC_SELECTOR_NOT_FOR_TYPE

(2068, X'814') Selector not applicable to queue type.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.
MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.
MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.
MQRC_CHAR_ATTR_LENGTH_ERROR

(2006, X'7D6') Length of character attributes not valid.
MQRC_CHAR_ATTRS_ERROR

(2007, X'7D7') Character attributes string not valid.

Developing applications reference 709

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_INT_ATTR_COUNT_ERROR
(2021, X'7E5') Count of integer attributes not valid.

MQRC_INT_ATTRS_ARRAY_ERROR
(2023, X'7E7') Integer attributes array not valid.

MQRC_NOT_OPEN_FOR_INQUIRE
(2038, X'7F6') Queue not open for inquire.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED
(2052, X'804') Queue deleted.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SELECTOR_COUNT_ERROR
(2065, X'811') Count of selectors not valid.

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRC_SELECTOR_LIMIT_EXCEEDED
(2066, X'812') Count of selectors too large.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes

710 IBM MQ Developing Applications Reference

Usage notes
1. The values returned are a snapshot of the selected attributes. There is no guarantee that the attributes

remain the same before the application can act upon the returned values.
2. When you open a model queue, a dynamic local queue is created. A dynamic local queue is created

even if you open the model queue to inquire about its attributes.

The attributes of the dynamic queue are largely the same as the attributes of the model queue at
the time that the dynamic queue is created. If you then use the MQINQ call on this queue, the queue
manager returns the attributes of the dynamic queue, and not the attributes of the model queue.
See Table 562 on page 828 for details of which attributes of the model queue are inherited by the
dynamic queue.

3. If the object being inquired is an alias queue, the attribute values returned by the MQINQ call are the
attributes of the alias queue. The are not the attributes of the base queue or topic to which the alias
resolves.

4. If the object being inquired is a cluster queue, the attributes that can be inquired depend on how the
queue is opened:

• You can open a cluster queue for inquire plus one or more of the input, browse, or set operations. To
do so, there must be a local instance of the cluster queue for the open to succeed. In this case, the
attributes that can be inquired are the attributes that are valid for local queues.

If the cluster queue is open for inquire without input, browse, or set specified, the call returns
completion code MQCC_WARNING and reason code MQRC_SELECTOR_NOT_FOR_TYPE (2068) if
you attempt to inquire attributes which are valid only for local queues, and not cluster queues.

• You can open a cluster queue for inquire while passing the base queue manager name of the
connected queue manager.

To do so, there must be a local instance of the cluster queue for the open to succeed. If the base
queue manager is not passed, the call returns completion code MQCC_WARNING and reason code
MQRC_SELECTOR_NOT_FOR_TYPE (2068) if you attempt to inquire attributes which are valid only
for local queues, and not cluster queues

• If the cluster queue is opened for inquire alone, or inquire and output, only the attributes listed can
be inquired. The QType attribute has the value MQQT_CLUSTER in this case:

– MQCA_Q_DESC
– MQCA_Q_NAME
– MQIA_DEF_BIND
– MQIA_DEF_PERSISTENCE
– MQIA_DEF_PRIORITY
– MQIA_INHIBIT_PUT
– MQIA_Q_TYPE

You can open the cluster queue with no fixed binding. You can open it with MQOO_BIND_NOT_FIXED
specified on the MQOPEN call. Alternatively, specify MQOO_BIND_AS_Q_DEF, and set the DefBind
attribute of the queue to MQBND_BIND_NOT_FIXED. If you open a cluster queue with no fixed
binding, successive MQINQ calls for the queue might inquire different instances of the cluster queue.
However, it is typical for all the instances have the same attribute values.

• An alias queue object can be defined for a cluster. Because TARGTYPE and TARGET are not cluster
attributes, the process performing an MQOPEN process on the alias queue is not aware of the object
to which the alias resolves.

During the initial MQOPEN, the alias queue resolves to a queue manager and a queue in the cluster.
Name resolution takes place again at the remote queue manager and it is here that the TARGTPYE of
the alias queue is resolved.

If the alias queue resolves to a topic alias, then publication of messages put to the alias queue takes
place at this remote queue manager.

Developing applications reference 711

See Cluster queues
5. You might want to inquire a number of attributes, and then set some of them using the MQSET call.

To program inquire and set efficiently, position the attributes to be set at the beginning of the selector
arrays. If you do so, the same arrays with reduced counts can be used for MQSET.

6. If more than one of the warning situations arise (see the CompCode parameter), the reason code
returned is the first one in the following list that applies:

a. MQRC_SELECTOR_NOT_FOR_TYPE
b. MQRC_INT_ATTR_COUNT_TOO_SMALL
c. MQRC_CHAR_ATTRS_TOO_SHORT

7. The following topic have information about object attributes:

• “Attributes for queues” on page 826
• “Attributes for namelists” on page 859
• “Attributes for process definitions” on page 861
• “Attributes for the queue manager” on page 789

C invocation

MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,
 CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hobj; /* Object handle */
MQLONG SelectorCount; /* Count of selectors */
MQLONG Selectors[n]; /* Array of attribute selectors */
MQLONG IntAttrCount; /* Count of integer attributes */
MQLONG IntAttrs[n]; /* Array of integer attributes */
MQLONG CharAttrLength; /* Length of character attributes buffer */
MQCHAR CharAttrs[n]; /* Character attributes */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

 CALL 'MQINQ' USING HCONN, HOBJ, SELECTORCOUNT, SELECTORS-TABLE,
 INTATTRCOUNT, INTATTRS-TABLE, CHARATTRLENGTH,
 CHARATTRS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Object handle
 01 HOBJ PIC S9(9) BINARY.
** Count of selectors
 01 SELECTORCOUNT PIC S9(9) BINARY.
** Array of attribute selectors
 01 SELECTORS-TABLE.
 02 SELECTORS PIC S9(9) BINARY OCCURS n TIMES.
** Count of integer attributes
 01 INTATTRCOUNT PIC S9(9) BINARY.
** Array of integer attributes
 01 INTATTRS-TABLE.
 02 INTATTRS PIC S9(9) BINARY OCCURS n TIMES.
** Length of character attributes buffer
 01 CHARATTRLENGTH PIC S9(9) BINARY.
** Character attributes
 01 CHARATTRS PIC X(n).
** Completion code

712 IBM MQ Developing Applications Reference

 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,
 IntAttrs, CharAttrLength, CharAttrs, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hobj fixed bin(31); /* Object handle */
dcl SelectorCount fixed bin(31); /* Count of selectors */
dcl Selectors(n) fixed bin(31); /* Array of attribute selectors */
dcl IntAttrCount fixed bin(31); /* Count of integer attributes */
dcl IntAttrs(n) fixed bin(31); /* Array of integer attributes */
dcl CharAttrLength fixed bin(31); /* Length of character attributes
 buffer */
dcl CharAttrs char(n); /* Character attributes */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying
 CompCode */

High Level Assembler invocation

 CALL MQINQ,(HCONN,HOBJ,SELECTORCOUNT,SELECTORS,INTATTRCOUNT, X
 INTATTRS,CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
SELECTORCOUNT DS F Count of selectors
SELECTORS DS (n)F Array of attribute selectors
INTATTRCOUNT DS F Count of integer attributes
INTATTRS DS (n)F Array of integer attributes
CHARATTRLENGTH DS F Length of character attributes buffer
CHARATTRS DS CL(n) Character attributes
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQINQ Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,
 CharAttrLength, CharAttrs, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim SelectorCount As Long 'Count of selectors'
Dim Selectors As Long 'Array of attribute selectors'
Dim IntAttrCount As Long 'Count of integer attributes'
Dim IntAttrs As Long 'Array of integer attributes'
Dim CharAttrLength As Long 'Length of character attributes buffer'
Dim CharAttrs As String 'Character attributes'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

Developing applications reference 713

MQINQMP - Inquire message property
The MQINQMP call returns the value of a property of a message.

Syntax
MQINQMP (Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type, ValueLength, Value, DataLength, CompCode,
Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn must match the
connection handle that was used to create the message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN then a valid connection
must be established on the thread inquiring a property of the message handle otherwise the call fails
with MQRC_CONNECTION_BROKEN.

Hmsg
Type: MQHMSG - input

This is the message handle to be inquired. The value was returned by a previous MQCRTMH call.

InqPropOpts
Type: MQIMPO - input/output

See the MQIMPO data type for details.

Name
Type: MQCHARV - input/output

The name of the property to inquire.

If no property with this name can be found, the call fails with reason
MQRC_PROPERTY_NOT_AVAILABLE.

You can use the wildcard character percent sign (%) at the end of the property name. The
wildcard matches zero or more characters, including the period (.) character. This allows an
application to inquire the value of many properties. Call MQINQMP with option MQIMPO_INQ_FIRST
to get the first matching property and again with the option MQIMPO_INQ_NEXT to get the
next matching property. When no more matching properties are available, the call fails with
MQRC_PROPERTY_NOT_AVAILABLE. If the ReturnedName field of the InqPropOpts structure is
initialized with an address or offset for the returned name of the property, this is completed on return
from MQINQMP with the name of the property that has been matched. If the VSBufSize field of the
ReturnedName in the InqPropOpts structure is less than the length of the returned property name
the completion code is set MQCC_FAILED with reason MQRC_PROPERTY_NAME_TOO_BIG.

Properties that have known synonyms are returned as follows:

1. Properties with the prefix "mqps." are returned as the IBM MQ property name. For example,
"MQTopicString" is the returned name rather than "mqps.Top"

2. Properties with the prefix "jms." or "mcd." are returned as the JMS header field name, for example,
"JMSExpiration" is the returned name rather than "jms.Exp".

3. Properties with the prefix "usr." are returned without that prefix, for example, "Color" is returned
rather than "usr.Color".

Properties with synonyms are only returned once.

In the C programming language, the following macro variables are defined for inquiring on all
properties and then all properties that begin "usr.":

714 IBM MQ Developing Applications Reference

MQPROP_INQUIRE_ALL
Inquire on all properties of the message.

MQPROP_INQUIRE_ALL can be used in the following way:

MQCHARV Name = {MQPROP_INQUIRE_ALL};

MQPROP_INQUIRE_ALL_USR
Inquire on all properties of the message that start "usr.". The returned name is returned without
the "usr." prefix.

If MQIMP_INQ_NEXT is specified but Name has changed since the previous call or this is the first call,
then MQIMPO_INQ_FIRST is implied.

See Property names and Property name restrictions for further information about the use of property
names.

PropDesc
Type: MQPD - output

This structure is used to define the attributes of a property, including what happens if the property
is not supported, what message context the property belongs to, and what messages the property
should be copied into. See MQPD for details of this structure.

Type
Type: MQLONG - input/output

On return from the MQINQMP call this parameter is set to the data type of Value. The data type can be
any of the following:

MQTYPE_BOOLEAN
A boolean.

MQTYPE_BYTE_STRING
a byte string.

MQTYPE_INT8
An 8-bit signed integer.

MQTYPE_INT16
A 16-bit signed integer.

MQTYPE_INT32
A 32-bit signed integer.

MQTYPE_INT64
A 64-bit signed integer.

MQTYPE_FLOAT32
A 32-bit floating-point number.

MQTYPE_FLOAT64
A 64-bit floating-point number.

MQTYPE_STRING
A character string.

MQTYPE_NULL
The property exists but has a null value.

If the data type of the property value is not recognized then MQTYPE_STRING is returned and a string
representation of the value is placed into the Value area. A string representation of the data type can
be found in the TypeString field of the InqPropOpts parameter. A warning completion code is returned
with reason MQRC_PROP_TYPE_NOT_SUPPORTED.

Additionally, if the option MQIMPO_CONVERT_TYPE is specified, conversion of the property value is
requested. Use Type as an input to specify the data type that you want the property to be returned

Developing applications reference 715

as. See the description of the MQIMPO_CONVERT_TYPE option of the MQIMPO structure for details of
data type conversion.

If you do not request type conversion, you can use the following value on input:
MQTYPE_AS_SET

The value of the property is returned without converting its data type.

ValueLength
Type: MQLONG - input

The length in bytes of the Value area. Specify zero for properties that you do not require the value
returned for. These could be properties which are designed by an application to have a null value or an
empty string. Also specify zero if the MQIMPO_QUERY_LENGTH option has been specified; in this case
no value is returned.

Value
Type: MQBYTEx ValueLength - output

This is the area to contain the inquired property value. The buffer should be aligned on a boundary
appropriate for the value being returned. Failure to do so can result in an error when the value is later
accessed.

If ValueLength is less than the length of the property value, as much of the property value as
possible is moved into Value and the call fails with completion code MQCC_FAILED and reason
MQRC_PROPERTY_VALUE_TOO_BIG.

The character set of the data in Value is given by the ReturnedCCSID field in the InqPropOpts
parameter. The encoding of the data in Value is given by the ReturnedEncoding field in the
InqPropOpts parameter.

In the C programming language, the parameter is declared as a pointer-to-void; the address of any
type of data can be specified as the parameter.

If the ValueLength parameter is zero, Value is not referred to and its value passed by programs written
in C or System/390 assembler can be null.

DataLength
Type: MQLONG - output

This is the length in bytes of the actual property value as returned in the Value area.

If DataLength is less than the property value length, DataLength is still filled in on return from
the MQINQMP call. This allows the application to determine the size of the buffer required to
accommodate the property value, and then reissue the call with a buffer of the appropriate size.

The following values can also be returned.

If the Type parameter is set to MQTYPE_STRING or MQTYPE_BYTE_STRING:
MQVL_EMPTY_STRING

The property exists but contains no characters or bytes.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

716 IBM MQ Developing Applications Reference

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_PROP_NAME_NOT_CONVERTED

(2492, X'09BC') Returned property name not converted.
MQRC_PROP_VALUE_NOT_CONVERTED

(2466, X'09A2') Property value not converted.
MQRC_PROP_TYPE_NOT_SUPPORTED

(2467, X'09A3') Property data type is not supported.
MQRC_RFH_FORMAT_ERROR

(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'0852') Unable to load adapter service module.
MQRC_ASID_MISMATCH

(2157, X'086D') Primary and home ASIDs differ.
MQRC_BUFFER_ERROR

(2004, X'07D4') Value parameter not valid.
MQRC_BUFFER_LENGTH_ERROR

(2005, X'07D5') Value length parameter not valid.
MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.
MQRC_CONNECTION_BROKEN

(2009, X'07D9') Connection to queue manager lost.
MQRC_DATA_LENGTH_ERROR

(2010, X'07DA') Data length parameter not valid.
MQRC_IMPO_ERROR

(2464, X'09A0') Inquire message property options structure not valid.
MQRC_HMSG_ERROR

(2460, X'099C') Message handle not valid.
MQRC_MSG_HANDLE_IN_USE

(2499, X'09C3') Message handle already in use.
MQRC_OPTIONS_ERROR

(2046, X'07F8') Options not valid or not consistent.
MQRC_PD_ERROR

(2482, X'09B2') Property descriptor structure not valid.
MQRC_PROP_CONV_NOT_SUPPORTED

(2470, X'09A6') Conversion from the actual to requested data type not supported.
MQRC_PROPERTY_NAME_ERROR

(2442, X'098A') Invalid property name.
MQRC_PROPERTY_NAME_TOO_BIG

(2465, X'09A1') Property name too large for returned name buffer.
MQRC_PROPERTY_NOT_AVAILABLE

(2471, X'09A7) Property not available.
MQRC_PROPERTY_VALUE_TOO_BIG

(2469, X'09A5') Property value too large for the Value area.

Developing applications reference 717

MQRC_PROP_NUMBER_FORMAT_ERROR
(2472, X'09A8') Number format error encountered in value data.

MQRC_PROPERTY_TYPE_ERROR
(2473, X'09A9') Invalid requested property type.

MQRC_SOURCE_CCSID_ERROR
(2111, X'083F') Property name coded character set identifier not valid.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'0871') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'0893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

C invocation

MQINQMP (Hconn, Hmsg, &InqPropOpts, &Name, &PropDesc, &Type,
ValueLength, Value, &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQIMPO InqPropOpts; /* Options that control the action of MQINQMP */
MQCHARV Name; /* Property name */
MQPD PropDesc; /* Property descriptor */
MQLONG Type; /* Property data type */
MQLONG ValueLength; /* Length in bytes of the Value area */
MQBYTE Value[n]; /* Area to contain the property value */
MQLONG DataLength; /* Length of the property value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQINQMP' USING HCONN, HMSG, INQMSGOPTS, NAME, PROPDESC, TYPE,
VALUELENGTH, VALUE, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Message handle
 01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQINQMP
 01 INQMSGOPTS.
 COPY CMQIMPOV.
** Property name
 01 NAME.
 COPY CMQCHRVV.
** Property descriptor
 01 PROPDESC.
 COPY CMQPDV.
** Property data type
 01 TYPE PIC S9(9) BINARY.
** Length in bytes of the VALUE area
 01 VALUELENGTH PIC S9(9) BINARY.
** Area to contain the property value
 01 VALUE PIC X(n).
** Length of the property value
 01 DATALENGTH PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

718 IBM MQ Developing Applications Reference

PL/I invocation

call MQINQMP (Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type,
ValueLength, Value, DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg fixed bin(63); /* Message handle */
dcl InqPropOpts like MQIMPO; /* Options that control the action of MQINQMP */
dcl Name like MQCHARV; /* Property name */
dcl PropDesc like MQPD; /* Property descriptor */
dcl Type fixed bin (31); /* Property data type */
dcl ValueLength fixed bin (31); /* Length in bytes of the Value area */
dcl Value char (n); /* Area to contain the property value */
dcl DataLength fixed bin (31); /* Length of the property value */
dcl CompCode fixed bin (31); /* Completion code */
dcl Reason fixed bin (31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQINQMP,(HCONN,HMSG,INQMSGOPTS,NAME,PROPDESC,TYPE,
VALUELENGTH,VALUE,DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HMSG DS D Message handle
INQMSGOPTS CMQIMPOA , Options that control the action of MQINQMP
NAME CMQCHRVA , Property name
PROPDESC CMQPDA , Property descriptor
TYPE DS F Property data type
VALUELENGTH DS F Length in bytes of the VALUE area
VALUE DS CL(n) Area to contain the property value
DATALENGTH DS F Length of the property value
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQMHBUF - Convert message handle into buffer
The MQMHBUF call converts a message handle into a buffer and is the inverse of the MQBUFMH call.

Syntax
MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc, BufferLength, Buffer, DataLength, CompCode,
Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn must match the
connection handle that was used to create the message handle specified in the Hmsg parameter.

If the message handle was created using MQHC_UNASSOCIATED_HCONN, a valid connection must be
established on the thread deleting the message handle. If a valid connection is not established, the
call fails with MQRC_CONNECTION_BROKEN.

Hmsg
Type: MQHMSG - input

Developing applications reference 719

This is the message handle for which a buffer is required. The value was returned by a previous
MQCRTMH call.

MsgHBufOpts
Type: MQMHBO - input

The MQMHBO structure allows applications to specify options that control how buffers are produced
from message handles.

See “MQMHBO - Message handle to buffer options” on page 473 for details.

Name
Type: MQCHARV - input

The name of the property or properties to put into the buffer.

If no property matching the name can be found, the call fails with
MQRC_PROPERTY_NOT_AVAILABLE.

You can use a wildcard to put more than one property into the buffer. To do this, use the wildcard
character '%' at the end of the property name. This wildcard matches zero or more characters,
including the '.' character.

In the C programming language, the following macro variables are defined for inquiring on all
properties and all properties that begin 'usr':
MQPROP_INQUIRE_ALL

Put all properties of the message into the buffer
MQPROP_INQUIRE_ALL_USR

Put all properties of the message that start with the characters 'usr.' into the buffer.

See Property names and Property name restrictions for further information about the use of property
names.

MsgDesc
Type: MQMD - input/output

The MsgDesc structure describes the contents of the buffer area.

On output, the Encoding, CodedCharSetId and Format fields are set to correctly describe the
encoding, character set identifier, and format of the data in the buffer area as written by the call.

Data in this structure is in the character set and encoding of the application.

BufferLength
Type: MQLONG - input

BufferLength is the length of the Buffer area, in bytes.

Buffer
Type: MQBYTExBufferLength - output

Buffer defines the area to contain the message properties. You must align the buffer on a 4-byte
boundary.

If BufferLength is less than the length required to store the properties in Buffer, MQMHBUF fails
with MQRC_PROPERTY_VALUE_TOO_BIG.

The contents of the buffer can change even if the call fails.

DataLength
Type: MQLONG - output

DataLength is the length, in bytes, of the returned properties in the buffer. If the value
is zero, no properties matched the value given in Name and the call fails with reason code
MQRC_PROPERTY_NOT_AVAILABLE.

If BufferLength is less than the length required to store the properties in the buffer, the MQMHBUF
call fails with MQRC_PROPERTY_VALUE_TOO_BIG, but a value is still entered into DataLength. This

720 IBM MQ Developing Applications Reference

allows the application to determine the size of the buffer required to accommodate the properties,
and then reissue the call with the required BufferLength.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_MHBO_ERROR

(2501, X'095C') Message handle to buffer options structure not valid.
MQRC_BUFFER_ERROR

(2004, X'07D4') Buffer parameter not valid.
MQRC_BUFFER_LENGTH_ERROR

(2005, X'07D5') Buffer length parameter not valid.
MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.
MQRC_CONNECTION_BROKEN

(2009, X'07D9') Connection to queue manager lost.
MQRC_DATA_LENGTH_ERROR

(2010, X'07DA') Data length parameter not valid.
MQRC_HMSG_ERROR

(2460, X'099C') Message handle not valid.
MQRC_MD_ERROR

(2026, X'07EA') Message descriptor not valid.
MQRC_MSG_HANDLE_IN_USE

(2499, X'09C3') Message handle already in use.
MQRC_OPTIONS_ERROR

(2046, X'07FE') Options not valid or not consistent.
MQRC_PROPERTY_NAME_ERROR

(2442, X'098A') Property name is not valid.
MQRC_PROPERTY_NOT_AVAILABLE

(2471, X'09A7') Property not available.
MQRC_PROPERTY_VALUE_TOO_BIG

(2469, X'09A5') BufferLength value is too small to contain specified properties.

Developing applications reference 721

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

C invocation

MQMHBUF (Hconn, Hmsg, &MsgHBufOpts, &Name, &MsgDesc, BufferLength, Buffer,
 &DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQMHBO MsgHBufOpts; /* Options that control the action of MQMHBUF */
MQCHARV Name; /* Property name */
MQMD MsgDesc; /* Message descriptor */
MQLONG BufferLength; /* Length in bytes of the Buffer area */
MQBYTE Buffer[n]; /* Area to contain the properties */
MQLONG DataLength; /* Length of the properties */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Usage notes
MQMHBUF converts a message handle into a buffer.

You can use it with an MQGET API exit to access certain properties, using the message property APIs, and
then pass these in a buffer back to an application designed to use MQRFH2 headers rather than message
handles.

This call is the inverse of the MQBUFMH call, which you can use to parse message properties from a
buffer into a message handle.

COBOL invocation

 CALL 'MQMHBUF' USING HCONN, HMSG, MSGHBUFOPTS, NAME, MSGDESC,
 BUFFERLENGTH, BUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Message handle
 01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQMHBUF
 01 MSGHBUFOPTS.
 COPY CMQMHBOV.
** Property name
 01 NAME
 COPY CMQCHRVV.
** Message descriptor
 01 MSGDESC
 COPY CMQMDV.
** Length in bytes of the Buffer area */
 01 BUFFERLENGTH PIC S9(9) BINARY.
** Area to contain the properties
 01 BUFFER PIC X(n).
** Length of the properties
 01 DATALENGTH PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

722 IBM MQ Developing Applications Reference

PL/I invocation

call MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc, BufferLength, Buffer,
DataLength, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg fixed bin(63); /* Message handle */
dcl MsgHBufOpts like MQMHBO; /* Options that control the action of MQMHBUF */
dcl Name like MQCHARV; /* Property name */
dcl MsgDesc like MQMD; /* Message descriptor */
dcl BufferLength fixed bin(31); /* Length in bytes of the Buffer area */
dcl Buffer char(n); /* Area to contain the properties */
dcl DataLength fixed bin(31); /* Length of the properties */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQMHBUF,(HCONN,HMSG,MSGHBUFOPTS,NAME,MSGDESC,BUFFERLENGTH,
 BUFFER,DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HMSG DS D Message handle
MSGHBUFOPTS CMQMHBOA , Options that control the action of MQMHBUF
NAME CMQCHRVA , Property name
MSGDESC CMQMDA , Message descriptor
BUFFERLENGTH DS F Length in bytes of the BUFFER area
BUFFER DS CL(n) Area to contain the properties
DATALENGTH DS F Length of the properties
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQOPEN - Open object
The MQOPEN call establishes access to an object.

The following types of object are valid:

• Queue (including distribution lists)
• Namelist
• Process definition
• Queue manager
• Topic

Syntax
MQOPEN (Hconn, ObjDesc, Options, Hobj, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

Developing applications reference 723

On z/OS for CICS applications the MQCONN call can be omitted, and the following value
specified for Hconn :
MQHC_DEF_HCONN

Default connection handle.

ObjDesc
Type: MQOD - input/output

This is a structure that identifies the object to be opened; see “MQOD - Object descriptor” on page
475 for details.

If the ObjectName field in the ObjDesc parameter is the name of a model queue, a dynamic local
queue is created with the attributes of the model queue; this happens whatever options you specify
on the Options parameter. Subsequent operations using the Hobj returned by the MQOPEN call
are performed on the new dynamic queue, and not on the model queue. This is true even for the
MQINQ and MQSET calls. The name of the model queue in the ObjDesc parameter is replaced with
the name of the dynamic queue created. The type of the dynamic queue is determined by the value
of the DefinitionType attribute of the model queue (see “Attributes for queues” on page 826).
For information about the close options applicable to dynamic queues, see the description of the
MQCLOSE call.

Options
Type: MQLONG - input

You must specify at least one of the following options:

• MQOO_BROWSE
• MQOO_INPUT_* (only one of these)
• MQOO_INQUIRE
• MQOO_OUTPUT
• MQOO_SET
• MQOO_BIND_* (only one of these)

See the following table for details of these options; other options can be specified as required. To
specify more than one option, either add the values together (do not add the same constant more
than once), or combine the values using the bitwise OR operation (if the programming language
supports bit operations). Combinations that are not valid are noted; all other combinations are valid.
Only options that are applicable to the type of object specified by ObjDesc are allowed.

Table 554. Valid MQOPEN options for queues and topics

Option Alias 1 Local and
Model

Remote Nonlocal
Cluster

Distribution
list

Topic

MQOO_INPUT_AS_Q_DEF Yes Yes No No No No

MQOO_INPUT_SHARED Yes Yes No No No No

MQOO_INPUT_EXCLUSIVE Yes Yes No No No No

MQOO_OUTPUT Yes Yes Yes Yes Yes Yes

MQOO_BROWSE Yes Yes No No No No

MQOO_CO_OP Yes Yes No No No No

MQOO_INQUIRE Yes Yes 2 Yes No No

MQOO_SET Yes Yes 2 No No No

MQOO_BIND_ON_OPEN 3 Yes Yes Yes Yes Yes No

MQOO_BIND_NOT_FIXED 3 Yes Yes Yes Yes Yes No

MQOO_BIND_ON_GROUP 3 Yes Yes Yes Yes Yes No

MQOO_BIND_AS_Q_DEF 3 Yes Yes Yes Yes Yes No

724 IBM MQ Developing Applications Reference

Table 554. Valid MQOPEN options for queues and topics (continued)

Option Alias 1 Local and
Model

Remote Nonlocal
Cluster

Distribution
list

Topic

MQOO_SAVE_ALL_CONTEXT Yes Yes No No No No

MQOO_PASS_IDENTITY_CONTEXT Yes Yes Yes Yes Yes 4

MQOO_PASS_ALL_CONTEXT Yes Yes Yes Yes Yes Yes

MQOO_SET_IDENTITY_CONTEXT Yes Yes Yes Yes Yes 4

MQOO_SET_ALL_CONTEXT Yes Yes Yes Yes Yes Yes

MQOO_NO_READ_AHEAD Yes Yes No No No No

MQOO_READ_AHEAD Yes Yes No No No No

MQOO_READ_AHEAD_AS_Q_DEF Yes Yes No No No No

MQOO_ALTERNATE_USER_AUTHORITY Yes Yes Yes Yes Yes Yes

MQOO_FAIL_IF_QUIESCING Yes Yes Yes Yes Yes Yes

MQOO_RESOLVE_LOCAL_Q Yes Yes Yes Yes No No

MQOO_RESOLVE_LOCAL_TOPIC No No No No No Yes

MQOO_NO_MULTICAST No No No No No Yes

Notes:

1. The validity of options for aliases depends on the validity of the option for the queue to which the
alias resolves.

2. This option is valid only for the local definition of a remote queue.
3. This option can be specified for any queue type, but is ignored if the queue is not a cluster queue.

However, the DefBind queue attribute overrides the base queue even when the alias queue is not
in a cluster.

4. These attributes can be used with a topic, but affect only the context set for the retained message,
not the context fields sent to any subscriber.

Access options: The following options control the type of operations that can be performed on the
object:
MQOO_INPUT_AS_Q_DEF

Open queue to get messages using queue-defined default.

The queue is opened for use with subsequent MQGET calls. The type of access is either shared or
exclusive, depending on the value of the DefInputOpenOption queue attribute; see “Attributes
for queues” on page 826 for details.

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects that are not queues.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The call can succeed if the queue is
currently open by this or another application with MQOO_INPUT_SHARED, but fails with reason
code MQRC_OBJECT_IN_USE if the queue is currently open with MQOO_INPUT_EXCLUSIVE.

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects that are not queues.

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

Developing applications reference 725

The queue is opened for use with subsequent MQGET calls. The call fails with reason code
MQRC_OBJECT_IN_USE if the queue is currently open by this or another application for input of
any type (MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE).

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects that are not queues.

MQOO_OUTPUT

Open queue to put messages, or a topic or topic string to publish messages.

The queue or topic is opened for use with subsequent MQPUT calls.

An MQOPEN call with this option can succeed even if the InhibitPut queue attribute is set to
MQQA_PUT_INHIBITED (although subsequent MQPUT calls fail while the attribute is set to this
value).

This option is valid for all types of queue, including distribution lists, and topics.

The following notes apply to these options:

• Only one of these options can be specified.
• An MQOPEN call with one of these options can succeed even if the InhibitGet queue attribute is

set to MQQA_GET_INHIBITED (although subsequent MQGET calls fail while the attribute is set to
this value).

• If the queue is defined as not being shareable (that is, the Shareability queue attribute has
the value MQQA_NOT_SHAREABLE), attempts to open the queue for shared access are treated as
attempts to open the queue with exclusive access.

• If an alias queue is opened with one of these options, the test for exclusive use (or for whether
another application has exclusive use) is against the base queue to which the alias resolves.

• These options are not valid if ObjectQMgrName is the name of a queue manager alias; this is true
even if the value of the RemoteQMgrName attribute in the local definition of a remote queue used for
queue manager aliasing is the name of the local queue manager.

MQOO_BROWSE
Open queue to browse messages.

The queue is opened for use with subsequent MQGET calls with one of the following options:

• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_NEXT
• MQGMO_BROWSE_MSG_UNDER_CURSOR

This is allowed even if the queue is currently open for MQOO_INPUT_EXCLUSIVE. An MQOPEN call
with the MQOO_BROWSE option establishes a browse cursor, and positions it logically before the
first message on the queue; see MQGMO - Options field for further information.

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects that are not queues. It is also not valid if ObjectQMgrName is the
name of a queue manager alias; this is true even if the value of the RemoteQMgrName attribute
in the local definition of a remote queue used for queue manager aliasing is the name of the local
queue manager.

MQOO_CO_OP
Open as a cooperating member of the set of handles.

This option is valid only with the MQOO_BROWSE option. If it is specified without
MQOO_BROWSE, MQOPEN returns with MQRC_OPTIONS_ERROR.

The handle returned is considered to be a member of a cooperating set of handles for subsequent
MQGET calls with one of the following options:

• MQGMO_MARK_BROWSE_CO_OP
• MQGMO_UNMARKED_BROWSE_MSG

726 IBM MQ Developing Applications Reference

• MQGMO_UNMARK_BROWSE_CO_OP

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects that are not queues.

MQOO_INQUIRE
Open object to inquire attributes.

The queue, namelist, process definition, or queue manager is opened for use with subsequent
MQINQ calls.

This option is valid for all types of object other than distribution lists. It is not valid if
ObjectQMgrName is the name of a queue manager alias; this is true even if the value of the
RemoteQMgrName attribute in the local definition of a remote queue used for queue manager
aliasing is the name of the local queue manager.

MQOO_SET
Open queue to set attributes.

The queue is opened for use with subsequent MQSET calls.

This option is valid for all types of queue other than distribution lists. It is not valid if
ObjectQMgrName is the name of a local definition of a remote queue; this is true even if the
value of the RemoteQMgrName attribute in the local definition of a remote queue used for queue
manager aliasing is the name of the local queue manager.

Binding options: The following options apply when the object being opened is a cluster queue; these
options control the binding of the queue handle to an instance of the cluster queue:
MQOO_BIND_ON_OPEN

The local queue manager binds the queue handle to an instance of the destination queue when
the queue is opened. As a result, all messages put using this handle are sent to the same instance
of the destination queue, and by the same route.

This option is valid only for queues, and affects only cluster queues. If specified for a queue that is
not a cluster queue, the option is ignored.

MQOO_BIND_NOT_FIXED
This stops the local queue manager binding the queue handle to an instance of the destination
queue. As a result, successive MQPUT calls using this handle send the messages to different
instances of the destination queue, or to the same instance but by different routes. It also
allows the instance selected to be changed later by the local queue manager, by a remote queue
manager, or by a message channel agent (MCA), according to network conditions.

Note: Client and server applications that need to exchange a series of messages to complete a
transaction must not use MQOO_BIND_NOT_FIXED (or MQOO_BIND_AS_Q_DEF when DefBind
has the value MQBND_BIND_NOT_FIXED), because successive messages in the series might be
sent to different instances of the server application.

If MQOO_BROWSE or one of the MQOO_INPUT_* options is specified for a cluster queue, the
queue manager is forced to select the local instance of the cluster queue. As a result, the binding
of the queue handle is fixed, even if MQOO_BIND_NOT_FIXED is specified.

If MQOO_INQUIRE is specified with MQOO_BIND_NOT_FIXED, successive MQINQ calls using that
handle might inquire different instances of the cluster queue, although typically all the instances
have the same attribute values.

MQOO_BIND_NOT_FIXED is valid only for queues, and affects only cluster queues. If specified for
a queue that is not a cluster queue, the option is ignored.

MQOO_BIND_ON_GROUP
Allows an application to request that a group of messages are all allocated to the same
destination instance.

This option is valid only for queues, and affects only cluster queues. If specified for a queue that is
not a cluster queue, the option is ignored.

Developing applications reference 727

MQOO_BIND_AS_Q_DEF
The local queue manager binds the queue handle in the way defined by the
DefBind queue attribute. The value of this attribute is either MQBND_BIND_ON_OPEN,
MQBND_BIND_NOT_FIXED, or MQBND_BIND_ON_GROUP.

MQOO_BIND_AS_Q_DEF is the default when MQOO_BIND_ON_OPEN, MQOO_BIND_NOT_FIXED,
or MQOO_BIND_ON_GROUP is not specified.

MQOO_BIND_AS_Q_DEF aids program documentation. It is not intended that this option is used
with either of the other two bind options, but because its value is zero such use cannot be
detected.

Context options: The following options control the processing of message context:
MQOO_SAVE_ALL_CONTEXT

Context information is associated with this queue handle. This information is set from the context
of any message retrieved using this handle. For more information about message context, see
Message context and Controlling context information.

This context information can be passed to a message that is then put on a queue using the MQPUT
or MQPUT1 calls. See the MQPMO_PASS_IDENTITY_CONTEXT and MQPMO_PASS_ALL_CONTEXT
options described in “MQPMO - Put message options” on page 495.

Until a message has been successfully retrieved, context cannot be passed to a message being
put on a queue.

A message retrieved using one of the MQGMO_BROWSE_* browse options does not have its
context information saved (although the context fields in the MsgDesc parameter are set after a
browse).

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects that are not queues. One of the MQOO_INPUT_* options must be
specified.

MQOO_PASS_IDENTITY_CONTEXT
This allows the MQPMO_PASS_IDENTITY_CONTEXT option to be specified in the PutMsgOpts
parameter when a message is put on a queue; this gives the message the identity context
information from an input queue that was opened with the MQOO_SAVE_ALL_CONTEXT option.
For more information about message context, see Message context and Controlling context
information.

The MQOO_OUTPUT option must be specified.

This option is valid for all types of queue, including distribution lists.

MQOO_PASS_ALL_CONTEXT
This allows the MQPMO_PASS_ALL_CONTEXT option to be specified in the PutMsgOpts
parameter when a message is put on a queue; this gives the message the identity and origin
context information from an input queue that was opened with the MQOO_SAVE_ALL_CONTEXT
option. For more information about message context, see Message context and Controlling
context information.

This option implies MQOO_PASS_IDENTITY_CONTEXT, which need not therefore be specified. The
MQOO_OUTPUT option must be specified.

This option is valid for all types of queue, including distribution lists.

MQOO_SET_IDENTITY_CONTEXT
This allows the MQPMO_SET_IDENTITY_CONTEXT option to be specified in the PutMsgOpts
parameter when a message is put on a queue; this gives the message the identity context
information contained in the MsgDesc parameter specified on the MQPUT or MQPUT1 call.
For more information about message context, see Message context and Controlling context
information.

728 IBM MQ Developing Applications Reference

This option implies MQOO_PASS_IDENTITY_CONTEXT, which need not therefore be specified. The
MQOO_OUTPUT option must be specified.

This option is valid for all types of queue, including distribution lists.

MQOO_SET_ALL_CONTEXT
This allows the MQPMO_SET_ALL_CONTEXT option to be specified in the PutMsgOpts parameter
when a message is put on a queue; this gives the message the identity and origin context
information contained in the MsgDesc parameter specified on the MQPUT or MQPUT1 call.
For more information about message context, see Message context and Controlling context
information.

This option implies the following options, which need not therefore be specified:

• MQOO_PASS_IDENTITY_CONTEXT
• MQOO_PASS_ALL_CONTEXT
• MQOO_SET_IDENTITY_CONTEXT

The MQOO_OUTPUT option must be specified.

This option is valid for all types of queue, including distribution lists.

Read ahead options:

When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if
certain conditions are met. These conditions include:

• Both the client and remote queue manager must be at IBM WebSphere MQ 7.0 or later.
• The client application must be compiled and linked against the threaded IBM MQ MQI client

libraries.
• The client channel must be using TCP/IP protocol
• The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

The following options control whether non-persistent messages are sent to the client before an
application requests them. The following notes apply to the read ahead options:

• Only one of these options can be specified.
• These options are valid only for local, alias, and model queues. They are not valid for remote

queues, distribution lists, topics or queue managers.
• These options are only applicable when one of MQOO_BROWSE, MQOO_INPUT_SHARED and

MQOO_INPUT_EXCLUSIVE are also specified although it is not an error to specify these options
with MQOO_INQUIRE or MQOO_SET.

• If the application is not running as an IBM MQ client, these options are ignored.

MQOO_NO_READ_AHEAD
Non-persistent messages are not sent the client before an application requests them.

MQOO_READ_AHEAD
Non-persistent messages are sent to the client before an application requests them.

MQOO_READ_AHEAD_AS_Q_DEF
Read ahead behavior is determined by the default read ahead attribute of the queue being
opened. This is the default value.

Other options: The following options control authorization checking, what happens when the queue
manager is quiescing, whether to resolve the local queue name, and multicast:
MQOO_ALTERNATE_USER_AUTHORITY

The AlternateUserId field in the ObjDesc parameter contains a user identifier to use to
validate this MQOPEN call. The call can succeed only if this AlternateUserId is authorized
to open the object with the specified access options, regardless of whether the user identifier
under which the application is running is authorized to do so. This does not apply to any context

Developing applications reference 729

options specified, however, which are always checked against the user identifier under which the
application is running.

This option is valid for all types of object.

MQOO_FAIL_IF_QUIESCING
The MQOPEN call fails if the queue manager is in quiescing state.

On z/OS, for a CICS or IMS application, this option also forces the MQOPEN call to
fail if the connection is in quiescing state.

This option is valid for all types of object.

For information about client channels see Overview of IBM MQ MQI clients.

MQOO_RESOLVE_LOCAL_Q
Fill the ResolvedQName in the MQOD structure with the name of the local queue that was opened.
Similarly, the ResolvedQMgrName is filled with the name of the local queue manager hosting the
local queue. If the MQOD structure is less than Version 3, MQOO_RESOLVE_LOCAL_Q is ignored
with no error being returned.

The local queue is always returned when either a local, alias, or model queue is opened, but this
is not the case when, for example, a remote queue or a non-local cluster queue is opened without
the MQOO_RESOLVE_LOCAL_Q option; the ResolvedQName and ResolvedQMgrName are filled
with the RemoteQName and RemoteQMgrName found in the remote queue definition, or similarly
with the chosen remote cluster queue.

If you specify MQOO_RESOLVE_LOCAL_Q when opening, for example, a remote queue,
ResolvedQName is the transmission queue to which messages are put. The ResolvedQMgrName is
filled with the name of the local queue manager hosting the transmission queue.

If you are authorized for browse, input, or output on a queue, you have the required authority to
specify this flag on the MQOPEN call. No special authority is needed.

This option is valid only for queues and queue managers.

MQOO_RESOLVE_LOCAL_TOPIC
Fill the ResolvedQName in the MQOD structure with the name of the administrative topic opened.

MQOO_NO_MULTICAST
Publication messages are not sent using multicast.

This option is valid only with the MQOO_OUTPUT option. If it is specified without MQOO_OUTPUT,
MQOPEN returns with MQRC_OPTIONS_ERROR.

This option is valid only for a topic.

Hobj
Type: MQHOBJ - output

This handle represents the access that has been established to the object. It must be specified on
subsequent IBM MQ calls that operate on the object. It ceases to be valid when the MQCLOSE call is
issued, or when the unit of processing that defines the scope of the handle terminates.

The scope of the object handle returned is the same as the scope of the connection handle specified
on the call. See MQCONN - Hconn parameter for information about handle scope.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).

730 IBM MQ Developing Applications Reference

MQCC_FAILED
Call failed.

Reason
Type: MQLONG - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_MULTIPLE_REASONS

(2136, X'858') Multiple reason codes returned.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_ALIAS_BASE_Q_TYPE_ERROR

(2001, X'7D1') Alias base queue not a valid type.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.
MQRC_CF_NOT_AVAILABLE

(2345, X'929') Coupling facility not available.
MQRC_CF_STRUC_AUTH_FAILED

(2348, X'92C') Coupling-facility structure authorization check failed.
MQRC_CF_STRUC_ERROR

(2349, X'92D') Coupling-facility structure not valid.
MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.
MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.
MQRC_CF_STRUC_LIST_HDR_IN_USE

(2347, X'92B') Coupling-facility structure list-header in use.
MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS.
MQRC_CLUSTER_EXIT_ERROR

(2266, X'8DA') Cluster workload exit failed.
MQRC_CLUSTER_PUT_INHIBITED

(2268, X'8DC') Put calls inhibited for all queues in cluster.
MQRC_CLUSTER_RESOLUTION_ERROR

(2189, X'88D') Cluster name resolution failed.
MQRC_CLUSTER_RESOURCE_ERROR

(2269, X'8DD') Cluster resource error.

Developing applications reference 731

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_DB2_NOT_AVAILABLE
(2342, X'926') Db2 subsystem not available.

MQRC_DEF_XMIT_Q_TYPE_ERROR
(2198, X'896') Default transmission queue not local.

MQRC_DEF_XMIT_Q_USAGE_ERROR
(2199, X'897') Default transmission queue usage error.

MQRC_DYNAMIC_Q_NAME_ERROR
(2011, X'7DB') Name of dynamic queue not valid.

MQRC_HANDLE_NOT_AVAILABLE
(2017, X'7E1') No more handles available.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

MQRC_NAME_IN_USE
(2201, X'899') Name in use.

MQRC_NAME_NOT_VALID_FOR_TYPE
(2194, X'892') Object name not valid for object type.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_OBJECT_ALREADY_EXISTS
(2100, X'834') Object exists.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OBJECT_IN_USE
(2042, X'7FA') Object already open with conflicting options.

MQRC_OBJECT_LEVEL_INCOMPATIBLE
(2360, X'938') Object level not compatible.

MQRC_OBJECT_NAME_ERROR
(2152, X'868') Object name not valid.

MQRC_OBJECT_NOT_UNIQUE
(2343, X'927') Object not unique.

MQRC_OBJECT_Q_MGR_NAME_ERROR
(2153, X'869') Object queue manager name not valid.

MQRC_OBJECT_RECORDS_ERROR
(2155, X'86B') Object records not valid.

MQRC_OBJECT_STRING_ERROR
(2441, X'0989') Objectstring field not valid

MQRC_OBJECT_TYPE_ERROR
(2043, X'7FB') Object type not valid.

732 IBM MQ Developing Applications Reference

MQRC_OD_ERROR
(2044, X'7FC') Object descriptor structure not valid.

MQRC_OPTION_NOT_VALID_FOR_TYPE
(2045, X'7FD') Option not valid for object type.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_PAGESET_FULL
(2192, X'890') External storage medium is full.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_Q_TYPE_ERROR
(2057, X'809') Queue type not valid.

MQRC_RECS_PRESENT_ERROR
(2154, X'86A') Number of records present not valid.

MQRC_REMOTE_Q_NAME_ERROR
(2184, X'888') Remote queue name not valid.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_RESPONSE_RECORDS_ERROR
(2156, X'86C') Response records not valid.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

MQRC_SELECTOR_SYNTAX_ERROR
2459 (X'099B') An MQOPEN, MQPUT1 or MQSUB call was issued but a selection string was
specified which contained a syntax error.

MQRC_STOPPED_BY_CLUSTER_EXIT
(2188, X'88C') Call rejected by cluster workload exit.

MQRC_STORAGE_MEDIUM_FULL
(2192, X'890') External storage medium is full.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UNKNOWN_ALIAS_BASE_Q
(2082, X'822') Unknown alias base queue.

MQRC_UNKNOWN_DEF_XMIT_Q
(2197, X'895') Unknown default transmission queue.

Developing applications reference 733

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRC_UNKNOWN_OBJECT_Q_MGR
(2086, X'826') Unknown object queue manager.

MQRC_UNKNOWN_REMOTE_Q_MGR
(2087, X'827') Unknown remote queue manager.

MQRC_UNKNOWN_XMIT_Q
(2196, X'894') Unknown transmission queue.

MQRC_WRONG_CF_LEVEL
(2366, X'93E') Coupling-facility structure is wrong level.

MQRC_XMIT_Q_TYPE_ERROR
(2091, X'82B') Transmission queue not local.

MQRC_XMIT_Q_USAGE_ERROR
(2092, X'82C') Transmission queue with wrong usage.

For detailed information about these codes, see Messages and reason codes.

General usage notes
1. The object opened is one of the following:

• A queue to:

– Get or browse messages (using the MQGET call)
– Put messages (using the MQPUT call)
– Inquire about the attributes of the queue (using the MQINQ call)
– Set the attributes of the queue (using the MQSET call)

If the queue named is a model queue, a dynamic local queue is created. See the ObjDesc parameter
described in “MQOPEN - Open object” on page 723.

A distribution list is a special type of queue object that contains a list of queues. It can be opened to
put messages, but not to get or browse messages, or to inquire or set attributes. See usage note 8
for further details.

A queue that has QSGDISP(GROUP) is a special type of queue definition that cannot be used with
the MQOPEN or MQPUT1 calls.

• A namelist to inquire about the names of the queues in the list (using the MQINQ call).
• A process definition to inquire about the process attributes (using the MQINQ call).
• The queue manager to inquire about the attributes of the local queue manager (using the MQINQ

call).
• A topic to publish a message (using the MQPUT call)

2. An application can open the same object more than once. A different object handle is returned for each
open. Each handle that is returned can be used for the functions for which the corresponding open was
performed.

3. If the object being opened is a queue other than a cluster queue, all name resolution within the local
queue manager takes place at the time of the MQOPEN call. This can include:

• Resolution of the name of a local definition of a remote queue to the name of the remote queue
manager, and the name by which the queue is known at the remote queue manager

• Resolution of the remote queue manager name to the name of a local transmission queue

• On z/OS only, resolution of the remote queue manager name to the name of the shared
transmission queue used by the IGQ agent (applies only if the local and remote queue managers
belong to the same queue sharing group)

• Alias resolution to the name of a base queue or a topic object.

734 IBM MQ Developing Applications Reference

However, be aware that subsequent MQINQ or MQSET calls for the handle relate solely to the name
that has been opened, and not to the object resulting after name resolution has occurred. For example,
if the object opened is an alias, the attributes returned by the MQINQ call are the attributes of the
alias, not the attributes of the base queue or a topic object to which the alias resolves.

If the object being opened is a cluster queue, name resolution can occur at the time of the MQOPEN
call, or be deferred until later. The point at which resolution occurs is controlled by the MQOO_BIND_*
options specified on the MQOPEN call:

• MQOO_BIND_ON_OPEN
• MQOO_BIND_NOT_FIXED
• MQOO_BIND_AS_Q_DEF
• MQOO_BIND_ON_GROUP

See Name resolution for more information about name resolution for cluster queues.
4. An MQOPEN call with the MQOO_BROWSE option establishes a browse cursor, for use with MQGET

calls that specify the object handle and one of the browse options. This allows the queue to be
scanned without altering its contents. A message that has been found by browsing can be removed
from the queue by using the MQGMO_MSG_UNDER_CURSOR option.

Multiple browse cursors can be active for a single application by issuing several MQOPEN requests for
the same queue.

5. Applications started by a trigger monitor are passed the name of the queue that is associated with
the application when the application is started. This queue name can be specified in the ObjDesc
parameter to open the queue. See “MQTMC2 - Trigger message 2 (character format)” on page 599 for
further details.

Read ahead options
When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if certain
conditions are met. These conditions include:

• Both the client and remote queue manager must be at IBM WebSphere MQ 7.0 or later.
• The client application must be compiled and linked against the threaded IBM MQ MQI client libraries.
• The client channel must be using TCP/IP protocol
• The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

The following notes apply to the use of read ahead options.

1. The read ahead options are applicable only when one, and only one, of the MQOO_BROWSE,
MQOO_INPUT_SHARED and MQOO_INPUT_EXCLUSIVE options are also specified. An error is not
thrown if a read ahead options are specified with the MQOO_ INQUIRE or MQOO_SET options.

2. Read ahead is not enabled when requested if the options used on the first MQGET call are not
supported for use with read ahead. Also, read ahead is disabled when the client is connecting to a
queue manager that does not support read ahead.

3. If the application is not running as an IBM MQ client, read ahead options are ignored.

Cluster queues
The following notes apply to the use of cluster queues.

1. When a cluster queue is opened for the first time, and the local queue manager is not a full repository
queue manager, the local queue manager obtains information about the cluster queue from a full
repository queue manager. When the network is busy, it can take several seconds for the local queue
manager to receive the needed information from the repository queue manager. As a result, the
application issuing the MQOPEN call might have to wait for up to 10 seconds before control returns

Developing applications reference 735

from the MQOPEN call. If the local queue manager does not receive the needed information about the
cluster queue within this time, the call fails with reason code MQRC_CLUSTER_RESOLUTION_ERROR.

2. When a cluster queue is opened and there are multiple instances of the queue in the cluster, the
instance opened depends on the options specified on the MQOPEN call:

• If the options specified include any of the following:

– MQOO_BROWSE
– MQOO_INPUT_AS_Q_DEF
– MQOO_INPUT_EXCLUSIVE
– MQOO_INPUT_SHARED
– MQOO_SET

the instance of the cluster queue opened must be the local instance. If there is no local instance of
the queue, the MQOPEN call fails.

• If the options specified include none of the options described previously, but include one or both of
the following:

– MQOO_INQUIRE
– MQOO_OUTPUT

the instance opened is the local instance if there is one, and a remote instance otherwise (if using
the CLWLUSEQ defaults). The instance chosen by the queue manager can, however, be altered by a
cluster workload exit (if there is one).

3. If there is a subscription for the queue, but it is not acknowledged by a full repository, the object is not
present in the cluster and the call fails with reason code MQRC_OBJECT_NAME.

For more information about cluster queues, see Cluster queues.

Distribution lists
The following notes apply to the use of distribution lists.

Distribution lists are supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ MQI clients connected to these systems.

1. Fields in the MQOD structure must be set as follows when opening a distribution list:

• Version must be MQOD_VERSION_2 or greater.
• ObjectType must be MQOT_Q.
• ObjectName must be blank or the null string.
• ObjectQMgrName must be blank or the null string.
• RecsPresent must be greater than zero.
• One of ObjectRecOffset and ObjectRecPtr must be zero and the other nonzero.
• No more than one of ResponseRecOffset and ResponseRecPtr can be nonzero.
• There must be RecsPresent object records, addressed by either ObjectRecOffset or
ObjectRecPtr. The object records must be set to the names of the destination queues to be
opened.

736 IBM MQ Developing Applications Reference

• If one of ResponseRecOffset and ResponseRecPtr is nonzero, there must be RecsPresent
response records present. They are set by the queue manager if the call completes with reason code
MQRC_MULTIPLE_REASONS.

A version-2 MQOD can also be used to open a single queue that is not in a distribution list, by ensuring
that RecsPresent is zero.

2. Only the following open options are valid in the Options parameter:

• MQOO_OUTPUT
• MQOO_PASS_*_CONTEXT
• MQOO_SET_*_CONTEXT
• MQOO_ALTERNATE_USER_AUTHORITY
• MQOO_FAIL_IF_QUIESCING

3. The destination queues in the distribution list can be local, alias, or remote queues, but they
cannot be model queues. If a model queue is specified, that queue fails to open, with reason
code MQRC_Q_TYPE_ERROR. However, this does not prevent other queues in the list being opened
successfully.

4. The completion code and reason code parameters are set as follows:

• If the open operations for the queues in the distribution list all succeed or fail in the same way, the
completion code and reason code parameters are set to describe the common result. The MQRR
response records (if provided by the application) are not set in this case.

For example, if every open succeeds, the completion code is set to MQCC_OK and the reason code is
set to MQRC_NONE; if every open fails because none of the queues exists, the parameters are set to
MQCC_FAILED and MQRC_UNKNOWN_OBJECT_NAME.

• If the open operations for the queues in the distribution list do not all succeed or fail in the same
way:

– The completion code parameter is set to MQCC_WARNING if at least one open succeeded, and to
MQCC_FAILED if all failed.

– The reason code parameter is set to MQRC_MULTIPLE_REASONS.
– The response records (if provided by the application) are set to the individual completion codes

and reason codes for the queues in the distribution list.
5. When a distribution list has been opened successfully, the handle Hobj returned by the call can

be used on subsequent MQPUT calls to put messages to queues in the distribution list, and on an
MQCLOSE call to relinquish access to the distribution list. The only valid close option for a distribution
list is MQCO_NONE.

The MQPUT1 call can also be used to put a message to a distribution list; the MQOD structure defining
the queues in the list is specified as a parameter on that call.

6. Each successfully opened destination in the distribution list counts as a separate handle when
checking whether the application has exceeded the permitted maximum number of handles (see the
MaxHandles queue manager attribute). This is true even when two or more of the destinations in the
distribution list resolve to the same physical queue. If the MQOPEN or MQPUT1 call for a distribution
list would cause the number of handles in use by the application to exceed MaxHandles, the call fails
with reason code MQRC_HANDLE_NOT_AVAILABLE.

7. Each destination that is opened successfully has the value of its OpenOutputCount attribute
incremented by one. If two or more of the destinations in the distribution list resolve to the same
physical queue, that queue has its OpenOutputCount attribute incremented by the number of
destinations in the distribution list that resolve to that queue.

8. Any change to the queue definitions that would have caused a handle to become invalid had the
queues been opened individually (for example, a change in the resolution path), does not cause the
distribution-list handle to become invalid. However, it does result in a failure for that particular queue
when the distribution-list handle is used on a subsequent MQPUT call.

9. A distribution list can contain only one destination.

Developing applications reference 737

Remote queues
The following notes apply to the use of remote queues.

A remote queue can be specified in one of two ways in the ObjDesc parameter of this call.

• By specifying for ObjectName the name of a local definition of the remote queue. In this case,
ObjectQMgrName refers to the local queue manager, and can be specified as blanks or (in the C
programming language) a null string.

The security validation performed by the local queue manager verifies that the user is authorized to
open the local definition of the remote queue.

• By specifying for ObjectName the name of the remote queue as known to the remote queue manager.
In this case, ObjectQMgrName is the name of the remote queue manager.

The security validation performed by the local queue manager verifies that the user is authorized to
send messages to the transmission queue resulting from the name resolution process.

In either case:

• No messages are sent by the local queue manager to the remote queue manager to check that the user
is authorized to put messages on the queue.

• When a message arrives at the remote queue manager, the remote queue manager might reject it
because the user originating the message is not authorized.

See the ObjectName and ObjectQMgrName fields described in “MQOD - Object descriptor” on page 475
for more information.

Objects

Security
The following notes relate to the security aspects of using MQOPEN.

The queue manager performs security checks when an MQOPEN call is issued, to verify that the user
identifier under which the application is running has the appropriate level of authority before access is
permitted. The authority check is made on the name of the object being opened, and not on the name, or
names, resulting after a name has been resolved.

If the object being opened is an alias queue which points at a topic object, the queue manager performs
a security check on the alias queue name, before performing a security check for the topic as if the topic
object had been used directly.

If the object being opened is a topic object, whether with ObjectName alone or by using the
ObjectString (with or without a basing ObjectName), the queue manager performs the security check
by using the resultant topic string, taken from within the topic object specified in ObjectName, and if
required concatenating it with that provided in ObjectString, and then finding the closest topic object
at or above that point in the topic tree to perform the security check against. This might not be the same
topic object that was specified in ObjectName.

If the object being opened is a model queue, the queue manager performs a full security check against
both the name of the model queue and the name of the dynamic queue that is created. If the resulting
dynamic queue is then opened explicitly, a further resource security check is performed against the name
of the dynamic queue.

On z/OS, the queue manager performs security checks only if security is enabled. For more
information about security checking, see Setting up security on z/OS .

Attributes
The following notes relate to attributes.

738 IBM MQ Developing Applications Reference

The attributes of an object can change while an application has the object open. In many cases, the
application does not notice this, but for certain attributes the queue manager marks the handle as no
longer valid. These attributes are:

• Any attribute that affects the name resolution of the object. This applies regardless of the open options
used, and includes the following:

– A change to the BaseQName attribute of an alias queue that is open.
– A change to the TargetType attribute of an alias queue that is open.
– A change to the RemoteQName or RemoteQMgrName queue attributes, for any handle that is open for

this queue, or for a queue that resolves through this definition as a queue manager alias.
– Any change that causes a currently open handle for a remote queue to resolve to a different

transmission queue, or to fail to resolve to one at all. For example, this can include:

- A change to the XmitQName attribute of the local definition of a remote queue, whether the
definition is being used for a queue, or for a queue manager alias.

- On z/OS only, a change to the value of the IntraGroupqueuing queue
manager attribute, or a change in the definition of the shared transmission queue
(SYSTEM.QSG.TRANSMIT.QUEUE) used by the IGQ agent.

There is one exception to this: the creation of a new transmission queue. A handle that would have
resolved to this queue had it been present when the handle was opened, but instead resolved to the
default transmission queue, is not made invalid.

– A change to the DefXmitQName queue manager attribute. In this case all open handles that resolved
to the previously named queue (that resolved to it only because it was the default transmission
queue) are marked as invalid. Handles that resolved to this queue for other reasons are not affected.

• The Shareability queue attribute, if there are two or more handles that are currently providing
MQOO_INPUT_SHARED access for this queue, or for a queue that resolves to this queue. If so, all
handles that are open for this queue, or for a queue that resolves to this queue, are marked as invalid,
regardless of the open options.

On z/OS, the handles previously described are marked as invalid if one or more handles is
currently providing MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE access to the queue.

• The Usage queue attribute, for all handles that are open for this queue, or for a queue that resolves to
this queue, regardless of the open options.

When a handle is marked as invalid, all subsequent calls (other than MQCLOSE) using this handle fail with
reason code MQRC_OBJECT_CHANGED. The application must issue an MQCLOSE call (using the original
handle) and then reopen the queue. Any uncommitted updates against the old handle from previous
successful calls can still be committed or backed out, as required by the application logic.

If changing an attribute causes this to happen, use a special force version of the call.

C invocation

MQOPEN (Hconn, &ObjDesc, Options, &Hobj, &CompCode,
 &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQOD ObjDesc; /* Object descriptor */
MQLONG Options; /* Options that control the action of MQOPEN */
MQHOBJ Hobj; /* Object handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Developing applications reference 739

COBOL invocation

CALL 'MQOPEN' USING HCONN, OBJDESC, OPTIONS, HOBJ, COMPCODE, REASON

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Object descriptor
 01 OBJDESC.
 COPY CMQODV.
** Options that control the action of MQOPEN
 01 OPTIONS PIC S9(9) BINARY.
** Object handle
 01 HOBJ PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQOPEN (Hconn, ObjDesc, Options, Hobj, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl ObjDesc like MQOD; /* Object descriptor */
dcl Options fixed bin(31); /* Options that control the action of
 MQOPEN */
dcl Hobj fixed bin(31); /* Object handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQOPEN,(HCONN,OBJDESC,OPTIONS,HOBJ,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
OBJDESC CMQODA , Object descriptor
OPTIONS DS F Options that control the action of MQOPEN
HOBJ DS F Object handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQOPEN Hconn, ObjDesc, Options, Hobj, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim ObjDesc As MQOD 'Object descriptor'
Dim Options As Long 'Options that control the action of MQOPEN'
Dim Hobj As Long 'Object handle'

740 IBM MQ Developing Applications Reference

Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQPUT - Put message
The MQPUT call puts a message on a queue or distribution list, or to a topic. The queue, distribution list, or
topic must already be open.

Syntax
MQPUT (Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications the MQCONN call can be omitted, and the following value
specified for Hconn :
MQHC_DEF_HCONN

Default connection handle.

Hobj
Type: MQHOBJ - input

This handle represents the queue to which the message is added, or the topic to which the
message is published. The value of Hobj was returned by a previous MQOPEN call that specified
the MQOO_OUTPUT option.

MsgDesc
Type: MQMD - input/output

This structure describes the attributes of the message being sent, and receives information about
the message after the put request is complete. See “MQMD - Message descriptor” on page 417 for
details.

If the application provides a version-1 MQMD, the message data can be prefixed with an MQMDE
structure to specify values for the fields that exist in the version-2 MQMD but not the version-1. The
Format field in the MQMD must be set to MQFMT_MD_EXTENSION to indicate that an MQMDE is
present. See “MQMDE - Message descriptor extension” on page 467 for more details.

The application does not need to provide an MQMD structure if a valid message handle is supplied in
the OriginalMsgHandle or NewMsgHandle fields of the MQPMO structure. If nothing is provided
in one of these fields, the descriptor of the message is taken from the descriptor associated with the
message handles.

If you use, or plan to use, API exits then we recommend that you explicitly supply an MQMD structure
and do not use the message descriptors associated with the message handles. This is because the
API Exit associated with MQPUT or MQPUT1 call is unable to ascertain which MQMD values are used
by the queue manager to complete the MQPUT or MQPUT1 request.

PutMsgOpts
Type: MQPMO - input/output

See “MQPMO - Put message options” on page 495 for details.

BufferLength
Type: MQLONG - input

The length of the message in Buffer. Zero is valid, and indicates that the message contains no
application data. The upper limit for BufferLength depends on various factors:

Developing applications reference 741

• If the destination is a local queue or resolves to a local queue, the upper limit depends on whether:

– The local queue manager supports segmentation.
– The sending application specifies the flag that allows the queue manager to segment the

message. This flag is MQMF_SEGMENTATION_ALLOWED, and can be specified either in a
version-2 MQMD, or in an MQMDE used with a version-1 MQMD.

If both of these conditions are satisfied, BufferLength cannot exceed 999 999 999 minus the
value of the Offset field in MQMD. The longest logical message that can be put is therefore 999
999 999 bytes (when Offset is zero). However, resource constraints imposed by the operating
system or environment in which the application is running might result in a lower limit.

If one or both of the previous conditions is not satisfied, BufferLength cannot exceed the smaller
of the queue's MaxMsgLength attribute and queue manager's MaxMsgLength attribute.

• If the destination is a remote queue or resolves to a remote queue, the conditions for local queues
apply, but at each queue manager through which the message must pass in order to reach the
destination queue ; in particular:

1. The local transmission queue used to store the message temporarily at the local queue manager
2. Intermediate transmission queues (if any) used to store the message at queue managers on the

route between the local and destination queue managers
3. The destination queue at the destination queue manager

The longest message that can be put is therefore governed by the most restrictive of these queues
and queue managers.

When a message is on a transmission queue, additional information resides with the message data,
and this reduces the amount of application data that can be carried. In this situation, subtract
MQ_MSG_HEADER_LENGTH bytes from the MaxMsgLength values of the transmission queues
when determining the limit for BufferLength.

Note: Only failure to comply with condition 1 can be diagnosed synchronously (with reason code
MQRC_MSG_TOO_BIG_FOR_Q or MQRC_MSG_TOO_BIG_FOR_Q_MGR) when the message is put. If
conditions 2 or 3 are not satisfied, the message is redirected to a dead-letter (undelivered-message)
queue, either at an intermediate queue manager or at the destination queue manager. If this
happens, a report message is generated if one was requested by the sender.

Buffer
Type: MQBYTExBufferLength - input

This is a buffer containing the application data to be sent. The buffer must be aligned on a boundary
appropriate to the nature of the data in the message. 4-byte alignment is suitable for most messages
(including messages containing IBM MQ header structures), but some messages might require more
stringent alignment. For example, a message containing a 64-bit binary integer might require 8-byte
alignment.

If Buffer contains character or numeric data, set the CodedCharSetId and Encoding fields in the
MsgDesc parameter to the values appropriate to the data; this enables the receiver of the message to
convert the data (if necessary) to the character set and encoding used by the receiver.

Note: All the other parameters on the MQPUT call must be in the character set and encoding of the
local queue manager (given by the CodedCharSetId queue manager attribute and MQENC_NATIVE).

In the C programming language, the parameter is declared as a pointer-to-void; the address of any
type of data can be specified as the parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this case, the parameter
address passed by programs written in C or System/390 assembler can be null.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:

742 IBM MQ Developing Applications Reference

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason
Type: MQLONG - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_INCOMPLETE_GROUP

(2241, X'8C1') Message group not complete.
MQRC_INCOMPLETE_MSG

(2242, X'8C2') Logical message not complete.
MQRC_INCONSISTENT_PERSISTENCE

(2185, X'889') Inconsistent persistence specification.
MQRC_INCONSISTENT_UOW

(2245, X'8C5') Inconsistent unit-of-work specification.
MQRC_MULTIPLE_REASONS

(2136, X'858') Multiple reason codes returned.
MQRC_PRIORITY_EXCEEDS_MAXIMUM

(2049, X'801') Message Priority exceeds maximum value supported.
MQRC_UNKNOWN_REPORT_OPTION

(2104, X'838') Report option(s) in message descriptor not recognized.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_ALIAS_TARGTYPE_CHANGED

(2480, X'09B0') Subscription target type has changed from queue to topic object.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_BACKED_OUT

(2003, X'7D3') Unit of work backed out.
MQRC_BUFFER_ERROR

(2004, X'7D4') Buffer parameter not valid.
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.

Developing applications reference 743

MQRC_CALL_INTERRUPTED
(2549, X'9F5') MQPUT or MQCMIT was interrupted and reconnection processing cannot
reestablish a definite outcome.

MQRC_CF_NOT_AVAILABLE
(2345, X'929') Coupling facility not available.

MQRC_CF_STRUC_FAILED
(2373, X'945') Coupling-facility structure failed.

MQRC_CF_STRUC_IN_USE
(2346, X'92A') Coupling-facility structure in use.

MQRC_CFGR_ERROR
(2416, X'970') PCF group parameter structure MQCFGR in the message data is not valid.

MQRC_CFH_ERROR
(2235, X'8BB') PCF header structure not valid.

MQRC_CFIF_ERROR
(2414, X'96E') PCF integer filter parameter structure in the message data is not valid.

MQRC_CFIL_ERROR
(2236, X'8BC') PCF integer list parameter structure or PCIF*64 integer list parameter structure
not valid.

MQRC_CFIN_ERROR
(2237, X'8BD') PCF integer parameter structure or PCIF*64 integer parameter structure not valid.

MQRC_CFSF_ERROR
(2415, X'96F') PCF string filter parameter structure in the message data is not valid.

MQRC_CFSL_ERROR
(2238, X'8BE') PCF string list parameter structure not valid.

MQRC_CFST_ERROR
(2239, X'8BF') PCF string parameter structure not valid.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CLUSTER_EXIT_ERROR
(2266, X'8DA') Cluster workload exit failed.

MQRC_CLUSTER_RESOLUTION_ERROR
(2189, X'88D') Cluster name resolution failed.

MQRC_CLUSTER_RESOURCE_ERROR
(2269, X'8DD') Cluster resource error.

MQRC_COD_NOT_VALID_FOR_XCF_Q
(2106, X'83A') COD report option not valid for XCF queue.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_CONTENT_ERROR
2554 (X'09FA') Message content could not be parsed to determine whether the message should
be delivered to a subscriber with an extended message selector.

MQRC_CONTEXT_HANDLE_ERROR
(2097, X'831') Queue handle referred to does not save context.

744 IBM MQ Developing Applications Reference

MQRC_CONTEXT_NOT_AVAILABLE
(2098, X'832') Context not available for queue handle referred to.

MQRC_DATA_LENGTH_ERROR
(2010, X'7DA') Data length parameter not valid.

MQRC_DH_ERROR
(2135, X'857') Distribution header structure not valid.

MQRC_DLH_ERROR
(2141, X'85D') Dead letter header structure not valid.

MQRC_EPH_ERROR
(2420, X'974') Embedded PCF structure not valid.

MQRC_EXPIRY_ERROR
(2013, X'7DD') Expiry time not valid.

MQRC_FEEDBACK_ERROR
(2014, X'7DE') Feedback code not valid.

MQRC_GLOBAL_UOW_CONFLICT
(2351, X'92F') Global units of work conflict.

MQRC_GROUP_ID_ERROR
(2258, X'8D2') Group identifier not valid.

MQRC_HANDLE_IN_USE_FOR_UOW
(2353, X'931') Handle in use for global unit of work.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HEADER_ERROR
(2142, X'85E') MQ header structure not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_IIH_ERROR
(2148, X'864') IMS information header structure not valid.

MQRC_INCOMPLETE_GROUP
(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG
(2242, X'8C2') Logical message not complete.

MQRC_INCONSISTENT_PERSISTENCE
(2185, X'889') Inconsistent persistence specification.

MQRC_INCONSISTENT_UOW
(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_LOCAL_UOW_CONFLICT
(2352, X'930') Global unit of work conflicts with local unit of work.

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

MQRC_MDE_ERROR
(2248, X'8C8') Message descriptor extension not valid.

MQRC_MISSING_REPLY_TO_Q
(2027, X'7EB') Missing reply-to queue or MQPMO_SUPPRESS_REPLYTO was used

MQRC_MISSING_WIH
(2332, X'91C') Message data does not begin with MQWIH.

MQRC_MSG_FLAGS_ERROR
(2249, X'8C9') Message flags not valid.

MQRC_MSG_SEQ_NUMBER_ERROR
(2250, X'8CA') Message sequence number not valid.

Developing applications reference 745

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE') Message length greater than maximum for queue.

MQRC_MSG_TOO_BIG_FOR_Q_MGR
(2031, X'7EF') Message length greater than maximum for queue manager.

MQRC_MSG_TYPE_ERROR
(2029, X'7ED') Message type in message descriptor not valid.

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

MQRC_NO_DESTINATIONS_AVAILABLE
(2270, X'8DE') No destination queues available.

MQRC_NOT_OPEN_FOR_OUTPUT
(2039, X'7F7') Queue not open for output.

MQRC_NOT_OPEN_FOR_PASS_ALL
(2093, X'82D') Queue not open for pass all context.

MQRC_NOT_OPEN_FOR_PASS_IDENT
(2094, X'82E') Queue not open for pass identity context.

MQRC_NOT_OPEN_FOR_SET_ALL
(2095, X'82F') Queue not open for set all context.

MQRC_NOT_OPEN_FOR_SET_IDENT
(2096, X'830') Queue not open for set identity context.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OFFSET_ERROR
(2251, X'8CB') Message segment offset not valid.

MQRC_OPEN_FAILED
(2137, X'859') Object not opened successfully.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_ORIGINAL_LENGTH_ERROR
(2252, X'8CC') Original length not valid.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_PAGESET_FULL
(2192, X'890') External storage medium is full.

MQRC_PCF_ERROR
(2149, X'865') PCF structures not valid.

MQRC_PERSISTENCE_ERROR
(2047, X'7FF') Persistence not valid.

MQRC_PERSISTENT_NOT_ALLOWED
(2048, X'800') Queue does not support persistent messages.

MQRC_PMO_ERROR
(2173, X'87D') Put-message options structure not valid.

MQRC_PMO_RECORD_FLAGS_ERROR
(2158, X'86E') Put message record flags not valid.

MQRC_PRIORITY_ERROR
(2050, X'802') Message priority not valid.

MQRC_PUBLICATION_FAILURE
(2502, X'9C6') The publication has not been delivered to any of the subscribers.

746 IBM MQ Developing Applications Reference

MQRC_PUT_INHIBITED
(2051, X'803') Put calls inhibited for the queue, for the queue to which this queue resolves, or the
topic.

MQRC_PUT_MSG_RECORDS_ERROR
(2159, X'86F') Put message records not valid.

MQRC_PUT_NOT_RETAINED
(2479, X'09AF') Publication could not be retained

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_FULL
(2053, X'805') Queue already contains maximum number of messages.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_Q_SPACE_NOT_AVAILABLE
(2056, X'808') No space available on disk for queue.

MQRC_RECONNECT_FAILED
(2548, X'9F4') After reconnecting, an error occurred reinstating the handles for a reconnectable
connection.

MQRC_RECS_PRESENT_ERROR
(2154, X'86A') Number of records present not valid.

MQRC_REPORT_OPTIONS_ERROR
(2061, X'80D') Report options in message descriptor not valid.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_RESPONSE_RECORDS_ERROR
(2156, X'86C') Response records not valid.

MQRC_RFH_ERROR
(2334, X'91E') MQRFH or MQRFH2 structure not valid.

MQRC_RMH_ERROR
(2220, X'8AC') Reference message header structure not valid.

MQRC_SEGMENT_LENGTH_ZERO
(2253, X'8CD') Length of data in message segment is zero.

MQRC_SEGMENTS_NOT_SUPPORTED
(2365, X'93D') Segments not supported.

MQRC_SELECTION_NOT_AVAILABLE
2551 (X'09F7') A possible subscriber for the publication exists, but the queue manager cannot
check whether to send the publication to the subscriber.

MQRC_STOPPED_BY_CLUSTER_EXIT
(2188, X'88C') Call rejected by cluster workload exit.

MQRC_STORAGE_CLASS_ERROR
(2105, X'839') Storage class error.

MQRC_STORAGE_MEDIUM_FULL
(2192, X'890') External storage medium is full.

Developing applications reference 747

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED
(2024, X'7E8') No more messages can be handled within current unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE
(2072, X'818') Syncpoint support not available.

MQRC_TM_ERROR
(2265, X'8D9') Trigger message structure not valid.

MQRC_TMC_ERROR
(2191, X'88F') Character trigger message structure not valid.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UOW_ENLISTMENT_ERROR
(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED
(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE
(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WIH_ERROR
(2333, X'91D') MQWIH structure not valid.

MQRC_WRONG_MD_VERSION
(2257, X'8D1') Wrong version of MQMD supplied.

MQRC_XQH_ERROR
(2260, X'8D4') Transmission queue header structure not valid.

For detailed information about these codes, see Messages and reason codes.

Topic usage notes
1. The following notes apply to the use of topics:

a. When using MQPUT to publish messages on a topic, where one or more subscribers to that topic
cannot be given the publication due to a problem with their subscriber queue (for example it is
full), the Reason code returned to the MQPUT call and the delivery behavior is dependent on the
setting of the PMSGDLV or NPMSGDLV attributes on the TOPIC. Note delivery of a publication to
the dead letter queue when MQRO_DEAD_LETTER_Q is specified, or discarding the message when
MQRO_DISCARD_MSG is specified, is considered as a successful delivery of the message. If none
of the publications are delivered, the MQPUT returns with MQRC_PUBLICATION_FAILURE. This can
happen in the following cases:

• A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence
of the message) set to ALL and any subscription (durable or not) has a queue which cannot
receive the publication.

• A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence
of the message) set to ALLDUR and a durable subscription has a queue which cannot receive the
publication.

The MQPUT can return with MQRC_NONE even though publications could not be delivered to some
subscribers in the following cases:

• A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence
of the message) set to ALLAVAIL and any subscription, durable or not, has a queue which cannot
receive the publication.

748 IBM MQ Developing Applications Reference

• A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence
of the message) set to ALLDUR and a non-durable subscription has a queue which cannot receive
the publication.

You can use the USEDLQ topic attribute to determine whether the dead-letter queue is used when
publication messages cannot be delivered to their correct subscriber queue. For more information
about the use of USEDLQ, see DEFINE TOPIC.

b. If there are no subscribers to the topic being used, the message published is not sent to any
queue and is discarded. It does not matter whether the message is persistent or non-persistent, or
whether it has unlimited expiry or has an expiry time, it is still discarded if there are no subscribers.
The exception to this is if the message is to be retained, in which case, although it is not sent to any
subscribers' queues, it is stored against the topic to be delivered to any new subscriptions or to any
subscribers that ask for retained publications using MQSUBRQ.

MQPUT and MQPUT1
You can use both the MQPUT and MQPUT1 calls to put messages on a queue; which call to use depends
on the circumstances

• Use the MQPUT call to place multiple messages on the same queue.

An MQOPEN call specifying the MQOO_OUTPUT option is issued first, followed by one or more MQPUT
requests to add messages to the queue; finally the queue is closed with an MQCLOSE call. This gives
better performance than repeated use of the MQPUT1 call.

• Use the MQPUT1 call to put only one message on a queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a single call, minimizing the
number of calls that must be issued.

Destination Queues
The following notes apply to the use of destination queues:

1. If an application puts a sequence of messages on the same queue without using message groups, the
order of those messages is preserved if the conditions detailed are satisfied. Some conditions apply to
both local and remote destination queues; other conditions apply only to remote destination queues.

Conditions that apply to local and remote destination queues

• All the MQPUT calls are within the same unit of work, or none of them is within a unit of work.

Be aware that when messages are put onto a particular queue within a single unit of work, messages
from other applications might be interspersed with the sequence of messages on the queue.

• All the MQPUT calls are made using the same object handle Hobj.

In some environments, message sequence is also preserved when different object handles are used,
if the calls are made from the same application. The meaning of same application is determined by
the environment:

– On z/OS, the application is:

- For CICS, the CICS task
- For IMS, the task
- For z/OS batch, the task

– On IBM i, the application is the job.

– On AIX, Linux, and Windows, the application is the thread.
• The messages all have the same priority.

Developing applications reference 749

• The messages are not put to a cluster queue with MQOO_BIND_NOT_FIXED specified (or
with MQOO_BIND_AS_Q_DEF in effect when the DefBind queue attribute has the value
MQBND_BIND_NOT_FIXED).

Additional conditions that apply to remote destination queues

• There is only one path from the sending queue manager to the destination queue manager.

If some messages in the sequence might go on a different path (for example, because of
reconfiguration, traffic balancing, or path selection based on message size), the order of the
messages at the destination queue manager cannot be guaranteed.

• Messages are not placed temporarily on dead-letter queues at the sending, intermediate, or
destination queue managers.

If one or more of the messages is put temporarily on a dead-letter queue (for example, because
a transmission queue or the destination queue is temporarily full), the messages can arrive on the
destination queue out of sequence.

• The messages are either all persistent or all nonpersistent.

If a channel on the route between the sending and destination queue managers has its
NonPersistentMsgSpeed attribute set to MQNPMS_FAST, nonpersistent messages can jump
ahead of persistent messages, resulting in the order of persistent messages relative to nonpersistent
messages not being preserved. However, the order of persistent messages relative to each other,
and of nonpersistent messages relative to each other, is preserved.

If these conditions are not satisfied, you can use message groups to preserve message order, but this
requires both the sending and receiving applications to use the message-grouping support. For more
information about message groups, see:

• MQMD - MsgFlags field
• MQPMO_LOGICAL_ORDER
• MQGMO_LOGICAL_ORDER

Distribution Lists
The following notes apply to the use of distribution lists.

Distribution lists are supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ MQI clients connected to these systems.

1. You can put messages to a distribution list using either a version-1 or a version-2 MQPMO. If you use
a version-1 MQPMO (or a version-2 MQPMO with RecsPresent equal to zero), the application can
provide no put message records or response records. You cannot identify the queues that encounter
errors if the message is sent successfully to some queues in the distribution list and not others.

If the application provides put message records or response records, set the Version field to
MQPMO_VERSION_2.

You can also use a version-2 MQPMO to send messages to a single queue that is not in a distribution
list, by ensuring that RecsPresent is zero.

2. The completion code and reason code parameters are set as follows:

750 IBM MQ Developing Applications Reference

• If the puts to the queues in the distribution list all succeed or fail in the same way, the completion
code and reason code parameters are set to describe the common result. The MQRR response
records (if provided by the application) are not set in this case.

For example, if every put succeeds, the completion code and reason code are set to MQCC_OK and
MQRC_NONE; if every put fails because all the queues are inhibited for puts, the parameters are set
to MQCC_FAILED and MQRC_PUT_INHIBITED.

• If the puts to the queues in the distribution list do not all succeed or fail in the same way:

– The completion code parameter is set to MQCC_WARNING if at least one put succeeded, and to
MQCC_FAILED if all failed.

– The reason code parameter is set to MQRC_MULTIPLE_REASONS.
– The response records (if provided by the application) are set to the individual completion codes

and reason codes for the queues in the distribution list.

If the put to a destination fails because the open for that destination failed, the fields in the
response record are set to MQCC_FAILED and MQRC_OPEN_FAILED; that destination is included
in InvalidDestCount.

3. If a destination in the distribution list resolves to a local queue, the message is placed on that queue
in normal form (that is, not as a distribution-list message). If more than one destination resolves to the
same local queue, one message is placed on the queue for each such destination.

If a destination in the distribution list resolves to a remote queue, a message is placed on the
appropriate transmission queue. Where several destinations resolve to the same transmission queue,
a single distribution-list message containing those destinations can be placed on the transmission
queue, even if those destinations were not adjacent in the list of destinations provided by the
application. However, this can be done only if the transmission queue supports distribution-list
messages (see DistLists).

If the transmission queue does not support distribution lists, one copy of the message in normal form
is placed on the transmission queue for each destination that uses that transmission queue.

If a distribution list with the application message data is too large for a transmission queue,
the distribution list message is split into smaller distribution-list messages, each containing fewer
destinations. If the application message data only just fits on the queue, distribution-list messages
cannot be used at all, and the queue manager generates one copy of the message in normal form for
each destination that uses that transmission queue.

If different destinations have different message priority or message persistence (this can occur
when the application specifies MQPRI_PRIORITY_AS_Q_DEF or MQPER_PERSISTENCE_AS_Q_DEF),
the messages are not held in the same distribution-list message. Instead, the queue manager
generates as many distribution-list messages as are necessary to accommodate the differing priority
and persistence values.

4. A put to a distribution list can result in:

• A single distribution-list message, or
• A number of smaller distribution-list messages, or
• A mixture of distribution list messages and normal messages, or
• Normal messages only.

Which of the above occurs depends on whether:

• The destinations in the list are local, remote, or a mixture.
• The destinations have the same message priority and message persistence.
• The transmission queues can hold distribution-list messages.
• The transmission queues' maximum message lengths are large enough to accommodate the

message in distribution-list form.

Developing applications reference 751

However, regardless of which of the above occurs, each physical message resulting (that is, each
normal message or distribution-list message resulting from the put) counts as only one message when:

• Checking whether the application has exceeded the permitted maximum number of messages in a
unit of work (see the MaxUncommittedMsgs queue manager attribute).

• Checking whether the triggering conditions are satisfied.
• Incrementing queue depths and checking whether the queues' maximum queue depth would be

exceeded.
5. Any change to the queue definitions that would have caused a handle to become invalid had the

queues been opened individually (for example, a change in the resolution path), does not cause the
distribution-list handle to become invalid. However, it does result in a failure for that particular queue
when the distribution-list handle is used on a subsequent MQPUT call.

Headers
If a message is put with one or more IBM MQ header structures at the beginning of the application
message data, the queue manager performs certain checks on the header structures to verify that they
are valid. If the queue manager detects an error, the call fails with an appropriate reason code. The
checks performed vary according to the particular structures that are present:

• Checks are performed only if a version-2 or later MQMD is used on the MQPUT or MQPUT1 call. Checks
are not performed if a version-1 MQMD is used, even if an MQMDE is present at the start of the message
data.

• Structures that are not supported by the local queue manager, and structures following the first MQDLH
in the message, are not validated.

• The MQDH and MQMDE structures are validated completely by the queue manager.
• Other structures are validated partially by the queue manager (not all fields are checked).

General checks performed by the queue manager include the following:

• The StrucId field must be valid.
• The Version field must be valid.
• The StrucLength field must specify a value that is large enough to include the structure plus any

variable-length data that forms part of the structure.
• The CodedCharSetId field must not be zero, or a negative value that is not valid (MQCCSI_DEFAULT,

MQCCSI_EMBEDDED, MQCCSI_Q_MGR, and MQCCSI_UNDEFINED are not valid in most IBM MQ header
structures).

• The BufferLength parameter of the call must specify a value that is large enough to include the
structure (the structure must not extend beyond the end of the message).

In addition to general checks on structures, the following conditions must be satisfied:

• The sum of the lengths of the structures in a PCF message must equal the length specified by the
BufferLength parameter on the MQPUT or MQPUT1 call. A PCF message is a message that has a
format name of MQFMT_ADMIN, MQFMT_EVENT, or MQFMT_PCF.

• An IBM MQ structure must not be truncated, except in the following situations where truncated
structures are permitted:

– Messages that are report messages.
– PCF messages.
– Messages containing an MQDLH structure. (Structures following the first MQDLH can be truncated;

structures preceding the MQDLH cannot.)
• An IBM MQ structure must not be split over two or more segments; the structure must be contained

entirely within one segment.

752 IBM MQ Developing Applications Reference

Buffer
For the Visual Basic programming language, the following points apply:

• If the size of the Buffer parameter is less than the length specified by the BufferLength parameter,
the call fails with reason code MQRC_BUFFER_LENGTH_ERROR.

• The Buffer parameter is declared as being of type String. If the data to be placed on the queue is not
of type String, use the MQPUTAny call in place of MQPUT.

The MQPUTAny call has the same parameters as the MQPUT call, except that the Buffer parameter
is declared as being of type Any, allowing any type of data to be placed on the queue. However, this
means that Buffer cannot be checked to ensure that it is at least BufferLength bytes in size.

C invocation

MQPUT (Hconn, Hobj, &MsgDesc, &PutMsgOpts, BufferLength, Buffer,
 &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hobj; /* Object handle */
MQMD MsgDesc; /* Message descriptor */
MQPMO PutMsgOpts; /* Options that control the action of MQPUT */
MQLONG BufferLength; /* Length of the message in Buffer */
MQBYTE Buffer[n]; /* Message data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

 CALL 'MQPUT' USING HCONN, HOBJ, MSGDESC, PUTMSGOPTS, BUFFERLENGTH,
 BUFFER, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Object handle
 01 HOBJ PIC S9(9) BINARY.
** Message descriptor
 01 MSGDESC.
 COPY CMQMDV.
** Options that control the action of MQPUT
 01 PUTMSGOPTS.
 COPY CMQPMOV.
** Length of the message in BUFFER
 01 BUFFERLENGTH PIC S9(9) BINARY.
** Message data
 01 BUFFER PIC X(n).
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQPUT (Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer,
 CompCode, Reason);

Declare the parameters as follows:

Developing applications reference 753

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hobj fixed bin(31); /* Object handle */
dcl MsgDesc like MQMD; /* Message descriptor */
dcl PutMsgOpts like MQPMO; /* Options that control the action of
 MQPUT */
dcl BufferLength fixed bin(31); /* Length of the message in Buffer */
dcl Buffer char(n); /* Message data */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQPUT,(HCONN,HOBJ,MSGDESC,PUTMSGOPTS,BUFFERLENGTH, X
 BUFFER,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
MSGDESC CMQMDA , Message descriptor
PUTMSGOPTS CMQPMOA , Options that control the action of MQPUT
BUFFERLENGTH DS F Length of the message in BUFFER
BUFFER DS CL(n) Message data
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQPUT Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer, CompCode,
 Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim MsgDesc As MQMD 'Message descriptor'
Dim PutMsgOpts As MQPMO 'Options that control the action of MQPUT'
Dim BufferLength As Long 'Length of the message in Buffer'
Dim Buffer As String 'Message data'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQPUT1 - Put one message
The MQPUT1 call puts one message on a queue, or distribution list, or to a topic.

The queue, distribution list, or topic does not need to be open.

Syntax
MQPUT1 (Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

754 IBM MQ Developing Applications Reference

On z/OS for CICS applications the MQCONN call can be omitted, and the following value
specified for Hconn :
MQHC_DEF_HCONN

Default connection handle.

ObjDesc
Type: MQOD - input/output

This is a structure that identifies the queue to which the message is added, or the topic to which the
message is published. See “MQOD - Object descriptor” on page 475 for details.

If the structure is a queue, the user must be authorized to open the queue for output. The queue must
not be a model queue.

MsgDesc
Type: MQMD - input/output

This structure describes the attributes of the message being sent, and receives feedback information
after the put request is complete. See “MQMD - Message descriptor” on page 417 for details.

If the application provides a version-1 MQMD, the message data can be prefixed with an MQMDE
structure to specify values for the fields that exist in the version-2 MQMD but not the version-1. Set
the Format field in the MQMD to MQFMT_MD_EXTENSION to indicate that an MQMDE is present. See
“MQMDE - Message descriptor extension” on page 467 for more details.

The application does not need to provide an MQMD structure if a valid message handle is supplied
in the MsgHandle field of the MQGMO structure or in the OriginalMsgHandle or NewMsgHandle
fields of the MQPMO structure. If nothing is provided in one of these fields, the descriptor of the
message is taken from the descriptor associated with the message handles.

PutMsgOpts
Type: MQPMO - input/output

See “MQPMO - Put message options” on page 495 for details.

BufferLength
Type: MQLONG - input

The length of the message in Buffer. Zero is valid, and indicates that the message contains no
application data. The upper limit depends on various factors; see “MQPUT - Put message” on page
741 for the description of the BufferLength parameter.

Buffer
Type: MQBYTExBufferLength - input

This is a buffer containing the application message data to be sent. Align the buffer on a boundary
appropriate to the nature of the data in the message. 4-byte alignment is suitable for most messages
(including messages containing IBM MQ header structures), but some messages might require more
stringent alignment. For example, a message containing a 64-bit binary integer might require 8-byte
alignment.

If Buffer contains character or numeric data, set the CodedCharSetId and Encoding fields in the
MsgDesc parameter to the values appropriate to the data; this enables the receiver of the message to
convert the data (if necessary) to the character set and encoding used by the receiver.

Note: All the other parameters on the MQPUT1 call must be in the character set and encoding of the
local queue manager (given by the CodedCharSetId queue manager attribute and MQENC_NATIVE).

In the C programming language, the parameter is declared as a pointer-to-void; the address of any
type of data can be specified as the parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this case, the parameter
address passed by programs written in C or System/390 assembler can be null.

CompCode
Type: MQLONG - output

Developing applications reference 755

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_MULTIPLE_REASONS

(2136, X'858') Multiple reason codes returned.
MQRC_INCOMPLETE_GROUP

(2241, X'8C1') Message group not complete.
MQRC_INCOMPLETE_MSG

(2242, X'8C2') Logical message not complete.
MQRC_PRIORITY_EXCEEDS_MAXIMUM

(2049, X'801') Message Priority exceeds maximum value supported.
MQRC_UNKNOWN_REPORT_OPTION

(2104, X'838') Report options in message descriptor not recognized.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_ALIAS_BASE_Q_TYPE_ERROR

(2001, X'7D1') Alias base queue not a valid type.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_BACKED_OUT

(2003, X'7D3') Unit of work backed out.
MQRC_BUFFER_ERROR

(2004, X'7D4') Buffer parameter not valid.
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.
MQRC_CF_NOT_AVAILABLE

(2345, X'929') coupling facility not available.

756 IBM MQ Developing Applications Reference

MQRC_CF_STRUC_AUTH_FAILED
(2348, X'92C') Coupling-facility structure authorization check failed.

MQRC_CF_STRUC_ERROR
(2349, X'92D') Coupling-facility structure not valid.

MQRC_CF_STRUC_FAILED
(2373, X'945') Coupling-facility structure failed.

MQRC_CF_STRUC_IN_USE
(2346, X'92A') Coupling-facility structure in use.

MQRC_CF_STRUC_LIST_HDR_IN_USE
(2347, X'92B') Coupling-facility structure list-header in use.

MQRC_CFGR_ERROR
(2416, X'970') PCF group parameter structure MQCFGR in the message data is not valid.

MQRC_CFH_ERROR
(2235, X'8BB') PCF header structure not valid.

MQRC_CFIF_ERROR
(2414, X'96E') PCF integer filter parameter structure in the message data is not valid.

MQRC_CFIL_ERROR
(2236, X'8BC') PCF integer list parameter structure or PCIF*64 integer list parameter structure
not valid.

MQRC_CFIN_ERROR
(2237, X'8BD') PCF integer parameter structure or PCIF*64 integer parameter structure not valid.

MQRC_CFSF_ERROR
(2415, X'96F') PCF string filter parameter structure in the message data is not valid.

MQRC_CFSL_ERROR
(2238, X'8BE') PCF string list parameter structure not valid.

MQRC_CFST_ERROR
(2239, X'8BF') PCF string parameter structure not valid.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CLUSTER_EXIT_ERROR
(2266, X'8DA') Cluster workload exit failed.

MQRC_CLUSTER_RESOLUTION_ERROR
(2189, X'88D') Cluster name resolution failed.

MQRC_CLUSTER_RESOURCE_ERROR
(2269, X'8DD') Cluster resource error.

MQRC_COD_NOT_VALID_FOR_XCF_Q
(2106, X'83A') COD report option not valid for XCF queue.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_CONTENT_ERROR
2554 (X'09FA') Message content could not be parsed to determine whether the message can be
delivered to a subscriber with an extended message selector.

MQRC_CONTEXT_HANDLE_ERROR
(2097, X'831') Queue handle referred to does not save context.

Developing applications reference 757

MQRC_CONTEXT_NOT_AVAILABLE
(2098, X'832') Context not available for queue handle referred to.

MQRC_DATA_LENGTH_ERROR
(2010, X'7DA') Data length parameter not valid.

MQRC_DB2_NOT_AVAILABLE
(2342, X'926') Db2 subsystem not available.

MQRC_DEF_XMIT_Q_TYPE_ERROR
(2198, X'896') Default transmission queue not local.

MQRC_DEF_XMIT_Q_USAGE_ERROR
(2199, X'897') Default transmission queue usage error.

MQRC_DH_ERROR
(2135, X'857') Distribution header structure not valid.

MQRC_DLH_ERROR
(2141, X'85D') Dead letter header structure not valid.

MQRC_EPH_ERROR
(2420, X'974') Embedded PCF structure not valid.

MQRC_EXPIRY_ERROR
(2013, X'7DD') Expiry time not valid.

MQRC_FEEDBACK_ERROR
(2014, X'7DE') Feedback code not valid.

MQRC_GLOBAL_UOW_CONFLICT
(2351, X'92F') Global units of work conflict.

MQRC_GROUP_ID_ERROR
(2258, X'8D2') Group identifier not valid.

MQRC_HANDLE_IN_USE_FOR_UOW
(2353, X'931') Handle in use for global unit of work.

MQRC_HANDLE_NOT_AVAILABLE
(2017, X'7E1') No more handles available.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HEADER_ERROR
(2142, X'85E') IBM MQ header structure not valid.

MQRC_IIH_ERROR
(2148, X'864') IMS information header structure not valid.

MQRC_LOCAL_UOW_CONFLICT
(2352, X'930') Global unit of work conflicts with local unit of work.

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

MQRC_MDE_ERROR
(2248, X'8C8') Message descriptor extension not valid.

MQRC_MISSING_REPLY_TO_Q
(2027, X'7EB') Missing reply-to queue.

MQRC_MISSING_WIH
(2332, X'91C') Message data does not begin with MQWIH.

MQRC_MSG_FLAGS_ERROR
(2249, X'8C9') Message flags not valid.

MQRC_MSG_SEQ_NUMBER_ERROR
(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE') Message length greater than maximum for queue.

758 IBM MQ Developing Applications Reference

MQRC_MSG_TOO_BIG_FOR_Q_MGR
(2031, X'7EF') Message length greater than maximum for queue manager.

MQRC_MSG_TYPE_ERROR
(2029, X'7ED') Message type in message descriptor not valid.

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

MQRC_NO_DESTINATIONS_AVAILABLE
(2270, X'8DE') No destination queues available.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OBJECT_IN_USE
(2042, X'7FA') Object already open with conflicting options.

MQRC_OBJECT_LEVEL_INCOMPATIBLE
(2360, X'938') Object level not compatible.

MQRC_OBJECT_NAME_ERROR
(2152, X'868') Object name not valid.

MQRC_OBJECT_NOT_UNIQUE
(2343, X'927') Object not unique.

MQRC_OBJECT_Q_MGR_NAME_ERROR
(2153, X'869') Object queue manager name not valid.

MQRC_OBJECT_RECORDS_ERROR
(2155, X'86B') Object records not valid.

MQRC_OBJECT_TYPE_ERROR
(2043, X'7FB') Object type not valid.

MQRC_OD_ERROR
(2044, X'7FC') Object descriptor structure not valid.

MQRC_OFFSET_ERROR
(2251, X'8CB') Message segment offset not valid.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_ORIGINAL_LENGTH_ERROR
(2252, X'8CC') Original length not valid.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_PAGESET_FULL
(2192, X'890') External storage medium is full.

MQRC_PCF_ERROR
(2149, X'865') PCF structures not valid.

MQRC_PERSISTENCE_ERROR
(2047, X'7FF') Persistence not valid.

MQRC_PERSISTENT_NOT_ALLOWED
(2048, X'800') Queue does not support persistent messages.

MQRC_PMO_ERROR
(2173, X'87D') Put-message options structure not valid.

MQRC_PMO_RECORD_FLAGS_ERROR
(2158, X'86E') Put message record flags not valid.

MQRC_PRIORITY_ERROR
(2050, X'802') Message priority not valid.

Developing applications reference 759

MQRC_PUBLICATION_FAILURE
(2502, X'9C6') The publication has not been delivered to any of the subscribers.

MQRC_PUT_INHIBITED
(2051, X'803') Put calls inhibited for the queue.

MQRC_PUT_MSG_RECORDS_ERROR
(2159, X'86F') Put message records not valid.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_FULL
(2053, X'805') Queue already contains maximum number of messages.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_Q_SPACE_NOT_AVAILABLE
(2056, X'808') No space available on disk for queue.

MQRC_Q_TYPE_ERROR
(2057, X'809') Queue type not valid.

MQRC_RECS_PRESENT_ERROR
(2154, X'86A') Number of records present not valid.

MQRC_REMOTE_Q_NAME_ERROR
(2184, X'888') Remote queue name not valid.

MQRC_REPORT_OPTIONS_ERROR
(2061, X'80D') Report options in message descriptor not valid.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_RESPONSE_RECORDS_ERROR
(2156, X'86C') Response records not valid.

MQRC_RFH_ERROR
(2334, X'91E') MQRFH or MQRFH2 structure not valid.

MQRC_RMH_ERROR
(2220, X'8AC') Reference message header structure not valid.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

MQRC_SEGMENT_LENGTH_ZERO
(2253, X'8CD') Length of data in message segment is zero.

MQRC_SELECTION_NOT_AVAILABLE
2551 (X'09F7') A possible subscriber for the publication exists, but the queue manager cannot
check whether to send the publication to the subscriber.

MQRC_STOPPED_BY_CLUSTER_EXIT
(2188, X'88C') Call rejected by cluster workload exit.

MQRC_STORAGE_CLASS_ERROR
(2105, X'839') Storage class error.

MQRC_STORAGE_MEDIUM_FULL
(2192, X'890') External storage medium is full.

760 IBM MQ Developing Applications Reference

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED
(2024, X'7E8') No more messages can be handled within current unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE
(2072, X'818') Syncpoint support not available.

MQRC_TM_ERROR
(2265, X'8D9') Trigger message structure not valid.

MQRC_TMC_ERROR
(2191, X'88F') Character trigger message structure not valid.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UNKNOWN_ALIAS_BASE_Q
(2082, X'822') Unknown alias base queue.

MQRC_UNKNOWN_DEF_XMIT_Q
(2197, X'895') Unknown default transmission queue.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRC_UNKNOWN_OBJECT_Q_MGR
(2086, X'826') Unknown object queue manager.

MQRC_UNKNOWN_REMOTE_Q_MGR
(2087, X'827') Unknown remote queue manager.

MQRC_UNKNOWN_XMIT_Q
(2196, X'894') Unknown transmission queue.

MQRC_UOW_ENLISTMENT_ERROR
(2354, X'932') Enlistment in global unit of work failed.

MQRC_UOW_MIX_NOT_SUPPORTED
(2355, X'933') Mixture of unit-of-work calls not supported.

MQRC_UOW_NOT_AVAILABLE
(2255, X'8CF') Unit of work not available for the queue manager to use.

MQRC_WIH_ERROR
(2333, X'91D') MQWIH structure not valid.

MQRC_WRONG_CF_LEVEL
(2366, X'93E') Coupling-facility structure is wrong level.

MQRC_WRONG_MD_VERSION
(2257, X'8D1') Wrong version of MQMD supplied.

MQRC_XMIT_Q_TYPE_ERROR
(2091, X'82B') Transmission queue not local.

MQRC_XMIT_Q_USAGE_ERROR
(2092, X'82C') Transmission queue with wrong usage.

MQRC_XQH_ERROR
(2260, X'8D4') Transmission queue header structure not valid.

For detailed information about these codes, see Messages and reason codes.

Usage notes
1. Both the MQPUT and MQPUT1 calls can be used to put messages on a queue; which call to use

depends on the circumstances:

Developing applications reference 761

• Use the MQPUT call to place multiple messages on the same queue.

An MQOPEN call specifying the MQOO_OUTPUT option is issued first, followed by one or more
MQPUT requests to add messages to the queue; finally the queue is closed with an MQCLOSE call.
This gives better performance than repeated use of the MQPUT1 call.

• Use the MQPUT1 call to put only one message on a queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a single call, minimizing the
number of calls that must be issued.

2. If an application puts a sequence of messages on the same queue without using message groups,
the order of those messages is preserved if certain conditions are satisfied. However, in most
environments the MQPUT1 call does not satisfy these conditions, and so does not preserve message
order. The MQPUT call must be used instead in these environments. See MQPUT usage notes for
details.

3. The MQPUT1 call can be used to put messages to distribution lists. For general information about this,
see the usage notes for the MQOPEN and MQPUT calls.

Distribution lists are supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ clients connected to these systems.

The following differences apply when using the MQPUT1 call:

a. If the application provides MQRR response records, they must be provided using the MQOD
structure; they cannot be provided using the MQPMO structure.

b. The reason code MQRC_OPEN_FAILED is never returned by MQPUT1 in the response records; if a
queue fails to open, the response record for that queue contains the reason code resulting from the
open operation.

If an open operation for a queue succeeds with a completion code of MQCC_WARNING, the
completion code and reason code in the response record for that queue are replaced by the
completion and reason codes resulting from the put operation.

As with the MQOPEN and MQPUT calls, the queue manager sets the response records (if provided)
only when the outcome of the call is not the same for all queues in the distribution list; this is
indicated by the call completing with reason code MQRC_MULTIPLE_REASONS.

4. If the MQPUT1 call is used to put a message on a cluster queue, the call behaves as though
MQOO_BIND_NOT_FIXED had been specified on the MQOPEN call.

5. If a message is put with one or more IBM MQ header structures at the beginning of the application
message data, the queue manager performs certain checks on the header structures to verify that they
are valid. For more information about this, see the usage notes for the MQPUT call.

6. If more than one of the warning situations arise (see the CompCode parameter), the reason code
returned is the first one in the following list that applies:

a. MQRC_MULTIPLE_REASONS
b. MQRC_INCOMPLETE_MSG
c. MQRC_INCOMPLETE_GROUP
d. MQRC_PRIORITY_EXCEEDS_MAXIMUM or MQRC_UNKNOWN_REPORT_OPTION

7. For the Visual Basic programming language, the following points apply:

• If the size of the Buffer parameter is less than the length specified by the BufferLength
parameter, the call fails with reason code MQRC_BUFFER_LENGTH_ERROR.

762 IBM MQ Developing Applications Reference

• The Buffer parameter is declared as being of type String. If the data to be placed on the queue is
not of type String, use the MQPUT1Any call in place of MQPUT1.

The MQPUT1Any call has the same parameters as the MQPUT1 call, except that the Buffer
parameter is declared as being of type Any, allowing any type of data to be placed on the queue.
However, this means that Buffer cannot be checked to ensure that it is at least BufferLength
bytes in size.

8. When an MQPUT1 call is issued with MQPMO_SYNCPOINT, the default behavior changes, so that
the put operation is completed asynchronously. This might cause a change in the behavior of some
applications that rely on certain fields in the MQOD and MQMD structures being returned, but which
now contain undefined values. An application can specify MQPMO_SYNC_RESPONSE to ensure that
the put operation is performed synchronously and that all the appropriate field values are completed.

C invocation

MQPUT1 (Hconn, &ObjDesc, &MsgDesc, &PutMsgOpts,
 BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQOD ObjDesc; /* Object descriptor */
MQMD MsgDesc; /* Message descriptor */
MQPMO PutMsgOpts; /* Options that control the action of MQPUT1 */
MQLONG BufferLength; /* Length of the message in Buffer */
MQBYTE Buffer[n]; /* Message data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

 CALL 'MQPUT1' USING HCONN, OBJDESC, MSGDESC, PUTMSGOPTS,
 BUFFERLENGTH, BUFFER, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Object descriptor
 01 OBJDESC.
 COPY CMQODV.
** Message descriptor
 01 MSGDESC.
 COPY CMQMDV.
** Options that control the action of MQPUT1
 01 PUTMSGOPTS.
 COPY CMQPMOV.
** Length of the message in BUFFER
 01 BUFFERLENGTH PIC S9(9) BINARY.
** Message data
 01 BUFFER PIC X(n).
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQPUT1 (Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer,
 CompCode, Reason);

Declare the parameters as follows:

Developing applications reference 763

dcl Hconn fixed bin(31); /* Connection handle */
dcl ObjDesc like MQOD; /* Object descriptor */
dcl MsgDesc like MQMD; /* Message descriptor */
dcl PutMsgOpts like MQPMO; /* Options that control the action of
 MQPUT1 */
dcl BufferLength fixed bin(31); /* Length of the message in Buffer */
dcl Buffer char(n); /* Message data */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

 CALL MQPUT1,(HCONN,OBJDESC,MSGDESC,PUTMSGOPTS,BUFFERLENGTH, X
 BUFFER,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
OBJDESC CMQODA , Object descriptor
MSGDESC CMQMDA , Message descriptor
PUTMSGOPTS CMQPMOA , Options that control the action of MQPUT1
BUFFERLENGTH DS F Length of the message in BUFFER
BUFFER DS CL(n) Message data
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQPUT1 Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer,
 CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim ObjDesc As MQOD 'Object descriptor'
Dim MsgDesc As MQMD 'Message descriptor'
Dim PutMsgOpts As MQPMO 'Options that control the action of MQPUT1'
Dim BufferLength As Long 'Length of the message in Buffer'
Dim Buffer As String 'Message data'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQSET - Set object attributes
Use the MQSET call to change the attributes of an object represented by a handle. The object must be a
queue.

Syntax
MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs, CharAttrLength, CharAttrs,
Compcode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

764 IBM MQ Developing Applications Reference

On z/OS for CICS applications the MQCONN call can be omitted, and the following value
specified for Hconn :
MQHC_DEF_HCONN

Default connection handle.

Hobj
Type: MQHOBJ - input

This handle represents the queue object with attributes that are to be set. The handle was returned by
a previous MQOPEN call that specified the MQOO_SET option.

SelectorCount
Type: MQLONG - input

This is the count of selectors that are supplied in the Selectors array. It is the number of attributes
that are to be set. Zero is a valid value. The maximum number allowed is 256.

Selectors
Type: MQLONGxSelectorCount - input

This is an array of SelectorCount attribute selectors; each selector identifies an attribute (integer or
character) with a value that is to be set.

Each selector must be valid for the type of queue that Hobj represents. Only certain MQIA_* and
MQCA_* values are allowed; as listed later.

Selectors can be specified in any order. Attribute values that correspond to integer attribute selectors
(MQIA_* selectors) must be specified in IntAttrs in the same order in which these selectors occur
in Selectors. Attribute values that correspond to character attribute selectors (MQCA_* selectors)
must be specified in CharAttrs in the same order in which those selectors occur. MQIA_* selectors
can be interleaved with the MQCA_* selectors; only the relative order within each type is important.

You can specify the same selector more than once; if you do, the last value specified for a particular
selector is the one that takes effect.

Note:

1. The integer and character attribute selectors are allocated within two different ranges; the MQIA_*
selectors reside within the range MQIA_FIRST through MQIA_LAST, and the MQCA_* selectors
within the range MQCA_FIRST through MQCA_LAST.

For each range, the constants MQIA_LAST_USED and MQCA_LAST_USED define the highest value
that the queue manager accepts.

2. If all the MQIA_* selectors occur first, the same element numbers can be used to address
corresponding elements in the Selectors and IntAttrs arrays.

3. If the SelectorCount parameter is zero, Selectors is not referred to; in this case, the
parameter address passed by programs written in C or System/390 assembler might be null.

The attributes that can be set are listed in the following table. No other attributes can be set using this
call. For the MQCA_* attribute selectors, the constant that defines the length in bytes of the string that
is required in CharAttrs is supplied in parentheses.

Table 555. MQSET attribute selectors for queues

Selector Description Note

MQCA_TRIGGER_DATA Trigger data (MQ_TRIGGER_DATA_LENGTH).

MQIA_DIST_LISTS Distribution list support. 1

MQIA_INHIBIT_GET Whether get operations are allowed.

MQIA_INHIBIT_PUT Whether put operations are allowed.

MQIA_TRIGGER_CONTROL Trigger control.

Developing applications reference 765

Table 555. MQSET attribute selectors for queues (continued)

Selector Description Note

MQIA_TRIGGER_DEPTH Trigger depth.

MQIA_TRIGGER_MSG_PRIORITY Threshold message priority for triggers.

MQIA_TRIGGER_TYPE Trigger type.

Note:

1. Supported only on the following platforms:

• AIX

• IBM i

• Linux

• Windows

and for IBM MQ MQI clients connected to these systems.

IntAttrCount
Type: MQLONG - input

This is the number of elements in the IntAttrs array, and must be at least the number of MQIA_*
selectors in the Selectors parameter. Zero is a valid value if there are none.

IntAttrs
Type: MQLONGxIntAttrCount - input

This is an array of IntAttrCount integer attribute values. These attribute values must be in the same
order as the MQIA_* selectors in the Selectors array.

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not referred to; in this
case, the parameter address passed by programs written in C or System/390 assembler might be null.

CharAttrLength
Type: MQLONG - input

This is the length in bytes of the CharAttrs parameter, and must be at least the sum of the lengths of
the character attributes specified in the Selectors array. Zero is a valid value if there are no MQCA_*
selectors in Selectors.

CharAttrs
Type: MQCHAR x CharAttrLength - input

This is the buffer containing the character attribute values, concatenated together. The length of the
buffer is given by the CharAttrLength parameter.

The characters attributes must be specified in the same order as the MQCA_* selectors in the
Selectors array. The length of each character attribute is fixed (see Selectors). If the value to
be set for an attribute contains fewer nonblank characters than the defined length of the attribute,
pad the value in CharAttrs to the right with blanks to make the attribute value match the defined
length of the attribute.

If the CharAttrLength or SelectorCount parameter is zero, CharAttrs is not referred to; in this
case, the parameter address passed by programs written in C or System/390 assembler might be null.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.

766 IBM MQ Developing Applications Reference

MQCC_FAILED
Call failed.

Reason
Type: MQLONG - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed.
MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.
MQRC_CF_NOT_AVAILABLE

(2345, X'929') Coupling facility not available.
MQRC_CF_STRUC_FAILED

(2373, X'945') Coupling-facility structure failed.
MQRC_CF_STRUC_IN_USE

(2346, X'92A') Coupling-facility structure in use.
MQRC_CF_STRUC_LIST_HDR_IN_USE

(2347, X'92B') Coupling-facility structure list-header in use.
MQRC_CHAR_ATTR_LENGTH_ERROR

(2006, X'7D6') Length of character attributes not valid.
MQRC_CHAR_ATTRS_ERROR

(2007, X'7D7') Character attributes string not valid.
MQRC_CICS_WAIT_FAILED

(2140, X'85C') Wait request rejected by CICS.
MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.
MQRC_CONNECTION_NOT_AUTHORIZED

(2217, X'8A9') Not authorized for connection.
MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.
MQRC_DB2_NOT_AVAILABLE

(2342, X'926') Db2 subsystem not available.
MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.
MQRC_HOBJ_ERROR

(2019, X'7E3') Object handle not valid.

Developing applications reference 767

MQRC_INHIBIT_VALUE_ERROR
(2020, X'7E4') Value for inhibit-get or inhibit-put queue attribute not valid.

MQRC_INT_ATTR_COUNT_ERROR
(2021, X'7E5') Count of integer attributes not valid.

MQRC_INT_ATTRS_ARRAY_ERROR
(2023, X'7E7') Integer attributes array not valid.

MQRC_NOT_OPEN_FOR_SET
(2040, X'7F8') Queue not open for set.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page-set data set.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SELECTOR_COUNT_ERROR
(2065, X'811') Count of selectors not valid.

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRC_SELECTOR_LIMIT_EXCEEDED
(2066, X'812') Count of selectors too large.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_TRIGGER_CONTROL_ERROR
(2075, X'81B') Value for trigger-control attribute not valid.

MQRC_TRIGGER_DEPTH_ERROR
(2076, X'81C') Value for trigger-depth attribute not valid.

MQRC_TRIGGER_MSG_PRIORITY_ERR
(2077, X'81D') Value for trigger-message-priority attribute not valid.

MQRC_TRIGGER_TYPE_ERROR
(2078, X'81E') Value for trigger-type attribute not valid.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

Usage notes
1. Using this call, the application can specify an array of integer attributes, or a collection of character

attribute strings, or both. If no errors occur, the attributes specified are all set simultaneously. If an

768 IBM MQ Developing Applications Reference

error occurs (for example, if a selector is not valid, or an attempt is made to set an attribute to a value
that is not valid), the call fails and no attributes are set.

2. The values of attributes can be determined using the MQINQ call; see “MQINQ - Inquire object
attributes” on page 697 for details.

Note: Not all attributes with values that can be inquired using the MQINQ call can have their values
changed using the MQSET call. For example, no process-object or queue manager attributes can be set
with this call.

3. Attribute changes are preserved across restarts of the queue manager (other than alterations to
temporary dynamic queues, which do not survive restarts of the queue manager).

4. You cannot change the attributes of a model queue using the MQSET call. However, if you open a
model queue using the MQOPEN call with the MQOO_SET option, you can use the MQSET call to set
the attributes of the dynamic local queue that is created by the MQOPEN call.

5. If the object being set is a cluster queue, there must be a local instance of the cluster queue for the
open to succeed.

For more information about object attributes, see:

• “Attributes for queues” on page 826
• “Attributes for namelists” on page 859
• “Attributes for process definitions” on page 861
• “Attributes for the queue manager” on page 789

C invocation

MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,
 CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hobj; /* Object handle */
MQLONG SelectorCount; /* Count of selectors */
MQLONG Selectors[n]; /* Array of attribute selectors */
MQLONG IntAttrCount; /* Count of integer attributes */
MQLONG IntAttrs[n]; /* Array of integer attributes */
MQLONG CharAttrLength; /* Length of character attributes buffer */
MQCHAR CharAttrs[n]; /* Character attributes */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQSET' USING HCONN, HOBJ, SELECTORCOUNT, SELECTORS-TABLE,
 INTATTRCOUNT, INTATTRS-TABLE, CHARATTRLENGTH,
 CHARATTRS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Object handle
 01 HOBJ PIC S9(9) BINARY.
** Count of selectors
 01 SELECTORCOUNT PIC S9(9) BINARY.
** Array of attribute selectors
 01 SELECTORS-TABLE.
 02 SELECTORS PIC S9(9) BINARY OCCURS n TIMES.
** Count of integer attributes
 01 INTATTRCOUNT PIC S9(9) BINARY.
** Array of integer attributes

Developing applications reference 769

 01 INTATTRS-TABLE.
 02 INTATTRS PIC S9(9) BINARY OCCURS n TIMES.
** Length of character attributes buffer
 01 CHARATTRLENGTH PIC S9(9) BINARY.
** Character attributes
 01 CHARATTRS PIC X(n).
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,
 IntAttrs, CharAttrLength, CharAttrs, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hobj fixed bin(31); /* Object handle */
dcl SelectorCount fixed bin(31); /* Count of selectors */
dcl Selectors(n) fixed bin(31); /* Array of attribute selectors */
dcl IntAttrCount fixed bin(31); /* Count of integer attributes */
dcl IntAttrs(n) fixed bin(31); /* Array of integer attributes */
dcl CharAttrLength fixed bin(31); /* Length of character attributes
 buffer */
dcl CharAttrs char(n); /* Character attributes */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying
 CompCode */

High Level Assembler invocation

CALL MQSET,(HCONN,HOBJ,SELECTORCOUNT,SELECTORS,INTATTRCOUNT, X
 INTATTRS,CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
SELECTORCOUNT DS F Count of selectors
SELECTORS DS (n)F Array of attribute selectors
INTATTRCOUNT DS F Count of integer attributes
INTATTRS DS (n)F Array of integer attributes
CHARATTRLENGTH DS F Length of character attributes buffer
CHARATTRS DS CL(n) Character attributes
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Visual Basic invocation

MQSET Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,
 CharAttrLength, CharAttrs, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim SelectorCount As Long 'Count of selectors'
Dim Selectors As Long 'Array of attribute selectors'
Dim IntAttrCount As Long 'Count of integer attributes'
Dim IntAttrs As Long 'Array of integer attributes'
Dim CharAttrLength As Long 'Length of character attributes buffer'
Dim CharAttrs As String 'Character attributes'

770 IBM MQ Developing Applications Reference

Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

MQSETMP - Set message property
Use the MQSETMP call to set or modify a property of a message handle.

Syntax
MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type, ValueLength, Value, Compcode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager.

The value must match the connection handle that was used to create the message handle specified
in the Hmsg parameter. If the message handle was created using MQHC_UNASSOCIATED_HCONN,
a valid connection must be established on the thread setting a property of the message handle,
otherwise the call fails with reason code MQRC_CONNECTION_BROKEN.

Hmsg
Type: MQHMSG - input

This is the message handle to be modified. The value was returned by a previous MQCRTMH call.

SetPropOpts
Type: MQSMPO - input

Control how message properties are set.

This structure allows applications to specify options that control how message properties are set. The
structure is an input parameter on the MQSETMP call. See MQSMPO for further information.

Name
Type: MQCHARV- input

This is the name of the property to set.

See Property names and Property name restrictions for further information about the use of property
names.

PropDesc
Type: MQPD - input/output

This structure is used to define the attributes of a property, including:

• what happens if the property is not supported
• what message context the property belongs to
• what messages the property is copied into as it flows

See MQPD for further information about this structure.

Type
Type: MQLONG - input

The data type of the property being set. It can be one of the following:

MQTYPE_BOOLEAN
A Boolean. ValueLength must be 4.

MQTYPE_BYTE_STRING
A byte string. ValueLength must be zero or greater.

Developing applications reference 771

MQTYPE_INT8
An 8-bit signed integer. ValueLength must be 1.

MQTYPE_INT16
A 16-bit signed integer. ValueLength must be 2.

MQTYPE_INT32
A 32-bit signed integer. ValueLength must be 4.

MQTYPE_INT64
A 64-bit signed integer. ValueLength must be 8.

MQTYPE_FLOAT32
A 32-bit floating-point number. ValueLength must be 4.
Note: this type is not supported with applications using IBM COBOL for z/OS.

MQTYPE_FLOAT64
A 64-bit floating-point number. ValueLength must be 8.
Note: this type is not supported with applications using IBM COBOL for z/OS.

MQTYPE_STRING
A character string. ValueLength must be zero or greater, or the special value
MQVL_NULL_TERMINATED.

MQTYPE_NULL
The property exists but has a null value. ValueLength must be zero.

ValueLength
Type: MQLONG - input

The length in bytes of the property value in the Value parameter. Zero is valid only for null values
or for strings or byte strings. Zero indicates that the property exists but that the value contains no
characters or bytes.

The value must be greater than or equal to zero or the following special value if the Type parameter
has MQTYPE_STRING set:
MQVL_NULL_TERMINATED

The value is delimited by the first null encountered in the string. The null is not included as part of
the string. This value is invalid if MQTYPE_STRING is not also set.
Note: The null character used to terminate a string if MQVL_NULL_TERMINATED is set is a null
from the character set of the Value.

Value
Type: MQBYTExValueLength - input

The value of the property to be set. The buffer must be aligned on a boundary appropriate to the
nature of the data in the value.

In the C programming language, the parameter is declared as a pointer-to-void; the address of any
type of data can be specified as the parameter.

If ValueLength is zero, Value is not referred to. In this case, the parameter address passed by
programs written in C or System/390 assembler can be null.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

772 IBM MQ Developing Applications Reference

The reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_RFH_FORMAT_ERROR
(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

If CompCode is MQCC_FAILED:
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'089C') Adapter not available.
MQRC_ADAPTER_SERV_LOAD_ERROR

(2130, X'852') Unable to load adapter service module.
MQRC_ASID_MISMATCH

(2157, X'86D') Primary and home ASIDs differ.
MQRC_BUFFER_ERROR

(2004, X'07D4') Value parameter not valid.
MQRC_BUFFER_LENGTH_ERROR

(2005, X'07D5') Value length parameter not valid.
MQRC_CALL_IN_PROGRESS

(2219, X'08AB') MQI call entered before previous call completed.
MQRC_HMSG_ERROR

(2460, X'099C') Message handle pointer not valid.
MQRC_MSG_HANDLE_IN_USE

(2499, X'09C3') Message handle already in use.
MQRC_OPTIONS_ERROR

(2046, X'07FE') Options not valid or not consistent.
MQRC_PD_ERROR

(2482, X'09B2') Property descriptor structure not valid.
MQRC_PROPERTY_NAME_ERROR

(2442, X'098A') Invalid property name.
MQRC_PROPERTY_TYPE_ERROR

(2473, X'09A9') Invalid property data type.
MQRC_PROP_NUMBER_FORMAT_ERROR

(2472, X'09A8') Number format error encountered in value data.
MQRC_SMPO_ERROR

(2463, X'099F') Set message property options structure not valid.
MQRC_SOURCE_CCSID_ERROR

(2111, X'083F') Property name coded character set identifier not valid.
MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.
MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

C invocation

MQSETMP (Hconn, Hmsg, &SetPropOpts, &Name, &PropDesc, Type,
ValueLength, &Value, &CompCode, &Reason);

Developing applications reference 773

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHMSG Hmsg; /* Message handle */
MQSMPO SetPropOpts; /* Options that control the action of MQSETMP */
MQCHARV Name; /* Property name */
MQPD PropDesc; /* Property descriptor */
MQLONG Type; /* Property data type */
MQLONG ValueLength; /* Length of property value in Value */
MQBYTE Value[n]; /* Property value */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

 CALL 'MQSETMP' USING HCONN, HMSG, SETMSGOPTS, NAME, PROPDESC, TYPE,
 VALUELENGTH, VALUE, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Message handle
 01 HMSG PIC S9(18) BINARY.
** Options that control the action of MQSETMP
 01 SETMSGOPTS.
 COPY CMQSMPOV.
** Property name
 01 NAME
 COPY CMQCHRVV.
** Property descriptor
 01 PROPDESC.
 COPY CMQPDV.
** Property data type
 01 TYPE PIC S9(9) BINARY.
** Length of property value in VALUE
 01 VALUELENGTH PIC S9(9) BINARY.
** Property value
 01 VALUE PIC X(n).
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type, ValueLength,
 Value, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hmsg fixed bin(63); /* Message handle */
dcl SetPropOpts like MQSMPO; /* Options that control the action of MQSETMP */
dcl Name like MQCHARV; /* Property name */
dcl PropDesc like MQPD; /* Property descriptor */
dcl Type fixed bin(31); /* Property data type */
dcl ValueLength fixed bin(31); /* Length of property value in Value */
dcl Value char(n); /* Property value */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

774 IBM MQ Developing Applications Reference

High Level Assembler invocation

 CALL MQSETMP,(HCONN,HMSG,SETMSGHOPTS,NAME,PROPDESC,TYPE,VALUELENGTH,
 VALUE,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HMSG DS D Message handle
SETMSGOPTS CMQSMPOA , Options that control the action of MQSETMP
NAME CMQCHRVA , Property name
PROPDESC CMQPDA , Property descriptor
TYPE DS F Property data type
VALUELENGTH DS F Length of property value in VALUE
VALUE DS CL(n) Property value
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQSTAT - Retrieve status information
Use the MQSTAT call to retrieve status information. The type of status information returned is determined
by the Type value specified on the call.

Syntax
MQSTAT (Hconn, Type, Stat, Compcode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications the MQCONN call can be omitted, and the following value specified for
Hconn :
MQHC_DEF_HCONN

Default connection handle.

Type
Type: MQLONG - input

Type of status information being requested. The > valid values are:

MQSTAT_TYPE_ASYNC_ERROR
Return information about previous asynchronous put operations.

MQSTAT_TYPE_RECONNECTION

Return information about reconnection. If the connection is reconnecting or failed to reconnect,
the information describes the failure which caused the connection to begin reconnecting.

This value is only valid for client connections. For other types of connection, the call fails with
reason code MQRC_ENVIRONMENT_ERROR

MQSTAT_TYPE_RECONNECTION_ERROR

Return information about a previous failure related to reconnect. If the connection failed to
reconnect, the information describes the failure which caused reconnection to fail.

This value is only valid for client connections. For other types of connection, the call fails with
reason code MQRC_ENVIRONMENT_ERROR.

Developing applications reference 775

Stat
Type: MQSTS - input/output

Status information structure. See “MQSTS - Status reporting structure” on page 585 for details.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_API_EXIT_ERROR

(2374, X'946') API exit failed
MQRC_API_EXIT_LOAD_ERROR

(2183, X'887') Unable to load API exit.
MQRC_CALL_IN_PROGRESS

(2219, X'8AB') MQI call entered before previous call complete.
MQRC_CONNECTION_BROKEN

(2009, X'7D9') Connection to queue manager lost.
MQRC_CONNECTION_STOPPING

(2203, X'89B') Connection shutting down.
MQRC_FUNCTION_NOT_SUPPORTED

(2298, X'8FA') The function requested is not available in the current environment.
MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.
MQRC_Q_MGR_STOPPING

(2162,X'872' - Queue manager stopping
MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.
MQRC_STAT_TYPE_ERROR

(2430, X'97E' Error with MQSTAT type
MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.
MQRC_STS_ERROR

(2426, X'97A') Error with MQSTS structure
MQRC_UNEXPECTED_ERROR

(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

776 IBM MQ Developing Applications Reference

Usage notes
1. A call to MQSTAT specifying a type of MQSTAT_TYPE_ASYNC_ERROR returns information about

previous asynchronous MQPUT and MQPUT1 operations. The MQSTS structure passed back on return
from the MQSTAT call contains the first recorded asynchronous warning or error information for that
connection. If further errors or warnings follow the first, they do not normally alter these values.
However, if an error occurs with a completion code of MQCC_WARNING, a subsequent failure with a
completion code of MQCC_FAILED is returned instead.

2. If no errors have occurred since the connection was established or since the last call to MQSTAT then a
CompCode of MQCC_OK and Reason of MQRC_NONE are returned in the MQSTS structure.

3. Counts of the number of asynchronous calls that have been processed under the connection
handle are returned by way of three counter fields; PutSuccessCount, PutWarningCount
and PutFailureCount. These counters are incremented by the queue manager each time an
asynchronous operation is processed successfully, has a warning, or fails (note that for accounting
purposes a put to a distribution list counts once per destination queue rather than once per
distribution list). A counter is not incremented beyond the maximum positive value AMQ_LONG_MAX.

4. A successful call to MQSTAT results in any previous error information or counts being reset.
5. The behavior of MQSTAT depends on the value of the MQSTAT Type parameter you provide.
6. MQSTAT_TYPE_ASYNC_ERROR

a. A call to MQSTAT specifying a type of MQSTAT_TYPE_ASYNC_ERROR returns information
about previous asynchronous MQPUT and MQPUT1 operations. The MQSTS structure passed
back on return from the MQSTAT call contains the first recorded asynchronous warning or
error information for that connection. If further errors or warnings follow the first, they
do not normally alter these values. However, if an error occurs with a completion code of
MQCC_WARNING, a subsequent failure with a completion code of MQCC_FAILED is returned
instead.

b. If no errors have occurred since the connection was established or since the last call to MQSTAT
then a CompCode of MQCC_OK and Reason of MQRC_NONE are returned in the MQSTS structure.

c. Counts of the number of asynchronous calls that have been processed under the connection
handle are returned by way of three counter fields; PutSuccessCount, PutWarningCount
and PutFailureCount. These counters are incremented by the queue manager each time
an asynchronous operation is processed successfully, has a warning, or fails (note that for
accounting purposes a put to a distribution list counts once per destination queue rather than
once per distribution list). A counter is not incremented beyond the maximum positive value
AMQ_LONG_MAX.

d. A successful call to MQSTAT results in any previous error information or counts being reset.

MQSTAT_TYPE_RECONNECTION

Suppose you call MQSTAT with Type set to MQSTAT_TYPE_RECONNECTION inside an event handler
during reconnection. Consider these examples.
The client is attempting reconnection or failed to reconnect.

CompCode in the MQSTS structure is MQCC_FAILED and Reason might be either
MQRC_CONNECTION_BROKEN or MQRC_Q_MGR_QUIESCING. ObjectType is MQOT_Q_MGR,
ObjectName is the name of the queue manager, and ObjectQMgrName is blank.

The client completed reconnection successfully or was never disconnected.
CompCode in the MQSTS structure is MQCC_OK and the Reason is MQRC_NONE

Subsequent calls to MQSTAT return the same results.

MQSTAT_TYPE_RECONNECTION_ERROR

Suppose you call MQSTAT with Type set to MQSTAT_TYPE_RECONNECTION_ERROR in response to
receiving MQRC_RECONNECT_FAILED to an MQI call. Consider these examples.

Developing applications reference 777

An authorization failure occurred when a queue was being reopened during reconnection to a
different queue manager.

CompCode in the MQSTS structure is MQCC_FAILED and Reason is the reason that the
reconnection failed, such as MQRC_NOT_AUTHORIZED. ObjectType is the type of object
that caused the problem, such as MQOT_QUEUE, ObjectName is the name of the queue and
ObjectQMgrName the name of the queue manager owning the queue.

A socket connection error occurred during reconnection.
CompCode in the MQSTS structure is MQCC_FAILED and Reason is the reason that the
reconnection failed, such as MQRC_HOST_NOT_AVAILABLE. ObjectType is MQOT_Q_MGR,
ObjectName is the name of the queue manager, and ObjectQMgrName is blank.

Subsequent calls to MQSTAT return the same results.

C invocation

MQSTAT (Hconn, StatType, &Stat, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection Handle */
MQLONG StatType; /* Status type */
MQSTS Stat; /* Status information structure */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQSTAT' USING HCONN, STATTYPE, STAT, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Status type
 01 STATTYPE PIC S9(9) BINARY.
** Status information
 01 STAT.
 COPY CMQSTSV.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQSTAT (Hconn, StatType, Stat, Compcode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /* Connection handle */
dcl StatType fixed bin(31); /* Status type */
dcl Stat like MQSTS; /* Status information structure */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

778 IBM MQ Developing Applications Reference

System/390 Assembler invocation

CALL MQSTAT,(HCONN,STATTYPE,STAT,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
STATTYPE DS F Status type
STAT CMQSTSA, Status information structure
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQSUB - Register subscription
Use the MQSUB call to register the applications subscription to a particular topic.

Syntax
MQSUB (Hconn, SubDesc, Hobj, Hsub, Compcode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications the MQCONN call can be omitted, and the following value specified for
Hconn :
MQHC_DEF_HCONN

Default connection handle.

SubDesc
Type: MQSD - input/output

This is a structure that identifies the object in use that is being registered by the application. See
“MQSD - Subscription descriptor” on page 561 for more information.

Hobj
Type: MQHOBJ - input/output

This handle represents the access that has been established to obtain the messages sent to this
subscription. These messages can either be stored on a specific queue or the queue manager can
manage their storage without using a specific queue.

To use a specific queue, you must associate it with the subscription when the subscription is created.
You can do this in two ways:

• By using the DEFINE SUB MQSC command and provided that command with the name of a queue
object.

• By providing this handle when calling MQSUB with the MQSO_CREATE

If this handle is provided as an input parameter on the call, it must be a valid object handle returned
from a previous MQOPEN call of a queue using at least one of the following options:

– MQOO_INPUT_*
– MQOO_BROWSE
– MQOO_OUTPUT (if the queue is a remote queue)

If this is not the case, the call fails with MQRC_HOBJ_ERROR. It cannot be an object handle to an
alias queue that resolves to a topic object. If so, the call fails with MQRC_HOBJ_ERROR.

Developing applications reference 779

If the queue manager is to manage the storage of messages sent to this subscription, this should be
set when you create the subscription, by using the MQSO_MANAGED option. The queue manager then
returns this handle as an output parameter on the call. The handle that is returned is known as a
managed handle. If MQHO_NONE is specified but MQSO_MANAGED is not specified, the call fails with
MQRC_HOBJ_ERROR.

When a managed handle is returned to you by the queue manager, you can use it on an MQGET
or MQCB call with or without browse options, on an MQINQ call, or on MQCLOSE. You cannot
use it on MQPUT, MQSUB, MQSET; attempting to do so fails with MQRC_NOT_OPEN_FOR_OUTPUT,
MQRC_HOBJ_ERROR, or MQRC_NOT_OPEN_FOR_SET.

If this subscription is being resumed using the MQSO_RESUME option in the MQSD structure,
the handle can be returned to the application in this parameter by setting MQSO_MANAGED to
MQHO_NONE. You can do this whether the subscription is using a managed handle or not and it can
be useful to provide subscriptions created using DEFINE SUB with the handle to the subscription
queue defined on that command. In the case where an administratively created subscription
is being resumed, the queue opens with MQOO_INPUT_AS_Q_DEF and MQOO_BROWSE. If you
need to specify other options, the application must open the subscription queue explicitly and
provide the object handle on the call. If there is a problem opening the queue the call fails with
MQRC_INVALID_DESTINATION. If the Hobj is provided, it must be equivalent to the Hobj in the
original MQSUB call. This means if an object handle returned from an MQOPEN call is being provided,
the handle must be to the same queue as previously used. If it is not the same queue, the call fails
with MQRC_HOBJ_ERROR.

If this subscription is being altered using the MQSO_ALTER option in the MQSD structure, then a
different Hobj can be provided. Any publications that have been delivered to the queue and were
previously identified through this parameter stay on that queue and it is the responsibility of the
application to retrieve those messages if the Hobj parameter now represents a different queue.

Table 556. Using hobj with various subscription options

Options Hobj Description

MQSO_CREATE + MQSO_MANAGED Ignored on input Creates a subscription with storage
of messages managed by the queue
manager

MQSO_CREATE A valid object handle Creates a subscription providing a
specific queue as the destination
for messages.

MQSO_RESUME MQHO_NONE Resumes a previously created
subscription whether it was
managed or not, and has the queue
manager return the object handle
for use by the application.

MQSO_RESUME A valid, matching, object handle Resumes a previously created
subscription that uses a specific
queue as the destination for
messages and use an object handle
with specific open options.

MQSO_ALTER + MQSO_MANAGED MQHO_NONE Alters an existing subscription
that was previously using a
specific queue, so it is now a
managed subscription. The class
of destination (managed or not)
cannot be changed.

780 IBM MQ Developing Applications Reference

Table 556. Using hobj with various subscription options (continued)

Options Hobj Description

MQSO_ALTER A valid object handle Alters an existing subscription,
whether it was managed or not, so
that it now uses a specific queue.
When the MQSO_MANAGED option
is not used, the queue provided
can be changed, but the class
of destination (managed or not)
cannot be changed.

Whether it was provided or returned, Hobj must be specified on subsequent MQGET or MQCB calls
that want to receive the publication messages sent to this subscription.

The Hobj handle is no longer valid when the MQCLOSE call is issued on it, or when the unit of
processing that defines the scope of the handle terminates (until the application disconnects). The
scope of the object handle returned is the same as that of the connection handle specified on the call.
See Hconn (MQHCONN) - output for information about handle scope. An MQCLOSE of the Hobj handle
does not affect the Hsub handle.

Hsub
Type: MQHOBJ - output

This handle represents the subscription that has been made. It can be used for two further
operations:

• It can be used on a subsequent MQSUBRQ call to request that publications be sent when the
MQSO_PUBLICATIONS_ON_REQUEST option has been used when making the subscription.

• It can be used on a subsequent MQCLOSE call to remove the subscription that has been made. The
Hsub handle ceases to be valid when the MQCLOSE call is issued, or when the unit of processing
that defines the scope of the handle terminates. The scope of the object handle returned is the
same as that of the connection handle specified on the call. An MQCLOSE of the Hsub handle does
not affect the Hobj handle.

This handle cannot be passed to an MQGET or MQCB call. You must use the Hobj parameter. You
cannot use this handle on any IBM MQ call other than MQCLOSE or MQSUBRQ. Passing this handle to
any other IBM MQ call results in MQRC_HOBJ_ERROR.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion
MQCC_WARNING

Warning (partial completion)
MQCC_FAILED

Call failed

Reason
Type: MQLONG - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK, the reason code is as follows:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED, the reason code is one of the following:

Developing applications reference 781

MQRC_CLUSTER_RESOLUTION_ERROR
(2189, X'88D') Cluster name resolution failed.

MQRC_DURABILITY_NOT_ALLOWED
2436 (X'0984') An MQSUB call using the MQSO_DURABLE option failed.

MQRC_FUNCTION_NOT_SUPPORTED
2298 (X'08FA') The function requested is not available in the current environment.

MQRC_HOBJ_ERROR
2019 (X'07E3') Object handle Hobj not valid.

MQRC_IDENTITY_MISMATCH
2434 (X'0982') Subscription name matches existing subscription.

MQRC_NOT_AUTHORIZED
2035 (X'07F3') The user is not authorized to perform the operation.

MQRC_NO_SUBSCRIPTION
2428 (X'097C') The identified subscription name does not exist.

MQRC_OBJECT_STRING_ERROR
2441 (X'0989') Objectstring field not valid.

MQRC_OPTIONS_ERROR
2046 (X'07FE') Options parameter or field contains options that are not valid, or a combination of
options that is not valid.

MQRC_Q_MGR_QUIESCING
2161 (X'0871') Queue manager quiescing.

MQRC_RECONNECT_Q_MGR_REQD
2555 (X'09FB'X) The MQCNO_RECONNECT_Q_MGR option is required.

MQRC_RETAINED_MSG_Q_ERROR
2525 (X'09DD') Retained publications which exist for the subscribed topic string, cannot be
retrieved.

MQRC_RETAINED_NOT_DELIVERED
2526 (X'09DE') The retained publications which exist for the subscribed topic string, cannot be
delivered to the subscription destination queue, and cannot be delivered to the dead-letter queue.

MQRC_SD_ERROR
2424 (X'0978') Subscription descriptor (MQSD) not valid.

MQRC_SELECTION_NOT_AVAILABLE
2551 (X'09F7') The selection string does not follow the IBM MQ selector syntax and no extended
message selection provider was available.

MQRC_SELECTION_STRING_ERROR
2519 (X'09D7') The selection string must be specified as described in the MQCHARV structure
documentation.

MQRC_SELECTOR_SYNTAX_ERROR
2459 (X'099B') An MQOPEN, MQPUT1, or MQSUB call was issued but a selection string was
specified which contained a syntax error.

MQRC_SUB_USER_DATA_ERROR
2431 (X'097F') SubUserData field not valid.

MQRC_SUB_NAME_ERROR
2440 (X'0988') SubName field not valid.

MQRC_SUB_ALREADY_EXISTS
2432 (X'0980') Subscription already exists.

MQRC_SUB_USER_DATA_ERROR
2431 (X'097F') SubUserData field not valid.

MQRC_TOPIC_STRING_ERROR
2425 (X'0979') Topic string is not valid.

782 IBM MQ Developing Applications Reference

MQRC_UNKNOWN_OBJECT_NAME
2085 (X'0825') Object identified in the MQSD ObjectName field cannot be found.

MQRC_SUB_JOIN_NOT_ALTERABLE
29440 (X'7300') Subscription sharing mode is incompatible with existing subscription. This error
could be returned when attempting to resume a JMS 2.0 shared subscription in a non-JMS
application.

For detailed information about these codes, see Messages and reason codes.

Usage notes
• The subscription is made to a topic, named either using the short name of a pre-defined topic object,

the full name of the topic string, or it is formed by the concatenation of two parts. See the description of
ObjectName and ObjectString in “MQSD - Subscription descriptor” on page 561.

• The queue manager performs security checks when an MQSUB call is issued, to verify that the user
identifier under which the application is running has the appropriate level of authority before access
is permitted. The appropriate topic object is located in the topic hierarchy and an authority check is
made on this topic object to ensure authority to subscribe is set. If the MQSO_MANAGED option is not
used, an authority check is made on the destination queue to ensure that authority for output is set. If
the MQSO_MANAGED option is used, no authority check is made on the managed queue for output or
inquire access.

• If you do not provide an Hobj as input, the MQSUB call allocates two handles, an object handle (Hobj)
and a subscription handle (Hsub).

• The Hobj returned on the MQSUB call when the MQSO_MANAGED option is used, can be inquired in
order to find out attributes such as the Backout threshold and the Excessive backout requeue name.
You can also inquire the name of the managed queue, but you must not attempt to directly open this
queue.

• Subscriptions can be grouped allowing only a single publication to be delivered to the group of
subscriptions even where more than one of the group matched the publication. Subscriptions are
grouped using the MQSO_GROUP_SUB option and in order to group subscriptions they must be

– using the same named queue (that is not using the MQSO_MANAGED option) on the same queue
manager - represented by the Hobj parameter on the MQSUB call

– share the same SubCorrelId
– be of the same SubLevel

These attributes define the set of subscriptions considered to be in the group, and are also the
attributes that cannot be altered if a subscription is grouped. Alteration of SubLevel results in
MQRC_SUBLEVEL_NOT_ALTERABLE, and alteration of any of the others (which can be changed if a
subscription is not grouped) results in MQRC_GROUPING_NOT_ALTERABLE.

• Successful completion of the MQSUB call does not mean that the action completed. To check that
this call has completed, see the DEFINE SUB step in Checking that async commands for distributed
networks have finished.

• Fields in the MQSD are filled in on return from an MQSUB call which uses the MQSO_RESUME option.
The MQSD returned can be passed directly into an MQSUB call which uses the MQSO_ALTER option
with any changes you need to make to the subscription applied to the MQSD. Some fields have special
considerations as noted in the table.

Table 557. Special considerations for fields in the MQSD

Field name in MQSD Special considerations

Access or creation options Some of the options can be reset on return from the
MQSUB call. If you then reuse the MQSD in an MQSUB
call, the option you require must be explicitly set.

Developing applications reference 783

Table 557. Special considerations for fields in the MQSD (continued)

Field name in MQSD Special considerations

Durability options, Destination options, Registration
Options & Wildcard options

These options are set as appropriate

Publication options These options are set as appropriate, except
for MQSO_NEW_PUBLICATIONS_ONLY which is only
applicable to MQSO_CREATE.

Other options These options are unchanged on return from an
MQSUB call. They control how the API call is issued
and are not stored with the subscription. They must be
set as required on any subsequent MQSUB call reusing
the MQSD.

ObjectName This input only field is unchanged on return from an
MQSUB call.

ObjectString This input only field is unchanged on return from an
MQSUB call. The Full topic name used is returned in
the ResObjectString field, if a buffer is provided.

AlternateUserId and AlternateSecurityId These input only fields are unchanged on return from
an MQSUB call. They control how the API call is issued
and are not stored with the subscription. They must
set as required on any subsequent MQSUB call reusing
the MQSD.

SubExpiry On return from an MQSUB call using the
MQSO_RESUME option, this field is set to the original
expiry of the subscription and not the remaining expiry
time. If you then reuse the MQSD in an MQSUB call
using the MQSO_ALTER option you reset the expiry of
the subscription to start counting down again.

SubName This field is an input field on an MQSUB call and is not
changed on output.

SubUserData and SelectionString These variable length fields are returned on output
from an MQSUB call using the MQSO_RESUME option,
if a buffer is provided, and also a positive buffer length
in VSBufSize. If no buffer is provided only the length
is returned in the VSLength field of the MQCHARV. If
the buffer provided is smaller than the space required
to return the field, only VSBufSize bytes are returned
in the provided buffer.

If you then reuse the MQSD in an MQSUB call using
the MQSO_ALTER option and a buffer is not provided
but a non-zero VSLength is provided, if that length
matches the existing length of the field, no alteration
is made to the field.

784 IBM MQ Developing Applications Reference

Table 557. Special considerations for fields in the MQSD (continued)

Field name in MQSD Special considerations

SubCorrelId and PubAccountingToken If you do not use MQSO_SET_CORREL_ID, then the
SubCorrelId is generated by the queue manager. If
you do not use MQSO_SET_IDENTITY_CONTEXT, then
the PubAccountingToken is generated by the queue
manager.

These fields are returned in the MQSD from an MQSUB
call using the MQSO_RESUME option. If they are
generated by the queue manager, the generated value
is returned on an MQSUB call using the MQSO_CREATE
or MQSO_ALTER option.

PubPriority, SubLevel & PubApplIdentityData These fields are returned in the MQSD.

ResObjectString This output only field is returned in the MQSD if a
buffer is provided.

C invocation

MQSUB (Hconn, &SubDesc, &Hobj, &Hsub, &CompCode, &Reason)

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQSD SubDesc; /* Subscription descriptor */
MQHOBJ Hobj; /* Object handle */
MQHOBJ Hsub; /* Subscription handle */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQSUB' USING HCONN, SUBDESC, HOBJ, HSUB, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Subscription descriptor
 01 SUBDESC.
 COPY CMQSDV.
** Object handle
 01 HOBJ PIC S9(9) BINARY.
** Subscription handle
 01 HSUB PIC S9(9) BINARY.
** Completion code
 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQSUB (Hconn, SubDesc, Hobj, Hsub, CompCode, Reason)

Declare the parameters as follows:

Developing applications reference 785

dcl Hconn fixed bin(31); /* Connection handle */
dcl SubDesc like MQSD; /* Subscription descriptor */
dcl Hobj fixed bin(31); /* Object handle */
dcl Hsub fixed bin(31); /* Subscription handle */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQSUB,(HCONN,SUBDESC,HOBJ,HSUB,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
SUBDESC CMQSDA , Subscription descriptor
HOBJ DS F Object handle
HSUB DS F Subscription handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQSUBRQ - Subscription request
Use the MQSUBRQ call to make a request for the retained publication, when the subscriber has been
registered with MQSO_PUBLICATIONS_ON_REQUEST.

Syntax
MQSUBRQ (Hconn, Hsub, Action, SubRqOpts, Compcode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications the MQCONN call can be omitted, and the following value specified for
Hconn :
MQHC_DEF_HCONN

Default connection handle.

Hsub
Type: MQHOBJ - input

This handle represents the subscription for which an update is to be requested. The value of Hsub
was returned from a previous MQSUB call.

Action
Type: MQLONG - input

This parameter controls the particular action that is being requested on the subscription. The
following value must be specified:
MQSR_ACTION_PUBLICATION

This action requests that an update publication is sent for the specified topic. It can be used only
if the subscriber specified the option MQSO_PUBLICATIONS_ON_REQUEST on the MQSUB call
when it made the subscription. If the queue manager has a retained publication for the topic, this
is sent to the subscriber. If not, the call fails. If an application is sent a publication which was
retained, this is indicated by the MQIsRetained message property of that publication.

786 IBM MQ Developing Applications Reference

Since the topic in the existing subscription represented by the Hsub parameter can contain wildcards,
the subscriber might receive multiple retained publications.

SubRqOpts
Type: MQSRO - input/output

These options control the action of MQSUBRQ, see “MQSRO - Subscription request options” on page
582 for details.

If no options are required, programs written in C or S/390 assembler can specify a null parameter
address instead of specifying the address of an MQSRO structure.

CompCode
Type: MQLONG - output

The completion code; it is one of the following:
MQCC_OK

Successful completion
MQCC_WARNING

Warning (partial completion)
MQCC_FAILED

Call failed

Reason
Type: MQLONG - output

The reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_FUNCTION_NOT_SUPPORTED

2298 (X'08FA') The function requested is not available in the current environment.
MQRC_NO_RETAINED_MSG

2437 (X'0985') There are no retained publications currently stored for this topic.
MQRC_OPTIONS_ERROR

2046 (X'07FE') Options parameter or field contains options that are not valid, or a combination of
options that is not valid.

MQRC_Q_MGR_QUIESCING
2161 (X'0871') Queue manager quiescing.

MQRC_SRO_ERROR
2438 (X'0986') On the MQSUBRQ call, the Subscription Request Options MQSRO is not valid.

MQRC_RETAINED_MSG_Q_ERROR
2525 (X'09DD') Retained publications which exist for the subscribed topic string, cannot be
retrieved.

MQRC_RETAINED_NOT_DELIVERED
2526 (X'09DE') The retained publications which exist for the subscribed topic string, cannot be
delivered to the subscription destination queue, and cannot be delivered to the dead-letter queue.

For detailed information about these codes, see Messages and reason codes.

Usage notes
The following usage notes apply to the use of the Action code MQSR_ACTION_PUBLICATION:

Developing applications reference 787

1. If this verb completes successfully, the retained publications matching the subscription specified have
been sent to the subscription and can be received by using MQGET or MQCB using the Hobj returned
on the original MQSUB verb that created the subscription.

2. If the topic subscribed to by the original MQSUB verb that created the subscription contained a
wildcard, more than one retained publication can be sent. The number of publications sent as a result
of this call is recorded in the NumPubs field in the SubRqOpts structure.

3. If this verb completes with a reason code of MQRC_NO_RETAINED_MSG then there were no currently
retained publications for the topic specified.#

4. If this verb completes with a reason code of MQRC_RETAINED_MSG_Q_ERROR or
MQRC_RETAINED_NOT_DELIVERED then there are currently retained publications for the topic
specified but an error has occurred that that meant they were unable to be delivered.

5. The application must have a current subscription to the topic before it can make this call. If the
subscription was made in a previous instance of the application and a valid handle to the subscription
is not available, the application must first call MQSUB with the MQSO_RESUME option to obtain a
handle to it for use in this call.

6. The publications are sent to the destination that is registered for use with the current subscription
of this application. If the publications must be sent somewhere else, the subscription must first be
altered using the MQSUB call with the MQSO_ALTER option.

C invocation

MQSUB (Hconn, Hsub, Action, &SubRqOpts, &CompCode, &Reason)

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQHOBJ Hsub; /* Subscription handle */
MQLONG Action; /* Action requested by MQSUBRQ */
MQSRO SubRqOpts; /* Options that control the action of MQSUBRQ */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL invocation

CALL 'MQSUBRQ' USING HCONN, HSUB, ACTION, SUBRQOPTS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
01 HCONN PIC S9(9) BINARY.
** Subscription handle
01 HSUB PIC S9(9) BINARY.
** Action requested by MQSUBRQ
01 ACTION PIC S9(9) BINARY.
** Options that control the action of MQSUBRQ
01 SUBRQOPTS.
COPY CMQSROV.
** Completion code
01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
01 REASON PIC S9(9) BINARY.

PL/I invocation

call MQSUBRQ (Hconn, Hsub, Action, SubRqOpts, CompCode, Reason)

Declare the parameters as follows:

788 IBM MQ Developing Applications Reference

dcl Hconn fixed bin(31); /* Connection handle */
dcl Hsub fixed bin(31); /* Subscription handle */
dcl Action fixed bin(31); /* Action requested by MQSUBRQ */
dcl SubRqOpts like MQSRO; /* Options that control the action of MQSUBRQ */
dcl CompCode fixed bin(31); /* Completion code */
dcl Reason fixed bin(31); /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQSUBRQ,(HCONN, HSUB, ACTION, SUBRQOPTS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HSUB DS F Subscription handle
ACTION DS F Action requested by MQSUBRQ
SUBRQOPTS CMQSROA , Options that control the action of MQSUBRQ
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Attributes of objects
This collection of topics lists only those IBM MQ objects that can be the subject of an MQINQ function
call, and gives details of the attributes that can be inquired on and the selectors to be used.

Attributes for the queue manager
Some queue manager attributes are fixed for particular implementations; others can be changed by using
the MQSC command ALTER QMGR.

The attributes can also be displayed by using the command DISPLAY QMGR. Most queue manager
attributes can be inquired by opening a special MQOT_Q_MGR object, and using the MQINQ call with the
handle returned.

The following table summarizes the attributes that are specific to the queue manager. The attributes are
described in alphabetical order.

Note: The names of the attributes shown in this section are descriptive names used with the MQINQ call;
the names are the same as for the PCF commands. When MQSC commands are used to define, alter, or
display attributes, alternative short names are used; see MQSC commands for more information.

Table 558. Attributes for the queue manager

Attribute Description

AccountingConnOverride Override accounting settings.

AccountingInterval How often to write intermediate accounting records.

ActivityConnOverride Override activity settings.

ActivityTrace Controls the collection of IBM MQ MQI application activity trace.

AdoptNewMCACheck Elements checked to determine whether to adopt new MCA.

AdoptNewMCAType Whether to restart automatically an orphaned instance of an MCA of a particular channel type.

AlterationDate Date when definition was last changed

AlterationTime Time when definition was last changed

AuthorityEvent Controls whether authorization (Not Authorized) events are generated

BridgeEvent Control attribute for bridge events.

ChannelAutoDef Controls whether automatic channel definition is permitted

ChannelAutoDefEvent Controls whether channel automatic-definition events are generated

ChannelAutoDefExit Name of user exit for automatic channel definition

Developing applications reference 789

Table 558. Attributes for the queue manager (continued)

Attribute Description

ChannelEvent Control attribute for channel events.

ChannelInitiatorControl Control attribute for channel initiator

ChannelMonitoring Online monitoring data for channels

ChannelStatistics Controls collection of statistics data for channels.

ChinitAdapters Number of adapter subtasks for processing IBM MQ calls.

ChinitDispatchers Number of dispatchers to use for the channel initiator.

Reserved for IBM use.

ChinitTraceAutoStart Whether channel initiator trace should start automatically.

ChinitTraceTableSize Size of channel initiator's trace data space.

ClusterSenderMonitoringDefault Online monitoring data default for cluster sender channels

ClusterSenderStatistics Controls collection of statistics monitoring information for cluster sender channels.

ClusterWorkloadData User data for cluster workload exit

ClusterWorkloadExit Name of user exit for cluster workload management

ClusterWorkloadLength Maximum length of message data passed to cluster workload exit

CLWLMRUChannels Number of most recently used channels for cluster workload balancing

CLWLUseQ Cluster workload use remote queue.

CodedCharSetId Coded character set identifier

CommandEvent Control attribute for command events.

CommandInputQName attribute Command input queue name

CommandLevel Command level

CommandServerControl attribute Control attribute for command server.

Configuration Event attribute Control attribute for configuration events.

DeadLetterQName Name of dead-letter queue

DEFCLXQ Default cluster transmission queue type

DefXmitQName Default transmission queue name

DistLists Distribution list support

DNSGroup Name of group for TCP listener when using Workload Manager Dynamic Domain Name Services support.

DNSWLM Whether TCP listener registers with Workload Manager for Dynamic Domain Name Services.

ExpiryInterval Interval between scans for expired messages

IGQPutAuthority Intra-group queuing put authority

IGQUserId Intra-group queuing user identifier

InhibitEvent Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated

IPAddressVersion Version of the Internet Protocol address

IntraGroupqueuing Intra-group queuing support

ListenerTimer Time interval between attempts to restart listener after APPC or TCP/IP failure.

LocalEvent Controls whether local error events are generated

LoggerEvent Controls whether logger events are generated

LUGroupName Generic LU name for LU 6.2 listener that handles inbound transmissions for queue sharing group.

LUName Name of LU to use for outbound LU 6.2 transmissions.

LU62ARMSuffix Suffix of SYS1.PARMLIB member APPCPMxx, that nominates LUADD for this channel initiator.

LU62Channels Maximum number of current channels or connected clients that use LU 6.2.

MaxActiveChannels Maximum number of channels that can be active at any time.

MaxChannels Maximum number of current channels.

790 IBM MQ Developing Applications Reference

Table 558. Attributes for the queue manager (continued)

Attribute Description

MaxHandles Maximum number of handles

MaxMsgLength Maximum message length in bytes

MaxPriority attribute Maximum priority

MaxPropertiesLength Maximum length of property data in bytes

MaxUncommittedMsgs Maximum number of uncommitted messages within a unit of work

MQIAccounting Controls collection of accounting information for MQI data.

MQIStatistics Controls collection of statistics monitoring information for queue manager.

MsgMarkBrowseInterval Interval after which the queue manager can remove the mark from browsed messages.

OutboundPortMin With OutboundPortMin, defines range of port numbers to use when binding outgoing channels.

OutboundPortMin With OutboundPortMax, defines range of port numbers to use when binding outgoing channels.

PerformanceEvent Controls whether performance-related events are generated

Platform Platform on which the queue manager is running

PubSubNPInputMsg Whether to discard (or keep) an undelivered input message

PubSubNPResponse Controls the behavior of undelivered

PubSubMaxMsgRetryCount The number of retries when processing (under syncpoint) a failed command message

PubSubSyncPoint Whether only persistent (or all) messages should be processed under syncpoint

PubSubMode Whether the queued publish/subscribe interface is running

QMgrDesc Queue manager description

QMgrIdentifier Unique internally generated identifier of queue manager

QMgrName Queue manager name

QSGName Name of queue sharing group

QueueAccounting Controls collection of accounting information for queues.

QueueMonitoring Online monitoring data for queues

QueueStatistics Controls collection of statistics data for queues.

ReceiveTimeout How long TCP/IP channel waits for data before returning to inactive state.

ReceiveTimeoutMin Qualifier for ReceiveTimeout.

ReceiveTimeoutType Minimum time that TCP/IP channel waits for data before returning to inactive state.

RemoteEvent Controls whether remote error events are generated

RepositoryName Name of cluster for which this queue manager provides repository services

RepositoryNamelist Name of namelist object containing names of clusters for which this queue manager provides repository services

ScyCase Case of security profiles

SharedQMgrName Shared queue queue manager name

“SPLCAP” on page 822 IBM MQ Advanced Message security protection for a queue manager turned on or off.

SSLCRLNamelist 1 Name of namelist object containing names of authentication information objects.

SSLCryptoHardware 1 Cryptographic hardware configuration string.

SSLEvent Control attribute for TLS events.

SSLFIPSRequired Use only FIPS-certified algorithms for cryptography.

SSLKeyRepository 1 Location of TLS key repository.

SSLKeyResetCount TLS key reset count.

SSLTasks 1 Number of server subtasks for processing TLS calls.

StatisticsInterval How often to write statistics monitoring data.

StartStopEvent Controls whether start and stop events are generated

SyncPoint Syncpoint availability

Developing applications reference 791

Table 558. Attributes for the queue manager (continued)

Attribute Description

TCPChannels Maximum number of current channels or connected clients that use TCP/IP.

TCPKeepAlive Whether to use TCP KEEPALIVE to check other end of connection.

TCPName Name of TCP/IP system that you are using.

TCPStackType How channel initiator can use TCP/IP addresses.

TraceRouteRecording attribute Controls recording of trace-route information.

TriggerInterval Trigger-message interval

Version Version

XrCapability Specifies whether Telemetry commands are supported.

Notes:

1. This attribute cannot be inquired using the MQINQ call, and is not described in this section. See Change Queue Manager for details of this attribute.

Related tasks
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
Related reference
Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows

AccountingConnOverride (MQLONG)
This allows applications to override the setting of the ACCTMQI and ACCTQDATA values in the Qmgr
attribute.

The value is one of the following:
MQMON_DISABLED

Applications cannot override the setting of the ACCTMQI and ACCTQ Qmgr attributes using the
Options field in the MQCNO structure on the MQCONNX call. This is the default value.

MQMON_ENABLED
Applications can override the ACCTQ and ACCTMQI Qmgr attributes using the Options field in the
MQCNO structure.

Changes to this value are only effective for connections to the queue manager after the change to the
attribute.

This attribute is supported only on the following platforms:

• IBM i

• AIX and Linux

• Windows

To determine the value of this attribute, use the MQIA_ACCOUNTING_CONN_OVERRIDE selector with the
MQINQ call.

AccountingInterval (MQLONG)
This specifies how long before intermediate accounting records are written (in seconds).

The value is an integer in the range 0 to 604800, with a default value of 1800 (30 minutes). Specify 0 to
turn off intermediate records.

This attribute is supported only on the following platforms:

• IBM i

• AIX and Linux

792 IBM MQ Developing Applications Reference

• Linux

• Windows

To determine the value of this attribute, use the MQIA_ACCOUNTING_INTERVAL selector with the MQINQ
call.

ActivityConnOverride (MQLONG)
This allows applications to override the setting of the ACTVTRC value in the queue manager attribute.

The value is one of the following:
MQMON_DISABLED

Applications cannot override the setting of the ACTVTRC queue manager attribute using the Options
field in the MQCNO structure on the MQCONNX call. This is the default value.

MQMON_ENABLED
Applications can override the ACTVTRC queue manager attribute using the Options field in the MQCNO
structure.

Changes to this value are only effective for connections to the queue manager after the change to the
attribute.

This attribute is supported only on Multiplatforms.

To determine the value of this attribute, use the MQIA_ACTIVITY_CONN_OVERRIDE selector with the
MQINQ call.

ActivityTrace (MQLONG)
This controls the collection of IBM MQ MQI application activity trace.

The value is one of the following:
MQMON_ON

Collect IBM MQ MQI application activity trace.
MQMON_OFF

Do not collect IBM MQ MQI application activity trace. This is the default value.

If you set the queue manager attribute ACTVCONO to ENABLED, this value might be overridden for
individual connections using the Options field in the MQCNO structure.

Changes to this value are only effective for connections to the queue manager after the change to the
attribute.

This attribute is supported only on Multiplatforms.

To determine the value of this attribute, use the MQIA_ACTIVITY_TRACE selector with the MQINQ call.

AdoptNewMCACheck (MQLONG)
This defines the elements to check to determine whether to adopt an MCA when a new inbound channel
is detected that has the same name as an MCA that is already active

The value is one of the following:
MQADOPT_CHECK_Q_MGR_NAME

Check the queue manager name.
MQADOPT_CHECK_NET_ADDR

Check the network address.
MQADOPT_CHECK_ALL

Check the queue manager name and network address. If possible, perform this check to protect your
channels from being shut down, inadvertently or maliciously. This is the default value.

Developing applications reference 793

MQADOPT_CHECK_NONE
Do not check any elements.

Changes to this attribute take effect the next time that a channel attempts to adopt a channel.

This attribute is supported only on z/OS.

To determine the value of this attribute, use the MQIA_ADOPTNEWMCA_CHECK selector with the MQINQ
call.

AdoptNewMCAType (MQLONG)
This specifies whether to restart automatically an orphaned instance of an MCA of a particular channel
type when a new inbound channel request matching the AdoptNewMCACheck attribute is detected

It is one of the following values:
MQADOPT_TYPE_NO

Adopting orphaned channel instances is not required. This is the default value.
MQADOPT_TYPE_ALL

Adopt all channel types.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_ADOPTNEWMCA_TYPE selector with the MQINQ
call.

AlterationDate (MQCHAR12)
This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded
with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the MQCA_ALTERATION_DATE selector with the MQINQ call.
The length of this attribute is given by MQ_DATE_LENGTH.

AlterationTime (MQCHAR8)
This is the time when the definition was last changed. The format of the time is HH.MM.SS.

To determine the value of this attribute, use the MQCA_ALTERATION_TIME selector with the MQINQ call.
The length of this attribute is given by MQ_TIME_LENGTH.

AuthorityEvent (MQLONG)
This controls whether authorization (Not Authorized) events are generated. It is one of the following
values:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_AUTHORITY_EVENT selector with the MQINQ call.

BridgeEvent (MQLONG)
This specifies whether IMS bridge events are generated.

The value is one of the following:
MQEVR_ENABLED

Generate IMS bridge events, as follows:

MQRC_BRIDGE_STARTED

794 IBM MQ Developing Applications Reference

MQRC_BRIDGE_STOPPED

MQEVR_DISABLED
Do not generate IMS bridge events; this is the default value.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_BRIDGE_EVENT selector with the MQINQ call.

ChannelAutoDef (MQLONG)
This attribute controls the automatic definition of channels of type MQCHT_RECEIVER and
MQCHT_SVRCONN. Automatic definition of MQCHT_CLUSSDR channels is always enabled. The value is
one of the following:
MQCHAD_DISABLED

Channel auto-definition disabled.
MQCHAD_ENABLED

Channel auto-definition enabled.

This attribute is supported only on Multiplatforms.

To determine the value of this attribute, use the MQIA_CHANNEL_AUTO_DEF selector with the MQINQ
call.

ChannelAutoDefEvent (MQLONG)

This controls whether channel automatic-definition events are generated. It applies to channels of type
MQCHT_RECEIVER, MQCHT_SVRCONN, and MQCHT_CLUSSDR. The value is one of the following:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

This attribute is supported only on Multiplatforms.

To determine the value of this attribute, use the MQIA_CHANNEL_AUTO_DEF_EVENT selector with the
MQINQ call.

ChannelAutoDefExit (MQCHARn)
This is the name of the user exit for automatic channel definition. If this name is nonblank, and
ChannelAutoDef has the value MQCHAD_ENABLED, the exit is called each time that the queue
manager is about to create a channel definition. This applies to channels of type MQCHT_RECEIVER,
MQCHT_SVRCONN, and MQCHT_CLUSSDR. The exit can then do one of the following:

• Create the channel definition without change.
• Modify the attributes of the channel definition that is created.
• Suppress creation of the channel entirely.

Note: Both the length and the value of this attribute are environment specific. See the introduction to the
MQCD structure in “MQCD - Channel definition” on page 1466 for details of the value of this attribute in
various environments.

On z/OS, this attribute applies only to cluster-sender and cluster-receiver channels.

To determine the value of this attribute, use the MQCA_CHANNEL_AUTO_DEF_EXIT selector with the
MQINQ call. The length of this attribute is given by MQ_EXIT_NAME_LENGTH.

Developing applications reference 795

ChannelEvent (MQLONG)
This specifies whether channel events are generated.

It is one of the following values:
MQEVR_EXCEPTION

Only generate the following channel events:

• MQRC_CHANNEL_ACTIVATED
• MQRC_CHANNEL_CONV_ERROR
• MQRC_CHANNEL_NOT_ACTIVATED
• MQRC_CHANNEL_STOPPED with the following ReasonQualifiers:

MQRQ_CHANNEL_STOPPED_ERROR
MQRQ_CHANNEL_STOPPED_RETRY
MQRQ_CHANNEL_STOPPED_DISABLED

MQRC_CHANNEL_STOPPED_BY_USER

MQEVR_ENABLED
Generate all channel events. That is, in addition to those generated by EXCEPTION, generate the
following channel events:

• MQRC_CHANNEL_STARTED
• MQRC_CHANNEL_STOPPED with the following ReasonQualifier:

MQRQ_CHANNEL_STOPPED_OK

MQEVR_DISABLED
Do not generate channel events; this is the default value.

To determine the value of this attribute, use the MQIA_CHANNEL_EVENT selector with the MQINQ call.

ChannelInitiatorControl (MQLONG)
This specifies whether the channel initiator is to be started when the queue manager starts.

It is one of the following values:
MQSVC_CONTROL_MANUAL

The channel initiator is not to be started automatically.
MQSVC_CONTROL_Q_MGR

The channel initiator is to be started automatically when the queue manager starts.

To determine the value of this attribute, use the MQIA_CHINIT_CONTROL selector with the MQINQ call.

ChannelMonitoring (MQLONG)
This attribute specifies online monitoring data for channels.

The value is one of the following:
MQMON_NONE

Disable data collection for channel monitoring for all channels regardless of the setting of the
MONCHL channel attribute. This is the default value.

MQMON_OFF
Turn monitoring data collection off for channels that specify QMGR in the MONCHL channel attribute.

MQMON_LOW
Turn monitoring data collection on with a low ratio of data collection for channels specifying QMGR in
the MONCHL channel attribute.

MQMON_MEDIUM
Turn monitoring data collection on with a moderate ratio of data collection for channels specifying
QMGR in the MONCHL channel attribute.

796 IBM MQ Developing Applications Reference

MQMON_HIGH
Turn monitoring data collection on with a high ratio of data collection for channels specifying QMGR in
the MONCHL channel attribute.

On z/OS systems, enabling this parameter simply turns on statistics data collection,
regardless of the value you select. Specifying LOW, MEDIUM, or HIGH makes no difference to your results.

To determine the value of this attribute, use the MQIA_MONITORING_CHANNEL selector with the MQINQ
call.

ChannelStatistics (MQLONG)
This controls the collection of statistics data for channels.

The value is one of the following:
MQMON_NONE

Disable data collection for channel statistics for all channels regardless of the setting of the STATCHL
channel attribute. This is the default value.

MQMON_OFF
Turn statistics data collection off for channels that specify QMGR in the STATCHL channel attribute.

MQMON_LOW
Turn statistics data collection on with a low ratio of data collection for channels specifying QMGR in
the STATCHL channel attribute.

MQMON_MEDIUM
Turn statistics data collection on with a moderate ratio of data collection for channels specifying
QMGR in the STATCHL channel attribute.

MQMON_HIGH
Turn statistics data collection on with a high ratio of data collection for channels specifying QMGR in
the STATCHL channel attribute.

For most systems you are recommended to use MEDIUM. However, for a channel that processes a high
volume of messages each second, you might want to reduce the sampling level by selecting LOW. Also, for
a channel that processes only a few messages, and for which the most current information is important,
you might want to select HIGH.

On z/OS systems, enabling this parameter simply turns on statistics data collection,
regardless of the value you select. Specifying LOW, MEDIUM, or HIGH makes no difference to your results.
This parameter must be enabled in order to collect channel accounting records.

To determine the value of this attribute, use the MQIA_STATISTICS_CHANNEL selector with the MQINQ
call.

ChinitAdapters (MQLONG)
This is the number of adapter subtasks to use to process IBM MQ calls. The value must be 0 - 9999, with
a default value of 8.

The ratio of adapters to dispatchers (the ChinitDispatchers attribute) should be about 8 to 5. However,
if you have only few channels, you do not have to decrease the value of this parameter from the default
value. You can use the following values: for a test system, 8 (default); for a production system, 20. Ideally,
you should have 20 adapters, which gives greater parallelism of IBM MQ calls. This is important for
persistent messages. Fewer adapters might be better for nonpersistent messages.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_CHINIT_ADAPTERS selector with the MQINQ call.

ChinitDispatchers (MQLONG)
This is the number of dispatchers to use for the channel initiator. The value must be 0 - 9999, with a
default value of 5.

Developing applications reference 797

As a guideline, allow one dispatcher for 50 current channels. However, if you have only few channels, you
do not have to decrease the value of this attribute from the default value. If you are using TCP/IP, the
greatest number of dispatchers that are used for TCP/IP channels is 100, even if you specify a larger value
here. You can use the following settings: test systems, 5 (the default); production systems, 20 (you need
20 dispatchers to handle up to 1000 active channels).

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_CHINIT_DISPATCHERS selector with the MQINQ
call.

ChinitTraceAutoStart (MQLONG)
This specifies whether to start channel initiator trace automatically.

The value is one of the following:
MQTRAXSTR_YES

Start channel initiator trace automatically. This is the default value.
MQTRAXSTR_NO

Do not start channel initiator trace automatically.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_CHINIT_TRACE_AUTO_START selector with the
MQINQ call.

ChinitTraceTableSize (MQLONG)
This is the size of the channel initiator's trace data space (in MB).

The value must be in the range 0 through 2048, with a default value of 2.

Note: Whenever you use large z/OS data spaces, ensure that you have sufficient auxiliary storage on
your system to support any related z/OS paging activity. You might also need to increase the size of your
SYS1.DUMP data sets.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_CHINIT_TRACE_TABLE_SIZE selector with the
MQINQ call.

ClusterSenderMonitoringDefault (MQLONG)
This specifies the value to be substituted for the ChannelMonitoring attribute of automatically-defined
cluster sender channels.

The value is one of the following:
MQMON_Q_MGR

Collection of online monitoring data is inherited from the setting of the queue manager
ChannelMonitoring attribute. This is the default value.

MQMON_OFF
Monitoring for the channel is disabled

MQMON_LOW
Unless ChannelMonitoring is MQMON_NONE, monitoring is enabled with a low rate of data
collection with a minimal effect on system performance. The data collected is not likely to be the
most current.

MQMON_MEDIUM
Unless ChannelMonitoring is MQMON_NONE, monitoring is enabled with a moderate rate of data
collection with limited effect on system performance.

MQMON_HIGH
Unless ChannelMonitoring is MQMON_NONE, monitoring is enabled with a high rate of data
collection with a likely effect on system performance. The data collected is the most current available.

798 IBM MQ Developing Applications Reference

To determine the value of this attribute, use the MQIA_MONITORING_AUTO_CLUSSDR selector with the
MQINQ call.

ClusterSenderStatistics (MQLONG)
Because cluster sender channels can be automatically defined from the definition of CLUSRCVR in the
repository, you cannot alter the setting of the STATCHL attribute for these auto-defined cluster sender
channels using ALTER channel. For these channels the decision of whether to collect online monitoring
data is based on the setting of this queue manager attribute.

The value is one of the following:
MQMON_Q_MGR

Statistics data collection for auto-defined cluster sender channels is based on the value of the queue
manager attribute STATCHL. This is the default value.

MQMON_OFF
Switch off statistics data collection for auto-defined cluster sender channels.

MQMON_LOW
Enable statistics data collection for auto-defined cluster sender channels with a low ratio of data
collection.

MQMON_MEDIUM
Enable statistics data collection for auto-defined cluster sender channels with a moderate ratio of
data collection.

MQMON_HIGH
Enable statistics data collection for auto-defined cluster sender channels with a high ratio of data
collection.

For most systems we recommend MEDIUM. However, for an auto-defined cluster sender channel that
processes a high volume of messages each second, you might want to reduce the sampling level by
selecting LOW. Also, for a channel that processes only a few messages, and for which the most current
information is important, you might want to select HIGH.

On z/OS systems, enabling this parameter simply turns on statistics data collection,
regardless of the value you select. Specifying LOW, MEDIUM, or HIGH makes no difference to your results.
This parameter must be enabled in order to collect channel accounting records.

To determine the value of this attribute, use the MQIA_STATISTICS_AUTO_CLUSSDR selector with the
MQINQ call.

ClusterWorkloadData (MQCHAR32)
This is a user-defined 32-byte character string that is passed to the cluster workload exit when it is called.
If there is no data to pass to the exit, the string is blank.

To determine the value of this attribute, use the MQCA_CLUSTER_WORKLOAD_DATA selector with the
MQINQ call.

ClusterWorkloadExit (MQCHARn)
This is the name of the user exit for cluster workload management. If this name is not blank, the exit
is called each time that a message is put to a cluster queue or moved from one cluster-sender queue
to another. The exit can then either accept the queue instance selected by the queue manager as the
destination for the message, or select another queue instance.

Note: Both the length and the value of this attribute are environment specific.

To determine the value of this attribute, use the MQCA_CLUSTER_WORKLOAD_EXIT selector with the
MQINQ call. The length of this attribute is given by MQ_EXIT_NAME_LENGTH.

Developing applications reference 799

ClusterWorkloadLength (MQLONG)
This is the maximum length of message data that is passed to the cluster workload exit. The actual length
of data passed to the exit is the minimum of the following:

• The length of the message.
• The queue manager's MaxMsgLength attribute.
• The ClusterWorkloadLength attribute.

To determine the value of this attribute, use the MQIA_CLUSTER_WORKLOAD_LENGTH selector with the
MQINQ call.

CLWLMRUChannels (MQLONG)
This specifies the maximum number of most-recently-used cluster channels, to be considered for use by
the cluster workload choice algorithm.

This is a value in the range 1 through 999999999.

To determine the value of this attribute, use the MQIA_CLWL_MRU_CHANNELS selector with the MQINQ
call.

CLWLUseQ (MQLONG)
This specifies whether to use remote queues for the cluster workload.

The value is one of the following:
MQCLWL_USEQ_ANY

Use both local and remote queues.
MQCLWL_USEQ_LOCAL

Do not use remote queues. This is the default value.

To determine the value of this attribute, use the MQIA_CLWL_USEQ selector with the MQINQ call.

CodedCharSetId (MQLONG)
This defines the character set used by the queue manager for all character string fields defined in the MQI
such as the names of objects, and queue creation date and time. The character set must be one that has
single-byte characters for the characters that are valid in object names. It does not apply to application
data carried in the message. The value depends on the environment:

• On z/OS, the value is set from the system parameters when the queue manager is started; the default
value is 500.

• On Windows, the value is the primary CODEPAGE of the user creating the queue manager.
• On IBM i, the value is that which is set in the environment when the queue manager is first created.
• On AIX and Linux, the value is the default CODESET for the locale of the user creating the queue

manager.

To determine the value of this attribute, use the MQIA_CODED_CHAR_SET_ID selector with the MQINQ
call.

CommandEvent (MQLONG)
This specifies whether command events are generated, as follows:

MQEVR_DISABLED
Do not generate command events. This is the default.

MQEVR_ENABLED
Generate command events.

800 IBM MQ Developing Applications Reference

MQEVR_NO_DISPLAY
Command events are generated for all successful commands other than MQINQ.

To determine the value of this attribute, use the MQIA_COMMAND_EVENT selector with the MQINQ call.

CommandInputQName (MQCHAR48)
This is the name of the command input queue defined on the local queue manager. This is a queue
to which users can send commands, if authorized to do so. The name of the queue depends on the
environment:

• On z/OS, the name of the queue is SYSTEM.COMMAND.INPUT; MQSC and PCF commands can be sent
to it. See The MQSC commands for details of MQSC commands and Definitions of the Programmable
Command Formats for details of PCF commands.

• In all other environments, the name of the queue is SYSTEM.ADMIN.COMMAND.QUEUE, and only PCF
commands can be sent to it. However, an MQSC command can be sent to this queue if the MQSC
command is enclosed within a PCF command of type MQCMD_ESCAPE. See Escape for information
about the Escape command.

To determine the value of this attribute, use the MQCA_COMMAND_INPUT_Q_NAME selector with the
MQINQ call. The length of this attribute is given by MQ_Q_NAME_LENGTH.

CommandLevel (MQLONG)
Note: Support for the HP-UX operating system for all IBM MQ components, including server and clients, is
removed from IBM MQ 9.1.

This indicates the level of system control commands supported by the queue manager. This can be one of
the following values:
MQCMDL_LEVEL_800

Level 800 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 8.0
• IBM MQ for IBM i 8.0
• IBM MQ for Linux 8.0
• IBM MQ for Windows 8.0
• IBM MQ for z/OS 8.0

MQCMDL_LEVEL_801
Level 801 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 8.0.0 Fix Pack 2
• IBM MQ for HP-UX 8.0.0 Fix Pack 2
• IBM MQ for IBM i 8.0.0 Fix Pack 2
• IBM MQ for Linux 8.0.0 Fix Pack 2

MQCMDL_LEVEL_802
Level 802 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 8.0.0 Fix Pack 3
• IBM MQ for IBM i 8.0.0 Fix Pack 3
• IBM MQ for Linux 8.0.0 Fix Pack 3
• IBM MQ for Windows 8.0.0 Fix Pack 3

Developing applications reference 801

MQCMDL_LEVEL_900
Level 900 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.0
• IBM MQ for IBM i 9.0
• IBM MQ for Linux 9.0
• IBM MQ for Windows 9.0
• IBM MQ for z/OS 9.0

MQCMDL_LEVEL_901
Level 901 of system control commands.

This value is returned by the following versions:

• IBM MQ for Linux 9.0.1
• IBM MQ for Windows 9.0.1
• IBM MQ for z/OS 9.0.1

MQCMDL_LEVEL_902
Level 902 of system control commands.

This value is returned by the following versions:

• IBM MQ for Linux 9.0.2
• IBM MQ for Windows 9.0.2
• IBM MQ for z/OS 9.0.2

MQCMDL_LEVEL_903
Level 903 of system control commands.

This value is returned by the following versions:

• IBM MQ for Linux 9.0.3
• IBM MQ for Windows 9.0.3
• IBM MQ for z/OS 9.0.3

MQCMDL_LEVEL_904
Level 904 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.0.4
• IBM MQ for Linux 9.0.4
• IBM MQ for Windows 9.0.4
• IBM MQ for z/OS 9.0.4

MQCMDL_LEVEL_905
Level 905 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.0.5
• IBM MQ for Linux 9.0.5
• IBM MQ for Windows 9.0.5
• IBM MQ for z/OS 9.0.5

MQCMDL_LEVEL_910
Level 910 of system control commands.

This value is returned by the following versions:

802 IBM MQ Developing Applications Reference

• IBM MQ for AIX 9.1.0
• IBM MQ for IBM i 9.1.0
• IBM MQ for Linux 9.1.0
• IBM MQ for Windows 9.1.0
• IBM MQ for z/OS 9.1.0

MQCMDL_LEVEL_911
Level 911 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.1.1
• IBM MQ for Linux 9.1.1
• IBM MQ for Windows9.1.1
• IBM MQ for z/OS 9.1.1

MQCMDL_LEVEL_912
Level 912 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.1.2
• IBM MQ for Linux 9.1.2
• IBM MQ for Windows9.1.2
• IBM MQ for z/OS 9.1.2

MQCMDL_LEVEL_913
Level 913 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.1.3
• IBM MQ for Linux 9.1.3
• IBM MQ for Windows9.1.3
• IBM MQ for z/OS 9.1.3

MQCMDL_LEVEL_914
Level 914 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.1.4
• IBM MQ for Linux 9.1.4
• IBM MQ for Windows9.1.4
• IBM MQ for z/OS 9.1.4

MQCMDL_LEVEL_915
Level 915 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.1.5
• IBM MQ for Linux 9.1.5
• IBM MQ for Windows9.1.5
• IBM MQ for z/OS 9.1.5

MQCMDL_LEVEL_920
Level 920 of system control commands.

This value is returned by the following versions:

Developing applications reference 803

• IBM MQ for AIX 9.2.0
• IBM MQ for IBM i 9.2.0
• IBM MQ for Linux 9.2.0
• IBM MQ for Windows 9.2.0
• IBM MQ for z/OS 9.2.0

MQCMDL_LEVEL_921
Level 921 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.2.1
• IBM MQ for Linux 9.2.1
• IBM MQ for Windows9.2.1
• IBM MQ for z/OS 9.2.1

MQCMDL_LEVEL_922
Level 922 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.2.2
• IBM MQ for Linux 9.2.2
• IBM MQ for Windows9.2.2
• IBM MQ for z/OS 9.2.2

MQCMDL_LEVEL_923
Level 923 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.2.3
• IBM MQ for Linux 9.2.3
• IBM MQ for Windows9.2.3
• IBM MQ for z/OS 9.2.3

MQCMDL_LEVEL_924
Level 924 of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.2.4
• IBM MQ for Linux 9.2.4
• IBM MQ for Windows9.2.4
• IBM MQ for z/OS 9.2.4

MQCMDL_LEVEL_925
Level 925of system control commands.

This value is returned by the following versions:

• IBM MQ for AIX 9.2.5
• IBM MQ for Linux 9.2.5
• IBM MQ for Windows9.2.5
• IBM MQ for z/OS 9.2.5

The set of system control commands that corresponds to a particular value of the CommandLevel
attribute varies according to the value of the Platform attribute; both must be used to decide which
system control commands are supported.

804 IBM MQ Developing Applications Reference

To determine the value of this attribute, use the MQIA_COMMAND_LEVEL selector with the MQINQ call.

CommandServerControl (MQLONG)
Specifies whether the command server is to be started when the queue manager starts.

The value can be any of the following values:
MQSVC_CONTROL_MANUAL

The command server is not to be started automatically.
MQSVC_CONTROL_Q_MGR

The command server is to be started automatically when the queue manager starts.

This attribute is not supported on z/OS.

To determine the value of this attribute, use the MQIA_CMD_SERVER_CONTROL selector with the MQINQ
call.

ConfigurationEvent (MQLONG)
Controls whether configuration events are generated.

To determine the value of this attribute, use the MQIA_CONFIGURATION_EVENT selector with the MQINQ
call.

The value can be any of the following values:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

CurrentQFileSize (MQLONG)
The current size of the queue file in megabytes, rounded up to the nearest megabyte.

Table 559. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The value for this queue status attribute is whatever size the queue currently is, rounded up to the nearest
megabyte. For a new queue with default attributes the value of CurrentQFileSize is 1.

The maximum value of this attribute is 99,999,9999 MB and there is no default value for this attribute.

CurrentMaxQFileSize (MQLONG)
The current maximum size the queue file can grow to, rounded up to the nearest megabyte, given the
current block size in use on a queue.

Table 560. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The use of this field is two fold:

• If you set MaxQFileSize to the default value for the current block size, CurrentMaxQFileSize
shows the actual value that the default value equates to.

• If CurrentMaxQFileSize does not match MaxQFileSize, you know the queue must be drained in
order to adopt a bigger granularity.

Developing applications reference 805

Note: See Modifying IBM MQ queue files for more information on changing the size of queue files and
block size and granularity.

The maximum value of this attribute is 99,999,9999 MB and there is no default value. The value is
whatever the maximum value currently set is; for a new queue with the default attributes, the value of
CurrentMaxQFileSize is 2,088,960 MB.

DeadLetterQName (MQCHAR48)
This is the name of a queue defined on the local queue manager as the dead-letter (undelivered-
message) queue. Messages are sent to this queue if they cannot be routed to their correct destination.

For example, messages are put on this queue when:

• A message arrives at a queue manager, destined for a queue that is not yet defined on that queue
manager

• A message arrives at a queue manager, but the queue for which it is destined cannot receive it because,
possibly:

– The queue is full
– Put requests are inhibited
– The sending node does not have authority to put messages on the queue

Applications can also put messages on the dead-letter queue.

Report messages are treated in the same way as ordinary messages; if the report message cannot be
delivered to its destination queue (usually the queue specified by the ReplyToQ field in the message
descriptor of the original message), the report message is placed on the dead-letter (undelivered-
message) queue.

Note: Messages that have passed their expiry time (see MQMD - Expiry field) are not transferred to
this queue when they are discarded. However, an expiration report message (MQRO_EXPIRATION) is still
generated and sent to the ReplyToQ queue, if requested by the sending application.

Messages are not put on the dead-letter (undelivered-message) queue when the application that issued
the put request has been notified synchronously of the problem by means of the reason code returned
by the MQPUT or MQPUT1 call (for example, a message put on a local queue for which put requests are
inhibited).

Messages on the dead-letter (undelivered-message) queue sometimes have their application message
data prefixed with an MQDLH structure. This structure contains extra information that indicates why the
message was placed on the dead-letter (undelivered-message) queue. See “MQDLH - Dead letter header”
on page 347 for more details of this structure.

This queue must be a local queue, with a Usage attribute of MQUS_NORMAL.

If a queue manager does not support a dead-letter (undelivered-message) queue, or one has not been
defined, the name is all blanks. All IBM MQ queue managers support a dead-letter (undelivered-message)
queue, but by default it is not defined.

If the dead-letter (undelivered-message) queue is not defined, full, or unusable for some other reason, a
message which would have been transferred to it by a message channel agent is retained instead on the
transmission queue.

To determine the value of this attribute, use the MQCA_DEAD_LETTER_Q_NAME selector with the MQINQ
call. The length of this attribute is given by MQ_Q_NAME_LENGTH.

DefClusterXmitQueueType (MQLONG)
The DefClusterXmitQueueType attribute controls which transmission queue is selected by default by
cluster-sender channels to get messages from, to send the messages to cluster-receiver channels.

The values of DefClusterXmitQueueType are MQCLXQ_SCTQ or MQCLXQ_CHANNEL.

806 IBM MQ Developing Applications Reference

MQCLXQ_SCTQ

All cluster-sender channels send messages from SYSTEM.CLUSTER.TRANSMIT.QUEUE. The
correlID of messages placed on the transmission queue identifies which cluster-sender channel
the message is destined for.

SCTQ is set when a queue manager is defined. This behavior is implicit in versions of IBM
WebSphere MQ, earlier than IBM WebSphere MQ 7.5. In earlier versions, the queue manager attribute
DefClusterXmitQueueType was not present.

MQCLXQ_CHANNEL
Each cluster-sender channel sends messages from a different transmission queue. Each
transmission queue is created as a permanent dynamic queue from the model queue
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE.

If the queue manager attribute, DefClusterXmitQueueType, is set to CHANNEL, the default
configuration is changed to cluster-sender channels being associated with individual cluster transmission
queues. The transmission queues are permanent-dynamic queues created from the model queue
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE. Each transmission queue is associated with one cluster-
sender channel. As one cluster-sender channel services a cluster transmission queue, the transmission
queue contains messages for only one queue manager in one cluster. You can configure clusters so that
each queue manager in a cluster contains only one cluster queue. In this case, the message traffic from a
queue manager to each cluster queue is transferred separately from messages to other queues.

To query the value, call MQINQ, or send an Inquire Queue Manager (MQCMD_INQUIRE_Q_MGR)
PCF command, setting the MQIA_DEF_CLUSTER_XMIT_Q_TYPE selector. To change the value,
send a Change Queue Manager (MQCMD_CHANGE_Q_MGR) PCF command, setting the
MQIA_DEF_CLUSTER_XMIT_Q_TYPE selector.

Related reference
Change Queue Manager
Inquire Queue Manager
“MQINQ - Inquire object attributes” on page 697
The MQINQ call returns an array of integers and a set of character strings containing the attributes of an
object.

DefXmitQName (MQCHAR48)
This is the name of the transmission queue that is used for the transmission of messages to remote queue
managers, if there is no other indication of which transmission queue to use.

If there is no default transmission queue, the name is entirely blank. The initial value of this attribute is
blank.

To determine the value of this attribute, use the MQCA_DEF_XMIT_Q_NAME selector with the MQINQ call.
The length of this attribute is given by MQ_Q_NAME_LENGTH.

DistLists (MQLONG)
This indicates whether the local queue manager supports distribution lists on the MQPUT and MQPUT1
calls. It is one of the following values:
MQDL_SUPPORTED

Distribution lists supported.
MQDL_NOT_SUPPORTED

Distribution lists not supported.

To determine the value of this attribute, use the MQIA_DIST_LISTS selector with the MQINQ call.

DNSGroup (MQCHAR18)
This parameter is no longer used. See What changed in IBM MQ 8.0.

This attribute is supported on z/OS only.

Developing applications reference 807

To determine the value of this attribute, use the MQCA_DNS_GROUP selector with the MQINQ call. The
length of this attribute is given by MQ_DNS_GROUP_NAME_LENGTH.

DNSWLM (MQLONG)
This parameter is no longer used. See What changed in IBM MQ 8.0.

The value is one of the following:
MQDNSWLM_YES

This value may be seen on a queue manager migrated from an earlier release. The value is ignored.
MQDNSWLM_NO

This is the only value supported by the queue manager.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_DNS_WLM selector with the MQINQ call.

ExpiryInterval (MQLONG)
This indicates the frequency with which the queue manager scans the queues looking for expired
messages. It is either a time interval in seconds in the range 1 through 99 999 999, or the following
special value:
MQEXPI_OFF

The queue manager does not scan the queues looking for expired messages.

To determine the value of this attribute, use the MQIA_EXPIRY_INTERVAL selector with the MQINQ call.

This attribute is supported only on z/OS.

IGQPutAuthority (MQLONG)
This attribute applies only if the local queue manager is a member of a queue sharing group. It indicates
the type of authority checking that is performed when the local intra-group queuing agent (IGQ agent)
removes a message from the shared transmission queue and places the message on a local queue. The
value is one of the following:
MQIGQPA_DEFAULT

The user identifier checked for authorization is the value of the UserIdentifier field in the separate
MQMD that is associated with the message when the message is on the shared transmission queue.
This is the user identifier of the program that placed the message on the shared transmission queue,
and is usually the same as the user identifier under which the remote queue manager is running.

If the RESLEVEL profile indicates that more than one user identifier is to be checked, the user
identifier of the local IGQ agent (IGQUserId) is also checked.

MQIGQPA_CONTEXT
The user identifier checked for authorization is the value of the UserIdentifier field in the separate
MQMD that is associated with the message when the message is on the shared transmission queue.
This is the user identifier of the program that placed the message on the shared transmission queue,
and is usually the same as the user identifier under which the remote queue manager is running.

If the RESLEVEL profile indicates that more than one user identifier is to be checked, the user
identifier of the local IGQ agent (IGQUserId) and the value of the UserIdentifier field in the
embedded MQMD are also checked. The latter user identifier is usually the user identifier of the
application that originated the message.

MQIGQPA_ONLY_IGQ
The user identifier checked for authorization is the user identifier of the local IGQ agent (IGQUserId).

If the RESLEVEL profile indicates that more than one user identifier is to be checked, this user
identifier is used for all checks.

808 IBM MQ Developing Applications Reference

MQIGQPA_ALTERNATE_OR_IGQ
The user identifier checked for authorization is the user identifier of the local IGQ agent (IGQUserId).

If the RESLEVEL profile indicates that more than one user identifier is to be checked, the value of
the UserIdentifier field in the embedded MQMD is also checked. This user identifier is usually the
user identifier of the application that originated the message.

To determine the value of this attribute, use the MQIA_IGQ_PUT_AUTHORITY selector with the MQINQ
call.

This attribute is supported only on z/OS.

IGQUserId (MQLONG)
This attribute is applicable only if the local queue manager is a member of a queue sharing group.
It specifies the user identifier that is associated with the local intra-group queuing agent (IGQ agent).
This identifier is one of the user identifiers that can be checked for authorization when the IGQ agent
puts messages on local queues. The actual user identifiers checked depend on the setting of the
IGQPutAuthority attribute, and on external security options.

If IGQUserId is blank, no user identifier is associated with the IGQ agent and the corresponding
authorization check is not performed (although other user identifiers might still be checked for
authorization).

To determine the value of this attribute, use the MQCA_IGQ_USER_ID selector with the MQINQ call. The
length of this attribute is given by MQ_USER_ID_LENGTH.

This attribute is supported only on z/OS.

InhibitEvent (MQLONG)
This controls whether inhibit (Inhibit Get and Inhibit Put) events are generated. The value is one of the
following:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_INHIBIT_EVENT selector with the MQINQ call.

On z/OS, you cannot use the MQINQ call to determine the value of this attribute.

IntraGroupqueuing (MQLONG)
This attribute applies only if the local queue manager is a member of a queue sharing group. It indicates
whether intra-group queuing is enabled for the queue sharing group. The value is one of the following:
MQIGQ_DISABLED

All messages destined for other queue managers in the queue sharing group are transmitted using
conventional channels..

MQIGQ_ENABLED
Messages destined for other queue managers in the queue sharing group are transmitted using the
shared transmission queue if the following condition is satisfied:

• The length of the message data plus transmission header does not exceed 63 KB (64 512 bytes).

It is recommended that somewhat more space than the size of MQXQH be allocated for the
transmission header; the constant MQ_MSG_HEADER_LENGTH is provided for this purpose.

If this condition is not satisfied, the message is transmitted using conventional channels.

Developing applications reference 809

Note: When intra-group queuing is enabled, the order of messages transmitted using the shared
transmission queue is not preserved relative to those transmitted using conventional channels.

To determine the value of this attribute, use the MQIA_INTRA_GROUP_queuing selector with the MQINQ
call.

This attribute is supported only on z/OS.

IPAddressVersion (MQLONG)
Specifies which IP address version, either IPv4 or IPv6, is used.

This attribute is only relevant for systems that run both IPv4 and IPv6 and only affects channels defined
as having a TransportType of MQXPY_TCP when one of the following conditions is true:

• The channel's ConnectionName is a host name that resolves to both an IPv4 and IPv6 address and its
LocalAddress parameter is not specified.

• The channel's ConnectionName and LocalAddress are both host names that resolve to both IPv4
and IPv6 addresses.

The value can be any of the following values:
MQIPADDR_IPV4

IPv4 is used.
MQIPADDR_IPV6

IPv6 is used.

To determine the value of this attribute, use the MQIA_IP_ADDRESS_VERSION selector with the MQINQ
call.

ListenerTimer (MQLONG)
This is the time interval (in seconds) between IBM MQ attempts to restart the listener if there has been an
APPC or TCP/IP failure. The value must be between 5 and 9999, with a default value of 60.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_LISTENER_TIMER selector with the MQINQ call.

LocalEvent (MQLONG)
This controls whether local error events are generated. The value is one of the following:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_LOCAL_EVENT selector with the MQINQ call.

On z/OS, you cannot use the MQINQ call to determine the value of this attribute.

LoggerEvent (MQLONG)
This controls whether recovery log events are generated. The value is one of the following:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_LOGGER_EVENT selector with the MQINQ call.

810 IBM MQ Developing Applications Reference

This attribute is supported only on Multiplatforms.

LUGroupName (MQCHAR8)
This is the generic LU name for the LU 6.2 listener that handles inbound transmissions for the queue
sharing group. If you leave this name blank, you cannot use this listener.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQCA_LU_GROUP_NAME selector with the MQINQ call.
The length of this attribute is given by MQ_LU_NAME_LENGTH.

LUName (MQCHAR8)
This is the name of the LU to use for outbound LU 6.2 transmissions. Set this to the same LU that the
listener uses for inbound transmissions. If you leave this name blank, the APPC/MVS default LU is used;
this is variable, so always set LUName if you are using LU6.2.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQCA_LU_NAME selector with the MQINQ call. The
length of this attribute is given by MQ_LU_NAME_LENGTH.

LU62ARMSuffix (MQCHAR2)
This is the suffix of the SYS1.PARMLIB member APPCPMxx, that nominates the LUADD for this channel
initiator. The z/OS command SET APPC=xx is issued when ARM restarts the channel initiator. If you leave
this name is blank, no SET APPC=xx is issued.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQCA_LU62_ARM_SUFFIX selector with the MQINQ call.
The length of this attribute is given by MQ_ARM_SUFFIX_LENGTH.

LU62Channels (MQLONG)
This is the maximum number of channels that can be current, or clients that can be connected, that use
the LU 6.2 transmission protocol.

The value must be in the range 0 through 9999, with a default value of 200. If you set this to zero, the LU
6.2 transmission protocol is not used.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_LU62_CHANNELS selector with the MQINQ call.

MaxActiveChannels (MQLONG)
This attribute is the maximum number of channels that can be active at any time.

The default is the value specified for the MaxChannels attribute.

For z/OS, the value must be in the range 1 through 9 999.

For all other platforms, the default value is 999 999 999, which means the number of active channels is
unlimited, or it can be set to an actual number to impose a limit.

You should not change the MaxActiveChannels value on IBM MQ Appliance. If you want
to limit the maximum number of client channels, use the per-channel MAXINST and MAXINSTC attributes
on the SVRCONN channel definitions to define limits for each SVRCONN channel, see Queue manager
configuration on the IBM MQ Appliance in the IBM MQ Appliance documentation.

The MaxActiveChannels parameter is a queue manager attribute on z/OS only. On the other platforms,
MaxActiveChannels is an attribute in the qm.ini file. See Configuration file stanzas for distributed
queuing for information on how you set the MaxActiveChannels attribute on other platforms.

To determine the value of this attribute, use the MQIA_ACTIVE_CHANNELS selector with the MQINQ call.

Developing applications reference 811

Related concepts
Channel states

MaxChannels (MQLONG)
This attribute is the maximum number of channels that can be current (including server-connection
channels with connected clients).

For z/OS, the value must be in the range 1 through 9 999, with a default value of 200.

For IBM MQ Appliance, the default value is 999 999 999, and should not be changed. If
you want to limit the maximum number of client channels, use the per-channel MAXINST and MAXINSTC
attributes on the SVRCONN channel definitions to define limits for each SVRCONN channel, see Queue
manager configuration on the IBM MQ Appliance in the IBM MQ Appliance documentation.

A system that is busy serving connections from the network might need a higher number than the default
setting. Determine the value that is correct for your environment, ideally by observing the behavior of your
system during testing.

For all other platforms, the default value is 100. You can set MaxChannels to a different value to limit the
maximum number of current channels if required.

The MaxChannels parameter is a queue manager attribute on z/OS only. On the other platforms,
MaxChannels is an attribute in the qm.ini file. See Configuration file stanzas for distributed queuing
for information on how you set the MaxChannels attribute on other platforms.

To determine the value of this attribute, use the MQIA_MAX_CHANNELS selector with the MQINQ call.

Related concepts
Channel states

MaxHandles (MQLONG)
This is the maximum number of open handles that any one task can use concurrently. Each successful
MQOPEN call for a single queue (or for an object that is not a queue) uses one handle. That handle
becomes available for reuse when the object is closed. However, when a distribution list is opened, each
queue in the distribution list is allocated a separate handle, and so that MQOPEN call uses as many
handles as there are queues in the distribution list. This must be taken into account when deciding on a
suitable value for MaxHandles.

The MQPUT1 call performs an MQOPEN call as part of its processing; as a result, MQPUT1 uses as many
handles as MQOPEN would, but the handles are used only for the duration of the MQPUT1 call itself.

On z/OS, task means a CICS task, an MVS task, or an IMS dependent region.

The value is in the range 1 through 999 999 999. The default value is determined by the environment:

• On z/OS, the default value is 100.
• In all other environments, the default value is 256.

To determine the value of this attribute, use the MQIA_MAX_HANDLES selector with the MQINQ call.

MaxMsgLength (MQLONG)
This is the length of the longest physical message that the queue manager can handle. However, because
the MaxMsgLength queue manager attribute can be set independently of the MaxMsgLength queue
attribute, the longest physical message that can be placed on a queue is the lesser of those two values.

If the queue manager supports segmentation, an application can put a logical message that is
longer than the lesser of the two MaxMsgLength attributes, but only if the application specifies the
MQMF_SEGMENTATION_ALLOWED flag in MQMD. If that flag is specified, the upper limit for the length
of a logical message is 999 999 999 bytes, but usually resource constraints imposed by the operating
system, or by the environment in which the application is running, result in a lower limit.

812 IBM MQ Developing Applications Reference

The lower limit for the MaxMsgLength attribute is 32 KB (32 768 bytes). The upper limit is 100 MB (104
857 600 bytes).

To determine the value of this attribute, use the MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

MaxPriority (MQLONG)
This is the maximum message priority supported by the queue manager. Priorities range from zero
(lowest) to MaxPriority (highest).

To determine the value of this attribute, use the MQIA_MAX_PRIORITY selector with the MQINQ call.

MaxPropertiesLength (MQLONG)
This is used to control the size of the properties that can flow with a message. This includes both the
property name in bytes and the size of the property value also in bytes.

To determine the value of this attribute, use the MQIA_MAX_PROPERTIES_LENGTH selector with the
MQINQ call.

MaxQFileSize (MQLONG)
The maximum size, in megabytes, that a queue file can grow to.

Table 561. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

It is possible for a queue file to exceed the maximum size, if it is configured to a value lower than
the current queue file size. If that happens the queue file no longer accepts new messages, but allows
existing messages to be consumed. When the queue file size has dropped below the configured value,
new messages are allowed to be put to the queue.

Note: This figure can differ from the value of the attribute configured on the queue, because internally the
queue manager might need to use a larger block size to reach the chosen size. See Modifying IBM MQ
queue files for more information on changing the size of queue files and block size and granularity.

When the granularity needs changing because this attribute has been increased, warning message
AMQ7493W Granularity changed is written to the AMQERR logs. This gives you an indication that
you need to plan for the queue to be emptied, in order for IBM MQ to adopt the new granularity.

The maximum value of this attribute is 267,386,880 MB and the default value, and migrated value, is
2,088,960 MB which is the current maximum for a queue with a granularity equaling 512.

To determine the value of this attribute, use the MQIA_MAX_Q_FILE_SIZE selector with the MQINQ call.

MaxUncommittedMsgs (MQLONG)
This is the maximum number of uncommitted messages that can exist within a unit of work. The number
of uncommitted messages is the sum of the following since the start of the current unit of work:

• Messages put by the application with the MQPMO_SYNCPOINT option
• Messages retrieved by the application with the MQGMO_SYNCPOINT option
• Trigger messages and COA report messages generated by the queue manager for messages put with the

MQPMO_SYNCPOINT option
• COD report messages generated by the queue manager for messages retrieved with the

MQGMO_SYNCPOINT option

The following messages are not counted as uncommitted:

• Messages put or retrieved by the application outside a unit of work
• Trigger messages or COA/COD report messages generated by the queue manager as a result of

messages put or retrieved outside a unit of work

Developing applications reference 813

• Expiration report messages generated by the queue manager (even if the call causing the expiration
report message specified MQGMO_SYNCPOINT)

• Event messages generated by the queue manager (even if the call causing the event message specified
MQPMO_SYNCPOINT or MQGMO_SYNCPOINT)

Note:

1. Exception report messages are generated by the Message Channel Agent (MCA), or by the application,
and are treated in the same way as ordinary messages put or retrieved by the application.

2. When a message or segment is put with the MQPMO_SYNCPOINT option, the number of uncommitted
messages is incremented by one regardless of how many physical messages actually result from the
put. (More than one physical message might result if the queue manager must subdivide the message
or segment.)

3. When a distribution list is put with the MQPMO_SYNCPOINT option, the number of uncommitted
messages is incremented by one for each physical message that is generated. This can be as small as
one, or as great as the number of destinations in the distribution list.

The lower limit for this attribute is 1; the upper limit is 999 999 999. The default value is 10000.

To determine the value of this attribute, use the MQIA_MAX_UNCOMMITTED_MSGS selector with the
MQINQ call.

MQIAccounting (MQLONG)
This controls the collection of accounting information for MQI data.

The value is one of the following:
MQMON_ON

Collect API accounting data.
MQMON_OFF

Do not collect API accounting data. This is the default value.
If you set the queue manager attribute ACCTCONO to ENABLED, this value might be overridden for
individual connections using the Options field in the MQCNO structure. Changes to this value are only
effective for connections to the queue manager that occur after the change to the attribute.

This attribute is supported only on Multiplatforms.

To determine the value of this attribute, use the MQIA_ACCOUNTING_MQI selector with the MQINQ call.

MQIStatistics (MQLONG)
This controls the collection of statistics monitoring information for the queue manager.

The value is one of the following:
MQMON_ON

Collect MQI statistics.
MQMON_OFF

Do not collect MQI statistics. This is the default value.

This attribute is supported only on Multiplatforms.

To determine the value of this attribute, use the MQIA_STATISTICS_MQI selector with the MQINQ call.

MsgMarkBrowseInterval (MQLONG)
Time interval in milliseconds after which the queue manager can automatically remove the mark from
browse messages.

This is a time interval (in milliseconds) after which the queue manager can automatically remove the mark
from browse messages.

814 IBM MQ Developing Applications Reference

This attribute describes the time interval for which messages that have been marked as browsed by a
call to MQGET, using the get message option MQGMO_MARK_BROWSE_CO_OP, are expected to remain
marked as browsed.

The queue manager might automatically unmark browsed messages that have been marked as browsed
for the cooperating set of handles when they have been marked for more than this approximate interval.

This does not affect the state of any message marked as browse, that was obtained by a call to MQGET,
using the get message option MQGMO_MARK_BROWSE_HANDLE.

The maximum value is 999 999 999 and the default value is 5000. A special value of -1 for
MsgMarkBrowseInterval represents an unlimited time interval.

Attention: This value should not be below the default of 5000.

To determine the value of this attribute, use the MQIA_MSG_MARK_BROWSE_INTERVAL selector with
the MQINQ call.

OutboundPortMax (MQLONG)
This is the highest port number in the range, defined by OutboundPortMin and OutboundPortMax, of port
numbers to be used to bind outgoing channels.

The value is an integer in the range 0 through 65535, and must be equal to or greater than the
OutboundPortMin value. The default value is 0.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_OUTBOUND_PORT_MAX selector with the MQINQ
call.

OutboundPortMin (MQLONG)
This is the lowest port number in the range, defined by OutboundPortMin and OutboundPortMax, of port
numbers to be used to bind outgoing channels.

The value is an integer in the range 0 through 65535, and must be equal to or less than the
OutboundPortMax value. The default value is 0.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_OUTBOUND_PORT_MIN selector with the MQINQ
call.

PerformanceEvent (MQLONG)
This controls whether performance-related events are generated. It is one of the following values:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_PERFORMANCE_EVENT selector with the MQINQ
call.

Platform (MQLONG)
This indicates the operating system on which the queue manager is running:

MQPL_AIX
AIX (same value as MQPL_UNIX).

MQPL_APPLIANCE
IBM MQ Appliance

Developing applications reference 815

MQPL_MVS
z/OS (same value as MQPL_ZOS).

MQPL_OS390
z/OS (same value as MQPL_ZOS).

MQPL_OS400
IBM i.

MQPL_UNIX
UNIX.

MQPL_WINDOWS_NT
Windows systems.

MQPL_ZOS
z/OS.

To determine the value of this attribute, use the MQIA_PLATFORM selector with the MQINQ call.

PubSubNPInputMsg (MQLONG)
Whether to discard or keep an undelivered input message.

The value is one of the following:
MQUNDELIVERED_DISCARD

Non-persistent input messages may be discarded if they cannot be processed.

This is the default value.

MQUNDELIVERED_KEEP
Non-persistent input messages will not be discarded if they cannot be processed. In this situation
the queued publish/subscribe interface will continue to retry the process at appropriate intervals and
does not continue processing subsequent messages.

To determine the value of this attribute, use the MQIA_PUBSUB_NP_MSG selector with the MQINQ call.

PubSubNPResponse (MQLONG)
Controls the behavior of undelivered response messages.

The value is one of the following:
MQUNDELIVERED_NORMAL

Non-persistent responses which cannot be placed on the reply queue are put on the dead letter
queue, if they cannot be placed on the DLQ then they are discarded.

MQUNDELIVERED_SAFE
Non-persistent responses which cannot be placed on the reply queue are put on the dead letter
queue. If the response cannot be set and cannot be placed on the DLQ then the queued publish/
subscribe interface will roll back the current operation and then retry at appropriate intervals and
does not continue processing subsequent messages.

MQUNDELIVERED_DISCARD
Non-persistent responses are not placed on the reply queue are discarded.

This is the default value for new queue managers.

MQUNDELIVERED_KEEP
Non-persistent responses are not placed on the dead letter queue or discarded. Instead, the queued
publish/subscribe interface will back out the current operation and then retry it at appropriate
intervals.

To determine the value of this attribute, use the MQIA_PUBSUB_NP_RESP selector with the MQINQ call.

816 IBM MQ Developing Applications Reference

Default value for migrated queue managers.
If the queue manager has been migrated from IBM MQ V6.0, the initial value of this attribute depends on
the values of DiscardNonPersistentResponse and DLQNonPersistentResponse before migration, as shown
in the following table.

DLQNonPersistentResponse

Yes No Not set

DiscardNonPersistentResponse Yes MQUNDELIVERED_NORMAL MQUNDELIVERED_DISCARD MQUNDELIVERED_NORMAL

No MQUNDELIVERED_SAFE MQUNDELIVERED_KEEP MQUNDELIVERED_SAFE

Not set If SyncPointPersistent = No,
MQUNDELIVERED_SAFE else
MQUNDELIVERED_NORMAL

If SyncPointPersistent = No,
MQUNDELIVERED_KEEP else
MQUNDELIVERED_DISCARD

If SyncPointPersistent = No,
MQUNDELIVERED_SAFE else
MQUNDELIVERED_NORMAL

PubSubMaxMsgRetryCount (MQLONG)
The number of retries when processing a failed command message under syncpoint.

The value is one of the following:
0 - 999 999 999

The default value is 5.

To determine the value of this attribute, use the MQIA_PUBSUB_MAXMSG_RETRY_COUNT selector with
the MQINQ call.

PubSubSyncPoint (MQLONG)
Whether only persistent messages or all messages are processed under syncpoint.

The value is one of the following:
MQSYNCPOINT_IFPER

This makes the queued publish/subscribe interface receive non-persistent messages outside
syncpoint. If the daemon receives a publication outside syncpoint, the daemon forwards the
publication to subscribers known to it outside syncpoint.

This is the default value.

MQSYNCPOINT_YES
This makes the queued publish/subscribe interface receive all messages under syncpoint.

To determine the value of this attribute, use the MQIA_PUBSUB_SYNC_PT selector with the MQINQ call.

PubSubMode (MQLONG)
Whether the publish/subscribe engine and the queued publish/subscribe interface are running, therefore
allowing applications to publish/subscribe by using the application programming interface and the queues
that are being monitored by the queued publish/subscribe interface.

The value is one of the following:
MQPSM_COMPAT

The publish/subscribe engine is running. It is therefore possible to publish/subscribe by using the
application programming interface. The queued publish/subscribe interface is not running, therefore
any message that is put to the queues that are monitored by the queued publish/subscribe interface
is not acted on. This setting is used for compatibility with WebSphere Message Broker V6 or earlier
versions using this queue manager, because it must read the same queues from which the queued
publish/subscribe interface normally reads.

MQPSM_DISABLED
The publish/subscribe engine and the queued publish/subscribe interface are not running. It is
therefore not possible to publish/subscribe by using the application programming interface. Any
publish/subscribe messages that are put to the queues that are monitored by the queued publish/
subscribe interface are not acted on.

Developing applications reference 817

MQPSM_ENABLED
The publish/subscribe engine and the queued publish/subscribe interface are running. It is therefore
possible to publish/subscribe by using the application programming interface and the queues that are
being monitored by the queued publish/subscribe interface. This is the queue manager's initial default
value.

To determine the value of this attribute, use the MQIA_PUBSUB_MODE selector with the MQINQ call.

QMgrDesc (MQCHAR64)
Use this field for a commentary describing the queue manager. The content of the field is of no
significance to the queue manager, but the queue manager might require that the field contain only
characters that can be displayed. It cannot contain any null characters; if necessary, it is padded to the
right with blanks. In a DBCS installation, this field can contain DBCS characters (subject to a maximum
field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager's character set (as defined by the
CodedCharSetId queue manager attribute), those characters might be translated incorrectly if this field
is sent to another queue manager.

• On z/OS, the default value is the product name and version number.
• In all other environments, the default value is blanks.

To determine the value of this attribute, use the MQCA_Q_MGR_DESC selector with the MQINQ call. The
length of this attribute is given by MQ_Q_MGR_DESC_LENGTH.

QMgrIdentifier (MQCHAR48)
This is an internally-generated unique name for the queue manager.

To determine the value of this attribute, use the MQCA_Q_MGR_IDENTIFIER selector with the MQINQ
call. The length of this attribute is given by MQ_Q_MGR_IDENTIFIER_LENGTH.

This attribute is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

• z/OS

and IBM MQ clients connected to these systems.

QMgrName (MQCHAR48)
This is the name of the local queue manager, that is, the name of the queue manager to which the
application is connected.

The first 12 characters of the name are used to construct a unique message identifier (see MQMD - MsgId
field). Queue managers that can intercommunicate must therefore have names that differ in the first 12
characters, in order for message identifiers to be unique in the queue manager network.

On z/OS, the name is the same as the subsystem name, which is limited to 4 nonblank characters.

To determine the value of this attribute, use the MQCA_Q_MGR_NAME selector with the MQINQ call. The
length of this attribute is given by MQ_Q_MGR_NAME_LENGTH.

QSGName (MQCHAR4)
This is the name of the queue sharing group to which the local queue manager belongs. If the local queue
manager does not belong to a queue sharing group, the name is blank.

818 IBM MQ Developing Applications Reference

To determine the value of this attribute, use the MQCA_QSG_NAME selector with the MQINQ call. The
length of this attribute is given by MQ_QSG_NAME_LENGTH.

This attribute is supported only on z/OS.

QueueAccounting (MQLONG)
This controls the collection of accounting information for queues.

The value is one of the following:
MQMON_NONE

Do not collect accounting data for queues, regardless of the setting of the queue accounting attribute
ACCTQ. This is the default value.

MQMON_OFF
Do not collect accounting data for queues that specify QMGR in the ACCTQ queue attribute.

MQMON_ON
Collect accounting data for queues that specify QMGR in the ACCTQ queue attribute.

Changes to this value are only effective for connections to the queue manager that occur after the change
to the attribute.

To determine the value of this attribute, use the MQIA_ACCOUNTING_Q selector with the MQINQ call.

QueueMonitoring (MQLONG)
This specifies the default setting for online monitoring of queues.

If the QueueMonitoring queue attribute is set to MQMON_Q_MGR, this attribute specifies the value
which is assumed by the channel. The value can be:
MQMON_OFF

Online monitoring data collection is turned off. This is the queue manager's initial default value.
MQMON_NONE

Online monitoring data collection is turned off for queues regardless of the setting of their
QueueMonitoring attribute.

MQMON_LOW
Online monitoring data collection is turned on, with a low ratio of data collection.

MQMON_MEDIUM
Online monitoring data collection is turned on, with a moderate ratio of data collection.

MQMON_HIGH
Online monitoring data collection is turned on, with a high ratio of data collection.

To determine the value of this attribute, use the MQIA_MONITORING_Q selector with the MQINQ call.

QueueStatistics (MQLONG)
This controls the collection of statistics data for queues.

It is one of the following values:
MQMON_NONE

Do not collect queue statistics for queues, regardless of the setting of the QueueStatistics queue
attribute. This is the default value.

MQMON_OFF
Do not collect statistics data for queues that specify Queue Manager in the QueueStatistics queue
attribute.

MQMON_ON
Collect statistics data for queues that specify Queue Manager in the QueueStatistics queue
attribute.

To determine the value of this attribute, use the MQIA_STATISTICS_Q selector with the MQINQ call.

Developing applications reference 819

ReceiveTimeout (MQLONG)
This specifies how long a TCP/IP channel waits to receive data, including heartbeats, from its partner
before returning to the inactive state. It applies only to message channels and not to MQI channels.

The exact meaning of the ReceiveTimeout is altered by the value specified in ReceiveTimeoutType.
ReceiveTimeoutType can be set to one of the following:

• MQRCVTIME_EQUAL - this value is the number in seconds for the channel to wait. Specify a value in the
range 0 - 999999.

• MQRCVTIME_ADD - this value is the number in seconds to add to the negotiated HBINT, and it
determines how long a channel waits. Specify a value in the range 1 - 999999.

• MQRCVTIME_MULTIPLY - this value is a multiplier to apply to the negotiated HBINT. Specify a value of 0
or a value in the range 2 - 99.

The default value is 0.

Set ReceiveTimeoutType to MQRCVTIME_MULTIPLY or MQRCVTIME_EQUAL, and ReceiveTimeout to 0, to
stop a channel from timing out its wait to receive data from its partner.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_RECEIVE_TIMEOUT selector with the MQINQ call.

ReceiveTimeoutMin (MQLONG)
This is the minimum time, in seconds, that a TCP/IP channel waits to receive data, including heartbeats,
from its partner, before returning to the inactive state.

It applies only to message channels, not to MQI channels. The value must be in the range 0 through
999999, with a default of 0.

If you use ReceiveTimeoutType to specify that the TCP/IP channel wait time is to be calculated relative to
the negotiated value of HBINT, and the resultant value is less than the value of this parameter, this value
is used instead.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_RECEIVE_TIMEOUT_MIN selector with the MQINQ
call.

ReceiveTimeoutType (MQLONG)
This is the qualifier, applied to ReceiveTimeout to define how long a TCP/IP channel waits to receive data,
including heartbeats, from its partner, before returning to the inactive state. It applies only to message
channels, not to MQI channels.

The value is one of the following:
MQRCVTIME_MULTIPLY

ReceiveTimeout is a multiplier to apply to the negotiated HBINT value to determine how long a
channel waits. This is the default value.

MQRCVTIME_ADD
ReceiveTimeout is a value, in seconds, to add to the negotiated HBINT value to determine how long a
channel waits.

MQRCVTIME_EQUAL
ReceiveTimeout is a value, in seconds, that the channel waits.

To stop a channel timing out its wait to receive data from its partner, set ReceiveTimeoutType to
MQRCVTIME_MULTIPLY or MQRCVTIME_EQUAL, and ReceiveTimeout to 0.

This attribute is supported on z/OS only.

820 IBM MQ Developing Applications Reference

To determine the value of this attribute, use the MQIA_RECEIVE_TIMEOUT_TYPE selector with the
MQINQ call.

RemoteEvent (MQLONG)
This controls whether remote error events are generated. It is one of the following values:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_REMOTE_EVENT selector with the MQINQ call.

RepositoryName (MQCHAR48)
This is the name of a cluster for which this queue manager provides a repository-manager service. If
the queue manager provides this service for more than one cluster, RepositoryNamelist specifies the
name of a namelist object that identifies the clusters, and RepositoryName is blank. At least one of
RepositoryName and RepositoryNamelist must be blank.

To determine the value of this attribute, use the MQCA_REPOSITORY_NAME selector with the MQINQ
call. The length of this attribute is given by MQ_Q_MGR_NAME_LENGTH.

RepositoryNamelist (MQCHAR48)
This is the name of a namelist object that contains the names of clusters for which this queue manager
provides a repository-manager service. If the queue manager provides this service for only one cluster,
the namelist object contains only one name. Alternatively, RepositoryName can be used to specify the
name of the cluster, in which case RepositoryNamelist is blank. At least one of RepositoryName and
RepositoryNamelist must be blank.

To determine the value of this attribute, use the MQCA_REPOSITORY_NAMELIST selector with the MQINQ
call. The length of this attribute is given by MQ_NAMELIST_NAME_LENGTH.

ScyCase(MQCHAR8)
Specifies whether the queue manager supports security profile names in mixed case, or in uppercase
only.

The value is one of the following:
MQSCYC_UPPER

Security profile names must be in uppercase.
MQSCYC_MIXED

Security profile names can be in uppercase or in mixed case.
Changes to this attribute take effect when a Refresh Security command is run with
SecurityType(MQSECTYPE_CLASSES) specified.

This attribute is supported only on z/OS.

To determine the value of this attribute, use the MQIA_SECURITY_CASE selector with the MQINQ call.

SharedQMgrName (MQLONG)
This specifies whether the ObjectQmgrName should be used or treated as the local queue manager on an
MQOPEN call, for a shared queue, when the ObjectQmgrName is that of another queue manager in the
queue sharing group.

The value can be any of the following values:

Developing applications reference 821

MQSQQM_USE
ObjectQmgrName is used and the appropriate transmission queue is opened.

MQSQQM_IGNORE
If the target queue is shared, and the ObjectQmgrName is that of a queue manager in the same
queue sharing group, the open is performed locally.

This attribute is valid only on z/OS.

To determine the value of this attribute, use the MQIA_SHARED_Q_Q_MGR_NAME selector with the
MQINQ call.

SPLCAP
Indicates whether security capabilities of Advanced Message Security are available for a queue manager.

MQCAP_SUPPORTED
This is the default value if the AMS component is installed for the installation that the queue manager
is running under.

MQCAP_NOT_SUPPORTED

SSLEvent (MQLONG)
This specifies whether TLS events are generated.

It is one of the following values:
MQEVR_ENABLED

Generate TLS events, as follows:

MQRC_CHANNEL_SSL_ERROR

MQEVR_DISABLED
Do not generate TLS events; this is the default value.

To determine the value of this attribute, use the MQIA_SSL_EVENT selector with the MQINQ call.

SSLFIPSRequired (MQLONG)
Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

This lets you specify that only FIPS-certified algorithms are to be used if the cryptography is executed in
IBM MQ, rather than in cryptographic hardware. If cryptographic hardware is configured, the cryptography
modules used are those modules provided by the hardware product; these modules might or might not be
FIPS-certified to a particular level depending on the hardware product in use.

The value is one of the following values:
MQSSL_FIPS_NO

Use any CipherSpec supported on the platform in use. This value is the default value.
MQSSL_FIPS_YES

Use only FIPS-certified cryptographic algorithms in the CipherSpecs allowed on all TLS connections
from and to this queue manager.

This parameter is valid only on z/OS, AIX, Linux, and Windows platforms.

To determine the value of this attribute, use the MQIA_SSL_FIPS_REQUIRED selector with the MQINQ
call.

Related tasks
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client

822 IBM MQ Developing Applications Reference

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

Related reference
Federal Information Processing Standards (FIPS) for AIX, Linux, and Windows

SSLKeyResetCount (MQLONG)
This specifies when TLS channel message channel agents (MCAs) that initiate communication reset the
secret key used for encryption on the channel.

The value represents the total number of unencrypted bytes that are sent and received on the channel
before the secret key is renegotiated. The number of bytes includes control information sent by the MCA.

The value is a number in the range 0 through 999 999 999, with a default value of 0. If you specify a TLS
secret key reset count in the range 1 byte through 32 KB, TLS channels will use a secret key reset count of
32 KB. This is to avoid the processing cost of excessive key resets which would occur for small TLS secret
key reset values.

The secret key is renegotiated when the total number of unencrypted bytes sent and received by the
initiating channel MCA exceeds the specified value. If channel heartbeats are enabled, the secret key is
renegotiated before data is sent or received following a channel heartbeat, or when the total number of
unencrypted bytes exceeds the specified value, whichever comes first.

The count of bytes sent and received for renegotiation includes control information sent and received by
the channel MCA and is reset whenever a renegotiation occurs.

Use a value of 0 to indicate that secret keys are never renegotiated.

To determine the value of this attribute, use the MQIA_SSL_RESET_COUNT selector with the MQINQ call.

StartStopEvent (MQLONG)
This controls whether start and stop events are generated. The value is one of the following:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_START_STOP_EVENT selector with the MQINQ call.

StatisticsInterval (MQLONG)
This specifies how often (in seconds) to write statistics monitoring data to the monitoring queue.

The value is an integer in the range 0 to 604800, with a default value of 1800 (30 minutes).

To determine the value of this attribute, use the MQIA_STATISTICS_INTERVAL selector with the MQINQ
call.

SyncPoint (MQLONG)
This indicates whether the local queue manager supports units of work and syncpointing with the MQGET,
MQPUT, and MQPUT1 calls.
MQSP_AVAILABLE

Units of work and syncpointing available.
MQSP_NOT_AVAILABLE

Units of work and syncpointing not available.

• On z/OS this value is never returned.

To determine the value of this attribute, use the MQIA_SYNCPOINT selector with the MQINQ call.

Developing applications reference 823

TCPChannels (MQLONG)
This is the maximum number of channels that can be current, or clients that can be connected, that use
the TCP/IP transmission protocol.

The value must be in the range 0 through 9999, with a default value of 200. If you specify 0, TCP/IP is not
used.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_TCP_CHANNELS selector with the MQINQ call.

TCPKeepAlive (MQLONG)
This specifies whether to use TCP KEEPALIVE to check that the other end of the connection is still
available. If it is not available, the channel is closed.

The value is one of the following:
MQTCPKEEP_YES

Use TCP KEEPALIVE as specified in the TCP profile configuration data set. If you specify the channel
attribute KeepAliveInterval (KAINT), the value to which it is set is used.

MQTCPKEEP_NO
Do not use TCP KEEPALIVE. This is the default value.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_TCP_KEEP_ALIVE selector with the MQINQ call.

TCPName (MQCHAR8)
This is the name of either the only or preferred TCP/IP stack that will be used, depending on the value of
TCPStackType. This parameter is only applicable in CINET multiple stack environments. The default value
is TCPIP.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQCA_TCP_NAME selector with the MQINQ call. The
length of this attribute is given by MQ_TCP_NAME_LENGTH.

TCPStackType (MQLONG)
This specifies whether the channel initiator can use only the TCP/IP stack specified in TCPName, or can
optionally bind to any selected TCP/IP stack. This parameter is only applicable in CINET multiple stack
environments.

The value is one of the following:
MQTCPSTACK_SINGLE

The channel initiator can use only the TCP/IP address spaces named in TCPName. This is the default
value.

MQTCPSTACK_MULTIPLE
The channel initiator can use any TCP/IP address space available to it. It defaults to the one specified
in TCPName if no other is specified for a channel or listener.

This attribute is supported on z/OS only.

To determine the value of this attribute, use the MQIA_TCP_STACK_TYPE selector with the MQINQ call.

TraceRouteRecording (MQLONG)
This controls the recording of trace- route information.

The value is one of the following:
MQRECORDING_DISABLED

No appending to trace- route messages allowed.

824 IBM MQ Developing Applications Reference

MQRECORDING_Q
Put trace- route messages to fixed named queue.

MQRECORDING_MSG
Put trace- route messages to a queue determined using the message itself. This is the default value

To determine the value of this attribute, use the MQIA_TRACE_ROUTE_RECORDING selector with the
MQINQ call.

TriggerInterval (MQLONG)
This is a time interval (in milliseconds) used to restrict the number of trigger messages. This is relevant
only when the TriggerType is MQTT_FIRST. In this case trigger messages are usually generated only
when a suitable message arrives on the queue, and the queue was previously empty. Under certain
circumstances, however, an additional trigger message can be generated with MQTT_FIRST triggering
even if the queue was not empty. These additional trigger messages are not generated more often than
every TriggerInterval milliseconds.

For more information on triggering, see Triggering channels.

The value is not less than 0 and not greater than 999 999 999. The default value is 999 999 999.

To determine the value of this attribute, use the MQIA_TRIGGER_INTERVAL selector with the MQINQ call.

TriggerInterval (MQLONG)
This is a time interval (in milliseconds) used to restrict the number of trigger messages. This is relevant
only when the TriggerType is MQTT_FIRST. In this case trigger messages are usually generated only
when a suitable message arrives on the queue, and the queue was previously empty. Under certain
circumstances, however, an additional trigger message can be generated with MQTT_FIRST triggering
even if the queue was not empty. These additional trigger messages are not generated more often than
every TriggerInterval milliseconds.

For more information on triggering, see Triggering channels.

The value is not less than 0 and not greater than 999 999 999. The default value is 999 999 999.

To determine the value of this attribute, use the MQIA_TRIGGER_INTERVAL selector with the MQINQ call.

Version (MQCFST)
This is the version of the IBM MQ code as VVRRMMFF, where:

VV - Version

RR - Release

MM - Maintenance level

FF - Fix level

XrCapability(MQLONG)
This controls whether MQ Telemetry commands are supported by the queue manager.

The value is one of the following:
MQCAP_SUPPORTED

MQ Telemetry component installed and Telemetry commands are supported.
MQCAP_NOT_SUPPORTED

MQ Telemetry component not installed.

This attribute is supported only on Multiplatforms.

To determine the value of this attribute, use the MQIA_XR_CAPABILITY selector with the MQINQ call.

Developing applications reference 825

Attributes for queues
There are five types of queue definition. Some queue attributes apply to all types of queue; other queue
attributes apply only to certain types of queue.

Types of queue
The queue manager supports the following types of queue definition:
Local queue

You can store messages on a local queue.

On z/OS you can make it a shared or private queue.

A queue is known to a program as local if it is owned by the queue manager to which the program is
connected. You can get messages from, and put messages on, local queues.

The queue definition object holds the definition information of the queue as well as the physical
messages put on the queue.

Local queue manager queue
The queue exists on the local queue manager.

The queue is known as a private queue on z/OS.

Shared queue (z/OS only)
The queue exists in a shared repository that is accessible to all the queue managers that belong to
the queue sharing group that owns the shared repository.

Applications connected to any queue manager in the queue sharing group can place messages on
and remove messages from queues of this type. Such queues are effectively the same as local
queues. The value of the QType queue attribute is MQQT_LOCAL.

Applications connected to the local queue manager can place messages on and remove messages
from queues of this type. The value of the QType queue attribute is MQQT_LOCAL.

Cluster queue

You can store messages on a cluster queue on the queue manager where it is defined. A cluster queue
is a queue that is hosted by a cluster queue manager and made available to other queue managers in
the cluster. The value of the QType queue attribute is MQQT_CLUSTER.

A cluster queue definition is advertised to other queue managers in the cluster. The other queue
managers in the cluster can put messages to a cluster queue without needing a corresponding
remote-queue definition. A cluster queue can be advertised in more than one cluster by using a
cluster namelist.

When a queue is advertised, any queue manager in the cluster can put messages to it. To put a
message, the queue manager must find out, from the full repositories, where the queue is hosted.
Then it adds some routing information to the message and puts the message on a cluster transmission
queue.

A queue manager can store messages for other queue managers in a cluster on multiple
transmission queues. You can configure a queue manager to store messages on multiple
cluster transmission queues in two different ways. If you set the queue manager attribute
DEFCLXQ to CHANNEL, a different cluster transmission queue is created automatically from
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE for each cluster-sender channel. If you set the
CLCHNAME transmission queue option to match one or more cluster-senders channel, the queue
manager can store messages for the matching channels on that transmission queue.

Attention: If you are using dedicated SYSTEM.CLUSTER.TRANSMIT.QUEUES with a queue
manager that was upgraded from a version of the product earlier than IBM WebSphere MQ
7.5, ensure that the SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE has the SHARE/NOSHARE
option set to SHARE.

826 IBM MQ Developing Applications Reference

A cluster queue can be a queue that is shared by members of a queue sharing group in
IBM MQ for z/OS.

Remote queue
A remote queue is not a physical queue; it is the local definition of a queue that exists on a remote
queue manager. The local definition of the remote queue contains information that tells the local
queue manager how to route messages to the remote queue manager.

Applications connected to the local queue manager can place messages on queues of this type; the
messages are placed on the local transmission queue used to route messages to the remote queue
manager. Applications cannot remove messages from remote queues. The value of the QType queue
attribute is MQQT_REMOTE.

You can also use a remote queue definition for:

• Reply-queue aliasing

In this case the name of the definition is the name of a reply-to queue. For more information, see
Reply-to queue aliases and clusters.

• Queue manager aliasing

In this case the name of the definition is an alias for a queue manager, and not the name of a queue.
For more information, see Queue manager aliases and clusters.

Alias queue
This is not a physical queue; it is an alternative name for a local queue, a shared queue, a cluster
queue, or a remote queue. The name of the queue to which the alias resolves is part of the definition
of the alias queue.

Applications connected to the local queue manager can place messages on queues of this type; the
messages are placed on the queue to which the alias resolves. Applications can remove messages
from queues of this type if the alias resolves to a local queue, a shared queue, or a cluster queue that
has a local instance. The value of the QType queue attribute is MQQT_ALIAS.

Model queue
This is not a physical queue; it is a set of queue attributes from which a local queue can be created.

Messages cannot be stored on queues of this type.

Queue limits

From IBM MQ 9.2.0, you have the option of configuring and monitoring queues that will support
substantially more than the two terabyte default limit used in earlier releases of IBM MQ. You also have
the option of reducing the size a queue file can grow to.

To enable you to configure queues, you can use the MAXFSIZE attribute on local and model queues, and
to monitor queues, you can use the queue status attributes CURFSIZE and CURMAXFS.

For more information, see Modifying IBM MQ queue files.

Queue attributes
Some queue attributes apply to all types of queue; other queue attributes apply only to certain types
of queue. The types of queue to which an attribute applies are shown in Table 562 on page 828 and
subsequent tables.

Table 562 on page 828 summarizes the attributes that are specific to queues. The attributes are
described in alphabetical order.

Note: The names of the attributes shown in this section are descriptive names used with the MQINQ and
MQSET calls; the names are the same as for the PCF commands. When MQSC commands are used to
define, alter, or display attributes, alternative short names are used; see MQSC commands for details.

Developing applications reference 827

In the following table, the columns apply as follows:

• The column for local queues applies also to shared queues.
• The column for model queues indicates which attributes are inherited by the local queue created from

the model queue.
• The column for cluster queues indicates the attributes that can be inquired when the cluster queue is

opened for inquire alone, or for inquire and output. If any other attributes are inquired, the call returns
completion code MQCC_WARNING and reason code MQRC_SELECTOR_NOT_FOR_TYPE (2068).

If the cluster queue is opened for inquire plus one or more of input, browse, or set, the column for local
queues applies instead.

If the cluster queue is opened for inquire alone, or for inquire and output, plus specifying the base
queue manager name, the column for local queues applies instead.

Table 562. Attributes for queues

Attribute Description Local Model Alias Remote Cluster

AlterationDate Date when definition was last
changed

X X X

AlterationTime Time when definition was
last changed

X X X

BackoutRequeueQName Excessive backout requeue
queue name

X X

BackoutThreshold Backout threshold X X

BaseQName Queue name to which alias
resolves

X

CFStrucName Coupling-facility structure
name

X X

CLCHNAME Cluster-sender channel
names

ClusterName Name of cluster to which
queue belongs

X X X X

ClusterNamelist Name of namelist object
containing names of clusters
to which queue belongs

X X X

CLWLQueuePriority Cluster workload queue
priority

X X X X

CLWLQueueRank Cluster workload queue rank X X X X

CLWLUseQ Use remote queue X

CreationDate Date that the queue was
created

X

CreationTime Time that the queue was
created

X

CurrentQDepth Current queue depth X

DefaultPutResponse Default put response

DefBind Default binding X X X X

DefinitionType attribute Queue definition type X X

DefInputOpenOption Default input open option X X

DefPersistence Default message persistence X X X X X

DefPriority Default message priority

DefReadAhead Default read ahead X X X

DistLists Distribution list support X X

HardenGetBackout Whether to maintain an
accurate backout count

X X

IndexType Index type X X

828 IBM MQ Developing Applications Reference

Table 562. Attributes for queues (continued)

Attribute Description Local Model Alias Remote Cluster

InhibitGet Whether get operations for
the queue are allowed

X X X

InhibitPut Whether put operations for
the queue are allowed

X X X X X

InitiationQName Name of initiation queue X X

MaxMsgLength Maximum message length in
bytes

X X

MaxQDepth Maximum queue depth X X

MsgDeliverySequence attribute Message delivery sequence X X

NonPersistentMessage Class Reliability goal for non-
persistent messages

X X

OpenInputCount Number of opens for input X

OpenOutputCount Number of opens for output X

PropertyControl Property control

ProcessName Process name X X

QDepthHighEvent attribute Whether Queue Depth High
events are generated

X X

QDepthHighLimit High limit for queue depth X X

QDepthLowEvent attribute Whether Queue Depth Low
events are generated

X X

QDepthLowLimit attribute Low limit for queue depth X X

QDepthMaxEvent Whether Queue Full events
are generated

X X

QDesc Queue description X X X X X

QName Queue name X X X X

QServiceInterval Target for queue service
interval

X X

QServiceIntervalEvent attribute Whether Service Interval
High or Service Interval OK
events are generated

X X

QSGDisp attribute Queue sharing group
disposition

X X X

QueueAccounting Queue accounting data
collection

X X X X X

QueueMonitoring Online monitoring data for
queues

X

QueueStatistics Queue statistics data
collection

X X X X X

QType Queue type X X X X

RemoteQMgrName Name of remote queue
manager

X

RemoteQName Name of remote queue X

RetentionInterval Retention interval X X

Scope Whether an entry for the
queue also exists in a cell
directory

X X X

Shareability Queue shareability X X

StorageClass Storage class for queue X X

TriggerControl Trigger control X X

TriggerData Trigger data X X

Developing applications reference 829

Table 562. Attributes for queues (continued)

Attribute Description Local Model Alias Remote Cluster

TriggerDepth Trigger depth X X

TriggerMsgPriority Threshold message priority
for triggers

X X

TriggerType Trigger type X X

Usage attribute Queue usage X X

XmitQName Transmission queue name X

Related concepts
Cluster queues
Local queues
How to choose what type of cluster transmission queue to use

AlterationDate (MQCHAR12)
Date when definition was last changed.

Table 563. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded
with two trailing blanks to make the length 12 bytes (for example, 1992-09-23¬¬, where ¬ represents a
single blank character).

The values of certain attributes (for example, CurrentQDepth) change as the queue manager operates.
Changes to these attributes do not affect AlterationDate.

To determine the value of this attribute, use the MQCA_ALTERATION_DATE selector with the MQINQ call.
The length of this attribute is given by MQ_DATE_LENGTH.

AlterationTime (MQCHAR8)
Time when definition was last changed.

Table 564. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

This is the time when the definition was last changed. The format of the time is HH.MM.SS using the
24-hour clock, with a leading zero if the hour is less than 10 (for example 09.10.20).

• On z/OS, the time is Greenwich Mean Time (GMT), subject to the system clock being set accurately to
GMT.

• In other environments, the time is local time.

The values of certain attributes (for example, CurrentQDepth) change as the queue manager operates.
Changes to these attributes do not affect AlterationTime.

To determine the value of this attribute, use the MQCA_ALTERATION_TIME selector with the MQINQ call.
The length of this attribute is given by MQ_TIME_LENGTH.

830 IBM MQ Developing Applications Reference

BackoutRequeueQName (MQCHAR48)
This is the excessive backout requeue queue name. Apart from allowing its value to be queried, the queue
manager takes no action based on the value of this attribute.

Table 565. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

Applications running inside WebSphere Application Server and those that use the IBM MQ Application
Server Facilities use this attribute to determine where messages that have been backed out should go. For
all other applications, the queue manager takes no action based on the value of the attribute.

IBM MQ classes for JMS uses this attribute to determine where to transfer a message that has already
been backed out the maximum number of times as specified by the BackoutThreshold attribute.

To determine the value of this attribute, use the MQCA_BACKOUT_REQ_Q_NAME selector with the MQINQ
call. The length of this attribute is given by MQ_Q_NAME_LENGTH.

BackoutThreshold (MQLONG)
This is the backout threshold. Apart from allowing its value to be queried, the queue manager takes no
action based on the value of this attribute.

Table 566. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

Applications running inside of WebSphere Application Server and those that use the IBM MQ Application
Server Facilities will use this attribute to determine if a message should be backed out. For all other
applications, the queue manager takes no action based on the value of the attribute.

IBM MQ classes for JMS uses this attribute to determine how many times to allow a message to be
backed out before transferring the message to the queue specified by the BackoutRequeueQName
attribute.

To determine the value of this attribute, use the MQIA_BACKOUT_THRESHOLD selector with the MQINQ
call.

BaseQName (MQCHAR48)
This is the name of a queue that is defined to the local queue manager.

Table 567. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

(For more information on queue names, see MQOD - ObjectName field.) The queue is one of the following
types:

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_CLUSTER
Cluster queue.

Developing applications reference 831

To determine the value of this attribute, use the MQCA_BASE_Q_NAME selector with the MQINQ call. The
length of this attribute is given by MQ_Q_NAME_LENGTH.

BaseType (MQCFIN)
The type of object to which the alias resolves.

Table 568. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

It is one of the following values:
MQOT_Q

Base object type is a queue
MQOT_TOPIC

Base object type is a topic

CFStrucName (MQCHAR12)
This is the name of the coupling-facility structure where the messages on the queue are stored. The first
character of the name is in the range A through Z, and the remaining characters are in the range A through
Z, 0 through 9, or blank.

Table 569. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

To get the full name of the structure in the coupling facility, suffix the value of the QSGName queue
manager attribute with the value of the CFStrucName queue attribute.

This attribute applies only to shared queues; it is ignored if QSGDisp does not have the value
MQQSGD_SHARED.

To determine the value of this attribute, use the MQCA_CF_STRUC_NAME selector with the MQINQ call.
The length of this attribute is given by MQ_CF_STRUC_NAME_LENGTH.

This attribute is supported only on z/OS.

ClusterChannelName (MQCHAR20)
ClusterChannelName is the generic name of the cluster-sender channels that use this queue as a
transmission queue. The attribute specifies which cluster-sender channels send messages to a cluster-
receiver channel from this cluster transmission queue.

Table 570. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The default queue manager configuration is for all cluster-sender channels to send messages from
a single transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE. The default configuration can be
changed by modified by changing the queue manager attribute, DefClusterXmitQueueType. The
default value of the attribute is SCTQ. You can change the value to CHANNEL. If you set the
DefClusterXmitQueueType attribute to CHANNEL, each cluster-sender channel defaults to using a
specific cluster transmission queue, SYSTEM.CLUSTER.TRANSMIT.ChannelName.

832 IBM MQ Developing Applications Reference

You can also set the transmission queue attribute ClusterChannelName attribute to a cluster-sender
channel manually. Messages that are destined for the queue manager connected by the cluster-
sender channel are stored in the transmission queue that identifies the cluster-sender channel. They
are not stored in the default cluster transmission queue. If you set the ClusterChannelName
attribute to blanks, the channel switches to the default cluster transmission queue when
the channel restarts. The default queue is either SYSTEM.CLUSTER.TRANSMIT.ChannelName
or SYSTEM.CLUSTER.TRANSMIT.QUEUE, depending on the value of the queue manager
DefClusterXmitQueueType attribute.

By specifying asterisks, "*", in ClusterChannelName, you can associate a transmission queue with a
set of cluster-sender channels. The asterisks can be at the beginning, end, or any number of places in
the middle of the channel name string. ClusterChannelName is limited to a length of 20 characters:
MQ_CHANNEL_NAME_LENGTH.

ClusterName (MQCHAR48)
This is the name of the cluster to which the queue belongs.

Table 571. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

If the queue belongs to more than one cluster, ClusterNamelist specifies the name of a namelist
object that identifies the clusters, and ClusterName is blank. At least one of ClusterName and
ClusterNamelist must be blank.

To determine the value of this attribute, use the MQCA_CLUSTER_NAME selector with the MQINQ call.
The length of this attribute is given by MQ_CLUSTER_NAME_LENGTH.

ClusterNamelist (MQCHAR48)
This is the name of a namelist object that contains the names of clusters to which this queue belongs.

Table 572. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

If the queue belongs to only one cluster, the namelist object contains only one name. Alternatively,
ClusterName can be used to specify the name of the cluster, in which case ClusterNamelist is blank.
At least one of ClusterName and ClusterNamelist must be blank.

To determine the value of this attribute, use the MQCA_CLUSTER_NAMELIST selector with the MQINQ
call. The length of this attribute is given by MQ_NAMELIST_NAME_LENGTH.

CLWLQueuePriority (MQLONG)
This is the cluster workload queue priority, a value in the range 0 through 9 representing the priority of the
queue.

Table 573. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

For more information, see Cluster queues.

To determine the value of this attribute, use the MQIA_CLWL_Q_PRIORITY selector with the MQINQ call.

Developing applications reference 833

CLWLQueueRank (MQLONG)
This is the cluster workload queue rank, a value in the range 0 through 9 representing the rank of the
queue.

Table 574. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

For more information, see Cluster queues.

To determine the value of this attribute, use the MQIA_CLWL_Q_RANK selector with the MQINQ call.

CLWLUseQ (MQLONG)
This defines the behavior of an MQPUT when the target queue has both a local instance and at least one
remote cluster instance. If the put originates from a cluster channel, this attribute does not apply.

Table 575. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

The value is one of the following:
MQCLWL_USEQ_ANY

Use remote and local queues.
MQCLWL_USEQ_LOCAL

Do not use remote queues.
MQCLWL_USEQ_AS_Q_MGR

Inherit definition from queue manager's MQIA_CLWL_USEQ.
For more information, see Cluster queues.

To determine the value of this attribute, use the MQIA_CLWL_USEQ selector with the MQINQ call. The
length of this attribute is given by MQ_CLWL_USEQ_LENGTH.

CreationDate (MQCHAR12)
This is the date when the queue was created.

Table 576. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

The format of the date is YYYY-MM-DD, padded with two trailing blanks to make the length 12 bytes (for
example, 2013-09-23¬¬, ¬ represents a single blank character).

• On IBM i, the creation date of a queue can differ from that of the underlying operating system entity (file
or userspace) that represents the queue.

To determine the value of this attribute, use the MQCA_CREATION_DATE selector with the MQINQ call.
The length of this attribute is given by MQ_CREATION_DATE_LENGTH.

834 IBM MQ Developing Applications Reference

CreationTime (MQCHAR8)
This is the time when the queue was created.

Table 577. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

The format of the time is HH.MM.SS using the 24-hour clock, with a leading zero if the hour is less than 10
(for example 09.10.20).

• On z/OS, the time is Greenwich Mean Time (GMT), subject to the system clock being set accurately to
GMT.

• In other environments, the time is local time.
• On IBM i, the creation time of a queue can differ from that of the underlying operating system entity (file

or userspace) that represents the queue.

To determine the value of this attribute, use the MQCA_CREATION_TIME selector with the MQINQ call.
The length of this attribute is given by MQ_CREATION_TIME_LENGTH.

CurrentQDepth (MQLONG)
This is the number of messages currently on the queue.

Table 578. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

It is incremented during an MQPUT call, and during backout of an MQGET call. It is decremented during a
nonbrowse MQGET call, and during backout of an MQPUT call. The effect of this is that the count includes
messages that have been put on the queue within a unit of work, but that have not yet been committed,
even though they are not eligible to be retrieved by the MQGET call. Similarly, it excludes messages that
have been retrieved within a unit of work using the MQGET call, but that have yet to be committed.

The count also includes messages that have passed their expiry time but have not yet been discarded,
although these messages are not eligible to be retrieved. See MQMD - Expiry field for more information.

Unit-of-work processing and the segmentation of messages can both cause CurrentQDepth to exceed
MaxQDepth. However, this does not affect the retrievability of the messages; all messages on the queue
can be retrieved using the MQGET call in the normal way.

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the MQIA_CURRENT_Q_DEPTH selector with the MQINQ call.

DefaultPutResponse (MQLONG)
Specifies the type of response to be used for put operations to the queue when an application specifies
MQPMO_RESPONSE_AS_Q_DEF.

Table 579. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

It is one of the following values:
MQPRT_SYNC_RESPONSE

The put operation is issued synchronously, returning a response.
MQPRT_ASYNC_RESPONSE

The put operation is issued asynchronously, returning a subset of MQMD fields.

Developing applications reference 835

DefBind (MQLONG)
This is the default binding that is used when MQOO_BIND_AS_Q_DEF is specified on the MQOPEN call and
the queue is a cluster queue.

Table 580. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

The value is one of the following:
MQBND_BIND_ON_OPEN

Binding fixed by MQOPEN call.
MQBND_BIND_NOT_FIXED

Binding not fixed.
MQBND_BIND_ON_GROUP

Allows an application to request that a group of messages are all allocated to the same destination
instance. Because this value is new in IBM WebSphere MQ 7.1, it must not be used if any of
the applications opening this queue are connecting to IBM WebSphere MQ 7.0.1 or earlier queue
managers.

To determine the value of this attribute, use the MQIA_DEF_BIND selector with the MQINQ call.

DefinitionType (MQLONG)
This indicates how the queue was defined.

Table 581. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The value is one of the following:
MQQDT_PREDEFINED

The queue is a permanent queue created by the system administrator; only the system administrator
can delete it.

Predefined queues are created using the DEFINE MQSC command, and can be deleted only by using
the DELETE MQSC command. Predefined queues cannot be created from model queues.

Commands can be issued either by an operator, or by an authorized user sending a command
message to the command input queue (see CommandInputQName attribute for more information).

MQQDT_PERMANENT_DYNAMIC
The queue is a permanent queue that was created by an application issuing an MQOPEN call with the
name of a model queue specified in the object descriptor MQOD. The model queue definition had the
value MQQDT_PERMANENT_DYNAMIC for the DefinitionType attribute.

This type of queue can be deleted using the MQCLOSE call. See “MQCLOSE - Close object” on page
642 for more details.

The value of the QSGDisp attribute for a permanent dynamic queue is MQQSGD_Q_MGR.

MQQDT_TEMPORARY_DYNAMIC
The queue is a temporary queue that was created by an application issuing an MQOPEN call with the
name of a model queue specified in the object descriptor MQOD. The model queue definition had the
value MQQDT_TEMPORARY_DYNAMIC for the DefinitionType attribute.

This type of queue is deleted automatically by the MQCLOSE call when it is closed by the application
that created it.

The value of the QSGDisp attribute for a temporary dynamic queue is MQQSGD_Q_MGR.

836 IBM MQ Developing Applications Reference

MQQDT_SHARED_DYNAMIC
The queue is a shared permanent queue that was created by an application issuing an MQOPEN call
with the name of a model queue specified in the object descriptor MQOD. The model queue definition
had the value MQQDT_SHARED_DYNAMIC for the DefinitionType attribute.

This type of queue can be deleted using the MQCLOSE call. See “MQCLOSE - Close object” on page
642 for more details.

The value of the QSGDisp attribute for a shared dynamic queue is MQQSGD_SHARED.

This attribute in a model queue definition does not indicate how the model queue was defined, because
model queues are always predefined. Instead, the value of this attribute in the model queue is used to
determine the DefinitionType of each of the dynamic queues created from the model queue definition
using the MQOPEN call.

To determine the value of this attribute, use the MQIA_DEFINITION_TYPE selector with the MQINQ call.

DefInputOpenOption (MQLONG)
This is the default way in which to open the queue for input.

Table 582. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

It applies if the MQOO_INPUT_AS_Q_DEF option is specified on the MQOPEN call when the queue is
opened. The value is one of the following:
MQOO_INPUT_EXCLUSIVE

Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The call fails with reason code
MQRC_OBJECT_IN_USE if the queue is currently open by this or another application for input of any
type (MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE).

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The call can succeed if the queue is
currently open by this or another application with MQOO_INPUT_SHARED, but fails with reason code
MQRC_OBJECT_IN_USE if the queue is currently open with MQOO_INPUT_EXCLUSIVE.

To determine the value of this attribute, use the MQIA_DEF_INPUT_OPEN_OPTION selector with the
MQINQ call.

DefPersistence (MQLONG)
This is the default persistence of messages on the queue. It applies if MQPER_PERSISTENCE_AS_Q_DEF
is specified in the message descriptor when the message is put.

Table 583. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

If there is more than one definition in the queue-name resolution path, the default persistence is taken
from the value of this attribute in the first definition in the path at the time of the MQPUT or MQPUT1 call.
This could be:

• An alias queue
• A local queue
• A local definition of a remote queue

Developing applications reference 837

• A queue manager alias
• A transmission queue (for example, the DefXmitQName queue)

The value is one of the following:
MQPER_PERSISTENT

The message survives system failures and queue manager restarts. Persistent messages cannot be
placed on:

• Temporary dynamic queues
• Shared queues that map to a CFSTRUCT object at CFLEVEL(2) or below, or where the CFSTRUCT

object is defined as RECOVER(NO).

Persistent messages can be placed on permanent dynamic queues, and predefined queues.

MQPER_NOT_PERSISTENT
The message does not normally survive system failures or queue manager restarts. This applies even
if an intact copy of the message is found on auxiliary storage during a queue manager restart.

In the case of shared queues, nonpersistent messages do survive restarts of queue managers in the
queue sharing group, but do not survive failures of the coupling facility used to store messages on the
shared queues.

Both persistent and nonpersistent messages can exist on the same queue.

To determine the value of this attribute, use the MQIA_DEF_PERSISTENCE selector with the MQINQ call.

DefPriority (MQLONG)
This is the default priority for messages on the queue. This applies if MQPRI_PRIORITY_AS_Q_DEF is
specified in the message descriptor when the message is put on the queue.

Table 584. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

If there is more than one definition in the queue-name resolution path, the default priority for the
message is taken from the value of this attribute in the first definition in the path at the time of the put
operation. This could be:

• An alias queue
• A local queue
• A local definition of a remote queue
• A queue manager alias
• A transmission queue (for example, the DefXmitQName queue)

The way in which a message is placed on a queue depends on the value of the queue's
MsgDeliverySequence attribute:

• If the MsgDeliverySequence attribute is MQMDS_PRIORITY, the logical position at which a message
is placed on the queue depends on the value of the Priority field in the message descriptor.

• If the MsgDeliverySequence attribute is MQMDS_FIFO, messages are placed on the queue as though
they had a priority equal to the DefPriority of the resolved queue, regardless of the value of the
Priority field in the message descriptor. However, the Priority field retains the value specified by
the application that put the message. See MsgDeliverySequence attribute for more information.

Priorities are in the range zero (lowest) through MaxPriority (highest); see MaxPriority attribute.

To determine the value of this attribute, use the MQIA_DEF_PRIORITY selector with the MQINQ call.

838 IBM MQ Developing Applications Reference

DefReadAhead (MQLONG)
Specifies the default read ahead behavior for non-persistent messages delivered to the client.

Table 585. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

DefReadAhead can be set to one of the following values::
MQREADA_NO

Non-persistent messages are not sent ahead to the client before an applications requests them. A
maximum of one non-persistent message can be lost if the client ends abnormally.

MQREADA_YES
Non-persistent messages are sent ahead to the client before an application requests them. Non-
persistent messages can be lost if the client ends abnormally or if the client does not consume all the
messages it is sent.

MQREADA_DISABLED
Read ahead of non-persistent messages in not enabled for this queue. Messages are not sent ahead to
the client regardless of whether read ahead is requested by the client application.

To determine the value of this attribute, use the MQIA_DEF_READ_AHEAD selector with the MQINQ call.

DefPResp (MQLONG)
The default put response type (DEFPRESP) attribute defines the value used by applications when the
PutResponseType within MQPMO has been set to MQPMO_RESPONSE_AS_Q_DEF. This attribute is valid
for all queue types.

Table 586. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

The value is one of the following:
SYNC

The put operation is issued synchronously returning a response.
ASYNC

The put operation is issued asynchronously, returning a subset of MQMD fields.

To determine the value of this attribute, use the MQIA_DEF_PUT_RESPONSE_TYPE selector with the
MQINQ call.

DistLists (MQLONG)
This indicates whether distribution-list messages can be placed on the queue.

Table 587. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

A message channel agent (MCA) sets the attribute to inform the local queue manager whether the queue
manager at the other end of the channel supports distribution lists. This latter queue manager (called the
partnering queue manager) is the one that next receives the message, after it has been removed from the
local transmission queue by a sending MCA.

Developing applications reference 839

The sending MCA sets the attribute whenever it establishes a connection to the receiving MCA on the
partnering queue manager. In this way, the sending MCA can cause the local queue manager to place on
the transmission queue only messages that the partnering queue manager can process correctly.

This attribute is primarily for use with transmission queues, but the processing described is performed
regardless of the usage defined for the queue (see Usage attribute).

The value is one of the following:
MQDL_SUPPORTED

Distribution-list messages can be stored on the queue, and transmitted to the partnering queue
manager in that form. This reduces the amount of processing required to send the message to
multiple destinations.

MQDL_NOT_SUPPORTED
Distribution-list messages cannot be stored on the queue, because the partnering queue manager
does not support distribution lists. If an application puts a distribution-list message, and that message
is to be placed on this queue, the queue manager splits the distribution-list message and places the
individual messages on the queue instead. This increases the amount of processing required to send
the message to multiple destinations, but ensures that the messages are processed correctly by the
partnering queue manager.

To determine the value of this attribute, use the MQIA_DIST_LISTS selector with the MQINQ call. To
change the value of this attribute, use the MQSET call.

This attribute is not supported on z/OS.

HardenGetBackout (MQLONG)
For each message, a count is kept of the number of times that the message is retrieved by an MQGET call
within a unit of work, and that unit of work subsequently backed out.

Table 588. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This count is available in the BackoutCount field in the message descriptor after the MQGET call has
completed.

The message backout count survives restarts of the queue manager. However, to ensure that the count is
accurate, information has to be hardened (recorded on disk or other permanent storage device) each time
that an MQGET call retrieves a message within a unit of work for this queue. If this is not done, the queue
manager fails, and the MQGET call backs out, the count might or might not be incremented.

Hardening information for each MQGET call within a unit of work, however, imposes additional processing
cost, so set the HardenGetBackout attribute to MQQA_BACKOUT_HARDENED only if it is essential that
the count is accurate.

On Multiplatforms, the message backout count is always hardened, regardless of the setting of this
attribute.

The following values are possible:
MQQA_BACKOUT_HARDENED

Hardening is used to ensure that the backout count for messages on this queue is accurate.
MQQA_BACKOUT_NOT_HARDENED

Hardening is not used to ensure that the backout count for messages on this queue is accurate. The
count might therefore be lower than it should be.

To determine the value of this attribute, use the MQIA_HARDEN_GET_BACKOUT selector with the MQINQ
call.

840 IBM MQ Developing Applications Reference

IndexType (MQLONG)
This specifies the type of index that the queue manager maintains for messages on the queue.

Table 589. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The type of index required depends on how the application retrieves messages, and whether the queue
is a shared queue or a nonshared queue (see QSGDisp attribute). The following values are possible for
IndexType:
MQIT_NONE

No index is maintained by the queue manager for this queue. Use this value for queues that are
typically processed sequentially, that is, without using any selection criteria on the MQGET call.

MQIT_MSG_ID
The queue manager maintains an index that uses the message identifiers of the messages on the
queue. Use this value queues where the application typically retrieves messages using the message
identifier as the selection criterion on the MQGET call.

MQIT_CORREL_ID
The queue manager maintains an index that uses the correlation identifiers of the messages on
the queue. Use this value for queues where the application typically retrieves messages using the
correlation identifier as the selection criterion on the MQGET call.

MQIT_MSG_TOKEN

Important: This index type should only be used for queues used with the IBM MQ Workflow for z/OS
product.

The queue manager maintains an index that uses the message tokens of the messages on the queue
for use with the workload manager (WLM) functions of z/OS.

You must specify this option for WLM-managed queues; do not specify it for any other type of queue.
Also, do not use this value for a queue where an application is not using the z/OS workload manager
functions, but is retrieving messages using the message token as a selection criterion on the MQGET
call.

MQIT_GROUP_ID
The queue manager maintains an index that uses the group identifiers of the messages on the
queue. This value must be used for queues where the application retrieves messages using the
MQGMO_LOGICAL_ORDER option on the MQGET call.

A queue with this index type cannot be a transmission queue. A shared queue with this index type
must be defined to map to a CFSTRUCT object at CFLEVEL(3) or higher.

Note:

1. The physical order of messages on a queue with index type MQIT_GROUP_ID is not defined, as the
queue is optimized for efficient retrieval of messages using the MQGMO_LOGICAL_ORDER option
on the MQGET call. This means that the physical order of the messages is not typically the order in
which the messages arrived on the queue.

2. If an MQIT_GROUP_ID queue has a MsgDeliverySequence of MQMDS_PRIORITY, the queue
manager uses message priorities 0 and 1 to optimize the retrieval of messages in logical order. As
a result, the first message in a group must not have a priority of zero or one; if it does, the message
is processed as though it had a priority of two. The Priority field in the MQMD structure is not
changed.

For more information about message groups, see the description of the group and segment options in
MQGMO - Options field.

The index type that should be used in various cases is shown in Table 590 on page 842 and Table 591 on
page 842.

Developing applications reference 841

Table 590. Suggested or required values of queue index type when MQGMO_LOGICAL_ORDER not
specified

Selection criteria on MQGET call Index type for nonshared queue Index type for shared queue

None Any Any

Selection using one identifier:

Message identifier MQIT_MSG_ID suggested MQIT_NONE or MQIT_MSG_ID
required; MQIT_MSG_ID
suggested

Correlation identifier MQIT_CORREL_ID suggested MQIT_CORREL_ID required

Group identifier MQIT_GROUP_ID suggested MQIT_GROUP_ID required

Selection using two identifiers:

Message identifier plus
correlation identifier

MQIT_MSG_ID or
MQIT_CORREL_ID suggested

MQIT_NONE or MQIT_MSG_ID or
MQIT_CORREL_ID required

(For efficiency, it is suggested
that the index type is chosen to
match the MQMD field which will
have the most distinct keys)

Message identifier plus group
identifier

MQIT_MSG_ID or
MQIT_GROUP_ID suggested

Not supported

Correlation identifier plus group
identifier

MQIT_CORREL_ID or
MQIT_GROUP_ID suggested

Not supported

Selection using three identifiers:

Message identifier plus
correlation identifier plus group
identifier

MQIT_MSG_ID or
MQIT_CORREL_ID or
MQIT_GROUP_ID suggested

Not supported

Selection using group-related criteria:

Group identifier plus message
sequence number

MQIT_GROUP_ID required MQIT_GROUP_ID required

Message sequence number (must
be 1)

MQIT_GROUP_ID required MQIT_GROUP_ID required

Selection using message token:

Message token for application
use

Do not use MQIT_MSG_TOKEN

Message token for WLM use MQIT_MSG_TOKEN required Not supported

Table 591. Suggested or required values of queue index type when MQGMO_LOGICAL_ORDER specified

Selection criteria on MQGET call Index type for nonshared queue Index type for shared queue

None MQIT_GROUP_ID required MQIT_GROUP_ID required

Selection using one identifier:

Message identifier MQIT_GROUP_ID required Not supported

842 IBM MQ Developing Applications Reference

Table 591. Suggested or required values of queue index type when MQGMO_LOGICAL_ORDER specified
(continued)

Selection criteria on MQGET call Index type for nonshared queue Index type for shared queue

Correlation identifier MQIT_GROUP_ID required Not supported

Group identifier MQIT_GROUP_ID required MQIT_GROUP_ID required

Selection using two identifiers:

Message identifier plus
correlation identifier

MQIT_GROUP_ID required Not supported

Message identifier plus group
identifier

MQIT_GROUP_ID required Not supported

Correlation identifier plus group
identifier

MQIT_GROUP_ID required Not supported

Selection using three identifiers:

Message identifier plus
correlation identifier plus group
identifier

MQIT_GROUP_ID required Not supported

To determine the value of this attribute, use the MQIA_INDEX_TYPE selector with the MQINQ call.

This attribute is supported only on z/OS.

InhibitGet (MQLONG)
This controls whether get operations for this queue are allowed.

Table 592. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

If the queue is an alias queue, get operations must be allowed for both the alias and the base queue at
the time of the get operation, for the MQGET call to succeed. The value is one of the following:
MQQA_GET_INHIBITED

Get operations are inhibited.

MQGET calls fail with reason code MQRC_GET_INHIBITED. This includes MQGET calls that specify
MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT.

Note: If an MQGET call operating within a unit of work completes successfully, changing the value of
the InhibitGet attribute subsequently to MQQA_GET_INHIBITED does not prevent the unit of work
being committed.

MQQA_GET_ALLOWED
Get operations are allowed.

To determine the value of this attribute, use the MQIA_INHIBIT_GET selector with the MQINQ call. To
change the value of this attribute, use the MQSET call.

Developing applications reference 843

InhibitPut (MQLONG)
This controls whether put operations for this queue are allowed.

Table 593. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

If there is more than one definition in the queue-name resolution path, put operations must be allowed
for every definition in the path (including any queue manager alias definitions) at the time of the put
operation, for the MQPUT or MQPUT1 call to succeed. The value is one of the following:
MQQA_PUT_INHIBITED

Put operations are inhibited.

MQPUT and MQPUT1 calls fail with reason code MQRC_PUT_INHIBITED.

Note: If an MQPUT call operating within a unit of work completes successfully, changing the value of
the InhibitPut attribute subsequently to MQQA_PUT_INHIBITED does not prevent the unit of work
being committed.

MQQA_PUT_ALLOWED
Put operations are allowed.

To determine the value of this attribute, use the MQIA_INHIBIT_PUT selector with the MQINQ call. To
change the value of this attribute, use the MQSET call.

InitiationQName (MQCHAR48)
This is the name of a queue defined on the local queue manager; the queue must be of type
MQQT_LOCAL.

Table 594. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

The queue manager sends a trigger message to the initiation queue when application start-up is required
as a result of a message arriving on the queue to which this attribute belongs. The initiation queue must
be monitored by a trigger monitor application that starts the appropriate application after receipt of the
trigger message.

To determine the value of this attribute, use the MQCA_INITIATION_Q_NAME selector with the MQINQ
call. The length of this attribute is given by MQ_Q_NAME_LENGTH.

MaxMsgLength (MQLONG)
This is an upper limit for the length of the longest physical message that can be placed on the queue.

Table 595. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

However, because the MaxMsgLength queue attribute can be set independently of the MaxMsgLength
queue manager attribute, the actual upper limit for the length of the longest physical message that can be
placed on the queue is the lesser of those two values.

If the queue manager supports segmentation, it is possible for an application to put a logical message
that is longer than the lesser of the two MaxMsgLength attributes, but only if the application specifies
the MQMF_SEGMENTATION_ALLOWED flag in MQMD. If that flag is specified, the upper limit for the length
of a logical message is 999 999 999 bytes, but usually resource constraints imposed by the operating
system, or by the environment in which the application is running, result in a lower limit.

844 IBM MQ Developing Applications Reference

An attempt to place on the queue a message that is too long fails with one of the following reason codes:

• MQRC_MSG_TOO_BIG_FOR_Q if the message is too big for the queue
• MQRC_MSG_TOO_BIG_FOR_Q_MGR if the message is too big for the queue manager, but not too big for

the queue

The lower limit for the MaxMsgLength attribute is zero; the upper limit is 100 MB (104 857 600 bytes).

For more information, see MQPUT - BufferLength parameter.

To determine the value of this attribute, use the MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

MaxQDepth (MQLONG)
This is the defined upper limit for the number of physical messages that can exist on the queue at any one
time.

Table 596. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

An attempt to put a message on a queue that already contains MaxQDepth messages fails with reason
code MQRC_Q_FULL.

Unit-of-work processing and the segmentation of messages can both cause the actual number of physical
messages on the queue to exceed MaxQDepth. However, this does not affect the retrievability of the
message because all messages on the queue can be retrieved using the MQGET call.

The value of this attribute is zero or greater. The upper limit is determined by the environment:

• On the following platforms, the value cannot exceed 999 999 999:

– AIX

– Linux

– Windows

– z/OS

• On IBM i, the value cannot exceed 640 000.

Note: The storage space available to the queue might be exhausted even if there are fewer than
MaxQDepth messages on the queue.

To determine the value of this attribute, use the MQIA_MAX_Q_DEPTH selector with the MQINQ call.

MsgDeliverySequence (MQLONG)
Table 597. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This determines the order in which the MQGET call returns messages to the application :
MQMDS_FIFO

Messages are returned in FIFO order (first in, first out).

An MQGET call returns the first message that satisfies the selection criteria specified on the call,
regardless of the priority of the message.

MQMDS_PRIORITY
Messages are returned in priority order.

Developing applications reference 845

An MQGET call returns the highest-priority message that satisfies the selection criteria specified on
the call. Within each priority level, messages are returned in FIFO order (first in, first out).

• On z/OS, if the queue has an IndexType of MQIT_GROUP_ID, the MsgDeliverySequence attribute
specifies the order in which message groups are returned to the application. The particular sequence
in which the groups are returned is determined by the position or priority of the first message in each
group. The physical order of messages on the queue is not defined, as the queue is optimized for
efficient retrieval of messages using the MQGMO_LOGICAL_ORDER option on the MQGET call.

• On z/OS, if IndexType is MQIT_GROUP_ID and MsgDeliverySequence is MQMDS_PRIORITY, the
queue manager uses message priorities zero and one to optimize the retrieval of messages in logical
order. As a result, the first message in a group must not have a priority of zero or one; if it does, the
message is processed as though it had a priority of two. The Priority field in the MQMD structure is
not changed.

If the relevant attributes are changed while there are messages on the queue, the delivery sequence is as
follows:

• The order in which messages are returned by the MQGET call is determined by the values of the
MsgDeliverySequence and DefPriority attributes in force for the queue at the time that the
message arrives on the queue:

– If MsgDeliverySequence is MQMDS_FIFO when the message arrives, the message is placed on the
queue as though its priority were DefPriority. This does not affect the value of the Priority field
in the message descriptor of the message; that field retains the value it had when the message was
first put.

– If MsgDeliverySequence is MQMDS_PRIORITY when the message arrives, the message is placed
on the queue at the place appropriate to the priority given by the Priority field in the message
descriptor.

If the value of the MsgDeliverySequence attribute is changed while there are messages on the
queue, the order of the messages on the queue is not changed.

If the value of the DefPriority attribute is changed while there are messages on the queue,
the messages are not necessarily delivered in FIFO order, even though the MsgDeliverySequence
attribute is set to MQMDS_FIFO; those that were placed on the queue at the higher priority are delivered
first.

To determine the value of this attribute, use the MQIA_MSG_DELIVERY_SEQUENCE selector with the
MQINQ call.

NonPersistentMessageClass (MQLONG)
The reliability goal for nonpersistent messages.

Table 598. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This specifies the circumstances under which nonpersistent messages put on this queue are discarded:
MQNPM_CLASS_NORMAL

Nonpersistent messages are limited to the lifetime of the queue manager session; the messages are
discarded in the event of a queue manager restart. This is valid only for non-shared queues, and is the
default value.

MQNPM_CLASS_HIGH
The queue manager attempts to retain nonpersistent messages for the lifetime of the queue.
Nonpersistent messages might still be lost in the event of a failure. This value is enforced for shared
queues.

846 IBM MQ Developing Applications Reference

To determine the value of this attribute, use the MQIA_NPM_CLASS selector with the MQINQ call.

OpenInputCount (MQLONG)
This is the number of handles that are currently valid for removing messages from the queue by means of
the MQGET call.

Table 599. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

It is the total number of such handles known to the local queue manager. If the queue is a shared queue,
the count does not include opens for input that were performed for the queue at other queue managers in
the queue sharing group to which the local queue manager belongs.

The count includes handles where an alias queue that resolves to this queue was opened for input. The
count does not include handles where the queue was opened for actions that did not include input (for
example, a queue opened only for browse).

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the MQIA_OPEN_INPUT_COUNT selector with the MQINQ
call.

OpenOutputCount (MQLONG)
This is the number of handles that are currently valid for adding messages to the queue by means of the
MQPUT call.

Table 600. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

It is the total number of such handles known to the local queue manager; it does not include opens for
output that were performed for this queue at remote queue managers. If the queue is a shared queue, the
count does not include opens for output that were performed for the queue at other queue managers in
the queue sharing group to which the local queue manager belongs.

The count includes handles where an alias queue that resolves to this queue was opened for output. The
count does not include handles where the queue was opened for actions that did not include output (for
example, a queue opened only for inquire).

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the MQIA_OPEN_OUTPUT_COUNT selector with the MQINQ
call.

ProcessName (MQCHAR48)
This is the name of a process object that is defined on the local queue manager. The process object
identifies a program that can service the queue.

Table 601. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

To determine the value of this attribute, use the MQCA_PROCESS_NAME selector with the MQINQ call.
The length of this attribute is given by MQ_PROCESS_NAME_LENGTH.

Developing applications reference 847

PropertyControl (MQLONG)
Specifies how message properties are handled for messages that are retrieved from queues using the
MQGET call with the MQGMO_PROPERTIES_AS_Q_DEF option.

Table 602. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

The value is one of the following:
MQPROP_ALL

All properties of the message are included with the message when it is delivered to the application.
The properties, except those in the message descriptor (or extension), are placed in one or more
MQRFH2 headers in the message data. If a message handle is supplied then the behavior is to return
the properties in the message handle.

MQPROP_COMPATIBILITY
If the message contains a property with a prefix of mcd., jms., usr. or mqext., all message properties
are delivered to the application in an MQRFH2 header. Otherwise all properties of the message,
except those contained in the message descriptor (or extension), are discarded and are no longer
accessible to the application. This is the default value; it allows applications which expect JMS related
properties to be in an MQRFH2 header in the message data to continue to work unmodified. If a
message handle is supplied then the behavior is to return the properties in the message handle..

MQPROP_FORCE_MQRFH2
Properties are always returned in the message data in an MQRFH2 header regardless of whether the
application specifies a message handle. A valid message handle supplied in the MsgHandle field of the
MQGMO structure on the MQGET call is ignored. Properties of the message are not accessible via the
message handle.

MQPROP_NONE
All properties of the message, except those in the message descriptor (or extension), are removed
from the message before the message is delivered to the application. If a message handle is supplied
then the behavior is to return the properties in the message handle.

This parameter is applicable to Local, Alias and Model queues. To determine its value, use the
MQIA_PROPERTY_CONTROL selector with the MQINQ call.

QDepthHighEvent (MQLONG)
This controls whether Queue Depth High events are generated.

Table 603. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

A Queue Depth High event indicates that an application has put a message on a queue, and this has
caused the number of messages on the queue to become greater than or equal to the queue depth high
threshold (see the QDepthHighLimit attribute).

Note: The value of this attribute can change dynamically.

The value is one of the following:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

848 IBM MQ Developing Applications Reference

To determine the value of this attribute, use the MQIA_Q_DEPTH_HIGH_EVENT selector with the MQINQ
call.

This attribute is supported on z/OS, but the MQINQ call cannot be used to determine its value.

QDepthHighLimit (MQLONG)
This is the threshold against which the queue depth is compared to generate a Queue Depth High event.

Table 604. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This event indicates that an application has put a message on a queue, and that this has caused the
number of messages on the queue to become greater than or equal to the queue depth high threshold.
See QDepthHighEvent attribute.

The value is expressed as a percentage of the maximum queue depth (MaxQDepth attribute), and is
greater than or equal to 0 and less than or equal to 100. The default value is 80.

To determine the value of this attribute, use the MQIA_Q_DEPTH_HIGH_LIMIT selector with the MQINQ
call.

This attribute is supported on z/OS, but the MQINQ call cannot be used to determine its value.

QDepthLowEvent (MQLONG)
This controls whether Queue Depth Low events are generated.

Table 605. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

A Queue Depth Low event indicates that an application has retrieved a message from a queue, and that
this has caused the number of messages on the queue to become less than or equal to the queue depth
low threshold (see QDepthLowLimit attribute).

Note: The value of this attribute can change dynamically.

The value is one of the following:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_Q_DEPTH_LOW_EVENT selector with the MQINQ
call.

This attribute is supported on z/OS, but the MQINQ call cannot be used to determine its value.

QDepthLowLimit (MQLONG)
This is the threshold against which the queue depth is compared to generate a Queue Depth Low event.

Table 606. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

Developing applications reference 849

This event indicates that an application has retrieved a message from a queue, and that this has caused
the number of messages on the queue to become less than or equal to the queue depth low threshold.
See QDepthLowEvent attribute.

The value is expressed as a percentage of the maximum queue depth (MaxQDepth attribute), and is
greater than or equal to 0 and less than or equal to 100. The default value is 20.

To determine the value of this attribute, use the MQIA_Q_DEPTH_LOW_LIMIT selector with the MQINQ
call.

This attribute is supported on z/OS, but the MQINQ call cannot be used to determine its value.

QDepthMaxEvent (MQLONG)
This controls whether Queue Full events are generated. A Queue Full event indicates that a put to a queue
has been rejected because the queue is full, that is, the queue depth has already reached its maximum
value.

Table 607. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

Note: The value of this attribute can change dynamically.

The value is one of the following:
MQEVR_DISABLED

Event reporting disabled.
MQEVR_ENABLED

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_Q_DEPTH_MAX_EVENT selector with the MQINQ
call.

This attribute is supported on z/OS, but the MQINQ call cannot be used to determine its value.

QDesc (MQCHAR64)
Use this field for descriptive commentary.

Table 608. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

The content of the field is of no significance to the queue manager, but the queue manager might require
that the field contain only characters that can be displayed. It cannot contain any null characters; if
necessary, it is padded to the right with blanks. In a DBCS installation, the field can contain DBCS
characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager's character set (as defined by the
CodedCharSetId queue manager attribute), those characters might be translated incorrectly if this field
is sent to another queue manager.

To determine the value of this attribute, use the MQCA_Q_DESC selector with the MQINQ call. The length
of this attribute is given by MQ_Q_DESC_LENGTH.

850 IBM MQ Developing Applications Reference

QName (MQCHAR48)
This is the name of a queue defined on the local queue manager.

Table 609. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

All queues defined on a queue manager share the same queue namespace. Therefore, an MQQT_LOCAL
queue and an MQQT_ALIAS queue cannot have the same name.

To determine the value of this attribute, use the MQCA_Q_NAME selector with the MQINQ call. The length
of this attribute is given by MQ_Q_NAME_LENGTH.

QServiceInterval (MQLONG)
This is the service interval used for comparison to generate Service Interval High and Service Interval OK
events.

Table 610. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

See QServiceIntervalEvent attribute.

The value is in units of milliseconds, and is greater than or equal to zero, and less than or equal to
999 999 999.

To determine the value of this attribute, use the MQIA_Q_SERVICE_INTERVAL selector with the MQINQ
call.

This attribute is supported on z/OS, but the MQINQ call cannot be used to determine its value.

QServiceIntervalEvent (MQLONG)
This controls whether Service Interval High or Service Interval OK events are generated.

Table 611. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

• A Service Interval High event is generated when a check indicates that no messages have been
retrieved from the queue for at least the time indicated by the QServiceInterval attribute.

• A Service Interval OK event is generated when a check indicates that messages have been retrieved
from the queue within the time indicated by the QServiceInterval attribute.

Note: The value of this attribute can change dynamically.

The value is one of the following:
MQQSIE_HIGH

Queue Service Interval High events enabled.

• Queue Service Interval High events are enabled and
• Queue Service Interval OK events are disabled.

MQQSIE_OK
Queue Service Interval OK events enabled.

• Queue Service Interval High events are disabled and
• Queue Service Interval OK events are enabled.

Developing applications reference 851

MQQSIE_NONE
No queue service interval events enabled.

• Queue Service Interval High events are disabled and
• Queue Service Interval OK events are also disabled.

For shared queues, the value of this attribute is ignored; the value MQQSIE_NONE is assumed.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the MQIA_Q_SERVICE_INTERVAL_EVENT selector with the
MQINQ call.

On z/OS, you cannot use the MQINQ call to determine the value of this attribute.

QSGDisp (MQLONG)
This specifies the disposition of the queue.

Table 612. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

The value is one of the following:
MQQSGD_Q_MGR

The object has queue manager disposition. This means that the object definition is known only to the
local queue manager; the definition is not known to other queue managers in the queue sharing group.

Each queue manager in the queue sharing group can have an object with the same name and type
as the current object, but these are separate objects and there is no correlation between them. Their
attributes are not constrained to be the same as each other.

MQQSGD_COPY
The object is a local copy of a master object definition that exists in the shared repository. Each queue
manager in the queue sharing group can have its own copy of the object. Initially, all copies have
the same attributes, but by using MQSC commands, you can alter each copy so that its attributes
differ from those of the other copies. The attributes of the copies are resynchronized when the master
definition in the shared repository is altered.

MQQSGD_SHARED
The object has shared disposition. This means that there exists in the shared repository a single
instance of the object that is known to all queue managers in the queue sharing group. When a queue
manager in the group accesses the object, it accesses the single shared instance of the object.

To determine the value of this attribute, use the MQIA_QSG_DISP selector with the MQINQ call.

This attribute is supported only on z/OS.

QueueAccounting (MQLONG)

Table 613. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

This controls the collection of accounting data for the queue. For accounting data to be collected for this
queue, accounting data for this connection must also be enabled, using either the QMGR attribute ACCTQ
or the Options field in the MQCNO structure on the MQCONNX call.

This attribute has one of the following values:

852 IBM MQ Developing Applications Reference

MQMON_Q_MGR
Accounting data for this queue is collected based on the setting of the QMGR attribute ACCTQ. This is
the default setting.

MQMON_OFF
Do not collect accounting data for this queue.

MQMON_ON
Collect accounting data for this queue.

To determine the value of this attribute, use the MQIA_ACCOUNTING_Q selector with the MQINQ call.

QueueMonitoring (MQLONG)
Controls the collection of online monitoring data for queues.

Table 614. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The value is one of the following:
MQMON_Q_MGR

Collect monitoring data according to the setting of the QueueMonitoring queue manager attribute.
This is the default value.

MQMON_OFF
Online monitoring data collection is turned off for this queue.

MQMON_LOW
If the value of the QueueMonitoring queue manager attribute is not MQMON_NONE, online
monitoring data collection is turned on, with a low rate of data collection for this queue.

MQMON_MEDIUM
If the value of the QueueMonitoring queue manager attribute is not MQMON_NONE, online
monitoring data collection is turned on, with a moderate rate of data collection for this queue.

MQMON_HIGH
If the value of the QueueMonitoring queue manager attribute is not MQMON_NONE, online
monitoring data collection is turned on, with a high rate of data collection for this queue.

To determine the value of this attribute, use the MQIA_MONITORING_Q selector with the MQINQ call.

QueueStatistics (MQCHAR12)

Table 615. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

This controls the collection of statistics data for the queue.

This attribute has one of the following values:
MQMON_Q_MGR

Accounting data for this queue is collected based on the setting of the QMGR attribute STATQ. This is
the default setting.

MQMON_OFF
Switch off statistics data collection for this queue.

MQMON_ON
Enable statistics data collection for this queue.

Developing applications reference 853

QType (MQLONG)
Table 616. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

This is the type of queue; it has one of the following values:
MQQT_ALIAS

Alias queue definition.
MQQT_CLUSTER

Cluster queue.
MQQT_LOCAL

Local queue.
MQQT_REMOTE

Local definition of a remote queue.

To determine the value of this attribute, use the MQIA_Q_TYPE selector with the MQINQ call.

RemoteQMgrName (MQCHAR48)
Table 617. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the name of the remote queue manager on which the queue RemoteQName is defined. If the
RemoteQName queue has a QSGDisp value of MQQSGD_COPY or MQQSGD_SHARED, RemoteQMgrName
can be the name of the queue sharing group that owns RemoteQName.

If an application opens the local definition of a remote queue, RemoteQMgrName must not be blank and
must not be the name of the local queue manager. If XmitQName is blank, the local queue with the
same name as RemoteQMgrName is used as the transmission queue. If there is no queue with the name
RemoteQMgrName, the queue identified by the DefXmitQName queue manager attribute is used.

If this definition is used for a queue manager alias, RemoteQMgrName is the name of the queue manager
that is being aliased. It can be the name of the local queue manager. Otherwise, if XmitQName is blank
when the open occurs, there must be a local queue with a name that is the same as RemoteQMgrName;
this queue is used as the transmission queue.

If this definition is used for a reply-to alias, this name is the name of the queue manager that is to be the
ReplyToQMgr.

Note: No validation is performed on the value specified for this attribute when the queue definition is
created or modified.

To determine the value of this attribute, use the MQCA_REMOTE_Q_MGR_NAME selector with the MQINQ
call. The length of this attribute is given by MQ_Q_MGR_NAME_LENGTH.

RemoteQName (MQCHAR48)
Table 618. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the name of the queue as it is known on the remote queue manager RemoteQMgrName.

854 IBM MQ Developing Applications Reference

If an application opens the local definition of a remote queue, when the open occurs RemoteQName must
not be blank.

If this definition is used for a queue manager alias definition, when the open occurs RemoteQName must
be blank.

If the definition is used for a reply-to alias, this name is the name of the queue that is to be the
ReplyToQ.

Note: No validation is performed on the value specified for this attribute when the queue definition is
created or modified.

To determine the value of this attribute, use the MQCA_REMOTE_Q_NAME selector with the MQINQ call.
The length of this attribute is given by MQ_Q_NAME_LENGTH.

RetentionInterval (MQLONG)
This is the period of time for which to retain the queue. After this time has elapsed, the queue is eligible
for deletion.

Table 619. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The time is measured in hours, counting from the date and time when the queue was created. The
creation date and time of the queue are recorded in the CreationDate and CreationTime attributes.

This information is provided to enable a housekeeping application or the operator to identify and delete
queues that are no longer required.

Note: The queue manager never takes any action to delete queues based on this attribute, or to prevent
the deletion of queues with a retention interval that has not expired; it is the user's responsibility to take
any required action.

Use a realistic retention interval to prevent the accumulation of permanent dynamic queues (see
DefinitionType attribute). However, this attribute can also be used with predefined queues.

To determine the value of this attribute, use the MQIA_RETENTION_INTERVAL selector with the MQINQ
call.

Scope (MQLONG)
This controls whether an entry for this queue also exists in a cell directory.

Table 620. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

A cell directory is provided by an installable Name service. The value is one of the following:
MQSCO_Q_MGR

The queue definition has queue manager scope: the definition of the queue does not extend beyond
the queue manager that owns it. To open the queue for output from some other queue manager, either
the name of the owning queue manager must be specified, or the other queue manager must have a
local definition of the queue.

MQSCO_CELL
The queue definition has cell scope: the queue definition is also placed in a cell directory available
to all the queue managers in the cell. The queue can be opened for output from any of the queue
managers in the cell by specifying the name of the queue; the name of the queue manager that owns
the queue need not be specified. However, the queue definition is not available to any queue manager

Developing applications reference 855

in the cell that also has a local definition of a queue with that name, as the local definition takes
precedence.

A cell directory is provided by an installable Name service.

Model and dynamic queues cannot have cell scope.

This value is only valid if a name service supporting a cell directory has been configured.

To determine the value of this attribute, use the MQIA_SCOPE selector with the MQINQ call.

Support for this attribute is subject to the following restrictions:

• On IBM i, the attribute is supported, but only MQSCO_Q_MGR is valid.
• On z/OS, the attribute is not supported.

Shareability (MQLONG)
This indicates whether the queue can be opened for input multiple times concurrently.

Table 621. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The value is one of the following:
MQQA_SHAREABLE

Queue is shareable.

Multiple opens with the MQOO_INPUT_SHARED option are allowed.

MQQA_NOT_SHAREABLE
Queue is not shareable.

An MQOPEN call with the MQOO_INPUT_SHARED option is treated as MQOO_INPUT_EXCLUSIVE.

To determine the value of this attribute, use the MQIA_SHAREABILITY selector with the MQINQ call.

StorageClass (MQCHAR8)
This is a user-defined name that defines the physical storage used to hold the queue. In practice, a
message is written to disk only if it needs to be paged out of its memory buffer.

Table 622. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

To determine the value of this attribute, use the MQCA_STORAGE_CLASS selector with the MQINQ call.
The length of this attribute is given by MQ_STORAGE_CLASS_LENGTH.

This attribute is supported only on z/OS.

TriggerControl (MQLONG)
This controls whether trigger messages are written to an initiation queue to start an application to service
the queue.

Table 623. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is one of the following:

856 IBM MQ Developing Applications Reference

MQTC_OFF
No trigger messages are to be written for this queue. The value of TriggerType is irrelevant in this
case.

MQTC_ON
Trigger messages are to be written for this queue when the appropriate trigger events occur.

To determine the value of this attribute, use the MQIA_TRIGGER_CONTROL selector with the MQINQ call.
To change the value of this attribute, use the MQSET call.

TriggerData (MQCHAR64)
This is free-format data that the queue manager inserts into the trigger message when a message arriving
on this queue causes a trigger message to be written to the initiation queue.

Table 624. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The content of this data is of no significance to the queue manager. It is meaningful either to the trigger-
monitor application that processes the initiation queue, or to the application that the trigger monitor
starts.

The character string must not contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the MQCA_TRIGGER_DATA selector with the MQINQ call.
To change the value of this attribute, use the MQSET call. The length of this attribute is given by
MQ_TRIGGER_DATA_LENGTH.

TriggerDepth (MQLONG)
Table 625. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the number of messages of priority TriggerMsgPriority or greater that must be on the queue
before a trigger message is written. This applies when TriggerType is set to MQTT_DEPTH. The value of
TriggerDepth is one or greater. This attribute is not used otherwise.

To determine the value of this attribute, use the MQIA_TRIGGER_DEPTH selector with the MQINQ call. To
change the value of this attribute, use the MQSET call.

TriggerMsgPriority (MQLONG)
This is the message priority below which messages do not contribute to the generation of trigger
messages (that is, the queue manager ignores these messages when deciding whether to generate a
trigger message).

Table 626. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

TriggerMsgPriority can be in the range zero (lowest) through MaxPriority (highest; see
MaxPriority attribute); a value of zero causes all messages to contribute to the generation of trigger
messages.

To determine the value of this attribute, use the MQIA_TRIGGER_MSG_PRIORITY selector with the
MQINQ call. To change the value of this attribute, use the MQSET call.

Developing applications reference 857

TriggerType (MQLONG)
This controls the conditions under which trigger messages are written as a result of messages arriving on
this queue.

Table 627. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

It has one of the following values:
MQTT_NONE

No trigger messages are written as a result of messages on this queue. This has the same effect as
setting TriggerControl to MQTC_OFF.

MQTT_FIRST
A trigger message is written whenever the number of messages of priority TriggerMsgPriority or
greater on the queue changes from 0 to 1.

MQTT_EVERY
A trigger message is written whenever a message of priority TriggerMsgPriority or greater arrives
on the queue.

MQTT_DEPTH
A trigger message is written whenever the number of messages of priority TriggerMsgPriority or
greater on the queue equals or exceeds TriggerDepth. After the trigger message has been written,
TriggerControl is set to MQTC_OFF to prevent further triggering until it is explicitly turned on
again.

To determine the value of this attribute, use the MQIA_TRIGGER_TYPE selector with the MQINQ call. To
change the value of this attribute, use the MQSET call.

Usage (MQLONG)
This indicates what the queue is used for.

Table 628. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The value is one of the following:
MQUS_NORMAL

This is a queue that applications use when putting and getting messages; the queue is not a
transmission queue.

MQUS_TRANSMISSION
This is a queue used to hold messages destined for remote queue managers. When an application
sends a message to a remote queue, the local queue manager stores the message temporarily on
the appropriate transmission queue in a special format. A message channel agent then reads the
message from the transmission queue, and transports the message to the remote queue manager.
For more information about configuring remote administration, see Configuring queue managers for
remote administration.

Only privileged applications can open a transmission queue for MQOO_OUTPUT to put messages on it
directly. Usually, only utility applications do this. Ensure that the message data format is correct (see
“MQXQH - Transmission-queue header” on page 611) or errors might occur during the transmission
process. Context is not passed or set unless one of the MQPMO_*_CONTEXT context options is
specified.

To determine the value of this attribute, use the MQIA_USAGE selector with the MQINQ call.

858 IBM MQ Developing Applications Reference

XmitQName (MQCHAR48)
This is the transmission queue name. If this attribute is nonblank when an open occurs, either for a
remote queue or for a queue manager alias definition, it specifies the name of the local transmission
queue to be used for forwarding the message.

Table 629. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

If XmitQName is blank, the local queue with a name that is the same as RemoteQMgrName is used as the
transmission queue. If there is no queue with the name RemoteQMgrName, the queue identified by the
DefXmitQName queue manager attribute is used.

This attribute is ignored if the definition is being used as a queue manager alias and RemoteQMgrName is
the name of the local queue manager. It is also ignored if the definition is used as a reply-to queue alias
definition.

To determine the value of this attribute, use the MQCA_XMIT_Q_NAME selector with the MQINQ call. The
length of this attribute is given by MQ_Q_NAME_LENGTH.

Attributes for namelists
The following table summarizes the attributes that are specific to namelists. The attributes are described
in alphabetical order.

Namelists are supported on all IBM MQ systems, plus IBM MQ MQI clients connected to these systems.

Note: The names of the attributes shown in this section are descriptive names used with the MQINQ
and MQSET calls; the names are the same as for the PCF commands. When MQSC commands are used
to define, alter, or display attributes, alternative short names are used; see MQSC commands for more
information.

Table 630. Attributes for namelists

Attribute Description

AlterationDate Date when definition was last changed

AlterationTime Time when definition was last changed

NameCount Number of names in namelist

NamelistDesc Namelist description

NamelistName Namelist name

Names A list of NameCount names

NamelistType Namelist type

QSGDisp Queue sharing group disposition

AlterationDate (MQCHAR12)
This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded
with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the MQCA_ALTERATION_DATE selector with the MQINQ call.
The length of this attribute is given by MQ_DATE_LENGTH.

AlterationTime (MQCHAR8)
This is the time when the definition was last changed. The format of the time is HH.MM.SS.

To determine the value of this attribute, use the MQCA_ALTERATION_TIME selector with the MQINQ call.
The length of this attribute is given by MQ_TIME_LENGTH.

Developing applications reference 859

NameCount (MQLONG)
This is the number of names in the namelist. It is greater than or equal to zero. The following value is
defined:
MQNC_MAX_NAMELIST_NAME_COUNT

Maximum number of names in a namelist.

To determine the value of this attribute, use the MQIA_NAME_COUNT selector with the MQINQ call.

NamelistDesc (MQCHAR64)
Use this field for descriptive commentary; its value is established by the definition process. The content
of the field is of no significance to the queue manager, but the queue manager might require that the field
contain only characters that can be displayed. It cannot contain any null characters; if necessary, it is
padded to the right with blanks. In a DBCS installation, this field can contain DBCS characters (subject to
a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager's character set (as defined by the
CodedCharSetId queue manager attribute), those characters might be translated incorrectly if this field
is sent to another queue manager.

To determine the value of this attribute, use the MQCA_NAMELIST_DESC selector with the MQINQ call.

The length of this attribute is given by MQ_NAMELIST_DESC_LENGTH.

NamelistName (MQCHAR48)
This is the name of a namelist that is defined on the local queue manager. For more information about
namelist names, see the Other object names section.

Each namelist has a name that is different from the names of other namelists belonging to the queue
manager, but might duplicate the names of other queue manager objects of different types (for example,
queues).

To determine the value of this attribute, use the MQCA_NAMELIST_NAME selector with the MQINQ call.

The length of this attribute is given by MQ_NAMELIST_NAME_LENGTH.

NamelistType (MQLONG)
This specifies the nature of the names in the namelist, and indicates how the namelist is used. It is one of
the following values:
MQNT_NONE

Namelist with no assigned type.
MQNT_Q

Namelist containing the names of queues.
MQNT_CLUSTER

Namelist containing the names of clusters.
MQNT_AUTH_INFO

Namelist containing the names of authentication-information objects.

To determine the value of this attribute, use the MQIA_NAMELIST_TYPE selector with the MQINQ call.

This attribute is supported only on z/OS.

Names (MQCHAR48xNameCount)
This is a list of NameCount names, where each name is the name of an object that is defined to the local
queue manager. For more information about object names, see Rules for naming IBM MQ objects.

To determine the value of this attribute, use the MQCA_NAMES selector with the MQINQ call.

The length of each name in the list is given by MQ_OBJECT_NAME_LENGTH.

860 IBM MQ Developing Applications Reference

QSGDisp (MQLONG)
This specifies the disposition of the namelist. The value is one of the following:
MQQSGD_Q_MGR

The object has queue manager disposition: the object definition is known only to the local queue
manager; the definition is not known to other queue managers in the queue sharing group.

Each queue manager in the queue sharing group can have an object with the same name and type
as the current object, but these are separate objects and there is no correlation between them. Their
attributes are not constrained to be the same as each other.

MQQSGD_COPY
The object is a local copy of a master object definition that exists in the shared repository. Each queue
manager in the queue sharing group can have its own copy of the object. Initially, all copies have the
same attributes, but you can alter each copy, using MQSC commands, so that its attributes differ from
those of the other copies. The attributes of the copies are resynchronized when the master definition
in the shared repository is altered.

To determine the value of this attribute, use the MQIA_QSG_DISP selector with the MQINQ call.

This attribute is supported only on z/OS.

Attributes for process definitions
The following table summarizes the attributes that are specific to process definitions. The attributes are
described in alphabetical order.

Note: The names of the attributes in this section are descriptive names used with the MQINQ and MQSET
calls; the names are the same as for the PCF commands. When MQSC commands are used to define, alter,
or display attributes, alternative short names are used; see MQSC commands for more information.

Table 631. Attributes for process definitions

Attribute Description

AlterationDate Date when definition was last changed

AlterationTime Time when definition was last changed

ApplId Application identifier

ApplType Application type

EnvData Environment data

ProcessDesc Process description

ProcessName Process name

QSGDisp Queue sharing group disposition

UserData User data

AlterationDate (MQCHAR12)
This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded
with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the MQCA_ALTERATION_DATE selector with the MQINQ call.
The length of this attribute is given by MQ_DATE_LENGTH.

AlterationTime (MQCHAR8)
This is the time when the definition was last changed. The format of the time is HH.MM.SS.

To determine the value of this attribute, use the MQCA_ALTERATION_TIME selector with the MQINQ call.
The length of this attribute is given by MQ_TIME_LENGTH.

Developing applications reference 861

ApplId (MQCHAR256)
This is a character string that identifies the application to be started. This information is for use by a
trigger-monitor application that processes messages on the initiation queue; the information is sent to the
initiation queue as part of the trigger message.

The meaning of ApplId is determined by the trigger-monitor application. The trigger monitor provided
by IBM MQ requires ApplId to be the name of an executable program. The following notes apply to the
environments indicated:

• On z/OS, ApplId must be:

– A CICS transaction identifier, for applications started using the CICS trigger-monitor transaction CKTI
– An IMS transaction identifier, for applications started using the IMS trigger monitor CSQQTRMN

• On Windows, the program name can be prefixed with a drive and directory path.
• On AIX and Linux, the program name can be prefixed with a directory path.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the MQCA_APPL_ID selector with the MQINQ call. The length
of this attribute is given by MQ_PROCESS_APPL_ID_LENGTH.

ApplType (MQLONG)
This identifies the nature of the program to be started in response to the receipt of a trigger message. This
information is for use by a trigger-monitor application that processes messages on the initiation queue;
the information is sent to the initiation queue as part of the trigger message.

ApplType can have any value, but the following values are recommended for standard types; restrict
user-defined application types to values in the range MQAT_USER_FIRST through MQAT_USER_LAST:

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_BATCH
Batch application

MQAT_CICS
CICS transaction.

MQAT_IMS
IMS application.

MQAT_IMS_BRIDGE
IMS bridge application.

MQAT_JAVA
Java application.

MQAT_MVS
MVS or TSO application (same value as MQAT_ZOS).

MQAT_OS390
OS/390 application (same value as MQAT_ZOS).

MQAT_OS400
IBM i application.

MQAT_UNIX
UNIX application.

MQAT_UNKNOWN
Application of unknown type.

MQAT_USER
User application.

862 IBM MQ Developing Applications Reference

MQAT_WINDOWS
64-bit Windows application.

MQAT_WINDOWS_NT
32-bit Windows application.

MQAT_WLM
z/OS workload manager application.

MQAT_ZOS
z/OS application.

MQAT_USER_FIRST
Lowest value for user-defined application type.

MQAT_USER_LAST
Highest value for user-defined application type.

To determine the value of this attribute, use the MQIA_APPL_TYPE selector with the MQINQ call.

EnvData (MQCHAR128)
This is a character string that contains environment-related information pertaining to the application to
be started. This information is for use by a trigger-monitor application that processes messages on the
initiation queue; the information is sent to the initiation queue as part of the trigger message.

The meaning of EnvData is determined by the trigger-monitor application. The trigger monitor provided
by IBM MQ appends EnvData to the parameter list passed to the started application. The parameter
list consists of the MQTMC2 structure, followed by one blank, followed by EnvData with trailing blanks
removed. The following notes apply to the environments indicated:

• On z/OS:

– EnvData is not used by the trigger-monitor applications provided by IBM MQ.
– If ApplType is MQAT_WLM, you can supply default values in EnvData for the ServiceName and

ServiceStep fields in the work information header (MQWIH).
• On AIX and Linux, EnvData can be set to the & character to run the started application in the

background.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the MQCA_ENV_DATA selector with the MQINQ call. The
length of this attribute is given by MQ_PROCESS_ENV_DATA_LENGTH.

ProcessDesc (MQCHAR64)
Use this field for descriptive commentary. The content of the field is of no significance to the queue
manager, but the queue manager might require that the field contain only characters that can be
displayed. It cannot contain any null characters; if necessary, it is padded to the right with blanks. In
a DBCS installation, the field can contain DBCS characters (subject to a maximum field length of 64
bytes).

Note: If this field contains characters that are not in the queue manager's character set (as defined by the
CodedCharSetId queue manager attribute), those characters might be translated incorrectly if this field
is sent to another queue manager.

To determine the value of this attribute, use the MQCA_PROCESS_DESC selector with the MQINQ call.

The length of this attribute is given by MQ_PROCESS_DESC_LENGTH.

ProcessName (MQCHAR48)
This is the name of a process definition that is defined on the local queue manager.

Each process definition has a name that is different from the names of other process definitions belonging
to the queue manager. But the name of the process definition might be the same as the names of other
queue manager objects of different types (for example, queues).

Developing applications reference 863

To determine the value of this attribute, use the MQCA_PROCESS_NAME selector with the MQINQ call.

The length of this attribute is given by MQ_PROCESS_NAME_LENGTH.

QSGDisp (MQLONG)
This specifies the disposition of the process definition. The value is one of the following:
MQQSGD_Q_MGR

The object has queue manager disposition: the object definition is known only to the local queue
manager; the definition is not known to other queue managers in the queue sharing group.

Each queue manager in the queue sharing group can have an object with the same name and type
as the current object, but these are separate objects and there is no correlation between them. Their
attributes are not constrained to be the same as each other.

MQQSGD_COPY
The object is a local copy of a master object definition that exists in the shared repository. Each queue
manager in the queue sharing group can have its own copy of the object. Initially, all copies have the
same attributes, but you can alter each copy, using MQSC commands, so that its attributes differ from
those of the other copies. The attributes of the copies are resynchronized when the master definition
in the shared repository is altered.

To determine the value of this attribute, use the MQIA_QSG_DISP selector with the MQINQ call.

This attribute is supported only on z/OS.

UserData (MQCHAR128)
UserData is a character string that contains user information pertaining to the application to be started.
This information is for use by a trigger-monitor application that processes messages on the initiation
queue, or the application that is started by the trigger monitor. The information is sent to the initiation
queue as part of the trigger message.

The meaning of UserData is determined by the trigger-monitor application. The trigger monitor provided
by IBM MQ passes UserData to the started application as part of the parameter list. The parameter list
consists of the MQTMC2 structure (containing UserData), followed by one blank, followed by EnvData
with trailing blanks removed.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary. For
Microsoft Windows, the character string must not contain double quotation marks if the process definition
is going to be passed to runmqtrm.

To determine the value of this attribute, use the MQCA_USER_DATA selector with the MQINQ call. The
length of this attribute is given by MQ_PROCESS_USER_DATA_LENGTH.

Return codes
For each IBM MQ Message Queue Interface (MQI) and IBM MQ Administration Interface (MQAI) call, a
completion code and a reason code are returned by the queue manager or by an exit routine, to indicate
the success or failure of the call.

Applications must not depend upon errors being checked for in a specific order, except where specifically
noted. If more than one completion code or reason code could arise from a call, the particular error
reported depends on the implementation.

Applications checking for successful completion following an IBM MQ API call must always check the
completion code. Do not assume the completion code value, based on the value of the reason code.

864 IBM MQ Developing Applications Reference

Completion codes
The completion code parameter (CompCode) allows the caller to see quickly whether the call completed
successfully, completed partially, or failed. The following is a list of completion codes, with more detail
than is given in the call descriptions:
MQCC_OK

The call completed fully; all output parameters have been set. The Reason parameter always has the
value MQRC_NONE in this case.

MQCC_WARNING
The call completed partially. Some output parameters might have been set in addition to the
CompCode and Reason output parameters. The Reason parameter gives additional information about
the partial completion.

MQCC_FAILED
The processing of the call did not complete. The state of the queue manager is unchanged, except
where specifically noted. The CompCode and Reason output parameters have been set; other
parameters are unchanged, except where noted.

The reason might be a fault in the application program, or it might be the result of some situation
external to the program, for example the user's authority might have been revoked. The Reason
parameter gives additional information about the error.

Reason codes
The reason code parameter (Reason) qualifies the completion code parameter (CompCode).

If there is no special reason to report, MQRC_NONE is returned. A successful call returns MQCC_OK and
MQRC_NONE.

If the completion code is either MQCC_WARNING or MQCC_FAILED, the queue manager always reports a
qualifying reason; details are given under each call description.

Where user exit routines set completion codes and reasons, they must adhere to these rules. In addition,
any special reason values defined by user exits must be less than zero, to ensure that they do not conflict
with values defined by the queue manager. Exits can set reasons already defined by the queue manager,
where appropriate.

Reason codes also occur in:

• The Reason field of the MQDLH structure
• The Feedback field of the MQMD structure

For complete descriptions of reason codes, see Messages and reason codes.

Rules for validating MQI options
This section lists the situations that produce an MQRC_OPTIONS_ERROR reason code from an MQOPEN,
MQPUT, MQPUT1, MQGET, MQCLOSE, or MQSUB call.

MQOPEN call
For the options of the MQOPEN call:

• At least one of the following must be specified:

– MQOO_BROWSE
– MQOO_INPUT_EXCLUSIVE 1

– MQOO_INPUT_SHARED 1

– MQOO_INPUT_AS_Q_DEF 1

– MQOO_INQUIRE
– MQOO_OUTPUT

Developing applications reference 865

– MQOO_SET
– MQOO_BIND_ON_OPEN 2

– MQOO_BIND_NOT_FIXED 2

– MQOO_BIND_ON_GROUP 2

– MQOO_BIND_AS_Q_DEF 2

• Only one of the following is allowed:

– MQOO_READ_AHEAD
– MQOO_NO_READ_AHEAD
– MQOO_READ_AHEAD_AS_Q_DEF

1. Only one of the following is allowed:

• MQOO_INPUT_EXCLUSIVE
• MQOO_INPUT_SHARED
• MQOO_INPUT_AS_Q_DEF

2. Only one of the following is allowed:

• MQOO_BIND_ON_OPEN
• MQOO_BIND_NOT_FIXED
• MQOO_BIND_ON_GROUP
• MQOO_BIND_AS_Q_DEF

Note: The options that are listed previously are mutually exclusive. However, as the value of
MQOO_BIND_AS_Q_DEF is zero, specifying it with either of the other two bind options does not
result in reason code MQRC_OPTIONS_ERROR. MQOO_BIND_AS_Q_DEF is provided to aid program
documentation.

• If MQOO_SAVE_ALL_CONTEXT is specified, one of the MQOO_INPUT_* options must also be specified.
• If one of the MQOO_SET_*_CONTEXT or MQOO_PASS_*_CONTEXT options are specified,

MQOO_OUTPUT must also be specified.
• If MQOO_CO_OP is specified, MQOO_BROWSE must also be specified
• If MQOO_NO_MULTICAST is specified, MQOO_OUTPUT must also be specified.

MQPUT call
For the put-message options:

• The combination of MQPMO_SYNCPOINT and MQPMO_NO_SYNCPOINT is not allowed.
• Only one of the following is allowed:

– MQPMO_DEFAULT_CONTEXT
– MQPMO_NO_CONTEXT
– MQPMO_PASS_ALL_CONTEXT
– MQPMO_PASS_IDENTITY_CONTEXT
– MQPMO_SET_ALL_CONTEXT
– MQPMO_SET_IDENTITY_CONTEXT

• Only one of the following is allowed:

– MQPMO_ASYNC_RESPONSE
– MQPMO_SYNC_RESPONSE
– MQPMO_RESPONSE_AS_TOPIC_DEF
– MQPMO_RESPONSE_AS_Q_DEF

866 IBM MQ Developing Applications Reference

• MQPMO_ALTERNATE_USER_AUTHORITY is not allowed (it is valid only on the MQPUT1 call).

MQPUT1 call
For the put-message options, the rules are the same as for the MQPUT call, except for the following:

• MQPMO_ALTERNATE_USER_AUTHORITY is allowed.
• MQPMO_LOGICAL_ORDER is not allowed.

MQGET call
For the get-message options:

• Only one of the following is allowed:

– MQGMO_NO_SYNCPOINT
– MQGMO_SYNCPOINT
– MQGMO_SYNCPOINT_IF_PERSISTENT

• Only one of the following is allowed:

– MQGMO_BROWSE_FIRST
– MQGMO_BROWSE_MSG_UNDER_CURSOR
– MQGMO_BROWSE_NEXT
– MQGMO_MSG_UNDER_CURSOR

• MQGMO_SYNCPOINT is not allowed with any of the following:

– MQGMO_BROWSE_FIRST
– MQGMO_BROWSE_MSG_UNDER_CURSOR
– MQGMO_BROWSE_NEXT
– MQGMO_LOCK
– MQGMO_UNLOCK

• MQGMO_SYNCPOINT_IF_PERSISTENT is not allowed with any of the following:

– MQGMO_BROWSE_FIRST
– MQGMO_BROWSE_MSG_UNDER_CURSOR
– MQGMO_BROWSE_NEXT
– MQGMO_COMPLETE_MSG
– MQGMO_UNLOCK

• MQGMO_MARK_SKIP_BACKOUT requires MQGMO_SYNCPOINT to be specified.
• The combination of MQGMO_WAIT and MQGMO_SET_SIGNAL is not allowed.
• If MQGMO_LOCK is specified, one of the following must also be specified:

– MQGMO_BROWSE_FIRST
– MQGMO_BROWSE_MSG_UNDER_CURSOR
– MQGMO_BROWSE_NEXT

• If MQGMO_UNLOCK is specified, only the following values are allowed:

– MQGMO_NO_SYNCPOINT
– MQGMO_NO_WAIT

MQCLOSE call
For the options of the MQCLOSE call:

Developing applications reference 867

• The combination of MQCO_DELETE and MQCO_DELETE_PURGE is not allowed.
• Only one of the following is allowed:

– MQCO_KEEP_SUB
– MQCO_REMOVE_SUB

MQSUB call
For the options of the MQSUB call:

• At least one of the following must be specified:

– MQSO_ALTER
– MQSO_RESUME
– MQSO_CREATE

• Only one of the following is allowed:

– MQSO_DURABLE
– MQSO_NON_DURABLE

Note: The options that are listed previously are mutually exclusive. However, as the value of
MQSO_NON_DURABLE is zero, specifying it with MQSO_DURABLE does not result in reason code
MQRC_OPTIONS_ERROR. MQSO_NON_DURABLE is provided to aid program documentation.

• The combination of MQSO_GROUP_SUB and MQSO_MANAGED is not allowed.
• MQSO_GROUP_SUB requires MQSO_SET_CORREL_ID to be specified.
• Only one of the following is allowed:

– MQSO_ANY_USERID
– MQSO_FIXED_USERID

• MQSO_NEW_PUBLICATIONS_ONLY is allowed in combination with:

– MQSO_CREATE
– MQSO_ALTER, if MQSO_NEW_PUBLICATIONS_ONLY was set on the original subscription

• The combination of MQSO_PUBLICATIONS_ON_REQUEST and SubLevel greater than 1 is not allowed.
• Only one of the following is allowed:

– MQSO_WILDCARD_CHAR
– MQSO_WILDCARD_TOPIC

• MQSO_NO_MULTICAST requires MQSO_MANAGED to be specified.

Queued publish/subscribe command messages
An application can use MQRFH2 command messages to control a queued publish/subscribe application.

An application that is using MQRFH2 for publish/subscribe can send the following command messages to
the SYSTEM.BROKER.CONTROL.QUEUE:

• “Delete Publication message” on page 869
• “Deregister Subscriber message” on page 870
• “Publish message” on page 874
• “Register Subscriber message” on page 876
• “Request Update message” on page 881

If you are writing queued publish/subscribe applications, you must understand these messages, the
queue manager response message, and the message descriptor (MQMD); see the following information:

868 IBM MQ Developing Applications Reference

• “Queue Manager Response message” on page 883
• “MQMD settings for publications forwarded by a queue manager” on page 888
• “MQMD settings in queue manager response messages” on page 889
• “Publish/subscribe reason codes” on page 884

The commands are contained in a psc folder in the NameValueData field of the MQRFH2 header. The
message that can be sent by a broker in response to a command message is contained in a pscr folder.

The descriptions of each command list the properties that can be contained in a folder. Unless otherwise
specified, the properties are optional and can occur only once.

Names of properties are shown as <Command>.
Values must be in string format, for example: Publish.
A string constant representing the value of a property is shown in parentheses, for example:
(MQPSC_PUBLISH).
String constants are defined in the header file cmqpsc.h which is supplied with the queue manager.

Delete Publication message
The Delete Publication command message is sent to a queue manager from a publisher, or from
another queue manager, to tell the queue manager to delete any retained publications for the specified
topics.

This message is sent to a queue monitored by the queue manager's queued publish/subscribe interface.

The input queue should be the queue that the original publication was sent to.

If you have the authority for some, but not all, of the topics that are specified in the Delete
Publication command message, only those topics are deleted. A Broker Response message
indicates which topics are not deleted.

Similarly, if a Publish command contains more than one topic, a Delete Publication command
matching some, but not all, of those topics deletes only the publications for the topics that are specified in
the Delete Publication command.

See “MQMD settings for publications forwarded by a queue manager” on page 888 for details of the
message descriptor (MQMD) parameters that are needed when sending a command message to the
queue manager.

Properties
Command (MQPSC_COMMAND)

The value is DeletePub (MQPSC_DELETE_PUBLICATION).

This property must be specified.

Topic> (MQPSC_TOPIC)
The value is a string that contains a topic for which retained publications are to be deleted. Wildcard
characters can be included in the string to delete publications on more than one topic.

This property must be specified; it can be repeated for as many topics as needed.

DelOpt (MQPSC_DELETE_OPTION)
The delete options property can take one of the following values:

Local (MQPSC_LOCAL)

All retained publications for the specified topics are deleted at the local queue manager (that is,
the queue manager to which this message is sent), whether they were published with the Local
option or not.

Publications at other queue managers are not affected.

Developing applications reference 869

None (MQPSC_NONE)

All options take their default values. This has the same effect as omitting the DelOpt property. If
other options are specified at the same time, None is ignored.

The default if this property is omitted is that all retained publications for the specified topics are
deleted at all queue managers in the network, regardless of whether they were published with the
Local option.

Example
Here is an example of NameValueData for a Delete Publication command message. This is used by
the sample application to delete, at the local queue manager, the retained publication that contains the
latest score in the match between Team1 and Team2.

 <psc>
 <Command>DeletePub</Command>
 <Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>
 <DelOpt>Local</DelOpt>
 </psc>

Deregister Subscriber message
The Deregister Subscriber command message is sent to a queue manager by a subscriber, or by
another application on behalf of a subscriber, to indicate that it no longer wants to receive messages
matching the given parameters.

This message is sent to SYSTEM.BROKER.CONTROL.QUEUE, the queue manager's control queue. The
user must have the necessary authority to put a message onto this queue.

See MQMD settings for publications forwarded by a queue manager for details of the message descriptor
(MQMD) parameters that are needed when sending a command message to the queue manager.

An individual subscription can be deregistered by specifying the corresponding topic, subscription point
and filter values of the original subscription. If any of the values were not specified (that is, they took the
default values) in the original subscription, they should be omitted when the subscription is deregistered.

All subscriptions for a subscriber, or a group of subscribers, can be deregistered by using the DeregAll
option. For example, if DeregAll is specified, together with a subscription point (but no topic or filter),
then all subscriptions for the subscriber on the specified subscription point are deregistered, regardless
of the topic and filter. Any combination of topic, filter and subscription point is allowed; if all three are
specified only one subscription can match, and the DeregAll option is ignored.

The message must be sent by the subscriber that registered the subscription; this is confirmed by
checking the subscriber's user ID.

Subscriptions can also be deregistered by a system administrator using MQSC or PCF commands.
However, the subscriptions registered with a temporary dynamic queue are associated with the queue,
not just the queue name. If the queue is deleted, either explicitly, or by the application disconnecting from
the queue manager, it is no longer possible to use the Deregister Subscriber command to deregister
the subscriptions for that queue. The subscriptions can be deregistered using the developer workbench,
and they are removed automatically by the queue manager the next time that it matches a publication to
the subscription, or the next time the queue manager restarts. Under normal circumstances, applications
should deregister their subscriptions before deleting the queue, or disconnecting from the queue
manager.

If a subscriber sends a message to deregister a subscription, and receives a response message to say that
this was processed successfully, some publications might still reach the subscriber queue if they were
being processed by the queue manager at the same time as the subscription was being deregistered. If
the messages are not removed from the queue, there might be a buildup of unprocessed messages on
the subscriber queue. If the application executes a loop that includes an MQGET call with the appropriate
CorrelId after sleeping for a while, these messages are cleared off the queue.

870 IBM MQ Developing Applications Reference

Similarly, if the subscriber uses a permanent dynamic queue, and deregisters and closes the queue with
the MQCO_DELETE_PURGE option on an MQCLOSE call, the queue might not be empty. If any publications
from the queue manager are not yet committed when the queue is deleted, an MQRC_Q_NOT_EMPTY
return code is issued by the MQCLOSE call. The application can avoid this problem by sleeping and
reissuing the MQCLOSE call from time to time.

Properties
Command (MQPSC_COMMAND)

The value is DeregSub (MQPSC_DEREGISTER_SUBSCRIBER).

This property must be specified.

Topic (MQPSC_TOPIC)
The value is a string that contains the topic to be deregistered.

This property can, optionally, be repeated if multiple topics are to be deregistered. It can be omitted if
DeregAll is specified in <RegOpt>.

The topics that are specified can be a subset of those that are registered if the subscriber wants
to retain subscriptions for other topics. Wildcard characters are allowed, but a topic string that
contains wildcard characters must exactly match the corresponding string that was specified in the
Deregister Subscriber command message.

SubPoint (MQPSC_SUBSCRIPTION_POINT)
The value is a string that specifies the subscription point from which the subscription is to be
detached.

This property must not be repeated. It can be omitted if a <Topic> is specified, or if DeregAll is
specified in <RegOpt>. If you omit this property, the following happens:

• If you do not specify DeregAll, subscriptions matching the <Topic> property (and the <Filter>
property, if present) are deregistered from the default subscription point.

• If you specify DeregAll, all subscriptions (matching the <Topic> and <Filter> properties if
present) are deregistered from all subscription points.

Note that you cannot specify the default subscription point explicitly. Therefore, there is no way of
deregistering all subscriptions from this subscription point only; you must specify the topics.

SubIdentity (MQPSC_SUBSCRIPTION_IDENTITY)
This is a variable-length string with a maximum length of 64 characters. It is used to represent
an application with an interest in a subscription. The queue manager maintains a set of subscriber
identities for each subscription. Each subscription can allow its identity set to hold only a single
identity, or an unlimited number of identities.

If the SubIdentity is in the identity set for the subscription then it is removed from the set. If the
identity set becomes empty as a result of this, the subscription is removed from the queue manager,
unless LeaveOnly is specified as a value of the RegOpt property. If the identity set still contains
other identities then the subscription is not removed from the queue manager, and publication flow is
not interrupted.

If SubIdentity is specified, but the SubIdentity is not in the identity set for the subscription, then
the Deregister Subscriber command fails with the return code MQRCCF_SUB_IDENTITY_ERROR.

Filter (MQPSC_FILTER)
The value is a string specifying the filter to be deregistered. It must match exactly, including case and
any spaces, a subscription filter that has been previously registered.

This property can, optionally, be repeated if more than one filter is to be deregistered. It can be
omitted if a <Topic> is specified, or if DeregAll is specified in <RegOpt>.

The filters specified can be a subset of those registered if the subscriber wants to retain subscriptions
for other filters.

Developing applications reference 871

RegOpt (MQPSC_REGISTRATION_OPTION)
The registration options property can take the following values:

DeregAll
(MQPSC_DEREGISTER_ALL)

All matching subscriptions registered for this subscriber are to be deregistered.

If you specify DeregAll:

• <Topic>, <SubPoint>, and <Filter> can be omitted.
• <Topic> and <Filter> can be repeated, if required.
• <SubPoint> must not be repeated.

If you do not specify DeregAll:

• <Topic> must be specified, and can be repeated if required.
• <SubPoint> and <Filter> can be omitted.
• <SubPoint> must not be repeated.
• <Filter> can be repeated, if required.

If topics and filters are both repeated, then all subscriptions matching all combinations of the
two are removed. For example, a Deregister Subscriber command that specifies three topics
and three filters will attempt to remove nine subscriptions.

CorrelAsId
(MQPSC_CORREL_ID_AS_IDENTITY)

The CorrelId in the message descriptor (MQMD), which must not be zero, is used to identify the
subscriber. It must match the CorrelId used in the original subscription.

FullResp
(MQPSC_FULL_RESPONSE)

When FullResp is specified all attributes of the subscription are returned in the response
message, if the command does not fail.

When FullResp is specified DeregAll is not permitted in the Deregister Subscriber
command. It is also not possible to specify multiple topics. The command fails with return code
MQRCCF_REG_OPTIONS_ERROR, in both cases.

LeaveOnly
(MQPSC_LEAVE_ONLY)

When you specify this with a SubIdentity which is in the identity set for the subscription
the SubIdentity is removed from the identity set for the subscription. The subscription
is not removed from the queue manager, even if the resulting identity set is empty. If
the SubIdentity value is not in the identity set the command fails with return code
MQRCCF_SUB_IDENTITY_ERROR.

If LeaveOnly is specified with no SubIdentity, the command fails with return code
MQRCCF_REG_OPTIONS_ERROR.

If neither LeaveOnly nor a SubIdentity are specified, then the subscription is removed
regardless of the contents of the identity set for the subscription.

None
(MQPSC_NONE)

All options take their default values. This has the same effect as omitting the registration options
property. If other options are specified at the same time, None is ignored.

VariableUserId
(MQPSC_VARIABLE_USER_ID)

872 IBM MQ Developing Applications Reference

When specified the identity of the subscriber (queue, queue manager and correlid) is not
restricted to a single userid. This differs from the existing behavior of the queue manager that
associates the userid of the original registration message with the subscriber's identity and from
then on prevents any other user using that identity. If a new subscriber tries to use the same
identity, the return code MQRCCF_DUPLICATE_SUBSCRIPTION is returned.

Any user can modify or deregister the subscription when they have suitable authority, avoiding the
existing check that the userid must match that of the original subscriber.

To add this option to an existing subscription the command must come from the same userid as
the original subscription itself.

If the subscription to be deregistered has VariableUserId set this must be set at deregister
time to indicate which subscription is being deregistered. Otherwise, the userid of the
Deregister Subscriber command is used to identify the subscription. This is overridden,
along with the other subscriber identifiers, if a subscription name is supplied.

The default, if this property is omitted, is that no registration options are set.

QMgrName (MQPSC_Q_MGR_NAME)
The value is the queue manager name for the subscriber queue. It must match the QMgrName used in
the original subscription.

If this property is omitted, the default is the ReplyToQMgr name in the message descriptor (MQMD).
If the resulting name is blank, it defaults to the name of the queue manager.

QName (MQPSC_Q_NAME)
The value is the name of the subscriber queue. It must match the QName used in the original
subscription.

If this property is omitted, the default is the ReplyToQ name in the message descriptor (MQMD),
which must not be blank.

SubName (MQPSC_SUBSCRIPTION_NAME)
If you specify SubName on a Deregister Subscriber command the SubName value takes
precedence over all other identifier fields except the userid, unless VariableUserId is set on
the subscription itself. If VariableUserId is not set, the Deregister Subscriber command
succeeds only if the userid of the command message matches that of the subscription, if not the
command fails with return code MQRCCF_DUPLICATE_IDENTITY.

If a subscription exists that matches the traditional identity of this command but has no SubName
the Deregister Subscriber command fails with return code MQRCCF_SUB_NAME_ERROR. If an
attempt is made to deregister a subscription that has a SubName using a command message that
matches the traditional identity but with no SubName specified the command succeeds.

SubUserData (MQPSC_SUBSCRIPTION_USER_DATA)
This is a variable-length text string. The value is stored by the queue manager with the subscription
but has no influence on the delivery of the publication to the subscriber. The value can be altered
by re-registering to the same subscription with a new value. This attribute is for the use of the
application.

SubUserData is returned in the Metatopic information (MQCACF_REG_SUB_USER_DATA) for a
subscription, if SubUserData is present.

Example
Here is an example of NameValueData for a Deregister Subscriber command message. In this
example, the sample application is deregistering its subscription to the topics which contain the latest
score for all matches. The subscriber's identity, including the CorrelId, is taken from the defaults in the
MQMD.

 <psc>
 <Command>DeregSub</Command>
 <RegOpt>CorrelAsId</RegOpt>

Developing applications reference 873

 <Topic>Sport/Soccer/State/LatestScore/#</Topic>
 </psc>

Publish message
The Publish command message is put to a queue, or from a queue manager to a subscriber, to publish
information on a specified topic or topics.

Authority to put a message onto a queue and authority to publish information on a specified topic or
topics is necessary.

If the user has authority to publish information on some, but not all, topics, only those topics are used to
publish; a warning response indicates which topics are not used to publish.

If a subscriber has any matching subscriptions, the queue manager forwards the Publish message to
the subscriber queues defined in the corresponding Register Subscriber command messages.

See Queue Manager Response message for details of the message descriptor (MQMD) parameters needed
when sending a command message to the queue manager, and used when a queue manager forwards a
publication to a subscriber.

The queue manager forwards the Publish message to other queue managers in the network that have
matching subscriptions, unless it is a local publication.

Publication data, if any, is included in the body of the message. The data can be described in an <mcd>
folder in the NameValueData field of the MQRFH2 header.

Properties
Command (MQPSC_COMMAND)

The value is Publish (MQPSC_PUBLISH).

This property must be specified.

Topic (MQPSC_TOPIC)
The value is a string that contains a topic that categorizes this publication. No wildcard characters are
allowed.

You must add the topic to the namelist SYSTEM.QPUBSUB.QUEUE.NAMELIST, see Adding a stream for
instructions on how to complete this task.

This property must be specified, and can optionally be repeated for as many topics as needed.

SubPoint (MQPSC_SUBSCRIPTION_POINT)
The subscription point on which the publication is published.

In WebSphere Event Broker 6.0, the value of the <SubPoint> property is the value of the
Subscription Point attribute of the Publication node that is handling the publishing.

In IBM WebSphere MQ 7.0.1, the value of the <SubPoint> property must match the name of a
subscription point. See Adding a subscription point.

PubOpt (MQPSC_PUBLICATION_OPTION)
The publication options property can take the following values:

RetainPub
(MQPSC_RETAIN_PUB)

The queue manager is to retain a copy of the publication. If this option is not set, the publication is
deleted as soon as the queue manager has sent the publication to all its current subscribers.

IsRetainedPub
(MQPSC_IS_RETAINED_PUB)

(Can only be set by a queue manager.) This publication has been retained by the queue manager.
The queue manager sets this option to notify a subscriber that this publication was published
earlier and has been retained, provided that the subscription has been registered with the

874 IBM MQ Developing Applications Reference

InformIfRetained option. It is set only in response to a Register Subscriber or Request
Update command message. Retained publications that are sent directly to subscribers do not
have this option set.

Local
(MQPSC_LOCAL)

This option tells the queue manager that this publication must not be sent to other queue
managers. All subscribers that registered at this queue manager receive this publication if they
have matching subscriptions.

OtherSubsOnly
(MQPSC_OTHER_SUBS_ONLY)

This option allows simpler processing of conference-type applications, where a publisher is also
a subscriber to the same topic. It tells the queue manager not to send the publication to the
publisher's subscriber queue even if it has a matching subscription. The publisher's subscriber
queue consists of its QMgrName, QName, and optional CorrelId, as described in the following list.

CorrelAsId
(MQPSC_CORREL_ID_AS_IDENTITY)

The CorrelId in the MQMD (which must not be zero) is part of the publisher's subscriber queue,
in applications where the publisher is also a subscriber.

None
(MQPSC_NONE)

All options take their default values. This has the same effect as omitting the publication options
property. If other options are specified at the same time, None is ignored.

You can have more than one publication option by introducing additional <PubOpt> elements.

The default, if this property is omitted, is that no publication options are set.

PubTime (MQPSC_PUBLISH_TIMESTAMP)
The value is an optional publication timestamp set by the publisher. It is 16 characters long with
format:

 YYYYMMDDHHMMSSTH

using Universal Time. This information is not checked by the queue manager before being sent to the
subscribers.

SeqNum (MQPSC_SEQUENCE_NUMBER)
The value is an optional sequence number set by the publisher.

It must be incremented by 1 with each publication. However, this is not checked by the queue
manager, which merely transmits this information to subscribers.

If publications on the same topic are published to different interconnected queue managers, it is the
responsibility of the publishers to ensure that sequence numbers, if used, are meaningful.

QMgrName (MQPSC_Q_MGR_NAME)
The value is a string containing the name of the queue manager for the publisher's subscriber queue,
in applications where the publisher is also a subscriber (see OtherSubsOnly).

If this property is omitted, the default is the ReplyToQMgr name in the message descriptor (MQMD).
If the resulting name is blank, it defaults to the name of the queue manager.

QName (MQPSC_Q_NAME)
The value is a string containing the name of the publisher's subscriber queue, in applications where
the publisher is also a subscriber (see OtherSubsOnly).

If this property is omitted, the default is the ReplyToQ name in the message descriptor (MQMD),
which must not be blank if OtherSubsOnly is set.

Developing applications reference 875

Example
Here are some examples of NameValueData for a Publish command message.

The first example is for a publication sent by the match simulator in the sample application to indicate
that a match has started.

 <psc>
 <Command>Publish</Command>
 <Topic>Sport/Soccer/Event/MatchStarted</Topic>
 </psc>

The second example is for a retained publication. The latest score in the match between Team1 and
Team2 is published.

 <psc>
 <Command>Publish</Command>
 <PubOpt>RetainPub</PubOpt>
 <Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>
 </psc>

Register Subscriber message
The Register Subscriber command message is sent to a queue manager by a subscriber, or by
another application on behalf of a subscriber, to indicate that it wants to subscribe to one or more topics
at a subscription point. A message content filter can also be specified.

In publish/subscribe filter expressions, nesting parentheses causes performance to decrease
exponentially. Avoid nesting parentheses to a depth greater than about 6.

The message is sent to SYSTEM.BROKER.CONTROL.QUEUE, which is the queue manager's control queue.
Authority to put a message to this queue is required, in addition to access authority (set by the queue
manager's system administrator) for the topic, or topics, in the subscription.

If the user has authority on some, but not all, topics, only those with authority are registered; a warning
response indicates those that are not registered.

See “MQMD settings in command messages to the queue manager” on page 887 for details of the
message descriptor (MQMD) parameters that are needed when sending a command message to the
queue manager.

If the reply to queue is a temporary dynamic queue, the subscription is deregistered automatically by the
queue manager when the queue is closed.

Properties
Command (MQPSC_COMMAND)

The value is RegSub (MQPSC_REGISTER_SUBSCRIBER). This property must be specified.
Topic (MQPSC_TOPIC)

The topic for which the subscriber wants to receive publications. Wildcard characters can be specified
as part of the topic.

If you use the MQSC command display sub to examine the subscription created in this way, the
value of the <Topic> tag is shown as the TOPICSTR property of the subscription.

This property is required, and can optionally be repeated for as many topics as needed.

SubPoint (MQPSC_SUBSCRIPTION_POINT)
The value is the subscription point to which the subscription is attached.

If this property is omitted, the default subscription point is used.

In WebSphere Event Broker 6.0, the value of the <SubPoint> property must match the value of the
Subscription Point attribute of the Publication nodes that are subscribed to.

876 IBM MQ Developing Applications Reference

In IBM WebSphere MQ 7.0.1, the value of the <SubPoint> property must match the name of a
subscription point. See Adding a subscription point.

Filter (MQPSC_FILTER)
The value is an SQL expression that is used as a filter on the contents of publication messages.
If a publication on the specified topic matches the filter, it is sent to the subscriber. This property
corresponds to the Selection String that is used in MQSUB and MQOPEN calls. For more information,
see Selecting on the content of a message

If this property is omitted, no content filtering takes place.

RegOpt (MQPSC_REGISTRATION_OPTION)
This Registration Options property can take the following values:

AddName
(MQPSC_ADD_NAME)

When specified for an existing subscription that matches the traditional identity of this Register
Subscription command, but with no current SubName value, the SubName specified in this
command is added to the subscription.

If AddName is specified the SubName field is mandatory, otherwise
MQRCCF_REG_OPTIONS_ERROR is returned.

CorrelAsId
(MQPSC_CORREL_ID_AS_IDENTITY)

The CorrelId in the message descriptor (MQMD) is used when sending matching publications to
the subscriber queue. The CorrelId must not be zero,

FullResp
(MQPSC_FULL_RESPONSE)

When specified all attributes of the subscription are returned in the response message, if the
command does not fail.

FullResp is valid only when the command message refers to a single subscription. Therefore,
only one topic is permitted in the command; otherwise the command fails with return code
MQRCCF_REG_OPTIONS_ERROR.

InformIfRet
(MQPSC_INFORM_IF_RETAINED)

The queue manager informs the subscriber if a publication is retained when it sends a Publish
message in response to a Register Subscriber or Request Update command message. The
queue manager does this by including the IsRetainedPub publication option in the message.

JoinExcl
(MQPSC_JOIN_EXCLUSIVE)

This option indicates that the specified SubIdentity should be added as the exclusive member
of the identity set for the subscription, and that no other identities can be added to the set.

If the identity has already joined 'shared' and is the sole entry in the set, the set is
changed to an exclusive lock held by this identity. Otherwise, if the subscription currently has
other identities in the identity set (with shared access) the command fails with return code
MQRCCF_SUBSCRIPTION_IN_USE.

JoinShared
(MQPSC_JOIN_SHARED)

This option indicates that the specified SubIdentity should be added to the identity set for the
subscription.

If the subscription is currently locked exclusively (using the JoinExcl option), the command fails
with return code MQRCCF_SUBSCRIPTION_LOCKED, unless the identity that has the subscription

Developing applications reference 877

locked is the same identity as that in this command message. In this case the lock is automatically
modified to a shared lock.

Local
(MQPSC_LOCAL)

The subscription is local and is not distributed to other queue managers in the network.
Publications made at other queue managers are not delivered to this subscriber, unless it also
has a corresponding global subscription.

NewPubsOnly
(MQPSC_NEW_PUBS_ONLY)

Retained publications that exist at the time the subscription is registered are not sent to the
subscriber; only new publications are sent.

If a subscriber re-registers and changes this option so that it is no longer set, a publication that
has already been sent to it might be sent again.

NoAlter
(MQPSC_NO_ALTER)

The attributes of an existing matching subscription is not changed.

When a subscription is being created, this option is ignored. All other options specified apply to
the new subscription.

If a SubIdentity also has one of the join options (JoinExcl or JoinShared) specified, the
identity is added to the identity set regardless of whether NoAlter is specified.

None
(MQPSC_NONE)

All registration options take their default values.

If the subscriber is already registered, its options are reset to their default values (note that this
does not have the same affect as omitting the registration options property), and the subscription
expiry is updated from the MQMD of the Register Subscriber message.

If other registration options are specified at the same time, None is ignored.

NonPers
(MQPSC_NON_PERSISTENT)

Publications matching this subscription are delivered to the subscriber as non-persistent
messages.

Pers
(MQPSC_PERSISTENT)

Publications matching this subscription are delivered to the subscriber as persistent messages.

PersAsPub
(MQPSC_PERSISTENT_AS_PUBLISH)

Publications matching this subscription are delivered to the subscriber with the persistence
specified by the publisher. This is the default behavior.

PersAsQueue
(MQPSC_PERSISTENT_AS_Q)

Publications matching this subscription are delivered to the subscriber with the persistence
specified on the subscriber queue.

PubOnReqOnly
(MQPSC_PUB_ON_REQUEST_ONLY)

The queue manager does not send publications to the subscriber, except in response to a
Request Update command message.

878 IBM MQ Developing Applications Reference

VariableUserId
(MQPSC_VARIABLE_USER_ID)

When specified the identity of the subscriber (queue, queue manager and correlid) is not
restricted to a single userid. This differs from the existing behavior of the queue manager that
associates the userid of the original registration message with the subscriber's identity and from
then on prevents any other user using that identity. If a new subscriber tries to use the same
identity MQRCCF_DUPLICATE_SUBSCRIPTION is returned.

This allows any user to modify or deregister the subscription if the user has suitable authority.
There is therefore no need to check that the userid matches that of the original subscriber.

To add this option to an existing subscription the command must come from the same userid as
the original subscription itself.

If the subscription of the Request Update command has VariableUserId set, this must be
set at request update time to indicate which subscription is referred to. Otherwise, the userid of
the Request Update command is used to identify the subscription. This is overridden, along
with the other subscriber identifiers, if a subscription name is supplied.

If a Register Subscriber command message without this option set refers to an existing
subscription which has this option set, the option is removed from this subscription and the userid
of the subscription is now fixed. If there already exists a subscriber which has the same identity
(queue, queue manager and correlation identifier) but with a different user ID associated to it, the
command fails with return code MQRCCF_DUPLICATE_IDENTITY because there can only be one
userid associated with a subscriber identity.

If the registration options property is omitted and the subscriber is already registered, its registration
options are not changed and the subscription expiry is updated from the MQMD of the Register
Subscriber message.

If the subscriber is not already registered, a new subscription is created with all registration options
taking their default values.

The default values are PersAsPub and no other options set.

QMgrName (MQPSC_Q_MGR_NAME)
The value is the name of the queue manager for the subscriber queue, to which matching publications
are sent by the queue manager.

If this property is omitted, the default is the ReplyToQMgr name in the message descriptor (MQMD).
If the resulting name is blank, it defaults to the queue manager's QMgrName.

QName (MQPSC_Q_NAME)
The value is the name of the subscriber queue, to which matching publications are sent by the queue
manager.

If this property is omitted, the default is the ReplyToQ name in the message descriptor (MQMD),
which must not be blank in this case.

If the queue is a temporary dynamic queue, nonpersistent delivery of publications (NonPers) must
be specified in the <RegOpt> property.

If the queue is a temporary dynamic queue, the subscription is deregistered automatically by the
queue manager when the queue is closed.

SubName (MQPSC_SUBSCRIPTION_NAME)
This is a name given to a particular subscription. You can use it instead of the queue manager, queue
and optional correlId to refer to a subscription.

If a subscription already exists with this SubName , any other attributes of the subscription (Topic,
QMgrName, QName, CorrelId, UserId, RegOpts, UserSubData, and Expiry) are overridden with the
attributes, if specified, that are passed in the new Register Subscriber command message.
However, if SubName is used with no QName field specified, and a ReplyToQ is specified in the MQMD
header, the subscriber queue is changed to be the ReplyToQ.

Developing applications reference 879

If a subscription that matches the traditional identity of this command already exists, but has no
SubName , the Registration command fails with return code MQRCCF_DUPLICATE_SUBSCRIPTION,
unless the AddName option is specified.

If you try to alter an existing named subscription by using another Register Subscriber command
that specifies the same SubName , and the values of Topic, QMgrName, QName, and CorrelId in
the new command match a different existing subscription, with or without a SubName defined, the
command fails with return code MQRCCF_DUPLICATE_SUBSCRIPTION. This prevents two subscription
names referring to the same subscription.

SubIdentity (MQPSC_SUBSCRIPTION_IDENTITY)
This string is used to represent an application with an interest in a subscription. It is a variable-length
character string with a maximum length of 64 characters, and is optional. The queue manager
maintains a set of subscriber identities for each subscription. Each subscription can allow its identity
set to contain only one identity, or an unlimited number of identities (see the JoinShared and
JoinExcl options).

A subscribe command that specifies the JoinShared or JoinExcl option adds the SubIdentity to
the subscription's identity set, if it is not already there and if the existing set of identities allows such
an action; that is, no other subscriber has joined exclusively or the identity set is empty.

Any alteration of the subscription's attributes as the result of a Register Subscriber
command in which a SubIdentity is specified, only succeeds if it would be the only member
of the set of identities for this subscription. Otherwise the command fails with return code
MQRCCF_SUBSCRIPTION_IN_USE. This prevents a subscription's attributes from changing without
other interested subscribers being aware.

If you specify a character string that is longer than 64 characters, the command fails with return code
MQRCCF_SUB_IDENTITY_ERROR.

SubUserData (MQPSC_SUBSCRIPTION_USER_DATA)
This is a variable-length text string. The value is stored by the queue manager with the subscription,
but has no influence on publication delivery to the subscriber. The value can be altered by re-
registering to the same subscription with a new value. This attribute is there for the use of the
application.

The SubUserData is returned in the Metatopic information (MQCACF_REG_SUB_USER_DATA) for a
subscription if present.

If you specify more than one of the registration option values NonPers, PersAsPub, PersAsQueue,
and Pers, then only the last one is used. You cannot combine these options in an individual subscription.

Example
Here is an example of NameValueData for a Register Subscriber command message. In the sample
application, the results service uses this message to register a subscription to the topics containing the
latest scores in all matches, with the 'Persistent as publish' option set. The subscriber's identity, including
the CorrelId, is taken from the defaults in the MQMD.

 <psc>
 <Command>RegSub</Command>
 <RegOpt>PersAsPub</RegOpt>
 <RegOpt>CorrelAsId</RegOpt>
 <Topic>Sport/Soccer/State/LatestScore/#</Topic>
 </psc>

880 IBM MQ Developing Applications Reference

Request Update message
The Request Update command message is sent from a subscriber to a queue manager, to request the
current retained publications for the specified topic and subscription point that match the given (optional)
filter.

This message is sent to SYSTEM.BROKER.CONTROL.QUEUE, the queue manager's control queue. Authority
to put a message to this queue is required, in addition to access authority for the topic in the request
update; this is set by the queue manager's system administrator.

This command is normally used if the subscriber specified the option PubOnReqOnly when it registered.
If the queue manager has any matching retained publications, they are sent to the subscriber.
If the queue manager has no matching retained publications, the request fails with return code
MQRCCF_NO_RETAINED_MSG. The requester must have previously registered a subscription with the
same Topic, SubPoint, and Filter values.

Properties
Command (MQPSC_COMMAND)

The value is ReqUpdate (MQPSC_REQUEST_UPDATE). This property must be specified.
Topic (MQPSC_TOPIC)

The value is the topic that the subscriber is requesting; wildcard characters are allowed.

This property must be specified, but only one occurrence is allowed in this message.

SubPoint (MQPSC_SUBSCRIPTION_POINT)
The value is the subscription point to which the subscription is attached.

If this property is omitted, the default subscription point is used.

Filter (MQPSC_FILTER)
The value is an ESQL expression that is used as a filter on the contents of publication messages. If a
publication on the specified topic matches the filter, it is sent to the subscriber.

The <Filter> property should have the same value as that specified on the original subscription for
which you are now requesting an update.

If this property is omitted, no content filtering takes place.

RegOpt (MQPSC_REGISTRATION_OPTION)
The registration options property can take the following value:

CorrelAsId
(MQPSC_CORREL_ID_AS_IDENTITY)

The CorrelId in the message descriptor (MQMD), which must not be zero, is used when sending
matching publications to the subscriber queue.

None
(MQPSC_NONE)

All options take their default values. This has the same effect as omitting the <RegOpt> property.
If other options are specified at the same time, None is ignored.

VariableUserId
(MQPSC_VARIABLE_USER_ID)

When specified the identity of the subscriber (queue, queue manager, and correlid) is not
restricted to a single userid. This differs from the existing behavior of the queue manager that
associates the userid of the original registration message with the subscriber's identity and from
then on prevents any other user using that identity. If a new subscriber tries to use the same
identity, the command fails with return code MQRCCF_DUPLICATE_SUBSCRIPTION.

This allows any user to modify or deregister the subscription when they have suitable authority.
Therefore, there is no need to check that the userid matches that of the original subscriber.

Developing applications reference 881

To add this option to an existing subscription, the command must come from the same userid as
the original subscription.

If the subscription of the Request Update command has VariableUserId set, this must be
set at request update time to indicate which subscription is referred to. Otherwise, the userid of
the Request Update command is used to identify the subscription. This is overridden, along
with the other subscriber identifiers, if a subscription name is supplied.

The default, if this property is omitted, is that no registration options are set.

QMgrName (MQPSC_Q_MGR_NAME)
The value is the name of the queue manager for the subscriber queue, to which the matching retained
publication is sent by the queue manager.

If this property is omitted, the default is the ReplyToQMgr name in the message descriptor (MQMD).
If the resulting name is blank, it defaults to the queue manager's QMgrName.

QName (MQPSC_Q_NAME)
The value is the name of the subscriber queue, to which the matching retained publication is sent by
the queue manager.

If this property is omitted, the default is the ReplyToQ name in the message descriptor (MQMD),
which must not be blank in this case.

SubName (MQPSC_SUBSCRIPTION_NAME)
This is a name given to a particular subscription. If specified on a Request Update command
the SubName value takes precedence over all other identifier fields except the userid, unless
VariableUserId is set on the subscription itself. If VariableUserId is not set, the Request Update
command succeeds only if the userid of the command message matches that of the subscription. If
the userid of the command message does not match that of the subscription, the command fails with
return code MQRCCF_DUPLICATE_IDENTITY.

If VariableUserId is set, and the userid differs from that of the subscription, the command
succeeds if the userid of the new command message has authority to browse the stream queue
and put to the subscriber queue of the subscription. Otherwise, the command fails with return code
MQRCCF_NOT_AUTHORIZED.

If a subscription exists that matches the traditional identity of this command, but has no SubName,
the Request Update command fails with return code MQRCCF_SUB_NAME_ERROR.

If an attempt is made to request an update for a subscription that has a SubName using a command
message that matches the traditional identity, but with no SubName specified, the command
succeeds.

Example
Here is an example of NameValueData for a Request Update command message. In the sample
application, the results service uses this message to request retained publications containing the latest
scores for all teams. The subscriber's identity, including the CorrelId, is taken from the defaults in the
MQMD.

 <psc>
 <Command>ReqUpdate</Command>
 <RegOpt>CorrelAsId</RegOpt>
 <Topic>Sport/Soccer/State/LatestScore/#</Topic>
 </psc>

882 IBM MQ Developing Applications Reference

Queue Manager Response message
A Queue Manager Response message is sent from a queue manager to the ReplyToQ of a publisher or
a subscriber, to indicate the success or failure of a command message received by the queue manager if
the command message descriptor specified that a response is required.

The response message is contained within the NameValueData field of the MQRFH2 header, in a <pscr>
folder.

In the case of a warning or error, the response message contains the <psc> folder from the command
message as well as the <pscr> folder. The message data, if any, is not contained in the queue manager
response message. In the case of an error, none of the message that caused an error has been processed;
in the case of a warning, some of the message might have been processed successfully.

If there is a failure sending a response:

• For publication messages, the queue manager tries to send the response to the IBM MQ dead-letter
queue if the MQPUT fails. This allows the publication to be sent to subscribers even if the response
cannot be sent back to the publisher.

• For other messages, or if the publication response cannot be sent to the dead-letter queue, an error is
logged and the command message is normally rolled back. Whether this happens depends on how the
MQInput node has been configured.

Properties
Completion (MQPSCR_COMPLETION)

The completion code, which can take one of three values:
ok

Command completed successfully
warning

Command completed but with warning
error

Command failed
Response (MQPSCR_RESPONSE)

The response to a command message, if that command produced a completion code of warning or
error. It contains a <Reason> property, and might contain other properties that indicate the cause
of the warning or error.

In the case of one or more errors, there is only one response folder, indicating the cause of the first
error only. In the case of one or more warnings, there is a response folder for each warning.

Reason (MQPSCR_REASON)
The reason code qualifying the completion code, if the completion code is a warning or error. It
is set to one of the error codes listed in the following example. The <Reason> property is contained
within a <Response> folder. The reason code can be followed by any valid property from the <psc>
folder (for example, a topic name), indicating the cause of the error or warning. If you get a reason
code of ????, check the data for correctness, for example, matching angled brackets (< >).

Examples
Here are some examples of NameValueData in a Queue Manager Response message. A successful
response might be the following:

 <pscr>
 <Completion>ok</Completion>
 </pscr>

Developing applications reference 883

Here is an example of a failure response; the failure is a filter error. The first NameValueData string
contains the response; the second contains the original command.

 <pscr>
 <Completion>error</Completion>
 <Response>
 <Reason>3150</Reason>
 </Reponse>
 </pscr>

 <psc>
 ...
 command message (to which
 the queue manager is responding)
 ...
</psc>

Here is an example of a warning response (due to unauthorized topics). The first NameValueData string
contains the response; the second NameValueData string contains the original command.

 <pscr>
 <Completion>warning</Completion>
 <Response>
 <Reason>3081</Reason>
 <Topic>topic1</Topic>
 </Reponse>
 <Response>
 <Reason>3081</Reason>
 <Topic>topic2</Topic>
 </Reponse>
 </pscr>

 <psc>
 ...
 command message (to which
 the queue manager is responding)
 ...
 </psc>

Publish/subscribe reason codes
These reason codes might be returned in the Reason field of a publish/subscribe response <pscr>
folder. Constants that can be used to represent these codes in the C or C++ programming languages are
also listed.

The MQRC_ constants require the IBM MQ cmqc.h header file. The MQRCCF_ constants require the
IBM MQ cmqcfc.h header file (apart from MQRCCF_FILTER_ERROR and MQRCCF_WRONG_USER, which
require the cmqpsc.h header file).

Reason code and text Explanation Issued by

2336

MQRC_RFH_COMMAND_ERROR

Valid values for the <Command> field
of a <psc> folder are: RegSub,
DeregSub, Publish, DeletePub, and
ReqUpdate. Any other values result in
this error code being issued.

Any command

2337

MQRC_RFH_ PARM_ERROR

The <psc> and <mcd> folders both
have a set of valid parameters that
can be specified within them. Check
the descriptions of these folders and
ensure that you have not specified
incorrect parameters.

Any command

884 IBM MQ Developing Applications Reference

Reason code and text Explanation Issued by

2338

MQRC_RFH_DUPLICATE_PARM

Some parameters (for example, Topic)
within a <psc> folder can be
repeated, but others (for example,
Command) cannot be repeated.
Check that you have not duplicated a
non-repeatable parameter.

Any command

2339

MQRC_RFH_PARM_MISSING

Some parameters within <psc> or
<mcd> folders are optional and can
be omitted; some are mandatory
and must not be omitted. Check
that you have included all mandatory
parameters within your <psc> and
<mcd> folders.

Any command

2551

MQRC_SELECTION_NOT_AVAILABLE

No extended message selection
provider was available to determine
which subscribers with a filter
specified should receive the
publication.

Publish, Register
Subscriber, and
Request Update

No extended message selection
provider was available to handle the
filter of the specified subscriber.

Register Subscriber
and Request Update

2554

MQRC_CONTENT_ERROR

An extended message selection
provider found an error in the current
or retained publication.

Publish and Request
Update

3008

MQRCCF_COMMAND_FAILED

An internal error occurred which
prevented the command from
executing correctly. The error might
occur if the command is reissued.
The system event log for the queue
manager contains information which
should be used when reporting the
problem to IBM.

Any command

3072

MQRCCF_TOPIC_ERROR

One or more of the values you
supplied for the Topic parameter are
incorrect. Check that your values
for Topic conform to the specified
restrictions.

Any command

3073

MQRCCF_NOT_REGISTERED

The combination of SubPoint, Topic,
and Filter that you specified on your
DeregSub or ReqUpdate command
was either not a combination with
which you had previously registered
or, for the DeregSub command if
the DeregAll option was specified,
one of the SubPoint, Topic, or Filter
properties was not used to deregister
any subscription.

Deregister Subscriber
and Request Update
commands

Developing applications reference 885

Reason code and text Explanation Issued by

3074

MQRCCF_Q_MGR_NAME_ERROR

The specified queue manager was not
valid, or the queue manager was not
available or did not exist.

Deregister Subscriber,
Publish, Register
Subscriber, and
Request Update
commands

3076

MQRCCF_Q_NAME_ERROR

The specified queue name was not
valid, or the queue did not exist on the
specified queue manager.

Deregister Subscriber,
Publish, Register
Subscriber, and
Request Update
commands

3077

MQRCCF_NO_RETAINED_MSG

There were no retained messages for
the topic you specified. This might
or might not be an error, depending
on the design of your application
program.

Request Update
command

3079

MQRCCF_INCORRECT_Q

RegSub, DeregSub, and ReqUpdate
commands are always sent to the
SYSTEM.BROKER.CONTROL.QUEUE
queue of the queue manager for
which they are intended. Publish
and Delete Publication commands
are sent to the input queue for the
particular publish/subscribe message
flow for which they are intended;
this is determined when the message
flow is designed. This error code is
returned if a command is sent to the
wrong queue.

Any command

3080

MQRCCF_CORREL_ID_ERROR

You have specified CorrelAsId as
one of your RegOpt parameters.
However, the CorrelId field of the
MQMD does not contain a valid
correlation identifier (that is, it is set
to MQCI_NONE).

Deregister Subscriber
and Register
Subscriber
commands

3081

MQRCCF_NOT_AUTHORIZED

You are not authorized to perform
the requested action. Authorization
settings for the queue manager are
handled by the system administrator
using the Topics Hierarchy editor.

Publish and
Register Subscriber
commands

3083

MQRCCF_REG_OPTIONS_ERROR

You have specified an unrecognized
RegOpt parameter in the <psc>
folder that contains your RegSub or
DeregSub command.

Deregister Subscriber
and Register
Subscriber
commands

3084

MQRCCF_PUB_OPTIONS_ERROR

You have specified an unrecognized
PubOpt parameter in the <psc>
folder that contains your Publish
command.

Publish command

3087

MQRCCF_DEL_OPTIONS_ERROR

You have specified an unrecognized
DelOpt parameter in the <psc>
folder that contains your DeletePub
command.

Delete Publication
command

886 IBM MQ Developing Applications Reference

Reason code and text Explanation Issued by

3150

MQRCCF_FILTER_ERROR

The value specified for the Filter
parameter is not valid. Check the
section that describes the valid syntax
for filter expressions and ensure that
your expression conforms.

Deregister Subscriber,
Register Subscriber,
and Request Update
commands

3151

MQRCCF_WRONG_USER

A subscription that matches the one
specified already exists; however, it
was registered by a different user.
A subscription can only be changed
or deregistered by the user who
originally registered it.

Deregister Subscriber,
Register Subscriber,
and Request Update
commands

3152

MQRCCF_DUPLICATE_SUBSCRIPTION

A matching subscription already
exists with a different subscription
name.

3153

MQRCCF_SUB_NAME_ERROR

Either the format of the subscription
name is not valid, or a matching
subscription already exists with no
subscription name.

3154

MQRCCF_SUB_IDENTITY_ERROR

The subscription identity parameter
is in error. Either the supplied
value exceeds the maximum length
allowed, or the subscription identity
is not currently a member of the
subscription's identity set and a Join
registration option was not specified.

3155

MQRCCF_SUBSCRIPTION_IN_USE

An attempt to modify or deregister
a subscription was attempted by a
member of the identity set when it
was not the only member of this set.

3156

MQRCCF_SUBSCRIPTION_LOCKED

The subscription is currently
exclusively locked by another identity.

3157

MQRCCF_ALREADY_JOINED

A Join registration option was
specified but the subscriber identity
was already a member of the
subscription's identity set.

MQMD settings in command messages to the queue manager
Applications that send command messages to the queue manager use the following settings of fields in
the message descriptor (MQMD). Fields that are left as the default value, or can be set to any valid value in
the usual way, are not listed here.

Report
See MsgType and CorrelId.

MsgType
MsgType should be set to either MQMT_REQUEST or MQMT_DATAGRAM. MQRC_MSG_TYPE_ERROR
will be returned if MsgType is not set to one of these values.

MsgType should be set to MQMT_REQUEST for a command message if a response is always required.
The MQRO_PAN and MQRO_NAN flags in the Report field are not significant in this case.

Developing applications reference 887

If MsgType is set to MQMT_DATAGRAM, responses depend on the setting of the MQRO_PAN and
MQRO_NAN flags in the Report field:

• MQRO_PAN alone means that the queue manager sends a response only if the command succeeds.
• MQRO_NAN alone means that the queue manager sends a response only if the command fails.
• If a command completes with a warning, a response is sent if either MQRO_PAN or MQRO_NAN is

set.
• MQRO_PAN + MQRO_NAN means that the queue manager sends a response whether the command

succeeds or fails. This has the same effect from the queue manager's perspective as setting
MsgType to MQMT_REQUEST.

• If neither MQRO_PAN nor MQRO_NAN is set, no response is ever sent.

Format
Set to MQFMT_RF_HEADER_2

MsgId
This field is normally set to MQMI_NONE, so that the queue manager generates a unique value.

CorrelId
This field can be set to any value. If the sender's identity includes a CorrelId, specify this value,
together with MQRO_PASS_CORREL_ID in the Report field, to ensure that it is set in all response
messages sent by the queue manager to the sender.

ReplyToQ
This field defines the queue to which responses, if any, are to be sent. This might be the sender's
queue; this has the advantage that the QName parameter can be omitted from the message. If,
however, responses are to be sent to a different queue, the QName parameter is needed.

ReplyToQMgr
This field defines the queue manager for responses. If you leave this field blank (the default value),
the local queue manager puts its own name in this field.

MQMD settings for publications forwarded by a queue manager
A queue manager uses these settings of fields in the message descriptor (MQMD) when it sends a
publication to a subscriber. All other fields in the MQMD are set to their default values.

Report
Report is set to MQRO_NONE.

MsgType
MsgType is set to MQMT_DATAGRAM.

Expiry
Expiry is set to the value in the Publish message received from the publisher. In the case of a
retained message, the time outstanding is reduced by the approximate time that the message has
been at the queue manager.

Format
Format is set to MQFMT_RF_HEADER_2

MsgId
MsgId is set to a unique value.

CorrelId
If CorrelId is part of the subscriber's identity, this is the value specified by the subscriber when
registering. Otherwise, it is a non-zero value chosen by the queue manager.

Priority
Priority takes the value set by the publisher, or as resolved if the publisher specified
MQPRI_PRIORITY_AS_Q_DEF.

888 IBM MQ Developing Applications Reference

Persistence
Persistence takes the value set by the publisher, or as resolved if the publisher specified
MQPER_PERSISTENCE_AS_Q_DEF, unless specified otherwise in the Register Subscriber
message for the subscriber to which this publication is being sent.

ReplyToQ
ReplyToQ is set to blanks.

ReplyToQMgr
ReplyToQMgr is set to the name of the queue manager.

UserIdentifier
UserIdentifier is the subscriber's user identifier, as set when the subscriber registered.

AccountingToken
AccountingToken is the subscriber's accounting token, as set when the subscriber first registered.

ApplIdentityData
ApplIdentityData is the subscriber's application identity data, as set when the subscriber first
registered.

PutApplType
PutApplType is set to MQAT_BROKER.

PutApplName
PutApplName is set to the first 28 characters of the name of the queue manager.

PutDate
PutDate is the date when the message was put.

PutTime
PutTime is the time when the message was put.

ApplOriginData
ApplOriginData is set to blanks.

MQMD settings in queue manager response messages
A queue manager uses these settings of fields in the message descriptor (MQMD) when sending a reply to
a publication message. All other fields in the MQMD are set to their default values.

Report
Report is set to all zeros.

MsgType
MsgType is set to MQMT_REPLY.

Format
Format is set to MQFMT_RF_HEADER_2

MsgId
The setting of MsgId depends on the Report options in the original command message. By default, it
is set to MQMI_NONE, so that the queue manager generates a unique value.

CorrelId
The setting of CorrelId depends on the Report options in the original command message. By
default, this means that the CorrelId is set to the same value as the MsgId of the command
message. This can be used to correlate commands with their responses.

Priority
Priority is set to the same value as in the original command message.

Persistence
Persistence is set to the value set in the original command message.

Expiry
Expiry is set to the same value as in the original command message received by the queue manager.

PutApplType
PutApplType is set to MQAT_BROKER.

Developing applications reference 889

PutApplName
PutApplName is set to the first 28 characters of name of the queue manager.

Other context fields are set as if generated with MQPMO_PASS_IDENTITY_CONTEXT.

Machine encodings
This section describes the structure of the Encoding field in the message descriptor.

See “MQMD - Message descriptor” on page 417 for a summary of the fields in the structure.

The Encoding field is a 32-bit integer that is divided into four separate subfields; these subfields identify:

• The encoding used for binary integers
• The encoding used for packed-decimal integers
• The encoding used for floating-point numbers
• Reserved bits

Each subfield is identified by a bit mask that has 1-bits in the positions corresponding to the subfield, and
0-bits elsewhere. The bits are numbered such that bit 0 is the most significant bit, and bit 31 the least
significant bit. The following masks are defined:
MQENC_INTEGER_MASK

Mask for binary-integer encoding.

This subfield occupies bit positions 28 through 31 within the Encoding field.

MQENC_DECIMAL_MASK
Mask for packed-decimal-integer encoding.

This subfield occupies bit positions 24 through 27 within the Encoding field.

MQENC_FLOAT_MASK
Mask for floating-point encoding.

This subfield occupies bit positions 20 through 23 within the Encoding field.

MQENC_RESERVED_MASK
Mask for reserved bits.

This subfield occupies bit positions 0 through 19 within the Encoding field.

Binary-integer encoding

The following values are valid for the binary-integer encoding:
MQENC_INTEGER_UNDEFINED

Binary integers are represented using an encoding that is undefined.
MQENC_INTEGER_NORMAL

Binary integers are represented in the conventional way:

• The least significant byte in the number has the highest address of any of the bytes in the number;
the most significant byte has the lowest address

• The least significant bit in each byte is adjacent to the byte with the next higher address; the most
significant bit in each byte is adjacent to the byte with the next lower address

MQENC_INTEGER_REVERSED
Binary integers are represented in the same way as MQENC_INTEGER_NORMAL, but with the
bytes arranged in reverse order. The bits within each byte are arranged in the same way as
MQENC_INTEGER_NORMAL.

Packed-decimal-integer encoding

The following values are valid for the packed-decimal-integer encoding:

890 IBM MQ Developing Applications Reference

MQENC_DECIMAL_UNDEFINED
Packed-decimal integers are represented using an encoding that is undefined.

MQENC_DECIMAL_NORMAL
Packed-decimal integers are represented in the conventional way:

• Each decimal digit in the printable form of the number is represented in packed decimal by a single
hexadecimal digit in the range X'0' through X'9'. Each hexadecimal digit occupies four bits, and so
each byte in the packed decimal number represents two decimal digits in the printable form of the
number.

• The least significant byte in the packed-decimal number is the byte that contains the least
significant decimal digit. Within that byte, the most significant four bits contain the least significant
decimal digit, and the least significant four bits contain the sign. The sign is either X'C' (positive),
X'D' (negative), or X'F' (unsigned).

• The least significant byte in the number has the highest address of any of the bytes in the number;
the most significant byte has the lowest address.

• The least significant bit in each byte is adjacent to the byte with the next higher address; the most
significant bit in each byte is adjacent to the byte with the next lower address.

MQENC_DECIMAL_REVERSED
Packed-decimal integers are represented in the same way as MQENC_DECIMAL_NORMAL, but with
the bytes arranged in reverse order. The bits within each byte are arranged in the same way as
MQENC_DECIMAL_NORMAL.

Floating-point encoding

The following values are valid for the floating-point encoding:
MQENC_FLOAT_UNDEFINED

Floating-point numbers are represented using an encoding that is undefined.
MQENC_FLOAT_IEEE_NORMAL

Floating-point numbers are represented using the standard IEEE 4 floating-point format, with the
bytes arranged as follows:

• The least significant byte in the mantissa has the highest address of any of the bytes in the number;
the byte containing the exponent has the lowest address

• The least significant bit in each byte is adjacent to the byte with the next higher address; the most
significant bit in each byte is adjacent to the byte with the next lower address

Details of the IEEE float encoding can be found in IEEE Standard 754.

MQENC_FLOAT_IEEE_REVERSED
Floating-point numbers are represented in the same way as MQENC_FLOAT_IEEE_NORMAL, but with
the bytes arranged in reverse order. The bits within each byte are arranged in the same way as
MQENC_FLOAT_IEEE_NORMAL.

MQENC_FLOAT_S390
Floating-point numbers are represented using the standard System/390 floating-point format; this is
also used by System/370.

Constructing encodings

To construct a value for the Encoding field in MQMD, the relevant constants that describe the required
encodings can be added together (do not add the same constant more than once), or combined using the
bitwise OR operation (if the programming language supports bit operations).

Whichever method is used, combine only one of the MQENC_INTEGER_* encodings with one of the
MQENC_DECIMAL_* encodings and one of the MQENC_FLOAT_* encodings.

4 The Institute of Electrical and Electronics Engineers

Developing applications reference 891

Analyzing encodings
The Encoding field contains subfields; because of this, applications that need to examine the integer,
packed decimal, or float encoding must use one of the techniques described.

Using bit operations
If the programming language supports bit operations, perform the following steps:

1. Select one of the following values, according to the type of encoding required:

• MQENC_INTEGER_MASK for the binary integer encoding
• MQENC_DECIMAL_MASK for the packed decimal integer encoding
• MQENC_FLOAT_MASK for the floating point encoding

Call the value A.
2. Combine the Encoding field with A using the bitwise AND operation; call the result B.
3. B is the encoding required, and can be tested for equality with each of the values that is valid for that

type of encoding.

Using arithmetic
If the programming language does not support bit operations, perform the following steps using integer
arithmetic:

1. Select one of the following values, according to the type of encoding required:

• 1 for the binary integer encoding
• 16 for the packed decimal integer encoding
• 256 for the floating point encoding

Call the value A.
2. Divide the value of the Encoding field by A ; call the result B.
3. Divide B by 16; call the result C.
4. Multiply C by 16 and subtract from B ; call the result D.
5. Multiply D by A ; call the result E.
6. E is the encoding required, and can be tested for equality with each of the values that is valid for that

type of encoding.

Summary of machine architecture encodings

Encodings for machine architectures are shown in Table 632 on page 892.

Table 632. Summary of encodings for machine architectures

Machine architecture Binary integer encoding Packed decimal integer
encoding

Floating point encoding

IBM i normal normal IEEE normal

Intel x86 reversed reversed IEEE reversed

PowerPC® normal normal IEEE normal

System/390 normal normal System/390

892 IBM MQ Developing Applications Reference

Report options and message flags
This section describes the Report and MsgFlags fields that are part of the message descriptor MQMD
specified on the MQGET, MQPUT, and MQPUT1 calls.

The topics in this section describe:

• The structure of the report field and how the queue manager processes it
• How an application analyzes the report field
• The structure of the message-flags field

For more information about the MQMD message descriptor, see “MQMD - Message descriptor” on page
417.

Structure of the report field
This information describes the structure of the report field.

The Report field is a 32-bit integer that is divided into three separate subfields. These subfields identify:

• Report options that are rejected if the local queue manager does not recognize them
• Report options that are always accepted, even if the local queue manager does not recognize them
• Report options that are accepted only if certain other conditions are satisfied

Each subfield is identified by a bit mask that has 1-bits in the positions corresponding to the subfield, and
0-bits elsewhere. The bits in a subfield are not necessarily adjacent. The bits are numbered such that bit
0 is the most significant bit, and bit 31 the least significant bit. The following masks are defined to identify
the subfields:
MQRO_REJECT_UNSUP_MASK

This mask identifies the bit positions within the Report field where report options that are not
supported by the local queue manager cause the MQPUT or MQPUT1 call to fail with completion code
MQCC_FAILED and reason code MQRC_REPORT_OPTIONS_ERROR.

This subfield occupies bit positions 3, and 11 through 13.

MQRO_ACCEPT_UNSUP_MASK
This mask identifies the bit positions within the Report field where report options that are not
supported by the local queue manager are nevertheless accepted on the MQPUT or MQPUT1
calls. Completion code MQCC_WARNING with reason code MQRC_UNKNOWN_REPORT_OPTION are
returned in this case.

This subfield occupies bit positions 0 through 2, 4 through 10, and 24 through 31.

The following report options are included in this subfield:

• MQRO_ACTIVITY
• MQRO_COPY_MSG_ID_TO_CORREL_ID
• MQRO_DEAD_LETTER_Q
• MQRO_DISCARD_MSG
• MQRO_EXCEPTION
• MQRO_EXCEPTION_WITH_DATA
• MQRO_EXCEPTION_WITH_FULL_DATA
• MQRO_EXPIRATION
• MQRO_EXPIRATION_WITH_DATA
• MQRO_EXPIRATION_WITH_FULL_DATA
• MQRO_NAN
• MQRO_NEW_MSG_ID
• MQRO_NONE

Developing applications reference 893

• MQRO_PAN
• MQRO_PASS_CORREL_ID
• MQRO_PASS_MSG_ID

MQRO_ACCEPT_UNSUP_IF_XMIT_MASK
This mask identifies the bit positions within the Report field where report options that are not
supported by the local queue manager are nevertheless accepted on the MQPUT or MQPUT1 calls
provided that both of the following conditions are satisfied:

• The message is destined for a remote queue manager.
• The application is not putting the message directly on a local transmission queue (that is, the queue
identified by the ObjectQMgrName and ObjectName fields in the object descriptor specified on the
MQOPEN or MQPUT1 call is not a local transmission queue).

Completion code MQCC_WARNING with reason code MQRC_UNKNOWN_REPORT_OPTION
are returned if these conditions are satisfied, and MQCC_FAILED with reason code
MQRC_REPORT_OPTIONS_ERROR if not.

This subfield occupies bit positions 14 through 23.

The following report options are included in this subfield:

• MQRO_COA
• MQRO_COA_WITH_DATA
• MQRO_COA_WITH_FULL_DATA
• MQRO_COD
• MQRO_COD_WITH_DATA
• MQRO_COD_WITH_FULL_DATA

If any options are specified in the Report field that the queue manager does not recognize, the queue
manager checks each subfield in turn by using the bitwise AND operation to combine the Report field
with the mask for that subfield. If the result of that operation is not zero, the completion code and reason
codes described previously are returned.

If MQCC_WARNING is returned, it is not defined which reason code is returned if other warning conditions
exist.

The ability to specify and have accepted report options that are not recognized by the local queue
manager is useful when sending a message with a report option that is recognized and processed by a
remote queue manager.

Analyzing the report field
The Report field contains subfields; because of this, applications that need to check whether the sender
of the message requested a particular report must use one of the techniques described.

Using bit operations
If the programming language supports bit operations, perform the following steps:

1. Select one of the following values, according to the type of report to be checked:

• MQRO_COA_WITH_FULL_DATA for COA report
• MQRO_COD_WITH_FULL_DATA for COD report
• MQRO_EXCEPTION_WITH_FULL_DATA for exception report
• MQRO_EXPIRATION_WITH_FULL_DATA for expiration report

Call the value A.

On z/OS, use the MQRO_*_WITH_DATA values instead of the MQRO_*_WITH_FULL_DATA values.

894 IBM MQ Developing Applications Reference

2. Combine the Report field with A using the bitwise AND operation; call the result B.
3. Test B for equality with each value that is possible for that type of report.

For example, if A is MQRO_EXCEPTION_WITH_FULL_DATA, test B for equality with each of the
following to determine what was specified by the sender of the message:

• MQRO_NONE
• MQRO_EXCEPTION
• MQRO_EXCEPTION_WITH_DATA
• MQRO_EXCEPTION_WITH_FULL_DATA

The tests can be performed in whatever order is most convenient for the application logic.

Use a similar method to test for the MQRO_PASS_MSG_ID or MQRO_PASS_CORREL_ID options; select as
the value A whichever of these two constants is appropriate, and then proceed as described previously.

Using arithmetic
If the programming language does not support bit operations, perform the following steps using integer
arithmetic:

1. Select one of the following values, according to the type of report to be checked:

• MQRO_COA for COA report
• MQRO_COD for COD report
• MQRO_EXCEPTION for exception report
• MQRO_EXPIRATION for expiration report

Call the value A.
2. Divide the Report field by A ; call the result B.
3. Divide B by 8 ; call the result C.
4. Multiply C by 8 and subtract from B ; call the result D.
5. Multiply D by A ; call the result E.
6. Test E for equality with each value that is possible for that type of report.

For example, if A is MQRO_EXCEPTION, test E for equality with each of the following to determine what
was specified by the sender of the message:

• MQRO_NONE
• MQRO_EXCEPTION
• MQRO_EXCEPTION_WITH_DATA
• MQRO_EXCEPTION_WITH_FULL_DATA

The tests can be performed in whatever order is most convenient for the application logic.

The following pseudocode illustrates this technique for exception report messages:

A = MQRO_EXCEPTION
B = Report/A
C = B/8
D = B - C*8
E = D*A

Use a similar method to test for the MQRO_PASS_MSG_ID or MQRO_PASS_CORREL_ID options; select as
the value A whichever of these two constants is appropriate, and then proceed as described previously,
but replacing the value 8 in the previous steps by the value 2.

Developing applications reference 895

Structure of the message-flags field
This information describes the structure of the message-flags field.

The MsgFlags field is a 32-bit integer that is divided into three separate subfields. These subfields
identify:

• Message flags that are rejected if the local queue manager does not recognize them
• Message flags that are always accepted, even if the local queue manager does not recognize them
• Message flags that are accepted only if certain other conditions are satisfied

Note: All subfields in MsgFlags are reserved for use by the queue manager.

Each subfield is identified by a bit mask that has 1-bits in the positions corresponding to the subfield, and
0-bits elsewhere. The bits are numbered such that bit 0 is the most significant bit, and bit 31 the least
significant bit. The following masks are defined to identify the subfields:
MQMF_REJECT_UNSUP_MASK

This mask identifies the bit positions within the MsgFlags field where message flags that are not
supported by the local queue manager cause the MQPUT or MQPUT1 call to fail with completion code
MQCC_FAILED and reason code MQRC_MSG_FLAGS_ERROR.

This subfield occupies bit positions 20 through 31.

The following message flags are included in this subfield:

• MQMF_LAST_MSG_IN_GROUP
• MQMF_LAST_SEGMENT
• MQMF_MSG_IN_GROUP
• MQMF_SEGMENT
• MQMF_SEGMENTATION_ALLOWED
• MQMF_SEGMENTATION_INHIBITED

MQMF_ACCEPT_UNSUP_MASK
This mask identifies the bit positions within the MsgFlags field where message flags that are not
supported by the local queue manager are nevertheless accepted on the MQPUT or MQPUT1 calls.
The completion code is MQCC_OK.

This subfield occupies bit positions 0 through 11.

MQMF_ACCEPT_UNSUP_IF_XMIT_MASK
This mask identifies the bit positions within the MsgFlags field where message flags that are not
supported by the local queue manager are nevertheless accepted on the MQPUT or MQPUT1 calls
provided that both of the following conditions are satisfied:

• The message is destined for a remote queue manager.
• The application is not putting the message directly on a local transmission queue (that is, the queue
identified by the ObjectQMgrName and ObjectName fields in the object descriptor specified on the
MQOPEN or MQPUT1 call is not a local transmission queue).

Completion code MQCC_OK is returned if these conditions are satisfied, and MQCC_FAILED with
reason code MQRC_MSG_FLAGS_ERROR if not.

This subfield occupies bit positions 12 through 19.

If there are flags specified in the MsgFlags field that the queue manager does not recognize, the queue
manager checks each subfield in turn by using the bitwise AND operation to combine the MsgFlags field
with the mask for that subfield. If the result of that operation is not zero, the completion code and reason
codes described previously are returned.

896 IBM MQ Developing Applications Reference

Data-conversion exit
This collection of topics describes the interface to the data-conversion exit, and the processing performed
by the queue manager when data conversion is required.

For more information about data conversion, see Data Conversion under IBM MQ at https://www.ibm.com/
support/pages/node/317869.

The data-conversion exit is invoked as part of the processing of the MQGET call in order to convert the
application message data to the representation required by the receiving application. Conversion of the
application message data is optional; it requires the MQGMO_CONVERT option to be specified on the
MQGET call.

The following subjects are described:

• The processing performed by the queue manager in response to the MQGMO_CONVERT option; see
“Conversion processing” on page 897.

• Processing conventions used by the queue manager when processing a built-in format; these
conventions are recommended for user-written exits too. See “Processing conventions” on page 898.

• Special considerations for converting report messages; see “Conversion of report messages” on page
902.

• The parameters passed to the data-conversion exit; see “MQ_DATA_CONV_EXIT - Data conversion exit”
on page 915.

• A call that can be used from the exit to convert character data between different representations; see
“MQXCNVC - Convert characters” on page 909.

• The data-structure parameter that is specific to the exit; see “MQDXP - Data-conversion exit
parameter” on page 903.

Conversion processing
This information describes the processing performed by the queue manager in response to the
MQGMO_CONVERT option.

The queue manager performs the following actions if the MQGMO_CONVERT option is specified on the
MQGET call, and there is a message to be returned to the application:

1. If one or more of the following is true, no conversion is necessary:

• The message data is already in the character set and encoding required by the application issuing
the MQGET call. The application must set the CodedCharSetId and Encoding fields in the
MsgDesc parameter of the MQGET call to the values required, before issuing the call.

• The length of the message data is zero.
• The length of the Buffer parameter of the MQGET call is zero.

In these cases the message is returned without conversion to the application issuing the MQGET call;
the CodedCharSetId and Encoding values in the MsgDesc parameter are set to the values in the
control information in the message, and the call completes with one of the following combinations of
completion code and reason code:

Table 633. Completion code and reason code combinations

Completion code Reason code

MQCC_OK MQRC_NONE

MQCC_WARNING MQRC_TRUNCATED_MSG_ACCEPTED

MQCC_WARNING MQRC_TRUNCATED_MSG_FAILED

The following steps are performed only if the character set or encoding of the message data differs
from the corresponding value in the MsgDesc parameter, and there is data to be converted:

Developing applications reference 897

https://www.ibm.com/support/pages/node/317869
https://www.ibm.com/support/pages/node/317869

2. If the Format field in the control information in the message has the value MQFMT_NONE,
the message is returned unconverted, with completion code MQCC_WARNING and reason code
MQRC_FORMAT_ERROR.

In all other cases conversion processing continues.
3. The message is removed from the queue and placed in a temporary buffer that is the same size as the
Buffer parameter. For browse operations, the message is copied into the temporary buffer, instead of
being removed from the queue.

4. If the message has to be truncated to fit in the buffer, the following is done:

• If the MQGMO_ACCEPT_TRUNCATED_MSG option was not specified, the message
is returned unconverted, with completion code MQCC_WARNING and reason code
MQRC_TRUNCATED_MSG_FAILED.

• If the MQGMO_ACCEPT_TRUNCATED_MSG option was specified, the completion code is set to
MQCC_WARNING, the reason code is set to MQRC_TRUNCATED_MSG_ACCEPTED, and conversion
processing continues.

5. If the message can be accommodated in the buffer without truncation, or the
MQGMO_ACCEPT_TRUNCATED_MSG option was specified, the following is done:

• If the format is a built-in format, the buffer is passed to the queue manager's data-conversion
service.

• If the format is not a built-in format, the buffer is passed to a user-written exit with the same name
as the format. If the exit cannot be found, the message is returned unconverted, with completion
code MQCC_WARNING and reason code MQRC_FORMAT_ERROR.

If no error occurs, the output from the data-conversion service or from the user-written exit is the
converted message, plus the completion code and reason code to be returned to the application
issuing the MQGET call.

6. If the conversion is successful, the queue manager returns the converted message to the application.
In this case, the completion code and reason code returned by the MQGET call are one of the following
combinations:

Table 634. Completion code and reason code combinations

Completion code Reason code

MQCC_OK MQRC_NONE

MQCC_WARNING MQRC_TRUNCATED_MSG_ACCEPTED

However, if the conversion is performed by a user-written exit, other reason codes can be returned,
even when the conversion is successful.

If the conversion fails, the queue manager returns the unconverted message to the application, with
the CodedCharSetId and Encoding fields in the MsgDesc parameter set to the values in the control
information in the message, and with completion code MQCC_WARNING.

Processing conventions
When converting a built-in format, the queue manager follows the processing conventions described.

User-written exits should also follow these conventions, although this is not enforced by the queue
manager. The built-in formats converted by the queue manager are:

• MQFMT_ADMIN
• MQFMT_CICS (z/OS only)
• MQFMT_COMMAND_1
• MQFMT_COMMAND_2
• MQFMT_DEAD_LETTER_HEADER

898 IBM MQ Developing Applications Reference

• MQFMT_DIST_HEADER
• MQFMT_EVENT version 1
• MQFMT_EVENT version 2
• MQFMT_IMS
• MQFMT_IMS_VAR_STRING
• MQFMT_MD_EXTENSION
• MQFMT_PCF
• MQFMT_REF_MSG_HEADER
• MQFMT_RF_HEADER
• MQFMT_RF_HEADER_2
• MQFMT_STRING
• MQFMT_TRIGGER
• MQFMT_WORK_INFO_HEADER (z/OS only)
• MQFMT_XMIT_Q_HEADER

1. If the message expands during conversion, and exceeds the size of the Buffer parameter, the
following is done:

• If the MQGMO_ACCEPT_TRUNCATED_MSG option was not specified, the message
is returned unconverted, with completion code MQCC_WARNING and reason code
MQRC_CONVERTED_MSG_TOO_BIG.

• If the MQGMO_ACCEPT_TRUNCATED_MSG option was specified, the message is truncated,
the completion code is set to MQCC_WARNING, the reason code is set to
MQRC_TRUNCATED_MSG_ACCEPTED, and conversion processing continues.

2. If truncation occurs (either before or during conversion), the number of valid bytes returned in the
Buffer parameter can be less than the length of the buffer.

This can occur, for example, if a 4-byte integer or a DBCS character straddles the end of the buffer.
The incomplete element of information is not converted, and those bytes in the returned message do
not contain valid information. This can also occur if a message that was truncated before conversion
shrinks during conversion.

If the number of valid bytes returned is less than the length of the buffer, the unused bytes at the end
of the buffer are set to nulls.

3. If an array or string straddles the end of the buffer, as much of the data as possible is converted; only
the particular array element or DBCS character which is incomplete is not converted; preceding array
elements or characters are converted.

4. If truncation occurs (either before or during conversion), the length returned for the DataLength
parameter is the length of the unconverted message before truncation.

5. When strings are converted between single-byte character sets (SBCS), double-byte character sets
(DBCS), or multi-byte character sets (MBCS), the strings can expand or contract.

• In the PCF formats MQFMT_ADMIN, MQFMT_EVENT, and MQFMT_PCF, the strings in the MQCFST
and MQCFSL structures expand or contract as necessary to accommodate the string after
conversion.

For the string-list structure MQCFSL, the strings in the list might expand or contract by different
amounts. If this happens, the queue manager pads the shorter strings with blanks to make them
the same length as the longest string after conversion.

• In the format MQFMT_REF_MSG_HEADER, the strings addressed by the SrcEnvOffset,
SrcNameOffset, DestEnvOffset, and DestNameOffset fields expand or contract as necessary
to accommodate the strings after conversion.

• In the format MQFMT_RF_HEADER, the NameValueString field expands or contracts as
necessary to accommodate the name-value pairs after conversion.

Developing applications reference 899

• In structures with fixed field sizes, the queue manager allows strings to expand or contract within
their fixed fields, provided that no significant information is lost. In this regard, trailing blanks and
characters following the first null character in the field are treated as insignificant.

– If the string expands, but only insignificant characters need to be discarded to accommodate the
converted string in the field, the conversion succeeds and the call completes with MQCC_OK and
reason code MQRC_NONE (assuming no other errors).

– If the string expands, but the converted string requires significant characters to be discarded
in order to fit in the field, the message is returned unconverted and the call completes with
MQCC_WARNING and reason code MQRC_CONVERTED_STRING_TOO_BIG.

Note: Reason code MQRC_CONVERTED_STRING_TOO_BIG results in this case whether or not
the MQGMO_ACCEPT_TRUNCATED_MSG option was specified.

– If the string contracts, the queue manager pads the string with blanks to the length of the field.
6. For messages consisting of one or more MQ header structures followed by user data, one or more

of the header structures might be converted, while the remainder of the message is not. However,
(with two exceptions) the CodedCharSetId and Encoding fields in each header structure always
correctly indicate the character set and encoding of the data that follows the header structure.

The two exceptions are the MQCIH and MQIIH structures, where the values in the CodedCharSetId
and Encoding fields in those structures are not significant. For those structures, the data following
the structure is in the same character set and encoding as the MQCIH or MQIIH structure itself.

7. If the CodedCharSetId or Encoding fields in the control information of the message being
retrieved, or in the MsgDesc parameter, specify values that are undefined or not supported, the
queue manager might ignore the error if the undefined or unsupported value does not need to be
used in converting the message.

For example, if the Encoding field in the message specifies an unsupported float encoding, but the
message contains only integer data, or contains floating-point data that does not require conversion
(because the source and target float encodings are identical), the error might not be diagnosed.

If the error is diagnosed, the message is returned unconverted, with completion code
MQCC_WARNING and one of the MQRC_SOURCE_*_ERROR or MQRC_TARGET_*_ERROR reason
codes (as appropriate); the CodedCharSetId and Encoding fields in the MsgDesc parameter are
set to the values in the control information in the message.

If the error is not diagnosed and the conversion completes successfully, the values returned in
the CodedCharSetId and Encoding fields in the MsgDesc parameter are those specified by the
application issuing the MQGET call.

8. In all cases, if the message is returned to the application unconverted the completion code is set to
MQCC_WARNING, and the CodedCharSetId and Encoding fields in the MsgDesc parameter are
set to the values appropriate to the unconverted data. This is done for MQFMT_NONE also.

The Reason parameter is set to a code that indicates why the conversion could not be carried out,
unless the message also had to be truncated; reason codes related to truncation take precedence
over reason codes related to conversion. (To determine if a truncated message was converted, check
the values returned in the CodedCharSetId and Encoding fields in the MsgDesc parameter.)

When an error is diagnosed, either a specific reason code is returned, or the general reason code
MQRC_NOT_CONVERTED. The reason code returned depends on the diagnostic capabilities of the
underlying data-conversion service.

9. If completion code MQCC_WARNING is returned, and more than one reason code is relevant, the
order of precedence is as follows:

a. The following reasons take precedence over all others; only one of the reasons in this group can
arise:

• MQRC_SIGNAL_REQUEST_ACCEPTED
• MQRC_TRUNCATED_MSG_ACCEPTED

b. The order of precedence within the remaining reason codes is not defined.

900 IBM MQ Developing Applications Reference

10. On completion of the MQGET call:

• The following reason code indicates that the message was converted successfully:

– MQRC_NONE
• The following reason codes indicate that the message might have been converted successfully

(check the CodedCharSetId and Encoding fields in the MsgDesc parameter to find out):

– MQRC_MSG_MARKED_BROWSE_CO_OP
– MQRC_TRUNCATED_MSG_ACCEPTED

• All other reason codes indicate that the message was not converted.

The following processing is specific to the built-in formats; it does not apply to user-defined formats:
11. With the exception of the following formats:

• MQFMT_ADMIN
• MQFMT_COMMAND_1
• MQFMT_COMMAND_2
• MQFMT_EVENT
• MQFMT_IMS_VAR_STRING
• MQFMT_PCF
• MQFMT_STRING

none of the built-in formats can be converted from or to character sets that do not have SBCS
characters for the characters that are valid in queue names. If an attempt is made to perform such
a conversion, the message is returned unconverted, with completion code MQCC_WARNING and
reason code MQRC_SOURCE_CCSID_ERROR or MQRC_TARGET_CCSID_ERROR, as appropriate.

The Unicode character set UTF-16 is an example of a character set that does not have SBCS
characters for the characters that are valid in queue names.

12. If the message data for a built-in format is truncated, fields within the message that contain lengths
of strings, or counts of elements or structures, are not adjusted to reflect the length of the data
actually returned to the application; the values returned for such fields within the message data are
the values applicable to the message before truncation.

When processing messages such as a truncated MQFMT_ADMIN message, ensure that the
application does not attempt to access data beyond the end of the data returned.

13. If the format name is MQFMT_DEAD_LETTER_HEADER, the message data begins with an MQDLH
structure, possibly followed by zero or more bytes of application message data. The format, character
set, and encoding of the application message data are defined by the Format, CodedCharSetId,
and Encoding fields in the MQDLH structure at the start of the message. Because the MQDLH
structure and application message data can have different character sets and encodings, one, other,
or both of the MQDLH structure and application message data might require conversion.

The queue manager converts the MQDLH structure first, as necessary. If conversion is successful, or
the MQDLH structure does not require conversion, the queue manager checks the CodedCharSetId
and Encoding fields in the MQDLH structure to see if conversion of the application message data is
required. If conversion is required, the queue manager invokes the user-written exit with the name
given by the Format field in the MQDLH structure, or performs the conversion itself (if Format is the
name of a built-in format).

If the MQGET call returns a completion code of MQCC_WARNING, and the reason code is one of
those indicating that conversion was not successful, one of the following applies:

• The MQDLH structure could not be converted. In this case the application message data will not
have been converted either.

• The MQDLH structure was converted, but the application message data was not.

Developing applications reference 901

The application can examine the values returned in the CodedCharSetId and Encoding fields
in the MsgDesc parameter, and those in the MQDLH structure, in order to determine which of the
previously applies.

14. If the format name is MQFMT_XMIT_Q_HEADER, the message data begins with an MQXQH structure,
possibly followed by zero or more bytes of additional data. This additional data is usually the
application message data (which may be of zero length), but there can also be one or more further
MQ header structures present, at the start of the additional data.

The MQXQH structure must be in the character set and encoding of the queue manager. The format,
character set, and encoding of the data following the MQXQH structure are given by the Format,
CodedCharSetId, and Encoding fields in the MQMD structure contained within the MQXQH. For
each subsequent MQ header structure present, the Format, CodedCharSetId, and Encoding
fields in the structure describe the data that follows that structure; that data is either another MQ
header structure, or the application message data.

If the MQGMO_CONVERT option is specified for an MQFMT_XMIT_Q_HEADER message, the
application message data and certain of the MQ header structures are converted, but the data in
the MQXQH structure is not. On return from the MQGET call, therefore:

• The values of the Format, CodedCharSetId, and Encoding fields in the MsgDesc parameter
describe the data in the MQXQH structure, and not the application message data; the values are
therefore not the same as those specified by the application that issued the MQGET call.

The effect of this is that an application that repeatedly gets messages from a transmission queue
with the MQGMO_CONVERT option specified must reset the CodedCharSetId and Encoding
fields in the MsgDesc parameter to the values required for the application message data, before
each MQGET call.

• The values of the Format, CodedCharSetId, and Encoding fields in the last MQ header structure
present describe the application message data. If there are no other MQ header structures present,
the application message data is described by these fields in the MQMD structure within the MQXQH
structure. If conversion is successful, the values will be the same as those specified in the MsgDesc
parameter by the application that issued the MQGET call.

If the message is a distribution-list message, the MQXQH structure is followed by an MQDH structure
(plus its arrays of MQOR and MQPMR records), which in turn might be followed by zero or more
further MQ header structures and zero or more bytes of application message data. Like the MQXQH
structure, the MQDH structure must be in the character set and encoding of the queue manager, and
it is not converted on the MQGET call, even if the MQGMO_CONVERT option is specified.

The processing of the MQXQH and MQDH structures described previously is primarily intended for
use by message channel agents when they get messages from transmission queues.

Conversion of report messages
In general a report message can contain varying amounts of application message data, according to the
report options specified by the sender of the original message. However, an activity report can contain
data but without the report option mentioning *_WITH_DATA in the constant.

In particular, a report message can contain either:

1. No application message data
2. Some of the application message data from the original message

This occurs when the sender of the original message specifies MQRO_*_WITH_DATA and the message
is longer than 100 bytes.

3. All the application message data from the original message

This occurs when the sender of the original message specifies MQRO_*_WITH_FULL_DATA, or
specifies MQRO_*_WITH_DATA and the message is 100 bytes or shorter.

When the queue manager or message channel agent generates a report message, it copies the format
name from the original message into the Format field in the control information in the report message.

902 IBM MQ Developing Applications Reference

The format name in the report message might therefore imply a length of data that is different from the
length actually present in the report message (cases 1 and 2 previously).

If the MQGMO_CONVERT option is specified when the report message is retrieved:

• For case 1 previously, the data-conversion exit is not invoked (because the report message has no data).
• For case 3 previously, the format name correctly implies the length of the message data.
• But for case 2 previously, the data-conversion exit is invoked to convert a message that is shorter than

the length implied by the format name.

In addition, the reason code passed to the exit is usually MQRC_NONE (that is, the reason code does
not indicate that the message has been truncated). This happens because the message data was
truncated by the sender of the report message, and not by the receiver's queue manager in response to
the MQGET call.

Because of these possibilities, the data-conversion exit must not use the format name to deduce the
length of data passed to it; instead the exit must check the length of data provided, and be prepared to
convert less data than the length implied by the format name. If the data can be converted successfully,
completion code MQCC_OK and reason code MQRC_NONE must be returned by the exit. The length of the
message data to be converted is passed to the exit as the InBufferLength parameter.

Product-sensitive programming interface

MQDXP - Data-conversion exit parameter
The MQDXP structure is a parameter that the queue manager passes to the data-conversion exit when
the exit is invoked to convert the message data as part of the processing of the MQGET call. See the
description of the MQ_DATA_CONV_EXIT call for details of the data conversion exit.

Character data in MQDXP is in the character set of the local queue manager; this is given by the
CodedCharSetId queue manager attribute. Numeric data in MQDXP is in the native machine encoding;
this is given by MQENC_NATIVE.

Only the DataLength, CompCode, Reason, and ExitResponse fields in MQDXP can be changed by
the exit; changes to other fields are ignored. However, the DataLength field cannot be changed if the
message being converted is a segment that contains only part of a logical message.

When control returns to the queue manager from the exit, the queue manager checks the values returned
in MQDXP. If the values returned are not valid, the queue manager continues processing as though
the exit had returned MQXDR_CONVERSION_FAILED in ExitResponse ; however, the queue manager
ignores the values of the CompCode and Reason fields returned by the exit in this case, and uses instead
the values those fields had on input to the exit. The following values in MQDXP cause this processing to
occur:

• ExitResponse field not MQXDR_OK and not MQXDR_CONVERSION_FAILED
• CompCode field not MQCC_OK and not MQCC_WARNING
• DataLength field less than zero, or DataLength field changed when the message being converted is a

segment that contains only part of a logical message.

The following table summarizes the fields in the structure.

Table 635. Fields in MQDXP

Field Description Topic

StrucId Structure identifier StrucId

Version Structure version number Version

AppOptions Application options AppOptions

Developing applications reference 903

Table 635. Fields in MQDXP (continued)

Field Description Topic

Encoding Numeric encoding required by
application

Encoding

CodedCharSetId Character set required by
application

CodedCharSetId

DataLength Length in bytes of message
data

DataLength

CompCode Completion code CompCode

Reason Reason code qualifying
CompCode

Reason

ExitResponse Response from exit ExitResponse

Hconn Connection handle Hconn

pEntryPoints Address of the MQIEP structure pEntryPoints

Fields
The MQDXP structure contains the following fields; the fields are described in alphabetical order.

AppOptions
Type: MQLONG

This is a copy of the Options field of the MQGMO structure specified by the application
issuing the MQGET call. The exit might need to examine these to ascertain whether the
MQGMO_ACCEPT_TRUNCATED_MSG option was specified.

This is an input field to the exit.

CodedCharSetId
Type: MQLONG

This is the coded character-set identifier of the character set required by the application issuing the
MQGET call; see the CodedCharSetId field in the MQMD structure for more details. If the application
specifies the special value MQCCSI_Q_MGR on the MQGET call, the queue manager changes this to
the actual character-set identifier of the character set used by the queue manager, before invoking the
exit.

If the conversion is successful, the exit must copy this to the CodedCharSetId field in the message
descriptor.

This is an input field to the exit.

CompCode
Type: MQLONG

When the exit is invoked, this contains the completion code that is returned to the application that
issued the MQGET call, if the exit does nothing. It is always MQCC_WARNING, because either the
message was truncated, or the message requires conversion and this has not yet been done.

On output from the exit, this field contains the completion code to be returned to the application in
the CompCode parameter of the MQGET call; only MQCC_OK and MQCC_WARNING are valid. See the
description of the Reason field for suggestions on how the exit can set this field on output.

This is an input/output field to the exit.

DataLength
Type: MQLONG

904 IBM MQ Developing Applications Reference

When the exit is invoked, this field contains the original length of the application message data. If
the message was truncated to fit into the buffer provided by the application, the size of the message
provided to the exit is smaller than the value of DataLength. The size of the message provided to the
exit is always given by the InBufferLength parameter of the exit, irrespective of any truncation that
has occurred.

Truncation is indicated by the Reason field having the value MQRC_TRUNCATED_MSG_ACCEPTED on
input to the exit.

Most conversions do not need to change this length, but an exit can do so if necessary; the value set
by the exit is returned to the application in the DataLength parameter of the MQGET call. However,
this length cannot be changed if the message being converted is a segment that contains only part of
a logical message. This is because changing the length would cause the offsets of later segments in
the logical message to be incorrect.

Note that, if the exit wants to change the length of the data, be aware that the queue manager has
already decided whether the message data fits into the application's buffer, based on the length of
the unconverted data. This decision determines whether the message is removed from the queue (or
the browse cursor moved, for a browse request), and is not affected by any change to the data length
caused by the conversion. For this reason it is recommended that conversion exits do not cause a
change in the length of the application message data.

If character conversion does imply a change of length, a string can be converted into another string
with the same length in bytes, truncating trailing blanks, or padding with blanks as necessary.

The exit is not invoked if the message contains no application message data; hence DataLength is
always greater then zero.

This is an input/output field to the exit.

Encoding
Type: MQLONG

Numeric encoding required by application.

This is the numeric encoding required by the application issuing the MQGET call; see the Encoding
field in the MQMD structure for more details.

If the conversion is successful, the exit copies this to the Encoding field in the message descriptor.

This is an input field to the exit.

ExitOptions
Type: MQLONG

This is a reserved field; its value is 0.

ExitResponse
Type: MQLONG

Response from exit. This is set by the exit to indicate the success or otherwise of the conversion. It
must be one of the following:
MQXDR_OK

Conversion was successful.

If the exit specifies this value, the queue manager returns the following to the application that
issued the MQGET call:

• The value of the CompCode field on output from the exit
• The value of the Reason field on output from the exit
• The value of the DataLength field on output from the exit
• The contents of the exit's output buffer OutBuffer. The number of bytes returned is the lesser

of the exit's OutBufferLength parameter, and the value of the DataLength field on output
from the exit.

Developing applications reference 905

If the Encoding and CodedCharSetId fields in the exit's message descriptor parameter are
both unchanged, the queue manager returns:

• The value of the Encoding and CodedCharSetId fields in the MQDXP structure on input to the
exit.

If one or both of the Encoding and CodedCharSetId fields in the exit's message descriptor
parameter has been changed, the queue manager returns:

• The value of the Encoding and CodedCharSetId fields in the exit's message descriptor
parameter on output from the exit

MQXDR_CONVERSION_FAILED
Conversion was unsuccessful.

If the exit specifies this value, the queue manager returns the following to the application that
issued the MQGET call:

• The value of the CompCode field on output from the exit
• The value of the Reason field on output from the exit
• The value of the DataLength field on input to the exit
• The contents of the exit's input buffer InBuffer. The number of bytes returned is given by the
InBufferLength parameter

If the exit has altered InBuffer, the results are undefined.

ExitResponse is an output field from the exit.

Hconn
Type: MQHCONN

This is a connection handle which can be used on the MQXCNVC call. This handle is not necessarily
the same as the handle specified by the application which issued the MQGET call.

pEntryPoints
Type: PMQIEP

The address of an MQIEP structure through which MQI and DCI calls can be made.

Reason
Type: MQLONG

Reason code qualifying CompCode.

When the exit is invoked, this contains the reason code that is returned to the application
that issued the MQGET call, if the exit chooses to do nothing. Among possible values are
MQRC_TRUNCATED_MSG_ACCEPTED, indicating that the message was truncated in order fit into the
buffer provided by the application, and MQRC_NOT_CONVERTED, indicating that the message requires
conversion but that this has not yet been done.

On output from the exit, this field contains the reason to be returned to the application in the Reason
parameter of the MQGET call; the following is recommended:

• If Reason had the value MQRC_TRUNCATED_MSG_ACCEPTED on input to the exit, the Reason and
CompCode fields must not be altered, irrespective of whether the conversion succeeds or fails.

(If the CompCode field is not MQCC_OK, the application which retrieves the message can
identify a conversion failure by comparing the returned Encoding and CodedCharSetId
values in the message descriptor with the values requested; in contrast, the application
cannot distinguish a truncated message from a message that fitted the buffer. For this reason,
MQRC_TRUNCATED_MSG_ACCEPTED must be returned in preference to any of the reasons that
indicate conversion failure.)

• If Reason had any other value on input to the exit:

– If the conversion succeeds, CompCode must be set to MQCC_OK and Reason set to
MQRC_NONE.

906 IBM MQ Developing Applications Reference

– If the conversion fails, or the message expands and has to be truncated to fit in the buffer,
CompCode must be set to MQCC_WARNING (or left unchanged), and Reason set to one of the
values listed, to indicate the nature of the failure.

Note if the message after conversion is too large for the buffer, it must be truncated only if the
application that issued the MQGET call specified the MQGMO_ACCEPT_TRUNCATED_MSG option:

- If it did specify that option, reason MQRC_TRUNCATED_MSG_ACCEPTED is returned.
- If it did not specify that option, the message is returned unconverted, with reason code

MQRC_CONVERTED_MSG_TOO_BIG.

The reason codes listed are recommended for use by the exit to indicate the reason that conversion
failed, but the exit can return other values from the set of MQRC_* codes if deemed appropriate. In
addition, the range of values MQRC_APPL_FIRST through MQRC_APPL_LAST are allocated for use
by the exit to indicate conditions that the exit wants to communicate to the application issuing the
MQGET call.

Note: If the message cannot be converted successfully, the exit must return
MQXDR_CONVERSION_FAILED in the ExitResponse field, in order to cause the queue manager
to return the unconverted message. This is true regardless of the reason code returned in the Reason
field.

MQRC_APPL_FIRST
(900, X'384') Lowest value for application-defined reason code.

MQRC_APPL_LAST
(999, X'3E7') Highest value for application-defined reason code.

MQRC_CONVERTED_MSG_TOO_BIG
(2120, X'848') Converted data too large for buffer.

MQRC_NOT_CONVERTED
(2119, X'847') Message data not converted.

MQRC_SOURCE_CCSID_ERROR
(2111, X'83F') Source coded character set identifier not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR
(2113, X'841') Packed-decimal encoding in message not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR
(2114, X'842') Floating-point encoding in message not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR
(2112, X'840') Source integer encoding not recognized.

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR
(2117, X'845') Packed-decimal encoding specified by receiver not recognized.

MQRC_TARGET_FLOAT_ENC_ERROR
(2118, X'846') Floating-point encoding specified by receiver not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844') Target integer encoding not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED
(2079, X'81F') Truncated message returned (processing completed).

This is an input/output field to the exit.

StrucId
Type: MQCHAR4

Structure identifier. The value must be:
MQDXP_STRUC_ID

Identifier for data conversion exit parameter structure.

Developing applications reference 907

For the C programming language, the constant MQDXP_STRUC_ID_ARRAY is also defined; this has
the same value as MQDXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version
Type: MQLONG

Structure version number. The value must be:
MQDXP_VERSION_1

Version number for data-conversion exit parameter structure.

The following constant specifies the version number of the current version:
MQDXP_CURRENT_VERSION

Current version of data-conversion exit parameter structure.

Note: When a new version of this structure is introduced, the layout of the existing part is not
changed. The exit must therefore check that the Version field is equal to or greater than the lowest
version which contains the fields that the exit needs to use.

This is an input field to the exit.

C declaration

typedef struct tagMQDXP MQDXP;
struct tagMQDXP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG ExitOptions; /* Reserved */
 MQLONG AppOptions; /* Application options */
 MQLONG Encoding; /* Numeric encoding required by
 application */
 MQLONG CodedCharSetId; /* Character set required by application */
 MQLONG DataLength; /* Length in bytes of message data */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying CompCode */
 MQLONG ExitResponse; /* Response from exit */
 MQHCONN Hconn; /* Connection handle */
 PMQIEP pEntryPoints; /* Address of the MQIEP structure */
};

COBOL declaration (IBM i only)

** MQDXP structure
 10 MQDXP.
** Structure identifier
 15 MQDXP-STRUCID PIC X(4).
** Structure version number
 15 MQDXP-VERSION PIC S9(9) BINARY.
** Reserved
 15 MQDXP-EXITOPTIONS PIC S9(9) BINARY.
** Application options
 15 MQDXP-APPOPTIONS PIC S9(9) BINARY.
** Numeric encoding required by application
 15 MQDXP-ENCODING PIC S9(9) BINARY.
** Character set required by application
 15 MQDXP-CODEDCHARSETID PIC S9(9) BINARY.
** Length in bytes of message data
 15 MQDXP-DATALENGTH PIC S9(9) BINARY.
** Completion code
 15 MQDXP-COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 15 MQDXP-REASON PIC S9(9) BINARY.
** Response from exit
 15 MQDXP-EXITRESPONSE PIC S9(9) BINARY.
** Connection handle
 15 MQDXP-HCONN PIC S9(9) BINARY.

908 IBM MQ Developing Applications Reference

System/390 assembler declaration

MQDXP DSECT
MQDXP_STRUCID DS CL4 Structure identifier
MQDXP_VERSION DS F Structure version number
MQDXP_EXITOPTIONS DS F Reserved
MQDXP_APPOPTIONS DS F Application options
MQDXP_ENCODING DS F Numeric encoding required by application
MQDXP_CODEDCHARSETID DS F Character set required by application
MQDXP_DATALENGTH DS F Length in bytes of message data
MQDXP_COMPCODE DS F Completion code
MQDXP_REASON DS F Reason code qualifying COMPCODE
MQDXP_EXITRESPONSE DS F Response from exit
MQDXP_HCONN DS F Connection handle
*
MQDXP_LENGTH EQU *-MQDXP
 ORG MQDXP
MQDXP_AREA DS CL(MQDXP_LENGTH)

MQXCNVC - Convert characters
The MQXCNVC call converts characters from one character set to another using the C programming
language.

This call is part of the IBM MQ Data Conversion Interface (DCI), which is one of the IBM MQ framework
interfaces.

Note: The call can be used from both application, and data-conversion exit environments.

Syntax
MQXCNVC (Hconn, Options, SourceCCSID, SourceLength, SourceBuffer, TargetCCSID, TargetLength,
TargetBuffer, DataLength, CompCode, Reason)

Parameters
Hconn

Type: MQHCONN - input

This handle represents the connection to the queue manager.

In a data-conversion exit, Hconn is normally the handle that is passed to the data-conversion exit
in the Hconn field of the MQDXP structure; this handle is not necessarily the same as the handle
specified by the application which issued the MQGET call.

On IBM i, the following special value can be specified for Hconn:
MQHC_DEF_HCONN

Default connection handle.

If you run a CICS TS 3.2 or higher application, ensure that the character conversion exit program,
which invokes the MQXCNVC call, is defined as OPENAPI. This definition prevents the 2018
MQRC_HCONN_ERROR error caused by from an incorrect connection, and allows the MQGET to
complete.

Options
Type: MQLONG - input

Options that control the action of MQXCNVC.

Zero or more of the options described can be specified. To specify more than one option, either add
the values together (do not add the same constant more than once), or combine the values using the
bitwise OR operation (if the programming language supports bit operations).

Default-conversion option: The following option controls the use of default character conversion:

Developing applications reference 909

MQDCC_DEFAULT_CONVERSION
Default conversion.

This option specifies that default character conversion can be used if one or both of the character
sets specified on the call is not supported. This allows the queue manager to use an installation-
specified default character set that approximates the specified character set, when converting the
string.

Note: The result of using an approximate character set to convert the string is that some
characters can be converted incorrectly. This can be avoided by using in the string only characters
which are common to both the specified character set and the default character set.

The default character sets are defined by a configuration option when the queue manager is
installed or restarted.

If MQDCC_DEFAULT_CONVERSION is not specified, the queue manager uses only the specified
character sets to convert the string, and the call fails if one or both of the character sets is not
supported.

This option is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

Padding option: The following option allows the queue manager to pad the converted string with
blanks or discard insignificant trailing characters, in order to make the converted string fit the target
buffer:
MQDCC_FILL_TARGET_BUFFER

Fill target buffer.

This option requests that conversion take place in such a way that the target buffer is filled
completely:

• If the string contracts when it is converted, trailing blanks are added in order to fill the target
buffer.

• If the string expands when it is converted, trailing characters that are not significant are
discarded to make the converted string fit the target buffer. If this can be done successfully,
the call completes with MQCC_OK and reason code MQRC_NONE.

If there are too few insignificant trailing characters, as much of the string as can fit is
placed in the target buffer, and the call completes with MQCC_WARNING and reason code
MQRC_CONVERTED_MSG_TOO_BIG.

Insignificant characters are:

– Trailing blanks
– Characters following the first null character in the string (but excluding the first null character

itself)
• If the string, TargetCCSID, and TargetLength are such that the target buffer cannot

be set completely with valid characters, the call fails with MQCC_FAILED and reason code
MQRC_TARGET_LENGTH_ERROR. This can occur when TargetCCSID is a pure DBCS character
set (such as UTF-16), but TargetLength specifies a length that is an odd number of bytes.

• TargetLength can be less than or greater than SourceLength. On return from MQXCNVC,
DataLength has the same value as TargetLength.

If this option is not specified:

910 IBM MQ Developing Applications Reference

• The string is allowed to contract or expand within the target buffer as required. Insignificant
trailing characters are not added or discarded.

If the converted string fits in the target buffer, the call completes with MQCC_OK and reason
code MQRC_NONE.

If the converted string is too large for the target buffer, as much of the string as fits is
placed in the target buffer, and the call completes with MQCC_WARNING and reason code
MQRC_CONVERTED_MSG_TOO_BIG. Note fewer than TargetLength bytes can be returned in
this case.

• TargetLength can be less than or greater than SourceLength. On return from MQXCNVC,
DataLength is less than or equal to TargetLength.

This option is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

Encoding options: The options described can be used to specify the integer encodings of the source
and target strings. The relevant encoding is used only when the corresponding character set identifier
indicates that the representation of the character set in main storage is dependent on the encoding
used for binary integers. This affects only certain multibyte character sets (for example, UTF-16
character sets).

The encoding is ignored if the character set is a single-byte character set (SBCS), or a multibyte
character set with representation in main storage that is not dependent on the integer encoding.

Only one of the MQDCC_SOURCE_* values must be specified, combined with one of the
MQDCC_TARGET_* values:
MQDCC_SOURCE_ENC_NATIVE

Source encoding is the default for the environment and programming language.
MQDCC_SOURCE_ENC_NORMAL

Source encoding is normal.
MQDCC_SOURCE_ENC_REVERSED

Source encoding is reversed.
MQDCC_SOURCE_ENC_UNDEFINED

Source encoding is undefined.
MQDCC_TARGET_ENC_NATIVE

Target encoding is the default for the environment and programming language.
MQDCC_TARGET_ENC_NORMAL

Target encoding is normal.
MQDCC_TARGET_ENC_REVERSED

Target encoding is reversed.
MQDCC_TARGET_ENC_UNDEFINED

Target encoding is undefined.

The encoding values defined previously can be added directly to the Options field. However, if the
source or target encoding is obtained from the Encoding field in the MQMD or other structure, the
following processing must be done:

1. The integer encoding must be extracted from the Encoding field by eliminating the float and
packed-decimal encodings; see “Analyzing encodings” on page 892 for details of how to do this.

2. The integer encoding resulting from step 1 must be multiplied by the appropriate factor before
being added to the Options field. These factors are:

Developing applications reference 911

• MQDCC_SOURCE_ENC_FACTOR for the source encoding
• MQDCC_TARGET_ENC_FACTOR for the target encoding

The following example code illustrates how this might be coded in the C programming language:

Options = (MsgDesc.Encoding & MQENC_INTEGER_MASK)
 * MQDCC_SOURCE_ENC_FACTOR
 + (DataConvExitParms.Encoding & MQENC_INTEGER_MASK)
 * MQDCC_TARGET_ENC_FACTOR;

If not specified, the encoding options default to undefined (MQDCC_*_ENC_UNDEFINED). In
most cases, this does not affect the successful completion of the MQXCNVC call. However,
if the corresponding character set is a multibyte character set with representation that is
dependent on the encoding (for example, a UTF-16 character set), the call fails with reason code
MQRC_SOURCE_INTEGER_ENC_ERROR or MQRC_TARGET_INTEGER_ENC_ERROR as appropriate.

The encoding options are supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

• z/OS

Default option: If none of the options described previously is specified, the following option can be
used:
MQDCC_NONE

No options specified.

MQDCC_NONE is defined to aid program documentation. It is not intended that this option is used
with any other, but as its value is zero, such use cannot be detected.

SourceCCSID
Type: MQLONG - input

This is the coded character set identifier of the input string in SourceBuffer.

SourceLength
Type: MQLONG - input

This is the length in bytes of the input string in SourceBuffer ; it must be zero or greater.

SourceBuffer
Type: MQCHAR x SourceLength - input

This is the buffer containing the string to be converted from one character set to another.

TargetCCSID
Type: MQLONG - input

This is the coded character set identifier of the character set to which SourceBuffer is to be
converted.

TargetLength
Type: MQLONG - input

This is the length in bytes of the output buffer TargetBuffer ; it must be zero or greater. It can be
less than or greater than SourceLength.

TargetBuffer
Type: MQCHAR x TargetLength - output

912 IBM MQ Developing Applications Reference

This is the string after it has been converted to the character set defined by TargetCCSID. The
converted string can be shorter or longer than the unconverted string. The DataLength parameter
indicates the number of valid bytes returned.

DataLength
Type: MQLONG - output

This is the length of the string returned in the output buffer TargetBuffer. The converted string can
be shorter or longer than the unconverted string.

CompCode
Type: MQLONG - output

It is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_CONVERTED_MSG_TOO_BIG

(2120, X'848') Converted data too large for buffer.

If CompCode is MQCC_FAILED:
MQRC_DATA_LENGTH_ERROR

(2010, X'7DA') Data length parameter not valid.
MQRC_DBCS_ERROR

(2150, X'866') DBCS string not valid.
MQRC_HCONN_ERROR

(2018, X'7E2') Connection handle not valid.
MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.
MQRC_RESOURCE_PROBLEM

(2102, X'836') Insufficient system resources available.
MQRC_SOURCE_BUFFER_ERROR

(2145, X'861') Source buffer parameter not valid.
MQRC_SOURCE_CCSID_ERROR

(2111, X'83F') Source coded character set identifier not valid.
MQRC_SOURCE_INTEGER_ENC_ERROR

(2112, X'840') Source integer encoding not recognized.
MQRC_SOURCE_LENGTH_ERROR

(2143, X'85F') Source length parameter not valid.
MQRC_STORAGE_NOT_AVAILABLE

(2071, X'817') Insufficient storage available.

Developing applications reference 913

MQRC_TARGET_BUFFER_ERROR
(2146, X'862') Target buffer parameter not valid.

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844') Target integer encoding not recognized.

MQRC_TARGET_LENGTH_ERROR
(2144, X'860') Target length parameter not valid.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For detailed information about these codes, see Messages and reason codes.

C invocation

MQXCNVC (Hconn, Options, SourceCCSID, SourceLength, SourceBuffer,
 TargetCCSID, TargetLength, TargetBuffer, &DataLength,
 &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQLONG Options; /* Options that control the action of
 MQXCNVC */
MQLONG SourceCCSID; /* Coded character set identifier of string
 before conversion */
MQLONG SourceLength; /* Length of string before conversion */
MQCHAR SourceBuffer[n]; /* String to be converted */
MQLONG TargetCCSID; /* Coded character set identifier of string
 after conversion */
MQLONG TargetLength; /* Length of output buffer */
MQCHAR TargetBuffer[n]; /* String after conversion */
MQLONG DataLength; /* Length of output string */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

COBOL declaration (IBM i only)

 CALL 'MQXCNVC' USING HCONN, OPTIONS, SOURCECCSID, SOURCELENGTH,
 SOURCEBUFFER, TARGETCCSID, TARGETLENGTH,
 TARGETBUFFER, DATALENGTH, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle
 01 HCONN PIC S9(9) BINARY.
** Options that control the action of MQXCNVC
 01 OPTIONS PIC S9(9) BINARY.
** Coded character set identifier of string before conversion
 01 SOURCECCSID PIC S9(9) BINARY.
** Length of string before conversion
 01 SOURCELENGTH PIC S9(9) BINARY.
** String to be converted
 01 SOURCEBUFFER PIC X(n).
** Coded character set identifier of string after conversion
 01 TARGETCCSID PIC S9(9) BINARY.
** Length of output buffer
 01 TARGETLENGTH PIC S9(9) BINARY.
** String after conversion
 01 TARGETBUFFER PIC X(n).
** Length of output string
 01 DATALENGTH PIC S9(9) BINARY.
** Completion code

914 IBM MQ Developing Applications Reference

 01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying COMPCODE
 01 REASON PIC S9(9) BINARY.

S/390 assembler declaration

 CALL MQXCNVC,(HCONN,OPTIONS,SOURCECCSID,SOURCELENGTH, X
 SOURCEBUFFER,TARGETCCSID,TARGETLENGTH,TARGETBUFFER, X
 DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
OPTIONS DS F Options that control the action of MQXCNVC
SOURCECCSID DS F Coded character set identifier of string before
* conversion
SOURCELENGTH DS F Length of string before conversion
SOURCEBUFFER DS CL(n) String to be converted
TARGETCCSID DS F Coded character set identifier of string after
* conversion
TARGETLENGTH DS F Length of output buffer
TARGETBUFFER DS CL(n) String after conversion
DATALENGTH DS F Length of output string
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQ_DATA_CONV_EXIT - Data conversion exit
The MQ_DATA_CONV_EXIT call describes the parameters that are passed to the data-conversion exit.

No entry point called MQ_DATA_CONV_EXIT is provided by the queue manager (see usage note 11).

This definition is part of the IBM MQ Data Conversion Interface (DCI), which is one of the IBM MQ
framework interfaces.

Syntax
MQ_DATA_CONV_EXIT (DataConvExitParms, MsgDesc, InBufferLength, InBuffer, OutBufferLength,
OutBuffer)

Parameters
DataConvExitParms

Type: MQDXP - input/output

This structure contains information relating to the invocation of the exit. The exit sets information
in this structure to indicate the outcome of the conversion. See “MQDXP - Data-conversion exit
parameter” on page 903 for details of the fields in this structure.

MsgDesc
Type: MQMD - input/output

On input to the exit, this is the message descriptor associated with the message data passed to the
exit in the InBuffer parameter.

Note: The MsgDesc parameter passed to the exit is always the most recent version of MQMD
supported by the queue manager which invokes the exit. If the exit is intended to be portable between
different environments, the exit will check the Version field in MsgDesc to verify that the fields that
the exit needs to access are present in the structure.

In the following environments, the exit is passed a version-2 MQMD:

• AIX

• IBM i

Developing applications reference 915

• Linux

• Windows

In all other environments that support the data conversion exit, the exit is passed a version-1 MQMD.

On output, the exit will change the Encoding and CodedCharSetId fields to the values requested
by the application, if conversion was successful; these changes are reflected back to the application.
Any other changes that the exit makes to the structure are ignored; they are not reflected back to the
application.

If the exit returns MQXDR_OK in the ExitResponse field of the MQDXP structure, but does not
change the Encoding or CodedCharSetId fields in the message descriptor, the queue manager
returns for those fields the values that the corresponding fields in the MQDXP structure had on input
to the exit.

InBufferLength
Type: MQLONG - input

Length in bytes of InBuffer.

This is the length of the input buffer InBuffer, and specifies the number of bytes to be processed by
the exit. InBufferLength is the lesser of the length of the message data before conversion, and the
length of the buffer provided by the application on the MQGET call.

The value is always greater than zero.

InBuffer
Type: MQBYTExInBufferLength - input

Buffer containing the unconverted message.

This contains the message data before conversion. If the exit is unable to convert the data, the queue
manager returns the contents of this buffer to the application after the exit has completed.

Note: The exit should not alter InBuffer ; if this parameter is altered, the results are undefined.

In the C programming language, this parameter is defined as a pointer-to-void.

OutBufferLength
Type: MQLONG - input

Length in bytes of OutBuffer.

This is the length of the output buffer OutBuffer, and is the same as the length of the buffer
provided by the application on the MQGET call.

The value is always greater than zero.

OutBuffer
Type: MQBYTExOutBufferLength - output

Buffer containing the converted message.

On output from the exit, if the conversion was successful (as indicated by the value MQXDR_OK in the
ExitResponse field of the DataConvExitParms parameter), OutBuffer contains the message
data to be delivered to the application, in the requested representation. If the conversion was
unsuccessful, any changes that the exit has made to this buffer are ignored.

In the C programming language, this parameter is defined as a pointer-to-void.

Usage notes
1. A data-conversion exit is a user-written exit which receives control during the processing of an

MQGET call. The function performed by the data-conversion exit is defined by the provider of the
exit; however, the exit must conform to the rules described here, and in the associated parameter
structure MQDXP.

916 IBM MQ Developing Applications Reference

The programming languages that can be used for a data-conversion exit are determined by the
environment.

2. The exit is invoked only if all of the following statements are true:

• The MQGMO_CONVERT option is specified on the MQGET call
• The Format field in the message descriptor is not MQFMT_NONE
• The message is not already in the required representation; that is, one or both of the message's
CodedCharSetId and Encoding is different from the value specified by the application in the
message descriptor supplied on the MQGET call

• The queue manager has not already done the conversion successfully
• The length of the application's buffer is greater than zero
• The length of the message data is greater than zero
• The reason code so far during the MQGET operation is MQRC_NONE or

MQRC_TRUNCATED_MSG_ACCEPTED
3. When an exit is being written, consider coding the exit in a way that allows it to convert messages

that have been truncated. Truncated messages can arise in the following ways:

• The receiving application provides a buffer that is smaller than the message, but specifies the
MQGMO_ACCEPT_TRUNCATED_MSG option on the MQGET call.

In this case, the Reason field in the DataConvExitParms parameter on input to the exit has the
value MQRC_TRUNCATED_MSG_ACCEPTED.

• The sender of the message truncated it before sending it. This can happen with report messages,
for example (see “Conversion of report messages” on page 902 for more details).

In this case, the Reason field in the DataConvExitParms parameter on input to the exit has the
value MQRC_NONE (if the receiving application provided a buffer that was large enough for the
message).

Thus the value of the Reason field on input to the exit cannot always be used to decide whether the
message has been truncated.

The distinguishing characteristic of a truncated message is that the length provided to the exit in
the InBufferLength parameter is less than the length implied by the format name contained
in the Format field in the message descriptor. The exit should therefore check the value of
InBufferLength before attempting to convert any of the data; the exit should not assume that
the full amount of data implied by the format name has been provided.

If the exit has not been written to convert truncated messages, and InBufferLength is less than
the value expected, the exit will return MQXDR_CONVERSION_FAILED in the ExitResponse field of
the DataConvExitParms parameter, with the CompCode and Reason fields set to MQCC_WARNING
and MQRC_FORMAT_ERROR.

If the exit has been written to convert truncated messages, the exit will convert as much of the data
as possible (see next usage note), taking care not to attempt to examine or convert data beyond the
end of InBuffer. If the conversion completes successfully, the exit will leave the Reason field in
the DataConvExitParms parameter unchanged. This returns MQRC_TRUNCATED_MSG_ACCEPTED
if the message was truncated by the receiver's queue manager, and MQRC_NONE if the message was
truncated by the sender of the message.

It is also possible for a message to expand during conversion, to the point where it is bigger than
OutBuffer. In this case the exit must decide whether to truncate the message; the AppOptions
field in the DataConvExitParms parameter indicates whether the receiving application specified
the MQGMO_ACCEPT_TRUNCATED_MSG option.

4. Generally, all the data in the message provided to the exit in InBuffer is converted, or that none of
it is. An exception to this, however, occurs if the message is truncated, either before conversion or
during conversion; in this case there can be an incomplete item at the end of the buffer (for example:
1 byte of a double-byte character, or 3 bytes of a 4-byte integer). In this situation, consider omitting

Developing applications reference 917

the incomplete item and set the unused bytes in the OutBuffer to nulls. However, complete
elements or characters within an array or string should be converted.

5. When an exit is needed for the first time, the queue manager attempts to load an object that has
the same name as the format (apart from extensions). The object loaded must contain the exit that
processes messages with that format name. Consider making the exit name, and the name of the
object that contains the exit identical, although not all environments require this.

6. A new copy of the exit is loaded when an application attempts to retrieve the first message that uses
that Format since the application connected to the queue manager. For CICS or IMS applications,
this means when the CICS or IMS subsystem connected to the queue manager. A new copy can
also be loaded at other times, if the queue manager has discarded a previously loaded copy. For
this reason, an exit must not attempt to use static storage to communicate information from one
invocation of the exit to the next - the exit can be unloaded between the two invocations.

7. If there is a user-supplied exit with the same name as one of the built-in formats supported by the
queue manager, the user-supplied exit does not replace the built-in conversion routine. The only
circumstances in which such an exit is invoked are:

• If the built-in conversion routine cannot handle conversions to or from either the CodedCharSetId
or Encoding involved, or

• If the built-in conversion routine has failed to convert the data (for example, because there is a field
or character which cannot be converted).

8. The scope of the exit is environment-dependent. Format names must be chosen to minimize the risk
of clashes with other formats. Consider starting with characters that identify the application defining
the format name.

9. The data-conversion exit runs in an environment like that of the program which issued the MQGET
call; environment includes address space and user profile (where applicable). The program could be
a message channel agent sending messages to a destination queue manager that does not support
message conversion. The exit cannot compromise the queue manager's integrity, since it does not
run in the queue manager's environment.

10. The only MQI call which can be used by the exit is MQXCNVC; attempting to use other MQI calls fails
with reason code MQRC_CALL_IN_PROGRESS, or other unpredictable errors.

11. No entry point called MQ_DATA_CONV_EXIT is provided by the queue manager. However, a typedef
is provided for the name MQ_DATA_CONV_EXIT in the C programming language, and this can be used
to declare the user-written exit, to ensure that the parameters are correct. The name of the exit must
be the same as the format name (the name contained in the Format field in MQMD), although this is
not required in all environments.

The following example illustrates how the exit that processes the format MYFORMAT can be declared
in the C programming language:

#include "cmqc.h"
#include "cmqxc.h"

MQ_DATA_CONV_EXIT MYFORMAT;

void MQENTRY MYFORMAT(
 PMQDXP pDataConvExitParms, /* Data-conversion exit parameter
 block */
 PMQMD pMsgDesc, /* Message descriptor */
 MQLONG InBufferLength, /* Length in bytes of InBuffer */
 PMQVOID pInBuffer, /* Buffer containing the unconverted
 message */
 MQLONG OutBufferLength, /* Length in bytes of OutBuffer */
 PMQVOID pOutBuffer) /* Buffer containing the converted
 message */
{
 /* C language statements to convert message */
}

12. On z/OS, if an API-crossing exit is also in force, it is called after the data-conversion exit.

918 IBM MQ Developing Applications Reference

C invocation

exitname (&DataConvExitParms, &MsgDesc, InBufferLength,
 InBuffer, OutBufferLength, OutBuffer);

The parameters passed to the exit are declared as follows:

MQDXP DataConvExitParms; /* Data-conversion exit parameter block */
MQMD MsgDesc; /* Message descriptor */
MQLONG InBufferLength; /* Length in bytes of InBuffer */
MQBYTE InBuffer[n]; /* Buffer containing the unconverted
 message */
MQLONG OutBufferLength; /* Length in bytes of OutBuffer */
MQBYTE OutBuffer[n]; /* Buffer containing the converted
 message */

COBOL declaration (IBM i only)

 CALL 'exitname' USING DATACONVEXITPARMS, MSGDESC, INBUFFERLENGTH,
 INBUFFER, OUTBUFFERLENGTH, OUTBUFFER.

The parameters passed to the exit are declared as follows:

** Data-conversion exit parameter block
 01 DATACONVEXITPARMS.
 COPY CMQDXPV.
** Message descriptor
 01 MSGDESC.
 COPY CMQMDV.
** Length in bytes of INBUFFER
 01 INBUFFERLENGTH PIC S9(9) BINARY.
** Buffer containing the unconverted message
 01 INBUFFER PIC X(n).
** Length in bytes of OUTBUFFER
 01 OUTBUFFERLENGTH PIC S9(9) BINARY.
** Buffer containing the converted message
 01 OUTBUFFER PIC X(n).

System/390 assembler declaration

 CALL EXITNAME,(DATACONVEXITPARMS,MSGDESC,INBUFFERLENGTH, X
 INBUFFER,OUTBUFFERLENGTH,OUTBUFFER)

The parameters passed to the exit are declared as follows:

DATACONVEXITPARMS CMQDXPA , Data-conversion exit parameter block
MSGDESC CMQMDA , Message descriptor
INBUFFERLENGTH DS F Length in bytes of INBUFFER
INBUFFER DS CL(n) Buffer containing the unconverted
* message
OUTBUFFERLENGTH DS F Length in bytes of OUTBUFFER
OUTBUFFER DS CL(n) Buffer containing the converted
* message

Properties specified as MQRFH2 elements
Non-message descriptor properties can be specified as elements in MQRFH2 header folders. Overview of
MQRFH2 elements being specified as properties.

This retains compatibility with the previous versions of the IBM MQ JMS and XMS clients. This section
describes how to specify properties in MQRFH2 headers.

Developing applications reference 919

To use MQRFH2 elements as properties, specify the elements as described in Using IBM MQ classes
for Java . This information supplements the information described in “MQRFH2 - Rules and formatting
header 2” on page 523.

Mapping property data types to MQRFH2 data types
This topic provides information on message property types mapped to their corresponding MQRFH2 data
types.

Table 636. Supported MQRFH2 data types

Message property type MQRFH2 data type

MQBYTE[] bin.hex

MQBOOL boolean

MQINT8 i1

MQINT16 i2

MQINT32 i4

MQINT64 i8

MQFLOAT32 r4

MQFLOAT64 r8

MQCHAR[] string

Any element without a data type is assumed to be of type "string".

An MQRFH2 data type of int, meaning an integer of unspecified size, is treated as if it were an i8.

A null value is indicated by the element attribute xsi:nil='true'. Do not use the attribute
xsi:nil='false' for non-null values.

For example, the following property has a null value:

<NullProperty xsi:nil='true'></NullProperty>

A byte or character string property can have an empty value. This is represented by an MQRFH2 element
with a zero length element value.

For example, the following property has an empty value:

<EmptyProperty></EmptyProperty>

Supported MQRFH2 folders
Overview of the use of message descriptor fields as properties.

The folders <jms>, <mcd>, <mqext>, and <usr> are described in The MQRFH2 header and JMS. The
<usr> folder is used to transport any JMS application-defined properties that are associated with a
message. Groups are not allowed in the <usr> folder.

The MQRFH2 header and JMS supports the following additional folders:

• <mq>

This folder is used and reserved for MQ-defined properties that are used by IBM MQ.
• <mq_usr>

920 IBM MQ Developing Applications Reference

This folder can be used to transport any application-defined properties that are not exposed as JMS
user-defined properties, as the properties might not meet the requirements of a JMS property. This
folder can contain groups that the <usr> folder cannot.

• Any folder marked with the content='properties' attribute.

Such a folder is equivalent to the <mq_usr> folder in content.
• <mqps>

This folder is used for IBM MQ publish/subscribe properties.

IBM MQ also supports the following folders that are already in use by WAS/SIB:

• <sib>

This folder is used and reserved for WAS/SIB system message properties that are not exposed as JMS
properties, or are mapped to JMS_IBM_* properties, but are exposed to WAS/SIB applications; these
include forward and reverse routing paths properties.

At least some cannot be exposed as JMS properties, because they are byte arrays. If your application
adds properties to this folder, the value is either ignored or removed.

• <sib_usr>

This folder is used and reserved for WAS/SIB user message properties that cannot be exposed as JMS
user properties because they are not of supported types; they are exposed to WAS/SIB applications.

These are user properties, that you can get or set through the SIMessage interface, but the content of
the byte array is mapped to the required property value.

If your IBM MQ application writes an arbitrary bin.hex element to the folder, the application probably
receives an IOException, as it is not of the format expected to restore. If you add anything other than
a bin.hex element you receive a ClassCastException.

Do not attempt to make properties available to WAS/SIB by using this folder; instead user the <usr>
folder for that purpose.

• <sib_context>

This folder is used for WAS/SIB system message properties that are not exposed to WAS/SIB user
applications or as JMS properties. These include security and transactional properties that are used for
web services and similar.

Your application must not add properties to this folder.
• <mqema>

This folder was used by WAS/SIB instead of the <mqext> folder.

MQRFH2 folder names are case-sensitive.

The following folders are reserved, in any mixture of lowercase or uppercase characters:

• Any folder prefixed by mq or wmq ; reserved for use by IBM MQ.
• Any folder prefixed by sib ; reserved for use by WAS/SIB.
• <Root> and <Body> folders; reserved but not used.

The following folders are not recognized as containing message properties:

• <psc>

Used by IBM Integration Bus to convey publish/subscribe command messages to the broker.
• <pscr>

Used by IBM Integration Bus to contain information from the broker, in response to publish/subscribe
command messages.

• Any folder not defined by IBM, that is not marked with the content='properties' attribute.

Developing applications reference 921

Do not specify content='properties' on the <psc> or <pscr> folders. If you do so, these folders are
treated as properties and IBM Integration Bus is likely to stop functioning as expected.

If your application is building messages with properties, in MQRFH2 headers to be recognized as an
MQRFH2 header containing properties, the header must be in the list of headers that can be chained at
the head of the message.

The MQRFH2 can be preceded by any number of MQH standard headers, or an MQCIH, an MQDLH, an
MQIIH, an MQTM, an MQTMC2, or an MQXQH. A string or an MQCFH ends parsing because they cannot be
chained.

It is possible for a message to contain multiple MQRFH2 headers all carrying message properties. Folders
with the same name can coexist in different headers unless otherwise restricted, for example by WAS/
SIB. The folders are treated as one logical folder, if they are all in significant headers.

While folders from the significant headers cannot be merged with those folders in nonsignificant headers,
folders with the same name within the significant headers can be merged, removing any conflicting
properties. Your applications must not depend on the layout of properties within their message.

MQRFH2 groups are parsed for properties in user-defined folders, that is, not the <wmq>, <jms>, <mcd>,
<usr>, <mqext>, <sib>, <sib_usr>, <sib_context>, and <mqema> folders.

Groups in the IBM-defined properties folders, except for the <wmq> and <mq> folders, are parsed for
properties.

An MQRFH2 folder cannot contain mixed content; a folder or group can contain either groups or
properties, or a value, but not both.

A segment of a message, either the first or a subsequent segment, cannot contain IBM MQ -defined
properties other than those properties in the message descriptor. Therefore putting a message containing
such properties with either MQMF_SEGMENT or MQMF_SEGMENTATION_ALLOWED set causes the put to
fail with MQRC_SEGMENTATION_NOT_ALLOWED.

However, message groups can contain IBM MQ -defined properties.

Generation of MQRFH2 headers
If IBM MQ converts message properties to their MQRFH2 representation, it must add the MQRFH2 to the
message. It adds the MQRFH2 either as a separate header, or merges it with an existing header.

Generation of new MQRFH2 headers by IBM MQ might disrupt existing headers in a message. Applications
that parse a message buffer for headers must be aware that the number and position of headers in
a buffer might change in some circumstances. IBM MQ attempts to minimize the impact of adding
properties to a message by merging message properties into an existing MQRFH2 header, where it can.
It also attempts to minimize the impact by inserting a generated MQRFH2 into a fixed position relative to
other headers in the message buffer.

A generated MQRFH2 header is placed following the MQMD, and any number of MQXQH, MQRFH, and MQDLH
headers, whatever order they are in. The generated MQRFH2 header is placed immediately before the first
header that is not an MQMD, MQXQH, MQDLH, or MQRFH header.

On z/OS systems, the generated MQRFH2 header is created in the application's CCSID. This
is defined as follows:

• For batch LE applications using the DLL interface, the CCSID is the CODESET associated with the current
locale at the time MQCONN is issued (default value is 1047).

• For batch LE applications bound with one of the batch MQ stubs, the CCSID is the CODESET associated
with the current locale at the time of the first MQI call issued after MQCONN (default value is 1047).

• For batch non-LE applications running on a z/OS UNIX System Services (z/OS UNIX) thread, the CCSID
is the value of THLICCSID at the time of the first MQI call issued after MQCONN (default value is 1047).

• For other batch applications, the CCSID is the CCSID of the queue manager.

922 IBM MQ Developing Applications Reference

For LE applications, the locale can be changed using the setlocale() / CEESETL LE callable service.
For non-LE applications running on z/OS UNIX threads, the value of THLICCSID can be changed using
z/OS UNIX mapping macro BPXYTHLI.

Rules for merging generated MQRFH2
The following rules apply to merging a generated MQRFH2 with an existing MQRFH2. The generated
MQRFH2 header is merged with an existing MQRFH2 header, if:

1. The existing MQRFH2 is in the same position IBM MQ would place a generated MQRFH2, or earlier in the
header chain.

2. The CCSID of the generated properties is the same as the NameValueCCSID of the existing MQRFH2.

Otherwise, the generated header is placed separately in the buffer, in the position described before.

Rules for merging folders in an existing MQRFH2
If message properties are merged into an existing MQRFH2, then the existing MQRFH2 is scanned for
folders that match the message properties, and merges them. If a matching folder does not exist a new
folder is added to the end of the existing folders. If a matching folder does exist, the folder is searched.
Any matching properties are overwritten. Any new ones are added at the end of the folder.

MQRFH2 folder restrictions
Overview of folder restrictions in MQRFH2 headers

The MQRFH2 restrictions apply to the following folders:

• Element names in the <usr> folder must not begin with the prefix JMS ; such property names are
reserved for use by JMS and are not valid for user-defined properties.

Such an element name does not cause parsing of the MQRFH2 to fail, but is not accessible to the IBM
MQ message property APIs.

• Element names in the <usr> folder must not be, in any mixture of lower or uppercase, NULL, TRUE,
FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, IS and ESCAPE. These names match SQL keywords and
make parsing selectors harder, because <usr> is the default folder used when no folder is specified for
a particular property in a selector.

Such an element name does not cause parsing of the MQRFH2 to fail, but is not accessible to the IBM
MQ message property APIs.

• The content model of the <usr> folder is as follows:

– Any valid XML name can be used as an element name, providing that it does not contain a colon.
– Only simple elements, not nested folders, are allowed.
– All elements take the default type of string, unless modified by a dt="xxx" attribute.
– All elements are optional, but should occur no more than once in a folder.

• Element names in any folder considered to contain message properties must not contain a period (.)
(Unicode character U+002E), because this is used in property names to indicate the hierarchy.

Such an element name does not cause parsing of the MQRFH2 to fail, but is not accessible to the IBM
MQ message property APIs.

In general, MQRFH2 headers that contain valid XML-style data can be parsed by IBM MQ without failure,
although certain elements of the MQRFH2 are not accessible through the IBM MQ message property APIs.

MQRFH2 element name conflicts
Overview of conflicts within MQRFH2 element names.

Only one value can be attached to a message property. If an attempt to access a property leads to a
conflict of values, one is chosen in preference over another.

Developing applications reference 923

The IBM MQ syntax for accessing MQRFH2 elements allows unique identification of an element, if a folder
contains no elements with the same name. If a folder contains more than one element with the same
name, the value of the property used is the one closest to the head of the message.

This applies if two or more folders of the same name are contained in different significant MQRFH2
headers within the same message.

A conflict can result when the MQGET call is processed after a non-message descriptor property has been
set twice: both through an MQSETMP call and directly in the raw MQRFH2 header.

If this happens, the property associated with the message by an API call takes preference over one in the
message data, that is, the one in the raw MQRFH2 header. If a conflict occurs, it is considered to come
logically before the message data.

Mapping from property names to MQRFH2 folder and element names
Overview of the differences between property names and element names in the MQRFH2 header.

When using any of the defined APIs that ultimately generate MQRFH2 headers, in order to specify
message properties (for example, MQ JMS), the property name is not necessarily the element name in the
MQRFH2 folder.

Therefore, a mapping occurs from the property name to the MQRFH2 element, and in the reverse way,
taking into account both the folder name that contains the element, and the element name. Some
examples from IBM MQ classes for JMS are already documented in Using IBM MQ classes for Java.

Table 637. Property names mapped to MQRFH2 folder and element names

Property name MQRFH2 folder name MQRFH2 element name

JMSDestination jms Dst

JMSType mcd Type, Set, Fmt

xxx (user defined, where xxx does not
begin with JMS)

usr xxx

Therefore, when a JMS application accesses the JMSDestination property this maps to the Dst
element in the <jms> folder.

When specifying properties as MQRFH2 elements, IBM MQ defines its elements as follows:

Table 638. Property names mapped to MQRFH2 folder, group, and element names

Property name MQRFH2 folder name MQRFH2 group name MQRFH2 element name

<Property> <usr> n/a <Property>

<folder>. <Property> <folder> n/a <Property>

<folder>. <group>. <Property> <folder> <group> <Property>

For example, when an IBM MQ application attempts to access the Property1 property, this maps to
the Property1 element in the <usr> folder. The wmq.Property2 property maps to the Property2
property in the <wmq> folder.

If the property name contains more than one . character, the MQRFH2 element name used is the one
following the final . character, and MQRFH2 groups are used to form a hierarchy; nested MQRFH2 groups
are permitted.

The JMS header and provider-specific properties that are contained in an MQRFH2 in the <mcd>, <jms>,
and <mqext> folders are accessed by an IBM MQ application using the short names defined in Using IBM
MQ classes for Java .

JMS user-defined properties are accessed from the <usr> folder. An IBM MQ application can use the
<usr> folder for its application properties if it is acceptable for the property to appear to JMS applications
as one of its user-defined properties.

924 IBM MQ Developing Applications Reference

If it is not acceptable, choose another folder; the <wmq_usr> folder is provided as a standard location for
such non-JMS properties.

Your applications can specify and use any MQRFH2 folder with a well-defined use, not documented in
“Properties specified as MQRFH2 elements” on page 919 if you note the following:

1. The folder might already be in use, or might be used in the future, by another application providing
undefined access to properties contained inside it; see Property names for the suggested naming
convention for property names.

2. The properties are not accessible to previous versions of the IBM MQ classes for JMS or XMS client
that can only access the <usr> folder for user-defined properties

3. The folder must be marked with the attribute content with the value set to properties, for
example, content='properties'.

“MQSETMP - Set message property” on page 771 automatically adds this attribute as required. This
attribute must not be added to any of the IBM-defined folders, for example, <jms> and <usr>. Doing
so, causes the message to be rejected by the IBM MQ classes for JMS client before IBM WebSphere
MQ 7.0. with a MessageFormatException.

Because the <usr> folder is the default location for properties of the <Property> syntax, an IBM MQ
application and a JMS application to access the same user-defined property value using the same name.

Reserved folder names
There are several reserved folder names. You cannot use such names as your folder prefixes; for example,
Root.Property1 does not access a valid property because Root is reserved. The following list contains
reserved folder names:

• Root
• Body
• Properties
• Environment
• LocalEnvironment
• DestinationList
• ExceptionList
• InputBody
• InputRoot
• InputProperties
• InputLocalEnvironment
• InputDestinationList
• InputExceptionList
• OutputRoot
• OutputLocalEnvironment
• OutputDestinationList
• OutputExceptionList

Mapping property descriptor fields into MQRFH2 headers
When a property is translated into an MQRFH2 element the following element attributes are used to
specify the significant fields of the property descriptor: This describes how MQPD fields are translated to
MQRFH2 element attributes.

Developing applications reference 925

Support
The Support property descriptor field is split into three element attributes

• The sr element attribute specifies values in the MQPD_REJECT_UNSUP_MASK bit mask.
• The sa element attribute specifies values in the MQPD_ACCEPT_UNSUP_MASK bit mask.
• The sx element attribute specifies values in the MQPD_ACCEPT_UNSUP_IF_XMIT_MASK bit mask.

These element attributes are only valid in the <mq> folder and are ignored if set on elements in the other
folders containing properties.

Table 639. MQPD fields mapped to MQRFH2 element attributes

Support value MQRFH2 element attribute
MQRFH2 attribute
value

MQPD_SUPPORT_OPTIONAL sa optional

This is the default
value.

MQPD_SUPPORT_REQUIRED sr required

MQPD_SUPPORT_REQUIRED_IF_LOCAL sx local

Context
Use the context element attribute to indicate the message context to which a property belongs. Use one
value only. This element attribute is valid on a property in any folder containing properties.

Table 640. Context values mapped to MQRFH2 attribute values

Context value MQRFH2 attribute value

MQPD_NO_CONTEXT none

This is the default value.

MQPD_USER _CONTEXT user

CopyOptions
Use the copy element attribute to indicate messages into which a property should be copied. More
than one value is acceptable; separate multiple values with a comma. For example copy='reply' and
copy='publish,report' are both valid. This element attribute is valid on a property in any folder
containing properties.

Note: In the attribute definition, single quotation marks or double quotation marks are valid use, for
example copy='reply' or copy="report"

Table 641. CopyOption values mapped to MQRFH2 attribute values

CopyOption value MQRFH2 attribute value

MQPD_COPY_FORWARD forward

MQPD_COPY_REPLY reply

MQPD_COPY_REPORT report

MQPD_COPY_PUBLISH publish

926 IBM MQ Developing Applications Reference

Table 641. CopyOption values mapped to MQRFH2 attribute values (continued)

CopyOption value MQRFH2 attribute value

MQPD_COPY_ALL all

Do not specify this with any other value. When used with
another value, this takes precedence over any value except
none.

MQPD_COPY_DEFAULT default

This is the default value. It is equivalent to specifying
the three values MQCOPY_FORWARD, MQCOPY_REPORT and
MQCOPY_PUBLISH.

Do not specify this with any other value.

MQPD_COPY_NONE none

Do not specify this with any other value. When used with
another value, this takes precedence.

Restrictions to the <mq> MQRFH2 folder
When a message is put on to a queue, it is searched for an <mq> folder so that the message can be
processed according to its MQ-defined properties. To allow the efficient parsing of MQ-defined properties,
the following restrictions apply to the folder:

• Only properties in the first significant <mq> folder in the message are acted upon by MQ; properties in
any other <mq> folder in the message are ignored.

• If the folder is in UTF-8, only single-byte UTF-8 characters are allowed in the folder. A multi-byte
character in the folder, can cause parsing to fail, and the message to be rejected.

• Do not include MQRFH2 groups in the <mq> folder. The presence of Unicode character U+003C in a
property value will cause the message to be rejected.

• Do not use escape strings in the folder. An escape string is treated as the actual value of the element.
• Only Unicode character U+0020 is treated as white space within the folder. All other characters are

treated as significant and can cause parsing of the folder to fail, and the message to be rejected.

If parsing of the <mq> folder fails, or if the folder does not observe these restrictions, the message is
rejected with CompCode MQCC_FAILED and Reason MQRC_RFH_RESTRICTED_FORMAT_ERR.

MQRFH2 headers that are not valid
At the time an MQPUT, MQPUT1, or MQGET call processes, a partial parsing of any MQRFH2 headers
in the message can occur to check what folders are included, and to determine if the folders contain
properties. Overview of MQRFH2 headers that are not valid.

If the partial parsing of the message cannot complete successfully because the structure is not valid, for
example, the StrucLength field is too small, then:

• The MQPUT or MQPUT1 call fails with reason code MQRC_RFH_ERROR, if it can be determined that the
application includes some IBM WebSphere MQ 7 option, so that existing applications do not fail.

• The MQGET call returns successfully, and the MQRFH2 containing the error is returned in the buffer you
provided.

If the partial parsing fails because it cannot be detected whether a particular folder contains properties or
not, for example, the folder begins <<jms, so parsing fails before the folder name is determined, then:

• The MQPUT or MQPUT1 call fails with reason code MQRC_RFH_FORMAT_ERROR, if it can be
determined that the application includes some IBM WebSphere MQ 7 option, so that existing
applications do not fail.

Developing applications reference 927

• The MQGET call returns successfully, and the MQRFH2 containing the error is returned in the buffer you
provided.

• While internally within the queue manager, the message is not rejected due to the badly formatted
folder, but the folder is always treated as if no properties were contained inside it.

A message can flow through the queue manager network with a folder containing such a syntax error, but
never being parsed and detected, while one or more folders in the message are:

• Valid
• Successfully parsed
• Used in the processing of the message

Therefore, detection is not guaranteed.

If one of your applications uses “MQSETMP - Set message property” on page 771, or MQINQMP to access
a property, and in so doing this causes an MQRFH2 folder to be fully parsed, detecting an error such that
parsing cannot complete, this is indicated by an appropriate return code to the API call. No properties in
the folder are made available to the application.

If an attempt is made to fully parse an MQRFH2 folder and the parser finds unrecognized element
attributes, or an unrecognized data type, parsing continues and complete successfully with no warnings
being issued; this does not constitute a parsing error.

Code page conversion
This section describes codeset names and CCSIDs, national language, z/OS conversion, IBM i conversion,
and Unicode conversion support.

Each national language section lists the following information:

• The native CCSIDs supported
• The code page conversions that are not supported

The following terms are used in the information:

AIX
Indicates IBM MQ for AIX.

Linux
Indicates IBM MQ for Linux for Intel and IBM MQ for Linux for zSeries.

OS/400
Indicates IBM MQ for IBM i.

Windows
Indicates IBM MQ for Windows.

z/OS
Indicates IBM MQ for z/OS.

The default for data conversion is for the conversion to be performed at the target (receiving) system.

If the source product supports the conversion a channel can be set up and data exchanged by setting the
channel attribute CONVERT to YES at the source.

Note:

1. Conversion for IBM MQ MQI client information takes place in the server, so the server must support
conversion from the client CCSID to the server CCSID.

2. The conversion might include support added by CSD/PTF to the latest version of IBM MQ. Check the
content of the latest service level to see if you need to install a CSD/PTF to enable this conversion.

3. The IBM MQ queue manager CCSID must be Mixed or SBCS.

928 IBM MQ Developing Applications Reference

4. Some CCSIDs, for example 850 on AIX, that are not supported by the operating system can still be
used by the application and also can be set as the IBM MQ queue manager CCSID. This is allowed for
backward compatibility purpose only and the conversion will fail if the relevant conversion tables are
not installed.

See Table 642 on page 929 for a cross-reference between some of the CCSID numbers and some
industry codeset names.

Related reference
“National languages” on page 929
This information contains languages supported by IBM MQ.

Codeset names and CCSIDs
Codeset names and the corresponding CCSIDs for each codeset name.

IBM MQ for z/OS provides more conversion than is listed in the language specific tables. For
a complete list of conversions, see Table 675 on page 955.

Table 642. Codeset names and CCSIDs

Codeset names CCSIDs

ISO 8859-1 819

ISO 8859-2 912

ISO 8859-3 913

ISO 8859-5 915

ISO 8859-6 1089

ISO 8859-7 813

ISO 8859-8 916

ISO 8859-9 920

ISO 8859-13 921

ISO 8859-15 (euro) 923

big5 950

eucJP 954 5050 33722

eucKR 970

eucTW 964

eucCN 1383

PCK 943

GBK 1386

koi8-r 878

National languages
This information contains languages supported by IBM MQ.

The languages supported by IBM MQ are:

• US English - see topic “US English” on page 930
• German - see topic “German” on page 931

Developing applications reference 929

• Danish and Norwegian - see topic “Danish and Norwegian” on page 932
• Finnish and Swedish - see topic “Finnish and Swedish” on page 933
• Italian - see topic “Italian” on page 934
• Spanish - see topic “Spanish” on page 934
• UK English / Gaelic - see topic “UK English /Gaelic” on page 935
• French - see topic “French” on page 935
• Multilingual - see topic “Multilingual” on page 936
• Portuguese - see topic “Portuguese” on page 937
• Icelandic - see topic “Icelandic” on page 938
• Eastern European languages - see topic “Eastern European languages” on page 938
• Cyrillic - see topic “Cyrillic” on page 940
• Estonian - see topic “Estonian” on page 940
• Latvian and Lithuanian - see topic “Latvian and Lithuanian” on page 942
• Ukranian - see topic “Ukrainian” on page 943
• Greek - see topic “Greek” on page 943
• Turkish - see topic “Turkish” on page 944
• Hebrew - see topic “Hebrew” on page 945
• Farsi - see topic “Farsi” on page 947
• Urdu - see topic “Urdu” on page 947
• Thai - see topic “Thai” on page 948
• Lao - see topic “Lao” on page 948
• Vietnamese - see topic “Vietnamese” on page 948
• Japanese Latin SBCS - see topic “Japanese Latin SBCS” on page 949
• Japanese Katakana SBCS - see topic “Japanese Katakana SBCS” on page 950
• Japanese Kanji/ Latin Mixed - see topic “Japanese Kanji/ Latin Mixed” on page 951
• Japanese Kanji/ Katakana Mixed - see topic “Japanese Kanji/ Katakana Mixed” on page 952
• Korean - see topic “Korean” on page 953
• Simplified Chinese - see topic “Simplified Chinese” on page 954
• Traditional Chinese - see topic “Traditional Chinese” on page 955

US English
Details of CCSIDs and CCSID conversion for US English.

Table 643. Native CCSIDs for US English on supported platforms

Platform Native CCSIDs

IBM i

z/OS

37, 924, 1140

AIX 819, 923, 5348

Windows 437, 850, 1252, 5348, 858

Linux
819, 923

Apple client 1275

930 IBM MQ Developing Applications Reference

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
37

Does not convert to code pages 923, 858
924

Does not convert to code pages 437, 858, 1051, 1140, 1252, 1275, 5348
1140

Does not convert to code pages 924, 1051, 1275

German
Details of CCSIDs and CCSID conversion for German.

Table 644. Native CCSIDs for German on supported platforms

Platform Native CCSIDs

IBM i

z/OS

273, 924, 1141

AIX 819, 923, 5348

Windows 437, 850, 858, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
273

Does not convert to code pages 858, 923, 924, 1275
924

Does not convert to code pages 273, 437, 858, 1051, 1141, 1252, 1275, 5348
1141

Does not convert to code pages 924, 1051, 1275

Developing applications reference 931

Danish and Norwegian
Details of CCSIDs and CCSID conversion for Danish and Norwegian.

Table 645. native CCSIDs for Danish and Norwegian on supported platforms

Platform Native CCSIDs

IBM i

z/OS

277, 924, 1142

AIX 819, 923, 5348

Windows 850, 858, 865, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
277

Does not convert to code pages 858, 923, 924, 1275
924

Does not convert to code pages 277, 858, 865, 1051, 1142, 1252, 1275, 5348
1142

Does not convert to code pages 924, 865, 1051, 1275

AIX

Code page:
819

Does not convert to code page 865

Windows

Code page:
865

Does not convert to code pages 1051, 1275

932 IBM MQ Developing Applications Reference

Finnish and Swedish
Details of CCSIDs and CCSID conversion for Finnish and Swedish.

Table 646. Native CCSIDs for Finnish and Swedish on supported platforms

Platform Native CCSIDs

IBM i

z/OS

278, 924, 1143

AIX 819, 923, 5348

Windows 437, 850, 858, 865, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
278

Does not convert to code pages 858, 923, 924, 1275
924

Does not convert to code pages 278, 437, 858, 865, 1051, 1143, 1252, 1275, 5348
1143

Does not convert to code pages 865, 924, 1051, 1275

AIX

Code page:
819

Does not convert to code page 865
850

Does not convert to code page 865

Windows

Code page:
865

Does not convert to code pages 1051, 1275

Developing applications reference 933

Italian
Details of CCSIDs and CCSID conversion for Italian.

Table 647. Native CCSIDs for Italian on supported platforms

Platform Native CCSIDs

IBM i

z/OS

280, 924, 1144

AIX 819, 923, 5348

Windows 437, 850, 858, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
280

Does not convert to code pages 858, 923, 924, 1275
924

Does not convert to code pages 280, 437, 858, 1051, 1144, 1252, 1275, 5348
1144

Does not convert to code pages 924, 1051, 1275

Spanish
Details of CCSIDs and CCSID conversion for Spanish.

Table 648. Native CCSIDs for Spanish on supported platforms

Platform Native CCSIDs

IBM i

z/OS

284, 924, 1145

AIX 819, 923, 5348

Windows 437, 850, 858, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

934 IBM MQ Developing Applications Reference

IBM i

Code page:
284

Does not convert to code pages 858, 923, 924, 1275
924

Does not convert to code pages 284, 437, 858, 1051, 1145, 1252, 1275, 5348
1145

Does not convert to code pages 924, 1051, 1275

UK English /Gaelic
Details of CCSIDs and CCSID conversion for UK English/Gaelic.

Table 649. Native CCSIDs for UK English / Gaelic on supported platforms

Platform Native CCSIDs

IBM i

z/OS

285, 924, 1146

AIX 819, 923, 5348

Windows 437, 850, 858, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
285

Does not convert to code pages 858, 923, 924, 1275
924

Does not convert to code pages 285, 437, 858, 1051, 1146, 1252, 1275, 5348
1146

Does not convert to code pages 924, 1051, 1275

French
Details of CCSIDs and CCSID conversion for French.

Table 650. Native CCSIDs for French on supported platforms

Platform Native CCSIDs

IBM i

z/OS

297, 924, 1147

Developing applications reference 935

Table 650. Native CCSIDs for French on supported platforms (continued)

Platform Native CCSIDs

AIX 819, 923, 5348

Windows 437, 850, 858, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
297

Does not convert to code pages 858, 923, 924, 1275, 5348
924

Does not convert to code pages 297, 437, 858, 1051, 1147, 1252, 1275, 5348
1147

Does not convert to code pages 924, 1051, 1275

Multilingual
Details of CCSIDs and CCSID conversion for Multilingual.

Table 651. Native CCSIDs for multilingual conversion on supported platforms

Platform Native CCSIDs

IBM i

z/OS

500, 924, 1148

AIX 819, 923, 5348

Windows 437, 850, 858, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
500

Does not convert to code pages 858, 923

936 IBM MQ Developing Applications Reference

924
Does not convert to code pages 437, 858, 1051, 1148, 1252, 1275, 5348

1148
Does not convert to code pages 924, 1051, 1275

Portuguese
Details of CCSIDs and CCSID conversion for Portuguese.

Table 652. Native CCSIDs for Portuguese on supported platforms

Platform Native CCSIDs

IBM i 37, 500, 924, 1140

IBM i 500, 924, 1140

AIX 819, 923, 5348

Windows 850, 858, 860, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
37

Does not convert to code pages 858, 923, 1275
500

Does not convert to code pages 858, 923, 1275
924

Does not convert to code pages 858, 860, 1051, 1140, 1252, 1275, 5348
1140

Does not convert to code pages 860, 924, 1051, 1275

Windows

Code page:
860

Does not convert to code pages 1051, 1275

Developing applications reference 937

Icelandic
Details of CCSIDs and CCSID conversion for Icelandic.

Table 653. Native CCSIDs for Icelandic on supported platforms

Platform Native CCSIDs

IBM i

z/OS

871, 924, 1149

AIX 819, 923, 5348

Windows 850, 858, 861, 1252, 5348

Linux
819, 923

Apple client 1275

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
871

Does not convert to code pages 858, 923, 924, 1275, 5348
924

Does not convert to code pages 858, 861, 871, 1051, 1149, 1252, 1275, 5348
1149

Does not convert to code pages 924, 1051, 1275

Windows

Code page:
861

Does not convert to code pages 1051, 1275

Eastern European languages
Details of CCSIDs and CCSID conversion for Eastern European Languages. The typical languages using
these CCSIDs include Albanian, Croatian, Czech, Hungarian, Polish, Romanian, Serbian, Slovak, and
Slovenian.

Table 654. Native CCSIDs for Eastern European languages on supported platforms

Platform Native CCSIDs

IBM i

z/OS

870, 1153

Windows 852, 1250, 5346, 9044

938 IBM MQ Developing Applications Reference

Table 654. Native CCSIDs for Eastern European languages on supported platforms (continued)

Platform Native CCSIDs

AIX

Linux

912

Eastern European Apple client 1282

Romanian Apple client 1285

Croatian Apple client 1284

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

z/OS

Code page:
870

Does not convert to code pages 1284, 1285
1153

Does not convert to code pages 1250, 1284, 1285

IBM i

Code page:
870

Does not convert to code pages 1284, 1285, 5346, 9044
1153

Does not convert to code pages 1282, 1284, 1285, 5346, 9044

, Linux

Code page:
912

Does not convert to code pages 1284, 1285

Windows

Code page:
852

Does not convert to code pages 1284, 1285
1250

Does not convert to code pages 1284, 1285
9044

Does not convert to code pages 912, 1282, 1284, 1285

Developing applications reference 939

Cyrillic
Details of CCSIDs and CCSID conversion for Cyrillic. The typical languages using these CCSIDs include
Belarussion, Bulgarian, Macedonian, Russian, and Serbian.

Table 655. Native CCSIDs for Cyrillic on supported platforms

Platform Native CCSIDs

z/OS 1025

IBM i 880, 1025

Windows 855, 866, 1131, 1251, 5347

AIX

Linux

915

Apple client 1283

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

IBM i

Code page:
880

Does not convert to code pages 855, 866, 878, 1131, 5347
1025

Does not convert to code pages 878, 5347

Windows

Code page:
855

Does not convert to code page 1131
866

Does not convert to code page 1131
1131

Does not convert to code pages 855, 866, 880, 1283

Estonian
Details of CCSIDs and CCSID conversion for Estonian.

Table 656. Native CCSIDs for Estonian on supported platforms

Platform Native CCSIDs

IBM i

z/OS

1122, 1157

Windows 902, 922, 1257, 5353, 9449

940 IBM MQ Developing Applications Reference

Table 656. Native CCSIDs for Estonian on supported platforms (continued)

Platform Native CCSIDs

AIX

Linux

902, 922

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Code page:
1122

Does not convert to code pages 902, 1157, 9449
1157

Does not convert to code pages 922, 1122, 1257, 9449

IBM i

Code page:
1122

Does not convert to code pages 902, 5353, 9449
1157

Does not convert to code pages 922, 5353, 9449

Linux

Code page:
902

Does not convert to code pages 922, 1122, 9449
922

Does not convert to code pages 902, 1157, 9449

Windows

Code page:
5353

Does not convert to code page 9449
9449

Does not convert to code pages 902, 922, 1122, 1157, 1257, 5353
902

Does not convert to code pages 922, 1122, 9449

Developing applications reference 941

Latvian and Lithuanian
Details of CCSIDs and CCSID conversion for Latvian and Lithuanian.

Table 657. Native CCSIDs for Latvian and Lithuanian on supported platforms

Platform Native CCSIDs

IBM i

z/OS

1112, 1156

Windows 901, 921, 1257, 5353, 9449

AIX

Linux

901, 921

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Code page:
1112

Does not convert to code pages 901, 1156, 9449
1156

Does not convert to code pages 901, 1156, 9449

IBM i

Code page:
1112

Does not convert to code page 5353
1153

Does not convert to code pages 921, 5353, 9449

Linux

Code page:
902

Does not convert to code pages 921, 1112, 1257, 9449
921

Does not convert to code pages 901, 1156, 9449

Windows

Code page:
901

Does not convert to code pages 921, 1112, 1257, 9449

942 IBM MQ Developing Applications Reference

5355
Does not convert to code page 9449

9449
Does not convert to code pages 901, 921, 1112, 1156, 1257

Ukrainian
Details of CCSIDs and CCSID conversion for Ukrainian.

Table 658. Native CCSIDs for Ukranian on supported platforms

Platform Native CCSIDs

IBM i

z/OS

1123

Windows 1124, 1125, 1251, 5347

AIX

Linux

1124

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

IBM i

Code page:
1123

Does not convert to code page 5347

Windows

Code page:
1125

Does not convert to code page 1123

Greek
Details of CCSIDs and CCSID conversion for Greek.

Table 659. Native CCSIDs for Greek on supported platforms

Platform Native CCSIDs

IBM i

z/OS

875

Windows 869, 1253, 5349

Developing applications reference 943

Table 659. Native CCSIDs for Greek on supported platforms (continued)

Platform Native CCSIDs

AIX

Linux

NCR

813

Apple client 1280

DOS client 737

All non-client platforms support conversion between their native CCSIDs, the native CCSIDs of the other
platforms with the following exceptions.

IBM i

Code page:
875

Does not convert to code page 5349

Windows

Code page:
1253

Does not convert to code page 737
5349

Does not convert to code page 737

Turkish
Details of CCSIDs and CCSID conversion for Turkish.

Table 660. Native CCSIDs for Turkish on supported platforms

Platform Native CCSIDs

IBM i

z/OS

1026

Windows 857, 1254, 5350

AIX

Linux

920

Apple client 1281

All non-client platforms support conversion between their native CCSIDs and the native CCSIDs of the
other platforms, with the following exceptions.

944 IBM MQ Developing Applications Reference

IBM i

Code page:
1026

Does not convert to code page 5350

Hebrew
Details of CCSIDs and CCSID conversion for Hebrew.

Table 661. Native CCSIDs for Hebrew on supported platforms

Platform Native CCSIDs

z/OS 424, 803, 4899, 12712

IBM i 424

AIX 916, 9048

Windows 1255, 5351

Linux
916

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Code page:
424

Does not convert to code pages 867, 4899, 9048, 12712
803

Does not convert to code pages 867, 4899, 5351, 9048, 12712
4899

Does not convert to code pages 424, 803, 856, 862, 916, 1255
12712

Does not convert to code pages 424, 803, 856, 916, 1255

IBM i

Code page:
424

Does not convert to code pages 803, 867, 4899, 5351, 9048, 12712

Code page 424 also converts to and from CCSID 4952, which is a variant of 856.

AIX

Code page:

Developing applications reference 945

916
Does not convert to code pages 867, 4899, 9048, 12712

9048
Does not convert to code pages 424, 803, 856, 862, 916, 1255

Windows

Code page:
1255

Does not convert to code pages 867, 4899, 9048, 12712
5351

Does not convert to code page 803

Arabic
Details of CCSIDs and CCSID conversion for Arabic

Table 662. Native CCSIDs for Arabic on supported platforms

Platform Native CCSIDs

IBM i

z/OS

420

AIX 1046, 1089

1089 (see note)

Windows 720, 864, 1256, 5352

Linux
1089

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

IBM i

Code page:
420

Does not convert to code page 5352

Linux Tru64

Code page:
1089

Does not convert to code page 720

Windows

Code page:

946 IBM MQ Developing Applications Reference

720
Does not convert to code pages 1089, 5352

5352
Does not convert to code page 720

Farsi
Details of CCSIDs and CCSID conversion for Farsi.

Table 663. Native CCSIDs for Farsi on supported platforms

Platform Native CCSIDs

IBM i

z/OS

1097

AIX

Linux

Windows

1098 (see note)

Note: The native CCSID for these platforms has not been standardized and might change.

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms.

Urdu
Details of CCSIDs and CCSID conversion for Urdu.

Table 664. Native CCSIDs for Urdu on supported platforms

Platform Native CCSIDs

IBM i

z/OS

918

Windows 868

AIX

Linux

1006

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

IBM i

Code page:
918

Does not convert to code page 1006

Developing applications reference 947

Thai
Details of CCSIDs and CCSID conversion for Thai.

Table 665. Native CCSIDs for Thai on supported platforms

Platform Native CCSIDs

IBM i

z/OS

838

AIX

Linux

Windows

874 (see note)

Note: The native CCSID for these platforms has not been standardized and might change.

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms.

Lao
Details of CCSIDs and CCSID conversion for Lao.

Table 666. Native CCSIDs for Lao on supported platforms

Platform Native CCSIDs

IBM i

z/OS

1132

AIX

Linux

Windows

1133

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms.

Vietnamese
Details of CCSIDs and CCSID conversion for Vietnamese.

Table 667. Native CCSIDs for Vietnamese on supported platforms

Platform Native CCSIDs

IBM i

z/OS

1130

Windows 1258, 5354

AIX

Linux

1129

948 IBM MQ Developing Applications Reference

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

IBM i

Code page:
1130

Does not convert to code pages 1129, 5354

Japanese Latin SBCS
Details of CCSIDs and CCSID conversion for Japanese Latin SBCS.

Table 668. Native CCSIDs for Japanese Latin SBCS on supported platforms

Platform Native CCSIDs

IBM i

z/OS

1027

AIX 932, 5050, 33722 (see Note 1)

Windows 932, 943 (see Note 2)

Linux
943, 5050

Note:

1. 5050 and 33722 are CCSIDs related to base code page 954 on AIX. The CCSID reported
by the operating system is 33722.

2. Windows NT uses code page 932 but this is best represented by the CCSID of 943.
However, not all platforms of IBM MQ support this CCSID.

On IBM MQ for Windows CCSID 932 is used to represent code page 932, but a change to file ../
conv/table/ccsid.tbl can be made which changes the CCSID used to 943.

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Code page:
1027

Does not convert to code pages 932, 942, 943, 954, 5050, 33722

IBM i

Code page:
1027

Does not convert to code page 932

Developing applications reference 949

AIX

Code page:
932

Does not convert to code page 1027
5050

Does not convert to code page 1027
33722

Does not convert to code page 1027

Linux

Code page:
943

Does not convert to code page 1027
5050

Does not convert to code page 1027

Japanese Katakana SBCS
Details of CCSIDs and CCSID conversion for Japanese Katakana SBCS.

Table 669. Native CCSIDs for Japanese Katakana SBCS on supported platforms

Platform Native CCSIDs

IBM i

z/OS

290

AIX 932, 5050, 33722 (see Note 1)

Windows 932, 943 (see Note 2)

Linux
943, 5050

Note:

1. 5050 and 33722 are CCSIDs related to base code page 954 on AIX. The CCSID reported
by the operating system is 33722.

2. Windows NT uses code page 932 but this is best represented by the CCSID of 943.
However, not all platforms of IBM MQ support this CCSID.

On IBM MQ for Windows CCSID 932 is used to represent code page 932, but a change to file ../
conv/table/ccsid.tbl can be made which changes the CCSID used to 943.

3. In addition to the previous conversions, IBM MQ supports conversion from CCSID 897 to CCSIDs
37, 273, 277, 278, 280, 284, 285, 290, 297, 437, 500, 819, 850, 1027, and 1252 on the following
platforms:

• AIX

• Linux

950 IBM MQ Developing Applications Reference

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Code page:
290

Does not convert to code pages 932, 943, 954, 5050, 33722

IBM i

Code page:
290

Does not convert to code page 932

AIX

Code page:
932

Does not convert to code pages 290, 897
5050

Does not convert to code pages 290, 897
33722

Does not convert to code pages 290, 897

Linux

Code page:
943

Does not convert to code pages 290, 897
5050

Does not convert to code pages 290, 897

Japanese Kanji/ Latin Mixed
Details of CCSIDs and CCSID conversion for Japanese Kanji/Latin Mixed.

Table 670. Native CCSIDs for Japanese Kanji/ Latin Mixed on supported platforms

Platform Native CCSIDs

IBM i

z/OS

1399, 5035 (see Note 1)

AIX 932, 5050, 33722 (see Note 2)

Windows 932, 943 (see Note 4)

Linux
943, 5050

Developing applications reference 951

Note:

1. 5035 is a CCSID related to code page 939

2. 5050 and 33722 are CCSIDs related to base code page 954 on AIX. The CCSID reported
by the operating system is 33722.

3. Windows NT uses code page 932 but this is best represented by the CCSID of 943.
However, not all platforms of IBM MQ support this CCSID.

On IBM MQ for Windows CCSID 932 is used to represent code page 932, but a change to file ../
conv/table/ccsid.tbl can be made which changes the CCSID used to 943.

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Code page:
1399

Does not convert to code pages 954, 5035, 5050, 33722
5035

Does not convert to code pages 954, 1399, 5050, 33722

IBM i

Code page:
1399

Does not convert to code page 5039
5035

Does not convert to code page 5039

Japanese Kanji/ Katakana Mixed
Details of CCSIDs and CCSID conversion for Japanese Kanji/Katakana Mixed.

Table 671. Native CCSIDs for Japanese Kanji/ Katakana Mixed on supported platforms

Platform Native CCSIDs

z/OS 1390, 5026 (see Note 1)

IBM i 5026 (see Note 1)

AIX 932, 5050, 33722 (see Note 2)

Windows 932, 943 (see Note 4)

Linux
943, 5050

Note:

1. The single-byte mode of CCSIDs 1390 and 5026 in EBCDIC contain lower-
case characters in different locations to the typical/invariant layout for basic Latin and care must be
taken to ensure data is not lost when message data is being converted to other CCSIDs. In addition,
the use of these CCSIDs as a queue manager's default CCSID may cause issues when communicating

952 IBM MQ Developing Applications Reference

with other queue managers, for example, channel names using lower case characters may not be
correctly interpreted on the remote system. 5026 is a CCSID related to code page 930. CCSID 5026 is
the CCSID reported on IBM i when the Japanese Katakana (DBCS) feature is selected.

2. 5050 and 33722 are CCSIDs related to base code page 954 on AIX. The CCSID reported
by the operating system is 33722.

3. Windows NT uses code page 932 but this is best represented by the CCSID of 943.
However, not all platforms of IBM MQ support this CCSID.

On IBM MQ for Windows, CCSID 932 is used to represent code page 932, but a change to file ../
conv/table/ccsid.tbl can be made that changes the CCSID used to 943.

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Code page:
1390

Does not convert to code pages 954, 5026, 5050, 33722
Does not accept lowercase characters.

5026
Does not convert to code pages 954, 1390, 5050, 33722

IBM i

Code page:
5026

Does not convert to code pages 1390, 5039

Korean
Details of CCSIDs and CCSID conversion for Korean.

Table 672. Native CCSIDs for Korean on supported platforms

Platform Native CCSIDs

IBM i

z/OS

933, 1364

AIX

Linux

970

Windows 949, 1363

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Developing applications reference 953

Code page:
933

Does not convert to code page 970
1364

Does not convert to code page 970

Simplified Chinese
Details of CCSIDs and CCSID conversion for Simplified Chinese.

Table 673. Native CCSIDs for Simplified Chinese on supported platforms

Platform Native CCSIDs

z/OS 935, 1388

IBM i 935, 1388

AIX 1383, 1386

Windows 1381, 1386(see Note 2)

Linux
1383

Note:

1. Windows uses code page 936 but this is best represented by the CCSID of 1386.
However, not all platforms of IBM MQ support this CCSID.

On IBM MQ for Windows CCSID 1381 is used to represent code page 936, but a change to file ../
conv/table/ccsid.tbl can be made which changes the CCSID used to 1386.

2. IBM MQ supports the Chinese GB18030 standard.

On z/OS, Windows and Linux, conversion support is provided
between Unicode (UTF-8 and UTF-16) and CCSID 1388 (EBCDIC with GB18030 extensions), Unicode
(UTF-8 and UTF-16) and CCSID 5488 (GB18030), and between CCSID 1388 and CCSID 5488.

Note:

On IBM i, support is provided by the operating system for conversion between Unicode
(UTF-8 and UTF-16) and CCSID 1388 (EBCDIC with GB18030 extensions).

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Code page:
935

Does not convert to code page 1383
1388

Does not convert to code page 1383

954 IBM MQ Developing Applications Reference

Traditional Chinese
Details of CCSIDs and CCSID conversion for Traditional Chinese.

Table 674. Native CCSIDs for Traditional Chinese on supported platforms

Platform Native CCSIDs

IBM i

z/OS

937

Windows 950

AIX

Linux

950, 964

All platforms support conversion between their native CCSIDs and the native CCSIDs of other platforms,
with the following exceptions.

z/OS

Code page:
937

Does not convert to code page 964
1388

Does not convert to code page 1383

Linux

Code page:
964

Does not convert to code page 938

z/OS conversion support
A list of supported CCSID conversions.

Table 675. IBM MQ for z/OS CCSID conversion support

CCSID Converts to and from CCSIDS

37 256, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424, 437,
500, 720, 737, 775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858,
860-866, 869-871, 874-875, 880, 897, 903-905, 912, 914-916, 920-924,
1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1097, 1100, 1112,
1114-1115, 1122, 1124, 1126, 1130-1132, 1137, 1140-1149, 1200, 1208,
1250-1255, 1257-1258, 1275, 1280-1281, 1283, 4386, 4909, 4929, 4932,
4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5210-5211,
5346, 5348, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061,
9066, 13121, 13488, 16804, 17248, 17584, 25473, 25479, 25480, 25617,
25619, 25664, 28709

Developing applications reference 955

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

256 37, 273, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424, 437, 500,
737, 775, 819, 833, 836, 838, 850, 852, 857, 860-866, 869-871, 875,
880, 905, 1025-1027, 1112, 1122, 1200, 1208, 1251-1252, 1275, 4386,
4929, 4932, 4934, 4946, 4948, 4953, 4960, 4971, 5123, 8229, 8482,
8612, 9025, 9030, 9044, 9049, 9056, 9061, 13121, 13488, 16804, 17248,
17584, 28709

259 437, 808, 850-852, 855-858, 860-865, 867, 869, 872, 874, 899, 901-902,
915, 1098, 1161-1162, 1200, 1208, 1250-1258, 4946, 4948, 4951-4953,
4960, 4970, 5346, 5348, 9044, 9049, 9056, 9061, 9066, 13488, 17248,
17584

273 37, 256, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737, 775,
813, 819, 833, 836, 838, 850, 852, 855-858, 860-865, 869-871, 874-875,
880, 897, 903, 912, 916, 920, 923-924, 1009, 1025-1027, 1040-1043,
1047, 1051, 1088, 1100, 1112, 1122, 1140-1149, 1200, 1208, 1250,
1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951-4953, 4960,
4970-4971, 5012, 5123, 5346, 5348, 8229, 8482, 9025, 9030, 9044, 9049,
9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617,
25619, 25664, 28709

274 500, 1047

275 37, 437, 500, 819, 850, 1047, 1200, 1208, 1252, 4946, 5348, 8229, 13488,
17584, 28709

277 37, 256, 273, 278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737,
775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871,
874-875, 880, 897, 903, 912, 916, 920, 923-924, 1009, 1025-1027,
1040-1043, 1047, 1051, 1088, 1100, 1112, 1122, 1140-1149, 1200, 1208,
1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953,
4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,
9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617,
25619, 25664, 28709

278 37, 256, 273, 277, 280, 284-285, 290, 297, 367, 423, 437, 500, 737,
775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871,
874-875, 880, 897, 903, 912, 916, 920, 923-924, 1009, 1025-1027,
1040-1043, 1047, 1051, 1088, 1100, 1112, 1122, 1140-1149, 1200, 1208,
1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953,
4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,
9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617,
25619, 25664, 28709

280 37, 256, 273, 277-278, 284-285, 290, 297, 367, 423, 437, 500, 737, 775,
813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871,
874-875, 880, 897, 903, 912, 916, 920, 923-924, 1009, 1025-1027,
1040-1043, 1047, 1051, 1088, 1100, 1112, 1122, 1140-1149, 1200, 1208,
1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953,
4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,
9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617,
25619, 25664, 28709

281 1047

282 500, 1047, 1200, 1208, 13488, 17584

956 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

284 37, 256, 273, 277-278, 280, 285, 290, 297, 367, 423, 437, 500, 737,
775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871,
874-875, 880, 897, 903, 912, 916, 920, 923-924, 1009, 1025-1027,
1040-1043, 1047, 1051, 1088, 1100, 1112, 1122, 1140-1149, 1200, 1208,
1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953,
4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,
9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617,
25619, 25664, 28709

285 37, 256, 273, 277-278, 280, 284, 290, 297, 423, 437, 500, 737, 775, 813,
819, 833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871, 874-875,
880, 897, 903, 912, 916, 920, 923-924, 1025-1027, 1040-1043, 1047,
1051, 1088, 1100, 1112, 1122, 1140-1149, 1200, 1208, 1252, 1275, 4386,
4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012,
5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049, 9056, 9061, 9066,
13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

290 37, 256, 273, 277-278, 280, 284-285, 297, 367, 437, 500, 737, 775,
819, 833, 836, 850, 852, 855, 857, 860-865, 870-871, 895-897, 1009,
1025-1027, 1040-1043, 1047, 1088, 1112, 1122, 1139, 1200, 1208, 1252,
4386, 4929, 4932, 4946, 4948, 4951, 4953, 4960, 4992, 5123, 8229,
8482, 9025, 9044, 9049, 9056, 13121, 13488, 17248, 17584, 25473,
25617, 25619, 25664, 28709

293 1200, 1208, 13488, 17584

297 37, 256, 273, 277-278, 280, 284-285, 290, 367, 423, 437, 500, 737, 775,
813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-865, 869-871,
874-875, 880, 897, 903, 912, 916, 920, 923-924, 1009, 1025-1027,
1040-1043, 1047, 1051, 1088, 1100, 1112, 1122, 1140-1149, 1200, 1208,
1252, 1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953,
4960, 4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049,
9056, 9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617,
25619, 25664, 28709

300 301, 941, 1200, 1208, 1351, 4396, 8492, 13488, 16684, 17584

301 300, 941, 1200, 1208, 1351, 4396, 8492, 13488, 16684, 17584

367 37, 256, 273, 277-278, 280, 284, 290, 297, 500, 819, 833, 836, 850, 871,
875, 1009, 1026-1027, 1041, 1088, 1115, 1126, 1200, 1208, 4386, 4929,
4932, 4946, 4971, 5123, 5211, 8229, 8482, 9025, 13121, 13488, 17584,
25617, 25664, 28709

420 37, 256, 424, 437, 500, 720, 737, 775, 819, 850, 852, 857, 860-865, 1008,
1046, 1089, 1098, 1112, 1122, 1127, 1200, 1208, 1252, 1256, 4946,
4948, 4953, 4960, 5104, 5142, 5352, 8229, 8612, 9044, 9049, 9056,
9238, 13488, 16804, 17248, 17584, 28709

423 37, 256, 273, 277-278, 280, 284-285, 297, 437, 500, 737, 775, 813, 819,
838, 850-852, 857, 860-865, 869-871, 874-875, 880, 897, 903, 912, 916,
920, 1009, 1025-1027, 1041-1043, 1112, 1122, 1200, 1208, 1252-1253,
1280, 4909, 4934, 4946, 4948, 4953, 4960, 4970-4971, 5012, 5123,
8229, 9030, 9044, 9049, 9056, 9061, 9066, 13488, 17248, 17584, 25473,
25479, 25617, 25619, 28709

Developing applications reference 957

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

424 37, 256, 420, 437, 500, 737, 775, 803, 819, 836, 850, 852, 856-857,
860-865, 916, 1112, 1122, 1200, 1208, 1252, 1255, 4932, 4946, 4948,
4952-4953, 4960, 5012, 5351, 8229, 8612, 9044, 9049, 9056, 13488,
16804, 17248, 17584, 28709

437 37, 256, 259, 273, 275, 277-278, 280, 284-285, 290, 297, 420, 423-424,
500, 737, 775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-863,
865-866, 869-871, 874-875, 880, 897, 903, 905, 912, 914-916, 920-924,
1025-1027, 1040-1043, 1047, 1051, 1097, 1098, 1114-1115, 1126,
1140-1149, 1200, 1208, 1252, 1257, 1275, 1280-1281, 1283, 4386, 4909,
4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012, 5123,
5210-5211, 5348, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9061, 9066,
13121, 13488, 16804, 17584, 25473, 25479, 25617, 25619, 28709

500 37, 256, 273-275, 277-278, 280, 282, 284-285, 290, 297, 367, 420,
423-424, 437, 737, 775, 813, 819, 833, 836, 838, 850-852, 855-858,
860-866, 869-871, 874-875, 880, 891, 895, 897, 903-905, 912, 914-916,
920-924, 1004, 1009-1021, 1023, 1025-1027, 1040-1043, 1046-1047,
1051, 1088-1089, 1097, 1100-1107, 1112, 1114-1115, 1122, 1124-1126,
1129-1133, 1137, 1140-1149, 1200, 1208, 1250-1258, 1275, 1280-1283,
4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951-4953, 4960, 4970-4971,
5012, 5123, 5142, 5210-5211, 5346, 5348, 8229, 8482, 8612, 9025,
9030, 9044, 9049, 9056, 9061, 9066, 9238, 13121, 13488, 16804, 17248,
17584, 25473, 25479, 25480, 25617, 25619, 25664, 28709

720 37, 420, 864, 1200, 1208, 1256, 4960, 8229, 8612, 9056, 13488, 16804,
17248, 17584, 28709

737 37, 256, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500,
813, 833, 836, 838, 850, 869-871, 875, 880, 905, 1025-1027, 1097, 1200,
1208, 1252-1253, 1280, 4386, 4909, 4929, 4932, 4934, 4946, 4971, 5123,
8229, 8482, 8612, 9025, 9030, 9061, 13121, 13488, 16804, 17584, 28709

775 37, 256, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437, 500,
833, 836, 838, 850, 870-871, 875, 880, 905, 1025-1027, 1097, 1112,
1122, 1200, 1208, 1252, 1257, 4386, 4929, 4932, 4934, 4946, 4971,
5123, 8229, 8482, 8612, 9025, 9030, 13121, 13488, 16804, 17584, 28709

803 424, 819, 850, 856, 862, 916, 1200, 1208, 1252, 1255, 4946, 4952, 5012,
13488, 17584

806 1200, 1208, 13488, 17584

808 259, 858-859, 872, 923-924, 1140, 1148, 1153-1154, 1200, 1208, 5347,
5348, 13488, 17584

813 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 819, 838, 850,
852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916, 920,
1025-1027, 1041-1043, 1200, 1208, 1252-1253, 1280, 4909, 4934, 4946,
4948, 4953, 4970-4971, 5012, 5123, 5349, 8229, 9030, 9044, 9049, 9061,
9066, 13488, 17584, 25473, 25479, 25617, 25619, 28709

958 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

819 37, 256, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424,
437, 500, 803, 813, 833, 836, 838, 850, 852, 855, 857-858, 860-861,
863-866, 869-871, 874-875, 880, 897, 903, 905, 912, 914-916, 920-924,
1004, 1025-1027, 1041-1043, 1047, 1051, 1088-1089, 1097, 1098, 1112,
1114, 1122-1123, 1126, 1130, 1132, 1137, 1140-1149, 1200, 1208,
1250-1255, 1257-1258, 1275, 1280-1281, 1283, 4386, 4909, 4929, 4932,
4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5210,
5346, 5348, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061,
9066, 13121, 13488, 16804, 17248, 17584, 25473, 25479, 25617, 25619,
25664, 28709

833 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737, 775,
819, 836, 850, 852, 855, 857, 860-865, 870-871, 891, 1009, 1025-1027,
1040-1043, 1088, 1112, 1122, 1126, 1200, 1208, 1252, 4386, 4929, 4932,
4946, 4948, 4951, 4953, 4960, 5123, 8229, 8482, 9025, 9044, 9049,
9056, 13121, 13488, 17248, 17584, 25617, 25619, 25664, 28709

834 926, 951, 1200, 1208, 1362, 4930, 9026, 13488, 17584

835 927, 947, 1200, 1208, 4931, 9027, 13488, 17584, 21427

836 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 424, 437, 500, 737,
775, 819, 833, 850, 852, 855, 857, 870-871, 875, 903, 1009, 1025-1027,
1040-1043, 1088, 1112, 1114-1115, 1122, 1200, 1208, 1252, 4386, 4929,
4932, 4946, 4948, 4951, 4953, 4971, 5123, 5210-5211, 8229, 8482, 9025,
9044, 9049, 13121, 13488, 17584, 25479, 25617, 25619, 25664, 28709

837 928, 1200, 1208, 1380, 1385, 4933, 13488, 17584

838 37, 256, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 775, 813,
819, 850, 852, 857, 860-865, 869-871, 874-875, 880, 897, 903, 912, 916,
920, 1025-1027, 1041-1043, 1112, 1122, 1200, 1208, 1252, 4909, 4934,
4946, 4948, 4953, 4960, 4970-4971, 5012, 5123, 8229, 9030, 9044, 9049,
9056, 9061, 9066, 13488, 17248, 17584, 25473, 25479, 25617, 25619,
28709

848 924, 1148, 1158, 1200, 1208, 5347, 13488, 17584

849 924, 1148, 1154, 1200, 1208, 5347, 13488, 17584

850 37, 256, 259, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420,
423-424, 437, 500, 737, 775, 803, 813, 819, 833, 836, 838, 852, 855-858,
860-866, 869-871, 874-875, 880, 897, 903, 905, 912, 914-916, 920-924,
1004, 1025-1027, 1040-1043, 1047, 1051, 1088-1089, 1097, 1098, 1100,
1112, 1114, 1122, 1126, 1130, 1132, 1140-1149, 1200, 1208, 1250-1257,
1275, 1280-1281, 1283, 4386, 4909, 4929, 4932, 4934, 4946, 4948,
4951-4953, 4960, 4970-4971, 5012, 5123, 5210, 5346, 5348, 8229, 8482,
8612, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 13488, 16804,
17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

851 259, 423, 500, 875, 1200, 1208, 4971, 13488, 17584

Developing applications reference 959

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

852 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 813, 819, 833, 836, 838, 850, 855, 857, 860-861, 863, 869-871,
874-875, 880, 897, 903, 905, 912, 916, 920, 1025-1027, 1040-1043,
1047, 1088, 1097, 1200, 1208, 1250, 1252, 1282, 4386, 4909, 4929,
4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012, 5123, 5346, 8229,
8482, 8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 16804,
17584, 25473, 25479, 25617, 25619, 25664, 28709

855 37, 259, 273, 277-278, 280, 284-285, 290, 297, 437, 500, 819, 833, 836,
850, 852, 857, 866, 870-871, 878, 880, 912, 915, 1025-1027, 1040-1043,
1088, 1200, 1208, 1250-1252, 1283, 4386, 4929, 4932, 4946, 4948, 4951,
4953, 5123, 5346, 5347, 8229, 8482, 9025, 9044, 9049, 13121, 13488,
17584, 25617, 25619, 25664, 28709

856 259, 273, 424, 500, 803, 850, 862, 916, 1200, 1208, 1255, 4946, 4952,
5012, 5351, 13488, 17584

857 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 813, 819, 833, 836, 838, 850, 852, 855, 860-861, 863, 869-871,
874-875, 880, 897, 903, 905, 912, 916, 920, 1025-1027, 1040-1043,
1088, 1097, 1200, 1208, 1252, 1254, 1281, 4386, 4909, 4929, 4932,
4934, 4946, 4948, 4951, 4953, 4970-4971, 5012, 5123, 5350, 8229, 8482,
8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 16804, 17584,
25473, 25479, 25617, 25619, 25664, 28709

858 37, 259, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 850,
860-861, 865, 871-872, 901-902, 923-924, 1047, 1051, 1140-1149,
1153-1157, 1160-1162, 1164, 1200, 1208, 1252, 1275, 4946, 5348, 8229,
13488, 17584, 28709

859 808, 872, 901-902, 1153-1157, 1160-1162, 1164, 1200, 1208, 13488,
17584

860 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 813, 819, 833, 838, 850, 852, 857-858, 861, 863, 865, 869-871,
874-875, 880, 897, 903, 905, 912, 916, 920, 923-924, 1025-1027,
1041-1043, 1097, 1140, 1145-1146, 1148, 1200, 1208, 1252, 4386, 4909,
4929, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123, 5348, 8229, 8482,
8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 16804, 17584,
25473, 25479, 25617, 25619, 28709

861 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 813, 819, 833, 838, 850, 852, 857-858, 860, 863, 869-871, 874-875,
880, 897, 903, 905, 912, 916, 920, 923-924, 1025-1027, 1041-1043,
1097, 1148, 1149, 1200, 1208, 1252, 4386, 4909, 4929, 4934, 4946,
4948, 4953, 4970-4971, 5012, 5123, 5348, 8229, 8482, 8612, 9025, 9030,
9044, 9049, 9061, 9066, 13121, 13488, 16804, 17584, 25473, 25479,
25617, 25619, 28709

862 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 803, 833, 838, 850, 856, 870-871, 875, 880, 905, 916, 1025-1027,
1097, 1200, 1208, 1252, 1255, 4386, 4929, 4934, 4946, 4952, 4971,
5012, 5123, 5351, 8229, 8482, 8612, 9025, 9030, 12712, 13121, 13488,
16804, 17584, 28709

960 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

863 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 813, 819, 833, 838, 850, 852, 857, 860-861, 865, 869-871, 874-875,
880, 897, 903, 905, 912, 916, 920, 1025-1027, 1041-1043, 1051, 1097,
1140-1149, 1200, 1208, 1252, 1275, 4386, 4909, 4929, 4934, 4946, 4948,
4953, 4970-4971, 5012, 5123, 5348, 8229, 8482, 8612, 9025, 9030, 9044,
9049, 9061, 9066, 13121, 13488, 16804, 17584, 25473, 25479, 25617,
25619, 28709

864 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500,
720, 819, 833, 838, 850, 870-871, 875, 880, 905, 918, 1008, 1025-1027,
1046, 1089, 1097, 1127, 1200, 1208, 1252, 1256, 4386, 4929, 4934,
4946, 4960, 4971, 5104, 5123, 5142, 5352, 8229, 8482, 8612, 9025,
9030, 9056, 9238, 13121, 13488, 16804, 17248, 17584, 28709

865 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 819, 833, 838, 850, 858, 860, 863, 870-871, 875, 880, 905, 923-924,
1025-1027, 1097, 1142-1143, 1148, 1200, 1208, 1252, 4386, 4929, 4934,
4946, 4971, 5123, 5348, 8229, 8482, 8612, 9025, 9030, 13121, 13488,
16804, 17584, 28709

866 37, 256, 437, 500, 819, 850, 855, 870, 878, 880, 915, 1025, 1200, 1208,
1251-1252, 1283, 4946, 4951, 5347, 8229, 13488, 17584, 28709

867 259, 1153-1155, 1160, 1200, 1208, 4899, 5351, 9048, 12712, 13488,
17584

868 918, 1006, 1200, 1208, 13488, 17584

869 37, 256, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 813,
819, 838, 850, 852, 857, 860-861, 863, 870-871, 874-875, 880, 897, 903,
912, 916, 920, 1025-1027, 1041-1043, 1200, 1208, 1252-1254, 1280,
4909, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123, 5349, 8229, 9030,
9044, 9049, 9061, 9066, 13488, 17584, 25473, 25479, 25617, 25619,
28709

870 37, 256, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 737, 775,
813, 819, 833, 836, 838, 850, 852, 855, 857, 860-866, 869, 871, 874-875,
880, 897, 903, 912, 915-916, 920, 1009, 1025-1027, 1040-1043, 1047,
1088, 1112, 1122, 1200, 1208, 1250, 1252, 1282, 4386, 4909, 4929,
4932, 4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5346,
8229, 8482, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 13488,
17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

871 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737,
775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858, 860-865, 869,
870, 874-875, 880, 897, 903, 912, 916, 920, 923-924, 1009, 1025-1027,
1040-1043, 1047, 1051, 1088, 1112, 1122, 1140-1149, 1200, 1208, 1252,
1275, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4960,
4970-4971, 5012, 5123, 5348, 8229, 8482, 9025, 9030, 9044, 9049, 9056,
9061, 9066, 13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619,
25664, 28709

872 259, 808, 858-859, 923-924, 1140-1149, 1153-1155, 1200, 1208, 5347,
5348, 13488, 17584

Developing applications reference 961

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

874 37, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838,
850, 852, 857, 860-861, 863, 869-871, 875, 880, 897, 903, 912, 916, 920,
1025-1027, 1041-1043, 1200, 1208, 1252, 4909, 4934, 4946, 4948, 4953,
4970-4971, 5012, 5123, 8229, 9030, 9044, 9049, 9061, 9066, 13488,
17584, 25473, 25479, 25617, 25619, 28709

875 37, 256, 273, 277-278, 280, 284-285, 297, 367, 423, 437, 500, 737, 775,
813, 819, 836, 838, 850-852, 857, 860-865, 869-871, 874, 880, 897, 903,
912, 916, 920, 1009, 1025-1027, 1041-1043, 1047, 1088, 1112, 1122,
1200, 1208, 1252-1253, 1280, 4909, 4932, 4934, 4946, 4948, 4953, 4960,
4970-4971, 5012, 5123, 5349, 8229, 9030, 9044, 9049, 9056, 9061, 9066,
13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

878 855, 866, 880, 915, 1025, 1131, 1200, 1208, 1251, 1283, 4951, 5347,
13488, 17584

880 37, 256, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 775,
813, 819, 838, 850, 852, 855, 857, 860-866, 869-871, 874-875, 878,
897, 903, 912, 915-916, 920, 1009, 1025-1027, 1041-1043, 1112, 1122,
1200, 1208, 1251-1252, 1283, 4909, 4934, 4946, 4948, 4951, 4953, 4960,
4970-4971, 5012, 5123, 5347, 8229, 9030, 9044, 9049, 9056, 9061, 9066,
13488, 17248, 17584, 25473, 25479, 25617, 25619, 28709

891 500, 833, 1088, 1200, 1208, 4929, 9025, 13121, 13488, 17584, 25664

895 290, 500, 1027, 1041, 1200, 1208, 4386, 5123, 8482, 13488, 17584,
25617

896 290, 1027, 1041, 1200, 1208, 4386, 4992, 5123, 8482, 13488, 17584,
25617

897 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 838,
850, 852, 857, 860-861, 863, 869-871, 874-875, 880, 903, 912, 916, 920,
1025-1027, 1041-1043, 1200, 1208, 1252, 4386, 4909, 4934, 4946, 4948,
4953, 4970-4971, 5012, 5123, 8229, 8482, 9030, 9044, 9049, 9061, 9066,
13488, 17584, 25473, 25479, 25617, 25619, 28709

899 259

901 259, 858-859, 902, 923-924, 1140, 1148, 1156-1157, 1200, 1208, 5348,
5353, 13488, 17584

902 259, 858-859, 901, 923-924, 1140, 1148, 1156-1157, 1200, 1208, 5348,
5353, 13488, 17584

903 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 836, 838,
850, 852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 912, 916, 920,
1025-1027, 1041-1043, 1115, 1200, 1208, 1252, 4909, 4932, 4934, 4946,
4948, 4953, 4970-4971, 5012, 5123, 5211, 8229, 9030, 9044, 9049, 9061,
9066, 13488, 17584, 25473, 25479, 25617, 25619, 28709

904 37, 500, 1114, 1200, 1208, 5210, 8229, 13488, 17584, 25480, 28709

905 37, 256, 437, 500, 737, 775, 819, 850, 852, 857, 860-865, 920, 1026,
1112, 1122, 1200, 1208, 1252, 1254, 1281, 4946, 4948, 4953, 4960,
8229, 9044, 9049, 9056, 13488, 17248, 17584, 28709

962 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

912 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838, 850,
852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 916, 920,
1025-1027, 1041-1043, 1047, 1200, 1208, 1250, 1252, 1282, 4909, 4934,
4946, 4948, 4951, 4953, 4970-4971, 5012, 5123, 5346, 8229, 9030, 9044,
9049, 9061, 9066, 13488, 17584, 25473, 25479, 25617, 25619, 28709

914 37, 437, 500, 819, 850, 1200, 1208, 1252, 1257, 4946, 8229, 13488,
17584, 28709

915 37, 259, 437, 500, 819, 850, 855, 866, 870, 878, 880, 1025, 1131, 1200,
1208, 1251-1252, 1283, 4946, 4951, 5347, 8229, 13488, 17584, 28709

916 37, 273, 277-278, 280, 284-285, 297, 423-424, 437, 500, 803, 813, 819,
838, 850, 852, 856-857, 860-863, 869-871, 874-875, 880, 897, 903, 912,
920, 1025-1027, 1041-1043, 1200, 1208, 1252, 1255, 4909, 4934, 4946,
4948, 4952-4953, 4970-4971, 5012, 5123, 5351, 8229, 9030, 9044, 9049,
9061, 9066, 13488, 17584, 25473, 25479, 25617, 25619, 28709

918 864, 868, 1006, 1200, 1208, 4960, 9056, 13488, 17248, 17584

920 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838, 850,
852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 905, 912, 916,
1025-1026, 1200, 1208, 1252, 1254, 1281, 4909, 4934, 4946, 4948, 4953,
4970-4971, 5012, 5350, 8229, 9030, 9044, 9049, 9061, 9066, 13488,
17584, 25473, 25479, 28709

921 37, 437, 500, 819, 850, 922, 1112, 1122, 1200, 1208, 1252, 1257, 4946,
5353, 8229, 13488, 17584, 28709

922 37, 437, 500, 819, 850, 921, 1112, 1122, 1200, 1208, 1252, 1257, 4946,
5353, 8229, 13488, 17584, 28709

923 37, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 850,
858, 860-861, 865, 871-872, 901-902, 924, 1047, 1051, 1140-1149,
1153-1158, 1160-1162, 1164, 1200, 1208, 1252, 1275, 4946, 5348, 8229,
13488, 17584, 28709

924 37, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 848-850,
858, 860-861, 865, 871-872, 901-902, 923, 1047, 1051, 1140-1149,
1153-1157, 1160-1164, 1200, 1208, 1252, 1275, 4946, 5348, 8229,
13488, 17584, 28709

926 834, 951, 9026

927 835, 947, 1200, 1208, 4931, 9027, 13488, 17584, 21427

928 837, 1200, 1208, 1380, 13488, 17584

930 931-932, 939, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035,
5038-5039, 9122, 9124, 9131, 9135, 13218-13219, 13231, 13488, 17314,
17584, 25508, 25518, 29614, 33698-33700, 37796

931 930, 932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,
9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

932 930-931, 939, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035,
5038-5039, 9122, 9124, 9131, 9135, 13218-13219, 13231, 13488, 17314,
17584, 25508, 25518, 29614, 33698-33700, 37796

Developing applications reference 963

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

933 934, 944, 949, 1200, 1208, 1363-1364, 5029, 5045, 5460, 9125, 9555,
13221, 13488, 13651, 17317, 17584, 25510, 25520, 25525, 29616,
29621, 33717, 37813

934 933, 949, 5029, 5045, 5460, 9125, 13221, 17317, 25510, 25525, 29621,
33717, 37813

935 936, 946, 1200, 1208, 1381, 1386, 1388, 5031, 5477, 5482, 5484, 9127,
13223, 13488, 17584, 25512

936 935, 946, 1381, 5031, 5477, 5484, 9127, 13223, 25512

937 938, 948, 950, 1200, 1208, 1370, 5033, 5046, 9142, 13488, 17584,
25514, 25524, 29620

938 937, 950, 1370, 5033, 5046, 9142, 25514

939 930-932, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035,
5038-5039, 9122, 9124, 9131, 9135, 13218-13219, 13231, 13488, 17314,
17584, 25508, 25518, 29614, 33698-33700, 37796

941 300-301, 1200, 1208, 1351, 4396, 8492, 13488, 16684, 17584

942 930-932, 939, 943, 1200, 1208, 1390, 1399, 5026, 5028, 5035,
5038-5039, 9122, 9124, 9131, 9135, 13218-13219, 13231, 13488, 17314,
17584, 25508, 25518, 29614, 33698-33700, 37796

943 930-932, 939, 942, 1200, 1208, 1390, 1399, 5026, 5028, 5035,
5038-5039, 9122, 9124, 9131, 9135, 13218-13219, 13231, 13488, 17314,
17584, 25508, 25518, 29614, 33698-33700, 37796

944 933, 949, 1200, 1208, 5029, 5045, 5460, 9125, 13221, 13488, 17317,
17584, 25520, 25525, 29616, 29621, 33717, 37813

946 935-936, 1200, 1208, 5031, 5484, 9127, 13223, 13488, 17584, 25512

947 835, 927, 1200, 1208, 4931, 9027, 13488, 17584, 21427

948 937, 950, 1200, 1208, 1370, 5033, 5046, 9142, 13488, 17584, 25524,
29620

949 933-934, 944, 1200, 1208, 1363-1364, 5029, 5045, 5460, 9125, 9555,
13221, 13488, 13651, 17317, 17584, 25510, 25520, 25525, 29616,
29621, 33717, 37813

950 937-938, 948, 1200, 1208, 1370, 5033, 5046, 9142, 13488, 17584, 25514,
25524, 29620

951 834, 926, 1200, 1208, 1362, 4930, 9026, 13488, 17584

1004 500, 819, 850, 1200, 1208, 4946, 13488, 17584

1006 868, 918, 1200, 1208, 13488, 17584

1008 420, 864, 1200, 1208, 4960, 5104, 8612, 9056, 13488, 16804, 17248,
17584

1009 37, 273, 277-278, 280, 284, 290, 297, 367, 423, 500, 833, 836, 870-871,
875, 880, 1025-1026, 1200, 1208, 4386, 4929, 4932, 4971, 8229, 8482,
9025, 13121, 13488, 17584, 28709

1010 500, 1200, 1208, 13488, 17584

964 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

1011 500, 1200, 1208, 13488, 17584

1012 500, 1200, 1208, 13488, 17584

1013 500, 1140, 1200, 1208, 13488, 17584

1014 500, 1200, 1208, 13488, 17584

1015 500, 1200, 1208, 13488, 17584

1016 500, 1200, 1208, 13488, 17584

1017 500, 1200, 1208, 13488, 17584

1018 500, 1200, 1208, 13488, 17584

1019 500, 1200, 1208, 13488, 17584

1020 500

1021 500

1023 500

1025 37, 256, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 737, 775,
813, 819, 833, 836, 838, 850, 852, 855, 857, 860-866, 869-871, 874-875,
878, 880, 897, 903, 912, 915-916, 920, 1009, 1026-1027, 1040-1043,
1051, 1088, 1112, 1122, 1131, 1200, 1208, 1251-1252, 1283, 4386, 4909,
4929, 4932, 4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123,
5347, 8229, 8482, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121,
13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

1026 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500,
737, 775, 813, 819, 833, 836, 838, 850, 852, 855, 857, 860-865,
869-871, 874-875, 880, 897, 903, 905, 912, 916, 920, 1009, 1025, 1027,
1040-1043, 1047, 1088, 1112, 1122, 1200, 1208, 1252, 1254, 1281, 4386,
4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012,
5123, 5350, 8229, 8482, 9025, 9030, 9044, 9049, 9056, 9061, 9066,
13121, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

1027 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 737,
775, 813, 819, 833, 836, 838, 850, 852, 855, 857, 860-865, 869-871,
874-875, 880, 895-897, 903, 912, 916, 1025-1026, 1040-1043, 1047,
1088, 1112, 1122, 1139, 1200, 1208, 1252, 4386, 4909, 4929, 4932,
4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 4992, 5012, 5123, 8229,
8482, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 13488, 17248,
17584, 25473, 25479, 25617, 25619, 25664, 28709

1040 37, 273, 277-278, 280, 284-285, 290, 297, 437, 500, 833, 836, 850,
852, 855, 857, 870-871, 1025-1027, 1041-1043, 1088, 1200, 1208, 4386,
4929, 4932, 4946, 4948, 4951, 4953, 5123, 8229, 8482, 9025, 9044,
9049, 13121, 13488, 17584, 25617, 25619, 25664, 28709

1041 37, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 813, 819,
833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880,
895-897, 903, 912, 916, 1025-1027, 1040, 1042-1043, 1088, 1200, 1208,
1252, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971,
4992, 5012, 5123, 8229, 8482, 9025, 9030, 9044, 9049, 9061, 9066,
13121, 13488, 17584, 25473, 25479, 25617, 25619, 25664, 28709

Developing applications reference 965

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

1042 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 833,
836, 838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897,
903, 912, 916, 1025-1027, 1040, 1041, 1043, 1088, 1200, 1208, 4386,
4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012, 5123,
8229, 8482, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 17584,
25473, 25479, 25617, 25619, 25664, 28709

1043 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 833,
836, 838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897,
903, 912, 916, 1025-1027, 1040, 1041, 1042, 1088, 1114, 1200, 1208,
4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012,
5123, 5210, 8229, 8482, 9025, 9030, 9044, 9049, 9061, 9066, 13121,
13488, 17584, 25473, 25479, 25617, 25619, 25664, 28709

1046 420, 500, 864, 1089, 1127, 1200, 1208, 1256, 4960, 5142, 5352, 8612,
9056, 9238, 13488, 16804, 17248, 17584

1047 37, 273-275, 277-278, 280, 281, 282, 284-285, 290, 297, 437, 500,
819, 850, 852, 858, 870-871, 875, 912, 923-924, 1026-1027, 1140-1149,
1200, 1208, 1252, 1254, 4946, 4948, 5123, 8229, 8482, 13488, 17584,
28709

1051 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863, 871,
923-924, 1025, 1097, 1140-1149, 1200, 1208, 1252, 1275, 4946, 5348,
8229, 13488, 17584, 28709

1088 37, 273, 277-278, 280, 284-285, 290, 297, 367, 500, 819, 833, 836, 850,
852, 855, 857, 870-871, 875, 891, 1025-1027, 1040-1043, 1126, 1200,
1208, 4386, 4929, 4932, 4946, 4948, 4951, 4953, 4971, 5123, 8229,
8482, 9025, 9044, 9049, 13121, 13488, 17584, 25617, 25619, 25664,
28709

1089 420, 500, 819, 850, 864, 1046, 1127, 1200, 1208, 1256, 4946, 4960, 5142,
5352, 8612, 9056, 9238, 13488, 16804, 17248, 17584

1097 37, 437, 500, 737, 775, 819, 850, 852, 857, 860-865, 1051, 1098, 1112,
1122, 1200, 1208, 1252, 4946, 4948, 4953, 4960, 8229, 9044, 9049,
9056, 13488, 17248, 17584, 28709

1098 259, 420, 437, 819, 850, 1097, 1200, 1208, 1252, 4946, 8612, 13488,
16804, 17584

1100 37, 273, 277-278, 280, 284-285, 297, 500, 850, 4946, 8229, 28709

1101 500

1102 500

1103 500

1104 500

1105 500

1106 500

1107 500

966 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

1112 37, 256, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500, 775,
819, 833, 836, 838, 850, 870-871, 875, 880, 905, 921-922, 1025-1027,
1097, 1122, 1200, 1208, 1252, 1257, 4386, 4929, 4932, 4934, 4946,
4971, 5123, 5353, 8229, 8482, 8612, 9025, 9030, 13121, 13488, 16804,
17584, 28709

1114 37, 437, 500, 819, 836, 850, 904, 1043, 1115, 1200, 1208, 4932, 4946,
5210-5211, 8229, 13488, 17584, 25480, 25619, 28709

1115 37, 367, 437, 500, 836, 903, 1114, 1200, 1208, 4932, 5210-5211, 8229,
13488, 17584, 25479, 28709

1122 37, 256, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 500, 775,
819, 833, 836, 838, 850, 870-871, 875, 880, 905, 921-922, 1025-1027,
1097, 1112, 1200, 1208, 1252, 1257, 4386, 4929, 4932, 4934, 4946,
4971, 5123, 5353, 8229, 8482, 8612, 9025, 9030, 13121, 13488, 16804,
17584, 28709

1123 819, 1124-1125, 1148, 1200, 1208, 1251-1252, 1283, 5347, 13488,
17584

1124 37, 500, 1123, 1125, 1200, 1208, 1251, 1283, 5347, 8229, 13488, 17584,
28709

1125 500, 1123, 1124, 1200, 1208, 1251, 1283, 5347, 13488, 17584

1126 37, 367, 437, 500, 819, 833, 850, 1088, 1200, 1208, 1252, 4929, 4946,
8229, 9025, 13121, 13488, 17584, 25664, 28709

1127 420, 864, 1046, 1089, 1256, 4960, 5142, 8612, 9056, 9238, 16804, 17248

1129 500, 1130, 1200, 1208, 1258, 5354, 13488, 17584

1130 37, 500, 819, 850, 1129, 1200, 1208, 1252, 1258, 4946, 5354, 8229,
13488, 17584, 28709

1131 37, 500, 878, 915, 1025, 1200, 1208, 1251, 1283, 5347, 8229, 13488,
17584, 28709

1132 37, 500, 819, 850, 1133, 1200, 1208, 1252, 4946, 8229, 13488, 17584,
28709

1133 500, 1132, 1200, 1208, 13488, 17584

1137 37, 500, 819, 1200, 1208, 8229, 13488, 17584, 28709

1139 290, 1027, 4386, 5123, 8482

1140 37, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 850, 858,
860, 863, 871-872, 901-902, 923-924, 1013, 1047, 1051, 1141-1149,
1153-1157, 1160-1162, 1164, 1200, 1208, 1252, 1275, 4946, 5348, 8229,
13488, 17584, 28709

1141 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858,
863, 871-872, 923-924, 1047, 1051, 1140, 1142-1149, 1153-1157,
1160-1162, 1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584,
28709

Developing applications reference 967

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

1142 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863,
865, 871-872, 923-924, 1047, 1051, 1140-1141, 1143-1149, 1153-1157,
1160-1162, 1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584,
28709

1143 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863,
865, 871-872, 923-924, 1047, 1051, 1140-1142, 1144-1149, 1153-1157,
1160-1162, 1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584,
28709

1144 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863,
871-872, 923-924, 1047, 1051, 1140-1143, 1145-1149, 1153-1157,
1160-1162, 1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584,
28709

1145 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 860,
863, 871-872, 923-924, 1047, 1051, 1140-1144, 1146-1149, 1153-1157,
1160-1162, 1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584,
28709

1146 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 860,
863, 871-872, 923-924, 1047, 1051, 1140-1145, 1147-1149, 1153-1157,
1160-1162, 1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584,
28709

1147 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863,
871-872, 923-924, 1047, 1051, 1140-1146, 1148-1149, 1153-1157,
1160-1162, 1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584,
28709

1148 37, 273, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 848-850,
858, 860-861, 863, 865, 871-872, 901-902, 923-924, 1047, 1051, 1123,
1140-1147, 1149, 1153-1164, 1200, 1208, 1252, 1275, 4899, 4946, 5348,
5349, 8229, 12712, 13488, 17584, 28709

1149 37, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 861,
863, 871-872, 923-924, 1047, 1051, 1140-1148, 1153-1157, 1160-1162,
1200, 1208, 1252, 1275, 4946, 5348, 8229, 13488, 17584, 28709

1153 808, 858-859, 867, 872, 923-924, 1140-1149, 1154-1157, 1160-1162,
1200, 1208, 5348, 9044, 13488, 17584

1154 808, 849, 858-859, 867, 872, 923-924, 1140-1149, 1153, 1155-1157,
1160-1162, 1200, 1208, 5347, 5348, 13488, 17584

1155 858-859, 867, 872, 923-924, 1140-1149, 1153-1154, 1156-1157,
1160-1162, 1200, 1208, 5348, 5350, 9049, 13488, 17584

1156 858-859, 901-902, 923-924, 1140-1149, 1153-1155, 1157, 1160, 1200,
1208, 5348, 5353, 12712, 13488, 17584

1157 858-859, 901-902, 923-924, 1140-1149, 1153-1156, 1160, 1200, 1208,
5348, 5353, 12712, 13488, 17584

1158 848, 923, 1148, 1200, 1208, 5347, 5348, 13488, 17584

1159 1148, 1200, 1208, 13488, 17584

1160 858-859, 867, 923-924, 1140-1149, 1153-1157, 1161-1162, 1200, 1208,
5348, 13488, 17584

968 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

1161 259, 858-859, 923-924, 1140-1149, 1153-1155, 1160, 5348, 17584

1162 259, 858-859, 923-924, 1140-1149, 1153-1155, 1160, 5348, 17584

1163 924, 1148, 1164, 5354, 17584

1164 858-859, 923-924, 1140, 1148, 1163, 1200, 1208, 5348, 5354, 13488,
17584

1166 1200,1208,13488,17584

1200 37, 256, 259, 273, 275, 277-278, 280, 282, 284-285, 290, 293, 297,
300-301, 367, 420, 423-424, 437, 500, 720, 737, 775, 803, 806,
808, 813, 819, 833-838, 848-852, 855-872, 874-875, 878, 880, 891,
895-897, 901-905, 912, 914-916, 918, 920-924, 927-928, 930, 932-933,
935, 937, 939, 941-944, 946-951, 1004, 1006, 1008-1019, 1025-1027,
1040-1043, 1046-1047, 1051, 1088-1089, 1097-1098, 1112, 1114-1115,
1122-1126, 1129-1133, 1137, 1140-1149, 1153-1160, 1164, 1166,
1208, 1250-1258, 1275-1277, 1280-1285, 1351, 1362-1364, 1370-1371,
1374-1379, 1380-1381, 1385-1386, 1388, 1390, 1399, 4899, 4909, 4930,
4933, 4948, 4951-4952, 4960, 4971, 5012, 5039, 5104, 5123, 5142, 5210,
5346-5354, 8482, 8612, 9027, 9030, 9044, 9048-9049, 9056, 9061, 9066,
9238, 12712, 13121, 13218, 13488, 16684, 16804, 17248, 17584, 21427,
28709

1208 37, 256, 259, 273, 275, 277-278, 280, 282, 284-285, 290, 293, 297,
300-301, 367, 420, 423-424, 437, 500, 720, 737, 775, 803, 806,
808, 813, 819, 833-838, 848-852, 855-872, 874-875, 878, 880, 891,
895-897, 901-905, 912, 914-916, 918, 920-924, 927-928, 930, 932-933,
935, 937, 939, 941-944, 946-951, 1004, 1006, 1008-1019, 1025-1027,
1040-1043, 1046-1047, 1051, 1088-1089, 1097-1098, 1112, 1114-1115,
1122-1126, 1129-1133, 1137, 1140-1149, 1153-1160, 1164, 1166,
1200, 1250-1258, 1275-1277, 1280-1285, 1351, 1362-1364, 1370-1371,
1374-1379, 1380-1381, 1385-1386, 1388, 1390, 1399, 4899, 4909, 4930,
4933, 4948, 4951-4952, 4960, 4971, 5012, 5026, 5035, 5039, 5104, 5123,
5142, 5210, 5346-5354, 8482, 8612, 9027, 9030, 9044, 9048-9049, 9056,
9061, 9066, 9238, 12712, 13121, 13218, 13488, 16684, 16804, 17248,
17584, 21427, 28709

1250 37, 259, 273, 500, 819, 850, 852, 855, 870, 912, 1200, 1208, 1252, 1282,
4946, 4948, 4951, 5346, 8229, 9044, 13488, 17584, 28709

1251 37, 256, 259, 500, 819, 850, 855, 866, 878, 880, 915, 1025, 1123-1125,
1131, 1200, 1208, 1252, 1283, 4946, 4951, 5347, 8229, 13488, 17584,
28709

1252 37, 256, 259, 273, 275, 277-278, 280, 284-285, 290, 297, 420, 423-424,
437, 500, 737, 775, 803, 813, 819, 833, 836, 838, 850, 852, 855,
857-858, 860-866, 869-871, 874-875, 880, 897, 903, 905, 912, 914-916,
920-924, 1025-1027, 1041, 1047, 1051, 1097-1098, 1112, 1122-1123,
1126, 1130, 1132, 1140-1149, 1200, 1208, 1250-1251, 1254-1255, 1257,
1275, 1280-1281, 1283, 4386, 4909, 4929, 4932, 4934, 4946, 4948, 4951,
4953, 4960, 4970-4971, 5012, 5123, 5346, 5348, 8229, 8482, 8612,
9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 13488, 16804, 17248,
17584, 25473, 25479, 25617, 28709

1253 37, 259, 423, 500, 737, 813, 819, 850, 869, 875, 1200, 1208, 1280, 4909,
4946, 4971, 5349, 8229, 9061, 13488, 17584, 28709

Developing applications reference 969

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

1254 37, 259, 500, 819, 850, 857, 869, 905, 920, 1026, 1047, 1200, 1208, 1252,
1281, 4946, 4953, 5350, 8229, 9049, 9061, 13488, 17584, 28709

1255 37, 259, 424, 500, 803, 819, 850, 856, 862, 916, 1200, 1208, 1252, 1281,
4946, 4952, 5012, 5351, 8229, 13488, 17584, 28709

1256 259, 420, 500, 720, 850, 864, 1046, 1089, 1127, 1200, 1208, 4946, 4960,
5142, 5352, 8612, 9056, 9238, 13488, 16804, 17248, 17584

1257 37, 259, 437, 500, 775, 819, 850, 914, 921-922, 1112, 1122, 1200, 1208,
1252, 4946, 5353, 8229, 13488, 17584, 28709

1258 37, 259, 500, 819, 1129-1130, 1200, 1208, 5354, 8229, 13488, 17584,
28709

1275 37, 256, 273, 277-278, 280, 284-285, 297, 437, 500, 819, 850, 858, 863,
871, 923-924, 1051, 1140-1149, 1200, 1208, 1252, 4946, 5348, 8229,
13488, 17584, 28709

1276 1200, 1208, 13488, 17584

1277 1200, 1208, 13488, 17584

1280 37, 423, 437, 500, 737, 813, 819, 850, 869, 875, 1200, 1208, 1252-1253,
4909, 4946, 4971, 5349, 8229, 9061, 13488, 17584, 28709

1281 37, 437, 500, 819, 850, 857, 905, 920, 1026, 1200, 1208, 1252,
1254-1255, 4946, 4953, 5350, 8229, 9049, 13488, 17584, 28709

1282 500, 852, 870, 912, 1200, 1208, 1250, 4948, 5346, 9044, 13488, 17584

1283 37, 437, 500, 819, 850, 855, 866, 878, 880, 915, 1025, 1123-1125, 1131,
1200, 1208, 1251-1252, 4946, 4951, 5347, 8229, 13488, 17584, 28709

1284 1200, 1208, 13488, 17584

1285 1200, 1208, 13488, 17584

1351 300-301, 941, 1200, 1208, 4396, 8492, 13488, 16684, 17584

1362 834, 951, 1200, 1208, 4930, 9026, 13488, 17584

1363 933, 949, 1200, 1208, 1364, 5029, 5045, 5460, 9125, 9555, 13221,
13488, 13651, 17317, 17584, 25525, 29621, 33717, 37813

1364 933, 949, 1200, 1208, 1363, 5029, 5045, 5460, 9125, 9555, 13221,
13488, 13651, 17317, 17584, 25525, 29621, 33717, 37813

1370 937-938, 948, 950, 1200, 1208, 1371, 5033, 5046, 9142, 13488, 17584,
25514, 25524, 29620

1371 1200, 1208, 1370, 13488, 17584

1374 1200, 1208

1375 1200, 1208

1376 1200, 1208

1377 1200, 1208

1378 1200, 1208

1379 1200, 1208

970 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

1380 837, 928, 1200, 1208, 1385, 4933, 13488, 17584

1381 935-936, 1200, 1208, 1386, 1388, 5031, 5477, 5482, 5484, 9127, 13223,
13488, 17584, 25512

1385 837, 1200, 1208, 1380, 4933, 13488, 17584

1386 935, 1200, 1208, 1381, 1388, 5031, 5477, 5482, 5484, 9127, 13223,
13488, 17584

1388 935, 1200, 1208, 1381, 1386, 5031, 5477, 5482, 5484, 5488, 9127,
13223, 13488, 17584

1390 930-932, 939, 942-943, 1200, 1208, 1399, 5026, 5028, 5035, 5038-5039,
5055, 9122, 9124, 9131, 9135, 13218-13219, 13231, 13488, 17314,
17584, 25508, 25518, 29614, 33698-33700, 37796

1399 930-932, 939, 942-943, 1200, 1208, 1390, 5026, 5028, 5035, 5038-5039,
5050, 9122, 9124, 9131, 9135, 13218-13219, 13231, 13488, 17314,
17584, 25508, 25518, 29614, 33698-33700, 37796

4386 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737, 775,
819, 833, 836, 850, 852, 855, 857, 860-865, 870-871, 895-897, 1009,
1025-1027, 1040-1043, 1088, 1112, 1122, 1139, 1252, 4929, 4932, 4946,
4948, 4951, 4953, 4960, 4992, 5123, 8229, 8482, 9025, 9044, 9049,
9056, 13121, 17248, 25473, 25617, 25619, 25664, 28709

4396 300-301, 941, 1351, 8492, 16684

4899 867, 1148, 1200, 1208, 5351, 9048, 12712, 13488, 17584

4909 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 813, 819, 838,
850, 852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916,
920, 1025-1027, 1041-1043, 1200, 1208, 1252-1253, 1280, 4934, 4946,
4948, 4953, 4970-4971, 5012, 5123, 5349, 8229, 9030, 9044, 9049, 9061,
9066, 13488, 17584, 25473, 25479, 25617, 25619, 28709

4929 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737,
775, 819, 833, 836, 850, 852, 855, 857, 860-865, 870-871, 891, 1009,
1025-1027, 1040-1043, 1088, 1112, 1122, 1126, 1252, 4386, 4932, 4946,
4948, 4951, 4953, 4960, 5123, 8229, 8482, 9025, 9044, 9049, 9056,
13121, 17248, 25617, 25619, 25664, 28709

4930 834, 951, 1200, 1208, 1362, 9026, 13488, 17584

4931 835, 927, 947, 9027, 21427

4932 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 424, 437, 500,
737, 775, 819, 833, 836, 850, 852, 855, 857, 870-871, 875, 903, 1009,
1025-1027, 1040-1043, 1088, 1112, 1114-1115, 1122, 1252, 4386, 4929,
4946, 4948, 4951, 4953, 4971, 5123, 5210-5211, 8229, 8482, 9025, 9044,
9049, 13121, 25479, 25617, 25619, 25664, 28709

4933 837, 1200, 1208, 1380, 1385, 13488, 17584

4934 37, 256, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 775, 813,
819, 838, 850, 852, 857, 860-865, 869-871, 874-875, 880, 897, 903, 912,
916, 920, 1025-1027, 1041-1043, 1112, 1122, 1252, 4909, 4946, 4948,
4953, 4960, 4970-4971, 5012, 5123, 8229, 9030, 9044, 9049, 9056, 9061,
9066, 17248, 25473, 25479, 25617, 25619, 28709

Developing applications reference 971

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

4946 37, 256, 259, 273, 275, 277-278, 280, 284-285, 290, 297, 367,
420, 423-424, 437, 500, 737, 775, 803, 813, 819, 833, 836, 838,
850, 852, 855-858, 860-866, 869-871, 874-875, 880, 897, 903, 905,
912, 914-916, 920-924, 1004, 1025-1027, 1040-1043, 1047, 1051,
1088-1089, 1097-1098, 1100, 1112, 1114, 1122, 1126, 1130, 1132,
1140-1149, 1250-1257, 1275, 1280-1281, 1283, 4386, 4909, 4929, 4932,
4934, 4948, 4951-4953, 4960, 4970-4971, 5012, 5123, 5210, 5346, 5348,
8229, 8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121,
16804, 17248, 25473, 25479, 25617, 25619, 25664, 28709

4948 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 813, 819, 833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871,
874-875, 880, 897, 903, 905, 912, 916, 920, 1025-1027, 1040-1043,
1047, 1088, 1097, 1200, 1208, 1250, 1252, 1282, 4386, 4909, 4929,
4932, 4934, 4946, 4951, 4953, 4970-4971, 5012, 5123, 5346, 8229, 8482,
8612, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 13488, 16804, 17584,
25473, 25479, 25617, 25619, 25664, 28709

4951 37, 259, 273, 277-278, 280, 284-285, 290, 297, 437, 500, 819, 833,
836, 850, 852, 855, 857, 866, 870-871, 878, 880, 912, 915, 1025-1027,
1040-1043, 1088, 1200, 1208, 1250-1252, 1283, 4386, 4929, 4932, 4946,
4948, 4953, 5123, 5346, 5347, 8229, 8482, 9025, 9044, 9049, 13121,
13488, 17584, 25617, 25619, 25664, 28709

4952 259, 273, 424, 500, 803, 850, 856, 862, 916, 1200, 1208, 1255, 4946,
5012, 5351, 13488, 17584

4953 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 813, 819, 833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871,
874-875, 880, 897, 903, 905, 912, 916, 920, 1025-1027, 1040-1043,
1088, 1097, 1252, 1254, 1281, 4386, 4909, 4929, 4932, 4934, 4946,
4948, 4951, 4970-4971, 5012, 5123, 5350, 8229, 8482, 8612, 9025, 9030,
9044, 9049, 9061, 9066, 13121, 16804, 25473, 25479, 25617, 25619,
25664, 28709

4960 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424,
500, 720, 819, 833, 838, 850, 864, 870-871, 875, 880, 905, 918, 1008,
1025-1027, 1046, 1089, 1097, 1127, 1200, 1208, 1252, 1256, 4386, 4929,
4934, 4946, 4971, 5104, 5123, 5142, 5352, 8229, 8482, 8612, 9025,
9030, 9056, 9238, 13121, 13488, 16804, 17248, 17584, 28709

4970 37, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838,
850, 852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916,
920, 1025-1027, 1041-1043, 1252, 4909, 4934, 4946, 4948, 4953, 4971,
5012, 5123, 8229, 9030, 9044, 9049, 9061, 9066, 25473, 25479, 25617,
25619, 28709

4971 37, 256, 273, 277-278, 280, 284-285, 297, 367, 423, 437, 500, 737, 775,
813, 819, 836, 838, 850-852, 857, 860-865, 869-871, 874-875, 880, 897,
903, 912, 916, 920, 1009, 1025-1027, 1041-1043, 1047, 1088, 1112,
1122, 1200, 1208, 1252-1253, 1280, 4909, 4932, 4934, 4946, 4948, 4953,
4960, 4970, 5012, 5123, 5349, 8229, 9030, 9044, 9049, 9056, 9061,
9066, 13488, 17248, 17584, 25473, 25479, 25617, 25619, 25664, 28709

4992 290, 896, 1027, 1041, 4386, 5123, 8482, 25617

972 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

5012 37, 273, 277-278, 280, 284-285, 297, 423-424, 437, 500, 803, 813, 819,
838, 850, 852, 856-857, 860-863, 869-871, 874-875, 880, 897, 903, 912,
916, 920, 1025-1027, 1041-1043, 1200, 1208, 1252, 1255, 4909, 4934,
4946, 4948, 4952-4953, 4970-4971, 5123, 5351, 8229, 9030, 9044, 9049,
9061, 9066, 13488, 17584, 25473, 25479, 25617, 25619, 28709

5026 930-932, 939, 942-943, 1390, 1399, 5028, 5035, 5038-5039, 9122, 9124,
9131, 9135, 1208, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

5028 930-932, 939, 942-943, 1390, 1399, 5026, 5035, 5038-5039, 9122,
9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

5029 933-934, 944, 949, 1363-1364, 5045, 5460, 9125, 9555, 13221, 13651,
17317, 25510, 25520, 25525, 29616, 29621, 33717, 37813

5031 935-936, 946, 1381, 1386, 1388, 5477, 5482, 5484, 9127, 13223, 25512

5033 937-938, 948, 950, 1370, 5046, 9142, 25514, 25524, 29620

5035 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5038-5039, 9122, 9124,
9131, 9135, 1208, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

5038 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5039, 9122,
9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

5039 930-932, 939, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035, 5038,
9122, 9124, 9131, 9135, 13218-13219, 13231, 13488, 17314, 17584,
25508, 25518, 29614, 33698-33700, 37796

5045 933-934, 944, 949, 1363-1364, 5029, 5460, 9125, 9555, 13221, 13651,
17317, 25510, 25520, 25525, 29616, 29621, 33717, 37813

5046 937-938, 948, 950, 1370, 5033, 9142, 25514, 25524, 29620

5104 420, 864, 1008, 1200, 1208, 4960, 8612, 9056, 13488, 16804, 17248,
17584

5123 290, 367, 423, 437, 819, 1027, 1041, 1047, 1140-1149, 1156, 1157, 1160,
1200, 1208, 1252, 4948, 5348, 8482, 13488

5142 420, 500, 864, 1046, 1089, 1127, 1200, 1208, 1256, 4960, 5352, 8612,
9056, 9238, 13488, 16804, 17248, 17584

5210 37, 437, 500, 819, 836, 850, 904, 1043, 1114-1115, 1200, 1208, 4932,
4946, 5211, 8229, 13488, 17584, 25480, 25619, 28709

5211 37, 367, 437, 500, 836, 903, 1114-1115, 4932, 5210, 8229, 25479, 28709

5346 37, 259, 273, 500, 819, 850, 852, 855, 870, 912, 1200, 1208, 1250, 1252,
1282, 4946, 4948, 4951, 8229, 9044, 13488, 17584, 28709

5347 808, 848-849, 855, 866, 872, 878, 880, 915, 1025, 1123-1125, 1131,
1154, 1158, 1200, 1208, 1251, 1283, 4951, 13488, 17584

Developing applications reference 973

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

5348 37, 259, 273, 275, 277-278, 280, 284-285, 297, 437, 500, 808, 819, 850,
858, 860-861, 863, 865, 871-872, 901-902, 923-924, 1051, 1140-1149,
1153-1158, 1160-1162, 1164, 1200, 1208, 1252, 1275, 4946, 8229,
13488, 17584, 28709

5349 813, 869, 875, 1148, 1200, 1208, 1253, 1280, 4909, 4971, 9061, 13488,
17584

5350 857, 920, 1026, 1155, 1200, 1208, 1254, 1281, 4953, 9049, 13488, 17584

5351 424, 856, 862, 867, 916, 1200, 1208, 1255, 4899, 4952, 5012, 9048,
12712, 13488, 17584

5352 420, 864, 1046, 1089, 1200, 1208, 1256, 4960, 5142, 8612, 9056, 9238,
13488, 16804, 17248, 17584

5353 901-902, 921-922, 1112, 1122, 1156-1157, 1200, 1208, 1257, 13488,
17584

5354 1129-1130, 1163, 1164, 1200, 1208, 1258, 13488, 17584

5460 933-934, 944, 949, 1363-1364, 5029, 5045, 9125, 9555, 13221, 13651,
17317, 25510, 25520, 25525, 29616, 29621, 33717, 37813

5477 935-936, 1381, 1386, 1388, 5031, 5482, 5484, 9127, 13223, 25512

5482 935, 1381, 1386, 1388, 5031, 5477, 5484, 9127, 13223

5484 935-936, 946, 1381, 1386, 1388, 5031, 5477, 5482, 9127, 13223, 25512

5488 1388

8229 37, 256, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424,
437, 500, 720, 737, 775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858,
860-866, 869-871, 874-875, 880, 897, 903-905, 912, 914-916, 920-924,
1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1097, 1100, 1112,
1114-1115, 1122, 1124, 1126, 1130-1132, 1137, 1140-1149, 1250-1255,
1257-1258, 1275, 1280-1281, 1283, 4386, 4909, 4929, 4932, 4934, 4946,
4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5210-5211, 5346, 5348,
8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061, 9066, 13121, 16804,
17248, 25473, 25479, 25480, 25617, 25619, 25664, 28709

8482 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737, 775,
819, 833, 836, 850, 852, 855, 857, 860-865, 870-871, 895-897, 1009,
1025-1027, 1040-1043, 1047, 1088, 1112, 1122, 1139, 1200, 1208, 1252,
4386, 4929, 4932, 4946, 4948, 4951, 4953, 4960, 4992, 5123, 8229,
9025, 9044, 9049, 9056, 13121, 13488, 17248, 17584, 25473, 25617,
25619, 25664, 28709

8492 300-301, 941, 1351, 4396, 16684

8612 37, 256, 420, 424, 437, 500, 720, 737, 775, 819, 850, 852, 857, 860-865,
1008, 1046, 1089, 1098, 1112, 1122, 1127, 1200, 1208, 1252, 1256,
4946, 4948, 4953, 4960, 5104, 5142, 5352, 8229, 9044, 9049, 9056,
9238, 13488, 16804, 17248, 17584, 28709

974 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

9025 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737,
775, 819, 833, 836, 850, 852, 855, 857, 860-865, 870-871, 891, 1009,
1025-1027, 1040-1043, 1088, 1112, 1122, 1126, 1252, 4386, 4929, 4932,
4946, 4948, 4951, 4953, 4960, 5123, 8229, 8482, 9044, 9049, 9056,
13121, 17248, 25617, 25619, 25664, 28709

9026 834, 926, 951, 1362, 4930

9027 835, 927, 947, 1200, 1208, 4931, 13488, 17584, 21427

9030 37, 256, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 775, 813,
819, 838, 850, 852, 857, 860-865, 869-871, 874-875, 880, 897, 903, 912,
916, 920, 1025-1027, 1041-1043, 1112, 1122, 1200, 1208, 1252, 4909,
4934, 4946, 4948, 4953, 4960, 4970-4971, 5012, 5123, 8229, 9044, 9049,
9056, 9061, 9066, 13488, 17248, 17584, 25473, 25479, 25617, 25619,
28709

9044 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 813, 819, 833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871,
874-875, 880, 897, 903, 905, 912, 916, 920, 1025-1027, 1040-1043,
1047, 1088, 1097, 1153, 1200, 1208, 1250, 1252, 1282, 4386, 4909,
4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012, 5123, 5346,
8229, 8482, 8612, 9025, 9030, 9049, 9061, 9066, 13121, 13488, 16804,
17584, 25473, 25479, 25617, 25619, 25664, 28709

9048 867, 1200, 1208, 4899, 5351, 12712, 13488, 17584

9049 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424, 437,
500, 813, 819, 833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871,
874-875, 880, 897, 903, 905, 912, 916, 920, 1025-1027, 1040-1043,
1088, 1097, 1155, 1200, 1208, 1252, 1254, 1281, 4386, 4909, 4929,
4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012, 5123, 5350, 8229,
8482, 8612, 9025, 9030, 9044, 9061, 9066, 13121, 13488, 16804, 17584,
25473, 25479, 25617, 25619, 25664, 28709

9056 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424,
500, 720, 819, 833, 838, 850, 864, 870-871, 875, 880, 905, 918, 1008,
1025-1027, 1046, 1089, 1097, 1127, 1200, 1208, 1252, 1256, 4386, 4929,
4934, 4946, 4960, 4971, 5104, 5123, 5142, 5352, 8229, 8482, 8612,
9025, 9030, 9238, 13121, 13488, 16804, 17248, 17584, 28709

9061 37, 256, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 737, 813,
819, 838, 850, 852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903,
912, 916, 920, 1025-1027, 1041-1043, 1200, 1208, 1252-1254, 1280,
4909, 4934, 4946, 4948, 4953, 4970-4971, 5012, 5123, 5349, 8229, 9030,
9044, 9049, 9066, 13488, 17584, 25473, 25479, 25617, 25619, 28709

9066 37, 259, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 838,
850, 852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916,
920, 1025-1027, 1041-1043, 1200, 1208, 1252, 4909, 4934, 4946, 4948,
4953, 4970-4971, 5012, 5123, 8229, 9030, 9044, 9049, 9061, 13488,
17584, 25473, 25479, 25617, 25619, 28709

9122 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

Developing applications reference 975

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

9124 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9122, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

9125 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9555, 13221, 13651,
17317, 25510, 25520, 25525, 29616, 29621, 33717, 37813

9127 935-936, 946, 1381, 1386, 1388, 5031, 5477, 5482, 5484, 13223, 25512

9131 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9122, 9124, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

9135 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9122, 9124, 9131, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

9142 937-938, 948, 950, 1370, 5033, 5046, 25514, 25524, 29620

9238 420, 500, 864, 1046, 1089, 1127, 1200, 1208, 1256, 4960, 5142, 5352,
8612, 9056, 13488, 16804, 17248, 17584

9555 933, 949, 1363-1364, 5029, 5045, 5460, 9125, 13221, 13651, 17317,
25525, 29621, 33717, 37813

12712 862, 867, 1148, 1156-1157, 1200, 1208, 4899, 5351, 9048, 13488, 17584

13121 37, 256, 273, 277-278, 280, 284-285, 290, 297, 367, 437, 500, 737,
775, 819, 833, 836, 850, 852, 855, 857, 860-865, 870-871, 891, 1009,
1025-1027, 1040-1043, 1088, 1112, 1122, 1126, 1200, 1208, 1252, 4386,
4929, 4932, 4946, 4948, 4951, 4953, 4960, 5123, 8229, 8482, 9025,
9044, 9049, 9056, 13488, 17248, 17584, 25617, 25619, 25664, 28709

13218 930-932, 939, 942-943, 1200, 1208, 1390, 1399, 5026, 5028, 5035,
5038-5039, 9122, 9124, 9131, 9135, 13219, 13231, 13488, 17314,
17584, 25508, 25518, 29614, 33698-33700, 37796

13219 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9122, 9124, 9131, 9135, 13218, 13231, 17314, 25508, 25518, 29614,
33698-33700, 37796

13221 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13651,
17317, 25510, 25520, 25525, 29616, 29621, 33717, 37813

13223 935-936, 946, 1381, 1386, 1388, 5031, 5477, 5482, 5484, 9127, 25512

13231 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9122, 9124, 9131, 9135, 13218-13219, 17314, 25508, 25518, 29614,
33698-33700, 37796

976 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

13488 37, 256, 259, 273, 275, 277-278, 280, 282, 284-285, 290, 293, 297,
300-301, 367, 420, 423-424, 437, 500, 720, 737, 775, 803, 806,
808, 813, 819, 833-838, 848-852, 855-872, 874-875, 878, 880, 891,
895-897, 901-905, 912, 914-916, 918, 920-924, 927-928, 930, 932-933,
935, 937, 939, 941-944, 946-951, 1004, 1006, 1008-1019, 1025-1027,
1040-1043, 1046-1047, 1051, 1088-1089, 1097-1098, 1112, 1114-1115,
1122-1126, 1129-1133, 1137, 1140-1149, 1153-1160, 1164, 1166, 1200,
1208, 1250-1258, 1275-1277, 1280-1285, 1351, 1362-1364, 1370-1371,
1380-1381, 1385-1386, 1388, 1390, 1399, 4899, 4909, 4930, 4933, 4948,
4951-4952, 4960, 4971, 5012, 5039, 5104, 5123, 5142, 5210, 5346-5354,
8482, 8612, 9027, 9030, 9044, 9048-9049, 9056, 9061, 9066, 9238,
12712, 13121, 13218, 16684, 16804, 17248, 17584, 21427, 28709

13651 933, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221, 17317,
25525, 29621, 33717, 37813

16684 300-301, 941, 1200, 1208, 1351, 4396, 8492, 13488, 17584

16804 37, 256, 420, 424, 437, 500, 720, 737, 775, 819, 850, 852, 857, 860-865,
1008, 1046, 1089, 1098, 1112, 1122, 1127, 1200, 1208, 1252, 1256,
4946, 4948, 4953, 4960, 5104, 5142, 5352, 8229, 8612, 9044, 9049,
9056, 9238, 13488, 17248, 17584, 28709

17248 37, 256, 259, 273, 277-278, 280, 284-285, 290, 297, 420, 423-424,
500, 720, 819, 833, 838, 850, 864, 870-871, 875, 880, 905, 918, 1008,
1025-1027, 1046, 1089, 1097, 1127, 1200, 1208, 1252, 1256, 4386, 4929,
4934, 4946, 4960, 4971, 5104, 5123, 5142, 5352, 8229, 8482, 8612,
9025, 9030, 9056, 9238, 13121, 13488, 16804, 17584, 28709

17314 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9122, 9124, 9131, 9135, 13218-13219, 13231, 25508, 25518, 29614,
33698-33700, 37796

17317 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221,
13651, 25510, 25520, 25525, 29616, 29621, 33717, 37813

17584 37, 256, 259, 273, 275, 277-278, 280, 282, 284-285, 290, 293, 297,
300-301, 367, 420, 423-424, 437, 500, 720, 737, 775, 803, 806,
808, 813, 819, 833-838, 848-852, 855-872, 874-875, 878, 880, 891,
895-897, 901-905, 912, 914-916, 918, 920-924, 927-928, 930, 932-933,
935, 937, 939, 941-944, 946-951, 1004, 1006, 1008-1019, 1025-1027,
1040-1043, 1046-1047, 1051, 1088-1089, 1097-1098, 1112, 1114-1115,
1122-1126, 1129-1133, 1137, 1140-1149, 1153-1160, 1164, 1166, 1200,
1208, 1250-1258, 1275-1277, 1280-1285, 1351, 1362-1364, 1370-1371,
1380-1381, 1385-1386, 1388, 1390, 1399, 4899, 4909, 4930, 4933, 4948,
4951-4952, 4960, 4971, 5012, 5039, 5104, 5123, 5142, 5210, 5346-5354,
8482, 8612, 9027, 9030, 9044, 9048-9049, 9056, 9061, 9066, 9238,
12712, 13121, 13218, 13488, 16684, 16804, 17248, 21427, 28709

21427 835, 927, 947, 1200, 1208, 4931, 9027, 13488, 17584

25473 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 838,
850, 852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912,
916, 920, 1025-1027, 1041-1043, 1252, 4386, 4909, 4934, 4946, 4948,
4953, 4970-4971, 5012, 5123, 8229, 8482, 9030, 9044, 9049, 9061, 9066,
25479, 25617, 25619, 28709

Developing applications reference 977

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

25479 37, 273, 277-278, 280, 284-285, 297, 423, 437, 500, 813, 819, 836, 838,
850, 852, 857, 860-861, 863, 869-871, 874-875, 880, 897, 903, 912, 916,
920, 1025-1027, 1041-1043, 1115, 1252, 4909, 4932, 4934, 4946, 4948,
4953, 4970-4971, 5012, 5123, 5211, 8229, 9030, 9044, 9049, 9061, 9066,
25473, 25617, 25619, 28709

25480 37, 500, 904, 1114, 5210, 8229, 28709

25508 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9122, 9124, 9131, 9135, 13218-13219, 13231, 17314, 25518, 29614,
33698-33700, 37796

25510 933-934, 949, 5029, 5045, 5460, 9125, 13221, 17317, 25525, 29621,
33717, 37813

25512 935-936, 946, 1381, 5031, 5477, 5484, 9127, 13223

25514 937-938, 950, 1370, 5033, 5046, 9142

25518 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9122, 9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 29614,
33698-33700, 37796

25520 933, 944, 949, 5029, 5045, 5460, 9125, 13221, 17317, 25525, 29616,
29621, 33717, 37813

25524 937, 948, 950, 1370, 5033, 5046, 9142, 29620

25525 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221,
13651, 17317, 25510, 25520, 29616, 29621, 33717, 37813

25617 37, 273, 277-278, 280, 284-285, 290, 297, 367, 423, 437, 500, 813, 819,
833, 836, 838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880,
895-897, 903, 912, 916, 1025-1027, 1040-1043, 1088, 1252, 4386, 4909,
4929, 4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 4992, 5012, 5123,
8229, 8482, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 25473, 25479,
25619, 25664, 28709

25619 37, 273, 277-278, 280, 284-285, 290, 297, 423, 437, 500, 813, 819, 833,
836, 838, 850, 852, 855, 857, 860-861, 863, 869-871, 874-875, 880, 897,
903, 912, 916, 1025-1027, 1040-1043, 1088, 1114, 4386, 4909, 4929,
4932, 4934, 4946, 4948, 4951, 4953, 4970-4971, 5012, 5123, 5210, 8229,
8482, 9025, 9030, 9044, 9049, 9061, 9066, 13121, 25473, 25479, 25617,
25664, 28709

25664 37, 273, 277-278, 280, 284-285, 290, 297, 367, 500, 819, 833, 836, 850,
852, 855, 857, 870-871, 875, 891, 1025-1027, 1040-1043, 1088, 1126,
4386, 4929, 4932, 4946, 4948, 4951, 4953, 4971, 5123, 8229, 8482,
9025, 9044, 9049, 13121, 25617, 25619, 28709

978 IBM MQ Developing Applications Reference

Table 675. IBM MQ for z/OS CCSID conversion support (continued)

CCSID Converts to and from CCSIDS

28709 37, 256, 273, 275, 277-278, 280, 284-285, 290, 297, 367, 420, 423-424,
437, 500, 720, 737, 775, 813, 819, 833, 836, 838, 850, 852, 855, 857-858,
860-866, 869-871, 874-875, 880, 897, 903-905, 912, 914-916, 920-924,
1009, 1025-1027, 1040-1043, 1047, 1051, 1088, 1097, 1100, 1112,
1114-1115, 1122, 1124, 1126, 1130-1132, 1137, 1140-1149, 1200, 1208,
1250-1255, 1257-1258, 1275, 1280-1281, 1283, 4386, 4909, 4929, 4932,
4934, 4946, 4948, 4951, 4953, 4960, 4970-4971, 5012, 5123, 5210-5211,
5346, 5348, 8229, 8482, 8612, 9025, 9030, 9044, 9049, 9056, 9061,
9066, 13121, 13488, 16804, 17248, 17584, 25473, 25479, 25480, 25617,
25619, 25664

29614 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039,
9122, 9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518,
33698-33700, 37796

29616 933, 944, 949, 5029, 5045, 5460, 9125, 13221, 17317, 25520, 25525,
29621, 33717, 37813

29620 937, 948, 950, 1370, 5033, 5046, 9142, 25524

29621 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221,
13651, 17317, 25510, 25520, 25525, 29616, 33717, 37813

33698 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,
9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33699-33700, 37796

33699 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,
9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698, 33700, 37796

33700 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,
9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33699, 37796

33717 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221,
13651, 17317, 25510, 25520, 25525, 29616, 29621, 37813

37796 930-932, 939, 942-943, 1390, 1399, 5026, 5028, 5035, 5038-5039, 9122,
9124, 9131, 9135, 13218-13219, 13231, 17314, 25508, 25518, 29614,
33698-33700

37813 933-934, 944, 949, 1363-1364, 5029, 5045, 5460, 9125, 9555, 13221,
13651, 17317, 25510, 25520, 25525, 29616, 29621, 33717

IBM i conversion support
A full list of CCSIDs, and conversions supported by IBM i, can be found in the appropriate IBM i
publication.

The supported code pages are listed in Supported CCSID mappings.

Developing applications reference 979

Unicode conversion support
Some platforms support the conversion of user data to or from Unicode encoding. The two forms of
Unicode encoding supported are UTF-16 (CCSIDs 1200, 13488, and 17584) and UTF-8 (CCSID 1208).
You should use CCSIDs 1200 or 1208, as they represent the most recent Unicode version supported.

UTF-16 surrogate pairs (a pair of 2-byte UTF-16 characters in the range X'D800' through to X'DFFF'
that represent a Unicode code point above U+FFFF) are supported. If a target CCSID does not contain
a mapping for a code point represented by a UTF-16 surrogate pair, the pair of characters convert to a
single substitution character.

Combining character sequences are supported by IBM MQ. This means that, in some cases, a
precomposed character in the source CCSID will be converted to a combining character sequence in
the target CCSID, or the other way round.

Note: IBM MQ does not support UTF-16 queue manager CCSIDs so message header data cannot be
encoded in UTF-16.

IBM MQ AIX support for Unicode

On IBM MQ for AIX conversion to, and from, the supported Unicode CCSIDs (preferably 1200 or 1208) is
supported for the non-Unicode CCSIDs in the following list:

037
273, 278, 280, 284, 285, 297
423, 437
500
813, 819, 850, 852, 856, 857, 858, 860, 861, 865, 867, 869, 875, 878, 880
901, 902, 912, 915, 916, 920, 923, 924, 932, 933, 935, 937, 938, 939, 942, 943, 948, 949, 950, 954,
964, 970
1026, 1046, 1089
1129, 1130, 1131, 1132, 1133, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149,
1153, 1156, 1157
1200, 1208, 1250, 1251, 1253, 1254, 1258, 1280, 1281, 1282, 1283, 1284, 1285
1363, 1364, 1381, 1383, 1386, 1388
4899
5026, 5035, 5050, 5346, 5347, 5348, 5349, 5350, 5351, 5352, 5353, 5354, 5488
9044, 9048, 9449
12712
13488
17584
33722

IBM MQ for Windows and Linux support for Unicode

On IBM MQ for Windows and IBM MQ for Linux conversion to, and from, the supported Unicode CCSIDs
(preferably 1200 or 1208) is supported for the non-Unicode CCSIDs in the following list:

037,
277, 278, 280, 284, 285, 290, 297
300, 301
420, 424, 437
500
813, 819, 833, 835, 836, 837, 838, 850, 852, 855, 856, 857, 858, 860, 861, 862, 863, 864, 865, 866,
867, 868, 869, 870, 871, 874, 875, 878, 880, 891, 897

980 IBM MQ Developing Applications Reference

901, 902, 903, 904, 912, 913“5” on page 981, 915, 916, 918, 920, 921, 922, 923, 924, 927, 928, 930,
931“1” on page 981, 932“2” on page 981, 933, 935, 937, 938“3” on page 981, 939, 941, 942, 943 ,947, 948,
949, 950, 951, 954“4” on page 981, 964, 970
1006, 1025, 1026, 1027, 1040, 1041, 1042, 1043, 1046, 1047, 1051, 1088, 1089, 1097, 1098
1112, 1114, 1115, 1122, 1123, 1124, 1129, 1130, 1132, 1133, 1140, 1141, 1142, 1143, 1144,
1145, 1146, 1147, 1148, 1149, 1153, 1156, 1157
1200, 1208, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1275, 1280, 1281, 1282,
1283
1363, 1364, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1383, 1386, 1388
4899
5050, 5346, 5347, 5348, 5349, 5350, 5351, 5352, 5353, 5354, 5488“5” on page 981

9044, 9048, 9449
12712
13488
17584
33722“4” on page 981

Notes:

1. 931 uses 939 for conversion.
2. 932 uses 942 for conversion.
3. 938 uses 948 for conversion.
4. 954 and 33722 use 5050 for conversion.
5. On Windows and Linux only.

IBM i support for Unicode

For details on UNICODE support refer to the appropriate IBM i publication relating to your operating
system.

IBM MQ for z/OS support for Unicode

On IBM MQ for z/OS conversion to, and from, the supported Unicode CCSIDs (preferably 1200 or 1208) is
supported for the non-Unicode CCSIDs in the following list:

37
256, 259, 273, 275, 277, 278, 280, 282, 284, 285, 290, 293, 297
300, 301, 367
420, 423, 424, 437
500
720, 737, 775
803, 806, 808, 813, 819, 833, 834, 835, 836, 837, 838, 848, 849, 850, 851, 852, 855, 856, 857, 858,
859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 874, 875, 878, 880, 891, 895,
896, 897
901, 902, 903, 904, 905, 912, 914, 915, 916, 918, 920, 921, 922, 923, 924, 927, 928, 930, 932, 933,
935, 937, 939, 941, 942, 943, 944, 946, 947, 948, 949, 950, 951
1004, 1006, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1025,
1026, 1027, 1040, 1041, 1042, 1043, 1046, 1047, 1051, 1088, 1089, 1097, 1098
1112, 1114, 1115, 1122, 1123, 1124, 1125, 1126, 1129, 1130, 1131, 1132, 1133, 1137, 1140,
1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1153, 1154, 1155, 1156, 1157, 1158,
1159, 1160, 1161, 1162, 1164

Developing applications reference 981

1200, 1208, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258, 1275, 1276, 1277, 1280,
1281, 1282, 1283, 1284, 1285
1351, 1362, 1363, 1364, 1370, 1371, 1380, 1381, 1385, 1386, 1388, 1390, 1399
4899, 4909, 4930, 4933, 4948, 4951, 4952, 4960, 4971
5012 5039 5104 5123 5142 5210 5346 5347 5348 5349 5350 5351 5352 5353 5354 5488
8482 8612
9027 9030 9044 9048 9049 9056 9061 9066 9238 9449
1166
12712
13121, 13218, 13488, 1374, 1375, 1376, 1377, 1378, 1379
16684, 16804
17248, 17584
21427
28709

Coding standards on 64-bit platforms
Use this information to learn about coding standards on 64-bit platforms and the preferred data types.

Preferred data types
These types never change size and are available on both 32-bit and 64-bit IBM MQ platforms:

Table 676. Data type names and lengths

Name Length

MQLONG 4 bytes

MQULONG 4 bytes

MQINT32 4 bytes

MQUINT32 4 bytes

MQINT64 8 bytes

MQUINT64 8 bytes

Standard data types on AIX, Linux, and Windows
Learn about standard data types on 32-bit AIX and Linux, and 64-bit AIX, Linux, and Windows
applications.

32-bit AIX and Linux applications

Table 677. Data type names and lengths for 32-bit AIX and Linux applications

Name Length

char 1 byte

short 2 bytes

int 4 bytes

long 4 bytes

float 4 bytes

double 8 bytes

982 IBM MQ Developing Applications Reference

Table 677. Data type names and lengths for 32-bit AIX and Linux applications (continued)

Name Length

long double 8 bytes

pointer 4 bytes

ptrdiff_t 4 bytes

size_t 4 bytes

time_t 4 bytes

clock_t 4 bytes

wchar_t 4 bytes

Note that on AIX a wchar_t is 2 bytes.

64-bit AIX and Linux applications

Table 678. Data type names and lengths for 64-bit AIX and Linux applications

Name Length

char 1 byte

short 2 bytes

int 4 bytes

long 8 bytes

float 4 bytes

double 8 bytes

long double 8 bytes

pointer 8 bytes

ptrdiff_t 8 bytes

size_t 8 bytes

time_t 8 bytes

clock_t 4 bytes

wchar_t 4 bytes

Note that on AIX a wchar_t is 2 bytes.

Windows 64-bit applications

Table 679. Data type names and lengths for Windows 64-bit applications

Name Length

char 1 byte

short 2 bytes

int 4 bytes

Developing applications reference 983

Table 679. Data type names and lengths for Windows 64-bit applications (continued)

Name Length

long 4 bytes

float 4 bytes

double 8 bytes

long double 8 bytes

pointer 8 bytes

Note that all pointers are 8 bytes.

ptrdiff_t 8 bytes

size_t 8 bytes

time_t 8 bytes

clock_t 4 bytes

wchar_t 2 bytes

WORD 2 bytes

DWORD 4 bytes

HANDLE 8 bytes

HFILE 4 bytes

Coding considerations on Windows

HANDLE hf;

Use

hf = CreateFile((LPCTSTR) FileName,
 Access,
 ShareMode,
 xihSecAttsNTRestrict,
 Create,
 AttrAndFlags,
 NULL);

Do not use

HFILE hf;
hf = (HFILE) CreateFile((LPCTSTR) FileName,
 Access,
 ShareMode,
 xihSecAttsNTRestrict,
 Create,
 AttrAndFlags,
 NULL);

as this produces an error.

size_t len fgets

Use

size_t len
while (fgets(string1, (int) len, fp) != NULL)
len = strlen(buffer);

984 IBM MQ Developing Applications Reference

Do not use

int len;

while (fgets(string1, len, fp) != NULL)
len = strlen(buffer);

printf

Use

printf("My struc pointer: %p", pMyStruc);

Do not use

printf("My struc pointer: %x", pMyStruc);

If you need hexadecimal output, you have to print the upper and lower 4 bytes separately.

char *ptr

Use

char * ptr1;
char * ptr2;
size_t bufLen;

bufLen = ptr2 - ptr1;

Do not use

char *ptr1;
char *ptr2;
UINT32 bufLen;

bufLen = ptr2 - ptr1;

alignBytes

Use

alignBytes = (unsigned short) ((size_t) address % 16);

Do not use

void *address;
unsigned short alignBytes;

alignBytes = (unsigned short) ((UINT32) address % 16);

len

Use

len = (UINT32) ((char *) address2 - (char *) address1);

Do not use

void *address1;
void *address2;
UINT32 len;

Developing applications reference 985

len = (UINT32) ((char *) address2 - (char *) address1);

sscanf

Use

MQLONG SBCSprt;

sscanf(line, "%d", &SBCSprt);

Do not use

MQLONG SBCSprt;

sscanf(line, "%1d", &SBCSprt);

%ld tries to put an 8-byte type into a 4-byte type; only use %l if you are dealing with an actual long
data type. MQLONG, UINT32 and INT32 are defined to be four bytes, the same as an int on all IBM
MQ platforms:

IBM i Application Programming Reference (ILE/RPG)
Application programming for IBM i.

Use this information to help you develop applications for IBM i.

• “Data type descriptions on IBM i” on page 987
• “Function calls on IBM i” on page 1239
• “Attributes of objects on IBM i” on page 1355
• “Applications” on page 1400
• “Return codes for IBM i (ILE RPG)” on page 1413
• “Rules for validating MQI options for IBM i (ILE RPG)” on page 1414
• “Machine encodings on IBM i” on page 1417
• “Report options and message flags on IBM i” on page 1420

Deprecation of compatibility mode for RPG and COBOL applications on IBM i

From IBM MQ for IBM i 9.0, the product no longer provides support for RPG or COBOL applications that
use dynamic linkage known as compatibility mode. This mode of operation was needed for applications
that are written before MQSeries 5.1, and subsequent versions of the product provided a compatible
runtime environment for these applications, even though the copybooks needed for compiling them were
removed in IBM WebSphere MQ 6.0. Dynamic linkage (compatibility mode) was provided by the following
programs in library QMQM, which are removed at IBM MQ for IBM i 9.0:

• AMQVSTUB
• AMQZSTUB
• QMQM
• MQCLOSE
• MQCONN
• MQDISC
• MQGET
• MQINQ
• MQOPEN

986 IBM MQ Developing Applications Reference

• MQPUT
• MQPUT1
• MQSET

From IBM MQ for IBM i 9.0, applications that use this compatibility mode of operation need to
be recompiled to use the static bound MQ calls that are provided by the LIBMQM and LIBMQM_R
service programs. Sample programs, such as AMQ3PUT4 and AMQ3GET4, show you how to use
this programming model. For more information about using these MQ calls, see IBM i Application
Programming Reference (ILE/RPG).

Notes:

• You need to recode applications, currently using the CALL 'QMQM' interface, to use the LIBMQM service
program instead.

The program objects and service programs in the preceding list, for example, QMQM, MQCONN, MQPUT,
AMQVSTUB, and AMQZSTUB, are removed in IBM MQ for IBM i 9.0, and applications that were coded to
use compatibility mode cease to work.

• If applications are bound to the LIBMQM service program at IBM MQ for IBM i 8.0, you should not need
to recompile or relink those applications at IBM MQ for IBM i 9.0 or later.

• It is not possible to install more than one version of IBM MQ for IBM i on the same partition.

To find out whether your RPG or COBOL program uses compatibility mode, use the DSPPGMREF (Display
Program References) command to display the external programs called by the application program. If
there are references to the programs listed in this section, the program will not run at IBM MQ for
IBM i 9.0 or later. The following example of DSPPGMREF output shows three program objects that are
deprecated, MQCONN, MQOPEN, MQCLOSE:

Program : MYAPPPGM
Library : MYLIB
Text 'description'. : ILE/COBOL SAMPLE PUT TO QUEUE (MQPUT)
Number of objects referenced : 5
Object : MQCONN
Library : *LIBL
Object type : *PGM
Object : MQOPEN
Library : *LIBL
Object type : *PGM
Object : MQCLOSE
Library : *LIBL
Object type : *PGM

Such programs must be recompiled using the Bound Procedural Call method described in Preparing
COBOL programs in IBM i.

If you attempt to run an application program at IBM MQ for IBM i 9.0 or later that uses compatibility
mode, the most commonly seen first error is an MCH3401 trying to call program MQCONN or QMQM.

Related tasks
Developing applications

Data type descriptions on IBM i
This collection of topics provides descriptions of data types used in IBM i programming.

Conventions used in the description of data types
For each elementary data type, this information gives a description of its usage, in a form that is
independent of the programming language. This is followed by typical declarations in the ILE version
of the RPG programming language. The definitions of elementary data types are included here to provide
consistency. RPG uses 'D' specifications where working fields can be declared using whatever attributes
you need. You can, however, do this in the calculation specifications where the field is used.

To use the elementary data types, you create:

Developing applications reference 987

• A /COPY member containing all the data types, or
• An external data structure (PF) containing all the data types. You then need to specify your working
fields with attributes 'LIKE' the appropriate data type field.

The benefits of the second option are that the definitions can be used as a 'FIELD REFERENCE FILE' for
other IBM i objects. If an IBM MQ data type definition changes, it is a relatively simple matter to re-create
these objects.

Elementary data types
All of the other data types described in this section equate either directly to these elementary data types,
or to aggregates of these elementary data types (arrays or structures).

Table 680. Elementary data types

Data type Representation

MQBOOL 10-digit signed integer

MQBYTE 1-byte alphanumeric field

MQBYTE16 16-byte alphanumeric field

MQBYTE24 24-byte alphanumeric field

MQBYTE32 32-byte alphanumeric field

MQBYTE64 64-byte alphanumeric field

MQCHAR 1-byte alphanumeric field

MQCHAR4 4-byte alphanumeric field

MQCHAR8 8-byte alphanumeric field

MQCHAR12 12-byte alphanumeric field

MQCHAR16 16-byte alphanumeric field

MQCHAR20 20-byte alphanumeric field

MQCHAR28 28-byte alphanumeric field

MQCHAR32 32-byte alphanumeric field

MQCHAR48 48-byte alphanumeric field

MQCHAR64 64-byte alphanumeric field

MQCHAR128 128-byte alphanumeric field

MQCHAR256 256-byte alphanumeric field

MQFLOAT32 4-byte floating-point number

MQFLOAT64 8-byte floating-point number

MQHCONFIG Configuration handle

MQHCONN 10-digit signed integer

MQHMSG Message handle that gives access to a message

MQHOBJ 10-digit signed integer

MQINT8 8-bit signed integer

MQINT16 16-bit signed integer

MQINT32 32-bit signed integer

988 IBM MQ Developing Applications Reference

Table 680. Elementary data types (continued)

Data type Representation

MQINT64 64-bit signed integer

MQLONG 32-bit signed integer

MQPID Process identifier

MQPTR Pointer

MQTID Thread identifier

MQUINT8 8-bit unsigned integer

MQUINT16 16-bit unsigned integer

MQUINT32 32-bit unsigned integer

MQUINT64 64-bit unsigned integer

MQULONG 32-bit unsigned integer

PMQACH Pointer to a data structure of type MQACH

PMQAIR Pointer to a data structure of type MQAIR

PMQAXC Pointer to a data structure of type MQAXC

PMAXP Pointer to a data structure of type MAXP

PMQBMHO Pointer to a data structure of type MQBMHO

PMQBO Pointer to a data structure of type MQBO

PMQBOOL Pointer to data of type MQBOOL

PMQBYTE Pointer to data of type MQBYTE

PMQBYTEn Pointer to data of type MQBYTEn

PMQCBC Pointer to a data structure of type MQCBC

PMQCBD Pointer to a data structure of type MQCBD

PMQCHAR Pointer to a data structure of type MQCHAR

PMQCHARV Pointer to a data structure of type MQCHARV

PMQCHARn Pointer to data of type MQCHARn

PMQCIH Pointer to a data structure of type MQCIH

PMQCMHO Pointer to a data structure of type MQCMHO

PMQCNO Pointer to a data structure of type MQCNO

PMQCSP Pointer to a data structure of type MQCSP

PMQCTLO Pointer to a data structure of type MQCTLO

PMQDH Pointer to a data structure of type MQDH

PMQDHO Pointer to a data structure of type MQDHO

PMQDLH Pointer to a data structure of type MQDLH

PMQDMHO Pointer to a data structure of type MQDMHO

PMQDMPO Pointer to a data structure of type MQDMPO

Developing applications reference 989

Table 680. Elementary data types (continued)

Data type Representation

PMQEPH Pointer to a data structure of type MQEPH

PMQFLOAT32 Pointer to data of type MQFLOAT32

PMQFLOAT64 Pointer to data of type MQFLOAT64

PMQFUNC Pointer to a function

PMQGMO Pointer to a data structure of type MQGMO

PMQHCONFIG Pointer to data of type MQHCONFIG

PMQHCONN Pointer to data of type MQHCONN

PMQHMSG Pointer to data of type MQHMSG

PMQHOBJ Pointer to data of type MQHOBJ

PMQIIH Pointer to a data structure of type MQIIH

PMQIMPO Pointer to a data structure of type MQIMPO

PMQINT8 Pointer to data of type MQINT8

PMQINT16 Pointer to data of type MQINT16

PMQINT32 Pointer to data of type MQINT32

PMQINT64 Pointer to data of type MQINT64

PMQLONG Pointer to data of type MQLONG

PMQMD Pointer to a data structure of type MQMD

PMQMDE Pointer to a data structure of type MQMDE

PMQMD1 Pointer to a data structure of type MQMD1

PMQMD2 Pointer to a data structure of type MQMD2

PMQMHBO Pointer to a data structure of type MQMHBO

PMQOD Pointer to a data structure of type MQOD

PMQOR Pointer to a data structure of type MQOR

PMQPD Pointer to a data structure of type MQPD

PMQPID Pointer to a process identifier MQPID

PMQPMO Pointer to a data structure of type MQPMO

PMQPTR Pointer to data of type MQPTR

PMQRFH Pointer to a data structure of type MQRFH

PMQRFH2 Pointer to a data structure of type MQRFH2

PMQRMH Pointer to a data structure of type MQRMH

PMQRR Pointer to a data structure of type MQRR

PMQSCO Pointer to a data structure of type MQSCO

PMQSD Pointer to a data structure of type MQSD

PMQSMPO Pointer to a data structure of type MQSMPO

990 IBM MQ Developing Applications Reference

Table 680. Elementary data types (continued)

Data type Representation

PMQSRO Pointer to a data structure of type MQSRO

PMQSTS Pointer to a data structure of type MQSTS

PMQTID Pointer to a thread identifier MQTID

PMQTM Pointer to a data structure of type MQTM

PMQTMC2 Pointer to a data structure of type MQTMC2

PMQUINT8 Pointer to data of type MQUINT8

PMQUINT16 Pointer to data of type MQUINT16

PMQUINT32 Pointer to data of type MQUINT32

PMQUINT64 Pointer to data of type MQUINT64

PMQULONG Pointer to data of type MQULONG

PMQVOID Pointer

PMQWIH Pointer to a data structure of type MQWIH

PMQXQH Pointer to a data structure of type MQXQH

MQBOOL on IBM i
The MQBOOL data type represents a boolean value. The value 0 represents false. Any other value
represents true.

An MQBOOL must be aligned as for the MQLONG data type.

MQBYTE on IBM i
The MQBYTE data type represents a single byte of data.

No particular interpretation is placed on the byte-it is treated as a string of bits, and not as a binary
number or character. No special alignment is required.

An array of MQBYTE is sometimes used to represent an area of main storage with a nature that is
not known to the queue manager. For example, the area might contain application message data or a
structure. The boundary alignment of this area must be compatible with the nature of the data contained
within it.

MQBYTEn (String of n bytes) on IBM i
Each MQBYTEn data type represents a string of n bytes.

Where n can take one of the following values:

• 16, 24, 32, or 64.

Each byte is described by the MQBYTE data type. No special alignment is required.

If the data in the string is shorter than the defined length of the string, the data must be padded with nulls
to fill the string.

When the queue manager returns byte strings to the application (for example, on the MQGET call), the
queue manager always pads with nulls to the defined length of the string.

Constants are available that define the lengths of byte string fields.

Developing applications reference 991

MQCHAR (character) on IBM i
The MQCHAR data type represents a single character.

The coded character set identifier of the character is that of the queue manager (see the
CodedCharSetId attribute in topic CodedCharSetId). No special alignment is required.

Note: Application message data specified on the MQGET, MQPUT, and MQPUT1 calls is described by the
MQBYTE data type, not the MQCHAR data type.

MQCHARn (String of n characters) on IBM i
Each MQCHARn data type represents a string of n characters.

Where n can take one of the following values:

• 4, 8, 12, 16, 20, 28, 32, 48, 64, 128, or 256

Each character is described by the MQCHAR data type. No special alignment is required.

If the data in the string is shorter than the defined length of the string, the data must be padded with
blanks to fill the string. In some cases a null character can be used to end the string prematurely, instead
of padding with blanks; the null character and characters following it are treated as blanks, up to the
defined length of the string. The places where a null can be used are identified in the call and data type
descriptions.

When the queue manager returns character strings to the application (for example, on the MQGET call),
the queue manager always pads with blanks to the defined length of the string; the queue manager does
not use the null character to delimit the string.

Constants are available that define the lengths of character string fields.

MQFLOAT32 on IBM i
The MQFLOAT32 data type is a 32-bit floating-point number represented using the standard IEEE
floating-point format.

An MQFLOAT32 must be aligned on a 4-byte boundary.

MQFLOAT64 on IBM i
The MQFLOAT64 data type is a 64-bit floating-point number represented using the standard IEEE
floating-point format.

An MQFLOAT64 must be aligned on an 8-byte boundary.

MQHCONFIG - configuration handle
The MQHCONFIG data type represents a configuration handle, that is, the component that is being
configured for a particular installable service. A configuration handle must be aligned on its natural
boundary.

Note: Applications must test variables of this type for equality only.

MQHCONN (Connection handle) on IBM i
The MQHCONN data type represents a connection handle, that is, the connection to a particular queue
manager.

A connection handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

MQHMSG (Message handle) on IBM i
The MQHMSG data type represents a message handle that gives access to a message.

A message handle must be aligned on an 8-byte boundary.

992 IBM MQ Developing Applications Reference

Note: Applications must test variables of this type for equality only.

MQHOBJ (Object handle) on IBM i
The MQHOBJ data type represents an object handle that gives access to an object.

An object handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

MQINT8 (8-bit signed integer) on IBM i
The MQINT8 data type is an 8-bit signed integer that can take any value in the range -128 to +127, unless
otherwise restricted by the context.

MQINT16 (16-bit signed integer) on IBM i
The MQINT16 data type is a 16-bit signed integer that can take any value in the range -32 768 to +32
767, unless otherwise restricted by the context.

An MQINT16 must be aligned on a 2-byte boundary.

MQINT32 (32-bit integer) on IBM i
The MQINT32 data type is a 32-bit signed integer.

It is equivalent to MQLONG.

MQINT64 (64-bit integer) on IBM i
The MQINT64 data type is a 64-bit signed integer that can take any value in the range -9 223 372 036
854 775 808 through +9 223 372 036 854 775 807, unless otherwise restricted by the context.

For COBOL, the valid range is limited to -999 999 999 999 999 999 through +999 999 999 999 999 999.
An MQINT64 should be aligned on an 8-byte boundary.

MQLONG (Long integer) on IBM i
The MQLONG data type is a 32-bit signed binary integer that can take any value in the range -2 147 483
648 through +2 147 483 647, unless otherwise restricted by the context, aligned on its natural boundary.

MQPID - process identifier
The IBM MQ process identifier.

This is the same identifier used in IBM MQ trace and FFST dumps, but might be different from the
operating system process identifier.

MQPTR - pointer
The MQPTR data type is the address of data of any type. A pointer must be aligned on its natural
boundary; this is a 16-byte boundary on IBM i.

Some programming languages support typed pointers; the MQI also uses these in a few cases.

MQTID - thread identifier
The MQ thread identifier.

This is the same identifier used in MQ trace and FFST dumps, but might be different from the operating
system thread identifier.

Developing applications reference 993

MQUINT8 (8-bit unsigned integer) on IBM i
The MQUINT8 data type is an 8-bit unsigned integer that can take any value in the range 0 to +255,
unless otherwise restricted by the context.

MQUINT16 - 16-bit unsigned integer
The MQUINT16 data type is a 16-bit unsigned integer that can take any value in the range 0 through +65
535, unless otherwise restricted by the context.

An MQUINT16 must be aligned on a 2-byte boundary.

MQUINT32 (32-bit unsigned integer) on IBM i
The MQUINT32 data type is a 32-bit unsigned integer. It is equivalent to MQULONG.

MQUINT64 - 64-bit unsigned integer
The MQUINT64 data type is a 64-bit unsigned integer that can take any value in the range 0 through +18
446 744 073 709 551 615 unless otherwise restricted by the context.

For COBOL, the valid range is limited to 0 through +999 999 999 999 999 999. An MQUINT64 should be
aligned on a 8-byte boundary.

MQULONG - 32-bit unsigned integer
The MQULONG data type is a 32-bit unsigned binary integer that can take any value in the range 0 through
+4 294 967 294, unless otherwise restricted by the context.

An MQULONG must be aligned on a 4-byte boundary.

PMQACH - pointer to a data structure of type MQACH
A pointer to a data structure of type MQACH.

PMQAIR - pointer to a data structure of type MQAIR
A pointer to a data structure of type MQAIR.

PMQAXC - pointer to a data structure of type MQAXC
A pointer to a data structure of type MQAXC.

PMQAXP - pointer to a data structure of type MQAXP
A pointer to a data structure of type MQAXP.

PMQBMHO - pointer to a data structure of type MQBMHO
A pointer to a data structure of type MQBMHO.

PMQBO - pointer to a data structure of type MQBO
A pointer to a data structure of type MQBO.

994 IBM MQ Developing Applications Reference

PMQBOOL - pointer to data of type MQBOOL
A pointer to data of type MQBOOL.

A pointer to data of type MQBOOL.

PMQBYTE - pointer to a data type of MQBYTE
A pointer to a data type of MQBYTE.

PMQBYTEn - pointer to a data structure of type MQBYTEn
A pointer to a data structure of type MQBYTEn, where n can be 8, 12, 16, 24, 32, 40, 48 or 128.

PMQCBC - pointer to a data structure of type MQCBC
A pointer to a data structure of type MQCBC.

PMQCBD - pointer to a data structure of type MQCBD
A pointer to a data structure of type MQCBD.

PMQCHAR - pointer to data of type MQCHAR
A pointer to data of type MQCHAR.

PMQCHARV - pointer to a data structure of type MQCHARV
A pointer to a data structure of type MQCHARV.

PMQCHARn - pointer to a data type of MQCHARn
A pointer to a data type of MQCHARn, where n can be 4, 8, 12, 20, 28, 32, 64, 128, 256, 264.

PMQCIH - pointer to a data structure of type of MQCIH
A pointer to a data structure of type of MQCIH.

PMQCMHO - pointer to a data structure of type MQCMHO
A pointer to a data structure of type MQCMHO.

PMQCNO - pointer to a data structure of type of MQCNO
A pointer to a data structure of type of MQCNO.

PMQCSP - pointer to a data structure of type MQCSP
A pointer to a data structure of type MQCSP.

Developing applications reference 995

PMQCTLO - pointer to a data structure of type MQCTLO
A pointer to a data structure of type MQCTLO.

PMQDH - pointer to a data structure of type MQDH
A pointer to a data structure of type MQDH.

PMQDHO - pointer to a data structure of type MQDHO
A pointer to a data structure of type MQDHO.

PMQDLH - pointer to a data structure of type of MQDLH
A pointer to a data structure of type of MQDLH.

PMQDMHO - pointer to a data structure of type MQDMHO
A pointer to a data structure of type MQDMHO.

PMQDMPO - pointer to a data structure of type MQDMPO
A pointer to a data structure of type MQDMPO.

A pointer to a data structure of type MQDMPO.

PMQEPH - pointer to a data structure of type MQEPH
A pointer to a data structure of type MQEPH.

PMQFLOAT32 - pointer to data of type MQFLOAT32
A pointer to data of type MQFLOAT32.

PMQFLOAT64 - pointer to data of type MQFLOAT64
A pointer to data of type MQFLOAT64.

PMQFUNC - pointer to a function
A pointer to a function.

PMQGMO - pointer to a data structure of type MQGMO
A pointer to a data structure of type MQGMO.

PMQHCONFIG - pointer to a data type of MQHCONFIG
A pointer to a data type of MQHCONFIG.

996 IBM MQ Developing Applications Reference

PMQHCONN - pointer to a data type of MQHCONN
A pointer to a data type of MQHCONN.

PMQHMSG - pointer to a data type of MQHMSG
A pointer to a data type of MQHMSG.

PMQHOBJ - pointer to data of type MQHOBJ
A pointer to data of type MQSMPO.

PMQIIH - pointer to a data structure of type MQIIH
A pointer to a data structure of type MQIIH.

PMQIMPO - pointer to a data structure of type MQIMPO
A pointer to a data structure of type MQIMPO.

PMQINT8 - pointer to data of type MQINT8
A pointer to data of type MQINT8.

PMQINT16 - pointer to data of type MQINT16
A pointer to data of type MQINT16.

PMQINT32 (Pointer to data of type MQINT32) on IBM i
The PMQINT32 data type is a pointer to data of type MQINT32. It is equivalent to PMQLONG.

PMQINT64 (Pointer to data of type MQINT64) on IBM i
The PMQINT64 data type is a pointer to data of type MQINT64.

PMQLONG - pointer to data of type MQLONG
A pointer to data of type MQLONG.

PMQMD - pointer to structure of type MQMD
A pointer to structure of type MQMD.

PMQMDE - pointer to a data structure of type MQMDE
A pointer to a data structure of type MQMDE.

Developing applications reference 997

PMQMDI - pointer to a data structure of type MQMDI
A pointer to a data structure of type MQMDI.

PMQMD2 - pointer to a data structure of type MQMD2
A pointer to a data structure of type MQMD2

PMQMHBO - pointer to a data structure of type MQMHBO
A pointer to a data structure of type MQMHBO.

PMQOD - pointer to a data structure of type MQOD
A pointer to a data structure of type MQOD.

PMQOR - pointer to a data structure of type MQOR
A pointer to a data structure of type MQOR.

PMQPD - pointer to a data structure of type MQPD
A pointer to a data structure of type MQPD.

PMQPID - pointer to a process identifier
A pointer to a process identifier.

PMQPMO - pointer to a data structure of type MQPMO
A pointer to a data structure of type MQPMO.

PMQPTR - pointer to data of type MQPTR
A pointer to data of type MQPTR.

PMQRFH - pointer to a data structure of type MQRFH
A pointer to a data structure of type MQRFH.

PMQRFH2 - pointer to a data structure of type MQRFH2
A pointer to a data structure of type MQRFH2.

.

PMQRMH - pointer to a data structure of type MQRMH
A pointer to a data structure of type MQRMH.

998 IBM MQ Developing Applications Reference

PMQRR - pointer to a data structure of type MQRR
A pointer to a data structure of type MQRR.

PMQSCO - pointer to a data structure of type MQSCO
A pointer to a data structure of type MQSCO.

.

PMQSD - pointer to a data structure of type MQSD
A pointer to a data structure of type MQSD.

PMQSMPO - pointer to a data structure of type MQSMPO
A pointer to a data structure of type MQSMPO.

PMQSRO - pointer to a data structure of type MQSRO
A pointer to a data structure of type MQSRO.

PMQSTS - pointer to a data structure of type MQSTS
A pointer to a data structure of type MQSTS.

PMQTID - pointer to a data structure of type MQTID
A pointer to a data structure of type MQTID.

PMQTM - pointer to a data structure of type MQTM
A pointer to a data structure of type MQTM.

PMQTMC2 - pointer to a data structure of type MQTMC2
A pointer to a data structure of type MQTMC2.

PMQUINT8 - pointer to data of type MQUINT8
A pointer to data of type MQUINT8.

PMQUINT16 - pointer to data of type MQUINT16
A pointer to data of type MQUINT16.

PMQUINT32 (Pointer to data of type MQUINT32) on IBM i
The PMQUINT32 data type is a pointer to data of type MQUINT32. It is equivalent to PMQULONG.

Developing applications reference 999

PMQUINT64 (Pointer to data of type MQUINT64) on IBM i
The PMQUINT64 data type is a pointer to data of type MQUINT64.

PMQULONG - pointer to data of type MQULONG
A pointer to data of type MQULONG.

PMQVOID - pointer
A pointer.

PMQWIH - pointer to a data structure of type MQWIH
A pointer to a data structure of type MQWIH.

PMQXQH - pointer to a data structure of type MQXQH
A pointer to a data structure of type MQXQH.

Language considerations
This topic contains information to help you use the MQI from the RPG programming language.

Some of these language considerations are:

• “COPY files” on page 1000
• “Calls” on page 1002
• “Call parameters” on page 1002
• “Structures” on page 1002
• “Named constants” on page 1003
• “MQI procedures” on page 1003
• “Threading considerations” on page 1003
• “Commitment control” on page 1003
• “Coding the bound calls” on page 1003
• “Notational conventions” on page 1005

COPY files
Various COPY files are provided to assist with the writing of RPG application programs that use message
queuing. There are three sets of COPY files:

• COPY files with names ending with the letter G are for use with programs that use static linkage. These
files are initialized with the exceptions stated in “Structures” on page 1002.

• COPY files with names ending with the letter H are for use with programs that use static linkage, but are
not initialized.

• COPY files with names ending with the letter R are for use with programs that use dynamic linkage.
These files are initialized with the exceptions stated in “Structures” on page 1002.

The COPY files reside in QRPGLESRC in the QMQM library.

For each set of COPY files, there are two files containing named constants, and one file for each of the
structures. The COPY files are summarized in Table 681 on page 1001.

1000 IBM MQ Developing Applications Reference

Table 681. RPG COPY files

File name
(static linkage,
initialized,
CMQ*G)

File name
(static linkage,
not initialized,
CMQ*H)

File name
(dynamic linkage,
initialized,
CMQ*R)

Contents

CMQBOG CMQBOH - Begin options structure

CMQCDG CMQCDH CMQCDR Channel definition structure

CMQCFBFG CMQCFBFH - PCF bit filter parameter

CMQCFG - - Constants for PCF and events

CMQCFBSG CMQCFBSH - PCF byte string

CMQCFGRG CMQCFGRH - PCF group parameter

CMQCFIFG CMQCFIFH - PCF integer filter parameter

CMQCFHG CMQCFHH - PCF header

CMQCFILG CMQCFILH - PCF integer list parameter structure

CMQCFING CMQCFINH - PCF integer parameter structure

CMQCFSFG CMQCFSFH - PCF string filter parameter

CMQCFSLG CMQCFSLH - PCF string list parameter structure

CMQCFSTG CMQCFSTH - PCF string parameter structure

CMQCFXLG CMQCFXLH - PCF short name for CFIL64

CMQCFXNG CMQCFXNH - PCF short name for CFIN64

CMQCIHG CMQCIHH - CICS information header structure

CMQCNOG CMQCNOH - Connect options structure

CMQCSPG CMQCSPH - Security parameters

CMQCXPG CMQCXPH CMQCXPR Channel exit parameter structure

CMQDHG CMQDHH CMQDHR Distribution header structure

CMQDLHG CMQDLHH CMQDLHR Dead letter header structure

CMQDXPG CMQDXPH CMQDXPR Data conversion exit parameter
structure

CMQEPHG CMQEPHH - Embedded PCF header structure

CMQG - CMQR Named constants for main MQI

CMQGMOG CMQGMOH CMQGMOR Get message options structure

CMQIIHG CMQIIHH CMQIIHR IMS information header structure

CMQMDEG CMQMDEH CMQMDER Message descriptor extension structure

CMQMDG CMQMDH CMQMDR Message descriptor structure

CMQMD1G CMQMD1H CMQMD1R Message descriptor structure version 1

CMQMD2G CMQMD2H - Message descriptor structure version 2

CMQODG CMQODH CMQODR Object descriptor structure

CMQORG CMQORH CMQORR Object record structure

Developing applications reference 1001

Table 681. RPG COPY files (continued)

File name
(static linkage,
initialized,
CMQ*G)

File name
(static linkage,
not initialized,
CMQ*H)

File name
(dynamic linkage,
initialized,
CMQ*R)

Contents

CMQPMOG CMQPMOH CMQPMOR Put message options structure

CMQPSG - - Constants for publish/subscribe

CMQRFHG CMQRFHH - Rules and formatting header structure

CMQRFH2G CMQRFH2H - Rules and formatting header 2 structure

CMQRMHG CMQRMHH CMQRMHR Reference message header structure

CMQRRG CMQRRH CMQRRR Response record structure

CMQTMCG CMQTMCH CMQTMCR Trigger message structure (character
format)

CMQTMC2G CMQTMC2H CMQTMC2R Trigger message structure (character
format) version 2

CMQTMG CMQTMH CMQTMR Trigger message structure

CMQWIHG CMQWIHH - Work information header structure

CMQXG - CMQXR Named constants for data conversion
exit

CMQXQHG CMQXQHH CMQXQHR Transmission queue header structure

Calls
Calls are described using their individual names.

Call parameters
Some parameters passed to the MQI can have more than one concurrent function. This is because the
integer value passed is often tested on the setting of individual bits within the field, and not on its total
value. This allows you to 'add' several functions together and pass them as a single parameter.

Structures
All IBM MQ structures are defined with initial values for the fields, with the following exceptions:

• Any structure with a suffix of H.
• MQTMC
• MQTMC2

These initial values are defined in the relevant table for each structure.

The structure declarations do not contain DS statements. This allows the application to declare either a
single data structure or a multiple-occurrence data structure, by coding the DS statement and then using
the /COPY statement to copy in the remainder of the declaration:

D*..1....:....2....:....3....:....4....:....5....:....6....:....7
D* Declare an MQMD data structure with 5 occurrences
DMYMD DS 5
D/COPY CMQMDR

1002 IBM MQ Developing Applications Reference

Named constants
There are many integer and character values that provide data interchange between your application
program and the queue manager. To facilitate a more readable and consistent approach to using these
values, named constants are defined for them. You can use these named constants and not the values
they represent, as this improves the readability of the program source code.

When the COPY file CMQG is included in a program to define the constants, the RPG compiler will issue
many severity-zero messages for the constants that are not used by the program; these messages are
benign, and can safely be ignored.

MQI procedures
When using the ILE bound calls, you must bind to the MQI procedures when you create your program.
These procedures are exported from the following service programs as appropriate:
QMQM/LIBMQM

This service program contains the single-threaded bindings for version 5.1 and above. See the
following section for special considerations when writing threaded applications.

QMQM/LIBMQM_R
This service program contains the multi-threaded bindings for version 5.1 and above. See the
following section for special considerations when writing threaded applications.

QMQM/LIBMQIC
This service program is for binding non-threaded client applications.

QMQM/LIBMQIC_R
This service program is for binding threaded client applications.

Use the CRTPGM command to create your programs. For example, the following command creates a
single-threaded program that uses the ILE bound calls:

CRTPGM PGM(MYPROGRAM) BNDSRVPGM(QMQM/LIBMQM)

Threading considerations
The RPG compiler used for IBM i is part of the WebSphere Development Toolset and WebSphere
Development Studio for IBM i and is known as the ILE RPG IV Compiler.

In general, RPG programs should not use the multi-threaded service programs. Exceptions are RPG
programs created using the ILE RPG IV Compiler, and containing the THREAD(*SERIALIZE) keyword
in the control specification. However, even though these programs are thread safe, careful consideration
must be given to the overall application design, as THREAD(*SERIALIZE) forces serialization of RPG
procedures at the module level, and this might have an adverse affect on overall performance.

Where RPG programs are used as data-conversion exits, they must be made thread-safe, and should be
recompiled using the version 4.4 ILE RPG compiler or above, with THREAD(*SERIALIZE) specified in the
control specification.

For further information about threading, see the IBM i IBM MQ Development Studio: ILE RPG Reference,
and the IBM i IBM MQ Development Studio: ILE RPG Programmer's Guide.

Commitment control
The MQI syncpoint functions MQCMIT and MQBACK are available to ILE RPG programs running in normal
mode; these calls allow the program to commit and back out changes to MQ resources.

Coding the bound calls
MQI ILE procedures are listed in Table 682 on page 1004.

Developing applications reference 1003

Table 682. ILE RPG bound calls supported by each service program

Name of call LIBMQM and LIBMQM_R LIBMQIC and LIBMQIC_R

MQBACK Y Y

MQBEGIN Y Y

MQCMIT Y Y

MQCLOSE Y Y

MQCONN Y Y

MQCONNX Y Y

MQDISC Y Y

MQGET Y Y

MQINQ Y Y

MQOPEN Y Y

MQPUT Y Y

MQPUT1 Y Y

MQSET Y Y

MQXCNVC Y Y

To use these procedures you need to:

1. Define the external procedures in your 'D' specifications. These are all available within the COPY file
member CMQG containing the named constants.

2. Use the CALLP operation code to call the procedure along with its parameters.

For example the MQOPEN call requires the inclusion of the following code:

 D**
 D** MQOPEN Call -- Open Object (From COPY file CMQG) **
 D**
 D*
 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQOPEN PR EXTPROC('MQOPEN')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Object descriptor
 D OBJDSC 224A
 D* Options that control the action of MQOPEN
 D OPTS 10I 0 VALUE
 D* Object handle
 D HOBJ 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0
 D*

To call the procedure, after initializing the various parameters, you need the following code:

 ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+....8
 C CALLP MQOPEN(HCONN : MQOD : OPTS : HOBJ :
 C CMPCOD : REASON)

Here, the structure MQOD is defined using the COPY member CMQODG which breaks it down into its
components.

1004 IBM MQ Developing Applications Reference

Notational conventions
The latter topics in this section show how the:

• Calls should be invoked
• Parameters should be declared
• Various data types should be declared

In a number of cases, parameters are arrays or character strings with a size that is not fixed. For these, a
lowercase "n" is used to represent a numeric constant. When the declaration for that parameter is coded,
the "n" must be replaced by the numeric value required.

MQAIR (Authentication information record) on IBM i
The MQAIR structure represents the authentication information record.

Overview
Purpose: The MQAIR structure allows an application running as an IBM MQ client to specify information
about an authenticator that is to be used for the client connection. The structure is an input parameter on
the MQCONNX call.

Character set and encoding: Data in MQAIR must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT.

• “Fields” on page 1005
• “Initial values” on page 1007
• “RPG declaration” on page 1007

Fields
The MQAIR structure contains the following fields; the fields are described in alphabetical order:

AICN (10-digit signed integer)

This is either the host name or the network address of a host on which the LDAP server is running.
This can be followed by an optional port number, enclosed in parentheses.

If the value is shorter than the length of the field, terminate the value with a null character, or pad it
with blanks to the length of the field. If the value is not valid, the call fails with reason code RC2387.

The default port number is 389.

This is an input field. The length of this field is given by LNAICN. The initial value of this field is blank
characters.

AITYP (10-digit signed integer)

This is the type of authentication information contained in the record.

The value must be:
AITLDP

Certificate revocation using LDAP server.

If the value is not valid, the call fails with reason code RC2386.

This is an input field. The initial value of this field is AITLDP.

AIPW (10-digit signed integer)

This is the password needed to access the LDAP CRL server.

If the value is shorter than the length of the field, terminate the value with a null character, or pad it
with blanks to the length of the field. If the LDAP server does not require a password, or you omit the

Developing applications reference 1005

LDAP user name, AIPW must be null or blank. If you omit the LDAP user name and AIPW is not null or
blank, the call fails with reason code RC2390.

This is an input field. The length of this field is given by LNLDPW. The initial value of this field blank
characters.

AILUL (10-digit signed integer)

This is the length in bytes of the LDAP user name addressed by the AILUP or AILUO field. The value
must be in the range zero through LNDISN. If the value is not valid, the call fails with reason code
RC2389.

If the LDAP server involved does not require a user name, set this field to zero.

This is an input field. The initial value of this field is 0.

AILUO (10-digit signed integer)

This is the offset in bytes of the LDAP user name from the start of the MQAIR structure.

The offset can be positive or negative. The field is ignored if LDAPUserNameLength is zero.

You can use either LDAPUserNamePtr or LDAPUserNameOffset to specify the LDAP user name, but
not both; see the description of the LDAPUserNamePtr field for details.

This is an input field. The initial value of this field is 0.

AILUP (10-digit signed integer)

This is the LDAP user name.

It consists of the Distinguished Name of the user who is attempting to access the LDAP CRL server. If
the value is shorter than the length specified by AILUL, terminate the value with a null character, or
pad it with blanks to the length AILUL. The field is ignored if AILUL is zero.

You can supply the LDAP user name in one of two ways:

• By using the pointer field AILUP

In this case, the application can declare a string that is separate from the MQAIR structure, and set
AILUP to the address of the string.

Consider using AILUP for programming languages that support the pointer data type in a fashion
that is portable to different environments (for example, the C programming language).

• By using the offset field AILUO

In this case, the application must declare a compound structure containing the MQSCO structure
followed by the array of MQAIR records followed by the LDAP user name strings, and set AILUO to
the offset of the appropriate name string from the start of the MQAIR structure. Ensure that this
value is correct, and has a value that can be accommodated within an MQLONG (the most restrictive
programming language is COBOL, for which the valid range is -999 999 999 through +999 999 999).

Consider using AILUO for programming languages that do not support the pointer data type, or that
implement the pointer data type in a fashion that might not be portable to different environments
(for example, the COBOL programming language).

Whichever technique is chosen, use only one of AILUP and AILUO ; the call fails with reason code
RC2388.

This is an input field. The initial value of this field is the null pointer in those programming languages
that support pointers, and an all-null byte string otherwise.

Note: On platforms where the programming language does not support the pointer data type, this
field is declared as a byte string of the appropriate length.

AISID (10-digit signed integer)

The value must be:

1006 IBM MQ Developing Applications Reference

AISIDV
Identifier for the authentication information record.

This is always an input field. The initial value of this field is AISIDV.

AIVER (10-digit signed integer)

The value must be:
AIVER1

Version-1 authentication information record.

The following constant specifies the version number of the current version:
AIRVERC

Current version of authentication information record.

This is always an input field. The initial value of this field is AIVER1.

Initial values

Table 683. Initial values of fields in MQAIR for MQAIR

Field name Name of constant Value of constant

AISID AISIDV 'AIR¬'

AIVER AIVERC 1

AITYP AITLDP 1

AICN None Null string or blanks

AILUP None Null pointer or null bytes

AILUO None 0

AILUL None 0

AIPW None Null string or blanks

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQAIR Structure
 D*
 D* Structure identifier
 D AISID 1 4 INZ('AIR ')
 D* Structure version number
 D AIVER 5 8I 0 INZ(1)
 D* Type of authentication information
 D AITYP 9 12I 0 INZ(1)
 D* Connection name of CRL LDAP server
 D AICN 13 276 INZ
 D* Address of LDAP user name
 D AILUP 277 292* INZ(*NULL)
 D* Offset of LDAP user name from start of MQAIR structure
 D AILUO 293 296I 0 INZ(0)
 D* Length of LDAP user name
 D AILUL 297 300I 0 INZ(0)
 D* Password to access LDAP server
 D AIPW 301 332 INZ

Developing applications reference 1007

MQBMHO (Buffer to message handle options) on IBM i
Structure defining the buffer to message handle options.

Overview
Purpose: The MQBMHO structure allows applications to specify options that control how message
handles are produced from buffers. The structure is an input parameter on the MQBUFMH call.

Character set and encoding: Data in MQBMHO must be in the character set of the application and
encoding of the application (ENNAT).

• “Fields” on page 1008
• “Initial values” on page 1009
• “RPG declaration” on page 1009

Fields
The MQBMHO structure contains the following fields; the fields are described in alphabetical order:

BMSID (10-digit signed integer)

Buffer to message handle structure - StrucId field.

This is the structure identifier. The value must be:
BMSIDV

Identifier for buffer to message handle structure.

This is always an input field. The initial value of this field is BMSIDV.

BMVER (10-digit signed integer)

Buffer to message handle structure - Version field.

This is the structure version number. The value must be:
BMVER1

Version number for buffer to message handle structure.

The following constant specifies the version number of the current version:
BMVERVC

Current version of buffer to message handle structure.

This is always an input field. The initial value of this field is BMVER1.

BMOPT (10-digit signed integer)

Buffer to message handle structure - Options field.

The value can be:
BMDLPR

Properties that are added to the message handle are deleted from the buffer. If the call fails no
properties are deleted.

Default options: If you do not need the option described, use the following option:
BMNONE

No options specified.

This is always an input field. The initial value of this field is BMDLPR.

1008 IBM MQ Developing Applications Reference

Initial values
Table 684. Initial values of fields in MQBMHO

Field name Name of constant Value of constant

BMSID BMSIDV 'BMHO'

BMVER BMVER1 1

BMOPT BMNONE 0

RPG declaration

 D* MQBMHO Structure
 D*
 D*
 D* Structure identifier
 D BMSID 1 4 INZ('BMHO')
 D*
 D* Structure version number
 D BMVER 5 8I 0 INZ(1)
 D*
 D* Options that control the action of MQBUFMH
 D BMOPT 9 12I 0 INZ(1)

MQBO (Begin options) on IBM i
The MQBO structure allows the application to specify options relating to the creation of a unit of work.

Overview
Purpose: The structure is an input/output parameter on the MQBEGIN call.

Character set and encoding: Data in MQBO must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT.

• “Fields” on page 1009
• “Initial values” on page 1010
• “RPG declaration” on page 1010

Fields
The MQBO structure contains the following fields; the fields are described in alphabetical order:

BOOPT (10-digit signed integer)

Options that control the action of MQBEGIN.

The value must be:
BONONE

No options specified.

This is always an input field. The initial value of this field is BONONE.

BOSID (4-byte character string)

Structure identifier.

The value must be:
BOSIDV

Identifier for begin-options structure.

This is always an input field. The initial value of this field is BOSIDV.

Developing applications reference 1009

BOVER (10-digit signed integer)

Structure version number.

The value must be:
BOVER1

Version number for begin-options structure.

The following constant specifies the version number of the current version:
BOVERC

Current version of begin-options structure.

This is always an input field. The initial value of this field is BOVER1.

Initial values
Table 685. Initial values of fields in MQBO

Field name Name of constant Value of constant

BOSID BOSIDV 'BO¬¬'

BOVER BOVER1 1

BOOPT BONONE 0

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQBO Structure
 D*
 D* Structure identifier
 D BOSID 1 4 INZ('BO ')
 D* Structure version number
 D BOVER 5 8I 0 INZ(1)
 D* Options that control the action of MQBEGIN
 D BOOPT 9 12I 0 INZ(0)

MQCBC (Callback context) on IBM i
Structure describing the callback routine.

Overview
Purpose

The MQCBC structure is used to specify context information that is passed to a callback function.

The structure is an input/output parameter on the call to a message consumer routine.

Version
The current version of MQCBC is CBCV2.

Character set and encoding
Data in MQCBC is in the character set given by the CodedCharSetId queue manager attribute and
encoding of the local queue manager given by ENNAT. However, if the application is running as an IBM
MQ client, the structure is in the character set and encoding of the client.

• “Fields” on page 1011
• “Initial values” on page 1016

1010 IBM MQ Developing Applications Reference

• “RPG declaration” on page 1016

Fields
The MQCBC structure contains the following fields; the fields are described in alphabetical order:

CBCBUFFLEN (10 digit signed integer)

The buffer can be larger than both the MaxMsgLength value defined for the consumer and the
ReturnedLength value in the MQGMO.

Callback context structure - BufferLength field.

This is the length in bytes of the message buffer that has been passed to this function.

The actual message length is supplied in DataLength field.

The application can use the entire buffer for its own purposes for the duration of the callback function.

This is an input field to the message consumer function; it is not relevant to an exception handler
function.

CBCCALLBA (10 digit signed integer)

Callback context structure - CallbackArea field.

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed
unchanged from the CBDCALLBA field in the MQCBD structure, which is a parameter on the MQCB
call used to define the callback function.

Changes to the CBCCALLBA are preserved across the invocations of the callback function for an
CBCHOBJ. This field is not shared with callback functions for other handles.

This is an input/output field to the callback function. The initial value of this field is a null pointer or
null bytes.

CBCCALLT (10 digit signed integer)

Callback Context structure - CallType field.

Field containing information about why this function has been called. The following call types are
defined.

Message delivery call types: These call types contain information about a message. The CBCLEN and
CBCBUFFLEN parameters are valid for these call types.
CBCTMR

The message consumer function has been invoked with a message that has been destructively
removed from the object handle.

If the value of CBCCC is CCWARN, the value of the Reason field is RC2079 or one of the codes
indicating a data conversion problem.

CBCTMN
The message consumer function has been invoked with a message that has not yet been
destructively removed from the object handle. The message can be destructively removed from
the object handle using the MsgToken.

The message might not have been removed because:

• The MQGMO options requested a browse operation, GMBR*
• The message is larger than the available buffer and the MQGMO options do not specify gmatm

If the value of CBCCC is CCWARN, the value of the Reason field is RC2080 or one of the codes
indicating a data conversion problem.

Developing applications reference 1011

Callback control call types: These call types contain information about the control of the callback and
do not contain details about a message. These call types are requested using CBDOPT in the MQCBD
structure.

The CBCLEN and CBCBUFFLEN parameters are not valid for these call types.
CBCTRC

The purpose of this call type is to allow the callback function to perform some initial setup.

The callback function is invoked is immediately after the callback is registered, that is, upon return
from an MQCB call using a value for the Operation field of CBREG.

This call type is used both for message consumers and event handlers.

If requested, this is the first invocation of the callback function.

The value of the CBCREA field is RCNONE.

CBCTSC
The purpose of this call type is to allow the callback function to perform some setup when it is
started, for example, reinstating resources that were cleaned up when it was previously stopped.

The callback function is invoked when the connection is started using either CTLSR or CTLSW.

If a callback function is registered within another callback function, this call type is invoked when
the callback returns.

This call type is used for message consumers only.

The value of the CBCREA field is RCNONE.

CBCTTC
The purpose of this call type is to allow the callback function to perform some cleanup when it is
stopped for a while, for example, cleaning up additional resources that have been acquired during
the consuming of messages.

The callback function is invoked when an MQCTL call is issued using a value for the Operation
field of CTLSP.

This call type is used for message consumers only.

The value of the CBCREA field is set to indicate the reason for stopping.

CBCTDC
The purpose of this call type is to allow the callback function to perform final cleanup at the end of
the consume process. The callback function is invoked when the:

• Callback function is deregistered using an MQCB call with BCUNR.
• Queue is closed, causing an implicit deregister. In this instance the callback function is passed

HOUNUH as the object handle.
• MQDISC call completes - causing an implicit close and, therefore, a deregister. In this case the

connection is not disconnected immediately, and any ongoing transaction is not yet committed.

If any of these actions are taken inside the callback function itself, the action is invoked once the
callback returns.

This call type is used both for message consumers and event handlers.

If requested, this is the last invocation of the callback function.

The value of the CBCREA field is set to indicate the reason for stopping.

CBCTEC
Event handler function

The event handler function has been invoked without a message when:

• An MQCTL call is issued with a value for the Operation field of CTLSP, or
• The queue manager or connection stops or quiesces.

1012 IBM MQ Developing Applications Reference

This call can be used to take appropriate action for all callback functions.

• Message consumer function

The message consumer function has been invoked without a message when an error (CBCCC
= CCFAIL) has been detected that is specific to the object handle; for example CBCREA code =
RC2016 .

The value of the CBCREA field is set to indicate the reason for the call.

This is an input field. CBCTMR and CMCTMN are applicable only to message consumer functions.

CBCCC (10 digit signed integer)

Callback context structure - CompCode field.

This is the completion code. It indicates whether there were any problems consuming the message; it
is one of the following:
CCOK

Successful completion
CCWARN

Warning (partial completion)
CCFAIL

Call failed

This is an input field. The initial value of this field is CCOK.

CBCCONNAREA (10 digit signed integer)

Callback context structure - ConnectionArea field.

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed
unchanged from the ConnectionArea field in the MQCTLO structure, which is a parameter on the
MQCTL call used to control the callback function.

Any changes made to this field by the callback functions are preserved across the invocations of
the callback function. This area can be used to pass information that is to be shared by all callback
functions. Unlike CallbackArea, this area is common across all callbacks for a connection handle.

This is an input and output field. The initial value of this field is a null pointer or null bytes.

CBCLEN (10 digit signed integer)

This is the length in bytes of the application data in the message. If the value is zero, it means that the
message contains no application data.

The CBCLEN field contains the length of the message but not necessarily the length of the message
data passed to the consumer. It could be that the message was truncated. Use the GMRL field in the
MQGMO to determine how much data has been passed to the consumer.

If the reason code indicates the message has been truncated, you can use the CBCLEN field to
determine how large the actual message is. This allows you to determine the size of the buffer
required to accommodate the message data, and then issue an MQCB call to update the CBDMML in
the MQCBD with an appropriate value.

If the GMCONV option is specified, the converted message could be larger than the value returned
for DataLength. In such cases, the application probably needs to issue an MQCB call to update the
CBDMML in the MQCBD to be greater than the value returned by the queue manager for DataLength.

To avoid message truncation problems, specify MaxMsgLength as CBDFM. This causes the queue
manager to allocate a buffer for the full message length after data conversion. Be aware, however, that
even if this option is specified, it is still possible that sufficient storage is not available to correctly
process the request. Applications should always check the returned reason code. For example, if it

Developing applications reference 1013

is not possible to allocate sufficient storage to convert the message, the messages is returned to the
application unconverted.

This is an input field to the message consumer function; it is not relevant to an event handler function.

CBCFLG (10 digit signed integer)

Flags containing information about this consumer.

The following option is defined:
CBCFBE

This flag can be returned if a previous MQCLOSE call using the COQSC option failed with a reason
code of RC2458.

This code indicated that the last read ahead message is being returned and that the buffer is now
empty. If the application issues another MQCLOSE call using the COQSC option, it succeeds.

Note, that an application is not guaranteed to be given a message with this flag set, as there might
still be messages in the read-ahead buffer that do not match the current selection criteria. In this
instance, the consumer function is invoked with the reason code RC2019 .

If the read ahead buffer is empty, the consumer is invoked with the CBCFBE flag and the reason
code RC2518.

This is an input field to the message consumer function; it is not relevant to an event handler function.

CBCHOBJ (10 digit signed integer)

Callback context structure - CBCHOBJ field.

For a call to a message consumer, this is the handle for the object relating to the message consumer.

For an event handler, this value is HONONE

The application can use this handle and the message token in the Get Message Options block to get
the message if a message has not been removed from the queue.

This is always an input field. The initial value of this field is HOUNUH

CBCRCD (10 digit signed integer)

CBCRCD indicates how long the queue manager waits before trying to reconnect. The field can be
modified by an event handler to change the delay or stop reconnection altogether.

Use the CBCRCD field only if the value of the Reason field in the Callback Context is RC2545.

On entry to the event handler the value of CBCRCD is the number of milliseconds the queue manager
is going to wait before making a reconnection attempt. Table 686 on page 1014 lists the values that
you can set to modify the behavior of the queue manager on return from the event handler.

Table 686. CBCRCD values

Value Description

-1 Make no more reconnection attempts. An error is returned to the application.

0 Try to reconnect immediately.

>0 Wait for this many milliseconds before trying the connection again.

CBCREA (10 digit signed integer)

Callback context structure - Reason field.

This is the reason code qualifying the CBCCC

This is an input field. The initial value of this field is RCNONE.

1014 IBM MQ Developing Applications Reference

CBCSTATE (10 digit signed integer)

An indication of the state of the current consumer. This field is of most value to an application when a
nonzero reason code is passed to the consumer function.

You can use this field to simplify application programming because you do not need to code behavior
for each reason code.

This is an input field. The initial value of this field is CSNONE

Table 687. CBCSTATE values and resultant actions

State Queue manager action Value of
constant

CSNONE

This reason code represents a normal call
with no additional reason information

None; this is the normal operation. 0

CSSUST

These reason codes represent temporary
conditions.

The callback routine is called to report
the condition and then suspended. After
a period the system might attempt the
operation again, which can lead to the
same condition being raised again.

1

CSSUSU

These reason codes represent conditions
where the callback needs to act to resolve
the condition.

The consumer is suspended and the
callback routine is called to report the
condition. The callback routine should
resolve the condition if possible and
either RESUME or close down the
connection.

2

CSSUS

These reason codes represent failures
that prevent further message callbacks.

The queue manager automatically
suspends the callback function. If the
callback function is resumed it is likely to
receive the same reason code again.

3

CSSTOP

These reason codes represent the end of
message consumption.

Delivered to the exception handler and
to callbacks that specified CBDTC. No
further messages can be consumed.

4

CBCSID (10 digit signed integer)

Callback context structure - StrucId field.

This is the structure identifier; the value must be:
CBCSI

Identifier for callback context structure.

This is always an input field. The initial value of this field is CBCSI.

CBCVER (10 digit signed integer)

Callback context structure - Version field.

This is the structure version number; the value must be:
CBCV1

Version-1 callback context structure.

The following constant specifies the version number of the current version:
CBCCV

Current version of the callback context structure.

Developing applications reference 1015

This is always an input field. The initial value of this field is CBCV1.

Initial values
Table 688. Initial values of fields in MQCBC

Field name Name of constant Value of constant

CBCSID CBCSI 'CBC¬'

CBCVER CBCV1 1

CBCCALLT None 0

CBCHOBJ HOUNUH -1

CBCCALLBA None Null pointer or null bytes

CBCCONNAREA None Null pointer or null bytes

CBCCC CCOK 0

CBCREA RCNONE 0

CBCSTATE CSNONE 0

CBCLEN None 0

CBCBUFFLEN None 0

CBCFLG None 0

CBCRCD none 0

Note:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D* MQCBC Structure
 D*
 D*
 D* Structure identifier
 D CBCSID 1 4 INZ('CBC ')
 D*
 D* Structure version number
 D CBCVER 5 8I 0 INZ(1)
 D*
 D* Why Function was called
 D CBCCALLT 9 12I 0 INZ(0)
 D*
 D* Object Handle
 D CBCHOBJ 13 16I 0 INZ(-1)
 D*
 D* Callback data passed to the function
 D CBCCALLBA 17 32* INZ(*NULL)
 D*
 D* MQCTL Data area passed to the function
 D CBCCONNAREA 33 48* INZ(*NULL)
 D*
 D* Completion Code
 D CBCCC 49 52I 0 INZ(0)
 D*
 D* Reason Code
 D CBCREA 53 56I 0 INZ(0)
 D*
 D* Consumer State
 D CBCSTATE 57 60I 0 INZ(0)
 D*
 D* Message Data Length
 D CBCLEN 61 64I 0 INZ(0)

1016 IBM MQ Developing Applications Reference

 D*
 D* Buffer Length
 D CBCBUFFLEN 65 68I 0 INZ(0)
 D*
 ** Flags containing information about
 D* this consumer
 D CBCFLG 69 72I 0 INZ(0)
 D* Ver:1 **
 D* Number of milliseconds before reconnect attempt
 D CBCRCD 73 76I 0 INZ(0)
 D* Ver:2 **
 D*

MQCBD (Callback descriptor) on IBM i
Structure specifying the callback function.

Overview
Purpose: The MQCBD structure is used to specify a callback function and the options controlling its use
by the queue manager.

The structure is an input parameter on the MQCB call.

Version: The current version of MQCBD is CBDV1.

Character set and encoding: Data in MQCBD must be in the character set and encoding of the local
queue manager; these are given by the CodedCharSetId queue manager attribute and ENNAT. However,
if the application is running as an IBM MQ MQI client, the structure must be in the character set and
encoding of the client.

• “Fields” on page 1017
• “Initial values” on page 1021
• “RPG declaration” on page 1021

Fields
The MQCBD structure contains the following fields; the fields are described in alphabetical order:

CBDCALLBA (10-digit signed integer)

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed
unchanged from the CBCCALLBA field in the MQCBD structure, which is a parameter on the callback
function declaration.

The value is used only on an Operation having a value CBREG, with no currently defined callback, it
does not replace a previous definition.

This is an input and output field to the callback function. The initial value of this field is a null pointer
or null bytes.

CBDCALLBF (10-digit signed integer)

The callback function is invoked as a function call.

Use this field to specify a pointer to the callback function.

You must specify either CallbackFunction or CallbackName. If you specify both, the reason code
RC2486 is returned.

If neither CallbackName nor CallbackFunction is not set, the call fails with the reason code
RC2486.

This option is not supported in the following environments:

• CICS on z/OS

Developing applications reference 1017

• Programming languages and compilers that do not support function-pointer references

In such situations, the call fails with the reason code RC2486.

This is an input field. The initial value of this field is a null pointer or null bytes.

CBDCALLBN (10-digit signed integer)

The callback function is invoked as a dynamically linked program.

You must specify either CallbackFunction or CallbackName. If you specify both, the reason code
RC2486 is returned.

If either CallbackName or CallbackFunction is not true, the call fails with the reason code
RC2486.

The module is loaded when the first callback routine to use is registered, and unloaded when the last
callback routine to use it deregisters.

Except where noted in the following text, the name is left-aligned within the field, with no embedded
blanks; the name itself is padded with blanks to the length of the field. In the descriptions that follow,
square brackets ([]) denote optional information:
IBMi

The callback name can be one of the following formats:

• Library "/" Program
• Library "/" ServiceProgram "("FunctionName")"

For example, MyLibrary/MyProgram(MyFunction).

The library name can be *LIBL. Both the library and program names are limited to a maximum of
10 characters.

AIX and Linux
The callback name is the name of a dynamically loadable module or library, suffixed with the
name of a function residing in that library. The function name must be enclosed in parentheses.
The library name can optionally be prefixed with a directory path:

[path]library(function)

If the path is not specified the system search path is used.

The name is limited to a maximum of 128 characters.

Windows
The callback name is the name of a dynamic-link library, suffixed with the name of a function
residing in that library. The function name must be enclosed in parentheses. The library name can
optionally be prefixed with a directory path and drive:

[d:][path]library(function)

If the drive and path are not specified the system search path is used.

The name is limited to a maximum of 128 characters.

z/OS
The callback name is the name of a load module that is valid for specification on the EP parameter
of the LINK or LOAD macro.

The name is limited to a maximum of 8 characters.

z/OS CICS
The callback name is the name of a load module that is valid for specification on the PROGRAM
parameter of the EXEC CICS LINK command macro.

The name is limited to a maximum of 8 characters.

1018 IBM MQ Developing Applications Reference

The program can be defined as remote using the REMOTESYTEM option of the installed PROGRAM
definition or by the dynamic routing program.

The remote CICS region must be connected to IBM MQ if the program is to use IBM MQ API calls.
Note, however, that the CBCHOBJ field in the MQCBC structure is not valid in a remote system.

If a failure occurs trying to load CallbackName, one of the following error codes is returned to the
application:

• RC2495
• RC2496
• RC2497

A message is also written to the error log containing the name of the module for which the load was
attempted, and the failing reason code from the operating system.

This is an input field. The initial value of this field is a null string or blanks.

CBDCALLBT (10-digit signed integer)

This is the type of the callback function. The value must be one of:
CBTMC

Defines this callback as a message consumer function.

A message consumer callback function is called when a message, meeting the selection criteria
specified, is available on an object handle and the connection is started.

CBTEH
Defines this callback as the asynchronous event routine; it is not driven to consume messages for
a handle.

Hobj is not required on the MQCB call defining the event handler and is ignored if specified.

The event handler is called for conditions that affect the whole message consumer environment.
The consumer function is invoked without a message when an event, for example, a queue
manager or connection stopping, or quiescing, occurs. It is not called for conditions that are
specific to a single message consumer, for example, RC2016.

Events are delivered to the application, regardless of whether the connection is started or
stopped, except in the following environments:

• CICS on z/OS environment
• nonthreaded applications

If the caller does not pass one of these values, the call fails with a reason code of RC2483

This is always an input field. The initial value of this field is CBTMC.

CBDMML (10-digit signed integer)

This is the length in bytes of the longest message that can be read from the handle and given to the
callback routine. If a message has a longer length, the callback routine receives MaxMsgLength bytes
of the message, and reason code:

• RC2080 or
• RC2079 if you specified GMATM.

The actual message length is supplied in the “CBCLEN (10 digit signed integer)” on page 1013 field of
the MQCBC structure.

The following special value is defined:
CBDFM

The buffer length is adjusted by the system to return messages without truncation.

If insufficient memory is available to allocate a buffer to receive the message, the system calls the
callback function with an RC2071 reason code.

Developing applications reference 1019

If, for example, you request data conversion, and there is insufficient memory available to convert
the message data, the unconverted message is passed to the callback function.

This is an input field. The initial value of the MaxMsgLength field is CBDFM.

CBDOPT (10-digit signed integer)

Callback descriptor structure - Options field.

Any one, or all, of the following can be specified. To specify more than one option, either add the
values together (do not add the same constant more than once), or combine the values using the
bitwise OR operation (if the programming language supports bit operations). Combinations that are
not valid are noted; any other combinations are valid.

CBDFQ
The MQCB call fails if the queue manager is in the quiescing state.

On z/OS, this option also forces the MQCB call to fail if the connection (for a CICS or IMS
application) is in the quiescing state.

Specify GMFIQ, in the MQGMO options passed on the MQCB call, to cause notification to message
consumers when they are quiescing.

Control options: The following options control whether the callback function is called, without a
message, when the state of the consumer changes:
CBDRC

The callback function is invoked with call type CBCTRC
.

CBDSC
The callback function is invoked with call type CBCTSC.

CBDTC
The callback function is invoked with call type CBCTTC.

CBDDC
The callback function is invoked with call type CBCTDC.

See “CBCCALLT (10 digit signed integer)” on page 1011 for further details about these call types.

Default option: If you do not need any of the options described, use the following option:
CBDNO

Use this value to indicate that no other options have been specified; all options assume their
default values.

CBDNO is defined to aid program documentation; it is not intended that this option is used with
any other, but as its value is zero, such use cannot be detected.

This is an input field. The initial value of the Options field is CBDNO.

CBDSID (10-digit signed integer)

Callback descriptor structure - StrucId field.

This is the structure identifier; the value must be:
CBDSI

Identifier for callback descriptor structure.

This is always an input field. The initial value of this field is CBDSI.

CBDVER (10-digit signed integer)

Callback descriptor structure - Version field.

This is the structure version number; the value must be:
CBDV1

Version-1 callback descriptor structure.

1020 IBM MQ Developing Applications Reference

The following constant specifies the version number of the current version:
CBDCV

Current version of callback descriptor structure.

This is always an input field. The initial value of this field is CBDV1.

Initial values
Table 689. Initial values of fields in MQCBD

Field name Name of constant Value of constant

StrucId CBDSI 'CBD¬'

Version CBDV1 1

CallBackType CBTMC 1

Options CBDNO 0

CallbackArea None Null bytes

CallbackFunction None Null bytes

CallbackName None Blanks

MaxMsgLength CBDFM -1

Note:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D* MQCBD Structure
 D*
 D*
 D* Structure identifier
 D CBDSID 1 4 INZ('CBD ')
 D*
 D* Structure version number
 D CBDVER 5 8I 0 INZ(1)
 D*
 D* Callback function type
 D CBDCALLBT 9 12I 0 INZ(1)
 D*
 ** Options controlling message
 D* consumption
 D CBDOPT 13 16I 0 INZ(0)
 D*
 D* User data passed to the function
 D CBDCALLBA 17 32*
 D*
 D* FP: Callback function pointer
 D CBDCALLBF 33 48*
 D*
 D* Callback name
 D CBDCALLBN 49 176 INZ('\0')
 D*
 D* Maximum message length
 D CBDMML 177 180I 0 INZ(-1)

Developing applications reference 1021

MQCHARV (Variable Length String) on IBM i
Use the MQCHARV structure to describe a variable length string.

Overview
Character set and encoding: Data in the MQCHARV must be in the encoding of the local queue manager
that is given by ENNAT and the character set of the VCHRC field within the structure. If the application
is running as an IBM MQ MQI client, the structure must be in the encoding of the client. Some character
sets have a representation that depends on the encoding. If VCHRC is one of these character sets, the
encoding used is the same encoding as that of the other fields in the MQCHARV. The character set
identified by VSCCSID can be a double-byte character set (DBCS).

Usage: The MQCHARV structure addresses data that might be discontiguous with the structure containing
it. To address this data, fields declared with the pointer data type can be used.

• “Fields” on page 1022
• “Initial values” on page 1023
• “RPG declaration” on page 1023
• “Redefinition of CSAPL” on page 1024

Fields
The MQCHARV structure contains the following fields; the fields are described in alphabetical order:

VCHRC (10-digit signed integer)

This is the character set identifier of the variable length string addressed by the VCHRP or VCHRO
field.

The initial value of this field is CSAPL. This is defined by IBM MQ to indicate that it should be changed
by the queue manager to the true character set identifier of the queue manager. This is in the same
way as CSQM behaves. As a result, the value CSAPL is never associated with a variable length string.
The initial value of this field can be changed by defining a different value for the constant CSAPL for
your compile unit by the appropriate means for your application's programming language.

VCHRL (10-digit signed integer)

The length in bytes of the variable length string addressed by the VCHRP or VCHRO field.

The initial value of this field is 0. The value must be either greater than or equal to zero or the
following special value which is recognized:

VSNLT

If VSNLT is not specified, VCHRL bytes are included as part of the string. If null characters are
present they do not delimit the string.

If VSNLT is specified, the string is delimited by the first null encountered in the string. The null
itself is not included as part of that string.

Note: The null character used to terminate a string if VSNLT is specified is a null from the code set
specified by VCHRC.

For example, in UTF-16 (CCSIDs 1200, 13488, and 17584), this is the 2-byte Unicode encoding
where a null is represented by a 16 bit number of all zeros. In UTF-16 it is common to find single
bytes set to all zero which are part of characters (7-bit ASCII characters for example), but the
strings will only be null terminated when two 'zero' bytes are found on an even byte boundary. It
is possible to get two 'zero' bytes on an odd boundary when they are each part of valid characters.
For example, x'01' x'00' x'00' x'30' represents two valid Unicode characters and does not null
terminate the string.

1022 IBM MQ Developing Applications Reference

VCHRO (10-digit signed integer)

The offset in bytes of the variable length string from the start of the MQCHARV, or the structure
containing it.

When the MQCHARV structure is embedded within another structure, this value is the offset in bytes
of the variable length string from the start of the structure that contains this MQCHARV structure.
When the MQCHARV structure is not embedded within another structure, for example, if it is specified
as a parameter on a function call, the offset is relative to the start of the MQCHARV structure.

The offset can be positive or negative. You can use either the VCHRP or VCHRO field to specify the
variable length string, but not both.

The initial value of this field is 0.

VCHRP (pointer)

This is a pointer to the variable length string.

You can use either the VCHRP or VCHRO field to specify the variable length string, but not both.

The initial value of this field is a null pointer or null bytes.

VCHRS (10-digit signed integer)

The size in bytes of the buffer addressed by the VCHRP or VCHRO field.

When the MQCHARV structure is used as an output field on a function call, this field must be initialized
with the length of the buffer provided. If the value of VCHRL is greater than VCHRS then only VCHRS
bytes of data will be returned to the caller in the buffer.

The value must be greater than or equal to zero or the following special value which is recognized:

VSUSL
If VSUSL is specified, the length of the buffer is taken from the VCHRL field in the MQCHARV
structure. This special value is not appropriate when the structure is used as an output field and a
buffer is provided. This is the initial value of this field.

Initial values
Table 690. MQCHARV initial values for constants

Field name Name of constant Value of constant

VCHRP None Null pointer or null
bytes.

VCHRO None 0

VCHRS VSUSL -1

VCHRL None 0

VCHRC CSAPL -3

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQCHARV Structure
 D*
 D* Address of variable length string
 D VCHRP 1 16*
 D* Offset of variable length string
 D VCHRO 17 20I 0
 D* Size of buffer
 D VCHRS 21 24I 0
 D* Length of variable length string
 D VCHRL 25 28I 0

Developing applications reference 1023

 D* CCSID of variable length string
 D VCHRC 29 32I 0

Redefinition of CSAPL
Unlike the programming languages supported on other platforms, RPG does not have a way of redefining a
defined constant, so you must set each VCHRC specifically if you want to use a value other than CSAPL.

MQCIH (CICS bridge header) on IBM i
The MQCIH structure describes the information that can be present at the start of a message sent to the
CICS bridge through IBM MQ for z/OS.

Overview
Format name: FMCICS.

Version: The current version of MQCIH is CIVER2. Fields that exist only in the more-recent version of the
structure are identified as such in the descriptions that follow.

The COPY file provided contains the most recent version of MQCIH, with the initial value of the CIVER
field set to CIVER2.

Character set and encoding: Special conditions apply to the character set and encoding used for the
MQCIH structure and application message data:

• Applications that connect to the queue manager that owns the CICS bridge queue must provide an
MQCIH structure that is in the character set and encoding of the queue manager. This is because data
conversion of the MQCIH structure is not performed in this case.

• Applications that connect to other queue managers can provide an MQCIH structure that is in any of
the supported character sets and encodings; conversion of the MQCIH is performed by the receiving
message channel agent connected to the queue manager that owns the CICS bridge queue.

Note: There is one exception to this. If the queue manager that owns the CICS bridge queue is using
CICS for distributed queuing, the MQCIH must be in the character set and encoding of the queue
manager that owns the CICS bridge queue.

• The application message data following the MQCIH structure must be in the same character set and
encoding as the MQCIH structure. The CICSI and CIENC fields in the MQCIH structure cannot be used
to specify the character set and encoding of the application message data.

A data-conversion exit must be provided by the user to convert the application message data if the data
is not one of the built-in formats supported by the queue manager.

Usage: If the values required by the application are the same as the initial values shown in Table 692 on
page 1033, and the bridge is running with AUTH=LOCAL or AUTH=IDENTIFY, the MQCIH structure can be
omitted from the message. In all other cases, the structure must be present.

The bridge accepts either a version-1 or a version-2 MQCIH structure, but for 3270 transactions a
version-2 structure must be used.

The application must ensure that fields documented as "request" fields have appropriate values in the
message sent to the bridge; these fields are input to the bridge.

Fields documented as "response" fields are set by the CICS bridge in the reply message that the bridge
sends to the application. Error information is returned in the CIRET, CIFNC, CICC, CIREA, and CIAC
fields, but not all of them are set in all cases. Table 691 on page 1024 shows which fields are set for
different values of CIRET.

Table 691. Contents of error information fields in MQCIH structure

CIRET CIFNC CICC CIREA CIAC

CRC000 - - - -

1024 IBM MQ Developing Applications Reference

Table 691. Contents of error information fields in MQCIH structure (continued)

CIRET CIFNC CICC CIREA CIAC

CRC003 - - FBC* -

CRC002 CRC008 IBM MQ call name IBM MQ CMPCOD IBM MQ REASON -

CRC001 CRC006
CRC007 CRC009

CICS EIBFN CICS EIBRESP CICS EIBRESP2 -

CRC004 CRC005 - - - CICS ABCODE

• “Fields” on page 1025
• “Initial values” on page 1033
• “RPG declaration” on page 1034

Fields
The MQCIH structure contains the following fields; the fields are described in alphabetical order:

CIAC (4-byte character string)

Abend code.

The value returned in this field is significant only if the CIRET field has the value CRC005 or CRC004.
If it does, CIAC contains the CICS ABCODE value.

This is a response field. The length of this field is given by LNABNC. The initial value of this field is 4
blank characters.

This is an indicator specifying whether ADS descriptors should be sent on SEND and RECEIVE BMS
requests. The following values are defined:
ADNONE

Do not send or receive ADS descriptor.
ADSEND

Send ADS descriptor.
ADRECV

Receive ADS descriptor.
ADMSGF

Use message format for the ADS descriptor.

This causes the ADS descriptor to be sent or received using the long form of the ADS descriptor.
The long form has fields that are aligned on 4-byte boundaries.

The CIADS field should be set as follows:

• If ADS descriptors are not being used, set the field to ADNONE.
• If ADS descriptors are being used, and with the same CCSID in each environment, set the field to the

sum of ADSEND and ADRECV.
• If ADS descriptors are being used, but with different CCSIDs in each environment, set the field to the

sum of ADSEND, ADRECV, and ADMSGF.

This is a request field used only for 3270 transactions. The initial value of this field is ADNONE.

CIADS (10-digit signed integer)

Send/receive ADS descriptor.

This is an indicator specifying whether ADS descriptors should be sent on SEND and RECEIVE BMS
requests. The following values are defined:

Developing applications reference 1025

ADNONE
Do not send or receive ADS descriptor.

ADSEND
Send ADS descriptor.

ADRECV
Receive ADS descriptor.

ADMSGF
Use message format for the ADS descriptor.

This causes the ADS descriptor to be sent or received using the long form of the ADS descriptor.
The long form has fields that are aligned on 4-byte boundaries.

The CIADS field should be set as follows:

• If ADS descriptors are not being used, set the field to ADNONE.
• If ADS descriptors are being used, and with the same CCSID in each environment, set the field to the

sum of ADSEND and ADRECV.
• If ADS descriptors are being used, but with different CCSIDs in each environment, set the field to the

sum of ADSEND, ADRECV, and ADMSGF.

This is a request field used only for 3270 transactions. The initial value of this field is ADNONE.

CIAI (4-byte character string)

AID key.

This is the initial value of the AID key when the transaction is started. It is a 1-byte value, left-aligned.

This is a request field used only for 3270 transactions. The length of this field is given by LNATID. The
initial value of this field is 4 blanks.

CIAUT (8-byte character string)

Password or passticket.

This is a password or passticket. If user-identifier authentication is active for the CICS bridge, CIAUT
is used with the user identifier in the MQMD identity context to authenticate the sender of the
message.

This is a request field. The length of this field is given by LNAUTH. The initial value of this field is 8
blanks.

CICC (10-digit signed integer)

IBM MQ completion code or CICS EIBRESP.

The value returned in this field is dependent on CIRET ; see Table 691 on page 1024.

This is a response field. The initial value of this field is CCOK.

CICNC (4-byte character string)

Abend transaction code.

This is the abend code to be used to terminate the transaction (normally a conversational transaction
that is requesting more data). Otherwise this field is set to blanks.

This is a request field used only for 3270 transactions. The length of this field is given by LNCNCL. The
initial value of this field is 4 blanks.

CICP (10-digit signed integer)

Cursor position.

This is the initial cursor position when the transaction is started. Later, for conversational transactions,
the cursor position is in the RECEIVE vector.

1026 IBM MQ Developing Applications Reference

This is a request field used only for 3270 transactions. The initial value of this field is 0. This field is
not present if CIVER is less than CIVER2.

CICSI (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is 0.

CICT (10-digit signed integer)

Whether task can be conversational.

This is an indicator specifying whether the task should be allowed to issue requests for more
information, or should abend. The value must be one of the following:
CTYES

Task is conversational.
CTNO

Task is not conversational.

This is a request field used only for 3270 transactions. The initial value of this field is CTNO.

CIENC (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is 0.

CIEO (10-digit signed integer)

Offset of error in message.

This is the position of invalid data detected by the bridge exit. This field provides the offset from the
start of the message to the location of the invalid data.

This is a response field used only for 3270 transactions. The initial value of this field is 0. This field is
not present if CIVER is less than CIVER2.

CIFAC (8-byte bit string)

Bridge facility token.

This is an 8-byte bridge facility token. The purpose of a bridge facility token is to allow multiple
transactions in a pseudoconversation to use the same bridge facility (virtual 3270 terminal). In the
first, or only, message in a pseudoconversation, a value of FCNONE should be set; this tells CICS
to allocate a new bridge facility for this message. A bridge facility token is returned in response
messages when a nonzero CIFKT is specified on the input message. Subsequent input messages can
then use the same bridge facility token.

The following special value is defined:
FCNONE

No BVT token specified.

This is both a request and a response field used only for 3270 transactions. The length of this field is
given by LNFAC. The initial value of this field is FCNONE.

CIFKT (10-digit signed integer)

Bridge facility release time.

This is the length of time in seconds that the bridge facility will be kept after the user transaction has
ended. For nonconversational transactions, the value should be zero.

This is a request field used only for 3270 transactions. The initial value of this field is 0.

CIFL (4-byte character string)

Terminal emulated attributes.

Developing applications reference 1027

This is the name of an installed terminal that is to be used as a model for the bridge facility. A value
of blanks means that CIFL is taken from the bridge transaction profile definition, or a default value is
used.

This is a request field used only for 3270 transactions. The length of this field is given by LNFACL. The
initial value of this field is 4 blanks.

CIFLG (10-digit signed integer)

Flags.

The value must be:
CIFNON

No flags.

This is a request field. The initial value of this field is CIFNON.

CIFMT (8-byte character string)

IBM MQ format name of data that follows MQCIH.

This specifies the IBM MQ format name of the data that follows the MQCIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the MDFMT field in MQMD.

This format name is also used for the reply message, if the CIRFM field has the value FMNONE.

• For DPL requests, CIFMT must be the format name of the COMMAREA.
• For 3270 requests, CIFMT must be CSQCBDCI, and CIRFM must be CSQCBDCO.

The data-conversion exits for these formats must be installed on the queue manager where they are
to run.

If the request message results in the generation of an error reply message, the error reply message
has a format name of FMSTR.

This is a request field. The length of this field is given by LNFMT. The initial value of this field is
FMNONE.

CIFNC (4-byte character string)

IBM MQ call name or CICS EIBFN function.

The value returned in this field is dependent on CIRET ; see Table 691 on page 1024. The following
values are possible when CIFNC contains an IBM MQ call name:
CFCONN

MQCONN call.
CFGET

MQGET call.
CFINQ

MQINQ call.
CFOPEN

MQOPEN call.
CFPUT

MQPUT call.
CFPUT1

MQPUT1 call.
CFNONE

No call.

This is a response field. The length of this field is given by LNFUNC. The initial value of this field is
CFNONE.

1028 IBM MQ Developing Applications Reference

CIGWI (10-digit signed integer)

Wait interval for MQGET call issued by bridge task.

This field is applicable only when CIUOW has the value CUFRST. It allows the sending application
to specify the approximate time in milliseconds that the MQGET calls issued by the bridge should
wait for second and subsequent request messages for the unit of work started by this message. This
overrides the default wait interval used by the bridge. The following special values may be used:
WIDFLT

Default wait interval.

This causes the CICS bridge to wait for the period specified when the bridge was started.

WIULIM
Unlimited wait interval.

This is a request field. The initial value of this field is WIDFLT.

CIII (10-digit signed integer)

Reserved.

This is a reserved field. The value must be 0. This field is not present if CIVER is less than CIVER2.

CILEN (10-digit signed integer)

Length of MQCIH structure.

The value must be one of the following:
CILEN1

Length of version-1 CICS information header structure.
CILEN2

Length of version-2 CICS information header structure.

The following constant specifies the length of the current version:
CILENC

Length of current version of CICS information header structure.

This is a request field. The initial value of this field is CILEN2.

CILT (10-digit signed integer)

Link type.

This indicates the type of object that the bridge should try to link. The value must be one of the
following:
LTPROG

DPL program.
LTTRAN

3270 transaction.

This is a request field. The initial value of this field is LTPROG.

CINTI (4-byte character string)

Next transaction to attach.

This is the name of the next transaction returned by the user transaction (typically by EXEC CICS
RETURN TRANSID). If there is no next transaction, this field is set to blanks.

This is a response field used only for 3270 transactions. The length of this field is given by LNTRID.
The initial value of this field is 4 blanks.

CIODL (10-digit signed integer)

Output COMMAREA data length.

Developing applications reference 1029

This is the length of the user data to be returned to the client in a reply message. This length
includes the 8-byte program name. The length of the COMMAREA passed to the linked program is the
maximum of this field and the length of the user data in the request message, minus 8.

Note: The length of the user data in a message is the length of the message excluding the MQCIH
structure.

If the length of the user data in the request message is smaller than CIODL, the DATALENGTH option
of the LINK command is used; this allows the LINK to be function-shipped efficiently to another CICS
region.

The following special value can be used:
OLINPT

Output length is same as input length.

This value might be needed even if no reply is requested, in order to ensure that the COMMAREA
passed to the linked program is of sufficient size.

This is a request field used only for DPL programs. The initial value of this field OLINPT.

CIREA (10-digit signed integer)

IBM MQ reason or feedback code, or CICS EIBRESP2.

The value returned in this field is dependent on CIRET ; see Table 691 on page 1024.

This is a response field. The initial value of this field is RCNONE.

CIRET (10-digit signed integer)

Return code from bridge.

This is the return code from the CICS bridge describing the outcome of the processing performed by
the bridge. The CIFNC, CICC, CIREA, and CIAC fields may contain additional information (see Table
691 on page 1024). The value is one of the following:
CRC000

(0, X'000') No error.
CRC001

(1, X'001') EXEC CICS statement detected an error.
CRC002

(2, X'002') IBM MQ call detected an error.
CRC003

(3, X'003') CICS bridge detected an error.
CRC004

(4, X'004') CICS bridge ended abnormally.
CRC005

(5, X'005') Application ended abnormally.
CRC006

(6, X'006') Security error occurred.
CRC007

(7, X'007') Program not available.
CRC008

(8, X'008') Second or later message within current unit of work not received within specified time.
CRC009

(9, X'009') Transaction not available.

This is a response field. The initial value of this field is CRC000.

CIRFM (8-byte character string)

IBM MQ format name of reply message.

1030 IBM MQ Developing Applications Reference

This is the IBM MQ format name of the reply message that will be sent in response to the current
message. The rules for coding this are the same as those for the MDFMT field in MQMD.

This is a request field used only for DPL programs. The length of this field is given by LNFMT. The initial
value of this field is FMNONE.

CIRSI (4-byte character string)

Reserved.

This is a reserved field. The value must be 4 blanks. The length of this field is given by LNRSID.

CIRS1 (8-byte character string)

Reserved.

This is a reserved field. The value must be 8 blanks.

CIRS2 (8-byte character string)

Reserved.

This is a reserved field. The value must be 8 blanks.

CIRS3 (8-byte character string)

Reserved.

This is a reserved field. The value must be 8 blanks.

CIRS4 (10-digit signed integer)

Reserved.

This is a reserved field. The value must be 0. This field is not present if CIVER is less than CIVER2.

CIRTI (4-byte character string)

Reserved.

This is a reserved field. The value must be 4 blanks. The length of this field is given by LNTRID.

CISC (4-byte character string)

Transaction start code.

This is an indicator specifying whether the bridge emulates a terminal transaction or a START
transaction. The value must be one of the following:
SCSTRT

Start.
SCDATA

Start data.
SCTERM

Terminate input.
SCNONE

None.

In the response from the bridge, this field is set to the start code appropriate to the next transaction
ID contained in the CINTI field. The following start codes are possible in the response:

• SCSTRT
• SCDATA
• SCTERM

For CICS Transaction Server 1.2 this field is a request field only; its value in the response is undefined.

For CICS Transaction Server 1.3 and subsequent releases, this is both a request and a response field.

Developing applications reference 1031

This field is used only for 3270 transactions. The length of this field is given by LNSTCO. The initial
value of this field is SCNONE.

CISID (4-byte character string)

Structure identifier.

The value must be:
CISIDV

Identifier for CICS information header structure.

This is a request field. The initial value of this field is CISIDV.

CITES (10-digit signed integer)

Status at end of task.

This field shows the status of the user transaction at end of task. One of the following values is
returned:
TENOSY

Not synchronized.

The user transaction has not yet completed and has not syncpointed. The MDMT field in MQMD is
MTRQST in this case.

TECMIT
Commit unit of work.

The user transaction has not yet completed, but has syncpointed the first unit of work. The MDMT
field in MQMD is MTDGRM in this case.

TEBACK
Back out unit of work.

The user transaction has not yet completed. The current unit of work will be backed out. The MDMT
field in MQMD is MTDGRM in this case.

TEENDT
End task.

The user transaction has ended (or abended). The MDMT field in MQMD is MTRPLY in this case.

This is a response field used only for 3270 transactions. The initial value of this field is TENOSY.

CITI (4-byte character string)

Transaction to attach.

If CILT has the value LTTRAN, CITI is the transaction identifier of the user transaction to be run; a
nonblank value must be specified in this case.

If CILT has the value LTPROG, CITI is the transaction code under which all programs within the unit
of work are to be run. If the value specified is blank, the CICS DPL bridge default transaction code
(CKBP) is used. If the value is nonblank, it must have been defined to CICS as a local TRANSACTION
with an initial program of CSQCBP00. This field is applicable only when CIUOW has the value CUFRST
or CUONLY.

This is a request field. The length of this field is given by LNTRID. The initial value of this field is 4
blanks.

CIUOW (10-digit signed integer)

Unit-of-work control.

This controls the unit-of-work processing performed by the CICS bridge. You can request the bridge
to run a single transaction, or one or more programs within a unit of work. The field indicates whether
the CICS bridge should start a unit of work, perform the requested function within the current unit of

1032 IBM MQ Developing Applications Reference

work, or end the unit of work by committing it or backing it out. Various combinations are supported,
to optimize the data transmission flows.

The value must be one of the following:
CUONLY

Start unit of work, perform function, then commit the unit of work (DPL and 3270).
CUCONT

Additional data for the current unit of work (3270 only).
CUFRST

Start unit of work and perform function (DPL only).
CUMIDL

Perform function within current unit of work (DPL only).
CULAST

Perform function, then commit the unit of work (DPL only).
CUCMIT

Commit the unit of work (DPL only).
CUBACK

Back out the unit of work (DPL only).

This is a request field. The initial value of this field is CUONLY.

CIVER (10-digit signed integer)

Structure version number.

The value must be one of the following:
CIVER1

Version-1 CICS information header structure.
CIVER2

Version-2 CICS information header structure.

Fields that exist only in the more-recent version of the structure are identified as such in the
descriptions of the fields. The following constant specifies the version number of the current version:
CIVERC

Current version of CICS information header structure.

This is a request field. The initial value of this field is CIVER2.

Initial values
Table 692. Initial values of fields in MQCIH

Field name Name of constant Value of constant

CISID CISIDV 'CIH¬'

CIVER CIVER2 2

CILEN CILEN2 180

CIENC None 0

CICSI None 0

CIFMT FMNONE Blanks

CIFLG CIFNON 0

CIRET CRC000 0

CICC CCOK 0

Developing applications reference 1033

Table 692. Initial values of fields in MQCIH (continued)

Field name Name of constant Value of constant

CIREA RCNONE 0

CIUOW CUONLY 273

CIGWI WIDFLT -2

CILT LTPROG 1

CIODL OLINPT -1

CIFKT None 0

CIADS ADNONE 0

CICT CTNO 0

CITES TENOSY 0

CIFAC FCNONE Nulls

CIFNC CFNONE Blanks

CIAC None Blanks

CIAUT None Blanks

CIRS1 None Blanks

CIRFM FMNONE Blanks

CIRSI None Blanks

CIRTI None Blanks

CITI None Blanks

CIFL None Blanks

CIAI None Blanks

CISC SCNONE Blanks

CICNC None Blanks

CINTI None Blanks

CIRS2 None Blanks

CIRS3 None Blanks

CICP None 0

CIEO None 0

CIII None 0

CIRS4 None 0

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQCIH Structure

1034 IBM MQ Developing Applications Reference

 D*
 D* Structure identifier
 D CISID 1 4 INZ('CIH ')
 D* Structure version number
 D CIVER 5 8I 0 INZ(2)
 D* Length of MQCIH structure
 D CILEN 9 12I 0 INZ(180)
 D* Reserved
 D CIENC 13 16I 0 INZ(0)
 D* Reserved
 D CICSI 17 20I 0 INZ(0)
 D* MQ format name of data that followsMQCIH
 D CIFMT 21 28 INZ(' ')
 D* Flags
 D CIFLG 29 32I 0 INZ(0)
 D* Return code from bridge
 D CIRET 33 36I 0 INZ(0)
 D* MQ completion code or CICSEIBRESP
 D CICC 37 40I 0 INZ(0)
 D* MQ reason or feedback code, or CICSEIBRESP2
 D CIREA 41 44I 0 INZ(0)
 D* Unit-of-work control
 D CIUOW 45 48I 0 INZ(273)
 D* Wait interval for MQGET call issuedby bridge task
 D CIGWI 49 52I 0 INZ(-2)
 D* Link type
 D CILT 53 56I 0 INZ(1)
 D* Output COMMAREA data length
 D CIODL 57 60I 0 INZ(-1)
 D* Bridge facility release time
 D CIFKT 61 64I 0 INZ(0)
 D* Send/receive ADS descriptor
 D CIADS 65 68I 0 INZ(0)
 D* Whether task can beconversational
 D CICT 69 72I 0 INZ(0)
 D* Status at end of task
 D CITES 73 76I 0 INZ(0)
 D* Bridge facility token
 D CIFAC 77 84 INZ(X'00000000000000-
 D 00')
 D* MQ call name or CICS EIBFNfunction
 D CIFNC 85 88 INZ(' ')
 D* Abend code
 D CIAC 89 92 INZ
 D* Password or passticket
 D CIAUT 93 100 INZ
 D* Reserved
 D CIRS1 101 108 INZ
 D* MQ format name of reply message
 D CIRFM 109 116 INZ(' ')
 D* Remote CICS system ID to use
 D CIRSI 117 120 INZ
 D* CICS RTRANSID to use
 D CIRTI 121 124 INZ
 D* Transaction to attach
 D CITI 125 128 INZ
 D* Terminal emulated attributes
 D CIFL 129 132 INZ
 D* AID key
 D CIAI 133 136 INZ
 D* Transaction start code
 D CISC 137 140 INZ(' ')
 D* Abend transaction code
 D CICNC 141 144 INZ
 D* Next transaction to attach
 D CINTI 145 148 INZ
 D* Reserved
 D CIRS2 149 156 INZ
 D* Reserved
 D CIRS3 157 164 INZ
 D* Cursor position
 D CICP 165 168I 0 INZ(0)
 D* Offset of error in message
 D CIEO 169 172I 0 INZ(0)
 D* Reserved
 D CIII 173 176I 0 INZ(0)
 D* Reserved
 D CIRS4 177 180I 0 INZ(0)
 D*

Developing applications reference 1035

MQCMHO (Create message handle options) on IBM i
The MQCMHO structure allows applications to specify options that control how message handles are
created.

Overview
Purpose

The structure is an input parameter on the MQCRTMH call.
Character set and encoding

Data in MQCMHO must be in the character set of the application and encoding of the application
(ENNAT).

• “Fields” on page 1036
• “Initial values” on page 1037
• “RPG declaration” on page 1038

Fields
The MQCMHO structure contains the following fields; the fields are described in alphabetical order:

CMOPT (10 digit signed integer)

One of the following options can be specified:
CMVAL

When MQSETMP is called to set a property in this message handle, the property name is validated
to ensure that it:

• contains no invalid characters.
• does not begin "JMS" or "usr.JMS" except for the following:

– JMSCorrelationID
– JMSReplyTo
– JMSType
– JMSXGroupID
– JMSXGroupSeq

These names are reserved for JMS properties.
• is not one of the following keywords, in any mixture of upper or lowercase:

– "AND"
– "BETWEEN"
– "ESCAPE"
– "FALSE"
– "IN"
– "IS"
– "LIKE"
– "NOT"
– "NULL"
– "OR"
– "TRUE"

• does not begin "Body." or "Root." (except for "Root.MQMD.").

1036 IBM MQ Developing Applications Reference

If the property is MQ-defined ("mq.*") and the name is recognized, the property descriptor fields
are set to the correct values for the property. If the property is not recognized, the Support field
of the property descriptor is set to PDSUPO (for more information, see PDSUP).

CMDEFV

This specifies that the default level of validation of property names occurs.

The default level of validation is equivalent to that specified by CMVAL.

In a future release an administrative option might be defined which will change the level of
validation that will occur when CMDEFV is defined.

This is the default value.

CMNOVA

No validation on the property name occurs. See the description of CMVAL.

Default option: If none of the options previously described in this section is required, the following
option can be used:
CMNONE

All options assume their default values. Use this value to indicate that no other options have been
specified. CMNONE aids program documentation; it is not intended that this option be used with
any other, but as its value is zero, such use cannot be detected.

This is always an input field. The initial value of this field is CMDEFV.

CMSID (10 digit signed integer)

This is the structure identifier; the value must be:
CMSIDV

Identifier for create message handle options structure.

This is always an input field. The initial value of this field is CMSIDV.

CMVER (10 digit signed integer)

This is the structure version number; the value must be:

 CMVER1
Version-1 create message handle options structure.

The following constant specifies the version number of the current version:

 CMVERC
Current version of create message handle options structure.

This is always an input field. The initial value of this field is CMVER1.

Initial values
Table 693. Initial values of fields in MQCMHO

Field name Name of constant Value of constant

CMSID CMSIDV 'CMHO'

CMVER CMVER1 1

CMOPT CMDEFV 0

Developing applications reference 1037

RPG declaration

 D* MQCMHO Structure
 D*
 D*
 D* Structure identifier
 D CMSID 1 4 INZ('CMHO')
 D*
 D* Structure version number
 D CMVER 5 8I 0 INZ(1)
 D*
 D* Options that control the action of MQCRTMH
 D CMOPT 9 12I 0 INZ(0)

MQCNO (Connect options) on IBM i
The MQCNO structure allows the application to specify options relating to the connection to the local
queue manager.

Overview
Purpose: The structure is an input/output parameter on the MQCONNX call.

Version: The current version of MQCNO is CNVER6. Fields that exist only in the more-recent versions of
the structure are identified as such in the descriptions that follow.

The COPY file provided contains the most recent version of MQCNO that is supported by the environment,
but with the initial value of the CNVER field set to CNVER1. To use fields that are not present in the
version-1 structure, the application must set the CNVER field to the version number of the version
required.

Character set and encoding: Data in MQCNO must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT.

• “Fields” on page 1038
• “Initial values” on page 1043
• “RPG declaration” on page 1044

Fields
The MQCNO structure contains the following fields; the fields are described in alphabetical order:

CCDTUL (10-digit signed integer)

CCDTUL is the length of the string identified by either CCDTUP or CCDTUO which contains a URL that
identifies the location of the client connection channel table to use for the connection.

Use CCDTUL only when the application issuing the MQCONNX call is running as an IBM MQ MQI client.

This is a programmatic alternative to setting the MQCHLLIB and MQCHLTAB environment variables.

If the application is not running as an client, CCDTUL is ignored.

This field is ignored if CNVER is less than CNVER6.

CCDTUO (10-digit signed integer)

CCDTUO is the offset in bytes, from the start of the MQCNO structure, to a string which contains a URL
that identifies the location of the client connection channel table to use for the connection. The offset
can be positive or negative.

Use CCDTUL only when the application issuing the MQCONNX call is running as an IBM MQ MQI client.

Important: You can use only one of CCDTUP and CCDTUO. The call fails with reason code RC2600 if
both fields are nonzero.

1038 IBM MQ Developing Applications Reference

This is a programmatic alternative to setting the MQCHLLIB and MQCHLTAB environment variables.

If the application is not running as an client, CCDTUO is ignored.

This field is ignored if CNVER is less than CNVER6.

CCDTUP (pointer)

CCDTUP is an optional pointer to a string which contains a URL, to identify the location of the client
connection channel table to use for the connection..

Use CCDTUP only when the application issuing the MQCONNX call is running as an IBM MQ MQI client.

Important: You can use only one of CCDTUP and CCDTUO. The call fails with reason code RC2600 if
both fields are nonzero.

This is a programmatic alternative to setting the MQCHLLIB and MQCHLTAB environment variables.

If the application is not running as an client, CCDTUP is ignored.

This field is ignored if CNVER is less than CNVER6.

CNAN (28-byte character string)

The name set by the application to identify the connection to the queue manager. The initial value of
the field is null characters.

This field is ignored if CNVER is less than CNVER7.

CNCCO (10-digit signed integer)

This is the offset in bytes of an MQCD channel definition structure from the start of the MQCNO
structure.

CNCCP (pointer)

This is a pointer to an MQCD channel definition structure.

CNCONID (24-byte character string)

Unique connection identifier. This field allows the queue manager to reliably identify an application
process by assigning it a unique identifier when it first connects to the queue manager.

Applications use the connection identifier for correlation purposes when making PUT and GET calls.
All connections are assigned an identifier by the queue manager, no matter how the connection was
established.

It is possible to use the connection identifier to force the end of a long running unit of work. To do this,
specifying the connection identifier using the PCF command 'Stop Connection', or the MQSC command
STOP CONN. For more information about using these commands, see the related links.

The initial value of the field is 24 null bytes.

CNCT (128-byte bit string)

This is a tag that the queue manager associates with the resources that are affected by the application
during this connection.

Queue manager connection tag.

Each application or application instance must use a different value for the tag, so that the queue
manager can correctly serialize access to the affected resources. See the descriptions of the CN*CT*
options for further details. The tag ceases to be valid when the application terminates, or issues the
MQDISC call.

Use the following special value if no tag is required:
CTNONE

No connection tag specified.

The value is binary zero for the length of the field.

Developing applications reference 1039

This is an input field. The length of this field is given by LNCTAG. The initial value of this field is
CTNONE. This field is ignored if CNVER is less than CNVER3.

Use the field ConnTag when connecting to a z/OS queue manager.

CNNORES2 (4-byte character string)

A reserved field to pad the structure out to a 64-bit boundary. The initial value of the field is binary
zero for the length of the field.

This field is ignored if CNVER is less than CNVER7.

CNOPT (10 digit signed integer)

Options that control the action of MQCONNX.

Binding options

The binding options control the type of IBM MQ binding that is used; specify only one of these
options:
CNSBND

Standard binding.

The standard binding option causes the application and the local queue manager agent to run
in separate units of execution, typically in separate processes. The arrangement maintains the
integrity of the queue manager; that is, it protects the queue manager from errant programs.

Use CNSBND in situations where the application might not have been fully tested, or might be
unreliable or untrustworthy. CNSBND is the default.

CNSBND is defined to aid program documentation. Do not use this option with any other
option controlling the type of binding used; but because its value is zero, such use cannot be
detected.

This option is supported in all environments.

CNFBND
Fast path binding.

The fast path binding option causes the application and the local queue manager agent to be
part of the same unit of execution. Fast path is in contrast to the standard binding, where the
application and the local queue manager agent run in separate units of execution.

CNFBND is ignored if the queue manager does not support this type of binding; processing
continues as though the option had not been specified.

CNFBND can be of advantage in situations where multiple processes consume more resources
than the overall resource used by the application. An application that uses the fast path
binding is known as a trusted application.

Consider the following important points when deciding whether to use the fast path binding:

• Using the CNFBND option does not prevent an application altering or corrupting
messages and other data areas belonging to the queue manager. Use this option only
in situations where you have fully evaluated these issues.

• The application must not use asynchronous signals or timer interrupts (such as sigkill)
with CNFBND. There are also restrictions on the use of shared memory segments.

• The application must not have more than one thread connected to the queue manager at any
one time.

• The application must use the MQDISC call to disconnect from the queue manager.
• The application must finish before ending the queue manager with the endmqm command.

The following points apply to the use of CNFBND in the environments indicated:

1040 IBM MQ Developing Applications Reference

• On IBM i, the job must run under user profile QMQM that belongs to the QMQMADM group. Also,
the program must not terminate abnormally, otherwise unpredictable results might occur.

For more information about the implications of using trusted applications, see Connecting to a
queue manager using the MQCONNX call and Restrictions for trusted applications.

CNSHBD
Shared Bindings.

The shared bindings option causes the application and the local queue manager agent to run
in separate units of execution, typically in separate processes. The arrangement maintains
the integrity of the queue manager; that is, it protects the queue manager from errant
programs. However some resources are shared between the application and the local queue
manager agent. CNSHBD is ignored if the queue manager does not support this type of binding.
Processing continues as though the option had not been specified.

CNIBND
Isolated Bindings.

The isolated bindings option causes the application and the local queue manager agent to run
in separate units of execution, typically in separate processes. The arrangement maintains the
integrity of the queue manager; that is, it protects the queue manager from errant programs.
The application process and the local queue manager agent are isolated from each other in
that they do not share resources. CNIBND is ignored if the queue manager does not support
this type of binding. Processing continues as though the option had not been specified.

Handle-sharing options

The following options control the sharing of handles between different threads (units of
parallel processing) within the same process. Only one of these options can be specified.
CNHSN

No handle sharing between threads.

The no handle sharing between threads option indicates that connection and object
handles can be used only by the thread that caused the handle to be allocated; that is, the
thread that issued the MQCONN, MQCONNX, or MQOPEN call. The handles cannot be used by
other threads belonging to the same process.

CNHSB
Serial handle sharing between threads, with call blocking.

The serial handle sharing between threads, with call blocking, option indicates that
connection and object handles allocated by one thread of a process can be used by other
threads belonging to the same process. However, only one thread at a time can use any
particular handle, that is, only serial use of a handle is permitted. If a thread tries to use
a handle that is already in use by another thread, the call blocks (waits) until the handle
becomes available.

CNHSNB
Serial handle sharing between threads, without call blocking.

The serial handle sharing between threads, without call blocking, option is the same as
the " with blocking" option, except that, if the handle is in use by another thread, the
call completes immediately with CCFAIL and RC2219 instead of blocking until the handle
becomes available.

A thread can have zero or one nonshared handles, plus zero or more shared handles:

• Each MQCONN or MQCONNX call that specifies CNHSN returns a new nonshared handle on the
first call, and the same nonshared handle on subsequent calls (assuming no intervening
MQDISC call). The reason code is RC2002 for the second and later calls.

• Each MQCONNX call that specifies CNHSB or CNHSNB returns a new shared handle on each
call.

Developing applications reference 1041

Object handles inherit the same sharing properties as the connection handle specified on
the MQOPEN call that created the object handle. Also, units of work inherit the same sharing
properties as the connection handle used to start the unit of work; if the unit of work is started
in one thread using a shared handle, the unit of work can be updated in another thread using
the same handle.

If you do not specify a handle-sharing option, the default is determined by the environment:

• In the Microsoft Transaction Server (MTS) environment, the default is the same as CNHSB.
• In other environments, the default is the same as CNHSN.

Reconnection options

Reconnection options determine if a connection is reconnectable. Only client connections are
reconnectable.
CNRCDF

The reconnection option is resolved to its default value. If no default is set, the value of
this option resolves to DISABLED. The value of the option is passed to the server, and can
be queried by PCF and MQSC.

CNRC
The application can be reconnected to any queue manager consistent with the value of the
MQCONNX QMNAME parameter. Use the CNRC option only if there is no affinity between the
client application and the queue manager with which it initially established a connection.
The value of the option is passed to the server, and can be queried by PCF and MQSC.

CNRCD
The application cannot be reconnected. The value of the option is not passed to the server.

CNRCQM
The application can only be reconnected to the queue manager with which it originally
connected. Use this value if a client can be reconnected, but there is an affinity between
the client application, and the queue manager with which it originally established a
connection. Choose this value if you want a client to automatically reconnect to the
standby instance of a highly available queue manager. The value of the option is passed to
the server, and can be queried by PCF and MQSC.

Use the options CNRC, CNRCD, and CNRCQM only for client connections. If the options are
used for a binding connection, MQCONNX fails with completion code, MQCC_FAILED and reason
code, MQRC_OPTIONS_ERROR.

Default option: If none of the options described is required, the following option can be used:
CNNONE

No options are specified.

CNNONE is defined to aid program documentation. It is not intended that this option
is used with any other CN* option, but because its value is zero, such use cannot be
detected.

CNSCO (10-digit signed integer)

This is the offset in bytes of an MQSCO structure from the start of the MQCNO structure.

This field is ignored if CNVER is less than CNVER4.

CNSCP (pointer)

This is the address of an MQSCO structure.

This field is ignored if CNVER is less than CNVER4.

CNSECPO (10-digit signed integer)

Security parameters offset. The offset of the MQCSP structure used for specifying a user ID and
password.

1042 IBM MQ Developing Applications Reference

The value may be positive or negative. The initial value of this field is 0.

This field is ignored if CNVER is less than CNVER5.

CNSECPP (pointer)

Security parameters pointer. Address of the MQCSP structure used for specifying a user ID and a
password.

The initial value of this field is a null pointer or null bytes.

This field is ignored if CNVER is less than CNVER5.

CNSID (4-byte character string)

The structure identifier for the MQCNO structure.

The value must be:
CNSIDV

Identifier for connect-options structure.

This is always an input field. The initial value of this field is CNSIDV.

CNVER (10-digit signed integer)

The structure version number for the MQCNO structure.

The value must be:
CNVER6

Version-6 connect-options structure.

This version is supported in all environments.

CNVER7
Version-7 connect-options structure.

This version is supported in all environments.

The following constant specifies the version number of the current version:
CNVERC

Current version of connect-options structure.

This is always an input field. The initial value of this field is CNVER7.

Initial values
Table 694. Initial values of fields in MQCNO

Field name Name of constant Value of constant

CNSID CNSIDV 'CNO¬

CNVER CNVER5 1

CNOPT CNNONE 0

CNCCO None 0

CNCCP None Null pointer or null bytes

CNCT CTNONE Nulls

CNSCP None Null pointer or null bytes

CNSCO None 0

CNCONID None Nulls

Developing applications reference 1043

Table 694. Initial values of fields in MQCNO (continued)

Field name Name of constant Value of constant

CNSECPO None 0

CNSECPP None Null pointer or null bytes

CCDTUL None 0

CCDTUO None 0

CCDTUP None Null pointer or null bytes

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration
 D**
 D** **
 D** IBM MQ for IBM i **
 D** **
 D** FILE NAME: CMQCNOG **
 D** **
 D** DESCRIPTION: MQCNO Structure -- Connect Options **
 D** **
 D**
 D** <N_OCO_COPYRIGHT> **
 D** Licensed Materials - Property of IBM **
 D** **
 D** 5724-H72 **
 D** (c) Copyright IBM Corp. 1993, 2024. All Rights Reserved. **
 D** **
 D** US Government Users Restricted Rights - Use, duplication or **
 D** disclosure restricted by GSA ADP Schedule Contract with **
 D** IBM Corp. **
 D** <NOC_COPYRIGHT> **
 D**
 D** **
 D** FUNCTION: This file declares the structure MQCNO, **
 D** which is used by the main MQI. **
 D** **
 D** PROCESSOR: RPG (ILE) **
 D** **
 D**
 D*
 D*
 D**
 D** <BEGIN_BUILDINFO> **
 D** Generated on: 08/02/16 13:50 **
 D** Build Level: L000000 **
 D** Build Type: Production **
 D** Pointer Size: 128 Bit **
 D** Source File: **
 D** CMQCNOG **
 D** <END_BUILDINFO> **
 D**
 D*
 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D*
 D* MQCNO Structure
 D*
 D* Structure identifier
 D CNSID 1 4 INZ('CNO ')
 D* Structure version number
 D CNVER 5 8I 0 INZ(1)
 D* Options that control the action of MQCONNX
 D CNOPT 9 12I 0 INZ(0)
 D* Ver:1 **
 D* Offset of MQCD structure for client connection
 D CNCCO 13 16I 0 INZ(0)
 D* Address of MQCD structure for client connection
 D CNCCP 17 32* INZ(*NULL)

1044 IBM MQ Developing Applications Reference

 D* Ver:2 **
 D* Queue managerconnection tag
 D CNCT 33 160 INZ(X'00000000000000000-
 D 0000000000000000000000000-
 D 0000000000000000000000000-
 D 0000000000000000000000000-
 D 0000000000000000000000000-
 D 0000000000000000000000000-
 D 0000000000000000000000000-
 D 0000000000000000000000000-
 D 0000000000000000000000000-
 D 0000000000000000000000000-
 D 00000000000000')
 D* Ver:3 **
 D* Address of MQSCO structure for client connection
 D CNSCP 161 176* INZ(*NULL)
 D* Offset of MQSCO structure for client connection
 D CNSCO 177 180I 0 INZ(0)
 D* Ver:4 **
 D* Unique Connection Identifier
 D CNCONID 181 204 INZ(X'00000000000000000-
 D 0000000000000000000000000-
 D 000000')
 D* Offset of MQCSP structure
 D CNSECPO 205 208I 0 INZ(0)
 D* Address of MQCSP structure
 D CNSECPP 209 224* INZ(*NULL)
 D* Ver:5 **
 D* Address of CCDT URL string
 D CNCCDTUP 225 240* INZ(*NULL)
 D* Offset of CCDT URL string
 D CNCCDTUO 241 244I 0 INZ(0)
 D* Length of CCDT URL
 D CNCCDTUL 245 248I 0 INZ(0)
 D* Ver:6 **
 D*
 D**
 D** End of CMQCNOG **
 D**

MQCSP (Security parameters) on IBM i
Summary of the MQCSP structure for IBM i.

Overview
Purpose: The MQCSP structure enables the authorization service to authenticate a user ID and password.
You specify the MQCSP connection security parameters structure on an MQCONNX call.

Character set and encoding: Data in MQCSP must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT.

• “Fields” on page 1045
• “Initial values” on page 1047
• “RPG declaration” on page 1047

Fields
The MQCSP structure contains the following fields; the fields are described in alphabetical order:

CSAUTHT (10-digit signed integer)

This is the type of authentication to perform.

Valid values are:
CSAN

Do not use user ID and password fields.
CSAUIAP

Authenticate user ID and password fields.

Developing applications reference 1045

This is an input field. The initial value of this field is CSAN.

CSCPPL (10-digit signed integer)

This is the length of the password to be used in authentication.

The maximum length of the password is not dependent on the platform. If the length of the password
is greater than that allowed, the authentication request fails with an RC2035.

This is an input field. The initial value of this field is 0.

CSCPPO (10-digit signed integer)

This is the offset in bytes of the password to be used in authentication.

The offset can be positive or negative.

This is an input field. The initial value of this field is 0.

CSCPPP (pointer)

This is the address of the password to be used in authentication.

This is an input field. The initial value of this field is the null pointer.

CSCSPUIL (10-digit signed integer)

This is the length of the user ID to be used in authentication.

The maximum length of the user ID is not dependent on the platform. If the length of the user ID is
greater than that allowed, the authentication request fails with an RC2035.

This is an input field. The initial value of this field is 0.

CSCSPUIO (10-digit signed integer)

This is the offset in bytes of the user ID to be used in authentication.

The offset can be positive or negative.

This is an input field. The initial value of this field is 0.

CSCSPUIP (pointer)

This is the address of the user ID to be used in authentication.

This is an input field. The initial value of this field is the null pointer. This field is ignored if CSVER is
less than CSVER5.

CSRE1 (4-byte character string)

A reserved field, required for pointer alignment on IBM i.

This is an input field. The initial value of this field is all null.

CSRS2 (8-byte character string)

A reserved field, required for pointer alignment on IBM i.

This is an input field. The initial value of this field is all null.

CSSID (4-byte character string)

Structure identifier.

The value must be:
CSSIDV

Identifier for the security parameters structure.

CSVER (10-digit signed integer)

Structure version number.

The value must be:

1046 IBM MQ Developing Applications Reference

CSVER1
Version-1 security parameters structure.

The following constant specifies the version number of the current version:
CSVERC

Current version of security parameters structure.

This is always an input field. The initial value of this field is CSVER1.

Initial values
Table 695. Initial values of fields in MQCNO

Field name Name of constant Value of constant

CSSID CSSIDV 'CSP¬'

CSVER CSVER1 1

CSAUTHT None 0

CSRE1 None Nulls

CSCSPUIP None Null pointer

CSCSPUIO None 0

CSCSPUIL None 0

CSRS2 None Nulls

CSCPPP None Null pointer

CSCPPO None 0

CSCPPL None 0

Note:

1. The symbol ¬ represents a single blank character.

RPG declaration

D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQCSP Structure
 D*
 D* Structure identifier
 D CSSID 1 4 INZ('CSP ')
 D* Structure version number
 D CSVER 5 8I 0 INZ(1)
 D* Type of authentication
 D CSAUTHT 9 12I 0 INZ(0)
 D* Reserved
 D CSRE1 13 16 INZ(X'00000000')
 D* Address of user ID
 D CSCSPUIP 17 32* INZ(*NULL)
 D* Offset of user ID
 D CSCSPUIO 33 36I 0 INZ(0)
 D* Length of user ID
 D CSCSPUIL 37 40I 0 INZ(0)
 D* Reserved
 D CSRS2 41 48 INZ(X'0000000000000000')
 D* Address of password
 D CSCPPP 49 64* INZ(*NULL)
 D* Offset of password
 D CSCPPO 65 68I 0 INZ(0)
 D* Length of password
 D CSCPPL 69 72I 0 INZ(0)

Developing applications reference 1047

MQCTLO (Control callback options structure) on IBM i
Structure specifying the control callback function.

Overview
Purpose

The MQCTLO structure is used to specify options relating to a control callbacks function.

The structure is an input and output parameter on the MQCTL call.

Version
The current version of MQCTLO is CTLV1.

Character set and encoding
Data in MQCTLO must be in the character set given by the CodedCharSetId queue manager attribute
and encoding of the local queue manager given by ENNAT. However, if the application is running as an
IBM MQ client, the structure must be in the character set and encoding of the client.

• “Fields” on page 1048
• “Initial values” on page 1049
• “RPG declaration” on page 1049

Fields
The MQCTLO structure contains the following fields; the fields are described in alphabetical order:

COCONNAREA (10 digit signed integer)

Control options structure - ConnectionArea field.

This is a field that is available for the callback function to use.

The queue manager makes no decisions based on the contents of this field and it is passed
unchanged from the CBCCONNAREA field in the MQCBC structure, which is a parameter on the MQCB
call.

This field is ignored for all operations other than CTLSR and CTLSW.

This is an input and output field to the callback function. The initial value of this field is a null pointer
or null bytes.

COOPT (10 digit signed integer)

Options that control the action of MQCTLO.

CTLFQ
Force the MQCTLO call to fail if the queue manager or connection is in the quiescing state.

Specify GMFIQ, in the MQGMO options passed on the MQCB call, to cause notification to message
consumers when they are quiescing.

CTLTHR
This option informs the system that the application requires that all message consumers, for the
same connection, are called on the same thread.

Default option: If you do not need any of the options described, use the following option:
CTLNO

Use this value to indicate that no other options have been specified; all options assume their
default values. CTLNO is defined to aid program documentation; it is not intended that this option
is used with any other, but as its value is zero, such use cannot be detected.

This is an input field. The initial value of the COOPT field is CTLNO.

1048 IBM MQ Developing Applications Reference

CORSV (10 digit signed integer)

This is a reserved field. The initial value of this field is a blank character.

COSID (10 digit signed integer)

Control options structure - StrucId field.

This is the structure identifier; the value must be:
CTLSI

Identifier for Control Options structure.

This is always an input field. The initial value of this field is CTLSI.

COVER (10 digit signed integer)

Control options structure - Version field.

This is the structure version number; the value must be:
CTLV1

Version-1 Control options structure.

The following constant specifies the version number of the current version:
CTLCV

Current version of Control options structure.

This is always an input field. The initial value of this field is CTLV1.

Initial values
Table 696. Initial values of fields in MQCTLO

Field name Name of constant Value of constant

COSID CTLSI 'CTLO'

COVER CTLV1 1

COOPT CTLNO Nulls

CORSV Reserved field

COCONNAREA None Null pointer or null bytes

RPG declaration

 D* MQCTLO Structure
 D*
 D*
 D* Structure identifier
 D COSID 1 4 INZ('CTLO')
 D*
 D* Structure version number
 D COVER 5 8I 0 INZ(1)
 D*
 D* Options that control the action of MQCTL
 D COOPT 9 12I 0 INZ(0)
 D*
 D* Reserved
 D CORSV 13 16I 0 INZ(-1)
 D*
 D* MQCTL Data area passed to the function
 D COCONNAREA 17 32* INZ(*NULL)

Developing applications reference 1049

MQDH (Distribution header) on IBM i
The MQDH structure describes the additional data that is present in a message when that message is a
distribution-list message stored on a transmission queue.

Overview
Purpose: A distribution-list message is a message that is sent to multiple destination queues. The
additional data consists of the MQDH structure followed by an array of MQOR records and an array of
MQPMR records.

This structure is for use by specialized applications that put messages directly on transmission queues, or
which remove messages from transmission queues (for example: message channel agents).

This structure should not be used by normal applications which simply want to put messages to
distribution lists. Those applications should use the MQOD structure to define the destinations in the
distribution list, and the MQPMO structure to specify message properties or receive information about the
messages sent to the individual destinations.

Character set and encoding: Data in MQDH must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT for the C
programming language.

The character set and encoding of the MQDH must be set into the MDCSI and MDENC fields in:

• The MQMD (if the MQDH structure is at the start of the message data), or
• The header structure that precedes the MQDH structure (all other cases).

Usage: When an application puts a message to a distribution list, and some or all of the destinations
are remote, the queue manager prefixes the application message data with the MQXQH and MQDH
structures, and places the message on the relevant transmission queue. The data therefore occurs in the
following sequence when the message is on a transmission queue:

• MQXQH structure
• MQDH structure plus arrays of MQOR and MQPMR records
• Application message data

Depending on the destinations, more than one such message might be generated by the queue manager,
and placed on different transmission queues. In this case, the MQDH structures in those messages
identify different subsets of the destinations defined by the distribution list opened by the application.

An application that puts a distribution-list message directly on a transmission queue must conform to
the sequence described previously, and must ensure that the MQDH structure is correct. If the MQDH
structure is not valid, the queue manager may choose to fail the MQPUT or MQPUT1 call with reason code
RC2135.

Messages can be stored on a queue in distribution-list form only if the queue is defined as being able
to support distribution list messages (see the DistLists queue attribute described in “Attributes for
queues” on page 1355). If an application puts a distribution-list message directly on a queue that
does not support distribution lists, the queue manager splits the distribution list message into individual
messages, and places those on the queue instead.

• “Fields” on page 1050
• “Initial values” on page 1053
• “RPG declaration” on page 1054

Fields
The MQDH structure contains the following fields; the fields are described in alphabetical order:

1050 IBM MQ Developing Applications Reference

DHCNT (10-digit signed integer)

Number of MQOR records present.

This defines the number of destinations. A distribution list must always contain at least one
destination, so DHCNT must always be greater than zero.

The initial value of this field is 0.

DHCSI (10-digit signed integer)

Character set identifier of data that follows the MQOR and MQPMR records.

This specifies the character set identifier of the data that follows the arrays of MQOR and MQPMR
records; it does not apply to character data in the MQDH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
CSINHT

Inherit character-set identifier of this structure.

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual
character-set identifier of the structure. Provided no error occurs, the value CSINHT is not
returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is ATBRKR.

The initial value of this field is CSUNDF.

DHENC (10-digit signed integer)

Numeric encoding of data that follows the MQOR and MQPMR records.

This specifies the numeric encoding of the data that follows the arrays of MQOR and MQPMR records;
it does not apply to numeric data in the MQDH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is 0.

DHFLG (10-digit signed integer)

General flags.

The following flag can be specified:
DHFNEW

Generate new message identifiers.

This flag indicates that a new message identifier is to be generated for each destination in the
distribution list. This can be set only when there are no put-message records present, or when the
records are present but they do not contain the PRMID field.

Using this flag defers generation of the message identifiers until the last possible moment, namely
the moment when the distribution-list message is finally split into individual messages. This
minimizes the amount of control information that must flow with the distribution-list message.

When an application puts a message to a distribution list, the queue manager sets DHFNEW in the
MQDH it generates when both of the following statements are true:

• There are no put-message records provided by the application, or the records provided do not
contain the PRMID field.

• The MDMID field in MQMD is MINONE, or the PMOPT field in MQPMO includes PMNMID

If no flags are needed, the following can be specified:
DHFNON

No flags.

Developing applications reference 1051

This constant indicates that no flags have been specified. DHFNON is defined to aid program
documentation. It is not intended that this constant is used with any other, but as its value is zero,
such use cannot be detected.

The initial value of this field is DHFNON.

DHFMT (8-byte character string)

Format name of data that follows the MQOR and MQPMR records.

This specifies the format name of the data that follows the arrays of MQOD and MQPMR records
(whichever occurs last).

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the MDFMT field in MQMD.

The initial value of this field is FMNONE.

DHLEN (10-digit signed integer)

Length of MQDH structure plus following MQOR and MQPMR records.

This is the number of bytes from the start of the MQDH structure to the start of the message data
following the arrays of MQOR and MQPMR records. The data occurs in the following sequence:

• MQDH structure
• Array of MQOR records
• Array of MQPMR records
• Message data

The arrays of MQOR and MQPMR records are addressed by offsets contained within the MQDH
structure. If these offsets result in unused bytes between one or more of the MQDH structure, the
arrays of records, and the message data, those unused bytes must be included in the value of DHLEN,
but the content of those bytes is not preserved by the queue manager. It is valid for the array of
MQPMR records to precede the array of MQOR records.

The initial value of this field is 0.

DHORO (10-digit signed integer)

Offset of first MQOR record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQOR object records containing the
names of the destination queues. There are DHCNT records in this array. These records (plus any bytes
skipped between the first object record and the previous field) are included in the length given by the
DHLEN field.

A distribution list must always contain at least one destination, so DHORO must always be greater than
zero.

The initial value of this field is 0.

DHPRF (10-digit signed integer)

Flags indicating which MQPMR fields are present.

Zero or more of the following flags can be specified:
PFMID

Message-identifier field is present.
PFCID

Correlation-identifier field is present.
PFGID

Group-identifier field is present.
PFFB

Feedback field is present.

1052 IBM MQ Developing Applications Reference

PFACC
Accounting-token field is present.

If no MQPMR fields are present, the following can be specified:
PFNONE

No put-message record fields are present.

PFNONE is defined to aid program documentation. It is not intended that this constant be used
with any other, but as its value is zero, such use cannot be detected.

The initial value of this field is PFNONE.

DHPRO (10-digit signed integer)

Offset of first MQPMR record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQPMR put message records
containing the message properties. If present, there are DHCNT records in this array. These records
(plus any bytes skipped between the first put message record and the previous field) are included in
the length given by the DHLEN field.

Put message records are optional; if no records are provided, DHPRO is zero, and DHPRF has the value
PFNONE.

The initial value of this field is 0.

DHSID (4-byte character string)

Structure identifier.

The value must be:
DHSIDV

Identifier for distribution header structure.

The initial value of this field is DHSIDV.

DHVER (10-digit signed integer)

Structure version number.

The value must be:
DHVER1

Version number for distribution header structure.

The following constant specifies the version number of the current version:
DHVERC

Current version of distribution header structure.

The initial value of this field is DHVER1.

Initial values
Table 697. Initial values of fields in MQDH

Field name Name of constant Value of constant

DHSID DHSIDV 'DH¬¬'

DHVER DHVER1 1

DHLEN None 0

DHENC None 0

DHCSI CSUNDF 0

DHFMT FMNONE Blanks

Developing applications reference 1053

Table 697. Initial values of fields in MQDH (continued)

Field name Name of constant Value of constant

DHFLG DHFNON 0

DHPRF PFNONE 0

DHCNT None 0

DHORO None 0

DHPRO None 0

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQDH Structure
 D*
 D* Structure identifier
 D DHSID 1 4 INZ('DH ')
 D* Structure version number
 D DHVER 5 8I 0 INZ(1)
 D* Length of MQDH structure plusfollowing MQOR and MQPMR records
 D DHLEN 9 12I 0 INZ(0)
 D* Numeric encoding of data that followsthe MQOR and MQPMR records
 D DHENC 13 16I 0 INZ(0)
 D* Character set identifier of data thatfollows the MQOR and MQPMR
 D* records
 D DHCSI 17 20I 0 INZ(0)
 D* Format name of data that follows theMQOR and MQPMR records
 D DHFMT 21 28 INZ(' ')
 D* General flags
 D DHFLG 29 32I 0 INZ(0)
 D* Flags indicating which MQPMR fieldsare present
 D DHPRF 33 36I 0 INZ(0)
 D* Number of MQOR records present
 D DHCNT 37 40I 0 INZ(0)
 D* Offset of first MQOR record from startof MQDH
 D DHORO 41 44I 0 INZ(0)
 D* Offset of first MQPMR record fromstart of MQDH
 D DHPRO 45 48I 0 INZ(0)

MQDLH (Dead-letter header) on IBM i

Overview
Purpose

The MQDLH structure describes the information that prefixes the application message data of
messages on the dead-letter (undelivered-message) queue. A message can arrive on the dead-letter
queue because the queue manager or message channel agent redirected it to the queue. An
application might put the message directly on the queue.

Format name
FMDLH

Character set and encoding
The MQDLH might be at the start of the application message data. If so, the fields in the MQDLH
structure are in the character set and encoding given by the MDCSI and MDENC fields. If not, the
character set and encoding are set by the MDCSI and MDENC fields in the header structure that
precedes the MQDLH.

1054 IBM MQ Developing Applications Reference

The character set must be one that has single-byte characters for the characters that are valid in
queue names.

Usage
Applications that put messages directly on the dead-letter queue must prefix the message data with
an MQDLH structure, and initialize the fields with appropriate values. However, the queue manager
does not require that an MQDLH structure is present, or that valid values are specified for the fields.

If a message is too long to put on the dead-letter queue, the application must consider doing one of
the following things:

• Truncate the message data to fit on the dead-letter queue.
• Record the message on auxiliary storage and place an exception report message on the dead-letter

queue indicating the message is too long.
• Discard the message and return an error to its originator. If the message is a critical message.

Discard the message only if it is known that the originator still has a copy of the message. For
example, a message received by a message channel agent from a communication channel.

Which of the choices is appropriate depends on the design of the application.

The queue manager performs special processing when a message which is a segment is put with an
MQDLH structure at the front. See the description of the MQMDE structure for further details.

• “Putting messages on the dead-letter queue” on page 1055
• “Getting messages from the dead-letter queue” on page 1056
• “Fields” on page 1056
• “Initial values” on page 1059
• “RPG declaration” on page 1060

Putting messages on the dead-letter queue
If a message is put on the dead-letter queue, the MQMD structure used for the MQPUT or MQPUT1 call
must be identical to the MQMD associated with the message. The MQMD is typically the one returned by the
MQGET call, except for the following cases:

• The MDCSI and MDENC fields must be set to whatever character set and encoding are used for fields in
the MQDLH structure.

• The MDFMT field must be set to FMDLH to indicate that the data begins with an MQDLH structure.
• The context fields, MDACC, MDAID, MDAOD, MDPAN, MDPAT, MDPD, MDPT, and MDUID must be set by using

a context option appropriate to the circumstances:

– An application putting on the dead-letter queue a message that is not related to any preceding
message must use the PMDEFC option. The PMDEFC option causes the queue manager to set all of the
context fields in the message descriptor to their default values.

– A server application putting on the dead-letter queue a message it received must use the PMPASA
option, in order to preserve the original context information.

– A server application putting on the dead-letter queue a reply to message it received must use the
PMPASI option. The PMPASI option preserves the identity information but sets the origin information
to be that of the server application.

– A message channel agent putting on the dead-letter queue a message it received from its
communication channel must use the PMSETA option. The PMSETA option preserves the original
context information.

In the MQDLH structure itself, the fields must be set as follows:

• The DLCSI, DLENC, and DLFMT fields must be set to the values that describe the data that follows the
MQDLH structure. These values are typically the values from the original message descriptor.

Developing applications reference 1055

• The context fields DLPAT, DLPAN, DLPD, and DLPT must be set to values appropriate to the application
that is putting the message on the dead-letter queue. These values are not related to the original
message.

• Other fields must be set as appropriate.

The application must ensure that all fields have valid values, and that character fields are padded with
blanks to the defined length of the field. The character data must not be terminated prematurely by using
a null character. The queue manager does not convert the null and subsequent characters to blanks in the
MQDLH structure.

Getting messages from the dead-letter queue
Applications that get messages from the dead-letter queue must verify that the messages begin with an
MQDLH structure. The application can determine whether an MQDLH structure is present by examining the
MDFMT field in the message descriptor MQMD. If the field has the value FMDLH, the message data begins
with an MQDLH structure. Messages on the dead-letter queue might be truncated if they were originally
too long for the queue they were intended for.

Fields
The MQDLH structure contains the following fields; the fields are described in alphabetical order:

DLCSI (10-digit signed integer)

Character set identifier of data that follows MQDLH.

DLCSI specifies the character set identifier of the data that follows the MQDLH structure. The data is
typically from the original message. It does not apply to character data in the MQDLH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
CSINHT

Inherit character-set identifier of this structure.

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual
character-set identifier of the structure. Provided no error occurs, the value CSINHT is not
returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is ATBRKR.

The initial value of this field is CSUNDF.

DLDM (48-byte character string)

Name of original destination queue manager.

This is the name of the queue manager that was the original destination for the message.

The length of this field is given by LNQMN. The initial value of this field is 48 blank characters.

DLDQ (48-byte character string)

Name of original destination queue.

This is the name of the message queue that was the original destination for the message.

The length of this field is given by LNQN. The initial value of this field is 48 blank characters.

DLENC (10-digit signed integer)

Numeric encoding of data that follows MQDLH.

DLENC specifies the numeric encoding of the data that follows the MQDLH structure. The data is
typically from the original message. It does not apply to numeric data in the MQDLH structure itself.

1056 IBM MQ Developing Applications Reference

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is 0.

DLFMT (8-byte character string)

Format name of data that follows MQDLH.

This specifies the format name of the data that follows the MQDLH structure (typically the data from
the original message).

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as the rules for the MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is FMNONE.

DLPAN (28-byte character string)

Name of application that put message on dead-letter (undelivered-message) queue.

The format of the name depends on the DLPAT field. See the description of the MDPAN field in “MQMD
(Message descriptor) on IBM i” on page 1099.

If it is the queue manager that redirects the message to the dead-letter queue, DLPAN contains the
first 28 characters of the queue manager name. The name is padded with blanks if necessary.

The length of this field is given by LNPAN. The initial value of this field is 28 blank characters.

DLPAT (10-digit signed integer)

Type of application that put message on dead-letter (undelivered-message) queue.

This field has the same meaning as the MDPAT field in the message descriptor MQMD (see “MQMD
(Message descriptor) on IBM i” on page 1099 for details).

If it is the queue manager that redirects the message to the dead-letter queue, DLPAT has the value
ATQM.

The initial value of this field is 0.

DLPD (8-byte character string)

Date when message was put on dead-letter (undelivered-message) queue.

The format used for the date when this field is generated by the queue manager is:

• YYYYMMDD

where the characters represent:
YYYY

year (four numeric digits)
MM

month of year (01 through 12)
DD

day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the DLPD and DLPT fields, subject to the system clock being
set accurately to GMT.

The length of this field is given by LNPDAT. The initial value of this field is eight blank characters.

DLPT (8-byte character string)

Time when message was put on the dead-letter (undelivered-message) queue.

The format used for the time when this field is generated by the queue manager is:

• HHMMSSTH

where the characters represent (in order):

Developing applications reference 1057

HH
hours (00 through 23)

MM
minutes (00 through 59)

SS
seconds (00 through 59; see note later in this topic)

T
tenths of a second (0 through 9)

H
hundredths of a second (0 through 9)

Note: If the system clock is synchronized to an accurate time standard, it is possible for 60 or 61 to
be returned for the seconds in DLPT. The extra second occurs when leap seconds are inserted into the
global time standard.

Greenwich Mean Time (GMT) is used for the DLPD and DLPT fields, subject to the system clock being
set accurately to GMT.

The length of this field is given by LNPTIM. The initial value of this field is eight blank characters.

DLREA (10-digit signed integer)

Reason message arrived on dead-letter (undelivered-message) queue.

This identifies the reason why the message was placed on the dead-letter queue instead of on the
original destination queue. It must be one of the FB* or RC* values (for example, RC2053). See the
description of the MDFB field in “MQMD (Message descriptor) on IBM i” on page 1099 for details of the
common FB* values that can occur.

If the value is in the range FBIFST through FBILST, the actual IMS error code can be determined by
subtracting FBIERR from the value of the DLREA field.

Some FB* values occur only in this field. They relate to repository messages, trigger messages, or
transmission-queue messages that are transferred to the dead-letter queue. These values are:
FBABEG

Application cannot be started.

An application processing a trigger message was unable to start the application named in the
TMAI field of the trigger message; see “MQTM - Trigger message” on page 1224.

FBATYP
Application type error.

An application processing a trigger message was unable to start the application because the TMAT
field of the trigger message is not valid; see “MQTM - Trigger message” on page 1224.

FBBOCD
Cluster-receiver channel deleted.

The message was on a cluster transmission queue intended for a cluster queue that was opened
with the FBIERR option. The remote cluster-receiver channel to be used to transmit the message
to the destination queue was deleted before the message could be sent. Because FBIERR was
specified, only the channel selected when the queue was opened can be used to transmit the
message. As this channel is not longer available, the message was placed on the dead-letter
queue.

FBNARM
Message is not a repository message.

FBSBCX
Message stopped by channel auto-definition exit.

FBSBMX
Message stopped by channel message exit.

1058 IBM MQ Developing Applications Reference

FBTM
MQTM structure not valid or missing.

The MDFMT field in MQMD specifies FMTM, but the message does not begin with a valid MQTM
structure. For example, the TMSID mnemonic eye-catcher might not be valid. The TMVER might
not be recognized. The length of the trigger message might be insufficient to contain the MQTM
structure.

FBXQME
Message on transmission queue not in correct format.

A message channel agent found that a message on the transmission queue is not in the correct
format. The message channel agent puts the message on the dead-letter queue using this
feedback code.

The initial value of this field is RCNONE.

DLSID (4-byte character string)

Structure identifier.

The value must be:
DLSIDV

Identifier for dead-letter header structure.

The initial value of this field is DLSIDV.

DLVER (10-digit signed integer)

Structure version number.

The value must be:
DLVER1

Version number for dead-letter header structure.

The following constant specifies the version number of the current version:
DLVERC

Current version of dead-letter header structure.

The initial value of this field is DLVER1.

Initial values
Table 698. Initial values of fields in MQDLH

Field name Name of constant Value of constant

DLSID DLSIDV 'DLH¬'

DLVER DLVER1 1

DLREA RCNONE 0

DLDQ None Blanks

DLDM None Blanks

DLENC None 0

DLCSI CSUNDF 0

DLFMT FMNONE Blanks

DLPAT None 0

DLPAN None Blanks

Developing applications reference 1059

Table 698. Initial values of fields in MQDLH (continued)

Field name Name of constant Value of constant

DLPD None Blanks

DLPT None Blanks

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQDLH Structure
 D*
 D* Structure identifier
 D DLSID 1 4 INZ('DLH ')
 D* Structure version number
 D DLVER 5 8I 0 INZ(1)
 D* Reason message arrived on dead-letter(undelivered-message) queue
 D DLREA 9 12I 0 INZ(0)
 D* Name of original destination queue
 D DLDQ 13 60 INZ
 D* Name of original destination queue manager
 D DLDM 61 108 INZ
 D* Numeric encoding of data that followsMQDLH
 D DLENC 109 112I 0 INZ(0)
 D* Character set identifier of data thatfollows MQDLH
 D DLCSI 113 116I 0 INZ(0)
 D* Format name of data that followsMQDLH
 D DLFMT 117 124 INZ(' ')
 D* Type of application that put messageon dead-letter
 D* (undelivered-message)queue
 D DLPAT 125 128I 0 INZ(0)
 D* Name of application that put messageon dead-letter
 D* (undelivered-message)queue
 D DLPAN 129 156 INZ
 D* Date when message was put ondead-letter (undelivered-message)queue
 D DLPD 157 164 INZ
 D* Time when message was put on thedead-letter (undelivered-message)queue
 D DLPT 165 172 INZ

MQDMHO (Delete message handle options) on IBM i
The MQDMHO structure allows applications to specify options that control how message handles are
deleted.

Overview
Purpose: The structure is an input parameter on the MQDLTMH call.

Character set and encoding: Data in MQDMHO must be in the character set of the application and encoding
of the application (ENNAT).

• “Fields” on page 1060
• “Initial values” on page 1061
• “RPG declaration” on page 1061

Fields
The MQDMHO structure contains the following fields; the fields are described in alphabetical order:

DMOPT (10-digit signed integer)

The value must be:

1060 IBM MQ Developing Applications Reference

DMNONE

No options specified.

This is always an input field. The initial value of this field is DMNONE.

DMSID (10-digit signed integer)

This is the structure identifier; the value must be:

DMSIDV

Identifier for delete message handle options structure.

This is always an input field. The initial value of this field is DMSIDV.

DMVER (10-digit signed integer)

This is the structure version number; the value must be:

DMVER1
Version-1 delete message handle options structure.

The following constant specifies the version number of the current version:

DMVERC
Current version of delete message handle options structure.

This is always an input field. The initial value of this field is DMVER1.

Initial values
Table 699. Initial values of fields in MQDMHO

Field name Name of constant Value of constant

DMSID DMSIDV 'DMHO'

DMVER DMVER1 1

DMOPT DMNONE 0

RPG declaration

 D* MQDMHO Structure
 D*
 D*
 D* Structure identifier
 D DMSID 1 4 INZ('DMHO')
 D*
 D* Structure version number
 D DMVER 5 8I 0 INZ(1)
 D*
 D* Options that control the action of MQDLTMH
 D DMOPT 9 12I 0 INZ(0)

MQDMPO (Delete message property options) on IBM i
Structure defining the delete message property options.

Overview
Purpose: The MQDMPO structure allows applications to specify options that control how properties of
messages are deleted. The structure is an input parameter on the MQDLTMP call.

Developing applications reference 1061

Character set and encoding: Data in MQDMPO must be in the character set of the application and
encoding of the application (ENNAT).

• “Fields” on page 1062
• “Initial values” on page 1063
• “RPG declaration” on page 1063

Fields
The MQDMPO structure contains the following fields; the fields are described in alphabetic order:

DPOPT (10-digit signed integer)

Delete message property options structure - DPOPT field.

Location options: The following options relate to the relative location of the property compared to the
property cursor.
DPDELF

Deletes the first property that matches the specified name.
DPDELC

Deletes the property pointed to by the property cursor; that is the property that was last inquired
by using either the IPINQF or the IPINQN option.

The property cursor is reset when the message handle is reused. It is also reset when the
message handle is specified in the HMSG field of the MQGMO on an MQGET call, or MQPMO
structure on an MQPUT call.

The property cursor is reset when the message handle is reused, or when the message handle is
specified in the HMSG field of the MQGMO structure on an MQGET structure on an MQGET call or
MQPMO structure on an MQPUT call.

The call fails with completion code CCFAIL and reason RC2471 if this option is used when the
property cursor has not yet been established. It also fails with these codes if the property pointed
to by the property cursor has already been deleted..

If neither of these options is required, the following option can be used:
DPNONE

No options specified.

The initial value of this input field is DPDELF.

DPSID (10-digit signed integer)

Delete message property options structure - DPSID field.

This is the structure identifier. The value must be:
DPSIDV

Identifier for delete message property options structure.

This field is always an input field. The initial value of this field is DPSIDV.

DPVER (10-digit signed integer)

Delete message property options structure - DPVER field.

This is the structure version number. The value must be:
DPVER1

Version number for delete message property options structure.

The following constant specifies the version number of the current version:

1062 IBM MQ Developing Applications Reference

DPVERC
Current version of delete message property options structure.

This field is always an input field. The initial value of this field is DPVER1.

Initial values
Table 700. Initial values of fields in MQDPMO

Field name Name of constant Value of constant

DPSID DPSIDV 'DMPO'

DPVER DPVER1 1

DPOPT Options that control the action of MQDLTMP DPNONE

RPG declaration

 D* MQDMPO Structure
 D*
 D*
 D* Structure identifier
 D DPSID 1 4 INZ('DMPO')
 D*
 D* Structure version number
 D DPVER 5 8I 0 INZ(1)
 D*
 ** Options that control the action of
 D* MQDLTMP
 D DPOPT 9 12I 0 INZ(0)

MQEPH (Embedded PCF header) on IBM i

Overview
Purpose

The MQEPH structure describes the additional data that is present in a message when that message
is a programmable command format (PCF) message. The EPPFH field defines the PCF parameters that
follow this structure and this allows you to follow the PCF message data with other headers.

Format name
EPFMT

Character set and encoding
Data in MQEPH must be in the character set and encoding of the local queue manager; this is given by
the CCSID queue manager attribute.

Set the character set and encoding of the MQEPH into the MDCSI and MDENC fields in:

• The MQMD (if the MQEPH structure is at the start of the message data), or
• The header structure that precedes the MQEPH structure (all other cases).

Usage
You cannot use MQEPH structures to send commands to the command server or any other queue
manager PCF-accepting server.

Similarly, the command server or any other queue manager PCF-accepting server do not generate
responses or events containing MQEPH structures.

• “Fields” on page 1064
• “Initial values” on page 1065
• “RPG declaration” on page 1066

Developing applications reference 1063

Fields
The MQEPH structure contains the following fields; the fields are described in alphabetical order:

EPCSI (10-digit signed integer)

This is the character set identifier of the data that follows the MQEPH structure and the associated
PCF parameters; it does not apply to character data in the MQEPH structure itself.

The initial value of this field is EPCUND.

EPENC (10-digit signed integer)

This is the numeric encoding of the data that follows the MQEPH structure and the associated PCF
parameters; it does not apply to character data in the MQEPH structure itself.

The initial value of this field is 0.

EPFLG (10-digit signed integer)

The following values are available:
EPNONE

No flags have been specified. MDCSI EPNONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value is zero, such use cannot be
detected.

EPCSEM
The character set of the parameters containing character data is specified individually within the
CCSID field in each structure. The character set of the EPSID and EPFMT fields are defined by the
CCSID in the header structure that precedes the MQEPH structure, or by the MDCSI field in the
MQMD if the MQEPH is at the start of the message.

The initial value of this field is EPNONE.

EPFMT (8-byte character string)

This is the format name of the data that follows the MQEPH structure and the associated PCF
parameters.

The initial value of this field is EPFMNO.

EPLEN (10-digit signed integer)

This is the amount of data preceding the next header structure. It includes:

• The length of the MQEPH header
• The length of all PCF parameters following the header
• Any blank padding following those parameters

EPLEN must be a multiple of 4.

The fixed-length part of the structure is defined by EPSTLF.

The initial value of this field is 68.

EPPCFH (MQCFH)

This is the programmable command format (PCF) header, defining the PCF parameters that follow the
MQEPH structure. This enables you to follow the PCF message data with other headers.

The PCF header is initially defined with the following values:

Table 701. Initial values of fields in EPPCFH

Field name Name of constant Value of constant

EP3TYP CFTNON 0

EP3LEN FHLENV 36

1064 IBM MQ Developing Applications Reference

Table 701. Initial values of fields in EPPCFH (continued)

Field name Name of constant Value of constant

EP3VER FHVER3 3

EP3CMD CMNONE 0

EP3SEQ None 1

EP3CTL CFCLST 1

EEP3CC CCOK 0

EP3REA RCNONE 0

EP3CNT None 0

The application must change EP3TYP from CFTNON to a valid structure type for the use it is making of
the embedded PCF header.

EPSID (4-byte character string)

The value must be:
EPSTID

Identifier for the Embedded PCF header structure.

The initial value of this field is EPSTID.

EPVER (10-digit signed integer)

The value can be:
EPVER1

Version number for embedded PCF header structure.

The following constant specifies the version number of the current version:
EPVER3

Current version of embedded PCF header structure.

The initial value of this field is EPVER3.

Initial values
Table 702. Initial values of fields in MQEPH

Field name Name of constant Value of constant

EPSID EPSTID 'EP¬¬'

EPVER EPVER1 1

EPLEN EPSTLF 68

EPENC None 0

EPCSI EPCUND 0

EPFMT EPFMNO Blanks

EPFLG EPNONE 0

EPPCFH Names and values as defined in Table 701
on page 1064

0

Note:

1. The symbol ¬ represents a single blank character.

Developing applications reference 1065

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQEPH Structure
 D*
 D* Structure identifier
 D EPSID 1 4
 D* Structure version number
 D EPVER 5 8I 0
 D* Total lenght of MQEPH including MQCFHand parameter structures
 D* that follow
 D EPLEN 9 12I 0
 D* Numeric encoding of data that follows last PCF parameter structure
 D EPENC 13 16I 0
 D* Character set identifier of data that follows last PCF parameter
 D* structure
 D EPCSI 17 20I 0
 D* Format name of data that follows last PCF parameter structure
 D EPFMT 21 28
 D* Flags
 D EPFLG 29 32I 0
 D* Programmable Command Format Header
 D EP3TYP 33 36I 0
 D EP3LEN 37 40I 0
 D EP3VER 41 44I 0
 D EP3CMD 45 48I 0
 D EP3SEQ 49 52I 0
 D EP3CTL 53 56I 0
 D EP3CC 57 60I 0
 D EP3REA 61 64I 0
 D EP3CNT 65 68I 0

MQGMO (Get-message options) on IBM i
The MQGMO structure allows the application to specify options that control how messages are removed
from queues.

Overview
Purpose

The structure is an input/output parameter on the MQGET call.
Version

The current version of MQGMO is GMVER4. Fields that exist only in the more-recent versions of the
structure are identified as such in the descriptions that follow.

The COPY file provided contains the most recent version of MQGMO that is supported by the
environment, but with the initial value of the GMVER field set to GMVER1. To use fields that are not
present in the version-1 structure, the application must set the GMVER field to the version number of
the version required.

Character set and encoding
Data in MQGMO must be in the character set given by the CodedCharSetId queue manager attribute
and encoding of the local queue manager given by ENNAT. However, if the application is running as an
IBM MQ client, the structure must be in the character set and encoding of the client.

• “Fields” on page 1066
• “Initial values” on page 1086
• “RPG declaration” on page 1086

Fields
The MQGMO structure contains the following fields; the fields are described in alphabetical order:

GMGST (1 byte character string)

Flag indicating whether message retrieved is in a group.

1066 IBM MQ Developing Applications Reference

It has one of the following values:
GSNIG

Message is not in a group.
GSMIG

Message is in a group, but is not the last in the group.
GSLMIG

Message is the last in the group.

This value is also the value returned if the group consists of only one message.

This field is an output field. The initial value of this field is GSNIG. This field is ignored if GMVER is less
than GMVER2.

GMMH (10 digit signed integer)

Message Handle

If the GMPRAQ option is specified and the PRPCTL queue attribute is not set to PRPRFH then this is
the handle to a message which is populated with the properties of the message being retrieved from
the queue. The handle is created by an MQCRTMH call. Any properties already associated with the
handle are cleared before retrieving a message.

The following value can also be specified:
MQHM_NONE
No message handle supplied.

No message descriptor is required on the MQGET call if a valid message handle is supplied and used
on output to contain the message properties, the message descriptor associated with the message
handle is used for input fields.

If a message descriptor is specified on the MQGET call, it always takes precedence over the message
descriptor associated with a message handle.

If GMPRRF is specified, or the GMPRAQ is specified and the PRPCTL queue attribute is PRPRFH then
the call fails with reason code RC2026 when no message descriptor parameter is specified.

On return from the MQGET call, the properties and message descriptor associated with this message
handle are updated to reflect the state of the message retrieved (as well as the message descriptor if
one was supplied on the MQGET call). The properties of the message can then be inquired using the
MQINQMP call.

Except for message descriptor extensions, when present, a property that can be inquired with
the MQINQMP call is not contained in the message data; if the message on the queue contained
properties in the message data these are removed from the message data before the data is returned
to the application.

If no message handle is provided or version is less than GMVER4 then you must supply a valid
message descriptor on the MQGET call. Any message properties (except those properties contained in
the message descriptor) are returned in the message data subject to the value of the property options
in the MQGMO structure and the PRPCTL queue attribute.

This field is an always an input field. The initial value of this field is HMNONE. This field is ignored if
GMVER is less than GMVER4.

GMMO (10 digit signed integer)

Options controlling selection criteria used for MQGET.

These options allow the application to choose which fields in the MSGDSC parameter is used to select
the message returned by the MQGET call. The application sets the required options in this field, and
then sets the corresponding fields in the MSGDSC parameter to the values required for those fields.
Only messages that have those values in the MQMD for the message are candidates for retrieval using
that MSGDSC parameter on the MQGET call. Fields for which the corresponding match option is not

Developing applications reference 1067

specified are ignored when selecting the message to be returned. If no selection criteria are to be
used on the MQGET call (that is, any message is acceptable), GMMO should be set to MONONE.

If GMLOGO is specified, only certain messages are eligible for return by the next MQGET call:

• If there is no current group or logical message, only messages that have MDSEQ equal to 1 and
MDOFF equal to 0 are eligible for return. In this situation, one or more of the following options can be
used to select which of the eligible messages is the one returned:

– MOMSGI
– MOCORI
– MOGRPI

• If there is a current group or logical message, only the next message in the group or next segment in
the logical message is eligible for return, and this cannot be altered by specifying MO* options.

In both cases, match options which are not applicable can still be specified, but the value of the
relevant field in the MSGDSC parameter must match the value of the corresponding field in the
message to be returned; the call fails with reason code RC2247 is this condition is not satisfied.

GMMO is ignored if either GMMUC or GMBRWC is specified.

One or more of the following options can be specified:
MOMSGI

Retrieve message with specified message identifier.

This option specifies that the message to be retrieved must have a message identifier that
matches the value of the MDMID field in the MSGDSC parameter of the MQGET call. This match
is in addition to any other matches that might apply (for example, the correlation identifier).

If this option is not specified, the MDMID field in the MSGDSC parameter is ignored, and any
message identifier matches.

Note: The message identifier MINONE is a special value that matches any message identifier
in the MQMD for the message. Therefore, specifying MOMSGI with MINONE is the same as not
specifying MOMSGI.

MOCORI
Retrieve message with specified correlation identifier.

This option specifies that the message to be retrieved must have a correlation identifier that
matches the value of the MDCID field in the MSGDSC parameter of the MQGET call. This match is in
addition to any other matches that might apply (for example, the message identifier).

If this option is not specified, the MDCID field in the MSGDSC parameter is ignored, and any
correlation identifier matches.

Note: The correlation identifier CINONE is a special value that matches any correlation identifier
in the MQMD for the message. Therefore, specifying MOCORI with CINONE is the same as not
specifying MOCORI.

MOGRPI
Retrieve message with specified group identifier.

This option specifies that the message to be retrieved must have a group identifier that matches
the value of the MDGID field in the MSGDSC parameter of the MQGET call. This match is in addition
to any other matches that might apply (for example, the correlation identifier).

If this option is not specified, the MDGID field in the MSGDSC parameter is ignored, and any group
identifier matches.

Note: The group identifier GINONE is a special value that matches any group identifier in the
MQMD for the message. Therefore, specifying MOGRPI with GINONE is the same as not specifying
MOGRPI.

1068 IBM MQ Developing Applications Reference

MOSEQN
Retrieve message with specified message sequence number.

This option specifies that the message to be retrieved must have a message sequence number
that matches the value of the MDSEQ field in the MSGDSC parameter of the MQGET call. This match
is in addition to any other matches that might apply (for example, the group identifier).

If this option is not specified, the MDSEQ field in the MSGDSC parameter is ignored, and any
message sequence number matches.

MOOFFS
Retrieve message with specified offset.

This option specifies that the message to be retrieved must have an offset that matches the value
of the MDOFF field in the MSGDSC parameter of the MQGET call. This match is in addition to any
other matches that might apply (for example, the message sequence number).

If this option is not specified, the MDOFF field in the MSGDSC parameter is ignored, and any offset
matches.

If none of the options described is specified, the following option can be used:
MONONE

No matches.

This option specifies that no matches are to be used in selecting the message to be returned;
therefore, all messages on the queue are eligible for retrieval (but subject to control by the
GMAMSA, GMASGA, and GMCMPM options).

MONONE is defined to aid program documentation. It is not intended that this option in used with
any other MO* option, but as its value is zero, such use cannot be detected.

This field is an input field. The initial value of this field is MOMSGI with MOCORI. This field is ignored if
GMVER is less than GMVER2.

Note: The initial value of the GMMO field is defined for compatibility with earlier version queue
managers. However, when reading a series of messages from a queue without using selection criteria,
this initial value requires the application to reset the MDMID and MDCID fields to MINONE and CINONE
before each MQGET call. The need to reset MDMID and MDCID can be avoided by setting GMVER to
GMVER2, and GMMO to MONONE.

GMOPT (10 digit signed integer)

Options that control the action of MQGET.

Zero or more of the following described options can be specified. If more than one is required the
values can be added (do not add the same constant more than once). Combinations of options that
are not valid are noted; all other combinations are valid.

Wait options: The following options relate to waiting for messages to arrive on the queue:
GMWT

Wait for message to arrive.

The application is to wait until a suitable message arrives. The maximum time the application
waits is specified in GMWI.

If MQGET requests are inhibited, or MQGET requests become inhibited while waiting, the wait is
canceled and the call completes with CCFAIL and reason code RC2016, regardless of whether
there are suitable messages on the queue.

This option can be used with the GMBRWF or GMBRWN options.

If several applications are waiting on the same shared queue, the application, or applications, that
are activated when a suitable message arrives are described later in this section.

Note: In the following description, a browse MQGET call is one which specifies one of the browse
options, but not GMLK; an MQGET call specifying the GMLK option is treated as a nonbrowse call.

Developing applications reference 1069

• If one or more nonbrowse MQGET calls is waiting, but no browse MQGET calls are waiting, one is
activated.

• If one or more browse MQGET calls is waiting, but no nonbrowse MQGET calls are waiting, all
are activated.

• If one or more nonbrowse MQGET calls, and one or more browse MQGET calls are waiting,
one nonbrowse MQGET call is activated, and none, some, or all the browse MQGET calls. (The
number of browse MQGET calls activated cannot be predicted, because it depends on the
scheduling considerations of the operating system, and other factors.)

If more than one nonbrowse MQGET call is waiting on the same queue, only one is activated;
in this situation the queue manager attempts to give priority to waiting nonbrowse calls in the
following order:

1. Specific get-wait requests that can be satisfied only by certain messages, for example, ones
with a specific MDMID or MDCID (or both).

2. General get-wait requests that can be satisfied by any message.

The following points must be noted:

• Within the first category, no additional priority is given to more specific get-wait requests, for
example those that specify both MDMID and MDCID.

• Within either category, it cannot be predicted which application is selected. In particular, the
application waiting longest is not necessarily the one selected.

• Path length, and priority-scheduling considerations of the operating system, can mean that a
waiting application of lower operating system priority than expected retrieves the message.

• It might also happen that an application that is not waiting retrieves the message in preference
to one that is.

GMWT is ignored if specified with GMBRWC or GMMUC; no error is raised.

GMNWT
Return immediately if no suitable message.

The application is not to wait if no suitable message is available. This is the opposite of the GMWT
option, and is defined to aid program documentation. It is the default if neither is specified.

GMFIQ
Fail if queue manager is quiescing.

This option forces the MQGET call to fail if the queue manager is in the quiescing state.

If this option is specified together with GMWT, and the wait is outstanding at the time the queue
manager enters the quiescing state:

• The wait is canceled and the call returns completion code CCFAIL with reason code RC2161 .

If GMFIQ is not specified and the queue manager enters the quiescing state, the wait is not
canceled.

Syncpoint options: The following options relate to the participation of the MQGET call within a unit of
work:
GMSYP

Get message with syncpoint control.

The request is to operate within the normal unit-of-work protocols. The message is marked as
being unavailable to other applications, but it is deleted from the queue only when the unit of work
is committed. The message is made available again if the unit of work is backed out.

If this option or GMNSYP is not specified, the get request is not within a unit of work.

This option is not valid with any of the following options:

• GMBRWF

1070 IBM MQ Developing Applications Reference

• GMBRWC
• GMBRWN
• GMLK
• GMNSYP
• GMPSYP
• GMUNLK

GMPSYP
Get message with syncpoint control if message is persistent.

The request is to operate within the normal unit-of-work protocols, but only if the message
retrieved is persistent. A persistent message has the value PEPER in the MDPER field in MQMD.

• If the message is persistent, the queue manager processes the call as though the application
had specified GMSYP.

• If the message is not persistent, the queue manager processes the call as though the
application had specified GMNSYP (see the following section for details).

This option is not valid with any of the following options:

• GMBRWF
• GMBRWC
• GMBRWN
• GMCMPM
• GMNSYP
• GMSYP
• GMUNLK

GMNSYP
Get message without syncpoint control.

The request is to operate outside the normal unit-of-work protocols. The message is deleted from
the queue immediately (unless this is a browse request). The message cannot be made available
again by backing out the unit of work.

This option is assumed if GMBRWF or GMBRWN is specified.

If this option and GMSYP are not specified, the get request is not within a unit of work.

This option is not valid with any of the following options:

• GMSYP
• GMPSYP

Browse options: The following options relate to browsing messages on the queue:
GMBRWF

Browse from start of queue.

When a queue is opened with the OOBRW option, a browse cursor is established, positioned
logically before the first message on the queue. Subsequent MQGET calls specifying the GMBRWF,
GMBRWN, or GMBRWC option can be used to retrieve messages from the queue nondestructively.
The browse cursor marks the position, within the messages on the queue, from which the next
MQGET call with GMBRWN searches for a suitable message.

An MQGET call with GMBRWF causes the previous position of the browse cursor to be ignored.
The first message on the queue that satisfies the conditions specified in the message descriptor
is retrieved. The message remains on the queue, and the browse cursor is positioned on this
message.

Developing applications reference 1071

After this call, the browse cursor is positioned on the message that has been returned. If the
message is removed from the queue before the next MQGET call with GMBRWN is issued, the
browse cursor remains at the position in the queue that the message occupied, even though that
position is now empty.

The GMMUC option can then be used with a nonbrowse MQGET call if required, to remove the
message from the queue.

The browse cursor is not moved by a nonbrowse MQGET call using the same HOBJ handle. Nor is
it moved by a browse MQGET call that returns a completion code of CCFAIL, or a reason code of
RC2080 .

The GMLK option can be specified together with this option, to cause the message that is browsed
to be locked.

GMBRWF can be specified with any valid combination of the GM* and MO* options that control the
processing of messages in groups and segments of logical messages.

If GMLOGO is specified, the messages are browsed in logical order. If that option is omitted,
the messages are browsed in physical order. When GMBRWF is specified, it is possible to switch
between logical order and physical order, but subsequent MQGET calls using GMBRWN must
browse the queue in the same order as the most recent call that specified GMBRWF for the queue
handle.

The group and segment information that the queue manager retains for MQGET calls that browse
messages on the queue, is separate from the group and segment information that the queue
manager retains for MQGET calls that remove messages from the queue. When GMBRWF is
specified, the queue manager ignores the group and segment information for browsing, and scans
the queue as though there were no current group and no current logical message. If the MQGET
call is successful (completion code CCOK or CCWARN), the group and segment information
for browsing is set to that of the message returned; if the call fails, the group and segment
information remains the same as it was before the call.

This option is not valid with any of the following options:

• GMBRWC
• GMBRWN
• GMMUC
• GMSYP
• GMPSYP
• GMUNLK

It is also an error if the queue was not opened for browse.

GMBRWN
Browse from current position in queue.

The browse cursor is advanced to the next message on the queue that satisfies the selection
criteria specified on the MQGET call. The message is returned to the application, but remains on
the queue.

After a queue has been opened for browse, the first browse call using the handle has the same
effect whether it specifies the GMBRWF or GMBRWN option.

If the message is removed from the queue before the next MQGET call with GMBRWN is issued,
the browse cursor logically remains at the position in the queue that the message occupied, even
though that position is now empty.

Messages are stored on the queue in one of two ways:

• FIFO within priority (MSPRIO), or
• FIFO regardless of priority (MSFIFO)

1072 IBM MQ Developing Applications Reference

The MsgDeliverySequence queue attribute indicates which method applies (see “Attributes for
queues” on page 1355 for details).

If the queue has a MsgDeliverySequence of MSPRIO, and a message arrives on the queue that
is of a higher priority than the one currently pointed to by the browse cursor, that message is
not found during the current sweep of the queue using GMBRWN. It can only be found after the
browse cursor has been reset with GMBRWF (or by reopening the queue).

The GMMUC option can later be used with a nonbrowse MQGET call if required, to remove the
message from the queue.

The browse cursor is not moved by nonbrowse MQGET calls using the same HOBJ handle.

The GMLK option can be specified together with this option, to cause the message that is browsed
to be locked.

GMBRWN can be specified with any valid combination of the GM* and MO* options that control the
processing of messages in groups and segments of logical messages.

If GMLOGO is specified, the messages are browsed in logical order. If that option is omitted,
the messages are browsed in physical order. When GMBRWF is specified, it is possible to switch
between logical order and physical order, but subsequent MQGET calls using GMBRWN must
browse the queue in the same order as the most recent call that specified GMBRWF for the queue
handle. The call fails with reason code RC2259 if this condition is not satisfied.

Note: Special care is needed if an MQGET call is used to browse beyond the end of a message
group (or logical message not in a group) when GMLOGO is not specified. For example, if the
last message in the group happens to precede the first message in the group on the queue,
using GMBRWN to browse beyond the end of the group, specifying MOSEQN with MDSEQ set to
1 (to find the first message of the next group) would return again the first message in the group
already browsed. This could happen immediately, or a number of MQGET calls later (if there are
intervening groups).

The possibility of an infinite loop can be avoided by opening the queue twice for browse:

• Use the first handle to browse only the first message in each group.
• Use the second handle to browse only the messages within a specific group.
• Use the MO* options to move the second browse cursor to the position of the first browse

cursor, before browsing the messages in the group.
• Do not use GMBRWN to browse beyond the end of a group.

The group and segment information that the queue manager retains for MQGET calls that browse
messages on the queue, is separate from the group and segment information that it retains for
MQGET calls that remove messages from the queue.

This option is not valid with any of the following options:

• GMBRWF
• GMBRWC
• GMMUC
• GMSYP
• GMPSYP
• GMUNLK

It is also an error if the queue was not opened for browse.

GMBRWC
Browse message under browse cursor.

This option causes the message pointed to by the browse cursor to be retrieved nondestructively,
regardless of the MO* options specified in the GMMO field in MQGMO.

Developing applications reference 1073

The message pointed to by the browse cursor is the one that was last retrieved using either the
GMBRWF or the GMBRWN option. The call fails if neither of these calls has been issued for this
queue since it was opened, or if the message that was under the browse cursor has since been
retrieved destructively.

The position of the browse cursor is not changed by this call.

The GMMUC option can then be used with a nonbrowse MQGET call if required, to remove the
message from the queue.

The browse cursor is not moved by a nonbrowse MQGET call using the same HOBJ handle. Nor is
it moved by a browse MQGET call that returns a completion code of CCFAIL, or a reason code of
RC2080.

If GMBRWC is specified with GMLK:

• If there is already a message locked, it must be the one under the cursor, so that is returned
without unlocking and relocking it; the message remains locked.

• If there is no locked message, the message under the browse cursor (if there is one) is locked
and returned to the application; if there is no message under the browse cursor the call fails.

If GMBRWC is specified without GMLK:

• If there is already a message locked, it must be the one under the cursor. This message is
returned to the application and then unlocked. Because the message is now unlocked, there
is no guarantee that it can be browsed again, or retrieved destructively (it might be retrieved
destructively by another application getting messages from the queue).

• If there is no locked message, the message under the browse cursor (if there is one) is returned
to the application; if there is no message under the browse cursor the call fails.

If GMCMPM is specified with GMBRWC, the browse cursor must identify a message with a MDOFF
field in MQMD that is zero. If this condition is not satisfied, the call fails with reason code RC2246 .

The group and segment information that the queue manager retains for MQGET calls that browse
messages on the queue, is separate from the group and segment information that it retains for
MQGET calls that remove messages from the queue.

This option is not valid with any of the following options:

• GMBRWF
• GMBRWN
• GMMUC
• GMSYP
• GMPSYP
• GMUNLK

It is also an error if the queue was not opened for browse.

GMMUC
Get message under browse cursor.

This option causes the message pointed to by the browse cursor to be retrieved, regardless of the
MO* options specified in the GMMO field in MQGMO. The message is removed from the queue.

The message pointed to by the browse cursor is the one that was last retrieved using either the
GMBRWF or the GMBRWN option.

If GMCMPM is specified with GMMUC, the browse cursor must identify a message with a MDOFF
field in MQMD that is zero. If this condition is not satisfied, the call fails with reason code RC2246 .

This option is not valid with any of the following options:

• GMBRWF
• GMBRWC

1074 IBM MQ Developing Applications Reference

• GMBRWN
• GMUNLK

It is also an error if the queue was not opened both for browse and for input. If the browse cursor
is not currently pointing to a retrievable message, an error is returned by the MQGET call.

Lock options: The following options relate to locking messages on the queue:
GMLK

Lock message.

This option locks the message that is browsed, so that the message becomes invisible to any
other handle open for the queue. The option can be specified only if one of the following options is
also specified:

• GMBRWF
• GMBRWN
• GMBRWC

Only one message can be locked per queue handle, but this can be a logical message or a physical
message:

• If GMCMPM is specified, all the message segments that make up the logical message are locked
to the queue handle (if they are all present on the queue and available for retrieval).

• If GMCMPM is not specified, only a single physical message is locked to the queue handle. If
this message happens to be a segment of a logical message, the locked segment prevents other
applications using GMCMPM to retrieve or browse the logical message.

The locked message is always the one under the browse cursor, and the message can be removed
from the queue by a later MQGET call that specifies the GMMUC option. Other MQGET calls using
the queue handle can also remove the message (for example, a call that specifies the message
identifier of the locked message).

If the call returns completion code CCFAIL, or CCWARN with reason code RC2080, no message is
locked.

If the application decides not to remove the message from the queue, the lock is released by:

• Issuing another MQGET call for this handle, with either GMBRWF or GMBRWN specified (with
or without GMLK); the message is unlocked if the call completes with CCOK or CCWARN, but
remains locked if the call completes with CCFAIL. However, the following exceptions apply:

– The message is not unlocked if CCWARN is returned with RC2080.
– The message is unlocked if CCFAIL is returned with RC2033.

If GMLK is also specified, the message returned is locked. If GMLK is not specified, there is no
locked message after the call.

If GMWT is specified, and no message is immediately available, the unlock on the original
message occurs before the start of the wait (providing the call is otherwise free from error).

• Issuing another MQGET call for this handle, with GMBRWC (without GMLK); the message is
unlocked if the call completes with CCOK or CCWARN, but remains locked if the call completes
with CCFAIL. However, the following exception applies:

– The message is not unlocked if CCWARN is returned with RC2080.
• Issuing another MQGET call for this handle with GMUNLK.
• Issuing an MQCLOSE call for this handle (either explicitly, or implicitly by the application ending).

No special open option is required to specify this option, other than OOBRW, which is needed in
order to specify the accompanying browse option.

This option is not valid with any of the following options:

• GMSYP

Developing applications reference 1075

• GMPSYP
• GMUNLK

GMUNLK
Unlock message.

The message to be unlocked must have been previously locked by an MQGET call with the GMLK
option. If there is no message locked for this handle, the call completes with CCWARN and
RC2209 .

The MSGDSC, BUFLEN, BUFFER, and DATLEN parameters are not checked or altered if GMUNLK is
specified. No message is returned in BUFFER.

No special open option is required to specify this option (although OOBRW is needed to issue the
lock request in the first place).

This option is not valid with any options except the following:

• GMNWT
• GMNSYP

Both of these options are assumed whether specified or not.

Message-data options: The following options relate to the processing of the message data when the
message is read from the queue:
GMATM

Allow truncation of message data.

If the message buffer is too small to hold the complete message, this option allows the MQGET
call to fill the buffer with as much of the message as the buffer can hold, issue a warning
completion code, and complete its processing. This means:

• When browsing messages, the browse cursor is advanced to the returned message.
• When removing messages, the returned message is removed from the queue.
• Reason code RC2079 is returned if no other error occurs.

Without this option, the buffer is still filled with as much of the message as it can hold, a warning
completion code is issued, but processing is not completed. This means:

• When browsing messages, the browse cursor is not advanced.
• When removing messages, the message is not removed from the queue.
• Reason code RC2080 is returned if no other error occurs.

GMCONV
Convert message data.

This option requests that the application data in the message is converted, to conform to the
MDCSI and MDENC values specified in the MSGDSC parameter on the MQGET call, before the data is
copied to the BUFFER parameter.

The MDFMT field specified when the message was put is assumed by the conversion process to
identify the nature of the data in the message. Conversion of the message data is by the queue
manager for built-in formats, and by a user-written exit for other formats.

• If conversion is performed successfully, the MDCSI and MDENC fields specified in the MSGDSC
parameter are unchanged on return from the MQGET call.

• If conversion cannot be performed successfully (but the MQGET call otherwise completes
without error), the message data is returned unconverted, and the MDCSI and MDENC fields
in MSGDSC are set to the values for the unconverted message. The completion code is CCWARN
in this case.

In either case, therefore, these fields describe the character-set identifier and encoding of the
message data that is returned in the BUFFER parameter.

1076 IBM MQ Developing Applications Reference

See the MDFMT field described in “MQMD (Message descriptor) on IBM i” on page 1099 for a list of
format names for which the queue manager performs the conversion.

Group and segment options: The following options relate to the processing of messages in groups
and segments of logical messages. These definitions might be of help in understanding the options:
Physical message

This is the smallest unit of information that can be placed on or removed from a queue; it often
corresponds to the information specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD). Generally, physical messages
are distinguished by differing values for the message identifier (MDMID field in MQMD), although
this is not enforced by the queue manager.

Logical message
This is a single unit of application information. In the absence of system constraints, a logical
message would be the same as a physical message. But where logical messages are large, system
constraints might make it advisable or necessary to split a logical message into two or more
physical messages, called segments.

A logical message that has been segmented consists of two or more physical messages that
have the same nonnull group identifier (MDGID field in MQMD), and the same message sequence
number (MDSEQ field in MQMD). The segments are distinguished by differing values for the
segment offset (MDOFF field in MQMD), which gives the offset of the data in the physical message
from the start of the data in the logical message. Because each segment is a physical message,
the segments in a logical message typically have differing message identifiers.

A logical message that has not been segmented, but for which segmentation has been permitted
by the sending application, also has a nonnull group identifier, although in this case there is
only one physical message with that group identifier if the logical message does not belong to
a message group. Logical messages for which segmentation has been inhibited by the sending
application have a null group identifier (GINONE), unless the logical message belongs to a
message group.

Message group
This is a set of one or more logical messages that have the same nonnull group identifier. The
logical messages in the group are distinguished by differing values for the message sequence
number, which is an integer in the range 1 through n, where n is the number of logical messages
in the group. If one or more of the logical messages is segmented, there are more than n physical
messages in the group.

GMLOGO
Messages in groups and segments of logical messages are returned in logical order.

This option controls the order in which messages are returned by successive MQGET calls for the
queue handle. The option must be specified on each of those calls in order to have an effect.

If GMLOGO is specified for successive MQGET calls for the queue handle, messages in groups
are returned in the order given by their message sequence numbers, and segments of logical
messages are returned in the order given by their segment offsets. This order might be different
from the order in which those messages and segments occur on the queue.

Note: Specifying GMLOGO has no adverse consequences on messages that do not belong to
groups and that are not segments. In effect, such messages are treated as though each belonged
to a message group consisting of only one message. Thus it is perfectly safe to specify GMLOGO
when retrieving messages from queues that might contain a mixture of messages in groups,
message segments, and unsegmented messages not in groups.

To return the messages in the required order, the queue manager retains the group and segment
information between successive MQGET calls. This information identifies the current message
group and current logical message for the queue handle, the current position within the group and
logical message, and whether the messages are being retrieved within a unit of work. Because
the queue manager retains this information, the application does not need to set the group and
segment information before each MQGET call. Specifically, it means that the application does not

Developing applications reference 1077

need to set the MDGID, MDSEQ, and MDOFF fields in MQMD. However, the application does need to
set the GMSYP or GMNSYP option correctly on each call.

When the queue is opened, there is no current message group and no current logical message. A
message group becomes the current message group when a message that has the MFMIG flag is
returned by the MQGET call. With GMLOGO specified on successive calls, that group remains the
current group until a message is returned that has:

• MFLMIG without MFSEG (that is, the last logical message in the group is not segmented), or
• MFLMIG with MFLSEG (that is, the message returned is the last segment of the last logical

message in the group).

When such a message is returned, the message group is terminated, and on successful
completion of that MQGET call there is no longer a current group. In a similar way, a logical
message becomes the current logical message when a message that has the MFSEG flag is
returned by the MQGET call, and that logical message is terminated when the message that has
the MFLSEG flag is returned.

If no selection criteria are specified, successive MQGET calls return (in the correct order) the
messages for the first message group on the queue, then the messages for the second message
group, and so on, until there are no more messages available. It is possible to select the particular
message groups returned by specifying one or more of the following options in the GMMO field:

• MOMSGI
• MOCORI
• MOGRPI

However, these options are effective only when there is no current message group or logical
message; see the GMMO field described in this topic.

Table 703 on page 1078 shows the values of the MDMID, MDCID, MDGID, MDSEQ, and MDOFF fields
that the queue manager looks for when attempting to find a message to return on the MQGET call.
This applies both to removing messages from the queue, and browsing messages on the queue.
The columns in the table have the following meanings:
LOG ORD

Indicates whether the GMLOGO option is specified on the call.
Cur grp

Indicates whether a current message group exists before the call.
Cur log msg

Indicates whether a current logical message exists before the call.
Other columns

Show the values that the queue manager looks for. "Previous" denotes the value returned for
the field in the previous message for the queue handle.

Table 703. MQGET options relating to messages in groups and segments of logical messages

Options
you

specify

Group and log-
msg status
before call

Values the queue manager looks for

LOG
ORD

Cur grp Cur log
msg

MDMID MDCID MDGID MDSEQ MDOFF

Yes No No Controlled by
GMMO

Controlled by
GMMO

Controlled by
GMMO

1 0

Yes No Yes Any message
identifier

Any
correlation
identifier

Previous group
identifier

1 Previous offset
+ previous
segment

length

1078 IBM MQ Developing Applications Reference

Table 703. MQGET options relating to messages in groups and segments of logical messages (continued)

Options
you

specify

Group and log-
msg status
before call

Values the queue manager looks for

Yes Yes No Any message
identifier

Any
correlation
identifier

Previous group
identifier

Previous
sequence

number + 1

0

Yes Yes Yes Any message
identifier

Any
correlation
identifier

Previous group
identifier

Previous
sequence
number

Previous offset
+ previous
segment

length

No Either Either Controlled by
GMMO

Controlled by
GMMO

Controlled by
GMMO

Controlled by
GMMO

Controlled by
GMMO

When multiple message groups are present on the queue and eligible for return, the groups
are returned in the order determined by the position on the queue of the first segment of the
first logical message in each group (that is, the physical messages that have message sequence
numbers of 1, and offsets of 0, determine the order in which eligible groups are returned).

The GMLOGO option affects units of work as follows:

• If the first logical message or segment in a group is retrieved within a unit of work, all the other
logical messages and segments in the group must be retrieved within a unit of work, if the same
queue handle is used. However, they need not be retrieved within the same unit of work. This
allows a message group consisting of many physical messages to be split across two or more
consecutive units of work for the queue handle.

• If the first logical message or segment in a group is not retrieved within a unit of work, none of
the other logical messages and segments in the group can be retrieved within a unit of work, if
the same queue handle is used.

If these conditions are not satisfied, the MQGET call fails with reason code RC2245 .

When GMLOGO is specified, the MQGMO supplied on the MQGET call must not be less than
GMVER2, and the MQMD must not be less than MDVER2. If this condition is not satisfied, the call
fails with reason code RC2256 or RC2257 , as appropriate.

If GMLOGO is not specified for successive MQGET calls for the queue handle, messages are
returned without regard for whether they belong to message groups, or whether they are
segments of logical messages. This means that messages or segments from a particular group
or logical message might be returned out of order, or they might be intermingled with messages or
segments from other groups or logical messages, or with messages that are not in groups and are
not segments. In this situation, the particular messages that are returned by successive MQGET
calls is controlled by the MO* options specified on those calls (see the GMMO field described in
“MQGMO (Get-message options) on IBM i” on page 1066 for details of these options).

This is the technique that can be used to restart a message group or logical message in the
middle, after a system failure has occurred. When the system restarts, the application can set the
MDGID, MDSEQ, MDOFF, and GMMO fields to the appropriate values, and then issue the MQGET call
with GMSYP or GMNSYP set as needed, but without specifying GMLOGO. If this call is successful,
the queue manager retains the group and segment information, and subsequent MQGET calls
using that queue handle can specify GMLOGO as normal.

The group and segment information that the queue manager retains for the MQGET call is
separate from the group and segment information that it retains for the MQPUT call. In addition,
the queue manager retains separate information for:

• MQGET calls that remove messages from the queue.
• MQGET calls that browse messages on the queue.

Developing applications reference 1079

For any given queue handle, the application is free to mix MQGET calls that specify GMLOGO with
MQGET calls that do not, but the following points must be noted:

• If GMLOGO is not specified, each successful MQGET call causes the queue manager to set the
saved group and segment information to the values corresponding to the message returned; this
replaces the existing group and segment information retained by the queue manager for the
queue handle. Only the information appropriate to the action of the call (browse or remove) is
modified.

• If GMLOGO is not specified, the call does not fail if there is a current message group or logical
message; the call might however succeed with a CCWARN completion code. Table 704 on page
1080 shows the various cases that can arise. In these cases, if the completion code is not CCOK,
the reason code is one of the following:

– RC2241
– RC2242
– RC2245

Note: The queue manager does not check the group and segment information when browsing a
queue, or when closing a queue that was opened for browse but not input; in those cases the
completion code is always CCOK (assuming no other errors).

Table 704. Outcome when MQGET or MQCLOSE call is not consistent with group and segment
information

Current call is Previous call was MQGET
with GMLOGO

Previous call was MQGET
without GMLOGO

MQGET with GMLOGO CCFAIL CCFAIL

MQGET without GMLOGO CCWARN CCOK

MQCLOSE with an
unterminated group or logical

message

CCWARN CCOK

Applications that simply want to retrieve messages and segments in logical order are
recommended to specify GMLOGO, as this is the simplest option to use. This option relieves
the application of the need to manage the group and segment information, because the queue
manager manages that information. However, specialized applications might need more control
than provided by the GMLOGO option, and this can be achieved by not specifying that option. If
this is done, the application must ensure that the MDMID, MDCID, MDGID, MDSEQ, and MDOFF fields
in MQMD, and the MO* options in GMMO in MQGMO, are set correctly, before each MQGET call.

For example, an application that wants to forward physical messages that it receives, without
regard for whether those messages are in groups or segments of logical messages, should not
specify GMLOGO. This is because in a complex network with multiple paths between sending and
receiving queue managers, the physical messages might arrive out of order. By not specifying
GMLOGO and the corresponding PMLOGO on the MQPUT call, the forwarding application can
retrieve and forward each physical message as soon as it arrives, without having to wait for the
next one in logical order to arrive.

GMLOGO can be specified with any of the other GM* options, and with various of the MO* options
in appropriate circumstances.

GMCMPM
Only complete logical messages are retrievable.

This option specifies that only a complete logical message can be returned by the MQGET call. If
the logical message is segmented, the queue manager reassembles the segments and returns the
complete logical message to the application; the fact that the logical message was segmented is
not apparent to the application retrieving it.

1080 IBM MQ Developing Applications Reference

Note: This is the only option that causes the queue manager to reassemble message segments.
If not specified, segments are returned individually to the application if they are present on the
queue (and they satisfy the other selection criteria specified on the MQGET call). Applications that
do not want to receive individual segments should therefore always specify GMCMPM.

To use this option, the application must provide a buffer which is large enough to accommodate
the complete message, or specify the GMATM option.

If the queue contains segmented messages with some of the segments missing (perhaps because
they have been delayed in the network and have not yet arrived), specifying GMCMPM prevents
the retrieval of segments belonging to incomplete logical messages. However, those message
segments still contribute to the value of the CurrentQDepth queue attribute; this means that
there might be no retrievable logical messages, even though CurrentQDepth is greater than
zero.

For persistent messages, the queue manager can reassemble the segments only within a unit of
work:

• If the MQGET call is operating within a user-defined unit of work, that unit of work is used. If the
call fails part way through the reassembly process, the queue manager reinstates on the queue
any segments that were removed during reassembly. However, the failure does not prevent the
unit of work being committed successfully.

• If the call is operating outside a user-defined unit of work, and there is no user-defined unit
of work in existence, the queue manager creates a unit of work just for the duration of the
call. If the call is successful, the queue manager commits the unit of work automatically (the
application does not need to do this). If the call fails, the queue manager backs out the unit of
work.

• If the call is operating outside a user-defined unit of work, but a user-defined unit of work does
exist, the queue manager is unable to perform reassembly. If the message does not require
reassembly, the call can still succeed. But if the message does require reassembly, the call fails
with reason code RC2255 .

For nonpersistent messages, the queue manager does not require a unit of work to be available in
order to perform reassembly.

Each physical message that is a segment has its own message descriptor. For the segments
constituting a single logical message, most of the fields in the message descriptor is the same for
all segments in the logical message - typically it is only the MDMID, MDOFF, and MDMFL fields that
differ between segments in the logical message. However, if a segment is placed on a dead-letter
queue at an intermediate queue manager, the DLQ handler retrieves the message specifying the
GMCONV option, and this might result in the character set or encoding of the segment being
changed. If the DLQ handler successfully sends the segment on its way, the segment might have
a character set or encoding that differs from the other segments in the logical message when the
segment finally arrives at the destination queue manager.

A logical message consisting of segments in which the MDCSI, MDENC, or both fields differ cannot
be reassembled by the queue manager into a single logical message. Instead, the queue manager
reassembles and returns the first few consecutive segments at the start of the logical message
that have the same character-set identifiers and encodings, and the MQGET call completes with
completion code CCWARN and reason code RC2243 or RC2244 , as appropriate. This happens
regardless of whether GMCONV is specified. To retrieve the remaining segments, the application
must reissue the MQGET call without the GMCMPM option, retrieving the segments one by one.
GMLOGO can be used to retrieve the remaining segments in order.

It is also possible for an application which puts segments to set other fields in the message
descriptor to values that differ between segments. However, there is no advantage in doing this if
the receiving application uses GMCMPM to retrieve the logical message. When the queue manager
reassembles a logical message, it returns in the message descriptor the values from the message
descriptor for the first segment; the only exception is the MDMFL field, which the queue manager
sets to indicate that the reassembled message is the only segment.

Developing applications reference 1081

If GMCMPM is specified for a report message, the queue manager performs special processing.
The queue manager checks the queue to see if all the report messages of that report type relating
to the different segments in the logical message are present on the queue. If they are, they can
be retrieved as a single message by specifying GMCMPM. For this to be possible, either the report
messages must be generated by a queue manager or MCA which supports segmentation, or the
originating application must request at least 100 bytes of message data (that is, the appropriate
RO*D or RO*F options must be specified). If less than the full amount of application data is
present for a segment, the missing bytes are replaced by nulls in the report message returned.

If GMCMPM is specified with GMMUC or GMBRWC, the browse cursor must be positioned on a
message with a MDOFF field in MQMD that has a value of 0. If this condition is not satisfied, the call
fails with reason code RC2246 .

GMCMPM implies GMASGA, which need not therefore be specified.

GMCMPM can be specified with any of the other GM* options apart from GMPSYP, and with any of
the MO* options apart from MOOFFS.

GMAMSA
All messages in group must be available.

This option specifies that messages in a group become available for retrieval only when all
messages in the group are available. If the queue contains message groups with some of the
messages missing (perhaps because they have been delayed in the network and have not yet
arrived), specifying GMAMSA prevents retrieval of messages belonging to incomplete groups.
However, those messages still contribute to the value of the CurrentQDepth queue attribute;
this means that there might be no retrievable message groups, even though CurrentQDepth is
greater than zero. If there are no other messages that are retrievable, reason code RC2033 is
returned after the specified wait interval (if any) has expired.

The processing of GMAMSA depends on whether GMLOGO is also specified:

• If both options are specified, GMAMSA affects only when there is no current group or logical
message. If there is a current group or logical message, GMAMSA is ignored. This means that
GMAMSA can remain on when processing messages in logical order.

• If GMAMSA is specified without GMLOGO, GMAMSA always has an effect. This means that the
option must be turned off after the first message in the group has been removed from the queue,
in order to be able to remove the remaining messages in the group.

Successful completion of an MQGET call specifying GMAMSA means that at the time that the
MQGET call was issued, all the messages in the group were on the queue. However, be aware that
other applications are still able to remove messages from the group (the group is not locked to the
application that retrieves the first message in the group).

If this option is not specified, messages belonging to groups can be retrieved even when the group
is incomplete.

GMAMSA implies GMASGA, which need not therefore be specified.

GMAMSA can be specified with any of the other GM* options, and with any of the MO* options.

GMASGA
All segments in a logical message must be available.

This option specifies that segments in a logical message become available for retrieval only when
all segments in the logical message are available. If the queue contains segmented messages
with some of the segments missing (perhaps because they have been delayed in the network and
have not yet arrived), specifying GMASGA prevents retrieval of segments belonging to incomplete
logical messages. However those segments still contribute to the value of the CurrentQDepth
queue attribute; this means that there might be no retrievable logical messages, even though
CurrentQDepth is greater than zero. If there are no other messages that are retrievable, reason
code RC2033 is returned after the specified wait interval (if any) has expired.

The processing of GMASGA depends on whether GMLOGO is also specified:

1082 IBM MQ Developing Applications Reference

• If both options are specified, GMASGA has an effect only when there is no current logical
message. If there is a current logical message, GMASGA is ignored. This means that GMASGA
can remain on when processing messages in logical order.

• If GMASGA is specified without GMLOGO, GMASGA always has an effect. This means that the
option must be turned off after the first segment in the logical message has been removed from
the queue, in order to be able to remove the remaining segments in the logical message.

If this option is not specified, message segments can be retrieved even when the logical message
is incomplete.

While both GMCMPM and GMASGA require all segments to be available before any of them can be
retrieved, the former returns the complete message, whereas the latter allows the segments to be
retrieved one by one.

If GMASGA is specified for a report message, the queue manager performs special processing.
The queue manager checks the queue to see if there is at least one report message for each of
the segments that make up the complete logical message. If there is, the GMASGA condition is
satisfied. However, the queue manager does not check the type of the report messages present,
and so there might be a mixture of report types in the report messages relating to the segments of
the logical message. As a result, the success of GMASGA does not imply that GMCMPM succeeds.
If there is a mixture of report types present for the segments of a particular logical message, those
report messages must be retrieved one by one.

GMASGA can be specified with any of the other GM* options, and with any of the MO* options.

Default option: If none of the options described are required, the following option can be used:
GMNONE

No options specified.

This value can be used to indicate that no other options have been specified; all options assume
their default values. GMNONE is defined to aid program documentation; it is not intended that this
option is used with any other, but as its value is zero, such use cannot be detected.

The initial value of the GMOPT field is GMNWT.

GMRE1 (1 byte character string)

Reserved.

This is a reserved field. The initial value of this field is a blank character. This field is ignored if GMVER
is less than GMVER2.

GMRL (10 digit signed integer)

Length of message data returned (bytes).

This is an output field that is set by the queue manager to the length in bytes of the message data
returned by the MQGET call in the BUFFER parameter. If the queue manager does not support this
capability, GMRL is set to the value RLUNDF.

When messages are converted between encodings or character sets, the message data can
sometimes change size. On return from the MQGET call:

• If GMRL is not RLUNDF, the number of bytes of message data returned is given by GMRL.
• If GMRL has the value RLUNDF, the number of bytes of message data returned is typically given by

the smaller of BUFLEN and DATLEN, but can be less than this if the MQGET call completes with
reason code RC2079 . If this happens, the insignificant bytes in the BUFFER parameter are set to
nulls.

The following special value is defined:
RLUNDF

Length of returned data not defined.

The initial value of this field is RLUNDF. This field is ignored if GMVER is less than GMVER3.

Developing applications reference 1083

GMRQN (48 byte character string)

Resolved name of destination queue.

This is an output field which is set by the queue manager to the local name of the queue from which
the message was retrieved, as defined to the local queue manager. This is different from the name
used to open the queue if:

• An alias queue was opened (in which case, the name of the local queue to which the alias resolved
is returned), or

• A model queue was opened (in which case, the name of the dynamic local queue is returned).

The length of this field is given by LNQN. The initial value of this field is 48 blank characters.

GMRS2 (1 byte character string)

Reserved.

This is a reserved field. The initial value of this field is a blank character. This field is ignored if GMVER
is less than GMVER4.

GMSEG (1 byte character string)

Flag indicating whether further segmentation is allowed for the message retrieved.

It has one of the following values:
SEGIHB

Segmentation not allowed.
SEGALW

Segmentation allowed.

This is an output field. The initial value of this field is SEGIHB. This field is ignored if GMVER is less than
GMVER2.

GMSG1 (10 digit signed integer)

Signal.

This is a reserved field; its value is not significant. The initial value of this field is 0.

GMSG2 (10 digit signed integer)

Signal identifier.

This is a reserved field; its value is not significant.

GMSID (4 byte character string)

Structure identifier.

The value must be:
GMSIDV

Identifier for get-message options structure.

This field is always an input field. The initial value of this field is GMSIDV.

GMSST (1 byte character string)

Flag indicating whether message retrieved is a segment of a logical message.

It has one of the following values:
SSNSEG

Message is not a segment.
SSSEG

Message is a segment, but is not the last segment of the logical message.
SSLSEG

Message is the last segment of the logical message.

1084 IBM MQ Developing Applications Reference

This is also the value returned if the logical message consists of only one segment.

This field is an output field. The initial value of this field is SSNSEG. This field is ignored if GMVER is
less than GMVER2.

GMTOK (16 byte bit string)

Message token.

This is a reserved field; its value is not significant. The following special value is defined:
MTKNON

No message token.

The value is binary zero for the length of the field.

The length of this field is given by LNMTOK. The initial value of this field is MTKNON. This field is
ignored if GMVER is less than GMVER3.

GMVER (10 digit signed integer)

Structure version number.

The value must be one of the following:
GMVER1

Version-1 get-message options structure.
GMVER2

Version-2 get-message options structure.
GMVER3

Version-3 get-message options structure.
GMVER4

Version-4 get-message options structure.

Fields that exist only in the more-recent versions of the structure are identified as such in the
descriptions of the fields. The following constant specifies the version number of the current version:
GMVERC

Current version of get-message options structure.

This field is always an input field. The initial value of this field is GMVER1.

GMVER (10 digit signed integer)

Structure version number.

The value must be one of the following:
GMVER1

Version-1 get-message options structure.
GMVER2

Version-2 get-message options structure.
GMVER3

Version-3 get-message options structure.
GMVER4

Version-4 get-message options structure.

Fields that exist only in the more-recent versions of the structure are identified as such in the
descriptions of the fields. The following constant specifies the version number of the current version:
GMVERC

Current version of get-message options structure.

This field is always an input field. The initial value of this field is GMVER1.

Developing applications reference 1085

GMWI (10 digit signed integer)

Wait interval.

This is the approximate time, expressed in milliseconds, that the MQGET call waits for a suitable
message to arrive (that is, a message satisfying the selection criteria specified in the MSGDSC
parameter of the MQGET call; see the MDMID field described in “MQMD (Message descriptor) on
IBM i” on page 1099 for more details). If no suitable message has arrived after this time has elapsed,
the call completes with CCFAIL and reason code RC2033.

GMWI is used with the GMWT option. It is ignored if this option is not specified. If it is specified, GMWI
must be greater than or equal to zero, or the following special value:
WIULIM

Unlimited wait interval.

The initial value of this field is 0.

Initial values
Table 705. Initial values of fields in MQGMO

Field name Name of constant Value of constant

GMSID GMSIDV 'GMO¬'

GMVER GMVER1 1

GMOPT GMNWT 0

GMWI None 0

GMSG1 None 0

GMSG2 None 0

GMRQN None Blanks

GMMO MOMSGI + MOCORI 3

GMGST GSNIG '¬'

GMSST SSNSEG '¬'

GMSEG SEGIHB '¬'

GMRE1 None '¬'

GMTOK MTKNON Nulls

GMRL RLUNDF -1

GMRS2 None '¬'

GMMH HMNONE 0

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQGMO Structure
 D*
 D* Structure identifier
 D GMSID 1 4 INZ('GMO ')

1086 IBM MQ Developing Applications Reference

 D* Structure version number
 D GMVER 5 8I 0 INZ(1)
 D* Options that control the action ofMQGET
 D GMOPT 9 12I 0 INZ(0)
 D* Wait interval
 D GMWI 13 16I 0 INZ(0)
 D* Signal
 D GMSG1 17 20I 0 INZ(0)
 D* Signal identifier
 D GMSG2 21 24I 0 INZ(0)
 D* Resolved name of destination queue
 D GMRQN 25 72 INZ
 D* Options controlling selection criteriaused for MQGET
 D GMMO 73 76I 0 INZ(3)
 D* Flag indicating whether messageretrieved is in a group
 D GMGST 77 77 INZ(' ')
 D* Flag indicating whether messageretrieved is a segment of a
 D* logicalmessage
 D GMSST 78 78 INZ(' ')
 D* Flag indicating whether furthersegmentation is allowed for themessage
 D* retrieved
 D GMSEG 79 79 INZ(' ')
 D* Reserved
 D GMRE1 80 80 INZ
 D* Message token
 D GMTOK 81 96 INZ(X'00000000000000-
 D 000000000000000000')
 D* Length of message data returned(bytes)
 D GMRL 97 100I 0 INZ(-1)
 D* Reserved
 D GMRS2 101 104I 0 INZ(0)
 D* Message handle
 D GMMH 105 112I 0 INZ(0)

MQIIH (IMS information header) on IBM i
The MQIIH structure describes the information that must be present at the start of a message sent to the
IMS bridge through IBM MQ for z/OS.

Overview
Format name: FMIMS.

Character set and encoding: Special conditions apply to the character set and encoding used for the
MQIIH structure and application message data:

• Applications that connect to the queue manager that owns the IMS bridge queue must provide an
MQIIH structure that is in the character set and encoding of the queue manager. This is because data
conversion of the MQIIH structure is not performed in this case.

• Applications that connect to other queue managers can provide an MQIIH structure that is in any of
the supported character sets and encodings; conversion of the MQIIH is performed by the receiving
message channel agent connected to the queue manager that owns the IMS bridge queue.

Note: There is one exception to this. If the queue manager that owns the IMS bridge queue is using
CICS for distributed queuing, the MQIIH must be in the character set and encoding of the queue
manager that owns the IMS bridge queue.

• The application message data following the MQIIH structure must be in the same character set and
encoding as the MQIIH structure. The IICSI and IIENC fields in the MQIIH structure cannot be used to
specify the character set and encoding of the application message data.

A data-conversion exit must be provided by the user to convert the application message data if the data
is not one of the built-in formats supported by the queue manager.

• “Authenticating passtickets for IMS bridge applications” on page 1088
• “Fields” on page 1088
• “Initial values” on page 1091
• “RPG declaration” on page 1091

Developing applications reference 1087

Authenticating passtickets for IMS bridge applications
It is now possible for IBM MQ administrators to specify the application name to be used for authenticating
passtickets, for IMS bridge applications. To do this, the application name is specified as a new attribute
PTKTAPPL for the STGCLASS object definition, as a 1 to 8 character alphanumeric string.

A blank value means that authentication occurs as with previous releases of IBM MQ, that is, no
application name flows on the authentication request, and the MVSxxxx value to is used instead.

A value of 1 - 8 alphanumeric characters must follow the rules for passticket application names as
described in the RACF publications.

IBM MQ Administrators and RACF administrators must both agree on the valid application names to be
used. The RACF administrator must create a profile in the PTKTDATA class giving READ access to the user
IDs of all applications that are to be granted access. The IBM MQ administrator must create or alter the
required STGCLASS definitions that specify the application name to be used for passticket authentication.

For related information, see the Script (MQSC) Command Reference.

Fields
The MQIIH structure contains the following fields; the fields are described in alphabetical order:

IIAUT (8-byte character string)

RACF password or passticket.

This is optional; if specified, it is used with the user ID in the MQMD security context to build
a UTOKEN that is sent to IMS to provide a security context. If it is not specified, the user ID is
used without verification. This depends on the setting of the RACF switches, which may require an
authenticator to be present.

This is ignored if the first byte is blank or null. The following special value may be used:
IAUNON

No authentication.

The length of this field is given by LNAUTH. The initial value of this field is IAUNON.

IICMT (1-byte character string)

Commit mode.

See the OTMA Reference for more information about IMS commit modes. The value must be one of the
following:
ICMCTS

Commit then send.

This mode implies double queuing of output, but shorter region occupancy times. Fast-path and
conversational transactions cannot run with this mode.

ICMSTC
Send then commit.

The initial value of this field is ICMCTS.

IICSI (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is 0.

IIENC (10-digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is 0.

1088 IBM MQ Developing Applications Reference

IIFLG (10-digit signed integer)

Flags.

The value must be:
IINONE

No flags.

The initial value of this field is IINONE.

IIFMT (8-byte character string)

IBM MQ format name of data that follows MQIIH.

This specifies the IBM MQ format name of the data that follows the MQIIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is FMNONE.

IILEN (10-digit signed integer)

Length of MQIIH structure.

The value must be:
IILEN1

Length of IMS information header structure.

The initial value of this field is IILEN1.

IILTO (8-byte character string)

Logical terminal override.

This is placed in the IO PCB field. It is optional; if it is not specified the TPIPE name is used. It is
ignored if the first byte is blank, or null.

The length of this field is given by LNLTOV. The initial value of this field is 8 blank characters.

IIMMN (8-byte character string)

Message format services map name.

This is placed in the IO PCB field. It is optional. On input it represents the MID, on output it represents
the MOD. It is ignored if the first byte is blank or null.

The length of this field is given by LNMFMN. The initial value of this field is 8 blank characters.

IIRFM (8-byte character string)

IBM MQ format name of reply message.

This is the IBM MQ format name of the reply message that will be sent in response to the current
message. The rules for coding this are the same as those for the MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is FMNONE.

IIRSV (1-byte character string)

Reserved.

This is a reserved field; it must be blank.

IISEC (1-byte character string)

Security scope.

This indicates the required IMS security processing. The following values are defined:
ISSCHK

Check security scope.

Developing applications reference 1089

An ACEE is built in the control region, but not in the dependent region.

ISSFUL
Full security scope.

A cached ACEE is built in the control region and a non-cached ACEE is built in the dependent
region. If you use ISSFUL, you must ensure that the user ID for which the ACEE is built has access
to the resources used in the dependent region.

If ISSCHK and ISSFUL are not specified for this field, ISSCHK is assumed.

The initial value of this field is ISSCHK.

IISID (4-byte character string)

Structure identifier.

The value must be:
IISIDV

Identifier for IMS information header structure.

The initial value of this field is IISIDV.

IITID (16-byte bit string)

Transaction instance identifier.

This field is used by output messages from IMS so is ignored on first input. If IITST is set to ITSIC,
this must be provided in the next input, and all subsequent inputs, to enable IMS to correlate the
messages to the correct conversation. The following special value may be used:
ITINON

No transaction instance ID.

The length of this field is given by LNTIID. The initial value of this field is ITINON.

IITST (1-byte character string)

Transaction state.

This indicates the IMS conversation state. This is ignored on first input because no conversation
exists. On subsequent inputs it indicates whether a conversation is active or not. On output it is set by
IMS. The value must be one of the following:
ITSIC

In conversation.
ITSNIC

Not in conversation.
ITSARC

Return transaction state data in architected form.

This value is used only with the IMS /DISPLAY TRAN command. It causes the transaction state
data to be returned in the IMS architected form instead of character form. See Writing IMS
transaction programs through IBM MQ for further details.

The initial value of this field is ITSNIC.

IIVER (10-digit signed integer)

Structure version number.

The value must be:
IIVER1

Version number for IMS information header structure.

The following constant specifies the version number of the current version:

1090 IBM MQ Developing Applications Reference

IIVERC
Current version of IMS information header structure.

The initial value of this field is IIVER1.

Initial values
Table 706. Initial values of fields in MQIIH

Field name Name of constant Value of constant

IISID IISIDV 'IIH¬'

IIVER IIVER1 1

IILEN IILEN1 84

IIENC None 0

IICSI None 0

IIFMT FMNONE Blanks

IIFLG IINONE 0

IILTO None Blanks

IIMMN None Blanks

IIRFM FMNONE Blanks

IIAUT IAUNON Blanks

IITID ITINON Nulls

IITST ITSNIC '¬'

IICMT ICMCTS '0'

IISEC ISSCHK 'C'

IIRSV None '¬'

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQIIH Structure
 D*
 D* Structure identifier
 D IISID 1 4 INZ('IIH ')
 D* Structure version number
 D IIVER 5 8I 0 INZ(1)
 D* Length of MQIIH structure
 D IILEN 9 12I 0 INZ(84)
 D* Reserved
 D IIENC 13 16I 0 INZ(0)
 D* Reserved
 D IICSI 17 20I 0 INZ(0)
 D* MQ format name of data that followsMQIIH
 D IIFMT 21 28 INZ(' ')
 D* Flags
 D IIFLG 29 32I 0 INZ(0)
 D* Logical terminal override
 D IILTO 33 40 INZ
 D* Message format services map name
 D IIMMN 41 48 INZ

Developing applications reference 1091

 D* MQ format name of reply message
 D IIRFM 49 56 INZ(' ')
 D* RACF password or passticket
 D IIAUT 57 64 INZ(' ')
 D* Transaction instance identifier
 D IITID 65 80 INZ(X'00000000000000-
 D 000000000000000000')
 D* Transaction state
 D IITST 81 81 INZ(' ')
 D* Commit mode
 D IICMT 82 82 INZ('0')
 D* Security scope
 D IISEC 83 83 INZ('C')
 D* Reserved
 D IIRSV 84 84 INZ

MQIMPO (Inquire message property options) on IBM i
The MQIMPO structure allows applications to specify options that control how properties of messages are
inquired.

Overview
Purpose: The structure is an input parameter on the MQINQMP call.

Character set and encoding: Data in MQIMPO must be in the character set of the application and
encoding of the application (ENNAT).

• “Fields” on page 1092
• “Initial values” on page 1098
• “RPG declaration” on page 1098

Fields
The MQIMPO structure contains the following fields; the fields are described in alphabetical order:

IPOPT (10-digit signed integer)

The following options control the action of MQINQMP. You can specify one or more of these options.
To specify more than one option, either add the values together (do not add the same constant
more than once), or combine the values using the bitwise OR operation (if the programming language
supports bit operations). Combinations of options that are not valid are noted; all other combinations
are valid.

Value data options: The following options relate to the processing of the value data when the
property is retrieved from the message.
IPCVAL

This option requests that the value of the property be converted to conform to the IPREQCSI
and IPREQENC values specified before the MQINQMP call returns the property value in the Value
area.

• If conversion is successful, the IPRETCSI and IPRETENC fields are set to the same as
IPREQCSI and IPREQENC on return from the MQINQMP call.

• If conversion fails, but the MQINQMP call otherwise completes without error, the property value
is returned unconverted.

If the property is a string, the IPRETCSI and IPRETENC fields are set to the character set and
encoding of the unconverted string.

The completion code is CCWARN in this case, with reason code RC2466. The property cursor is
advanced to the returned property.

1092 IBM MQ Developing Applications Reference

If the property value expands during conversion, and exceeds the size of the Value parameter,
the value is returned unconverted, with completion code CCFAIL; the reason code is set to
RC2469.

The DataLength parameter of the MQINQMP call returns the length that the property value
would have converted to, in order to allow the application to determine the size of the buffer
required to accommodate the converted property value. The property cursor is unchanged.

This option also requests that:

• If the property name contains a wildcard, and
• The IPRETNAMECHRP field is initialized with an address or offset for the returned name,

then the returned name is converted to conform to the IPREQCSI and IPREQENC values.

• If conversion is successful, the VSCCSID field of IPRETNAMECHRP and the encoding of the
returned name are set to the input value of IPREQCSI and IPREQENC.

• If conversion fails, but the MQINQMP call otherwise completes without error or warning, the
returned name is unconverted. The completion code is CCWARN in this case, with reason code
RC2492.

The property cursor is advanced to the returned property. RC2466 is returned if both the value
and the name are not converted.

If the returned name expands during conversion, and exceeds the size of the VSBufsize field of
the RequestedName, the returned string is left unconverted, with completion code CCFAIL and
the reason code is set to RC2465.

The VSLength field of the MQCHARV structure returns the length that the property value would
have converted to, in order to allow the application to determine the size of the buffer required to
accommodate the converted property value. The property cursor is unchanged.

IPCTYP
This option requests that the value of the property be converted from its current data type, into
the data type specified on the Type parameter of the MQINQMP call.

• If conversion is successful, the Type parameter is unchanged on return of the MQINQMP call.
• If conversion fails, but the MQINQMP call otherwise completes without error, the call fails with

reason RC2470. The property cursor is unchanged.

If the conversion of the data type causes the value to expand during conversion, and the
converted value exceeds the size of the Value parameter, the value is returned unconverted,
with completion code CCFAIL and the reason code is set to RC2469.

The DataLength parameter of the MQINQMP call returns the length that the property value
would have converted to, in order to allow the application to determine the size of the buffer
required to accommodate the converted property value. The property cursor is unchanged.

If the value of the Type parameter of the MQINQMP call is not valid, the call fails with reason
RC2473.

If the requested data type conversion is not supported, the call fails with reason RC2470. The
following data type conversions are supported:

Table 707. Supported data type conversions

Property data type Supported target data types

TYPBOL TYPSTR, TYPI8, TYPI16, TYPI32, TYPI64

TYPBST TYPSTR

TYPI8 TYPSTR, TYPI16, TYPI32, TYPI64

TYPI16 TYPSTR, TYPI32, TYPI64

Developing applications reference 1093

Table 707. Supported data type conversions (continued)

Property data type Supported target data types

TYPI32 TYPSTR, TYPI64

TYPI64 TYPSTR

TYPF32 TYPSTR, TYPF64

TYPF64 TYPSTR

TYPSTR TYPBOL, TYPI8, TYPI16, TYPI32, TYPI64, TYPF32, TYPF64

TYPNUL None

The general rules governing the supported conversions are as follows:

• Numeric property values can be converted from one data type to another, provided that no data
is lost during the conversion.

For example, the value of a property with data type TYPI32 can be converted into a value with
data type TYPI64, but cannot be converted into a value with data type TYPI16.

• A property value of any data type can be converted into a string.
• A string property value can be converted to any other data type provided the string is formatted

correctly for the conversion. If an application attempts to convert a string property value that is
not formatted correctly, IBM MQ returns reason code RC2472.

• If an application attempts a conversion that is not supported, IBM MQ returns reason code
RC2470.

The specific rules for converting a property value from one data type to another are as follows:

• When converting a TYPBOL property value to a string, the value TRUE is converted to the string
"TRUE", and the value false is converted to the string "FALSE".

• When converting a TYPBOL property value to a numeric data type, the value TRUE is converted
to one, and the value FALSE is converted to zero.

• When converting a string property value to a TYPBOL value, the string "TRUE" , or "1" , is
converted to TRUE, and the string "FALSE", or "0", is converted to FALSE.

Note that the terms "TRUE" and "FALSE" are not case sensitive.

Any other string cannot be converted; IBM MQ returns reason code RC2472.
• When converting a string property value to a value with data type TYPI8, TYPI16, TYPI32 or

TYPI64, the string must have the following format:

[blanks][sign]digits

The meanings of the components of the string are as follows:
blanks

Optional leading blank characters
sign

An optional plus sign (+) or minus sign (-) character.
digits

A contiguous sequence of digit characters (0-9). At least one digit character must be
present.

After the sequence of digit characters, the string can contain other characters that are not digit
characters, but the conversion stops as soon as the first of these characters is reached. The
string is assumed to represent a decimal integer.

IBM MQ returns reason code RC2472 if the string is not formatted correctly.

1094 IBM MQ Developing Applications Reference

• When converting a string property value to a value with data type TYPF32 or TYPF64, the string
must have the following format:

[blanks][sign]digits[.digits][e_char[e_sign]e_digits]

The meanings of the components of the string are as follows:
blanks

Optional leading blank characters
sign

An optional plus sign (+) or minus sign (-) character.
digits

A contiguous sequence of digit characters (0-9). At least one digit character must be
present.

e_char
An exponent character, which is either "E" or "e".

e_sign
An optional plus sign (+) or minus sign (-) character for the exponent.

e_digits
A contiguous sequence of digit characters (0-9) for the exponent. At least one digit character
must be present if the string contains an exponent character.

After the sequence of digit characters, or the optional characters representing an exponent, the
string can contain other characters that are not digit characters, but the conversion stops as
soon as the first of these characters is reached. The string is assumed to represent a decimal
floating point number with an exponent that is a power of 10.

IBM MQ returns reason code RC2472 if the string is not formatted correctly.
• When converting a numeric property value to a string, the value is converted to the string

representation of the value as a decimal number, not the string containing the ASCII character
for that value. For example, the integer 65 is converted to the string "65", not the string "A".

• When converting a byte string property value to a string, each byte is converted to the two
hexadecimal characters that represent the byte. For example, the byte array {0xF1, 0x12, 0x00,
0xFF} is converted to the string "F11200FF".

IPQLEN
Query the type and length of the property value. The length is returned in the DataLength
parameter of the MQINQMP call. The property value is not returned.

If a ReturnedName buffer is specified, the VSLength field of the MQCHARV structure is filled in
with the length of the property name. The property name is not returned.

Iteration options: The following options relate to iterating over properties, using a name with a
wildcard character
IPINQF

Inquire on the first property that matches the specified name. After this call, a cursor is
established on the property that is returned.

This is the default value.

The IPINQC option can subsequently be used with an MQINQMP call, if required, to inquire on the
same property again.

Note that there is only one property cursor; therefore, if the property name, specified in the
MQINQMP call, changes the cursor is reset.

This option is not valid with either of the following options:

IPINQN
IPINQC

Developing applications reference 1095

IPINQN
Inquires on the next property that matches the specified name, continuing the search from the
property cursor. The cursor is advanced to the property that is returned.

If this is the first MQINQMP call for the specified name, then the first property that matches the
specified name is returned.

The IPINQC option can subsequently be used with an MQINQMP call if required, to inquire on the
same property again.

If the property under the cursor has been deleted, MQINQMP returns the next matching property
following the one that has been deleted.

If a property is added that matches the wildcard, while an iteration is in progress, the property
might or might not be returned during the completion of the iteration. The property is returned
once the iteration restarts using IPINQF.

A property matching the wildcard that was deleted, while the iteration was in progress, is not
returned subsequent to its deletion.

This option is not valid with either of the following options:

IPINQF
IPINQC

IPINQC
Retrieve the value of the property pointed to by the property cursor. The property pointed to by the
property cursor is the one that was last inquired, using either the IPINQF or the IPINQN option.

The property cursor is reset when the message handle is reused, when the message handle is
specified in the MsgHandle field of the MQGMO on an MQGET call, or when the message handle
is specified in OriginalMsgHandle or NewMsgHandle fields of the MQPMO structure on an
MQPUT call.

If this option is used when the property cursor has not yet been established, or if the property
pointed to by the property cursor has been deleted, the call fails with completion code CCFAIL and
reason RC2471.

This option is not valid with either of the following options:

IPINQF
IPINQN

If none of the options previously described is required, the following option can be used:
IPNONE

Use this value to indicate that no other options have been specified; all options assume their
default values.

IPNONE aids program documentation; it is not intended that this option be used with any other,
but as its value is zero, such use cannot be detected.

This is always an input field. The initial value of this field is IPINQF.

IPREQCSI (10-digit signed integer)

The character set that the inquired property value is to be converted into if the value is a character
string. This is also the character set into which the ReturnedName is to be converted when IPCVAL or
IPCTYP is specified.

The initial value of this field is CSAPL.

IPREQENC (10-digit signed integer)

1096 IBM MQ Developing Applications Reference

This is the encoding into which the inquired property value is to be converted when IPCVAL or IPCTYP
is specified.

The initial value of this field is ENNAT.

IPRE1 (10-digit signed integer)

This is a reserved field. The initial value of this field is a blank character.

IPRETCSI (10-digit signed integer)

On output, this is the character set of the value returned if the Type parameter of the MQINQMP call
is TYPSTR.

If the IPCVAL option is specified and conversion was successful, the ReturnedCCSID field, on return,
is the same value as the value passed in.

The initial value of this field is zero.

IPRETENC (10-digit signed integer)

On output, this is the encoding of the value returned.

If the IPCVAL option is specified and conversion was successful, the ReturnedEncoding field, on
return, is the same value as the value passed in.

The initial value of this field is ENNAT.

IPRETNAMCHRP (10-digit signed integer)

The actual name of the inquired property.

On input a string buffer can be passed in using the VSPtr or VSOffset field of the MQCHARV
structure. The length of the string buffer is specified using the VSBufsize field of the MQCHARV
structure.

On return from the MQINQMP call, the string buffer is completed with the name of the property that
was inquired, provided the string buffer was long enough to fully contain the name. The VSLength
field of the MQCHARV structure is filled in with the length of the property name. The VSCCSID field of
the MQCHARV structure is filled in to indicate the character set of the returned name, whether or not
conversion of the name failed.

This is an input/output field. The initial value of this field is MQCHARV_DEFAULT.

IPSID (10-digit signed integer)

This is the structure identifier. The value must be:
IPSIDV

Identifier for inquire message property options structure.

This is always an input field. The initial value of this field is IPSIDV.

IPTYP (10-digit signed integer)

A string representation of the data type of the property.

If the property was specified in an MQRFH2 header and the MQRFH2 dt attribute is not recognized,
this field can be used to determine the data type of the property. TypeString is returned in coded
character set 1208 (UTF-8), and is the first eight bytes of the value of the dt attribute of the property
that failed to be recognized

This is always an output field. The initial value of this field is the null string in the C programming
language, and 8 blank characters in other programming languages.

Developing applications reference 1097

IPVER (10-digit signed integer)

This is the structure version number. The value must be:
IPVER1

Version number for inquire message property options structure.

The following constant specifies the version number of the current version:
IPVERC

Current version of inquire message property options structure.

This is always an input field. The initial value of this field is IPVER1.

Initial values
Table 708. Initial values of fields in MQIPMO

Field name Name of constant Value of constant

IPSID IPSIDV 'IMPO'

IPVER IPVER1 1

IPOPT IPINQF

IPREQENC ENNAT

IPREQCSI CSAPL

IPRETENC ENNAT

IPRETCSI 0

IPRE1 0

IPRETNAMCHRP

IPTYP blanks

RPG declaration

D* MQIMPO Structure
D*
D*
D* Structure identifier
D IPSID 1 4 INZ('IMPO')
D*
D* Structure version number
D IPVER 5 8I 0 INZ(1)
D*
** Options that control the action of
D* MQINQMP
D IPOPT 9 12I 0 INZ(0)
D*
D* Requested encoding of Value
D IPREQENC 13 16I 0 INZ(273)
D*
** Requested character set identifier
D* of Value
D IPREQCSI 17 20I 0 INZ(-3)
D*
D* Returned encoding of Value
D IPRETENC 21 24I 0 INZ(273)
D*
** Returned character set identifier of
D* Value
D IPRETCSI 25 28I 0 INZ(0)
D*
D* Reserved
D IPRE1 29 32I 0 INZ(0)
D*

1098 IBM MQ Developing Applications Reference

D* Returned property name
D* Address of variable length string
D IPRETNAMCHRP 33 48* INZ(*NULL)
D* Offset of variable length string
D IPRETNAMCHRO 49 52I 0 INZ(0)
D* Size of buffer
D IPRETNAMVSBS 53 56I 0 INZ(-1)
D* Length of variable length string
D IPRETNAMCHRL 57 60I 0 INZ(0)
D* CCSID of variable length string
D IPRETNAMCHRC 61 64I 0 INZ(-3)
D*
D* Property data type as a string
D IPTYP 65 72 INZ

MQMD (Message descriptor) on IBM i

Overview
Purpose: The MQMD structure contains the control information that accompanies the application data
when a message travels between the sending and receiving applications. The structure is an input/output
parameter on the MQGET, MQPUT, and MQPUT1 calls.

Version: The current version of MQMD is MDVER2. Fields that exist only in the more-recent versions of the
structure are identified as such in the descriptions that follow.

The COPY file provided contains the most recent version of MQMD that is supported by the environment,
but with the initial value of the MDVER field set to MDVER1. To use fields that are not present in the
version-1 structure, the application must set the MDVER field to the version number of the version
required.

A declaration for the version-1 structure is available with the name MQMD1.

Character set and encoding: Data in MQMD must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT. However, if the
application is running as an IBM MQ MQI client, the structure must be in the character set and encoding of
the client.

If the sending and receiving queue managers use different character sets or encodings, the data in MQMD
is converted automatically. It is not necessary for the application to convert the MQMD.

• “Using different versions of MQMD” on page 1099
• “Message context” on page 1100
• “Message expiry” on page 1100
• “Fields” on page 1100
• “Initial values” on page 1140
• “RPG declaration” on page 1141

Using different versions of MQMD
A version-2 MQMD is generally equivalent to using a version-1 MQMD and prefixing the message data with
an MQMDE structure. However, if all of the fields in the MQMDE structure have their default values, the
MQMDE can be omitted. A version-1 MQMD plus MQMDE are used as described later in this section.

• On the MQPUT and MQPUT1 calls, if the application provides a version-1 MQMD, the application can
optionally prefix the message data with an MQMDE, setting the MDFMT field in MQMD to FMMDE to
indicate that an MQMDE is present. If the application does not provide an MQMDE, the queue manager
assumes default values for the fields in the MQMDE.

Note: Several of the fields that exist in the version-2 MQMD but not the version-1 MQMD are input/
output fields on the MQPUT and MQPUT1 calls. However, the queue manager does not return any values
in the equivalent fields in the MQMDE on output from the MQPUT and MQPUT1 calls; if the application
requires those output values, it must use a version-2 MQMD.

Developing applications reference 1099

• On the MQGET call, if the application provides a version-1 MQMD, the queue manager prefixes the
message returned with an MQMDE, but only if one or more of the fields in the MQMDE has a non-default
value. The MDFMT field in MQMD will have the value FMMDE to indicate that an MQMDE is present.

The default values that the queue manager used for the fields in the MQMDE are the same as the initial
values of those fields, shown in Table 710 on page 1140.

When a message is on a transmission queue, some of the fields in MQMD are set to particular values; see
“MQXQH (Transmission-queue header) on IBM i” on page 1234 for details.

Message context
Certain fields in MQMD contain the message context. Typically:

• Identity context relates to the application that originally put the message
• Origin context relates to the application that most recently put the message
• User context relates to the application that originally put the message.

These two applications can be the same application, but they can also be different applications (for
example, when a message is forwarded from one application to another).

Although identity and origin context usually have the meanings described previously, the content of
both types of context fields in MQMD actually depends on the PM* options that are specified when the
message is put. As a result, identity context does not necessarily relate to the application that originally
put the message, and origin context does not necessarily relate to the application that most recently put
the message - it depends on the design of the application suite.

There is one class of application that never alters message context, namely the message channel agent
(MCA). MCAs that receive messages from remote queue managers use the context option PMSETA on
the MQPUT or MQPUT1 call. This allows the receiving MCA to preserve exactly the message context that
travelled with the message from the sending MCA. However, the result is that the origin context does not
relate to the application that most recently put the message (the receiving MCA), but instead relates to an
earlier application that put the message (possibly the originating application itself).

For more information see Message context.

Message expiry
Messages that have expired on a loaded queue (a queue that has been opened) are automatically
removed from the queue within a reasonable period of time after their expiry. Some other new features
of this release of IBM MQ can lead to loaded queues being scanned less frequently than in the previous
product version, however expired messages on loaded queues are always removed within a reasonable
period of their expiry.

Fields
The MQMD structure contains the following fields; the fields are described in alphabetical order:

MDACC (32-byte bit string)

Accounting token.

This is part of the identity context of the message. For more information about message context, see
Message context and Controlling context information.

MDACC allows an application to cause work done as a result of the message to be appropriately
charged. The queue manager treats this information as a string of bits and does not check its content.

When the queue manager generates this information, it is set as follows:

• The first byte of the field is set to the length of the accounting information present in the bytes that
follow; this length is in the range zero through 30, and is stored in the first byte as a binary integer.

1100 IBM MQ Developing Applications Reference

• The second and subsequent bytes (as specified by the length field) are set to the accounting
information appropriate to the environment.

– On z/OS the accounting information is set to:

- For z/OS batch, the accounting information from the JES JOB card or from a JES ACCT
statement in the EXEC card (comma separators are changed to X'FF'). This information is
truncated, if necessary, to 31 bytes.

- For TSO, the user's account number.
- For CICS, the LU 6.2 unit of work identifier (UEPUOWDS) (26 bytes).
- For IMS, the 8-character PSB name concatenated with the 16-character IMS recovery token.

– On IBM i, the accounting information is set to the accounting code for the job.

– On AIX and Linux, the accounting information is set to the numeric
user identifier, in ASCII characters.

– On Windows, the accounting information is set to a Windows NT security identifier
(SID) in a compressed format. The SID uniquely identifies the user identifier stored in the MDUID
field. When the SID is stored in the MDACC field, the 6-byte Identifier Authority (located in the
third and subsequent bytes of the SID) is omitted. For example, if the Windows NT SID is 28 bytes
long, 22 bytes of SID information are stored in the MDACC field.

• The last byte is set to the accounting-token type, one of the following values:
ATTCIC

CICS LUOW identifier.
ATTDOS

PC DOS default accounting token.
ATTWNT

Windows security identifier.
ATT400

IBM i accounting token.
ATTUNX

AIX and Linux numeric identifier.
ATTUSR

User-defined accounting token.
ATTUNK

Unknown accounting-token type.
The accounting-token type is set to an explicit value only in the following environments:

– AIX

– IBM i

– Windows

and for IBM MQ MQI clients connected to these systems.

In other environments, the accounting-token type is set to the value ATTUNK. In these
environments the MDPAT field can be used to deduce the type of accounting token received.

• All other bytes are set to binary zero.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or PMSETA is specified in
the PMO parameter. If neither PMSETI nor PMSETA is specified, this field is ignored on input and is
an output-only field. For more information on message context, see Message context and Controlling
context information.

Developing applications reference 1101

After the successful completion of an MQPUT or MQPUT1 call, this field contains the MDACC that was
transmitted with the message if it was put to a queue. This will be the value of MDACC that is kept with
the message if it is retained (see description of PMRET in “MQPMO (Put-message options) on IBM i”
on page 1162 for more details about retained publications) but is not used as the MDACC when the
message is sent as a publication to subscribers since they provide a value to override MDACC in all
publications sent to them. If the message has no context, the field is entirely binary zero.

This is an output field for the MQGET call.

This field is not subject to any translation based on the character set of the queue manager-the field is
treated as a string of bits, and not as a string of characters.

The queue manager does nothing with the information in this field. The application must interpret the
information if it wants to use the information for accounting purposes.

The following special value may be used for the MDACC field:
ACNONE

No accounting token is specified.

The value is binary zero for the length of the field.

The length of this field is given by LNACCT. The initial value of this field is ACNONE.

MDAID (32-byte character string)

Application data relating to identity.

This is part of the identity context of the message. For more information about message context, see
Message context and Controlling context information.

MDAID is information that is defined by the application suite, and can be used to provide additional
information about the message or its originator. The queue manager treats this information as
character data, but does not define the format of it. When the queue manager generates this
information, it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or PMSETA is specified in
the PMO parameter. If a null character is present, the null and any following characters are converted
to blanks by the queue manager. If neither PMSETI nor PMSETA is specified, this field is ignored on
input and is an output-only field. For more information on message context, see Message context and
Controlling context information.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the MDAID that was
transmitted with the message if it was put to a queue. This will be the value of MDAID that is kept with
the message if it is retained (see description of PMRET for more details about retained publications)
but is not used as the MDAID when the message is sent as a publication to subscribers since they
provide a value to override MDAID in all publications sent to them. If the message has no context, the
field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by LNAIDD. The initial value
of this field is 32 blank characters.

MDAOD (4-byte character string)

Application data relating to origin.

This is part of the origin context of the message. For more information about message context, see
Message context and Controlling context information.

MDAOD is information that is defined by the application suite that can be used to provide additional
information about the origin of the message. For example, it could be set by applications running with
suitable user authority to indicate whether the identity data is trusted.

The queue manager treats this information as character data, but does not define the format of it.
When the queue manager generates this information, it is entirely blank.

1102 IBM MQ Developing Applications Reference

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is specified in the PMO
parameter. Any information following a null character within the field is discarded. The null character
and any following characters are converted to blanks by the queue manager. If PMSETA is not
specified, this field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the MDAOD that was
transmitted with the message if it was put to a queue. This will be the value of MDAOD that is kept with
the message if it is retained (see description of PMRET for more details about retained publications)
but is not used as the MDAOD when the message is sent as a publication to subscribers since they
provide a value to override MDAOD in all publications sent to them. If the message has no context, the
field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by LNAORD. The initial value
of this field is 4 blank characters.

MDBOC (10-digit signed integer)

Backout counter.

This is a count of the number of times the message has been previously returned by the MQGET call
as part of a unit of work, and subsequently backed out. It is provided as an aid to the application in
detecting processing errors that are based on message content. The count excludes MQGET calls that
specified any of the GMBRW* options.

The accuracy of this count is affected by the HardenGetBackout queue attribute; see “Attributes for
queues” on page 1355.

This is an output field for the MQGET call. It is ignored for the MQPUT and MQPUT1 calls. The initial
value of this field is 0.

MDCID (24-byte bit string)

Correlation identifier.

This is a byte string that the application can use to relate one message to another, or to relate the
message to other work that the application is performing. The correlation identifier is a permanent
property of the message, and persists across restarts of the queue manager. Because the correlation
identifier is a byte string and not a character string, the correlation identifier is not converted between
character sets when the message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, the application can specify any value. The queue manager
transmits this value with the message and delivers it to the application that issues the get request for
the message.

If the application specifies PMNCID, the queue manager generates a unique correlation identifier
which is sent with the message, and also returned to the sending application on output from the
MQPUT or MQPUT1 call.

This generated correlation identifier is kept with the message if it is retained and is used as the
correlation identifier when the message is sent as a publication to subscribers who specify CINONE in
the SDCID field in the MQSD passed on the MQSUB call.

See “MQPMO (Put-message options) on IBM i” on page 1162 for more details about retained
publications

When the queue manager or a message channel agent generates a report message, it sets the MDCID
field in the way specified by the MDREP field of the original message, either ROCMTC or ROPCI.
Applications which generate report messages should also do this.

For the MQGET call, MDCID is one of the five fields that can be used to select a particular message to
be retrieved from the queue. See the description of the MDMID field for details of how to specify values
for this field.

Specifying CINONE as the correlation identifier has the same effect as not specifying MOCORI, that is,
any correlation identifier will match.

If the GMMUC option is specified in the GMO parameter on the MQGET call, this field is ignored.

Developing applications reference 1103

On return from an MQGET call, the MDCID field is set to the correlation identifier of the message
returned (if any).

The following special values may be used:
CINONE

No correlation identifier is specified.

The value is binary zero for the length of the field.

CINEWS
Message is the start of a new session.

This value is recognized by the CICS bridge as indicating the start of a new session, that is, the
start of a new sequence of messages.

For the MQGET call, this is an input/output field. For the MQPUT and MQPUT1 calls, this is an input
field if PMNCID is not specified, and an output field if PMNCID is specified. The length of this field is
given by LNCID. The initial value of this field is CINONE.

MDCSI (10-digit signed integer)

This specifies the character set identifier of character data in the message.

Note: Character data in MQMD and the other IBM MQ data structures that are parameters on
calls must be in the character set of the queue manager. This is defined by the queue manager's
CodedCharSetId attribute; see “Attributes for the queue manager on IBM i” on page 1386 for
details of this attribute.

The following special values can be used:
CSQM

Queue manager's character set identifier.

Character data in the message is in the queue manager's character set.

On the MQPUT and MQPUT1 calls, the queue manager changes this value in the MQMD sent with
the message to the true character-set identifier of the queue manager. As a result, the value CSQM
is never returned by the MQGET call.

CSINHT
Inherit character-set identifier of this structure.

Character data in the message is in the same character set as this structure; this is the queue
manager's character set. (For MQMD only, CSINHT has the same meaning as CSQM).

The queue manager changes this value in the MQMD sent with the message to the actual
character-set identifier of MQMD. Provided no error occurs, the value CSINHT is not returned
by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is ATBRKR.

CSEMBD
Embedded character set identifier.

Character data in the message is in a character set with the identifier that is contained within the
message data itself. There can be any number of character-set identifiers embedded within the
message data, applying to different parts of the data. This value must be used for PCF messages
that contain data in a mixture of character sets. PCF messages have a format name of FMPCF.

Specify this value only on the MQPUT and MQPUT1 calls. If it is specified on the MQGET call, it
prevents conversion of the message.

On the MQPUT and MQPUT1 calls, the queue manager changes the values CSQM and CSINHT in the
MQMD sent with the message as described previously, but does not change the MQMD specified on
the MQPUT or MQPUT1 call. No other check is carried out on the value specified.

Applications that retrieve messages should compare this field against the value the application is
expecting; if the values differ, the application may need to convert character data in the message.

1104 IBM MQ Developing Applications Reference

If the GMCONV option is specified on the MQGET call, this field is an input/output field. The value
specified by the application is the coded character-set identifier to which the message data should
be converted if necessary. If conversion is successful or unnecessary, the value is unchanged (except
that the value CSQM or CSINHT is converted to the actual value). If conversion is unsuccessful, the
value after the MQGET call represents the coded character-set identifier of the unconverted message
that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1
calls. The initial value of this field is CSQM.

MDENC (10-digit signed integer)

Numeric encoding of message data.

This specifies the numeric encoding of numeric data in the message; it does not apply to numeric
data in the MQMD structure itself. The numeric encoding defines the representation used for binary
integers, packed-decimal integers, and floating-point numbers.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The queue manager does not check that the field is valid. The following special value is defined:
ENNAT

Native machine encoding.

The encoding is the default for the programming language and machine on which the application
is running.

Note: The value of this constant depends on the programming language and environment. For
this reason, applications must be compiled using the header, macro, COPY, or INCLUDE files
appropriate to the environment in which the application will run.

Applications that put messages should normally specify ENNAT. Applications that retrieve messages
should compare this field against the value ENNAT; if the values differ, the application may need to
convert numeric data in the message. The GMCONV option can be used to request the queue manager
to convert the message as part of the processing of the MQGET call.

If the GMCONV option is specified on the MQGET call, this field is an input/output field. The value
specified by the application is the encoding to which the message data should be converted if
necessary. If conversion is successful or unnecessary, the value is unchanged. If conversion is
unsuccessful, the value after the MQGET call represents the encoding of the unconverted message
that is returned to the application.

In other cases, this is an output field for the MQGET call, and an input field for the MQPUT and
MQPUT1 calls. The initial value of this field is ENNAT.

MDEXP (10-digit signed integer)

Message lifetime.

This is a period of time expressed in tenths of a second, set by the application that puts the message.
The message becomes eligible to be discarded if it has not been removed from the destination queue
before this period of time elapses.

The value is decremented to reflect the time the message spends on the destination queue, and also
on any intermediate transmission queues if the put is to a remote queue. It may also be decremented
by message channel agents to reflect transmission times, if these are significant. Likewise, an
application forwarding this message to another queue might decrement the value if necessary, if it has
retained the message for a significant time. However, the expiration time is treated as approximate,
and the value need not be decremented to reflect small time intervals.

When the message is retrieved by an application using the MQGET call, the MDEXP field represents the
amount of the original expiry time that still remains.

After a message's expiry time has elapsed, it becomes eligible to be discarded by the queue manager.
In the current implementations, the message is discarded when a browse or nonbrowse MQGET call
occurs that would have returned the message had it not already expired. For example, a nonbrowse

Developing applications reference 1105

MQGET call with the GMMO field in MQGMO set to MONONE reading from a FIFO ordered queue will
cause all the expired messages to be discarded up to the first unexpired message. With a priority
ordered queue, the same call will discard expired messages of higher priority and messages of an
equal priority that arrived on the queue before the first unexpired message.

A message that has expired is never returned to an application (either by a browse or a non-browse
MQGET call), so the value in the MDEXP field of the message descriptor after a successful MQGET call
is either greater than zero, or the special value EIULIM.

If a message is put on a remote queue, the message may expire (and be discarded) while it is on an
intermediate transmission queue, before the message reaches the destination queue.

A report is generated when an expired message is discarded, if the message specified one of the
ROEXP* report options. If none of these options is specified, no such report is generated; the message
is assumed to be no longer relevant after this time period (perhaps because a later message has
superseded it).

Any other program that discards messages based on expiry time must also send an appropriate report
message if one was requested.

Note:

1. If a message is put with an MDEXP time of zero, the MQPUT or MQPUT1 call fails with reason code
RC2013; no report message is generated in this case.

2. Since a message with an expiry time that has elapsed may not actually be discarded until later,
there may be messages on a queue that have passed their expiry time, and which are not therefore
eligible for retrieval. These messages nevertheless count towards the number of messages on the
queue for all purposes, including depth triggering.

3. An expiration report is generated, if requested, when the message is actually discarded, not when
it becomes eligible for discarding.

4. Discarding of an expired message, and the generation of an expiration report if requested, are
never part of the application's unit of work, even if the message was scheduled for discarding as a
result of an MQGET call operating within a unit of work.

5. If a nearly-expired message is retrieved by an MQGET call within a unit of work, and the unit of
work is subsequently backed out, the message may become eligible to be discarded before it can
be retrieved again.

6. If a nearly-expired message is locked by an MQGET call with GMLK, the message may become
eligible to be discarded before it can be retrieved by an MQGET call with GMMUC; reason code
RC2034 is returned on this subsequent MQGET call if that happens.

7. When a request message with an expiry time greater than zero is retrieved, the application can
take one of the following actions when it sends the reply message:

• Copy the remaining expiry time from the request message to the reply message.
• Set the expiry time in the reply message to an explicit value greater than zero.
• Set the expiry time in the reply message to EIULIM.

The action to take depends on the design of the application suite. However, the default action
for putting messages to a dead-letter (undelivered-message) queue should be to preserve the
remaining expiry time of the message, and to continue to decrement it.

8. Trigger messages are always generated with EIULIM.
9. A message (normally on a transmission queue) which has a MDFMT name of FMXQH has a second

message descriptor within the MQXQH. It therefore has two MDEXP fields associated with it. The
following additional points should be noted in this case:

• When an application puts a message on a remote queue, the queue manager places the message
initially on a local transmission queue, and prefixes the application message data with an
MQXQH structure. The queue manager sets the values of the two MDEXP fields to be the same as
that specified by the application.

1106 IBM MQ Developing Applications Reference

If an application puts a message directly on a local transmission queue, the message data must
already begin with an MQXQH structure, and the format name must be FMXQH (but the queue
manager does not enforce this). In this case the application need not set the values of these two
MDEXP fields to be the same. (The queue manager does not check that the MDEXP field within the
MQXQH contains a valid value, or even that the message data is long enough to include it.)

• When a message with a MDFMT name of FMXQH is retrieved from a queue (whether this is a
normal or a transmission queue), the queue manager decrements both these MDEXP fields with
the time spent waiting on the queue. No error is raised if the message data is not long enough to
include the MDEXP field in the MQXQH.

• The queue manager uses the MDEXP field in the separate message descriptor (that is, not the one
in the message descriptor embedded within the MQXQH structure) to test whether the message
is eligible for discarding.

• If the initial values of the two MDEXP fields were different, it is therefore possible for the MDEXP
time in the separate message descriptor when the message is retrieved to be greater than zero
(so the message is not eligible for discarding), while the time according to the MDEXP field in the
MQXQH has elapsed. In this case the MDEXP field in the MQXQH is set to zero.

The following special value is recognized:
EIULIM

Unlimited lifetime.

The message has an unlimited expiration time.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The
initial value of this field is EIULIM.

MDFB (10-digit signed integer)

Feedback or reason code.

This is used with a message of type MTRPRT to indicate the nature of the report, and is only
meaningful with that type of message. The field can contain one of the FB* values, or one of the
RC* values. Feedback codes are grouped as follows:
FBNONE

No feedback provided.
FBSFST

Lowest value for system-generated feedback.
FBSLST

Highest value for system-generated feedback.

The range of system-generated feedback codes FBSFST through FBSLST includes the general
feedback codes listed later in this section(FB*), and also the reason codes (RC*) that can occur
when the message cannot be put on the destination queue.

FBAFST
Lowest value for application-generated feedback.

FBALST
Highest value for application-generated feedback.

Applications that generate report messages should not use feedback codes in the system range (other
than FBQUIT), unless they want to simulate report messages generated by the queue manager or
message channel agent.

On the MQPUT or MQPUT1 calls, the value specified must either be FBNONE, or be within the system
range or application range. This is checked whatever the value of MDMT.

General feedback codes:
FBCOA

Confirmation of arrival on the destination queue (see ROCOA).

Developing applications reference 1107

FBCOD
Confirmation of delivery to the receiving application (see ROCOD).

FBEXP
Message expired.

Message was discarded because it had not been removed from the destination queue before its
expiry time had elapsed.

FBPAN
Positive action notification (see ROPAN).

FBNAN
Negative action notification (see RONAN).

FBQUIT
Application should end.

This can be used by a workload scheduling program to control the number of instances of an
application program that are running. Sending an MTRPRT message with this feedback code to
an instance of the application program indicates to that instance that it should stop processing.
However, adherence to this convention is a matter for the application; it is not enforced by the
queue manager.

IMS-bridge feedback codes: When the IMS bridge receives a nonzero IMS-OTMA sense code, the
IMS bridge converts the sense code from hexadecimal to decimal, adds the value FBIERR (300), and
places the result in the MDFB field of the reply message. This results in the feedback code having a
value in the range FBIFST (301) through FBILST (399) when an IMS-OTMA error has occurred.

The following feedback codes can be generated by the IMS bridge:
FBDLZ

Data length zero.

A segment length was zero in the application data of the message.

FBDLN
Data length negative.

A segment length was negative in the application data of the message.

FBDLTB
Data length too big.

A segment length was too big in the application data of the message.

FBBUFO
Buffer overflow.

The value of one of the length fields would cause the data to overflow the message buffer.

FBLOB1
Length in error by one.

The value of one of the length fields was one byte too short.

FBIIH
MQIIH structure not valid or missing.

The MDFMT field in MQMD specifies FMIMS, but the message does not begin with a valid MQIIH
structure.

FBNAFI
User ID not authorized for use in IMS.

The user ID contained in the message descriptor MQMD, or the password contained in the IIAUT
field in the MQIIH structure, failed the validation performed by the IMS bridge. As a result the
message was not passed to IMS.

1108 IBM MQ Developing Applications Reference

FBIERR
Unexpected error returned by IMS.

An unexpected error was returned by IMS. Consult the IBM MQ error log on the system on which
the IMS bridge resides for more information about the error.

FBIFST
Lowest value for IMS-generated feedback.

IMS-generated feedback codes occupy the range FBIFST (300) through FBILST (399). The IMS-
OTMA sense code itself is MDFB minus FBIERR.

FBILST
Highest value for IMS-generated feedback.

CICS-bridge feedback codes: The following feedback codes can be generated by the CICS bridge:
FBCAAB

Application abended.

The application program specified in the message abended. This feedback code occurs only in the
DLREA field of the MQDLH structure.

FBCANS
Application cannot be started.

The EXEC CICS LINK for the application program specified in the message failed. This feedback
code occurs only in the DLREA field of the MQDLH structure.

FBCBRF
CICS bridge terminated abnormally without completing normal error processing.

FBCCSE
Character set identifier not valid.

FBCIHE
CICS information header structure missing or not valid.

FBCCAE
Length of CICS commarea not valid.

FBCCIE
Correlation identifier not valid.

FBCDLQ
Dead-letter queue not available.

The CICS bridge task was unable to copy a reply to this request to the dead-letter queue. The
request was backed out.

FBCENE
Encoding not valid.

FBCINE
CICS bridge encountered an unexpected error.

This feedback code occurs only in the DLREA field of the MQDLH structure.

FBCNTA
User identifier not authorized or password not valid.

This feedback code occurs only in the DLREA field of the MQDLH structure.

FBCUBO
Unit of work backed out.

The unit of work was backed out, for one of the following reasons:

• A failure was detected while processing another request within the same unit of work.
• A CICS abend occurred while the unit of work was in progress.

Developing applications reference 1109

FBCUWE
Unit-of-work control field CIUOW not valid.

MQ reason codes: For exception report messages, MDFB contains an MQ reason code. Among possible
reason codes are:
RC2051

(2051, X'803') Put calls inhibited for the queue.
RC2053

(2053, X'805') Queue already contains maximum number of messages.
RC2035

(2035, X'7F3') Not authorized for access.
RC2056

(2056, X'808') No space available on disk for queue.
RC2048

(2048, X'800') Queue does not support persistent messages.
RC2031

(2031, X'7EF') Message length greater than maximum for queue manager.
RC2030

(2030, X'7EE') Message length greater than maximum for queue.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls. The initial
value of this field is FBNONE.

MDFMT (8-byte character string)

Format name of message data.

This is a name that the sender of the message may use to indicate to the receiver the nature of the
data in the message. Any characters that are in the queue manager's character set may be specified
for the name, but it is recommended that the name be restricted to the following:

• Uppercase A through Z
• Numeric digits 0 through 9

If other characters are used, it may not be possible to translate the name between the character sets
of the sending and receiving queue managers.

The name should be padded with blanks to the length of the field, or a null character used to
terminate the name before the end of the field; the null and any subsequent characters are treated
as blanks. Do not specify a name with leading or embedded blanks. For the MQGET call, the queue
manager returns the name padded with blanks to the length of the field.

The queue manager does not check that the name complies with the recommendations described
previously.

Names beginning "MQ" in upper, lower, and mixed case have meanings that are defined by the queue
manager; you should not use names beginning with these letters for your own formats. The queue
manager built-in formats are:
FMNONE

No format name.

The nature of the data is undefined. This means that the data cannot be converted when the
message is retrieved from a queue using the GMCONV option.

If GMCONV is specified on the MQGET call, and the character set or encoding of data in the
message differs from that specified in the MSGDSC parameter, the message is returned with the
following completion and reason codes (assuming no other errors):

• Completion code CCWARN and reason code RC2110 if the FMNONE data is at the beginning of
the message.

1110 IBM MQ Developing Applications Reference

• Completion code CCOK and reason code RCNONE if the FMNONE data is at the end of the
message (that is, preceded by one or more MQ header structures). The MQ header structures
are converted to the requested character set and encoding in this case.

FMADMN
Command server request/reply message.

The message is a command-server request or reply message in programmable command format
(PCF). Messages of this format can be converted if the GMCONV option is specified on the MQGET
call. For more information about using programmable command format messages, see Using
Programmable Command Formats.

FMCICS
CICS information header.

The message data begins with the CICS information header MQCIH, which is followed by the
application data. The format name of the application data is given by the CIFMT field in the MQCIH
structure.

FMCMD1
Type 1 command reply message.

The message is an MQSC command-server reply message containing the object count, completion
code, and reason code. Messages of this format can be converted if the GMCONV option is
specified on the MQGET call.

FMCMD2
Type 2 command reply message.

The message is an MQSC command-server reply message containing information about the
object(s) requested. Messages of this format can be converted if the GMCONV option is specified
on the MQGET call.

FMDLH
Dead-letter header.

The message data begins with the dead-letter header MQDLH. The data from the original message
immediately follows the MQDLH structure. The format name of the original message data is given
by the DLFMT field in the MQDLH structure; see “MQDLH (Dead-letter header) on IBM i” on page
1054 for details of this structure. Messages of this format can be converted if the GMCONV option
is specified on the MQGET call.

COA and COD reports are not generated for messages which have a MDFMT of FMDLH.

FMDH
Distribution-list header.

The message data begins with the distribution-list header MQDH; this includes the arrays of
MQOR and MQPMR records. The distribution-list header may be followed by additional data. The
format of the additional data (if any) is given by the DHFMT field in the MQDH structure; see
“MQDH (Distribution header) on IBM i” on page 1050 for details of this structure. Messages with
format FMDH can be converted if the GMCONV option is specified on the MQGET call.

FMEVNT
Event message.

The message is an MQ event message that reports an event that occurred. Event messages have
the same structure as programmable commands; for more information about this structure, see
Structures for commands and responses. For information about events, see Event monitoring.

Version-1 event messages can be converted if the GMCONV option is specified on the MQGET call.

FMIMS
IMS information header.

The message data begins with the IMS information header MQIIH, which is followed by the
application data. The format name of the application data is given by the IIFMT field in the MQIIH

Developing applications reference 1111

structure. Messages of this format can be converted if the GMCONV option is specified on the
MQGET call.

FMIMVS
IMS variable string.

The message is an IMS variable string, which is a string of the form llzzccc, where:
ll

is a 2-byte length field specifying the total length of the IMS variable string item. This length
is equal to the length of ll (2 bytes), plus the length of zz (2 bytes), plus the length of the
character string itself. ll is a 2-byte binary integer in the encoding specified by the MDENC
field.

zz
is a 2-byte field containing flags that are significant to IMS. zz is a byte string consisting of two
1-byte bit string fields, and is transmitted without change from sender to receiver (that is, zz
is not subject to any conversion).

ccc
is a variable-length character string containing ll-4 characters. ccc is in the character set
specified by the MDCSI field.

Messages of this format can be converted if the GMCONV option is specified on the MQGET call.

FMMDE
Message-descriptor extension.

The message data begins with the message-descriptor extension MQMDE, and is optionally
followed by other data (usually the application message data). The format name, character set,
and encoding of the data which follows the MQMDE is given by the MEFMT, MECSI, and MEENC
fields in the MQMDE. See “MQMDE (Message descriptor extension) on IBM i” on page 1142 for
details of this structure. Messages of this format can be converted if the GMCONV option is
specified on the MQGET call.

FMPCF
User-defined message in programmable command format (PCF).

The message is a user-defined message that conforms to the structure of a programmable
command format (PCF) message. Messages of this format can be converted if the GMCONV option
is specified on the MQGET call. See Using Programmable Command Formats for more information
about using programmable command format messages.

FMRMH
Reference message header.

The message data begins with the reference message header MQRMH, and is optionally followed
by other data. The format name, character set, and encoding of the data is given by the RMFMT,
RMCSI, and RMENC fields in the MQRMH. See “MQRMH (Reference message header) on IBM i” on
page 1189 for details of this structure. Messages of this format can be converted if the GMCONV
option is specified on the MQGET call.

FMRFH
Rules and formatting header.

The message data begins with the rules and formatting header MQRFH, and is optionally followed
by other data. The format name, character set, and encoding of the data (if any) is given by the
RFFMT, RFCSI, and RFENC fields in the MQRFH. Messages of this format can be converted if the
GMCONV option is specified on the MQGET call.

FMRFH2
Rules and formatting header version 2.

The message data begins with the version-2 rules and formatting header MQRFH2, and is
optionally followed by other data. The format name, character set, and encoding of the optional

1112 IBM MQ Developing Applications Reference

data (if any) is given by the RF2FMT, RF2CSI, and RF2ENC fields in the MQRFH2. Messages of this
format can be converted if the GMCONV option is specified on the MQGET call.

FMSTR
Message consisting entirely of characters.

The application message data can be either an SBCS string (single-byte character set), or a DBCS
string (double-byte character set). Messages of this format can be converted if the GMCONV
option is specified on the MQGET call.

FMTM
Trigger message.

The message is a trigger message, described by the MQTM structure; see “MQTM - Trigger
message” on page 1224 for details of this structure. Messages of this format can be converted if
the GMCONV option is specified on the MQGET call.

FMWIH
Work information header.

The message data begins with the work information header MQWIH, which is followed by the
application data. The format name of the application data is given by the WIFMT field in the
MQWIH structure.

FMXQH
Transmission queue header.

The message data begins with the transmission queue header MQXQH. The data from the original
message immediately follows the MQXQH structure. The format name of the original message
data is given by the MDFMT field in the MQMD structure which is part of the transmission queue
header MQXQH. See “MQXQH (Transmission-queue header) on IBM i” on page 1234 for details of
this structure.

COA and COD reports are not generated for messages which have a MDFMT of FMXQH.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The
length of this field is given by LNFMT. The initial value of this field is FMNONE.

MDGID (24-byte bit string)

Group identifier.

This is a byte string that is used to identify the particular message group or logical message to which
the physical message belongs. MDGID is also used if segmentation is allowed for the message. In all
of these cases, MDGID has a non-null value, and one or more of the following flags is set in the MDMFL
field:

• MFMIG
• MFLMIG
• MFSEG
• MFLSEG
• MFSEGA

If none of these flags is set, MDGID has the special null value GINONE.

This field need not be set by the application on the MQPUT or MQGET call if:

• On the MQPUT call, PMLOGO is specified.
• On the MQGET call, MOGRPI is not specified.

Consider using these calls for messages that are not report messages. However, if the application
requires more control, or the call is MQPUT1, the application must ensure that MDGID is set to an
appropriate value.

Developing applications reference 1113

Message groups and segments can be processed correctly only if the group identifier is unique. For
this reason, applications should not generate their own group identifiers ; instead, applications should
do one of the following:

• If PMLOGO is specified, the queue manager automatically generates a unique group identifier for the
first message in the group or segment of the logical message, and uses that group identifier for the
remaining messages in the group or segments of the logical message, so the application does not
need to take any special action. Consider using this procedure.

• If PMLOGO is not specified, the application should request the queue manager to generate the
group identifier, by setting MDGID to GINONE on the first MQPUT or MQPUT1 call for a message in
the group or segment of the logical message. The group identifier returned by the queue manager
on output from that call should then be used for the remaining messages in the group or segments
of the logical message. If a message group contains segmented messages, the same group identifier
must be used for all segments and messages in the group.

When PMLOGO is not specified, messages in groups and segments of logical messages can be put
in any order (for example, in reverse order), but the group identifier must be allocated by the first
MQPUT or MQPUT1 call that is issued for any of those messages.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value detailed in PMOPT. On
output from the MQPUT and MQPUT1 calls, the queue manager sets this field to the value that was
sent with the message if the object opened is a single queue and not a distribution list, but leaves
it unchanged if the object opened is a distribution list. In the latter case, if the application needs to
know the group identifiers generated, the application must provide MQPMR records containing the
PRGID field.

On input to the MQGET call, the queue manager uses the value detailed in Table 1. On output from the
MQGET call, the queue manager sets this field to the value for the message retrieved.

The following special value is defined:
GINONE

No group identifier specified.

The value is binary zero for the length of the field. This is the value that is used for messages that
are not in groups, not segments of logical messages, and for which segmentation is not allowed.

The length of this field is given by LNGID. The initial value of this field is GINONE. This field is ignored
if MDVER is less than MDVER2.

MDMFL (10-digit signed integer)

Message flags.

These are flags that specify attributes of the message, or control its processing. The flags are divided
into the following categories:

• Segmentation flag
• Status flags

These are described in turn.

Segmentation flags: When a message is too big for a queue, an attempt to put the message on the
queue usually fails. Segmentation is a technique whereby the queue manager or application splits the
message into smaller pieces called segments, and places each segment on the queue as a separate
physical message. The application which retrieves the message can either retrieve the segments one
by one, or request the queue manager to reassemble the segments into a single message which is
returned by the MQGET call. The latter is achieved by specifying the GMCMPM option on the MQGET
call, and supplying a buffer that is big enough to accommodate the complete message. (See “MQGMO
(Get-message options) on IBM i” on page 1066 for details of the GMCMPM option.) Segmentation of
a message can occur at the sending queue manager, at an intermediate queue manager, or at the
destination queue manager.

You can specify one of the following to control the segmentation of a message:

1114 IBM MQ Developing Applications Reference

MFSEGI
Segmentation inhibited.

This option prevents the message being broken into segments by the queue manager. If specified
for a message that is already a segment, this option prevents the segment being broken into
smaller segments.

The value of this flag is binary zero. This is the default.

MFSEGA
Segmentation allowed.

This option allows the message to be broken into segments by the queue manager. If specified
for a message that is already a segment, this option allows the segment to be broken into smaller
segments. MFSEGA can be set without either MFSEG or MFLSEG being set.

When the queue manager segments a message, the queue manager turns on the MFSEG flag in
the copy of the MQMD that is sent with each segment, but does not alter the settings of these flags
in the MQMD provided by the application on the MQPUT or MQPUT1 call. For the last segment in
the logical message, the queue manager also turns on the MFLSEG flag in the MQMD that is sent
with the segment.

Note: Care is needed when messages are put with MFSEGA but without PMLOGO. If the message
is:

• Not a segment, and
• Not in a group, and
• Not being forwarded,

the application must remember to reset the MDGID field to GINONE before each MQPUT or
MQPUT1 call, in order to cause a unique group identifier to be generated by the queue manager
for each message. If this is not done, unrelated messages could inadvertently end up with the
same group identifier, which might lead to incorrect processing subsequently. See the descriptions
of the MDGID field and the PMLOGO option for more information about when the MDGID field must
be reset.

The queue manager splits messages into segments as necessary in order to ensure that the
segments (plus any header data that may be required) fit on the queue. However, there is a lower
limit for the size of a segment generated by the queue manager, and only the last segment created
from a message can be smaller than this limit. (The lower limit for the size of an application-
generated segment is one byte.) Segments generated by the queue manager may be of unequal
length. The queue manager processes the message as follows:

• User-defined formats are split on boundaries which are multiples of 16 bytes. This means that
the queue manager will not generate segments that are smaller than 16 bytes (other than the
last segment).

• Built-in formats other than FMSTR are split at points appropriate to the nature of the data
present. However, the queue manager never splits a message in the middle of an MQ header
structure. This means that a segment containing a single MQ header structure cannot be split
further by the queue manager, and as a result the minimum possible segment size for that
message is greater than 16 bytes.

The second or later segment generated by the queue manager will begin with one of the
following:

– An MQ header structure
– The start of the application message data
– Part-way through the application message data

• FMSTR is split without regard for the nature of the data present (SBCS, DBCS, or mixed SBCS/
DBCS). When the string is DBCS or mixed SBCS/DBCS, this may result in segments which
cannot be converted from one character set to another. The queue manager never splits FMSTR
messages into segments that are smaller than 16 bytes (other than the last segment).

Developing applications reference 1115

• The MDFMT, MDCSI, and MDENC fields in the MQMD of each segment are set by the queue
manager to describe correctly the data present at the start of the segment; the format name will
be either the name of a built-in format, or the name of a user-defined format.

• The MDREP field in the MQMD of segments with MDOFF greater than zero are modified as follows:

– For each report type, if the report option is RO*D, but the segment cannot possibly contain
any of the first 100 bytes of user data (that is, the data following any MQ header structures
that may be present), the report option is changed to RO*.

The queue manager follows the previously rules, but otherwise splits messages unpredictably; do
not make assumptions about where a message is split

For persistent messages, the queue manager can perform segmentation only within a unit of work:

• If the MQPUT or MQPUT1 call is operating within a user-defined unit of work, that unit of work
is used. If the call fails partway through the segmentation process, the queue manager removes
any segments that were placed on the queue as a result of the failing call. However, the failure
does not prevent the unit of work being committed successfully.

• If the call is operating outside a user-defined unit of work, and there is no user-defined unit
of work in existence, the queue manager creates a unit of work just for the duration of the
call. If the call is successful, the queue manager commits the unit of work automatically (the
application does not need to do this). If the call fails, the queue manager backs out the unit of
work.

• If the call is operating outside a user-defined unit of work, but a user-defined unit of work does
exist, the queue manager is unable to perform segmentation. If the message does not require
segmentation, the call can still succeed. But if the message does require segmentation, the call
fails with reason code RC2255.

For nonpersistent messages, the queue manager does not require a unit of work to be available in
order to perform segmentation.

Special consideration must be given to data conversion of messages which may be segmented:

• If data conversion is performed only by the receiving application on the MQGET call, and the
application specifies the GMCMPM option, the data-conversion exit will be passed the complete
message for the exit to convert, and the fact that the message was segmented will not be
apparent to the exit.

• If the receiving application retrieves one segment at a time, the data-conversion exit will be
invoked to convert one segment at a time. The exit must therefore be capable of converting the
data in a segment independently of the data in any of the other segments.

If the nature of the data in the message is such that arbitrary segmentation of the data on
16-byte boundaries may result in segments which cannot be converted by the exit, or the format
is FMSTR and the character set is DBCS or mixed SBCS/DBCS, the sending application should
itself create and put the segments, specifying MFSEGI to suppress further segmentation. In this
way, the sending application can ensure that each segment contains sufficient information to
allow the data-conversion exit to convert the segment successfully.

• If sender conversion is specified for a sending message channel agent (MCA), the MCA converts
only messages which are not segments of logical messages; the MCA never attempts to convert
messages which are segments.

This flag is an input flag on the MQPUT and MQPUT1 calls, and an output flag on the MQGET call. On
the latter call, the queue manager also echoes the value of the flag to the GMSEG field in MQGMO.

The initial value of this flag is MFSEGI.

Status flags: These are flags that indicate whether the physical message belongs to a message group,
is a segment of a logical message, both, or neither. One or more of the following can be specified on
the MQPUT or MQPUT1 call, or returned by the MQGET call:
MFMIG

Message is a member of a group.

1116 IBM MQ Developing Applications Reference

MFLMIG
Message is the last logical message in a group.

If this flag is set, the queue manager turns on MFMIG in the copy of MQMD that is sent with the
message, but does not alter the settings of these flags in the MQMD provided by the application on
the MQPUT or MQPUT1 call.

It is valid for a group to consist of only one logical message. If this is the case, MFLMIG is set, but
the MDSEQ field has the value one.

MFSEG
Message is a segment of a logical message.

When MFSEG is specified without MFLSEG, the length of the application message data in the
segment (excluding the lengths of any MQ header structures that may be present) must be at least
one. If the length is zero, the MQPUT or MQPUT1 call fails with reason code RC2253.

MFLSEG
Message is the last segment of a logical message.

If this flag is set, the queue manager turns on MFSEG in the copy of MQMD that is sent with the
message, but does not alter the settings of these flags in the MQMD provided by the application on
the MQPUT or MQPUT1 call.

It is valid for a logical message to consist of only one segment. If this is the case, MFLSEG is set,
but the MDOFF field has the value zero.

When MFLSEG is specified, it is permissible for the length of the application message data in the
segment (excluding the lengths of any header structures that may be present) to be zero.

The application must ensure that these flags are set correctly when putting messages. If PMLOGO is
specified, or was specified on the preceding MQPUT call for the queue handle, the settings of the flags
must be consistent with the group and segment information retained by the queue manager for the
queue handle. The following conditions apply to successive MQPUT calls for the queue handle when
PMLOGO is specified:

• If there is no current group or logical message, all of these flags (and combinations of them) are
valid.

• Once MFMIG has been specified, it must remain on until MFLMIG is specified. The call fails with
reason code RC2241 if this condition is not satisfied.

• Once MFSEG has been specified, it must remain on until MFLSEG is specified. The call fails with
reason code RC2242 if this condition is not satisfied.

• Once MFSEG has been specified without MFMIG, MFMIG must remain off until after MFLSEG has
been specified. The call fails with reason code RC2242 if this condition is not satisfied.

Table 1 shows the valid combinations of the flags, and the values used for various fields.

These flags are input flags on the MQPUT and MQPUT1 calls, and output flags on the MQGET call. On
the latter call, the queue manager also echoes the values of the flags to the GMGST and GMSST fields in
MQGMO.

Default flags: The following can be specified to indicate that the message has default attributes:
MFNONE

No message flags (default message attributes).

This inhibits segmentation, and indicates that the message is not in a group and is not a segment
of a logical message. MFNONE is defined to aid program documentation. It is not intended that
this flag be used with any other, but as its value is zero, such use cannot be detected.

The MDMFL field is partitioned into subfields; for details see “Report options and message flags on
IBM i” on page 1420.

The initial value of this field is MFNONE. This field is ignored if MDVER is less than MDVER2.

Developing applications reference 1117

MDMID (24-byte bit string)

Message identifier.

This is a byte string that is used to distinguish one message from another. Generally, no two messages
should have the same message identifier, although this is not disallowed by the queue manager. The
message identifier is a permanent property of the message, and persists across restarts of the queue
manager. Because the message identifier is a byte string and not a character string, the message
identifier is not converted between character sets when the message flows from one queue manager
to another.

For the MQPUT and MQPUT1 calls, if MINONE or PMNMID is specified by the application, the queue
manager generates a unique message identifier when the message is put, and places it in the
message descriptor sent with the message. The queue manager also returns this message identifier
in the message descriptor belonging to the sending application. The application can use this value
to record information about particular messages, and to respond to queries from other parts of the
application.

An MDMID generated by the queue manager consists of a 4-byte product identifier (AMQ¬ or CSQ¬
in either ASCII or EBCDIC, where ¬ represents a single blank character), followed by a product-
specific implementation of a unique string. In IBM MQ this contains the first 12 characters of the
queue manager name, and a value derived from the system clock. All queue managers that can
intercommunicate must therefore have names that differ in the first 12 characters, to ensure that
message identifiers are unique. The ability to generate a unique string also depends upon the system
clock not being changed backward. To eliminate the possibility of a message identifier generated
by the queue manager duplicating one generated by the application, the application should avoid
generating identifiers with initial characters in the range A through I in ASCII or EBCDIC (X'41' through
X'49' and X'C1' through X'C9'). However, the application is not prevented from generating identifiers
with initial characters in these ranges.

If the message is being put to a topic, the queue manager generates unique message identifiers as
necessary for each message published. If PMNMID is specified by the application, the queue manager
generates a unique message identifier to return on output. If MINONE is specified by the application,
the value of the MDMID field in the MQMD is unchanged on return from the call.

See the description of PMRET in PMOPT for more details about retained publications.

If the message is being put to a distribution list, the queue manager generates unique message
identifiers as necessary, but the value of the MDMID field in MQMD is unchanged on return from
the call, even if MINONE or PMNMID was specified. If the application needs to know the message
identifiers generated by the queue manager, the application must provide MQPMR records containing
the PRMID field.

The sending application can also specify a particular value for the message identifier, other than
MINONE; this stops the queue manager generating a unique message identifier. An application that is
forwarding a message can use this facility to propagate the message identifier of the original message.

The queue manager does not itself make any use of this field except to:

• Generate a unique value if requested, as described previously
• Deliver the value to the application that issues the get request for the message
• Copy the value to the MDCID field of any report message that it generates about this message

(depending on the MDREP options)

When the queue manager or a message channel agent generates a report message, it sets the
MDMID field in the way specified by the MDREP field of the original message, either RONMI or ROPMI.
Applications that generate report messages should also do this.

For the MQGET call, MDMID is one of the five fields that can be used to select a particular message to
be retrieved from the queue. Normally the MQGET call returns the next message on the queue, but if
a particular message is required, this can be obtained by specifying one or more of the five selection
criteria, in any combination; these fields are:

1118 IBM MQ Developing Applications Reference

• MDMID
• MDCID
• MDGID
• MDSEQ
• MDOFF

The application sets one or more of these field to the values required, and then sets the
corresponding MO* match options in the GMMO field in MQGMO to indicate that those fields should be
used as selection criteria. Only messages that have the specified values in those fields are candidates
for retrieval. The default for the GMMO field (if not altered by the application) is to match both the
message identifier and the correlation identifier.

Normally, the message returned is the first message on the queue that satisfies the selection criteria.
But if GMBRWN is specified, the message returned is the next message that satisfies the selection
criteria; the scan for this message starts with the message following the current cursor position.

Note: The queue is scanned sequentially for a message that satisfies the selection criteria, so retrieval
times will be slower than if no selection criteria are specified, especially if many messages have to be
scanned before a suitable one is found.

See Table 1 for more information about how selection criteria are used in various situations.

Specifying MINONE as the message identifier has the same effect as not specifying MOMSGI, that is,
any message identifier will match.

This field is ignored if the GMMUC option is specified in the GMO parameter on the MQGET call.

On return from an MQGET call, the MDMID field is set to the message identifier of the message
returned (if any).

The following special value may be used:
MINONE

No message identifier is specified.

The value is binary zero for the length of the field.

This is an input/output field for the MQGET, MQPUT, and MQPUT1 calls. The length of this field is given
by LNMID. The initial value of this field is MINONE.

MDMT (10-digit signed integer)

Message type.

This indicates the type of the message. Message types are grouped as follows:
MTSFST

Lowest value for system-defined message types.
MTSLST

Highest value for system-defined message types.

The following values are currently defined within the system range:
MTDGRM

Message not requiring a reply.

The message is one that does not require a reply.

MTRQST
Message requiring a reply.

The message is one that requires a reply.

The name of the queue to which the reply should be sent must be specified in the MDRQ field. The
MDREP field indicates how the MDMID and MDCID of the reply are to be set.

Developing applications reference 1119

MTRPLY
Reply to an earlier request message.

The message is the reply to an earlier request message (MTRQST). The message should be sent
to the queue indicated by the MDRQ field of the request message. The MDREP field of the request
should be used to control how the MDMID and MDCID of the reply are set.

Note: The queue manager does not enforce the request-reply relationship; this is an application
responsibility.

MTRPRT
Report message.

The message is reporting on some expected or unexpected occurrence, usually related to some
other message (for example, a request message was received which contained data that was not
valid). The message should be sent to the queue indicated by the MDRQ field of the message
descriptor of the original message. The MDFB field should be set to indicate the nature of the
report. The MDREP field of the original message can be used to control how the MDMID and MDCID
of the report message should be set.

Report messages generated by the queue manager or message channel agent are always sent to
the MDRQ queue, with the MDFB and MDCID fields set as described previously.

Other values within the system range may be defined in future versions of the MQI, and are accepted
by the MQPUT and MQPUT1 calls without error.

Application-defined values can also be used. They must be within the following range:
MTAFST

Lowest value for application-defined message types.
MTALST

Highest value for application-defined message types.

For the MQPUT and MQPUT1 calls, the MDMT value must be within either the system-defined range or
the application-defined range; if it is not, the call fails with reason code RC2029.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls. The initial
value of this field is MTDGRM.

MDOFF (10-digit signed integer)

Offset of data in physical message from start of logical message.

This is the offset in bytes of the data in the physical message from the start of the logical message of
which the data forms part. This data is called a segment. The offset is in the range 0 through 999 999
999. A physical message which is not a segment of a logical message has an offset of zero.

This field need not be set by the application on the MQPUT or MQGET call if:

• On the MQPUT call, PMLOGO is specified.
• On the MQGET call, MOOFFS is not specified.

These are the recommended ways of using these calls for messages that are not report messages.
However, if the application does not comply with these conditions, or the call is MQPUT1, the
application must ensure that MDOFF is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value detailed in Table 1. On
output from the MQPUT and MQPUT1 calls, the queue manager sets this field to the value that was
sent with the message.

For a report message reporting on a segment of a logical message, the MDOLN field (provided it is not
OLUNDF) is used to update the offset in the segment information retained by the queue manager.

On input to the MQGET call, the queue manager uses the value detailed in Table 1. On output from the
MQGET call, the queue manager sets this field to the value for the message retrieved.

The initial value of this field is zero. This field is ignored if MDVER is less than MDVER2.

1120 IBM MQ Developing Applications Reference

MDOLN (10-digit signed integer)

Length of original message.

This field is of relevance only for report messages that are segments. It specifies the length of the
message segment to which the report message relates; it does not specify the length of the logical
message of which the segment forms part, nor the length of the data in the report message.

Note: When generating a report message for a message that is a segment, the queue manager and
message channel agent copy into the MQMD for the report message the MDGID, MDSEQ, MDOFF,
and MDMFL, fields from the original message. As a result, the report message is also a segment.
Applications that generate report messages are recommended to do the same, and to ensure that the
MDOLN field is set correctly.

The following special value is defined:
OLUNDF

Original length of message not defined.

MDOLN is an input field on the MQPUT and MQPUT1 calls, but the value provided by the application is
accepted only in particular circumstances:

• If the message being put is a segment and is also a report message, the queue manager accepts the
value specified. The value must be:

– Greater than zero if the segment is not the last segment
– Not less than zero if the segment is the last segment
– Not less than the length of data present in the message

If these conditions are not satisfied, the call fails with reason code RC2252.
• If the message being put is a segment but not a report message, the queue manager ignores the
field and uses the length of the application message data instead.

• In all other cases, the queue manager ignores the field and uses the value OLUNDF instead.

This is an output field on the MQGET call.

The initial value of this field is OLUNDF. This field is ignored if MDVER is less than MDVER2.

MDPAN (28-byte character string)

Name of application that put the message.

This is part of the origin context of the message. For more information about message context, see
Message context and Controlling context information.

The format of the MDPAN depends on the value of MDPAT.

When this field is set by the queue manager (that is, for all options except PMSETA), it is set to value
which is determined by the environment:

• On z/OS, the queue manager uses:

– For z/OS batch, the 8-character job name from the JES JOB card
– For TSO, the 7-character TSO user identifier
– For CICS, the 8-character applid, followed by the 4-character tranid
– For IMS, the 8-character IMS system identifier, followed by the 8-character PSB name
– For XCF, the 8-character XCF group name, followed by the 16-character XCF member name
– For a message generated by a queue manager, the first 28 characters of the queue manager name
– For distributed queuing without CICS, the 8-character jobname of the channel initiator followed

by the 8-character name of the module putting to the dead-letter queue followed by an 8-
character task identifier.

Developing applications reference 1121

– For MQSeries Java language bindings processing with IBM MQ for z/OS the 8-character jobname
of the address space created for the z/OS UNIX System Services environment. Typically, this will
be a TSO user identifier with a single numeric character appended.

The name or names are each padded to the right with blanks, as is any space in the remainder of the
field. Where there is more than one name, there is no separator between them.

• On PC DOS, and Windows systems, the queue manager uses:

– For a CICS application, the CICS transaction name
– For a non-CICS application, the rightmost 28 characters of the fully-qualified name of the

executable

• On IBM i, the queue manager uses the fully-qualified job name.

• On AIX and Linux, the queue manager uses:

– For a CICS application, the CICS transaction name
– For a non-CICS application, the rightmost 14 characters of the fully-qualified name of the

executable if this is available to the queue manager, and blanks otherwise (for example, on AIX)
• On VSE/ESA, the queue manager uses the 8-character applid, followed by the 4-character tranid.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is specified in the PMO
parameter. Any information following a null character within the field is discarded. The null character
and any following characters are converted to blanks by the queue manager. If PMSETA is not
specified, this field is ignored on input and is an output-only field.

This is an output field for the MQGET call. The length of this field is given by LNPAN. The initial value of
this field is 28 blank characters.

MDPAT (10-digit signed integer)

Type of application that put the message.

This is part of the origin context of the message. For more information about message context, see
Message context and Controlling context information.

MDPAT may have one of the following standard types. User-defined types can also be used but should
be restricted to values in the range ATUFST through ATULST.
ATAIX

AIX application (same value as ATUNIX).
ATBRKR

Broker.
ATCICS

CICS transaction.
ATCICB

CICS bridge.
ATVSE

CICS/VSE transaction.
ATDOS

IBM MQ MQI client application on PC DOS.
ATDQM

Distributed queue manager agent.
ATGUAR

Tandem Guardian application (same value as ATNSK).
ATIMS

IMS application.

1122 IBM MQ Developing Applications Reference

ATIMSB
IMS bridge.

ATJAVA
Java.

ATMVS
MVS or TSO application (same value as ATZOS).

ATNOTE
Lotus Notes Agent application.

ATNSK
Tandem NonStop Kernel application.

AT390
OS/390 application (same value as ATZOS).

AT400
IBM i application.

ATQM
Queue manager.

ATUNIX
UNIX application.

ATVOS
Stratus VOS application.

ATWIN
16-bit Windows application.

ATWINT
32-bit Windows application.

ATXCF
XCF.

ATZOS
z/OS application.

ATDEF
Default application type.

This is the default application type for the platform on which the application is running.

Note: The value of this constant is environment-specific.

ATUNK
Unknown application type.

This value can be used to indicate that the application type is unknown, even though other context
information is present.

ATUFST
Lowest value for user-defined application type.

ATULST
Highest value for user-defined application type.

The following special value can also occur:
ATNCON

No context information present in message.

This value is set by the queue manager when a message is put with no context (that is, the PMNOC
context option is specified).

When a message is retrieved, MDPAT can be tested for this value to decide whether the message
has context (it is recommended that MDPAT is never set to ATNCON, by an application using
PMSETA, if any of the other context fields are nonblank).

Developing applications reference 1123

ATSIB
Indicates a message originated in another IBM MQ messaging product and arrived via the SIB
(Service Integration Bus) bridge.

When the queue manager generates this information as a result of an application put, the field is set
to a value that is determined by the environment.

Note that on IBM i, the field is set to AT400; the queue manager never uses ATCICS on
IBM i.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is specified in the PMO
parameter. If PMSETA is not specified, this field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the MDPAT that was
transmitted with the message if it was put to a queue. This will be the value of MDPAT that is kept with
the message if it is retained (see description of PMRET for more details about retained publications)
but is not used as the MDPAT when the message is sent as a publication to subscribers since they
provide a value to override MDPAT in all publications sent to them. If the message has no context, the
field is set to ATNCON.

This is an output field for the MQGET call. The initial value of this field is ATNCON.

MDPD (8-byte character string)

Date when message was put.

This is part of the origin context of the message. For more information about message context, see
Message context and Controlling context information.

The format used for the date when this field is generated by the queue manager is:

• YYYYMMDD

where the characters represent:
YYYY

year (four numeric digits)
MM

month of year (01 through 12)
DD

day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the MDPD and MDPT fields, subject to the system clock being
set accurately to GMT.

If the message was put as part of a unit of work, the date is that when the message was put, and not
the date when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is specified in the PMO
parameter. The contents of the field are not checked by the queue manager, except that any
information following a null character within the field is discarded. The null character and any
following characters are converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the MDPD that was
transmitted with the message if it was put to a queue. This will be the value of MDPD that is kept with
the message if it is retained (see description of PMRET for more details about retained publications)
but is not used as the MDPD when the message is sent as a publication to subscribers since they
provide a value to override MDPD in all publications sent to them. If the message has no context, the
field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by LNPDAT. The initial value
of this field is 8 blank characters.

1124 IBM MQ Developing Applications Reference

MDPER (10-digit signed integer)

Message persistence.

This indicates whether the message survives system failures and restarts of the queue manager. For
the MQPUT and MQPUT1 calls, the value must be one of the following:
PEPER

Message is persistent.

This means that the message survives system failures and restarts of the queue manager. Once
the message has been put, and the putter's unit of work committed (if the message is put as
part of a unit of work), the message is preserved on auxiliary storage. It remains there until the
message is removed from the queue, and the getter's unit of work committed (if the message is
retrieved as part of a unit of work).

When a persistent message is sent to a remote queue, a store-and-forward mechanism is used to
hold the message at each queue manager along the route to the destination, until the message is
known to have arrived at the next queue manager.

Persistent messages cannot be placed on:

• Temporary dynamic queues
• Shared queues where the coupling facility structure level is less than three, or the coupling

facility structure is not recoverable.

Persistent messages can be placed on permanent dynamic queues, predefined queues, and
shared queues where the coupling facility structure level is 3, and the coupling facility is
recoverable.

PENPER
Message is not persistent.

This means that the message does not normally survive system failures or restarts of the queue
manager. This applies even if an intact copy of the message is found on auxiliary storage during
restart of the queue manager.

In the special case of shared queues, nonpersistent messages do survive restarts of queue
managers in the queue sharing group, but do not survive failures of the coupling facility used to
store messages on the shared queues.

PEQDEF
Message has default persistence.

• If the queue is a cluster queue, the persistence of the message is taken from the
DefPersistence attribute defined at the destination queue manager that owns the particular
instance of the queue on which the message is placed. Usually, all of the instances of a cluster
queue have the same value for the DefPersistence attribute, although this is not mandated.

The value of DefPersistence is copied into the MDPER field when the message is placed
on the destination queue. If DefPersistence is changed subsequently, messages that have
already been placed on the queue are not affected.

• If the queue is not a cluster queue, the persistence of the message is taken from the
DefPersistence attribute defined at the local queue manager, even if the destination queue
manager is remote.

If there is more than one definition in the queue-name resolution path, the default persistence is
taken from the value of this attribute in the first definition in the path. This could be:

– An alias queue
– A local queue
– A local definition of a remote queue
– A queue manager alias
– A transmission queue (for example, the DefXmitQName queue)

Developing applications reference 1125

The value of DefPersistence is copied into the MDPER field when the message is put. If
DefPersistence is changed subsequently, messages that have already been put are not
affected.

Both persistent and nonpersistent messages can exist on the same queue.

When replying to a message, applications should normally use for the reply message the persistence
of the request message.

For an MQGET call, the value returned is either PEPER or PENPER.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The
initial value of this field is PEQDEF.

MDPRI (10-digit signed integer)

Message priority.

For the MQPUT and MQPUT1 calls, the value must be greater than or equal to zero; zero is the lowest
priority. The following special value can also be used:
PRQDEF

Default priority for queue.

• If the queue is a cluster queue, the priority for the message is taken from the DefPriority
attribute as defined at the destination queue manager that owns the particular instance of the
queue on which the message is placed. Usually, all of the instances of a cluster queue have the
same value for the DefPriority attribute, although this is not mandated.

The value of DefPriority is copied into the MDPRI field when the message is placed on the
destination queue. If DefPriority is changed subsequently, messages that have already been
placed on the queue are not affected.

• If the queue is not a cluster queue, the priority for the message is taken from the DefPriority
attribute as defined at the local queue manager, even if the destination queue manager is
remote.

If there is more than one definition in the queue-name resolution path, the default priority is
taken from the value of this attribute in the first definition in the path. This could be:

– An alias queue
– A local queue
– A local definition of a remote queue
– A queue manager alias
– A transmission queue (for example, the DefXmitQName queue)

The value of DefPriority is copied into the MDPRI field when the message is put. If
DefPriority is changed subsequently, messages that have already been put are not affected.

The value returned by the MQGET call is always greater than or equal to zero; the value PRQDEF is
never returned.

If a message is put with a priority greater than the maximum supported by the local queue manager
(this maximum is given by the MaxPriority queue manager attribute), the message is accepted by
the queue manager, but placed on the queue at the queue manager's maximum priority; the MQPUT
or MQPUT1 call completes with CCWARN and reason code RC2049. However, the MDPRI field retains
the value specified by the application which put the message.

When replying to a message, applications should normally use for the reply message the priority of
the request message. In other situations, specifying PRQDEF allows priority tuning to be carried out
without changing the application.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The
initial value of this field is PRQDEF.

1126 IBM MQ Developing Applications Reference

MDPT (8-byte character string)

Time when message was put.

This is part of the origin context of the message. For more information about message context, see
Message context and Controlling context information.

The format used for the time when this field is generated by the queue manager is:

• HHMMSSTH

where the characters represent (in order):
HH

hours (00 through 23)
MM

minutes (00 through 59)
SS

seconds (00 through 59; see note)
T

tenths of a second (0 through 9)
H

hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time standard, it is possible on rare
occasions for 60 or 61 to be returned for the seconds in MDPT. This happens when leap seconds are
inserted into the global time standard.

Greenwich Mean Time (GMT) is used for the MDPD and MDPT fields, subject to the system clock being
set accurately to GMT.

If the message was put as part of a unit of work, the time is that when the message was put, and not
the time when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETA is specified in the PMO
parameter. The contents of the field are not checked by the queue manager, except that any
information following a null character within the field is discarded. The null character and any
following characters are converted to blanks by the queue manager. If PMSETA is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field contains the MDPT value
that was transmitted with the message if it was put to a queue. This will be the value of MDPT that
is kept with the message if it is retained (see description of PMRET for more details about retained
publications) but is not used as the MDPT when the message is sent as a publication to subscribers
since they provide a value to override MDPT in all publications sent to them. If the message has no
context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by LNPTIM. The initial value
of this field is 8 blank characters.

MDREP (10-digit signed integer)

Options for report messages.

A report message is a message about another message, used to inform an application about expected
or unexpected events that relate to the original message. The MDREP field enables the application
sending the original message to specify which report messages are required, whether the application
message data is to be included in them, and also (for both reports and replies) how the message and
correlation identifiers in the report or reply message are to be set. Any or all (or none) of the following
types of report message can be requested:

• Exception
• Expiration
• Confirm on arrival (COA)

Developing applications reference 1127

• Confirm on delivery (COD)
• Positive action notification (PAN)
• Negative action notification (NAN)

If more than one type of report message is required, or other report options are needed, the values
can be added together (do not add the same constant more than once).

The application that receives the report message can determine the reason the report was generated
by examining the MDFB field in the MQMD; see the MDFB field for more details.

The use of report options when putting a message to a topic can cause zero, one or many report
messages to be generated and sent to the application. This is because the publication message may
be sent to zero, one or many subscribing applications.

Exception options: You can specify one of the following options to request an exception report
message.
ROACTIVITY

Activity reports required

This report option enables an activity report to be generated, whenever a message with this report
option set is processed by supporting applications.

Messages with this report option set must be accepted by any queue manager, even if they do
not 'understand' the option. This allows the report option to be set on any user message, even if
they are processed by previous queue managers. To achieve this, the report option is placed in the
ROAUM subfield.

If a process (either a queue manager or a user process) performs an Activity on a message with
ROACT set, it can choose to generate and put an activity report.

The activity report option allows the route of any message to be traced throughout a queue
manager network. The report option can be specified on any current user message and instantly
they can begin to calculate the route of the message through the network. If the application
generating the message cannot enable activity report generation, it can be enabled by using an
API crossing exit supplied by queue manager administrators.

Several conditions are applicable to activity reports:

1. The route will be less detailed if there are fewer queue managers in the network which are able
to generate activity reports.

2. The activity reports may not be easily 'orderable' in order to determine the route taken.
3. The activity reports may not be able to find a route to their requested destination.

ROEXC
Exception reports required.

This type of report can be generated by a message channel agent when a message is sent to
another queue manager and the message cannot be delivered to the specified destination queue.
For example, the destination queue or an intermediate transmission queue might be full, or the
message might be too big for the queue.

Generation of the exception report message depends on the persistence of the original message,
and the speed of the message channel (normal or fast) through which the original message
travels:

• For all persistent messages, and for nonpersistent messages traveling through normal message
channels, the exception report is generated only if the action specified by the sending
application for the error condition can be completed successfully. The sending application can
specify one of the following actions to control the disposition of the original message when the
error condition arises:

– RODLQ (this causes the original message to be placed on the dead-letter queue).

1128 IBM MQ Developing Applications Reference

– RODISC (this causes the original message to be discarded).

If the action specified by the sending application cannot be completed successfully, the original
message is left on the transmission queue, and no exception report message is generated.

• For nonpersistent messages traveling through fast message channels, the original message
is removed from the transmission queue and the exception report generated even if the
specified action for the error condition cannot be completed successfully. For example, if RODLQ
is specified, but the original message cannot be placed on the dead-letter queue because
(say) that queue is full, the exception report message is generated and the original message
discarded.

See Message persistence for more information about normal and fast message channels.

An exception report is not generated if the application that put the original message can be
notified synchronously of the problem by means of the reason code returned by the MQPUT or
MQPUT1 call.

Applications can also send exception reports, to indicate that a message that it has received
cannot be processed (for example, because it is a debit transaction that would cause the account
to exceed its credit limit).

Message data from the original message is not included with the report message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

ROEXCD
Exception reports with data required.

This is the same as ROEXC, except that the first 100 bytes of the application message data from
the original message are included in the report message. If the original message contains one or
more MQ header structures, they are included in the report message, in addition to the 100 bytes
of application data.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

ROEXCF
Exception reports with full data required.

This is the same as ROEXC, except that all of the application message data from the original
message is included in the report message.

Do not specify more than one of ROEXC, ROEXCD, and ROEXCF.

Expiration options: You can specify one of the following options to request an expiration report
message.
ROEXP

Expiration reports required.

This type of report is generated by the queue manager if the message is discarded before delivery
to an application because its expiry time has passed (see the MDEXP field). If this option is not
set, no report message is generated if a message is discarded for this reason (even if one of the
ROEXC* options is specified).

Message data from the original message is not included with the report message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

ROEXPD
Expiration reports with data required.

This is the same as ROEXP, except that the first 100 bytes of the application message data from
the original message are included in the report message. If the original message contains one or
more MQ header structures, they are included in the report message, in addition to the 100 bytes
of application data.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

Developing applications reference 1129

ROEXPF
Expiration reports with full data required.

This is the same as ROEXP, except that all of the application message data from the original
message is included in the report message.

Do not specify more than one of ROEXP, ROEXPD, and ROEXPF.

Confirm-on-arrival options: You can specify one of the following options to request a confirm-on-
arrival report message.
ROCOA

Confirm-on-arrival reports required.

This type of report is generated by the queue manager that owns the destination queue, when
the message is placed on the destination queue. Message data from the original message is not
included with the report message.

If the message is put as part of a unit of work, and the destination queue is a local queue, the COA
report message generated by the queue manager becomes available for retrieval only if and when
the unit of work is committed.

A COA report is not generated if the MDFMT field in the message descriptor is FMXQH or FMDLH.
This prevents a COA report being generated if the message is put on a transmission queue, or is
undeliverable and put on a dead-letter queue.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

ROCOAD
Confirm-on-arrival reports with data required.

This is the same as ROCOA, except that the first 100 bytes of the application message data from
the original message are included in the report message. If the original message contains one or
more MQ header structures, they are included in the report message, in addition to the 100 bytes
of application data.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

ROCOAF
Confirm-on-arrival reports with full data required.

This is the same as ROCOA, except that all of the application message data from the original
message is included in the report message.

Do not specify more than one of ROCOA, ROCOAD, and ROCOAF.

Discard and expiry options: You can specify the following option to set the expiry time and discard
flag for report messages.
ROPDAE

Set report message expiry time and discard flag.

This option ensures that report messages and reply messages inherit the expiry time and discard
flag (whether to discard or not), from their original messages. With this option set, report and reply
messages:

1. Inherit the RODISC flag (if it was set).
2. Inherit the remaining expiry time of the message, if the message is not an expiry report. If the

message is an expiry report, the expiry time is set to 60 seconds.

With this option set, the following applies:

Note:

1. Report and reply messages are generated with a discard flag and an expiry value, and cannot
remain within the system.

2. Trace route messages are prevented from reaching destination queues on non-trace route
enabled queue managers.

1130 IBM MQ Developing Applications Reference

3. Queues are prevented from being filled with reports that cannot be delivered, if
communications links are broken.

4. Command server responses inherit the remaining expiry of the request.

Confirm-on-delivery options: You can specify one of the following options to request a confirm-on-
delivery report message.
ROCOD

Confirm-on-delivery reports required.

This type of report is generated by the queue manager when an application retrieves the message
from the destination queue in a way that causes the message to be deleted from the queue.
Message data from the original message is not included with the report message.

If the message is retrieved as part of a unit of work, the report message is generated within the
same unit of work, so that the report is not available until the unit of work is committed. If the unit
of work is backed out, the report is not sent.

A COD report is not generated if the MDFMT field in the message descriptor is FMDLH. This
prevents a COD report being generated if the message is undeliverable and put on a dead-letter
queue.

ROCOD is not valid if the destination queue is an XCF queue.

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

ROCODD
Confirm-on-delivery reports with data required.

This is the same as ROCOD, except that the first 100 bytes of the application message data from
the original message are included in the report message. If the original message contains one or
more MQ header structures, they are included in the report message, in addition to the 100 bytes
of application data.

If GMATM is specified on the MQGET call for the original message, and the message retrieved is
truncated, the amount of application message data placed in the report message is the minimum
of:

• The length of the original message
• 100 bytes.

ROCODD is not valid if the destination queue is an XCF queue.

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

ROCODF
Confirm-on-delivery reports with full data required.

This is the same as ROCOD, except that all of the application message data from the original
message is included in the report message.

ROCODF is not valid if the destination queue is an XCF queue.

Do not specify more than one of ROCOD, ROCODD, and ROCODF.

Action-notification options: You can specify one or both of the following options to request that the
receiving application send a positive-action or negative-action report message.
ROPAN

Positive action notification reports required.

This type of report is generated by the application that retrieves the message and acts upon
it. It indicates that the action requested in the message has been performed successfully. The
application generating the report determines whether any data is to be included with the report.

Other than conveying this request to the application retrieving the message, the queue manager
takes no action based upon this option. It is the responsibility of the retrieving application to
generate the report if appropriate.

Developing applications reference 1131

RONAN
Negative action notification reports required.

This type of report is generated by the application that retrieves the message and acts upon it.
It indicates that the action requested in the message has not been performed successfully. The
application generating the report determines whether any data is to be included with the report.
For example, it may be desirable to include some data indicating why the request could not be
performed.

Other than conveying this request to the application retrieving the message, the queue manager
takes no action based upon this option. It is the responsibility of the retrieving application to
generate the report if appropriate.

Determination of which conditions correspond to a positive action and which correspond to a negative
action is the responsibility of the application. However, it is recommended that if the request has been
only partially performed, a NAN report rather than a PAN report should be generated if requested. It
is also recommended that every possible condition should correspond to either a positive action, or a
negative action, but not both.

Message-identifier options: You can specify one of the following options to control how the MDMID of
the report message (or of the reply message) is to be set.
RONMI

New message identifier.

This is the default action, and indicates that if a report or reply is generated as a result of this
message, a new MDMID is to be generated for the report or reply message.

ROPMI
Pass message identifier.

If a report or reply is generated as a result of this message, the MDMID of this message is to be
copied to the MDMID of the report or reply message.

The MsgId of a publication message will be different for each subscriber that receives a copy of
the publication and therefore the MsgId copied into the report or reply message will be different
for each one.

If this option is not specified, RONMI is assumed.

Correlation-identifier options: You can specify one of the following options to control how the MDCID
of the report message (or of the reply message) is to be set.
ROCMTC

Copy message identifier to correlation identifier.

This is the default action, and indicates that if a report or reply is generated as a result of this
message, the MDMID of this message is to be copied to the MDCID of the report or reply message.

The MsgId of a publication message will be different for each subscriber that receives a copy of
the publication and therefore the MsgId copied into the CorrelId of the report or reply message
will be different for each one.

ROPCI
Pass correlation identifier.

If a report or reply is generated as a result of this message, the MDCID of this message is to be
copied to the MDCID of the report or reply message.

The MDCID of a publication message will be specific to a subscriber unless it uses the SOSCID
option and sets the SCDIC field in the MQSD to CINONE. Therefore it is possible that the MDCID
copied into the MDCID of the report or reply message will be different for each one.

If this option is not specified, ROCMTC is assumed.

Servers replying to requests or generating report messages are recommended to check whether the
ROPMI or ROPCI options were set in the original message. If they were, the servers should take the

1132 IBM MQ Developing Applications Reference

action described for those options. If neither is set, the servers should take the corresponding default
action.

: You can specify one of the following options to control the disposition of the original message when it
cannot be delivered to the destination queue. These options apply only to those situations that would
result in an exception report message being generated if one had been requested by the sending
application. The application can set the disposition options independently of requesting exception
reports.
RODLQ

Place message on dead-letter queue.

This is the default action, and indicates that the message should be placed on the dead-letter
queue, if the message cannot be delivered to the destination queue. This happens in the following
situations:

• When the application that put the original message cannot be notified synchronously of the
problem by means of the reason code returned by the MQPUT or MQPUT1 call. An exception
report message is generated, if one was requested by the sender.

• When the application that put the original message was putting to a topic

An exception report message will be generated, if one was requested by the sender.

RODISC
Discard message.

This indicates that the message should be discarded if it cannot be delivered to the destination
queue. This happens in the following situations:

• When the application that put the original message cannot be notified synchronously of the
problem by means of the reason code returned by the MQPUT or MQPUT1 call. An exception
report message is generated, if one was requested by the sender.

• When the application that put the original message was putting to a topic

An exception report message will be generated, if one was requested by the sender.

If it is required to return the original message to the sender, without the original message being
placed on the dead-letter queue, the sender should specify RODISC with ROEXCF.

Default option: You can specify the following if no report options are required:
RONONE

No reports required.

This value can be used to indicate that no other options have been specified. RONONE is defined
to aid program documentation. It is not intended that this option be used with any other, but as its
value is zero, such use cannot be detected.

General information:

1. All report types required must be specifically requested by the application sending the original
message. For example, if a COA report is requested but an exception report is not, a COA report
is generated when the message is placed on the destination queue, but no exception report is
generated if the destination queue is full when the message arrives there. If no MDREP options are
set, no report messages are generated by the queue manager or message channel agent (MCA).

Some report options can be specified even though the local queue manager does not recognize
them; this is useful when the option is to be processed by the destination queue manager. See
“Report options and message flags on IBM i” on page 1420 for more details.

If a report message is requested, the name of the queue to which the report should be sent must
be specified in the MDRQ field. When a report message is received, the nature of the report can be
determined by examining the MDFB field in the message descriptor.

2. If the queue manager or MCA that generates a report message is unable to put the report message
on the reply queue (for example, because the reply queue or transmission queue is full), the report

Developing applications reference 1133

message is placed instead on the dead-letter queue. If that also fails, or there is no dead-letter
queue, the action taken depends on the type of the report message:

• If the report message is an exception report, the message which caused the exception report to
be generated is left on its transmission queue; this ensures that the message is not lost.

• For all other report types, the report message is discarded and processing continues normally.
This is done because either the original message has already been delivered safely (for COA or
COD report messages), or is no longer of any interest (for an expiration report message).

Once a report message has been placed successfully on a queue (either the destination queue or
an intermediate transmission queue), the message is no longer subject to special processing; it is
treated just like any other message.

3. When the report is generated, the MDRQ queue is opened and the report message put using the
authority of the MDUID in the MQMD of the message causing the report, except in the following
cases:

• Exception reports generated by a receiving MCA are put with whatever authority the MCA used
when it tried to put the message causing the report. The CDPA channel attribute determines the
user identifier used.

• COA reports generated by the queue manager are put with whatever authority was used when
the message causing the report was put on the queue manager generating the report. For
example, if the message was put by a receiving MCA using the MCA's user identifier, the queue
manager puts the COA report using the MCA's user identifier.

Applications generating reports should normally use the same authority as they would have used
to generate a reply; this should normally be the authority of the user identifier in the original
message.

If the report has to travel to a remote destination, senders and receivers can decide whether to
accept it, in the same way as they do for other messages.

4. If a report message with data is requested:

• The report message is always generated with the amount of data requested by the sender of the
original message. If the report message is too big for the reply queue, the processing described
previously occurs; the report message is never truncated in order to fit on the reply queue.

• If the MDFMT of the original message is FMXQH, the data included in the report does not include
the MQXQH. The report data starts with the first byte of the data beyond the MQXQH in the
original message. This occurs whether the queue is a transmission queue.

5. If a COA, COD, or expiration report message is received at the reply queue, it is guaranteed that
the original message arrived, was delivered, or expired, as appropriate. However, if one or more of
these report messages is requested and is not received, the reverse cannot be assumed, since one
of the following may have occurred:

a. The report message is held up because a link is down.
b. The report message is held up because a blocking condition exists at an intermediate

transmission queue or at the reply queue (for example, the queue is full or inhibited for puts).
c. The report message is on a dead-letter queue.
d. When the queue manager was attempting to generate the report message, it was unable to put

it on the appropriate queue, and was also unable to put it on the dead-letter queue, so the
report message could not be generated.

e. A failure of the queue manager occurred between the action being reported (arrival, delivery or
expiry), and generation of the corresponding report message. (This does not happen for COD
report messages if the application retrieves the original message within a unit of work, as the
COD report message is generated within the same unit of work.)

Exception report messages may be held up in the same way for reasons 1, 2, and 3 previously.
However, when an MCA is unable to generate an exception report message (the report message
cannot be put either on the reply queue or the dead-letter queue), the original message remains

1134 IBM MQ Developing Applications Reference

on the transmission queue at the sender, and the channel is closed. This occurs irrespective
of whether the report message was to be generated at the sending or the receiving end of the
channel.

6. If the original message is temporarily blocked (resulting in an exception report message being
generated and the original message being put on a dead-letter queue), but the blockage clears and
an application then reads the original message from the dead-letter queue and puts it again to its
destination, the following may occur:

• Even though an exception report message has been generated, the original message eventually
arrives successfully at its destination.

• More than one exception report message is generated in respect of a single original message,
since the original message may encounter another blockage later.

Report messages when putting to a topic:

1. Reports can be generated when putting a message to a topic. This message will be sent to all
subscribers to the topic, which could be zero, one or many. This should be taken into account when
choosing to use report options as many report messages could be generated as a result.

2. When putting a message to a topic, there may be many destination queues that are to be given
a copy of the message. If some of these destination queues have a problem, such as queue full,
then the successful completion of the MQPUT depends on the setting of NPMSGDLV or PMSGDLV
(depending on the persistence of the message). If the setting is such that message delivery to
the destination queue must be successful (for example, it is a persistent message to a durable
subscriber and PMSGDLV is set to ALL or ALLDUR), then success is defined as one of the following
criteria being met:

• Successful put to the subscriber queue
• Use of RODLQ and a successful put to the Dead-letter queue if the subscriber queue cannot take

the message
• Use of RODISC if the subscriber queue cannot take the message.

Report messages for message segments:

1. Report messages can be requested for messages that have segmentation allowed (see the
description of the MFSEGA flag). If the queue manager finds it necessary to segment the message,
a report message can be generated for each of the segments that subsequently encounters the
relevant condition. Applications should therefore be prepared to receive multiple report messages
for each type of report message requested. The MDGID field in the report message can be used to
correlate the multiple reports with the group identifier of the original message, and the MDFB field
used to identify the type of each report message.

2. If GMLOGO is used to retrieve report messages for segments, be aware that reports of different
types may be returned by the successive MQGET calls. For example, if both COA and COD reports
are requested for a message that is segmented by the queue manager, the MQGET calls for the
report messages may return the COA and COD report messages interleaved in an unpredictable
fashion. This can be avoided by using the GMCMPM option (optionally with GMATM). GMCMPM
causes the queue manager to reassemble report messages that have the same report type.
For example, the first MQGET call might reassemble all of the COA messages relating to the
original message, and the second MQGET call might reassemble all of the COD messages. Which is
reassembled first depends on which type of report message happens to occur first on the queue.

3. Applications that themselves put segments can specify different report options for each segment.
However, the following points should be noted:

• If the segments are retrieved using the GMCMPM option, only the report options in the first
segment are honored by the queue manager.

• If the segments are retrieved one by one, and most of them have one of the ROCOD* options, but
at least one segment does not, it will not be possible to use the GMCMPM option to retrieve the
report messages with a single MQGET call, or use the GMASGA option to detect when all of the
report messages have arrived.

Developing applications reference 1135

4. In an MQ network, it is possible for the queue managers to have differing capabilities. If a
report message for a segment is generated by a queue manager or MCA that does not support
segmentation, the queue manager or MCA will not by default include the necessary segment
information in the report message, and this may make it difficult to identify the original message
that caused the report to be generated. This difficulty can be avoided by requesting data with the
report message, that is, by specifying the appropriate RO*D or RO*F options. However, be aware
that if RO*D is specified, less than 100 bytes of application message data may be returned to the
application which retrieves the report message, if the report message is generated by a queue
manager or MCA that does not support segmentation.

Contents of the message descriptor for a report message: When the queue manager or message
channel agent (MCA) generates a report message, it sets the fields in the message descriptor to the
following values, and then puts the message in the normal way.

Table 709. Values used for MQMD fields when a report message is system-generated

Field in MQMD Value used

MDSID MDSIDV

MDVER MDVER2

MDREP RONONE

MDMT MTRPRT

MDEXP EIULIM

MDFB As appropriate for the nature of the report (FBCOA, FBCOD, FBEXP, or an
RC* value)

MDENC Copied from the original message descriptor

MDCSI Copied from the original message descriptor

MDFMT Copied from the original message descriptor

MDPRI Copied from the original message descriptor

MDPER Copied from the original message descriptor

MDMID As specified by the report options in the original message descriptor

MDCID As specified by the report options in the original message descriptor

MDBOC 0

MDRQ Blanks

MDRM Name of queue manager

MDUID As set by the PMPASI option

MDACC As set by the PMPASI option

MDAID As set by the PMPASI option

MDPAT ATQM, or as appropriate for the message channel agent

MDPAN First 28 bytes of the queue manager name or message channel agent
name. For report messages generated by the IMS bridge, this field
contains the XCF group name and XCF member name of the IMS system
to which the message relates.

MDPD Date when report message is sent

MDPT Time when report message is sent

MDAOD Blanks

MDGID Copied from the original message descriptor

1136 IBM MQ Developing Applications Reference

Table 709. Values used for MQMD fields when a report message is system-generated (continued)

Field in MQMD Value used

MDSEQ Copied from the original message descriptor

MDOFF Copied from the original message descriptor

MDMFL Copied from the original message descriptor

MDOLN Copied from the original message descriptor if not OLUNDF, and set to the
length of the original message data otherwise

An application generating a report is recommended to set similar values, except for the following:

• The MDRM field can be set to blanks (the queue manager will change this to the name of the local
queue manager when the message is put).

• The context fields should be set using the option that would have been used for a reply, normally
PMPASI.

Analyzing the report field: The MDREP field contains subfields; because of this, applications that
need to check whether the sender of the message requested a particular report should use one of the
techniques described in “Analyzing the report field on IBM i” on page 1422.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The
initial value of this field is RONONE.

MDRM (48-byte character string)

Name of reply queue manager.

This is the name of the queue manager to which the reply message or report message should be sent.
MDRQ is the local name of a queue that is defined on this queue manager.

If the MDRM field is blank, the local queue manager looks up the MDRQ name in its queue definitions. If
a local definition of a remote queue exists with this name, the MDRM value in the transmitted message
is replaced by the value of the RemoteQMgrName attribute from the definition of the remote queue,
and this value will be returned in the message descriptor when the receiving application issues an
MQGET call for the message. If a local definition of a remote queue does not exist, the MDRM that is
transmitted with the message is the name of the local queue manager.

If the name is specified, it may contain trailing blanks; the first null character and characters following
it are treated as blanks. Otherwise, however, no check is made that the name satisfies the naming
rules for queue managers, or that this name is known to the sending queue manager; this is also true
for the name transmitted, if the MDRM is replaced in the transmitted message.

If a reply-to queue is not required, it is recommended (although this is not checked) that the MDRM
field should be set to blanks; the field should not be left uninitialized.

For the MQGET call, the queue manager always returns the name padded with blanks to the length of
the field.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The
length of this field is given by LNQMN. The initial value of this field is 48 blank characters.

MDRQ (48-byte character string)

Name of reply queue.

This is the name of the message queue to which the application that issued the get request for the
message should send MTRPLY and MTRPRT messages. The name is the local name of a queue that is
defined on the queue manager identified by MDRM. This queue should not be a model queue, although
the sending queue manager does not verify this when the message is put.

For the MQPUT and MQPUT1 calls, this field must not be blank if the MDMT field has the value
MTRQST, or if any report messages are requested by the MDREP field. However, the value specified (or

Developing applications reference 1137

substituted) is passed on to the application that issues the get request for the message, whatever the
message type.

If the MDRM field is blank, the local queue manager looks up the MDRQ name in its own queue
definitions. If a local definition of a remote queue exists with this name, the MDRQ value in the
transmitted message is replaced by the value of the RemoteQName attribute from the definition of
the remote queue, and this value will be returned in the message descriptor when the receiving
application issues an MQGET call for the message. If a local definition of a remote queue does not
exist, MDRQ is unchanged.

If the name is specified, it may contain trailing blanks; the first null character and characters following
it are treated as blanks. Otherwise, however, no check is made that the name satisfies the naming
rules for queues; this is also true for the name transmitted, if the MDRQ is replaced in the transmitted
message. The only check made is that a name has been specified, if the circumstances require it.

If a reply-to queue is not required, it is recommended (although this is not checked) that the MDRQ
field should be set to blanks; the field should not be left uninitialized.

For the MQGET call, the queue manager always returns the name padded with blanks to the length of
the field.

If a message that requires a report message cannot be delivered, and the report message also
cannot be delivered to the queue specified, both the original message and the report message go
to the dead-letter (undelivered-message) queue. See the DeadLetterQName attribute described in
“Attributes for the queue manager on IBM i” on page 1386.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls. The
length of this field is given by LNQN. The initial value of this field is 48 blank characters.

MDSEQ (10-digit signed integer)

Sequence number of logical message within group.

Sequence numbers start at 1, and increase by 1 for each new logical message in the group, up to a
maximum of 999 999 999. A physical message which is not in a group has a sequence number of 1.

This field need not be set by the application on the MQPUT or MQGET call if:

• On the MQPUT call, PMLOGO is specified.
• On the MQGET call, MOSEQN is not specified.

These are the recommended ways of using these calls for messages that are not report messages.
However, if the application requires more control, or the call is MQPUT1, the application must ensure
that MDSEQ is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the value detailed in Table 1. On
output from the MQPUT and MQPUT1 calls, the queue manager sets this field to the value that was
sent with the message.

On input to the MQGET call, the queue manager uses the value detailed in Table 1. On output from the
MQGET call, the queue manager sets this field to the value for the message retrieved.

The initial value of this field is one. This field is ignored if MDVER is less than MDVER2.

MDSID (4-byte character string)

Structure identifier.

The value must be:
MDSIDV

Identifier for message descriptor structure.

This is always an input field. The initial value of this field is MDSIDV.

MDUID (12-byte character string)

User identifier.

1138 IBM MQ Developing Applications Reference

This is part of the identity context of the message. For more information about message context, see
Message context and Controlling context information.

MDUID specifies the user identifier of the application that originated the message. The queue manager
treats this information as character data, but does not define the format of it.

After a message has been received, MDUID can be used in the ODAU field of the OBJDSC parameter of
a subsequent MQOPEN or MQPUT1 call, so that the authorization check is performed for the MDUID
user instead of the application performing the open.

When the queue manager generates this information for an MQPUT or MQPUT1 call, the queue
manager uses a user identifier determined from the environment.

When the user identifier is determined from the environment:

• On z/OS, the queue manager uses:

– For batch, the user identifier from the JES JOB card or started task
– For TSO, the log on user identifier
– For CICS, the user identifier associated with the task
– For IMS, the user identifier depends on the type of application:

- For:

• Nonmessage BMP regions
• Nonmessage IFP regions
• Message BMP and message IFP regions that have not issued a successful GU call

the queue manager uses the user identifier from the region JES JOB card or the TSO user
identifier. If these are blank or null, it uses the name of the program specification block (PSB).

- For:

• Message BMP and message IFP regions that have issued a successful GU call
• MPP regions

the queue manager uses one of:

• The signed-on user identifier associated with the message
• The logical terminal (LTERM) name
• The user identifier from the region JES JOB card
• The TSO user identifier
• The PSB name

• On IBM i, the queue manager uses the name of the user profile associated with the
application job.

• On AIX and Linux, the queue manager uses:

– The application's logon name
– The effective user identifier of the process if no logon is available
– The user identifier associated with the transaction, if the application is a CICS transaction

• On VSE/ESA, this is a reserved field.

• On Windows, the queue manager uses the first 12 characters of the logged-on user
name.

For the MQPUT and MQPUT1 calls, this is an input/output field if PMSETI or PMSETA is specified in
the PMO parameter. Any information following a null character within the field is discarded. The null
character and any following characters are converted to blanks by the queue manager. If PMSETI or
PMSETA is not specified, this field is ignored on input and is an output-only field.

Developing applications reference 1139

After the successful completion of an MQPUT or MQPUT1 call, this field contains the MDUID that was
transmitted with the message if it was put to a queue. This will be the value of MDUID that is kept with
the message if it is retained (see description of PMRET for more details about retained publications)
but is not used as the MDUID when the message is sent as a publication to subscribers since they
provide a value to override MDUID in all publications sent to them. If the message has no context, the
field is entirely blank.

This is an output field for the MQGET call. The length of this field is given by LNUID. The initial value of
this field is 12 blank characters.

MDVER (10-digit signed integer)

Structure version number.

The value must be one of the following:
MDVER1

Version-1 message descriptor structure.
MDVER2

Version-2 message descriptor structure.

Note: When a version-2 MQMD is used, the queue manager performs additional checks on any
MQ header structures that may be present at the beginning of the application message data; for
further details see the usage notes for the MQPUT call.

Fields that exist only in the more-recent version of the structure are identified as such in the
descriptions of the fields. The following constant specifies the version number of the current version:
MDVERC

Current version of message descriptor structure.

This is always an input field. The initial value of this field is MDVER1.

Initial values
Table 710. Initial values of fields in MQMD

Field name Name of constant Value of constant

MDSID MDSIDV 'MD¬¬'

MDVER MDVER1 1

MDREP RONONE 0

MDMT MTDGRM 8

MDEXP EIULIM -1

MDFB FBNONE 0

MDENC ENNAT Depends on environment

MDCSI CSQM 0

MDFMT FMNONE Blanks

MDPRI PRQDEF -1

MDPER PEQDEF 2

MDMID MINONE Nulls

MDCID CINONE Nulls

MDBOC None 0

MDRQ None Blanks

1140 IBM MQ Developing Applications Reference

Table 710. Initial values of fields in MQMD (continued)

Field name Name of constant Value of constant

MDRM None Blanks

MDUID None Blanks

MDACC ACNONE Nulls

MDAID None Blanks

MDPAT ATNCON 0

MDPAN None Blanks

MDPD None Blanks

MDPT None Blanks

MDAOD None Blanks

MDGID GINONE Nulls

MDSEQ None 1

MDOFF None 0

MDMFL MFNONE 0

MDOLN OLUNDF -1

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQMD Structure
 D*
 D* Structure identifier
 D MDSID 1 4 INZ('MD ')
 D* Structure version number
 D MDVER 5 8I 0 INZ(1)
 D* Options for report messages
 D MDREP 9 12I 0 INZ(0)
 D* Message type
 D MDMT 13 16I 0 INZ(8)
 D* Message lifetime
 D MDEXP 17 20I 0 INZ(-1)
 D* Feedback or reason code
 D MDFB 21 24I 0 INZ(0)
 D* Numeric encoding of message data
 D MDENC 25 28I 0 INZ(273)
 D* Character set identifier of messagedata
 D MDCSI 29 32I 0 INZ(0)
 D* Format name of message data
 D MDFMT 33 40 INZ(' ')
 D* Message priority
 D MDPRI 41 44I 0 INZ(-1)
 D* Message persistence
 D MDPER 45 48I 0 INZ(2)
 D* Message identifier
 D MDMID 49 72 INZ(X'00000000000000-
 D 0000000000000000000000-
 D 000000000000')
 D* Correlation identifier
 D MDCID 73 96 INZ(X'00000000000000-
 D 0000000000000000000000-
 D 000000000000')
 D* Backout counter

Developing applications reference 1141

 D MDBOC 97 100I 0 INZ(0)
 D* Name of reply queue
 D MDRQ 101 148 INZ
 D* Name of reply queue manager
 D MDRM 149 196 INZ
 D* User identifier
 D MDUID 197 208 INZ
 D* Accounting token
 D MDACC 209 240 INZ(X'00000000000000-
 D 0000000000000000000000-
 D 0000000000000000000000-
 D 000000')
 D* Application data relating toidentity
 D MDAID 241 272 INZ
 D* Type of application that put themessage
 D MDPAT 273 276I 0 INZ(0)
 D* Name of application that put themessage
 D MDPAN 277 304 INZ
 D* Date when message was put
 D MDPD 305 312 INZ
 D* Time when message was put
 D MDPT 313 320 INZ
 D* Application data relating toorigin
 D MDAOD 321 324 INZ
 D* Group identifier
 D MDGID 325 348 INZ(X'00000000000000-
 D 0000000000000000000000-
 D 000000000000')
 D* Sequence number of logical messagewithin group
 D MDSEQ 349 352I 0 INZ(1)
 D* Offset of data in physical messagefrom start of logical message
 D MDOFF 353 356I 0 INZ(0)
 D* Message flags
 D MDMFL 357 360I 0 INZ(0)
 D* Length of original message
 D MDOLN 361 364I 0 INZ(-1)

MQMDE (Message descriptor extension) on IBM i

Overview
Purpose: The MQMDE structure describes the data that sometimes occurs preceding the application
message data. The structure contains those MQMD fields that exist in the version-2 MQMD, but not in the
version-1 MQMD.

Format name: FMMDE.

Character set and encoding: Data in MQMDE must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT for the C
programming language.

The character set and encoding of the MQMDE must be set into the MDCSI and MDENC fields in:

• The MQMD (if the MQMDE structure is at the start of the message data), or
• The header structure that precedes the MQMDE structure (all other cases).

If the MQMDE is not in the queue manager's character set and encoding, the MQMDE is accepted but not
honored, that is, the MQMDE is treated as message data.

Usage: Normal applications should use a version-2 MQMD, in which case they will not encounter an
MQMDE structure. However, specialized applications, and applications that continue to use a version-1
MQMD, may encounter an MQMDE in some situations. The MQMDE structure can occur in the following
circumstances:

• Specified on the MQPUT and MQPUT1 calls
• Returned by the MQGET call
• In messages on transmission queues

• “MQMDE specified on MQPUT and MQPUT1 calls” on page 1143

1142 IBM MQ Developing Applications Reference

• “MQMDE returned by MQGET call” on page 1143
• “MQMDE in messages on transmission queues” on page 1144
• “Fields” on page 1144
• “Initial values” on page 1146
• “RPG declaration” on page 1146

MQMDE specified on MQPUT and MQPUT1 calls
On the MQPUT and MQPUT1 calls, if the application provides a version-1 MQMD, the application can
optionally prefix the message data with an MQMDE, setting the MDFMT field in MQMD to FMMDE to
indicate that an MQMDE is present. If the application does not provide an MQMDE, the queue manager
assumes default values for the fields in the MQMDE. The default values that the queue manager uses are
the same as the initial values for the structure - see Table 712 on page 1146.

If the application provides a version-2 MQMD and prefixes the application message data with an MQMDE,
the structures are processed as shown in Table 711 on page 1143.

Table 711. Queue manager action when MQMDE specified on MQPUT or MQPUT1

MQMD version Values of
version-2
fields

Values of corresponding fields
in MQMDE

Action taken by queue manager

1 - Valid MQMDE is honored

2 Default Valid MQMDE is honored

2 Not default Valid MQMDE is treated as message
data

1 or 2 Any Not valid Call fails with an appropriate
reason code

1 or 2 Any MQMDE is in the wrong character
set or encoding, or is an
unsupported version

MQMDE is treated as message
data

There is one special case. If the application uses a version-2 MQMD to put a message that is a segment
(that is, the MFSEG or MFLSEG flag is set), and the format name in the MQMD is FMDLH, the queue
manager generates an MQMDE structure and inserts it between the MQDLH structure and the data that
follows it. In the MQMD that the queue manager retains with the message, the version-2 fields are set to
their default values.

Several of the fields that exist in the version-2 MQMD but not the version-1 MQMD are input/output fields
on MQPUT and MQPUT1. However, the queue manager does not return any values in the equivalent fields
in the MQMDE on output from the MQPUT and MQPUT1 calls; if the application requires those output
values, it must use a version-2 MQMD.

MQMDE returned by MQGET call
On the MQGET call, if the application provides a version-1 MQMD, the queue manager prefixes the
message returned with an MQMDE, but only if one or more of the fields in the MQMDE has a nondefault
value. The queue manager sets the MDFMT field in MQMD to the value FMMDE to indicate that an MQMDE
is present.

If the application provides an MQMDE at the start of the BUFFER parameter, the MQMDE is ignored.
On return from the MQGET call, it is replaced by the MQMDE for the message (if one is needed), or
overwritten by the application message data (if the MQMDE is not needed).

If an MQMDE is returned by the MQGET call, the data in the MQMDE is typically in the queue manager's
character set and encoding. However the MQMDE may be in some other character set and encoding if:

Developing applications reference 1143

• The MQMDE was treated as data on the MQPUT or MQPUT1 call (see Table 711 on page 1143 for the
circumstances that can cause this).

• The message was received from a remote queue manager connected by a TCP connection, and the
receiving message channel agent (MCA) was not set up correctly (see Security of IBM MQ for IBM i
objects for further information).

MQMDE in messages on transmission queues
Messages on transmission queues are prefixed with the MQXQH structure, which contains within it
a version-1 MQMD. An MQMDE may also be present, positioned between the MQXQH structure and
application message data, but it will typically be present only if one or more of the fields in the MQMDE
has a nondefault value.

Other IBM MQ header structures can also occur between the MQXQH structure and the application
message data. For example, when the dead-letter header MQDLH is present, and the message is not a
segment, the order is:

• MQXQH (containing a version-1 MQMD)
• MQMDE
• MQDLH
• Application message data

Fields
The MQMDE structure contains the following fields; the fields are described in alphabetical order:

MECSI (10-digit signed integer)

Character-set identifier of data that follows MQMDE.

This specifies the character set identifier of the data that follows the MQMDE structure; it does not
apply to character data in the MQMDE structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The queue manager does not check that this field is valid. The following special value can be used:
CSINHT

Inherit character-set identifier of this structure.

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual
character-set identifier of the structure. Provided no error occurs, the value CSINHT is not
returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is ATBRKR.

The initial value of this field is CSUNDF.

MEENC (10-digit signed integer)
MEENC (10-digit signed integer)

This specifies the numeric encoding of the data that follows the MQMDE structure; it does not apply to
numeric data in the MQMDE structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The queue manager does not check that the field is valid. See the MDENC field described in “MQMD
(Message descriptor) on IBM i” on page 1099 for more information about data encodings.

The initial value of this field is ENNAT.

MEFLG (10-digit signed integer)

General flags.

1144 IBM MQ Developing Applications Reference

The following flag can be specified:
MEFNON

No flags.

The initial value of this field is MEFNON.

MEFMT (8-byte character string)

Format name of data that follows MQMDE.

This specifies the format name of the data that follows the MQMDE structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The queue manager does not check that this field is valid. See the MDFMT field described in “MQMD
(Message descriptor) on IBM i” on page 1099 for more information about format names.

The initial value of this field is FMNONE.

MEGID (24-byte bit string)

Group identifier.

See the MDGID field described in “MQMD (Message descriptor) on IBM i” on page 1099. The initial
value of this field is GINONE.

MELEN (10-digit signed integer)

Length of MQMDE structure.

The following value is defined:
MELEN2

Length of version-2 message descriptor extension structure.

The initial value of this field is MELEN2.

MEMFL (10-digit signed integer)

Message flags.

See the MDMFL field described in “MQMD (Message descriptor) on IBM i” on page 1099. The initial
value of this field is MFNONE.

MEOFF (10-digit signed integer)

Offset of data in physical message from start of logical message.

See the MDOFF field described in “MQMD (Message descriptor) on IBM i” on page 1099. The initial
value of this field is 0.

MEOLN (10-digit signed integer)

Length of original message.

See the MDOLN field described in “MQMD (Message descriptor) on IBM i” on page 1099. The initial
value of this field is OLUNDF.

MESEQ (10-digit signed integer)

Sequence number of logical message within group.

See the MDSEQ field described in “MQMD (Message descriptor) on IBM i” on page 1099. The initial
value of this field is 1.

MESID (4-byte character string)

Structure identifier.

The value must be:
MESIDV

Identifier for message descriptor extension structure.

Developing applications reference 1145

The initial value of this field is MESIDV.

MEVER (10-digit signed integer)

Structure version number.

The value must be:
MEVER2

Version-2 message descriptor extension structure.

The following constant specifies the version number of the current version:
MEVERC

Current version of message descriptor extension structure.

The initial value of this field is MEVER2.

Initial values
Table 712. Initial values of fields in MQMDE

Field name Name of constant Value of constant

MESID MESIDV 'MDE¬'

MEVER MEVER2 2

MELEN MELEN2 72

MEENC ENNAT Depends on
environment

MECSI CSUNDF 0

MEFMT FMNONE Blanks

MEFLG MEFNON 0

MEGID GINONE Nulls

MESEQ None 1

MEOFF None 0

MEMFL MFNONE 0

MEOLN OLUNDF -1

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQMDE Structure
 D*
 D* Structure identifier
 D MESID 1 4 INZ('MDE ')
 D* Structure version number
 D MEVER 5 8I 0 INZ(2)
 D* Length of MQMDE structure
 D MELEN 9 12I 0 INZ(72)
 D* Numeric encoding of data that followsMQMDE
 D MEENC 13 16I 0 INZ(273)
 D* Character-set identifier of data thatfollows MQMDE
 D MECSI 17 20I 0 INZ(0)
 D* Format name of data that followsMQMDE

1146 IBM MQ Developing Applications Reference

 D MEFMT 21 28 INZ(' ')
 D* General flags
 D MEFLG 29 32I 0 INZ(0)
 D* Group identifier
 D MEGID 33 56 INZ(X'00000000000000-
 D 0000000000000000000000-
 D 000000000000')
 D* Sequence number of logical messagewithin group
 D MESEQ 57 60I 0 INZ(1)
 D* Offset of data in physical messagefrom start of logical message
 D MEOFF 61 64I 0 INZ(0)
 D* Message flags
 D MEMFL 65 68I 0 INZ(0)
 D* Length of original message
 D MEOLN 69 72I 0 INZ(-1)

MQMHBO (Message handle to buffer options) on IBM i
Structure defining the message handle to buffer options

Overview
Purpose: The MQMHBO structure allows applications to specify options that control how buffers are
produced from message handles. The structure is an input parameter on the MQMHBUF call.

Character set and encoding: Data in MQMHBO must be in the character set of the application and
encoding of the application (ENNAT).

• “Fields” on page 1147
• “Initial values” on page 1148
• “RPG declaration” on page 1148

Fields
The MQMHBO structure contains the following fields; the fields are described in alphabetical order:

MBOPT (10-digit signed integer)

Message handle to buffer options structure - MBOPT field.

These options control the action of MQMHBUF.

You must specify the following option:
MBPRRF

When converting properties from a message handle into a buffer, convert them into the MQRFH2
format.

Optionally, you can also specify the following option. To specify more than one option, either add the
values together (do not add the same constant more than once), or combine the values using the
bitwise OR operation (if the programming language supports bit operations).
MBDLPR

Properties that are added to the buffer are deleted from the message handle. If the call fails no
properties are deleted.

This is always an input field. The initial value of this field is MBPRRF.

MBSID (10-digit signed integer)

Message handle to buffer options structure - MBSID field.

This is the structure identifier. The value must be:
MBSIDV

Identifier for message handle to buffer options structure.

This is always an input field. The initial value of this field isMBSIDV.

Developing applications reference 1147

MBVER (10-digit signed integer)

This is the structure version number. The value must be:
MBVER1

Version number for message handle to buffer options structure.

The following constant specifies the version number of the current version:
MBVERC

Current version of message handle to buffer options structure.

This is always an input field. The initial value of this field is MBVER1.

Initial values
Table 713. Initial values of fields in MQMHBO

Field name Name of constant Value of constant

MVSID MBSIDV 'MHBO'

MBVER MBVER1 1

MBOPT MBPRRF

Notes:

1. The value Null string or blanks denotes a blank character.

RPG declaration

 D* MQMHBO Structure
 D*
 D*
 D* Structure identifier
 D MBSID 1 4 INZ('MHBO')
 D*
 D* Structure version number
 D MBVER 5 8I 0 INZ(1)
 D*
 D* Options that control the action of MQMHBUF
 D MBOPT 9 12I 0 INZ(1)

MQOD (Object descriptor) on IBM i
The MQOD structure is used to specify an object by name.

Overview
Purpose: The following types of object are valid:

• Queue or distribution list
• Namelist
• Process definition
• Queue manager
• Topic

The structure is an input/output parameter on the MQOPEN and MQPUT1 calls.

Version: The current version of MQOD is ODVER4. Fields that exist only in the more-recent versions of the
structure are identified as such in the descriptions that follow.

1148 IBM MQ Developing Applications Reference

The COPY file provided contains the most recent version of MQOD that is supported by the environment,
but with the initial value of the ODVER field set to ODVER1. To use fields that are not present in the
version-1 structure, the application must set the ODVER field to the version number of the version
required.

To open a distribution list, ODVER must be ODVER2 or greater.

Character set and encoding: Data in MQOD must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT. However, if the
application is running as an IBM MQ client, the structure must be in the character set and encoding of the
client.

• “Fields” on page 1149
• “Initial values” on page 1156
• “RPG declaration” on page 1157

Fields
The MQOD structure contains the following fields; the fields are described in alphabetical order:

ODASI (40-byte bit string)

Alternate security identifier.

This is a security identifier that is passed with the ODAU to the authorization service to allow
appropriate authorization checks to be performed. ODASI is used only if:

• OOALTU is specified on the MQOPEN call, or
• PMALTU is specified on the MQPUT1 call,

and the ODAU field is not entirely blank up to the first null character or the end of the field.

The ODASI field has the following structure:

• The first byte is a binary integer containing the length of the significant data that follows; the value
excludes the length byte itself. If no security identifier is present, the length is zero.

• The second byte indicates the type of security identifier that is present; the following values are
possible:
SITWNT

Windows security identifier.
SITNON

No security identifier.
• The third and subsequent bytes up to the length defined by the first byte contain the security
identifier itself.

• Remaining bytes in the field are set to binary zero.

The following special value may be used:
SINONE

No security identifier specified.

The value is binary zero for the length of the field.

This is an input field. The length of this field is given by LNSCID. The initial value of this field is
SINONE. This field is ignored if ODVER is less than ODVER3.

ODAU (12-byte character string)

Alternate user identifier.

If OOALTU is specified for the MQOPEN call, or PMALTU for the MQPUT1 call, this field contains an
alternate user identifier that is to be used to check the authorization for the open, in place of the user

Developing applications reference 1149

identifier that the application is currently running under. Some checks, however, are still carried out
with the current user identifier (for example, context checks).

If OOALTU and PMALTU are not specified and this field is entirely blank up to the first null character or
the end of the field, the open can succeed only if no user authorization is needed to open this object
with the options specified.

If neither OOALTU nor PMALTU is specified, this field is ignored.

This is an input field. The length of this field is given by LNUID. The initial value of this field is 12 blank
characters.

ODDN (48-byte character string)

Dynamic queue name.

This is the name of a dynamic queue that is to be created by the MQOPEN call. This is of relevance
only when ODON specifies the name of a model queue; in all other cases ODDN is ignored.

The characters that are valid in the name are the same as those for ODON, except that an asterisk is
also valid. A name that is blank (or one in which only blanks are shown before the first null character)
is not valid if ODON is the name of a model queue.

If the last nonblank character in the name is an asterisk (*), the queue manager replaces the asterisk
with a string of characters that guarantees that the name generated for the queue is unique at the
local queue manager. To allow a sufficient number of characters for this, the asterisk is valid only in
positions 1 through 33. There must be no characters other than blanks or a null character following
the asterisk.

It is valid for the asterisk to occur in the first character position, in which case the name consists
solely of the characters generated by the queue manager.

This is an input field. The length of this field is given by LNQN. The initial value of this field is 'AMQ.*',
padded with blanks.

ODIDC (10-digit signed integer)

Number of queues that failed to open.

This is the number of queues in the distribution list that failed to open successfully. If present, this
field is also set when opening a single queue which is not in a distribution list.

Note: If present, this field is set only if the CMPCOD parameter on the MQOPEN or MQPUT1 call is
CCOK or CCWARN; it is not set if the CMPCOD parameter is CCFAIL.

This is an output field. The initial value of this field is 0. This field is ignored if ODVER is less than
ODVER2.

ODKDC (10-digit signed integer)

Number of local queues opened successfully.

This is the number of queues in the distribution list that resolve to local queues and that were opened
successfully. The count does not include queues that resolve to remote queues (even though a local
transmission queue is used initially to store the message). If present, this field is also set when
opening a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is ignored if ODVER is less than
ODVER2.

ODMN (48-byte character string)

Object queue manager name.

This is the name of the queue manager on which the ODON object is defined. The characters that are
valid in the name are the same as those for ODON (see previously). A name that is entirely blank up to
the first null character or the end of the field denotes the queue manager to which the application is
connected (the local queue manager).

1150 IBM MQ Developing Applications Reference

The following points apply to the types of object indicated:

• If ODOT is OTTOP, OTNLST, OTPRO, or OTQM, ODMN must be blank or the name of the local queue
manager.

• If ODON is the name of a model queue, the queue manager creates a dynamic queue with the
attributes of the model queue, and returns in the ODMN field the name of the queue manager on
which the queue is created; this is the name of the local queue manager. A model queue can be
specified only on the MQOPEN call; a model queue is not valid on the MQPUT1 call.

• If ODON is the name of a cluster queue, and ODMN is blank, the actual destination of messages sent
using the queue handle returned by the MQOPEN call is chosen by the queue manager (or cluster
workload exit, if one is installed) as follows:

– If OOBNDO is specified, the queue manager selects an instance of the cluster queue during the
processing of the MQOPEN call, and all messages put using this queue handle are sent to that
instance.

– If OOBNDN is specified, the queue manager may choose a different instance of the destination
queue (residing on a different queue manager in the cluster) for each successive MQPUT call that
uses this queue handle.

If the application needs to send a message to a specific instance of a cluster queue (that is, a queue
instance that resides on a particular queue manager in the cluster), the application should specify
the name of that queue manager in the ODMN field. This forces the local queue manager to send the
message to the specified destination queue manager.

• If the object being opened is a distribution list (that is, ODREC is greater than zero), ODMN must be
blank or the null string. If this condition is not satisfied, the call fails with reason code RC2153.

This is an input/output field for the MQOPEN call when ODON is the name of a model queue, and an
input-only field in all other cases. The length of this field is given by LNQMN. The initial value of this
field is 48 blank characters.

ODON (48-byte character string)

Object name.

This is the local name of the object as defined on the queue manager identified by ODMN. The name
can contain the following characters:

• Uppercase alphabetic characters (A - Z)
• Lowercase alphabetic characters (a - z)
• Numeric digits (0 - 9)
• Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but may contain trailing blanks. A null
character can be used to indicate the end of significant data in the name; the null and any characters
following it are treated as blanks. The following restrictions apply in the environments indicated:

• On systems that use EBCDIC Katakana, lowercase characters cannot be used.
• On IBM i, names containing lowercase characters, forward slash, or percent, must be enclosed in

quotation marks when specified on commands. These quotation marks must not be specified for
names that occur as fields in structures or as parameters on calls.

The following points apply to the types of object indicated:

• If ODON is the name of a model queue, the queue manager creates a dynamic queue with the
attributes of the model queue, and returns in the ODON field the name of the queue created. A model
queue can be specified only on the MQOPEN call; a model queue is not valid on the MQPUT1 call.

• If the object being opened is a distribution list (that is, ODREC is present and greater than zero),
ODON must be blank or the null string. If this condition is not satisfied, the call fails with reason code
RC2152.

Developing applications reference 1151

• If ODOT is OTQM, special rules apply; in this case the name must be entirely blank up to the first null
character or the end of the field.

• If ODON is the name of an alias queue with TARGTYPE(TOPIC), a security check is first made on the
named alias queue, as is normal for the use of alias queues. If this security check is successful, this
MQOPEN call will continue and behaves like an MQOPEN of an OTTOP, including making a security
check against the administrative topic object.

This is an input/output field for the MQOPEN call when ODON is the name of a model queue, and an
input-only field in all other cases. The length of this field is given by LNQN. The initial value of this field
is 48 blank characters.

The full topic name can be built from two different fields: ODON and ODOS. For details of how these two
fields are used, see Combining topic strings.

ODORO (10-digit signed integer)

Offset of first object record from start of MQOD.

This is the offset in bytes of the first MQOR object record from the start of the MQOD structure. The
offset can be positive or negative. ODORO is used only when a distribution list is being opened. The
field is ignored if ODREC is zero.

When a distribution list is being opened, an array of one or more MQOR object records must be
provided in order to specify the names of the destination queues in the distribution list. This can be
done in one of two ways:

• By using the offset field ODORO

In this case, the application should declare its own structure containing an MQOD followed by the
array of MQOR records (with as many array elements as are needed), and set ODORO to the offset
of the first element in the array from the start of the MQOD. Care must be taken to ensure that this
offset is correct.

• By using the pointer field ODORP

In this case, the application can declare the array of MQOR structures separately from the MQOD
structure, and set ODORP to the address of the array.

Whichever technique is chosen, one of ODORO and ODORP must be used; the call fails with reason code
RC2155 if both are zero, or both are nonzero.

This is an input field. The initial value of this field is 0. This field is ignored if ODVER is less than
ODVER2.

ODORP (pointer)

Address of first object record.

This is the address of the first MQOR object record. ODORP is used only when a distribution list is being
opened. The field is ignored if ODREC is zero.

This is an input field. The initial value of this field is the null pointer. Either ODORP or ODORO can be
used to specify the object records, but not both; see the description of the ODORO field previously for
details. If ODORP is not used, it must be set to the null pointer or null bytes. This field is ignored if
ODVER is less than ODVER2.

ODOS (MQCHARV)

ODOS specifies the long object name to be used.

This field is referenced only for certain values of ODOT. See the description of ODOT for details of which
values indicate that this field is used.

If ODOS is specified incorrectly, according to the description of how to use the MQCHARV structure, or
if it exceeds the maximum length, the call fails with reason code RC2441.

This is an input field. The initial values of the fields in this structure are the same as those in the
MQCHARV structure.

1152 IBM MQ Developing Applications Reference

The full topic name can be built from two different fields: ODON and ODOS. For details of how these two
fields are used, see Combining topic strings. This field is ignored if ODVER is less than ODVER4.

ODOT (10-digit signed integer)

Object type.

Type of object being named in ODON. Possible values are:
OTQ

Queue. The name of the object is found in ODON.
OTNLST

Namelist. The name of the object is found in ODON.
OTPRO

Process definition. The name of the object is found in ODON.
OTQM

Queue manager. The name of the object is found in ODON.
OTTOP

Topic. The full topic name can be built from two different fields: ODON and ODOS.
For details of how those two fields are used, see Combining topic strings.
If the object identified by the ODON field cannot be found, the call will fail with reason code
RC2425 even if there is a string specified in ODOS.

This is always an input field. The initial value of this field is OTQ.

ODREC (10-digit signed integer)

Number of object records present.

This is the number of MQOR object records that have been provided by the application. If this number
is greater than zero, it indicates that a distribution list is being opened, with ODREC being the number
of destination queues in the list. It is valid for a distribution list to contain only one destination.

The value of ODREC must not be less than zero, and if it is greater than zero ODOT must be OTQ; the
call fails with reason code RC2154 if these conditions are not satisfied.

This is an input field. The initial value of this field is 0. This field is ignored if ODVER is less than
ODVER2.

ODRMN (48-byte character string)

Resolved queue manager name.

This is the name of the destination queue manager after name resolution has been performed by the
local queue manager. The name returned is the name of the queue manager that owns the queue
identified by ODRQN. ODRMN can be the name of the local queue manager.

If ODRQN is a shared queue that is owned by the queue sharing group to which the local queue
manager belongs, ODRMN is the name of the queue sharing group. If the queue is owned by some
other queue sharing group, ODRQN can be the name of the queue sharing group or the name of a
queue manager that is a member of the queue sharing group (the nature of the value returned is
determined by the queue definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue opened for browse, input, or output
(or any combination). If the object opened is any of the following, ODRMN is set to blanks:

• Not a queue
• A queue, but not opened for browse, input, or output
• A cluster queue with OOBNDN specified (or with OOBNDQ in effect when the DefBind queue

attribute has the value BNDNOT)
• A distribution list

Developing applications reference 1153

This is an output field. The length of this field is given by LNQN. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages. This field is ignored if ODVER is
less than ODVER3.

ODRO (MQCHARV)

ODRO is the long object name after the queue manager resolves the name provided in ODON.

This field is returned only for certain types of objects, topics, and queue aliases which reference a
topic object.

If the long object name is provided in ODOS and nothing is provided in ODON, the value returned in this
field is the same as provided in ODOS.

If this field is omitted (that is ODRO.VSBufSize is zero), the ODRO is not returned, but the length is
returned in ODRO.VSLength. If the length is shorter than the full ODRO then it is truncated and returns
as many of the rightmost characters as can fit in the provided length.

If ODRO is specified incorrectly, according to the description of how to use the MQCHARV structure,
or if it exceeds the maximum length, the call fails with reason code RC2520. This field is ignored if
ODVER is less than ODVER4.

ODRQN (48-byte character string)

Resolved queue name.

This is the name of the destination queue after name resolution has been performed by the local
queue manager. The name returned is the name of a queue that exists on the queue manager
identified by ODRMN.

A nonblank value is returned only if the object is a single queue opened for browse, input, or output
(or any combination). If the object opened is any of the following, ODRQN is set to blanks:

• Not a queue
• A queue, but not opened for browse, input, or output
• A distribution list
• An alias queue that references a topic object (refer to “ODRO (MQCHARV)” on page 1154 instead)

This is an output field. The length of this field is given by LNQN. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages. This field is ignored if ODVER is
less than ODVER3.

ODRRO (10-digit signed integer)

Offset of first response record from start of MQOD.

This is the offset in bytes of the first MQRR response record from the start of the MQOD structure. The
offset can be positive or negative. ODRRO is used only when a distribution list is being opened. The
field is ignored if ODREC is zero.

When a distribution list is being opened, an array of one or more MQRR response records can be
provided in order to identify the queues that failed to open (RRCC field in MQRR), and the reason
for each failure (RRREA field in MQRR). The data is returned in the array of response records in the
same order as the queue names occur in the array of object records. The queue manager sets the
response records only when the outcome of the call is mixed (that is, some queues were opened
successfully while others failed, or all failed but for differing reasons); reason code RC2136 from the
call indicates this case. If the same reason code applies to all queues, that reason is returned in the
REASON parameter of the MQOPEN or MQPUT1 call, and the response records are not set. Response
records are optional, but if they are supplied there must be ODREC of them.

The response records can be provided in the same way as the object records, either by specifying an
offset in ODRRO, or by specifying an address in ODRRP ; see the description of ODORO previously for
details of how to do this. However, no more than one of ODRRO and ODRRP can be used; the call fails
with reason code RC2156 if both are nonzero.

1154 IBM MQ Developing Applications Reference

For the MQPUT1 call, these response records are used to return information about errors that occur
when the message is sent to the queues in the distribution list, as well as errors that occur when the
queues are opened. The completion code and reason code from the put operation for a queue replace
those from the open operation for that queue only if the completion code from the latter was CCOK or
CCWARN.

This is an input field. The initial value of this field is 0. This field is ignored if ODVER is less than
ODVER2.

ODRRP (pointer)

Address of first response record.

This is the address of the first MQRR response record. ODRRP is used only when a distribution list is
being opened. The field is ignored if ODREC is zero.

Either ODRRP or ODRRO can be used to specify the response records, but not both; see the previous
description of the ODRRO field for details. If ODRRP is not used, it must be set to the null pointer or null
bytes.

This is an input field. The initial value of this field is the null pointer. This field is ignored if ODVER is
less than ODVER2.

ODSID (4-byte character string)

Structure identifier.

The value must be:
ODSIDV

Identifier for object descriptor structure.

This is always an input field. The initial value of this field is ODSIDV.

ODSS (MQCHARV)

ODSS contains the string used to provide the selection criteria used when retrieving messages off a
queue.

ODSS must not be provided in the following cases:

• If ODOT is not OTQ
• If the queue being opened is not being opened using one of the input options, OOINP*

If ODSS is provided in these cases, the call fails with reason code RC2516.

If ODSS is specified incorrectly, according to the description of how to use the MQCHARV structure,
or if it exceeds the maximum length, the call fails with reason code RC2519. This field is ignored if
ODVER is less than ODVER4.

ODUDC (10-digit signed integer)

Number of remote queues opened successfully

This is the number of queues in the distribution list that resolve to remote queues and that were
opened successfully. If present, this field is also set when opening a single queue which is not in a
distribution list.

This is an output field. The initial value of this field is 0. This field is ignored if ODVER is less than
ODVER2.

ODVER (10-digit signed integer)

Structure version number.

The value must be one of the following:
ODVER1

Version-1 object descriptor structure.

Developing applications reference 1155

ODVER2
Version-2 object descriptor structure.

ODVER3
Version-3 object descriptor structure.

ODVER4
Version-4 object descriptor structure.

Fields that exist only in the more-recent versions of the structure are identified as such in the
descriptions of the fields. The following constant specifies the version number of the current version:
ODVERC

Current version of object descriptor structure.

This is always an input field. The initial value of this field is ODVER1.

Initial values
Table 714. Initial values of fields in MQOD

Field name Name of constant Value of constant

ODSID ODSIDV 'OD¬¬'

ODVER ODVER1 1

ODOT OTQ 1

ODON None Blanks

ODMN None Blanks

ODDN None 'AMQ.*'

ODAU None Blanks

ODREC None 0

ODKDC None 0

ODUDC None 0

ODIDC None 0

ODORO None 0

ODRRO None 0

ODORP None Null pointer or null bytes

ODRRP None Null pointer or null bytes

ODASI SINONE Nulls

ODRQN None Blanks

ODRMN None Blanks

ODOS As defined for MQCHARV As defined for MQCHARV

ODRO As provided in ODOS As provided in ODOS

ODSS None Blanks

Notes:

1. The symbol ¬ represents a single blank character.

1156 IBM MQ Developing Applications Reference

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQOD Structure
 D*
 D*
 D* Structure identifier
 D ODSID 1 4 INZ('OD ')
 D*
 D* Structure version number
 D ODVER 5 8I 0 INZ(1)
 D*
 D* Object type
 D ODOT 9 12I 0 INZ(1)
 D*
 D* Object name
 D ODON 13 60 INZ
 D*
 D* Object queue manager name
 D ODMN 61 108 INZ
 D*
 D* Dynamic queue name
 D ODDN 109 156 INZ('AMQ.*')
 D*
 D* Alternate user identifier
 D ODAU 157 168 INZ
 D*
 ** Number of object records
 D* present
 D ODREC 169 172I 0 INZ(0)
 D*
 ** Number of local queues opened
 D* successfully
 D ODKDC 173 176I 0 INZ(0)
 D*
 ** Number of remote queues opened
 D* successfully
 D ODUDC 177 180I 0 INZ(0)
 D*
 ** Number of queues that failed to
 D* open
 D ODIDC 181 184I 0 INZ(0)
 D*
 ** Offset of first object record
 D* from start of MQOD
 D ODORO 185 188I 0 INZ(0)
 D*
 ** Offset of first response record
 D* from start of MQOD
 D ODRRO 189 192I 0 INZ(0)
 D*
 D* Address of first object record
 D ODORP 193 208* INZ(*NULL)
 D*
 ** Address of first response
 D* record
 D ODRRP 209 224* INZ(*NULL)
 D*
 D* Alternate security identifier
 D ODASI 225 264 INZ(X'00000000000000000-
 D 0000000000000000000000000-
 D 0000000000000000000000000-
 D 0000000000000')
 D*
 D* Resolved queue name
 D ODRQN 265 312 INZ
 D*
 D* Resolved queue manager name
 D ODRMN 313 360 INZ
 D*
 D* reserved field
 D ODRE1 361 364I 0 INZ(0)
 D*
 D* reserved field
 D ODRS2 365 368I 0 INZ(0)
 D*
 D* Object long name
 D* Address of variable length string
 D ODOSCHRP 369 384* INZ(*NULL)

Developing applications reference 1157

 D* Offset of variable length string
 D ODOSCHRO 385 388I 0 INZ(0)
 D* Size of buffer
 D ODOSVSBS 389 392I 0 INZ(-1)
 D* Length of variable length string
 D ODOSCHRL 393 396I 0 INZ(0)
 D* CCSID of variable length string
 D ODOSCHRC 397 400I 0 INZ(-3)
 D*
 D* Message Selector
 D* Address of variable length string
 D ODSSCHRP 401 416* INZ(*NULL)
 D* Offset of variable length string
 D ODSSCHRO 417 420I 0 INZ(0)
 D* Size of buffer
 D ODSSVSBS 421 424I 0 INZ(-1)
 D* Length of variable length string
 D ODSSCHRL 425 428I 0 INZ(0)
 D* CCSID of variable length string
 D ODSSCHRC 429 432I 0 INZ(-3)
 D*
 D* Resolved long object name
 D* Address of variable length string
 D ODRSOCHRP 433 448* INZ(*NULL)
 D* Offset of variable length string
 D ODRSOCHRO 449 452I 0 INZ(0)
 D* Size of buffer
 D ODRSOVSBS 453 456I 0 INZ(-1)
 D* Length of variable length string
 D ODRSOCHRL 457 460I 0 INZ(0)
 D* CCSID of variable length string
 D ODRSOCHRC 461 464I 0 INZ(-3)
 D*
 D* Alias queue resolved object type
 D ODRT 465 468I 0 INZ(0)

MQOR (Object record) on IBM i
The MQOR structure is used to specify the queue name and queue manager name of a single destination
queue.

Overview
Purpose: MQOR is an input structure for the MQOPEN and MQPUT1 calls.

Character set and encoding: Data in MQOR must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT. However, if the
application is running as an IBM MQ client, the structure must be in the character set and encoding of the
client.

Usage: By providing an array of these structures on the MQOPEN call, it is possible to open a list of
queues; this list is called a distribution list. Each message put using the queue handle returned by that
MQOPEN call is placed on each of the queues in the list, if the queue was opened successfully.

• “Fields” on page 1158
• “Initial values” on page 1159
• “RPG declaration” on page 1159

Fields
The MQOR structure contains the following fields; the fields are described in alphabetical order:

ORMN (48-byte character string)

Object queue manager name.

This is the same as the ODMN field in the MQOD structure (see MQOD for details).

This is always an input field. The initial value of this field is 48 blank characters.

1158 IBM MQ Developing Applications Reference

ORON (48-byte character string)

Object name.

This is the same as the ODON field in the MQOD structure (see MQOD for details), except that:

• It must be the name of a queue.
• It must not be the name of a model queue.

This is always an input field. The initial value of this field is 48 blank characters.

Initial values
Table 715. Initial values of fields in MQOR

Field name Name of constant Value of constant

ORON None Blanks

ORMN None Blanks

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQOR Structure
 D*
 D* Object name
 D ORON 1 48 INZ
 D* Object queue manager name
 D ORMN 49 96 INZ

MQPD - Property descriptor
The MQPD is used to define the attributes of a property.

Overview
Purpose: The structure is an input/output parameter on the MQSETMP call and an output parameter on
the MQINQMP call.

Character set and encoding: Data in MQPD must be in the character set of the application and encoding
of the application (ENNAT).

• “Fields” on page 1159
• “Initial values” on page 1162
• “RPG declaration” on page 1162

Fields
The MQPD structure contains the following fields; the fields are described in alphabetical order:

PDCT (10-digit signed integer)

This describes what message context the property belongs to.

When a queue manager receives a message containing an IBM MQ-defined property that the queue
manager recognizes as being incorrect. the queue manager corrects the value of the PDCT field.

The following option can be specified:
PDUSC

The property is associated with the user context.

Developing applications reference 1159

No special authorization is required to be able to set a property associated with the user context
using the MQSETMP call.

On an IBM WebSphere MQ 7.0 queue manager, a property associated with the user context is
saved as described for OOSAVA. An MQPUT call with PMPASA specified, causes the property to be
copied from the saved context into the new message.

If the option previously described is not required, the following option can be used:
PDNOC

The property is not associated with a message context.

An unrecognized value is rejected with a PDREA code of RC2482.

This is an input/output field to the MQSETMP call and an output field from the MQINQMP call. The
initial value of this field is PDNOC.

PDCPYOPT (10-digit signed integer)

This describes which type of messages the property should be copied into.

This is an output only field for recognized IBM MQ-defined properties; IBM MQ sets the appropriate
value.

When a queue manager receives a message containing an IBM MQ-defined property that the queue
manager recognizes as being incorrect. the queue manager corrects the value of the CopyOptions
field.

You can specify one or more of these options. To specify more than one option, either add the values
together (do not add the same constant more than once), or combine the values using the bitwise OR
operation (if the programming language supports bit operations).
COPFOR

This property is copied into a message being forwarded.
COPPUB

This property is copied into the message received by a subscriber when a message is being
published.

COPREP
This property is copied into a reply message.

COPRP
This property is copied into a report message.

COPALL
This property is copied into all types of subsequent messages.

COPNON
This property is not copied into a message.

Default option: The following option can be specified to supply the default set of copy options:
COPDEF

This property is copied into a message being forwarded, into a report message, or into a message
received by a subscriber when a message is being published.

This is equivalent to specifying the combination of options COPFOR, plus COPRP, plus COPPUB.

If none of the options described previously are required, use the following option:
COPNON

Use this value to indicate that no other copy options have been specified; programmatically no
relationship exists between this property and subsequent messages. This is always returned for
message descriptor properties.

This is an input/output field to the MQSETMP call and an output field from the MQINQMP call. The
initial value of this field is COPDEF.

1160 IBM MQ Developing Applications Reference

PDOPT (10-digit signed integer)

The value must be:
PDNONE

No options specified
This is always an input field. The initial value of this field is PDNONE.

PDSID (10-digit signed integer)

This is the structure identifier; the value must be:
PSIDV

Identifier for property descriptor structure.

This is always an input field. The initial value of this field is PSIDV.

PDSUP (10-digit signed integer)

This field describes what level of support for the message property is required of the queue manager,
in order for the message containing this property to be put to a queue. This applies only to IBM
MQ-defined properties; support for all other properties is optional.

The field is automatically set to the correct value when the IBM MQ-defined property is known by
the queue manager. If the property is not recognized, PDSUPO is assigned. When a queue manager
receives a message containing an IBM MQ-defined property that the queue manager recognizes as
being incorrect. the queue manager corrects the value of the PDSUP field.

When setting an IBM MQ-defined property using the MQSETMP call on a message handle where the
CMNOVA option was set, PDSUP becomes an input field. This allows an application to put an IBM
MQ-defined property, with the correct value, where the property is unsupported by the connected
queue manager, but where the message is intended to be processed on another queue manager.

The value PDSUPO is always assigned to properties that are not IBM MQ-defined properties.

If an IBM WebSphere MQ 7.0 queue manager, that supports message properties, receives a property
that contains an unrecognized PDSUP value, the property is treated as if:

• PDSUPR was specified if any of the unrecognized values are contained in the PDRUM.
• PDSUPL was specified if any of the unrecognized values are contained in the PDAUXM
• PDSUPO was specified otherwise.

One of the following values is returned by the MQINQMP call, or one of the values can be specified,
when using the MQSETMP call on a message handle where the CMNOVA option is set:
PDSUPO

The property is accepted by a queue manager even if it is not supported. The property can be
discarded in order for the message to flow to a queue manager that does not support message
properties. This value is also assigned to properties that are not IBM MQ-defined.

PDSUPR
Support for the property is required. The message is rejected by a queue manager that does not
support the IBM MQ-defined property. The MQPUT or MQPUT1 call fails with completion code
CCFAIL and reason code RC2490.

PDSUPL
The message is rejected by a queue manager that does not support the IBM MQ-defined property
if the message is destined for a local queue. The MQPUT or MQPUT1 call fails with completion
code CCFAIL and reason code RC2490.

The MQPUT or MQPUT1 call succeeds if the message is destined for a remote queue manager.

This is an output field on the MQINQMP call and an input field on the MQSETMP call if the message
handle was created with the CMNOVA option set. The initial value of this field is PDSUPO.

Developing applications reference 1161

PDVER (10-digit signed integer)

This is the structure version number; the value must be:

 PDVER1
Version-1 property descriptor structure.

The following constant specifies the version number of the current version:

 PDVERC
Current version of property descriptor structure.

This is always an input field. The initial value of this field is PDVER1.

Initial values
Table 716. Initial values of fields in MQPD

Field name Name of constant Value of constant

PDSID PDSIDV 'PD'

PDVER PDVER1 1

PDOPT PDNONE 0

PDSUP PDSUPO 0

PDCT PDNOC 0

PDCPYOPT COPDEF 0

RPG declaration

 D* MQDMHO Structure
 D*
 D*
 D* Structure identifier
 D DMSID 1 4 INZ('DMHO')
 D*
 D* Structure version number
 D DMVER 5 8I 0 INZ(1)
 D*
 D* Options that control the action of MQDLTMH
 D DMOPT 9 12I 0 INZ(0)

MQPMO (Put-message options) on IBM i
The MQPMO structure allows the application to specify options that control how messages are placed on
queues or published to topics.

Overview
Purpose

The structure is an input/output parameter on the MQPUT and MQPUT1 calls.
Version

The current version of MQPMO is PMVER2. Fields that exist only in the more-recent versions of the
structure are identified as such in the descriptions that follow.

The COPY file provided contains the most recent version of MQPMO that is supported by the
environment, but with the initial value of the PMVER field set to PMVER1. To use fields that are not

1162 IBM MQ Developing Applications Reference

present in the version-1 structure, the application must set the PMVER field to the version number of
the version required.

Character set and encoding
Data in MQPMO must be in the character set given by the CodedCharSetId queue manager attribute
and encoding of the local queue manager given by ENNAT. However, if the application is running as an
IBM MQ client, the structure must be in the character set and encoding of the client.

• “Fields” on page 1163
• “Initial values” on page 1176
• “RPG declaration” on page 1177

Fields
The MQPMO structure contains the following fields; the fields are described in alphabetical order:

PMCT (10 digit signed integer)

Object handle of input queue.

If PMPASI or PMPASA is specified, this field must contain the input queue handle from which context
information to be associated with the message being put is taken.

If PMPASI and PMPASA are not specified, this field is ignored.

This is an input field. The initial value of this field is 0.

PMIDC (10 digit signed integer)

Number of messages that could not be sent.

This is the number of messages that could not be sent to queues in the distribution list. The count
includes queues that failed to open, and queues that were opened successfully but for which the put
operation failed. This field is also set when putting a message to a single queue which is not in a
distribution list.

Note: This field is set only if the CMPCOD parameter on the MQPUT or MQPUT1 call is CCOK or
CCWARN; it is not set if the CMPCOD parameter is CCFAIL.

This is an output field. The initial value of this field is 0. This field is not set if PMVER is less than
PMVER2.

PMKDC (10 digit signed integer)

Number of messages sent successfully to local queues.

This is the number of messages that the current MQPUT or MQPUT1 call has sent successfully to
queues in the distribution list that are local queues. The count does not include messages sent to
queues that resolve to remote queues (even though a local transmission queue is used initially to
store the message). This field is also set when putting a message to a single queue which is not in a
distribution list.

This is an output field. The initial value of this field is 0. This field is not set if PMVER is less than
PMVER2.

PMOPT (10 digit signed integer)

Options that control the action of MQPUT and MQPUT1.

Any or none of the following can be specified. If more than one is required the values can be added
(do not add the same constant more than once). Combinations that are not valid are noted; any other
combinations are valid.

Publishing options: The following options control the way messages are published to a topic.

Developing applications reference 1163

PMSRTO

Any information filled into the MDRQ and MDRM fields of the MQMD of this publication is not
passed on to subscribers. If this option is used with a report option that requires a ReplyToQ, the
call fails with RC2027 .

PMRET

The publication being sent is to be retained by the queue manager. This allows a subscriber to
request a copy of this publication after the time it was published, by using the MQSUBRQ call. It
also allows a publication to be sent to applications which make their subscription after the time
this publication was made, unless they choose not to be sent it by using the option SONEWP. If an
application is sent a publication which was retained, it is indicated by the mq.IsRetained message
property of that publication.

Only one publication can be retained at each node of the topic tree. That means if there already
is a retained publication for this topic, published by any other application, it is replaced with this
publication. It is therefore better to avoid having more than one publisher retaining messages on
the same topic.

When retained publications are requested by a subscriber, the subscription used may contain a
wildcard in the topic, in which case a number of retained publications might match (at various
nodes in the topic tree) and several publications may be sent to the requesting application. See
the description of the “MQSUBRQ - Subscription request” on page 786 call for more details.

If this option is used and the publication cannot be retained, the message is not published and the
call fails with RC2479 .

Syncpoint options: The following options relate to the participation of the MQPUT or MQPUT1 call
within a unit of work:
PMSYP

Put message with syncpoint control.

The request is to operate within the normal unit-of-work protocols. The message is not visible
outside the unit of work until the unit of work is committed. If the unit of work is backed out, the
message is deleted.

If this option and PMNSYP are not specified, the put request is not within a unit of work.

PMSYP must not be specified with PMNSYP.

PMNSYP
Put message without syncpoint control.

The request is to operate outside the normal unit-of-work protocols. The message is available
immediately, and it cannot be deleted by backing out a unit of work.

If this option and PMSYP are not specified, the put request is not within a unit of work.

PMNSYP must not be specified with PMSYP.

Message-identifier and correlation-identifier options: The following options request the queue
manager to generate a new message identifier or correlation identifier:
PMNMID

Generate a new message identifier.

This option causes the queue manager to replace the contents of the MDMID field in MQMD with
a new message identifier. This message identifier is sent with the message, and returned to the
application on output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a distribution list; see the
description of the PRMID field in the MQPMR structure for details.

Using this option relieves the application of the need to reset the MDMID field to MINONE before
each MQPUT or MQPUT1 call.

1164 IBM MQ Developing Applications Reference

PMNCID
Generate a new correlation identifier.

This option causes the queue manager to replace the contents of the MDCID field in MQMD with a
new correlation identifier. This correlation identifier is sent with the message, and returned to the
application on output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to a distribution list; see the
description of the PRCID field in the MQPMR structure for details.

PMNCID is useful in situations where the application requires a unique correlation identifier.

Group and segment options: The following option relates to the processing of messages in groups
and segments of logical messages. These definitions might be of help in understanding the option:
Physical message

This is the smallest unit of information that can be placed on or removed from a queue; it often
corresponds to the information specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD). Generally, physical messages
are distinguished by differing values for the message identifier (MDMID field in MQMD), although
this is not enforced by the queue manager.

Logical message
This is a single unit of application information. In the absence of system constraints, a logical
message would be the same as a physical message. But where logical messages are large, system
constraints may make it advisable or necessary to split a logical message into two or more
physical messages, called segments.

A logical message that has been segmented consists of two or more physical messages that
have the same nonnull group identifier (MDGID field in MQMD), and the same message sequence
number (MDSEQ field in MQMD). The segments are distinguished by differing values for the
segment offset (MDOFF field in MQMD), which gives the offset of the data in the physical message
from the start of the data in the logical message. Because each segment is a physical message,
the segments in a logical message typically have differing message identifiers.

A logical message that has not been segmented, but for which segmentation has been permitted
by the sending application, also has a nonnull group identifier, although in this case there is
only one physical message with that group identifier if the logical message does not belong to
a message group. Logical messages for which segmentation has been inhibited by the sending
application have a null group identifier (GINONE), unless the logical message belongs to a
message group.

Message group
This is a set of one or more logical messages that have the same nonnull group identifier. The
logical messages in the group are distinguished by differing values for the message sequence
number, which is an integer in the range 1 through n, where n is the number of logical messages
in the group. If one or more of the logical messages is segmented, there are more than n physical
messages in the group.

PMLOGO
Messages in groups and segments of logical messages are put in logical order.

This option tells the queue manager how the application puts messages in groups and segments
of logical messages. It can be specified only on the MQPUT call; it is not valid on the MQPUT1 call.

If PMLOGO is specified, it indicates that the application uses successive MQPUT calls to:

• Put the segments in each logical message in the order of increasing segment offset, starting
from 0, with no gaps.

• Put all of the segments in one logical message before putting the segments in the next logical
message.

• Put the logical messages in each message group in the order of increasing message sequence
number, starting from 1, with no gaps.

Developing applications reference 1165

• Put all of the logical messages in one message group before putting logical messages in the next
message group.

This order is called "logical order".

Because the application has told the queue manager how it puts messages in groups and
segments of logical messages, the application does not have to maintain and update the group
and segment information about each MQPUT call, as the queue manager does this. Specifically, it
means that the application does not need to set the MDGID, MDSEQ, and MDOFF fields in MQMD, as
the queue manager sets these to the appropriate values. The application need set only the MDMFL
field in MQMD, to indicate when messages belong to groups or are segments of logical messages,
and to indicate the last message in a group or last segment of a logical message.

Once a message group or logical message has been started, subsequent MQPUT calls must
specify the appropriate MF* flags in MDMFL in MQMD. If the application tries to put a message
not in a group when there is an unterminated message group, or put a message which is not a
segment when there is an unterminated logical message, the call fails with reason code RC2241
or RC2242 , as appropriate. However, the queue manager retains the information about the
current message group or current logical message, and the application can terminate them by
sending a message (possibly with no application message data) specifying MFLMIG or MFLSEG as
appropriate, before reissuing the MQPUT call to put the message that is not in the group or not a
segment.

Table 717 on page 1167 shows the combinations of options and flags that are valid, and the
values of the MDGID, MDSEQ, and MDOFF fields that the queue manager uses in each case.
Combinations of options and flags that are not shown in the table are not valid. The columns
in the table have the following meanings:
LOG ORD

Indicates whether the PMLOGO option is specified on the call.
MIG

Indicates whether the MFMIG or MFLMIG option is specified on the call.
SEG

Indicates whether the MFSEG or MFLSEG option is specified on the call.
SEG OK

Indicates whether the MFSEGA option is specified on the call.
Cur grp

Indicates whether a current message group exists before the call.
Cur log msg

Indicates whether a current logical message exists before the call.
Other columns

Show the values that the queue manager uses. "Previous" denotes the value used for the field
in the previous message for the queue handle.

PMRLOC
Specifies that the PMRQN in the MQPMO structure must be completed with the name of
the local queue which the message actually gets put to. The ResolvedQMgrName is similarly
completed with the name of the local queue manager hosting the local queue. See OORLOQ
for what this means. If a user is authorized for a put to a queue then they have the required
authority to specify this flag on the MQPUT call. No special authority is needed.

1166 IBM MQ Developing Applications Reference

Table 717. MQPUT options relating to messages in groups and segments of logical messages

Options you specify Group and
log-msg

status before
call

Values the queue manager uses

LOG
ORD

MIG SEG SEG
OK

Cur
grp

Cur
log

msg

MDGID MDSEQ MDOFF

Yes No No No No No GINONE 1 0

Yes No No Yes No No New group id 1 0

Yes No Yes Yes or
No

No No New group id 1 0

Yes No Yes Yes or
No

No Yes Previous group id 1 Previous offset +
previous segment

length

Yes Yes Yes or
No

Yes or
No

No No New group id 1 0

Yes Yes Yes or
No

Yes or
No

Yes No Previous group id Previous sequence
number + 1

0

Yes Yes Yes Yes or
No

Yes Yes Previous group id Previous sequence
number

Previous offset +
previous segment

length

No No No No Yes or
No

Yes or
No

GINONE 1 0

No No No Yes Yes or
No

Yes or
No

New group ID
if GINONE, else

value in field

1 0

No No Yes Yes or
No

Yes or
No

Yes or
No

New group ID
if GINONE, else

value in field

1 Value in field

No Yes No Yes or
No

Yes or
No

Yes or
No

New group ID
if GINONE, else

value in field

Value in field 0

No Yes Yes Yes or
No

Yes or
No

Yes or
No

New group ID
if GINONE, else

value in field

Value in field Value in field

Note:

• PMLOGO is not valid on the MQPUT1 call.
• For the MDMID field, the queue manager generates a new message identifier if PMNMID or MINONE is
specified, and uses the value in the field otherwise.

• For the MDCID field, the queue manager generates a new correlation identifier if PMNCID is specified, and
uses the value in the field otherwise.

When PMLOGO is specified, the queue manager requires that all messages in a group and
segments in a logical message be put with the same value in the MDPER field in MQMD, that
is, all must be persistent, or all must be nonpersistent. If this condition is not satisfied, the MQPUT
call fails with reason code RC2185 .

Developing applications reference 1167

The PMLOGO option affects units of work as follows:

• If the first physical message in a group or logical message is put within a unit of work, all of the
other physical messages in the group or logical message must be put within a unit of work, if the
same queue handle is used. However, they need not be put within the same unit of work. This
allows a message group or logical message consisting of many physical messages to be split
across two or more consecutive units of work for the queue handle.

• If the first physical message in a group or logical message is not put within a unit of work, none
of the other physical messages in the group or logical message can be put within a unit of work,
if the same queue handle is used.

If these conditions are not satisfied, the MQPUT call fails with reason code RC2245 .

When PMLOGO is specified, the MQMD supplied on the MQPUT call must not be less than
MDVER2. If this condition is not satisfied, the call fails with reason code RC2257 .

If PMLOGO is not specified, messages in groups and segments of logical messages can be put in
any order, and it is not necessary to put complete message groups or complete logical messages.
It is the responsibility of the application to ensure that the MDGID, MDSEQ, MDOFF, and MDMFL
fields have appropriate values.

This is the technique that can be used to restart a message group or logical message in the
middle, after a system failure has occurred. When the system restarts, the application can set the
MDGID, MDSEQ, MDOFF, MDMFL, and MDPER fields to the appropriate values, and then issue the
MQPUT call with PMSYP or PMNSYP set as necessary, but without specifying PMLOGO. If this call
is successful, the queue manager retains the group and segment information, and subsequent
MQPUT calls using that queue handle can specify PMLOGO as normal.

The group and segment information that the queue manager retains for the MQPUT call is
separate from the group and segment information that it retains for the MQGET call.

For any given queue handle, the application is free to mix MQPUT calls that specify PMLOGO with
MQPUT calls that do not, but the following points should be noted:

• If PMLOGO is not specified, each successful MQPUT call causes the queue manager to set the
group and segment information for the queue handle to the values specified by the application;
this replaces the existing group and segment information retained by the queue manager for the
queue handle.

• If PMLOGO is not specified, the call does not fail if there is a current message group or logical
message; the call might however succeed with a CCWARN completion code. Table 718 on page
1168 shows the various cases that can arise. In these cases, if the completion code is not CCOK,
the reason code is one of the following (as appropriate):

– RC2241
– RC2242
– RC2185
– RC2245

Note: The queue manager does not check the group and segment information for the MQPUT1
call.

Table 718. Outcome when MQPUT or MQCLOSE call is not consistent with group and segment
information

Current call is Previous call was MQPUT
with PMLOGO

Previous call was MQPUT
without PMLOGO

MQPUT with PMLOGO CCFAIL CCFAIL

MQPUT without PMLOGO CCWARN CCOK

1168 IBM MQ Developing Applications Reference

Table 718. Outcome when MQPUT or MQCLOSE call is not consistent with group and segment
information (continued)

Current call is Previous call was MQPUT
with PMLOGO

Previous call was MQPUT
without PMLOGO

MQCLOSE with an
unterminated group or logical

message

CCWARN CCOK

Applications that simply want to put messages and segments in logical order are recommended
to specify PMLOGO, as this is the simplest option to use. This option relieves the application of
the need to manage the group and segment information, because the queue manager manages
that information. However, specialized applications may need more control than provided by the
PMLOGO option, and this can be achieved by not specifying that option. If this is done, the
application must ensure that the MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD are set
correctly, before each MQPUT or MQPUT1 call.

For example, an application that wants to forward physical messages that it receives, without
regard for whether those messages are in groups or segments of logical messages, must not
specify PMLOGO. There are two reasons for this:

• If the messages are retrieved and put in order, specifying PMLOGO causes a new group identifier
to be assigned to the messages, and this might make it difficult or impossible for the originator
of the messages to correlate any reply or report messages that result from the message group.

• In a complex network with multiple paths between sending and receiving queue managers, the
physical messages might arrive out of order. By not specifying PMLOGO and the corresponding
GMLOGO on the MQGET call, the forwarding application can retrieve and forward each physical
message as soon as it arrives, without needing to wait for the next one in logical order to arrive.

Applications that generate report messages for messages in groups or segments of logical
messages must also not specify PMLOGO when putting the report message.

PMLOGO can be specified with any of the other PM* options.

Context options: The following options control the processing of message context:
PMNOC

No context is to be associated with the message.

Both identity and origin context are set to indicate no context. This means that the context fields in
MQMD are set to:

• Blanks for character fields
• Nulls for byte fields
• Zeros for numeric fields

PMDEFC
Use default context.

The message is to have default context information associated with it, for both identity and origin.
The queue manager sets the context fields in the message descriptor as follows:

Table 719. Default context information values for MQMD fields

Field in MQMD Value used

MDUID Determined from the environment if possible; set to blanks otherwise.

MDACC Determined from the environment if possible; set to ACNONE otherwise.

MDAID Set to blanks.

MDPAT Determined from the environment.

Developing applications reference 1169

Table 719. Default context information values for MQMD fields (continued)

Field in MQMD Value used

MDPAN Determined from the environment if possible; set to blanks otherwise.

MDPD Set to date when message is put.

MDPT Set to time when message is put.

MDAOD Set to blanks.

For more information about message context, see Message context and Controlling context
information.

This is the default action if no context options are specified.

PMPASI
Pass identity context from an input queue handle.

The message is to have context information associated with it. Identity context is taken from the
queue handle specified in the PMCT field. Origin context information is generated by the queue
manager in the same way that it is for PMDEFC (see the previous table for values). For more
information about message context, see Message context and Controlling context information.

For the MQPUT call, the queue must have been opened with the OOPASI option (or an option that
implies it). For the MQPUT1 call, the same authorization check is carried out as for the MQOPEN
call with the OOPASI option.

PMPASA
Pass all context from an input queue handle.

The message is to have context information associated with it. Both identity and origin context
are taken from the queue handle specified in the PMCT field. For more information about message
context, see Message context and Controlling context information.

For the MQPUT call, the queue must have been opened with the OOPASA option (or an option that
implies it). For the MQPUT1 call, the same authorization check is carried out as for the MQOPEN
call with the OOPASA option.

PMSETI
Set identity context from the application.

The message is to have context information associated with it. The application specifies the
identity context in the MQMD structure. Origin context information is generated by the queue
manager in the same way that it is for PMDEFC (see the previous table for values). For more
information about message context, see Message context and Controlling context information.

For the MQPUT call, the queue must have been opened with the OOSETI option (or an option that
implies it). For the MQPUT1 call, the same authorization check is carried out as for the MQOPEN
call with the OOSETI option.

PMSETA
Set all context from the application.

The message is to have context information associated with it. The application specifies the
identity and origin context in the MQMD structure. For more information about message context,
see Message context and Controlling context information.

For the MQPUT call, the queue must have been opened with the OOSETA option. For the MQPUT1
call, the same authorization check is carried out as for the MQOPEN call with the OOSETA option.

Only one of the PM* context options can be specified. If none of these options is specified, PMDEFC is
assumed.

1170 IBM MQ Developing Applications Reference

Put response types. The following options control the response returned to an MQPUT or MQPUT1
call . You can only specify one of these options. If PMARES and PMSRES are not specified, PMRASQ or
PMRAST is assumed.
PMARES

The PMARES option requests that an MQPUT or MQPUT1 operation is completed without the
application waiting for the queue manager to complete the call. Using this option can improve
messaging performance, particularly for applications using client bindings. An application can
periodically check, using the MQSTAT verb, whether an error has occurred during any previous
asynchronous calls.

With this option, only the following fields are guaranteed to be completed in the MQMD;

• MDAID
• MDPAT
• MDPAN
• MDAOD

Additionally, if either or both of PMNMID or PMNCID are specified as options, the MDMID and
MDCID returned are also completed. (PMNMID can be implicitly specified by specifying a blank
MDMID field).
Only the fields previously specified are completed. Other information that would normally be
returned in the MQMD or MQPMO structure is undefined.
When requesting asynchronous put response for MQPUT or MQPUT1, a CMPCOD and REASON
of CCOK and RCNONE does not necessarily mean that the message was successfully put to a
queue. When developing an MQI application that uses asynchronous put response and require
confirmation that messages have been put to a queue you should check both CMPCOD and
REASON codes from the put operations and also use MQSTAT to query asynchronous error
information.
Although the success or failure of each individual MQPUT/MQPUT1 call might not be returned
immediately, the first error that occurred under an asynchronous call can be determined at a later
juncture through a call to MQSTAT.
If a persistent message under syncpoint fails to be delivered using asynchronous put response,
and you attempt to commit the transaction, the commit fails and the transaction is backed out
with a completion code of CCFAIL and a reason of RC2003 . The application can make a call to
MQSTAT to determine the cause of a previous MQPUT or MQPUT1 failure

PMSRES
Specifying this value for a put option in the MQPMO structure ensures that the MQPUT or MQPUT1
operation is always issued synchronously. If the operation is successful, all fields in the MQMD
and MQPMO are completed. It is provided to ensure a synchronous response irrespective of the
default put response value defined on the queue or topic object.

PMRASQ
If this value is specified for an MQPUT call, the put response type used is taken from the
DEFPRESP value specified on the queue when it was opened by the application. If a client
application is connected to a queue manager at a level earlier than IBM WebSphere MQ 7.0, it
behaves as if PMSRES was specified.
If this option is specified for an MQPUT1 call, the DEFPRESP value from the queue definition is not
used. If the MQPUT1 call is using PMSYP it behaves as for PMARES, and if it is using PMNSYP it
behaves as for PMSRES.

PMRAST
This is a synonym for PMRASQ for use with topic objects.

Other options: The following options control authorization checking, and what happens when the
queue manager is quiescing:
PMALTU

Validate with specified user identifier.

Developing applications reference 1171

This indicates that the ODAU field in the OBJDSC parameter of the MQPUT1 call contains a user
identifier that is to be used to validate authority to put messages on the queue. The call can
succeed only if this ODAU is authorized to open the queue with the specified options, regardless
of whether the user identifier under which the application is running is authorized to do so. (This
does not apply to the context options specified, however, which are always checked against the
user identifier under which the application is running.)

This option is valid only with the MQPUT1 call.

PMFIQ
Fail if queue manager is quiescing.

This option forces the MQPUT or MQPUT1 call to fail if the queue manager is in the quiescing state.

The call returns completion code CCFAIL with reason code RC2161 .

Default option: If none of the options described previously are required, the following option can be
used:
PMNONE

No options specified.

This value can be used to indicate that no other options have been specified; all options assume
their default values. PMNONE is defined to aid program documentation; it is not intended that this
option is used with any other, but as its value is zero, such use cannot be detected.

This is an input field. The initial value of the PMOPT field is PMNONE.

PMPRF (10 digit signed integer)

Flags indicating which MQPMR fields are present.

This field contains flags that must be set to indicate which MQPMR fields are present in the put
message records provided by the application. PMPRF is used only when the message is being put to a
distribution list. The field is ignored if PMREC is zero, or both PMPRO and PMPRP are zero.

For fields that are present, the queue manager uses for each destination the values from the fields in
the corresponding put message record. For fields that are absent, the queue manager uses the values
from the MQMD structure.

One or more of the following flags can be specified to indicate which fields are present in the put
message records:
PFMID

Message-identifier field is present.
PFCID

Correlation-identifier field is present.
PFGID

Group-identifier field is present.
PFFB

Feedback field is present.
PFACC

Accounting-token field is present.

If this flag is specified, either PMSETI or PMSETA must be specified in the PMOPT field; if this
condition is not satisfied, the call fails with reason code RC2158 .

If no MQPMR fields are present, the following can be specified:
PFNONE

No put-message record fields are present.

If this value is specified, either PMREC must be zero, or both PMPRO and PMPRP must be zero.

PFNONE is defined to aid program documentation. It is not intended that this constant is used
with any other, but as its value is zero, such use cannot be detected.

1172 IBM MQ Developing Applications Reference

If PMPRF contains flags which are not valid, or put message records are provided but PMPRF has the
value PFNONE, the call fails with reason code RC2158 .

This is an input field. The initial value of this field is PFNONE. This field is ignored if PMVER is less than
PMVER2.

PMPRO (10 digit signed integer)

Offset of first put message record from start of MQPMO.

This is the offset in bytes of the first MQPMR put message record from the start of the MQPMO
structure. The offset can be positive or negative. PMPRO is used only when the message is being put to
a distribution list. The field is ignored if PMREC is zero.

When the message is being put to a distribution list, an array of one or more MQPMR put message
records can be provided in order to specify certain properties of the message for each destination
individually; these properties are:

• message identifier
• correlation identifier
• group identifier
• feedback value
• accounting token

It is not necessary to specify all of these properties, but whatever subset is chosen, the fields must be
specified in the correct order. See the description of the MQPMR structure for further details.

Usually, there should be as many put message records as there are object records specified by MQOD
when the distribution list is opened; each put message record supplies the message properties for
the queue identified by the corresponding object record. Queues in the distribution list which fail to
open must still have put message records allocated for them at the appropriate positions in the array,
although the message properties are ignored in this case.

It is possible for the number of put message records to differ from the number of object records. If
there are fewer put message records than object records, the message properties for the destinations
which do not have put message records are taken from the corresponding fields in the message
descriptor MQMD. If there are more put message records than object records, the excess are not used
(although it must still be possible to access them). Put message records are optional, but if they are
supplied there must be PMREC of them.

The put message records can be provided in a similar way to the object records in MQOD, either by
specifying an offset in PMPRO, or by specifying an address in PMPRP ; for details of how to do this, see
the ODORO field described in “MQOD (Object descriptor) on IBM i” on page 1148.

No more than one of PMPRO and PMPRP can be used; the call fails with reason code RC2159 if both are
nonzero.

This is an input field. The initial value of this field is 0. This field is ignored if PMVER is less than
PMVER2.

PMPRP (pointer)

Address of first put message record.

This is the address of the first MQPMR put message record. PMPRP is used only when the message is
being put to a distribution list. The field is ignored if PMREC is zero.

Either PMPRP or PMPRO can be used to specify the put message records, but not both; see the
description of the PMRRO field for details. If PMPRP is not used, it must be set to the null pointer or
null bytes.

This is an input field. The initial value of this field is the null pointer. This field is ignored if PMVER is
less than PMVER2.

Developing applications reference 1173

PMREC (10 digit signed integer)

Number of put message records or response records present.

This is the number of MQPMR put message records or MQRR response records that have been
provided by the application. This number can be greater than zero only if the message is being put to
a distribution list. Put message records and response records are optional - the application need not
provide any records, or it can choose to provide records of only one type. However, if the application
provides records of both types, it must provide PMREC records of each type.

The value of PMREC need not be the same as the number of destinations in the distribution list. If too
many records are provided, the excess are not used; if too few records are provided, default values
are used for the message properties for those destinations that do not have put message records (see
PMPRO later in this topic).

If PMREC is less than zero, or is greater than zero but the message is not being put to a distribution list,
the call fails with reason code RC2154 .

This is an input field. The initial value of this field is 0. This field is ignored if PMVER is less than
PMVER2.

PMRMN (48 byte character string)

Resolved name of destination queue manager.

This is the name of the destination queue manager after name resolution has been performed by the
local queue manager. The name returned is the name of the queue manager that owns the queue
identified by PMRQN, and can be the name of the local queue manager.

If PMRQN is a shared queue that is owned by the queue sharing group to which the local queue
manager belongs, PMRMN is the name of the queue sharing group. If the queue is owned by some
other queue sharing group, PMRQN can be the name of the queue sharing group or the name of a
queue manager that is a member of the queue sharing group (the nature of the value returned is
determined by the queue definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue; if the object is a distribution list or
topic, the value returned is undefined.

This is an output field. The length of this field is given by LNQMN. The initial value of this field is 48
blank characters.

PMRQN (48 byte character string)

Resolved name of destination queue.

This is the name of the destination queue after name resolution has been performed by the local
queue manager. The name returned is the name of a queue that exists on the queue manager
identified by PMRMN.

A nonblank value is returned only if the object is a single queue; if the object is a distribution list or
topic, the value returned is undefined.

This is an output field. The length of this field is given by LNQN. The initial value of this field is 48
blank characters.

PMRRO (10 digit signed integer)

Offset of first response record from start of MQPMO.

This is the offset in bytes of the first MQRR response record from the start of the MQPMO structure.
The offset can be positive or negative. PMRRO is used only when the message is being put to a
distribution list. The field is ignored if PMREC is zero.

When the message is being put to a distribution list, an array of one or more MQRR response records
can be provided in order to identify the queues to which the message was not sent successfully
(RRCC field in MQRR), and the reason for each failure (RRREA field in MQRR). The message might not
have been sent either because the queue failed to open, or because the put operation failed. The
queue manager sets the response records only when the outcome of the call is mixed (that is, some

1174 IBM MQ Developing Applications Reference

messages were sent successfully while others failed, or all failed but for differing reasons); reason
code RC2136 from the call indicates this case. If the same reason code applies to all queues, that
reason is returned in the REASON parameter of the MQPUT or MQPUT1 call, and the response records
are not set.

Usually, there should be as many response records as there are object records specified by MQOD
when the distribution list is opened; when necessary, each response record is set to the completion
code and reason code for the put to the queue identified by the corresponding object record. Queues
in the distribution list which fail to open must still have response records allocated for them at the
appropriate positions in the array, although they are set to the completion code and reason code
resulting from the open operation, rather than the put operation.

It is possible for the number of response records to differ from the number of object records. If there
are fewer response records than object records, it may not be possible for the application to identify
all of the destinations for which the put operation failed, or the reasons for the failures. If there are
more response records than object records, the excess are not used (although it must still be possible
to access them). Response records are optional, but if they are supplied there must be PMREC of
them.

The response records can be provided in a similar way to the object records in MQOD, either by
specifying an offset in PMRRO, or by specifying an address in PMRRP ; for details of how to do this, see
the ODORO field described in “MQOD (Object descriptor) on IBM i” on page 1148. However, no more
than one of PMRRO and PMRRP can be used; the call fails with reason code RC2156 if both are nonzero.

For the MQPUT1 call, this field must be zero. This is because the response information (if requested)
is returned in the response records specified by the object descriptor MQOD.

This is an input field. The initial value of this field is 0. This field is ignored if PMVER is less than
PMVER2.

PMRRP (pointer)

Address of first response record.

This is the address of the first MQRR response record. PMRRP is used only when the message is being
put to a distribution list. The field is ignored if PMREC is zero.

Either PMRRP or PMRRO can be used to specify the response records, but not both; see the description
of the PMRRO field for details. If PMRRP is not used, it must be set to the null pointer or null bytes.

For the MQPUT1 call, this field must be the null pointer or null bytes. This is because the response
information (if requested) is returned in the response records specified by the object descriptor
MQOD.

This is an input field. The initial value of this field is the null pointer. This field is ignored if PMVER is
less than PMVER2.

PMSID (4 byte character string)

Structure identifier.

The value must be:
PMSIDV

Identifier for put-message options structure.

This is always an input field. The initial value of this field is PMSIDV.

PMSL (MQLONG)

The level of subscription targeted by this publication.

Only those subscriptions with the highest PMSL less than or equal to this value receives this
publication. This value must be in the range zero to 9; zero is the lowest level.

The initial value of this field is 9.

Developing applications reference 1175

PMTO (10 digit signed integer)

Reserved.

This is a reserved field; its value is not significant. The initial value of this field is -1.

PMUDC (10 digit signed integer)

Number of messages sent successfully to remote queues.

This is the number of messages that the current MQPUT or MQPUT1 call has sent successfully to
queues in the distribution list that resolve to remote queues. Messages that the queue manager
retains temporarily in distribution-list form count as the number of individual destinations that those
distribution lists contain. This field is also set when putting a message to a single queue which is not in
a distribution list.

This is an output field. The initial value of this field is 0. This field is not set if PMVER is less than
PMVER2.

PMVER (10 digit signed integer)

Structure version number.

The value must be one of the following:
PMVER1

Version-1 put-message options structure.
PMVER2

Version-2 put-message options structure.

Fields that exist only in the more-recent version of the structure are identified as such in the
descriptions of the fields. The following constant specifies the version number of the current version:
PMVERC

Current version of put-message options structure.

This is always an input field. The initial value of this field is PMVER1.

Initial values
Table 720. Initial values of fields in MQPMO

Field name Name of constant Value of constant

PMSID PMSIDV 'PMO¬'

PMVER PMVER1 1

PMOPT PMNONE 0

PMTO None -1

PMCT None 0

PMKDC None 0

PMUDC None 0

PMIDC None 0

PMRQN None Blanks

PMRMN None Blanks

PMREC None 0

PMPRF PFNONE 0

PMPRO None 0

1176 IBM MQ Developing Applications Reference

Table 720. Initial values of fields in MQPMO (continued)

Field name Name of constant Value of constant

PMRRO None 0

PMPRP None Null pointer or null bytes

PMRRP None Null pointer or null bytes

Note:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQPMO Structure
 D*
 D* Structure identifier
 D PMSID 1 4 INZ('PMO ')
 D* Structure version number
 D PMVER 5 8I 0 INZ(1)
 D* Options that control the action of MQPUT and MQPUT1
 D PMOPT 9 12I 0 INZ(0)
 D* Reserved
 D PMTO 13 16I 0 INZ(-1)
 D* Object handle of input queue
 D PMCT 17 20I 0 INZ(0)
 D* Number of messages sent successfully to local queues
 D PMKDC 21 24I 0 INZ(0)
 D* Number of messages sent successfully to remote queues
 D PMUDC 25 28I 0 INZ(0)
 D* Number of messages that could notbe sent
 D PMIDC 29 32I 0 INZ(0)
 D* Resolved name of destination queue
 D PMRQN 33 80 INZ
 D* Resolved name of destination queue manager
 D PMRMN 81 128 INZ
 D* Number of put message records or response records present
 D PMREC 129 132I 0 INZ(0)
 D* Flags indicating which MQPMR fields are present
 D PMPRF 133 136I 0 INZ(0)
 D* Offset of first put message record from start of MQPMO
 D PMPRO 137 140I 0 INZ(0)
 D* Offset of first response record from start of MQPMO
 D PMRRO 141 144I 0 INZ(0)
 D* Address of first put message record
 D PMPRP 145 160* INZ(*NULL)
 D* Address of first response record
 D PMRRP 161 176* INZ(*NULL)
 D* Original message handle
 D PMOMH 177 184I 0
 D* New message handle
 D PMNMH 185 190I 0
 D* The action being performed
 D PMACT 191 194I 0
 D* Reserved
 D PMRE1 195 198I 0

MQPMR (Put-message record) on IBM i
The MQPMR structure is used to specify various message properties for a single destination when a
message is being put to a distribution list.

Overview
Purpose: MQPMR is an input/output structure for the MQPUT and MQPUT1 calls.

Character set and encoding: Data in MQPMR must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT. However, if the

Developing applications reference 1177

application is running as an IBM MQ client, the structure must be in the character set and encoding of the
client.

Usage: By providing an array of these structures on the MQPUT or MQPUT1 call, it is possible to specify
different values for each destination queue in a distribution list. Some of the fields are input only, others
are input/output.

Note: This structure is unusual in that it does not have a fixed layout. The fields in this structure are
optional, and the presence or absence of each field is indicated by the flags in the PMPRF field in MQPMO.
Fields that are present must occur in the following order :

• PRMID
• PRCID
• PRGID
• PRFB
• PRACC

Fields that are absent occupy no space in the record.

Because MQPMR does not have a fixed layout, no definition of it is provided in the COPY file. The
application programmer should create a declaration containing the fields that are required by the
application, and set the flags in PMPRF to indicate the fields that are present.

• “Fields” on page 1178
• “Initial values” on page 1179
• “RPG declaration” on page 1179

Fields
The MQPMR structure contains the following fields; the fields are described in alphabetical order:

PRACC (32-byte bit string)

Accounting token.

This is the accounting token to be used for the message sent to the queue with a name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call. It is processed in the same way as the MDACC field in MQMD for a put to a single queue.
See the description of MDACC in “MQMD (Message descriptor) on IBM i” on page 1099 for information
about the content of this field.

If this field is not present, the value in MQMD is used.

This is an input field.

PRCID (24-byte bit string)

Correlation identifier.

This is the correlation identifier to be used for the message sent to the queue with the name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call. It is processed in the same way as the MDCID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR records than destinations,
the value in MQMD is used for those destinations that do not have an MQPMR record containing a
PRCID field.

If PMNCID is specified, a single new correlation identifier is generated and used for all of the
destinations in the distribution list, regardless of whether they have MQPMR records. This is different
from the way that PMNMID is processed (see PRMID field).

This is an input/output field.

1178 IBM MQ Developing Applications Reference

PRFB (10-digit signed integer)

Feedback or reason code.

This is the feedback code to be used for the message sent to the queue with the name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call. It is processed in the same way as the MDFB field in MQMD for a put to a single queue.

If this field is not present, the value in MQMD is used.

This is an input field.

PRGID (24-byte bit string)

Group identifier.

This is the group identifier to be used for the message sent to the queue with the name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call. It is processed in the same way as the MDGID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR records than destinations,
the value in MQMD is used for those destinations that do not have an MQPMR record containing a
PRGID field. The value is processed as documented in Table 717 on page 1167, but with the following
differences:

• In those cases where a new group identifier would be used, the queue manager generates a
different group identifier for each destination (that is, no two destinations have the same group
identifier).

• In those cases where the value in the field would be used, the call fails with reason code RC2258.

This is an input/output field.

PRMID (24-byte bit string)

Message identifier.

This is the message identifier to be used for the message sent to the queue with the name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call. It is processed in the same way as the MDMID field in MQMD for a put to a single queue.

If this field is not present in the MQPMR record, or there are fewer MQPMR records than destinations,
the value in MQMD is used for those destinations that do not have an MQPMR record containing
a PRMID field. If that value is MINONE, a new message identifier is generated for each of those
destinations (that is, no two of those destinations have the same message identifier).

If PMNMID is specified, new message identifiers are generated for all of the destinations in the
distribution list, regardless of whether they have MQPMR records. This is different from the way that
PMNCID is processed (see PRCID field).

This is an input/output field.

Initial values
There are no initial values defined for this structure, as no structure declaration is provided. The following
sample declaration shows how the structure should be declared by the application programmer if all of
the fields are required.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQPMR Structure
 D*
 D* Message identifier
 D PRMID 1 24
 D* Correlation identifier
 D PRCID 25 48
 D* Group identifier

Developing applications reference 1179

 D PRGID 49 72
 D* Feedback or reason code
 D PRFB 73 76I 0
 D* Accounting token
 D PRACC 77 108

MQRFH (Rules and formatting header) on IBM i
The MQRFH structure defines the layout of the rules and formatting header.

Overview
Purpose: This header can be used to send string data in the form of name-value pairs.

Format name: FMRFH.

Character set and encoding: The fields in the MQRFH structure (including RFNVS) are in the character set
and encoding given by the MDCSI and MDENC fields in the header structure that precedes the MQRFH, or
by those fields in the MQMD structure if the MQRFH is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that are valid in queue
names.

• “Fields” on page 1180
• “Initial values” on page 1182
• “RPG declaration” on page 1182

Fields
The MQRFH structure contains the following fields; the fields are described in alphabetical order:

RFCSI (10-digit signed integer)

Character set identifier of data that follows RFNVS.

This specifies the character set identifier of the data that follows RFNVS ; it does not apply to
character data in the MQRFH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
CSINHT

Inherit character-set identifier of this structure.

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual
character-set identifier of the structure. Provided no error occurs, the value CSINHT is not
returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is ATBRKR.

The initial value of this field is CSUNDF.

Numeric encoding of data that follows RFNVS.

This specifies the numeric encoding of the data that follows RFNVS ; it does not apply to numeric data
in the MQRFH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is ENNAT.

RFFLG (10-digit signed integer)

Flags.

The following can be specified:

1180 IBM MQ Developing Applications Reference

RFNONE
No flags.

The initial value of this field is RFNONE.

RFFMT (8-byte character string)

Format name of data that follows RFNVS.

This specifies the format name of the data that follows RFNVS.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the MDFMT field in MQMD.

The initial value of this field is FMNONE.

RFLEN (10-digit signed integer)

Total length of MQRFH including RFNVS.

This is the length in bytes of the MQRFH structure, including the RFNVS field at the end of the
structure. The length does not include any user data that follows the RFNVS field.

To avoid problems with data conversion of the user data in some environments, consider using RFLEN
as a multiple of four.

The following constant gives the length of the fixed part of the structure, that is, the length excluding
the RFNVS field:
RFLENV

Length of fixed part of MQRFH structure.

The initial value of this field is RFLENV.

RFNVS (n-byte character string)

String containing name-value pairs.

This is a variable-length character string containing name-value pairs in the form:

name1 value1 name2 value2 name3 value3 ...

Each name or value must be separated from the adjacent name or value by one or more blank
characters; these blanks are not significant. A name or value can contain significant blanks by
prefixing and suffixing the name or value with the quotation mark character; all characters between
the opening quotation mark and the matching closing quotation mark are treated as significant. In the
following example, the name is FAMOUS_WORDS, and the value is Hello World:

FAMOUS_WORDS "Hello World"

A name or value can contain any characters other than the null character (which acts as a delimiter
for RFNVS). However, to assist interoperability an application might prefer to restrict names to the
following characters:

• First character: uppercase or lowercase alphabetic (A through Z, or a through z), or underscore.
• Subsequent characters: upper or lowercase alphabetic, decimal digit (0 through 9), underscore,

hyphen, or dot.

If a name or value contains one or more quotation marks, the name or value must be enclosed in
quotation marks, and each quotation mark within the string must be doubled:

Famous_Words "The program displayed ""Hello World"""

Names and values are case sensitive, that is, lowercase letters are not considered to be the same as
uppercase letters. For example, FAMOUS_WORDS and Famous_Words are two different names.

Developing applications reference 1181

The length in bytes of RFNVS is equal to RFLEN minus RFLENV. To avoid problems with data
conversion of the user data in some environments, it is recommended that this length should be a
multiple of four. RFNVS must be padded with blanks to this length, or terminated earlier by placing
a null character following the last significant character in the string. The null character and the bytes
following it, up to the specified length of RFNVS, are ignored.

Note: Because the length of this field is not fixed, the field is omitted from the declarations of the
structure that are provided for the supported programming languages.

RFSID (4-byte character string)

Structure identifier.

The value must be:
RFSIDV

Identifier for rules and formatting header structure.

The initial value of this field is RFSIDV.

RFVER (10-digit signed integer)

Structure version number.

The value must be:
RFVER1

Version-1 rules and formatting header structure.

The initial value of this field is RFVER1.

Initial values
Table 721. Initial values of fields in MQRFH

Field name Name of constant Value of constant

RFSID RFSIDV 'RFH¬'

RFVER RFVER1 1

RFLEN RFLENV 32

RFENC ENNAT Depends on
environment

RFCSI CSUNDF 0

RFFMT FMNONE Blanks

RFFLG RFNONE 0

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQRFH Structure
 D*
 D* Structure identifier
 D RFSID 1 4 INZ('RFH ')
 D* Structure version number
 D RFVER 5 8I 0 INZ(1)
 D* Total length of MQRFH includingNameValueString
 D RFLEN 9 12I 0 INZ(32)
 D* Numeric encoding of data that followsNameValueString
 D RFENC 13 16I 0 INZ(273)

1182 IBM MQ Developing Applications Reference

 D* Character set identifier of data thatfollows NameValueString
 D RFCSI 17 20I 0 INZ(0)
 D* Format name of data that followsNameValueString
 D RFFMT 21 28 INZ(' ')
 D* Flags
 D RFFLG 29 32I 0 INZ(0)

MQRFH2 (Rules and formatting header 2) on IBM i
The MQRFH2 structure defines the format of the version-2 rules and formatting header.

Overview
Purpose: This header can be used to send data that has been encoded using an XML-like syntax A
message can contain two or more MQRFH2 structures in series, with user data optionally following the
last MQRFH2 structure in the series.

Format name: FMRFH2.

Character set and encoding: Special rules apply to the character set and encoding used for the MQRFH2
structure:

• Fields other than RF2NVD are in the character set and encoding that are given by the MDCSI and MDENC
fields in the header structure that precedes MQRFH2, or by those fields in the MQMD structure if the
MQRFH2 is at the start of the application message data.

The character set must be one that has single-byte characters for the characters that are valid in queue
names.

When GMCONV is specified on the MQGET call, the queue manager converts these fields to the
requested character set and encoding.

• RF2NVD is in the character set given by the RF2NVC field. Only certain Unicode character sets are valid
for RF2NVC (see the description of RF2NVC for details).

Some character sets have a representation that is dependent on the encoding. If RF2NVC is one of these
character sets, RF2NVD must be in the same encoding as the other fields in the MQRFH2.

When GMCONV is specified on the MQGET call, the queue manager converts RF2NVD to the requested
encoding, but does not change its character set.

• “Fields” on page 1183
• “Initial values” on page 1188
• “RPG declaration” on page 1188

Fields
The MQRFH2 structure contains the following fields; the fields are described in alphabetical order:

RF2CSI (10-digit signed integer)

Character set identifier of data that follows last RF2NVD field.

This specifies the character set identifier of the data that follows the last RF2NVD field. It does not
apply to character data in the MQRFH2 structure itself

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
CSINHT

Inherit character-set identifier of this structure.

Character data in the data following this structure is in the same character set as this structure.

Developing applications reference 1183

The queue manager changes this value in the structure sent in the message to the actual
character-set identifier of the structure. Provided no error occurs, the value CSINHT is not
returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is ATBRKR.

The initial value of this field is CSINHT.

RF2ENC (10-digit signed integer)

Numeric encoding of data that follows last RF2NVD field.

This specifies the numeric encoding of the data that follows the last RF2NVD field; it does not apply to
numeric data in the MQRFH2 structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is ENNAT.

RF2FLG (10-digit signed integer)

Flags.

The following value must be specified:
RFNONE

No flags.

The initial value of this field is RFNONE.

RF2FMT (8-byte character string)

Format name of data that follows last RF2NVD field.

This specifies the format name of the data that follows the last RF2NVD field.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the MDFMT field in MQMD.

The initial value of this field is FMNONE.

RF2LEN (10-digit signed integer)

Total length of MQRFH2 including all RF2NVL and RF2NVD fields.

This is the length in bytes of the MQRFH2 structure, including the RF2NVL and RF2NVD fields at the
end of the structure. It is valid for there to be multiple pairs of RF2NVL and RF2NVD fields at the end of
the structure, in the sequence:

length1, data1, length2, data2, ...

RF2LEN does not include any user data that may follow the last RF2NVD field at the end of the
structure.

To avoid problems with data conversion of the user data in some environments, consider using
RF2LEN as a multiple of four.

The following constant gives the length of the fixed part of the structure, that is, the length excluding
the RF2NVL and RF2NVD fields:
RFLEN2

Length of fixed part of MQRFH2 structure.

The initial value of this field is RFLEN2.

RF2NVC (10-digit signed integer)

Character set identifier of RF2NVD.

1184 IBM MQ Developing Applications Reference

This specifies the coded character set identifier of the data in the RF2NVD field. This is different from
the character set of the other strings in the MQRFH2 structure, and can be different from the character
set of the data (if any) that follows the last RF2NVD field at the end of the structure.

RF2NVC must have one of the following CCSID values
1200

UTF-16, most recent Unicode version supported
13488

UTF-16, Unicode version 2.0 subset
17584

UTF-16, Unicode version 3.0 subset (includes the Euro symbol)
1208

UTF-8, most recent Unicode version supported

For the UTF-16 character sets, the encoding (byte order) of the RF2NVD must be the same as the
encoding of the other fields in the MQRFH2 structure. Surrogate characters (X'D800' through X'DFFF')
are not supported.

Note: If RF2NVC does not have one of the values listed previously, and the MQRFH2 structure requires
conversion on the MQGET call, the call completes with reason code RC2111 and the message is
returned unconverted.

The initial value of this field is 1208.

RF2NVD (n-byte character string)

Name/value data.

This is a variable-length character string containing data encoded using an XML-like syntax. The
length in bytes of this string is provided by the RF2NVL field that precedes the RF2NVD field; this
length should be a multiple of four.

The RF2NVL and RF2NVD fields are optional, but if present they must occur as a pair and be adjacent.
The pair of fields can be repeated as many times as required, for example:

length1 data1 length2 data2 length3 data3

Because these fields are optional, they are omitted from the declarations of the structure that are
provided for the various programming languages supported.

RF2NVD is unusual because it is not converted to the character set specified on the MQGET call when
the message is retrieved with the GMCONV option in effect; RF2NVD remains in its original character
set. However, RF2NVD is converted to the encoding specified on the MQGET call.

Syntax of name/value data: The string consists of a single "folder" that contains zero or more
properties. The folder is delimited by XML start and end tags with the same name as the the folder:

<folder> property1 property2 ... </folder>

Characters following the folder end tag, up to the length defined by RF2NVL, must be blank. Within the
folder, each property is composed of a name and a value, and optionally a data type:

<name dt="datatype">value</name>

In these examples:

• The delimiter characters (<, =, ", /, and >) must be specified exactly as shown.
• name is the user-specified name of the property; see the following example for more information

about names.

Developing applications reference 1185

• datatype is an optional user-specified data type of the property; see the following example for
valid data types.

• value is the user-specified value of the property; see the following paragraphs for more information
about values.

• Blanks are significant between the > character which precedes a value, and the < character which
follows the value, and at least one blank must precede dt=. Elsewhere blanks can be coded freely
between tags, or preceding or following tags (for example, in order to improve readability); these
blanks are not significant.

If properties are related to each other, they can be grouped together by enclosing them within XML
start and end tags with the same name as the group:

<folder> <group> property1 property2 ... </group> </folder>

Groups can be nested within other groups, without limit, and a group can occur more than once within
a folder. It is also valid for a folder to contain some properties in groups and other properties not in
groups.

Names of properties, groups, and folders: Names of properties, groups, and folders must be valid
XML tag names, with the exception of the colon character, which is not permitted in a property, group,
or folder name. In particular:

• Names must start with a letter or an underscore. Valid letters are defined in the W3C XML
specification, and consist essentially of Unicode categories Ll, Lu, Lo, Lt, and Nl.

• The remaining characters in a name can be letters, decimal digits, underscores, hyphens, or dots.
These correspond to Unicode categories Ll, Lu, Lo, Lt, Nl, Mc, Mn, Lm, and Nd.

• The Unicode compatibility characters (X'F900' and above) are not permitted in any part of a name.
• Names must not start with the string XML in any mixture of upper or lowercase.

In addition:

• Names are case-sensitive. For example, ABC, abc, and Abc are three different names.
• Each folder has a separate namespace. As a result, a group or property in one folder does not

conflict with a group or property of the same name in another folder.
• Groups and properties occupy the same namespace within a folder. As a result, a property cannot

have the same name as a group within the folder containing that property.

Generally, programs that analyze the RF2NVD field should ignore properties or groups that have
names that the program does not recognize, provided that those properties or groups are correctly
formed.

Data types of properties: Each property can have an optional data type. If specified, the data type
must be one of the following values, in upper, lower, or mixed case:

Table 722. Data types and their usage

Data type Used for

string Any sequence of characters. Certain characters
must be specified using escape sequences.

boolean The character 0 or 1 (1 denotes TRUE).

bin.hex Hexadecimal digits representing octets.

i1 Integer number in the range -128 through +127,
expressed using only decimal digits and optional
sign.

1186 IBM MQ Developing Applications Reference

Table 722. Data types and their usage (continued)

Data type Used for

i2 Integer number in the range -32 768 through
+32 767, expressed using only decimal digits and
optional sign.

i4 Integer number in the range -2 147 483 648
through +2 147 483 647, expressed using only
decimal digits and optional sign.

i8 Integer number in the range
-9 223 372 036 854 775 808 through
+9 223 372 036 854 775 807, expressed using
only decimal digits and optional sign.

int Integer number in the range
-9 223 372 036 854 775 808 through
+9 223 372 036 854 775 807, expressed using
only decimal digits and optional sign. This can be
used in place of i1, i2, i4, or i8 if the sender
does not want to imply a particular precision.

r4 Floating-point number with magnitude in the
range 1.175E-37 through 3.402 823 47E+38,
expressed using decimal digits, optional sign,
optional fractional digits, and optional exponent.

r8 Floating-point number with magnitude
in the range 2.225E-307 through
1.797 693 134 862 3E+308 expressed using
decimal digits, optional sign, optional fractional
digits, and optional exponent.

Values of properties: The value of a property can consist of any characters, except for special
characters that have a mandatory associated escape sequence. Each occurrence in the value of
a character marked as "mandatory" in the following table must be replaced by the corresponding
escape sequence. The table also shows characters that have an optional associated escape
sequence. Each occurrence in the value of a character marked as "optional" can be replaced by the
corresponding escape sequence, but this is not required.

Table 723. Escaped characters and their usage

Character Escape sequence Usage

& & Mandatory

< < Mandatory

> > Optional

" " Optional

' ' Optional

Note: The & character at the start of an escape sequence must not be replaced by &.

In the following example, the blanks in the value are significant; however, no escape sequences are
needed:

<Famous_Words>The program displayed "Hello World"</Famous_Words>

Developing applications reference 1187

RF2NVL (10-digit signed integer)

Length of RF2NVD.

This specifies the length in bytes of the data in the RF2NVD field. To avoid problems with data
conversion of the data (if any) that follows the RF2NVD field, RF2NVL should be a multiple of four.

Note: The RF2NVL and RF2NVD fields are optional, but if present they must occur as a pair and be
adjacent. The pair of fields can be repeated as many times as required, for example:

length1 data1 length2 data2 length3 data3

Because these fields are optional, they are omitted from the declarations of the structure that are
provided for the various programming languages supported.

RF2SID (4-byte character string)

Structure identifier.

The value must be:
RFSIDV

Identifier for rules and formatting header structure.

The initial value of this field is RFSIDV.

RF2VER (10-digit signed integer)

Structure version number.

The value must be:
RFVER2

Version-2 rules and formatting header structure.

The initial value of this field is RFVER2.

Initial values
Table 724. Initial values of fields in MQRFH2

Field name Name of constant Value of constant

RF2SID RFSIDV 'RFH¬'

RF2VER RFVER2 2

RF2LEN RFLEN2 36

RF2ENC ENNAT Depends on environment

RF2CSI CSINHT -2

RF2FMT FMNONE Blanks

RF2FLG RFNONE 0

RF2NVC None 1208

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQRFH2 Structure

1188 IBM MQ Developing Applications Reference

 D*
 D* Structure identifier
 D RF2SID 1 4 INZ('RFH ')
 D* Structure version number
 D RF2VER 5 8I 0 INZ(2)
 D* Total length of MQRFH2 including allNameValueLength and
 D* NameValueDatafields
 D RF2LEN 9 12I 0 INZ(36)
 D* Numeric encoding of data that followslast NameValueData field
 D RF2ENC 13 16I 0 INZ(273)
 D* Character set identifier of data thatfollows last NameValueData field
 D RF2CSI 17 20I 0 INZ(-2)
 D* Format name of data that follows lastNameValueData field
 D RF2FMT 21 28 INZ(' ')
 D* Flags
 D RF2FLG 29 32I 0 INZ(0)
 D* Character set identifier ofNameValueData
 D RF2NVC 33 36I 0 INZ(1208)

MQRMH (Reference message header) on IBM i
The MQRMH structure defines the format of a reference message header.

Overview
Purpose: This header is used with user-written message channel exits to send large amounts of data
(called "bulk data") from one queue manager to another. The difference compared to normal messaging
is that the bulk data is not stored on a queue; instead, only a reference to the bulk data is stored on the
queue. This reduces the possibility of IBM MQ resources being exhausted by a few large messages.

Format name: FMRMH.

Character set and encoding: Character data in MQRMH, and the strings addressed by the offset fields,
must be in the character set of the local queue manager; this is given by the CodedCharSetId queue
manager attribute. Numeric data in MQRMH must be in the native machine encoding; this is given by the
value of ENNAT for the C programming language.

The character set and encoding of the MQRMH must be set into the MDCSI and MDENC fields in:

• The MQMD (if the MQRMH structure is at the start of the message data), or
• The header structure that precedes the MQRMH structure (all other cases).

Usage: An application puts a message consisting of an MQRMH, but omitting the bulk data. When the
message is read from the transmission queue by a message channel agent (MCA), a user-supplied
message exit is invoked to process the reference message header. The exit can append to the reference
message the bulk data identified by the MQRMH structure, before the MCA sends the message through
the channel to the next queue manager.

At the receiving end, a message exit that waits for reference messages should exist. When a reference
message is received, the exit should create the object from the bulk data that follows the MQRMH in the
message, and then pass on the reference message without the bulk data. The reference message can
later be retrieved by an application reading the reference message (without the bulk data) from a queue.

Normally, the MQRMH structure is all that is in the message. However, if the message is on a transmission
queue, one or more additional headers will precede the MQRMH structure.

A reference message can also be sent to a distribution list. In this case, the MQDH structure and its
related records precede the MQRMH structure when the message is on a transmission queue.

Note: A reference message should not be sent as a segmented message, because the message exit
cannot process it correctly.

• “Data conversion” on page 1190
• “Fields” on page 1190
• “Initial values” on page 1194
• “RPG declaration” on page 1195

Developing applications reference 1189

Data conversion
For data conversion purposes, conversion of the MQRMH structure includes conversion of the source
environment data, source object name, destination environment data, and destination object name. Any
other bytes within RMLEN bytes of the start of the structure are either discarded or have undefined values
after data conversion. The bulk data will be converted provided that all of the following statements are
true:

• The bulk data is present in the message when the data conversion is performed.
• The RMFMT field in MQRMH has a value other than FMNONE.
• A user-written data-conversion exit exists with the format name specified.

Be aware, however, that typically the bulk data is not present in the message when the message is on a
queue, and that as a result the bulk data will not be converted by the GMCONV option.

Fields
The MQRMH structure contains the following fields; the fields are described in alphabetical order:

RMCSI (10-digit signed integer)

Character set identifier of bulk data.

This specifies the character set identifier of the bulk data; it does not apply to character data in the
MQRMH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
CSINHT

Inherit character-set identifier of this structure.

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual
character-set identifier of the structure. Provided no error occurs, the value CSINHT is not
returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is ATBRKR.

The initial value of this field is CSUNDF.

RMDEL (10-digit signed integer)

Length of destination environment data.

If this field is zero, there is no destination environment data, and RMDEO is ignored.

RMDEO (10-digit signed integer)

Offset of destination environment data.

This field specifies the offset of the destination environment data from the start of the MQRMH
structure. Destination environment data can be specified by the creator of the reference message,
if that data is known to the creator. For example, the destination environment data might be the
directory path of the object where the bulk data is to be stored. However, if the creator does not
know the destination environment data, it is the responsibility of the user-supplied message exit to
determine any environment information needed.

The length of the destination environment data is given by RMDEL ; if this length is zero, there is no
destination environment data, and RMDEO is ignored. If present, the destination environment data
must reside completely within RMLEN bytes from the start of the structure.

Applications should not assume that the destination environment data is contiguous with any of the
data addressed by the RMSEO, RMSNO, and RMDNO fields.

The initial value of this field is 0.

1190 IBM MQ Developing Applications Reference

RMDL (10-digit signed integer)

Length of bulk data.

The RMDL field specifies the length of the bulk data referenced by the MQRMH structure.

If the bulk data is present in the message, the data begins at an offset of RMLEN bytes from the start of
the MQRMH structure. The length of the entire message minus RMLEN gives the length of the bulk data
present.

If data is present in the message, RMDL specifies the amount of that data that is relevant. The normal
case is for RMDL to have the same value as the length of data present in the message.

If the MQRMH structure represents the remaining data in the object (starting from the specified
logical offset), the value zero can be used for RMDL, if the bulk data is not present in the message.

If no data is present, the end of MQRMH coincides with the end of the message.

The initial value of this field is 0.

RMDNL (10-digit signed integer)

Length of destination object name.

If this field is zero, there is no destination object name, and RMDNO is ignored.

RMDNO (10-digit signed integer)

Offset of destination object name.

This field specifies the offset of the destination object name from the start of the MQRMH structure.
The destination object name can be specified by the creator of the reference message, if that data
is known to the creator. However, if the creator does not know the destination object name, it is the
responsibility of the user-supplied message exit to identify the object to be created or modified.

The length of the destination object name is given by RMDNL ; if this length is zero, there is no
destination object name, and RMDNO is ignored. If present, the destination object name must reside
completely within RMLEN bytes from the start of the structure.

Applications should not assume that the destination object name is contiguous with any of the data
addressed by the RMSEO, RMSNO, and RMDEO fields.

The initial value of this field is 0.

RMDO (10-digit signed integer)

Low offset of bulk data.

This field specifies the low offset of the bulk data from the start of the object of which the bulk data
forms part. The offset of the bulk data from the start of the object is called the logical offset. This is
not the physical offset of the bulk data from the start of the MQRMH structure - that offset is given by
RMLEN.

To allow large objects to be sent using reference messages, the logical offset is divided into two fields,
and the actual logical offset is given by the sum of these two fields:

• RMDO represents the remainder obtained when the logical offset is divided by 1 000 000 000. It is
thus a value in the range 0 through 999 999 999.

• RMDO2 represents the result obtained when the logical offset is divided by 1 000 000 000. It is thus
the number of complete multiples of 1 000 000 000 that exist in the logical offset. The number of
multiples is in the range 0 through 999 999 999.

The initial value of this field is 0.

RMDO2 (10-digit signed integer)

High offset of bulk data.

This field specifies the high offset of the bulk data from the start of the object of which the bulk data
forms part. It is a value in the range 0 through 999 999 999. See RMDO for details.

Developing applications reference 1191

The initial value of this field is 0.

RMENC (10-digit signed integer)

Numeric encoding of bulk data.

This specifies the numeric encoding of the bulk data; it does not apply to numeric data in the MQRMH
structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is ENNAT.

RMFLG (10-digit signed integer)

Reference message flags.

The following flags are defined:
RMLAST

Reference message contains or represents last part of object.

This flag indicates that the reference message represents or contains the last part of the
referenced object.

RMNLST
Reference message does not contain or represent last part of object.

RMNLST is defined to aid program documentation. It is not intended that this option be used with
any other, but as its value is zero, such use cannot be detected.

The initial value of this field is RMNLST.

RMFMT (8-byte character string)

Format name of bulk data.

This specifies the format name of the bulk data.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the MDFMT field in MQMD.

The initial value of this field is FMNONE.

RMLEN (10-digit signed integer)

Total length of MQRMH, including strings at end of fixed fields, but not the bulk data.

The initial value of this field is zero.

RMOII (24-byte bit string)

Object instance identifier.

This field can be used to identify a specific instance of an object. If it is not needed, it should be set to
the following value:
OIINON

No object instance identifier specified.

The value is binary zero for the length of the field.

The length of this field is given by LNOIID. The initial value of this field is OIINON.

RMOT (8-byte character string)

Object type.

This is a name that can be used by the message exit to recognize types of reference message that it
supports. Consider making the name conform to the same rules as the RMFMT field.

The initial value of this field is 8 blanks.

1192 IBM MQ Developing Applications Reference

RMSEL (10-digit signed integer)

Length of source environment data.

If this field is zero, there is no source environment data, and RMSEO is ignored.

The initial value of this field is 0.

RMSEO (10-digit signed integer)

Offset of source environment data.

This field specifies the offset of the source environment data from the start of the MQRMH structure.
Source environment data can be specified by the creator of the reference message, if that data is
known to the creator. For example, the source environment data might be the directory path of the
object containing the bulk data. However, if the creator does not know the source environment data,
it is the responsibility of the user-supplied message exit to determine any environment information
needed.

The length of the source environment data is given by RMSEL ; if this length is zero, there is no
source environment data, and RMSEO is ignored. If present, the source environment data must reside
completely within RMLEN bytes from the start of the structure.

Applications should not assume that the environment data starts immediately after the last fixed field
in the structure or that it is contiguous with any of the data addressed by the RMSNO, RMDEO, and
RMDNO fields.

The initial value of this field is 0.

RMSID (4-byte character string)

Structure identifier.

The value must be:
RMSIDV

Identifier for reference message header structure.

The initial value of this field is RMSIDV.

RMSNL (10-digit signed integer)

Length of source object name.

If this field is zero, there is no source object name, and RMSNO is ignored.

The initial value of this field is 0.

RMSNO (10-digit signed integer)

Offset of source object name.

This field specifies the offset of the source object name from the start of the MQRMH structure. The
source object name can be specified by the creator of the reference message, if that data is known to
the creator. However, if the creator does not know the source object name, it is the responsibility of
the user-supplied message exit to identify the object to be accessed.

The length of the source object name is given by RMSNL ; if this length is zero, there is no source object
name, and RMSNO is ignored. If present, the source object name must reside completely within RMLEN
bytes from the start of the structure.

Applications should not assume that the source object name is contiguous with any of the data
addressed by the RMSEO, RMDEO, and RMDNO fields.

The initial value of this field is 0.

RMVER (10-digit signed integer)

Structure version number.

The value must be:

Developing applications reference 1193

RMVER1
Version-1 reference message header structure.

The following constant specifies the version number of the current version:
RMVERC

Current version of reference message header structure.

The initial value of this field is RMVER1.

Initial values
Table 725. Initial values of fields in MQRMH

Field name Name of constant Value of constant

RMSID RMSIDV 'RMH¬'

RMVER RMVER1 1

RMLEN None 0

RMENC ENNAT Depends on
environment

RMCSI CSUNDF 0

RMFMT FMNONE Blanks

RMFLG RMNLST 0

RMOT None Blanks

RMOII OIINON Nulls

RMSEL None 0

RMSEO None 0

RMSNL None 0

RMSNO None 0

RMDEL None 0

RMDEO None 0

RMDNL None 0

RMDNO None 0

RMDL None 0

RMDO None 0

RMDO2 None 0

Notes:

1. The symbol ¬ represents a single blank character.

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQRMH Structure
 D*
 D* Structure identifier
 D RMSID 1 4 INZ('RMH ')
 D* Structure version number
 D RMVER 5 8I 0 INZ(1)

1194 IBM MQ Developing Applications Reference

 D* Total length of MQRMH, includingstrings at end of fixed fields,but not
 D* the bulk data
 D RMLEN 9 12I 0 INZ(0)
 D* Numeric encoding of bulk data
 D RMENC 13 16I 0 INZ(273)
 D* Character set identifier of bulkdata
 D RMCSI 17 20I 0 INZ(0)
 D* Format name of bulk data
 D RMFMT 21 28 INZ(' ')
 D* Reference message flags
 D RMFLG 29 32I 0 INZ(0)
 D* Object type
 D RMOT 33 40 INZ
 D* Object instance identifier
 D RMOII 41 64 INZ(X'00000000000000-
 D 0000000000000000000000-
 D 000000000000')
 D* Length of source environmentdata
 D RMSEL 65 68I 0 INZ(0)
 D* Offset of source environmentdata
 D RMSEO 69 72I 0 INZ(0)
 D* Length of source object name
 D RMSNL 73 76I 0 INZ(0)
 D* Offset of source object name
 D RMSNO 77 80I 0 INZ(0)
 D* Length of destination environmentdata
 D RMDEL 81 84I 0 INZ(0)
 D* Offset of destination environmentdata
 D RMDEO 85 88I 0 INZ(0)
 D* Length of destination objectname
 D RMDNL 89 92I 0 INZ(0)
 D* Offset of destination objectname
 D RMDNO 93 96I 0 INZ(0)
 D* Length of bulk data
 D RMDL 97 100I 0 INZ(0)
 D* Low offset of bulk data
 D RMDO 101 104I 0 INZ(0)
 D* High offset of bulk data
 D RMDO2 105 108I 0 INZ(0)

RPG declaration

MQRR (Response record) on IBM i
The MQRR structure is used to receive the completion code and reason code resulting from the open or
put operation for a single destination queue, when the destination is a distribution list.

Overview
Purpose: MQRR is an output structure for the MQOPEN, MQPUT, and MQPUT1 calls.

Character set and encoding: Data in MQRR must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT. However, if the
application is running as an IBM MQ client, the structure must be in the character set and encoding of the
client.

Usage: By providing an array of these structures on the MQOPEN and MQPUT calls, or on the MQPUT1
call, it is possible to determine the completion codes and reason codes for all of the queues in a
distribution list when the outcome of the call is mixed, that is, when the call succeeds for some queues
in the list but fails for others. Reason code RC2136 from the call indicates that the response records (if
provided by the application) have been set by the queue manager.

• “Fields” on page 1195
• “Initial values” on page 1196
• “RPG declaration” on page 1196

Fields
The MQRR structure contains the following fields; the fields are described in alphabetical order:

Developing applications reference 1195

RRCC (10-digit signed integer)

Completion code for queue.

This is the completion code resulting from the open or put operation for the queue with the name that
was specified by the corresponding element in the array of MQOR structures provided on the MQOPEN
or MQPUT1 call.

This is always an output field. The initial value of this field is CCOK.

RRREA (10-digit signed integer)

Reason code for queue.

This is the reason code resulting from the open or put operation for the queue with the name that was
specified by the corresponding element in the array of MQOR structures provided on the MQOPEN or
MQPUT1 call.

This is always an output field. The initial value of this field is RCNONE.

Initial values
Table 726. Initial values of fields in MQRR

Field name Name of constant Value of constant

RRCC CCOK 0

RRREA RCNONE 0

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQRR Structure
 D*
 D* Completion code for queue
 D RRCC 1 4I 0 INZ(0)
 D* Reason code for queue
 D RRREA 5 8I 0 INZ(0)

MQSCO (TLS configuration options) on IBM i
The MQSCO structure (with the TLS fields in the MQCD structure) allows an application running as an IBM
MQ MQI client to specify configuration options that control the use of TLS for the client connection when
the channel protocol is TCP/IP.

Overview
Purpose: The structure is an input parameter on the MQCONNX call.

If the channel protocol for the client channel is not TCP/IP, the MQSCO structure is ignored.

Character set and encoding: Data in MQSCO must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT.

• “Fields” on page 1196
• “Initial values” on page 1200
• “RPG declaration” on page 1201

Fields
The MQSCO structure contains the following fields; the fields are described in alphabetical order:

1196 IBM MQ Developing Applications Reference

SCAIC (10-digit signed integer)

This is the number of authentication information (MQAIR) records addressed by the SCAIP or SCAIO
fields. For more information, see“MQAIR (Authentication information record) on IBM i” on page 1005.
The value must be zero or greater. If the value is not valid, the call fails with reason code RC2383.

This is an input field. The initial value of this field is 0.

SCAIO (10-digit signed integer)

This is the offset in bytes of the first authentication information record from the start of the MQSCO
structure. The offset can be positive or negative. The field is ignored if SCAIC is zero.

You can use either SCAIO or SCAIP to specify the MQAIR records, but not both; see the description of
the SCAIP field for details.

This is an input field. The initial value of this field is 0.

SCAIP (10-digit signed integer)

This is the address of the first authentication information record. The field is ignored if SCAIC is zero.

You can provide the array of MQAIR records in one of two ways:

• By using the pointer field SCAIP

In this case, the application can declare an array of MQAIR records that is separate from the MQSCO
structure, and set SCAIP to the address of the array.

Consider using SCAIP for programming languages that support the pointer data type in a fashion
that is portable to different environments (for example, the C programming language).

• By using the offset field SCAIO

In this case, the application must declare a compound structure containing an MQSCO followed
by the array of MQAIR records, and set SCAIO to the offset of the first record in the array from
the start of the MQSCO structure. Ensure that this value is correct, and has a value that can be
accommodated within an MQLONG (the most restrictive programming language is COBOL, for which
the valid range is -999 999 999 through +999 999 999).

Consider using SCAIO for programming languages that do not support the pointer data type, or
that implement the pointer data type in a fashion that is not portable to different environments (for
example, the COBOL programming language).

Whatever technique you choose, only one of SCAIP and SCAIO can be used; the call fails with reason
code RC2384 if both are nonzero.

This is an input field. The initial value of this field is the null pointer in those programming languages
that support pointers, and an all-null byte string otherwise.

Note: On platforms where the programming language does not support the pointer data type, this
field is declared as a byte string of the appropriate length.

SCCERLBL (10-digit signed integer)

This field gives details of the certificate label being used.

IBM MQ initializes the value for the SCCERLBL field as blanks. Either enter the required value, or
accept the default value.

ibmwebspheremquser_id is a valid value for this field for all versions of the product, and for MQSCO
versions less than 5.0 it is the only valid value. Therefore the value of this field is interpreted at run
time, and changed if necessary. If you specify an MQSCO version less than 5.0, or accept the default
value of blanks for the SCCERLBL field, the system uses the value ibmwebspheremquser_id.

This is an input field.

Developing applications reference 1197

SCCERTVPOL (10-digit signed integer)

This field specifies what type of certificate validation policy is used. The field can be set to one of the
following values:
MQ_CERT_VAL_POLICY_ANY

Apply each of the certificate validation policies supported by the secure sockets library. Accept
the certificate chain if any of the policies considers the certificate chain valid.

MQ_CERT_VAL_POLICY_RFC5280
Apply only the RFC5280 compliant certificate validation policy. This setting provides stricter
validation than the ANY setting, but rejects some older digital certificates.

The initial value of this field is MQ_CERT_VAL_POLICY_ANY

SCCH (10-digit signed integer)

This field gives configuration details for cryptographic hardware connected to the client system.

Set the field to a string in the following format, or leave it blank or null:

GSK_PKCS11=the PKCS #11 driver path and file name;the PKCS #11
token label;the PKCS #11 token password;symmetric cipher setting>;

To use cryptographic hardware which conforms to the PKCS11 interface, for example, the IBM 4960
or IBM 4963, specify the PKCS11 driver path, PKCS11 token label, and PKCS11 token password
strings, each terminated by a semi-colon.

The PKCS #11 driver path is an absolute path to the shared library providing support for the PKCS
#11 card. The PKCS #11 driver file name is the name of the shared library. An example of the value
required for the PKCS #11 path and file name is:

/usr/lib/pkcs11/PKCS11_API.so

The PKCS #11 token label must be entirely in lowercase. If you have configured your hardware with a
mixed case or uppercase token label, reconfigure it with this lowercase label.

If no cryptographic hardware configuration is required, set the field to blank or null.

If the value is shorter than the length of the field, terminate the value with a null character, or pad
it with blanks to the length of the field. If the value is not valid, or leads to a failure when used to
configure the cryptographic hardware, the call fails with reason code RC2382.

This is an input field. The length of this field is given by LNSSCH. The initial value of this field is blank
characters.

SCEPSUITEB (10-digit signed integer)
This field Specifies whether Suite B compliant cryptography is used and what level of strength is
employed. The value can be one or more of:

• SCEPSUITEB0

Suite B compliant cryptography is not used.
• SCEPSUITEB1

Suite B 128-bit strength security is used.
• SCEPSUITEB2

Suite B 192-bit strength security is used.

Note: Using SCEPSUITEB0 with any other value in this field is invalid.

1198 IBM MQ Developing Applications Reference

SCFR (10-digit signed integer)

IBM MQ can be configured with cryptographic hardware so that the cryptography modules used are
those provided by the hardware product; these can be FIPS-certified to a particular level depending
on the cryptographic hardware product in use.

Use this field to specify that only FIPS-certified algorithms are used if the cryptography is provided in
IBM MQ-provided software.

When IBM MQ is installed an implementation of TLS cryptography is also installed which provides
some FIPS-certified modules.

The values can be:
MQSSL_FIPS_NO

This is the default value. When set to this value:

• Any CipherSpec supported on a particular platform can be used.
• If run without use of cryptographic hardware, the following CipherSpecs run using FIPS 140-2
certified cryptography on the IBM MQ platforms:

– TLS_RSA_WITH_3DES_EDE_CBC_SHA
– TLS_RSA_WITH_AES_128_CBC_SHA
– TLS_RSA_WITH_AES_256_CBC_SHA

MQSSL_FIPS_YES
When set to this value, unless you are using cryptographic hardware to perform the cryptography,
you can be sure that

• Only FIPS-certified cryptographic algorithms can be used in the CipherSpec applying to this
client connection.

• Inbound and outbound TLS channel connections only succeed if one of the following Cipher
Specs are used:

– TLS_RSA_WITH_3DES_EDE_CBC_SHA
– TLS_RSA_WITH_AES_128_CBC_SHA
– TLS_RSA_WITH_AES_256_CBC_SHA

Notes:

1. CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated.
2. Where possible, if FIPS-only CipherSpecs is configured then the MQI client rejects connections

which specify a non-FIPS CipherSpec withRC2393. IBM MQ does not guarantee to reject all such
connections and it is your responsibility to determine whether your IBM MQ configuration is
FIPS-compliant.

SCKR (10-digit signed integer)

This field is relevant only for IBM MQ MQI clients running on AIX, Linux, and Windows systems.
It specifies the location of the key database file in which keys and certificates are stored. The key
database file must have a file name of the form zzz.kdb, where zzz is user-selectable. The SCKR
field contains the path to this file, along with the file name stem (all characters in the file name up to
but not including the final .kdb). The .kdb file suffix is added automatically.

Each key database file has an associated password stash file. This holds encrypted passwords that are
used to allow programmatic access to the key database. The password stash file must reside in the
same directory and have the same file stem as the key database, and must end with the suffix .sth.

For example, if the SCKR field has the value /xxx/yyy/key, the key database file must
be /xxx/yyy/key.kdb, and the password stash file must be /xxx/yyy/key.sth, where xxx and
yyy represent directory names.

Developing applications reference 1199

If the value is shorter than the length of the field, terminate the value with a null character, or pad it
with blanks to the length of the field. The value is not checked; if there is an error in accessing the key
repository, the call fails with reason code RC2381.

To run a TLS connection from an IBM MQ MQI client, set SCKR to a valid key database file name.

This is an input field. The length of this field is given by LNSSKR. The initial value of this field is a blank
character.

SCSID (10-digit signed integer)

This is the structure identifier; the value must be:
SCSIDV

Identifier for TLS configuration options structure.

This is always an input field. The initial value of this field is SCSIDV.

SCVER (10-digit signed integer)

This is the structure version number; the value must be:
SCVER1

Version-1 TLS configuration options structure.
SCVER2

Version-2 TLS configuration options structure.

The following constant specifies the version number of the current version:
SCVERC

Current version of TLS configuration options structure.

This is always an input field. The initial value of this field is SCVER2

Initial values
Table 727. Initial values of fields in MQSCO

Field name Name of constant Value of constant

SCSID SCSIDV 'SCO¬'

SCVER SCVER5 1

SCKR None Null string or blanks

SCCH None Null string or blanks

SCAIC None 0

SCAIO None 0

SCAIP None Null pointer or null bytes

SCKRC None Null pointer or null bytes

SCFR None Null pointer or null bytes

SCEPSUITEB None Null pointer or null bytes

SCCERTVPOL None Null pointer or null bytes

SCCERLBL None Null pointer or null bytes

Notes:

1. The symbol ¬ represents a single blank character.
2. See“RPG declaration” on page 1201for the SCEPSUITEB options.

1200 IBM MQ Developing Applications Reference

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQSCO Structure
 D*
 D* Structure identifier
 D SCSID 1 4 INZ('SCO ')
 D* Structure version number
 D SCVER 5 8I 0 INZ(1)
 D* Location of TLS key repository
 D SCKR 9 264 INZ
 D* Cryptographic hardware configuration string
 D SCCH 265 520 INZ
 D* Number of MQAIR records present
 D SCAIC 521 524I 0 INZ(0)
 D* Offset of first MQAIR record from start of MQSCO structure
 D SCAIO 525 528I 0 INZ(0)
 D* Address of first MQAIR record
 D SCAIP 529 544* INZ(*NULL)
 D* Ver:1 **
 D* Number of unencrypted bytes sent/received before secret key is
 D* reset
 D SCKRC 545 548I 0 INZ(0)
 D* Using FIPS-certified algorithms
 D SCFR 549 552I 0 INZ(0)
 D* Ver:2 **
 * Use only Suite B cryptographic algorithms
 D SCEPSUITEB0
 D SCEPSUITEB1 553 556I 0 INZ(1)
 D SCEPSUITEB2 557 560I 0 INZ(0)
 D SCEPSUITEB3 561 564I 0 INZ(0)
 D SCEPSUITEB4 565 568I 0 INZ(0)
 D SCEPSUITEB 10I 0 DIM(4) OVERLAY(SCEPSUITEB0)
 D* Ver:3 **
 D* Certificate validation policy
 D SCCERTVPOL 569 572I 0 INZ(0)
 D* Ver:4 **

MQSD (Subscription descriptor) on IBM i
The MQSD structure is used to specify details about the subscription being made.

Overview
Purpose

The structure is an input/output parameter on the MQSUB call.
Managed subscriptions

If an application has no specific need to use a particular queue as the destination for those
publications that match its subscription, it can use the managed subscription feature. If an application
elects to use a managed subscription, the queue manager informs the subscriber about the
destination where published messages are sent, by providing an object handle as an output from
the MQSUB call. For more information, see HOBJ (10-digit signed integer) - input/output.

When the subscription is removed, the queue manager also undertakes to clean up messages that
have not been retrieved from the managed destination, in the following situations:

• When the subscription is removed - by use of MQCLOSE with CORMSB - and the managed Hobj is
closed.

• By implicit means when the connection is lost to an application using a non-durable subscription
(SONDUR)

• By expiration when a subscription is removed because it has expired and the managed Hobj is
closed.

You must use managed subscriptions with non-durable subscriptions, so that the clean up can occur,
and so that messages for closed non-durable subscriptions do not take up space in your queue
manager. Durable subscriptions can also use managed destinations.

Developing applications reference 1201

Character set and encoding
Data in MQSD must be in the character set given by the CodedCharSetId queue manager attribute
and encoding of the local queue manager given by ENNAT. However, if the application is running as an
IBM MQ client, the structure must be in the character set and encoding of the client.

• “Fields” on page 1202
• “Initial values” on page 1214
• “RPG declaration” on page 1215

Fields
The MQSD structure contains the following fields; the fields are described in alphabetical order:

SDAID (32 byte character string)

This value is in the MDAID field of the Message Descriptor (MQMD) of all publication messages
matching this subscription. SDAID is part of the identity context of the message. For more information
about message context, see Message context.

For more information about MDAID see MDAID.

If the SOSETI option is not specified, the MDAID which is set in each message published for this
subscription is blanks, as default context information.

If the SOSETI option is specified, the SDAID is being generated by the user and this field is an input
field which contains the MDAID to be set in each publication for this subscription.

The length of this field is given by LNAIDD. The initial value of this field is 32 blank characters.

If altering an existing subscription using the SOALT option, the SDAID of any future publication
messages can be changed.

On return from an MQSUB call using SORES, this field is set to the current MDAID being used for the
subscription.

SDACC (32 byte character string)

This value is in the MDACC field of the Message Descriptor (MQMD) of all publication messages
matching this subscription. MDACC is part of the identity context of the message. For more information
about message context, see Message context.

For more information about MDACC see MDACC.

You can use the following special value for the SDACC field:
ACNONE

No accounting token is specified.
The value is binary zero for the length of the field.

If the SOSETI option is not specified, the accounting token is generated by the queue manager as
default context information and this field is an output field which contains the MDACC which is set in
each message published for this subscription.

If the SOSETI option is specified, the accounting token is being generated by the user and this field is
an input field which contains the MDACC to be set in each publication for this subscription.

The length of this field is given by LNACCT. The initial value of this field is ACNONE.

If altering an existing subscription using the SOALT option, the value of MDACC in any future
publication messages can be changed.

On return from an MQSUB call using SORES, this field is set to the current MDACC being used for the
subscription.

1202 IBM MQ Developing Applications Reference

SDASI (40 byte bit string)

This is a security identifier that is passed with the SDAU to the authorization service to allow
appropriate authorization checks to be performed.

SDASI is used only if SOALTU is specified, and the SDAU field is not entirely blank up to the first null
character or the end of the field.

On return from an MQSUB call using SORES, this field is unchanged.

See the description of ODASI in the MQOD data type for more information.

SDAU (12 byte character string)

If you specify SOALTU, this field contains an alternate user identifier that is used to check the
authorization for the subscription and for output to the destination queue (specified in the Hobj
parameter of the MQSUB call), in place of the user identifier that the application is currently running
under.

If successful, the user identifier specified in this field is recorded as the subscription owning user
identifier in place of the user identifier that the application is currently running under.

If SOALTU is specified and this field is entirely blank up to the first null character or the end of the
field, the subscription can succeed only if no user authorization is needed to subscribe to this topic
with the options specified or the destination queue for output.

If SOALTU is not specified, this field is ignored.

On return from an MQSUB call using SORES, this field is unchanged.

This is an input field. The length of this field is given by LNUID. The initial value of this field is 12 blank
characters.

SDCID (24 byte bit string)

All publications sent to match this subscription contain this correlation identifier in the message
descriptor. If multiple subscriptions use the same queue to get their publications from, using MQGET
by correlation ID allows only publications for a specific subscription to be obtained. This correlation
identifier can either be generated by the queue manager or by the user.

If the SOSCID option is not specified, the correlation identifier is generated by the queue manager
and this field is an output field which contains the correlation identifier which is set in each message
published for this subscription.

If the SOSCID option is specified, the correlation identifier is being generated by the user and this
field is an input field which contains the correlation identifier to be set in each publication for this
subscription. In this case, if the field contains CINONE, the correlation identifier which is set in each
message published for this subscription is the correlation identifier that was created by the original
put of the message.

If the SOGRP option is specified and the correlation identifier specified is the same as an existing
grouped subscription using the same queue and an overlapping topic string, only the most significant
subscription in the group is provided with a copy of the publication.

The length of this field is given by LNCID. The initial value of this field is CINONE.

If altering an existing subscription using the SOALT option, and this field is an input field, then the
subscription correlation ID can be changed, unless the subscription has been created using the SOGRP
option.

On return from an MQSUB call using SORES, this field is set to the current correlation ID for the
subscription.

SDEXP (10 digit signed integer)

This is the time expressed in tenths of a second after which the subscription expires. No more
publications will match this subscription after this interval has passed. This is also used as the value in
the MDEXP field in the MQMD of the publications sent to this subscriber.

Developing applications reference 1203

The following special value is recognized:
EIULIM

The subscription has an unlimited expiration time.

If altering an existing subscription using the SOALT option, the expiry of the subscription can be
changed.

On return from an MQSUB call using the SORES option this field is set to the original expiry of the
subscription and not the remaining expiry time.

SDON (48 byte character string)

This is the name of the topic object as defined on the local queue manager.

The name can contain the following characters:

• Uppercase alphabetic characters (A through Z)
• Lowercase alphabetic characters (a through z)
• Numeric digits (0 through 9)
• Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but can contain trailing blanks. Use a null
character to indicate the end of significant data in the name; the null and any characters following it
are treated as blanks. The following restrictions apply:

• On systems that use EBCDIC Katakana, lowercase characters cannot be used.
• Names containing lowercase characters, forward slash, or percent, must be enclosed in quotation

marks when specified on commands. These quotation marks must not be specified for names that
occur as fields in structures or as parameters on calls.

The SDON is used to form the Full topic name.

The full topic name can be built from two different fields: SDON and SDOS. For details of how these two
fields are used, see Combining topic strings.

On return from an MQSUB call using the SORES option this field is unchanged.

The length of this field is given by LNTOPN. The initial value of this field is 48 blank characters.

If altering an existing subscription using the SDALT option, the name of the topic object subscribed to
cannot be changed. This field and SDOS can be omitted. If they are provided they must resolve to the
same full topic name or the call fails with RC2510 .

SDOPT (10 digit signed integer)

You must specify at least one of the following options:

• SOALT
• SORES
• SOCRT

The values can be added. Do not add the same constant more than once. The table shows how you
can combine these options: Combinations that are not valid are noted; any other combinations are
valid.

Access or creation options
Access and creation options control whether a subscription is created, or whether an existing
subscription is returned or altered. You must specify at least one of these options. The table
displays valid combinations of access or creation options.

1204 IBM MQ Developing Applications Reference

Table 728. Valid combinations of access and creation options

Combination of options Notes

SOCRT Creates a subscription if one does not exist; fails
if the subscription exists.

SORES Resumes an existing subscription, fails if no
subscription exists.

SOCRT + SORES Creates a subscription if one does not exist and
resumes a matching one, if it does exist. Useful
combination if used in an application that might
be run a number of times.

SORES + SOALT (see note) Resumes an existing subscription, altering any
fields to match those specified in the MQSD, fails
if no subscription exists.

SOCRT + SOALT (see note) Creates a subscription if one does not exist and
resumes a matching one, if it does exist, altering
any fields to match those specified in the MQSD.
Useful combination if used in an application that
wants to ensure that its subscription is in a
certain state before proceeding.

Note:

Options specifying SOALT can also specify SORES, but this combination has no additional effect to
specifying SOALT alone. SOALT implies SORES, because calling MQSUB to alter a subscription implies
that the subscriptions are also resumed. The opposite is not true, however: resuming a subscription
does not imply it is to be altered.

SOCRT

Create a subscription for the topic specified. If a subscription using the same SDSN exists, the call
fails with RC2432 . This failure can be avoided by combining the SOCRT option with SORES. The
SDSN is not always necessary. For more details, see the description of that field.

Combining SOCRT with SORES first checks whether there is an existing subscription for the
specified SDSN, and if there is returns a handle to that preexisting subscription; but if there is
no existing subscription, a new one is created using all the fields provided in the MQSD.

SOCRT can also be combined with SOALT to similar effect (see details about SOALT later in this
topic).

SORES

Return a handle to a preexisting subscription which matches those specified by SDSN. No changes
are made to the matching subscription attributes, and they are returned on output in the MQSD
structure. Most of the contents of the MQSD are not used: The fields used are SDSID, SDVER,
SDOPT, SDAID and SDASI, and SDSN.

The call fails with reason code RC2428 if a subscription does not exist matching the full
subscription name. This failure can be avoided by combining the SOCRT option with SORES. For
details about SOCRT, see SOCRT.

The user ID of the subscription is the user ID that created the subscription, or if it has been later
altered by a different user ID, it is the user ID of the most recent, successful alteration. If an
SDAID is used, and use of alternate user IDs is allowed for that user, SDAID is recorded as the
user ID that created the subscription instead of the user ID under which the subscription was
made.

The user ID that created the subscription is recorded as SDAU if that field is used, and the use of
alternate user IDs is allowed for that user.

Developing applications reference 1205

If a matching subscription exists which was created without the SOAUID option and the user ID of
the subscription is different from that of the application requesting a handle to the subscription,
the call fails with reason code RC2434 .

If a matching subscription exists and is currently in use by another application, the call fails with
reason code RC2429 . If it is currently in use by the same connection, the call does not fail and a
handle to the subscription is returned.

If the subscription named in SubName is not a valid subscription to resume or alter from an
application, the call fails with RC2523 .

SORES is implied by SOALT and so is not required to be combined with that option, however, it is
not an error if those two options are combined.

SOALT

Return a handle to a preexisting subscription with the full subscription name matching those
specified in SDSN. Any attributes of the subscription that are different from those specified in
the MQSD is altered in the subscription unless alteration is disallowed for that attribute. Details
are noted in the description of each attribute and are summarized in the following table. If you
try to alter an attribute that cannot be changed, the call fails with the reason code shown in the
following table.

The call fails with reason code RC2428 if a subscription does not exist matching the full
subscription name. This failure can be avoided by combining the SOCRT option with SOALT.

Combining SOCRT with SOALT first checks whether there is an existing subscription for the
specified full subscription name, and if there is returns a handle to that preexisting subscription
with alterations made as previously detailed; but if there is no existing subscription, a new one is
created using all the fields provided in the MQSD.

The user ID of the subscription is the user ID that created the subscription, or if it has been later
altered by a different user ID, it is the user ID of the most recent successful alteration. If SDAU is
used (and use of alternate user IDs is allowed for that user), then the alternate user ID is recorded
as the user ID that created the subscription instead of the user ID under which the subscription
was made.

If a matching subscription exists that was created without the option SOAUID and the user ID of
the subscription is different from that of the application requesting a handle to the subscription,
the call fails with reason code RC2434 .

If a matching subscription exists and is currently in use by another application, the call fails with
RC2429 . If it is currently in use by the same connection the call does not fail and a handle to the
subscription is returned.

If the subscription named in SubName is not a valid subscription to resume or alter from an
application, the call fails with RC2523 .

The following tables show the subscription attributes that can be altered by SOALT.

Table 729. Attributes in MQSD and MQSUB that can be altered

Data type descriptor or
function call Field name

Can this attribute be
altered using SOALT? Reason code

MQSD Durability options No RC2509

MQSD Destination Options Yes None

MQSD Registration options Yes (see note 1) RC2515 if you try to alter
SOGRP

MQSD Publication options Yes (see note 2) None

MQSD Wildcard options No RC2510

1206 IBM MQ Developing Applications Reference

Table 729. Attributes in MQSD and MQSUB that can be altered (continued)

Data type descriptor or
function call Field name

Can this attribute be
altered using SOALT? Reason code

MQSD Other options No (see note 3) None

MQSD ObjectName No RC2510

MQSD SDAU No (see note 4) None

MQSD SDASI No (see note 4) None

MQSD SDEXP Yes None

MQSD SDOS No RC2510

MQSD SDSN No (see note 5) None

MQSD SDSUD Yes None

MQSD SDCID Yes (see note 6) RC2515 when in a
grouped subscription

MQSD SDPRI Yes None

MQSD SDACC Yes None

MQSD SDAID Yes None

MQSD SDSL No RC2512

MQSUB Hobj Yes (see note 6) RC2515 when in a
grouped subscription

Notes:

1. SOGRP cannot be altered.
2. SONEWP cannot be altered because it is not part of the subscription
3. These options are not part of the subscription
4. This attribute is not part of the subscription
5. This attribute is the identity of the subscription being altered
6. Alterable except when part of a grouped sub (SOGRP)

Durability options: The following options control how durable the subscription is. You can specify
only one of these options. If you are altering an existing subscription using the SOALT option, you
cannot change the durability of the subscription. On return from an MQSUB call using SORES, the
appropriate durability option is set.

SODUR
Request that the subscription to this topic remains until it is explicitly removed using MQCLOSE
with the CORMSB option. If this subscription is not explicitly removed it will remain even after this
application connects to the queue manager is closed.
If a durable subscription is requested to a topic that is defined as not allowing durable
subscriptions, the call fails with RC2436 .

SONDUR
Request that the subscription to this topic is removed when the application connection to the
queue manager is closed, if it has not already been explicitly removed. SONDUR is the opposite
of the SODUR option, and is defined to aid program documentation. It is the default if neither is
specified.

Destination options: The following options control the destination that publications for a topic that
has been subscribed to are sent to. If altering an existing subscription using the SOALT option, the

Developing applications reference 1207

destination used for publications for the subscription can be changed. On return from an MQSUB call
using SORES, this option is set if appropriate.

SOMAN

Request that the destination that the publications are sent to is managed by the queue manager.

The object handle returned in HOBJ represents a queue manager managed queue, and is for use
with subsequent MQGET, MQCB, MQINQ, or MQCLOSE calls.

An object handle returned from a previous MQSUB call cannot be provided in the Hobj parameter
when SOMAN is not specified.

Registration options: The following options control the details of the registration that is made to the
queue manager for this subscription. If altering an existing subscription using the SOALT option, these
registration options can be changed. On return from an MQSUB call using SORES the appropriate
registration options is set.

SOGRP

This subscription is grouped with other subscriptions of the same SDSL using the same queue and
specifying the same correlation ID so that any publications to topics that would cause more than
one publication message to be provided to the group of subscriptions, due to an overlapping set
of topic strings being used, only causes one message to be delivered to the queue. If this option is
not used, then each unique subscription (identified by SDSN) that matches is provided with a copy
of the publication which might mean that more than one copy of the publication might be placed
on the queue shared by a number of subscriptions.

Only the most significant subscription in the group is provided with a copy of the publication. The
most significant subscription is based on the Full topic name up to the point where a wildcard
is found. If a mixture of wildcard schemes is used within the group, only the position of the
wildcard is important. You are advised not to combine different wildcard schemes within a group
of subscriptions that share the same queue.

When creating a new grouped subscription it must still have a unique SDSN, but if it matches the
full topic name of an existing subscription in the group, the call fails with RC2514 .

If the most significant subscription in group also specifies SONOLC and this is a publication from
the same application, then no publication is delivered to the queue.

When altering a subscription made with this option, the fields which imply the grouping, Hobj on
the MQSUB call (representing the queue and queue manager name), and the SDCID cannot be
changed. Attempting to alter them causes the call to fail with RC2515 .

This option must be combined with SOSCID with a SDCID that is not set to CINONE, and cannot be
combined with SOMAN.

SOAUID

When SOAUID is specified, the identity of the subscriber is not restricted to a single user ID. This
allows any user to alter or resume the subscription when they have suitable authority. Only a
single user can have the subscription at any one time. An attempt to resume use of a subscription
currently in use by another application causes the call to fail with RC2429 .

To add this option to an existing subscription, the MQSUB call, using SOALT, must come from the
same user ID as the original subscription itself.

If an MQSUB call references an existing subscription with SOAUID set, and the user ID differs
from the original subscription, the call succeeds only if the new user ID has authority to subscribe
to the topic. On successful completion, future publications to this subscriber are put to the
subscriber's queue with the new user ID set in the publication message.

Do not specify both SOAUID and SOFUID. If neither is specified, the default is SOFUID.

1208 IBM MQ Developing Applications Reference

SOFUID

When SOFUID is specified, the subscription can be altered or resumed by only the last user ID to
alter the subscription. If the subscription has not been altered, it is the user ID that created the
subscription.

If an MQSUB verb references an existing subscription with SOAUID set and alters the subscription
using SOALT to use the SOFUID, the user ID of the subscription is now fixed at this new user ID.
The call succeeds only if the new user ID has authority to subscribe to the topic.

If a user ID other than the one recorded as owning a subscription tries to resume or alter an
SOFUID subscription, the call fails with RC2434 . The owning user ID of a subscription can be
viewed using the DISPLAY SBSTATUS command.

Do not specify both SOAUID and SOFUID. If neither is specified, the default is SOFUID.

Publication options: The following options control the way publications are sent to this subscriber. If
altering an existing subscription using the SOALT option, these publication options can be changed.

SONOLC
Tells the broker that the application does not want to see any of its own publications. Publications
are considered to have originated from the same application if the connection handles are the
same. On return from an MQSUB call using SORES this option is set if appropriate.

SONEWP
No currently retained publications are to be sent, when this subscription is created, only new
publications. This option only applies when SOCRE is specified. Any subsequent changes to a
subscription do not alter the flow of publications and so any publications that have been retained
on a topic, has already been sent to the subscriber as new publications.
If this option is specified without SOCRE it causes the call to fail with RC2046 . On return from
an MQSUB call using SORES this option is not set even if the subscription was created using this
option.
If this option is not used, previously retained messages are sent to the destination queue
provided. If this action fails due to an error, either RC2525 or RC2526 , the creation of the
subscription fails.
This option is not valid in combination with SOPUBR.

SOPUBR
Setting this option indicates that the subscriber requests information specifically when required.
The queue manager does not send unsolicited messages to the subscriber. The retained
publication (or possibly multiple publications if a wildcard is specified in the topic) is sent to the
subscriber each time an MQSUBRQ call is made using the Hsub handle from a previous MQSUB
call. No publications are sent as a result of the MQSUB call using this option. On return from an
MQSUB call using SORES this option is set if appropriate.
This option is not valid in combination with SONEWP.

Wildcard options: The following options control how wildcards are interpreted in the string provided
in the SDOS field of the MQSD. You can specify only one of these options. If altering an existing
subscription using the SOALT option, these wildcard options cannot be changed. On return from an
MQSUB call using SORES the appropriate wildcard option is set.

SOWCHR
Wildcards only operate on characters within the topic string. The SOWCHR field treats forward
slash (/) as just another character with no special significance.
The behavior defined by SOWCHR is shown in the following table:

Table 730. How wildcards are interpreted

Special Character Behavior

* Wildcard, zero or more characters

Developing applications reference 1209

Table 730. How wildcards are interpreted (continued)

Special Character Behavior

? Wildcard, one character

% Escape character to allow the characters '*', '?', or '%'
to be used in a string and not be interpreted as a
special character, for example, '%*', '%?' or '%%'.

For example, publishing on the following topic:

/level0/level1/level2/level3/level4

matches subscribers using the following topics:

*
/*
/ level0/level1/level2/level3/*
/ level0/level1/*/level3/level4
/ level0/level1/le?el2/level3/level4

Note: This use of wildcards supplies exactly the meaning provided in IBM MQ V6 and WebSphere
MB V6 when using MQRFH1 formatted messages for Publish/Subscribe. It is recommended
that this is not used for newly written applications and is only used for applications that were
previously running against that version and have not been changed to use the default wildcard
behavior as described in SOWTOP.

SOWTOP

Wildcards only operate on topic elements within the topic string. This is the default behavior if
none is chosen.

The behavior required by SOWTOP is shown in the following table:

Table 731. How wildcards are interpreted

Special Character Behavior

/ Topic level separator

Wildcard: multiple topic level

+ Wildcard: single topic level

Note:

The '+' and '#' are not treated as wildcards if they are mixed in with other characters (including
themselves) within a topic level. In the following string, the '#' and '+' characters are treated as
ordinary characters.

level0/level1/#+/level3/level#

For example, publishing on the following topic:

/level0/level1/level2/level3/level4

matches subscribers using the following topics:

#
/#

1210 IBM MQ Developing Applications Reference

/ level0/level1/level2/level3/#
/ level0/level1/+/level3/level4

Note: This use of wildcards supplies the meaning provided in WebSphere Message Broker 6 when
using MQRFH2 formatted messages for Publish/Subscribe.

Other options: The following options control the way the API call is issued rather than the
subscription. On return from an MQSUB call using SORES these options are unchanged.

SOALTU
The SDAU field contains a user identifier to use to validate this MQSUB call. The call can
succeed only if this SDAU is authorized to open the object with the specified access options,
regardless of whether the user identifier under which the application is running is authorized
to do so.

SOSCID
The subscription is to use the correlation identifier supplied in the SDCID field. If this option
is not specified, a correlation identifier is automatically created by the queue manager at
subscription time and is returned to the application in the SDCID field. See SDCID (24-byte bit
string)SDCID for more information.

SOSETI

The subscription is to use the accounting token and application identity data supplied in the
SDACC and SDAID fields.

If this option is specified, the same authorization check is carried out as if the destination
queue was accessed using an MQOPEN call with OOSETI, except in the case where the SOMAN
option is also used in which case there is no authorization check on the destination queue.

If this option is not specified, the publications sent to this subscriber has default context
information associated with them as follows:

Table 732. Default context information for publications sent to this subscriber

Field in MQMD Value used

MDUID The user ID associated with the subscription at the
time the subscription was made.

MDACC Determined from the environment if possible; Set to
ACNONE if not.

MDAID Set to blanks

This option is only valid with SOCRE and SOALT. If used with SORES, the SDACC and SDAID
fields are ignored, so this option has no effect.

If a subscription is altered without using this option where previously the subscription had
supplied identity context information, default context information is generated for the altered
subscription.

If a subscription allowing different user IDs to use it with option SOAUID, is resumed by
a different user ID, default identity context is generated for the new user ID now owning
the subscription and any subsequent publications are delivered containing the new identity
context.

SOFIQ
The MQSUB call fails if the queue manager is in quiescing state. On z/OS, for a CICS or IMS
application, this option also forces the MQSUB call to fail if the connection is in quiescing
state.

SDAU (12 byte character string)

If you specify SOALTU, this field contains an alternate user identifier that is used to check the
authorization for the subscription and for output to the destination queue (specified in the Hobj

Developing applications reference 1211

parameter of the MQSUB call), in place of the user identifier that the application is currently running
under.

If successful, the user identifier specified in this field is recorded as the subscription owning user
identifier in place of the user identifier that the application is currently running under.

If SOALTU is specified and this field is entirely blank up to the first null character or the end of the
field, the subscription can succeed only if no user authorization is must subscribe to this topic with the
options specified or the destination queue for output.

If SOALTU is not specified, this field is ignored.

On return from an MQSUB call using SORES, this field is unchanged.

This is an input field. The length of this field is given by LNUID. The initial value of this field is 12 blank
characters.

SDPRI (10 digit signed integer)

This is the value that is in the MQPRI field of the Message Descriptor (MQMD) of all publication
messages matching this subscription. For more information about the MQPRI field in the MQMD, see
MDPRI.

The value must be greater than or equal to zero; zero is the lowest priority. The following special
values can also be used:
PRQDEF

When a subscription queue is provided in the Hobj field in the MQSUB call, and is not a managed
handle, then the priority for the message is taken from the DefPriority attribute of this queue.
If the queue so identified is a cluster queue or there is more than one definition in the queue-
name resolution path then the priority is determined when the publication message is put to the
queue as described for MDPRI.

If the MQSUB call uses a managed handle, the priority for the message is taken from the
DefPriority attribute of the model queue associated with the topic subscribed to.

PRPUB
The priority for the message is the priority of the original publication. This is the initial value of the
field.

If altering an existing subscription using the SOALT option, the MQPRI of any future publication
messages can be changed.

On return from an MQSUB call using SORES, this field is set to the current priority being used for the
subscription.

SDRO (MQCHARV)

SDRO is the long object name after the queue manager resolves the name provided in SDON.

If the long object name is provided in SDOS and nothing is provided in SDON, the value returned in this
field is the same as provided in SDOS.

If this field is omitted (that is SDRO.VSBufSize is zero), the SDRO is not returned, but the length is
returned in SDRO.VSLength. If the length is shorter than the full SDRO, it is truncated and returns as
many of the rightmost characters as can fit in the provided length.

If SDRO is specified incorrectly, according to the description of how to use the MQCHARV structure, or
if it exceeds the maximum length, the call fails with reason code RC2520 .

SDSID (4 byte character string)

This is the structure identifier; the value must be:
SDSIDV

Identifier for Subscription Descriptor structure.

This is always an input field. The initial value of this field is SDSIDV

1212 IBM MQ Developing Applications Reference

SDSL (10 digit signed integer)

This is the level associated with the subscription. Publications are only delivered to this subscription if
it is in the set of subscriptions with the highest SDSL value less than or equal to the PubLevel used at
publication time.

The value must be in the range zero to 9. Zero is the lowest level.

The initial value of this field is 1.

If altering an existing subscription using the SOALT option, then SDSL cannot be changed.

SDSN (MQCHARV)

SDSN specifies the subscription name.

This field is required only if SDOPT specifies the SODUR option, but if it is provided it is used by the
queue manager for SONDUR as well. If specified, SDSN must be unique within the queue manager,
because it is the field used to identify subscriptions.

The maximum length of SDSN is 10240.

This field serves two purposes. For a SODUR subscription, it is the means by which you identify
a subscription to resume it after it has been created, if you have either closed the handle to
the subscription (using the COKPSB option) or have been disconnected from the queue manager.
Identifying a subscription to remove it after it has been created is done using the MQSUB call with the
SORES option. The SDSN field is also displayed in the administration view of subscriptions in the SDSN
field in DISPLAY SBSTATUS.

If SDSN is specified incorrectly, according to the description of how to use the MQCHARV structure, or
if it exceeds the maximum length, or if it is omitted when it is required (that is SDSN. VCHRL is zero), or
if it exceeds the maximum length, the call fails with reason code RC2440 .

This is an input field. The initial values of the fields in this structure are the same as those in the
MQCHARV structure.

If altering an existing subscription using the SOALT option, the subscription name cannot be changed,
because it is the field used to identify the subscription. It is not changed on output from an MQSUB
call with the SORES option.

SDSS (MQCHARV)

SDSS is the string that provides the selection criteria used when subscribing for messages from a
topic.

This variable length field is returned on output from an MQSUB call using the SORES option, if a
buffer is provided, and if there is also a positive buffer length in VSBufSize. If no buffer is provided
on the call, only the length of the selection string is returned in the VSLength field of the MQCHARV.
If the buffer provided is smaller than the space required to return the field, only VSBufSize bytes are
returned in the provided buffer.

If SDSS is specified incorrectly, according to the description of how to use the MQCHARV structure, or
if it exceeds the maximum length, the call fails with reason code RC2519 .

SDSUD (MQCHARV)

The data provided on the subscription in this field is included as the mq.SubUserData message
property of every publication sent to this subscription.

The maximum length of SDSUD is 10240.

If SDSUD is specified incorrectly, according to the description of how to use the MQCHARV structure,
or if it exceeds the maximum length, the call fails with reason code RC2431.

This is an input field. The initial values of the fields in this structure are the same as those in the
MQCHARV structure.

If altering an existing subscription using the SOALT option, the subscription user data can be changed.

Developing applications reference 1213

This variable length field is returned on output from an MQSUB call using the SORES option, if a buffer
is provided and there is a positive buffer length in VSBufLen. If no buffer is provided on the call, only
the length of the subscription user data is returned in the VCHRL field of the MQCHARV. If the buffer
provided is smaller than the space required to return the field, only VSBufLen bytes are returned in
the provided buffer.

SDVER (10 digit signed integer)

This is the structure version number; the value must be:
SDVER1

Version-1 Subscription Descriptor structure.

The following constant specifies the version number of the current version:
SDVERC

Current version of Subscription Descriptor structure.

This is always an input field. The initial value of the field is SDVER1.

Initial values
Table 733. Initial values of fields in MQSD

Field name Name of constant Value of constant

SDSID SDSIDV 'SD¬¬'

SDVER SDVER1 1

SDOPT SONDUR 0

SDON None Blanks

SDAU None Blanks

SDASI SINONE Nulls

SDEXP EIULIM -1

SDOS Names and values as defined for
MQCHARV

SDSN Names and values as defined for
MQCHARV

SDSUD Names and values as defined for
MQCHARV

SDCID CINONE Nulls

SDPRI PRQDEF -3

SDACC ACNONE Nulls

SDAID None Blanks

SDSL None 1

SDRO Names and values as defined in
MQCHARV

Note:

1. The symbol ¬ represents a single blank character.

1214 IBM MQ Developing Applications Reference

RPG declaration

D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQSD Structure
D*
D* Structure identifier
D SDSID 1 4
D* Structure version number
D SDVER 5 8I 0
D* Options associated with subscribing
D SDOPT 9 12I 0
D* Object name
D SDON 13 60
D* Alternate user identifier
D SDAU 61 72
D* Alternate security identifier
D SDASI 73 112
D* Expiry of Subscription
D SDEXP 113 116I 0
D* Object Long name
D SDOSP 117 132*
D SDOSO 133 136I 0
D SDOSS 137 140I 0
D SDOSL 141 144I 0
D SDOSC 145 148I 0
D* Subscription name
D SDSNP 149 164*
D SDSNO 165 168I 0
D SDSNS 169 172I 0
D SDSNL 173 176I 0
D SDSNC 177 180I 0
D* Subscription User data
D SDSUDP 181 196*
D SDSUDO 197 200I 0
D SDSUDS 201 204I 0
D SDSUDL 205 208I 0
D SDSUDC 209 212I 0
D* Correlation Id related to this subscription
D SDCID 213 236
D* Priority set in publications
D SDPRI 237 240I 0
D* Accounting Token set in publications
D SDACC 241 272
D* Appl Identity Data set in publications
D SDAID 273 304
D* Message Selector
D SDSSP 305 320*
D SDSSO 321 324I 0
D SDSSS 325 328I 0
D SDSSL 329 332I 0
D SDSSC 333 336
D* Subscription level
D SDSL 337 340 0
D* Resolved Long object name
D SDROP 341 356*
D SDROO 357 360I 0
D SDROS 361 364I 0
D SDROL 365 368I 0
D SDROC 369 372I 0

MQSMPO (Set message property options) on IBM i
The MQSMPO structure allows applications to specify options that control how properties of messages are
set.

Overview
Purpose: The structure is an input parameter on the MQSETMP call.

Character set and encoding: Data in MQSMPO must be in the character set of the application and encoding
of the application (ENNAT).

• “Fields” on page 1216
• “Initial values” on page 1217

Developing applications reference 1215

• “RPG declaration” on page 1217

Fields
The MQSMPO structure contains the following fields; the fields are described in alphabetical order:

SPOPT (10-digit signed integer)

Location options: The following options relate to the relative location of the property compared to the
property cursor:
SPSETF

Sets the value of the first property that matches the specified name, or if it does not exist, adds a
new property after all other properties with a matching hierarchy.

SPSETC
Sets the value of the property pointed to by the property cursor. The property pointed to by the
property cursor is the one that was last inquired using either the IPINQF or the IPINQN option.

The property cursor is reset when the message handle is reused, or when the message handle is
specified in the HMSG field of the MQGMO structure on an MQGET call or the MQPMO structure on
an MQPUT call.

If this option is used when the property cursor has not yet been established or if the property
pointed to by the property cursor has been deleted, the call fails with completion code CCFAIL and
reason code RC2471.

SPSETA
Sets a new property after the property pointed to by the property cursor. The property pointed to
by the property cursor is the one that was last inquired using either the IPINQF or the IPINQO
option.

The property cursor is reset when the message handle is reused, or when the message handle is
specified in the HMSG field of the MQGMO structure on an MQGET call or the MQPMO structure on
an MQPUT call.

If this option is used when the property cursor has not yet been established or if the property
pointed to by the property cursor has been deleted, the call fails with completion code CCFAIL and
reason code RC2471.

If you need none of the options described, use the following option:
SPNONE

No options specified.

This is always an input field. The initial value of this field is SPSETF.

SPSID (10-digit signed integer)

This is the structure identifier; the value must be:

SPSIDV

Identifier for set message property options structure.

This is always an input field. The initial value of this field is SPSIDV.

SPVAKCSI (10-digit signed integer)

The character set of the property value to be set if the value is a character string.

This is always an input field. The initial value of this field is CSAPL.

SPVALENC (10-digit signed integer)

The encoding of the property value to be set if the value is numeric.

This is always an input field. The initial value of this field is ENNAT.

1216 IBM MQ Developing Applications Reference

SPVER (10-digit signed integer)

This is the structure version number; the value must be:

SPVER1
Version-1 set message property options structure.

The following constant specifies the version number of the current version:

SPVERC
Current version of set message property options structure.

This is always an input field. The initial value of this field is SPVER1.

Initial values
Table 734. Initial values of fields in MQSMPO

Field name Name of constant Value of constant

SPSID SPSIDV 'SMPO'

SPVER SPVER1 1

SPOPT SPNONE 0

SPVALENC ENNAT Depends on environment

SPVALCSI CSAPL -3

RPG declaration

 D* MQSMPO Structure
 D*
 D*
 D* Structure identifier
 D SPSID 1 4 INZ('SMPO')
 D*
 D* Structure version number
 D SPVER 5 8I 0 INZ(1)
 D*
 ** Options that control the action of
 D* MQSETMP
 D SPOPT 9 12I 0 INZ(0)
 D*
 D* Encoding of Value
 D SPVALENC 13 16I 0 INZ(273)
 D*
 D* Character set identifier of Value
 D SPVALCSI 17 20I 0 INZ(-3)

MQSRO (Subscription Request Options) on IBM i
The MQSRO structure allows the application to specify options that control how a subscription request is
made.

Overview
Purpose: The structure is an input/output parameter on the MQSUBRQ call.

Version: The current version of MQSRO is SRVER1.

• “Fields” on page 1218
• “Initial values” on page 1218
• “RPG declaration” on page 1219

Developing applications reference 1217

Fields
The MQSRO structure contains the following fields; the fields are described in alphabetical order:

SRNMP (10-digit signed integer)

This is an output field, returned to the application to indicate the number of publications sent to the
subscription queue as a result of this call. Although this number of publications have been sent as a
result of this call, there is no guarantee that this many messages will be available for the application
to get, especially if they are non-persistent messages.

There may be more than one publication if the topic subscribed to, contained a wildcard. If no
wildcards were present in the topic string when the subscription represented by HSUB was created,
then at most one publication is sent as a result of this call.

SROPT (10-digit signed integer)

One of the following options must be specified. Only one option can be specified.

Other options: The following option controls what happens when the queue manager is quiescing:
SRFIQ

The MQSUBRQ call fails if the queue manager is in the quiescing state.

Default option: If the option described previously is not required, the following option must be used:
SRNONE

Use this value to indicate that no other options have been specified; all options assume their
default values.

SRNONE helps program documentation. Although it is not intended that this option be used with
any other, because its value is zero, this use cannot be detected.

SRSID (4-byte character string)

This is the structure identifier; the value must be:
SRSIDV

Identifier for Subscription Request SROPT structure.

This is always an input field. The initial value of this field is SRSIDV.

SRVER (10-digit signed integer)

This is the structure version number; the value must be:
SRVER1

Version-1 Subscription Request Options structure.

The following constant specifies the version number of the current version:
SRVERC

Current version of Subscription Request Options structure.

This is always an input field. The initial value of this field is SRVER1.

Initial values
Table 735. Initial values of fields in MQSRO

Field name Name of constant Value of constant

SRSID SRSIDV 'SRO¬'

SRVER SRVER1 1

SROPT SRNONE 0

SRNMP None 0

1218 IBM MQ Developing Applications Reference

Table 735. Initial values of fields in MQSRO (continued)

Field name Name of constant Value of constant

Notes:

1. The symbol ¬ represents a single blank character.
2. The value Null string or blanks denotes the null string in C, and blank characters in other

programming languages.

RPG declaration

D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
D* MQSRO Structure
D*
D* Structure identifier
D SRSID 1 4
D* Structure version number
D SRVER 5 8I 0
D* Options that control the action of MQSUBRQ
D SROPT 9 12I 0
D* Number of publications sent
D SRNMP 13 16I 0

MQSTS (Status reporting structure) on IBM i
The MQSTS structure describes the data in the status structure returned by the MQSTAT command.

Overview
Character set and encoding: Character data in MQSTS is in the character set of the local queue manager;
this is given by the CodedCharSetId queue manager attribute. Numeric data in MQSTS is in the native
machine encoding; this is given by ENNAT.

Usage: The MQSTAT command is used to retrieve status information. This information is returned in an
MQSTS structure. For information about MQSTAT, see “MQSTAT (Retrieve status information) on IBM i” on
page 1345.

• “Fields” on page 1219
• “Initial values” on page 1222
• “RPG declaration” on page 1223

Fields
The MQSTS structure contains the following fields; the fields are described in alphabetical order:

STSCC (10-digit signed integer)

This is the completion code resulting from the first error reported in the MQSTS structure.

This is always an output field. The initial value of this field is CCOK.

STSFC (10-digit signed integer)

This is the number of asynchronous put calls that failed.

This is an output field. The initial value of this field is 0.

STSOBJN (48-byte character string)

This is the local name of the object involved in the first failure.

This is an output field. The initial value of this field is 48 blank characters.

Developing applications reference 1219

STSOQMGR (48-byte character string)

This is the name of the queue manager on which the STSOBJN object is defined. A name that is
entirely blank up to the first null character or the end of the field denotes the queue manager to which
the application is connected (the local queue manager).

This is an output field. The initial value of this field is 48 blank characters.

STSOO (10-digit signed integer)

The STSOO used to open the object being reported upon. Present only in version 2 of MQSTS or higher.

The value of STSOO depends on the value of the MQSTAT STYPE parameter.
STATAPT

Zero.

STATREC

Zero.

STATRER

The STSOO used when the failure occurred. The reason for the failure is reported in the STSCC and
STSRC fields in the MQSTS structure.

STSOO is an output field. Its initial value is zero.

STSOS (MQCHARV)

Long object name of failing object being reported on. Present only in version 2 of MQSTS or higher.

STSOS is a MQCHARV field with a maximum length of 10240. See MQCHARV for a description of how
to use the MQCHARV structure.

The interpretation of STSOS depends on the value of the MQSTAT STYPE parameter.

STATAPT

This is the long object name of the queue or topic used in the MQPUT operation, which failed.

STATREC

Zero length string

STATRER

This is the long object name of the object that caused the reconnection to fail.

STSOS is an output field. Its initial value is a zero length string.

STSOT (10-digit signed integer)

The type of object being named in ObjectName. Possible values are:
OTALSQ

Alias queue.
OTLOCQ

Local queue.
OTMODQ

Model queue.
OTQ

Queue.
OTREMQ

Remote queue.
OTTOP

Topic.

This is always an output field. The initial value of this field is OTQ.

1220 IBM MQ Developing Applications Reference

STSRC (10-digit signed integer)

This is the reason code resulting from the first error reported in the MQSTS structure

This is always an output field. The initial value of this field is RCNONE.

STSROBJN (48-byte character string)

This is the name of the destination queue named in STSOBJN after the local queue manager resolves
the name. The name returned is the name of a queue that exists on the queue manager identified by
STSRQMGR.

A nonblank value is returned only if the object is a single queue opened for browse, input, or output
(or any combination). If the object opened is any of the following, STSROBJN is set to blanks:

• A topic
• A queue, but not opened for browse, input, or output

This is an output field. The initial value of this field is 48 blank characters.

STSRQMGR (48-byte character string)

This is the name of the destination queue manager after the local queue manager resolves the name.
The name returned is the name of the queue manager that owns the queue identified by STSROBJN.
STSRQMGR can be the name of the local queue manager.

If STSROBJN is a shared queue that is owned by the queue sharing group to which the local queue
manager belongs, STSRQMGR is the name of the queue sharing group. If the queue is owned by some
other queue sharing group, STSROBJN can be the name of the queue sharing group or the name of
a queue manager that is a member of the queue sharing group (the nature of the value returned is
determined by the queue definitions that exist at the local queue manager).

A nonblank value is returned only if the object is a single queue opened for browse, input, or output
(or any combination). If the object opened is any of the following, STSRQMGR is set to blanks:

• A topic
• A queue, but not opened for browse, input, or output
• A cluster queue with OOBNDN specified (or with OOBNDQ in effect when the DefBind queue

attribute has the value OOBNDN)

This is an output field. The initial value of this field is 48 blank characters.

STSSC (10-digit signed integer)

This is the number of asynchronous put calls that succeeded.

This is an output field. The initial value of this field is 0.

STSSID (4-byte character string)

This is the structure identifier. The value must be:
STSSID

Identifier for status reporting structure.

The initial value of this field is STSSID.

STSSO (10 digit signed integer)

The STSSO used to open the failing subscription. Present only in version 2 of MQSTS or higher.

The interpretation of STSSO depends on the value of the MQSTAT STYPE parameter.
STATAPT

Zero.

STATREC

Zero.

Developing applications reference 1221

STATRER

The STSSO used when the failure occurred. The reason for the failure is reported in the STSCC and
STSRC fields in the MQSTS structure. If the failure is not related to subscribing to a topic, the value
returned is zero.

STSSO is an output field. Its initial value is zero.

STSSUN (MQCHARV)

The name of the failing subscription. Present only in version 2 of MQSTS or higher.

STSSUN is a MQCHARV field with a maxiumum length of 10240. See MQCHARV for a description of
how to use the MQCHARV structure.

The interpretation of STSSUN depends on the value of the MQSTAT STYPE parameter.
STATAPT

Zero length string.

STATREC

Zero length string.

STATRER

The name of the subscription that caused reconnection to fail. If no subscription name is
available, or the failure is not related to a subscription, this is a zero-length string.

STSSUN is an output field. Its initial value is a zero length string.

STSVER (10-digit signed integer)

This is the structure version number. The value must be:
STSVR1

Version number for status reporting structure.

The following constant specifies the version number of the current version:
STSVRC

Current version of status reporting structure.

The initial value of this field is STSVR1.

STSWC (10-digit signed integer)

This is the number of asynchronous put calls that completed with a warning.

This is an output field. The initial value of this field is 0.

Initial values
Table 736. Initial values of fields in MQSTS

Field name Name of constant Value of constant

STSSID STSID

STSVER STSVRC STSVR1

STSCC CCOK 0

STSRC RCNONE 0

STSSC None 0

STSWC None 0

STSFC None 0

1222 IBM MQ Developing Applications Reference

Table 736. Initial values of fields in MQSTS (continued)

Field name Name of constant Value of constant

STSOT None 0

STSOBJN None Blanks

STSOQMGR None Blanks

STSROBJN None Blanks

STSRQMGR None Blanks

STSOS Names and values as defined for MQCHARV

STSSUN Names and values as defined for MQCHARV

STSOO None 0

STSSO None 0

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQSTS Structure
 D*
 D* Structure identifier
 D STSSID 1 4
 D* Structure version number
 D STSVER 5 8I 0
 D* Completion code
 D STSCC 9 12I 0
 D* Reason code
 D STSRC 13 16I 0
 D* Success count
 D STSSC 17 20I 0
 D* Warning count
 D STSWC 21 24I 0
 D* Failure count
 D STSFC 25 28I 0
 D* Object type
 D STSOT 29 32I 0
 D* Object name
 D STSOBJN 33 80
 D* Object queue manager
 D STSOQMGR 81 128
 D* Resolved object name
 D STSROBJN 129 176
 D* Resolved object queue manager name
 D STSRQMGR 177 224
 D* Ver:1 **
 D* Failing object long name
 D* Address of variable length string
 D STSOSCHRP 225 240*
 D* Offset of variable length string
 D STSOSCHRO 241 244I 0
 D* Size of buffer
 D STSOSVSBS 245 248I 0
 D* Length of variable length string
 D STSOSCHRL 249 252I 0
 D* CCSID of variable length string
 D STSOSCHRC 253 256I 0
 D* Failing subscription name
 D* Address of variable length string
 D STSSUNCHRP 257 272*
 D* Offset of variable length string
 D STSSUNCHRO 273 276I 0
 D* Size of buffer
 D STSSUNVSBS 277 280I 0
 D* Length of variable length string
 D STSSUNCHRL 281 284I 0
 D* CCSID of variable length string
 D STSSUNCHRC 285 288I 0
 D* Failing open options

Developing applications reference 1223

 D STSOO 289 292I 0
 D* Failing subscription options
 D STSSO 293 296I 0
 D* Ver:2 **

MQTM - Trigger message
The MQTM structure describes the data in the trigger message that is sent by the queue manager to a
trigger-monitor application when a trigger event occurs for a queue.

Overview
Purpose: This structure is part of the IBM MQ Trigger Monitor Interface (TMI), which is one of the IBM MQ
framework interfaces.

Format name: FMTM.

Character set and encoding: Character data in MQTM is in the character set of the queue manager that
generates the MQTM. Numeric data in MQTM is in the machine encoding of the queue manager that
generates the MQTM.

The character set and encoding of the MQTM are given by the MDCSI and MDENC fields in:

• The MQMD (if the MQTM structure is at the start of the message data), or
• The header structure that precedes the MQTM structure (all other cases).

Usage: A trigger-monitor application may need to pass some or all of the information in the trigger
message to the application which is started by the trigger-monitor application. Information which may
be needed by the started application includes TMQN, TMTD, and TMUD. The trigger-monitor application
can pass the MQTM structure directly to the started application, or pass an MQTMC2 structure instead,
depending on what is permitted by the environment and convenient for the started application. For
information about MQTMC2, see “MQTMC2 (Trigger message 2 - character format) on IBM i” on page
1228.

• On IBM i, the trigger-monitor application provided with IBM MQ passes an MQTMC2 structure to the
started application.

For information about triggers, see Prerequisites for triggering.

• “MQMD for a trigger message” on page 1224
• “Fields” on page 1225
• “Initial values” on page 1227
• “RPG declaration” on page 1228

MQMD for a trigger message
Table 737. Settings for the fields in the MQMD of a trigger message generated by the queue manager

Field in MQMD Value used

MDSID MDSIDV

MDVER MDVER1

MDREP RONONE

MDMT MTDGRM

MDEXP EIULIM

MDFB FBNONE

MDENC ENNAT

MDCSI Queue manager's CodedCharSetId attribute

1224 IBM MQ Developing Applications Reference

Table 737. Settings for the fields in the MQMD of a trigger message generated by the queue manager (continued)

Field in MQMD Value used

MDFMT FMTM

MDPRI Initiation queue's DefPriority attribute

MDPER PENPER

MDMID A unique value

MDCID CINONE

MDBOC 0

MDRQ Blanks

MDRM Name of queue manager

MDUID Blanks

MDACC ACNONE

MDAID Blanks

MDPAT ATQM, or as appropriate for the message channel agent

MDPAN First 28 bytes of the queue manager name

MDPD Date when trigger message is sent

MDPT Time when trigger message is sent

MDAOD Blanks

An application that generates a trigger message is recommended to set similar values, except for the
following:

• The MDPRI field can be set to PRQDEF (the queue manager will change this to the default priority for the
initiation queue when the message is put).

• The MDRM field can be set to blanks (the queue manager will change this to the name of the local queue
manager when the message it put).

• The context fields should be set as appropriate for the application.

Fields
The MQTM structure contains the following fields; the fields are described in alphabetical order:

TMAI (256-byte character string)

Application identifier.

This is a character string that identifies the application to be started, and is used by the trigger-
monitor application that receives the trigger message. The queue manager initializes this field with the
value of the ApplId attribute of the process object identified by the TMPN field; see “Attributes for
process definitions on IBM i” on page 1384 for details of this attribute. The content of this data is of
no significance to the queue manager.

The meaning of TMAI is determined by the trigger-monitor application. The trigger monitor provided
by IBM MQ requires TMAI to be the name of an executable program.

The length of this field is given by LNPROA. The initial value of this field is 256 blank characters.

TMAT (10-digit signed integer)

Application type.

Developing applications reference 1225

This identifies the nature of the program to be started, and is used by the trigger-monitor application
that receives the trigger message. The queue manager initializes this field with the value of the
ApplType attribute of the process object identified by the TMPN field; see “Attributes for process
definitions on IBM i” on page 1384 for details of this attribute. The content of this data is of no
significance to the queue manager.

TMAT can have one of the following standard values. User-defined types can also be used, but should
be restricted to values in the range ATUFST through ATULST:

ATCICS
CICS transaction.

ATVSE
CICS/VSE transaction.

AT400
IBM i application.

ATUFST
Lowest value for user-defined application type.

ATULST
Highest value for user-defined application type.

The initial value of this field is 0.

TMED (128-byte character string)

Environment data.

This is a character string that contains environment-related information pertaining to the application
to be started, and is used by the trigger-monitor application that receives the trigger message. The
queue manager initializes this field with the value of the EnvData attribute of the process object
identified by the TMPN field; see “Attributes for process definitions on IBM i” on page 1384 for details
of this attribute. The content of this data is of no significance to the queue manager.

The length of this field is given by LNPROE. The initial value of this field is 128 blank characters.

TMPN (48-byte character string)

Name of process object.

This is the name of the queue manager process object specified for the triggered queue, and can
be used by the trigger-monitor application that receives the trigger message. The queue manager
initializes this field with the value of the ProcessName attribute of the queue identified by the TMQN
field; see “Attributes for queues” on page 1355 for details of this attribute.

Names that are shorter than the defined length of the field are always padded to the right with blanks;
they are not ended prematurely by a null character.

The length of this field is given by LNPRON. The initial value of this field is 48 blank characters.

TMQN (48-byte character string)

Name of triggered queue.

This is the name of the queue for which a trigger event occurred, and is used by the application
started by the trigger-monitor application. The queue manager initializes this field with the value of
the QName attribute of the triggered queue; see “Attributes for queues” on page 1355 for details of
this attribute.

Names that are shorter than the defined length of the field are padded to the right with blanks; they
are not ended prematurely by a null character.

The length of this field is given by LNQN. The initial value of this field is 48 blank characters.

1226 IBM MQ Developing Applications Reference

TMSID (4-byte character string)

Structure identifier.

The value must be:
TMSIDV

Identifier for trigger message structure.

The initial value of this field is TMSIDV.

TMTD (64-byte character string)

Trigger data.

This is free-format data for use by the trigger-monitor application that receives the trigger message.
The queue manager initializes this field with the value of the TriggerData attribute of the queue
identified by the TMQN field; see “Attributes for queues” on page 1355 for details of this attribute. The
content of this data is of no significance to the queue manager.

The length of this field is given by LNTRGD. The initial value of this field is 64 blank characters.

TMUD (128-byte character string)

User data.

This is a character string that contains user information relevant to the application to be started,
and is used by the trigger-monitor application that receives the trigger message. The queue manager
initializes this field with the value of the UserData attribute of the process object identified by the
TMPN field; see “Attributes for process definitions on IBM i” on page 1384 for details of this attribute.
The content of this data is of no significance to the queue manager.

The length of this field is given by LNPROU. The initial value of this field is 128 blank characters.

TMVER (10-digit signed integer)

Structure version number.

The value must be:
TMVER1

Version number for trigger message structure.

The following constant specifies the version number of the current version:
TMVERC

Current version of trigger message structure.

The initial value of this field is TMVER1.

Initial values
Table 738. Initial values of fields in MQTM

Field name Name of constant Value of constant

TMSID TMSIDV 'TM¬¬'

TMVER TMVER1 1

TMQN None Blanks

TMPN None Blanks

TMTD None Blanks

TMAT None 0

TMAI None Blanks

TMED None Blanks

Developing applications reference 1227

Table 738. Initial values of fields in MQTM (continued)

Field name Name of constant Value of constant

TMUD None Blanks

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQTM Structure
 D*
 D* Structure identifier
 D TMSID 1 4 INZ('TM ')
 D* Structure version number
 D TMVER 5 8I 0 INZ(1)
 D* Name of triggered queue
 D TMQN 9 56 INZ
 D* Name of process object
 D TMPN 57 104 INZ
 D* Trigger data
 D TMTD 105 168 INZ
 D* Application type
 D TMAT 169 172I 0 INZ(0)
 D* Application identifier
 D TMAI 173 428 INZ
 D* Environment data
 D TMED 429 556 INZ
 D* User data
 D TMUD 557 684 INZ

MQTMC2 (Trigger message 2 - character format) on IBM i
When a trigger-monitor application retrieves a trigger message (MQTM) from an initiation queue, the
trigger monitor might need to pass some or all of the information in the trigger message to the application
that is started by the trigger monitor.

Overview
Purpose: Information that may be needed by the started application includes TC2QN, TC2TD, and TC2UD.
The trigger monitor application can pass the MQTM structure directly to the started application, or pass
an MQTMC2 structure instead, depending on what is permitted by the environment and convenient for the
started application.

This structure is part of the IBM MQ Trigger Monitor Interface (TMI), which is one of the IBM MQ
framework interfaces.

Character set and encoding: Character data in MQTMC2 is in the character set of the local queue
manager; this is given by the CodedCharSetId queue manager attribute.

Usage: The MQTMC2 structure is like the format of the MQTM structure. The difference is that the
non-character fields in MQTM are changed in MQTMC2 to character fields of the same length, and the
queue manager name is added at the end of the structure.

• On IBM i, the trigger monitor application provided with IBM MQ passes an MQTMC2 structure to the
started application.

• “Fields” on page 1229
• “Initial values” on page 1230
• “RPG declaration” on page 1230

1228 IBM MQ Developing Applications Reference

Fields
The MQTMC2 structure contains the following fields; the fields are described in alphabetical order:

TC2AI (256-byte character string)

Application identifier.

See the TMAI field in the MQTM structure.

TC2AT (4-byte character string)

Application type.

This field always contains blanks, whatever the value in the TMAT field in the MQTM structure of the
original trigger message.

TC2ED (128-byte character string)

Environment data.

See the TMED field in the MQTM structure.

TC2PN (48-byte character string)

Name of process object.

See the TMPN field in the MQTM structure.

TC2QMN (48-byte character string)

Queue manager name.

This is the name of the queue manager at which the trigger event occurred.

TC2QN (48-byte character string)

Name of triggered queue.

See the TMQN field in the MQTM structure.

TC2SID (4-byte character string)

Structure identifier.

The value must be:
TCSIDV

Identifier for trigger message (character format) structure.

TC2TD (64-byte character string)

Trigger data.

See the TMTD field in the MQTM structure.

TC2UD (128-byte character string)

User data.

See the TMUD field in the MQTM structure.

TC2VER (4-byte character string)

Structure version number.

The value must be:
TCVER2

Version 2 trigger message (character format) structure.

The following constant specifies the version number of the current version:
TCVERC

Current version of trigger message (character format) structure.

Developing applications reference 1229

Initial values
Table 739. Initial values of fields in MQTMC2

Field name Name of constant Value of constant

TC2SID TCSIDV 'TMC¬'

TC2VER TCVER2 '¬¬¬2'

TC2QN None Blanks

TC2PN None Blanks

TC2TD None Blanks

TC2AT None Blanks

TC2AI None Blanks

TC2ED None Blanks

TC2UD None Blanks

TC2QMN None Blanks

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQTMC2 Structure
 D*
 D* Structure identifier
 D TC2SID 1 4
 D* Structure version number
 D TC2VER 5 8
 D* Name of triggered queue
 D TC2QN 9 56
 D* Name of process object
 D TC2PN 57 104
 D* Trigger data
 D TC2TD 105 168
 D* Application type
 D TC2AT 169 172
 D* Application identifier
 D TC2AI 173 428
 D* Environment data
 D TC2ED 429 556
 D* User data
 D TC2UD 557 684
 D* Queue manager name
 D TC2QMN 685 732

MQWIH (Work information header) on IBM i
The MQWIH structure describes the information that must be present at the start of a message that is to
be handled by the z/OS workload manager.

Overview
Format name: FMWIH.

Character set and encoding: The fields in the MQWIH structure are in the character set and encoding
given by the MDCSI and MDENC fields in the header structure that precedes MQWIH, or by those fields in
the MQMD structure if the MQWIH is at the start of the application message data.

1230 IBM MQ Developing Applications Reference

The character set must be one that has single-byte characters for the characters that are valid in queue
names.

Usage: If a message is to be processed by the z/OS workload manager, the message must begin with an
MQWIH structure.

• “Fields” on page 1231
• “Initial values” on page 1233
• “RPG declaration” on page 1233

Fields
The MQWIH structure contains the following fields; the fields are described in alphabetical order:

WICSI (10-digit signed integer)

Character-set identifier of data that follows MQWIH.

This specifies the character set identifier of the data that follows the MQWIH structure; it does not
apply to character data in the MQWIH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The following special value can be used:
CSINHT

Inherit character-set identifier of this structure.

Character data in the data following this structure is in the same character set as this structure.

The queue manager changes this value in the structure sent in the message to the actual
character-set identifier of the structure. Provided no error occurs, the value CSINHT is not
returned by the MQGET call.

CSINHT cannot be used if the value of the MDPAT field in MQMD is ATBRKR.

The initial value of this field is CSUNDF.

WIENC (10-digit signed integer)

Numeric encoding of data that follows MQWIH.

This specifies the numeric encoding of the data that follows the MQWIH structure; it does not apply to
numeric data in the MQWIH structure itself.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.

The initial value of this field is 0.

WIFLG (10-digit signed integer)

Flags

The value must be:
WINONE

No flags.

The initial value of this field is WINONE.

WIFMT (8-byte character string)

Format name of data that follows MQWIH.

This specifies the format name of the data that follows the MQWIH structure.

On the MQPUT or MQPUT1 call, the application must set this field to the value appropriate to the data.
The rules for coding this field are the same as those for the MDFMT field in MQMD.

The length of this field is given by LNFMT. The initial value of this field is FMNONE.

Developing applications reference 1231

WILEN (10-digit signed integer)

Length of MQWIH structure.

The value must be:
WILEN1

Length of version-1 work information header structure.

The following constant specifies the length of the current version:
WILENC

Length of current version of work information header structure.

The initial value of this field is WILEN1.

WIRSV (32-byte character string)

Reserved.

This is a reserved field; it must be blank.

WISID (4-byte character string)

Structure identifier.

The value must be:
WISIDV

Identifier for work information header structure.

The initial value of this field is WISIDV.

WISNM (32-byte character string)

Service name.

This is the name of the service that is to process the message.

The length of this field is given by LNSVNM. The initial value of this field is 32 blank characters.

WISST (8-byte character string)

Service step name.

This is the name of the step of WISNM to which the message relates.

The length of this field is given by LNSVST. The initial value of this field is 8 blank characters.

WITOK (16-byte bit string)

Message token.

This is a message token that uniquely identifies the message.

For the MQPUT and MQPUT1 calls, this field is ignored. The length of this field is given by LNMTOK.
The initial value of this field is MTKNON.

WIVER (10-digit signed integer)

Structure version number.

The value must be:
WIVER1

Version-1 work information header structure.

The following constant specifies the version number of the current version:
WIVERC

Current version of work information header structure.

The initial value of this field is WIVER1.

1232 IBM MQ Developing Applications Reference

Initial values
Table 740. Initial values of fields in MQWIH

Field name Name of constant Value of constant

WISID WISIDV 'WIH¬'

WIVER WIVER1 1

WILEN WILEN1 120

WIENC None 0

WICSI CSUNDF 0

WIFMT FMNONE Blanks

WIFLG WINONE 0

WISNM None Blanks

WISST None Blanks

WITOK MTKNON Nulls

WIRSV None Blanks

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQWIH Structure
 D*
 D* Structure identifier
 D WISID 1 4 INZ('WIH ')
 D* Structure version number
 D WIVER 5 8I 0 INZ(1)
 D* Length of MQWIH structure
 D WILEN 9 12I 0 INZ(120)
 D* Numeric encoding of data that followsMQWIH
 D WIENC 13 16I 0 INZ(0)
 D* Character-set identifier of data thatfollows MQWIH
 D WICSI 17 20I 0 INZ(0)
 D* Format name of data that followsMQWIH
 D WIFMT 21 28 INZ(' ')
 D* Flags
 D WIFLG 29 32I 0 INZ(0)
 D* Service name
 D WISNM 33 64 INZ
 D* Service step name
 D WISST 65 72 INZ
 D* Message token
 D WITOK 73 88 INZ(X'00000000000000-
 D 000000000000000000')
 D* Reserved
 D WIRSV 89 120 INZ

Developing applications reference 1233

MQXQH (Transmission-queue header) on IBM i
The MQXQH structure describes the information that is prefixed to the application message data of
messages when they are on transmission queues.

Overview
Purpose: A transmission queue is a special type of local queue that temporarily holds messages destined
for remote queues (that is, destined for queues that do not belong to the local queue manager). A
transmission queue is denoted by the Usage queue attribute having the value USTRAN.

Format name: FMXQH.

Character set and encoding: Data in MQXQH must be in the character set given by the CodedCharSetId
queue manager attribute and encoding of the local queue manager given by ENNAT for the C
programming language.

The character set and encoding of the MQXQH must be set into the MDCSI and MDENC fields in:

• The separate MQMD (if the MQXQH structure is at the start of the message data), or
• The header structure that precedes the MQXQH structure (all other cases).

Usage: A message that is on a transmission queue has two message descriptors:

• One message descriptor is stored separately from the message data; this is called the separate message
descriptor, and is generated by the queue manager when the message is placed on the transmission
queue. Some of the fields in the separate message descriptor are copied from the message descriptor
provided by the application on the MQPUT or MQPUT1 call.

The separate message descriptor is the one that is returned to the application in the MSGDSC parameter
of the MQGET call when the message is removed from the transmission queue.

• A second message descriptor is stored within the MQXQH structure as part of the message data; this is
called the embedded message descriptor, and is a copy of the message descriptor that was provided by
the application on the MQPUT or MQPUT1 call (with minor variations).

The embedded message descriptor is always a version-1 MQMD. If the message put by the application
has nondefault values for one or more of the version-2 fields in the MQMD, an MQMDE structure follows
the MQXQH, and is in turn followed by the application message data (if any). The MQMDE is either:

– Generated by the queue manager (if the application uses a version-2 MQMD to put the message), or
– Already present at the start of the application message data (if the application uses a version-1

MQMD to put the message).

The embedded message descriptor is the one that is returned to the application in the MSGDSC
parameter of the MQGET call when the message is removed from the final destination queue.

• “Fields in the separate message descriptor” on page 1234
• “Fields in the embedded message descriptor” on page 1235
• “Putting messages on remote queues” on page 1236
• “Putting messages directly on transmission queues” on page 1236
• “Getting messages from transmission queues” on page 1237
• “Fields” on page 1237
• “Initial values” on page 1238
• “RPG declaration” on page 1238

Fields in the separate message descriptor
The fields in the separate message descriptor are set by the queue manager as shown in the following list.
If the queue manager does not support the version-2 MQMD, a version-1 MQMD is used without loss of
function.

1234 IBM MQ Developing Applications Reference

Table 741. Fields in the separate message descriptor and values used

Field in separate MQMD Value used

MDSID MDSIDV

MDVER MDVER2

MDREP Copied from the embedded message descriptor, but with the bits
identified by ROAUXM set to zero. (This prevents a COA or COD report
message being generated when a message is placed on or removed from
a transmission queue.)

MDMT Copied from the embedded message descriptor.

MDEXP Copied from the embedded message descriptor.

MDFB Copied from the embedded message descriptor.

MDENC ENNAT

MDCSI Queue manager's CodedCharSetId attribute.

MDFMT FMXQH

MDPRI Copied from the embedded message descriptor.

MDPER Copied from the embedded message descriptor.

MDMID A new value is generated by the queue manager. This message identifier
is different from the MDMID that the queue manager may have generated
for the embedded message descriptor (see described previously).

MDCID The MDMID from the embedded message descriptor.

MDBOC 0

MDRQ Copied from the embedded message descriptor.

MDRM Copied from the embedded message descriptor.

MDUID Copied from the embedded message descriptor.

MDACC Copied from the embedded message descriptor.

MDAID Copied from the embedded message descriptor.

MDPAT ATQM

MDPAN First 28 bytes of the queue manager name.

MDPD Date when message was put on transmission queue.

MDPT Time when message was put on transmission queue.

MDAOD Blanks

MDGID GINONE

MDSEQ 1

MDOFF 0

MDMFL MFNONE

MDOLN OLUNDF

Fields in the embedded message descriptor
The fields in the embedded message descriptor have the same values as those in the MSGDSC parameter
of the MQPUT or MQPUT1 call, except for the following:

Developing applications reference 1235

• The MDVER field always has the value MDVER1.
• If the MDPRI field has the value PRQDEF, it is replaced by the value of the queue's DefPriority

attribute.
• If the MDPER field has the value PEQDEF, it is replaced by the value of the queue's DefPersistence

attribute.
• If the MDMID field has the value MINONE, or the PMNMID option was specified, or the message is

a distribution-list message, MDMID is replaced by a new message identifier generated by the queue
manager.

When a distribution-list message is split into smaller distribution-list messages placed on different
transmission queues, the MDMID field in each of the new embedded message descriptors is the same as
that in the original distribution-list message.

• If the PMNCID option was specified, MDCID is replaced by a new correlation identifier generated by the
queue manager.

• The context fields are set as indicated by the PM* options specified in the PMO parameter; the context
fields are:

– MDACC
– MDAID
– MDAOD
– MDPAN
– MDPAT
– MDPD
– MDPT
– MDUID

• The version-2 fields (if they were present) are removed from the MQMD, and moved into an MQMDE
structure, if one or more of the version-2 fields has a nondefault value.

Putting messages on remote queues
: When an application puts a message on a remote queue (either by specifying the name of the remote
queue directly, or by using a local definition of the remote queue), the local queue manager:

• Creates an MQXQH structure containing the embedded message descriptor
• Appends an MQMDE if one is needed and is not already present
• Appends the application message data
• Places the message on an appropriate transmission queue

Putting messages directly on transmission queues
It is also possible for an application to put a message directly on a transmission queue. In this case the
application must prefix the application message data with an MQXQH structure, and initialize the fields
with appropriate values. In addition, the MDFMT field in the MSGDSC parameter of the MQPUT or MQPUT1
call must have the value FMXQH.

Character data in the MQXQH structure created by the application must be in the character set of the
local queue manager (defined by the CodedCharSetId queue manager attribute), and integer data must
be in the native machine encoding. In addition, character data in the MQXQH structure must be padded
with blanks to the defined length of the field; the data must not be ended prematurely by using a null
character, because the queue manager does not convert the null and subsequent characters to blanks in
the MQXQH structure.

Note however that the queue manager does not check that an MQXQH structure is present, or that valid
values have been specified for the fields.

1236 IBM MQ Developing Applications Reference

Getting messages from transmission queues
Applications that get messages from a transmission queue must process the information in the MQXQH
structure in an appropriate fashion. The presence of the MQXQH structure at the beginning of the
application message data is indicated by the value FMXQH being returned in the MDFMT field in the
MSGDSC parameter of the MQGET call. The values returned in the MDCSI and MDENC fields in the MSGDSC
parameter, indicates the character set and encoding of the character and integer data in the MQXQH
structure. The character set and encoding of the application message data are defined by the MDCSI and
MDENC fields in the embedded message descriptor.

Fields
The MQXQH structure contains the following fields; the fields are described in alphabetical order:

XQMD (MQMD1)

Original message descriptor.

This is the embedded message descriptor, and is a close copy of the message descriptor MQMD
that was specified as the MSGDSC parameter on the MQPUT or MQPUT1 call when the message was
originally put to the remote queue.

Note: This is a version-1 MQMD.

The initial values of the fields in this structure are the same as those in the MQMD structure.

XQRQ (48-byte character string)

Name of destination queue.

This is the name of the message queue that is the apparent eventual destination for the message (this
may prove not to be the actual eventual destination if, for example, this queue is defined at XQRQM to
be a local definition of another remote queue).

If the message is a distribution-list message (that is, the MDFMT field in the embedded message
descriptor is FMDH), XQRQ is blank.

The length of this field is given by LNQN. The initial value of this field is 48 blank characters.

XQRQM (48-byte character string)

Name of destination queue manager.

This is the name of the queue manager or queue sharing group that owns the queue that is the
apparent eventual destination for the message.

If the message is a distribution-list message, XQRQM is blank.

The length of this field is given by LNQMN. The initial value of this field is 48 blank characters.

XQSID (4-byte character string)

Structure identifier.

The value must be:
XQSIDV

Identifier for transmission-queue header structure.

The initial value of this field is XQSIDV.

XQVER (10-digit signed integer)

Structure version number.

The value must be:
XQVER1

Version number for transmission-queue header structure.

The following constant specifies the version number of the current version:

Developing applications reference 1237

XQVERC
Current version of transmission-queue header structure.

The initial value of this field is XQVER1.

Initial values
Table 742. Initial values of fields in MQXQH

Field name Name of constant Value of constant

XQSID XQSIDV 'XQH¬'

XQVER XQVER1 1

XQRQ None Blanks

XQRQM None Blanks

XQMD Same names and values as MQMD; see
Table 710 on page 1140

-

Notes:

1. The symbol ¬ represents a single blank character.

RPG declaration

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D*
 D* MQXQH Structure
 D*
 D* Structure identifier
 D XQSID 1 4 INZ('XQH ')
 D* Structure version number
 D XQVER 5 8I 0 INZ(1)
 D* Name of destination queue
 D XQRQ 9 56 INZ
 D* Name of destination queue manager
 D XQRQM 57 104 INZ
 D* Original message descriptor
 D XQ1SID 105 108 INZ('MD ')
 D XQ1VER 109 112I 0 INZ(1)
 D XQ1REP 113 116I 0 INZ(0)
 D XQ1MT 117 120I 0 INZ(8)
 D XQ1EXP 121 124I 0 INZ(-1)
 D XQ1FB 125 128I 0 INZ(0)
 D XQ1ENC 129 132I 0 INZ(273)
 D XQ1CSI 133 136I 0 INZ(0)
 D XQ1FMT 137 144 INZ(' ')
 D XQ1PRI 145 148I 0 INZ(-1)
 D XQ1PER 149 152I 0 INZ(2)
 D XQ1MID 153 176 INZ(X'00000000000000-
 D 0000000000000000000000-
 D 000000000000')
 D XQ1CID 177 200 INZ(X'00000000000000-
 D 0000000000000000000000-
 D 000000000000')
 D XQ1BOC 201 204I 0 INZ(0)
 D XQ1RQ 205 252 INZ
 D XQ1RM 253 300 INZ
 D XQ1UID 301 312 INZ
 D XQ1ACC 313 344 INZ(X'00000000000000-
 D 0000000000000000000000-
 D 0000000000000000000000-
 D 000000')
 D XQ1AID 345 376 INZ
 D XQ1PAT 377 380I 0 INZ(0)
 D XQ1PAN 381 408 INZ
 D XQ1PD 409 416 INZ
 D XQ1PT 417 424 INZ
 D XQ1AOD 425 428 INZ

1238 IBM MQ Developing Applications Reference

Function calls on IBM i
Use this information to learn about the function calls available in IBM i programming.

Conventions used in the call descriptions on IBM i
For each call, this collection of topics gives a description of the parameters and usage of the call. This
is followed by typical invocations of the call, and typical declarations of its parameters, in the RPG
programming language.

Important: When coding IBM MQ API calls you must ensure that all relevant parameters (as described in
the following sections) are provided. Failure to do so can produce unpredictable results.

The description of each call contains the following sections:
Call name

The call name, followed by a brief description of the purpose of the call.
Parameters

For each parameter, the name is followed by its data type in parentheses () and its direction; for
example:

 CMPCOD (9-digit decimal integer) - output

There is more information about the structure data types in “Elementary data types” on page 988.

The direction of the parameter can be:
Input

You (the programmer) must provide this parameter.
Output

The call returns this parameter.
Input/output

You must provide this parameter, but it is modified by the call.

There is also a brief description of the purpose of the parameter, together with a list of any values that
the parameter can take.

The last two parameters in each call are a completion code and a reason code. The completion code
indicates whether the call completed successfully, partially, or not at all. Further information about
the partial success or the failure of the call is given in the reason code.

Usage notes
Additional information about the call, describing how to use it and any restrictions on its use.

RPG invocation
Typical invocation of the call, and declaration of its parameters, in RPG.

Other notational conventions are:
Constants

Names of constants are shown in uppercase; for example, OOOUT.
Arrays

In some calls, parameters are arrays of character strings with a size that is not fixed. In the
descriptions of these parameters, a lowercase n represents a numeric constant. When you code the
declaration for that parameter, replace the n with the numeric value you require.

MQBACK (Back out changes) on IBM i
The MQBACK call indicates to the queue manager that all of the message gets and puts that have
occurred since the last syncpoint are to be backed out. Messages put as part of a unit of work are deleted;
messages retrieved as part of a unit of work are reinstated on the queue.

Developing applications reference 1239

• This call is supported in the following environments:

– AIX

– IBM i

– Windows

• “Syntax” on page 1240
• “Usage notes” on page 1240
• “Parameters” on page 1241
• “RPG Declaration” on page 1242

Syntax
MQBACK (Hconn, CompCode, Reason)

Usage notes
Consider these usage notes when using MQBACK.

1. This call can be used only when the queue manager itself coordinates the unit of work. This is a local
unit of work, where the changes affect only IBM MQ resources.

2. In environments where the queue manager does not coordinate the unit of work, the appropriate
back-out call must be used instead of MQBACK. The environment may also support an implicit back
out caused by the application terminating abnormally.

• On IBM i, this call can be used for local units of work coordinated by the queue manager. This means
that a commitment definition must not exist at job level, that is, the STRCMTCTL command with the
CMTSCOPE(*JOB) parameter must not have been issued for the job.

3. If an application ends with uncommitted changes in a unit of work, the disposition of those changes
depends on whether the application ends normally or abnormally. See the usage notes in “MQDISC
(Disconnect queue manager) on IBM i” on page 1278 for further details.

4. When an application puts or gets messages in groups or segments of logical messages, the queue
manager retains information relating to the message group and logical message for the last successful
MQPUT and MQGET calls. This information is associated with the queue handle, and includes such
things as:

• The values of the MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD.
• Whether the message is part of a unit of work.
• For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set for each of the
following:

• The last successful MQPUT call (this can be part of a unit of work).
• The last successful MQGET call that removed a message from the queue (this can be part of a unit of

work).
• The last successful MQGET call that browsed a message on the queue (this cannot be part of a unit

of work).

If the application puts or gets the messages as part of a unit of work, and the application then decides
to back out the unit of work, the group and segment information is restored to the value that it had
previously:

• The information associated with the MQPUT call is restored to the value that it had before the first
successful MQPUT call for that queue handle in the current unit of work.

1240 IBM MQ Developing Applications Reference

• The information associated with the MQGET call is restored to the value that it had before the first
successful MQGET call for that queue handle in the current unit of work.

Queues which were updated by the application after the unit of work had started, but outside the
scope of the unit of work, do not have their group and segment information restored if the unit of work
is backed out.

Restoring the group and segment information to its previous value when a unit of work is backed out
allows the application to spread a large message group or large logical message consisting of many
segments across several units of work, and to restart at the correct point in the message group or
logical message if one of the units of work fails. Using several units of work might be advantageous
if the local queue manager has only limited queue storage. However, the application must maintain
sufficient information to be able to restart putting or getting messages at the correct point if a system
failure occurs. For details of how to restart at the correct point after a system failure, see the PMLOGO
option described in “MQPMO (Put-message options) on IBM i” on page 1162, and the GMLOGO option
described in “MQGMO (Get-message options) on IBM i” on page 1066.

The remaining usage notes apply only when the queue manager coordinates the units of work:

1. A unit of work has the same scope as a connection handle. This means that all IBM MQ calls which
affect a particular unit of work must be performed using the same connection handle. Calls issued
using a different connection handle (for example, calls issued by another application) affect a different
unit of work. See the HCONN parameter described in “MQCONN (Connect queue manager) on IBM i” on
page 1265 for information about the scope of connection handles.

2. Only messages that were put or retrieved as part of the current unit of work are affected by this call.
3. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls within a unit of work, but

which never issues a commit or backout call, can cause queues to fill up with messages that are
not available to other applications. To guard against this possibility, the administrator should set the
MaxUncommittedMsgs queue manager attribute to a value that is low enough to prevent runaway
applications filling the queues, but high enough to allow the expected messaging applications to work
correctly.

Parameters
The MQBACK call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying COMCOD.

If COMCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If COMCOD is CCFAIL:

Developing applications reference 1241

RC2219
(2219, X'8AB') MQI call reentered before previous call complete.

RC2009
(2009, X'7D9') Connection to queue manager lost.

RC2018
(2018, X'7E2') Connection handle not valid.

RC2101
(2101, X'835') Object damaged.

RC2123
(2123, X'84B') Result of commit or back-out operation is mixed.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQBACK(HCONN : COMCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQBACK PR EXTPROC('MQBACK')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Completion code
 D COMCOD 10I 0
 D* Reason code qualifying COMCOD
 D REASON 10I 0

MQBEGIN (Begin unit of work) on IBM i
The MQBEGIN call begins a unit of work that is coordinated by the queue manager, and that may involve
external resource managers.

• This call is supported in the following environments:

– AIX

– IBM i

– Windows

• “Syntax” on page 1243
• “Usage notes” on page 1243
• “Parameters” on page 1244
• “RPG Declaration” on page 1245

1242 IBM MQ Developing Applications Reference

Syntax
MQBEGIN (HCONN, BEGOP, CMPCOD, REASON)

Usage notes
1. The MQBEGIN call can be used to start a unit of work that is coordinated by the queue manager

and that might involve changes to resources owned by other resource managers. The queue manager
supports three types of unit-of-work:
Queue manager-coordinated local unit of work

This is a unit of work in which the queue manager is the only resource manager participating, and
so the queue manager acts as the unit-of-work coordinator.

• To start this type of unit of work, the PMSYP or GMSYP option should be specified on the first
MQPUT, MQPUT1, or MQGET call in the unit of work.

It is not necessary for the application to issue the MQBEGIN call to start the unit of work, but if
MQBEGIN is used, the call completes with CCWARN and reason code RC2121.

• To commit or back out this type of unit of work, the MQCMIT or MQBACK call must be used.

Queue manager-coordinated global unit of work
This is a unit of work in which the queue manager acts as the unit-of-work coordinator, both
for IBM MQ resources and for resources belonging to other resource managers. Those resource
managers cooperate with the queue manager to ensure that all changes to resources in the unit of
work are committed or backed out together.

• To start this type of unit of work, the MQBEGIN call must be used.
• To commit or back out this type of unit of work, the MQCMIT and MQBACK calls must be used.

Externally-coordinated global unit of work
This is a unit of work in which the queue manager is a participant, but the queue manager does
not act as the unit-of-work coordinator. Instead, there is an external unit-of-work coordinator with
whom the queue manager cooperates.

• To start this type of unit of work, the relevant call provided by the external unit-of-work
coordinator must be used.

If the MQBEGIN call is used to try to start the unit of work, the call fails with reason code
RC2012.

• To commit or back out this type of unit of work, the commit and back-out calls provided by the
external unit-of-work coordinator must be used.

If the MQCMIT or MQBACK call is used to try to commit or back out the unit of work, the call fails
with reason code RC2012.

2. If the application ends with uncommitted changes in a unit of work, the disposition of those changes
depends on whether the application ends normally or abnormally. See the usage notes in “MQDISC
(Disconnect queue manager) on IBM i” on page 1278 for further details.

3. An application can participate in only one unit of work at a time. The MQBEGIN call fails with reason
code RC2128 if there is already a unit of work in existence for the application, regardless of which type
of unit of work it is.

4. The MQBEGIN call is not valid in an IBM MQ client environment. An attempt to use the call fails with
reason code RC2012.

5. When the queue manager is acting as the unit-of-work coordinator for global units of work, the
resource managers that can participate in the unit of work are defined in the queue manager's
configuration file.

6. On IBM i, the three types of unit of work are supported as follows:

Developing applications reference 1243

• Queue manager-coordinated local units of work can be used only when a commitment definition
does not exist at the job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB)
parameter must not have been issued for the job.

• Queue manager-coordinated global units of work are not supported.
• Externally-coordinated global units of work can be used only when a commitment definition exists

at job level, that is, the STRCMTCTL command with the CMTSCOPE(*JOB) parameter must have
been issued for the job. If this has been done, the IBM i COMMIT and ROLLBACK operations apply to
IBM MQ resources as well as to resources belonging to other participating resource managers.

Parameters
The MQBEGIN call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

BEGOP (MQBO) - input/output

Options that control the action of MQBEGIN.

See “MQBO (Begin options) on IBM i” on page 1009 for details.

If no options are required, programs written in C or S/390 assembler can specify a null parameter
address, instead of specifying the address of an MQBO structure.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2121

(2121, X'849') No participating resource managers registered.
RC2122

(2122, X'84A') Participating resource manager not available.

If CMPCOD is CCFAIL:
RC2134

(2134, X'856') Begin-options structure not valid.
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.

1244 IBM MQ Developing Applications Reference

RC2009
(2009, X'7D9') Connection to queue manager lost.

RC2012
(2012, X'7DC') Call not valid in environment.

RC2018
(2018, X'7E2') Connection handle not valid.

RC2046
(2046, X'7FE') Options not valid or not consistent.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

RC2128
(2128, X'850') Unit of work already started.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQBEGIN(HCONN : BEGOP : CMPCOD :
 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQBEGIN PR EXTPROC('MQBEGIN')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Options that control the action of MQBEGIN
 D BEGOP 12A
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

MQBUFMH (Convert buffer into message handle) on IBM i
The MQBUFMH function call converts a buffer into a message handle and is the inverse of the MQMHBUF
call.

This call takes a message descriptor and MQRFH2 properties in the buffer and makes them available
through a message handle. The MQRFH2 properties in the message data are, optionally, removed. The
Encoding, CodedCharSetId, and Format fields of the message descriptor are updated, if necessary, to
correctly describe the contents of the buffer after the properties have been removed.

• “Syntax” on page 1245
• “Usage notes” on page 1246
• “Parameters” on page 1246
• “RPG Declaration” on page 1247

Syntax
MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, Buffer, BufferLength, DataLength,
CompCode, Reason)

Developing applications reference 1245

Usage notes
MQBUFMH calls cannot be intercepted by API exits - a buffer is converted into a message handle in the
application space; the call does not reach the queue manager.

Parameters
The MQBUFMH call has the following parameters:

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager. The value of HCONN must match the
connection handle that was used to create the message handle specified in the Hmsg parameter.

If the message handle was created by using HCUNAS, a valid connection must be established on the
thread converting a buffer into a message handle. If a valid connection is not established, the call fails
with RC2009.

HMSG (20-digit signed integer) - input

This handle is the message handle for which a buffer is required. The value was returned by a previous
MQCRTMH call.

BMHOPT (MQBMHO) - input

The MQBMHO structure allows applications to specify options that control how message handles are
produced from buffers.

See “MQBMHO (Buffer to message handle options) on IBM i” on page 1008 for details.

MSGDSC (MQMD) - input/output

The MSGDSC structure contains the message descriptor properties and describes the contents of the
buffer area.

On output from the call, the properties are optionally removed from the buffer area and, in this case,
the message descriptor is updated to correctly describe the buffer area.

Data in this structure must be in the character set and encoding of the application.

BUFLEN (10-digit signed integer) - input

BUFLEN is the length of the Buffer area, in bytes.

A BUFLEN of zero bytes is valid, and indicates that the buffer area contains no data.

BUFFER (1-byte bit string x BUFLEN) - input/output

BUFFER defines the area containing the message buffer. For most data, you must align the buffer on a
4-byte boundary.

If BUFFER contains character or numeric data, set the CodedCharSetId and Encoding fields in the
MSGDSC parameter to the values appropriate to the data; this enables the data to be converted, if
necessary.

If properties are found in the message buffer they are optionally removed; they later become available
from the message handle on return from the call.

In the C programming language, the parameter is declared as a pointer-to-void, which means the
address of any type of data can be specified as the parameter.

If the BUFLEN parameter is zero, BUFFER is not referred to. In this case, the parameter address
passed by programs written in C or System/390 assembler can be null.

DATLEN (10-digit signed integer) - output

DATLEN is the length, in bytes, of the buffer which might have the properties removed.

1246 IBM MQ Developing Applications Reference

CMPCOD (10-digit signed integer) - output
CCOK

Successful completion.
CCFAIL

Call failed.
REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:
RC2204

(2204, X'089C') Adapter not available.
RC2130

(2130, X'852') Unable to load adapter service module.
RC2157

(2157, X'86D') Primary and home ASIDs differ.
RC2489

(2489, X'09B9') Buffer to message handle options structure not valid.
RC2004

(2004, X'07D4') Buffer parameter not valid.
RC2005

(2005, X'07D5') Buffer length parameter not valid.
RC2219

(2219, X'08AB') MQI call entered before previous call completed.
RC2009

(2009, X'07D9') Connection to queue manager lost.
RC2460

(2460, X'099C') Message handle not valid.
RC2026

(2026, X'07EA') Message descriptor not valid.
RC2499

(2499, X'09C3') Message handle already in use.
RC2046

(2046, X'07FE') Options not valid or not consistent.
RC2334

(2334, X'091E') MQRFH2 structure not valid.
RC2421

(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.
RC2195

(2195, X'893') Unexpected error occurred.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQBUFMH(HCONN : HMSG : BMHOPT :
 MSGDSC : BUFLEN : BUFFER :
 DATLEN : CMPCOD : REASON)

Developing applications reference 1247

The prototype definition for the call is:

 DMQBUFMH PR EXTPROC('MQBUFMH')
 D* Connection handle
 D HCONN 10I 0
 D* Message handle
 D HMSG 10I 0
 D* Options that control the action of MQBUFMH
 D BMHOPT 12A VALUE
 D* Message descriptor
 D MSGDSC 364A
 D* Length in bytes of the Buffer area
 D BUFLEN 10I 0
 D* Area to contain the message buffer
 D BUFFER * VALUE
 D* Length of the output buffer
 D DATLEN 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

MQCB (Manage callback) on IBM i
The MQCB call reregisters a callback for the specified object handle and controls activation and changes
to the callback.

A callback is a piece of code (specified as either the name of a function that can be dynamically linked or
as a function pointer) that is called by IBM MQ when certain events occur.

To use MQCB and MQCTL on a V7 client you must be connected to a V7 server and the SHARECNV
parameter of the channel must have a non-zero value.

For information about Global units of work see: Global units of work.

The types of callback that can be defined are:
Message consumer

A message consumer callback function is called when a message, meeting the selection criteria
specified, is available on an object handle.

Only one callback function can be registered against each object handle. If a single queue is to be
read with multiple selection criteria then the queue must be opened multiple times and a consumer
function registered on each handle.

Event handler
The event handler is called for conditions that affect the whole callback environment.

The function is called when an event condition occurs, for example, a queue manager or connection
stopping or quiescing.

The function is not called for conditions that are specific to a single message consumer, for example
RC2016; it is called however if a callback function does not end normally.

• “Syntax” on page 1248
• “Usage notes for MQCB” on page 1249
• “Parameters for MQCB” on page 1250
• “RPG Declaration” on page 1256

Syntax
MQCB (HCONN, OPERATN, HOBJ, CBDSC, MSGDSC, GMO, CMPCOD, REASON)

1248 IBM MQ Developing Applications Reference

Usage notes for MQCB
1. MQCB is used to define the action to be invoked for each message, matching the specified criteria,

available on the queue. When the action is processed, either the message is removed from the queue
and passed to the defined message consumer, or a message token is provided, which is used to
retrieve the message.

2. MQCB can be used to define callback routines before starting consumption with MQCTL or it can be
used from within a callback routine.

3. To use MQCB from outside of a callback routine, you must first suspend message consumption by
using MQCTL and resume consumption afterward.

Message consumer callback sequence

You can configure a consumer to invoke callback at key points during the lifecycle of the consumer.
For example:

• when the consumer is first registered,
• when the connection is started,
• when the connection is stopped and
• when the consumer is deregistered, either explicitly, or implicitly by an MQCLOSE.

Table 743. MQCTL verb definitions

Verb Meaning

MQCTL(START) MQCTL call by using the CTLSR Operation

MQCTL(STOP) MQCTL call by using the CTLSP Operation

MQCTL(WAIT) MQCTL call by using the CTLSW Operation

Allows the consumer to maintain state associated with the consumer. When a callback is requested by
an application, the rules for consumer invocation are as follows:
REGISTER

Is always the first type of invocation of the callback.
Is always called on the same thread as the MQCB(CBREG) call.

START
Is always called synchronously with the MQCTL(START) verb.

• All START callbacks are completed before the MQCTL(START) verb returns.

Is on the same thread as the message delivery if CTLTHR is requested.
The call with start is not guaranteed if, for example, a previous callback issues MQCTL(STOP)
during the MQCTL(START).

STOP
No further messages or events are delivered after this call until the connection is restarted.
A STOP is guaranteed if the application was previously called for START, or a message, or an event.

DEREGISTER
Is always the last type of invocation of the callback.

Ensure that your application performs thread-based initialization and cleanup in the START and STOP
callbacks. You can do non thread-based initialization and cleanup with REGISTER and DEREGISTER
callbacks.

Do not make any assumptions about the life and availability of the thread other than what is stated.
For example, do not rely on a thread staying alive beyond the last call to DEREGISTER. Similarly, when
you have chosen not to use CTLTHR, do not assume that the thread exists whenever the connection is
started.

Developing applications reference 1249

If your application has particular requirements for thread characteristics, it can always create a
thread accordingly, then use MQCTL(WAIT). This step donates the thread to IBM MQ for asynchronous
message delivery.

Message consumer connection usage

Normally, when an application issues another MQI call while one is outstanding, the call fails with
reason code RC2219.

There are special cases, however, when the application must issue a further MQI call before the
previous call has completed. For example, the consumer can be invoked during an MQCB call with
CBRE.

In such an instance, when as a result of the application issuing either an MQCB or MQCTL verb, the
application is called back, the application is allowed to issue a further MQI call. This instance means
you can issue, for example, an MQOPEN call, in the consumer function when called with a CBCCALLT
type of CBCTRC. Any MQI call, except for MQDISC, is allowed.

Parameters for MQCB
The MQCB call has the following parameters:

HCONN (10-digit signed integer) - input

Manage callback function - HCONN parameter.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

OPERATN (10-digit signed integer) - input

Manage callback function - OPERATN parameter.

The operation being processed on the callback defined for the specified object handle. You must
specify one of the following options; if more than one option is required, the values can be added (do
not add the same constant more than once) or combined by using the bitwise OR operation (if the
programming language supports bit operations).

Combinations that are not valid are noted; all other combinations are valid.
CBREG

Define the callback function for the specified object handle. This operation defines the function to
be called and the selection criteria to be used.

If a callback function is already defined for the object handle the definition is replaced. If an error
is detected while replacing the callback, the function is deregistered.

If a callback is registered in the same callback function in which it was previously deregistered,
this is treated as a replace operation; any initial or final calls are not invoked.

You can use CBREG with CTLSU or CTLRE.

CBUNR
Stop the consuming of messages for the object handle and removes the handle from those eligible
for a callback.

A callback is automatically deregistered if the associated handle is closed.

If CBUNR is called from within a consumer, and the callback has a stop call defined, it is invoked
upon return from the consumer.

If this operation is issued against an Hobj with no registered consumer, the call returns with
RC2448.

CTLSU
Suspends the consuming of messages for the object handle.

1250 IBM MQ Developing Applications Reference

If this operation is applied to an event handler, the event handler does not get events while
suspended, and any events missed while in the suspended state are not provided to the operation
when it is resumed.

While suspended, the consumer function continues to get the control type callbacks.

CTLRE
Resume the consuming of messages for the object handle.

If this operation is applied to an event handler, the event handler does not get events while
suspended, and any events missed while in the suspended state are not provided to the operation
when it is resumed.

CBDSC (MQCBD) - input

Manage callback function - CBDSC parameter.

This is a structure that identifies the callback function that is being registered by the application and
the options used when registering it.

See “MQCBD - Callback descriptor” on page 286 for details of the structure.

Callback descriptor is required only for the CBREG option; if the descriptor is not required, the
parameter address passed can be null.

HOBJ (10-digit signed integer) - input

Manage callback function - HOBJ parameter.

This handle represents the access that has been established to the object from which a message is to
be consumed. This is a handle that has been returned from a previous MQOPEN or MQSUB call (in the
HOBJ parameter).

HOBJ is not required when defining an event handler routine (CBTEH) and must be specified as
HONONE.

If this Hobj has been returned from an MQOPEN call, the queue must have been opened with one or
more of the following options:

• OOINPS
• OOINPX
• OOINPQ
• OOBRW

MSGDSC (MQMD) - input

Manage callback function -MSGDSC parameter.

This structure describes the attributes of the message required, and the attributes of the message
retrieved.

The MsgDesc parameter defines the attributes of the messages required by the consumer, and the
version of the MQMD to be passed to the message consumer.

The MsgId, CorrelId, GroupId, MsgSeqNumber, and Offset in the MQMD are used for message
selection, depending on the options specified in the GetMsgOpts parameter.

The Encoding and CodedCharSetId are used for message conversion if you specify the GMCONV
option.

See MQMD for details.

MsgDesc is used only for CBREG and, if you require values other than the default for any fields.
MsgDesc is not used for an event handler.

If the descriptor is not required the parameter address passed can be null.

Note, that if multiple consumers are registered against the same queue with overlapping selectors,
the chosen consumer for each message is undefined.

Developing applications reference 1251

GMO (MQGMO) - input

Manage callback function - GMO parameter.

Options that control how the message consumer gets messages.

All options have the meaning as described in “MQGMO (Get-message options) on IBM i” on page
1066, when used on an MQGET call, except:
GMSSIG

This option is not permitted.
GMBRWF, GMBRWN, GMMBH, GMMBC

The order of messages delivered to a browsing consumer is dictated by the combinations of these
options. Significant combinations are:
GMBRWF

The first message on the queue is delivered repeatedly to the consumer. This is useful when
the consumer destructively consumes the message in the callback. Use this option with care.

GMBRWN
The consumer is given each message on the queue, from the current cursor position until the
end of the queue is reached.

GMBRWF + GMBRWN
The cursor is reset to the start of the queue. The consumer is then given each message until
the cursor reaches the end of the queue.

GMBRWF + GMMBH or GMMBC
Starting at the beginning of the queue, the consumer is given the first nonmarked message
on the queue, which is then marked for this consumer. This combination ensures that the
consumer can receive new messages added behind the current cursor point.

GMBRWN + GMMBH or GMMBC
Starting at the cursor position the consumer is given the next nonmarked message on the
queue, which is then marked for this consumer. Use this combination with care because
messages can be added to the queue behind the current cursor position.

GMBRWF + GMBRWN + GMMBH or GMMBC
This combination is not permitted, if used the call returns RC2046.

GMNWT, GMWT and GMWI
These options control how the consumer is invoked.
GMNWT

The consumer is never called with RC2033. The consumer is only invoked for messages and
events

GMWT with a zero GMWI
The RC2033 code is only passed to the consumer when there are no messages and

• the consumer has been started
• the consumer has been delivered at least one message since the last no messages reason

code.

This prevents the consumer from polling in a busy loop when a zero wait interval is specified.
GMWT and a positive GMWI

The user is invoked after the specified wait interval with reason code RC2033. This call is
made regardless of whether any messages have been delivered to the consumer. This allows
the user to perform heartbeat or batch type processing.

GMWT and GMWI of WIULIM
This specifies an infinite wait before returning RC2033. The consumer is never called with
RC2033.

GMO is used only for CBREG and, if you require values other than the default for any fields. GMO is not
used for an event handler.

1252 IBM MQ Developing Applications Reference

If the options are not required the parameter address passed can be null.

If a message properties handle is provided in the MQGMO structure, a copy is provided in the MQGMO
structure that is passed into the consumer callback. On return from the MQCB call, the application can
delete the message properties handle.

CMPCOD (10-digit signed integer) - output

Manage callback function - CMPCOD parameter.

The completion code; it is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Manage callback function - REASON parameter.

The following reason codes are the codes that the queue manager can return for the REASON
parameter.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CompCode is CCFAIL:
RC2204

(2204, X'89C') Adapter not available.
RC2133

(2133, X'855') Unable to load data conversion services modules.
RC2130

(2130, X'852') Unable to load adapter service module.
RC2374

(2374, X'946') API exit failed.
RC2183

(2183, X'887') Unable to load API exit.
RC2157

(2157, X'86D') Primary and home ASIDs differ.
RC2005

(2005, X'7D5') Buffer length parameter not valid.
RC2219

(2219, X'8AB') MQI call entered before previous call complete.
RC2487

(2487, X'9B7') Incorrect callback type field.
RC2448

(2448, X'990') Unable to deregister, suspend, or resume because there is no registered callback.
RC2486

(2486, X'9B6') Either CallbackFunction or CallbackName must be specified but not both.
RC2483

(2483, X'9B3') Incorrect callback type field.
RC2484

(2484, X'9B4') Incorrect MQCBD options field.

Developing applications reference 1253

RC2140
(2140, X'85C') Wait request rejected by CICS.

RC2009
(2009, X'7D9') Connection to queue manager lost.

RC2217
(2217, X'8A9') Not authorized for connection.

RC2202
(2202, X'89A') Connection quiescing.

RC2203
(2203, X'89B') Connection shutting down.

RC2207
(2207, X'89F') Correlation-identifier error.

RC2010
(2010, X'7DA') Data length parameter not valid.

RC2016
(2016, X'7E0') Gets inhibited for the queue.

RC2351
(2351, X'92F') Global units of work conflict.

RC2186
(2186, X'88A') Get-message options structure not valid.

RC2353
(2353, X'931') Handle in use for global unit of work.

RC2018
(2018, X'7E2') Connection handle not valid.

RC2019
(2019, X'7E3') Object handle not valid.

RC2259
(2259, X'8D3') Inconsistent browse specification.

RC2245
(2245, X'8C5') Inconsistent unit-of-work specification.

RC2246
(2246, X'8C6') Message under cursor not valid for retrieval.

RC2352
(2352, X'930') Global unit of work conflicts with local unit of work.

RC2247
(2247, X'8C7') Match options not valid.

RC2485
(2485, X'9B4') Incorrect MaxMsgLength field.

RC2026
(2026, X'7EA') Message descriptor not valid.

RC2497
(2497, X'9C1') The specified function entry point could not be found in the module.

RC2496
(2496, X'9C0') Module found, however it is of the wrong type; not 32 bit, 64 bit, or a valid dynamic
link library.

RC2495
(2495, X'9BF') Module not found in the search path or not authorized to load.

RC2250
(2250, X'8CA') Message sequence number not valid.

1254 IBM MQ Developing Applications Reference

RC2331
(2331, X'91B') Use of message token not valid.

RC2033
(2033, X'7F1') No message available.

RC2034
(2034, X'7F2') Browse cursor not positioned on message.

RC2036
(2036, X'7F4') Queue not open for browse.

RC2037
(2037, X'7F5') Queue not open for input.

RC2041
(2041, X'7F9') Object definition changed since opened.

RC2101
(2101, X'835') Object damaged.

RC2206
(2206, X'89E') Incorrect operation code on API Call.

RC2046
(2046, X'7FE') Options not valid or not consistent.

RC2193
(2193, X'891') Error accessing page-set data set.

RC2052
(2052, X'804') Queue has been deleted.

RC2394
(2394, X'95A') Queue has wrong index type.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2161
(2161, X'871') Queue manager quiescing.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2069
(2069, X'815') Signal outstanding for this handle.

RC2071
(2071, X'817') Insufficient storage available.

RC2109
(2109, X'83D') Call suppressed by exit program.

RC2024
(2024, X'7E8') No more messages can be handled within current unit of work.

RC2072
(2072, X'818') Syncpoint support not available.

RC2195
(2195, X'893') Unexpected error occurred.

RC2354
(2354, X'932') Enlistment in global unit of work failed.

RC2355
(2355, X'933') Mixture of unit-of-work calls not supported.

Developing applications reference 1255

RC2255
(2255, X'8CF') Unit of work not available for the queue manager to use.

RC2090
(2090, X'82A') Wait interval in MQGMO not valid.

RC2256
(2256, X'8D0') Wrong version of MQGMO supplied.

RC2257
(2257, X'8D1') Wrong version of MQMD supplied.

RC2298
(2298, X'8FA') The function requested is not available in the current environment.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQCB(HCONN : OPERATN : CBDSC :
 HOBJ : MSGDSC : GMO :
 DATLEN : CMPCOD : REASON)

The prototype definition for the call is:

 DMQCB PR EXTPROC('MQCB')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Operation
 D OPERATN 10I 0 VALUE
 D* Callback descriptor
 D CBDSC 180A
 D* Object handle
 D HOBJ 10I 0 VALUE
 D* Message Descriptor
 D MSGDSC 364A
 D* Get options
 D GMO 112A
 D* Completion code
 D CMPCOD 10I 0
 * Reason code qualifying CompCode
 D REASON 10I 0

MQCLOSE (Close object) on IBM i
The MQCLOSE call relinquishes access to an object, and is the inverse of the MQOPEN call.

• “Syntax” on page 1256
• “Usage notes” on page 1256
• “Parameters” on page 1258
• “RPG Declaration” on page 1262

Syntax
MQCLOSE (HCONN, HOBJ, OPTS, CMPCOD, REASON)

Usage notes
1. When an application issues the MQDISC call, or ends either normally or abnormally, any objects that

were opened by the application and are still open are closed automatically with the CONONE option.
2. The following points apply if the object being closed is a queue:

1256 IBM MQ Developing Applications Reference

• If operations on the queue are performed as part of a unit of work, the queue can be closed before or
after the syncpoint occurs without affecting the outcome of the syncpoint.

• If the queue was opened with the OOBRW option, the browse cursor is destroyed. If the queue is
later reopened with the OOBRW option, a new browse cursor is created (see the OOBRW option
described in MQOPEN).

• If a message is currently locked for this handle at the time of the MQCLOSE call, the lock is released
(see the GMLK option described in “MQGMO (Get-message options) on IBM i” on page 1066).

3. The following points apply if the object being closed is a dynamic queue (either permanent or
temporary):

• For a dynamic queue, the options CODEL or COPURG can be specified regardless of the options
specified on the corresponding MQOPEN call.

• When a dynamic queue is deleted, all MQGET calls with the GMWT option that are outstanding
against the queue are canceled and reason code RC2052 is returned. See the GMWT option
described in “MQGMO (Get-message options) on IBM i” on page 1066.

After a dynamic queue has been deleted, any call (other than MQCLOSE) that attempts to reference
the queue using a previously acquired HOBJ handle fails with reason code RC2052.

Be aware that although a deleted queue cannot be accessed by applications, the queue is not
removed from the system, and associated resources are not freed, until all handles that reference
the queue have been closed, and all units of work that affect the queue have been either committed
or backed out.

• When a permanent dynamic queue is deleted, if the HOBJ handle specified on the MQCLOSE call is
not the one that was returned by the MQOPEN call that created the queue, a check is made that the
user identifier which was used to validate the MQOPEN call is authorized to delete the queue. If the
OOALTU option was specified on the MQOPEN call, the user identifier checked is the ODAU.

This check is not performed if:

– The handle specified is the one returned by the MQOPEN call that created the queue.
– The queue being deleted is a temporary dynamic queue.

• When a temporary dynamic queue is closed, if the HOBJ handle specified on the MQCLOSE call is the
one that was returned by the MQOPEN call that created the queue, the queue is deleted. This occurs
regardless of the close options specified on the MQCLOSE call. If there are messages on the queue,
they are discarded; no report messages are generated.

If there are uncommitted units of work that affect the queue, the queue and its messages are still
deleted, but this does not cause the units of work to fail. However, as described previously, the
resources associated with the units of work are not freed until each of the units of work has been
either committed or backed out.

4. The following points apply if the object being closed is a distribution list:

• The only valid close option for a distribution list is CONONE; the call fails with reason code RC2046
or RC2045 if any other options are specified.

• When a distribution list is closed, individual completion codes and reason codes are not returned
for the queues in the list - only the CMPCOD and REASON parameters of the call are available for
diagnostic purposes.

If a failure occurs closing one of the queues, the queue manager continues processing and attempts
to close the remaining queues in the distribution list. The CMPCOD and REASON parameters of the
call are then set to return information describing the failure. Thus it is possible for the completion
code to be CCFAIL, even though most of the queues were closed successfully. The queue that
encountered the error is not identified.

If there is a failure on more than one queue, it is not defined which failure is reported in the CMPCOD
and REASON parameters.

Developing applications reference 1257

Parameters
The MQCLOSE call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

HOBJ (10-digit signed integer) - input/output

Object handle.

This handle represents the object that is being closed. The object can be of any type. The value of
HOBJ was returned by a previous MQOPEN call.

On successful completion of the call, the queue manager sets this parameter to a value that is not a
valid handle for the environment. This value is:
HOUNUH

Unusable object handle.

OPTS (10-digit signed integer) - input

Options that control the action of MQCLOSE.

The OPTS parameter controls how the object is closed. Only permanent dynamic queues and
subscriptions can be closed in more than one way. Permanent dynamic queues can either be retained
or deleted; these are queues with a DefinitionType attribute that has the value QDPERM (see the
DefinitionType attribute described in “Attributes for queues” on page 1355). The close options
are summarized in a table later in this topic.

Durable subscriptions can either be kept or removed; these are created using the MQSUB call with the
SODUR option.

When closing the handle to a managed destination (that is the Hobj parameter returned on an MQSUB
call which used the SOMAN option) the queue manager will clean up any unretrieved publications
when the associated subscription has also been removed. That is done using the CORMSB option
on the Hsub parameter returned on an MQSUB call. Note that CORMSB is the default behavior on
MQCLOSE for a non-durable subscription.

When closing a handle to a non-managed destination you are responsible for cleaning up the queue
where publications are sent. You are recommended to close the subscription using CORMSB first and
then process messages off the queue until there are none remaining.

One (and only one) of the following must be specified:

Dynamic queue closure options

These options control how permanent dynamic queues are closed:
CODEL

Delete the queue.

The queue is deleted if either of the following is true:

• It is a permanent dynamic queue, created by a previous MQOPEN call, and there are no
messages on the queue and no uncommitted get or put requests outstanding for the queue
(either for the current task or any other task).

• It is the temporary dynamic queue that was created by the MQOPEN call that returned HOBJ. In
this case, all the messages on the queue are purged.

In all other cases, including the case where the Hobj was returned on an MQSUB call, the call fails
with reason code RC2045, and the object is not deleted.

COPURG
Delete the queue, purging any messages on it.

1258 IBM MQ Developing Applications Reference

The queue is deleted if either of the following is true:

• It is a permanent dynamic queue, created by a previous MQOPEN call, and there are no
uncommitted get or put requests outstanding for the queue (either for the current task or any
other task).

• It is the temporary dynamic queue that was created by the MQOPEN call that returned HOBJ.

In all other cases, including the case where the Hobj was returned on an MQSUB call, the call fails
with reason code RC2045, and the object is not deleted.

The next table shows which close options are valid, and whether the object is retained or deleted.

Table 744. Valid close options for use with retained or deleted objects

Type of object or queue CONONE CODEL COPURG

Object other than a queue Retained Not valid Not valid

Predefined queue Retained Not valid Not valid

Permanent dynamic queue Retained Deleted if empty
and no pending
updates

Messages deleted; queue
deleted if no pending
updates

Temporary dynamic queue
(call issued by creator of
queue)

Deleted Deleted Deleted

Temporary dynamic queue
(call not issued by creator of
queue)

Retained Not valid Not valid

Distribution list Retained Not valid Not valid

Managed subscription
destination

Retained Not valid Not valid

Distribution list (subscription
has been removed)

Messages
deleted; queue
deleted

Not valid Not valid

Subscription closure options

These options control whether durable subscriptions are removed when the handle is closed, and
whether publications still waiting to be read by the application are cleaned up. These options are only
valid for use with an object handle returned in the HSUB parameter of an MQSUB call.
COKPSB

The handle to the subscription is closed but the subscription made is kept. Publications will
continue to be sent to the destination specified in the subscription. This option is only valid if
the subscription was made with the option SODUR. COKPSB is the default if the subscription is
durable

CORMSB
The subscription is removed and the handle to the subscription is closed.
The Hobj parameter of the MQSUB call is not invalidated by closure of the Hsub parameter and
may continue to be used for MQGET or MQCB to receive the remaining publications. When the
Hobj parameter of the MQSUB call is also closed, if it was a managed destination any unretrieved
publications will be removed.
CORMSB is the default if the subscription is non-durable.

These subscription closure options are summarized in the following tables:

To close a durable subscription handle but leave the subscription around, use the following
subscription closure options:

Developing applications reference 1259

Table 745. Task options for closing a durable subscription handle and leaving the subscription around

Task Subscription closure option

Keep publications on an MQOPENed handle COKPSB

Remove publications on an MQOPENed handle Action not allowed

Keep publications on a handle with SOMAN COKPSB

Remove publications on a handle with SOMAN Action not allowed

To unsubscribe, either by closing a durable subscription handle and unsubscribing it or closing a
non-durable subscription handle, use the following subscription closure options:

Table 746. Task options for unsubscribing

Task Subscription closure option

Keep publications on an MQOPENed handle CORMSB

Remove publications on an MQOPENed handle Action not allowed

Keep publications on a handle with SOMAN CORMSB

Remove publications on a handle with SOMAN COPGSB

Read ahead options

The following options control what happens to non-persistent messages which have been sent to
the client before an application requested them and have not yet been consumed by the application.
These messages are stored in the client read ahead buffer waiting to be requested by the application
and can either be discarded or consumed from the queue before the MQCLOSE is completed.

COIMM
The object is closed immediately and any messages which have been sent to the client before
an application requested them are discarded and are not available to be consumed by any
application. This is the default value.

COQSC
A request to close the object is made, but if any messages which have been sent to the client
before an application requested them, still reside in the client read ahead buffer, the MQCLOSE
call will return with a warning code of RC2458, and the object handle will remain valid.
The application can then continue to use the object handle to retrieve messages until no more are
available, and then close the object again. No more messages will be sent to the client ahead of an
application requesting then, read ahead is now turned off.
Applications are advised to use COQSC rather than trying to reach a point where there are no more
messages in the client read ahead buffer, since a message could arrive between the last MQGET
call and the following MQCLOSE which would be discarded if COIMM was used.
If an MQCLOSE with COQSC is issued from within an asynchronous callback function, the same
behavior of reading ahead messages applies. If the warning code RC2458 is returned, then the
callback function will be called at least one more time. When the last remaining message that was
read ahead has been passed to the callback function the CBCFLG field is set to CBCFBE.

Default option

If you require none of the options described previously, you can use the following option:

CONONE
No optional close processing required.

This must be specified for:

• Objects other than queues

1260 IBM MQ Developing Applications Reference

• Predefined queues
• Temporary dynamic queues (but only in those cases where HOBJ is not the handle returned by

the MQOPEN call that created the queue).
• Distribution lists

In all of the previous cases, the object is retained and not deleted.

If this option is specified for a temporary dynamic queue:

• The queue is deleted, if it was created by the MQOPEN call that returned HOBJ ; any messages
that are on the queue are purged.

• In all other cases the queue (and any messages on it) are retained.

If this option is specified for a permanent dynamic queue, the queue is retained and not deleted.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2241

(2241, X'8C1') Message group not complete.
RC2242

(2242, X'8C2') Logical message not complete.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2019

(2019, X'7E3') Object handle not valid.
RC2035

(2035, X'7F3') Not authorized for access.
RC2101

(2101, X'835') Object damaged.
RC2045

(2045, X'7FD') Option not valid for object type.
RC2046

(2046, X'7FE') Options not valid or not consistent.

Developing applications reference 1261

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2162
(2162, X'872') Queue manager shutting down.

RC2055
(2055, X'807') Queue contains one or more messages or uncommitted put or get requests.

RC2102
(2102, X'836') Insufficient system resources available.

RC2063
(2063, X'80F') Security error occurred.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQCLOSE(HCONN : HOBJ : OPTS :
 C CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQCLOSE PR EXTPROC('MQCLOSE')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Object handle
 D HOBJ 10I 0
 D* Options that control the action of MQCLOSE
 D OPTS 10I 0 VALUE
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

MQCMIT (Commit changes) on IBM i
The MQCMIT call indicates to the queue manager that the application has reached a syncpoint, and that
all of the message gets and puts that have occurred since the last syncpoint are to be made permanent.
Messages put as part of a unit of work are made available to other applications; messages retrieved as
part of a unit of work are deleted.

• “Syntax” on page 1262
• “Usage notes” on page 1263
• “Parameters” on page 1263
• “RPG Declaration” on page 1264

Syntax
MQCMIT (HCONN, COMCOD, REASON)

1262 IBM MQ Developing Applications Reference

Usage notes
Consider these usage notes when using MQCMIT.

1. This call can be used only when the queue manager itself coordinates the unit of work. This is a local
unit of work, where the changes affect only IBM MQ resources.

2. In environments where the queue manager does not coordinate the unit of work, the appropriate
commit call must be used instead of MQCMIT. The environment may also support an implicit commit
caused by the application terminating normally.

• On IBM i, this call can be used for local units of work coordinated by the queue manager. This means
that a commitment definition must not exist at job level, that is, the STRCMTCTL command with the
CMTSCOPE(*JOB) parameter must not have been issued for the job.

3. If an application ends with uncommitted changes in a unit of work, the disposition of those changes
depends on whether the application ends normally or abnormally. See the usage notes in “MQDISC
(Disconnect queue manager) on IBM i” on page 1278 for further details.

4. When an application puts or gets messages in groups or segments of logical messages, the queue
manager retains information relating to the message group and logical message for the last successful
MQPUT and MQGET calls. This information is associated with the queue handle, and includes such
things as:

• The values of the MDGID, MDSEQ, MDOFF, and MDMFL fields in MQMD.
• Whether the message is part of a unit of work.
• For the MQPUT call: whether the message is persistent or nonpersistent.

When a unit of work is committed, the queue manager retains the group and segment information,
and the application can continue putting or getting messages in the current message group or logical
message.

Retaining the group and segment information when a unit of work is committed allows the application
to spread a large message group or large logical message consisting of many segments across several
units of work. Using several units of work might be advantageous if the local queue manager has only
limited queue storage. However, the application must maintain sufficient information to be able to
restart putting or getting messages at the correct point if a system failure occurs. For details of how
to restart at the correct point after a system failure, see the PMLOGO option described in “MQPMO
(Put-message options) on IBM i” on page 1162, and the GMLOGO option described in “MQGMO
(Get-message options) on IBM i” on page 1066.

The remaining usage notes apply only when the queue manager coordinates the units of work:

1. A unit of work has the same scope as a connection handle. This means that all IBM MQ calls which
affect a particular unit of work must be performed using the same connection handle. Calls issued
using a different connection handle (for example, calls issued by another application) affect a different
unit of work. See the HCONN parameter described in MQCONN for information about the scope of
connection handles.

2. Only messages that were put or retrieved as part of the current unit of work are affected by this call.
3. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls within a unit of work, but

which never issues a commit or back-out call, can cause queues to fill up with messages that are
not available to other applications. To guard against this possibility, the administrator should set the
MaxUncommittedMsgs queue manager attribute to a value that is low enough to prevent runaway
applications filling the queues, but high enough to allow the expected messaging applications to work
correctly.

Parameters
The MQCMIT call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

Developing applications reference 1263

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

COMCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying COMCOD.

If COMCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If COMCOD is CCWARN:
RC2003

(2003, X'7D3') Unit of work backed out.
RC2124

(2124, X'84C') Result of commit operation is pending.

If COMCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2101

(2101, X'835') Object damaged.
RC2123

(2123, X'84B') Result of commit or back-out operation is mixed.
RC2162

(2162, X'872') Queue manager shutting down.
RC2102

(2102, X'836') Insufficient system resources available.
RC2071

(2071, X'817') Insufficient storage available.
RC2195

(2195, X'893') Unexpected error occurred.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQCMIT(HCONN : COMCOD : REASON)

The prototype definition for the call is:

1264 IBM MQ Developing Applications Reference

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQCMIT PR EXTPROC('MQCMIT')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Completion code
 D COMCOD 10I 0
 D* Reason code qualifying COMCOD
 D REASON 10I 0

MQCONN (Connect queue manager) on IBM i
The MQCONN call connects an application program to a queue manager. It provides a queue manager
connection handle, which is used by the application on subsequent message queuing calls.

• Applications must use the MQCONN or MQCONNX call to connect to the queue manager, and the
MQDISC call to disconnect from the queue manager.

On IBM MQ for Multiplatforms, each thread in an application can connect to different queue managers. On
other systems, all concurrent connections within a process must be to the same queue manager.

• “Syntax” on page 1265
• “Usage notes” on page 1265
• “Parameters” on page 1266
• “RPG Declaration” on page 1268

Syntax
MQCONN (QMNAME, HCONN, CMPCOD, REASON)

Usage notes
1. The queue manager to which connection is made using the MQCONN call is called the local queue

manager.
2. Queues that are owned by the local queue manager appear to the application as local queues. It is

possible to put messages on and get messages from these queues.

Shared queues that are owned by the queue sharing group to which the local queue manager belongs
appear to the application as local queues. It is possible to put messages on and get messages from
these queues.

Queues that are owned by remote queue managers appear as remote queues. It is possible to put
messages on these queues, but not possible to get messages from these queues.

3. If the queue manager fails while an application is running, the application must issue the MQCONN call
again in order to obtain a new connection handle to use on subsequent IBM MQ calls. The application
can issue the MQCONN call periodically until the call succeeds.

If an application is not sure whether it is connected to the queue manager, the application can safely
issue an MQCONN call in order to obtain a connection handle. If the application is already connected,
the handle returned is the same as that returned by the previous MQCONN call, but with completion
code CCWARN and reason code RC2002.

4. When the application has finished using IBM MQ calls, the application should use the MQDISC call to
disconnect from the queue manager.

5. On IBM i, programs that end abnormally are not automatically disconnected from the queue manager.
Therefore applications should be written to allow for the possibility of the MQCONN or MQCONNX call
returning completion code CCWARN and reason code RC2002. The connection handle returned in this
situation can be used as normal.

Developing applications reference 1265

Parameters
The MQCONN call has the following parameters:

QMNAME (48-byte character string) - input

Name of queue manager.

This is the name of the queue manager to which the application wants to connect. The name can
contain the following characters:

• Uppercase alphabetic characters (A through Z)
• Lowercase alphabetic characters (a through z)
• Numeric digits (0 through 9)
• Period (.), forward slash (/), underscore (_), percent (%)

The name must not contain leading or embedded blanks, but might contain trailing blanks. A null
character can be used to indicate the end of significant data in the name; the null and any characters
following it are treated as blanks. The following restrictions apply in the environments indicated:

• On IBM i, names containing lowercase characters, forward slash, or percent must be enclosed in
quotation marks when specified on commands. These quotation marks must not be specified in the
QMNAME parameter.

If the name consists entirely of blanks, the name of the default queue manager is used.

The name specified for QMNAME must be the name of a connectable queue manager.

Queue sharing groups: On systems where several queue managers exist and are configured to form
a queue sharing group, the name of the queue sharing group can be specified for QMNAME in place
of the name of a queue manager. This allows the application to connect to any queue manager that
is available in the queue sharing group. The system can also be configured so that a blank QMNAME
causes connection to the queue sharing group instead of to the default queue manager.

If QMNAME specifies the name of the queue sharing group, but there is also a queue manager with
that name on the system, connection is made to the latter in preference to the former. Only if that
connection fails is connection to one of the queue managers in the queue sharing group attempted.

If the connection is successful, the handle returned by the MQCONN or MQCONNX call can be used to
access all of the resources (both shared and nonshared) that belong to the particular queue manager
to which connection has been made. Access to these resources is subject to the typical authorization
controls.

If the application issues two MQCONN or MQCONNX calls in order to establish concurrent
connections, and one or both calls specifies the name of the queue sharing group, the second call
may return completion code CCWARN and reason code RC2002. This occurs when the second call
connects to the same queue manager as the first call.

Queue sharing groups are supported only on z/OS. Connection to a queue sharing group is supported
only in the batch, RRS batch, and TSO environments.

IBM MQ client applications: For IBM MQ MQI client applications, a connection is attempted for each
client-connection channel definition with the specified queue manager name, until one is successful.
The queue manager, however, must have the same name as the specified name. If an all-blank name
is specified, each client-connection channel with an all-blank queue manager name is tried until one is
successful; in this case there is no check against the actual name of the queue manager.

IBM MQ client queue manager groups: If the specified name starts with an asterisk (*), the actual
queue manager to which connection is made may have a name that is different from that specified
by the application. The specified name (without the asterisk) defines a group of queue managers that
are eligible for connection. The implementation selects one from the group by trying each one in
turn, in alphabetic order, until one is found to which a connection can be made. If none of the queue
managers in the group is available for connection, the call fails. Each queue manager is tried once

1266 IBM MQ Developing Applications Reference

only. If an asterisk alone is specified for the name, an implementation-defined default queue manager
group is used.

Queue manager groups are supported only for applications running in an MQ-client environment;
the call fails if a non-client application specifies a queue manager name beginning with an asterisk.
A group is defined by providing several client connection channel definitions with the same queue
manager name (the specified name without the asterisk), to communicate with each of the queue
managers in the group. The default group is defined by providing one or more client connection
channel definitions, each with a blank queue manager name (specifying an all-blank name therefore
has the same effect as specifying a single asterisk for the name for a client application).

After connecting to one queue manager of a group, an application can specify blanks in the typical
way in the queue manager name fields in the message and object descriptors to mean the name of
the queue manager to which the application has actually connected (the local queue manager). If the
application needs to know this name, the MQINQ call can be issued to inquire the QMgrName queue
manager attribute.

Prefixing an asterisk to the connection name implies that the application is not dependent on
connecting to a particular queue manager in the group. Suitable applications would be:

• Applications that put messages but do not get messages.
• Applications that put request messages and then get the reply messages from a temporary dynamic

queue.

Unsuitable applications would be those that need to get messages from a particular queue at a
particular queue manager; such applications should not prefix the name with an asterisk.

Note that if an asterisk is specified, the maximum length of the remainder of the name is 47
characters.

The length of this parameter is given by LNQMN.

HCONN (10-digit signed integer) - output

Connection handle.

This handle represents the connection to the queue manager. It must be specified on all subsequent
message queuing calls issued by the application. It ceases to be valid when the MQDISC call is issued,
or when the unit of processing that defines the scope of the handle terminates.

The scope of the handle is restricted to the smallest unit of parallel processing supported by the
platform on which the application is running; the handle is not valid outside the unit of parallel
processing from which the MQCONN call was issued.

• On IBM i, the scope of the handle is the job issuing the call.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

Developing applications reference 1267

If CMPCOD is CCWARN:
RC2002

(2002, X'7D2') Application already connected.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2267

(2267, X'8DB') Unable to load cluster workload exit.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2035

(2035, X'7F3') Not authorized for access.
RC2137

(2137, X'859') Object not opened successfully.
RC2058

(2058, X'80A') Queue manager name not valid or not known.
RC2059

(2059, X'80B') Queue manager not available for connection.
RC2161

(2161, X'871') Queue manager quiescing.
RC2162

(2162, X'872') Queue manager shutting down.
RC2102

(2102, X'836') Insufficient system resources available.
RC2063

(2063, X'80F') Security error occurred.
RC2071

(2071, X'817') Insufficient storage available.
RC2195

(2195, X'893') Unexpected error occurred.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQCONN(QMNAME : HCONN : CMPCOD :
 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQCONN PR EXTPROC('MQCONN')
 D* Name of queue manager
 D QMNAME 48A
 D* Connection handle
 D HCONN 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

1268 IBM MQ Developing Applications Reference

MQCONNX (Connect queue manager (extended)) on IBM i
The MQCONNX call connects an application program to a queue manager. It provides a queue manager
connection handle, which is used by the application on subsequent IBM MQ calls.

The MQCONNX call is like the MQCONN call, except that MQCONNX allows options to be specified to
control the way that the call works.

On IBM MQ for Multiplatforms, each thread in an application can connect to different queue managers. On
other systems, all concurrent connections within a process must be to the same queue manager.

• “Syntax” on page 1269
• “Parameters” on page 1269
• “RPG Declaration” on page 1270

Syntax
MQCONNX (QMNAME, CNOPT, HCONN, CMPCOD, REASON)

Parameters
The MQCONNX call has the following parameters:

QMNAME (48-byte character string) - input

Name of queue manager.

See the QMNAME parameter described in “MQCONN (Connect queue manager) on IBM i” on page 1265
for details.

CNOPT (MQCNO) - input/output

Options that control the action of MQCONNX.

See “MQCNO (Connect options) on IBM i” on page 1038 for details.

HCONN (10-digit signed integer) - output

Connection handle.

See the HCONN parameter described in “MQCONN (Connect queue manager) on IBM i” on page 1265
for details.

CMPCOD (10-digit signed integer) - output

Completion code.

See the CMPCOD parameter described in “MQCONN (Connect queue manager) on IBM i” on page 1265
for details.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

See the REASON parameter described in “MQCONN (Connect queue manager) on IBM i” on page 1265
for details of possible reason codes.

The following additional reason codes can be returned by the MQCONNX call:

If CMPCOD is CCFAIL:
RC2278

(2278, X'8E6') Client connection fields not valid.
RC2139

(2139, X'85B') Connect-options structure not valid.

Developing applications reference 1269

RC2046
(2046, X'7FE') Options not valid or not consistent.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQCONN(QMNAME : HCONN : CMPCOD :
 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQCONN PR EXTPROC('MQCONN')
 D* Name of queue manager
 D QMNAME 48A
 D* Options that control the action of MQCONNX
 D HCONN 224A
 D* Connection handle
 D HCONN 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

MQCRTMH (Create message handle) on IBM i
The MQCRTMH call returns a message handle.

An application can use it on subsequent message queuing calls:

• Use the MQSETMP call to set a property of the message handle.
• Use the MQINQMP call to inquire on the value of a property of the message handle.
• Use the MQDLTMP call to delete a property of the message handle.

The message handle can be used on the MQPUT and MQPUT1 calls to associate the properties of the
message handle with the properties of the message being put. Similarly, by specifying a message handle
on the MQGET call, the properties of the message being retrieved can be accessed by using the message
handle when the MQGET call completes.

Use MQDLTMH to delete the message handle.

• “Syntax” on page 1270
• “Parameters” on page 1270
• “RPG Declaration” on page 1272

Syntax
MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason)

Parameters
The MQCRTMH call has the following parameters:

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager. The value of HCONN was returned by
a previous MQCONN or MQCONNX call. If the connection to the queue manager ceases to be valid
and no IBM MQ call is operating on the message handle, MQDLTMH is implicitly called to delete the
message.

Alternatively, you can specify the following value:

1270 IBM MQ Developing Applications Reference

HCUNAS
The connection handle does not represent a connection to any particular queue manager.

When this value is used, the message handle must be deleted with an explicit call to MQDLTMH in
order to release any storage allocated to it; IBM MQ never implicitly deletes the message handle.

There must be at least one valid connection to a queue manager established on the thread
creating the message handle, otherwise the call fails with RC2018.

CRTOPT (MQCMHO) - input

The options that control the action of MQCRTMH. See MQCMHO for details.

HMSG (20-digit signed integer) - output

On output a message handle is returned that can be used to set, inquire, and delete properties of the
message handle. Initially the message handle contains no properties.

A message handle also has an associated message descriptor. Initially this message descriptor
contains the default values. The values of the associated message descriptor fields can be set and
inquired by using the MQSETMP and MQINQMP calls. The MQDLTMP call resets a field of the message
descriptor back to its default value.

If the HCONN parameter is specified as the value HCUNAS then the returned message handle can
be used on MQGET, MQPUT, or MQPUT1 calls with any connection within the unit of processing, but
can be in use by only one IBM MQ call at a time. If the handle is in use when a second IBM MQ call
attempts to use the same message handle, the second IBM MQ call fails with reason code RC2499.

If the HCONN parameter is not HCUNAS then the returned message handle can be used only on the
specified connection.

The same HCONN parameter value must be used on the subsequent MQI calls where this message
handle is used:

• MQDLTMH
• MQSETMP
• MQINQMP
• MQDLTMP
• MQMHBUF
• MQBUFMH

The returned message handle ceases to be valid when the MQDLTMH call is issued for the message
handle, or when the unit of processing that defines the scope of the handle terminates. MQDLTMH
is called implicitly if a specific connection is supplied when the message handle is created and the
connection to the queue manager ceases to be valid, for example, if MQDBC is called.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:

Developing applications reference 1271

RC2204
(2204, X'089C') Adapter not available.

RC2130
(2130, X'852') Unable to load adapter service module.

RC2157
(2157, X'86D') Primary and home ASIDs differ.

RC2219
(2219, X'08AB') MQI call entered before previous call completed.

RC2461
(2461, X'099D') Create message handle options structure not valid.

RC2273
(2273, X'7D9') Connection to queue manager lost.

RC2017
(2017, X'07E1') No more handles available.

RC2018
(2018, X'7E2') Connection handle not valid.

RC2460
(2460, X'099C') Message handle pointer not valid.

RC2046
(2046, X'07FE') Options not valid or not consistent.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

See “Return codes for IBM i (ILE RPG)” on page 1413 for more details.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQCRTMH(HCONN : CRTOPT : HMSG :
 CMPCOD : REASON)

The prototype definition for the call is:

 DMQCRTMH PR EXTPROC('MQCRTMH')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Options that control the action of MQCRTMH
 D CRTOPT 12A
 D* Message handle
 D HMSG 20I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

MQCTL (Control callback) on IBM i
The MQCTL call performs controlling actions on the object handles opened for a connection.

• “Syntax” on page 1273
• “Usage notes” on page 1273
• “Parameters” on page 1273
• “RPG Declaration” on page 1277

1272 IBM MQ Developing Applications Reference

Syntax
MQCTL (Hconn, Operation, ControlOpts, CompCode, Reason)

Usage notes
1. Callback routines must check the responses from all services they invoke, and if the routine detects a

condition that cannot be resolved, it must issue an MQCB(CBREG) command to prevent repeated calls
to the callback routine.

Parameters
The MQCTL call has the following parameters:

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

OPERATN (10-digit signed integer) - input

The operation being processed on the callback defined for the specified object handle. You must
specify one, and one only, of the following options:
CTLSR

Start the consuming of messages for all defined message consumer functions for the specified
connection handle.

Callbacks run on a thread started by the system, which is different from any of the application
threads.

This operation gives control of the provided connection handle to system. The only MQI calls
which can be issued by a thread other than the consumer thread are:

• MQCTL with Operation CTLSP
• MQCTL with Operation CTLSU
• MQDISC - This performs MQCTL with Operation CTLSP before disconnection the HConn.

RC2500 is returned if an IBM MQ API call is issued while the connection handle is started, and the
call does not originate from a message consumer function.

If a connection fails, this stops the conversation as soon as possible. It is possible, therefore, for
an IBM MQ API call being issued on the main thread to receive the return code RC2500 for a
while, followed by the return code RC2009 when the connection reverts to the stopped state.

This can be issued in a consumer function. For the same connection as the callback routine, its
only purpose is to cancel a previously issued CTLSP operation.

This option is not supported if the application is bound with a nonthreaded IBM MQ library.

CTLSW
Start the consuming of messages for all defined message consumer functions for the specified
connection handle.

Message consumers run on the same thread and control is not returned to the caller of MQCTL
until:

• Released by the use of the MQCTL CTLSP or CTLSU operations, or
• All consumer routines have been deregistered or suspended.

If all consumers are deregistered or suspended, an implicit CTLSP operation is issued.

This option cannot be used from within a callback routine, either for the current connection handle
or any other connection handle. If the call is attempted it returns with RC2012.

Developing applications reference 1273

If, at any time during a CTLSW operation there are no registered, non-suspended consumers the
call fails with a reason code of RC2446.

If, during a CTLSW operation, the connection is suspended, the MQCTL call returns a warning
reason code of RC2521; the connection remains 'started'.

The application can choose to issue CTLSP or CTLRE. In this instance, the CTLRE operation blocks.

This option is not supported in a single threaded client.

CTLSP
Stop the consuming of messages, and wait for all consumers to complete their operations before
this option completes. This operation releases the connection handle.

If issued from within a callback routine, this option does not take effect until the routine exits.
No more message consumer routines are called after the consumer routines for messages already
read have completed, and after stop calls (if requested) to callback routines have been made.

If issued outside a callback routine, control does not return to the caller until the consumer
routines for messages already read have completed, and after stop calls (if requested) to
callbacks have been made. The callbacks themselves, however, remain registered.

This function has no effect on read ahead messages. You must ensure that consumers run
MQCLOSE(COQSC), from within the callback function, to determine whether there are any further
messages available to be delivered.

CTLSU
Pause the consuming of messages. This operation releases the connection handle.

This does not affect the reading ahead of messages for the application. If you intend to stop
consuming messages for a long period, consider closing the queue and reopening it when
consumption must continue.

If issued from within a callback routine, it does not take effect until the routine exits. No more
message consumer routines will be called after the current routine exits.

If issued outside a callback, control does not return to the caller until the current consumer
routine has completed and no more are called.

CTLRE
Resume the consuming of messages.

This option is normally issued from the main application thread, but it can also be used from
within a callback routine to cancel an earlier suspension request issued in the same routine.

If CTLRE is used to resume a CTLSW, then the operation blocks.

PCTLOP (MQCTLO) - input

Options that control the action of MQCTL

See MQCTLO for details of the structure.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

The following reason codes are the ones that the queue manager can return for the Reason
parameter.

1274 IBM MQ Developing Applications Reference

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:
RC2133

(2133, X'855') Unable to load data conversion services modules.
RC2204

(2204, X'89C') Adapter not available.
RC2130

(2130, X'852') Unable to load adapter service module.
RC2374

(2374, X'946') API exit failed.
RC2183

(2183, X'887') Unable to load API exit.
RC2157

(2157, X'86D') Primary and home ASIDs differ.
RC2005

(2005, X'7D5') Buffer length parameter not valid.
RC2487

(2487, X'9B7') Unable to call the callback routine
RC2448

(2448, X'990') Unable to Deregister, Suspend, or Resume because there is no registered callback
RC2486

(2486, X'9B6') Either, both CallbackFunction and CallbackName have been specified on a CBREG
call, or either one of CallbackFunction or CallbackName has been specified but does not match
the currently registered callback function.

RC2483
(2483, X'9B3') Incorrect CallBackType field.

RC2219
(2219, X'8AB') MQI call entered before previous call complete.

RC2444
(2444, X'98C') Option block is incorrect.

RC2484
(2484, X'9B4') Incorrect MQCBD options field.

RC2140
(2140, X'85C') Wait request rejected by CICS.

RC2009
(2009, X'7D9') Connection to queue manager lost.

RC2217
(2217, X'8A9') Not authorized for connection.

RC2202
(2202, X'89A') Connection quiescing.

RC2203
(2203, X'89B') Connection shutting down.

RC2207
(2207, X'89F') Correlation-identifier error.

RC2016
(2016, X'7E0') Gets inhibited for the queue.

Developing applications reference 1275

RC2351
(2351, X'92F') Global units of work conflict.

RC2186
(2186, X'88A') Get-message options structure not valid.

RC2353
(2353, X'931') Handle in use for global unit of work.

RC2018
(2018, X'7E2') Connection handle not valid.

RC2019
(2019, X'7E3') Object handle not valid.

RC2259
(2259, X'8D3') Inconsistent browse specification.

RC2245
(2245, X'8C5') Inconsistent unit-of-work specification.

RC2246
(2246, X'8C6') Message under cursor not valid for retrieval.

RC2352
(2352, X'930') Global unit of work conflicts with local unit of work.

RC2247
(2247, X'8C7') Match options not valid.

RC2485
(2485, X'9B5') Incorrect MaxMsgLength field

RC2026
(2026, X'7EA') Message descriptor not valid.

RC2497
(2497, X'9C1')The specified function entry point was not be found in the module.

RC2496
(2496, X'9C0') Module is found but is of the wrong type (32-bit or 64-bit) or is not a valid dll.

RC2495
(2495, X'9BF') Module not found in the search path or not authorized to load.

RC2206
(2206, X'89E') Message-identifier error.

RC2250
(2250, X'8CA') Message sequence number not valid.

RC2331
(2331, X'91B') Use of message token not valid.

RC2036
(2036, X'7F4') Queue not open for browse.

RC2037
(2037, X'7F5') Queue not open for input.

RC2041
(2041, X'7F9') Object definition changed since opened.

RC2101
(2101, X'835') Object damaged.

RC2488
(2488, X'9B8') Incorrect Operation code on API Call

RC2046
(2046, X'7FE') Options not valid or not consistent.

RC2193
(2193, X'891') Error accessing page-set data set.

1276 IBM MQ Developing Applications Reference

RC2052
(2052, X'804') Queue has been deleted.

RC2394
(2394, X'95A') Queue has wrong index type.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2161
(2161, X'871') Queue manager quiescing.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2069
(2069, X'815') Signal outstanding for this handle.

RC2071
(2071, X'817') Insufficient storage available.

RC2109
(2109, X'83D') Call suppressed by exit program.

RC2072
(2072, X'818') Syncpoint support not available.

RC2195
(2195, X'893') Unexpected error occurred.

RC2354
(2354, X'932') Enlistment in global unit of work failed.

RC2355
(2355, X'933') Mixture of unit-of-work calls not supported.

RC2255
(2255, X'8CF') Unit of work not available for the queue manager to use.

RC2090
(2090, X'82A') Wait interval in MQGMO not valid.

RC2256
(2256, X'8D0') Wrong version of MQGMO supplied.

RC2257
(2257, X'8D1') Wrong version of MQMD supplied.

RC2298
(2298, X'8FA') The function requested is not available in the current environment.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQCTL(HCONN : OPERATN : PCTLOP :
 CMPCOD : REASON)

The prototype definition for the call is:

 DMQCTL PR EXTPROC('MQCTL')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Operation
 D OPERATN 10I 0 VALUE

Developing applications reference 1277

 D* Control options
 D PCTLOP 32A
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

MQDISC (Disconnect queue manager) on IBM i
The MQDISC call breaks the connection between the queue manager and the application program, and is
the inverse of the MQCONN or MQCONNX call.

• “Syntax” on page 1278
• “Usage notes” on page 1278
• “Parameters” on page 1278
• “RPG Declaration” on page 1279

Syntax
MQDISC (HCONN, CMPCOD, REASON)

Usage notes
1. If an MQDISC call is issued when the application still has objects open, those objects are closed by the

queue manager, with the close options set to CONONE.
2. If the application ends with uncommitted changes in a unit of work, the disposition of those changes

depends on how the application ends:

a. If the application issues the MQDISC call before ending:

• For a queue manager coordinated unit of work, the queue manager issues the MQCMIT call on
behalf of the application. The unit of work is committed if possible, and backed out if not.

• For an externally coordinated unit of work, there is no change in the status of the unit of work;
however, the queue manager will indicate that the unit of work should be committed, when asked
by the unit-of-work coordinator.

b. If the application ends normally but without issuing the MQDISC call, the unit of work is backed out.
c. If the application ends abnormally without issuing the MQDISC call, the unit of work is backed out.

Parameters
The MQDISC call has the following parameters:

HCONN (10-digit signed integer) - input/output

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

On successful completion of the call, the queue manager sets HCONN to a value that is not a valid
handle for the environment. This value is:
HCUNUH

Unusable connection handle.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:

1278 IBM MQ Developing Applications Reference

CCOK
Successful completion.

CCWARN
Warning (partial completion).

CCFAIL
Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2058

(2058, X'80A') Queue manager name not valid or not known.
RC2059

(2059, X'80B') Queue manager not available for connection.
RC2162

(2162, X'872') Queue manager shutting down.
RC2102

(2102, X'836') Insufficient system resources available.
RC2071

(2071, X'817') Insufficient storage available.
RC2195

(2195, X'893') Unexpected error occurred.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQDISC(HCONN : CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQDISC PR EXTPROC('MQDISC')
 D* Connection handle
 D HCONN 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

MQDLTMH (Delete message handle) on IBM i
The MQDLTMH call deletes a message handle and is the inverse of the MQCRTMH call.

• “Syntax” on page 1280

Developing applications reference 1279

• “Usage notes” on page 1280
• “Parameters” on page 1281
• “RPG Declaration” on page 1282

Syntax
MQDLTMH ((Hconn, Hmsg, DltMsgHOpts, CompCode, Reason)

Usage notes
1. You can use this call only when the queue manager itself coordinates the unit of work. This can be:

• A local unit of work, where the changes affect only IBM MQ resources.
• A global unit of work, where the changes can affect resources belonging to other resource managers,

as well as affecting IBM MQ resources.

For further details about local and global units of work, see “MQBEGIN (Begin unit of work) on IBM i”
on page 1242.

2. In environments where the queue manager does not coordinate the unit of work, use the appropriate
back-out call instead of MQBACK. The environment might also support an implicit back out caused by
the application terminating abnormally.

• On z/OS, use the following calls:

– Batch programs (including IMS batch DL/I programs) can use the MQBACK call if the unit of
work affects only IBM MQ resources. However, if the unit of work affects both IBM MQ resources
and resources belonging to other resource managers (for example, Db2), use the SRRBACK call
provided by the z/OS Recoverable Resource Service (RRS). The SRRBACK call backs out changes
to resources belonging to the resource managers that have been enabled for RRS coordination.

– CICS applications must use the EXEC CICS SYNCPOINT ROLLBACK command to back out the
unit of work. Do not use the MQBACK call for CICS applications.

– IMS applications (other than batch DL/I programs) must use IMS calls such as ROLB to back
out the unit of work. Do not use the MQBACK call for IMS applications (other than batch DL/I
programs).

• On IBM i, use this call for local units of work coordinated by the queue manager. This means that
a commitment definition must not exist at job level, that is, the STRCMTCTL command with the
CMTSCOPE(*JOB) parameter must not have been issued for the job.

3. If an application ends with uncommitted changes in a unit of work, the disposition of those changes
depends on whether the application ends normally or abnormally. See the usage notes in “MQDISC
(Disconnect queue manager) on IBM i” on page 1278 for further details.

4. When an application puts or gets messages in groups or segments of logical messages, the queue
manager retains information relating to the message group and logical message for the last successful
MQPUT and MQGET calls. This information is associated with the queue handle, and includes such
things as:

• The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in MQMD.
• Whether the message is part of a unit of work.
• For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set for each of the
following:

• The last successful MQPUT call (this can be part of a unit of work).
• The last successful MQGET call that removed a message from the queue (this can be part of a unit of

work).
• The last successful MQGET call that browsed a message on the queue (this cannot be part of a unit

of work).

1280 IBM MQ Developing Applications Reference

If the application puts or gets the messages as part of a unit of work, and the application then backs
out the unit of work, the group and segment information is restored to the value that it had previously:

• The information associated with the MQPUT call is restored to the value that it had before the first
successful MQPUT call for that queue handle in the current unit of work.

• The information associated with the MQGET call is restored to the value that it had before the first
successful MQGET call for that queue handle in the current unit of work.

Queues that were updated by the application after the unit of work started, but outside the scope of
the unit of work, do not have their group and segment information restored if the unit of work is backed
out.

Restoring the group and segment information to its previous value when a unit of work is backed out
allows the application to spread a large message group or large logical message consisting of many
segments across several units of work, and to restart at the correct point in the message group or
logical message if one of the units of work fails. Using several units of work might be advantageous
if the local queue manager has only limited queue storage. However, the application must maintain
sufficient information to be able to restart putting or getting messages at the correct point if that a
system failure occurs.

For details of how to restart at the correct point after a system failure, see the PMLOGO option
described in PMOPT (10 digit signed integer), and the GMLOGO option described in GMOPT (10 digit
signed integer).

The remaining usage notes apply only when the queue manager coordinates the units of work:
5. A unit of work has the same scope as a connection handle. All IBM MQ calls that affect a particular

unit of work must be performed using the same connection handle. Calls issued using a different
connection handle (for example, calls issued by another application) affect a different unit of work. See
HCONN (10 digit signed integer) - output for information about the scope of connection handles.

6. Only messages that were put or retrieved as part of the current unit of work are affected by this call.
7. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls within a unit of work, but that

never issues a commit or backout call, can fill queues with messages that are not available to other
applications. To guard against this possibility, the administrator must set the MaxUncommittedMsgs
queue manager attribute to a value that is low enough to prevent runaway applications filling the
queues, but high enough to allow the expected messaging applications to work correctly.

Parameters
The MQDLTMH call has the following parameters:
HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager.

The value must match the connection handle that was used to create the message handle specified in
the HMSG parameter.

If the message handle was created using HCUNAS then a valid connection must be established on the
thread deleting the message handle, otherwise the call fails with RC2009 .

HMSG (20-digit signed integer) - input/output

This is the message handle to be deleted. The value was returned by a previous MQCRTMH call.

On successful completion of the call, the handle is set to an invalid value for the environment. This
value is:
HMUNUH

Unusable message handle.
The message handle cannot be deleted if another IBM MQ call is in progress that was passed the
same message handle.

Developing applications reference 1281

DLTOPT (MQDMHO) - input

See MQDMHO for details.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:
RC2204

(2204, X'089C') Adapter not available.
RC2130

(2130, X'852') Unable to load adapter service module.
RC2157

(2157, X'86D') Primary and home ASIDs differ.
RC2219

(2219, X'08AB') MQI call entered before previous call completed.
RC2009

(2009, X'07D9') Connection to queue manager lost.
RC2462

(2462, X'099E') Delete message handle options structure not valid.
RC2460

(2460, X'099C') Message handle pointer not valid.
RC2499

(2499, X'09C3') Message handle already in use.
RC2046

(2046, X'07FE') Options not valid or not consistent.
RC2071

(2071, X'817') Insufficient storage available.
RC2195

(2195, X'893') Unexpected error occurred.

See “Return codes for IBM i (ILE RPG)” on page 1413 for more details.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQDLTMH(HCONN : HMSG : DLTOPT :
 CMPCOD : REASON)

The prototype definition for the call is:

 DMQDLTMH PR EXTPROC('MQDLTMH')
 D* Connection handle
 D HCONN 10I 0 VALUE

1282 IBM MQ Developing Applications Reference

 D* Message handle
 D HMSG 20I 0
 D* Options that control the action of MQDLTMH
 D DLTOPT 12A
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

MQDLTMP - Delete message property
The MQDLTMP call deletes a property from a message handle and is the inverse of the MQSETMP call.

• “Syntax” on page 1283
• “Parameters” on page 1283
• “RPG Declaration” on page 1284

Syntax
MQDLTMP (Hconn, Hmsg, DltPropOpts, Name, CompCode, Reason)

Parameters
The MQDLTMP call has the following parameters:

HCONN (10-digit signed integer) - Input

This handle represents the connection to the queue manager. The value must match the connection
handle that was used to create the message handle specified in the HMSG parameter.

If the message handle was created using HCUNAS then a valid connection must be established on the
thread deleting the message handle otherwise the call fails with RC2009.

HMSG (20-digit signed integer) - input

This is the message handle containing the property to be deleted. The value was returned by a
previous MQCRTMH call.

DLTOPT (MQDMPO) - Input

See the MQDMPO data type for details.

PRNAME (MQCHARV) - input

The name of the property to delete. See Property names for further information about property
names.

Wildcards are not allowed in the property name.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

Developing applications reference 1283

If CMPCOD is CCWARN:
RC2471

(2471, X'09A7') Property not available.
RC2421

(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

If CMPCOD is CCFAIL:
RC2204

(2204, X'089C') Adapter not available.
RC2130

(2130, X'0852') Unable to load adapter service module.
RC2157

(2157, X'086D') Primary and home ASIDs differ.
RC2219

(2219, X'08AB') MQI call entered before previous call completed.
RC2009

(2009, X'07D9') Connection to queue manager lost.
RC2481

(2481, X'09B1') Delete message property options structure not valid.
RC2460

(2460, X'099C') Message handle not valid.
RC2499

(2499, X'09C3') Message handle already in use.
RC2046

(2046, X'07FE') Options not valid or not consistent.
RC2442

(2442, X'098A') Invalid property name.
RC2111

(2111, X'083F') Property name coded character set identifier not valid.
RC2195

(2195, X'0893') Unexpected error occurred.

For more information about these codes, see API completion and reason codes.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQDLTMP(HCONN : HMSG : DLTOPT :
 PRNAME : CMPCOD : REASON)

The prototype definition for the call is:

 DMQDLTMP PR EXTPROC('MQDLTMP')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Message handle
 D HMSG 20I 0 VALUE
 D* Options that control the action of MQDLTMP
 D DLTOPT 12A
 D* Property name
 D PRNAME 32A
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

1284 IBM MQ Developing Applications Reference

MQGET (Get message) on IBM i
The MQGET call retrieves a message from a local queue that has been opened by using the MQOPEN call.

• “Syntax” on page 1285
• “Usage notes” on page 1285
• “Parameters” on page 1288
• “RPG Declaration” on page 1292

Syntax
MQGET (HCONN, HOBJ, MSGDSC, GMO, BUFLEN, BUFFER, DATLEN, CMPCOD, REASON)

Usage notes
1. The message retrieved is normally deleted from the queue. This deletion can occur as part of the

MQGET call itself, or as part of a syncpoint. Message deletion does not occur if a GMBRWF or
GMBRWN option is specified on the GMO parameter (see the GMOPT field described in “MQGMO
(Get-message options) on IBM i” on page 1066).

2. If the GMLK option is specified with one of the browse options, the browsed message is locked so
that it is visible only to this handle.

If the GMUNLK option is specified, a previously locked message is unlocked. No message is retrieved
in this case, and the MSGDSC, BUFLEN, BUFFER and DATLEN parameters are not checked or altered.

3. If the application issuing the MQGET call is running as an IBM MQ MQI client, it is possible for the
message retrieved to be lost if during the processing of the MQGET call the IBM MQ MQI client
terminates abnormally or the client connection is severed. This arises because the surrogate that is
running on the platform of the queue manager and which issues the MQGET call on the behalf of the
client cannot detect the loss of the client until the surrogate is about to return the message to the
client; this is after the message has been removed from the queue. This can occur for both persistent
messages and nonpersistent messages.

The risk of losing messages in this way can be eliminated by always retrieving messages within
units of work (that is, by specifying the GMSYP option on the MQGET call, and using the MQCMIT
or MQBACK calls to commit or back out the unit of work when processing of the message is
complete). If GMSYP is specified, and the client terminates abnormally or the connection is severed,
the surrogate backs out the unit of work on the queue manager and the message is reinstated on the
queue.

In principle, the same situation can arise with applications that are running on the platform of the
queue manager, but in this case the window during which a message can be lost is small. However, as
with IBM MQ MQI clients the risk can be eliminated by retrieving the message within a unit of work.

4. If an application puts a sequence of messages on a particular queue within a single unit of work, and
then commits that unit of work successfully, the messages become available for retrieval as follows:

• If the queue is a nonshared queue (that is, a local queue), all messages within the unit of work
become available at the same time.

• If the queue is a shared queue, messages within the unit of work become available in the order in
which they were put, but not all at the same time. When the system is heavily laden, it is possible
for the first message in the unit of work to be retrieved successfully, but for the MQGET call for
the second or subsequent message in the unit of work to fail with RC2033. If this occurs, the
application must wait a short while and then try the operation again.

5. If an application puts a sequence of messages on the same queue without using message groups, the
order of those messages is preserved if certain conditions are satisfied. See the usage notes in the
description of the MQPUT call for details. If the conditions are satisfied, the messages are presented
to the receiving application in the order in which they were sent, if:

Developing applications reference 1285

• Only one receiver is getting messages from the queue.

If there are two or more applications getting messages from the queue, they must agree with the
sender the mechanism to be used to identify messages that belong to a sequence. For example, the
sender might set all of the MDCID fields in the messages in a sequence to a value that was unique to
that sequence of messages.

• The receiver does not deliberately change the order of retrieval, for example by specifying a
particular MDMID or MDCID.

If the sending application put the messages as a message group, the messages are presented to the
receiving application in the correct order if the receiving application specifies the GMLOGO option on
the MQGET call. For more information about message groups, see:

• MDMFL field in MQMD
• PMLOGO option in MQPMO
• GMLOGO option in MQGMO

6. Applications test for the feedback code FBQUIT in the MDFB field of the MSGDSC parameter. If this
value is found, the application ends. See the MDFB field described in “MQMD (Message descriptor) on
IBM i” on page 1099 for more information.

7. If the queue identified by HOBJ was opened with the OOSAVA option, and the completion code from
the MQGET call is CCOK or CCWARN, the context associated with the queue handle HOBJ is set to
the context of the message that has been retrieved (unless the GMBRWF or GMBRWN option is set,
in which case the context is marked as not available). This context can be used on a subsequent
MQPUT or MQPUT1 call by specifying the PMPASI or PMPASA options. This enables the context of the
message received to be transferred in whole or in part to another message (for example, when the
message is forwarded to another queue). For more information about message context, see Message
context and Controlling context information.

8. If the GMCONV option is included in the GMO parameter, the application message data is converted
to the representation requested by the receiving application, before the data is placed in the BUFFER
parameter:

• The MDFMT field in the control information in the message identifies the structure of the application
data, and the MDCSI and MDENC fields in the control information in the message specify its
character-set identifier and encoding.

• The application issuing the MQGET call specifies in the MDCSI and MDENC fields in the MSGDSC
parameter the character-set identifier and encoding to which the application message data must be
converted.

When conversion of the message data is necessary, the conversion is performed either by the queue
manager itself or by a user-written exit, depending on the value of the MDFMT field in the control
information in the message:

• The following formats are converted automatically by the queue manager; these formats are called
"built-in" formats:

FMADMN FMMDE

FMCICS FMPCF

FMCMD1 FMRMH

FMCMD2 FMRFH

FMDLH FMRFH2

FMDH FMSTR

FMEVNT FMTM

FMIMS FMXQH

FMIMVS

1286 IBM MQ Developing Applications Reference

• The format name FMNONE is a special value that indicates that the nature of the data in the
message is undefined. As a consequence, the queue manager does not attempt conversion when
the message is retrieved from the queue.

Note: If GMCONV is specified on the MQGET call for a message that has a format name of FMNONE,
and the character set or encoding of the message differs from that specified in the MSGDSC
parameter, the message is still returned in the BUFFER parameter (assuming no other errors), but
the call completes with completion code CCWARN and reason code RC2110.

FMNONE can be used either when the nature of the message data means that it does not require
conversion, or when the sending and receiving applications have agreed between themselves the
form in which the message data should be sent.

• All other format names cause the message to be passed to a user-written exit for conversion. The
exit has the same name as the format, apart from environment-specific additions. User-specified
format names must not begin with the letters "MQ", as such names might conflict with format
names supported in the future.

User data in the message can be converted between any supported character sets and encodings.
However, be aware that if the message contains one or more IBM MQ header structures, the message
cannot be converted from or to a character set that has double-byte or multi-byte characters for any
of the characters that are valid in queue names. Reason code RC2111 or RC2115 results if this is
attempted, and the message is returned unconverted. Unicode character set UTF-16 is an example of
such a character set.

On return from MQGET, the following reason code indicates that the message was converted
successfully:

• RCNONE

The following reason code indicates that the message might have been converted successfully; the
application must check the MDCSI and MDENC fields in the MSGDSC parameter to find out:

• RC2079

All other reason codes indicate that the message was not converted.

Note: The interpretation of the reason code described in this example is true for conversions
performed by user-written exits only if the exit conforms to the processing guidelines.

9. For the built-in formats listed previously, the queue manager might perform default conversion of
character strings in the message when the GMCONV option is specified. Default conversion allows
the queue manager to use an installation-specified default character set that approximates the actual
character set, when converting string data. As a result, the MQGET call can succeed with completion
code CCOK, instead of completing with CCWARN and reason code RC2111 or RC2115.

Note: The result of using an approximate character set to convert string data is that some characters
might be converted incorrectly. This can be avoided by using in the string only characters which are
common to both the actual character set and the default character set.

Default conversion applies both to the application message data and to character fields in the MQMD
and MQMDE structures:

• Default conversion of the application message data occurs only when all of the following
statements are true:

– The application specifies GMCONV.
– The message contains data that must be converted either from or to a character set which is not

supported.
– Default conversion was enabled when the queue manager was installed or restarted.

• Default conversion of the character fields in the MQMD and MQMDE structures occurs as necessary,
if default conversion is enabled for the queue manager. The conversion is performed even if the
GMCONV option is not specified by the application on the MQGET call.

Developing applications reference 1287

10. The BUFFER parameter shown in the RPG programming example is declared as a string; this restricts
the maximum length of the parameter to 256 bytes. If a larger buffer is required, the parameter must
be declared instead as a structure, or as a field in a physical file.

Declaring the parameter as a structure increases the maximum length possible to 9999 bytes, while
declaring the parameter as a field in a physical file increases the maximum length possible to
approximately 32 KB.

Parameters
The MQGET call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

HOBJ (10-digit signed integer) - input

Object handle.

This handle represents the queue from which a message is to be retrieved. The value of HOBJ was
returned by a previous MQOPEN call. The queue must have been opened with one or more of the
following options (see “MQOPEN (Open object) on IBM i” on page 1309 for details):

• OOINPS
• OOINPX
• OOINPQ
• OOBRW

MSGDSC (MQMD) - input/output

Message descriptor.

This structure describes the attributes of the message required, and the attributes of the message
retrieved. See “MQMD (Message descriptor) on IBM i” on page 1099 for details.

If BUFLEN is less than the message length, MSGDSC is still entered by the queue manager, whether
GMATM is specified on the GMO parameter (see the GMOPT field described in “MQGMO (Get-message
options) on IBM i” on page 1066).

If the application provides a version-1 MQMD, the message returned has an MQMDE prefixed to the
application message data, but only if one or more of the fields in the MQMDE has a nondefault value. If
all of the fields in the MQMDE have default values, the MQMDE is omitted. A format name of FMMDE in
the MDFMT field in MQMD indicates that an MQMDE is present.

GMO (MQGMO) - input/output

Options that control the action of MQGET.

See “MQGMO (Get-message options) on IBM i” on page 1066 for details.

BUFLEN (10-digit signed integer) - input

Length in bytes of the BUFFER area.

Zero can be specified for messages that have no data, or if the message is to be removed from the
queue and the data discarded (GMATM must be specified in this case).

Note: The length of the longest message that it is possible to read from the queue is given by the
MaxMsgLength queue attribute; see “Attributes for queues” on page 1355.

BUFFER (1-byte bit string x BUFLEN) - output

Area to contain the message data.

1288 IBM MQ Developing Applications Reference

The buffer must be aligned on a boundary appropriate to the nature of the data in the message.
4-byte alignment must be suitable for most messages (including messages containing IBM MQ header
structures), but some messages might require more stringent alignment. For example, a message
containing a 64-bit binary integer might require 8-byte alignment.

If BUFLEN is less than the message length, as much of the message as possible is moved into
BUFFER ; this happens whether GMATM is specified on the GMO parameter (see the GMOPT field
described in “MQGMO (Get-message options) on IBM i” on page 1066 for more information).

The character set and encoding of the data in BUFFER are given by the MDCSI and MDENC fields
returned in the MSGDSC parameter. If these values are different from the values required by the
receiver, the receiver must convert the application message data to the character set and encoding
required. The GMCONV option can be used with a user-written exit to perform the conversion of the
message data (see “MQGMO (Get-message options) on IBM i” on page 1066 for details of this option).

Note: All of the other parameters on the MQGET call are in the character set and encoding of the local
queue manager (given by the CodedCharSetId queue manager attribute and ENNAT).

If the call fails, the contents of the buffer might still have changed.

DATLEN (10-digit signed integer) - output

Length of the message.

This is the length in bytes of the application data in the message. If this message length is greater
than BUFLEN, only BUFLEN bytes are returned in the BUFFER parameter (that is, the message is
truncated). If the value is zero, it means that the message contains no application data.

If BUFLEN is less than the message length, DATLEN is still entered by the queue manager, whether
GMATM is specified on the GMO parameter (see the GMOPT field described in “MQGMO (Get-message
options) on IBM i” on page 1066 for more information). This allows the application to determine the
size of the buffer required to accommodate the message data, and then reissue the call with a buffer
of the appropriate size.

However, if the GMCONV option is specified, and the converted message data is too long to fit in
BUFFER, the value returned for DATLEN is:

• The length of the unconverted data, for queue manager defined formats.

In this case, if the nature of the data causes it to expand during conversion, the application must
allocate a buffer bigger than the value returned by the queue manager for DATLEN.

• The value returned by the data-conversion exit, for application-defined formats.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

The following reason codes are the ones that the queue manager can return for the REASON
parameter. If the application specifies the GMCONV option, and a user-written exit is invoked to
convert some or all of the message data, it is the exit that decides what value is returned for the
REASON parameter. As a result, values other than the values documented later in this section are
possible.

Developing applications reference 1289

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2120

(2120, X'848') Converted data too large for buffer.
RC2190

(2190, X'88E') Converted string too large for field.
RC2150

(2150, X'866') DBCS string not valid.
RC2110

(2110, X'83E') Message format not valid.
RC2243

(2243, X'8C3') Message segments have differing CCSIDs.
RC2244

(2244, X'8C4') Message segments have differing encodings.
RC2209

(2209, X'8A1') No message locked.
RC2119

(2119, X'847') Message data not converted.
RC2272

(2272, X'8E0') Message data partially converted.
RC2145

(2145, X'861') Source buffer parameter not valid.
RC2111

(2111, X'83F') Source coded character set identifier not valid.
RC2113

(2113, X'841') Packed-decimal encoding in message not recognized.
RC2114

(2114, X'842') Floating-point encoding in message not recognized.
RC2112

(2112, X'840') Source integer encoding not recognized.
RC2143

(2143, X'85F') Source length parameter not valid.
RC2146

(2146, X'862') Target buffer parameter not valid.
RC2115

(2115, X'843') Target coded character set identifier not valid.
RC2117

(2117, X'845') Packed-decimal encoding specified by receiver not recognized.
RC2118

(2118, X'846') Floating-point encoding specified by receiver not recognized.
RC2116

(2116, X'844') Target integer encoding not recognized.
RC2079

(2079, X'81F') Truncated message returned (processing completed).
RC2080

(2080, X'820') Truncated message returned (processing not completed).

If CMPCOD is CCFAIL:

1290 IBM MQ Developing Applications Reference

RC2004
(2004, X'7D4') Buffer parameter not valid.

RC2005
(2005, X'7D5') Buffer length parameter not valid.

RC2219
(2219, X'8AB') MQI call reentered before previous call complete.

RC2009
(2009, X'7D9') Connection to queue manager lost.

RC2010
(2010, X'7DA') Data length parameter not valid.

RC2016
(2016, X'7E0') Gets inhibited for the queue.

RC2186
(2186, X'88A') Get-message options structure not valid.

RC2018
(2018, X'7E2') Connection handle not valid.

RC2019
(2019, X'7E3') Object handle not valid.

RC2241
(2241, X'8C1') Message group not complete.

RC2242
(2242, X'8C2') Logical message not complete.

RC2259
(2259, X'8D3') Inconsistent browse specification.

RC2245
(2245, X'8C5') Inconsistent unit-of-work specification.

RC2246
(2246, X'8C6') Message under cursor not valid for retrieval.

RC2247
(2247, X'8C7') Match options not valid.

RC2026
(2026, X'7EA') Message descriptor not valid.

RC2250
(2250, X'8CA') Message sequence number not valid.

RC2033
(2033, X'7F1') No message available.

RC2034
(2034, X'7F2') Browse cursor not positioned on message.

RC2036
(2036, X'7F4') Queue not open for browse.

RC2037
(2037, X'7F5') Queue not open for input.

RC2041
(2041, X'7F9') Object definition changed since opened.

RC2101
(2101, X'835') Object damaged.

RC2046
(2046, X'7FE') Options not valid or not consistent.

RC2052
(2052, X'804') Queue has been deleted.

Developing applications reference 1291

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2161
(2161, X'871') Queue manager quiescing.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2071
(2071, X'817') Insufficient storage available.

RC2024
(2024, X'7E8') No more messages can be handled within current unit of work.

RC2072
(2072, X'818') Syncpoint support not available.

RC2195
(2195, X'893') Unexpected error occurred.

RC2255
(2255, X'8CF') Unit of work not available for the queue manager to use.

RC2090
(2090, X'82A') Wait interval in MQGMO not valid.

RC2256
(2256, X'8D0') Wrong version of MQGMO supplied.

RC2257
(2257, X'8D1') Wrong version of MQMD supplied.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQGET(HCONN : HOBJ : MSGDSC : GMO :
 C BUFLEN : BUFFER : DATLEN :
 C CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQGET PR EXTPROC('MQGET')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Object handle
 D HOBJ 10I 0 VALUE
 D* Message descriptor
 D MSGDSC 364A
 D* Options that control the action of MQGET
 D GMO 112A
 D* Length in bytes of the Buffer area
 D BUFLEN 10I 0 VALUE
 D* Area to contain the message data
 D BUFFER * VALUE
 D* Length of the message
 D DATLEN 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

1292 IBM MQ Developing Applications Reference

MQINQ (Inquire about object attributes) on IBM i
The MQINQ call returns an array of integers and a set of character strings containing the attributes of an
object.

The following types of object are valid:

• Queue
• Namelist
• Process definition
• Queue manager

• “Syntax” on page 1293
• “Usage notes” on page 1293
• “Parameters” on page 1294
• “RPG Declaration” on page 1301

Syntax
MQINQ (HCONN, HOBJ, SELCNT, SELS, IACNT, INTATR, CALEN, CHRATR, CMPCOD, REASON)

Usage notes
1. The values returned are a snapshot of the selected attributes. There is no guarantee that the attributes

are not changed before the application can act upon the returned values.
2. When you open a model queue, a dynamic local queue is created. This is true even if you open the

model queue to inquire about its attributes.

The attributes of the dynamic queue (with certain exceptions) are the same as those of the model
queue at the time the dynamic queue is created. If you then use the MQINQ call on this queue, the
queue manager returns the attributes of the dynamic queue, and not those of the model queue. See
Table 1 for details of which attributes of the model queue are inherited by the dynamic queue.

3. If the object being inquired is an alias queue, the attribute values returned by the MQINQ call are those
of the alias queue, and not those of the base queue to which the alias resolves.

4. If the object being inquired is a cluster queue, the attributes that can be inquired depend on how the
queue is opened:

• If the cluster queue is opened for inquire plus one or more of input, browse, or set, there must be a
local instance of the cluster queue in order for the open to succeed. In this case the attributes that
can be inquired are those valid for local queues.

• If the cluster queue is opened for inquire alone, or inquire and output, only the following attributes
can be inquired; the QType attribute has the value QTCLUS in this case:

– CAQD
– CAQN
– IADBND
– IADPER
– IADPRI
– IAIPUT
– IAQTYP

If the cluster queue is opened with no fixed binding (that is, OOBNDN specified on the MQOPEN
call, or OOBNDQ specified when the DefBind attribute has the value BNDNOT), successive MQINQ
calls for the queue might inquire different instances of the cluster queue, although typically all of the
instances have the same attribute values.

Developing applications reference 1293

For more information about cluster queues, see Configuring a queue manager cluster.
5. If a number of attributes are to be inquired, and then some of them are to be set using the MQSET call,

it might be convenient to position at the beginning of the selector arrays the attributes that are to be
set, so that the same arrays (with reduced counts) can be used for MQSET.

6. If more than one of the warning situations arise (see the CMPCOD parameter), the reason code returned
is the first one in the following list that applies:

a. RC2068
b. RC2022
c. RC2008

7. For more information about object attributes, see:

• “Attributes for queues” on page 1355
• “Attributes for namelists” on page 1383
• “Attributes for process definitions on IBM i” on page 1384
• “Attributes for the queue manager on IBM i” on page 1386

8. A new local queue SYSTEM.ADMIN.COMMAND.EVENT is used for queuing messages that are
generated whenever commands are issued. Messages are put onto this queue for most commands,
depending on how the CMDEV queue manager attribute is set:

• ENABLED - command event messages are generated and put onto the queue for all successful
commands.

• NODISPLAY - command event messages are generated and put onto the queue for all successful
commands other than the DISPLAY (MQSC) command, and the Inquire (PCF) command.

• DISABLED - command event messages are not generated (this is the queue manager's initial default
value).

Parameters
The MQINQ call has the following parameters:

HCONN (10 digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

HOBJ (10 digit signed integer) - input

Object handle.

This handle represents the object (of any type) with attributes that are required. The handle must
have been returned by a previous MQOPEN call that specified the OOINQ option.

SELCNT (10 digit signed integer) - input

Count of selectors.

This is the count of selectors that are supplied in the SELS array. It is the number of attributes that are
to be returned. Zero is a valid value. The maximum number allowed is 256.

SELS (10 digit signed integer x SELCNT) - input

Array of attribute selectors.

This is an array of SELCNT attribute selectors; each selector identifies an attribute (integer or
character) with a value that is required.

Each selector must be valid for the type of object that HOBJ represents, otherwise the call fails with
completion code CCFAIL and reason code RC2067.

1294 IBM MQ Developing Applications Reference

In the special case of queues:

• If the selector is not valid for queues of any type, the call fails with completion code CCFAIL and
reason code RC2067.

• If the selector is applicable only to queues of type or types other than that of the object, the call
succeeds with completion code CCWARN and reason code RC2068.

• If the queue being inquired is a cluster queue, the selectors that are valid depend on how the queue
was resolved; see usage note 4 for further details.

Selectors can be specified in any order. Attribute values that correspond to integer attribute selectors
(IA* selectors) are returned in INTATR in the same order in which these selectors occur in SELS.
Attribute values that correspond to character attribute selectors (CA* selectors) are returned in
CHRATR in the same order in which those selectors occur. IA* selectors can be interleaved with the
CA* selectors; only the relative order within each type is important.

Note:

1. The integer and character attribute selectors are allocated within two different ranges; the IA*
selectors reside within the range IAFRST through IALAST, and the CA* selectors within the range
CAFRST through CALAST.

For each range, the constants IALSTU and CALSTU define the highest value that the queue
manager accepts.

2. If all the IA* selectors occur first, the same element numbers can be used to address
corresponding elements in the SELS and INTATR arrays.

The attributes that can be inquired are listed in the following tables. For the CA* selectors, the
constant that defines the length in bytes of the resulting string in CHRATR is given in parentheses.

Table 747. MQINQ attribute selectors for queues

Selector Description Note

CAALTD Date of most recent alteration (LNDATE). 1

CAALTT Time of most recent alteration (LNTIME). 1

CABRQN Excessive backout-requeue name (LNQN). 5

CABASQ Name of queue that alias resolves to (LNQN).

CACFSN Coupling-facility structure name (LNCFSN). 3

CACLN Cluster name (LNCLUN). 1

CACLNL Cluster namelist (LNNLN). 1

CACRTD Queue creation date (LNCRTD).

CACRTT Queue creation time (LNCRTT).

CAINIQ Initiation queue name (LNQN).

CAPRON Name of process definition (LNPRON).

CAQD Queue description (LNQD).

CAQN Queue name (LNQN).

CARQMN Name of remote queue manager (LNQMN).

CARQN Name of remote queue as known on remote queue manager (LNQN).

CATRGD Trigger data (LNTRGD). 5

CAXQN Transmission queue name (LNQN).

Developing applications reference 1295

Table 747. MQINQ attribute selectors for queues (continued)

Selector Description Note

IABTHR Backout threshold. 5

IACDEP Number of messages on queue.

IADBND Default binding. 1

IADINP Default open-for-input option. 5

IADPER Default message persistence.

IADPRI Default message priority. 5

IADEFT Queue definition type.

IADIST Distribution list support. 2

IAHGB Whether to harden backout count. 5

IAIGET Whether get operations are allowed.

IAIPUT Whether put operations are allowed.

IAMLEN Maximum message length.

IAMDEP Maximum number of messages allowed on queue.

IAMDS Whether message priority is relevant. 5

IAOIC Number of MQOPEN calls that have the queue open for input.

IAOOC Number of MQOPEN calls that have the queue open for output.

IAQDHE Control attribute for queue depth high events. 4, 5

IAQDHL High limit for queue depth. 4, 5

IAQDLE Control attribute for queue depth low events. 4, 5

IAQDLL Low limit for queue depth. 4, 5

IAQDME Control attribute for queue depth max events. 4, 5

IAQSI Limit for queue service interval. 4, 5

IAQSIE Control attribute for queue service interval events. 4, 5

IAQTYP Queue type.

IAQSGD Queue sharing group disposition. 3

IARINT Queue retention interval. 5

IASCOP Queue definition scope. 4, 5

IASHAR Whether queue can be shared for input.

IATRGC Trigger control.

IATRGD Trigger depth. 5

IATRGP Threshold message priority for triggers. 5

IATRGT Trigger type.

IAUSAG Usage.

CLWLUSEQ Use remote queues.

1296 IBM MQ Developing Applications Reference

Note:

1. Supported on the following platforms:

• AIX

• IBM i

• Windows

• z/OS

and for IBM MQ MQI clients connected to these systems.
2. Supported on the following platforms:

• AIX

• IBM i

• Windows

and for IBM MQ clients connected to these systems.

3. Supported on z/OS.

4. Not supported on z/OS.
5. Not supported on VSE/ESA.

Table 748. MQINQ attribute selectors for namelists

Selector Description Note

CAALTD Date of most recent alteration (LNDATE) 1

CAALTT Time of most recent alteration (LNTIME) 1

CALSTD Namelist description (LNNLD) 1

CALSTN Name of namelist object (LNNLN) 1

CANAMS Names in the namelist (LNQN x Number of names in the list) 1

IANAMC Number of names in the namelist 1

IAQSGD Queue sharing group disposition 3

Table 749. MQINQ attribute selectors for process definitions

Selector Description Note

CAALTD Date of most recent alteration (LNDATE) 1

CAALTT Time of most recent alteration (LNTIME) 1

CAAPPI Application identifier (LNPROA) 5

CAENVD Environment data (LNPROE) 5

CAPROD Description of process definition (LNPROD) 5

CAPRON Name of process definition (LNPRON) 5

CAUSRD User data (LNPROU) 5

IAAPPT Application type 5

IAQSGD Queue sharing group disposition 3

Developing applications reference 1297

Table 750. MQINQ attribute selectors for the queue manager

Selector Description Note

CAALTD Date of most recent alteration (LNDATE) 1

CAALTT Time of most recent alteration (LNTIME) 1

CACADX Automatic channel definition exit name (LNEXN) 1

CACLWD Data passed to cluster workload exit (LNEXDA) 1

CACLWX Name of cluster workload exit (LNEXN) 1

CACMDQ System command input queue name (LNQN) 5

CADLQ Name of dead-letter queue (LNQN) 5

CADXQN Default transmission queue name (LNQN) 5

CAQMD Queue manager description (LNQMD) 5

CAQMID Queue manager identifier (LNQMID) 1

CAQMN Name of local queue manager (LNQMN) 5

CAQSGN Queue sharing group name (LNQSGN) 3

CARPN Name of cluster for which queue manager provides repository services
(LNQMN)

1

CARPNL Name of namelist object containing names of clusters for which queue
manager provides repository services (LNNLN)

1

CMDEV Control attribute that determines whether messages generated when
commands are issued, are put onto a queue

8

IAAUTE Control attribute for authority events 4, 5

IACAD Control attribute for automatic channel definition 2

IACADE Control attribute for automatic channel definition events 2

IACLXQ Default cluster transmission queue type 4

IACLWL Cluster workload length 1

IACCSI Coded character set identifier 5

IACMDL Command level supported by queue manager 5

IACFGE Control attribute for configuration events 3

IADIST Distribution list support 2

IAINHE Control attribute for inhibit events 4, 5

IALCLE Control attribute for local events 4, 5

IAMHND Maximum number of handles 5

IAMLEN Maximum message length 5

IAMPRI Maximum priority 5

IAMUNC Maximum number of uncommitted messages within a unit of work 5

IAPFME Control attribute for performance events 4, 5

IAPLAT Platform on which the queue manager resides 5

1298 IBM MQ Developing Applications Reference

Table 750. MQINQ attribute selectors for the queue manager (continued)

Selector Description Note

IARMTE Control attribute for remote events 4, 5

IASSE Control attribute for start stop events 4, 5

IASYNC Sync point availability 5

IATRLFT Lifetime of unused non-administrative topics

IATRGI Trigger interval 5

IACNT (10 digit signed integer) - input

Count of integer attributes.

This is the number of elements in the INTATR array. Zero is a valid value.

If this is at least the number of IA* selectors in the SELS parameter, all integer attributes requested
are returned.

INTATR (10 digit signed integer x IACNT) - output

Array of integer attributes.

This is an array of IACNT integer attribute values.

Integer attribute values are returned in the same order as the IA* selectors in the SELS parameter.
If the array contains more elements than the number of IA* selectors, the excess elements are
unchanged.

If HOBJ represents a queue, but an attribute selector is not applicable to that type of queue, the
specific value IAVNA is returned for the corresponding element in the INTATR array.

CALEN (10 digit signed integer) - input

Length of character attributes buffer.

This is the length in bytes of the CHRATR parameter.

This must be at least the sum of the lengths of the requested character attributes (see SELS). Zero is a
valid value.

CHRATR (1 byte character string x CALEN) - output

Character attributes.

This is the buffer in which the character attributes are returned, concatenated together. The length of
the buffer is given by the CALEN parameter.

Character attributes are returned in the same order as the CA* selectors in the SELS parameter. The
length of each attribute string is fixed for each attribute (see SELS), and the value in it is padded
to the right with blanks if necessary. If the buffer is larger than that needed to contain all of the
requested character attributes (including padding), the bytes beyond the last attribute value returned
are unchanged.

If HOBJ represents a queue, but an attribute selector is not applicable to that type of queue, a
character string consisting entirely of asterisks (*) is returned as the value of that attribute in CHRATR.

CMPCOD (10 digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.

Developing applications reference 1299

CCWARN
Warning (partial completion).

CCFAIL
Call failed.

REASON (10 digit signed integer) - output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2008

(2008, X'7D8') Not enough space allowed for character attributes.
RC2022

(2022, X'7E6') Not enough space allowed for integer attributes.
RC2068

(2068, X'814') Selector not applicable to queue type.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2006

(2006, X'7D6') Length of character attributes not valid.
RC2007

(2007, X'7D7') Character attributes string not valid.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2019

(2019, X'7E3') Object handle not valid.
RC2021

(2021, X'7E5') Count of integer attributes not valid.
RC2023

(2023, X'7E7') Integer attributes array not valid.
RC2038

(2038, X'7F6') Queue not open for inquire.
RC2041

(2041, X'7F9') Object definition changed since opened.
RC2101

(2101, X'835') Object damaged.
RC2052

(2052, X'804') Queue has been deleted.
RC2058

(2058, X'80A') Queue manager name not valid or not known.
RC2059

(2059, X'80B') Queue manager not available for connection.
RC2162

(2162, X'872') Queue manager shutting down.

1300 IBM MQ Developing Applications Reference

RC2102
(2102, X'836') Insufficient system resources available.

RC2065
(2065, X'811') Count of selectors not valid.

RC2067
(2067, X'813') Attribute selector not valid.

RC2066
(2066, X'812') Count of selectors too large.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQINQ(HCONN : HOBJ : SELCNT :
 C SELS(1) : IACNT : INTATR(1) :
 C CALEN : CHRATR : CMPCOD :
 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQINQ PR EXTPROC('MQINQ')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Object handle
 D HOBJ 10I 0 VALUE
 D* Count of selectors
 D SELCNT 10I 0 VALUE
 D* Array of attribute selectors
 D SELS 10I 0
 D* Count of integer attributes
 D IACNT 10I 0 VALUE
 D* Array of integer attributes
 D INTATR 10I 0
 D* Length of character attributes buffer
 D CALEN 10I 0 VALUE
 D* Character attributes
 D CHRATR * VALUE
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

MQINQMP (Inquire message property) on IBM i
The MQINQMP call returns the value of a property of a message.

• “Syntax” on page 1301
• “Parameters” on page 1301
• “RPG Declaration” on page 1305

Syntax
MQINQMP (Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type, ValueLength, Value,
DataLength, CompCode, Reason)

Parameters
The MQINQMP call has the following parameters:

Developing applications reference 1301

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager. The value of Hconn must match the
connection handle that was used to create the message handle specified in the Hmsg parameter.

If the message handle was created using HCUNAS then a valid connection must be established on the
thread inquiring a property of the message handle, otherwise the call fails with RC2009.

HMSG (20-digit signed integer) - input

This is the message handle to be inquired. The value was returned by a previous MQCRTMH call.

INQOPT (MQIMPO) - input

See the MQIMPO data type for details.

PRNAME (MQCHARV) - input

This describes the name of the property to inquire.

If no property with this name can be found, the call fails with reason RC2471.

You can use the percent sign (%) character at the end of the property name. The wildcard matches
zero or more characters, including the period (.) character. This allows an application to inquire the
value of many properties. Call MQINQMP with option IPINQF to get the first matching property and
again with the option IPINQN to get the next matching property. When no more matching properties
are available, the call fails with RC2471. If the ReturnedName field of the InqPropOpts structure is
initialized with an address or offset for the returned name of the property, this is completed on return
from MQINQMP with the name of the property that has been matched. If the VSBufSize field of the
ReturnedName in the InqPropOpts structure is less than the length of the returned property name
the completion code is set CCFAIL with reason RC2465.

Properties that have known synonyms are returned as follows:

1. Properties with the prefix "mqps." are returned with the IBM MQ property name. For example,
"MQTopicString" is the returned name rather than "mqps.Top".

2. Properties with the prefix "jms." or "mcd." are returned as the JMS header field name. For example,
"JMSExpiration" is the returned name rather than "jms.Exp".

3. Properties with the prefix "usr." are returned without that prefix. For example, "Color" is returned
rather than "usr.Color".

Properties with synonyms are only returned once.

In the RPG programming language, the following macro variables are defined for inquiring on all
properties and all properties that begin "usr.":

INQALL
Inquire on all properties of the message.

INQUSR
Inquire on all properties of the message that start "usr.". The returned name is returned without
the "usr." prefix.

If IPINQN is specified but Name has changed since the previous call or this is the first call, then
IPINQF is implied.

See Property names and Property name restrictions for further information about the use of property
names.

PRPDSC (MQPD) - output

This structure is used to define the attributes of a property, including what happens if the property
is not supported, what message context the property belongs to, and what messages the property
should be copied into. See MQPD for details of this structure.

1302 IBM MQ Developing Applications Reference

TYPE (10-digit signed integer) - input/output

On return from the MQINQMP call this parameter is set to the data type of Value. The data type can be
any of the following:

TYPBOL
A boolean.

TYPBST
a byte string.

TYPI8
An 8-bit signed integer.

TYPI16
A 16-bit signed integer.

TYPI32
A 32-bit signed integer.

TYPI64
A 64-bit signed integer.

TYPF32
A 32-bit floating-point number.

TYPF64
A 64-bit floating-point number.

TYPSTR
A character string.

TYPNUL
The property exists but has a null value.

If the data type of the property value is not recognized then TYPSTR is returned and a string
representation of the value is placed into the Value area. A string representation of the data type
can be found in the IPTYP field of the IPOPT parameter. A warning completion code is returned with
reason RC2467.

Additionally, if the option IPCTYP is specified, conversion of the property value is requested. Use Type
as an input to specify the data type that you want the property to be returned as. See the description
of the IPCTYP option of the “MQIMPO (Inquire message property options) on IBM i” on page 1092 for
details of data type conversion.

If you do not request type conversion, you can use the following value on input:
TYPAST

The value of the property is returned without converting its data type.

VALLEN (10-digit signed integer) - input

The length in bytes of the Value area.

Specify zero for properties that you do not require the value returned for. These could be properties
which are designed by an application to have a null value or an empty string. Also specify zero if the
IPQLEN option has been specified; in this case no value is returned.

VALUE (1-byte bit stringxVALLEN) - output

This is the area to contain the inquired property value. The buffer should be aligned on a boundary
appropriate for the value being returned. Failure to do so might result in an error when the value is
later accessed.

If VALLEN is less than the length of the property value, as much of the property value as possible is
moved into VALUE and the call fails with completion code CCFAIL and reason RC2469.

The character set of the data in VALUE is given by the IPRETCSI field in the INQOPT parameter. The
encoding of the data in VALUE is given by the IPRETENC field in the INQOPT parameter.

If the VALLEN parameter is zero, VALUE is not referred to.

Developing applications reference 1303

DATLEN (10-digit signed integer) - output

This is the length in bytes of the actual property value as returned in the Value area.

If DataLength is less than the property value length, DataLength is still entered on return from
the MQINQMP call. This allows the application to determine the size of the buffer required to
accommodate the property value, and then reissue the call with a buffer of the appropriate size.

The following values may also be returned.

If the Type parameter is set to TYPSTR or TYPBST:
VLEMP

The property exists but contains no characters or bytes.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CompCode.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CompCode is CCWARN:
RC2492

(2492, X'09BC') Returned property name not converted.
RC2466

(2466, X'09A2') Property value not converted.
RC2467

(2467, X'09A3') Property data type is not supported.
RC2421

(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

If CMPCOD is CCFAIL:
RC2204

(2204, X'089C') Adapter not available.
RC2130

(2130, X'0852') Unable to load adapter service module.
RC2157

(2157, X'086D') Primary and home ASIDs differ.
RC2004

(2004, X'07D4') Value parameter not valid.
RC2005

(2005, X'07D5') Value length parameter not valid.
RC2219

(2219, X'08AB') MQI call entered before previous call completed.
RC2009

(2009, X'07D9') Connection to queue manager lost.

1304 IBM MQ Developing Applications Reference

RC2010
(2010, X'07DA') Data length parameter not valid.

RC2464
(2464, X'09A0') Inquire message property options structure not valid.

RC2460
(2460, X'099C') Message handle not valid.

RC2499
(2499, X'09C3') Message handle already in use.

RC2064
(2046, X'07F8') Options not valid or not consistent.

RC2482
(2482, X'09B2') Property descriptor structure not valid.

RC2470
(2470, X'09A6') Conversion from the actual to requested data type not supported.

RC2442
(2442, X'098A') Invalid property name.

RC2465
(2465, X'09A1') Property name too large for returned name buffer.

RC2471
(2471, X'09A7) Property not available.

RC2469
(2469, X'09A5') Property value too large for the Value area.

RC2472
(2472, X'09A8') Number format error encountered in value data.

RC2473
(2473, X'09A9') Invalid requested property type.

RC2111
(2111, X'083F') Property name coded character set identifier not valid.

RC2071
(2071, X'0871') Insufficient storage available.

RC2195
(2195, X'0893') Unexpected error occurred.

For detailed information about these codes, see:

• IBM MQ for z/OS messages, completion, and reason codes for IBM MQ for z/OS
• Messages and reason codes for all other IBM MQ platforms

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQINQMP(HCONN : HMSG : INQOPT :
 PRNAME : PRPDSC : TYPE :
 VALLEN : VALUE : DATLEN :
 CMPCOD : REASON)

The prototype definition for the call is:

 DMQINQMP PR EXTPROC('MQINQMP')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Message handle
 D HMSG 20I 0 VALUE
 D* Options that control the action of MQINQMP
 D INQOPT 72A

Developing applications reference 1305

 D* Property name
 D PRNAME 32A
 D* Property descriptor
 D PRPDSC 24A
 D* Property data type
 D TYPE 10I 0
 D* Length in bytes of the Value area
 D VALLEN 10I 0 VALUE
 D* Property value
 D VALUE * VALUE
 D* Length of the property value
 D DATLEN 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

MQMHBUF (Convert message handle into buffer) on IBM i
The MQMHBUF converts a message handle into a buffer and is the inverse of the MQBUFMH call.

• “Syntax” on page 1306
• “Usage notes” on page 1306
• “Parameters” on page 1306
• “RPG Declaration” on page 1308

Syntax
MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc, BufferLength, Buffer,
DataLength, CompCode, Reason)

Usage notes
MQMHBUF converts a message handle into a buffer.

You can use it with an MQGET API exit to access certain properties, by using the message property APIs,
and then pass these properties in a buffer back to an application designed to use MQRFH2 headers rather
than message handles.

This call is the inverse of the MQBUFMH call, which you can use to parse message properties from a
buffer into a message handle.

Parameters
The MQMHBUF call has the following parameters:

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager.

The value of HCONN must match the connection handle that was used to create the message handle
specified in the HMSG parameter.

If the message handle was created by using HCUNAS, a valid connection must be established on
the thread deleting the message handle. If a valid connection is not established, the call fails with
RC2009.

HMSG (20-digit signed integer) - input

This handle is the message handle for which a buffer is required.

The value was returned by a previous MQCRTMH call.

MHBOPT (MQMHBO) - input

The MQMHBO structure allows applications to specify options that control how buffers are produced
from message handles.

1306 IBM MQ Developing Applications Reference

See “MQBMHO (Buffer to message handle options) on IBM i” on page 1008 for details.

PRNAME (MQCHARV) - input

The name of the property or properties to put into the buffer.

If no property matching the name can be found, the call fails with RC2471.

Wildcards

You can use a wildcard to put more than one property into the buffer. To do so, use the percent sign
(%) at the end of the property name. This wildcard matches zero or more characters, including the
period (.) character.

See Property names and Property name restrictions for further information about the use of property
names.

MSGDSC (MQMD) - input/output

The MSGDSC structure describes the contents of the buffer area.

On output, the Encoding, CodedCharSetId and Format fields are set to correctly describe the
encoding, character set identifier, and format of the data in the buffer area as written by the call.

Data in this structure is in the character set and encoding of the application.

BUFLEN (10-digit signed integer) - input

BUFFLEN is the length of the Buffer area, in bytes.

BUFFER (1-byte bit string x BUFLEN) - input/output

BUFFER defines the area containing the message buffer. For most data, you must align the buffer on a
4-byte boundary.

If BUFFER contains character or numeric data, set the CodedCharSetId and Encoding fields in the
MSGDSC parameter to the values appropriate to the data; this enables the data to be converted, if
necessary.

If properties are found in the message buffer they are optionally removed; they later become available
from the message handle on return from the call.

In the C programming language, the parameter is declared as a pointer-to-void, which means the
address of any type of data can be specified as the parameter.

If the BUFLEN parameter is zero, BUFFER is not referred to. In this case, the parameter address
passed by programs written in C or System/390 assembler can be null.

DATLEN (10-digit signed integer) - output

DATLEN is the length, in bytes, of the returned properties in the buffer. If the value is zero, no
properties matched the value given in PRNAME and the call fails with reason code RC2471.

If BUFLEN is less than the length required to store the properties in the buffer, the MQMHBUF call fails
with RC2469, but a value is still entered into DATLEN. This allows the application to determine the
size of the buffer required to accommodate the properties, and then reissue the call with the required
BUFLEN.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

Developing applications reference 1307

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:
RC2204

(2204, X'089C') Adapter not available.
RC2130

(2130, X'852') Unable to load adapter service module.
RC2157

(2157, X'86D') Primary and home ASIDs differ.
RC2501

(2501, X'095C') Message handle to buffer options structure not valid.
RC2004

(2004, X'07D4') Buffer parameter not valid.
RC2005

(2005, X'07D5') Buffer length parameter not valid.
RC2219

(2219, X'08AB') MQI call entered before previous call completed.
RC2009

(2009, X'07D9') Connection to queue manager lost.
RC2010

(2010, X'07DA') Data length parameter not valid.
RC2460

(2460, X'099C') Message handle not valid.
RC2026

(2026, X'07EA') Message descriptor not valid.
RC2499

(2499, X'09C3') Message handle already in use.
RC2046

(2046, X'07FE') Options not valid or not consistent.
RC2442

(2442, X'098A') Property name is not valid.
RC2471

(2471, X'09A7') Property not available.
RC2469

(2469, X'09A5') BufferLength value is too small to contain specified properties.
RC2195

(2195, X'893') Unexpected error occurred.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQMHBUF(HCONN : HMSG : MHBOPT :
 PRNAME : MSGDSC : BUFLEN :
 BUFFER : DATLEN :
 CMPCOD : REASON)

The prototype definition for the call is:

 DMQMHBUF PR EXTPROC('MQMHBUF')
 D* Connection handle
 D HCONN 10I 0 VALUE

1308 IBM MQ Developing Applications Reference

 D* Message handle
 D HMSG 20I 0 VALUE
 D* Options that control the action of MQMHBUF
 D MHBOPT 12A
 D* Property name
 D PRNAME 32A
 D* Message descriptor
 D MSGDSC 364A
 D* Length in bytes of the Buffer area
 D BUFLEN 10I 0 VALUE
 D* Area to contain the properties
 D BUFFER * VALUE
 D* Length of the properties
 D DATLEN 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

MQOPEN (Open object) on IBM i
The MQOPEN call establishes access to an object.

The following types of object are valid:

• Queue (including distribution lists)
• Namelist
• Process definition
• Queue manager
• Topic

Index
• “Syntax” on page 1309
• “Usage notes” on page 1309
• “Parameters” on page 1313
• “RPG Declaration” on page 1319

Syntax
MQOPEN (HCONN, OBJDSC, OPTS, HOBJ, CMPCOD, REASON)

Usage notes
1. The object opened is one of the following:

• A queue, in order to:

– Get or browse messages (using the MQGET call)
– Put messages (using the MQPUT call)
– Inquire about the attributes of the queue (using the MQINQ call)
– Set the attributes of the queue (using the MQSET call)

If the queue named is a model queue, a dynamic local queue is created.

A distribution list is a special type of queue object that contains a list of queues. It can be opened to
put messages, but not to get or browse messages, or to inquire or set attributes. See usage note 8
for further details.

A queue that has QSGDISP(GROUP) is a special type of queue definition that cannot be used with
the MQOPEN or MQPUT1 calls.

• A namelist, in order to:

Developing applications reference 1309

– Inquire about the names of the queues in the list (using the MQINQ call).
• A process definition, in order to:

– Inquire about the process attributes (using the MQINQ call).
• The queue manager, in order to:

– Inquire about the attributes of the local queue manager (using the MQINQ call).
2. It is valid for an application to open the same object more than once. A different object handle is

returned for each open. Each handle that is returned can be used for the functions for which the
corresponding open was performed.

3. If the object being opened is a queue but not a cluster queue, all name resolution within the local
queue manager takes place at the time of the MQOPEN call. This might include one or more of the
following for a particular MQOPEN call:

• Alias resolution to the name of a base queue
• Resolution of the name of a local definition of a remote queue to the name of the remote queue

manager, and the name by which the queue is known at the remote queue manager
• Resolution of the remote queue manager name to the name of a local transmission queue

However, be aware that subsequent MQINQ or MQSET calls for the handle relate solely to the
name that has been opened, and not to the object resulting after name resolution has occurred. For
example, if the object opened is an alias, the attributes returned by the MQINQ call are the attributes
of the alias, not the attributes of the base queue to which the alias resolves. Name resolution
checking is still carried out, however, regardless of what is specified for the OPTS parameter on the
corresponding MQOPEN.

If the object being opened is a cluster queue, name resolution can occur at the time of the MQOPEN
call, or be deferred until later. The point at which resolution occurs is controlled by the OOBND*
options specified on the MQOPEN call:

• OOBNDO
• OOBNDN
• OOBNDQ

See Name resolution for more information about name resolution for cluster queues.
4. The attributes of an object can change while an application has the object open. In many cases, the

application does not notice this, but for certain attributes the queue manager marks the handle as no
longer valid. These are:

• Any attribute that affects the name resolution of the object. This applies regardless of the open
options used, and includes the following:

– A change to the BaseQName attribute of an alias queue that is open.
– A change to the RemoteQName or RemoteQMgrName queue attributes, for any handle that is

open for this queue, or for a queue which resolves through this definition as a queue manager
alias.

– Any change that causes a currently open handle for a remote queue to resolve to a different
transmission queue, or to fail to resolve to one at all. For example, this can include:

- A change to the XmitQName attribute of the local definition of a remote queue, whether the
definition is being used for a queue, or for a queue manager alias.

There is one exception to this, namely the creation of a new transmission queue. A handle that
would have resolved to this queue had it been present when the handle was opened, but instead
resolved to the default transmission queue, is not made invalid.

– A change to the DefXmitQName queue manager attribute. In this case all open handles that
resolved to the previously named queue (that resolved to it only because it was the default
transmission queue) are marked as invalid. Handles that resolved to this queue for other reasons
are not affected.

1310 IBM MQ Developing Applications Reference

• The Shareability queue attribute, if there are two or more handles that are currently providing
OOINPS access for this queue, or for a queue that resolves to this queue. If so, all handles that are
open for this queue, or for a queue that resolves to this queue, are marked as invalid, regardless of
the open options.

• The Usage queue attribute, for all handles that are open for this queue, or for a queue that resolves
to this queue, regardless of the open options.

When a handle is marked as invalid, all subsequent calls (other than MQCLOSE) using this handle
fail with reason code RC2041; the application should issue an MQCLOSE call (using the original
handle) and then reopen the queue. Any uncommitted updates against the old handle from previous
successful calls can still be committed or backed out, as required by the application logic.

If changing an attribute will cause this to happen, a special "force" version of the command must be
used.

5. The queue manager performs security checks when an MQOPEN call is issued, to verify that the user
identifier under which the application is running has the appropriate level of authority before access
is permitted. The authority check is made on the name of the object being opened, and not on the
name, or names, resulting after a name has been resolved.

If the object being opened is a model queue, the queue manager performs a full security check
against both the name of the model queue and the name of the dynamic queue that is created. If
the resulting dynamic queue is then opened explicitly, a further resource security check is performed
against the name of the dynamic queue.

6. A remote queue can be specified in one of two ways in the OBJDSC parameter of this call (see the
ODON and ODMN fields described in “MQOD (Object descriptor) on IBM i” on page 1148):

• By specifying for ODON the name of a local definition of the remote queue. In this case, ODMN refers
to the local queue manager, and can be specified as blanks.

The security validation performed by the local queue manager verifies that the user is authorized to
open the local definition of the remote queue.

• By specifying for ODON the name of the remote queue as known to the remote queue manager. In
this case, ODMN is the name of the remote queue manager.

The security validation performed by the local queue manager verifies that the user is authorized to
send messages to the transmission queue resulting from the name resolution process.

In either case:

• No messages are sent by the local queue manager to the remote queue manager in order to check
that the user is authorized to put messages on the queue.

• When a message arrives at the remote queue manager, the remote queue manager might reject it
because the user originating the message is not authorized.

7. An MQOPEN call with the OOBRW option establishes a browse cursor, for use with MQGET calls
that specify the object handle and one of the browse options. This allows the queue to be scanned
without altering its contents. A message that has been found by browsing can later be removed from
the queue by using the GMMUC option.

Multiple browse cursors can be active for a single application by issuing several MQOPEN requests for
the same queue.

8. The following notes apply to the use of distribution lists.

• Fields in the MQOD structure must be set as follows when opening a distribution list:

– ODVER must be ODVER2 or greater.
– ODOT must be OTQ.
– ODON must be blank or the null string.
– ODMN must be blank or the null string.
– ODREC must be greater than zero.

Developing applications reference 1311

– One of ODORO and ODORP must be zero and the other nonzero.
– No more than one of ODRRO and ODRRP can be nonzero.
– There must be ODREC object records, addressed by either ODORO or ODORP. The object records

must be set to the names of the destination queues to be opened.
– If one of ODRRO and ODRRP is nonzero, there must be ODREC response records present. They are

set by the queue manager if the call completes with reason code RC2136.

A version-2 MQOD can also be used to open a single queue that is not in a distribution list, by
ensuring that ODREC is zero.

• Only the following open options are valid in the OPTS parameter:

– OOOUT
– OOPAS*
– OOSET*
– OOALTU
– OOFIQ

• The destination queues in the distribution list can be local, alias, or remote queues, but they cannot
be model queues. If a model queue is specified, that queue fails to open, with reason code RC2057.
However, this does not prevent other queues in the list being opened successfully.

• The completion code and reason code parameters are set as follows:

– If the open operations for the queues in the distribution list all succeed or fail in the same way,
the completion code and reason code parameters are set to describe the common result. The
MQRR response records (if provided by the application) are not set in this case.

For example, if every open succeeds, the completion code is set to CCOK and the reason code is
RCNONE; if every open fails because none of the queues exists, the parameters are set to CCFAIL
and RC2085.

– If the open operations for the queues in the distribution list do not all succeed or fail in the same
way:

- The completion code parameter is set to CCWARN if at least one open succeeded, and to
CCFAIL if all failed.

- The reason code parameter is set to RC2136.
- The response records (if provided by the application) are set to the individual completion codes

and reason codes for the queues in the distribution list.
• When a distribution list has been opened successfully, the handle HOBJ returned by the call can

be used on subsequent MQPUT calls to put messages to queues in the distribution list, and on
an MQCLOSE call to relinquish access to the distribution list. The only valid close option for a
distribution list is CONONE.

The MQPUT1 call can also be used to put a message to a distribution list; the MQOD structure
defining the queues in the list is specified as a parameter on that call.

• Each successfully opened destination in the distribution list counts as a separate handle when
checking whether the application has exceeded the permitted maximum number of handles (see
the MaxHandles queue manager attribute). This is true even when two or more of the destinations
in the distribution list actually resolve to the same physical queue. If the MQOPEN or MQPUT1
call for a distribution list would cause the number of handles in use by the application to exceed
MaxHandles, the call fails with reason code RC2017.

• Each destination that is opened successfully has the value of its OpenOutputCount attribute
incremented by one. If two or more of the destinations in the distribution list actually resolve to the
same physical queue, that queue has its OpenOutputCount attribute incremented by the number
of destinations in the distribution list that resolve to that queue.

• Any change to the queue definitions that would have caused a handle to become invalid had the
queues been opened individually (for example, a change in the resolution path), does not cause

1312 IBM MQ Developing Applications Reference

the distribution-list handle to become invalid. However, it does result in a failure for that particular
queue when the distribution-list handle is used on a subsequent MQPUT call.

• It is valid for a distribution list to contain only one destination.
9. The following notes apply to the use of cluster queues.

• When a cluster queue is opened for the first time, and the local queue manager is not a full
repository queue manager, the local queue manager obtains information about the cluster queue
from a full repository queue manager. When the network is busy, it may take several seconds for
the local queue manager to receive the needed information from the repository queue manager. As
a result, the application issuing the MQOPEN call might have to wait for up to 10 seconds before
control returns from the MQOPEN call. If the local queue manager does not receive the needed
information about the cluster queue within this time, the call fails with reason code RC2189.

• When a cluster queue is opened and there are multiple instances of the queue in the cluster, the
instance actually opened depends on the options specified on the MQOPEN call:

– If the options specified include any of the following:

- OOBRW
- OOINPQ
- OOINPX
- OOINPS
- OOSET

the instance of the cluster queue opened is required to be the local instance. If there is no local
instance of the queue, the MQOPEN call fails.

– If the options specified include none of the above, but do include one or both of the following:

- OOINQ
- OOOUT

the instance opened is the local instance if there is one, and a remote instance otherwise. The
instance chosen by the queue manager can, however, be altered by a cluster workload exit (if
there is one).

For more information about cluster queues, see Cluster queues.
10. Applications started by a trigger monitor are passed the name of the queue that is associated with

the application when the application is started. This queue name can be specified in the OBJDSC
parameter to open the queue. See the description of the MQTMC structure for further details.

11. When using the OORLOQ option, the local queue is already returned when either a local, alias,
or model queue is opened, but this is not the case when, for example, a remote queue or a
non-local cluster queue is opened; the ResolvedQName and ResolvedQMgrName are entered with
the RemoteQName and RemoteQMgrName found in the remote queue definition, or similarly with
the chosen remote cluster queue. If OORLOQ is specified when opening, for example, a remote
queue, ResolvedQName will now be the transmission queue which messages will be put to.
The ResolvedQMgrName will be entered with the name of the local queue manager hosting the
transmission queue. If a user is authorized for browse, input or output on a queue, they have the
required authority to specify this flag on the MQOPEN call. No special authority is needed.

Parameters
The MQOPEN call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

Developing applications reference 1313

OBJDSC (MQOD) - input/output

Object descriptor.

This is a structure that identifies the object to be opened; see “MQOD (Object descriptor) on IBM i” on
page 1148 for details.

If the ODON field in the OBJDSC parameter is the name of a model queue, a dynamic local queue
is created with the attributes of the model queue; this happens irrespective of the open options
specified by the OPTS parameter. Subsequent operations using the HOBJ returned by the MQOPEN
call are performed on the new dynamic queue, and not on the model queue. This is true even for the
MQINQ and MQSET calls. The name of the model queue in the OBJDSC parameter is replaced with
the name of the dynamic queue created. The type of the dynamic queue is determined by the value
of the DefinitionType attribute of the model queue (see “Attributes for queues” on page 1355).
For information about the close options applicable to dynamic queues, see the description of the
MQCLOSE call.

OPTS (10-digit signed integer) - input

Options that control the action of MQOPEN.

At least one of the following options must be specified:

• OOBRW
• OOINP* (only one of these)
• OOINQ
• OOOUT
• OOSET
• OORLQ

Other options can be specified as required. If more than one option is required, the values can be
added (do not add the same constant more than once). Combinations that are not valid are noted;
all other combinations are valid. Only options that are applicable to the type of object specified by
OBJDSC are allowed (see Valid MQOPEN options for each queue type).

Access options: The following options control the type of operations that can be performed on the
object:
OOINPQ

Open queue to get messages using queue-defined default.

The queue is opened for use with subsequent MQGET calls. The type of access is either shared or
exclusive, depending on the value of the DefInputOpenOption queue attribute; see “Attributes
for queues” on page 1355 for details.

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects that are not queues.

OOINPS
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The call can succeed if the queue is
currently open by this or another application with OOINPS, but fails with reason code RC2042 if
the queue is currently open with OOINPX.

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects that are not queues.

OOINPX
Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The call fails with reason code
RC2042 if the queue is currently open by this or another application for input of any type (OOINPS
or OOINPX).

1314 IBM MQ Developing Applications Reference

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects that are not queues.

The following notes apply to these options:

• Only one of these options can be specified.
• An MQOPEN call with one of these options can succeed even if the InhibitGet queue attribute is

set to QAGETI (although subsequent MQGET calls will fail while the attribute is set to this value).
• If the queue is defined as not being shareable (that is, the Shareability queue attribute has the

value QANSHR), attempts to open the queue for shared access are treated as attempts to open the
queue with exclusive access.

• If an alias queue is opened with one of these options, the test for exclusive use (or for whether
another application has exclusive use) is against the base queue to which the alias resolves.

• These options are not valid if ODMN is the name of a queue manager alias; this is true even if the
value of the RemoteQMgrName attribute in the local definition of a remote queue used for queue
manager aliasing is the name of the local queue manager.

OOBRW
Open queue to browse messages.

The queue is opened for use with subsequent MQGET calls with one of the following options:

• GMBRWF
• GMBRWN
• GMBRWC

This is allowed even if the queue is currently open for OOINPX. An MQOPEN call with the OOBRW
option establishes a browse cursor, and positions it logically before the first message on the
queue; see the GMOPT field described in “MQGMO (Get-message options) on IBM i” on page 1066
for further information.

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects which are not queues. It is also not valid if ODMN is the name of a
queue manager alias; this is true even if the value of the RemoteQMgrName attribute in the local
definition of a remote queue used for queue manager aliasing is the name of the local queue
manager.

OOOUT
Open queue to put messages, or a topic or topic string to publish messages.

The queue is opened for use with subsequent MQPUT calls.

An MQOPEN call with this option can succeed even if the InhibitPut queue attribute is set to
QAPUTI (although subsequent MQPUT calls will fail while the attribute is set to this value).

This option is valid for all types of queue, including distribution lists and topics.

OOINQ
Open object to inquire attributes.

The queue, namelist, process definition, or queue manager is opened for use with subsequent
MQINQ calls.

This option is valid for all types of object other than distribution lists. It is not valid if ODMN is the
name of a queue manager alias; this is true even if the value of the RemoteQMgrName attribute
in the local definition of a remote queue used for queue manager aliasing is the name of the local
queue manager.

OOSET
Open queue to set attributes.

The queue is opened for use with subsequent MQSET calls.

Developing applications reference 1315

This option is valid for all types of queue other than distribution lists. It is not valid if ODMN is the
name of a local definition of a remote queue; this is true even if the value of the RemoteQMgrName
attribute in the local definition of a remote queue used for queue manager aliasing is the name of
the local queue manager.

Binding options: The following options apply when the object being opened is a cluster queue; these
options control the binding of the queue handle to an instance of the cluster queue:
OOBNDO

Bind handle to destination when queue is opened.

This causes the local queue manager to bind the queue handle to an instance of the destination
queue when the queue is opened. As a result, all messages put using this handle are sent to the
same instance of the destination queue, and by the same route.

This option is valid only for queues, and affects only cluster queues. If specified for a queue that is
not a cluster queue, the option is ignored.

OOBNDN
Do not bind to a specific destination.

This stops the local queue manager binding the queue handle to an instance of the destination
queue. As a result, successive MQPUT calls using this handle may result in the messages being
sent to different instances of the destination queue, or being sent to the same instance but by
different routes. It also allows the instance selected to be changed later by the local queue
manager, by a remote queue manager, or by a message channel agent (MCA), according to
network conditions.

Note: Client and server applications which need to exchange a series of messages in order to
complete a transaction should not use OOBNDN (or OOBNDQ when DefBind has the value
BNDNOT), because successive messages in the series may be sent to different instances of the
server application.

If OOBRW or one of the OOINP* options is specified for a cluster queue, the queue manager is
forced to select the local instance of the cluster queue. As a result, the binding of the queue
handle is fixed, even if OOBNDN is specified.

If OOINQ is specified with OOBNDN, successive MQINQ calls using that handle may inquire
different instances of the cluster queue, although typically all of the instances have the same
attribute values.

OOBNDN is valid only for queues, and affects only cluster queues. If specified for a queue that is
not a cluster queue, the option is ignored.

OOBNDQ
Use default binding for queue.

This causes the local queue manager to bind the queue handle in the way defined by the DefBind
queue attribute. The value of this attribute is either BNDOPN or BNDNOT.

OOBNDQ is the default if OOBNDO and OOBNDN are not specified.

OOBNDQ is defined to aid program documentation. It is not intended that this option is used with
either of the other two bind options, but because its value is zero such use cannot be detected.

Context options: The following options control the processing of message context:
OOSAVA

Save context when message retrieved.

Context information is associated with this queue handle. This information is set from the context
of any message retrieved using this handle. For more information about message context, see
Message context and Controlling context information.

This context information can be passed to a message that is later put on a queue using the MQPUT
or MQPUT1 calls. See the PMPASI and PMPASA options described in “MQPMO (Put-message
options) on IBM i” on page 1162.

1316 IBM MQ Developing Applications Reference

Until a message has been successfully retrieved, context cannot be passed to a message being
put on a queue.

A message retrieved using one of the GMBRW* browse options does not have its context
information saved (although the context fields in the MSGDSC parameter are set after a browse).

This option is valid only for local, alias, and model queues; it is not valid for remote queues,
distribution lists, and objects which are not queues. One of the OOINP* options must be specified.

OOPASI
Allow identity context to be passed.

This allows the PMPASI option to be specified in the PMO parameter when a message is put on
a queue; this gives the message the identity context information from an input queue that was
opened with the OOSAVA option. For more information about message context, see Message
context and Controlling context information.

The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

OOPASA
Allow all context to be passed.

This allows the PMPASA option to be specified in the PMO parameter when a message is put on a
queue; this gives the message the identity and origin context information from an input queue that
was opened with the OOSAVA option. For more information about message context, see Message
context and Controlling context information.

This option implies OOPASI, which need not therefore be specified. The OOOUT option must be
specified.

This option is valid for all types of queue, including distribution lists.

OOSETI
Allow identity context to be set.

This allows the PMSETI option to be specified in the PMO parameter when a message is put
on a queue; this gives the message the identity context information contained in the MSGDSC
parameter specified on the MQPUT or MQPUT1 call. For more information about message context,
see Message context and Controlling context information.

This option implies OOPASI, which need not therefore be specified. The OOOUT option must be
specified.

This option is valid for all types of queue, including distribution lists.

OOSETA
Allow all context to be set.

This allows the PMSETA option to be specified in the PMO parameter when a message is put on a
queue; this gives the message the identity and origin context information contained in the MSGDSC
parameter specified on the MQPUT or MQPUT1 call. For more information about message context,
see Message context and Controlling context information.

This option implies the following options, which need not therefore be specified:

• OOPASI
• OOPASA
• OOSETI

The OOOUT option must be specified.

This option is valid for all types of queue, including distribution lists.

Other options: The following options control authorization checking, and what happens when the
queue manager is quiescing:

Developing applications reference 1317

OOALTU
Validate with specified user identifier.

This indicates that the ODAU field in the OBJDSC parameter contains a user identifier that is to be
used to validate this MQOPEN call. The call can succeed only if this ODAU is authorized to open the
object with the specified access options, regardless of whether the user identifier under which the
application is running is authorized to do so. This does not apply to any context options specified,
however, which are always checked against the user identifier under which the application is
running.

This option is valid for all types of object.

OOFIQ
Fail if queue manager is quiescing.

This option forces the MQOPEN call to fail if the queue manager is in quiescing state.

This option is valid for all types of object.

OORLQ
Enter the name of local queue that was opened.

This option specifies that the ResolvedQName in the MQOD structure (if available) should be
entered with the name of the local queue which was opened. The ResolvedQMgrName will
similarly be entered with the name of the local queue manager hosting the local queue.

Table 751. Valid MQOPEN options for each queue type

Option Alias (“1” on
page 1319)

Local and
Model

Remote Nonlocal
Cluster

Distributio
n list

Topic

OOINPQ - - - -

OOINPS - - - -

OOINPX - - - -

OOBRW - - - -

OOOUT

OOINQ “2” on page
1319

- -

OOSET “2” on page
1319

- - -

OOBNDO (“3” on page
1319)

-

OOBNDN (“3” on page
1319)

-

OOBNDQ (“3” on page
1319)

-

OOSAVA - - - -

OOPASI “5” on page
1319

OOPASA “5” on page
1319

1318 IBM MQ Developing Applications Reference

Table 751. Valid MQOPEN options for each queue type (continued)

Option Alias (“1” on
page 1319)

Local and
Model

Remote Nonlocal
Cluster

Distributio
n list

Topic

OOSETI “5” on page
1319

OOSETA “5” on page
1319

OOALTU

OOFIQ

OORLQ - -

Notes:

1. The validity of options for aliases depends on the validity of the option for the queue to which the
alias resolves.

2. This option is valid only for the local definition of a remote queue.
3. This option can be specified for any queue type, but is ignored if the queue is not a cluster queue.
4. This attribute is ignored for a topic.
5. These attributes can be used with a topic, but only affect the context set for the retained message,

not the context fields sent to any subscriber.

HOBJ (10-digit signed integer) - output

Object handle.

This handle represents the access that has been established to the object. It must be specified
on subsequent message queuing calls that operate on the object. It ceases to be valid when
the MQCLOSE call is issued, or when the unit of processing that defines the scope of the handle
terminates.

The scope of the handle is restricted to the smallest unit of parallel processing supported by the
platform on which the application is running; the handle is not valid outside the unit of parallel
processing from which the MQOPEN call was issued:

• On IBM i, the scope of the handle is the job issuing the call.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQOPEN(HCONN : OBJDSC : OPTS :
 C HOBJ : CMPCOD : REASON)

Developing applications reference 1319

The prototype definition for the call is:

D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
DMQOPEN PR EXTPROC('MQOPEN')
D* Connection handle
D HCONN 10I 0 VALUE
D* Object descriptor
D OBJDSC 468A
D* Options that control the action of MQOPEN
D OPTS 10I 0 VALUE
D* Object handle
D HOBJ 10I 0
D* Completion code
D CMPCOD 10I 0
D* Reason code qualifying CMPCOD
D REASON 10I 0

MQPUT (Put message) on IBM i
The MQPUT call puts a message on a queue, distribution list or to a topic. The queue, distribution list, or
topic must already be open.

• “Syntax” on page 1320
• “Usage notes” on page 1320

– “Topics” on page 1320
– “MQPUT and MQPUT1” on page 1321
– “Destination queues” on page 1321
– “Distribution lists” on page 1322
– “Headers” on page 1323
– “Buffer” on page 1324

• “Parameters” on page 1324
• “RPG Declaration” on page 1329

Syntax
MQPUT (HCONN, HOBJ, MSGDSC, PMO, BUFLEN, BUFFER, CMPCOD, REASON)

Usage notes

Topics
The following notes apply to the use of topics:

1. When using MQPUT to publish messages on a topic, where one or more subscribers to that topic
cannot be given the publication due to a problem with their subscriber queue (for example it is full),
the Reason code returned to the MQPUT call and the delivery behavior is dependent on the setting
of the PMSGDLV or NPMSGDLV attributes on the TOPIC. Note that delivery of a publication to the
dead letter queue when RODLQ is specified, or discarding the message when RODISC is specified, is
considered a successful delivery of the message. If none of the publications are delivered, the MQPUT
will return with RC2502. This can happen in the following cases:

• A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence of
the message) set to ALL and any subscription (durable or not) has a queue which cannot receive the
publication.

• A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence
of the message) set to ALLDUR and a durable subscription has a queue which cannot receive the
publication.

1320 IBM MQ Developing Applications Reference

The MQPUT can return with RCNONE even though publications could not be delivered to some
subscribers in the following cases:

• A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence
of the message) set to ALLAVAIL and any subscription, durable or not, has a queue which cannot
receive the publication.

• A message is published to a TOPIC with PMSGDLV or NPMSGDLV (depending on the persistence of
the message) set to ALLDUR and a non-durable subscription has a queue which cannot receive the
publication.

2. If there are no subscribers to the topic being used, the message published is not sent to any
queue and is discarded. It does not make any difference whether this message is persistent or
non-persistent, or whether it has unlimited expiry or some small expiry time, it is still discarded if there
are no subscribers. The exception to this is if the message is to be retained, in which case, although
it is not sent to any subscribers' queues, it is stored against the topic to be delivered to any new
subscriptions or to any subscribers that ask for retained publications using MQSUBRQ.

MQPUT and MQPUT1
Both the MQPUT and MQPUT1 calls can be used to put messages on a queue; which call to use depends
on the circumstances

• The MQPUT call should be used when multiple messages are to be placed on the same queue.

An MQOPEN call specifying the OOOUT option is issued first, followed by one or more MQPUT requests
to add messages to the queue; finally the queue is closed with an MQCLOSE call. This gives better
performance than repeated use of the MQPUT1 call.

• The MQPUT1 call should be used when only one message is to be put on a queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a single call, minimizing the
number of calls that must be issued.

Destination queues
If an application puts a sequence of messages on the same queue without using message groups, the
order of those messages is preserved if the following conditions are satisfied. Some conditions apply to
both local and remote destination queues; other conditions apply only to remote destination queues.

Conditions for local and remote destination queues

• All of the MQPUT calls are within the same unit of work, or none of them is within a unit of work.

When messages are put onto a particular queue within a single unit of work, messages from other
applications might be interspersed with the sequence of messages on the queue.

• All of the MQPUT calls are made using the same object handle HOBJ.

In some environments, message sequence is also preserved when different object handles are
used, provided the calls are made from the same application. The meaning of "same application" is
determined by the environment:

– On IBM i, the application is the job.
• The messages all have the same priority.

Additional conditions for remote destination queues

• There is only one path from the sending queue manager to the destination queue manager.

If there is a possibility that some messages in the sequence may go on a different path (for example,
because of reconfiguration, traffic balancing, or path selection based on message size), the order of the
messages at the destination queue manager cannot be guaranteed.

• Messages are not placed temporarily on dead-letter queues at the sending, intermediate, or destination
queue managers.

Developing applications reference 1321

If one or more of the messages is put temporarily on a dead-letter queue (for example, because
a transmission queue or the destination queue is temporarily full), the messages can arrive on the
destination queue out of sequence.

• The messages are either all persistent or all nonpersistent.

If a channel on the route between the sending and destination queue managers has its CDNPM attribute
set to NPFAST, nonpersistent messages can jump ahead of persistent messages, resulting in the order
of persistent messages relative to nonpersistent messages not being preserved. However, the order of
persistent messages relative to each other, and of nonpersistent messages relative to each other, is
preserved.

If these conditions are not satisfied, message groups can be used to preserve message order, but note
that this requires both the sending and receiving applications to use the message-grouping support. For
more information about message groups, see:

• MDMFL field in MQMD
• PMLOGO option in MQPMO
• GMLOGO option in MQGMO

Distribution lists
The following notes apply to the use of distribution lists.

1. Messages can be put to a distribution list using either a version-1 or a version-2 MQPMO. If a version-1
MQPMO is used (or a version-2 MQPMO with PMREC equal to zero), no put message records or
response records can be provided by the application. This means that it will not be possible to
identify the queues which encounter errors, if the message is sent successfully to some queues in the
distribution list and not others.

If put message records or response records are provided by the application, the PMVER field must be
set to PMVER2.

A version-2 MQPMO can also be used to send messages to a single queue that is not in a distribution
list, by ensuring that PMREC is zero.

2. The completion code and reason code parameters are set as follows:

• If the puts to the queues in the distribution list all succeed or fail in the same way, the completion
code and reason code parameters are set to describe the common result. The MQRR response
records (if provided by the application) are not set in this case.

For example, if every put succeeds, the completion code is set to CCOK and the reason code is
RCNONE; if every put fails because all of the queues are inhibited for puts, the parameters are set to
CCFAIL and RC2051.

• If the puts to the queues in the distribution list do not all succeed or fail in the same way:

– The completion code parameter is set to CCWARN if at least one put succeeded, and to CCFAIL if
all failed.

– The reason code parameter is set to RC2136.
– The response records (if provided by the application) are set to the individual completion codes

and reason codes for the queues in the distribution list.

If the put to a destination fails because the open for that destination failed, the fields in the response
record are set to CCFAIL and RC2137; that destination is included in PMIDC.

3. If a destination in the distribution list resolves to a local queue, the message is placed on that queue
in normal form (that is, not as a distribution-list message). If more than one destination resolves to the
same local queue, one message is placed on the queue for each such destination.

If a destination in the distribution list resolves to a remote queue, a message is placed on the
appropriate transmission queue. Where several destinations resolve to the same transmission queue,
a single distribution-list message containing those destinations may be placed on the transmission

1322 IBM MQ Developing Applications Reference

queue, even if those destinations were not adjacent in the list of destinations provided by the
application. However, this can be done only if the transmission queue supports distribution-list
messages (see the DistLists queue attribute described in “Attributes for queues” on page 1355).

If the transmission queue does not support distribution lists, one copy of the message in normal form
is placed on the transmission queue for each destination that uses that transmission queue.

If a distribution list with the application message data is too large for a transmission queue, the
distribution list message is split up into smaller distribution-list messages, each containing fewer
destinations. If the application message data only just fits on the queue, distribution-list messages
cannot be used at all, and the queue manager generates one copy of the message in normal form for
each destination that uses that transmission queue.

If different destinations have different message priority or message persistence (this can occur when
the application specifies PRQDEF or PEQDEF), the messages are not held in the same distribution-list
message. Instead, the queue manager generates as many distribution-list messages as are necessary
to accommodate the differing priority and persistence values.

4. A put to a distribution list might result in:

• A single distribution-list message, or
• A number of smaller distribution-list messages, or
• A mixture of distribution list messages and normal messages, or
• Normal messages only.

Which of the previous occurs depends on whether:

• The destinations in the list are local, remote, or a mixture.
• The destinations have the same message priority and message persistence.
• The transmission queues can hold distribution-list messages.
• The transmission queues' maximum message lengths are large enough to accommodate the

message in distribution-list form.

However, regardless of which of the above occurs, each physical message resulting (that is, each
normal message or distribution-list message resulting from the put) counts as only one message when:

• Checking whether the application has exceeded the permitted maximum number of messages in a
unit of work (see the MaxUncommittedMsgs queue manager attribute).

• Checking whether the triggering conditions are satisfied.
• Incrementing queue depths and checking whether the queues' maximum queue depth would be

exceeded.
5. Any change to the queue definitions that would have caused a handle to become invalid had the

queues been opened individually (for example, a change in the resolution path), does not cause the
distribution-list handle to become invalid. However, it does result in a failure for that particular queue
when the distribution-list handle is used on a subsequent MQPUT call.

Headers
If a message is put with one or more IBM MQ header structures at the beginning of the application
message data, the queue manager performs certain checks on the header structures to verify that they
are valid. If the queue manager detects an error, the call fails with an appropriate reason code. The
checks performed vary according to the particular structures that are present. In addition, the checks
are performed only if a version-2 or later MQMD is used on the MQPUT or MQPUT1 call; the checks are
not performed if a version-1 MQMD is used, even if an MQMDE is present at the start of the application
message data.

The following IBM MQ header structures are validated completely by the queue manager: MQDH, MQMDE.

Developing applications reference 1323

For other IBM MQ header structures, the queue manager performs some validation, but does not check
every field. Structures that are not supported by the local queue manager, and structures following the
first MQDLH in the message, are not validated.

In addition to general checks on the fields in IBM MQ structures, the following conditions must be
satisfied:

• An IBM MQ structure must not be split over two or more segments - the structure must be entirely
contained within one segment.

• The sum of the lengths of the structures in a PCF message must equal the length specified by the
BUFLEN parameter on the MQPUT or MQPUT1 call. A PCF message is a message that has one of the
following format names:

– FMADMN
– FMEVNT
– FMPCF

• IBM MQ structures must not be truncated, except in the following situations where truncated structures
are permitted:

– Messages which are report messages.
– PCF messages.
– Messages containing an MQDLH structure. (Structures following the first MQDLH can be truncated;

structures preceding the MQDLH cannot.)

Buffer
The BUFFER parameter shown in the RPG programming example is declared as a string; this restricts
the maximum length of the parameter to 256 bytes. If a larger buffer is required, the parameter should
be declared instead as a structure, or as a field in a physical file. This will increase the maximum length
possible to approximately 32 KB.

Parameters
The MQPUT call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

HOBJ (10-digit signed integer) - input

Object handle.

This handle represents the queue to which the message is added, or the topic to which the message
is published. The value of HOBJ was returned by a previous MQOPEN call that specified the OOOUT
option.

MSGDSC (MQMD) - input/output

Message descriptor.

This structure describes the attributes of the message being sent, and receives information about the
message after the put request is complete. See “MQMD (Message descriptor) on IBM i” on page 1099
for details.

If the application provides a version-1 MQMD, the message data can be prefixed with an MQMDE
structure in order to specify values for the fields that exist in the version-2 MQMD but not the
version-1. The MDFMT field in the MQMD must be set to FMMDE to indicate that an MQMDE is present.
See “MQMDE (Message descriptor extension) on IBM i” on page 1142 for more details.

1324 IBM MQ Developing Applications Reference

PMO (MQPMO) - input/output

Options that control the action of MQPUT.

See “MQPMO (Put-message options) on IBM i” on page 1162 for details.

BUFLEN (10-digit signed integer) - input

Length of the message in BUFFER.

Zero is valid, and indicates that the message contains no application data. The upper limit for BUFLEN
depends on various factors:

• If the destination queue is a shared queue, the upper limit is 63 KB (64 512 bytes).
• If the destination is a local queue or resolves to a local queue (but is not a shared queue), the upper

limit depends on whether:

– The local queue manager supports segmentation.
– The sending application specifies the flag that allows the queue manager to segment the

message. This flag is MFSEGA, and can be specified either in a version-2 MQMD, or in an MQMDE
used with a version-1 MQMD.

If both of these conditions are satisfied, BUFLEN cannot exceed 999 999 999 minus the value of
the MDOFF field in MQMD. The longest logical message that can be put is therefore 999 999 999
bytes (when MDOFF is zero). However, resource constraints imposed by the operating system or
environment in which the application is running may result in a lower limit.

If one or both of the previously described conditions are not satisfied, BUFLEN cannot exceed the
smaller of the queue's MaxMsgLength attribute and queue manager's MaxMsgLength attribute.

• If the destination is a remote queue or resolves to a remote queue, the conditions for local queues
apply, but at each queue manager through which the message must pass in order to reach the
destination queue ; in particular:

1. The local transmission queue used to store the message temporarily at the local queue manager
2. Intermediate transmission queues (if any) used to store the message at queue managers on the

route between the local and destination queue managers
3. The destination queue at the destination queue manager

The longest message that can be put is therefore governed by the most restrictive of these queues
and queue managers.

When a message is on a transmission queue, additional information resides with the message
data, and this reduces the amount of application data that can be carried. In this situation it is
recommended that LNMHD bytes be subtracted from the MaxMsgLength values of the transmission
queues when determining the limit for BUFLEN.

Note: Only failure to comply with condition 1 can be diagnosed synchronously (with reason code
RC2030 or RC2031) when the message is put. If conditions 2 or 3 are not satisfied, the message is
redirected to a dead-letter (undelivered-message) queue, either at an intermediate queue manager
or at the destination queue manager. If this happens, a report message is generated if one was
requested by the sender.

BUFFER (1-byte bit string x BUFLEN) - input

Message data.

This is a buffer containing the application data to be sent. The buffer should be aligned on a boundary
appropriate to the nature of the data in the message. 4-byte alignment should be suitable for most
messages (including messages containing MQ header structures), but some messages may require
more stringent alignment. For example, a message containing a 64-bit binary integer might require
8-byte alignment.

Developing applications reference 1325

If BUFFER contains character data, numeric data, or both, the MDCSI and MDENC fields in the MSGDSC
parameter should be set to the values appropriate to the data; this will enable the receiver of the
message to convert the data (if necessary) to the character set and encoding used by the receiver.

Note: All of the other parameters on the MQPUT call must be in the character set given by the
CodedCharSetId queue manager attribute, and encoding of the local queue manager given by the
ENNAT.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2104

(2104, X'838') Report option in message descriptor not recognized.
RC2136

(2136, X'858') Multiple reason codes returned.

If CMPCOD is CCFAIL:
RC2004

(2004, X'7D4') Buffer parameter not valid.
RC2005

(2005, X'7D5') Buffer length parameter not valid.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2013

(2013, X'7DD') Expiry time not valid.
RC2014

(2014, X'7DE') Feedback code not valid.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2019

(2019, X'7E3') Object handle not valid.
RC2024

(2024, X'7E8') No more messages can be handled within current unit of work.
RC2026

(2026, X'7EA') Message descriptor not valid.
RC2027

(2027, X'7EB') Missing reply-to queue.

1326 IBM MQ Developing Applications Reference

RC2029
(2029, X'7ED') Message type in message descriptor not valid.

RC2030
(2030, X'7EE') Message length greater than maximum for queue.

RC2031
(2031, X'7EF') Message length greater than maximum for queue manager.

RC2039
(2039, X'7F7') Queue not open for output.

RC2041
(2041, X'7F9') Object definition changed since opened.

RC2046
(2046, X'7FE') Options not valid or not consistent.

RC2047
(2047, X'7FF') Persistence not valid.

RC2048
(2048, X'800') Queue does not support persistent messages.

RC2050
(2050, X'802') Message priority not valid.

RC2051
(2051, X'803') Put calls inhibited for the queue.

RC2052
(2052, X'804') Queue has been deleted.

RC2053
(2053, X'805') Queue already contains maximum number of messages.

RC2056
(2056, X'808') No space available on disk for queue.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2061
(2061, X'80D') Report options in message descriptor not valid.

RC2071
(2071, X'817') Insufficient storage available.

RC2072
(2072, X'818') Syncpoint support not available.

RC2093
(2093, X'82D') Queue not open for pass all context.

RC2094
(2094, X'82E') Queue not open for pass identity context.

RC2095
(2095, X'82F') Queue not open for set all context.

RC2096
(2096, X'830') Queue not open for set identity context.

RC2097
(2097, X'831') Queue handle referred to does not save context.

RC2098
(2098, X'832') Context not available for queue handle referred to.

RC2101
(2101, X'835') Object damaged.

Developing applications reference 1327

RC2102
(2102, X'836') Insufficient system resources available.

RC2135
(2135, X'857') Distribution header structure not valid.

RC2136
(2136, X'858') Multiple reason codes returned.

RC2137
(2137, X'859') Object not opened successfully.

RC2149
(2149, X'865') PCF structures not valid.

RC2154
(2154, X'86A') Number of records present not valid.

RC2156
(2156, X'86C') Response records not valid.

RC2158
(2158, X'86E') Put message record flags not valid.

RC2159
(2159, X'86F') Put message records not valid.

RC2161
(2161, X'871') Queue manager quiescing.

RC2162
(2162, X'872') Queue manager shutting down.

RC2173
(2173, X'87D') Put-message options structure not valid.

RC2185
(2185, X'889') Inconsistent persistence specification.

RC2188
(2188, X'88C') Call rejected by cluster workload exit.

RC2189
(2189, X'88D') Cluster name resolution failed.

RC2195
(2195, X'893') Unexpected error occurred.

RC2219
(2219, X'8AB') MQI call reentered before previous call complete.

RC2241
(2241, X'8C1') Message group not complete.

RC2242
(2242, X'8C2') Logical message not complete.

RC2245
(2245, X'8C5') Inconsistent unit-of-work specification.

RC2248
(2248, X'8C8') Message descriptor extension not valid.

RC2249
(2249, X'8C9') Message flags not valid.

RC2250
(2250, X'8CA') Message sequence number not valid.

RC2251
(2251, X'8CB') Message segment offset not valid.

RC2252
(2252, X'8CC') Original length not valid.

1328 IBM MQ Developing Applications Reference

RC2253
(2253, X'8CD') Length of data in message segment is zero.

RC2255
(2255, X'8CF') Unit of work not available for the queue manager to use.

RC2257
(2257, X'8D1') Wrong version of MQMD supplied.

RC2258
(2258, X'8D2') Group identifier not valid.

RC2266
(2266, X'8DA') Cluster workload exit failed.

RC2269
(2269, X'8DD') Cluster resource error.

RC2270
(2270, X'8DE') No destination queues available.

RC2420
(2420) An MQPUT call was issued, but the message data contains an MQEPH structure that is not
valid.

RC2479
(2479, X'9AF') Publication could not be retained.

RC2480
(2480, X'9B0') Target type has changed: the alias queue referred to a queue but now refers to a
topic.

RC2502
(2502, X'9C6') Publication failed, and publication has not been delivered to any subscribers

RC2551
(2551, X'9F7') Specified selection string is not available.

RC2554
(2554, X'9FA') Message content could not be parsed to determine whether the message should be
delivered to a subscriber with an extended message selector.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQPUT(HCONN : HOBJ : MSGDSC : PMO :
 C BUFLEN : BUFFER : CMPCOD :
 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQPUT PR EXTPROC('MQPUT')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Object handle
 D HOBJ 10I 0 VALUE
 D* Message descriptor
 D MSGDSC 364A
 D* Options that control the action of MQPUT
 D PMO 200A
 D* Length of the message in Buffer
 D BUFLEN 10I 0 VALUE
 D* Message data
 D BUFFER * VALUE
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

Developing applications reference 1329

MQPUT1 (Put one message) on IBM i
The MQPUT1 call puts one message on a queue or distribution list, or to a topic. The queue, distribution
list, or topic does not need to be open.

• “Syntax” on page 1330
• “Usage notes” on page 1330
• “Parameters” on page 1331
• “RPG Declaration” on page 1335

Syntax
MQPUT1 (HCONN, OBJDSC, MSGDSC, PMO, BUFLEN, BUFFER, CMPCOD, REASON)

Usage notes
1. Both the MQPUT and MQPUT1 calls can be used to put messages on a queue; which call to use

depends on the circumstances:

• The MQPUT call should be used when multiple messages are to be placed on the same queue.

An MQOPEN call specifying the OOOUT option is issued first, followed by one or more MQPUT
requests to add messages to the queue; finally the queue is closed with an MQCLOSE call. This gives
better performance than repeated use of the MQPUT1 call.

• The MQPUT1 call should be used when only one message is to be put on a queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a single call, minimizing the
number of calls that must be issued.

2. If an application puts a sequence of messages on the same queue without using message groups,
the order of those messages is preserved if certain conditions are satisfied. However, in most
environments the MQPUT1 call does not satisfy these conditions, and so does not preserve message
order. The MQPUT call must be used instead in these environments. See the usage notes in the
description of the MQPUT call for details.

3. The MQPUT1 call can be used to put messages to distribution lists. For general information about this,
see the usage notes for the MQOPEN and MQPUT calls.

The following differences apply when using the MQPUT1 call:

a. If MQRR response records are provided by the application, they must be provided using the MQOD
structure; they cannot be provided using the MQPMO structure.

b. The reason code RC2137 is never returned by MQPUT1 in the response records; if a queue fails to
open, the response record for that queue contains the actual reason code resulting from the open
operation.

If an open operation for a queue succeeds with a completion code of CCWARN, the completion
code and reason code in the response record for that queue are replaced by the completion and
reason codes resulting from the put operation.

As with the MQOPEN and MQPUT calls, the queue manager sets the response records (if provided)
only when the outcome of the call is not the same for all queues in the distribution list; this is
indicated by the call completing with reason code RC2136.

4. If the MQPUT1 call is used to put a message on a cluster queue, the call behaves as though OOBNDN
had been specified on the MQOPEN call.

5. If a message is put with one or more IBM MQ header structures at the beginning of the application
message data, the queue manager performs certain checks on the header structures to verify that they
are valid. For more information about this, see the usage notes for the MQPUT call.

1330 IBM MQ Developing Applications Reference

6. If more than one of the warning situations arise (see the CMPCOD parameter), the reason code returned
is the first one in the following list that applies:

a. RC2136
b. RC2242
c. RC2241
d. RC2049 or RC2104

7. The BUFFER parameter shown in the RPG programming example is declared as a string; this restricts
the maximum length of the parameter to 256 bytes. If a larger buffer is required, the parameter should
be declared instead as a structure, or as a field in a physical file. This will increase the maximum length
possible to approximately 32 KB.

Parameters
The MQPUT1 call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

OBJDSC (MQOD) - input/output

Object descriptor.

This is a structure which identifies the queue to which the message is added. See “MQOD (Object
descriptor) on IBM i” on page 1148 for details.

The user must be authorized to open the queue for output. The queue must not be a model queue.

MSGDSC (MQMD) - input/output

Message descriptor.

This structure describes the attributes of the message being sent, and receives feedback information
after the put request is complete. See “MQMD (Message descriptor) on IBM i” on page 1099 for
details.

If the application provides a version-1 MQMD, the message data can be prefixed with an MQMDE
structure in order to specify values for the fields that exist in the version-2 MQMD but not the
version-1. The MDFMT field in the MQMD must be set to FMMDE to indicate that an MQMDE is present.
See “MQMDE (Message descriptor extension) on IBM i” on page 1142 for more details.

PMO (MQPMO) - input/output

Options that control the action of MQPUT1.

See “MQPMO (Put-message options) on IBM i” on page 1162 for details.

BUFLEN (10-digit signed integer) - input

Length of the message in BUFFER.

Zero is valid, and indicates that the message contains no application data. The upper limit depends on
various factors; see the description of the BUFLEN parameter of the MQPUT call for further details.

BUFFER (1-byte bit string x BUFLEN) - input

Message data.

This is a buffer containing the application message data to be sent. The buffer should be aligned on a
boundary appropriate to the nature of the data in the message. 4-byte alignment should be suitable
for most messages (including messages containing IBM MQ header structures), but some messages
may require more stringent alignment. For example, a message containing a 64-bit binary integer
might require 8-byte alignment.

Developing applications reference 1331

If BUFFER contains character data, numeric data, or both, the MDCSI and MDENC fields in the MSGDSC
parameter should be set to the values appropriate to the data; this will enable the receiver of the
message to convert the data (if necessary) to the character set and encoding used by the receiver.

Note: All of the other parameters on the MQPUT1 call must be in the character set given by the
CodedCharSetId queue manager attribute and encoding of the local queue manager given by
ENNAT.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2104

(2104, X'838') Report option in message descriptor not recognized.
RC2136

(2136, X'858') Multiple reason codes returned.
RC2049

(2049, X'801') Message Priority exceeds maximum value supported.
RC2241

(2241, X'8C1') Message group not complete.
RC2242

(2242, X'8C2') Logical message not complete.

If CMPCOD is CCFAIL:
RC2001

(2001, X'7D1') Alias base queue not a valid type.
RC2004

(2004, X'7D4') Buffer parameter not valid.
RC2005

(2005, X'7D5') Buffer length parameter not valid.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2013

(2013, X'7DD') Expiry time not valid.
RC2014

(2014, X'7DE') Feedback code not valid.
RC2017

(2017, X'7E1') No more handles available.

1332 IBM MQ Developing Applications Reference

RC2018
(2018, X'7E2') Connection handle not valid.

RC2024
(2024, X'7E8') No more messages can be handled within current unit of work.

RC2026
(2026, X'7EA') Message descriptor not valid.

RC2027
(2027, X'7EB') Missing reply-to queue.

RC2029
(2029, X'7ED') Message type in message descriptor not valid.

RC2030
(2030, X'7EE') Message length greater than maximum for queue.

RC2031
(2031, X'7EF') Message length greater than maximum for queue manager.

RC2035
(2035, X'7F3') Not authorized for access.

RC2042
(2042, X'7FA') Object already open with conflicting options.

RC2043
(2043, X'7FB') Object type not valid.

RC2044
(2044, X'7FC') Object descriptor structure not valid.

RC2046
(2046, X'7FE') Options not valid or not consistent.

RC2047
(2047, X'7FF') Persistence not valid.

RC2048
(2048, X'800') Queue does not support persistent messages.

RC2050
(2050, X'802') Message priority not valid.

RC2051
(2051, X'803') Put calls inhibited for the queue.

RC2052
(2052, X'804') Queue has been deleted.

RC2053
(2053, X'805') Queue already contains maximum number of messages.

RC2056
(2056, X'808') No space available on disk for queue.

RC2057
(2057, X'809') Queue type not valid.

RC2058
(2058, X'80A') Queue manager name not valid or not known.

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2061
(2061, X'80D') Report options in message descriptor not valid.

RC2063
(2063, X'80F') Security error occurred.

RC2071
(2071, X'817') Insufficient storage available.

Developing applications reference 1333

RC2072
(2072, X'818') Syncpoint support not available.

RC2082
(2082, X'822') Unknown alias base queue.

RC2085
(2085, X'825') Unknown object name.

RC2086
(2086, X'826') Unknown object queue manager.

RC2087
(2087, X'827') Unknown remote queue manager.

RC2091
(2091, X'82B') Transmission queue not local.

RC2092
(2092, X'82C') Transmission queue with wrong usage.

RC2097
(2097, X'831') Queue handle referred to does not save context.

RC2098
(2098, X'832') Context not available for queue handle referred to.

RC2101
(2101, X'835') Object damaged.

RC2102
(2102, X'836') Insufficient system resources available.

RC2135
(2135, X'857') Distribution header structure not valid.

RC2136
(2136, X'858') Multiple reason codes returned.

RC2149
(2149, X'865') PCF structures not valid.

RC2154
(2154, X'86A') Number of records present not valid.

RC2155
(2155, X'86B') Object records not valid.

RC2156
(2156, X'86C') Response records not valid.

RC2158
(2158, X'86E') Put message record flags not valid.

RC2159
(2159, X'86F') Put message records not valid.

RC2161
(2161, X'871') Queue manager quiescing.

RC2162
(2162, X'872') Queue manager shutting down.

RC2173
(2173, X'87D') Put-message options structure not valid.

RC2184
(2184, X'888') Remote queue name not valid.

RC2188
(2188, X'88C') Call rejected by cluster workload exit.

RC2189
(2189, X'88D') Cluster name resolution failed.

1334 IBM MQ Developing Applications Reference

RC2195
(2195, X'893') Unexpected error occurred.

RC2196
(2196, X'894') Unknown transmission queue.

RC2197
(2197, X'895') Unknown default transmission queue.

RC2198
(2198, X'896') Default transmission queue not local.

RC2199
(2199, X'897') Default transmission queue usage error.

RC2258
(2258, X'8D2') Group identifier not valid.

RC2248
(2248, X'8C8') Message descriptor extension not valid.

RC2219
(2219, X'8AB') MQI call reentered before previous call complete.

RC2249
(2249, X'8C9') Message flags not valid.

RC2250
(2250, X'8CA') Message sequence number not valid.

RC2251
(2251, X'8CB') Message segment offset not valid.

RC2252
(2252, X'8CC') Original length not valid.

RC2253
(2253, X'8CD') Length of data in message segment is zero.

RC2255
(2255, X'8CF') Unit of work not available for the queue manager to use.

RC2257
(2257, X'8D1') Wrong version of MQMD supplied.

RC2266
(2266, X'8DA') Cluster workload exit failed.

RC2269
(2269, X'8DD') Cluster resource error.

RC2270
(2270, X'8DE') No destination queues available.

RC2420
(2420) An MQPUT1 call was issued, but the message data contains an MQEPH structure that is not
valid.

RC2551
(2551, X'9F7') Specified selection string is not available.

RC2554
(2554, X'9FA') Message content could not be parsed to determine whether the message should be
delivered to a subscriber with an extended message selector.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQPUT1(HCONN : OBJDSC : MSGDSC :

Developing applications reference 1335

 C PMO : BUFLEN : BUFFER :
 C CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQPUT1 PR EXTPROC('MQPUT1')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Object descriptor
 D OBJDSC 468A
 D* Message descriptor
 D MSGDSC 364A
 D* Options that control the action of MQPUT1
 D PMO 200A
 D* Length of the message in BUFFER
 D BUFLEN 10I 0 VALUE
 D* Message data
 D BUFFER * VALUE
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

MQSET (Set object attributes) on IBM i
The MQSET call is used to change the attributes of an object represented by a handle. The object must be
a queue.

• “Syntax” on page 1336
• “Usage notes” on page 1336
• “Parameters” on page 1337
• “RPG Declaration” on page 1340

Syntax
MQSET (HCONN, HOBJ, SELCNT, SELS, IACNT, INTATR, CALEN, CHRATR, CMPCOD, REASON)

Usage notes
1. Using this call, the application can specify an array of integer attributes, or a collection of character

attribute strings, or both. If no errors occur, the attributes specified are all set simultaneously. If an
error occurs (for example, if a selector is not valid, or an attempt is made to set an attribute to a value
that is not valid), the call fails and no attributes are set.

2. The values of attributes can be determined using the MQINQ call ; see “MQINQ (Inquire about object
attributes) on IBM i” on page 1293 for details.

Note: Not all attributes with values that can be inquired upon using the MQINQ call can have their
values changed using the MQSET call. For example, no process-object or queue manager attributes
can be set with this call.

3. Attribute changes are preserved across restarts of the queue manager (other than alterations to
temporary dynamic queues, which do not survive restarts of the queue manager).

4. You cannot change the attributes of a model queue using the MQSET call. However, if you open a
model queue using the MQOPEN call with the MQOO_SET option, you can use the MQSET call to set
the attributes of the dynamic local queue that is created by the MQOPEN call.

5. If the object being set is a cluster queue, there must be a local instance of the cluster queue for the
open to succeed.

For more information about object attributes, see:

• “Attributes for queues” on page 1355

1336 IBM MQ Developing Applications Reference

• “Attributes for namelists” on page 1383
• “Attributes for process definitions on IBM i” on page 1384
• “Attributes for the queue manager on IBM i” on page 1386

Parameters
The MQSET call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

HOBJ (10-digit signed integer) - input

Object handle.

This handle represents the queue object with attributes that are to be set. The handle was returned by
a previous MQOPEN call that specified the OOSET option.

SELCNT (10-digit signed integer) - input

Count of selectors.

This is the count of selectors that are supplied in the SELS array. It is the number of attributes that are
to be set. Zero is a valid value. The maximum number allowed is 256.

SELS (10-digit signed integer x SELCNT) - input

Array of attribute selectors.

This is an array of SELCNT attribute selectors; each selector identifies an attribute (integer or
character) with a value that is to be set.

Each selector must be valid for the type of queue that HOBJ represents. Only certain IA* and CA*
values are allowed; these values are listed later in this section.

Selectors can be specified in any order. Attribute values that correspond to integer attribute selectors
(IA* selectors) must be specified in INTATR in the same order in which these selectors occur in SELS.
Attribute values that correspond to character attribute selectors (CA* selectors) must be specified in
CHRATR in the same order in which those selectors occur. IA* selectors can be interleaved with the
CA* selectors; only the relative order within each type is important.

It is not an error to specify the same selector more than once; if this is done, the last value specified
for a particular selector is the one that takes effect.

Note:

1. The integer and character attribute selectors are allocated within two different ranges; the IA*
selectors reside within the range IAFRST through IALAST, and the CA* selectors within the range
CAFRST through CALAST.

For each range, the constants IALSTU and CALSTU define the highest value that the queue
manager will accept.

2. If all the IA* selectors occur first, the same element numbers can be used to address
corresponding elements in the SELS and INTATR arrays.

The attributes that can be set are listed in the following table. No other attributes can be set using this
call. For the CA* attribute selectors, the constant that defines the length in bytes of the string that is
required in CHRATR is provided in parentheses.

Developing applications reference 1337

Table 752. MQSET attribute selectors for queues

Selector Description Note

CATRGD Trigger data
(LNTRGD).

“2” on page 1338

IADIST Distribution list
support.

“1” on page 1338

IAIGET Whether get
operations are
allowed.

IAIPUT Whether put
operations are
allowed.

IATRGC Trigger control. “2” on page 1338

IATRGD Trigger depth. “2” on page 1338

IATRGP Threshold
message
priority for
triggers.

“2” on page 1338

IATRGT Trigger type. “2” on page 1338

Notes:

1. Supported only on the following platforms:

• AIX

• IBM i

• Windows

and for IBM MQ clients connected to these systems.
2. Not supported on VSE/ESA.

IACNT (10-digit signed integer) - input

Count of integer attributes.

This is the number of elements in the INTATR array, and must be at least the number of IA* selectors
in the SELS parameter. Zero is a valid value if there are none.

INTATR (10-digit signed integ x rxIACNT) - input

Array of integer attributes.

This is an array of IACNT integer attribute values. These attribute values must be in the same order as
the IA* selectors in the SELS array.

CALEN (10-digit signed integer) - input

Length of character attributes buffer.

This is the length in bytes of the CHRATR parameter, and must be at least the sum of the lengths of the
character attributes specified in the SELS array. Zero is a valid value if there are no CA* selectors in
SELS.

CHRATR (1-byte character string x CALEN) - input

Character attributes.

1338 IBM MQ Developing Applications Reference

This is the buffer containing the character attribute values, concatenated together. The length of the
buffer is given by the CALEN parameter.

The characters attributes must be specified in the same order as the CA* selectors in the SELS array.
The length of each character attribute is fixed (see SELS). If the value to be set for an attribute
contains fewer nonblank characters than the defined length of the attribute, the value in CHRATR
must be padded to the right with blanks to make the attribute value match the defined length of the
attribute.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:
RC2219

(2219, X'8AB') MQI call reentered before previous call complete.
RC2006

(2006, X'7D6') Length of character attributes not valid.
RC2007

(2007, X'7D7') Character attributes string not valid.
RC2009

(2009, X'7D9') Connection to queue manager lost.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2019

(2019, X'7E3') Object handle not valid.
RC2020

(2020, X'7E4') Value for inhibit-get or inhibit-put queue attribute not valid.
RC2021

(2021, X'7E5') Count of integer attributes not valid.
RC2023

(2023, X'7E7') Integer attributes array not valid.
RC2040

(2040, X'7F8') Queue not open for set.
RC2041

(2041, X'7F9') Object definition changed since opened.
RC2101

(2101, X'835') Object damaged.
RC2052

(2052, X'804') Queue has been deleted.
RC2058

(2058, X'80A') Queue manager name not valid or not known.

Developing applications reference 1339

RC2059
(2059, X'80B') Queue manager not available for connection.

RC2162
(2162, X'872') Queue manager shutting down.

RC2102
(2102, X'836') Insufficient system resources available.

RC2065
(2065, X'811') Count of selectors not valid.

RC2067
(2067, X'813') Attribute selector not valid.

RC2066
(2066, X'812') Count of selectors too large.

RC2071
(2071, X'817') Insufficient storage available.

RC2075
(2075, X'81B') Value for trigger-control attribute not valid.

RC2076
(2076, X'81C') Value for trigger-depth attribute not valid.

RC2077
(2077, X'81D') Value for trigger-message-priority attribute not valid.

RC2078
(2078, X'81E') Value for trigger-type attribute not valid.

RC2195
(2195, X'893') Unexpected error occurred.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQSET(HCONN : HOBJ : SELCNT :
 C SELS(1) : IACNT : INTATR(1) :
 C CALEN : CHRATR : CMPCOD :
 C REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQSET PR EXTPROC('MQSET')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Object handle
 D HOBJ 10I 0 VALUE
 D* Count of selectors
 D SELCNT 10I 0 VALUE
 D* Array of attribute selectors
 D SELS 10I 0
 D* Count of integer attributes
 D IACNT 10I 0 VALUE
 D* Array of integer attributes
 D INTATR 10I 0
 D* Length of character attributes buffer
 D CALEN 10I 0 VALUE
 D* Character attributes
 D CHRATR * VALUE
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

1340 IBM MQ Developing Applications Reference

MQSETMP (Set message handle property) on IBM i
The MQSETMP call sets or modifies a property of a message handle.

• “Syntax” on page 1341
• “Usage notes” on page 1341
• “Parameters” on page 1342
• “RPG Declaration” on page 1345

Syntax
MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type, ValueLength, Value,
CompCode, Reason)

Usage notes
• You can use this call only when the queue manager itself coordinates the unit of work. This can be:

– A local unit of work, where the changes affect only IBM MQ resources.
– A global unit of work, where the changes can affect resources belonging to other resource managers,

as well as affecting IBM MQ resources.

For further details about local and global units of work, see “MQBEGIN (Begin unit of work) on IBM i” on
page 1242.

• In environments where the queue manager does not coordinate the unit of work, use the appropriate
back-out call instead of MQBACK. The environment might also support an implicit back out caused by
the application terminating abnormally.

– On z/OS, use the following calls:

- Batch programs (including IMS batch DL/I programs) can use the MQBACK call if the unit of
work affects only IBM MQ resources. However, if the unit of work affects both IBM MQ resources
and resources belonging to other resource managers (for example, Db2), use the SRRBACK call
provided by the z/OS Recoverable Resource Service (RRS). The SRRBACK call backs out changes to
resources belonging to the resource managers that have been enabled for RRS coordination.

- CICS applications must use the EXEC CICS SYNCPOINT ROLLBACK command to back out the
unit of work. Do not use the MQBACK call for CICS applications.

- IMS applications (other than batch DL/I programs) must use IMS calls such as ROLB to back out the
unit of work. Do not use the MQBACK call for IMS applications (other than batch DL/I programs).

– On IBM i, use this call for local units of work coordinated by the queue manager. This means that
a commitment definition must not exist at job level, that is, the STRCMTCTL command with the
CMTSCOPE(*JOB) parameter must not have been issued for the job.

• If an application ends with uncommitted changes in a unit of work, the disposition of those changes
depends on whether the application ends normally or abnormally. See the usage notes in “MQDISC
(Disconnect queue manager) on IBM i” on page 1278 for further details.

• When an application puts or gets messages in groups or segments of logical messages, the queue
manager retains information relating to the message group and logical message for the last successful
MQPUT and MQGET calls. This information is associated with the queue handle, and includes such
things as:

– The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in MQMD.
– Whether the message is part of a unit of work.
– For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one set for each of the
following:

– The last successful MQPUT call (this can be part of a unit of work).

Developing applications reference 1341

– The last successful MQGET call that removed a message from the queue (this can be part of a unit of
work).

– The last successful MQGET call that browsed a message on the queue (this cannot be part of a unit of
work).

If the application puts or gets the messages as part of a unit of work, and the application then decides
to back out the unit of work, the group and segment information is restored to the value that it had
previously:

– The information associated with the MQPUT call is restored to the value that it had before the first
successful MQPUT call for that queue handle in the current unit of work.

– The information associated with the MQGET call is restored to the value that it had before the first
successful MQGET call for that queue handle in the current unit of work.

Queues that were updated by the application after the unit of work started, but outside the scope of the
unit of work, do not have their group and segment information restored if the unit of work is backed out.

Restoring the group and segment information to its previous value when a unit of work is backed out
allows the application to spread a large message group or large logical message consisting of many
segments across several units of work, and to restart at the correct point in the message group or logical
message if one of the units of work fails.

Using several units of work might be advantageous if the local queue manager has only limited queue
storage. However, the application must maintain sufficient information to be able to restart putting or
getting messages at the correct point if a system failure occurs.

For details of how to restart at the correct point after a system failure, see the PMLOGO option
described in PMOPT (10 digit signed integer), and the GMLOGO option described in GMOPT (10 digit
signed integer).

The remaining usage notes apply only when the queue manager coordinates the units of work:
• A unit of work has the same scope as a connection handle. All IBM MQ calls that affect a particular unit

of work must be performed using the same connection handle. Calls issued using a different connection
handle (for example, calls issued by another application) affect a different unit of work. See HCONN
(10-digit signed integer) - output for information about the scope of connection handles.

• Only messages that were put or retrieved as part of the current unit of work are affected by this call.
• A long-running application that issues MQGET, MQPUT, or MQPUT1 calls within a unit of work, but that

never issues a commit or backout call, can fill queues with messages that are not available to other
applications. To guard against this possibility, the administrator must set the MaxUncommittedMsgs
queue manager attribute to a value that is low enough to prevent runaway applications filling the
queues, but high enough to allow the expected messaging applications to work correctly.

Parameters
The MQSETMP call has the following parameters:

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager.

The value must match the connection handle that was used to create the message handle specified in
the HMSG parameter.

If the message handle was created using HCUNAS, a valid connection must be established on the
thread setting a property of the message handle, otherwise the call fails with reason code RC2009 .

HMSG (20-digit signed integer) - input

This is the message handle to be modified. The value was returned by a previous MQCRTMH call.

SETOPT (MQSMPO) - input

Control how message properties are set.

1342 IBM MQ Developing Applications Reference

This structure allows applications to specify options that control how message properties are set. The
structure is an input parameter on the MQSETMP call. See MQSMPO for further information.

PRNAME (MQCHARV) - input

This is the name of the property to set.

See Property names and Property name restrictions for further information about the use of property
names.

PRPDSC (MQPD) - input/output

This structure is used to define the attributes of a property, including:

• what happens if the property is not supported
• what message context the property belongs to
• what messages the property is copied into as it flows

See MQPD for further information about this structure.

TYPE (10 digit signed integer) - input

The data type of the property being set. It can be one of the following:

TYPBOL
A boolean. ValueLength must be 4.

TYPBST
A byte string. ValueLength must be zero or greater.

TYPI8
An 8 bit signed integer. ValueLength must be 1.

TYPI16
A 16 bit signed integer. ValueLength must be 2.

TYPI32
A 32 bit signed integer. ValueLength must be 4.

TYPI64
A 64 bit signed integer. ValueLength must be 8.

TYPF32
A 32 bit floating-point number. ValueLength must be 4.

TYPF64
A 64 bit floating-point number. ValueLength must be 8.

TYPSTR
A character string. ValueLength must be zero or greater, or the special value VLNULL.

TYPNUL
The property exists but has a null value. ValueLength must be zero.

VALLEN (10-digit signed integer) - input

The length in bytes of the property value in the Value parameter.

Zero is valid only for null values or for strings or byte strings. Zero indicates that the property exists
but that the value contains no characters or bytes.

The value must be greater than or equal to zero or the following special value if the Type parameter
has TYPSTR set:
VLNULL

The value is delimited by the first null encountered in the string. The null is not included as part of
the string. This value is invalid if TYPSTR is not also set.
Note: The null character used to terminate a string if VLNULL is set is a null from the character set
of the Value.

Developing applications reference 1343

VALUE (1-byte bit string x VALLEN) - input

The value of the property to be set. The buffer must be aligned on a boundary appropriate to the
nature of the data in the value.

In the C programming language, the parameter is declared as a pointer-to-void; the address of any
type of data can be specified as the parameter.

If ValueLength is zero, Value is not referred to. In this case, the parameter address passed by
programs written in C or System/390 assembler can be null.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:

RC2421
(2421, X'0975') An MQRFH2 folder containing properties could not be parsed.

If CMPCOD is CCFAIL:
RC2204

(2204, X'089C') Adapter not available.
RC2130

(2130, X'852') Unable to load adapter service module.
RC2157

(2157, X'86D') Primary and home ASIDs differ.
RC2004

(2004, X'07D4') Value parameter not valid.
RC2005

(2005, X'07D5') Value length parameter not valid.
RC2219

(2219, X'08AB') MQI call entered before previous call completed.
RC2460

(2460, X'099C') Message handle pointer not valid.
RC2499

(2499, X'09C3') Message handle already in use.
RC2046

(2046, X'07FE') Options not valid or not consistent.
RC2482

(2482, X'09B2') Property descriptor structure not valid.
RC2442

(2442, X'098A') Invalid property name.
RC2473

(2473, X'09A9') Invalid property data type.

1344 IBM MQ Developing Applications Reference

RC2472
(2472, X'09A8') Number format error encountered in value data.

RC2463
(2463, X'099F') Set message property options structure not valid.

RC2111
(2111, X'083F') Property name coded character set identifier not valid.

RC2071
(2071, X'817') Insufficient storage available.

RC2195
(2195, X'893') Unexpected error occurred.

See “Return codes for IBM i (ILE RPG)” on page 1413 for more details.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQSETMP(HCONN : HMSG : SETOPT :
 PRNAME : PRPDSC :
 TYPE : VALLEN : VALUE :
 CMPCOD : REASON)

The prototype definition for the call is:

 DMQSETMP PR EXTPROC('MQSETMP')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Message handle
 D HMSG 10I 0 VALUE
 D* Options that control the action of MQSETMP
 D SETOPT 20A
 D* Property name
 D PRNAME 32A
 D* Property descriptor
 D PRPDSC 24A
 D* Property data type
 D TYPE 10I 0 VALUE
 D* Length of the Value area
 D VALLEN 10I 0 VALUE
 D* Property value
 D VALUE * VALUE
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

MQSTAT (Retrieve status information) on IBM i
Use the MQSTAT call to retrieve status information. The type of status information returned is determined
by the STYPE value specified on the call.

• “Syntax” on page 1345
• “Usage notes” on page 1346
• “Parameters” on page 1346
• “RPG Declaration” on page 1347

Syntax
MQSTAT (HCONN, STYPE, STAT, CMPCOD, REASON)

Developing applications reference 1345

Usage notes
1. A call to MQSTAT specifying a type of STATAPT returns information about previous asynchronous

MQPUT and MQPUT1 operations. The MQSTAT structure passed on the call is completed with the first
recorded asynchronous warning or error information for that connection. If further errors or warnings
follow the first, they do not normally alter these values. However, if an error occurs with a completion
code of CCWARN, a subsequent failure with a completion code of CCFAIL is returned instead.

2. If no errors have occurred since the connection was established or since the last call to MQSTAT then a
CMPCOD of CCOK and REASON of RCNONE are returned.

3. Counts of the number of asynchronous calls that have been processed under the connection handle
are returned by using three counters; STSPSC, STSPWC, and STSPFC. These counters are incremented
by the queue manager each time an asynchronous operation is processed successfully, has a warning,
or fails (note that for accounting purposes a put to a distribution list counts once per destination queue
rather than once per distribution list).

4. A successful call to MQSTAT results in any previous error information or counts being reset.

Parameters
The MQSTAT call has the following parameters:

Hconn (MQHCONN) - input

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN or MQCONNX call.

STYPE (10-digit signed integer) - input

Type of status information being requested. The only valid value is:

STATAPT
Return information about previous asynchronous put operations.

STS (MQSTS) - input/output

Status information structure. See “MQSTS (Status reporting structure) on IBM i” on page 1219 for
details.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion.
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:
RC2374

(2374, X'946') API exit failed
RC2183

(2183, X'887') Unable to load API exit.
RC2219

(2219, X'8AB') MQI call entered before previous call complete.

1346 IBM MQ Developing Applications Reference

RC2009
(2009, X'7D9') Connection to queue manager lost.

RC2203
(2203, X'89B') Connection shutting down.

RC2018
(2018, X'7E2') Connection handle not valid.

RC2162
(2162, X'872') Queue manager stopping

RC2102
(2102, X'836') Insufficient system resources available.

RC2430
(2430, X'97E') Error with MQSTAT type.

RC2071
(2071, X'817') Insufficient storage available.

RC2424
(2424, X'978') Error with MQSTS structure

RC2195
(2195, X'893') Unexpected error occurred.

RC2298
(2298, X'8FA') The function requested is not available in the current environment.

For detailed information about these codes, see:

• Messages and reason codes

RPG Declaration

 C*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
 C CALLP MQSTAT(HCONN : ETYPE : ERR :
 C CMPCOD : REASON)

The prototype definition for the call is:

 D.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
 DMQSTAT PR EXTPROC('MQSTAT')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Status information type
 D STYPE 10I 0 VALUE
 D* Status information
 D STATUS 296A
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

MQSUB (Register Subscription) on IBM i
The MQSUB call registers the applications subscription to a particular topic.

• “Syntax” on page 1348
• “Usage notes” on page 1348
• “Parameters” on page 1349
• “RPG Declaration” on page 1352

Developing applications reference 1347

Syntax
MQSUB (HCONN, SUBDSC, HOBJ, HSUB, CMPCOD, REASON)

Usage notes
• The subscription is made to a topic, named either using the short name of a pre-defined topic object,

the full name of the topic string, or it is formed by the concatenation of two parts, as described in
Combining topic strings.

• The queue manager performs security checks when an MQSUB call is issued, to verify that the user
identifier under which the application is running has the appropriate level of authority before access is
permitted. The appropriate topic object is located either by a short name being provided in the call, or
the nearest short name object in the topic hierarchy being found if a long name is provided. An authority
check is made on this topic object to ensure authority to subscribe is set and on the destination queue
to ensure that authority for output is set. If the SDMAN option is used, this means that an authority
check is made on the managed queue name associated with this topic object, and if a non-managed
queue is provided, this means that an authority check is made on the queue represented by the HOBJ
parameter.

• The HOBJ returned on the MQSUB call when the SOMAN option is used, can be inquired in order to find
out attributes such as the Backout threshold and the Excessive backout requeue name. You can also
inquire the name of the managed queue, but you should not attempt to directly open this queue.

• Subscriptions can be grouped allowing only a single publication to be delivered to the group of
subscriptions even where more than one of the group matched the publication. Subscriptions are
grouped using the SOGRP option and in order to group subscriptions they must:

– be using the same named queue (that is not using the SOMAN option) on the same queue manager -
represented by the HOBJ parameter on the MQSUB call

– share the same SDCID
– be of the same SDSL

These attributes define the set of subscriptions considered to be in the group, and are also the
attributes that cannot be altered if a subscription is grouped. Alteration of SDSL results in RC2512,
and alteration of any of the others (which can be changed if a subscription is not grouped) results in
RC2515.

• Fields in the MQSD are completed on return from an MQSUB call which uses the SORES option.
The MQSD returned can be passed directly into an MQSUB call which uses the SOALT option with
any changes you need to make to the subscription applied to the MQSD. Some fields have special
considerations as noted in the table.

Table 753. MQSD output from MQSUB

Field name in MQSD Special considerations

Access or creation options None of these options are set on return from the MQSUB call. If you
later reuse the MQSD in an MQSUB call the option you require must
be explicitly set.

Durability options, Destination options, Registration Options &
Wildcard options

These options will be set as appropriate

Publication options These options will be set as appropriate, except for SONEWP which
is only applicable to SOCRE.

Other options These options are unchanged on return from an MQSUB call. They
control how the API call is issued and are not stored with the
subscription. They must be set as required on any subsequent
MQSUB call reusing the MQSD.

ObjectName This input only field is unchanged on return from an MQSUB call.

ObjectString This input only field is unchanged on return from an MQSUB call.
The Full topic name used is returned in the SDRO field, if a buffer is
provided.

1348 IBM MQ Developing Applications Reference

Table 753. MQSD output from MQSUB (continued)

Field name in MQSD Special considerations

AlternateUserId and AlternateSecurityId These input only fields are unchanged on return from an MQSUB
call. They control how the API call is issued and are not stored
with the subscription. They must set as required on any subsequent
MQSUB call reusing the MQSD.

SubExpiry On return from an MQSUB call using the SORES option this field
will be set to the original expiry of the subscription and not the
remaining expiry time. If you then reuse the MQSD in an MQSUB call
using the SOALT option you will reset the expiry of the subscription
to start counting down again.

SubName This field is an input field on an MQSUB call and is not changed on
output.

SubUserData and SelectionString These variable length fields will be returned on output from an
MQSUB call using the SORES option, if a buffer is provided, and
also a positive buffer length in VCHRP. If no buffer is provided only
the length will be returned in the VCHRL field of the MQCHARV.If
the buffer provided is smaller than the space required to return the
field, only VCHRP bytes are returned in the provided buffer.

If you later reuse the MQSD in an MQSUB call using the SOALT
option and a buffer is not provided but a non-zero VCHRL is
provided, if that length matches the existing length of the field, no
alteration will made to the field.

SubCorrelId and PubAccountingToken If you do not use SOSCID, then the SDCID will be generated by the
queue manager. If you do not use SOSETI, then the SDACC will be
generated by the queue manager.

These fields will be returned in the MQSD from an MQSUB call using
the SORES option. If they are generated by the queue manager, the
generated value will be returned on an MQSUB call using the SOCRE
or SOALT option.

PubPriority, SubLevel & PubApplIdentityData These fields will be returned in the MQSD.

ResObjectString This output only field will be returned in the MQSD if a buffer is
provided.

Parameters
The MQSUB call has the following parameters:

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

SUBDSC (MQSD) - input/output

This is a structure that identifies the object with use that is being registered by the application. See
“MQSD (Subscription descriptor) on IBM i” on page 1201 for more information.

HOBJ (10-digit signed integer) - input/output

This handle represents the access that has been established to obtain the messages sent to this
subscription. These messages can either be stored on a specific queue or the queue manager can be
asked to manage their storage without the need for a specific queue.

Object handle.

If a specific queue is to be used it must be associated with the subscription at creation time. This can
be done in two ways:

• By providing this handle when calling MQSUB with the SDCRT option. If this handle is provided as an
input parameter on the call, it must be a valid object handle returned from a previous MQOPEN call
of a queue using at least one of OOINP*, OOOUT (if a remote queue for example), or OOBRW option.

Developing applications reference 1349

If this is not the case, the call fails with RC2019. It cannot be an object handle to an alias queue
which resolves to a topic object. If so, the call fails with RC2019

• By using the DEFINE SUB MQSC command and provided that command with the name of a queue
object.

If the queue manager is to manage the storage of messages sent to this subscription, you should
indicate this when the subscription is created, by using the SOMAN option and setting the parameter
value to HONONE. The queue manager returns the handle as an output parameter on the call, and the
handle that is returned is known as a managed handle. If HONONE is specified and SOMAN is not also
specified, the call fails with RC2019.

A managed handle that is returned by the queue manager can be used on an MQGET or MQCB call,
with or without browse options, on an MQINQ call, or on MQCLOSE. It cannot be used on MQPUT,
MQSET, or on a subsequent MQSUB; attempting to do so fails with RC2039 for MQPUT, RC2040 for
MQSET, or RC2038 for MQSUB.

If the SORES option in the OPTS field in the MQSD structure is used to resume this subscription, the
handle can be returned to the application in this parameter if HONONE is specified. You can use this
whether the subscription is using a managed handle or not. It can be useful for subscriptions created
using DEFINE SUB if you want the handle to the subscription queue defined on the DEFINE SUB
command. In the case where an administratively created subscription is being resumed, the queue
is opened with OOINPQ and OOBRW. If other options are needed, the application must open the
subscription queue explicitly and provide the object handle on the call. If there is a problem opening
the queue the call will fail with RC2522. If the HOBJ is provided, it must be equivalent to the HOBJ
in the original MQSUB call. This means if an object handle returned from an MQOPEN call is being
provided, the handle must be to the same queue as previously used or the call fails with RC2019.

If this subscription is being altered, by using the SOALT option in the OPTS field in the MQSD structure,
then a different HOBJ can be provided. Any publications that have been delivered to the queue
previously identified through this parameter remain on that queue and it is the responsibility of the
application to retrieve those messages if the HOBJ parameter now represents a different queue.

The use of this parameter with various subscription options is summarized in the following table:

Table 754. Using Hobj with various subscription options

Options Hobj Description

SOCRT + SOMAN Ignored on input Creates a subscription with queue manager
managed storage of messages.

SOCRT Valid object handle Creates a subscription providing a specific
queue as the destination for messages.

SORES HONONE Resumes a previously created subscription
(managed or not) and have the queue
manager return the object handle for use by
the application.

SORES Valid, matching, object handle Resumes a previously created subscription
which uses a specific queue as the
destination for messages and use an object
handle with specific open options.

SOALT + SOMAN HONONE Alters an existing subscription which was
previously using a specific queue, to now be
managed.

SOALT Valid object handle Alters an existing subscription to use a
specific queue (either from managed, or
from a different specific queue).

Whether it was provided or returned, HOBJ must be specified on subsequent MQGET calls that you
need to receive the publications.

The HOBJ handle ceases to be valid when the MQCLOSE call is issued on it, or when the unit of
processing that defines the scope of the handle terminates. The scope of the object handle returned

1350 IBM MQ Developing Applications Reference

is the same as that of the connection handle specified on the call. See HCONN for information about
handle scope. An MQCLOSE of the HOBJ handle has no effect on the HSUB handle.

HSUB (10-digit signed integer) - output

This handle represents the subscription that has been made. It can be used for two further
operations:

• It can be used on a subsequent MQSUBRQ call to request that publications be sent when the
SOPUBR option has been used when making the subscription.

• It can be used on a subsequent MQCLOSE call to remove the subscription that has been made. The
HSUB handle ceases to be valid when the MQCLOSE call is issued, or when the unit of processing
that defines the scope of the handle terminates. The scope of the object handle returned is the
same as that of the connection handle specified on the call. An MQCLOSE of the HSUB handle has no
effect on the HOBJ handle.

This handle cannot be passed to an MQGET or MQCB call. You must use the HOBJ parameter. Passing
this handle to any other IBM MQ call results in RC2019.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion
CCWARN

Warning (partial completion)
CCFAIL

Call failed

REASON (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCFAIL:
RC2019

(2019 X'07E3') Object handle not valid
RC2046

(2046 X'07FE') Options not valid or not consistent
RC2085

(2085 X'0825') Object identified cannot be found
RC2161

(2161 X'0871') Queue manager quiescing
RC2298

(2298 X'08FA') Function not supported.
RC2424

(2424 X'0978') Subscription descriptor (MQSD) not valid
RC2425

(2441 X'979') Topic string not valid
RC2428

(2428 X'097C') Subscription name specified does not match existing subscriptions
RC2429

(2429 X'097D') Subscription name exists and is in use by another application

Developing applications reference 1351

RC2431
(2431 X'097F') SubUserData field not valid

RC2432
(2432 X'0980') Subscription exists

RC2434
(2434 X'0982') Subscription name matches existing subscription

RC2440
(2440 X'0988') SubName field not valid

RC2441
(2441 X'0989') Objectstring field not valid

RC2435
(2435 X'0983') Attribute cannot be changed using SDALT, or subscription was created with
SDIMM.

RC2436
(2436 X'0984') SODUR option not valid

RC2459
(2459, X'99B') Selection string syntax error.

RC2503
(2503 X'09C7') MQSUB calls are currently inhibited for the topics subscribed to.

RC2519
(2519, X'9D7') The selection string is not as specified in the description of how to use an
MQCHARV structure.

RC2551
(2551, X'9F7') Specified selection string is not available.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQSUB(HCONN : SUBDSC : HOBJ :
 C HSUB : CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQSUB PR EXTPROC('MQSUB')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Subscription descriptor
 D SUBDSC 400A
 D* Object handle for queue
 D HOBJ 10I 0
 D* Subscription object handle
 D HSUB 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

MQSUBRQ (Subscription Request) on IBM i
The MQSUBRQ call makes a request on a subscription.

• “Syntax” on page 1353
• “Usage notes” on page 1353
• “Parameters” on page 1353
• “RPG Declaration” on page 1354

1352 IBM MQ Developing Applications Reference

Syntax
MQSUBRQ (HCONN, HSUB, ACTION, SUBROPT, CMPCOD, REASON)

Usage notes
The following usage notes apply to the use of SRAPUB:

1. If this verb completes successfully, the retained publications matching the subscription specified have
been sent to the subscription and can be received by using MQGET or MQCB using the HOBJ returned
on the original MQSUB verb that created the subscription.

2. If the topic subscribed to by the original MQSUB verb that created the subscription contained a
wildcard, more than one retained publication might be sent. The number of publications sent as a
result of this call is recorded in the SRNMP field in the SBROPT structure.

3. If this verb completes with a reason code of RC2437 then there were no currently retained
publications for the topic specified.

4. If this verb completes with a reason code of RC2525 or RC2526 then there are currently retained
publications for the topic specified but an error has occurred that that meant they were unable to be
delivered.

5. The application must have a current subscription to the topic before it can make this call. If the
subscription was made in a previous instance of the application and a valid handle to the subscription
is not available, the application must first call MQSUB with the SORES option to obtain a handle to it for
use in this call.

6. The publications are sent to the destination that is registered for use with the current subscription
of this application. If the publications should be sent somewhere else, the subscription must first be
altered using the MQSUB call with the SOALT option.

Parameters
The MQSUBRQ call has the following parameters:

HCONN (10-digit signed integer) - input

This handle represents the connection to the queue manager. The value of HCONN was returned by a
previous MQCONN or MQCONNX call.

On z/OS for CICS applications the MQCONN call can be omitted, and the following value specified for
HCONN :
HCDEFH

Default connection handle.

HSUB (10-digit signed integer) - input

This handle represents the subscription for which an update is to be requested. The value of HSUB
was returned from a previous MQSUB call.

ACTION (10-digit signed integer) - input

This parameter controls the particular action that is being requested on the subscription. One (and
only one) of the following must be specified:
SRAPUB

This action requests that an update publication be sent for the specified topic. This is normally
used if the subscriber specified the option SOPUBR on the MQSUB call when it made the
subscription. If the queue manager has a retained publication for the topic, this is sent to the
subscriber. If not, the call fails. If an application is sent a publication which was retained, this is
indicated by the MQIsRetained message property of that publication.

Since the topic in the existing subscription represented by the HSUB parameter can contain
wildcards, the subscriber might receive multiple retained publications.

Developing applications reference 1353

SBROPT (MQSRO) - input/output

These options control the action of MQSUBRQ, see “MQSRO - Subscription request options” on page
582 for details.

CMPCOD (10-digit signed integer) - output

The completion code; it is one of the following:
CCOK

Successful completion
CCWARN

Warning (partial completion)
CCFAIL

Call failed

Reason (10-digit signed integer) - output

The reason code qualifying CMPCOD.

If CPMCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CPMCOD is CCFAIL:
RC2298

2298 (X'08FA') The function requested is not available in the current environment.
RC2437

2437 (X'0985') There are no retained publications currently stored for this topic.
RC2046

2046 (X'07FE') Options parameter or field contains options that are not valid, or a combination of
options that is not valid.

RC2161
2161 (X'0871') Queue manager quiescing

RC2438
2438 (X'0986') On the MQSUBRQ call, the Subscription Request Options MQSRO is not valid.

RPG Declaration

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQSUBRQ(HCONN : HSUB : ACTION :
 C SBROPT : CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQSUBRQ PR EXTPROC('MQSUBRQ')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Subscription handle
 D HSUB 10I 0 VALUE
 D* Action requested on the subscription
 D ACTION 10I 0 VALUE
 D* Subscription Request Options
 D SBROPT 16A
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CompCode
 D REASON 10I 0

1354 IBM MQ Developing Applications Reference

Attributes of objects on IBM i
This collection of topics lists only those IBM MQ objects that can be the subject of an MQINQ function
call, and gives details of the attributes that can be inquired on and the selectors to be used.

Attributes for queues
Use this information to learn about the different types of queue definitions and the attributes supported
by each.

Types of queue: The queue manager supports the following types of queue definition:
Local queue

This is a physical queue that stores messages. The queue exists on the local queue manager.

Applications connected to the local queue manager can place messages on and remove messages
from queues of this type. The value of the QType queue attribute is QTLOC.

Shared queue
This is a physical queue that stores messages. The queue exists in a shared repository that is
accessible to all of the queue managers that belong to the queue sharing group that owns the shared
repository.

Applications connected to any queue manager in the queue sharing group can place messages on and
remove messages from queues of this type. Such queues are effectively the same as local queues.
The value of the QType queue attribute is QTLOC.

• Shared queues are supported only on z/OS.

Cluster queue
This is a physical queue that stores messages. The queue exists either on the local queue manager, or
on one or more of the queue managers that belong to the same cluster as the local queue manager.

Applications connected to the local queue manager can place messages on queues of this type,
regardless of the location of the queue. If an instance of the queue exists on the local queue manager,
the queue behaves in the same way as a local queue, and applications connected to the local queue
manager can remove messages from the queue. The value of the QType queue attribute is QTCLUS.

Alias queue
This is not a physical queue - it is an alternative name for a local queue. The name of the local queue
to which the alias resolves is part of the definition of the alias queue.

Applications connected to the local queue manager can place messages on and remove messages
from alias queues - the messages are placed on and removed from the local queue to which the alias
resolves. The value of the QType queue attribute is QTALS.

Remote queue
This is not a physical queue - it is the local definition of a queue that exists on a remote queue
manager. The local definition of the remote queue contains information that tells the local queue
manager how to route messages to the remote queue manager.

Applications connected to the local queue manager can place messages on remote queues - the
messages are placed on the local transmission queue used to route messages to the remote queue
manager. Applications cannot remove messages from remote queues. The value of the QType queue
attribute is QTREM.

A remote queue definition can also be used for:

• Reply-queue aliasing

In this case the name of the definition is the name of a reply-to queue. For more information, see
Reply-to queue alias definitions.

• Queue manager aliasing

In this case the name of the definition is an alias for a queue manager, and not the name of a queue.
For more information, see Queue manager alias definitions.

Developing applications reference 1355

Model queue
This is not a physical queue - it is a set of queue attributes from which a local queue can be created.

Messages cannot be stored on queues of this type.

Some queue attributes apply to all types of queue; other queue attributes apply only to certain types of
queue. The types of queue to which an attribute applies are indicated by an "X" in Table 755 on page
1356 and subsequent tables.

Table 755 on page 1356 summarizes the attributes that are specific to queues. The attributes are
described in alphabetical order.

The names of the attributes shown in the table are the names used with the MQINQ and MQSET calls.
When MQSC commands are used to define, alter, or display attributes, alternative short names are used;
see MQSC commands for details.

In the following table, the columns apply as follows:

• The column for local queues applies also to shared queues.
• The column for model queues indicates which attributes are inherited by the local queue created from

the model queue.
• The column for cluster queues indicates the attributes that can be inquired when the cluster queue is

opened for inquire alone, or for inquire and output. If the cluster queue is opened for inquire plus one or
more of input, browse, or set, the column for local queues applies instead.

Table 755. Attributes for queues

Attribute Description Local Model Alias Remot
e

Cluster

AlterationDate Date when definition
was last changed

X X X

AlterationTime Time when definition
was last changed

X X X

BackoutRequeueQName Excessive backout
requeue queue name

X X

BackoutThreshold Backout threshold X X

BaseQName Queue name to which
alias resolves

X

ClusterChannelName Cluster-sender
channel name

ClusterName Name of cluster to
which queue belongs

X X X

ClusterNamelist Name of namelist
object containing
names of clusters to
which queue belongs

X X X

CreationDate Date the queue was
created

X

CreationTime Time the queue was
created

X

CurrentQDepth Current queue depth X

DefBind Default binding X X X X

DefinitionType Queue definition type X X

1356 IBM MQ Developing Applications Reference

Table 755. Attributes for queues (continued)

Attribute Description Local Model Alias Remot
e

Cluster

DefInputOpenOption Default input open
option

X X

DefPersistence Default message
persistence

X X X X X

DefPriority Default message
priority

X X X X X

DistLists Distribution list
support

X X

HardenGetBackout Whether to maintain
an accurate backout
count

X X

InhibitGet Controls whether get
operations for the
queue are allowed

X X X

InhibitPut Controls whether put
operations for the
queue are allowed

X X X X X

InitiationQName Name of initiation
queue

X X

MaxMsgLength Maximum message
length in bytes

X X

MaxQDepth Maximum queue
depth

X X

MediaLog Identity of oldest
log extent (or oldest
journal receiver on
IBM i) needed for
media recovery of a
specified queue

MsgDeliverySequence Message delivery
sequence

X X

OpenInputCount Number of opens for
input

X

OpenOutputCount Number of opens for
output

X

ProcessName Process name X X

QDepthHighEvent Controls whether
Queue Depth High
events are generated

X X

QDepthHighLimit High limit for queue
depth

X X

Developing applications reference 1357

Table 755. Attributes for queues (continued)

Attribute Description Local Model Alias Remot
e

Cluster

QDepthLowEvent Controls whether
Queue Depth Low
events are generated

X X

QDepthLowLimit Low limit for queue
depth

X X

QDepthMaxEvent Controls whether
Queue Full events are
generated

X X

QDesc Queue description X X X X X

QName Queue name X X X X

QServiceInterval Target for queue
service interval

X X

QServiceIntervalEvent Controls whether
Service Interval High
or Service Interval OK
events are generated

X X

QType Queue type X X X X

RemoteQMgrName Name of remote
queue manager

X

RemoteQName Name of remote
queue

X

RetentionInterval Retention interval X X

Scope Controls whether an
entry for the queue
also exists in a cell
directory

X X X

Shareability Queue shareability X X

TriggerControl Trigger control X X

TriggerData Trigger data X X

TriggerDepth Trigger depth X X

TriggerMsgPriority Threshold message
priority for triggers

X X

TriggerType Trigger type X X

Usage Queue usage X X

XmitQName Transmission queue
name

X

AlterationDate (12-byte character string) on IBM i
Date when definition was last changed.

1358 IBM MQ Developing Applications Reference

Table 756. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded
with two trailing blanks to make the length 12 bytes (for example, 1992-09-23¬¬, where ¬ represents a
single blank character).

The values of certain attributes (for example, CurrentQDepth) change as the queue manager operates.
Changes to these attributes do not affect AlterationDate.

To determine the value of this attribute, use the CAALTD selector with the MQINQ call. The length of this
attribute is given by LNDATE.

AlterationTime (8-byte character string) on IBM i
Time when definition was last changed.

Table 757. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

This is the time when the definition was last changed. The format of the time is HH.MM.SS using the
24-hour clock, with a leading zero if the hour is less than 10 (for example 09.10.20). The time is local
time.

The values of certain attributes (for example, CurrentQDepth) change as the queue manager operates.
Changes to these attributes do not affect AlterationTime.

To determine the value of this attribute, use the CAALTT selector with the MQINQ call. The length of this
attribute is given by LNTIME.

BackoutRequeueQName (48-byte character string) on IBM i
Excessive backout requeue queue name.

Table 758. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

Applications running inside WebSphere Application Server and those that use the IBM MQ Application
Server Facilities use this attribute to determine where messages that have been backed out should go.
For all other applications, apart from allowing its value to be queried, the queue manager takes no action
based on the value of the attribute.

To determine the value of this attribute, use the CABRQN selector with the MQINQ call. The length of this
attribute is given by LNQN.

BackoutThreshold (10-digit signed integer) on IBM i
Backout threshold.

Developing applications reference 1359

Table 759. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

Applications running inside WebSphere Application Server and those that use the IBM MQ Application
Server Facilities use this attribute to determine if a message should be backed out. For all other
applications, apart from allowing its value to be queried, the queue manager takes no action based on the
value of the attribute.

To determine the value of this attribute, use the IABTHR selector with the MQINQ call.

BaseQName (48-byte character string) on IBM i
The queue name to which the alias resolves.

Table 760. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the name of a queue that is defined to the local queue manager. (For more information about
queue names, see the description of the ODON field in MQOD. The queue is one of the following types:

QTLOC
Local queue.

QTREM
Local definition of a remote queue.

QTCLUS
Cluster queue.

To determine the value of this attribute, use the CABASQ selector with the MQINQ call. The length of this
attribute is given by LNQN.

BaseType (integer parameter structure) on IBM i
The type of object to which the alias resolves.

Table 761. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This attribute can have one of the following values:
OTQ

Base object type is a queue
OTTOP

Base object type is a topic

CFStrucName (12-byte character string) on IBM i
Coupling-facility structure name.

1360 IBM MQ Developing Applications Reference

Table 762. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the name of the coupling-facility structure where the messages on the queue are stored. The first
character of the name is in the range A through Z, and the remaining characters are in the range A through
Z, 0 through 9, or blank.

The full name of the structure in the coupling facility is obtained by suffixing the value of the QSGName
queue manager attribute with the value of the CFStrucName queue attribute.

This attribute applies only to shared queues; it is ignored if QSGDisp does not have the value QSGDSH.

To determine the value of this attribute, use the CACFSN selector with the MQINQ call. The length of this
attribute is given by LNCFSN.

This attribute is supported only on z/OS.

ClusterChannelName (20-byte character string)
ClusterChannelName is the generic name of the cluster-sender channels that use this queue as a
transmission queue. The attribute specifies which cluster-sender channels send messages to a cluster-
receiver channel from this cluster transmission queue.

Table 763. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

The default queue manager configuration is for all cluster-sender channels to send messages from
a single transmission queue, SYSTEM.CLUSTER.TRANSMIT.QUEUE. The default configuration can be
changed by modified by changing the queue manager attribute, DefClusterXmitQueueType. The
default value of the attribute is SCTQ. You can change the value to CHANNEL. If you set the
DefClusterXmitQueueType attribute to CHANNEL, each cluster-sender channel defaults to using a
specific cluster transmission queue, SYSTEM.CLUSTER.TRANSMIT.ChannelName.

You can also set the transmission queue attribute ClusterChannelName attribute to a cluster-sender
channel manually. Messages that are destined for the queue manager connected by the cluster-
sender channel are stored in the transmission queue that identifies the cluster-sender channel. They
are not stored in the default cluster transmission queue. If you set the ClusterChannelName
attribute to blanks, the channel switches to the default cluster transmission queue when
the channel restarts. The default queue is either SYSTEM.CLUSTER.TRANSMIT.ChannelName
or SYSTEM.CLUSTER.TRANSMIT.QUEUE, depending on the value of the queue manager
DefClusterXmitQueueType attribute.

By specifying asterisks, "*", in ClusterChannelName, you can associate a transmission queue with a
set of cluster-sender channels. The asterisks can be at the beginning, end, or any number of places in
the middle of the channel name string. ClusterChannelName is limited to a length of 20 characters:
MQ_CHANNEL_NAME_LENGTH.

ClusterName (48-byte character string) on IBM i
Name of cluster to which queue belongs.

Table 764. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

Developing applications reference 1361

This is the name of the cluster to which the queue belongs. If the queue belongs to more than one
cluster, ClusterNamelist specifies the name of a namelist object that identifies the clusters, and
ClusterName is blank. At least one of ClusterName and ClusterNamelist must be blank.

To determine the value of this attribute, use the CACLN selector with the MQINQ call. The length of this
attribute is given by LNCLUN.

ClusterNamelist (48-byte character string) on IBM i
Name of namelist object containing names of clusters to which queue belongs.

Table 765. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

This is the name of a namelist object that contains the names of clusters to which this queue belongs.
If the queue belongs to only one cluster, the namelist object contains only one name. Alternatively,
ClusterName can be used to specify the name of the cluster, in which case ClusterNamelist is blank.
At least one of ClusterName and ClusterNamelist must be blank.

To determine the value of this attribute, use the CACLNL selector with the MQINQ call. The length of this
attribute is given by LNNLN.

CreationDate (12-byte character string) on IBM i
Date when queue was created.

Table 766. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the date when the queue was created. The format of the date is YYYY-MM-DD, padded with two
trailing blanks to make the length 12 bytes (for example, 1992-09-23¬¬, ¬ represents a single blank
character).

• On IBM i, the creation date of a queue might differ from that of the underlying operating system entity
(file or userspace) that represents the queue.

To determine the value of this attribute, use the CACRTD selector with the MQINQ call. The length of this
attribute is given by LNCRTD.

CreationTime (8-byte character string) on IBM i
Time when queue was created.

Table 767. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the time when the queue was created. The format of the time is HH.MM.SS using the 24-hour
clock, with a leading zero if the hour is less than 10 (for example 09.10.20). The time is local time.

• On IBM i, the creation time of a queue might differ from that of the underlying operating system entity
(file or user space) that represents the queue.

1362 IBM MQ Developing Applications Reference

To determine the value of this attribute, use the CACRTT selector with the MQINQ call. The length of this
attribute is given by LNCRTT.

CurrentQDepth (10-digit signed integer) on IBM i
Current queue depth.

Table 768. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the number of messages currently on the queue. It is incremented during an MQPUT call, and
during backout of an MQGET call. It is decremented during a nonbrowse MQGET call, and during backout
of an MQPUT call. The effect of this is that the count includes messages that have been put on the queue
within a unit of work, but which have not yet been committed, even though they are not eligible to be
retrieved by the MQGET call. Similarly, it excludes messages that have been retrieved within a unit of work
using the MQGET call, but which have yet to be committed.

The count also includes messages which have passed their expiry time but have not yet been discarded,
although these messages are not eligible to be retrieved. See the MDEXP field described in “MQMD
(Message descriptor) on IBM i” on page 1099.

Unit-of-work processing and the segmentation of messages can both cause CurrentQDepth to exceed
MaxQDepth. However, this does not affect the retrievability of the messages - all messages on the queue
can be retrieved using the MQGET call in the normal way.

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the IACDEP selector with the MQINQ call.

DefBind (10-digit signed integer) on IBM i
Default binding.

Table 769. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

This attribute is the default binding that is used when OOBNDQ is specified on the MQOPEN call and the
queue is a cluster queue. DefBind can have one of the following values:
BNDOPN

Binding fixed by MQOPEN call.
BNDNOT

Binding not fixed.
BNDGRP

Binding is not fixed by the MQOPEN call, but is fixed on MQPUT for all messages in a logical group.

To determine the value of this attribute, use the IADBND selector with the MQINQ call.

DefinitionType (10-digit signed integer) on IBM i
Queue definition type.

Developing applications reference 1363

Table 770. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This indicates how the queue was defined. The value is one of the following:
QDPRE

Predefined permanent queue.

The queue is a permanent queue created by the system administrator; only the system administrator
can delete it.

Predefined queues are created using the DEFINE MQSC command, and can be deleted only by using
the DELETE MQSC command. Predefined queues cannot be created from model queues.

Commands can be issued either by an operator, or by an authorized user sending a command
message to the command input queue (see the CommandInputQName attribute described in
“Attributes for the queue manager on IBM i” on page 1386).

QDPERM
Dynamically defined permanent queue.

The queue is a permanent queue that was created by an application issuing an MQOPEN call with the
name of a model queue specified in the object descriptor MQOD. The model queue definition had the
value QDPERM for the DefinitionType attribute.

This type of queue can be deleted using the MQCLOSE call. See “MQCLOSE (Close object) on IBM i” on
page 1256 for more details.

The value of the QSGDisp attribute for a permanent dynamic queue is QSGDQM.

QDTEMP
Dynamically defined temporary queue.

The queue is a temporary queue that was created by an application issuing an MQOPEN call with the
name of a model queue specified in the object descriptor MQOD. The model queue definition had the
value QDTEMP for the DefinitionType attribute.

This type of queue is deleted automatically by the MQCLOSE call when it is closed by the application
that created it.

The value of the QSGDisp attribute for a temporary dynamic queue is QSGDQM.

QDSHAR
Dynamically defined shared queue.

The queue is a shared permanent queue that was created by an application issuing an MQOPEN call
with the name of a model queue specified in the object descriptor MQOD. The model queue definition
had the value QDSHAR for the DefinitionType attribute.

This type of queue can be deleted using the MQCLOSE call. See “MQCLOSE (Close object) on IBM i” on
page 1256 for more details.

The value of the QSGDisp attribute for a shared dynamic queue is QSGDSH.

This attribute in a model queue definition does not indicate how the model queue was defined, because
model queues are always predefined. Instead, the value of this attribute in the model queue is used to
determine the DefinitionType of each of the dynamic queues created from the model queue definition
using the MQOPEN call.

To determine the value of this attribute, use the IADEFT selector with the MQINQ call.

1364 IBM MQ Developing Applications Reference

DefInputOpenOption (10-digit signed integer) on IBM i
Default input open option.

Table 771. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the default way in which the queue should be opened for input. It applies if the OOINPQ option is
specified on the MQOPEN call when the queue is opened. This can have one of the following values:
OOINPX

Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The call fails with reason code RC2042 if
the queue is currently open by this or another application for input of any type (OOINPS or OOINPX).

OOINPS
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The call can succeed if the queue is
currently open by this or another application with OOINPS, but fails with reason code RC2042 if the
queue is currently open with OOINPX.

To determine the value of this attribute, use the IADINP selector with the MQINQ call.

DefPersistence (10-digit signed integer) on IBM i
Default message persistence.

Table 772. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

This is the default persistence of messages on the queue. It applies if PEQDEF is specified in the message
descriptor when the message is put.

If there is more than one definition in the queue-name resolution path, the default persistence is taken
from the value of this attribute in the first definition in the path at the time of the MQPUT or MQPUT1 call.
This could be:

• An alias queue
• A local queue
• A local definition of a remote queue
• A queue manager alias
• A transmission queue (for example, the DefXmitQName queue)

This can have one of the following values:
PEPER

Message is persistent.

This means that the message survives system failures and restarts of the queue manager. Persistent
messages cannot be placed on:

• Temporary dynamic queues
• Shared queues

Developing applications reference 1365

Persistent messages can be placed on permanent dynamic queues, and predefined queues.

PENPER
Message is not persistent.

This means that the message does not normally survive system failures or restarts of the queue
manager. This applies even if an intact copy of the message is found on auxiliary storage during restart
of the queue manager.

In the special case of shared queues, nonpersistent messages do survive restarts of queue managers
in the queue sharing group, but do not survive failures of the coupling facility used to store messages
on the shared queues.

Both persistent and nonpersistent messages can exist on the same queue.

To determine the value of this attribute, use the IADPER selector with the MQINQ call.

DefPriority (10-digit signed integer) on IBM i
Default message priority.

Table 773. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

This is the default priority for messages on the queue. This applies if PRQDEF is specified in the message
descriptor when the message is put on the queue.

If there is more than one definition in the queue-name resolution path, the default priority for the
message is taken from the value of this attribute in the first definition in the path at the time of the put
operation. This could be:

• An alias queue
• A local queue
• A local definition of a remote queue
• A queue manager alias
• A transmission queue (for example, the DefXmitQName queue)

The way in which a message is placed on a queue depends on the value of the queue's
MsgDeliverySequence attribute:

• If the MsgDeliverySequence attribute is MSPRIO, the logical position at which a message is placed
on the queue is dependent on the value of the MDPRI field in the message descriptor.

• If the MsgDeliverySequence attribute is MSFIFO, messages are placed on the queue as though they
had a priority equal to the DefPriority of the resolved queue, regardless of the value of the MDPRI
field in the message descriptor. However, the MDPRI field retains the value specified by the application
that put the message. See the MsgDeliverySequence attribute described in “Attributes for queues”
on page 1355 for more information.

Priorities are in the range zero (lowest) through MaxPriority (highest); see the MaxPriority attribute
described in “Attributes for the queue manager on IBM i” on page 1386.

To determine the value of this attribute, use the IADPRI selector with the MQINQ call.

1366 IBM MQ Developing Applications Reference

DefReadAhead (10-digit signed integer) on IBM i
Specifies the default read ahead behavior for non-persistent messages delivered to the client.

Table 774. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

DefReadAhead can be set to one of the following values:
RAHNO

Non-persistent messages are not sent ahead to the client before an application requests them. A
maximum of one non-persistent message can be lost if the client ends abnormally.

RAHYES
Non-persistent messages are sent ahead to the client before an application requests them. Non-
persistent messages can be lost if the client ends abnormally or if the client does not consume all the
messages it is sent.

RAHDIS
Read ahead of non-persistent messages in not enabled for this queue. Messages are not sent ahead to
the client regardless of whether read ahead is requested by the client application.

To determine the value of this attribute, use the IADRAH selector with the MQINQ call.

DefPResp (10-digit signed integer) on IBM i
The default put response type (DEFPRESP) attribute defines the value used by applications when the
PutResponseType within MQPMO has been set to PMRASQ. This attribute is valid for all queue types.

Table 775. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

This can have one of the following values:
SYNC

The put operation is issued synchronously returning a response.
ASYNC

The put operation is issued asynchronously, returning a subset of MQMD fields.

To determine the value of this attribute, use the IADPRT selector with the MQINQ call.

DistLists (10-digit signed integer) on IBM i
Distribution list support.

Table 776. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This indicates whether distribution-list messages can be placed on the queue. The attribute is set by a
message channel agent (MCA) to inform the local queue manager whether the queue manager at the
other end of the channel supports distribution lists. This latter queue manager (called the "partnering
queue manager") is the one which next receives the message, after it has been removed from the local
transmission queue by a sending MCA.

Developing applications reference 1367

The attribute is set by the sending MCA whenever it establishes a connection to the receiving MCA on the
partnering queue manager. In this way, the sending MCA can cause the local queue manager to place on
the transmission queue only messages which the partnering queue manager can process correctly.

This attribute is primarily for use with transmission queues, but the processing described is performed
regardless of the usage defined for the queue (see the Usage attribute).

This can have one of the following values:
DLSUPP

Distribution lists supported.

This indicates that distribution-list messages can be stored on the queue, and transmitted to the
partnering queue manager in that form. This reduces the amount of processing required to send the
message to multiple destinations.

DLNSUP
Distribution lists not supported.

This indicates that distribution-list messages cannot be stored on the queue, because the partnering
queue manager does not support distribution lists. If an application puts a distribution-list message,
and that message is to be placed on this queue, the queue manager splits the distribution-list
message and places the individual messages on the queue instead. This increases the amount of
processing required to send the message to multiple destinations, but ensures that the messages will
be processed correctly by the partnering queue manager.

To determine the value of this attribute, use the IADIST selector with the MQINQ call. To change the value
of this attribute, use the MQSET call.

HardenGetBackout (10-digit signed integer) on IBM i
Whether to maintain an accurate backout count.

Table 777. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

For each message, a count is kept of the number of times that the message is retrieved by an MQGET call
within a unit of work, and that unit of work later backed out. This count is available in the MDBOC field in
the message descriptor after the MQGET call has completed.

The message backout count survives when the queue manager restarts. However, to ensure that the
count is accurate, information has to be "hardened" (recorded on disk or other permanent storage device)
each time a message is retrieved by an MQGET call within a unit of work for this queue. If this is not done,
and a failure of the queue manager occurs together with backout of the MQGET call, the count might not
be incremented.

Hardening information for each MQGET call within a unit of work, however, imposes a performance cost,
and the HardenGetBackout attribute should be set to QABH only if the count has to be accurate.

• On IBM i, the message backout count is always hardened, regardless of the setting of this attribute.

The following values are possible:
QABH

Backout count remembered.

Hardening is used to ensure that the backout count for messages on this queue is accurate.

QABNH
Backout count might not be remembered.

1368 IBM MQ Developing Applications Reference

Hardening is not used to ensure that the backout count for messages on this queue is accurate. The
count might therefore be lower than it should be.

To determine the value of this attribute, use the IAHGB selector with the MQINQ call.

InhibitGet (10-digit signed integer) on IBM i
Controls whether get operations for this queue are allowed.

Table 778. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

If the queue is an alias queue, get operations must be allowed for both the alias and the base queue at
the time of the get operation, in order for the MQGET call to succeed. The value is one of the following:
QAGETI

Get operations are inhibited.

MQGET calls fail with reason code RC2016. This includes MQGET calls that specify GMBRWF or
GMBRWN.

Note: If an MQGET call operating within a unit of work completes successfully, changing the value of
the InhibitGet attribute after to QAGETI does not prevent the unit of work being committed.

QAGETA
Get operations are allowed.

To determine the value of this attribute, use the IAIGET selector with the MQINQ call. To change the value
of this attribute, use the MQSET call.

InhibitPut (10-digit signed integer) on IBM i
Controls whether put operations for this queue are allowed.

Table 779. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

If there is more than one definition in the queue-name resolution path, put operations must be allowed
for every definition in the path (including any queue manager alias definitions) at the time of the put
operation, in order for the MQPUT or MQPUT1 call to succeed. This can have one of the following values:
QAPUTI

Put operations are inhibited.

MQPUT and MQPUT1 calls fail with reason code RC2051.

Note: If an MQPUT call operating within a unit of work completes successfully, changing the value of
the InhibitPut attribute later to QAPUTI does not prevent the unit of work being committed.

QAPUTA
Put operations are allowed.

To determine the value of this attribute, use the IAIPUT selector with the MQINQ call. To change the value
of this attribute, use the MQSET call.

Developing applications reference 1369

InitiationQName (48-byte character string) on IBM i
Name of initiation queue.

Table 780. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the name of a queue defined on the local queue manager; the queue must be of type QTLOC. The
queue manager sends a trigger message to the initiation queue when application startup is required as
a result of a message arriving on the queue to which this attribute belongs. The initiation queue must be
monitored by a trigger monitor application which will start the appropriate application after receipt of the
trigger message.

To determine the value of this attribute, use the CAINIQ selector with the MQINQ call. The length of this
attribute is given by LNQN.

MaxMsgLength (10-digit signed integer) on IBM i
Maximum message length in bytes.

Table 781. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is an upper limit for the length of the longest physical message that can be placed on the queue.
However, because the MaxMsgLength queue attribute can be set independently of the MaxMsgLength
queue manager attribute, the actual upper limit for the length of the longest physical message that can be
placed on the queue is the lesser of those two values.

If the queue manager supports segmentation, it is possible for an application to put a logical message
that is longer than the lesser of the two MaxMsgLength attributes, but only if the application specifies
the MFSEGA flag in MQMD. If that flag is specified, the upper limit for the length of a logical message
is 999 999 999 bytes, but typically, resource constraints imposed by the operating system or by the
environment in which the application is running, results in a lower limit.

An attempt to place on the queue a message that is too long fails with reason code:

• RC2030 if the message to too large for the queue
• RC2031 if the message to too large for the queue manager, but not too large for the queue

The lower limit for the MaxMsgLength attribute is zero. The upper limit is determined by the
environment:

• On IBM i, the maximum message length is 100 MB (104 857 600 bytes).

For more information, see the BUFLEN parameter described in “MQPUT (Put message) on IBM i” on page
1320.

To determine the value of this attribute, use the IAMLEN selector with the MQINQ call.

MaxQDepth (10-digit signed integer) on IBM i
Maximum queue depth.

1370 IBM MQ Developing Applications Reference

Table 782. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the defined upper limit for the number of physical messages that can exist on the queue at any
one time. An attempt to put a message on a queue that already contains MaxQDepth messages, fails with
reason code RC2053.

Unit-of-work processing and the segmentation of messages can both cause the actual number of physical
messages on the queue to exceed MaxQDepth. However, this does not affect the retrievability of the
messages - all messages on the queue can be retrieved using the MQGET call in the normal way.

The value of this attribute is zero or greater. The upper limit is determined by the environment.

Note: It is possible for the storage space available to the queue to be exhausted even if there are fewer
than MaxQDepth messages on the queue.

To determine the value of this attribute, use the IAMDEP selector with the MQINQ call.

MediaLog (10-digit signed integer) on IBM i
Identity of the log extent (or journal receiver on IBM i) needed for media recovery of a particular queue.

Table 783. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

On queue managers where circular logging is in use, the value is returned as a null string.

MsgDeliverySequence (10-digit signed integer) on IBM i
Message delivery sequence.

Table 784. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This determines the order in which messages are returned to the application by the MQGET call:
MSFIFO

Messages are returned in FIFO order (first in, first out).

This means that an MQGET call will return the first message that satisfies the selection criteria
specified on the call, regardless of the priority of the message.

MSPRIO
Messages are returned in priority order.

This means that an MQGET call will return the highest-priority message that satisfies the selection
criteria specified on the call. Within each priority level, messages are returned in FIFO order (first in,
first out).

If the relevant attributes are changed while there are messages on the queue, the delivery sequence is as
follows:

Developing applications reference 1371

• The order in which messages are returned by the MQGET call is determined by the values of the
MsgDeliverySequence and DefPriority attributes in force for the queue at the time the message
arrives on the queue:

– If MsgDeliverySequence is MSFIFO when the message arrives, the message is placed on the
queue as though its priority were DefPriority. This does not affect the value of the MDPRI field in
the message descriptor of the message; that field retains the value it had when the message was first
put.

– If MsgDeliverySequence is MSPRIO when the message arrives, the message is placed on the
queue at the place appropriate to the priority given by the MDPRI field in the message descriptor.

If the value of the MsgDeliverySequence attribute is changed while there are messages on the
queue, the order of the messages on the queue is not changed.

If the value of the DefPriority attribute is changed while there are messages on the queue, the
messages will not necessarily be delivered in FIFO order, even though the MsgDeliverySequence
attribute is set to MSFIFO; those that were placed on the queue at the higher priority are delivered first.

To determine the value of this attribute, use the IAMDS selector with the MQINQ call.

OpenInputCount (10-digit signed integer) on IBM i
Number of opens for input.

Table 785. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the number of handles that are currently valid for removing messages from the queue with the
MQGET call. It is the total number of such handles known to the local queue manager. If the queue is
a shared queue, the count does not include opens for input that were performed for the queue at other
queue managers in the queue sharing group to which the local queue manager belongs.

The count includes handles where an alias queue which resolves to this queue was opened for input. The
count does not include handles where the queue was opened for actions which did not include input (for
example, a queue opened only for browse).

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the IAOIC selector with the MQINQ call.

OpenOutputCount (10-digit signed integer) on IBM i
Number of opens for output.

Table 786. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the number of handles that are currently valid for adding messages to the queue with the MQPUT
call. It is the total number of such handles known to the local queue manager; it does not include opens
for output that were performed for this queue at remote queue managers. If the queue is a shared queue,
the count does not include opens for output that were performed for the queue at other queue managers
in the queue sharing group to which the local queue manager belongs.

1372 IBM MQ Developing Applications Reference

The count includes handles where an alias queue which resolves to this queue was opened for output.
The count does not include handles where the queue was opened for actions which did not include output
(for example, a queue opened only for inquire).

The value of this attribute fluctuates as the queue manager operates.

To determine the value of this attribute, use the IAOOC selector with the MQINQ call.

ProcessName (48-byte character string) on IBM i
Process name.

Table 787. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the name of a process object that is defined on the local queue manager. The process object
identifies a program that can service the queue.

To determine the value of this attribute, use the CAPRON selector with the MQINQ call. The length of this
attribute is given by LNPRON.

QDepthHighEvent (10-digit signed integer) on IBM i
Controls whether Queue Depth High events are generated.

Table 788. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

A Queue Depth High event indicates that an application has put a message on a queue, which has caused
the number of messages on the queue to become greater than or equal to the queue depth high threshold
(see the QDepthHighLimit attribute).

Note: The value of this attribute can change dynamically.

QDepthHighEvent can have one of two values:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the IAQDHE selector with the MQINQ call.

QDepthHighLimit (10-digit signed integer) on IBM i
High limit for queue depth.

Table 789. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

Developing applications reference 1373

This is the threshold against which the queue depth is compared to generate a Queue Depth High event.
This event indicates that an application has put a message on a queue, and this has caused the number
of messages on the queue to become greater than or equal to the queue depth high threshold. See the
QDepthHighEvent attribute.

The value is expressed as a percentage of the maximum queue depth (MaxQDepth attribute), and is in the
range zero through 100. The default value is 80.

To determine the value of this attribute, use the IAQDHL selector with the MQINQ call.

QDepthLowEvent (10-digit signed integer) on IBM i
Controls whether Queue Depth Low events are generated.

Table 790. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

A Queue Depth Low event indicates that an application has retrieved a message from a queue, which
has caused the number of messages on the queue to become less than or equal to the queue depth low
threshold (see the QDepthLowLimit attribute).

Note: The value of this attribute can change dynamically.

QDepthLowEvent can have one of the following values:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the IAQDLE selector with the MQINQ call.

QDepthLowLimit (10-digit signed integer) on IBM i
Low limit for queue depth.

Table 791. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the threshold against which the queue depth is compared to generate a Queue Depth Low event.
This event indicates that an application has retrieved a message from a queue, and this has caused the
number of messages on the queue to become less than or equal to the queue depth low threshold. See
the QDepthLowEvent attribute.

The value is expressed as a percentage of the maximum queue depth (MaxQDepth attribute), and is in the
range zero through 100. The default value is 20.

To determine the value of this attribute, use the IAQDLL selector with the MQINQ call.

QDepthMaxEvent (10-digit signed integer) on IBM i
Controls whether Queue Full events are generated.

1374 IBM MQ Developing Applications Reference

Table 792. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

A Queue Full event indicates that a put to a queue has been rejected because the queue is full, that is, the
queue depth has already reached its maximum value.

Note: The value of this attribute can change dynamically.

This can have one of the following values:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the IAQDME selector with the MQINQ call.

QDesc (64-byte character string) on IBM i
Queue description.

Table 793. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X X

This is a field that can be used for descriptive commentary. The content of the field is of no significance to
the queue manager, but the queue manager might require that the field contains only characters that can
be displayed. It cannot contain any null characters; if necessary, it is padded to the right with blanks. In a
DBCS installation, the field can contain DBCS characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager's character set (as defined by the
CodedCharSetId queue manager attribute), those characters might be translated incorrectly if this field
is sent to another queue manager.

To determine the value of this attribute, use the CAQD selector with the MQINQ call. The length of this
attribute is given by LNQD.

QName (48-byte character string) on IBM i
Queue name.

Table 794. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

This is the name of a queue defined on the local queue manager. For more information about queue
names, see Rules for naming IBM MQ objects. All queues defined on a queue manager share the same
queue namespace. Therefore, a QTLOC queue and a QTALS queue cannot have the same name.

To determine the value of this attribute, use the CAQN selector with the MQINQ call. The length of this
attribute is given by LNQN.

Developing applications reference 1375

QServiceInterval (10-digit signed integer) on IBM i
Target for queue service interval.

Table 795. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the service interval used for comparison to generate Service Interval High and Service Interval OK
events. See the QServiceIntervalEvent attribute.

The value is in units of milliseconds, and is in the range zero through 999 999 999.

To determine the value of this attribute, use the IAQSI selector with the MQINQ call.

QServiceIntervalEvent (10-digit signed integer) on IBM i
Controls whether Service Interval High or Service Interval OK events are generated.

Table 796. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

• A Service Interval High event is generated when a check indicates that no messages have been
retrieved from the queue for at least the time indicated by the QServiceInterval attribute.

• A Service Interval OK event is generated when a check indicates that messages have been retrieved
from the queue within the time indicated by the QServiceInterval attribute.

Note: The value of this attribute can change dynamically.

This attribute can have one of the following values:
QSIEHI

Queue Service Interval High events enabled.

• Queue Service Interval High events are enabled and
• Queue Service Interval OK events are disabled.

QSIEOK
Queue Service Interval OK events enabled.

• Queue Service Interval High events are disabled and
• Queue Service Interval OK events are enabled.

QSIENO
No queue service interval events enabled.

• Queue Service Interval High events are disabled and
• Queue Service Interval OK events are also disabled.

For shared queues, the value of this attribute is ignored; the value QSIENO is assumed.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the IAQSIE selector with the MQINQ call.

1376 IBM MQ Developing Applications Reference

QSGDisp (10-digit signed integer) on IBM i
Queue sharing group disposition.

Table 797. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

This specifies the disposition of the queue. The value is one of the following:
QSGDQM

Queue manager disposition.

The object has queue manager disposition. This means that the object definition is known only to the
local queue manager; the definition is not known to other queue managers in the queue sharing group.

It is possible for each queue manager in the queue sharing group to have an object with the same
name and type as the current object, but these are separate objects and there is no correlation
between them. Their attributes are not constrained to be the same as each other.

QSGDCP
Copied-object disposition.

The object is a local copy of a master object definition that exists in the shared repository. Each queue
manager in the queue sharing group can have its own copy of the object. Initially, all copies have
the same attributes, but by using MQSC commands each copy can be altered so that its attributes
differ from those of the other copies. The attributes of the copies are resynchronized when the master
definition in the shared repository is altered.

QSGDSH
Shared disposition.

The object has shared disposition. This means that there exists in the shared repository a single
instance of the object that is known to all queue managers in the queue sharing group. When a queue
manager in the group accesses the object, it accesses the single shared instance of the object.

To determine the value of this attribute, use the IAQSGD selector with the MQINQ call.

This attribute is supported only on z/OS.

QType (10-digit signed integer) on IBM i
Queue type.

Table 798. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X X

This attribute has one of the following values:
QTALS

Alias queue definition.
QTCLUS

Cluster queue.
QTLOC

Local queue.

Developing applications reference 1377

QTREM
Local definition of a remote queue.

To determine the value of this attribute, use the IAQTYP selector with the MQINQ call.

RemoteQMgrName (48-byte character string) on IBM i
Name of remote queue manager.

Table 799. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the name of the remote queue manager on which the queue RemoteQName is defined. If the
RemoteQName queue has a QSGDisp value of QSGDCP or QSGDSH, RemoteQMgrName can be the name
of the queue sharing group that owns RemoteQName.

If an application opens the local definition of a remote queue, RemoteQMgrName must not be blank
and must not be the name of the local queue manager. If XmitQName is blank, the local queue with
same name as RemoteQMgrName is used as the transmission queue. If there is no queue with the name
RemoteQMgrName, the queue identified by the DefXmitQName queue manager attribute is used.

If this definition is used for a queue manager alias, RemoteQMgrName is the name of the queue manager
that is being aliased. It can be the name of the local queue manager. Otherwise, if XmitQName is blank
when the open occurs, there must be a local queue with the same name as RemoteQMgrName ; this
queue is used as the transmission queue.

If this definition is used for a reply-to alias, this name is the name of the queue manager which is to be the
MDRM.

Note: No validation is performed on the value specified for this attribute when the queue definition is
created or modified.

To determine the value of this attribute, use the CARQMN selector with the MQINQ call. The length of this
attribute is given by LNQMN.

RemoteQName (48-byte character string) on IBM i
Name of remote queue.

Table 800. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

This is the name of the queue as it is known on the remote queue manager RemoteQMgrName.

If an application opens the local definition of a remote queue, when the open occurs RemoteQName must
not be blank.

If this definition is used for a queue manager alias definition, when the open occurs RemoteQName must
be blank.

If the definition is used for a reply-to alias, this name is the name of the queue that is to be the MDRQ.

Note: No validation is performed on the value specified for this attribute when the queue definition is
created or modified.

To determine the value of this attribute, use the CARQN selector with the MQINQ call. The length of this
attribute is given by LNQN.

1378 IBM MQ Developing Applications Reference

RetentionInterval (10-digit signed integer) on IBM i
Retention interval.

Table 801. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the time which the queue should be retained. After this time has elapsed, the queue is eligible for
deletion.

The time is measured in hours, counting from the date and time when the queue was created. The
creation date of the queue is recorded in the CreationDate and the create time of the queue is recorded
in the CreationTime attribute.

This information is provided to enable a housekeeping application or the operator to identify and delete
queues that are no longer required.

Note: The queue manager never tries to delete queues based on this attribute, or to prevent the deletion
of queues with a retention interval that has not expired; it is the user's responsibility to cause any
required action to be taken.

A realistic retention interval should be used to prevent the accumulation of permanent dynamic queues
(see DefinitionType). However, this attribute can also be used with predefined queues.

To determine the value of this attribute, use the IARINT selector with the MQINQ call.

Scope (10-digit signed integer) on IBM i
Controls whether an entry for this queue also exists in a cell directory.

Table 802. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X X

A cell directory is provided by an installable Name service. This can have one of the following values:
SCOQM

Queue manager scope.

The queue definition has queue manager scope. This means that the definition of the queue does
not extend beyond the queue manager which owns it. To open the queue for output from some other
queue manager, either the name of the owning queue manager must be specified, or the other queue
manager must have a local definition of the queue.

SCOCEL
Cell scope.

The queue definition has cell scope. This means that the queue definition is also placed in a cell
directory available to all of the queue managers in the cell. The queue can be opened for output from
any of the queue managers in the cell merely by specifying the name of the queue; the name of the
queue manager which owns the queue need not be specified. However, the queue definition is not
available to any queue manager in the cell which also has a local definition of a queue with that name,
as the local definition takes precedence.

A cell directory is provided by an installable name service such as LDAP (Lightweight Directory Access
Protocol. Note that IBM MQ no longer supports the DCE (Distributed Computing Environment) name
service that was formerly used for inserting queue definitions into a DCE directory (also no longer
supported).

Developing applications reference 1379

Model and dynamic queues cannot have cell scope.

This value is only valid if a name service supporting a cell directory has been configured.

To determine the value of this attribute, use the IASCOP selector with the MQINQ call.

Support for this attribute is subject to the following restrictions:

• On IBM i, the attribute is supported, but only SCOQM is valid.

Shareability (10-digit signed integer) on IBM i
Whether queue can be shared for input.

Table 803. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This indicates whether the queue can be opened for input multiple times concurrently. This can have one
of the following values:
QASHR

Queue is shareable.

Multiple opens with the OOINPS option are allowed.

QANSHR
Queue is not shareable.

An MQOPEN call with the OOINPS option is treated as OOINPX.

To determine the value of this attribute, use the IASHAR selector with the MQINQ call.

TriggerControl (10-digit signed integer) on IBM i
Trigger control.

Table 804. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This controls whether trigger messages are written to an initiation queue, in order to cause an application
to be started to service the queue. This is one of the following:
TCOFF

Trigger messages not required.

No trigger messages are to be written for this queue. The value of TriggerType is irrelevant in this
case.

TCON
Trigger messages required.

Trigger messages are to be written for this queue, when the appropriate trigger events occur.

To determine the value of this attribute, use the IATRGC selector with the MQINQ call. To change the
value of this attribute, use the MQSET call.

1380 IBM MQ Developing Applications Reference

TriggerData (64-byte character string) on IBM i
Trigger data.

Table 805. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is free-format data that the queue manager inserts into the trigger message when a message arriving
on this queue causes a trigger message to be written to the initiation queue.

The content of this data is of no significance to the queue manager. It is meaningful either to the
trigger-monitor application which processes the initiation queue, or to the application which is started by
the trigger monitor.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the CATRGD selector with the MQINQ call. To change the
value of this attribute, use the MQSET call. The length of this attribute is given by LNTRGD.

TriggerDepth (10-digit signed integer) on IBM i
Trigger depth.

Table 806. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the number of messages of priority TriggerMsgPriority or greater that must be on the queue
before a trigger message is written. This applies when TriggerType is set to TTDPTH. The value of
TriggerDepth is one or greater. This attribute is not used otherwise.

To determine the value of this attribute, use the IATRGD selector with the MQINQ call. To change the
value of this attribute, use the MQSET call.

TriggerMsgPriority (10-digit signed integer) on IBM i
Threshold message priority for triggers on IBM MQ for IBM i.

Table 807. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This is the message priority below which messages do not contribute to the generation of trigger
messages (that is, the queue manager ignores these messages when determining whether a trigger
message should be generated). TriggerMsgPriority can be in the range zero (lowest) through
MaxPriority (highest; see “Attributes for the queue manager on IBM i” on page 1386); a value of
zero causes all messages to contribute to the generation of trigger messages.

To determine the value of this attribute, use the IATRGP selector with the MQINQ call. To change the
value of this attribute, use the MQSET call.

Developing applications reference 1381

TriggerType (10-digit signed integer) on IBM i
Trigger type.

Table 808. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This controls the conditions under which trigger messages are written as a result of messages arriving on
this queue. The value is one of the following:
TTNONE

No trigger messages.

No trigger messages are written as a result of messages on this queue. This has the same effect as
setting TriggerControl to TCOFF.

TTFRST
Trigger message when queue depth goes from 0 to 1.

A trigger message is written whenever the number of messages of priority TriggerMsgPriority or
greater on the queue changes from 0 to 1.

TTEVRY
Trigger message for every message.

A trigger message is written whenever a message of priority TriggerMsgPriority or greater arrives
on the queue.

TTDPTH
Trigger message when depth threshold exceeded.

A trigger message is written whenever the number of messages of priority TriggerMsgPriority or
greater on the queue equals or exceeds TriggerDepth. After the trigger message has been written,
TriggerControl is set to TCOFF to prevent further triggering until it is explicitly turned on again.

To determine the value of this attribute, use the IATRGT selector with the MQINQ call. To change the value
of this attribute, use the MQSET call.

Usage (10-digit signed integer) on IBM i
Queue usage.

Table 809. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X X

This indicates what the queue is used for. The value is one of the following:
USNORM

Normal usage.

This is a queue that normal applications use when putting and getting messages; the queue is not a
transmission queue.

USTRAN
Transmission queue.

This is a queue used to hold messages destined for remote queue managers. When a normal
application sends a message to a remote queue, the local queue manager stores the message

1382 IBM MQ Developing Applications Reference

temporarily on the appropriate transmission queue in a special format. A message channel agent
then reads the message from the transmission queue, and transports the message to the remote
queue manager. For more information about transmission queues, see Transmission queues.

Only privileged applications can open a transmission queue for OOOUT to put messages on it
directly. Only utility applications would normally be expected to do this. Care must be taken that
the message data format is correct (see “MQXQH (Transmission-queue header) on IBM i” on page
1234), otherwise errors might occur during the transmission process. Context is not passed or set
unless one of the PM* context options is specified.

To determine the value of this attribute, use the IAUSAG selector with the MQINQ call.

XmitQName (48-byte character string) on IBM i
Transmission queue name.

Table 810. Queue types to which this attribute applies

Local Model Alias Remote Cluster

X

If this attribute is nonblank when an open occurs, either for a remote queue or for a queue manager alias
definition, it specifies the name of the local transmission queue to be used for forwarding the message.

If XmitQName is blank, the local queue with the same name as RemoteQMgrName is used as the
transmission queue. If there is no queue with the name RemoteQMgrName, the queue identified by the
DefXmitQName queue manager attribute is used.

This attribute is ignored if the definition is being used as a queue manager alias and RemoteQMgrName is
the name of the local queue manager. It is also ignored if the definition is used as a reply-to queue alias
definition.

To determine the value of this attribute, use the CAXQN selector with the MQINQ call. The length of this
attribute is given by LNQN.

Attributes for namelists
This topic summarizes the attributes that are specific to namelists. The attributes are described in
alphabetical order.

Note: The names of the attributes shown are the names used with the MQINQ and MQSET calls.

Attribute descriptions
A namelist object has the following attributes:

AlterationDate (12-byte character string)

Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded
with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the MQINQ call. The length of
this attribute is given by LNDATE.

AlterationTime (8-byte character string)

Time when definition was last changed.

This is the time when the definition was last changed. The format of the time is HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the MQINQ call. The length of
this attribute is given by LNTIME.

Developing applications reference 1383

NameCount (10-digit signed integer)

Number of names in namelist.

This is greater than or equal to zero. The following value is defined:
NCMXNL

Maximum number of names in a namelist.

To determine the value of this attribute, use the IANAMC selector with the MQINQ call.

NamelistDesc (64-byte character string)

Namelist description.

This is a field that might be used for descriptive commentary; its value is established by the definition
process. The content of the field is of no significance to the queue manager, but the queue manager
might require that the field contains only characters that can be displayed. It cannot contain any null
characters; if necessary, it is padded to the right with blanks. In a DBCS installation, this field can
contain DBCS characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager's character set (as defined
by the CodedCharSetId queue manager attribute), those characters might be translated incorrectly
if this field is sent to another queue manager.

To determine the value of this attribute, use the CALSTD selector with the MQINQ call.

The length of this attribute is given by LNNLD.

NamelistName (48-byte character string)

Namelist name.

This is the name of a namelist that is defined on the local queue manager.

Each namelist has a name that is different from the names of other namelists belonging to the
queue manager, but might duplicate the names of other queue manager objects of different types (for
example, queues).

To determine the value of this attribute, use the CALSTN selector with the MQINQ call.

The length of this attribute is given by LNNLN.

Names (48-byte character string x NameCount)

A list of NameCount names.

Each name is the name of an object that is defined to the local queue manager. For more information
about object names, see Naming IBM MQ objects.

To determine the value of this attribute, use the CANAMS selector with the MQINQ call.

The length of each name in the list is given by LNOBJN.

Attributes for process definitions on IBM i
This topic summarizes the attributes that are specific to process definitions. The attributes are described
in alphabetical order.

Note: The names of the attributes shown are the names used with the MQINQ and MQSET calls. When
MQSC commands are used to define, alter, or display attributes, alternative short names are used; see
MQSC commands for details.

Attribute descriptions
A process-definition object has the following attributes:

AlterationDate (12-byte character string)

Date when definition was last changed.

1384 IBM MQ Developing Applications Reference

This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded
with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the MQINQ call. The length of
this attribute is given by LNDATE.

AlterationTime (8-byte character string)

Time when definition was last changed.

This is the time when the definition was last changed. The format of the time is HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the MQINQ call. The length of
this attribute is given by LNTIME.

ApplId (256-byte character string)

Application identifier.

This is a character string that identifies the application to be started. This information is for use by a
trigger-monitor application that processes messages on the initiation queue; the information is sent to
the initiation queue as part of the trigger message.

The meaning of ApplId is determined by the trigger-monitor application. The trigger monitor
provided by IBM MQ requires ApplId to be the name of an executable program.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the CAAPPI selector with the MQINQ call. The length of
this attribute is given by LNPROA.

ApplType (10-digit signed integer)

Application type.

This identifies the nature of the program to be started in response to the receipt of a trigger message.
This information is for use by a trigger-monitor application that processes messages on the initiation
queue; the information is sent to the initiation queue as part of the trigger message.

ApplType can have any value. You can use the following values for standard types; user-defined
application types are restricted to values in the range ATUFST through ATULST:
ATCICS

CICS transaction.
AT400

IBM i application.
ATUFST

Lowest value for user-defined application type.
ATULST

Highest value for user-defined application type.

To determine the value of this attribute, use the IAAPPT selector with the MQINQ call.

EnvData (128-byte character string)

Environment data.

This is a character string that contains environment-related information pertaining to the application
to be started. This information is for use by a trigger-monitor application that processes messages on
the initiation queue; the information is sent to the initiation queue as part of the trigger message.

The meaning of EnvData is determined by the trigger-monitor application. The trigger monitor
provided by IBM MQ appends EnvData to the parameter list passed to the started application. The
parameter list consists of the MQTMC2 structure, followed by one blank, followed by EnvData with
trailing blanks removed.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary.

Developing applications reference 1385

To determine the value of this attribute, use the CAENVD selector with the MQINQ call. The length of
this attribute is given by LNPROE.

ProcessDesc (64-byte character string)

Process description.

This is a field that can be used for descriptive commentary. The content of the field is of no
significance to the queue manager, but the queue manager might require that the field contain only
characters that can be displayed. It cannot contain any null characters; if necessary, it is padded
to the right with blanks. In a DBCS installation, the field can contain DBCS characters (subject to a
maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager's character set (as defined
by the CodedCharSetId queue manager attribute), those characters might be translated incorrectly
if this field is sent to another queue manager.

To determine the value of this attribute, use the CAPROD selector with the MQINQ call.

The length of this attribute is given by LNPROD.

ProcessName (48-byte character string)

Process name.

This is the name of a process definition that is defined on the local queue manager.

Each process definition has a name that is different from the names of other process definitions
belonging to the queue manager. But the name of the process definition can be the same as the
names of other queue manager objects of different types (for example, queues).

To determine the value of this attribute, use the CAPRON selector with the MQINQ call.

The length of this attribute is given by LNPRON.

UserData (128-byte character string)

User data.

This is a character string that contains user information pertaining to the application to be started.
This information is for use by a trigger-monitor application that processes messages on the initiation
queue, or the application which is started by the trigger monitor. The information is sent to the
initiation queue as part of the trigger message.

The meaning of UserData is determined by the trigger-monitor application. The trigger monitor
provided by IBM MQ passes UserData to the started application as part of the parameter list. The
parameter list consists of the MQTMC2 structure (containing UserData), followed by one blank,
followed by EnvData with trailing blanks removed.

The character string cannot contain any nulls. It is padded to the right with blanks if necessary.

To determine the value of this attribute, use the CAUSRD selector with the MQINQ call. The length of
this attribute is given by LNPROU.

Attributes for the queue manager on IBM i
A summary of queue manager attributes.

Some queue manager attributes are fixed for particular implementations, while others can be changed
by using the MQSC command ALTER QMGR. The attributes can also be displayed by using the command
DISPLAY QMGR. Most queue manager attributes can be inquired by opening a special OTQM object, and
using the MQINQ call with the handle returned.

The following table summarizes the attributes that are specific to the queue manager. The attributes are
described in alphabetical order.

1386 IBM MQ Developing Applications Reference

Note: The names of the attributes shown in this section are the names used with the MQINQ and MQSET
calls. When MQSC commands are used to define, alter, or display attributes, alternative short names are
used; see MQSC commands for more information.

Table 811. Attributes for the queue manager

Attribute Description

AlterationDate Date when definition was last changed

AlterationTime Time when definition was last changed

AuthorityEvent Controls whether authorization (Not Authorized) events are generated

BridgeEvent Controls whether IMS bridge events are generated

ChannelAutoDef Controls whether automatic channel definition is permitted

ChannelAutoDefEvent Controls whether channel automatic-definition events are generated

ChannelAutoDefExit Name of user exit for automatic channel definition

ChannelEvent Controls whether channel events are generated

ClusterCacheType Controls whether the cluster cache is fixed in size or dynamically
sized

ClusterWorkloadData User data for cluster workload exit

ClusterWorkloadExit Name of user exit for cluster workload management

ClusterWorkloadLength Maximum length of message data passed to cluster workload exit

CodedCharSetId Coded character set identifier

CommandEvent Controls whether command event messages are queued

CommandInputQName Command input queue name

CommandLevel Command level

ConfigurationEvent Configuration event

DeadLetterQName Name of dead-letter queue

DefClusterXmitQueueType Default cluster transmission queue type

DefXmitQName Default transmission queue name

DistLists Distribution list support

InhibitEvent Controls whether inhibit (Inhibit Get and Inhibit Put) events are
generated

LocalEvent Controls whether local error events are generated

LoggerEvent Controls whether recovery log events are generated

MaxHandles Maximum number of handles

MaxMsgLength Maximum message length in bytes

MaxPriority Maximum priority

MaxUncommittedMsgs Maximum number of uncommitted messages within a unit of work

PerformanceEvent Controls whether performance-related events are generated

Platform Platform on which the queue manager is running

Developing applications reference 1387

Table 811. Attributes for the queue manager (continued)

Attribute Description

PubSubMode Whether the publish/subscribe engine and queued publish/subscribe
interface are running

QMgrDesc Queue manager description

QMgrIdentifier Unique internally-generated identifier of queue manager

QMgrName Queue manager name

RemoteEvent Controls whether remote error events are generated

RepositoryName Name of cluster for which this queue manager provides repository
services

RepositoryNamelist Name of namelist object containing names of clusters for which this
queue manager provides repository services

SSLCRLNamelist Name of namelist object containing names of authentication
information objects (See Note 1)

SSLEvent Controls whether TLS events are generated

SSLKeyRepository Location of TLS key repository (See Note 1)

SSLKeyResetCount Determines the number of non-encrypted bytes sent and received
within a TLS conversation before the encryption key is renegotiated

StartStopEvent Controls whether start and stop events are generated

SyncPoint Syncpoint availability

TraceRouteRecording Controls the recording of trace route information for messages

TreeLifeTime The lifetime, in seconds, of non-administrative topics

TriggerInterval Trigger-message interval

Notes:

1. This attribute cannot be inquired using the MQINQ call, and is not described in this section. For more
information about this attribute, see Change Queue Manager.

AlterationDate (12-byte character string) on IBM i
Date when definition was last changed.

This is the date when the definition was last changed. The format of the date is YYYY-MM-DD, padded
with two trailing blanks to make the length 12 bytes.

To determine the value of this attribute, use the CAALTD selector with the MQINQ call. The length of this
attribute is given by LNDATE.

AlterationTime (8-byte character string) on IBM i
Time when definition was last changed.

This is the time when the definition was last changed. The format of the time is HH.MM.SS.

To determine the value of this attribute, use the CAALTT selector with the MQINQ call. The length of this
attribute is given by LNTIME.

1388 IBM MQ Developing Applications Reference

AuthorityEvent (10-digit signed integer) on IBM i
Controls whether authorization (Not Authorized) events are generated.

The AuthorityEvent attribute must be set to one of the following values:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the IAAUTE selector with the MQINQ call.

BridgeEvent (character string) on IBM i
This attribute determines whether IMS bridge event messages are put onto the
SYSTEM.ADMIN.CHANNEL.EVENT queue. It is only supported on z/OS.

ChannelAutoDef (10-digit signed integer) on IBM i
Controls whether automatic channel definition is permitted.

This attribute controls the automatic definition of channels of type CTRCVR and CTSVCN. Note that the
automatic definition of CTCLSD channels is always enabled. This can have one of the following values:
CHADDI

Channel auto-definition disabled.
CHADEN

Channel auto-definition enabled.

To determine the value of this attribute, use the IACAD selector with the MQINQ call.

ChannelAutoDefEvent (10-digit signed integer) on IBM i
Controls whether channel automatic-definition events are generated.

This applies to channels of type CTRCVR, CTSVCN, and CTCLSD. This can have one of the following values:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Monitoring and performance.

To determine the value of this attribute, use the IACADE selector with the MQINQ call.

ChannelAutoDefExit (20-byte character string) on IBM i
Name of user exit for automatic channel definition.

If this name is nonblank, and ChannelAutoDef has the value CHADEN, the exit is called each time that
the queue manager is about to create a channel definition. This applies to channels of type CTRCVR,
CTSVCN, and CTCLSD. The exit can then do one of the following:

• Allow the creation of the channel definition to proceed without change.
• Modify the attributes of the channel definition that is created.
• Suppress creation of the channel entirely.

To determine the value of this attribute, use the CACADX selector with the MQINQ call. The length of this
attribute is given by LNEXN.

Developing applications reference 1389

ChannelEvent (character string) on IBM i
Determines whether channel event messages are generated.

This attribute determines whether channel event messages are put onto the
SYSTEM.ADMIN.CHANNEL.EVENT queue, and if so, what type of messages are queued (for example
'channel started', 'channel stopped', 'channel not activated'). Before the implementation of this attribute,
the only way of preventing channel event messages from being queued was to delete the target queue.

This attribute also allows you to collect IMS bridge events only (because you can now switch off channel
events, they do not get put onto the same queue). The same applies to TLS events which can also be
collected without having to collect channel events as well.

This attribute also allows you to collect significant events only (for example when channels have errors,
not when they start and stop normally).

The value for the ChannelEvent attribute can be one of the following:

• EVREXP (only the following channel events are generated: RC2279, RC2283, RC2284, RC2295,
RC2296).

• EVRENA (all channel events are generated; that is, in addition to the events generated by EVREXP, the
RC2282, and RC2283 events are also generated).

• EVRDIS (no channel events are generated; this is the queue manager initial default value).

To determine the value of this attribute, use the IACHNE selector with the MQINQ call.

ClusterCacheType (32-byte character string) on IBM i
Controls whether cluster cache is fixed size, or is dynamically sized.

This is a user-defined 32-byte character string that is passed to the cluster workload exit when it is called.
If there is no data to pass to the exit, the string is blank.

To determine the value of this attribute, use the CACLWD selector with the MQINQ call.

ClusterWorkloadData (32-byte character string) on IBM i
User data for cluster workload exit.

This is a user-defined 32-byte character string that is passed to the cluster workload exit when it is called.
If there is no data to pass to the exit, the string is blank.

To determine the value of this attribute, use the CACLWD selector with the MQINQ call.

ClusterWorkloadExit (20-byte character string) on IBM i
Name of user exit for cluster workload management.

If this name is not blank, the exit is called each time that a message is put to a cluster queue or moved
from one cluster-sender queue to another. The exit can then either accept the queue instance selected by
the queue manager as the destination for the message, or select another queue instance.

To determine the value of this attribute, use the CACLWX selector with the MQINQ call. The length of this
attribute is given by LNEXN.

ClusterWorkloadLength (10-digit signed integer) on IBM i
Maximum length of message data passed to cluster workload exit.

This is the maximum length of message data that is passed to the cluster workload exit. The actual length
of data passed to the exit is the minimum of the following:

• The length of the message.
• The queue manager's MaxMsgLength attribute.
• The ClusterWorkloadLength attribute.

To determine the value of this attribute, use the IACLWL selector with the MQINQ call.

1390 IBM MQ Developing Applications Reference

CodedCharSetId (10-digit signed integer) on IBM i
Coded character set identifier.

This defines the character set used by the queue manager for all character string fields defined in the MQI
such as the names of objects, and queue creation date and time. The character set must be one that has
single-byte characters for the characters that are valid in object names. It does not apply to application
data carried in the message. The value depends on the environment:

• On IBM i, the value is that which is set in the environment when the queue manager is first created.

To determine the value of this attribute, use the IACCSI selector with the MQINQ call.

CommandEvent (integer) on IBM i
Controls whether messages are put onto a local queue when commands are issued.

This controls whether messages are written to a new event queue, SYSTEM.ADMIN.COMMAND.EVENT,
whenever commands are issued. This feature is useful for command tracking notification, and for problem
diagnosis. To inquire about the CommandEvent queue manager attribute, use the new attribute selector
iacev with one of the following values:

• EVRENA - command event messages are generated and put onto the queue for all successful
commands.

• EVND - command event messages are generated and put onto the queue for all successful commands
other than the DISPLAY (MQSC) command, and the Inquire (PCF) command.

• EVRDIS - command event messages are not generated or put onto the queue (this is the queue
manager's initial default value).

To determine the value of this attribute, use the CMDEV selector with the MQINQ call.

CommandInputQName (48-byte character string) on IBM i
Command input queue name.

CommandInputQName is the name of the command input queue defined on the local queue manager. It
is a queue to which users can send commands, if authorized to do so. The name of the queue depends on
the environment:

• On IBM i, the name of the queue is SYSTEM.ADMIN.COMMAND.QUEUE, and only PCF commands can be
sent to it. However, an MQSC command can be sent to this queue if the MQSC command is enclosed
within a PCF command of type CMESC. For more information about the Escape command, see Escape.

To determine the value of this attribute, use the CACMDQ selector with the MQINQ call. The length of this
attribute is given by LNQN.

CommandLevel (10-digit signed integer) on IBM i
Command Level. This indicates the level of system control commands supported by the queue manager.

The level is one of the following values:
CML800

Level 800 of system control commands.

This value is returned by the following applications:

• IBM MQ for IBM i

– Version 8.0

CML900
Level 900 of system control commands.

This value is returned by the following applications:

• IBM MQ for IBM i

Developing applications reference 1391

– Version 9.0

CML910
Level 910 of system control commands.

This value is returned by the following applications:

• IBM MQ for IBM i

– Version 9.1

CML920
Level 920 of system control commands.

This value is returned by the following applications:

• IBM MQ for IBM i

– Version 9.2

The set of system control commands that corresponds to a particular value of the CommandLevel
attribute varies according to the value of the Platform attribute; both must be used to decide which
system control commands are supported.

To determine the value of this attribute, use the IACMDL selector with the MQINQ call.

ConfigurationEvent on IBM i
Controls whether configuration events are generated and sent to the SYSTEM.ADMIN.CONFIG.EVENT
queue default object.

The ConfigurationEvent attribute can be one of the following values:

• EVRENA
• EVRDIS

If the ConfigurationEvent attribute is set to EVRENA, and certain commands are successfully issued
by runmqsc or PCF, configuration events are generated and sent to the SYSTEM.ADMIN.CONFIG.EVENT
queue. Events for the following commands are issued, even if an alter command does not change the
object involved. The commands for which configuration events are generated and sent are:

• DEFINE/ALTER AUTHINFO
• DEFINE/ALTER CHANNEL
• DEFINE/ALTER NAMELIST
• DEFINE/ALTER PROCESS
• DEFINE/ALTER QLOCAL (unless it is a temporary dynamic queue)
• DEFINE/ALTER QMODEL/QALIAS/QREMOTE
• DELETE AUTHINFO
• DELETE CHANNEL
• DELETE NAMELIST
• DELETE PROCESS
• DELETE QLOCAL (unless it is a temporary dynamic queue)
• DELETE QMODEL/QALIAS/QREMOTE
• ALTER QMGR (unless the CONFIGEV attribute is disabled and is not changed to enabled)
• REFRESH QMGR
• An MQSET call, other than for a temporary dynamic queue.

Events are not generated (if enabled) in the following circumstances:

• The command or MQSET call fails.

1392 IBM MQ Developing Applications Reference

• The queue manager cannot put the event message on the event queue. The command should still
complete successfully.

• Temporary dynamic queues.
• Internal attribute changes done directly or implicitly (not by MQSET or command); this affects

TRIGGER, CURDEPTH, IPPROCS, OPPROCS, QDPHIEV, QDPLOEV, QDPMAXEV, QSVCIEV.
• When the configuration event queue is changed, although it an event message will be generated for that

change when a Refresh is requested.
• Clustering changes by the commands REFRESH/RESET CLUSTER and RESUME/SUSPEND QMGR.
• Creating or deleting a queue manager.

DeadLetterQName (48-byte character string) on IBM i
Name of dead-letter (undelivered-message) queue.

This is the name of a queue defined on the local queue manager. Messages are sent to this queue if they
cannot be routed to their correct destination.

For example, messages are put on this queue when:

• A message arrives at a queue manager, destined for a queue that is not yet defined on that queue
manager

• A message arrives at a queue manager, but the queue for which it is destined cannot receive it because,
possibly:

– The queue is full
– Put requests are inhibited
– The sending node does not have authority to put messages on the queue

Applications can also put messages on the dead-letter queue.

Report messages are treated in the same way as ordinary messages; if the report message cannot
be delivered to its destination queue (typically the queue specified by the MDRQ field in the message
descriptor of the original message), the report message is placed on the dead-letter (undelivered-
message) queue.

Note: Messages that have passed their expiry time (see the MDEXP field described in “MQMD (Message
descriptor) on IBM i” on page 1099) are not transferred to this queue when they are discarded. However,
an expiration report message (ROEXP) is still generated and sent to the MDRQ queue, if requested by the
sending application.

Messages are not put on the dead-letter (undelivered-message) queue when the application that issued
the put request has been notified synchronously of the problem with the reason code returned by the
MQPUT or MQPUT1 call (for example, a message put on a local queue for which put requests are
inhibited).

Messages on the dead-letter (undelivered-message) queue sometimes have their application message
data prefixed with an MQDLH structure. This structure contains extra information that indicates why the
message was placed on the dead-letter (undelivered-message) queue. See “MQDLH (Dead-letter header)
on IBM i” on page 1054 for more details of this structure.

This queue must be a local queue, with a Usage attribute of USNORM.

If a dead-letter (undelivered-message) queue is not supported by a queue manager, or one has not been
defined, the name is all blanks. All IBM MQ queue managers support a dead-letter (undelivered-message)
queue, but by default it is not defined.

If the dead-letter (undelivered-message) queue is not defined, or it is full, or unusable for some other
reason, a message which would have been transferred to it by a message channel agent is retained
instead on the transmission queue.

To determine the value of this attribute, use the CADLQ selector with the MQINQ call. The length of this
attribute is given by LNQN.

Developing applications reference 1393

DefClusterXmitQueueType (10-digit signed integer)
The DefClusterXmitQueueType attribute controls which transmission queue is selected by default by
cluster-sender channels to get messages from, to send the messages to cluster-receiver channels.

The values of DefClusterXmitQueueType are MQCLXQ_SCTQ or MQCLXQ_CHANNEL.
MQCLXQ_SCTQ

All cluster-sender channels send messages from SYSTEM.CLUSTER.TRANSMIT.QUEUE. The
correlID of messages placed on the transmission queue identifies which cluster-sender channel
the message is destined for.

SCTQ is set when a queue manager is defined. This behavior is implicit in versions of IBM
WebSphere MQ, earlier than IBM WebSphere MQ 7.5. In earlier versions, the queue manager attribute
DefClusterXmitQueueType was not present.

MQCLXQ_CHANNEL
Each cluster-sender channel sends messages from a different transmission queue. Each
transmission queue is created as a permanent dynamic queue from the model queue
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE.

If the queue manager attribute, DefClusterXmitQueueType, is set to CHANNEL, the default
configuration is changed to cluster-sender channels being associated with individual cluster transmission
queues. The transmission queues are permanent-dynamic queues created from the model queue
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE. Each transmission queue is associated with one cluster-
sender channel. As one cluster-sender channel services a cluster transmission queue, the transmission
queue contains messages for only one queue manager in one cluster. You can configure clusters so that
each queue manager in a cluster contains only one cluster queue. In this case, the message traffic from a
queue manager to each cluster queue is transferred separately from messages to other queues.

To query the value, call MQINQ, or send an Inquire Queue Manager (MQCMD_INQUIRE_Q_MGR)
PCF command, setting the MQIA_DEF_CLUSTER_XMIT_Q_TYPE selector. To change the value,
send a Change Queue Manager (MQCMD_CHANGE_Q_MGR) PCF command, setting the
MQIA_DEF_CLUSTER_XMIT_Q_TYPE selector.

Related reference
Change Queue Manager
Inquire Queue Manager
“MQINQ (Inquire about object attributes) on IBM i” on page 1293
The MQINQ call returns an array of integers and a set of character strings containing the attributes of an
object.

DefXmitQName (48-byte character string) on IBM i
Default transmission queue name.

This is the name of the transmission queue that is used for the transmission of messages to remote queue
managers, if there is no other indication of which transmission queue to use.

If there is no default transmission queue, the name is entirely blank. The initial value of this attribute is
blank.

To determine the value of this attribute, use the CADXQN selector with the MQINQ call. The length of this
attribute is given by LNQN.

DistLists (10-digit signed integer) on IBM i
Distribution list support.

This indicates whether the local queue manager supports distribution lists on the MQPUT and MQPUT1
calls. This can have one of the following values:
DLSUPP

Distribution lists supported.

1394 IBM MQ Developing Applications Reference

DLNSUP
Distribution lists not supported.

To determine the value of this attribute, use the IADIST selector with the MQINQ call.

InhibitEvent (10-digit signed integer) on IBM i
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated.

This can have one of the following values:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Monitoring and performance.

To determine the value of this attribute, use the IAINHE selector with the MQINQ call.

LocalEvent (10-digit signed integer) on IBM i
Controls whether local error events are generated.

The value is one of the following:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Event monitoring

To determine the value of this attribute, use the IALCLE selector with the MQINQ call.

LoggerEvent (10-digit signed integer) on IBM i
Controls whether recovery logger events are generated.

This can have one of the following values:
ENABLED

Logger events are generated.
DISABLED

Logger events are not generated. This is the queue managers initial default value.

For more information about events, see Monitoring and performance.

MaxHandles (10-digit signed integer) on IBM i
Maximum number of handles.

This is the maximum number of open handles that any one task can use concurrently. Each successful
MQOPEN call for a single queue (or for an object that is not a queue) uses one handle. That handle
becomes available for reuse when the object is closed. However, when a distribution list is opened, each
queue in the distribution list is allocated a separate handle, and so that MQOPEN call uses as many
handles as there are queues in the distribution list. This must be taken into account when deciding on a
suitable value for MaxHandles.

The MQPUT1 call performs an MQOPEN call as part of its processing; as a result, MQPUT1 uses as many
handles as MQOPEN would, but the handles are used only for the duration of the MQPUT1 call itself.

The value is in the range 1 through 999 999 999. On IBM i, the default value is 256.

To determine the value of this attribute, use the IAMHND selector with the MQINQ call.

Developing applications reference 1395

MaxMsgLength (10-digit signed integer) on IBM i
Maximum message length in bytes.

This is the length of the longest physical message that can be handled by the queue manager. However,
because the MaxMsgLength queue manager attribute can be set independently of the MaxMsgLength
queue attribute, the longest physical message that can be placed on a queue is the lesser of those two
values.

If the queue manager supports segmentation, it is possible for an application to put a logical message
that is longer than the lesser of the two MaxMsgLength attributes, but only if the application specifies
the MFSEGA flag in MQMD. If that flag is specified, the upper limit for the length of a logical message
is 999 999 999 bytes, but typically, resource constraints imposed by the operating system or by the
environment in which the application is running, will result in a lower limit.

The lower limit for the MaxMsgLength attribute is 32 KB (32 768 bytes). On IBM i, the maximum
message length is 100 MB (104 857 600 bytes).

To determine the value of this attribute, use the IAMLEN selector with the MQINQ call.

MaxPriority (10-digit signed integer) on IBM i
Maximum priority.

This is the maximum message priority supported by the queue manager. Priorities range from zero
(lowest) to MaxPriority (highest).

To determine the value of this attribute, use the IAMPRI selector with the MQINQ call.

MaxUncommittedMsgs (10-digit signed integer) on IBM i
Maximum number of uncommitted messages within a unit of work.

This is the maximum number of uncommitted messages that can exist within a unit of work. The number
of uncommitted messages is the sum of the following since the start of the current unit of work:

• Messages put by the application with the PMSYP option
• Messages retrieved by the application with the GMSYP option
• Trigger messages and COA report messages generated by the queue manager for messages put with the

PMSYP option
• COD report messages generated by the queue manager for messages retrieved with the GMSYP option

The following messages are not counted as uncommitted:

• Messages put or retrieved by the application outside a unit of work
• Trigger messages or COA/COD report messages generated by the queue manager as a result of

messages put or retrieved outside a unit of work
• Expiration report messages generated by the queue manager (even if the call causing the expiration

report message specified GMSYP)
• Event messages generated by the queue manager (even if the call causing the event message specified

PMSYP or GMSYP)

Note:

1. Exception report messages are generated by the Message Channel Agent (MCA), or by the application,
and so are treated in the same way as ordinary messages put or retrieved by the application.

2. When a message or segment is put with the PMSYP option, the number of uncommitted messages is
incremented by one regardless of how many physical messages actually result from the put. (More
than one physical message might result if the queue manager needs to subdivide the message or
segment.)

3. When a distribution list is put with the PMSYP option, the number of uncommitted messages is
incremented by one for each physical message that is generated. This can be as small as one, or as
great as the number of destinations in the distribution list.

1396 IBM MQ Developing Applications Reference

The lower limit for this attribute is 1; the upper limit is 999 999 999.

To determine the value of this attribute, use the IAMUNC selector with the MQINQ call.

PerformanceEvent (10-digit signed integer) on IBM i
Controls whether performance-related events are generated.

PerformanceEvent can have one of the following values:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the IAPFME selector with the MQINQ call.

Platform (10-digit signed integer) on IBM i
Platform on which the queue manager is running.

This indicates the operating system on which the queue manager is running. The value is:
PL400

IBM i.

PubSubMode (10-digit signed integer) on IBM i
Whether the publish/subscribe engine and the queued publish/subscribe interface are running, therefore
allowing applications to publish/subscribe by using the application programming interface and the queues
that are being monitored by the queued publish/subscribe interface.

This can have one of the following values:
PSMCP

The publish/subscribe engine is running. It is therefore possible to publish/subscribe by using the
application programming interface. The queued publish/subscribe interface is not running, therefore
any message that is put to the queues that are monitored by the queued publish/subscribe interface
is not acted on. This setting is used for compatibility with WebSphere Message Broker V6 or earlier
versions using this queue manager, because it must read the same queues from which the queued
publish/subscribe interface normally reads.

PSMDS
The publish/subscribe engine and the queued publish/subscribe interface are not running. It is
therefore not possible to publish/subscribe by using the application programming interface. Any
publish/subscribe messages that are put to the queues that are monitored by the queued publish/
subscribe interface are not acted on.

PSMEN
The publish/subscribe engine and the queued publish/subscribe interface are running. It is therefore
possible to publish/subscribe by using the application programming interface and the queues that are
being monitored by the queued publish/subscribe interface. This is the queue manager's initial default
value.

To determine the value of this attribute, use the PSMODE selector with the MQINQ call.

QMgrDesc (64-byte character string) on IBM i
Queue manager description.

This is a field that can be used for descriptive commentary. The content of the field is of no significance to
the queue manager, but the queue manager might require that the field contain only characters that can
be displayed. It cannot contain any null characters; if necessary, it is padded to the right with blanks. In a
DBCS installation, this field can contain DBCS characters (subject to a maximum field length of 64 bytes).

Developing applications reference 1397

Note: If this field contains characters that are not in the queue manager's character set (as defined by the
CodedCharSetId queue manager attribute), those characters might be translated incorrectly if this field
is sent to another queue manager.

On IBM i, the default value is blanks.

To determine the value of this attribute, use the CAQMD selector with the MQINQ call. The length of this
attribute is given by LNQMD.

QMgrIdentifier (48-byte character string) on IBM i
Unique internally-generated identifier of queue manager.

This is an internally-generated unique name for the queue manager.

To determine the value of this attribute, use the CAQMID selector with the MQINQ call. The length of this
attribute is given by LNQMID.

QMgrName (48-byte character string) on IBM i
Queue manager name.

This is the name of the local queue manager, that is, the name of the queue manager to which the
application is connected.

The first 12 characters of the name are used to construct a unique message identifier (see the MDMID
field described in “MQMD (Message descriptor) on IBM i” on page 1099). Queue managers that can
intercommunicate must therefore have names that differ in the first 12 characters, in order for message
identifiers to be unique in the queue manager network.

To determine the value of this attribute, use the CAQMN selector with the MQINQ call. The length of this
attribute is given by LNQMN.

RemoteEvent (10-digit signed integer) on IBM i
Controls whether remote error events are generated.

The value is one of the following:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the IARMTE selector with the MQINQ call.

RepositoryName (48-byte character string) on IBM i
Name of cluster for which this queue manager provides repository services.

This is the name of a cluster for which this queue manager provides a repository-manager service. If
the queue manager provides this service for more than one cluster, RepositoryNamelist specifies the
name of a namelist object that identifies the clusters, and RepositoryName is blank. At least one of
RepositoryName and RepositoryNamelist must be blank.

To determine the value of this attribute, use the CARPN selector with the MQINQ call. The length of this
attribute is given by LNQMN.

RepositoryNamelist (48-byte character string) on IBM i
Name of namelist object containing names of clusters for which this queue manager provides repository
services.

This is the name of a namelist object that contains the names of clusters for which this queue manager
provides a repository-manager service. If the queue manager provides this service for only one cluster,
the namelist object contains only one name. Alternatively, RepositoryName can be used to specify the

1398 IBM MQ Developing Applications Reference

name of the cluster, in which case RepositoryNamelist is blank. At least one of RepositoryName and
RepositoryNamelist must be blank.

To determine the value of this attribute, use the CARPNL selector with the MQINQ call. The length of this
attribute is given by LNNLN.

SSLEvent (character string) on IBM i
Determines whether TLS events are generated.

The value is one of the following:

• EVRENA (MQINQ/PCF/config event) ENABLED (MQSC): TLS events are generated (that is, the RC2371
event is generated).

• EVRDIS (MQINQ/PCF/config event) DISABLED (MQSC): TLS events are not generated. This is the queue
manager's initial default value.

To determine the value of this attribute, use the IASSLE selector with the MQINQ call.

SSLKeyResetCount (integer) on IBM i
Determines the total number of non-encrypted bytes that are sent and received within a TLS
conversation, before the secret key is renegotiated. The number of bytes includes control information
sent by the message channel agent (MCA).

This value is only used by TLS channel MCAs which initiate communication from this queue manager (that
is, the sender channel MCA in a sender and receiver channel pairing).

If the value of this attribute is greater than 0, and channel heartbeats are enabled for a channel, the
secret key is also renegotiated before data is sent or received following a channel heartbeat. The count of
bytes until the next secret key renegotiation is reset after each successful renegotiation occurs.

The value can be in the range 0 through 999 999 999. A value of 0 for this attribute indicates that the
secret key is never renegotiated. If you specify a TLS secret key reset count in the range 1 byte through
32 KB, TLS channels will use a secret key reset count of 32 KB. This is to avoid the processing cost of
excessive key resets which would occur for small TLS secret key reset values.

When the SSL server is an IBM MQ queue manager, and both secret key reset and channel heartbeats are
enabled, renegotiation occurs immediately after each channel heartbeat.

To determine the value of this attribute, use the IASSRC selector with the MQINQ call.

StartStopEvent (10-digit signed integer) on IBM i
Controls whether start and stop events are generated.

This attribute can have one of the following values:
EVRDIS

Event reporting disabled.
EVRENA

Event reporting enabled.

For more information about events, see Event monitoring.

To determine the value of this attribute, use the IASSE selector with the MQINQ call.

SyncPoint (10-digit signed integer) on IBM i
Syncpoint availability.

This indicates whether the local queue manager supports units of work and syncpointing with the MQGET,
MQPUT, and MQPUT1 calls.
SPAVL

Units of work and syncpointing available.

Developing applications reference 1399

SPNAVL
Units of work and syncpointing not available.

To determine the value of this attribute, use the IASYNC selector with the MQINQ call.

TraceRouteRecording (10-digit signed integer) on IBM i
This controls whether information about messages is recorded as they flow through a queue manager.

The value is one of the following:

• RECDD: no appending to trace route messages is allowed
• RECDQ: messages are put onto a fixed named queue
• RECDM: determine using message (this is the initial default setting)

To prevent the trace route message from remaining in the system, set an expiry value on it that is greater
than zero, and specify the RODISC report option. To prevent report or reply messages remaining in the
system, set the report option ROPDAE. For more information, see “Report options and message flags on
IBM i” on page 1420.

To determine the value of this attribute, use the IATRGI selector with the MQINQ call.

TreeLifeTime (10-digit signed integer) on IBM i
The lifetime, in seconds, of non-administrative topics.

Non-administrative topics are those created when an application publishes to, or subscribes as, a topic
string that does not exist as an administrative node. When this non-administrative node no longer has any
active subscriptions, this parameter determines how long the queue manager will wait before removing
that node. Only non-administrative topics that are in use by a durable subscription remain after the queue
manager is recycled.

Specify a value in the range 0 through 604 000. A value of 0 means that non-administrative topics are not
removed by the queue manager. The queue manager's initial default value is 1800.

To determine the value of this attribute, use the IATRLFT selector with the MQINQ call.

TriggerInterval (10-digit signed integer) on IBM i
Trigger-message interval.

This is a time interval (in milliseconds) used to restrict the number of trigger messages. This is relevant
only when the TriggerType is TTFRST. In this case, trigger messages are normally generated only
when a suitable message arrives on the queue, and the queue was previously empty. Under certain
circumstances, however, an additional trigger message can be generated with TTFRST triggering even if
the queue was not empty. These additional trigger messages are not generated more often than every
TriggerInterval milliseconds.

For more information about triggering, see Triggering channels.

The value is in the range zero through 999 999 999. The default value is 999 999 999.

To determine the value of this attribute, use the IATRGI selector with the MQINQ call.

Applications
This information describes the sample programs delivered with IBM MQ for IBM i for RPG. Also, learn how
to build executable applications from the programs you write.

1400 IBM MQ Developing Applications Reference

Building your application
The IBM i publications describe how to build executable applications from the programs you write. This
topic describes the additional tasks, and the changes to the standard tasks, you must perform when
building IBM MQ for IBM i applications to run under IBM i.

In addition to coding the MQI calls in your source code, you must add the appropriate language
statements to include the IBM MQ for IBM i copy files for the RPG language. You should make yourself
familiar with the contents of these files; their names, and a brief description of their contents are given in
the following text.

IBM MQ copy files on IBM i
IBM MQ for IBM i provides copy files to assist you with writing your applications in the RPG programming
language. They are suitable for use with the WebSphere Development toolset (5722 WDS) ILE RPG 4
Compiler.

The copy files that IBM MQ for IBM i provides to assist with the writing of channel exits are described in
Channel-exit programs for messaging channels.

The names of the IBM MQ for IBM i copy files for RPG have the prefix CMQ. They have a suffix of G or H.
There are separate copy files containing the named constants, and one file for each of the structures. The
copy files are listed in “Language considerations” on page 1000.

Note: For ILE RPG/400, they are supplied as members of file QRPGLESRC in library QMQM.

The structure declarations do not contain DS statements. This allows the application to declare a data
structure (or a multiple-occurrence data structure) by coding the DS statement and using the /COPY
statement to copy in the remainder of the declaration:

For ILE RPG/400 the statement is:

D*..1....:....2....:....3....:....4....:....5....:....6....:....7
D* Declare an MQMD data structure
D MQMD DS
D/COPY CMQMDG

Preparing your programs to run
To create an executable IBM MQ for IBM i application, you have to compile the source code you have
written.

To do this for ILE RPG/400, you can use the typical IBM i commands, CRTRPGMOD and CRTPGM.

After creating your *MODULE, you need to specify BNDSRVPGM(QMQM/LIBMQM) in the CRTPGM
command. This includes the various IBM MQ procedures in your program.

Make sure that the library containing the copy files (QMQM) is in the library list when you perform the
compilation.

For further information concerning programming considerations, including client modes, see “Language
considerations” on page 1000.

Interfaces to the IBM i external syncpoint manager
IBM MQ for IBM i uses native IBM i commitment control as an external syncpoint coordinator.

See the IBM i Programming: Backup and Recovery Guide for more information about the commitment
control capabilities of IBM i.

To start the IBM i commitment control facilities, use the STRCMTCTL system command. To end
commitment control, use the ENDCMTCTL system command.

Developing applications reference 1401

Note: The default value of Commitment definition scope is *ACTGRP. This must be defined as *JOB for IBM
MQ for IBM i. For example:

STRCMTCTL LCKLVL(*ALL) CMTSCOPE(*JOB)

If you call MQPUT, MQPUT1, or MQGET, specifying PMSYP or GMSYP, after starting commitment control,
IBM MQ for IBM i adds itself as an API commitment resource to the commitment definition. This is
typically the first such call in a job. While there are any API commitment resources registered under a
particular commitment definition, you cannot end commitment control for that definition.

IBM MQ for IBM i removes its registration as an API commitment resource when you disconnect from the
queue manager, provided there are no pending MQI operations in the current unit of work.

If you disconnect from the queue manager while there are pending MQPUT, MQPUT1, or MQGET
operations in the current unit of work, IBM MQ for IBM i remains registered as an API commitment
resource so that it is notified of the next commit or rollback. When the next syncpoint is reached, IBM
MQ commits or rolls back the changes as required. It is possible for an application to disconnect and
reconnect to a queue manager during an active unit of work and perform further MQGET and MQPUT
operations inside the same unit of work (this is a pending disconnect).

If you attempt to issue an ENDCMTCTL system command for that commitment definition, message
CPF8355 is issued, indicating that pending changes were active. This message also appears in the job log
when the job ends. To avoid this, ensure that you commit or roll back all pending IBM MQ operations,
and that you disconnect from the queue manager. Thus, using COMMIT or ROLLBACK commands before
ENDCMTCTL should enable end-commitment control to complete successfully.

When IBM i commitment control is used as an external syncpoint coordinator, MQCMIT, MQBACK, and
MQBEGIN calls might not be issued. Calls to these functions fail with the reason code RC2012.

To commit or roll back (that is, to back out) your unit of work, use one of the programming languages that
supports the commitment control. For example:

• CL commands: COMMIT and ROLLBACK
• ILE C Programming Functions: _Rcommit and _Rrollback
• RPG/400: COMMIT and ROLBK
• COBOL/400®: COMMIT and ROLLBACK

Syncpoints in CICS for IBM i applications
IBM MQ for IBM i participates in units of work with CICS. You can use the MQI within a CICS application to
put and get messages inside the current unit of work.

You can use the EXEC CICS SYNCPOINT command to establish a syncpoint that includes the IBM MQ
for IBM i operations. To back out all changes up to the previous syncpoint, you can use the EXEC CICS
SYNCPOINT ROLLBACK command.

If you use MQPUT, MQPUT1, or MQGET with the PMSYP, or GMSYP , option set in a CICS application, you
cannot log off CICS until IBM MQ for IBM i has removed its registration as an API commitment resource.
Therefore, you should commit or back out any pending put or get operations before you disconnect from
the queue manager. This will allow you to log off CICS.

Sample programs on IBM i
This topic describes the sample programs delivered with IBM MQ for IBM i for RPG. The samples
demonstrate typical uses of the Message Queue Interface (MQI).

The samples are not intended to demonstrate general programming techniques, so some error checking
that you may want to include in a production program has been omitted. However, these samples are
suitable for use as a base for your own message queuing programs.

1402 IBM MQ Developing Applications Reference

The source code for all the samples is provided with the product; this source includes comments that
explain the message queuing techniques demonstrated in the programs.

There is one set of ILE sample programs:

1. Programs using prototyped calls to the MQI (static bound calls)

The source exists in QMQMSAMP/QRPGLESRC. The members are named AMQ3xxx4, where xxx
indicates the sample function. Copy members exist in QMQM/QRPGLESRC. Each member name has a
suffix of G or H.

Table 812 on page 1403 gives a complete list of the sample programs delivered with IBM MQ for IBM
i, and shows the names of the programs in each of the supported programming languages. Notice that
their names all start with the prefix AMQ, the fourth character in the name indicates the programming
language.

Table 812. Names of the sample programs

RPG (ILE)

Put samples AMQ3PUT4

Browse samples AMQ3GBR4

Get samples AMQ3GET4

Request samples AMQ3REQ4

Echo samples AMQ3ECH4

Inquire samples AMQ3INQ4

Set samples AMQ3SET4

Trigger Monitor sample AMQ3TRG4

Trigger Server sample AMQ3SRV4

In addition to these, the IBM MQ for IBM i sample option includes a sample data file, AMQSDATA,
which can be used as input to certain sample programs and sample CL programs that demonstrate
administration tasks. The CL samples are described in Administering IBM i . You could use the sample CL
program to create queues to use with the sample programs described in this topic.

For information about how to run the sample programs, see “Preparing and running the sample programs
on IBM i” on page 1404.

Features demonstrated in the sample programs on IBM i
A table that shows the techniques demonstrated by the IBM MQ for IBM i sample programs.

Some techniques occur in more than one sample program, but only one program is listed in the table. All
the samples open and close queues using the MQOPEN and MQCLOSE calls, so these techniques are not
listed separately in the table.

Table 813. Sample programs demonstrating use of the MQI

Technique RPG (ILE)

Using the MQCONN and MQDISC calls AMQ3ECH4 or
AMQ3INQ4

Implicitly connecting and disconnecting AMQ3PUT4

Putting messages using the MQPUT call AMQ3PUT4

Putting a single message using the MQPUT1 call AMQ3ECH4 or
AMQ3INQ4

Developing applications reference 1403

Table 813. Sample programs demonstrating use of the MQI (continued)

Technique RPG (ILE)

Replying to a request message AMQ3INQ4

Getting messages (no wait) AMQ3GBR4

Getting messages (wait with a time limit) AMQ3GET4

Getting messages (with data conversion) AMQ3ECH4

Browsing a queue AMQ3GBR4

Using a shared input queue AMQ3INQ4

Using an exclusive input queue AMQ3REQ4

Using the MQINQ call AMQ3INQ4

Using the MQSET call AMQ3SET4

Using a reply-to queue AMQ3REQ4

Requesting exception messages AMQ3REQ4

Accepting a truncated message AMQ3GBR4

Using a resolved queue name AMQ3GBR4

Trigger processing AMQ3SRV4 or
AMQ3TRG4

Note: All the sample programs produce a spool file that contains the results of the processing.

Preparing and running the sample programs on IBM i
Before you can run the IBM MQ for IBM i sample programs, you must compile them as you would any
other IBM MQ for IBM i applications. To do so, you can use the IBM i commands CRTRPGMOD and
CRTPGM.

When you create the AMQ3xxx4 programs, you must specify BNDSRVPGM(QMQM/LIBMQM) in the
CRTPGM command. Doing so includes the various IBM MQ procedures in your program.

The sample programs are provided in library QMQMSAMP as members of QRPGLESRC. They use the copy
files provided in library QMQM, so make sure that this library is in the library list when you compile them.
The RPG compiler gives information messages because the samples do not use many of the variables that
are declared in the copy files.

Running the sample programs
You can use your own queues when you run the samples, or you can compile and run AMQSAMP4 to
create some sample queues. The source for this program is shipped in file QCLSRC in library QMQMSAMP.
It can be compiled using the CRTCLPGM command.

To call one of the sample programs, use a command like:

CALL PGM(QMQMSAMP/AMQ3PUT4) PARM('Queue_Name','Queue_Manager_Name')

Where Queue_Name and Queue_Manager_Name must be 48 characters in length, which you achieve by
padding the Queue_Name and Queue_Manager_Name with the required number of blanks.

For the Inquire and Set sample programs, the sample definitions created by AMQSAMP4 cause the
C versions of these samples to be triggered. If you want to trigger the RPG versions, you must
change the process definitions SYSTEM.SAMPLE.ECHOPROCESS and SYSTEM.SAMPLE.INQPROCESS and

1404 IBM MQ Developing Applications Reference

SYSTEM.SAMPLE.SETPROCESS. You can use the CHGMQMPRC command (described in Change MQ
Process (CHGMQMPRC)) to do so, or edit and run AMQSAMP4 with the alternative definition.

The Put sample program on IBM i
The Put sample program, AMQ3PUT4, puts messages on a queue using the MQPUT call.

To start the program, call the program and give the name of your target queue as a program parameter.
The program puts a set of fixed messages on the queue; these messages are taken from the data block at
the end of the program source code. A sample put program is AMQ3PUT4 in library QMQMSAMP.

Using this example program, the command is:

CALL PGM(QMQMSAMP/AMQ3PUT4) PARM('Queue_Name','Queue_Manager_Name')

Where Queue_Name and Queue_Manager_Name must be 48 characters in length, which you achieve by
padding the Queue_Name and Queue_Manager_Name with the required number of blanks.

Design of the Put sample program
The program uses the MQOPEN call with the OOOUT option to open the target queue for putting
messages. The results are output to a spool file. If it cannot open the queue, the program writes an
error message containing the reason code returned by the MQOPEN call. To keep the program simple, on
this and on subsequent MQI calls, the program uses default values for many of the options.

For each line of data contained in the source code, the program reads the text into a buffer and uses the
MQPUT call to create a datagram message containing the text of that line. The program continues until
either it reaches the end of the input or the MQPUT call fails. If the program reaches the end of the input,
it closes the queue using the MQCLOSE call.

The Browse sample program on IBM i
The Browse sample program, AMQ3GBR4, browses messages on a queue using the MQGET call.

The program retrieves copies of all the messages on the queue you specify when you call the
program; the messages remain on the queue. You could use the supplied queue SYSTEM.SAMPLE.LOCAL;
run the Put sample program first to put some messages on the queue. You could use the queue
SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue. The program continues until it
reaches the end of the queue or an MQI call fails.

An example of a command to call the RPG program is:

CALL PGM(QMQMSAMP/AMQ3GBR4) PARM('Queue_Name','Queue_Manager_Name')

Where Queue_Name and Queue_Manager_Name must be 48 characters in length, which you achieve by
padding the Queue_Name and Queue_Manager_Name with the required number of blanks. Therefore, if
you are using SYSTEM.SAMPLE.LOCAL as your target queue, you will need 29 blank characters.

Design of the Browse sample program
The program opens the target queue using the MQOPEN call with the OOBRW option. If it cannot open the
queue, the program writes an error message to its spool file, containing the reason code returned by the
MQOPEN call.

For each message on the queue, the program uses the MQGET call to copy the message from the queue,
then displays the data contained in the message. The MQGET call uses these options:
GMBRWN

After the MQOPEN call, the browse cursor is positioned logically before the first message in the
queue, so this option causes the first message to be returned when the call is first made.

GMNWT
The program does not wait if there are no messages on the queue.

Developing applications reference 1405

GMATM
The MQGET call specifies a buffer of fixed size. If a message is longer than this buffer, the program
displays the truncated message, together with a warning that the message has been truncated.

The program demonstrates how you must clear the MDMID and MDCID fields of the MQMD structure after
each MQGET call because the call sets these fields to the values contained in the message it retrieves.
Clearing these fields means that successive MQGET calls retrieve messages in the order in which the
messages are held in the queue.

The program continues to the end of the queue; here, the MQGET call returns the RC2033 (no message
available) reason code and the program displays a warning message. If the MQGET call fails, the program
writes an error message that contains the reason code in its spool file.

The program then closes the queue using the MQCLOSE call.

The Get sample program on IBM i
The Get sample program, AMQ3GET4, gets messages from a queue using the MQGET call.

When the program is called, it removes messages from the specified queue. You could use the supplied
queue SYSTEM.SAMPLE.LOCAL; run the Put sample program first to put some messages on the queue.
You could use the SYSTEM.SAMPLE.ALIAS queue, which is an alias name for the same local queue. The
program continues until the queue is empty or an MQI call fails.

An example of a command to call the RPG program is:

CALL PGM(QMQMSAMP/AMQ3GET4) PARM('Queue_Name','Queue_Manager_Name')

where Queue_Name and Queue_Manager_Name must be 48 characters in length, which you achieve by
padding the Queue_Name and Queue_Manager_Name with the required number of blanks. Therefore, if
you are using SYSTEM.SAMPLE.LOCAL as your target queue, you will need 29 blank characters.

Design of the Get sample program
The program opens the target queue for getting messages; it uses the MQOPEN call with the OOINPQ
option. If it cannot open the queue, the program writes an error message containing the reason code
returned by the MQOPEN call in its spool file.

For each message on the queue, the program uses the MQGET call to remove the message from the
queue; it then displays the data contained in the message. The MQGET call uses the GMWT option,
specifying a wait interval (GMWI) of 15 seconds, so that the program waits for this period if there is no
message on the queue. If no message arrives before this interval expires, the call fails and returns the
RC2033 (no message available) reason code.

The program demonstrates how you must clear the MDMID and MDCID fields of the MQMD structure after
each MQGET call because the call sets these fields to the values contained in the message it retrieves.
Clearing these fields means that successive MQGET calls retrieve messages in the order in which the
messages are held in the queue.

The MQGET call specifies a buffer of fixed size. If a message is longer than this buffer, the call fails and the
program stops.

The program continues until either the MQGET call returns the RC2033 (no message available) reason
code or the MQGET call fails. If the call fails, the program displays an error message that contains the
reason code.

The program then closes the queue using the MQCLOSE call.

1406 IBM MQ Developing Applications Reference

The Request sample program on IBM i
The Request sample program, AMQ3REQ4, demonstrates client/server processing. The sample is the
client that puts request messages on a queue that is processed by a server program. It waits for the
server program to put a reply message on a reply-to queue.

The Request sample puts a series of request messages on a queue using the MQPUT call. These
messages specify SYSTEM.SAMPLE.REPLY as the reply-to queue. The program waits for reply messages,
then displays them. Replies are sent only if the target queue (which we will call the server queue) is being
processed by a server application, or if an application is triggered for that purpose (the Inquire and Set
sample programs are designed to be triggered). The sample waits 5 minutes for the first reply to arrive (to
allow time for a server application to be triggered) and 15 seconds for subsequent replies, but it can end
without getting any replies.

To start the program, call the program and give the name of your target queue as a program parameter.
The program puts a set of fixed messages on the queue; these messages are taken from the data block at
the end of the program source code.

Design of the Request sample program
The program opens the server queue so that it can put messages. It uses the MQOPEN call with the
OOOUT option. If it cannot open the queue, the program displays an error message containing the reason
code returned by the MQOPEN call.

The program then opens the reply-to queue called SYSTEM.SAMPLE.REPLY so that it can get reply
messages. For this, the program uses the MQOPEN call with the OOINPX option. If it cannot open the
queue, the program displays an error message containing the reason code returned by the MQOPEN call.

For each line of input, the program then reads the text into a buffer and uses the MQPUT call to create a
request message containing the text of that line. On this call the program uses the ROEXCD report option
to request that any report messages sent about the request message will include the first 100 bytes of the
message data. The program continues until either it reaches the end of the input or the MQPUT call fails.

The program then uses the MQGET call to remove reply messages from the queue, and displays the
data contained in the replies. The MQGET call uses the GMWT option, specifying a wait interval (GMWI)
of 5 minutes for the first reply (to allow time for a server application to be triggered) and 15 seconds
for subsequent replies. The program waits for these periods if there is no message on the queue. If no
message arrives before this interval expires, the call fails and returns the RC2033 (no message available)
reason code. The call also uses the GMATM option, so messages longer than the declared buffer size are
truncated.

The program demonstrates how you must clear the MDMID and MDCOD fields of the MQMD structure after
each MQGET call because the call sets these fields to the values contained in the message it retrieves.
Clearing these fields means that successive MQGET calls retrieve messages in the order in which the
messages are held in the queue.

The program continues until either the MQGET call returns the RC2033 (no message available) reason
code or the MQGET call fails. If the call fails, the program displays an error message that contains the
reason code.

The program then closes both the server queue and the reply-to queue using the MQCLOSE call. Table
814 on page 1407 shows the changes to the Echo sample program that are necessary to run the Inquire
and Set sample programs.

Note: The details for the Echo sample program are included as a reference.

Table 814. Client/Server sample program details

Program name SYSTEM/SAMPLE queue Program started

Echo ECHO AMQ3ECH4

Inquire INQ AMQ3INQ4

Developing applications reference 1407

Table 814. Client/Server sample program details (continued)

Program name SYSTEM/SAMPLE queue Program started

Set SET AMQ3SET4

Figure 9. Sample Client/Server (Echo) program flowchart

Using triggering with the Request sample on IBM i
To run the sample using triggering, start the trigger server program, AMQ3SRV4, against the required
initiation queue in one job, then start AMQ3REQ4 in another job.

This means that the trigger server is ready when the Request sample program sends a message.

Note:

1. The samples use the SYSTEM SAMPLE TRIGGER queue as the initiation queue for
SYSTEM.SAMPLE.ECHO, SYSTEM.SAMPLE.INQ, or SYSTEM.SAMPLE.SET local queues. Alternatively,
you can define your own initiation queue.

2. The sample definitions created by AMQSAMP4 cause the C version of the sample
to be triggered. If you want to trigger the RPG version, you must change the
process definitions SYSTEM.SAMPLE.ECHOPROCESS and SYSTEM.SAMPLE.INQPROCESS and
SYSTEM.SAMPLE.SETPROCESS. You can use the CHGMQMPRC command (see Change MQ Process
(CHGMQMPRC) for more details) to do this, or edit and run your own version of AMQSAMP4.

3. You must compile the trigger server program from the source provided in QMQMSAMP/QRPGLESRC.

1408 IBM MQ Developing Applications Reference

Depending on the trigger process you want to run, AMQ3REQ4 should be called with the parameter
specifying request messages to be placed on one of these sample server queues:

• SYSTEM.SAMPLE.ECHO (for the Echo sample programs)
• SYSTEM.SAMPLE.INQ (for the Inquire sample programs)
• SYSTEM.SAMPLE.SET (for the Set sample programs)

A flow chart for the SYSTEM.SAMPLE.ECHO program is shown in Figure 9 on page 1408. Using the
example the command to issue the RPG program request to this server is:

 CALL PGM(QMQMSAMP/AMQ3REQ4) PARM('SYSTEM.SAMPLE.ECHO
 + 30 blank characters','Queue_Manager_Name')

because the queue name and queue manager name must be 48 characters in length.

Note: This sample queue has a trigger type of FIRST, so if there are already messages on the queue
before you run the Request sample, server applications are not triggered by the messages you send.

If you want to attempt further examples, you can try the following variations:

• Use AMQ3TRG4 instead of AMQ3SRV4 to submit the job instead, but potential job submission delays
could make it less easy to follow what is happening.

• Use the SYSTEM.SAMPLE.INQ and SYSTEM.SAMPLE.SET sample queues. Using the example data file,
the commands to issue the RPG program requests to these servers are:

 CALL PGM(QMQMSAMP/AMQ3INQ4) PARM('SYSTEM.SAMPLE.INQ
 + 31 blank characters')
 CALL PGM(QMQMSAMP/AMQ3SET4) PARM('SYSTEM.SAMPLE.SET
 + 31 blank characters')

because the queue name must be 48 characters in length.

These sample queues also have a trigger type of FIRST.

The Echo sample program on IBM i
The Echo sample programs return the message send to a reply queue. The program is named AMQ3ECH4

For the triggering process to work, you must ensure that the Echo sample program you want to
use is triggered by messages arriving on queue SYSTEM.SAMPLE.ECHO. To do this, specify the
name of the Echo sample program you want to use in the ApplId field of the process definition
SYSTEM.SAMPLE.ECHOPROCESS. (For this, you can use the CHGMQMPRC command, described in
Administering IBM i .) The sample queue has a trigger type of FIRST, so if there are already messages
on the queue before you run the Request sample, the Echo sample is not triggered by the messages you
send.

When you have set the definition correctly, first start AMQ3SRV4 in one job, then start AMQ3REQ4 in
another. You could use AMQ3TRG4 instead of AMQ3SRV4, but potential job submission delays could
make it less easy to follow what is happening.

Use the Request sample programs to send messages to queue SYSTEM.SAMPLE.ECHO. The Echo sample
programs send a reply message containing the data in the request message to the reply-to queue
specified in the request message.

Design of the Echo sample program
When the program is triggered, it explicitly connects to the default queue manager using the MQCONN
call. Although this is not necessary on IBM i, this means you could use the same program on other
platforms without changing the source code.

The program then opens the queue named in the trigger message structure it was passed when it started.
(For clarity, we will call this the request queue.) The program uses the MQOPEN call to open this queue for
shared input.

Developing applications reference 1409

The program uses the MQGET call to remove messages from this queue. This call uses the GMATM and
GMWT options, with a wait interval of 5 seconds. The program tests the descriptor of each message to see
if it is a request message; if it is not, the program discards the message and displays a warning message.

For each request message removed from the request queue, the program uses the MQPUT call to put a
reply message on the reply-to queue. This message contains the contents of the request message.

When there are no messages remaining on the request queue, the program closes that queue and
disconnects from the queue manager.

This program can also respond to messages sent to the queue from platforms other than IBM i, although
no sample is supplied for this situation. To make the ECHO program work, you:

• Write a program, correctly specifying the Format, Encoding, and CCSID fields, to send text request
messages.

The ECHO program requests the queue manager to perform message data conversion, if this is needed.
• Specify CONVERT(*YES) on the IBM MQ for IBM i sending channel, if the program you have written does

not provide similar conversion for the reply.

The Inquire sample program on IBM i
The Inquire sample program, AMQ3INQ4, inquires about some of the attributes of a queue using the
MQINQ call.

The program is intended to run as a triggered program, so its only input is an MQTMC (trigger message)
structure. This structure contains the name of a target queue with attributes that are to be inquired upon.

For the triggering process to work, you must ensure that the Inquire sample program is triggered by
messages arriving on queue SYSTEM.SAMPLE.INQ. To do ao, specify the name of the Inquire sample
program in the ApplId field of the SYSTEM.SAMPLE.INQPROCESS process definition. (For this, you can
use the CHGMQMPRC command, described in Change MQ Process (CHGMQMPRC)). The sample queue
has a trigger type of FIRST, so if there are already messages on the queue before you run the Request
sample, the Inquire sample is not triggered by the messages you send.

When you have set the definition correctly, first start AMQ3SRV4 in one job, then start AMQ3REQ4 in
another. You could use AMQ3TRG4 instead of AMQ3SRV4, but potential job submission delays might
make it less easy to follow what is happening.

Use the Request sample program to send request messages, each containing just a queue name, to queue
SYSTEM.SAMPLE.INQ. For each request message, the Inquire sample program sends a reply message
containing information about the queue specified in the request message. The replies are sent to the
reply-to queue specified in the request message.

Design of the Inquire sample program
When the program is triggered, it explicitly connects to the default queue manager using the MQCONN
call. Although not necessary on IBM i, this design feature means you could use the same program on
other platforms without changing the source code.

The program then opens the queue named in the trigger message structure it was passed when it started.
(For clarity, we will call this the request queue.) The program uses the MQOPEN call to open this queue for
shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the GMATM and
GMWT options, with a wait interval of 5 seconds. The program tests the descriptor of each message to see
if it is a request message; if it is not, the program discards the message, and displays a warning message.

For each request message removed from the request queue, the program reads the name of the queue
(which we will call the target queue) contained in the data and opens that queue using the MQOPEN
call with the OOINQ option. The program then uses the MQINQ call to inquire about the values of the
InhibitGet, CurrentQDepth, and OpenInputCount attributes of the target queue.

If the MQINQ call is successful, the program uses the MQPUT call to put a reply message on the reply-to
queue. This message contains the values of the three attributes.

1410 IBM MQ Developing Applications Reference

If the MQOPEN or MQINQ call is unsuccessful, the program uses the MQPUT call to put a report message
on the reply-to queue. In the MDFB field of the message descriptor of this report message is the reason
code returned by either the MQOPEN or MQINQ call, depending on which one failed.

After the MQINQ call, the program closes the target queue using the MQCLOSE call.

When there are no messages remaining on the request queue, the program closes that queue and
disconnects from the queue manager.

The Set sample program on IBM i
The Set sample program, AMQ3SET4, inhibits put operations on a queue by using the MQSET call to
change the queue's InhibitPut attribute.

The program is intended to run as a triggered program, so its only input is an MQTMC (trigger message)
structure that contains the name of a target queue with attributes that are to be inquired upon.

For the triggering process to work, you must ensure that the Set sample program is triggered by messages
arriving on queue SYSTEM.SAMPLE.SET. To do this, specify the name of the Set sample program in
the ApplId field of the process definition SYSTEM.SAMPLE.SETPROCESS. (For this, you can use the
CHGMQMPRC command, described in the Administering IBM i .) The sample queue has a trigger type of
FIRST, so if there are already messages on the queue before you run the Request sample, the Set sample
is not triggered by the messages you send.

When you have set the definition correctly, first start AMQ3SRV4 in one job, then start AMQ3REQ4 in
another. You could use AMQ3TRG4 instead of AMQ3SRV4, but potential job submission delays could
make it less easy to follow what is happening.

Use the Request sample program to send request messages, each containing just a queue name, to
queue SYSTEM.SAMPLE.SET. For each request message, the Set sample program sends a reply message
containing a confirmation that put operations have been inhibited on the specified queue. The replies are
sent to the reply-to queue specified in the request message.

Design of the Set sample program
When the program is triggered, it explicitly connects to the default queue manager using the MQCONN
call. Although not necessary on IBM i, this means you could use the same program on other platforms
without changing the source code.

The program then opens the queue named in the trigger message structure it was passed when it started.
(For clarity, we will call this the request queue.) The program uses the MQOPEN call to open this queue for
shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the GMATM and
GMWT options, with a wait interval of 5 seconds. The program tests the descriptor of each message to see
if it is a request message; if it is not, the program discards the message and displays a warning message.

For each request message removed from the request queue, the program reads the name of the queue
(which we will call the target queue) contained in the data and opens that queue using the MQOPEN
call with the OOSET option. The program then uses the MQSET call to set the value of the InhibitPut
attribute of the target queue to QAPUTI.

If the MQSET call is successful, the program uses the MQPUT call to put a reply message on the reply-to
queue. This message contains the string PUT inhibited.

If the MQOPEN or MQSET call is unsuccessful, the program uses the MQPUT call to put a report message
on the reply-to queue. In the MDFB field of the message descriptor of this report message is the reason
code returned by either the MQOPEN or MQSET call, depending on which one failed.

After the MQSET call, the program closes the target queue using the MQCLOSE call.

When there are no messages remaining on the request queue, the program closes that queue and
disconnects from the queue manager.

Developing applications reference 1411

The Triggering sample programs on IBM i
IBM MQ for IBM i supplies two Triggering sample programs that are written in ILE/RPG.

The programs are:
AMQ3TRG4

This is a trigger monitor for the IBM i environment. It submits an IBM i job for the application to be
started, but this means that there is additional processing cost associated with each trigger message.

AMQ3SRV4
This is a trigger server for the IBM i environment. For each trigger message, this server runs the
start command in its own job to start the specified application. The trigger server can call CICS
transactions.

C language versions of these samples are also available as executable programs in library QMQM, called
AMQSTRG4 and AMQSERV4.

The AMQ3TRG4 sample trigger monitor on IBM i
AMQ3TRG4 is a trigger monitor. It takes one parameter: the name of the initiation queue it is to serve.
AMQSAMP4 defines a sample initiation queue, SYSTEM.SAMPLE.TRIGGER, that you can use when you try
the sample programs.

AMQ3TRG4 submits an IBM i job for each valid trigger message it gets from the initiation queue.

Design of the trigger monitor
The trigger monitor opens the initiation queue and gets messages from the queue, specifying an unlimited
wait interval.

The trigger monitor submits an IBM i job to start the application specified in the trigger message, and
passes an MQTMC (a character version of the trigger message) structure. The environment data in the
trigger message is used as job submission parameters.

Finally, the program closes the initiation queue.

The AMQ3SRV4 sample trigger server
AMQ3SRV4 is a trigger server. It takes one parameter: the name of the initiation queue it is to serve.
AMQSAMP4 defines a sample initiation queue, SYSTEM.SAMPLE.TRIGGER, that you can use when you try
the sample programs.

For each trigger message, AMQ3SRV4 runs a start command in its own job to start the specified
application.

Using the example trigger queue the command to issue is:

CALL PGM(QMQM/AMQ3SRV4) PARM('Queue Name')

Where Queue Name must be 48 characters in length, which you achieve by padding the queue name
with the required number of blanks. Therefore, if you are using SYSTEM.SAMPLE.TRIGGER as your target
queue, you will need 28 blank characters.

Design of the trigger server
The design of the trigger server is like that of the trigger monitor, except the trigger server:

• Allows CICS as well as IBM i applications
• Does not use the environment data from the trigger message
• Calls IBM i applications in its own job (or uses STRCICSUSR to start CICS applications) rather than

submitting an IBM i job
• Opens the initiation queue for shared input, so many trigger servers can run at the same time

1412 IBM MQ Developing Applications Reference

Note: Programs started by AMQ3SRV4 must not use the MQDISC call because this will stop the trigger
server. If programs started by AMQ3SRV4 use the MQCONN call, they will get the RC2002 reason code.

Ending the Triggering sample programs on IBM i
A trigger monitor program can be ended by the sysrequest option 2 (ENDRQS) or by inhibiting gets from
the trigger queue.

If the sample trigger queue is used the command is:

CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') GETENBL(*NO)

Note: To start triggering again on this queue, you must enter the command:

CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') GETENBL(*YES)

Running the samples using remote queues on IBM i
You can demonstrate remote queuing by running the samples on connected message queue managers.

Program AMQSAMP4 provides a local definition of a remote queue (SYSTEM.SAMPLE.REMOTE) that uses
a remote queue manager named OTHER. To use this sample definition, change OTHER to the name of
the second message queue manager you want to use. You must also set up a message channel between
your two message queue managers; for information about how to do so, see Channel-exit programs for
messaging channels.

The Request sample program puts its own local queue manager name in the MDRM field of messages it
sends. The Inquire and Set samples send reply messages to the queue and message queue manager
named in the MDRQ and MDRM fields of the request messages they process.

Return codes for IBM i (ILE RPG)
This information describes the return codes associated with the MQI and MQAI.

The return codes associated with:

• Programmable Command Format (PCF) commands are listed in Programmable command formats
reference.

• C++ calls are listed in Using C++.

For each call, a completion code and a reason code are returned by the queue manager or by an exit
routine, to indicate the success or failure of the call.

Applications must not depend upon errors being checked for in a specific order, except where specifically
noted. If more than one completion code or reason code could arise from a call, the particular error
reported depends on the implementation.

Completion codes for IBM i (ILE RPG)
The completion code parameter (CMPCOD) allows the caller to see quickly whether the call completed
successfully, completed partially, or failed.

CCOK
(MQCC_OK on other platforms)

Successful completion.

The call completed fully; all output parameters have been set. The REASON parameter always has the
value RCNONE in this case.

CCWARN
(MQCC_WARN on other platforms)

Developing applications reference 1413

Warning (partial completion).

The call completed partially. Some output parameters might have been set in addition to the CMPCOD
and REASON output parameters. The REASON parameter gives additional information about the partial
completion.

CCFAIL
(MQCC_FAIL on other platforms)

Call failed.

The processing of the call did not complete, and the state of the queue manager is normally
unchanged; exceptions are specifically noted. The CMPCOD and REASON output parameters have been
set; other parameters are unchanged, except where noted.

The reason might be a fault in the application program, or it might be a result of some situation
external to the program, for example the user's authority might have been revoked. The REASON
parameter gives additional information about the error.

Reason codes for IBM i (ILE RPG)
The reason code parameter (REASON) is a qualification to the completion code parameter (CMPCOD).

If there is no special reason to report, RCNONE is returned. A successful call returns CCOK and RCNONE.

If the completion code is either CCWARN or CCFAIL, the queue manager always reports a qualifying
reason; details are given under each call description.

Where user exit routines set completion codes and reasons, they should adhere to these rules. In
addition, any special reason values defined by user exits should be less than zero, to ensure that they do
not conflict with values defined by the queue manager. Exits can set reasons already defined by the queue
manager, where these are appropriate.

Reason codes also occur in:

• The DLREA field of the MQDLH structure
• The MDFB field of the MQMD structure

For the full list of reason codes, see API completion and reason codes.

To find your IBM i reason code in that list, remove the "RC" from the front, for example RC2002 becomes
2002. Also the completion codes there are shown as they are on other platforms:

Table 815. Reason code names on IBM i and on other platforms

IBM i Other platforms

CCOK MQCC_OK

CCWARN MQCC_WARN

CCFAIL MQCC_FAIL

Rules for validating MQI options for IBM i (ILE RPG)
This topic gives information about the situations that produce an RC2046 reason code from an MQOPEN,
MQPUT, MQPUT1, MQGET, or MQCLOSE call.

MQOPEN call on IBM i

For the options of the MQOPEN call:

• At least one of the following must be specified:

– OOBRW

1414 IBM MQ Developing Applications Reference

– OOINPQ
– OOINPX
– OOINPS
– OOINQ
– OOOUT
– OOSET

• Only one of the following is allowed:

– OOINPQ
– OOINPX
– OOINPS

• Only one of the following is allowed:

– OOBNDO
– OOBNDN
– OOBNDQ

Note: The options listed previously are mutually exclusive. However, because the value of OOBNDQ is
zero, specifying it with either of the other two bind options does not result in reason code RC2046.
OOBNDQ is provided to aid program documentation.

• If OOSAVA is specified, one of the OOINP* options must also be specified.
• If one of the OOSET* or OOPAS* options is specified, OOOUT must also be specified.

MQPUT call on IBM i

For the put-message options:

• The combination of PMSYP and PMNSYP is not allowed.
• Only one of the following is allowed:

– PMDEFC
– PMNOC
– PMPASA
– PMPASI
– PMSETA
– PMSETI

• PMALTU is not allowed (it is valid only on the MQPUT1 call).

MQPUT1 call on IBM i

For the put-message options, the rules are the same as for the MQPUT call, except for the following
options:

• PMALTU is allowed.
• PMLOGO is not allowed.

MQGET call on IBM i

For the get-message options:

• Only one of the following options is allowed:

– GMNSYP
– GMSYP

Developing applications reference 1415

– GMPSYP
• Only one of the following options is allowed:

– GMBRWF
– GMBRWC
– GMBRWN
– GMMUC

• GMSYP is not allowed with any of the following options:

– GMBRWF
– GMBRWC
– GMBRWN
– GMLK
– GMUNLK

• GMPSYP is not allowed with any of the following options:

– GMBRWF
– GMBRWC
– GMBRWN
– GMCMPM
– GMUNLK

• If GMLK is specified, one of the following options must also be specified:

– GMBRWF
– GMBRWC
– GMBRWN

• If GMUNLK is specified, only the following options are allowed:

– GMNSYP
– GMNWT

MQCLOSE call on IBM i

• For the options of the MQCLOSE call. The combination of CODEL and COPURG is not allowed.
• Only one of the following is allowed:

– COKPSB
– CORMSB

MQSUB call on IBM i
For the options of the MQSUB call:

• At least one of the following must be specified:
• At least one of the following must be specified:

– SOALT
– SORES
– SOCRT

• Only one of the following is allowed:

– SODUR
– SONDUR

1416 IBM MQ Developing Applications Reference

Note: The options listed previously are mutually exclusive. However, as the value of SOnDUR is zero,
specifying it with SODUR does not result in reason code RC2046. SONDUR is provided to aid program
documentation.

• The combination of SOGRP and SOMAN is not allowed.
• SOGRP requires SOSCID to be specified.
• Only one of the following is allowed: SOAUID SOFUID
• The combination of SONEWP and SOPUBR is not allowed.
• SONEWP is only allowed in combination with SOCRT.
• Only one of the following is allowed:

– SOWCHR
– SOWTOP

Machine encodings on IBM i
Use this information to learn about the structure of the MDENC field in the message descriptor.

For more information about the message descriptor, see “MQMD (Message descriptor) on IBM i” on page
1099.

The MDENC field is a 32-bit integer that is divided into four separate subfields; these subfields identify:

• The encoding used for binary integers
• The encoding used for packed-decimal integers
• The encoding used for floating-point numbers
• Reserved bits

Each subfield is identified by a bit mask which has 1-bits in the positions corresponding to the subfield,
and 0-bits elsewhere. The bits are numbered such that bit 0 is the most significant bit, and bit 31 the least
significant bit. The following masks are defined:
ENIMSK

Mask for binary-integer encoding.

This subfield occupies bit positions 28 through 31 within the MDENC field.

ENDMSK
Mask for packed-decimal-integer encoding.

This subfield occupies bit positions 24 through 27 within the MDENC field.

ENFMSK
Mask for floating-point encoding.

This subfield occupies bit positions 20 through 23 within the MDENC field.

ENRMSK
Mask for reserved bits.

This subfield occupies bit positions 0 through 19 within the MDENC field.

Binary-integer encoding on IBM i
Valid values for binary-integer encoding.

The following values are valid for the binary-integer encoding:
ENIUND

Undefined integer encoding.

Binary integers are represented using an encoding that is undefined.

Developing applications reference 1417

ENINOR
Normal integer encoding.

Binary integers are represented in the conventional way:

• The least significant byte in the number has the highest address of any of the bytes in the number;
the most significant byte has the lowest address.

• The least significant bit in each byte is next to the byte with the next higher address; the most
significant bit in each byte is next to the byte with the next lower address.

ENIREV
Reversed integer encoding.

Binary integers are represented in the same way as ENINOR, but with the bytes arranged in reverse
order. The bits within each byte are arranged in the same way as ENINOR.

Packed-decimal-integer encoding on IBM i
Valid values for packed-decimal-integer encoding

The following values are valid for the packed-decimal-integer encoding:
ENDUND

Undefined packed-decimal encoding.

Packed-decimal integers are represented using an encoding that is undefined.

ENDNOR
Normal packed-decimal encoding.

Packed-decimal integers are represented in the conventional way:

• Each decimal digit in the printable form of the number is represented in packed decimal by a single
hexadecimal digit in the range X'0' through X'9'. Each hexadecimal digit occupies 4 bits, and so
each byte in the packed decimal number represents two decimal digits in the printable form of the
number.

• The least significant byte in the packed-decimal number is the byte which contains the least
significant decimal digit. Within that byte, the most significant 4 bits contain the least significant
decimal digit, and the least significant 4 bits contain the sign. The sign is either X'C' (positive), X'D'
(negative), or X'F' (unsigned).

• The least significant byte in the number has the highest address of any of the bytes in the number;
the most significant byte has the lowest address.

• The least significant bit in each byte is next to the byte with the next higher address; the most
significant bit in each byte is next to the byte with the next lower address.

ENDREV
Reversed packed-decimal encoding.

Packed-decimal integers are represented in the same way as ENDNOR, but with the bytes arranged in
reverse order. The bits within each byte are arranged in the same way as ENDNOR.

Floating-point encoding on IBM i
Valid values for floating-point encoding

The following values are valid for the floating-point encoding:
ENFUND

Undefined floating-point encoding.

Floating-point numbers are represented using an encoding that is undefined.

ENFNOR
Normal IEEE (The Institute of Electrical and Electronics Engineers) float encoding.

1418 IBM MQ Developing Applications Reference

Floating-point numbers are represented using the standard IEEE floating-point format, with the bytes
arranged as follows:

• The least significant byte in the mantissa has the highest address of any of the bytes in the number;
the byte containing the exponent has the lowest address

• The least significant bit in each byte is next to the byte with the next higher address; the most
significant bit in each byte is next to the byte with the next lower address

Details of the IEEE float encoding might be found in IEEE Standard 754.

ENFREV
Reversed IEEE float encoding.

Floating-point numbers are represented in the same way as ENFNOR, but with the bytes arranged in
reverse order. The bits within each byte are arranged in the same way as ENFNOR.

ENF390
System/390 architecture float encoding.

Floating-point numbers are represented using the standard System/390 floating-point format; this is
also used by System/370.

Constructing encodings on IBM i
To construct a value for the MDENC field in MQMD, the relevant constants that describe the required
encodings should be added.

Be sure to combine only one of the ENI* encodings with one of the END* encodings and one of the ENF*
encodings.

Analyzing encodings on IBM i
The MDENC field contains subfields; because of this, applications that need to examine the integer, packed
decimal, or float encoding should use the technique described in this topic.

Using arithmetic
The following steps should be performed using integer arithmetic:

1. Select one of the following values, according to the type of encoding required:

• 1 for the binary integer encoding
• 16 for the packed decimal integer encoding
• 256 for the floating point encoding

Call the value A.
2. Divide the value of the MDENC field by A ; call the result B.
3. Divide B by 16; call the result C.
4. Multiply C by 16 and subtract from B ; call the result D.
5. Multiply D by A ; call the result E.
6. E is the encoding required, and can be tested for equality with each of the values that is valid for that

type of encoding.

Summary of machine architecture encodings on IBM i
A table summarizing encodings for machine architectures.

Encodings for machine architectures are shown in Table 816 on page 1420.

Developing applications reference 1419

Table 816. Summary of encodings for machine architectures

Machine architecture Binary integer encoding Packed-decimal
integer encoding

Floating-point
encoding

IBM i normal normal IEEE normal

Intel x86 reversed reversed IEEE reversed

PowerPC normal normal IEEE normal

System/390 normal normal System/390

Report options and message flags on IBM i
This topic concerns the MDREP and MDMFL fields that are part of the message descriptor MQMD specified
on the MQGET, MQPUT, and MQPUT1 calls.

For more information about the message descriptor, see “MQMD (Message descriptor) on IBM i” on page
1099. This information describes:

• The structure of the report field and how the queue manager processes it
• How an application should analyze the report field
• The structure of the message-flags field

Structure of the report field
The MDREP field is a 32-bit integer that is divided into three separate subfields.

These subfields identify:

• Report options that are rejected if the local queue manager does not recognize them
• Report options that are always accepted, even if the local queue manager does not recognize them
• Report options that are accepted only if certain other conditions are satisfied

Each subfield is identified by a bit mask which has 1-bits in the positions corresponding to the subfield,
and 0-bits elsewhere. Note that the bits in a subfield are not necessarily adjacent. The bits are numbered
such that bit 0 is the most significant bit, and bit 31 the least significant bit. The following masks are
defined to identify the subfields:
RORUM

Mask for unsupported report options that are rejected.

This mask identifies the bit positions within the MDREP field where report options which are not
supported by the local queue manager will cause the MQPUT or MQPUT1 call to fail with completion
code CCFAIL and reason code RC2061.

This subfield occupies bit positions 3, and 11 through 13.

ROAUM
Mask for unsupported report options that are accepted.

This mask identifies the bit positions within the MDREP field where report options which are not
supported by the local queue manager will nevertheless be accepted on the MQPUT or MQPUT1 calls.
Completion code CCWARN with reason code RC2104 are returned in this case.

This subfield occupies bit positions 0 through 2, 4 through 10, and 24 through 31.

The following report options are included in this subfield:

• ROCMTC
• RODLQ
• RODISC
• ROEXC

1420 IBM MQ Developing Applications Reference

• ROEXCD
• ROEXCF
• ROEXP
• ROEXPD
• ROEXPF
• RONAN
• RONMI
• RONONE
• ROPAN
• ROPCI
• ROPMI

ROAUXM
Mask for unsupported report options that are accepted only in certain circumstances.

This mask identifies the bit positions within the MDREP field where report options which are not
supported by the local queue manager will nevertheless be accepted on the MQPUT or MQPUT1 calls
provided that both of the following conditions are satisfied:

• The message is destined for a remote queue manager.
• The application is not putting the message directly on a local transmission queue (that is, the queue
identified by the ODMN and ODON fields in the object descriptor specified on the MQOPEN or MQPUT1
call is not a local transmission queue).

Completion code CCWARN with reason code RC2104 are returned if these conditions are satisfied,
and CCFAIL with reason code RC2061 if not.

This subfield occupies bit positions 14 through 23.

The following report options are included in this subfield:

• ROCOA
• ROCOAD
• ROCOAF
• ROCOD
• ROCODD
• ROCODF

If there are any options specified in the MDREP field which the queue manager does not recognize, the
queue manager checks each subfield in turn by using the bitwise AND operation to combine the MDREP
field with the mask for that subfield. If the result of that operation is not zero, the completion code and
reason codes described previously are returned.

If CCWARN is returned, it is not defined which reason code is returned if other warning conditions exist.

The ability to specify and have accepted report options which are not recognized by the local queue
manager is useful when it is necessary to send a message with a report option which will be recognized
and processed by a remote queue manager.

Developing applications reference 1421

Analyzing the report field on IBM i
The MDREP field contains subfields. Because of this, some applications need to check whether the sender
of the message requested a particular report. Those applications should use the technique described in
this topic.

Using arithmetic
The following steps should be performed using integer arithmetic:

1. Select one of the following values, according to the type of report to be checked:

• ROCOA for COA report
• ROCOD for COD report
• ROEXC for exception report
• ROEXP for expiration report

Call the value A.
2. Divide the MDREP field by A ; call the result B.
3. Divide B by 8 ; call the result C.
4. Multiply C by 8 and subtract from B ; call the result D.
5. Multiply D by A ; call the result E.
6. Test E for equality with each of the values that is possible for that type of report.

For example, if A is ROEXC, test E for equality with each of the following to determine what was
specified by the sender of the message:

• RONONE
• ROEXC
• ROEXCD
• ROEXCF

The tests can be performed in whatever order is most convenient for the application logic.

The following pseudocode illustrates this technique for exception report messages:

A = ROEXC
B = Report/A
C = B/8
D = B - C*8
E = D*A

A similar method can be used to test for the ROPMI or ROPCI options; select as the value A whichever of
these two constants is appropriate, and then proceed as described previously, but replacing the value 8 in
the previous steps by the value 2.

Structure of the message-flags field on IBM i
The MDMFL field is a 32-bit integer that is divided into three separate subfields.

These subfields identify:

• Message flags that are rejected if the local queue manager does not recognize them
• Message flags that are always accepted, even if the local queue manager does not recognize them
• Message flags that are accepted only if certain other conditions are satisfied

Note: All subfields in MDMFL are reserved for use by the queue manager.

1422 IBM MQ Developing Applications Reference

Each subfield is identified by a bit mask which has 1-bits in the positions corresponding to the subfield,
and 0-bits elsewhere. The bits are numbered such that bit 0 is the most significant bit, and bit 31 the least
significant bit. The following masks are defined to identify the subfields:
MFRUM

Mask for unsupported message flags that are rejected.

This mask identifies the bit positions within the MDMFL field where message flags which are not
supported by the local queue manager will cause the MQPUT or MQPUT1 call to fail with completion
code CCFAIL and reason code RC2249.

This subfield occupies bit positions 20 through 31.

The following message flags are included in this subfield:

• MFLMIG
• MFLSEG
• MFMIG
• MFSEG
• MFSEGA
• MFSEGI

MFAUM
Mask for unsupported message flags that are accepted.

This mask identifies the bit positions within the MDMFL field where message flags which are not
supported by the local queue manager will nevertheless be accepted on the MQPUT or MQPUT1 calls.
The completion code is CCOK.

This subfield occupies bit positions 0 through 11.

MFAUXM
Mask for unsupported message flags that are accepted only in certain circumstances.

This mask identifies the bit positions within the MDMFL field where message flags which are not
supported by the local queue manager will nevertheless be accepted on the MQPUT or MQPUT1 calls
provided that both of the following conditions are satisfied:

• The message is destined for a remote queue manager.
• The application is not putting the message directly on a local transmission queue (that is, the queue
identified by the ODMN and ODON fields in the object descriptor specified on the MQOPEN or MQPUT1
call is not a local transmission queue).

Completion code CCOK is returned if these conditions are satisfied, and CCFAIL with reason code
RC2249 if not.

This subfield occupies bit positions 12 through 19.

If there are flags specified in the MDMFL field that the queue manager does not recognize, the queue
manager checks each subfield in turn by using the bitwise AND operation to combine the MDMFL field
with the mask for that subfield. If the result of that operation is not zero, the completion code and reason
codes described previously are returned.

Data conversion on IBM i
This topic describes the interface to the data-conversion exit, and the processing performed by the queue
manager when data conversion is required.

The data-conversion exit is invoked as part of the processing of the MQGET call. It is used to convert the
application message data to the representation required by the receiving application. Conversion of the
application message data is optional, and requires the GMCONV option to be specified on the MQGET call.

The following aspects of data conversion are described:

Developing applications reference 1423

• The processing performed by the queue manager in response to the GMCONV option; see “Conversion
processing on IBM i” on page 1424.

• Processing conventions used by the queue manager when processing a built-in format; these
conventions are recommended for user-written exits too. See “Processing conventions on IBM i” on
page 1425.

• Special considerations for the conversion of report messages; see “Conversion of report messages on
IBM i” on page 1429.

• The parameters passed to the data-conversion exit; see “MQCONVX (Data conversion exit) on IBM i” on
page 1439.

• A call that can be used from the exit in order to convert character data between different
representations; see “MQXCNVC (Convert characters) on IBM i” on page 1435.

• The data-structure parameter which is specific to the exit; see “MQDXP (Data-conversion exit
parameter) on IBM i” on page 1430.

Conversion processing on IBM i
This information describes the processing performed by the queue manager in response to the GMCONV
option.

The queue manager performs the following actions if the GMCONV option is specified on the MQGET call,
and there is a message to be returned to the application:

1. If one or more of the following is true, no conversion is necessary:

• The message data is already in the character set and encoding required by the application issuing
the MQGET call. The application must set the MDCSI and MDENC fields in the MSGDSC parameter of
the MQGET call to the values required, before issuing the call.

• The length of the message data is zero.
• The length of the BUFFER parameter of the MQGET call is zero.

In these cases the message is returned without conversion to the application issuing the MQGET call;
the MDCSI and MDENC values in the MSGDSC parameter are set to the values in the control information
in the message, and the call completes with one of the following combinations of completion code and
reason code:
Completion code

Reason code
CCOK

RCNONE
CCWARN

RC2079
CCWARN

RC2080

The following steps are performed only if the character set or encoding of the message data differs from
the corresponding value in the MSGDSC parameter, and there is data to be converted:

1. If the MDFMT field in the control information in the message has the value FMNONE, the message is
returned unconverted, with completion code CCWARN and reason code RC2110.

In all other cases conversion processing continues.
2. The message is removed from the queue and placed in a temporary buffer which is the same size

as the BUFFER parameter. For browse operations, the message is copied into the temporary buffer,
instead of being removed from the queue.

3. If the message has to be truncated to fit in the buffer, the following is done:

• If the GMATM option was not specified, the message is returned unconverted, with completion code
CCWARN and reason code RC2080.

1424 IBM MQ Developing Applications Reference

• If the GMATM option was specified, the completion code is set to CCWARN, the reason code is set to
RC2079, and conversion processing continues.

4. If the message can be accommodated in the buffer without truncation, or the GMATM option was
specified, the following is done:

• If the format is a built-in format, the buffer is passed to the queue manager's data-conversion
service.

• If the format is not a built-in format, the buffer is passed to a user-written exit which has the
same name as the format. If the exit cannot be found, the message is returned unconverted, with
completion code CCWARN and reason code RC2110.

If no error occurs, the output from the data-conversion service or from the user-written exit is the
converted message, plus the completion code and reason code to be returned to the application
issuing the MQGET call.

5. If the conversion is successful, the queue manager returns the converted message to the application.
In this case, the completion code and reason code returned by the MQGET call will typically be one of
the following combinations:
Completion code

Reason code
CCOK

RCNONE
CCWARN

RC2079
However, if the conversion is performed by a user-written exit, other reason codes can be returned,
even when the conversion is successful.

If the conversion fails (for whatever reason), the queue manager returns the unconverted message to
the application, with the MDCSI and MDENC fields in the MSGDSC parameter set to the values in the
control information in the message, and with completion code CCWARN.

Processing conventions on IBM i
When converting a built-in format, the queue manager follows the processing conventions described in
this topic.

Consider applying these conventions to user-written exits, although this is not enforced by the queue
manager. The built-in formats converted by the queue manager are as follows:

• FMADMN
• FMMDE
• FMCICS
• FMPCF
• FMCMD1
• FMRMH
• FMCMD2
• FMRFH
• FMDLH
• FMRFH2
• FMDH
• FMSTR
• FMEVNT
• FMTM
• FMIMS

Developing applications reference 1425

• FMXQH
• FMIMVS

1. If the message expands during conversion, and exceeds the size of the BUFFER parameter, the
following is done:

• If the GMATM option was not specified, the message is returned unconverted, with completion
code CCWARN and reason code RC2120.

• If the GMATM option was specified, the message is truncated, the completion code is set to
CCWARN, the reason code is set to RC2079, and conversion processing continues.

2. If truncation occurs (either before or during conversion), it is possible for the number of valid bytes
returned in the BUFFER parameter to be less than the length of the buffer.

This can occur, for example, if a 4-byte integer or a DBCS character straddles the end of the
buffer. The incomplete element of information is not converted, and so those bytes in the returned
message do not contain valid information. This can also occur if a message that was truncated before
conversion shrinks during conversion.

If the number of valid bytes returned is less than the length of the buffer, the unused bytes at the end
of the buffer are set to nulls.

3. If an array or string straddles the end of the buffer, as much of the data as possible is converted; only
the particular array element or DBCS character which is incomplete is not converted - preceding array
elements or characters are converted.

4. If truncation occurs (either before or during conversion), the length returned for the DATLEN
parameter is the length of the unconverted message before truncation.

5. When strings are converted between single-byte character sets (SBCS), double-byte character sets
(DBCS), or multi-byte character sets (MBCS), the strings can expand or contract.

• In the PCF formats FMADMN, FMEVNT, and FMPCF, the strings in the MQCFST and MQCFSL
structures expand or contract as necessary to accommodate the string after conversion.

For the string-list structure MQCFSL, the strings in the list might expand or contract by different
amounts. If this happens, the queue manager pads the shorter strings with blanks to make them
the same length as the longest string after conversion.

• In the format FMRMH, the strings addressed by the RMSEO, RMSNO, RMDEO, and RMDNO fields
expand or contract as necessary to accommodate the strings after conversion.

• In the format FMRFH, the RFNVS field expands or contracts as necessary to accommodate the
name-value pairs after conversion.

• In structures with fixed field sizes, the queue manager allows strings to expand or contract within
their fixed fields, if no significant information is lost. In this regard, trailing blanks and characters
following the first null character in the field are treated as insignificant.

– If the string expands, but only insignificant characters need to be discarded to accommodate
the converted string in the field, the conversion succeeds and the call completes with CCOK and
reason code RCNONE (assuming no other errors).

– If the string expands, but the converted string requires significant characters to be discarded
in order to fit in the field, the message is returned unconverted and the call completes with
CCWARN and reason code RC2190.

Note: Reason code RC2190 results in this case whether the GMATM option was specified.
– If the string contracts, the queue manager pads the string with blanks to the length of the field.

6. For messages consisting of one or more IBM MQ header structures followed by user data, it is
possible for one or more of the header structures to be converted, while the remainder of the
message is not. However, with two exceptions, the MDCSI and MDENC fields in each header structure
always correctly indicate the character set and encoding of the data that follows the header structure.

1426 IBM MQ Developing Applications Reference

The two exceptions are the MQCIH and MQIIH structures, where the values in the MDCSI and MDENC
fields in those structures are not significant. For those structures, the data following the structure is
in the same character set and encoding as the MQCIH or MQIIH structure itself.

7. If the MDCSI or MDENC fields in the control information of the message being retrieved, or in the
MSGDSC parameter, specify values which are undefined or not supported, the queue manager might
ignore the error if the undefined or unsupported value does not need to be used in converting the
message.

For example, if the MDENC field in the message specifies an unsupported float encoding, but
the message contains only integer data, or contains floating-point data which does not require
conversion (because the source and target float encodings are identical), the error might or might not
be diagnosed.

If the error is diagnosed, the message is returned unconverted, with completion code CCWARN and
one of the RC2111, RC2112, RC2113, RC2114 or RC2115, RC2116, RC2117, RC2118 reason codes
(as appropriate); the MDCSI and MDENC fields in the MSGDSC parameter are set to the values in the
control information in the message.

If the error is not diagnosed and the conversion completes successfully, the values returned in the
MDCSI and MDENC fields in the MSGDSC parameter, are those specified by the application issuing the
MQGET call.

8. In all cases, if the message is returned to the application unconverted the completion code is set to
CCWARN, and the MDCSI and MDENC fields in the MSGDSC parameter are set to the values appropriate
to the unconverted data. This is done for FMNONE also.

The REASON parameter is set to a code that indicates why the conversion could not be carried out,
unless the message also had to be truncated; reason codes related to truncation take precedence
over reason codes related to conversion. (To determine if a truncated message was converted, check
the values returned in the MDCSI and MDENC fields in the MSGDSC parameter.)

When an error is diagnosed, either a specific reason code is returned, or the general reason code
RC2119. The reason code returned depends on the diagnostic capabilities of the underlying data-
conversion service.

9. If completion code CCWARN is returned, and more than one reason code is relevant, the order of
precedence is as follows:

a. The following reason takes precedence over all others:

• RC2079
b. Next in precedence is the following reason:

• RC2110
c. The order of precedence within the remaining reason codes is not defined.

10. On completion of the MQGET call:

• The following reason code indicates that the message was converted successfully:

– RCNONE
• The following reason code indicates that the message may have been converted successfully

(check the MDCSI and MDENC fields in the MSGDSC parameter to find out):

– RC2079
• All other reason codes indicate that the message was not converted.

The following processing is specific to the built-in formats; it is not applicable to user-defined formats:

1. Except for the following formats:

• FMADMN
• FMEVNT
• FMIMVS

Developing applications reference 1427

• FMPCF
• FMSTR

none of the built-in formats can be converted from or to character sets that do not have SBCS
characters for the characters that are valid in queue names. If an attempt is made to perform such
a conversion, the message is returned unconverted, with completion code CCWARN and reason code
RC2111 or RC2115, as appropriate.

The Unicode character set UTF-16 is an example of a character set that does not have SBCS
characters for the characters that are valid in queue names.

2. If the message data for a built-in format is truncated, fields within the message which contain lengths
of strings, or counts of elements or structures, are not adjusted to reflect the length of the data
returned to the application; the values returned for such fields within the message data are the values
applicable to the message before truncation.

When processing messages such as a truncated FMADMN message, care must be taken to ensure that
the application does not attempt to access data beyond the end of the data returned.

3. If the format name is FMDLH, the message data begins with an MQDLH structure, and this may be
followed by zero or more bytes of application message data. The format, character set, and encoding
of the application message data are defined by the DLFMT, DLCSI, and DLENC fields in the MQDLH
structure at the start of the message. Since the MQDLH structure and application message data
can have different character sets and encodings, it is possible for one, other, or both of the MQDLH
structure and application message data to require conversion.

The queue manager converts the MQDLH structure first, as necessary. If conversion is successful, or
the MQDLH structure does not require conversion, the queue manager checks the DLCSI and DLENC
fields in the MQDLH structure to see if conversion of the application message data is required. If
conversion is required, the queue manager invokes the user-written exit with the name given by the
DLFMT field in the MQDLH structure, or performs the conversion itself (if DLFMT is the name of a
built-in format).

If the MQGET call returns a completion code of CCWARN, and the reason code is one of those
indicating that conversion was not successful, one of the following applies:

• The MQDLH structure could not be converted. In this case the application message data will not have
been converted either.

• The MQDLH structure was converted, but the application message data was not.

The application can examine the values returned in the MDCSI and MDENC fields in the MSGDSC
parameter, and those in the MQDLH structure, in order to determine which of the previous applies.

4. If the format name is FMXQH, the message data begins with an MQXQH structure, and this may be
followed by zero or more bytes of additional data. This additional data is typically the application
message data (which may be of zero length), but there can also be one or more further IBM MQ header
structures present, at the start of the additional data.

The MQXQH structure must be in the character set and encoding of the queue manager. The format,
character set, and encoding of the data following the MQXQH structure are given by the MDFMT, MDCSI,
and MDENC fields in the MQMD structure contained within the MQXQH. For each subsequent IBM MQ
header structure present, the MDFMT, MDCSI, and MDENC fields in the structure describe the data that
follows that structure; that data is either another IBM MQ header structure, or the application message
data.

If the GMCONV option is specified for an FMXQH message, the application message data and certain
of the MQ header structures are converted, but the data in the MQXQH structure is not. On return from
the MQGET call, therefore:

• The values of the MDFMT, MDCSI, and MDENC fields in the MSGDSC parameter, describe the data in the
MQXQH structure, and not the application message data; the values will therefore not be the same
as those specified by the application that issued the MQGET call.

1428 IBM MQ Developing Applications Reference

The effect of this is that an application which repeatedly gets messages from a transmission queue
with the GMCONV option specified must reset the MDCSI and MDENC fields in the MSGDSC parameter
to the values necessary for the application message data, before each MQGET call.

• The values of the MDFMT, MDCSI, and MDENC fields in the last MQ header structure present
describe the application message data. If there are no other IBM MQ header structures present,
the application message data is described by these fields in the MQMD structure within the MQXQH
structure. If conversion is successful, the values will be the same as those specified in the MSGDSC
parameter by the application that issued the MQGET call.

If the message is a distribution-list message, the MQXQH structure is followed by an MQDH structure
(plus its arrays of MQOR and MQPMR records), which in turn may be followed by zero or more further
IBM MQ header structures and zero or more bytes of application message data. Like the MQXQH
structure, the MQDH structure must be in the character set and encoding of the queue manager, and it
is not converted on the MQGET call, even if the GMCONV option is specified.

The processing of the MQXQH and MQDH structures described previously are primarily intended for
use by message channel agents when they get messages from transmission queues.

Conversion of report messages on IBM i
A report message can contain varying amounts of application message data, according to the report
options specified by the sender of the original message.

In particular, a report message can contain either:

1. No application message data
2. Some of the application message data from the original message

This occurs when the sender of the original message specifies RO*D and the message is longer than
100 bytes.

3. All of the application message data from the original message

This occurs when the sender of the original message specifies RO*F, or specifies RO*D and the
message is 100 bytes or shorter.

When the queue manager or message channel agent generates a report message, it copies the format
name from the original message into the MDFMT field in the control information in the report message.
The format name in the report message might therefore imply a length of data which is different from the
length present in the report message (cases 1 and 2 described previously).

If the GMCONV option is specified when the report message is retrieved:

• For case 1 described previously, the data-conversion exit will not be invoked (because the report
message will have no data).

• For case 3 described previously, the format name correctly implies the length of the message data.
• But for case 2 described previously, the data-conversion exit will be invoked to convert a message

which is shorter than the length implied by the format name.

In addition, the reason code passed to the exit will typically be RCNONE (that is, the reason code
will not indicate that the message has been truncated). This happens because the message data was
truncated by the sender of the report message, and not by the receiver's queue manager in response to
the MQGET call.

Because of these possibilities, the data-conversion exit should not use the format name to deduce the
length of data passed to it; instead the exit should check the length of data provided, and be prepared to
convert less data than the length implied by the format name. If the data can be converted successfully,
completion code CCOK and reason code RCNONE should be returned by the exit. The length of the
message data to be converted is passed to the exit as the INLEN parameter.

Product-sensitive programming interface

Developing applications reference 1429

If a report message contains information about an activity that has taken place, it is known as an activity
report. Examples of activities are:

• an MCA sending a message from a queue down a channel
• an MCA receiving a message from a channel and putting it onto a queue
• an MCA dead-letter queuing an undeliverable message
• an MCA getting a message off a queue and discarding it
• a dead-letter handler placing a message back on a queue
• the command server processing a PCF request - a broker processing a publish request
• a user application getting a message from a queue - a user application browsing a message on a queue

Any application, including the queue manager, can add some of the message data to the activity report
following the report header. The amount of data that should be supplied if some is sent is not fixed, and
is decided by the application. The information returned should be useful to the application processing
the activity report. Queue manager activity reports will return with them any standard IBM MQ header
structures (beginning 'MQH') contained in the original message. This includes, for example, any MQRFH2
headers that were included in the original message. Also the queue manager will return an MQCFH header
found, but not the PCF parameters associated with it. This gives monitoring applications an idea of what
the message was about.

MQDXP (Data-conversion exit parameter) on IBM i
Data-conversion exit parameter block.

Overview
Purpose: The MQDXP structure is a parameter that the queue manager passes to the data-conversion exit
when the exit is invoked to convert the message data as part of the processing of the MQGET call. See the
description of the MQCONVX call for details of the data conversion exit.

Character set and encoding: Character data in MQDXP is in the character set of the local queue manager;
this is given by the CodedCharSetId queue manager attribute. Numeric data in MQDXP is in the native
machine encoding; this is given by ENNAT.

Usage: Only the DXLEN, DXCC, DXREA and DXRES fields in MQDXP might be changed by the exit; changes
to other fields are ignored. However, the DXLEN field cannot be changed if the message being converted is
a segment that contains only part of a logical message.

When control returns to the queue manager from the exit, the queue manager checks the values returned
in MQDXP. If the values returned are not valid, the queue manager continues processing as though the
exit had returned XRFAIL in DXRES ; however, the queue manager ignores the values of the DXCC and
DXREA fields returned by the exit in this case, and uses instead the values those fields had on input to the
exit. The following values in MQDXP cause this processing to occur:

• DXRES field not XROK and not XRFAIL
• DXCC field not CCOK and not CCWARN
• DXLEN field less than zero, or DXLEN field changed when the message being converted is a segment that

contains only part of a logical message.

• “Fields” on page 1430
• “RPG declaration (copy file CMQDXPH)” on page 1434

Fields
The MQDXP structure contains the following fields; the fields are described in alphabetical order:

DXAOP (10-digit signed integer)

Application options.

1430 IBM MQ Developing Applications Reference

This is a copy of the GMOPT field of the MQGMO structure specified by the application issuing the
MQGET call. The exit may need to examine these to ascertain whether the GMATM option was
specified.

This is an input field to the exit.

DXCC (10-digit signed integer)

Completion code.

When the exit is invoked, this contains the completion code that will be returned to the application
that issued the MQGET call, if the exit chooses to do nothing. It is always CCWARN, because either the
message was truncated, or the message requires conversion and this has not yet been done.

On output from the exit, this field contains the completion code to be returned to the application in
the CMPCOD parameter of the MQGET call; only CCOK and CCWARN are valid. See the description of
the DXREA field for suggestions on how the exit should set this field on output.

This is an input/output field to the exit.

DXCSI (10-digit signed integer)

Character set required by application.

This is the coded character-set identifier of the character set required by the application issuing
the MQGET call; see the MDCSI field in the MQMD structure for more details. If the application
specifies the special value CSQM on the MQGET call, the queue manager changes this to the actual
character-set identifier of the character set used by the queue manager, before invoking the exit.

If the conversion is successful, the exit should copy this to the MDCSI field in the message descriptor.

This is an input field to the exit.

DXENC (10-digit signed integer)

Numeric encoding required by application.

This is the numeric encoding required by the application issuing the MQGET call; see the MDENC field
in the MQMD structure for more details.

If the conversion is successful, the exit should copy this to the MDENC field in the message descriptor.

This is an input field to the exit.

DXHCN (10-digit signed integer)

Connection handle.

This is a connection handle which can be used on the MQXCNVC call. This handle is not necessarily
the same as the handle specified by the application which issued the MQGET call.

DXLEN (10-digit signed integer)

Length in bytes of message data.

When the exit is invoked, this field contains the original length of the application message data. If
the message was truncated in order to fit into the buffer provided by the application, the size of
the message provided to the exit will be smaller than the value of DXLEN. The size of the message
provided to the exit is always given by the INLEN parameter of the exit, irrespective of any truncation
that may have occurred.

Truncation is indicated by the DXREA field having the value RC2079 on input to the exit.

Most conversions will not need to change this length, but an exit can do so if necessary; the value set
by the exit is returned to the application in the DATLEN parameter of the MQGET call. However, this
length cannot be changed if the message being converted is a segment that contains only part of a
logical message. This is because changing the length would cause the offsets of later segments in the
logical message to be incorrect.

Developing applications reference 1431

Note that, if the exit wants to change the length of the data, be aware that the queue manager has
already decided whether the message data will fit into the application's buffer, based on the length
of the unconverted data. This decision determines whether the message is removed from the queue
(or the browse cursor moved, for a browse request), and is not affected by any change to the data
length caused by the conversion. For this reason it is recommended that conversion exits do not cause
a change in the length of the application message data.

If character conversion does imply a change of length, a string can be converted into another string
with the same length in bytes, truncating trailing blanks, or padding with blanks as necessary.

The exit is not invoked if the message contains no application message data; hence DXLEN is always
greater than zero.

This is an input/output field to the exit.

DXREA (10-digit signed integer)

Reason code qualifying DXCC.

When the exit is invoked, this contains the reason code that will be returned to the application
that issued the MQGET call, if the exit chooses to do nothing. Among possible values are RC2079,
indicating that the message was truncated in order fit into the buffer provided by the application, and
RC2119, indicating that the message requires conversion but that this has not yet been done.

On output from the exit, this field contains the reason to be returned to the application in the REASON
parameter of the MQGET call; the following is recommended:

• If DXREA had the value RC2079 on input to the exit, the DXREA and DXCC fields should not be
altered, irrespective of whether the conversion succeeds or fails.

(If the DXCC field is not CCOK, the application which retrieves the message can identify a conversion
failure by comparing the returned MDENC and MDCSI values in the message descriptor with the
values requested; in contrast, the application cannot distinguish a truncated message from a
message that just fitted the buffer. For this reason, RC2079 should be returned in preference to
any of the reasons that indicate conversion failure.)

• If DXREA had any other value on input to the exit:

– If the conversion succeeds, DXCC should be set to CCOK and DXREA set to RCNONE.
– If the conversion fails, or the message expands and has to be truncated to fit in the buffer, DXCC

should be set to CCWARN (or left unchanged), and DXREA set to one of the values i the following
list, to indicate the nature of the failure.

Note that, if the message after conversion is too big for the buffer, it should be truncated only if
the application that issued the MQGET call specified the GMATM option:

- If it did specify that option, reason RC2079 should be returned.
- If it did not specify that option, the message should be returned unconverted, with reason code

RC2120.

The reason codes in the following list are recommended for use by the exit to indicate the reason
that conversion failed, but the exit can return other values from the set of RC* codes if deemed
appropriate. In addition, the range of values RC0900 through RC0999 are allocated for use by the exit
to indicate conditions that the exit wants to communicate to the application issuing the MQGET call.

Note: If the message cannot be converted successfully, the exit must return XRFAIL in the DXRES
field, in order to cause the queue manager to return the unconverted message. This is true regardless
of the reason code returned in the DXREA field.

RC0900
(900, X'384') Lowest value for application-defined reason code.

RC0999
(999, X'3E7') Highest value for application-defined reason code.

1432 IBM MQ Developing Applications Reference

RC2120
(2120, X'848') Converted data too big for buffer.

RC2119
(2119, X'847') Message data not converted.

RC2111
(2111, X'83F') Source coded character set identifier not valid.

RC2113
(2113, X'841') Packed-decimal encoding in message not recognized.

RC2114
(2114, X'842') Floating-point encoding in message not recognized.

RC2112
(2112, X'840') Source integer encoding not recognized.

RC2115
(2115, X'843') Target coded character set identifier not valid.

RC2117
(2117, X'845') Packed-decimal encoding specified by receiver not recognized.

RC2118
(2118, X'846') Floating-point encoding specified by receiver not recognized.

RC2116
(2116, X'844') Target integer encoding not recognized.

RC2079
(2079, X'81F') Truncated message returned (processing completed).

This is an input/output field to the exit.

DXRES (10-digit signed integer)

Response from exit.

This is set by the exit to indicate the success or otherwise of the conversion. It must be one of the
following:
XROK

Conversion was successful.

If the exit specifies this value, the queue manager returns the following to the application that
issued the MQGET call:

• The value of the DXCC field on output from the exit
• The value of the DXREA field on output from the exit
• The value of the DXLEN field on output from the exit
• The contents of the exit's output buffer OUTBUF. The number of bytes returned is the lesser of

the exit's OUTLEN parameter, and the value of the DXLEN field on output from the exit

If the MDENC and MDCSI fields in the exit's message descriptor parameter are both unchanged, the
queue manager returns:

• The value of the MDENC and MDCSI fields in the MQDXP structure on input to the exit

If one or both of the MDENC and MDCSI fields in the exit's message descriptor parameter has been
changed, the queue manager returns:

• The value of the MDENC and MDCSI fields in the exit's message descriptor parameter on output
from the exit

•

XRFAIL
Conversion was unsuccessful.

Developing applications reference 1433

If the exit specifies this value, the queue manager returns the following to the application that
issued the MQGET call:

• The value of the DXCC field on output from the exit
• The value of the DXREA field on output from the exit
• The value of the DXLEN field on input to the exit
• The contents of the exit's input buffer INBUF. The number of bytes returned is given by the
INLEN parameter

If the exit has altered INBUF, the results are undefined.

DXRES is an output field from the exit.

DXSID (4-byte character string)

Structure identifier.

The value must be:
DXSIDV

Identifier for data conversion exit parameter structure.

This is an input field to the exit.

DXVER (10-digit signed integer)

Structure version number.

The value must be:
DXVER1

Version number for data-conversion exit parameter structure.

The following constant specifies the version number of the current version:
DXVERC

Current version of data-conversion exit parameter structure.

Note: When a new version of this structure is introduced, the layout of the existing part is not
changed. The exit should therefore check that the DXVER field is equal to or greater than the lowest
version which contains the fields that the exit needs to use.

This is an input field to the exit.

DXXOP (10-digit signed integer)

Reserved.

This is a reserved field; its value is 0.

RPG declaration (copy file CMQDXPH)

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQDXP Structure
 D*
 D* Structure identifier
 D DXSID 1 4
 D* Structure version number
 D DXVER 5 8I 0
 D* Reserved
 D DXXOP 9 12I 0
 D* Application options
 D DXAOP 13 16I 0
 D* Numeric encoding required by application
 D DXENC 17 20I 0
 D* Character set required by application
 D DXCSI 21 24I 0
 D* Length in bytes of message data
 D DXLEN 25 28I 0
 D* Completion code

1434 IBM MQ Developing Applications Reference

 D DXCC 29 32I 0
 D* Reason code qualifying DXCC
 D DXREA 33 36I 0
 D* Response from exit
 D DXRES 37 40I 0
 D* Connection handle
 D DXHCN 41 44I 0

MQXCNVC (Convert characters) on IBM i
The MQXCNVC call converts characters from one character set to another.

This call is part of the IBM MQ Data Conversion Interface (DCI), which is one of the IBM MQ framework
interfaces. Note: This call can be used only from a data-conversion exit.

• “Syntax” on page 1435
• “Parameters” on page 1435
• “RPG invocation (ILE)” on page 1439

Syntax
MQXCNVC HCONN, OPTS, SRCCSI, SRCLEN, SRCBUF, TGTCSI, TGTLEN,

TGTBUF, DATLEN, CMPCOD, REASON)

Parameters
The MQXCNVC call has the following parameters:

HCONN (10-digit signed integer) - input

Connection handle.

This handle represents the connection to the queue manager. It should normally be the handle passed
to the data-conversion exit in the DXHCN field of the MQDXP structure; this handle is not necessarily
the same as the handle specified by the application which issued the MQGET call.

On IBM i, the following special value can be specified for HCONN:
HCDEFH

Default connection handle.

OPTS (10-digit signed integer) - input

Options that control the action of MQXCNVC.

Zero or more of the options described later in this section can be specified. If more than one is
required, the values can be added (do not add the same constant more than once).

Default-conversion option: The following option controls the use of default character conversion:
DCCDEF

Default conversion.

This option specifies that default character conversion can be used if one or both of the character
sets specified on the call is not supported. This allows the queue manager to use an installation-
specified default character set that approximates the specified character set, when converting the
string.

Note: The result of using an approximate character set to convert the string is that some
characters may be converted incorrectly. This can be avoided by using in the string only characters
which are common to both the specified character set and the default character set.

The default character sets are defined by a configuration option when the queue manager is
installed or restarted.

Developing applications reference 1435

If DCCDEF is not specified, the queue manager uses only the specified character sets to convert
the string, and the call fails if one or both of the character sets is not supported.

Padding option: The following option allows the queue manager to pad the converted string with
blanks or discard insignificant trailing characters, in order to make the converted string fit the target
buffer:
DCCFIL

Fill target buffer.

This option requests that conversion take place in such a way that the target buffer is filled
completely:

• If the string contracts when it is converted, trailing blanks are added in order to fill the target
buffer.

• If the string expands when it is converted, trailing characters that are not significant are
discarded to make the converted string fit the target buffer. If this can be done successfully,
the call completes with CCOK and reason code RCNONE.

If there are too few insignificant trailing characters, as much of the string as will fit is placed in
the target buffer, and the call completes with CCWARN and reason code RC2120.

Insignificant characters are:

– Trailing blanks
– Characters following the first null character in the string (but excluding the first null character

itself)
• If the string, TGTCSI , and TGTLEN are such that the target buffer cannot be set completely

with valid characters, the call fails with CCFAIL and reason code RC2144. This can occur when
TGTCSI is a pure DBCS character set (such as UTF-16), but TGTLEN specifies a length that is
an odd number of bytes.

• TGTLEN can be less than or greater than SRCLEN. On return from MQXCNVC, DATLEN has the
same value as TGTLEN.

If this option is not specified:

• The string is allowed to contract or expand within the target buffer as required. Insignificant
trailing characters are not added or discarded.

If the converted string fits in the target buffer, the call completes with CCOK and reason code
RCNONE.

If the converted string is too large for the target buffer, as much of the string as will fit is placed
in the target buffer, and the call completes with CCWARN and reason code RC2120. Note that
fewer than TGTLEN bytes can be returned in this case.

• TGTLEN can be less than or greater than SRCLEN. On return from MQXCNVC, DATLEN is less
than or equal to TGTLEN.

Encoding options: The following options can be used to specify the integer encodings of the source
and target strings. The relevant encoding is used only when the corresponding character set identifier
indicates that the representation of the character set in main storage is dependent on the encoding
used for binary integers. This affects only certain multibyte character sets (for example, UTF-16
character sets).

The encoding is ignored if the character set is a single-byte character set (SBCS), or a multibyte
character set with representation in main storage that is not dependent on the integer encoding.

Only one of the DCCS* values should be specified, combined with one of the DCCT* values:
DCCSNA

Source encoding is the default for the environment and programming language.
DCCSNO

Source encoding is normal.

1436 IBM MQ Developing Applications Reference

DCCSRE
Source encoding is reversed.

DCCSUN
Source encoding is undefined.

DCCTNA
Target encoding is the default for the environment and programming language.

DCCTNO
Target encoding is normal.

DCCTRE
Target encoding is reversed.

DCCTUN
Target encoding is undefined.

The encoding values defined previously can be added directly to the OPTS field. However, if the source
or target encoding is obtained from the MDENC field in the MQMD or other structure, the following
processing must be done:

1. The integer encoding must be extracted from the MDENC field by eliminating the float and packed-
decimal encodings; see “Analyzing encodings on IBM i” on page 1419 for details of how to do this.

2. The integer encoding resulting from step 1 must be multiplied by the appropriate factor before
being added to the OPTS field. These factors are:
DCCSFA

Factor for source encoding
DCCTFA

Factor for target encoding

If not specified, the encoding options default to undefined (DCC*UN). In most cases, this does not
affect the successful completion of the MQXCNVC call. However, if the corresponding character set
is a multibyte character set with representation that is dependent on the encoding (for example, a
UTF-16 character set), the call fails with reason code RC2112 or RC2116 as appropriate.

Default option: If none of the options described previously is specified, the following option can be
used:
DCCNON

No options specified.

DCCNON is defined to aid program documentation. It is not intended that this option be used with
any other, but as its value is zero, such use cannot be detected.

SRCCSI (10-digit signed integer) - input

Coded character set identifier of string before conversion.

This is the coded character set identifier of the input string in SRCBUF.

SRCLEN (10-digit signed integer) - input

Length of string before conversion.

This is the length in bytes of the input string in SRCBUF ; it must be zero or greater.

SRCBUF (1-byte character string x SRCLEN) - input

String to be converted.

This is the buffer containing the string to be converted from one character set to another.

TGTCSI (10-digit signed integer) - input

Coded character set identifier of string after conversion.

This is the coded character set identifier of the character set to which SRCBUF is to be converted.

Developing applications reference 1437

TGTLEN (10-digit signed integer) - input

Length of output buffer.

This is the length in bytes of the output buffer TGTBUF ; it must be zero or greater. It can be less than
or greater than SRCLEN.

TGTBUF (1-byte character string x TGTLEN) - output

String after conversion.

This is the string after it has been converted to the character set defined by TGTCSI. The converted
string can be shorter or longer than the unconverted string. The DATLEN parameter indicates the
number of valid bytes returned.

DATLEN (10-digit signed integer) - output

Length of output string.

This is the length of the string returned in the output buffer TGTBUF. The converted string can be
shorter or longer than the unconverted string.

CMPCOD (10-digit signed integer) - output

Completion code.

It is one of the following:
CCOK

Successful completion.
CCWARN

Warning (partial completion).
CCFAIL

Call failed.

REASON (10-digit signed integer) - output

Reason code qualifying CMPCOD.

If CMPCOD is CCOK:
RCNONE

(0, X'000') No reason to report.

If CMPCOD is CCWARN:
RC2120

(2120, X'848') Converted data too large for buffer.

If CMPCOD is CCFAIL:
RC2010

(2010, X'7DA') Data length parameter not valid.
RC2150

(2150, X'866') DBCS string not valid.
RC2018

(2018, X'7E2') Connection handle not valid.
RC2046

(2046, X'7FE') Options not valid or not consistent.
RC2102

(2102, X'836') Insufficient system resources available.
RC2145

(2145, X'861') Source buffer parameter not valid.
RC2111

(2111, X'83F') Source coded character set identifier not valid.

1438 IBM MQ Developing Applications Reference

RC2112
(2112, X'840') Source integer encoding not recognized.

RC2143
(2143, X'85F') Source length parameter not valid.

RC2071
(2071, X'817') Insufficient storage available.

RC2146
(2146, X'862') Target buffer parameter not valid.

RC2115
(2115, X'843') Target coded character set identifier not valid.

RC2116
(2116, X'844') Target integer encoding not recognized.

RC2144
(2144, X'860') Target length parameter not valid.

RC2195
(2195, X'893') Unexpected error occurred.

For more information about these reason codes, see “Return codes for IBM i (ILE RPG)” on page
1413.

RPG invocation (ILE)

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP MQXCNVC(HCONN : OPTS : SRCCSI :
 C SRCLEN : SRCBUF : TGTCSI :
 C TGTLEN : TGTBUF : DATLEN :
 C CMPCOD : REASON)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 DMQXCNVC PR EXTPROC('MQXCNVC')
 D* Connection handle
 D HCONN 10I 0 VALUE
 D* Options that control the action of MQXCNVC
 D OPTS 10I 0 VALUE
 D* Coded character set identifier of string before conversion
 D SRCCSI 10I 0 VALUE
 D* Length of string before conversion
 D SRCLEN 10I 0 VALUE
 D* String to be converted
 D SRCBUF * VALUE
 D* Coded character set identifier of string after conversion
 D TGTCSI 10I 0 VALUE
 D* Length of output buffer
 D TGTLEN 10I 0 VALUE
 D* String after conversion
 D TGTBUF * VALUE
 D* Length of output string
 D DATLEN 10I 0
 D* Completion code
 D CMPCOD 10I 0
 D* Reason code qualifying CMPCOD
 D REASON 10I 0

MQCONVX (Data conversion exit) on IBM i
This call definition describes the parameters that are passed to the data-conversion exit.

No entry point called MQCONVX is provided by the queue manager (see usage note “11” on page 1441).

This definition is part of the IBM MQ Data Conversion Interface (DCI), which is one of the IBM MQ
framework interfaces.

Developing applications reference 1439

• “Syntax” on page 1440
• “Usage notes” on page 1440
• “Parameters” on page 1441
• “RPG invocation (ILE)” on page 1443

Syntax
MQCONVX (MQDXP, MQMD, INLEN, INBUF, OUTLEN, OUTBUF)

Usage notes
1. A data-conversion exit is a user-written exit which receives control during the processing of an

MQGET call. The function performed by the data-conversion exit is defined by the provider of the
exit; however, the exit must conform to the rules described here, and in the associated parameter
structure MQDXP.

The programming languages that can be used for a data-conversion exit are determined by the
environment.

2. The exit is invoked only if all of the following statements are true:

• The GMCONV option is specified on the MQGET call
• The MDFMT field in the message descriptor is not FMNONE
• The message is not already in the required representation; that is, one or both of the message's
MDCSI and MDENC is different from the value specified by the application in the message descriptor
supplied on the MQGET call

• The queue manager has not already done the conversion successfully
• The length of the application's buffer is greater than zero
• The length of the message data is greater than zero
• The reason code so far during the MQGET operation is RCNONE or RC2079

3. When an exit is being written, consideration should be given to coding the exit in a way that will
allow it to convert messages that have been truncated. Truncated messages can arise in the following
ways:

• The receiving application provides a buffer that is smaller than the message, but specifies the
GMATM option on the MQGET call.

In this case, the DXREA field in the MQDXP parameter on input to the exit will have the value
RC2079.

• The sender of the message truncated it before sending it. This can happen with report messages,
for example (see “Conversion of report messages on IBM i” on page 1429 for more details).

In this case, the DXREA field in the MQDXP parameter on input to the exit will have the value
RCNONE (if the receiving application provided a buffer that was large enough for the message).

Thus the value of the DXREA field on input to the exit cannot always be used to decide whether the
message has been truncated.

The distinguishing characteristic of a truncated message is that the length provided to the exit in the
INLEN parameter will be less than the length implied by the format name contained in the MDFMT
field in the message descriptor. The exit should therefore check the value of INLEN before attempting
to convert any of the data; the exit should not assume that the full amount of data implied by the
format name has been provided.

If the exit has not been written to convert truncated messages, and INLEN is less than the value
expected, the exit should return XRFAIL in the DXRES field of the MQDXP parameter, with the DXCC
field set to CCWARN and the DXREA field set to RC2110.

1440 IBM MQ Developing Applications Reference

If the exit has been written to convert truncated messages, the exit should convert as much of
the data as possible (see next usage note), taking care not to attempt to examine or convert data
beyond the end of INBUF. If the conversion completes successfully, the exit should leave the DXREA
field in the MQDXP parameter unchanged. This returns RC2079 if the message was truncated by the
receiver's queue manager, and RCNONE if the message was truncated by the sender of the message.

It is also possible for a message to expand during conversion, to the point where it is bigger than
OUTBUF. In this case the exit must decide whether to truncate the message; the DXAOP field in the
MQDXP parameter will indicate whether the receiving application specified the GMATM option.

4. Generally it is recommended that all of the data in the message provided to the exit in INBUF is
converted, or that none of it is. An exception to this, however, occurs if the message is truncated,
either before conversion or during conversion; in this case there may be an incomplete item at the
end of the buffer (for example: one byte of a double-byte character, or 3 bytes of a 4-byte integer).
In this situation it is recommended that the incomplete item should be omitted, and unused bytes in
OUTBUF set to nulls. However, complete elements or characters within an array or string should be
converted.

5. When an exit is needed for the first time, the queue manager attempts to load an object that has
the same name as the format (apart from extensions). The object loaded must contain the exit that
processes messages with that format name. It is recommended that the exit name, and the name of
the object that contain the exit, should be identical, although not all environments require this.

6. A new copy of the exit is loaded when an application attempts to retrieve the first message that uses
that MDFMT since the application connected to the queue manager. A new copy might also be loaded
at other times, if the queue manager has discarded a previously loaded copy. For this reason, an exit
should not attempt to use static storage to communicate information from one invocation of the exit
to the next - the exit may be unloaded between the two invocations.

7. If there is a user-supplied exit with the same name as one of the built-in formats supported by the
queue manager, the user-supplied exit does not replace the built-in conversion routine. The only
circumstances in which such an exit is invoked are:

• If the built-in conversion routine cannot handle conversions to or from either the MDCSI or MDENC
involved, or

• If the built-in conversion routine has failed to convert the data (for example, because there is a field
or character which cannot be converted).

8. The scope of the exit is environment-dependent. MDFMT names should be chosen so as to minimize
the risk of clashes with other formats. It is recommended that they start with characters that identify
the application defining the format name.

9. The data-conversion exit runs in an environment like that of the program which issued the MQGET
call; environment includes address space and user profile (where applicable). The program could be
a message channel agent sending messages to a destination queue manager that does not support
message conversion. The exit cannot compromise the queue manager's integrity, since it does not
run in the queue manager's environment.

10. The only MQI call which can be used by the exit is MQXCNVC; attempting to use other MQI calls fails
with reason code RC2219, or other unpredictable errors.

11. No entry point called MQCONVX is provided by the queue manager. The name of the exit should be
the same as the format name (the name contained in the MDFMT field in MQMD), although this is not
required in all environments.

Parameters
The MQCONVX call has the following parameters:

MQDXP (MQDXP) - input/output

Data-conversion exit parameter block.

Developing applications reference 1441

This structure contains information relating to the invocation of the exit. The exit sets information
in this structure to indicate the outcome of the conversion. See “MQDXP (Data-conversion exit
parameter) on IBM i” on page 1430 for details of the fields in this structure.

MQMD (MQMD) - input/output

Message descriptor.

On input to the exit, this is the message descriptor that would be returned to the application if no
conversion were performed. It therefore contains the MDFMT, MDENC, and MDCSI of the unconverted
message contained in INBUF.

Note: The MQMD parameter passed to the exit is always the most recent version of MQMD supported
by the queue manager which invokes the exit. If the exit is intended to be portable between different
environments, the exit should check the MDVER field in MQMD to verify that the fields that the exit
needs to access are present in the structure.

On IBM i, the exit is passed a version-2 MQMD.

On output, the exit should change the MDENC and MDCSI fields to the values requested by the
application, if conversion was successful; these changes will be reflected back to the application. Any
other changes that the exit makes to the structure are ignored; they are not reflected back to the
application.

If the exit returns XROK in the DXRES field of the MQDXP structure, but does not change the MDENC or
MDCSI fields in the message descriptor, the queue manager returns for those fields the values that the
corresponding fields in the MQDXP structure had on input to the exit.

INLEN (10-digit signed integer) - input

Length in bytes of INBUF.

This is the length of the input buffer INBUF, and specifies the number of bytes to be processed by the
exit. INLEN is the lesser of the length of the message data before conversion, and the length of the
buffer provided by the application on the MQGET call.

The value is always greater than zero.

INBUF (1-byte bit string x INLEN) - input

Buffer containing the unconverted message.

This contains the message data before conversion. If the exit is unable to convert the data, the queue
manager returns the contents of this buffer to the application after the exit has completed.

Note: The exit should not alter INBUF ; if this parameter is altered, the results are undefined.

OUTLEN (10-digit signed integer) - input

Length in bytes of OUTBUF.

This is the length of the output buffer OUTBUF, and is the same as the length of the buffer provided by
the application on the MQGET call.

The value is always greater than zero.

OUTBUF (1-byte bit string x OUTLEN) - output

Buffer containing the converted message.

On output from the exit, if the conversion was successful (as indicated by the value XROK in the
DXRES field of the MQDXP parameter), OUTBUF contains the message data to be delivered to the
application, in the requested representation. If the conversion was unsuccessful, any changes that the
exit has made to this buffer are ignored.

1442 IBM MQ Developing Applications Reference

RPG invocation (ILE)

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP exitname(MQDXP : MQMD : INLEN :
 C INBUF : OUTLEN : OUTBUF)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 Dexitname PR EXTPROC('exitname')
 D* Data-conversion exit parameter block
 D MQDXP 44A
 D* Message descriptor
 D MQMD 364A
 D* Length in bytes of INBUF
 D INLEN 10I 0 VALUE
 D* Buffer containing the unconverted message
 D INBUF * VALUE
 D* Length in bytes of OUTBUF
 D OUTLEN 10I 0 VALUE
 D* Buffer containing the converted message
 D OUTBUF * VALUE

End of product-sensitive programming interface

User exits, API exits, and installable services reference
Use the linformation in this section to help you develop your User exits, API exits, and installable services
applications:

• “MQIEP structure” on page 1443
• “Data-conversion exit reference” on page 1447
• “MQ_PUBLISH_EXIT - Publish exit” on page 1451
• “Channel-exit calls and data structures” on page 1459
• “API exit reference” on page 1547
• “Installable services interface reference information” on page 1607

Related concepts
User exits, API exits, and IBM MQ installable services
Related tasks
Extending queue manager facilities

MQIEP structure
The MQIEP structure contains an entry point for each function call that exits are permitted to make.

Fields
StrucId

Type: MQCHAR4 - input

Structure identifier. The value is as follows:
MQIEP_STRUC_ID

Version
Type: MQLONG - input

Structure version number. The value is as follows:
MQIEP_VERSION_1

Version 1 structure version number.

Developing applications reference 1443

MQIEP_CURRENT_VERSION
Current version of the structure.

StrucLength
Type: MQLONG

Size of the MQIEP structure in bytes. The value is as follows:
MQIEP_LENGTH_1

Flags
Type: MQLONG

Provides information about the function addresses. A flag to indicate if the library is threaded can be
used with a flag to indicate if the library is a client or server library.

The following value is used to specify no library information:
MQIEPF_NONE

One of the following values is used to specify if the shared library is threaded or non-threaded:
MQIEPF_NON_THREADED_LIBRARY

A non-threaded shared library
MQIEPF_THREADED_LIBRARY

A threaded shared library

One of the following values is used to specify if the shared library is a client or a server shared library:
MQIEPF_CLIENT_LIBRARY

A client shared library
MQIEPF_LOCAL_LIBRARY

A server shared library

Reserved
Type: MQPTR

MQBACK_Call
Type: PMQ_BACK_CALL

Address of the MQBACK call.

MQBEGIN_Call
Type: PMQ_BEGIN_CALL

Address of the MQBEGIN call.

MQBUFMH_Call
Type: PMQ_BUFMH_CALL

Address of the MQBUFMH call.

MQCB_Call
Type: PMQ_CB_CALL

Address of the MQCB call.

MQCLOSE_Call
Type: PMQ_CLOSE_CALL

Address of the MQCLOSE call.

MQCMIT_Call
Type: PMQ_CMIT_CALL

Address of the MQCMIT call.

MQCONN_Call
Type: PMQ_CONN_CALL

1444 IBM MQ Developing Applications Reference

Address of the MQCONN call.

MQCONNX_Call
Type: PMQ_CONNX_CALL

Address of the MQCONNX call.

MQCRTMH_Call
Type: PMQ_CRTMH_CALL

Address of the MQCRTMH call.

MQCTL_Call
Type: PMQ_CTL_CALL

Address of the MQCTL call.

MQDISC_Call
Type: PMQ_DISC_CALL

Address of the MQDISC call.

MQDLTMH_Call
Type: PMQ_DLTMH_CALL

Address of the MQDLTMH call.

MQDLTMP_Call
Type: PMQ_DLTMP_CALL

Address of the MQDLTMP call.

MQGET_Call
Type: PMQ_GET_CALL

Address of the MQGET call.

MQINQ_Call
Type: PMQ_INQ_CALL

Address of the MQINQ call.

MQINQMP_Call
Type: PMQ_INQMP_CALL

Address of the MQINQMP call.

MQMHBUF_Call
Type: PMQ_MHBUF_CALL

Address of the MQMHBUF call.

MQOPEN_Call
Type: PMQ_OPEN_CALL

Address of the MQOPEN call.

MQPUT_Call
Type: PMQ_PUT_CALL

Address of the MQPUT call.

MQPUT1_Call
Type: PMQ_PUT1_CALL

Address of the MQPUT1 call.

MQSET_Call
Type: PMQ_SET_CALL

Address of the MQSET call.

Developing applications reference 1445

MQSETMP_Call
Type: PMQ_SETMP_CALL

Address of the MQSETMP call.

MQSTAT_Call
Type: PMQ_STAT_CALL

Address of the MQSTAT call.

MQSUB_Call
Type: PMQ_SUB_CALL

Address of the MQSUB call.

MQSUBRQ_Call
Type: PMQ_SUBRQ_CALL

Address of the MQSUBRQ call.

MQXCNVC_Call
Type: PMQ_XCNVC_CALL

Address of the MQXCNVC call.

MQXCLWLN_Call
Type: PMQ_XCLWLN_CALL

Address of the MQXCLWLN call.

MQXDX_Call
Type: PMQ_XDX_CALL

Address of the MQXDX call.

MQXEP_Call
Type: PMQ_XEP_CALL

Address of the MQXEP call.

MQZEP_Call
Type: PMQ_ZEP_CALL

Address of the MQZEP call.

C Declaration

struct tagMQIEP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Structure length */
 MQLONG Flags; /* Flags */
 MQPTR Reserved; /* Reserved */
 PMQ_BACK_CALL MQBACK_Call; /* Address of MQBACK */
 PMQ_BEGIN_CALL MQBEGIN_Call; /* Address of MQBEGIN */
 PMQ_BUFMH_CALL MQBUFMH_Call; /* Address of MQBUFMH */
 PMQ_CB_CALL MQCB_Call; /* Address of MQCB */
 PMQ_CLOSE_CALL MQCLOSE_Call; /* Address of MQCLOSE */
 PMQ_CMIT_CALL MQCMIT_Call; /* Address of MQCMIT */
 PMQ_CONN_CALL MQCONN_Call; /* Address of MQCONN */
 PMQ_CONNX_CALL MQCONNX_Call; /* Address of MQCONNX */
 PMQ_CRTMH_CALL MQCRTMH_Call; /* Address of MQCRTMH */
 PMQ_CTL_CALL MQCTL_Call; /* Address of MQCTL */
 PMQ_DISC_CALL MQDISC_Call; /* Address of MQDISC */
 PMQ_DLTMH_CALL MQDLTMH_Call; /* Address of MQDLTMH */
 PMQ_DLTMP_CALL MQDLTMP_Call; /* Address of MQDLTMP */
 PMQ_GET_CALL MQGET_Call; /* Address of MQGET */
 PMQ_INQ_CALL MQINQ_Call; /* Address of MQINQ */
 PMQ_INQMP_CALL MQINQMP_Call; /* Address of MQINQMP */
 PMQ_MHBUF_CALL MQMHBUF_Call; /* Address of MQMHBUF */
 PMQ_OPEN_CALL MQOPEN_Call; /* Address of MQOPEN */
 PMQ_PUT_CALL MQPUT_Call; /* Address of MQPUT */
 PMQ_PUT1_CALL MQPUT1_Call; /* Address of MQPUT1 */

1446 IBM MQ Developing Applications Reference

 PMQ_SET_CALL MQSET_Call; /* Address of MQSET */
 PMQ_SETMP_CALL MQSETMP_Call; /* Address of MQSETMP */
 PMQ_STAT_CALL MQSTAT_Call; /* Address of MQSTAT */
 PMQ_SUB_CALL MQSUB_Call; /* Address of MQSUB */
 PMQ_SUBRQ_CALL MQSUBRQ_Call; /* Address of MQSUBRQ */
 PMQ_XCLWLN_CALL MQXCLWLN_Call; /* Address of MQXCLWLN */
 PMQ_XCNVC_CALL MQXCNVC_Call; /* Address of MQXCNVC */
 PMQ_XDX_CALL MQXDX_Call; /* Address of MQXDX */
 PMQ_XEP_CALL MQXEP_Call; /* Address of MQXEP */
 PMQ_ZEP_CALL MQZEP_Call; /* Address of MQZEP */
};

Data-conversion exit reference
For z/OS, you must write data-conversion exits in assembler language. For other platforms, it is
recommended that you use the C programming language.

To help you to create a data-conversion exit program, the following resources are supplied:

• A skeleton source file
• A convert characters call
• A utility that creates a fragment of code that performs data conversion on data type structures This

utility takes C input only. On z/OS, it produces assembler code.

For the procedure for writing the programs see:

• Writing a data-conversion exit program for IBM MQ for IBM i

• Writing a data-conversion exit program for IBM MQ for z/OS
• Writing a data-conversion exit for IBM MQ for AIX or Linux systems
• Writing a data-conversion exit for IBM MQ for Windows

Skeleton source file
These can be used as your starting point when writing a data-conversion exit program.

The files supplied are listed in Table 817 on page 1447.

Table 817. Skeleton source files

Platform File

AIX amqsvfc0.c

IBM i QMQMSAMP/QCSRC(AMQSVFC4)

Linux amqsvfc0.c

Windows systems amqsvfc0.c

z/OS CSQ4BAX8 (“1” on page 1447)
CSQ4BAX9 (“2” on page 1447)
CSQ4CAX9 (“3” on page 1447)

Notes:

1. Illustrates the MQXCVNC call.
2. A wrapper for the code fragments generated by the utility for use in all environments except CICS.
3. A wrapper for the code fragments generated by the utility for use in the CICS environment.

Developing applications reference 1447

Convert characters call
Use the MQXCNVC (convert characters) call from within a data-conversion exit program to convert
character message data from one character set to another. For certain multibyte character sets (for
example, UTF-16 character sets), the appropriate options must be used.

No other MQI calls can be made from within the exit; an attempt to make such a call fails with reason
code MQRC_CALL_IN_PROGRESS.

See “MQXCNVC - Convert characters” on page 909 for further information on the MQXCNVC call and
appropriate options.

Utility for creating conversion-exit code
Use this information to learn more about creating conversion-exit code.

The commands for creating conversion-exit code are:

IBM i
CVTMQMDTA (Convert IBM MQ Data Type)

AIX, Linux, and Windows systems
crtmqcvx (Create IBM MQ conversion-exit)

z/OS
CSQUCVX

The command for your platform produces a fragment of code that performs data conversion on data
type structures, for use in your data-conversion exit program. The command takes a file containing one

or more C language structure definitions. On z/OS, it then generates a data set containing
assembler code fragments and conversion functions. On other platforms, it generates a file with a C
function to convert each structure definition. On z/OS, the utility requires access to the LE/370 runtime
library SCEERUN.

Invoking the CSQUCVX utility on z/OS

Figure 10 on page 1448 shows an example of the JCL used to invoke the CSQUCVX utility.

//CVX EXEC PGM=CSQUCVX
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
// DD DISP=SHR,DSN=thlqual.SCSQLOAD
// DD DISP=SHR,DSN=le370qual.SCEERUN
//SYSPRINT DD SYSOUT=*
//CSQUINP DD DISP=SHR,DSN=MY.MQSERIES.FORMATS(MSG1)
//CSQUOUT DD DISP=OLD,DSN=MY.MQSERIES.EXITS(MSG1)

Figure 10. Sample JCL used to invoke the CSQUCVX utility

z/OS data definition statements

The CSQUCVX utility requires DD statements with the following DD names shown in Table 818 on page
1448:

Table 818. Data definition statement names and descriptions

DD statement Description

SYSPRINT Specifies a data set or print spool class for reports
and error messages.

1448 IBM MQ Developing Applications Reference

Table 818. Data definition statement names and descriptions (continued)

DD statement Description

CSQUINP Specifies the partitioned data set containing the
definitions of the data structures to be converted.

CSQUOUT Specifies the partitioned data set where the
conversion code fragments are to be written. The
logical record length (LRECL) must be 80 and the
record format (RECFM) must be FB.

Error messages in AIX, Linux, and Windows systems
The crtmqcvx command returns messages in the range AMQ7953 through AMQ7970.

These messages are listed in Messages and reason codes IBM MQ Messages.

There are two main types of error:

• Major errors, such as syntax errors, when processing cannot continue.

A message is displayed on the screen giving the line number of the error in the input file. The output file
might have been partially created.

• Other errors when a message is displayed stating that a problem has been found but that parsing of the
structure can continue.

The output file has been created and contains error information about the problems that have occurred.
This error information is prefixed by #error so that the code produced is not accepted by any compiler
without intervention to rectify the problems.

Valid syntax
Your input file for the utility must conform to the C language syntax.

If you are unfamiliar with C, refer to the C example in this topic.

In addition, be aware of the following rules:

• typedef is recognized only before the struct keyword.
• A structure tag is required on your structure declarations.
• You can use empty square brackets [] to denote a variable length array or string at the end of a

message.
• Multidimensional arrays and arrays of strings are not supported.
• The following additional data types are recognized:

– MQBOOL
– MQBYTE
– MQCHAR
– MQFLOAT32
– MQFLOAT64
– MQSHORT
– MQLONG
– MQINT8
– MQUINT8
– MQINT16
– MQUINT16
– MQINT32

Developing applications reference 1449

– MQUINT32
– MQINT64
– MQUINT64

MQCHAR fields are code page converted, but MQBYTE, MQINT8 and MQUINT8 are left untouched.
If the encoding is different, MQSHORT, MQLONG, MQINT16, MQUINT16, MQINT32, MQUINT32,
MQINT64, MQUINT64, MQFLOAT32, MQFLOAT64 and MQBOOL are converted accordingly.

• Do not use the following types of data:

– double
– pointers
– bit-fields

This is because the utility for creating conversion-exit code does not provide the facility to convert these
data types. To overcome this, you can write your own routines and call them from the exit.

Other points to note:

• Do not use sequence numbers in the input data set.
• If there are fields for which you want to provide your own conversion routines, declare them as

MQBYTE, and then replace the generated CMQXCFBA macros with your own conversion code.

C example

 struct TEST { MQLONG SERIAL_NUMBER;
 MQCHAR ID[5];
 MQINT16 VERSION;
 MQBYTE CODE[4];
 MQLONG DIMENSIONS[3];
 MQCHAR NAME[24];
 } ;

This corresponds to the following declarations in other programming languages:

COBOL

 10 TEST.
 15 SERIAL-NUMBER PIC S9(9) BINARY.
 15 ID PIC X(5).
 15 VERSION PIC S9(4) BINARY.
 * CODE IS NOT TO BE CONVERTED
 15 CODE PIC X(4).
 15 DIMENSIONS PIC S9(9) BINARY OCCURS 3 TIMES.
 15 NAME PIC X(24).

System/390

TEST EQU *
SERIAL_NUMBER DS F
ID DS CL5
VERSION DS H
CODE DS XL4
DIMENSIONS DS 3F
NAME DS CL24

PL/I
Supported on z/OS only

 DCL 1 TEST,

1450 IBM MQ Developing Applications Reference

 2 SERIAL_NUMBER FIXED BIN(31),
 2 ID CHAR(5),
 2 VERSION FIXED BIN(15),
 2 CODE CHAR(4), /* not to be converted */
 2 DIMENSIONS(3) FIXED BIN(31),
 2 NAME CHAR(24);

MQ_PUBLISH_EXIT - Publish exit
The MQ_PUBLISH_EXIT call can inspect and alter messages delivered to subscribers.

Purpose
Use the publish exit to inspect and alter messages delivered to subscribers:

• Examine the contents of a message published to each subscriber
• Modify the contents of a message published to each subscriber
• Alter the queue to which a message is put
• Stop the delivery of a message to a subscriber

This exit is not available on IBM MQ for z/OS.

Syntax
MQ_PUBLISH_EXIT (ExitParms, PubContext, SubContext)

Parameters
ExitParms (MQPSXP)- Input/Output

ExitParms contains information about the invocation of the exit.
PubContext (MQPBC) - Input

PubContext contains contextual information about the publisher of the publication.
SubContext (MQSBC) - Input/Output

SubContext contains contextual information about the subscriber receiving the publication.

MQPSXP - Publish exit data structure
The MQPSXP structure describes the information that is passed to and returned from the publish exit.

Table 819 on page 1451 summarizes the fields in the structure:

Table 819. Fields in MQPSXP

Field Description

StrucID Structure identifier

Version Structure version number

ExitId Type of exit that is being called

ExitReason Reason for calling the exit

ExitResponse Response from the exit

ExitResponse2 Secondary response from exit

Feedback Feedback code

ExitUserArea Exit user area

ExitData Exit data

QMgrName Name of local queue manager

Developing applications reference 1451

Table 819. Fields in MQPSXP (continued)

Field Description

Hconn Connection handle

MsgDescPtr Address of message descriptor (MQMD)

MsgHandle Handle to message properties (MQHMSG)

MsgInPtr Address of input message

MsgInLength Length of input message

MsgOutPtr Address of output message

MsgOutLength Length of output message

pEntryPoints Address of the MQIEP structure

Fields
StrucID (MQCHAR4)

StrucID is the structure identifier. The value is as follows:
MQPSXP_STRUCID

MQPSXP_STRUCID is the identifier for the publish exit parameter structure. For the C programming
language, the constant MQPSXP_STRUC_ID_ARRAY is also defined; it has the same value as
MQPSXP_STRUC_ID, but is an array of characters instead of a string.

StrucID is an input field to the exit.

Version (MQLONG)
Version is the structure version number. The value is as follows:
MQPSXP_VERSION_1

MQPSXP_VERSION_1 is the Version 1 publish exit parameter structure. The constant
MQPSXP_CURRENT_VERSION is also defined with the same value.

Version is an input field to the exit.

ExitId (MQLONG)
ExitId is the type of exit that is being called. The value is as follows:
MQXT_PUBLISH_EXIT

Publish exit.

ExitId is an input field to the exit.

ExitReason (MQLONG)
ExitReason is the reason for calling the exit. The possible values are:
MQXR_INIT

The exit for this connection is called for initialization. The exit might acquire and initialize the
resources that it needs; for example, main storage.

MQXR_TERM
The exit for this connection is called because the exit is about to be stopped. The exit must free
any resources that it has acquired since it was initialized; for example, main storage.

MQXR_PUBLICATION
The exit is called by the queue manager before it puts a publication onto a message queue
of a subscriber. The exit can change the message, not put the message on the queue, or halt
publication.

ExitReason is an input field to the exit.

1452 IBM MQ Developing Applications Reference

ExitResponse (MQLONG)
Set ExitResponse in the exit to specify how processing must continue. ExitResponse is one of the
following values:
MQXCC_OK

Set MQXCC_OK to continue processing normally. Set MQXCC_OK in response to any values of
ExitReason.
If ExitReason has the value MQXR_PUBLICATION, the DestinationQName and
DestinationQMgrName fields of the MQSBC structure identify the destination to which the
message is sent.

MQXCC_FAILED
Set MQXCC_FAILED to stop the publish operation. The completion code MQCC_FAILED and
reason code 2557 (09FD) (RC2557): MQRC_PUBLISH_EXIT_ERROR is set on return from the exit.

MQXCC_SUPPRESS_FUNCTION
Set MQXCC_SUPPRESS_FUNCTION to stop normal processing of the message. Only set
MQXCC_SUPPRESS_FUNCTION if ExitReason has the value MQXR_PUBLICATION.
The message continues to be processed by the queue manager according to the
MQRO_DISCARD_MSG option in the Report field in the message descriptor of the message.

• If the MQRO_DISCARD_MSG option is specified, the message is not delivered to the subscriber.
• If the MQRO_DISCARD_MSG option is not specified, the message is placed on the dead-letter

queue. If there is no dead-letter queue, or the message cannot be placed successfully on
the dead-letter queue, the publication is not delivered to the subscriber. The delivery of the
publication to other subscribers depends on the values of the PMSGDLV and NPMSGDLV topic
object attributes. For an explanation of these attributes, see the parameter descriptions for the
DEFINE TOPIC command.

ExitResponse is an output field from the exit.

ExitResponse2 (MQLONG)
ExitResponse2 is reserved for future use.

Feedback (MQLONG)
Feedback is the feedback code to be used if the exit returns MQXCC_SUPPRESS_FUNCTION in
ExitResponse.

On input to the exit, Feedback always has the value MQFB_NONE. If the exit returns
MQXCC_SUPPRESS_FUNCTION, set Feedback to the value to be used for the message
when the queue manager places it on the dead-letter queue. On return from the exit,
if Feedback has the original value MQFB_NONE, the queue manager sets Feedback to
MQFB_STOPPED_BY_PUBSUB_EXIT.

Feedback is an input/output field to the exit.

ExitUserArea (MQBYTE16)
ExitUserArea is a field that is available for the exit to use. Each connection has a separate
ExitUserArea. The length of ExitUserArea is given by MQ_EXIT_USER_AREA_LENGTH.
The ExitReason field has the value MQXR_INIT on the first invocation of the exit. ExitUserArea is
initialized to MQXUA_NONE on the first invocation of the exit for a connection. Subsequent changes to
ExitUserArea are preserved across invocations of the exit.

ExitUserArea is an input/output field to the exit.

ExitData (MQCHAR32)
ExitData is fixed exit data defined by the PublishExitData parameter of the stanza in the
initialization file of the queue manager. The data is padded with blanks to the full length of the field. If
there is no fixed exit data defined in the initialization file, ExitData is blank. The length of ExitData
is given by MQ_EXIT_DATA_LENGTH.

ExitData is an input field to the exit.

Developing applications reference 1453

QMgrName (MQCHAR48)
QMgrName is the name of the local queue manager. The name is padded with blanks to the full length
of the field. The length of this field is given by MQ_Q_MGR_NAME_LENGTH.

QMgrName is an input field to the exit.

Hconn (MQHCONN)
Hconn is the handle representing a connection to the queue manager. Only use Hconn as a parameter
to the MQSETMP, MQINQMMP, or MQDLTMP message property function calls to work with message
properties.

Hconn is an input field to the exit.

MsgDescPtr (PMQMD)
MsgDescPtr is the address of message descriptor (MQMD) of the message being processed, and
is a copy of the MQMD returned from the MQPUT call. The exit can change the contents of the
message descriptor. Any change to the contents of the message descriptor must be done with care. In
particular, in the case where the SubType field of the MQSBC structure is of value MQSUBTYPE_PROXY,
the CorrelId field in the message descriptor must not be changed.

No message descriptor is passed to the exit if ExitReason is MQXR_INIT or MQXR_TERM ; in these
cases, MsgDescPtr is the null pointer.

MsgDescPtr is an input field to the exit.

MsgHandle (MQHMSG)
MsgHandle is the handle to message properties. Only use MsgHandle with the MQSETMP, MQINQMMP,
or MQDLTMP message property function calls to work with message properties.

MsgHandle is an input field to the exit.

MsgInPtr (PMQVOID)
MsgInPtr is the address of the input message data. The contents of the buffer addressed by
MsgInPtr can be modified by the exit; see MsgOutPtr .

MsgInPtr is an input field to the exit.

MsgInLength (MQLONG)
MsgInLength is the length in bytes of the message data passed to the exit. The address of the data is
given by MsgInPtr.

MsgInLength is an input field to the exit.

MsgOutPtr (PMQVOID)
MsgOutPtr is the address of a buffer containing message data that is returned from the exit. On entry
to the exit, MsgOutPtr is null. On return from the exit, if the value is still null, the queue manager
sends the message specified by MsgInPtr, with the length given by MsgInLength.

If the exit modifies the message data, use one of the following procedures:

• If the length of the data does not change, the data can be modified in the buffer addressed by
MsgInPtr. In this case, do not change MsgOutPtr and MsgOutLength.

• If the modified data is shorter than the original data, the data can be modified in the buffer
addressed by MsgInPtr. In this case MsgOutPtr must be set to the address of the input message
buffer, and MsgOutLength set to the new length of the message data.

• If the modified data is, or might be, longer than the original data, the exit must obtain a new
message buffer. Copy the modified data into it. Set MsgOutPtr to the address of the new buffer, and
set MsgOutLength to the length of the new message data. The exit is responsible for freeing the
buffer addressed by MsgOutPtr when the exit is next called.

Note: MsgOutPtr is always the null pointer on input to the exit, and not the address of a previously
obtained message buffer. To free the previously obtained buffer, the exit must save its address and
length. Save the information either in ExitUserArea, or in a control block that has its address saved
in ExitUserArea.

1454 IBM MQ Developing Applications Reference

MsgOutPtr is an input/output field to the exit.

MsgOutLength (MQLONG)
MsgOutLength is the length in bytes of the message data returned by the exit. On input to the
exit, this field is always zero. On return from the exit, this field is ignored if MsgOutPtr is null. See
MsgOutPtr for information about modifying the message data.

MsgOutLength is an input/output field to the exit.

pEntryPoints (PMQIEP)
pEntryPoints is the address of an MQIEP structure through which MQI and DCI calls can be made.

C language declaration - MQPSXP

typedef struct tagMQPSXP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG ExitId; /* Type of exit */
 MQLONG ExitReason; /* Reason for invoking exit */
 MQLONG ExitResponse; /* Response from exit */
 MQLONG ExitResponse2; /* Reserved */
 MQLONG Feedback; /* Feedback code */
 MQBYTE16 ExitUserArea; /* Exit user area */
 MQCHAR32 ExitData; /* Exit data */
 MQCHAR48 QMgrName; /* Name of local queue manager */
 MQHCONN Hconn; /* Connection handle */
 MQHMSG MsgHandle; /* Handle to message properties */
 PMQMD MsgDescPtr; /* Address of message descriptor */
 PMQVOID MsgInPtr; /* Address of input message data */
 MQLONG MsgInLength; /* Length of input message data */
 PMQVOID MsgOutPtr; /* Address of output message data */
 MQLONG MsgOutLength; /* Length of output message data */
 /* Ver:1 */
 PMQIEP pEntryPoints; /* Address of the MQIEP structure */
 /* Ver:2 */
} MQPSXP;

MQPBC - Publication context data structure
The MQPBC structure contains the contextual information, relating to the publisher of the publication, that
is passed to the publish exit.

Table 820 on page 1455 summarizes the fields in the structure:

Table 820. Fields in MQPBC

Field Description

StrucID Structure identifier

Version Structure version number

PubTopicString Publish topic string

MsgDescPtr Address of message descriptor (MQMD)

Fields
StrucID (MQCHAR4)

StrucID is the structure identifier. The value is as follows:
MQPBC_STRUCID

MQPBC_STRUCID is the identifier for the publication context structure. For the C programming
language, the constant MQPBC_STRUC_ID_ARRAY is also defined; it has the same value as
MQPBC_STRUC_ID, but is an array of characters instead of a string.

StrucID is an input field to the exit.

Developing applications reference 1455

Version (MQLONG)
Version is the structure version number. The value is as follows:
MQPBC_VERSION_1

MQPBC_VERSION_1 is the Version 1 publish exit parameter structure.
MQPBC_VERSION_2

MQPBC_VERSION_2 is the Version 2 publish exit parameter structure. The constant
MQPBC_CURRENT_VERSION is also defined with the same value.

Version is an input field to the exit.

PubTopicString (MQCHARV)
PubTopicString is the topic string being published to.

PubTopicString is an input field to the exit.

MsgDescPtr (PMQMD)
MsgDescPtr is the address of a copy of the message descriptor (MQMD) for the message being
processed.

MsgDescPtr is an input field to the exit.

C language declaration - MQPBC

typedef struct tagMQPBC {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQCHARV PubTopicString; /* Publish topic string */
 PMQMD MsgDescPtr; /* Address of message descriptor */
} MQPBC;

MQSBC - Subscription context data structure
The MQSBC structure contains the contextual information, relating to the subscriber that is receiving the
publication, that is passed to the publish exit.

Table 821 on page 1456 summarizes the fields in the structure:

Table 821. Fields in MQSBC

Field Description

StrucID Structure identifier

Version Structure version number

DestinationQMgrName Name of destination queue manager

DestinationQName Name of destination queue

SubType Type of subscription

SubOptions Subscription options

ObjectName Object name

ObjectString Object string

SubTopicString Subscription topic string

SubName Subscription name

SubId Subscription identifier

SelectionString Address of selection string

SubLevel Subscription level

1456 IBM MQ Developing Applications Reference

Table 821. Fields in MQSBC (continued)

Field Description

PSProperties Publish/subscribe properties

Fields
StrucID (MQCHAR4)

Structure identifier. The value is as follows:
MQSBC_STRUCID

MQSBC_STRUCID is the identifier for the publish exit parameter structure. For the C programming
language, the constant MQSBC_STRUC_ID_ARRAY is also defined; MQSBC_STRUC_ID_ARRAY has
the same value as MQSBC_STRUC_ID, but is an array of characters instead of a string.

StrucID is an input field to the exit.

Version (MQLONG)
Structure version number. The value is as follows:
MQSBC_VERSION_1

Version 1 publish exit parameter structure. The constant MQSBC_CURRENT_VERSION is also
defined with the same value.

Version is an input field to the exit.

DestinationQMgrName (MQCHAR48)
DestinationQMgrName is the name of the queue manager to which the message is being sent. The
name is padded with blanks to the full length of the field. The name can be altered by the exit. The
length of this field is given by MQ_Q_MGR_NAME_LENGTH.

DestinationQMgrName is an input/output field to the exit; see note.

DestinationQName (MQCHAR48)
DestinationQName is the name of the queue to which the message is being sent. The name is
padded with blanks to the full length of the field. The name can be altered by the exit. The length of
this field is given by MQ_Q_NAME_LENGTH.

DestinationQName is an input/output field to the exit; see note.

SubType (MQLONG)
SubType indicates how the subscription was created. Valid values are MQSUBTYPE_API,
MQSUBTYPE_ADMIN and MQSUBTYPE_PROXY ; see Inquire Subscription Status (Response).

SubType is an input field to the exit.

SubOptions (MQLONG)
SubOptions are the subscription options; see “Options (MQLONG)” on page 566 for a description of
values this field can take.

SubOptions is an input field to the exit.

ObjectName (MQCHAR48)
ObjectName is the name of the topic object as defined on the local queue manager. The length of
this field is given by MQ_TOPIC_NAME_LENGTH. The object name is the name of the administrative
topic object that the queue manager has associated with the topic string. Even if the subscriber
provided a topic object as part of the subscription, the ObjectName might be a different topic
object. The association of a topic object with a subscription depends upon the full resolution of
SubTopicString.

ObjectName is an input field to the exit.

ObjectString (MQCHARV)
ObjectString is the full topic string of the publication that was subscribed to. Any wildcards in the
original subscription string are resolved. It is different to the MQSD subscription ObjectString field

Developing applications reference 1457

described in “ObjectString (MQCHARV)” on page 575, which might contain wildcards, and is exclusive
of any object name provided by the subscriber.

ObjectString is an input field to the exit.

SubTopicString (MQCHARV)
SubTopicString is the complete topic string as supplied by the subscriber. SubTopicString is the
combination of the topic string defined in a topic object, and a topic string. A subscriber must provide
either a topic object, a topic string, or both. If the subscriber provides a topic string, it might contain
wildcards.

SubTopicString is an input field to the exit.

SubName (MQCHARV)
SubName is the subscription name that is provided either by the subscriber, or is a generated name.

SubName is an input field to the exit.

SubId (MQBYTE 24)
SubId is the unique internal subscription identifier.

SubId is an input field to the exit.

SelectionString (MQCHARV)
SelectionString is the selection criteria used when subscribing for messages from a topic; see
Selectors.

SelectionString is an input field to the exit.

SubLevel (MQLONG)
SubLevel is the interception level associated with the subscription; see “SubLevel (MQLONG)” on
page 579 for further details.

SubLevel is an input field to the exit.

PSProperties (MQLONG)
PSProperties are the publish/subscribe properties. They specify how publish/subscribe
related message properties are added to messages sent to this subscription. Possible values
are MQPSPROP_NONE, MQPSPROP_COMPAT, MQPSPROP_RFH2, MQPSPROP_MSGPROP. See Optional
parameters (Change, Copy, and Create Subscription) for a description of these values.

PSProperties is an input field to the exit.

Note: Authorization checks are only performed on the original values of DestinationQMgrName and
DestinationQName before they are passed to the publish exit. No new authorization checks are
performed when the exit changes the destination queue, either by changing DestinationQMgrName
or DestinationQName.

C language declaration - MQSBC

typedef struct tagMQSBC {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQCHAR48 DestinationQMgrName; /* Destination queue manager */
 MQCHAR48 DestinationQName; /* Destination queue name */
 MQLONG SubType; /* Type of subscription */
 MQLONG SubOptions; /* Subscription options */
 MQCHAR48 ObjectName; /* Object name */
 MQCHARV ObjectString; /* Object string */
 MQCHARV SubTopicString; /* Subscription topic string */
 MQCHARV SubName; /* Subscription name */
 MQBYTE24 SubId; /* Subscription identifier */
 MQCHARV SelectionString; /* Subscription selection string */
 MQLONG SubLevel; /* Subscription level */
 MQLONG PSProperties; /* Publish/subscribe properties */
} MQSBC;

1458 IBM MQ Developing Applications Reference

Channel-exit calls and data structures
This collection of topics provide reference information about the special IBM MQ calls and data structures
that you can use when you write channel exit programs.

This information is product-sensitive programming interface information. You can write IBM MQ user exits
in the following programming languages:

Table 822. IBM MQ user exits: platforms and programming languages

Platform Programming languages

IBM MQ for z/OS Assembler and C (which must conform to the C system programming
environment for system exits, described in the z/OS C/C++ Programming
Guide.)

IBM MQ for IBM i ILE C, ILE COBOL, and ILE RPG

All other IBM MQ
platforms

C

You can also write user exits in Java for use only with Java and JMS applications. For more information
about creating and using channel exits with the IBM MQ classes for Java, see Using channel exits in IBM
MQ classes for Java and for IBM MQ classes for JMS, see Using channel exits with IBM MQ classes for
JMS.

You cannot write IBM MQ user exits in TAL or Visual Basic. However, a declaration for the MQCD structure
is provided in Visual Basic for use on the MQCONNX call from an IBM MQ MQI client program.

In a number of cases in the descriptions that follow, parameters are arrays or character strings with a size
that is not fixed. For these parameters, a lowercase "n" is used to represent a numeric constant. When
the declaration for that parameter is coded, the "n" must be replaced by the numeric value required. For
further information about the conventions used in these descriptions, see the “Elementary data types” on
page 235.

Data definition files
Data definition files are supplied with IBM MQ for each of the supported programming languages. For
details of these files, see Copy, header, include, and module files.

MQ_CHANNEL_EXIT - Channel exit
The MQ_CHANNEL_EXIT call describes the parameters that are passed to each of the channel exits called
by the Message Channel Agent.

No entry point called MQ_CHANNEL_EXIT is provided by the queue manager; the name
MQ_CHANNEL_EXIT is of no special significance since the names of the channel exits are provided in
the channel definition MQCD.

There are five types of channel exit:

• Channel security exit
• Channel message exit
• Channel send exit
• Channel receive exit
• Channel message-retry exit

The parameters are similar for each type of exit, and the description given here applies to all of them,
except where specifically noted.

Developing applications reference 1459

Syntax
MQ_CHANNEL_EXIT (ChannelExitParms, ChannelDefinition, DataLength,

AgentBufferLength, AgentBuffer, ExitBufferLength, ExitBufferAddr)

Parameters
The MQ_CHANNEL_EXIT call has the following parameters.

ChannelExitParms (MQCXP) - input/output

Channel exit parameter block.

This structure contains additional information relating to the invocation of the exit. The exit sets
information in this structure to indicate how the MCA proceeds.

ChannelDefinition (MQCD) - input/output

Channel definition.

This structure contains parameters set by the administrator to control the behavior of the channel.

DataLength (MQLONG) - input/output

Length of data.

The data depends on the type of exit:

• For a channel security exit, when the exit is invoked this parameter contains the length
of any security message in the AgentBuffer field, if ExitReason is MQXR_SEC_MSG. It
is zero if there is no message. The exit must set this field to the length of any security
message to be sent to its partner if it sets ExitResponse to MQXCC_SEND_SEC_MSG
or MQXCC_SEND_AND_REQUEST_SEC_MSG. The message data is in either AgentBuffer or
ExitBufferAddr.

The content of security messages is the sole responsibility of the security exits.
• For a channel message exit, when the exit is invoked this parameter contains the length of the

message (including the transmission queue header). The exit must set this field to the length of the
message in either AgentBuffer or ExitBufferAddr that is to proceed. This must be greater than
or equal to the length of the transmission queue header (MQXQH).

• For a channel send or channel receive exit, when the exit is invoked this parameter contains the
length of the transmission. The exit must set this field to the length of the transmission in either
AgentBuffer or ExitBufferAddr that is to proceed.

If a security exit sends a message, and there is no security exit at the other end of the channel,
or the other end sets an ExitResponse of MQXCC_OK, the initiating exit is re-invoked with
MQXR_SEC_MSG and a null response (DataLength =0).

AgentBufferLength (MQLONG) - input

Length of agent buffer.

This parameter can be greater than DataLength on invocation.

For channel message, send, and receive exits, any unused space on invocation can be used by the exit
to expand the data in place. If this is done, the DataLength parameter must be set appropriately by
the exit.

In the C programming language, this parameter is passed by address.

AgentBuffer (MQBYTE x AgentBufferLength) - input/output

Agent buffer.

The contents of this parameter depend upon the exit type:

1460 IBM MQ Developing Applications Reference

• For a channel security exit, on invocation of the exit it contains a security message if ExitReason
is MQXR_SEC_MSG. To send a security message back, the exit can either use this buffer or its own
buffer (ExitBufferAddr).

• For a channel message exit, on invocation of the exit this parameter contains:

– The transmission queue header (MQXQH), which includes the message descriptor (which itself
contains the context information for the message), immediately followed by

– The message data

If the message is to proceed, the exit can do one of the following:

– Leave the contents of the buffer untouched
– Modify the contents in place (returning the new length of the data in DataLength ; this must not

be greater than AgentBufferLength)
– Copy the contents to the ExitBufferAddr, making any required changes

Any changes that the exit makes to the transmission queue header are not checked; however,
erroneous modifications might mean that the message cannot be put at the destination.

• For a channel send or receive exit, on invocation of the exit this contains the transmission data. The
exit can do one of the following:

– Leave the contents of the buffer untouched
– Modify the contents in place (returning the new length of the data in DataLength ; this must not

be greater than AgentBufferLength)
– Copy the contents to the ExitBufferAddr, making any required changes

The first 8 bytes of the data must not be changed by the exit.

ExitBufferLength (MQLONG) - input/output

Length of exit buffer.

On the first invocation of the exit, this parameter is set to zero. Thereafter whatever value is passed
back by the exit, on each invocation, is presented to the exit next time it is invoked. The value is not
used by the MCA.

Note: This parameter must not be used by exits written in programming languages which do not
support the pointer data type.

ExitBufferAddr (MQPTR) - input/output

Address of exit buffer.

This parameter is a pointer to the address of a buffer of storage managed by the exit, where it can
choose to return message or transmission data (depending upon the type of exit) to the agent if the
buffer of the agent is or might not be large enough, or if it is more convenient for the exit to do so.

On the first invocation of the exit, the address passed to the exit is null. Thereafter whatever address
is passed back by the exit, on each invocation, is presented to the exit the next time it is invoked.

If ExitBufferAddr is null the data used is taken from the AgentBuffer parameter.

If ExitBufferAddr is not null the data used is taken from the buffer pointed to by the ExitBufferAddr
parameter.

Note: This parameter must not be used by exits written in programming languages that do not support
the pointer data type.

C invocation

exitname (&ChannelExitParms, &ChannelDefinition,
&DataLength, &AgentBufferLength, AgentBuffer,
&ExitBufferLength, &ExitBufferAddr);

Developing applications reference 1461

The parameters passed to the exit are declared as follows:

MQCXP ChannelExitParms; /* Channel exit parameter block */
MQCD ChannelDefinition; /* Channel definition */
MQLONG DataLength; /* Length of data */
MQLONG AgentBufferLength; /* Length of agent buffer */
MQBYTE AgentBuffer[n]; /* Agent buffer */
MQLONG ExitBufferLength; /* Length of exit buffer */
MQPTR ExitBufferAddr; /* Address of exit buffer */

COBOL invocation

 CALL 'exitname' USING CHANNELEXITPARMS, CHANNELDEFINITION,
 DATALENGTH, AGENTBUFFERLENGTH, AGENTBUFFER,
 EXITBUFFERLENGTH, EXITBUFFERADDR.

The parameters passed to the exit are declared as follows:

** Channel exit parameter block
 01 CHANNELEXITPARMS.
 COPY CMQCXPV.
** Channel definition
 01 CHANNELDEFINITION.
 COPY CMQCDV.
** Length of data
 01 DATALENGTH PIC S9(9) BINARY.
** Length of agent buffer
 01 AGENTBUFFERLENGTH PIC S9(9) BINARY.
** Agent buffer
 01 AGENTBUFFER PIC X(n).
** Length of exit buffer
 01 EXITBUFFERLENGTH PIC S9(9) BINARY.
** Address of exit buffer
 01 EXITBUFFERADDR POINTER.

RPG invocation (ILE)

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP exitname(MQCXP : MQCD : DATLEN :
 C ABUFL : ABUF : EBUFL :
 C EBUF)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 Dexitname PR EXTPROC('exitname')
 D* Channel exit parameter block
 D MQCXP 160A
 D* Channel definition
 D MQCD 1328A
 D* Length of data
 D DATLEN 10I 0
 D* Length of agent buffer
 D ABUFL 10I 0
 D* Agent buffer
 D ABUF * VALUE
 D* Length of exit buffer
 D EBUFL 10I 0
 D* Address of exit buffer
 D EBUF *

System/390 assembler invocation

 CALL EXITNAME,(CHANNELEXITPARMS,CHANNELDEFINITION,DATALENGTH, X

1462 IBM MQ Developing Applications Reference

 AGENTBUFFERLENGTH,AGENTBUFFER,EXITBUFFERLENGTH, X
 EXITBUFFERADDR)

The parameters passed to the exit are declared as follows:

CHANNELEXITPARMS CMQCXPA , Channel exit parameter block
CHANNELDEFINITION CMQCDA , Channel definition
DATALENGTH DS F Length of data
AGENTBUFFERLENGTH DS F Length of agent buffer
AGENTBUFFER DS CL(n) Agent buffer
EXITBUFFERLENGTH DS F Length of exit buffer
EXITBUFFERADDR DS F Address of exit buffer

Usage notes
1. The function performed by the channel exit is defined by the provider of the exit. The exit, however,

must conform to the rules defined here and in the associated control block, the MQCXP.
2. The ChannelDefinition parameter passed to the channel exit might be one of several versions. See

the Version field in the MQCD structure for more information.
3. If the channel exit receives an MQCD structure with the Version field set to a value greater than

MQCD_VERSION_1, the exit must use the ConnectionName field in MQCD, in preference to the
ShortConnectionName field.

4. In general, channel exits are allowed to change the length of message data. This can arise as a
result of the exit adding data to the message, or removing data from the message, or compressing or
encrypting the message. However, special restrictions apply if the message is a segment that contains
only part of a logical message. In particular, there must be no net change in the length of the message
as a result of the actions of complementary sending and receiving exits.

For example, it is permissible for a sending exit to shorten the message by compressing it, but the
complementary receiving exit must restore the original length of the message by decompressing it, so
that there is no net change in the length of the message.

This restriction arises because changing the length of a segment would cause the offsets of later
segments in the message to be incorrect, and this would inhibit the ability of the queue manager to
recognize that the segments formed a complete logical message.

MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit
The MQ_CHANNEL_AUTO_DEF_EXIT call describes the parameters that are passed to the channel auto-
definition exit called by the Message Channel Agent.

No entry point called MQ_CHANNEL_AUTO_DEF_EXIT is provided by the queue manager; the name
MQ_CHANNEL_AUTO_DEF_EXIT is of no special significance because the names of the auto-definition
exits are provided in the queue manager.

Syntax
MQ_CHANNEL_AUTO_DEF_EXIT (ChannelExitParms, ChannelDefinition)

Parameters
The MQ_CHANNEL_AUTO_DEF_EXIT call has the following parameters.

ChannelExitParms (MQCXP) - input/output

Channel exit parameter block.

This structure contains additional information relating to the invocation of the exit. The exit sets
information in this structure to indicate how the MCA proceeds.

ChannelDefinition (MQCD) - input/output

Channel definition.

Developing applications reference 1463

This structure contains parameters set by the administrator to control the behavior of channels which
are created automatically. The exit sets information in this structure to modify the default behavior set
by the administrator.

The MQCD fields listed must not be altered by the exit:

• ChannelName
• ChannelType
• StrucLength
• Version

If other fields are changed, the value set by the exit must be valid. If the value is not valid, an
error message is written to the error log file or displayed on the console (as appropriate to the
environment).

Attention: Auto-defined channels created by a channel automatic definition (CHAD) exit cannot
set the certificate label, because the TLS handshake has occurred by the time the channel is
created. Setting the certificate label in a CHAD exit for inbound channels has no effect.

C invocation

exitname (&ChannelExitParms, &ChannelDefinition);

The parameters passed to the exit are declared as follows:

MQCXP ChannelExitParms; /* Channel exit parameter block */
MQCD ChannelDefinition; /* Channel definition */

COBOL invocation

 CALL 'exitname' USING CHANNELEXITPARMS, CHANNELDEFINITION.

The parameters passed to the exit are declared as follows:

** Channel exit parameter block
 01 CHANNELEXITPARMS.
 COPY CMQCXPV.
** Channel definition
 01 CHANNELDEFINITION.
 COPY CMQCDV.

RPG invocation (ILE)

 C*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 C CALLP exitname(MQCXP : MQCD)

The prototype definition for the call is:

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 Dexitname PR EXTPROC('exitname')
 D* Channel exit parameter block
 D MQCXP 160A
 D* Channel definition
 D MQCD 1328A

1464 IBM MQ Developing Applications Reference

System/390 assembler invocation

 CALL EXITNAME,(CHANNELEXITPARMS,CHANNELDEFINITION)

The parameters passed to the exit are declared as follows:

CHANNELEXITPARMS CMQCXPA , Channel exit parameter block
CHANNELDEFINITION CMQCDA , Channel definition

Usage notes
1. The function performed by the channel exit is defined by the provider of the exit. The exit, however,

must conform to the rules defined here and in the associated control block, the MQCXP.
2. The ChannelExitParms parameter passed to the channel auto-definition exit is an MQCXP structure.

The version of MQCXP passed depends on the environment in which the exit is running; see the
description of the Version field in “MQCXP - Channel exit parameter” on page 1506 for details.

3. The ChannelDefinition parameter passed to the channel auto-definition exit is an MQCD structure.
The version of MQCD passed depends on the environment in which the exit is running; see the
description of the Version field in “MQCD - Channel definition” on page 1466 for details.

MQXWAIT - Wait in exit
The MQXWAIT call waits for an event to occur. It can be used only from a channel exit on z/OS.

The use of MQXWAIT helps to avoid performance problems that might otherwise occur if a channel exit
does something that causes a wait. The event MQXWAIT is waiting on is signaled by an MVS ECB (event
control block). The ECB is described in the MQXWD control block description.

For more information about the use of MQXWAIT and writing channel-exit programs, see
Writing channel exit programs on z/OS

Syntax
MQXWAIT (Hconn, WaitDesc, CompCode, Reason)

Parameters
The MQXWAIT call has the following parameters.

Hconn (MQHCONN) - input

Connection handle.

This handle represents the connection to the queue manager. The value of Hconn was returned by a
previous MQCONN call issued in the same or earlier invocation of the exit.

WaitDesc (MQXWD) - input/output

Wait descriptor.

This parameter describes the event to wait for. See “MQXWD - Exit wait descriptor” on page 1521 for
details of the fields in this structure.

CompCode (MQLONG) - output

Completion code.

It is one of the following codes:
MQCC_OK

Successful completion.

Developing applications reference 1465

MQCC_FAILED
Call failed.

Reason (MQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.
MQRC_ADAPTER_NOT_AVAILABLE

(2204, X'89C') Adapter not available.
MQRC_OPTIONS_ERROR

(2046, X'7FE') Options not valid or not consistent.
MQRC_XWAIT_CANCELED

(2107, X'83B') MQXWAIT call canceled.
MQRC_XWAIT_ERROR

(2108, X'83C') Invocation of MQXWAIT call not valid.

C invocation

MQXWAIT (Hconn, &WaitDesc, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /* Connection handle */
MQXWD WaitDesc; /* Wait descriptor */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

System/390 assembler invocation

 CALL MQXWAIT,(HCONN,WAITDESC,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
WAITDESC CMQXWDA , Wait descriptor
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

MQCD - Channel definition
The MQCD structure contains the parameters which control execution of a channel. It is passed to each
channel exit that is called from a Message Channel Agent (MCA).

For more information about channel exits, see “MQ_CHANNEL_EXIT - Channel exit” on page 1459. The
description in this topic relates both to message channels and to MQI channels.

Exit name fields
When an exit is called, the relevant field from SecurityExit, MsgExit, SendExit, ReceiveExit,
and MsgRetryExit contains the name of the exit currently being invoked. The meaning of the name in
these fields depends on the environment in which the MCA is running. Except where noted, the name is
left-aligned within the field, with no embedded blanks; the name is padded with blanks to the length of
the field. In the descriptions that follow, square brackets ([]) denote optional information:

1466 IBM MQ Developing Applications Reference

AIX and Linux
The exit name is the name of a dynamically loadable module or library, suffixed with the name of a
function residing in that library. The function name must be enclosed in parentheses. The library name
can optionally be prefixed with a directory path:

[path] library (function)

The name is limited to a maximum of 128 characters.

z/OS
The exit name is the name of a load module that is valid for specification on the EP parameter of the
LINK or LOAD macro. The name is limited to a maximum of eight characters.

Windows
The exit name is the name of a dynamic-link library, suffixed with the name of a function residing in
that library. The function name must be enclosed in parentheses. The library name can optionally be
prefixed with a directory path and drive:

[d:][path] library (function)

The name is limited to a maximum of 128 characters.

IBM i
The exit name is a 10 byte program name followed by a 10 byte library name. If the names are less
than 10 bytes long, each name is padded with blanks to make it 10 bytes. The library name can
be *LIBL except when calling a channel auto-definition exit, in which case a fully qualified name is
required.

Changing MQCD fields in a channel exit
A channel exit can change fields in the MQCD. The changed value remains in the MQCD and is passed to
any remaining exits in an exit chain and to any conversation sharing the channel instance. The changed
MQCD is also used by the MCA for its normal processing during the continuing lifetime of the channel.

The following MQCD fields must not be altered by the exit:

• ChannelName
• ChannelType
• StrucLength
• Version

Related reference
“Fields” on page 1468
This topic lists all the fields in the MQCD structure and describes each field.
“C declaration” on page 1493
This declaration is the C declaration for the MQCD structure.
“COBOL declaration” on page 1495
This declaration is the COBOL declaration for the MQCD structure.
“RPG declaration (ILE)” on page 1498
This declaration is the RPG declaration for the MQCD structure.
“System/390 assembler declaration” on page 1500
This declaration is the System/390 assembler declaration for the MQCD structure.
“Visual Basic declaration” on page 1502
This declaration is the Visual Basic declaration of the MQCD structure.
“Changing MQCD fields in a channel exit” on page 1503

Developing applications reference 1467

A channel exit can change fields in the MQCD. However, these changes are not typically acted on, except
in the circumstances listed.

Fields
This topic lists all the fields in the MQCD structure and describes each field.

BatchDataLimit (MQLONG)
This field specifies the the limit, in kilobytes, of the amount of data that can be sent through a channel
before taking a sync point.

A sync point is taken after the message that caused the limit to be reached has flowed across the channel.

The batch is terminated when one of the following conditions is met:

• BatchSize messages have been sent.
• BatchDataLimit bytes have been sent.
• The transmission queue is empty and BatchInterval is exceeded.

The value must be in the range 0 - 999999. The default value is 5000.

A value of zero in this attribute means that no data limit is applied to batches over this channel.

This parameter only applies to channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_CLUSRCVR, or MQCHT_CLUSSDR.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_11.

BatchHeartbeat (MQLONG)
This field specifies the time interval that is used to trigger a batch heartbeat for the channel.

Batch heartbeating allows sender channels to determine whether the remote channel instance is still
active before going indoubt. A batch heartbeat occurs if a sender channel has not communicated with the
remote channel instance within the specified time interval.

The value is in the range 0 through 999 999; the units are milliseconds. A value of zero indicates that
batch heartbeating is not enabled.

This field is relevant only for channels that have a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_7.

BatchInterval (MQLONG)
This field specifies the approximate time in milliseconds that a channel keeps a batch open, if fewer than
BatchSize messages have been transmitted in the current batch.

If BatchInterval is greater than zero, the batch is terminated by whichever of the following events
occur first:

• BatchSize messages have been sent, or
• BatchInterval milliseconds have elapsed since the start of the batch.

If BatchInterval is zero, the batch is terminated by whichever of the following events occur first:

• BatchSize messages have been sent, or
• the transmission queue becomes empty.

BatchInterval must be in the range zero through 999 999 999.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present when Version is less than MQCD_VERSION_4.

1468 IBM MQ Developing Applications Reference

BatchSize (MQLONG)
This field specifies the maximum number of messages that can be sent through a channel before
synchronizing the channel.

This field is not relevant for channels with a ChannelType of MQCHT_SVRCONN or MQCHT_CLNTCONN.

CertificateLabel (MQCHAR64)
This field gives details of the certificate label being used.

IBM MQ initializes the default value for the CertificateLabel field as blanks.

This is interpreted at runtime as the default value, and is backwards compatible.

For example, specifying a MQCD version less than 11, or using the default value of blanks for the
CertificateLabel field, means that this field is ignored.

The length of this field is given by MQ_CERT_LABEL_LENGTH.

ChannelMonitoring (MQLONG)
This field specifies the current level of monitoring data collection for the channel.

This field is not relevant for channels with a ChannelType of MQCHT_CLNTCONN.

It is one of the following values:

• MQMON_OFF
• MQMON_LOW
• MQMON_MEDIUM
• MQMON_HIGH

This is an input field to the exit. It is not present if Version is less than MQCD_VERSION_8.

ChannelName (MQCHAR20)
This field specifies the channel definition name.

There must be a channel definition of the same name at the remote machine to be able to communicate.

The name must use only the characters:

• Uppercase A-Z
• Lowercase a-z
• Numerics 0-9
• Period (.)
• Forward slash (/)
• Underscore (_)
• Percent sign (%)

and be padded to the right with blanks. Leading or embedded blanks are not allowed.

The length of this field is given by MQ_CHANNEL_NAME_LENGTH.

ChannelStatistics (MQLONG)
This field specifies the current level of statistics data collection for the channel.

This field is not relevant for channels with a ChannelType of MQCHT_CLNTCONN or MQCHT_SVRCONN.

It is one of the following values:

• MQMON_OFF
• MQMON_LOW
• MQMON_MEDIUM
• MQMON_HIGH

Developing applications reference 1469

This is an input field to the exit. It is not present if Version is less than MQCD_VERSION_8.

ChannelType (MQLONG)
This field specifies the type of channel.

It is one of the following values:
MQCHT_SENDER

Sender.
MQCHT_SERVER

Server.
MQCHT_RECEIVER

Receiver.
MQCHT_REQUESTER

Requester.
MQCHT_CLNTCONN

Client connection.
MQCHT_SVRCONN

Server-connection (for use by clients).
MQCHT_CLUSSDR

Cluster sender.
MQCHT_CLUSRCVR

Cluster receiver.

ClientChannelWeight (MQLONG)
This field specifies a weighting to influence which client-connection channel definition is used.

The ClientChannelWeight attribute is used so that client channel definitions can be selected at random
based on their weighting when more than one suitable definition is available. When a client issues an
MQCONN requesting connection to a queue manager group, by specifying a queue manager name starting
with an asterisk, and more than one suitable channel definition is available in the client channel definition
table (CCDT), the definition to use is randomly selected based on the weighting, with any applicable
ClientChannelWeight(0) definitions selected first in alphabetical order.

Specify a value in the range 0 - 99. The default is 0.

A value of 0 indicates that no load balancing is performed and applicable definitions are selected in
alphabetical order. To enable load balancing choose a value in the range 1 - 99 where 1 is the lowest
weighting and 99 is the highest. The distribution of messages between two or more channels with
non-zero weightings is proportional to the ratio of those weightings. For example, three channels with
ClientChannelWeight values of 2, 4, and 14 are selected approximately 10%, 20%, and 70% of the time.
This distribution is not guaranteed.

This attribute is valid for the client-connection channel type only.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_9.

ClusterPtr (MQPTR)
This field specifies the address a list of cluster names.

If ClustersDefined is greater than zero, this address is the address of a list of cluster names. The
channel belongs to each cluster listed.

This field is relevant only for channels with a ChannelType of MQCHT_CLUSSDR or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_5.

ClustersDefined (MQLONG)
This field specifies the number of clusters to which the channel belongs.

This field is the number of cluster names pointed to by ClusterPtr. It is zero or greater.

1470 IBM MQ Developing Applications Reference

This field is relevant only for channels with a ChannelType of MQCHT_CLUSSDR or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_5.

CLWLChannelPriority (MQLONG)
This field specifies the cluster workload channel priority.

The workload manager choose algorithm selects a destination with the highest priority from the set of
destinations selected based on rank. If there are two possible destination queue managers, this attribute
can be used to make one queue manager failover onto the other queue manager. All the messages go to
the queue manager with the highest priority until that ends, then the messages go to the queue manager
with the next highest priority.

The value is in the range 0 through 9. The default is 0.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_8.

For further information, see Configuring a queue manager cluster.

CLWLChannelRank (MQLONG)
This field specifies the cluster workload channel rank.

The workload manager choose algorithm selects a destination with the highest rank. When the final
destination is a queue manager on a different cluster, you can set the rank of intermediate gateway
queue managers (at the intersection of neighboring clusters) so the choose algorithm correctly chooses a
destination queue manager nearer the final destination.

The value is in the range 0 through 9. The default is 0.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_8.

For further information, see Configuring a queue manager cluster.

CLWLChannelWeight (MQLONG)
This field specifies the cluster workload channel weight.

Cluster workload channel weight.

The workload manager choose algorithm uses the "weight" attribute of the channel to the skew the
destination choice so that more messages can be sent to a particular machine. For example, you can give
a channel on a large UNIX server a larger "weight" than another channel on small desktop PC, and the
choose algorithm chooses the UNIX server more frequently than the PC.

The value is in the range 1 through 99. The default is 50.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_8.

For further information, see Configuring a queue manager cluster.

ConnectionAffinity (MQLONG)
This field specifies whether client applications that connect multiple times using the same queue
manager name, use the same client channel.

Use this attribute when multiple applicable channel definitions are available.

The value is one of the following:
MQCAFTY_PREFERRED

The first connection in a process reading a client channel definition table (CCDT) creates a list of
applicable definitions based on the weighting with any applicable CLNTWGHT(0) definitions first and
in alphabetical order. Each connection in the process attempts to connect using the first definition
in the list. If a connection is unsuccessful the next definition is used. Unsuccessful definitions with
CLNTWGHT values other than 0 are moved to the end of the list. CLNTWGHT(0) definitions remain at
the start of the list and are selected first for each connection.

Each client process with the same host name always creates the same list.

Developing applications reference 1471

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET) the list is updated if the CCDT has been modified since the list was created.

This value is the default value.

MQCAFTY_NONE
The first connection in a process reading a CCDT creates a list of applicable definitions. All
connections in a process select an applicable definition based on the weighting with any applicable
CLNTWGHT(0) definitions selected first in alphabetical order.

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET) the list is updated if the CCDT has been modified since the list was created.

This attribute is valid for the client-connection channel type only.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_9.

ConnectionName (MQCHAR264)
This field specifies the connection name for the channel.

For cluster-receiver channels (when specified) CONNAME relates to the local queue manager, and for
other channels it relates to the target queue manager. The value you specify depends on the transmission
protocol (TransportType) to be used:

• For MQXPT_LU62, it is the fully-qualified name of the partner Logical Unit.
• For MQXPT_NETBIOS, it is the NetBIOS name defined on the remote machine.
• For MQXPT_TCP, it is either the host name, the network address of the remote machine specified in IPv4

dotted decimal or IPv6 hexadecimal format, or the local machine for cluster-receiver channels.
• For MQXPT_SPX, it is an SPX-style address comprising a 4 byte network address, a 6 byte node address,

and a 2 byte socket number.

When defining a channel, this field is not relevant for channels with a ChannelType of MQCHT_SVRCONN
or MQCHT_RECEIVER. However, when the channel definition is passed to an exit, this field contains the
address of the partner, whatever the channel type.

The length of this field is given by MQ_CONN_NAME_LENGTH. This field is not present if Version is less
than MQCD_VERSION_2.

DataConversion (MQLONG)
This field specifies whether the sending message channel agent attempts conversion of the application
message data if the receiving message channel agent is unable to perform this conversion.

This field applies only to messages that are not segments of logical messages; the MCA never attempts to
convert messages which are segments.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR. It is one of the following:
MQCDC_SENDER_CONVERSION

Conversion by sender.
MQCDC_NO_SENDER_CONVERSION

No conversion by sender.

DefReconnect (MQLONG)
The DefReconnect channel attribute sets the default reconnection attribute value for a client connection
channel.

The default automatic client reconnection option. You can configure an IBM MQ MQI client to
automatically reconnect a client application. The IBM MQ MQI client tries to reconnect to a queue
manager after a connection failure. It tries to reconnect without the application client issuing an MQCONN
or MQCONNX MQI call.

1472 IBM MQ Developing Applications Reference

Reconnection is an MQCONNX option. By using the DefReconnect channel attribute you can add
reconnection behavior to existing applications that use MQCONN. You can also change the reconnection
behavior of applications that use MQCONNX.

You can also set the DefRecon value from the mqclient.ini file to set or modify reconnection
behavior. The DefRecon value from the mqclient.ini file takes precedence over the DefReconnect
channel attribute.

Syntax
DefReconnect (MQRCN_NO (default) |MQRCN_YES|MQRCN_Q_MGR|MQRCN_DISABLED)

Parameters
MQRCN_NO

MQRCN_NO is the default value.

Unless overridden by MQCONNX, the client is not reconnected automatically.

MQRCN_YES
Unless overridden by MQCONNX, the client reconnects automatically.

MQRCN_Q_MGR
Unless overridden by MQCONNX, the client reconnects automatically, but only to the same queue
manager. The QMGR option has the same effect as MQCNO_RECONNECT_Q_MGR.

MQRCN_DISABLED
Reconnection is disabled, even if requested by the client program using the MQCONNX MQI call.

Automatic client reconnection is not supported by IBM MQ classes for Java.

Table 823. Automatic reconnection depends on the values set in the application and in the channel
definition

DefReconnect Reconnection options set in the application

MQCNO_RECONNE
CT

MQCNO_RECONNE
CT_Q_MGR

MQCNO_RECONNE
CT_AS_DEF

MQCNO_RECONNE
CT_DISABLED

MQRCN_NO YES QMGR NO NO

MQRCN_YES YES QMGR YES NO

MQRCN_Q_MGR YES QMGR QMGR NO

MQRCN_DISABLED NO NO NO NO

Related concepts
Automatic client reconnection
Channel and client reconnection
Related reference
CHANNELS stanza of the client configuration file
Connection options
Options that control the action of MQCONNX.

Desc (MQCHAR64)
This field can be used for descriptive commentary.

The content of the field is of no significance to Message Channel Agents. However, it must contain only
characters that can be displayed. It cannot contain any null characters; if necessary, it is padded to the
right with blanks. In a DBCS installation, the field can contain DBCS characters (subject to a maximum
field length of 64 bytes).

Developing applications reference 1473

Note: If this field contains characters that are not in the character set of the queue manager (as defined
by the CodedCharSetId queue manager attribute), those characters might be translated incorrectly if
this field is sent to another queue manager.

The length of this field is given by MQ_CHANNEL_DESC_LENGTH.

DiscInterval (MQLONG)
This field specifies the maximum time in seconds for which the channel waits for a message to arrive on
the transmission queue, before terminating the channel.

In other words, it specifies the disconnect interval.

The A value of zero causes the MCA to wait indefinitely.

For server-connection channels using the TCP protocol, the interval represents the client inactivity
disconnect value, specified in seconds. If a server-connection has received no communication from its
partner client for this duration, it terminates the connection. The server-connection inactivity interval
only applies between IBM MQ API calls from a client, so no client is disconnected during a long-running
MQGET with wait call.

This attribute is not applicable for server-connection channels using protocols other than TCP.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_CLUSSDR, MQCHT_CLUSRCVR, or MQCHT_SVRCONN.

ExitDataLength (MQLONG)
This field specifies length in bytes of each of the user data items in the lists of exit user data items
addressed by the MsgUserDataPtr, SendUserDataPtr, and ReceiveUserDataPtr fields.

This length is not necessarily the same as MQ_EXIT_DATA_LENGTH.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

ExitNameLength (MQLONG)
This field specifies the length in bytes of each of the names in the lists of exit names addressed by the
MsgExitPtr, SendExitPtr, and ReceiveExitPtr fields.

This length is not necessarily the same as MQ_EXIT_NAME_LENGTH.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

HdrCompList [2] (MQLONG)
This field specifies the list of header data compression techniques which are supported by the channel.

The list contains one or more of the following values:
MQCOMPRESS_NONE

No header data compression is performed.
MQCOMPRESS_SYSTEM

Header data compression is performed.
Unused values in the array are set to MQCOMPRESS_NOT_AVAILABLE.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_8.

HeartbeatInterval (MQLONG)
This field specifies the time in seconds between heartbeat flows.

The interpretation of this field depends on the channel type, as follows:

• For a channel type of MQCHT_SENDER, MQCHT_SERVER, MQCHT_RECEIVER MQCHT_REQUESTER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR, this field is the time in seconds between heartbeat flows
passed from the sending MCA when there are no messages on the transmission queue. This gives the
receiving MCA the opportunity to quiesce the channel. To be useful, HeartbeatInterval must be less
than DiscInterval.

1474 IBM MQ Developing Applications Reference

• For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN with the MQCD Sharing Conversations
field set to zero, this field is the time in seconds between heartbeat flows passed from the server
MCA when that MCA has issued an MQGET call with the MQGMO_WAIT option on behalf of a client
application. This allows the server MCA to handle situations where the client connection fails during an
MQGET with MQGMO_WAIT.

• For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN with the MQCD Sharing Conversations
field set to a non-zero value, this field is the time in seconds between heartbeat flow when there are no
data flows sent or received. This allows the channel to be quiesced efficiently.

The value is in the range 0 through 999 999. The value that is used is the larger of the values specified
at the sending side and receiving side unless a value of 0 is specified at either side, in which case no
heartbeat exchange occurs.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

KeepAliveInterval (MQLONG)
This field specifies the value passed to the communications stack for keepalive timing for the channel.

The value is applicable for the TCP/IP and SPX communications protocols, though not all implementations
support this parameter.

The value is in the range 0 through 99 999; the units are seconds. A value of zero indicates that channel
keepalive is not enabled, although keepalive might still occur if TCP/IP keepalive (rather than channel
keepalive) is enabled. The following special value is also valid:
MQKAI_AUTO

Automatic.

This value indicates that the keepalive interval is calculated from the negotiated heartbeat interval, as
follows:

• If the negotiated heartbeat interval is greater than zero, the keepalive interval that is used is the
heartbeat interval plus 60 seconds.

• If the negotiated heartbeat interval is zero, the keepalive interval that is used is zero.

• On z/OS, TCP/IP keepalive occurs when TCPKEEP(YES) is specified on the queue manager object.
• In other environments, TCP/IP keepalive occurs when the KEEPALIVE=YES parameter is specified in

the TCP stanza in the distributed queuing configuration file.

This field is relevant only for channels that have a TransportType of MQXPT_TCP or MQXPT_SPX.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_7.

LocalAddress (MQCHAR48)
This field specifies the local TCP/IP address defined for the channel for outbound communications.

This field is blank if no specific address is defined for outbound communications. The address can
optionally include a port number or range of port numbers. The format of this address is:

[ip-addr][(low-port[,high-port])]

where square brackets ([]) denote optional information, ip-addr is specified in IPv4 dotted decimal,
IPv6 hexadecimal, or alphanumeric form, and low-port and high-port are port numbers enclosed in
parentheses. All are optional.

A specific IP address, port, or port range for outbound communications is useful in recovery scenarios
where a channel is restarted on a different TCP/IP stack.

LocalAddress is similar in form to ConnectionName, but must not be confused with it. LocalAddress
specifies the characteristics of the local communications, whereas ConnectionName specifies how to
reach a remote queue manager.

Developing applications reference 1475

From IBM MQ 9.2.0 Fix Pack 2 for Long Term Support and IBM MQ 9.2.2
for Continuous Delivery, the Java Message Queueing Interface (JMQI) has been updated to ensure that
the local address field is set on an MQCD object after a channel instance has been created and is
connected to a queue manager. This means that when a channel exit written in Java calls the method
MQCD.getLocalAddress(), the method returns the local address that the channel instance is using.
Before IBM MQ 9.2.0 Fix Pack 2 and IBM MQ 9.2.2, the channel security exit was unable to access the
local address being used by the channel instance and the method MQCD.getLocalAddress() returned
null.

This field is relevant only for channels with a TransportType of MQXPT_TCP, and a ChannelType
of MQCHT_SENDER, MQCHT_SERVER, MQCHT_REQUESTER, MQCHT_CLNTCONN, MQCHT_CLUSSDR, or
MQCHT_CLUSRCVR.

The length of this field is given by MQ_LOCAL_ADDRESS_LENGTH. This field is not present if Version is
less than MQCD_VERSION_7.

LongMCAUserIdLength (MQLONG)
This field specifies the length in bytes of the full MCA user identifier pointed to by LongMCAUserIdPtr.

This field is not relevant for channels with a ChannelType of MQCHT_CLNTCONN.

This is an input/output field to the exit. The field is not present if Version is less than
MQCD_VERSION_6.

LongMCAUserIdPtr (MQPTR)
This field specifies the address of the long MCA user identifier.

If LongMCAUserIdLength is greater than zero, this field is the address of the full MCA user identifier.
The length of the full identifier is given by LongMCAUserIdLength. The first 12 bytes of the MCA user
identifier are also contained in the field MCAUserIdentifier.

See the description of the MCAUserIdentifier field for details of the MCA user identifier.

This field is not relevant for channels with a ChannelType of MQCHT_SDR, MQCHT_SVR,
MQCHT_CLNTCONN, or MQCHT_CLUSSDR.

This is an input/output field to the exit. The field is not present if Version is less than
MQCD_VERSION_6.

LongRemoteUserIdLength (MQLONG)
This field specifies the length in bytes of the full remote user identifier pointed to by
LongRemoteUserIdPtr.

This field is relevant only for channels with a ChannelType of MQCHT_CLNTCONN or MQCHT_SVRCONN.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_6.

LongRemoteUserIdPtr (MQPTR)
This field specifies the address of the long remote user identifier.

If LongRemoteUserIdLength is greater than zero, this flag is the address of the full remote user
identifier. The length of the full identifier is given by LongRemoteUserIdLength. The first 12 bytes of
the remote user identifier are also contained in the field RemoteUserIdentifier.

See the description of the RemoteUserIdentifier field for details of the remote user identifier.

This field is relevant only for channels with a ChannelType of MQCHT_CLNTCONN or MQCHT_SVRCONN.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_6.

1476 IBM MQ Developing Applications Reference

LongRetryCount (MQLONG)
This field specifies the count used after the count specified by the ShortRetryCount has been
exhausted.

It specifies the maximum number of further attempts that are made to connect to the remote machine, at
intervals specified by LongRetryInterval, before logging an error to the operator.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

LongRetryInterval (MQLONG)
This field specifies the maximum number of seconds to wait before reattempting connection to the
remote machine.

The interval between retries can be extended if the channel has to wait to become active.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

MaxInstances (MQLONG)
This field specifies the maximum number of simultaneous instances of an individual server-connection
channel that can be started.

This field is used only on server-connection channels.

The field can have a value in the range 0 - 999 999 999. A value of zero prevents all client access.

The default value of this field is 999 999 999.

If the value of this field is reduced to a number that is less than the number of instances of the server-
connection channel that are currently running, then those running instances are not affected. However,
new instances cannot start until sufficient existing instances have ceased to run so that the number of
currently running instances is less than the value of the field.

MaxInstancesPerClient (MQLONG)
This field specifies the maximum number of simultaneous instances of an individual server-connection
channel that can be started from a single client.

In this context, connections that originate from the same remote network address are regarded as coming
from the same client.

This field is used only on server-connection channels.

The field can have a value in the range 0 - 999 999 999. A value of zero prevents all client access.

The default value of this field is 999 999 999.

If the value of this field is reduced to a number that is less than the number of instances of the server-
connection channel that are currently running from individual clients, then those running instances are
not affected. However, new instances from any of those clients cannot start until sufficient existing
instances have ceased to run such that the number of currently running instances, originating from the
client attempting to start a new one, is less than the value of the field.

MaxMsgLength (MQLONG)
This field specifies the maximum message length that can be transmitted on the channel.

This is compared with the value for the remote channel and the actual maximum is the lower of the two
values.

Developing applications reference 1477

MCAName (MQCHAR20)
This field is a reserved field.

The value of this field is blank.

The length of this field is given by MQ_MCA_NAME_LENGTH.

MCASecurityId (MQBYTE40)
This field specifies the security identifier for the MCA.

This field is not relevant for channels with a ChannelType of MQCHT_CLNTCONN.

The following special value indicates that there is no security identifier:
MQSID_NONE

No security identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQSID_NONE_ARRAY is also defined; this constant
has the same value as MQSID_NONE, but is an array of characters instead of a string.

This is an input/output field to the exit. The length of this field is given by MQ_SECURITY_ID_LENGTH.
This field is not present if Version is less than MQCD_VERSION_6.

MCAType (MQLONG)
This field specifies the type of message channel agent program.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_REQUESTER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

The value is one of the following:
MQMCAT_PROCESS

Process.

The message channel agent runs as a separate process.

MQMCAT_THREAD
Thread (Multiplatforms).

The message channel agent runs as a separate thread.

This field is not present when Version is less than MQCD_VERSION_2.

MCAUserIdentifier (MQCHAR12)
This field specifies the user identifier for the message channel agent (MCA).

This field uses the first 12 bytes of the MCA user identifier, and can be set by a security agent.

There are two fields that contain the MCA user identifier:

• MCAUserIdentifier contains the first 12 bytes of the MCA user identifier, and is padded with blanks
if the identifier is shorter than 12 bytes. MCAUserIdentifier can be blank.

• LongMCAUserIdPtr points to the full MCA user identifier, which can be longer than 12 bytes.
Its length is given by LongMCAUserIdLength. The full identifier contains no trailing blanks, and
is not null-terminated. If the identifier is blank, LongMCAUserIdLength is zero, and the value of
LongMCAUserIdPtr is undefined.

Note: LongMCAUserIdPtr is not present if Version is less than MQCD_VERSION_6.

If the MCA user identifier is nonblank, it specifies the user identifier to be used by the message
channel agent for authorization to access IBM MQ resources. For channel types MQCHT_REQUESTER,
MQCHT_RECEIVER, and MQCHT_CLUSRCVR, if PutAuthority is MQPA_DEFAULT this is the user identifier
used for authorization checks for the put operation to destination queues.

If the MCA user identifier is blank, the message channel agent uses its default user identifier.

1478 IBM MQ Developing Applications Reference

The MCA user identifier can be set by a security exit to indicate the user identifier that the message
channel agent must use. The exit can change either MCAUserIdentifier, or the string pointed at by
LongMCAUserIdPtr. If both are changed but differ from each other, the MCA uses LongMCAUserIdPtr
in preference to MCAUserIdentifier. If the exit changes the length of the string addressed by
LongMCAUserIdPtr, LongMCAUserIdLength must be set correspondingly. If the exit increases the
length of the identifier, the exit must allocate storage of the required length, set that storage to the
required identifier, and place the address of that storage in LongMCAUserIdPtr. The exit is responsible
for freeing that storage when the exit is later invoked with the MQXR_TERM reason.

For channels with a ChannelType of MQCHT_SVRCONN, if MCAUserIdentifier in the channel
definition is blank, any user identifier transferred from the client is copied into it. This user identifier (after
any modification by the security exit at the server) is the one which the client application is assumed to be
running under.

The MCA user identifier is not relevant for channels with a ChannelType of MQCHT_SDR, MQCHT_SVR,
MQCHT_CLNTCONN, MQCHT_CLUSSDR.

This is an input/output field to the exit. The length of this field is given by MQ_USER_ID_LENGTH. This
field is not present when Version is less than MQCD_VERSION_2.

ModeName (MQCHAR8)
This field specifies the LU 6.2 mode name.

This field is relevant only if the transmission protocol (TransportType) is MQXPT_LU62, and the
ChannelType is not MQCHT_SVRCONN or MQCHT_RECEIVER.

This field is always blank. The information is contained in the communications Side Object instead.

The length of this field is given by MQ_MODE_NAME_LENGTH.

MsgCompList [16] (MQLONG)
This field specifies the list of message data compression techniques which are supported by the channel.

The list contains one or more of the following values:
MQCOMPRESS_NONE

No message data compression is performed.
MQCOMPRESS_RLE

Message data compression is performed using run-length encoding.
MQCOMPRESS_ZLIBFAST

Message data compression is performed using the zlib compression technique. A fast compression
time is preferred.

MQCOMPRESS_ZLIBHIGH
Message data compression is performed using the zlib compression technique. A high level of
compression is preferred.

Unused values in the array are set to MQCOMPRESS_NOT_AVAILABLE.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_8.

MsgExit (MQCHARn)
This field specifies the channel message exit name.

If this name is nonblank, the exit is called at the following times:

• Immediately after a message has been retrieved from the transmission queue (sender or server), or
immediately before a message is put to a destination queue (receiver or requester).

The exit is given the entire application message and transmission queue header for modification.
• At initialization and termination of the channel.

This field is not relevant for channels with a ChannelType of MQCHT_SVRCONN or MQCHT_CLNTCONN; a
message exit is never invoked for such channels.

Developing applications reference 1479

See “MQCD - Channel definition” on page 1466 for a description of the content of this field in various
environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment-specific.

MsgExitPtr (MQPTR)
This field specifies the address of the first MsgExit field.

If MsgExitsDefined is greater than zero, this address is the address of the list of names of each channel
message exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with blanks. There are
MsgExitsDefined fields adjoining one another - one for each exit.

Any changes made to these names by an exit are preserved, although the message channel exit takes no
explicit action - it does not change which exits are invoked.

If MsgExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

MsgExitsDefined (MQLONG)
This field specifies the number of channel message exits defined in the chain.

It is greater than or equal to zero.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

MsgRetryCount (MQLONG)
This field specifies the number of times MCA tries to put the message, after the first attempt has failed.

This field indicates the number of times that the MCA tries the open or put operation, if the first MQOPEN
or MQPUT fails with completion code MQCC_FAILED. The effect of this attribute depends on whether
MsgRetryExit is blank or nonblank:

• If MsgRetryExit is blank, the MsgRetryCount attribute controls whether the MCA attempts retries. If
the attribute value is zero, no retries are attempted. If the attribute value is greater than zero, the retries
are attempted at intervals given by the MsgRetryInterval attribute.

Retries are attempted only for the following reason codes:

– MQRC_PAGESET_FULL
– MQRC_PUT_INHIBITED
– MQRC_Q_FULL

For other reason codes, the MCA proceeds immediately to its normal failure processing, without retrying
the failing message.

• If MsgRetryExit is nonblank, the MsgRetryCount attribute does not affect the MCA; instead it is the
message retry exit that determines how many times the retry is attempted, and at what intervals; the
exit is invoked even if the MsgRetryCount attribute is zero.

The MsgRetryCount attribute is made available to the exit in the MQCD structure, but the exit it not
required to honor it - retries continue indefinitely until the exit returns MQXCC_SUPPRESS_FUNCTION
in the ExitResponse field of MQCXP.

This field is relevant only for channels with a ChannelType of MQCHT_REQUESTER, MQCHT_RECEIVER,
or MQCHT_CLUSRCVR.

This field is not present when Version is less than MQCD_VERSION_3.

1480 IBM MQ Developing Applications Reference

MsgRetryExit (MQCHARn)
This field specifies the channel message retry exit name.

The message retry exit is an exit that is invoked by the MCA when the MCA receives a completion code of
MQCC_FAILED from an MQOPEN or MQPUT call. The purpose of the exit is to specify a time interval for
which the MCA waits before trying the MQOPEN or MQPUT operation again. Alternatively, the exit can be
set to not try the operation again.

The exit is invoked for all reason codes that have a completion code of MQCC_FAILED - the settings of
the exit determine which reason codes it wants the MCA to try again, for how many attempts, and at what
time intervals.

When the operation is not to be attempted any more, the MCA performs its normal failure processing;
this processing includes generating an exception report message (if specified by the sender), and
either placing the original message on the dead-letter queue or discarding the message (according
to whether the sender specified MQRO_DEAD_LETTER_Q or MQRO_DISCARD_MSG). Failures involving
the dead-letter queue (for example, dead-letter queue full) do not cause the message-retry exit to be
invoked.

If the exit name is nonblank, the exit is called at the following times:

• Immediately before performing the wait before trying to deliver a message again
• At initialization and termination of the channel

See “MQCD - Channel definition” on page 1466 for a description of the content of this field in various
environments.

This field is relevant only for channels with a ChannelType of MQCHT_REQUESTER, MQCHT_RECEIVER,
or MQCHT_CLUSRCVR.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment-specific.

This field is not present when Version is less than MQCD_VERSION_3.

MsgRetryInterval (MQLONG)
This field specifies the minimum interval in milliseconds after which the open or put operation is retried.

The effect of this attribute depends on whether MsgRetryExit is blank or nonblank:

• If MsgRetryExit is blank, the MsgRetryInterval attribute specifies the minimum period that the
MCA waits before retrying a message, if the first MQOPEN or MQPUT fails with completion code
MQCC_FAILED. A value of zero means that the retry will be performed as soon as possible after the
previous attempt. Retries are performed only if MsgRetryCount is greater than zero.

This attribute is also used as the wait time if the message-retry exit returns an invalid value in the
MsgRetryInterval field in MQCXP.

• If MsgRetryExit is not blank, the MsgRetryInterval attribute does not affect the MCA; instead it is
the message-retry exit which determines how long the MCA waits. The MsgRetryInterval attribute is
made available to the exit in the MQCD structure, but the exit it not required to honor it.

The value is in the range 0 through 999 999 999.

This field is relevant only for channels with a ChannelType of MQCHT_REQUESTER, MQCHT_RECEIVER,
or MQCHT_CLUSRCVR.

This field is not present when Version is less than MQCD_VERSION_3.

The following fields in this structure are not present if Version is less than MQCD_VERSION_4.

MsgRetryUserData (MQCHAR32)
This field specifies the channel message retry exit user data.

This data is passed to the channel message-retry exit in the ExitData field of the ChannelExitParms
parameter (see MQ_CHANNEL_EXIT).

Developing applications reference 1481

This field initially contains the data that was set in the channel definition. However, during the lifetime of
this MCA instance, any changes made to the contents of this field by an exit of any type are preserved by
the MCA, and made visible to subsequent invocations of exits (regardless of type) for this MCA instance.
Such changes do not affect the channel definition used by other MCA instances. Any characters (including
binary data) can be used.

This field is relevant only for channels with a ChannelType of MQCHT_REQUESTER, MQCHT_RECEIVER,
or MQCHT_CLUSRCVR.

The length of this field is given by MQ_EXIT_DATA_LENGTH. This field is not present when Version is
less than MQCD_VERSION_3.

This field is not relevant in IBM MQ for IBM i.

MsgUserData (MQCHAR32)
This field specifies channel message exit user data.

This data is passed to the channel message exit in the ExitData field of the ChannelExitParms
parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition. However, during the lifetime of
this MCA instance, any changes made to the contents of this field by an exit of any type are preserved by
the MCA, and made visible to subsequent invocations of exits (regardless of type) for this MCA instance.
Such changes do not affect the channel definition used by other MCA instances. Any characters (including
binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This field is not relevant in IBM MQ for IBM i.

MsgUserDataPtr (MQPTR)
This field specifies the address of the first MsgUserData field.

If MsgExitsDefined is greater than zero, this address is the address of the list of user data items for
each channel message exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the right with blanks. There are
MsgExitsDefined fields adjoining one another - one for each exit. If the number of user data items
defined is less than the number of exit names, undefined user data items are set to blanks. Conversely,
if the number of user data items defined is greater than the number of exit names, the excess user data
items are ignored and not presented to the exit.

Any changes made to these values by an exit are preserved. This allows one exit to pass information to
another exit. No validation is carried out on any changes so, for example, binary data can be written to
these fields if required.

If MsgExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

NetworkPriority (MQLONG)
This field specifies the priority of the network connection for the channel.

When multiple paths to a particular destination are available, the path with the highest priority is chosen.
The value is in the range 0 through 9; 0 is the lowest priority.

This field is relevant only for channels with a ChannelType of MQCHT_CLUSSDR or MQCHT_CLUSRCVR.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_5.

The following fields in this structure are not present if Version is less than MQCD_VERSION_6.

1482 IBM MQ Developing Applications Reference

NonPersistentMsgSpeed (MQLONG)
This field specifies the speed at which nonpersistent messages travel through the channel.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_RECEIVER, MQCHT_REQUESTER, MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

The value is one of the following:
MQNPMS_NORMAL

Normal speed.

If a channel is defined to be MQNPMS_NORMAL, nonpersistent messages travel through the channel
at normal speed. This has the advantage that these messages are not lost if there is a channel failure.
Also, persistent and nonpersistent messages on the same transmission queue maintain their order
relative to each other.

MQNPMS_FAST
Fast speed.

If a channel is defined to be MQNPMS_FAST, nonpersistent messages travel through the channel at
fast speed. This improves the throughput of the channel, but means that nonpersistent messages
are lost if there is a channel failure. Also, it is possible for nonpersistent messages to jump ahead
of persistent messages waiting on the same transmission queue, that is, the order of nonpersistent
messages is not maintained relative to persistent messages. However the order of nonpersistent
messages relative to each other is maintained. Similarly, the order of persistent messages relative to
each other is maintained.

Password (MQCHAR12)
This field specifies the password used by the message channel agent when attempting to initiate a secure
SNA session with a remote message channel agent.

This field can be nonblank only on AIX, Linux, and Windows, and is relevant only for channels with a
ChannelType of MQCHT_SENDER, MQCHT_SERVER, MQCHT_REQUESTER, or MQCHT_CLNTCONN. On
z/OS, this field is not relevant.

The length of this field is given by MQ_PASSWORD_LENGTH. However, only the first 10 characters are
used.

This field is not present if Version is less than MQCD_VERSION_2.

PropertyControl (MQLONG)
This field specifies what happens to properties of messages when the message is about to be sent to a V6
or prior queue manager (a queue manager that does not understand the concept of a property descriptor).

The value can be any of the following values:
MQPROP_COMPATIBILITY

If the message contains a property with a prefix of mcd., jms., usr., or mqext., all message
properties are delivered to the application in an MQRFH2 header. Otherwise all properties of the
message, except those properties contained in the message descriptor (or extension), are discarded
and are no longer accessible to the application.
This value is the default value; it allows applications, which expect JMS-related properties to be in an
MQRFH2 header in the message data, to continue to work unmodified.

MQPROP_NONE
All properties of the message, except those properties in the message descriptor (or extension), are
removed from the message before the message is sent to the remote queue manager.

MQPROP_ALL
All properties of the message are included with the message when it is sent to the remote queue
manager. The properties, except those properties in the message descriptor (or extension), are placed
in one or more MQRFH2 headers in the message data.

This attribute is applicable to Sender, Server, Cluster Sender, and Cluster Receiver channels.

Developing applications reference 1483

“MQIA_* (Integer Attribute Selectors)” on page 129
“MQPROP_* (Queue and Channel Property Control Values and Maximum Properties Length)” on page 169

PutAuthority (MQLONG)
This field specifies whether the user identifier in the context information associated with a message is
used to establish authority to put the message to the destination queue.

This field is relevant only for channels with a ChannelType of MQCHT_REQUESTER, MQCHT_RECEIVER,
or MQCHT_CLUSRCVR. It is one of the following:
MQPA_DEFAULT

Default user identifier is used.
MQPA_CONTEXT

Context user identifier is used.
MQPA_ALTERNATE_OR_MCA

The user ID from the UserIdentifier field of the message descriptor is used. Any user ID received from
the network is not used. This value is supported only on z/OS.

MQPA_ONLY_MCA
The default user ID is used. Any user ID received from the network is not used. This value is
supported only on z/OS.

QMgrName (MQCHAR48)
This field specifies the name of the queue manager that an exit can connect to.

For channels with a ChannelType other than MQCHT_CLNTCONN, this field is the name of the queue
manager that an exit can connect to, which on AIX, Linux, and Windows, is always nonblank.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH.

ReceiveExit (MQCHARn)
This field specifies the channel receive exit name.

If this name is nonblank, the exit is called at the following times:

• Immediately before the received network data is processed.

The exit is given the complete transmission buffer as received. The contents of the buffer can be
modified as required.

• At initialization and termination of the channel.

See “MQCD - Channel definition” on page 1466 for a description of the content of this field in various
environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment-specific.

ReceiveExitPtr (MQPTR)
This field specifies the address of the first ReceiveExit field.

If ReceiveExitsDefined is greater than zero, this address is the address of the list of names of each
channel receive exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with blanks. There are
ReceiveExitsDefined fields adjoining one another - one for each exit.

Any changes made to these names by an exit are preserved, although the message channel exit takes no
explicit action - it does not change which exits are invoked.

If ReceiveExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

1484 IBM MQ Developing Applications Reference

ReceiveExitsDefined (MQLONG)
This field specifies the number of channel receive exits defined in the chain.

It is greater than or equal to zero.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

ReceiveUserData (MQCHAR32)
This channel specifies channel receive exit user data.

This data is passed to the channel receive exit in the ExitData field of the ChannelExitParms
parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition. However, during the lifetime of
this MCA instance, any changes made to the contents of this field by an exit of any type are preserved by
the MCA, and made visible to subsequent invocations of exits (regardless of type) for this MCA instance.
This applies to exits on different conversations. Such changes do not affect the channel definition used by
other MCA instances. Any characters (including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This field is not relevant in IBM MQ for IBM i.

The following fields in this structure are not present if Version is less than MQCD_VERSION_2.

ReceiveUserDataPtr (MQPTR)
This field specifies the address of the first ReceiveUserData field.

If ReceiveExitsDefined is greater than zero, this address is the address of the list of user data item for
each channel receive exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the right with blanks. There are
ReceiveExitsDefined fields adjoining one another - one for each exit. If the number of user data items
defined is less than the number of exit names, undefined user data items are set to blanks. Conversely,
if the number of user data items defined is greater than the number of exit names, the excess user data
items are ignored and not presented to the exit.

Any changes made to these values by an exit are preserved. This allows one exit to pass information to
another exit. No validation is carried out on any changes so, for example, binary data can be written to
these fields if required.

If ReceiveExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

The following fields in this structure are not present if Version is less than MQCD_VERSION_5.

RemotePassword (MQCHAR12)
This field specifies the password from a partner.

This field contains valid information only if ChannelType is MQCHT_CLNTCONN or MQCHT_SVRCONN.

• For a security exit at an MQCHT_CLNTCONN channel, this password is a password which has been
obtained from the environment. The exit can choose to send it to the security exit at the server.

• For a security exit at an MQCHT_SVRCONN channel, this field might contain a password which has been
obtained from the environment at the client, if there is no client security exit. The exit can use this
password to validate the user identifier in RemoteUserIdentifier.

If there is a security exit at the client, then this information can be obtained in a security flow from the
client.

The length of this field is given by MQ_PASSWORD_LENGTH. This field is not present if Version is less
than MQCD_VERSION_2.

Developing applications reference 1485

RemoteSecurityId (MQBYTE40)
This field specifies the security identifier for the remote user.

This field is relevant only for channels with a ChannelType of MQCHT_CLNTCONN or MQCHT_SVRCONN.

The following special value indicates that there is no security identifier:
MQSID_NONE

No security identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant MQSID_NONE_ARRAY is also defined; this constant
has the same value as MQSID_NONE, but is an array of characters instead of a string.

This is an input field to the exit. The length of this field is given by MQ_SECURITY_ID_LENGTH. This field is
not present if Version is less than MQCD_VERSION_6.

The following fields in this structure are not present if Version is less than MQCD_VERSION_7.

RemoteUserIdentifier (MQCHAR12)
This field specifies the first 12 bytes of a user identifier from a partner.

There are two fields that contain the remote user identifier:

• RemoteUserIdentifier contains the first 12 bytes of the remote user identifier, and is padded with
blanks if the identifier is shorter than 12 bytes. RemoteUserIdentifier can be blank.

• LongRemoteUserIdPtr points to the full remote user identifier, which can be longer than 12 bytes.
Its length is given by LongRemoteUserIdLength. The full identifier contains no trailing blanks, and
is not null-terminated. If the identifier is blank, LongRemoteUserIdLength is zero, and the value of
LongRemoteUserIdPtr is undefined.

LongRemoteUserIdPtr is not present if Version is less than MQCD_VERSION_6.

The remote user identifier is relevant only for channels with a ChannelType of MQCHT_CLNTCONN or
MQCHT_SVRCONN.

• For a security exit on an MQCHT_CLNTCONN channel, this value is a user identifier that has been
obtained from the environment. The exit can choose to send it to the security exit at the server.

• For a security exit on an MQCHT_SVRCONN channel, this field might contain a user identifier which
has been obtained from the environment at the client, if there is no client security exit. The exit
might validate this user ID (possibly with the password in RemotePassword) and update the value in
MCAUserIdentifier.

If there is a security exit at the client, then this information can be obtained in a security flow from the
client.

The length of this field is given by MQ_USER_ID_LENGTH. This field is not present if Version is less than
MQCD_VERSION_2.

SecurityExit (MQCHARn)
This field specifies the channel security exit name.

If this name is nonblank, the exit is called at the following times:

• Immediately after establishing a channel.

Before any messages are transferred, the exit is given the opportunity to instigate security flows to
validate connection authorization.

• Upon receipt of a response to a security message flow.

Any security message flows received from the remote processor on the remote machine are given to the
exit.

• At initialization and termination of the channel.

1486 IBM MQ Developing Applications Reference

See “MQCD - Channel definition” on page 1466 for a description of the content of this field in various
environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment-specific.

SecurityUserData (MQCHAR32)
This channel specifies the channel security exit user data.

This data is passed to the channel security exit in the ExitData field of the ChannelExitParms
parameter (see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition. However, during the lifetime of
this MCA instance, any changes made to the contents of this field by an exit of any type are preserved by
the MCA, and made visible to subsequent invocations of exits (regardless of type) for this MCA instance.
This applies to exits on different conversations. Such changes do not effect on the channel definition used
by other MCA instances. Any characters (including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This field is not relevant in IBM MQ for IBM i.

SendExit (MQCHARn)
This field specifies the channel send exit name.

If this name is nonblank, the exit is called at the following times:

• Immediately before data is sent out on the network.

The exit is given the complete transmission buffer before it is transmitted. The contents of the buffer
can be modified as required.

• At initialization and termination of the channel.

See “MQCD - Channel definition” on page 1466 for a description of the content of this field in various
environments.

The length of this field is given by MQ_EXIT_NAME_LENGTH.

Note: The value of this constant is environment-specific.

SendExitPtr (MQPTR)
This field specifies the address of the first SendExit field.

If SendExitsDefined is greater than zero, this address is the address of the list of names of each
channel send exit in the chain.

Each name is in a field of length ExitNameLength, padded to the right with blanks. There are
SendExitsDefined fields adjoining one another - one for each exit.

Any changes made to these names by an exit are preserved, although the message send exit takes no
explicit action - it does not change which exits are invoked.

If SendExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

SendExitsDefined (MQLONG)
This field specifies the number of channel send exits defined in the chain.

It is greater than or equal to zero.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

Developing applications reference 1487

SendUserData (MQCHAR32)
This field specifies the channel send exit user data.

This data is passed to the channel send exit in the ExitData field of the ChannelExitParms parameter
(see MQ_CHANNEL_EXIT).

This field initially contains the data that was set in the channel definition. However, during the lifetime of
this MCA instance, any changes made to the contents of this field by an exit of any type are preserved by
the MCA, and made visible to subsequent invocations of exits (regardless of type) for this MCA instance.
This applies to exits on different conversations. Such changes do not affect the channel definition used by
other MCA instances. Any characters (including binary data) can be used.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This field is not relevant in IBM MQ for IBM i.

SendUserDataPtr (MQPTR)
This field specifies the address of the SendUserData field.

If SendExitsDefined is greater than zero, this address is the address of the list of user data items for
each channel message exit in the chain.

Each user data item is in a field of length ExitDataLength, padded to the right with blanks. There are
MsgExitsDefined fields adjoining one another - one for each exit. If the number of user data items
defined is less than the number of exit names, undefined user data items are set to blanks. Conversely,
if the number of user data items defined is greater than the number of exit names, the excess user data
items are ignored and not presented to the exit.

Any changes made to these values by an exit are preserved. This allows one exit to pass information to
another exit. No validation is carried out on any changes so, for example, binary data can be written to
these fields if required.

If SendExitsDefined is zero, this field is the null pointer.

On platforms where the programming language does not support the pointer data type, this field is
declared as a byte string of the appropriate length.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_4.

SeqNumberWrap (MQLONG)
This field specifies the highest allowable message sequence number.

When this value is reached, sequence numbers wrap to start again at 1.

This value is non-negotiable and must match in both the local and remote channel definitions.

This field is not relevant for channels with a ChannelType of MQCHT_SVRCONN or MQCHT_CLNTCONN.

SharingConversations (MQLONG)
This field specifies the maximum number of conversations that can share a channel instance associated
with this channel.

This field is used on client connection and server-connection channels.

A value of 0 means that the channel operates as it did in versions earlier than IBM WebSphere MQ 7.0
with respect to the following attributes:

• Conversation sharing
• Read ahead
• STOP CHANNEL(channelname) MODE(QUIESCE)
• Heartbeating
• Client asynchronous consumption

1488 IBM MQ Developing Applications Reference

A value of 1 is the minimum value for IBM WebSphere MQ 7.0 behavior. Although only one conversation
is allowed on the channel instance, read ahead, asynchronous consumption, and the IBM WebSphere MQ
7.0 behavior of CLNTCONN-SVRCONN heartbeating and quiescent channel stopping are available.

This is an input field to the exit. It is not present if Version is less than MQCD_VERSION_9.

The default value of this field is 10.

Note: MaxInstances and MaxInstancesPerClient limits applied to a channel restrict the number of
channel instances, not the number of conversations that might be sharing those instances.

ShortConnectionName (MQCHAR20)
This field specifies the first 20 bytes of a connection name.

If the Version field is MQCD_VERSION_1, ShortConnectionName contains the full connection name.

If the Version field is MQCD_VERSION_2 or greater, ShortConnectionName contains the first 20
characters of the connection name. The full connection name is given by the ConnectionName field;
ShortConnectionName and the first 20 characters of ConnectionName are identical.

See ConnectionName for details of the contents of this field.

Note: The name of this field was changed for MQCD_VERSION_2 and subsequent versions of MQCD; the
field was previously called ConnectionName.

The length of this field is given by MQ_SHORT_CONN_NAME_LENGTH.

ShortRetryCount (MQLONG)
This field specifies the maximum number of attempts that are made to connect to a remote machine.

This field is the maximum number of attempts that are made to connect to the remote machine,
at intervals specified by ShortRetryInterval, before the (normally longer) LongRetryCount and
LongRetryInterval are used.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

ShortRetryInterval (MQLONG)
This field specifies the maximum number of seconds to wait before reattempting connection to the
remote machine.

The interval between retries might be extended if the channel has to wait to become active.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_CLUSSDR, or MQCHT_CLUSRCVR.

SPLProtection (MQLONG)
This field specifies the value of the AMS security policy protection.

The value is one of the following:
MQSPL_PASSTHRU

Pass through, unchanged, any messages sent or received by the MCA for this channel.

This value is relevant only for channels with a ChannelType of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_RECEIVER, or MQCHT_REQUESTER, and is the default value.

MQSPL_REMOVE
Remove any AMS protection from messages retrieved from the transmission queue by the MCA, and
send the messages to the partner.

This value is relevant only for channels with a ChannelType of MQCHT_SENDER or MQCHT_SERVER.

MQSPL_ASPOLICY
Based on the policy defined for the target queue, apply AMS protection to inbound messages prior to
putting them on to the target queue.

Developing applications reference 1489

This value is relevant only for channels with a ChannelType of MQCHT_RECEIVER or
MQCHT_REQUESTER.

This is an input field to the exit. This field is not present if Version is less than MQCD_VERSION_12.

SSLCipherSpec (MQCHAR32)
This field specifies the Cipher Spec that is in use when using TLS.

If SSLCipherSpec is blank, the channel is not using TLS. If it is not blank, this field contains a string
specifying the CipherSpec in use.

This parameter is valid for all channel types. It is supported on the following platforms:

• AIX

• IBM i

• Linux

• Windows

• z/OS

It is valid only for channel types of a transport type (TRPTYPE) of TCP.

This is an input field to the exit. The length of this field is given by MQ_SSL_CIPHER_SPEC_LENGTH. The
field is not present if Version is less than MQCD_VERSION_7.

SSLClientAuth (MQLONG)
This field specifies whether TLS client authentication is required.

This field is relevant only to SVRCONN channel definitions.

It is one of the following values:
MQSCA_REQUIRED

Client authentication required.
MQSCA_OPTIONAL

Client authentication optional.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_7.

SSLPeerNameLength (MQLONG)
This field specifies the length in bytes of the TLS peer name pointed to by SSLPeerNamePtr.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_7.

SSLPeerNamePtr (MQPTR)
This field specifies the address of the TLS peer name.

When a certificate is received during a successful TLS handshake, the Distinguished Name of the subject
of the certificate is copied into the MQCD field accessed by SSLPeerNamePtr at the end of the channel
which receives the certificate. It overwrites the SSLPeerName value for the channel if this value is present
in the channel definition of the local user. If a security exit is specified at this end of the channel it
receives the Distinguished Name from the peer certificate in the MQCD.

This is an input field to the exit. The field is not present if Version is less than MQCD_VERSION_7.

Note: Security exit applications constructed prior to the release of IBM WebSphere MQ 7.1 may require
updating. For more information see Channel security exit programs.

StrucLength (MQLONG)
This field specifies the length in bytes of the MQCD structure.

The length does not include any of the strings addressed by pointer fields contained within the structure.
The value is one of the following:

1490 IBM MQ Developing Applications Reference

MQCD_LENGTH_4
Length of version-4 channel definition structure.

MQCD_LENGTH_5
Length of version-5 channel definition structure.

MQCD_LENGTH_6
Length of version-6 channel definition structure.

MQCD_LENGTH_7
Length of version-7 channel definition structure.

MQCD_LENGTH_8
Length of version-8 channel definition structure.

MQCD_LENGTH_9
Length of version-9 channel definition structure.

MQCD_LENGTH_10
Length of version-10 channel definition structure.

MQCD_LENGTH_11
Length of version-11 channel definition structure.

MQCD_LENGTH_12
Length of version-12 channel definition structure.

The following constant specifies the length of the current version:
MQCD_CURRENT_LENGTH

Length of current version of channel definition structure.

Note: These constants have values that are environment-specific.

The field is not present if Version is less than MQCD_VERSION_4.

TpName (MQCHAR64)
This field specifies the LU 6.2 transaction program name.

This field is relevant only if the transmission protocol (TransportType) is MQXPT_LU62, and the
ChannelType is not MQCHT_SVRCONN or MQCHT_RECEIVER.

This field is always blank on platforms on which the information is contained in the communications Side
Object instead.

The length of this field is given by MQ_TP_NAME_LENGTH.

TransportType (MQLONG)
This field specifies the transmission protocol to be used.

The value is not checked if the channel was initiated from the other end.

It is one of the following values:
MQXPT_LU62

LU 6.2 transport protocol.
MQXPT_TCP

TCP/IP transport protocol.
MQXPT_NETBIOS

NetBIOS transport protocol.

This value is supported in the following environments: Windows.

MQXPT_SPX
SPX transport protocol.

Developing applications reference 1491

This value is supported in the following environments: Windows, plus IBM MQ clients connected to
these systems.

UseDLQ (MQLONG)
This field specifies whether the dead-letter queue (or undelivered message queue) is used when
messages cannot be delivered by channels.

It can contain one of the following values:
MQUSEDLQ_NO

Messages that cannot be delivered by a channel are treated as a failure. The channel either discards
the message, or the channel ends, in accordance with the NPMSPEED setting.

MQUSEDLQ_YES
When the DEADQ queue manager attribute provides the name of a dead-letter queue, then it is used,
else the behavior is as for NO. YES is the default value.

UserIdentifier (MQCHAR12)
This field specifies the user identifier used by the message channel agent when attempting to initiate a
secure SNA session with a remote message channel agent.

This field can be nonblank only on AIX, Linux, and Windows, and is relevant only for channels with a
ChannelType of MQCHT_SENDER, MQCHT_SERVER, MQCHT_REQUESTER, or MQCHT_CLNTCONN. On
z/OS, this field is not relevant.

The length of this field is given by MQ_USER_ID_LENGTH. However, only the first 10 characters are used.

This field is not present when Version is less than MQCD_VERSION_2.

Version (MQLONG)
The Version field specifies the highest version number that you can set for the structure.

The value depends on the environment:
MQCD _VERSION_1

Version 1 channel definition structure.
MQCD _VERSION_2

Version 2 channel definition structure.
MQCD _VERSION_3

Version 3 channel definition structure.
MQCD _VERSION_4

Version 4 channel definition structure.
MQCD _VERSION_5

Version 5 channel definition structure.
MQCD _VERSION_6

Version 6 channel definition structure.
MQCD _VERSION_7

Version 7 channel definition structure.
MQCD _VERSION_8

Version 8 channel definition structure.
MQCD _VERSION_9

Version 9 channel definition structure.

Version 9 is the highest that you can set the field to on IBM WebSphere MQ 7.0 and IBM WebSphere
MQ 7.0.1 on all platforms.

MQCD _VERSION_10
Version 10 channel definition structure.

Version 10 is the highest that you can set the field to on IBM WebSphere MQ 7.1 and IBM WebSphere
MQ 7.5 on all platforms.

1492 IBM MQ Developing Applications Reference

MQCD _VERSION_11
Version 11 channel definition structure.

Version 11 is the highest that you can set the field to on IBM MQ 8.0 on all platforms.

MQCD _VERSION_12
Version 12 channel definition structure.

Version 12 is the highest that you can set the field to on IBM MQ 9.1.3.

Fields that exist only in the more recent versions of the structure are identified as such in the descriptions
of the fields. The following constant specifies the version number of the current version:
MQCD_CURRENT_VERSION

The value set in MQCD_CURRENT_VERSION is the current version of the channel definition structure
being used.

The value of MQCD_CURRENT_VERSION depends on the environment. It contains the highest value
supported by the platform.

MQCD_CURRENT_VERSION is not used to initialize the default structures provided in the header, copy,
and include files provided for different programming languages. The default initialization of Version
depends on the platform and release.

For IBM WebSphere MQ 7.0 and later versions, the MQCD declarations in the header, copy, and
include files are initialized to MQCD_VERSION_6. To use additional MQCD fields, applications must set
the version number to MQCD_CURRENT_VERSION. If you are writing an application that is portable
between several environments, you must choose a version that is supported in all the environments.

Tip: When a new version of the MQCD structure is introduced, the layout of the existing part is not
changed. The exit must check the version number. It must be equal to or greater than the lowest version
that contains the fields that the exit needs to use.

XmitQName (MQCHAR48)
This field specifies the name of the transmission queue from which messages are retrieved.

This field is relevant only for channels with a ChannelType of MQCHT_SENDER or MQCHT_SERVER.

The length of this field is given by MQ_Q_NAME_LENGTH.

C declaration
This declaration is the C declaration for the MQCD structure.

typedef struct tagMQCD MQCD;
typedef MQCD MQPOINTER PMQCD;
typedef PMQCD MQPOINTER PPMQCD;

 struct tagMQCD {
 MQCHAR ChannelName[20]; /* Channel definition name */
 MQLONG Version; /* Structure version number */
 MQLONG ChannelType; /* Channel type */
 MQLONG TransportType; /* Transport type */
 MQCHAR Desc[64]; /* Channel description */
 MQCHAR QMgrName[48]; /* Queue manager name */
 MQCHAR XmitQName[48]; /* Transmission queue name */
 MQCHAR ShortConnectionName[20]; /* First 20 bytes of */
 /* connection name */
 MQCHAR MCAName[20]; /* Reserved */
 MQCHAR ModeName[8]; /* LU 6.2 Mode name */
 MQCHAR TpName[64]; /* LU 6.2 transaction program */
 /* name */
 MQLONG BatchSize; /* Batch size */
 MQLONG DiscInterval; /* Disconnect interval */
 MQLONG ShortRetryCount; /* Short retry count */
 MQLONG ShortRetryInterval; /* Short retry wait interval */
 MQLONG LongRetryCount; /* Long retry count */
 MQLONG LongRetryInterval; /* Long retry wait interval */
 MQCHAR SecurityExit[128]; /* Channel security exit name */
 MQCHAR MsgExit[128]; /* Channel message exit name */

Developing applications reference 1493

 MQCHAR SendExit[128]; /* Channel send exit name */
 MQCHAR ReceiveExit[128]; /* Channel receive exit name */
 MQLONG SeqNumberWrap; /* Highest allowable message */
 /* sequence number */
 MQLONG MaxMsgLength; /* Maximum message length */
 MQLONG PutAuthority; /* Put authority */
 MQLONG DataConversion; /* Data conversion */
 MQCHAR SecurityUserData[32]; /* Channel security exit user */
 /* data */
 MQCHAR MsgUserData[32]; /* Channel message exit user */
 /* data */
 MQCHAR SendUserData[32]; /* Channel send exit user */
 /* data */
 MQCHAR ReceiveUserData[32]; /* Channel receive exit user */
 /* data */
 /* Ver:1 */
 MQCHAR UserIdentifier[12]; /* User identifier */
 MQCHAR Password[12]; /* Password */
 MQCHAR MCAUserIdentifier[12]; /* First 12 bytes of MCA user */
 /* identifier */
 MQLONG MCAType; /* Message channel agent type */
 MQCHAR ConnectionName[264]; /* Connection name */
 MQCHAR RemoteUserIdentifier[12]; /* First 12 bytes of user */
 /* identifier from partner */
 MQCHAR RemotePassword[12]; /* Password from partner */
 /* Ver:2 */
 MQCHAR MsgRetryExit[128]; /* Channel message retry exit */
 /* name */
 MQCHAR MsgRetryUserData[32]; /* Channel message retry exit */
 /* user data */
 MQLONG MsgRetryCount; /* Number of times MCA will */
 /* try to put the message, */
 /* after first attempt has */
 /* failed */
 MQLONG MsgRetryInterval; /* Minimum interval in */
 /* milliseconds after which */
 /* the open or put operation */
 /* will be retried */
 /* Ver:3 */
 MQLONG HeartbeatInterval; /* Time in seconds between */
 /* heartbeat flows */
 MQLONG BatchInterval; /* Batch duration */
 MQLONG NonPersistentMsgSpeed; /* Speed at which */
 /* nonpersistent messages are */
 /* sent */
 MQLONG StrucLength; /* Length of MQCD structure */
 MQLONG ExitNameLength; /* Length of exit name */
 MQLONG ExitDataLength; /* Length of exit user data */
 MQLONG MsgExitsDefined; /* Number of message exits */
 /* defined */
 MQLONG SendExitsDefined; /* Number of send exits */
 /* defined */
 MQLONG ReceiveExitsDefined; /* Number of receive exits */
 /* defined */
 MQPTR MsgExitPtr; /* Address of first MsgExit */
 /* field */
 MQPTR MsgUserDataPtr; /* Address of first */
 /* MsgUserData field */
 MQPTR SendExitPtr; /* Address of first SendExit */
 /* field */
 MQPTR SendUserDataPtr; /* Address of first */
 /* SendUserData field */
 MQPTR ReceiveExitPtr; /* Address of first */
 /* ReceiveExit field */
 MQPTR ReceiveUserDataPtr; /* Address of first */
 /* ReceiveUserData field */
 /* Ver:4 */
 MQPTR ClusterPtr; /* Address of a list of */
 /* cluster names */
 MQLONG ClustersDefined; /* Number of clusters to */
 /* which the channel belongs */
 MQLONG NetworkPriority; /* Network priority */
 /* Ver:5 */
 MQLONG LongMCAUserIdLength; /* Length of long MCA user */
 /* identifier */
 MQLONG LongRemoteUserIdLength; /* Length of long remote user */
 /* identifier */
 MQPTR LongMCAUserIdPtr; /* Address of long MCA user */
 /* identifier */
 MQPTR LongRemoteUserIdPtr; /* Address of long remote */
 /* user identifier */
 MQBYTE40 MCASecurityId; /* MCA security identifier */

1494 IBM MQ Developing Applications Reference

 MQBYTE40 RemoteSecurityId; /* Remote security identifier */
 /* Ver:6 */
 MQCHAR SSLCipherSpec[32]; /* TLS CipherSpec */
 MQPTR SSLPeerNamePtr; /* Address of TLS peer name */
 MQLONG SSLPeerNameLength; /* Length of TLS peer name */
 MQLONG SSLClientAuth; /* Whether TLS client */
 /* authentication is required */
 MQLONG KeepAliveInterval; /* Keepalive interval */
 MQCHAR LocalAddress[48]; /* Local communications */
 /* address */
 MQLONG BatchHeartbeat; /* Batch heartbeat interval */
 /* Ver:7 */
 MQLONG HdrCompList[2]; /* Header data compression */
 /* list */
 MQLONG MsgCompList[16]; /* Message data compression */
 /* list */
 MQLONG CLWLChannelRank; /* Channel rank */
 MQLONG CLWLChannelPriority; /* Channel priority */
 MQLONG CLWLChannelWeight; /* Channel weight */
 MQLONG ChannelMonitoring; /* Channel monitoring */
 MQLONG ChannelStatistics; /* Channel statistics */
 /* Ver:8 */
 MQLONG SharingConversations; /* Limit on sharing */
 /* conversations */
 MQLONG PropertyControl; /* Message property control */
 MQLONG MaxInstances; /* Limit on SVRCONN channel */
 /* instances */
 MQLONG MaxInstancesPerClient; /* Limit on SVRCONN channel */
 /* instances per client */
 MQLONG ClientChannelWeight; /* Client channel weight */
 MQLONG ConnectionAffinity; /* Connection affinity */
 /* Ver:9 */
 MQLONG BatchDataLimit; /* Batch data limit */
 MQLONG UseDLQ; /* Use Dead Letter Queue */
 MQLONG DefReconnect; /* Default client reconnect */
 /* option */
 /* Ver:10 */
 MQCHAR64 CertificateLabel; /* Certificate label */
 /* Ver:11 */
 MQLONG SPLProtection /* AMS Security policy protection */
 /* Ver:12 */
};

COBOL declaration
This declaration is the COBOL declaration for the MQCD structure.

** MQCD structure
 10 MQCD.
 ** Channel definition name
 15 MQCD-CHANNELNAME PIC X(20).
 ** Structure version number
 15 MQCD-VERSION PIC S9(9) BINARY.
 ** Channel type
 15 MQCD-CHANNELTYPE PIC S9(9) BINARY.
 ** Transport type
 15 MQCD-TRANSPORTTYPE PIC S9(9) BINARY.
 ** Channel description
 15 MQCD-DESC PIC X(64).
 ** Queue manager name
 15 MQCD-QMGRNAME PIC X(48).
 ** Transmission queue name
 15 MQCD-XMITQNAME PIC X(48).
 ** First 20 bytes of connection name
 15 MQCD-SHORTCONNECTIONNAME PIC X(20).
 ** Reserved
 15 MQCD-MCANAME PIC X(20).
 ** LU 6.2 Mode name
 15 MQCD-MODENAME PIC X(8).
 ** LU 6.2 transaction program name
 15 MQCD-TPNAME PIC X(64).
 ** Batch size
 15 MQCD-BATCHSIZE PIC S9(9) BINARY.
 ** Disconnect interval
 15 MQCD-DISCINTERVAL PIC S9(9) BINARY.
 ** Short retry count
 15 MQCD-SHORTRETRYCOUNT PIC S9(9) BINARY.
 ** Short retry wait interval

Developing applications reference 1495

 15 MQCD-SHORTRETRYINTERVAL PIC S9(9) BINARY.
 ** Long retry count
 15 MQCD-LONGRETRYCOUNT PIC S9(9) BINARY.
 ** Long retry wait interval
 15 MQCD-LONGRETRYINTERVAL PIC S9(9) BINARY.
 ** Channel security exit name
 15 MQCD-SECURITYEXIT PIC X(20).
 ** Channel message exit name
 15 MQCD-MSGEXIT PIC X(20).
 ** Channel send exit name
 15 MQCD-SENDEXIT PIC X(20).
 ** Channel receive exit name
 15 MQCD-RECEIVEEXIT PIC X(20).
 ** Highest allowable message sequence number
 15 MQCD-SEQNUMBERWRAP PIC S9(9) BINARY.
 ** Maximum message length
 15 MQCD-MAXMSGLENGTH PIC S9(9) BINARY.
 ** Put authority
 15 MQCD-PUTAUTHORITY PIC S9(9) BINARY.
 ** Data conversion
 15 MQCD-DATACONVERSION PIC S9(9) BINARY.
 ** Channel security exit user data
 15 MQCD-SECURITYUSERDATA PIC X(32).
 ** Channel message exit user data
 15 MQCD-MSGUSERDATA PIC X(32).
 ** Channel send exit user data
 15 MQCD-SENDUSERDATA PIC X(32).
 ** Channel receive exit user data
 15 MQCD-RECEIVEUSERDATA PIC X(32).
 ** Ver:1 **
 ** User identifier
 15 MQCD-USERIDENTIFIER PIC X(12).
 ** Password
 15 MQCD-PASSWORD PIC X(12).
 ** First 12 bytes of MCA user identifier
 15 MQCD-MCAUSERIDENTIFIER PIC X(12).
 ** Message channel agent type
 15 MQCD-MCATYPE PIC S9(9) BINARY.
 ** Connection name
 15 MQCD-CONNECTIONNAME PIC X(264).
 ** First 12 bytes of user identifier from partner
 15 MQCD-REMOTEUSERIDENTIFIER PIC X(12).
 ** Password from partner
 15 MQCD-REMOTEPASSWORD PIC X(12).
 ** Ver:2 **
 ** Channel message retry exit name
 15 MQCD-MSGRETRYEXIT PIC X(20).
 ** Channel message retry exit user data
 15 MQCD-MSGRETRYUSERDATA PIC X(32).
 ** Number of times MCA will try to put the message, after first
 ** attempt has failed
 15 MQCD-MSGRETRYCOUNT PIC S9(9) BINARY.
 ** Minimum interval in milliseconds after which the open or put
 ** operation will be retried
 15 MQCD-MSGRETRYINTERVAL PIC S9(9) BINARY.
 ** Ver:3 **
 ** Time in seconds between heartbeat flows
 15 MQCD-HEARTBEATINTERVAL PIC S9(9) BINARY.
 ** Batch duration
 15 MQCD-BATCHINTERVAL PIC S9(9) BINARY.
 ** Speed at which nonpersistent messages are sent
 15 MQCD-NONPERSISTENTMSGSPEED PIC S9(9) BINARY.
 ** Length of MQCD structure
 15 MQCD-STRUCLENGTH PIC S9(9) BINARY.
 ** Length of exit name
 15 MQCD-EXITNAMELENGTH PIC S9(9) BINARY.
 ** Length of exit user data
 15 MQCD-EXITDATALENGTH PIC S9(9) BINARY.
 ** Number of message exits defined
 15 MQCD-MSGEXITSDEFINED PIC S9(9) BINARY.
 ** Number of send exits defined
 15 MQCD-SENDEXITSDEFINED PIC S9(9) BINARY.
 ** Number of receive exits defined
 15 MQCD-RECEIVEEXITSDEFINED PIC S9(9) BINARY.
 ** Address of first MsgExit field
 15 MQCD-MSGEXITPTR POINTER.
 ** Address of first MsgUserData field
 15 MQCD-MSGUSERDATAPTR POINTER.
 ** Address of first SendExit field
 15 MQCD-SENDEXITPTR POINTER.
 ** Address of first SendUserData field
 15 MQCD-SENDUSERDATAPTR POINTER.

1496 IBM MQ Developing Applications Reference

 ** Address of first ReceiveExit field
 15 MQCD-RECEIVEEXITPTR POINTER.
 ** Address of first ReceiveUserData field
 15 MQCD-RECEIVEUSERDATAPTR POINTER.
 ** Ver:4 **
 ** Address of a list of cluster names
 15 MQCD-CLUSTERPTR POINTER.
 ** Number of clusters to which the channel belongs
 15 MQCD-CLUSTERSDEFINED PIC S9(9) BINARY.
 ** Network priority
 15 MQCD-NETWORKPRIORITY PIC S9(9) BINARY.
 ** Ver:5 **
 ** Length of long MCA user identifier
 15 MQCD-LONGMCAUSERIDLENGTH PIC S9(9) BINARY.
 ** Length of long remote user identifier
 15 MQCD-LONGREMOTEUSERIDLENGTH PIC S9(9) BINARY.
 ** Address of long MCA user identifier
 15 MQCD-LONGMCAUSERIDPTR POINTER.
 ** Address of long remote user identifier
 15 MQCD-LONGREMOTEUSERIDPTR POINTER.
 ** MCA security identifier
 15 MQCD-MCASECURITYID PIC X(40).
 ** Remote security identifier
 15 MQCD-REMOTESECURITYID PIC X(40).
 ** Ver:6 **
 ** TLS CipherSpec
 15 MQCD-SSLCIPHERSPEC PIC X(32).
 ** Address of TLS peer name
 15 MQCD-SSLPEERNAMEPTR POINTER.
 ** Length of TLS peer name
 15 MQCD-SSLPEERNAMELENGTH PIC S9(9) BINARY.
 ** Whether TLS client authentication is required
 15 MQCD-SSLCLIENTAUTH PIC S9(9) BINARY.
 ** Keepalive interval
 15 MQCD-KEEPALIVEINTERVAL PIC S9(9) BINARY.
 ** Local communications address
 15 MQCD-LOCALADDRESS PIC X(48).
 ** Batch heartbeat interval
 15 MQCD-BATCHHEARTBEAT PIC S9(9) BINARY.
 ** Ver:7 **
 ** Header data compression list
 15 MQCD-HDRCOMPLIST PIC S9(9) BINARY.
 ** Message data compression list
 15 MQCD-MSGCOMPLIST PIC S9(9) BINARY.
 ** Channel rank
 15 MQCD-CLWLCHANNELRANK PIC S9(9) BINARY.
 ** Channel priority
 15 MQCD-CLWLCHANNELPRIORITY PIC S9(9) BINARY.
 ** Channel weight
 15 MQCD-CLWLCHANNELWEIGHT PIC S9(9) BINARY.
 ** Channel monitoring
 15 MQCD-CHANNELMONITORING PIC S9(9) BINARY.
 ** Channel statistics
 15 MQCD-CHANNELSTATISTICS PIC S9(9) BINARY.
 ** Ver:8 **
 ** Limit on sharing conversations
 15 MQCD-SHARINGCONVERSATIONS PIC S9(9) BINARY.
 ** Message property control
 15 MQCD-PROPERTYCONTROL PIC S9(9) BINARY.
 ** Limit on SVRCONN channel instances
 15 MQCD-MAXINSTANCES PIC S9(9) BINARY.
 ** Limit on SVRCONN channel instances per client
 15 MQCD-MAXINSTANCESPERCLIENT PIC S9(9) BINARY.
 ** Client channel weight
 15 MQCD-CLIENTCHANNELWEIGHT PIC S9(9) BINARY.
 ** Connection affinity
 15 MQCD-CONNECTIONAFFINITY PIC S9(9) BINARY.
 ** Ver:9 **
 ** Batch data limit
 15 MQCD-BATCHDATALIMIT PIC S9(9) BINARY.
 ** Use Dead Letter Queue
 15 MQCD-USEDLQ PIC S9(9) BINARY.
 ** Default client reconnect option
 15 MQCD-DEFRECONNECT PIC S9(9) BINARY.
 ** Ver:10 **
 ** Certificate Label
 15 MQCD-CERTLABL PIC X (64)
 ** Ver:11 **
 ** AMS Security policy protection
 15 MQCD-SPLPROTECTION PIC S9(9) BINARY
 ** Ver:12 **

Developing applications reference 1497

RPG declaration (ILE)
This declaration is the RPG declaration for the MQCD structure.

D* MQCD Structure
 D*
 D* Channel definition name
 D CDCHN 1 20
 D* Structure version number
 D CDVER 21 24I 0
 D* Channel type
 D CDCHT 25 28I 0
 D* Transport type
 D CDTRT 29 32I 0
 D* Channel description
 D CDDES 33 96
 D* Queue manager name
 D CDQM 97 144
 D* Transmission queue name
 D CDXQ 145 192
 D* First 20 bytes of connection name
 D CDSCN 193 212
 D* Reserved
 D CDMCA 213 232
 D* LU 6.2 Mode name
 D CDMOD 233 240
 D* LU 6.2 transaction program name
 D CDTP 241 304
 D* Batch size
 D CDBS 305 308I 0
 D* Disconnect interval
 D CDDI 309 312I 0
 D* Short retry count
 D CDSRC 313 316I 0
 D* Short retry wait interval
 D CDSRI 317 320I 0
 D* Long retry count
 D CDLRC 321 324I 0
 D* Long retry wait interval
 D CDLRI 325 328I 0
 D* Channel security exit name
 D CDSCX 329 348
 D* Channel message exit name
 D CDMSX 349 368
 D* Channel send exit name
 D CDSNX 369 388
 D* Channel receive exit name
 D CDRCX 389 408
 D* Highest allowable message sequence number
 D CDSNW 409 412I 0
 D* Maximum message length
 D CDMML 413 416I 0
 D* Put authority
 D CDPA 417 420I 0
 D* Data conversion
 D CDDC 421 424I 0
 D* Channel security exit user data
 D CDSCD 425 456
 D* Channel message exit user data
 D CDMSD 457 488
 D* Channel send exit user data
 D CDSND 489 520
 D* Channel receive exit user data
 D CDRCD 521 552
 D* Ver:1 **
 D* User identifier
 D CDUID 553 564
 D* Password
 D CDPW 565 576
 D* First 12 bytes of MCA user identifier
 D CDAUI 577 588
 D* Message channel agent type
 D CDCAT 589 592I 0
 D* Connection name
 D CDCON 593 848
 D CDCN2 849 856
 D* First 12 bytes of user identifier from partner
 D CDRUI 857 868
 D* Password from partner
 D CDRPW 869 880

1498 IBM MQ Developing Applications Reference

 D* Ver:2 **
 D* Channel message retry exit name
 D CDMRX 881 900
 D* Channel message retry exit user data
 D CDMRD 901 932
 D* Number of times MCA will try to put the message, after first
 D* attempt has failed
 D CDMRC 933 936I 0
 D* Minimum interval in milliseconds after which the open or put
 D* operation will be retried
 D CDMRI 937 940I 0
 D* Ver:3 **
 D* Time in seconds between heartbeat flows
 D CDHBI 941 944I 0
 D* Batch duration
 D CDBI 945 948I 0
 D* Speed at which nonpersistent messages are sent
 D CDNPM 949 952I 0
 D* Length of MQCD structure
 D CDLEN 953 956I 0
 D* Length of exit name
 D CDXNL 957 960I 0
 D* Length of exit user data
 D CDXDL 961 964I 0
 D* Number of message exits defined
 D CDMXD 965 968I 0
 D* Number of send exits defined
 D CDSXD 969 972I 0
 D* Number of receive exits defined
 D CDRXD 973 976I 0
 D* Address of first MsgExit field
 D CDMXP 977 992*
 D* Address of first MsgUserData field
 D CDMUP 993 1008*
 D* Address of first SendExit field
 D CDSXP 1009 1024*
 D* Address of first SendUserData field
 D CDSUP 1025 1040*
 D* Address of first ReceiveExit field
 D CDRXP 1041 1056*
 D* Address of first ReceiveUserData field
 D CDRUP 1057 1072*
 D* Ver:4 **
 D* Address of a list of cluster names
 D CDCLP 1073 1088*
 D* Number of clusters to which the channel belongs
 D CDCLD 1089 1092I 0
 D* Network priority
 D CDNP 1093 1096I 0
 D* Ver:5 **
 D* Length of long MCA user identifier
 D CDLML 1097 1100I 0
 D* Length of long remote user identifier
 D CDLRL 1101 1104I 0
 D* Address of long MCA user identifier
 D CDLMP 1105 1120*
 D* Address of long remote user identifier
 D CDLRP 1121 1136*
 D* MCA security identifier
 D CDMSI 1137 1176
 D* Remote security identifier
 D CDRSI 1177 1216
 D* Ver:6 **
 D* TLS CipherSpec
 D CDSCS 1217 1248
 D* Address of TLS peer name
 D CDSPN 1249 1264*
 D* Length of TLS peer name
 D CDSPL 1265 1268I 0
 D* Whether TLS client authentication is required
 D CDSCA 1269 1272I 0
 D* Keepalive interval
 D CDKAI 1273 1276I 0
 D* Local communications address
 D CDLOA 1277 1324
 D* Batch heartbeat interval
 D CDBHB 1325 1328I 0
 D* Ver:7 **
 D* Header data compression list
 D CDHCL0
 D CDHCL1 1329 1332I 0
 D CDHCL2 1333 1336I 0

Developing applications reference 1499

 D CDHCL 10I 0 DIM(2) OVERLAY(CDHCL0)
 D* Message data compression list
 D CDMCL0
 D CDMCL1 1337 1340I 0
 D CDMCL2 1341 1344I 0
 D CDMCL3 1345 1348I 0
 D CDMCL4 1349 1352I 0
 D CDMCL5 1353 1356I 0
 D CDMCL6 1357 1360I 0
 D CDMCL7 1361 1364I 0
 D CDMCL8 1365 1368I 0
 D CDMCL9 1369 1372I 0
 D CDMCL10 1373 1376I 0
 D CDMCL11 1377 1380I 0
 D CDMCL12 1381 1384I 0
 D CDMCL13 1385 1388I 0
 D CDMCL14 1389 1392I 0
 D CDMCL15 1393 1396I 0
 D CDMCL16 1397 1400I 0
 D CDMCL 10I 0 DIM(16) OVERLAY(CDMCL0)
 D* Channel rank
 D CDCWCR 1401 1404I 0
 D* Channel priority
 D CDCWCP 1405 1408I 0
 D* Channel weight
 D CDCWCW 1409 1412I 0
 D* Channel monitoring
 D CDCHLMON 1413 1416I 0
 D* Channel statistics
 D CDCHLST 1417 1420I 0
 D* Ver:8 **
 D* Limit on sharing conversations
 D CDSHC 1421 1424I 0
 D* Message property control
 D CDPRC 1425 1428I 0
 D* Limit on SVRCONN channel instances
 D CDMXIN 1429 1432I 0
 D* Limit on SVRCONN channel instances per client
 D CDMXIC 1433 1436I 0
 D* Client channel weight
 D CDCLNCHLW 1437 1440I 0
 D* Connection affinity
 D CDCONNAFF 1441 1444I 0
 D* Ver:9 **
 D* Batch data limit
 D CDBDL 1445 1448I 0
 D* Use Dead Letter Queue
 D CDUDLQ 1449 1452I 0
 D* Default client reconnect option
 D CDDRCN 1453 1456I 0
 D* Ver:10 **

System/390 assembler declaration
This declaration is the System/390 assembler declaration for the MQCD structure.

MQCD DSECT
MQCD_CHANNELNAME DS CL20 Channel definition name
MQCD_VERSION DS F Structure version number
MQCD_CHANNELTYPE DS F Channel type
MQCD_TRANSPORTTYPE DS F Transport type
MQCD_DESC DS CL64 Channel description
MQCD_QMGRNAME DS CL48 Queue manager name
MQCD_XMITQNAME DS CL48 Transmission queue name
MQCD_SHORTCONNECTIONNAME DS CL20 First 20 bytes of connection
* name
MQCD_MCANAME DS CL20 Reserved
MQCD_MODENAME DS CL8 LU 6.2 Mode name
MQCD_TPNAME DS CL64 LU 6.2 transaction program name
MQCD_BATCHSIZE DS F Batch size
MQCD_DISCINTERVAL DS F Disconnect interval
MQCD_SHORTRETRYCOUNT DS F Short retry count
MQCD_SHORTRETRYINTERVAL DS F Short retry wait interval
MQCD_LONGRETRYCOUNT DS F Long retry count
MQCD_LONGRETRYINTERVAL DS F Long retry wait interval
MQCD_SECURITYEXIT DS CLn Channel security exit name
MQCD_MSGEXIT DS CLn Channel message exit name
MQCD_SENDEXIT DS CLn Channel send exit name

1500 IBM MQ Developing Applications Reference

MQCD_RECEIVEEXIT DS CLn Channel receive exit name
MQCD_SEQNUMBERWRAP DS F Highest allowable message
* sequence number
MQCD_MAXMSGLENGTH DS F Maximum message length
MQCD_PUTAUTHORITY DS F Put authority
MQCD_DATACONVERSION DS F Data conversion
MQCD_SECURITYUSERDATA DS CL32 Channel security exit user data
MQCD_MSGUSERDATA DS CL32 Channel message exit user data
MQCD_SENDUSERDATA DS CL32 Channel send exit user data
MQCD_RECEIVEUSERDATA DS CL32 Channel receive exit user data
MQCD_USERIDENTIFIER DS CL12 User identifier
MQCD_PASSWORD DS CL12 Password
MQCD_MCAUSERIDENTIFIER DS CL12 First 12 bytes of MCA user
* identifier
MQCD_MCATYPE DS F Message channel agent type
MQCD_CONNECTIONNAME DS CL264 Connection name
MQCD_REMOTEUSERIDENTIFIER DS CL12 First 12 bytes of user
* identifier from partner
MQCD_REMOTEPASSWORD DS CL12 Password from partner
MQCD_MSGRETRYEXIT DS CLn Channel message retry exit name
MQCD_MSGRETRYUSERDATA DS CL32 Channel message retry exit user
* data
MQCD_MSGRETRYCOUNT DS F Number of times MCA will try to
* put the message, after the
* first attempt has failed
MQCD_MSGRETRYINTERVAL DS F Minimum interval in
* milliseconds after which the
* open or put operation will be
* retried
MQCD_HEARTBEATINTERVAL DS F Time in seconds between
* heartbeat flows
MQCD_BATCHINTERVAL DS F Batch duration
MQCD_NONPERSISTENTMSGSPEED DS F Speed at which nonpersistent
* messages are sent
MQCD_STRUCLENGTH DS F Length of MQCD structure
MQCD_EXITNAMELENGTH DS F Length of exit name
MQCD_EXITDATALENGTH DS F Length of exit user data
MQCD_MSGEXITSDEFINED DS F Number of message exits defined
MQCD_SENDEXITSDEFINED DS F Number of send exits defined
MQCD_RECEIVEEXITSDEFINED DS F Number of receive exits defined
MQCD_MSGEXITPTR DS F Address of first MSGEXIT field
MQCD_MSGUSERDATAPTR DS F Address of first MSGUSERDATA
* field
MQCD_SENDEXITPTR DS F Address of first SENDEXIT field
MQCD_SENDUSERDATAPTR DS F Address of first SENDUSERDATA
* field
MQCD_RECEIVEEXITPTR DS F Address of first RECEIVEEXIT
* field
MQCD_RECEIVEUSERDATAPTR DS F Address of first
* RECEIVEUSERDATA field
MQCD_CLUSTERPTR DS F Address of a list of cluster
* names
MQCD_CLUSTERSDEFINED DS F Number of clusters to which the
* channel belongs
MQCD_NETWORKPRIORITY DS F Network priority
MQCD_LONGMCAUSERIDLENGTH DS F Length of long MCA user
* identifier
MQCD_LONGREMOTEUSERIDLENGTH DS F Length of long remote user
* identifier
MQCD_LONGMCAUSERIDPTR DS F Address of long MCA user
* identifier
MQCD_LONGREMOTEUSERIDPTR DS F Address of long remote user
* identifier
MQCD_MCASECURITYID DS XL40 MCA security identifier
MQCD_REMOTESECURITYID DS XL40 Remote security identifier
MQCD_SSLCIPHERSPEC DS CL32 TLS CipherSpec
MQCD_SSLPEERNAMEPTR DS F Address of TLS peer name
MQCD_SSLPEERNAMELENGTH DS F Length of TLS peer name
MQCD_SSLCLIENTAUTH DS F Whether TLS client
* authentication is required
MQCD_KEEPALIVEINTERVAL DS F Keepalive interval
MQCD_LOCALADDRESS DS CL48 Local communications address
MQCD_BATCHHEARTBEAT DS F Batch heartbeat interval
MQCD_HDRCOMPLIST DS CL2 Header data compression list
MQCD_MSGCOMPLIST DS CL16 Message data compression list
MQCD_CLWLCHANNELRANK DS F Channel rank
MQCD_CLWLCHANNELPRIORITY DS F Channel priority
MQCD_CLWLCHANNELWEIGHT DS F Channel weight
MQCD_CHANNELMONITORING DS F Channel monitoring
MQCD_CHANNELSTATISTICS DS F Channel statistics
MQCD_SHARINGCONVERSATIONS DS F Limit on sharing
* conversations

Developing applications reference 1501

MQCD_PROPERTYCONTROL DS F Message property
* control
MQCD_SHARINGCONVERSATIONS DS F Limit on sharing conversations
MQCD_PROPERTYCONTROL DS F Message property control
MQCD_MAXINSTANCES DS F Limit on SVRCONN chl instances
MQCD_MAXINSTANCESPERCLIENT DS F Limit on SVRCONN chl instances
 per client
MQCD_CLIENTCHANNELWEIGHT DS F Channel weight
MQCD_CONNECTIONAFFINITY DS F Connection Affinty
MQCD_BATCHDATALIMIT DS F Batch data limit
MQCD_USEDLQ DS F Use dead-letter queue
MQCD_DEFRECONNECT DS F Default client reconnect option
MQCD_CERTLABL DS F Certificate label
MQCD_SPLPROTECTION DS F AMS Security policy protection
MQCD_LENGTH EQU *-MQCD
 ORG MQCD
MQCD_AREA DS CL(MQCD_LENGTH)

Visual Basic declaration
This declaration is the Visual Basic declaration of the MQCD structure.

In Visual Basic, the MQCD structure can be used with the MQCNO structure on the MQCONNX call.

Type MQCD
 ChannelName As String*20 'Channel definition name'
 Version As Long 'Structure version number'
 ChannelType As Long 'Channel type'
 TransportType As Long 'Transport type'
 Desc As String*64 'Channel description'
 QMgrName As String*48 'Queue manager name'
 XmitQName As String*48 'Transmission queue name'
 ShortConnectionName As String*20 'First 20 bytes of connection'
 'name'
 MCAName As String*20 'Reserved'
 ModeName As String*8 'LU 6.2 Mode name'
 TpName As String*64 'LU 6.2 transaction program name'
 BatchSize As Long 'Batch size'
 DiscInterval As Long 'Disconnect interval'
 ShortRetryCount As Long 'Short retry count'
 ShortRetryInterval As Long 'Short retry wait interval'
 LongRetryCount As Long 'Long retry count'
 LongRetryInterval As Long 'Long retry wait interval'
 SecurityExit As String*128 'Channel security exit name'
 MsgExit As String*128 'Channel message exit name'
 SendExit As String*128 'Channel send exit name'
 ReceiveExit As String*128 'Channel receive exit name'
 SeqNumberWrap As Long 'Highest allowable message'
 'sequence number'
 MaxMsgLength As Long 'Maximum message length'
 PutAuthority As Long 'Put authority'
 DataConversion As Long 'Data conversion'
 SecurityUserData As String*32 'Channel security exit user data'
 MsgUserData As String*32 'Channel message exit user data'
 SendUserData As String*32 'Channel send exit user data'
 ReceiveUserData As String*32 'Channel receive exit user data'
 UserIdentifier As String*12 'User identifier'
 Password As String*12 'Password'
 MCAUserIdentifier As String*12 'First 12 bytes of MCA user'
 'identifier'
 MCAType As Long 'Message channel agent type'
 ConnectionName As String*264 'Connection name'
 RemoteUserIdentifier As String*12 'First 12 bytes of user'
 'identifier from partner'
 RemotePassword As String*12 'Password from partner'
 MsgRetryExit As String*128 'Channel message retry exit name'
 MsgRetryUserData As String*32 'Channel message retry exit user'
 'data'
 MsgRetryCount As Long 'Number of times MCA will try to'
 'put the message, after the'
 'first attempt has failed'
 MsgRetryInterval As Long 'Minimum interval in'
 'milliseconds after which the'
 'open or put operation will be'
 'retried'
 HeartbeatInterval As Long 'Time in seconds between'
 'heartbeat flows'
 BatchInterval As Long 'Batch duration'
 NonPersistentMsgSpeed As Long 'Speed at which nonpersistent'

1502 IBM MQ Developing Applications Reference

 'messages are sent'
 StrucLength As Long 'Length of MQCD structure'
 ExitNameLength As Long 'Length of exit name'
 ExitDataLength As Long 'Length of exit user data'
 MsgExitsDefined As Long 'Number of message exits defined'
 SendExitsDefined As Long 'Number of send exits defined'
 ReceiveExitsDefined As Long 'Number of receive exits defined'
 MsgExitPtr As MQPTR 'Address of first MsgExit field'
 MsgUserDataPtr As MQPTR 'Address of first MsgUserData'
 'field'
 SendExitPtr As MQPTR 'Address of first SendExit field'
 SendUserDataPtr As MQPTR 'Address of first SendUserData'
 'field'
 ReceiveExitPtr As MQPTR 'Address of first ReceiveExit'
 'field'
 ReceiveUserDataPtr As MQPTR 'Address of first'
 'ReceiveUserData field'
 ClusterPtr As MQPTR 'Address of a list of cluster'
 'names'
 ClustersDefined As Long 'Number of clusters to which the'
 'channel belongs'
 NetworkPriority As Long 'Network priority'
 LongMCAUserIdLength As Long 'Length of long MCA user'
 'identifier'
 LongRemoteUserIdLength As Long 'Length of long remote user'
 'identifier'
 LongMCAUserIdPtr As MQPTR 'Address of long MCA user'
 'identifier'
 LongRemoteUserIdPtr As MQPTR 'Address of long remote user'
 'identifier'
 MCASecurityId As MQBYTE40 'MCA security identifier'
 RemoteSecurityId As MQBYTE40 'Remote security identifier'
 SSLCipherSpec As String*32 'TLS CipherSpec'
 SSLPeerNamePtr As MQPTR 'Address of TLS peer name'
 SSLPeerNameLength As Long 'Length of TLS peer name'
 SSLClientAuth As Long 'Whether TLS client'
 'authentication is required'
 KeepAliveInterval As Long 'Keepalive interval'
 LocalAddress As String*48 'Local communications address'
 BatchHeartbeat As Long 'Batch heartbeat interval'
 HdrCompList(0 to 1) As Long2 'Header data compression list'
 MsgCompList(0 To 15) As Long16 'Message data compression list'
 CLWLChannelRank As Long 'Channel Rank'
 CLWLChannelPriority As Long 'Channel priority'
 CLWLChannelWeight As Long 'Channel Weight'
 ChannelMonitoring As Long 'Channel Monitoring control'
 ChannelStatistics As Long 'Channel Statistics'
 End Type

Changing MQCD fields in a channel exit
A channel exit can change fields in the MQCD. However, these changes are not typically acted on, except
in the circumstances listed.

If a channel exit program changes a field in the MQCD data structure, the new value is typically ignored
by the IBM MQ channel process. However, the new value remains in the MQCD and is passed to any
remaining exits in an exit chain and to any conversation sharing the channel instance.

If SharingConversations is set to FALSE in the MQCXP structure, changes to certain fields can be acted on,
depending on the type of exit program, the type of channel, and the exit reason code. The following table
shows the fields that can be changed and affect the behavior of the channel, and in what circumstances.
If an exit program changes one of these fields in any other circumstances, or any field not listed, the
new value is ignored by the channel process. The new value remains in the MQCD and is passed to any
remaining exits in an exit chain and to any conversation sharing the channel instance.

Any type of exit program when called for initialization (MQXR_INIT) can change the ChannelName field
of any type of channel, as long as MQCXP SharingConverstions is set to FALSE. Only a security exit can
change the MCAUserIdentifier field, regardless of the value of MQCXP SharingConverstions.

Developing applications reference 1503

Table 824. Fields that can be changed and affect the behavior of the channel

Field Exit reason code Exit type
Channel
type

ChannelName MQXR_INIT All All

TransportType MQXR_INIT All All

XmitQName MQXR_INIT All SDR, RCVR

ModeName MQXR_INIT All All

TpName MQXR_INIT All All

BatchSize MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

DiscInterval MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

ShortRetryCount MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

ShortRetryInterval MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

LongRetryCount MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

LongRetryInterval MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

SeqNumberWrap MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

MaxMsgLength MQXR_INIT All All

1504 IBM MQ Developing Applications Reference

Table 824. Fields that can be changed and affect the behavior of the channel (continued)

Field Exit reason code Exit type
Channel
type

PutAuthority MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

DataConversion MQXR_INIT All All

MCAUserIdentifier MQXR_INIT, MQXR_INIT_SEC,
MQXR_SEC_MSG, MQXR_SEC_PARMS

Security RCVR,
RQSTR,
SVRCONN,
CLUSRCVR

ConnectionName MQXR_INIT All SDR, SVR,
RQSTR,
CLNTCONN,
CLUSSDR,
CLUSRCVR

MsgRetryUserData MQXR_INIT All RCVR,
RQSTR,
CLUSRCVR

MsgRetryCount MQXR_INIT All RCVR,
RQSTR,
CLUSRCVR

MsgRetryInterval MQXR_INIT All RCVR,
RQSTR,
CLUSRCVR

HeartbeatInterval MQXR_INIT All All

BatchInterval MQXR_INIT All SDR, SVR,
CLUSSDR,
CLUSRCVR

NonPersistentMsgSpeed MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

MCASecurityId MQXR_INIT, MQXR_INIT_SEC,
MQXR_SEC_MSG, MQXR_SEC_PARMS

Security SDR, SVR,
RCVR,
RQSTR,
SVRCONN,
CLUSSDR,
CLUSRCVR

SSLCipherSpec MQXR_INIT All All

SSLPeerNamePtr MQXR_INIT All All

SSLPeerNameLength MQXR_INIT All All

Developing applications reference 1505

Table 824. Fields that can be changed and affect the behavior of the channel (continued)

Field Exit reason code Exit type
Channel
type

SSLClientAuth MQXR_INIT All SVR, RCVR,
RQSTR,
SVRCONN,
CLUSRCVR

KeepAliveInterval MQXR_INIT All All

LocalAddress MQXR_INIT All SDR, SVR,
RQSTR,
CLNTCONN,
CLUSSDR,
CLUSRCVR

BatchHeartbeat MQXR_INIT All SDR, SVR,
CLUSSDR,
CLUSRCVR

HdrCompList MQXR_INIT All All

MsgCompList MQXR_INIT All All

ChannelMonitoring MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
SVRCONN,
CLUSSDR,
CLUSRCVR

ChannelStatistics MQXR_INIT All SDR, SVR,
RCVR,
RQSTR,
CLUSSDR,
CLUSRCVR

SharingConversations MQXR_INIT All SVRCONN,
CLNTCONN

PropertyControl MQXR_INIT All SDR, SVR,
CLUSSDR,
CLUSRCVR

MQCXP - Channel exit parameter
The MQCXP structure is passed to each type of exit called by a Message Channel Agent (MCA), client-
connection channel, or server-connection channel.

See MQ_CHANNEL_EXIT.

The fields described as "input to the exit" in the descriptions that follow are ignored by the channel when
the exit returns control to the channel. Any input fields that the exit changes in the channel exit parameter
block will not be preserved for its next invocation. Changes made to input/output fields (for example, the
ExitUserArea field), are preserved for invocations of that instance of the exit only. Such changes cannot
be used to pass data between different exits defined on the same channel, or between the same exit
defined on different channels.

Related reference
“Fields” on page 1507

1506 IBM MQ Developing Applications Reference

This topic lists all the fields in the MQCXP structure and describes each field.
“C declaration” on page 1517
This declaration is the C declaration for the MQCXP structure.
“COBOL declaration” on page 1518
This declaration is the COBOL declaration for the MQCXP structure.
“RPG declaration (ILE)” on page 1519
This declaration is the RPG declaration for the MQCXP structure.
“System/390 assembler declaration” on page 1520
This declaration is the System/390 assembler declaration for the MQCXP structure.

Fields
This topic lists all the fields in the MQCXP structure and describes each field.

StrucId (MQCHAR4)
This field specifies the structure identifier.

The value must be:
MQCXP_STRUC_ID

Identifier for channel exit parameter structure.

For the C programming language, the constant MQCXP_STRUC_ID_ARRAY is also defined; this
constant has the same value as MQCXP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the exit.

Version (MQLONG)
This field specifies the structure version number.

The value depends on the environment:
MQCXP_VERSION_1

Version-1 channel exit parameter structure.
MQCXP_VERSION_3

Version-3 channel exit parameter structure.

The field has this value in AIX and Linux systems not listed elsewhere.

MQCXP_VERSION_4
Version-4 channel exit parameter structure.

MQCXP_VERSION_5
Version-5 channel exit parameter structure.

MQCXP_VERSION_6
Version-6 channel exit parameter structure.

MQCXP_VERSION_8
Version-8 channel exit parameter structure.

The field has this value in z/OS.

MQCXP_VERSION_9
Version-9 channel exit parameter structure.

The field has this value in the following environments:

• AIX

• IBM i

• Linux

Developing applications reference 1507

• Windows

• z/OS

Fields that exist only in the more-recent versions of the structure are identified as such in the descriptions
of the fields. The following constant specifies the version number of the current version:
MQCXP_CURRENT_VERSION

Current version of channel exit parameter structure.

The value depends on the environment.

Note: When a new version of the MQCXP structure is introduced, the layout of the existing part is not
changed. The exit must therefore check that the version number is equal to or greater than the lowest
version which contains the fields that the exit needs to use.

This is an input field to the exit.

ExitId (MQLONG)
This field specifies the type of exit being called and is set on entry to the exit routine.

The following values are possible:
MQXT_CHANNEL_SEC_EXIT

Channel security exit.
MQXT_CHANNEL_MSG_EXIT

Channel message exit.
MQXT_CHANNEL_SEND_EXIT

Channel send exit.
MQXT_CHANNEL_RCV_EXIT

Channel receive exit.
MQXT_CHANNEL_MSG_RETRY_EXIT

Channel message-retry exit.
MQXT_CHANNEL_AUTO_DEF_EXIT

Channel auto-definition exit.

On z/OS, this type of exit is supported only for channels of type MQCHT_CLUSSDR and
MQCHT_CLUSRCVR.

This is an input field to the exit.

ExitReason (MQLONG)
This field specifies the reason why the exit is being called and is set on entry to the exit routine.

It is not used by the auto-definition exit. The following values are possible:
MQXR_INIT

Exit initialization.

This value indicates that the exit is being invoked for the first time. It allows the exit to acquire and
initialize any resources that it needs (for example: memory).

MQXR_TERM
Exit termination.

This value indicates that the exit is about to be terminated. The exit should free any resources that it
has acquired since it was initialized (for example: memory).

MQXR_MSG
Process a message.

This value indicates that the exit is being invoked to process a message. This value occurs for channel
message exits only.

1508 IBM MQ Developing Applications Reference

MQXR_XMIT
Process a transmission.

This value occurs for channel send and receive exits only.

MQXR_SEC_MSG
Security message received.

This value occurs for channel security exits only.

MQXR_INIT_SEC
Initiate security exchange.

This value occurs for channel security exits only.

The security exit of the receiver is always invoked with this reason immediately after
being invoked with MQXR_INIT, to give it the opportunity to initiate a security exchange.
If it declines the opportunity (by returning MQXCC_OK instead of MQXCC_SEND_SEC_MSG
or MQXCC_SEND_AND_REQUEST_SEC_MSG), the security exit of the sender is invoked with
MQXR_INIT_SEC.

If the security exit of the receiver does initiate a security exchange (by returning
MQXCC_SEND_SEC_MSG or MQXCC_SEND_AND_REQUEST_SEC_MSG), the security exit of the sender
is never invoked with MQXR_INIT_SEC; instead it is invoked with MQXR_SEC_MSG to process the
message of the receiver. (In either case it is first invoked with MQXR_INIT.)

Unless one of the security exits requests termination of the channel (by setting ExitResponse to
MQXCC_SUPPRESS_FUNCTION or MQXCC_CLOSE_CHANNEL), the security exchange must complete
at the side that initiated the exchange. Therefore, if a security exit is invoked with MQXR_INIT_SEC
and it does initiate an exchange, the next time the exit is invoked it will be with MQXR_SEC_MSG.
This happens whether there is a security message for the exit to process or not. There is a security
message if the partner returns MQXCC_SEND_SEC_MSG or MQXCC_SEND_AND_REQUEST_SEC_MSG,
but not if the partner returns MQXCC_OK or there is no security exit at the partner. If there is no
security message to process, the security exit at the initiating end is re-invoked with a DataLength of
zero.

MQXR_RETRY
Retry a message.

This value occurs for message-retry exits only.

MQXR_AUTO_CLUSSDR
Automatic definition of a cluster-sender channel.

This value occurs for channel auto-definition exits only.

MQXR_AUTO_RECEIVER
Automatic definition of a receiver channel.

This value occurs for channel auto-definition exits only.

MQXR_AUTO_SVRCONN
Automatic definition of a server-connection channel.

This value occurs for channel auto-definition exits only.

MQXR_AUTO_CLUSRCVR
Automatic definition of a cluster-receiver channel.

This value occurs for channel auto-definition exits only.

MQXR_SEC_PARMS
Security parameters

This value applies to security exits only and indicates that an MQCSP structure is being passed to the
exit. For more information, see “MQCSP - Security parameters” on page 335

Note:

Developing applications reference 1509

1. If you have more than one exit defined for a channel, they are each invoked with MQXR_INIT when the
MCA is initialized. Also, they are each invoked with MQXR_TERM when the MCA is terminated.

2. For the channel auto-definition exit, ExitReason is not set if Version is less than
MQCXP_VERSION_4. The value MQXR_AUTO_SVRCONN is implied in this case.

This is an input field to the exit.

ExitResponse (MQLONG)
This field specifies the response from the exit.

This field is set by the exit to communicate with the MCA. It must be one of the following values:
MQXCC_OK

Exit completed successfully.

• For the channel security exit, this value indicates that message transfer can now proceed normally.
• For the channel message retry exit, this value indicates that the MCA must wait for the time interval

returned by the exit in the MsgRetryInterval field in MQCXP, and then try the message again.

The ExitResponse2 field might contain additional information.

MQXCC_SUPPRESS_FUNCTION
Suppress function.

• For the channel security exit, this value indicates that the channel must be terminated.
• For the channel message exit, this value indicates that the message is not to proceed any further

towards its destination. Instead the MCA generates an exception report message (if one was
requested by the sender of the original message), and places the message contained in the original
buffer on the dead-letter queue (if the sender specified MQRO_DEAD_LETTER_Q), or discards it (if
the sender specified MQRO_DISCARD_MSG).

For persistent messages, if the sender specified MQRO_DEAD_LETTER_Q, but the put to the
dead-letter queue fails, or there is no dead-letter queue, the original message is left on the
transmission queue and the report message is not generated. The original message is also left
on the transmission queue if the report message cannot be generated successfully.

The Feedback field in the MQDLH structure at the start of the message on the dead-letter queue
indicates why the message was put on the dead-letter queue; this feedback code is also used in the
message descriptor of the exception report message (if one was requested by the sender).

• For the channel message retry exit, this value indicates that the MCA does not wait and try the
message again; instead, the MCA continues immediately with its normal failure processing (the
message is placed on the dead-letter queue or discarded, as specified by the sender of the
message).

• For the channel auto-definition exit, either MQXCC_OK or MQXCC_SUPPRESS_FUNCTION must be
specified. If neither of these values is specified, MQXCC_SUPPRESS_FUNCTION is assumed by
default and the auto-definition is abandoned.

This response is not supported for the channel send and receive exits.

MQXCC_SEND_SEC_MSG
Send security message.

This value can be set only by a channel security exit. It indicates that the exit has provided a security
message which must be transmitted to the partner.

MQXCC_SEND_AND_REQUEST_SEC_MSG
Send security message that requires a reply.

This value can be set only by a channel security exit. It indicates

• that the exit has provided a security message which can be transmitted to the partner, and
• that the exit requires a response from the partner. If no response is received, the channel must be

terminated, because the exit has not yet decided whether communications can proceed.

1510 IBM MQ Developing Applications Reference

MQXCC_SUPPRESS_EXIT
Suppress exit.

• This value can be set by all types of channel exit other than a security exit or an auto-definition
exit. It suppresses any further invocation of that exit (as if its name had been blank in the channel
definition), until termination of the channel, when the exit is again invoked with an ExitReason of
MQXR_TERM.

• If a message retry exit returns this value, message retries for subsequent messages are
controlled by the MsgRetryCount and MsgRetryInterval channel attributes as normal. For
the current message, the MCA performs the number of outstanding retries, at intervals given by
the MsgRetryInterval channel attribute, but only if the reason code is one that the MCA would
normally retry (see the MsgRetryCount field described in “MQCD - Channel definition” on page
1466). The number of outstanding retries is the value of the MsgRetryCount attribute, less the
number of times the exit returned MQXCC_OK for the current message; if this number is negative, no
further retries are performed by the MCA for the current message.

MQXCC_CLOSE_CHANNEL
Close channel.

This value can be set by any type of channel exit except an auto-definition exit.

If sharing conversations is not enabled, this value closes the channel.

If sharing conversations is enabled, this value ends the conversation. If this conversation is the only
conversation on the channel, the channel also closes.

This field is an input/output field from the exit.

ExitResponse2 (MQLONG)
This field specifies the secondary response from the exit.

This field is set to zero on entry to the exit routine. It can be set by the exit to provide further information
to the IBM MQ channel functions. It is not used by the auto-definition exit.

The exit can set one or more of the following values. If more than one is required, the values are added.
Combinations that are not valid are noted; other combinations are allowed.
MQXR2_PUT_WITH_DEF_ACTION

Put with default action.

This value is set by the channel message exit of the receiver. It indicates that the message is to be
put with the default action of the MCA, that is either the default user ID of the MCA, or the context
UserIdentifier in the MQMD (message descriptor) of the message.

The value is zero, which corresponds to the initial value set when the exit is invoked. The constant is
provided for documentation purposes.

MQXR2_PUT_WITH_DEF_USERID
Put with default user identifier.

This value can only be set by the channel message exit of the receiver. It indicates that the message is
to be put with the default user identifier of the MCA.

MQXR2_PUT_WITH_MSG_USERID
Put with user identifier of the message.

This value can only be set by the channel message exit of the receiver. It indicates that the message is
to be put with the context UserIdentifier in the MQMD (message descriptor) of the message (this
might have been modified by the exit).

Only one of MQXR2_PUT_WITH_DEF_ACTION, MQXR2_PUT_WITH_DEF_USERID, and
MQXR2_PUT_WITH_MSG_USERID should be set.
MQXR2_USE_AGENT_BUFFER

Use agent buffer.

This value indicates that any data to be passed on is in AgentBuffer, not ExitBufferAddr.

Developing applications reference 1511

The value is zero, which corresponds to the initial value set when the exit is invoked. The constant is
provided for documentation purposes.

MQXR2_USE_EXIT_BUFFER
Use exit buffer.

This value indicates that any data to be passed on is in ExitBufferAddr, not AgentBuffer.

Only one of MQXR2_USE_AGENT_BUFFER and MQXR2_USE_EXIT_BUFFER should be set.
MQXR2_DEFAULT_CONTINUATION

Default continuation.

Continuation with the next exit in the chain depends on the response from the last exit invoked:

• If MQXCC_SUPPRESS_FUNCTION or MQXCC_CLOSE_CHANNEL are returned, no further exits in the
chain are called.

• Otherwise, the next exit in the chain is invoked.

MQXR2_CONTINUE_CHAIN
Continue with the next exit.

MQXR2_SUPPRESS_CHAIN
Skip remaining exits in chain.

This is an input/output field to the exit.

Feedback (MQLONG)
This field specifies the feedback code.

This field is set to MQFB_NONE on entry to the exit routine.

If a channel message exit sets the ExitResponse field to MQXCC_SUPPRESS_FUNCTION, the Feedback
field specifies the feedback code that identifies why the message was put on the dead-letter
(undelivered-message) queue, and is also used to send an exception report if one has been requested. In
this case, if the Feedback field is MQFB_NONE, the following feedback code is used:
MQFB_STOPPED_BY_MSG_EXIT

Message stopped by channel message exit.

The value returned in this field by channel security, send, receive, and message-retry exits is not used by
the MCA.

The value returned in this field by auto-definition exits is not used if ExitResponse is MQXCC_OK, but
otherwise is used for the AuxErrorDataInt1 parameter in the event message.

This is an input/output field from the exit.

MaxSegmentLength (MQLONG)
This field specifies the maximum length in bytes that can be sent in a single transmission.

It is not used by the auto-definition exit. It is of interest to a channel send exit, because this exit
must ensure that it does not increase the size of a transmission segment to a value greater than
MaxSegmentLength. The length includes the initial 8 bytes that the exit must not change. The value is
negotiated between the IBM MQ channel functions when the channel is initiated. See Writing channel-exit
programs for more information about segment lengths.

The value in this field is not meaningful if ExitReason is MQXR_INIT.

This is an input field to the exit.

ExitUserArea (MQBYTE16)
This field specifies the exit user area - a field available for the exit to use.

It is initialized to binary zero before the first invocation of the exit (which has an ExitReason set to
MQXR_INIT), and thereafter any changes made to this field by the exit are preserved across invocations
of the exit.

1512 IBM MQ Developing Applications Reference

The following value is defined:
MQXUA_NONE

No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant MQXUA_NONE_ARRAY is also defined; this constant
has the same value as MQXUA_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH. This is an input/output field to the exit.

ExitData (MQCHAR32)
This field specifies the exit data.

This field is set on entry to the exit routine to information that IBM MQ channel functions took from the
channel definition. If no such information is available, this field is all blanks.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

This is an input field to the exit.

The following fields in this structure are not present if Version is less than MQCXP_VERSION_2.

MsgRetryCount (MQLONG)
This field specifies the number of times the message has been retried.

The first time the exit is invoked for a particular message, this field has the value zero (no retries yet
attempted). On each subsequent invocation of the exit for that message, the value is incremented by one
by the MCA.

This is an input field to the exit. The value in this field is not meaningful if ExitReason is MQXR_INIT. The
field is not present if Version is less than MQCXP_VERSION_2.

MsgRetryInterval (MQLONG)
This field specifies the minimum interval in milliseconds after which the put operation is retried.

The first time the exit is invoked for a particular message, this field contains the value of the
MsgRetryInterval channel attribute. The exit can leave the value unchanged, or modify it to specify a
different time interval in milliseconds. If the exit returns MQXCC_OK in ExitResponse, the MCA waits for
at least this time interval before retrying the MQOPEN or MQPUT operation. The time interval specified
must be zero or greater.

The second and subsequent times the exit is invoked for that message, this field contains the value
returned by the previous invocation of the exit.

If the value returned in the MsgRetryInterval field is less than zero or greater than 999 999 999,
and ExitResponse is MQXCC_OK, the MCA ignores the MsgRetryInterval field in MQCXP and waits
instead for the interval specified by the MsgRetryInterval channel attribute.

This is an input/output field to the exit. The value in this field is not meaningful if ExitReason is
MQXR_INIT. The field is not present if Version is less than MQCXP_VERSION_2.

MsgRetryReason (MQLONG)
This field specifies the reason code from the previous attempt to put the message.

This field is the reason code from the previous attempt to put the message; it is one of the MQRC_*
values.

This is an input field to the exit. The value in this field is not meaningful if ExitReason is MQXR_INIT. The
field is not present if Version is less than MQCXP_VERSION_2.

The following fields in this structure are not present if Version is less than MQCXP_VERSION_3.

Developing applications reference 1513

HeaderLength (MQLONG)
This field specifies the length of header information.

This field is relevant only for a message exit and a message-retry exit. The value is the length of the
routing header structures at the start of the message data; these are the MQXQH structure, the MQMDE
(message description extension header), and (for a distribution-list message) the MQDH structure and
arrays of MQOR and MQPMR records that follow the MQXQH structure.

The message exit can examine this header information, and modify it if necessary, but the data that the
exit returns must still be in the correct format. The exit must not, for example, encrypt or compress
the header data at the sending end, even if the message exit at the receiving end makes compensating
changes.

If the message exit modifies the header information in such a way as to change its length (for example,
by adding another destination to a distribution-list message), it must change the value of HeaderLength
correspondingly before returning.

This is an input/output field to the exit. The value in this field is not meaningful if ExitReason is
MQXR_INIT. The field is not present if Version is less than MQCXP_VERSION_3.

PartnerName (MQCHAR48)
This field specifies the name of the partner.

The name of the partner, as follows:

• For SVRCONN channels, it is the logged-on user ID at the client.
• For all other types of channel, it is the queue manager name of the partner.

When the exit is initialized this field is blank because the queue manager does not know the name of the
partner until after initial negotiation has taken place.

This is an input field to the exit. The field is not present if Version is less than MQCXP_VERSION_3.

FAPLevel (MQLONG)
Negotiated Formats and Protocols level.

This is an input field to the exit. Changes to this field should only be made under the direction of IBM
service. The field is not present if Version is less than MQCXP_VERSION_3.

CapabilityFlags (MQLONG)
You can set the capability flag to either MQCF_NONE or MQCF_DIST_LISTS.

You can set either of the following capability flags:
MQCF_NONE

No flags.
MQCF_DIST_LISTS

Distribution lists supported.

This is an input field to the exit. The field is not present if Version is less than MQCXP_VERSION_3.

ExitNumber (MQLONG)
This field specifies the ordinal number of the exit.

The ordinal number of the exit, within the type defined in ExitId. For example, if the exit being invoked is
the third message exit defined, this field contains the value 3. If the exit type is one for which a list of exits
cannot be defined (for example, a security exit), this field has the value 1.

This is an input field to the exit. The field is not present if Version is less than MQCXP_VERSION_3.

The following fields in this structure are not present if Version is less than MQCXP_VERSION_5.

1514 IBM MQ Developing Applications Reference

ExitSpace (MQLONG)
This field specifies the number of bytes in the transmission buffer reserved for the exit to use.

This field is relevant only for a send exit. It specifies the amount of space in bytes that the IBM MQ
channel functions reserve in the transmission buffer for the exit to use. This field allows the exit to add to
the transmission buffer a small amount of data (typically not exceeding a few hundred bytes) for use by
a complementary receive exit at the other end. The data added by the send exit must be removed by the
receive exit.

The value is always zero on z/OS.

Note: This facility must not be used to send large amounts of data, as it might degrade performance, or
even inhibit operation of the channel.

By setting ExitSpace the exit is guaranteed that there is always at least that number of bytes available
in the transmission buffer for the exit to use. However, the exit can use less than the amount reserved, or
more than the amount reserved if there is space available in the transmission buffer. The exit space in the
buffer is provided following the existing data.

ExitSpace can be set by the exit only when ExitReason has the value MQXR_INIT; in all other cases
the value returned by the exit is ignored. On input to the exit, ExitSpace is zero for the MQXR_INIT call,
and is the value returned by the MQXR_INIT call in other cases.

If the value returned by the MQXR_INIT call is negative, or there are fewer than 1024 bytes available in
the transmission buffer for message data after reserving the requested exit space for all the send exits
in the chain, the MCA outputs an error message and closes the channel. Similarly, if during data transfer
the exits in the send exit chain allocate more user space than they reserved such that fewer than 1024
bytes remain in the transmission buffer for message data, the MCA outputs an error message and closes
the channel. The limit of 1024 allows the control and administrative flows of the channel to be processed
by the chain of send exits, without the need for the flows to be segmented.

This is an input/output field to the exit if ExitReason is MQXR_INIT, and an input field in all other cases.
The field is not present if Version is less than MQCXP_VERSION_5.

SSLCertUserId (MQCHAR12)
This field specifies the UserId associated with the remote certificate.

It is blank on all platforms except z/OS

This is an input field to the exit. The field is not present if Version is less than MQCXP_VERSION_6.

SSLRemCertIssNameLength (MQLONG)
This field specifies the length in bytes of the full Distinguished Name of the issuer of the remote certificate
pointed to by SSLCertRemoteIssuerNamePtr.

This is an input field to the exit. The field is not present if Version is less than MQCXP_VERSION_6. The
value is zero if it is not a TLS channel.

SSLRemCertIssNamePtr (PMQVOID)
This field specifies the address of the full Distinguished Name of the issuer of the remote certificate.

Its value is the null pointer if it is not a TLS channel.

This is an input field to the exit. The field is not present if Version is less than MQCXP_VERSION_6.

Note: The behavior of channel security exits in determining the Subject Distinguished Name and the
Issuer Distinguished Name is changed from IBM WebSphere MQ 7.1. For more information see Channel
security exit programs.

SecurityParms (PMQCSP)
This field specifies the address of the MQCSP structure used to specify a user ID and password.

The initial value of this field is the null pointer.

Developing applications reference 1515

This is an input/output field to the exit. The field is not present if Version is less than
MQCXP_VERSION_6.

The value in this field that is returned by the exit must be usable by IBM MQ until MQXR_TERM.

CurHdrCompression (MQLONG)
This field specifies which technique is currently being used to compress the header data.

It is set to one of the following:
MQCOMPRESS_NONE

No header data compression is performed.
MQCOMPRESS_SYSTEM

Header data compression is performed.
The value can be altered by a sending channel's message exit to one of the negotiated supported values
accessed from the HdrCompList field of the MQCD. This enables the technique used to compress the
header data to be chosen for each message based on the content of the message. The altered value is
used for the current message only. The channel ends if the attribute is altered to an unsupported value.
The value is ignored if altered outside a sending channel's message exit.

This is an input/output field to the exit. The field is not present if Version is less than
MQCXP_VERSION_6.

CurMsgCompression (MQLONG)
This field specifies which technique is currently being used to compress the message data.

It is set to one of the following:
MQCOMPRESS_NONE

No header data compression is performed.
MQCOMPRESS_RLE

Message data compression is performed using run-length encoding.
MQCOMPRESS_ZLIBFAST

Message data compression is performed using the zlib compression technique. A fast compression
time is preferred.

MQCOMPRESS_ZLIBHIGH
Message data compression is performed using the zlib compression technique. A high level of
compression is preferred.

The value can be altered by a sending channel's message exit to one of the negotiated supported values
accessed from the MsgCompList field of the MQCD. This enables the technique used to compress the
message data to be decided for each message based on the content of the message. The altered value is
used for the current message only. The channel ends if the attribute is altered to an unsupported value.
The value is ignored if altered outside a sending channel's message exit.

This is an input/output field to the exit. The field is not present if Version is less than
MQCXP_VERSION_6.

Hconn (MQHCONN)
This field specifies the connection handle that the exit uses if it needs to make any MQI calls within the
exit.

This field is not relevant to exits running on client-connection channels, where it contains the value
MQHC_UNUSABLE_HCONN (-1).

This is an input field to the exit. The field is not present if Version is less than MQCXP_VERSION_7.

1516 IBM MQ Developing Applications Reference

SharingConversations (MQBOOL)
This field specifies whether the conversation is the only one that can currently be running on this channel
instance, or whether more than one conversation can currently be running on this channel instance.

It also indicates whether the exit program is subject to the risk of the MQCD being altered by another exit
program running at the same time.

This field is only relevant for exit programs running on client-connection or server-connection channels.

It is set to one of the following:
FALSE

The exit instance is the only exit instance that can currently be running on this channel instance. This
allows the exit to safely update the MQCD fields without contention from other exits running on other
channel instances. Whether changes to the MQCD fields are acted upon by the channel is defined by
the table of MQCD fields in “Changing MQCD fields in a channel exit” on page 1503.

TRUE
The exit instance is not the only exit instance that can currently be running on this channel instance.
Any changes made to the MQCD are not acted upon by the channel, except for changes listed in the
table of MQCD fields in “Changing MQCD fields in a channel exit” on page 1503 for Exit Reasons other
than MQXR_INIT. If this exit updates the MQCD fields, ensure there is no contention from other exits
running on other conversations at the same time by providing serialization among the exits that run on
this channel instance.

This is an input field to the exit. The field is not present if Version is less than MQCXP_VERSION_7.

MCAUserSource (MQLONG)
This field specifies the source of the provided MCA user ID.

It can contain one of the following values:
MQUSRC_MAP

The user ID is specified in the MCAUSER attribute.
MQUSRC_CHANNEL

The user ID is flowed from the inbound partner or specified in the MCAUSER field defined in the
channel object.

This is an input field to the exit. The field is not present if Version is less than MQCXP_VERSION_8.

pEntryPoints (PMQIEP)
This field specifies the address of the interface entry point for the MQI or DCI call.

The field is not present if Version is less than MQCXP_VERSION_8.

RemoteProduct (MQCHAR4)
This field specifies the remote product name.

This field identifies the remote product of the client, for example, C or Java, as displayed in the RPRODUCT
field of DISPLAY CHSATUS.

The field is not present if Version is less than MQCXP_VERSION_9.

RemoteVersion (MQCHAR8)
This field specifies the name of the remote version.

This field identifies the version of the client libraries, as displayed in the RVERSION field of DISPLAY
CHSTATUS.

The field is not present if Version is less than MQCXP_VERSION_9.

C declaration
This declaration is the C declaration for the MQCXP structure.

typedef struct tagMQCXP MQCXP;

Developing applications reference 1517

struct tagMQCXP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG ExitId; /* Type of exit */
 MQLONG ExitReason; /* Reason for invoking exit */
 MQLONG ExitResponse; /* Response from exit */
 MQLONG ExitResponse2; /* Secondary response from exit */
 MQLONG Feedback; /* Feedback code */
 MQLONG MaxSegmentLength; /* Maximum segment length */
 MQBYTE16 ExitUserArea; /* Exit user area */
 MQCHAR32 ExitData; /* Exit data */
 MQLONG MsgRetryCount; /* Number of times the message has been
 retried */
 MQLONG MsgRetryInterval; /* Minimum interval in milliseconds after
 which the put operation should be
 retried */
 MQLONG MsgRetryReason; /* Reason code from previous attempt to
 put the message */
 MQLONG HeaderLength; /* Length of header information */
 MQCHAR48 PartnerName; /* Partner Name */
 MQLONG FAPLevel; /* Negotiated Formats and Protocols
 level */
 MQLONG CapabilityFlags; /* Capability flags */
 MQLONG ExitNumber; /* Exit number */
 /* Ver:3 */
 /* Ver:4 */
 MQLONG ExitSpace; /* Number of bytes in transmission buffer
 reserved for exit to use */
 /* Ver:5 */
 MQCHAR12 SSLCertUserid; /* User identifier associated
 with remote TLS certificate */
 MQLONG SSLRemCertIssNameLength; /* Length of
 distinguished name of issuer
 of remote TLS certificate */
 MQPTR SSLRemCertIssNamePtr; /* Address of
 distinguished name of issuer
 of remote TLS certificate */
 PMQVOID SecurityParms; /* Security parameters */
 MQLONG CurHdrCompression; /* Header data compression
 used for current message */
 MQLONG CurMsgCompression; /* Message data compression
 used for current message */
 /* Ver:6 */
 MQHCONN Hconn; /* Connection handle */
 MQBOOL SharingConversations; /* Multiple conversations
 possible on channel inst? */
 /* Ver:7 */
 MQLONG MCAUserSource; /* Source of the provided MCA user ID */
 PMQIEP pEntryPoints; /* Address of the MQIEP structure */
 /* Ver:8 */
 MQCHAR4 RemoteProduct; /* The identifier for the remote product */
 MQCHAR8 RemoteVersion; /* The version of the remote product */
 /* Ver:9 */
};

COBOL declaration
This declaration is the COBOL declaration for the MQCXP structure.

** MQCXP structure
 10 MQCXP.
** Structure identifier
 15 MQCXP-STRUCID PIC X(4).
** Structure version number
 15 MQCXP-VERSION PIC S9(9) BINARY.
** Type of exit
 15 MQCXP-EXITID PIC S9(9) BINARY.
** Reason for invoking exit
 15 MQCXP-EXITREASON PIC S9(9) BINARY.
** Response from exit
 15 MQCXP-EXITRESPONSE PIC S9(9) BINARY.
** Secondary response from exit
 15 MQCXP-EXITRESPONSE2 PIC S9(9) BINARY.
** Feedback code
 15 MQCXP-FEEDBACK PIC S9(9) BINARY.
** Maximum segment length
 15 MQCXP-MAXSEGMENTLENGTH PIC S9(9) BINARY.
** Exit user area
 15 MQCXP-EXITUSERAREA PIC X(16).

1518 IBM MQ Developing Applications Reference

** Exit data
 15 MQCXP-EXITDATA PIC X(32).
** Number of times the message has been retried
 15 MQCXP-MSGRETRYCOUNT PIC S9(9) BINARY.
** Minimum interval in milliseconds after which the put operation
** should be retried
 15 MQCXP-MSGRETRYINTERVAL PIC S9(9) BINARY.
** Reason code from previous attempt to put the message
 15 MQCXP-MSGRETRYREASON PIC S9(9) BINARY.
** Length of header information
 15 MQCXP-HEADERLENGTH PIC S9(9) BINARY.
** Partner Name
 15 MQCXP-PARTNERNAME PIC X(48).
** Negotiated Formats and Protocols level
 15 MQCXP-FAPLEVEL PIC S9(9) BINARY.
** Capability flags
 15 MQCXP-CAPABILITYFLAGS PIC S9(9) BINARY.
** Exit number
 15 MQCXP-EXITNUMBER PIC S9(9) BINARY.
** Number of bytes in transmission buffer reserved for exit to use
 15 MQCXP-EXITSPACE PIC S9(9) BINARY.
** User Id associated with remote certificate
 15 MQCXP-SSLCERTUSERID PIC X(12).
** Length of distinguished name of issuer of remote TLS
** certificate
 15 MQCXP-SSLREMCERTISSNAMELENGTH PIC S9(9) BINARY.
** Address of distinguished name of issuer of remote TLS
** certificate
 15 MQCXP-SSLREMCERTISSNAMEPTR POINTER.
** Security parameters
 15 MQCXP-SECURITYPARMS PIC S9(18) BINARY.
** Header data compression used for current message
 15 MQCXP-CURHDRCOMPRESSION PIC S9(9) BINARY.
** Message data compression used for current message
 15 MQCXP-CURMSGCOMPRESSION PIC S9(9) BINARY.
** Connection handle
 15 MQCXP-HCONN PIC S9(9) BINARY.
** Multiple conversations possible on channel instance?
 15 MQCXP-SHARINGCONVERSATIONS PIC S9(9) BINARY.
** Source of the provided MCA user ID
 15 MQCXP-MCAUSERSOURCE PIC S9(9) BINARY.
** Identifier of the remote product
 15 MQCXP-RPRODUCT PIC X(4).
** Identifier of the remote version
 15 MQCXP-RVERSION PIC X(8).

RPG declaration (ILE)
This declaration is the RPG declaration for the MQCXP structure.

 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQCXP Structure
 D*
 D* Structure identifier
 D CXSID 1 4
 D* Structure version number
 D CXVER 5 8I 0
 D* Type of exit
 D CXXID 9 12I 0
 D* Reason for invoking exit
 D CXREA 13 16I 0
 D* Response from exit
 D CXRES 17 20I 0
 D* Secondary response from exit
 D CXRE2 21 24I 0
 D* Feedback code
 D CXFB 25 28I 0
 D* Maximum segment length
 D CXMSL 29 32I 0
 D* Exit user area
 D CXUA 33 48
 D* Exit data
 D CXDAT 49 80
 D* Number of times the message has been retried
 D CXMRC 81 84I 0
 D* Minimum interval in milliseconds after which the put operation
 D* should be retried
 D CXMRI 85 88I 0
 D* Reason code from previous attempt to put the message

Developing applications reference 1519

 D CXMRR 89 92I 0
 D* Length of header information
 D CXHDL 93 96I 0
 D* Partner Name
 D CXPNM 97 144
 D* Negotiated Formats and Protocols level
 D CXFAP 145 148I 0
 D* Capability flags
 D CXCAP 149 152I 0
 D* Exit number
 D CXEXN 153 156I 0
 D* Number of bytes in transmission buffer reserved for exit to use
 D CXHDL 157 160I 0
 D* User identifier associated with remote TLS certificate
 D CXSSLCU 161 172
 D* Length of distinguished name of issuer of remote TLS certificate
 D CXSRCINL 173 176I 0
 D* Address of distinguished name of issuer of remote TLS certificate
 D CXSRCINP 177 192*
 D* Security parameters
 D CXSECP 193 208*
 D* Header data compression used for current message
 D CXCHC 209 212I 0
 D* Message data compression used for current message
 D CXCMC 213 216I 0
 D* Connection handle
 D CXHCONN 217 220I 0
 D* Multiple conversations possible on channel instance?
 D CXSHARECONV 221 224I 0
 D* Source of the provided MCA user ID
 D MCAUSERSOURCE 225 228I 0
 D* Identifer of the remote product
 D CXRPRO 229 232I 0
 D* Identifier of the remote version
 D CXRVER 233 240I 0

System/390 assembler declaration
This declaration is the System/390 assembler declaration for the MQCXP structure.

MQCXP DSECT
MQCXP_STRUCID DS CL4 Structure identifier
MQCXP_VERSION DS F Structure version number
MQCXP_EXITID DS F Type of exit
MQCXP_EXITREASON DS F Reason for invoking exit
MQCXP_EXITRESPONSE DS F Response from exit
MQCXP_EXITRESPONSE2 DS F Secondary response from exit
MQCXP_FEEDBACK DS F Feedback code
MQCXP_MAXSEGMENTLENGTH DS F Maximum segment length
MQCXP_EXITUSERAREA DS XL16 Exit user area
MQCXP_EXITDATA DS CL32 Exit data
MQCXP_MSGRETRYCOUNT DS F Number of times the message has been
* retried
MQCXP_MSGRETRYINTERVAL DS F Minimum interval in milliseconds
* after which the put operation should
* be retried
MQCXP_MSGRETRYREASON DS F Reason code from previous attempt to
* put the message
MQCXP_HEADERLENGTH DS F Length of header information
MQCXP_PARTNERNAME DS CL48 Partner Name
MQCXP_FAPLEVEL DS F Negotiated Formats and Protocols
* level
MQCXP_CAPABILITYFLAGS DS F Capability flags
MQCXP_EXITNUMBER DS F Exit number
MQCXP_EXITSPACE DS F Number of bytes in transmission
* buffer reserved for exit to use
MQCXP_SSLCERTUSERID DS CL12 User identifier associated with
* remote TLS certificate
MQCXP_SSLREMCERTISSNAMELENGTH DS F Length of distinguished name
* of issuer of remote TLS certificate
MQCXP_SSLREMCERTISSNAMEPTR DS F Address of distinguished name
* of issuer of remote TLS certificate
MQCXP_SECURITYPARMS DS F Address of security parameters
MQCXP_CURHDRCOMPRESSION DS F Header data compression used for
* current message
MQCXP_CURMSGCOMPRESSION DS F Message data compression used for
* current message
MQCXP_HCONN DS F Connection handle
MQCXP_SHARINGCONVERSATIONS DS F Multiple conversations possible on

1520 IBM MQ Developing Applications Reference

* channel inst?
MQCXP_MCAUSERSOURCE DS F Source of the provided MCA user ID
MQCXP_RPRODUCT DS CL4 Identifer of the remote product
MQCXP_RVERSION DS CL8 Identifer of the remote version

MQCXP_LENGTH EQU *-MQCXP
 ORG MQCXP
MQCXP_AREA DS CL(MQCXP_LENGTH)

MQXWD - Exit wait descriptor
The MQXWD structure is an input/output parameter on the MQXWAIT call.

This structure is supported only on z/OS.

Related reference
“Fields” on page 1521
This topic lists all the fields in the MQXWD structure and describes each field.
“C declaration” on page 1522
This declaration is the C declaration for the MQXWD structure.
“System/390 assembler declaration” on page 1522
This declaration is the System/390 assembler declaration for the MQXWD structure.

Fields
This topic lists all the fields in the MQXWD structure and describes each field.

StrucId (MQCHAR4)
This field specifies the structure identifier.

The value must be:
MQXWD_STRUC_ID

Identifier for exit wait descriptor structure.

For the C programming language, the constant MQXWD_STRUC_ID_ARRAY is also defined; this
constant has the same value as MQXWD_STRUC_ID, but is an array of characters instead of a string.

The initial value of this field is MQXWD_STRUC_ID.

Version (MQLONG)
This field specifies the structure version number.

The value must be:
MQXWD_VERSION_1

Version number for exit wait descriptor structure.

The initial value of this field is MQXWD_VERSION_1.

Reserved1 (MQLONG)
This field is reserved. Its value must be zero.

This is an input field.

Reserved2 (MQLONG)
This field is reserved. Its value must be zero.

This is an input field.

Reserved3 (MQLONG)
This field is reserved. Its value must be zero.

This is an input field.

Developing applications reference 1521

ECB (MQLONG)
This field specifies the event control block to wait on.

This field is the event control block (ECB) to wait on. It must be set to zero before the MQXWAIT call is
issued; on successful completion it contains the post code.

This field is an input/output field.

C declaration
This declaration is the C declaration for the MQXWD structure.

typedef struct tagMQXWD MQXWD;
struct tagMQXWD {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Reserved1; /* Reserved */
 MQLONG Reserved2; /* Reserved */
 MQLONG Reserved3; /* Reserved */
 MQLONG ECB; /* Event control block to wait on */
};

System/390 assembler declaration
This declaration is the System/390 assembler declaration for the MQXWD structure.

MQXWD DSECT
MQXWD_STRUCID DS CL4 Structure identifier
MQXWD_VERSION DS F Structure version number
MQXWD_RESERVED1 DS F Reserved
MQXWD_RESERVED2 DS F Reserved
MQXWD_RESERVED3 DS F Reserved
MQXWD_ECB DS F Event control block to wait on
*
MQXWD_LENGTH EQU *-MQXWD
 ORG MQXWD
MQXWD_AREA DS CL(MQXWD_LENGTH)

Cluster workload exit call and data structures
This section provides reference information for the cluster workload exit and the data structures. This is
general-use programming interface information.

You can write cluster workload exits in the following programming languages:

• C
• System/390 assembler (IBM MQ for z/OS)

The call is described in:

• “MQ_CLUSTER_WORKLOAD_EXIT - Call description” on page 1523

The structure data types used by the exit are described in:

• “MQXCLWLN - Navigate Cluster workload records” on page 1525
• “MQWXP - Cluster workload exit parameter structure” on page 1528
• “MQWDR - Cluster workload destination record structure” on page 1536
• “MQWQR - Cluster workload queue record structure” on page 1541
• “MQWCR - Cluster workload cluster record structure” on page 1546

• Asynchronous behavior of CLUSTER commands on z/OS

Throughout this section, queue manager attributes and queue attributes are shown in full. The equivalent
names that are used in the MQSC commands are shown below. For details of MQSC commands, see
MQSC commands.

1522 IBM MQ Developing Applications Reference

Table 825. Queue manager attributes

Full name Name used in MQSC

ClusterWorkloadData CLWLDATA

ClusterWorkloadExit CLWLEXIT

ClusterWorkloadLength CLWLLEN

Table 826. Queue attributes

Full name Name used in MQSC

DefBind DEFBIND

DefPersistence DEFPSIST

DefPriority DEFPRTY

InhibitPut PUT

QDesc DESCR

Related tasks
Writing and compiling cluster workload exits

MQ_CLUSTER_WORKLOAD_EXIT - Call description
The cluster workload exit is called by the queue manager to route a message to an available queue
manager.

Note: No entry point called MQ_CLUSTER_WORKLOAD_EXIT is provided by the queue manager. Instead,
the name of the cluster workload exit is defined by the ClusterWorkloadExit queue manager
attribute.

The MQ_CLUSTER_WORKLOAD_EXIT exit is supported on all platforms.

Syntax

 MQ_CLUSTER_WORKLOAD_EXIT (ExitParms)

Related reference
MQXCLWLN - Navigate Cluster workload records
The MQXCLWLN call is used to navigate through the chains of MQWDR, MQWQR, and MQWCR records stored in
the cluster cache.
MQWXP - Cluster workload exit parameter structure
The following table summarizes the fields in the MQWXP - Cluster workload exit parameter structure.
MQWDR - Cluster workload destination record structure
The following table summarizes the fields in the MQWDR - Cluster workload destination record structure.
MQWQR - Cluster workload queue record structure
The following table summarizes the fields in the MQWQR - Cluster workload queue record structure.
MQWCR - Cluster workload cluster record structure

Developing applications reference 1523

The following table summarizes the fields in the MQWCR cluster workload record structure.

Parameters for MQ_CLUSTER_WORKLOAD_EXIT
Description of the parameters in the MQ_CLUSTER_WORKLOAD_EXIT call.

ExitParms (MQWXP) - input/output
Exit parameter block.

• The exit sets information in MQWXP to indicate how to manage the workload.

Related reference
Usage notes
The function performed by the cluster workload exit is defined by the provider of the exit. The exit,
however, must conform to the rules defined in the associated control block MQWXP.
Language invocations for MQ_CLUSTER_WORKLOAD_EXIT
The MQ_CLUSTER_WORKLOAD_EXIT supports two languages, C and High Level Assembler.

Usage notes
The function performed by the cluster workload exit is defined by the provider of the exit. The exit,
however, must conform to the rules defined in the associated control block MQWXP.

No entry point called MQ_CLUSTER_WORKLOAD_EXIT is provided by the queue manager. However, a
typedef is provided for the name MQ_CLUSTER_WORKLOAD_EXIT in the C programming language. Use
the typedef to declare the user-written exit, to ensure that the parameters are correct.

Related reference
Parameters for MQ_CLUSTER_WORKLOAD_EXIT
Description of the parameters in the MQ_CLUSTER_WORKLOAD_EXIT call.
Language invocations for MQ_CLUSTER_WORKLOAD_EXIT
The MQ_CLUSTER_WORKLOAD_EXIT supports two languages, C and High Level Assembler.

Language invocations for MQ_CLUSTER_WORKLOAD_EXIT
The MQ_CLUSTER_WORKLOAD_EXIT supports two languages, C and High Level Assembler.

C invocation

 MQ_CLUSTER_WORKLOAD_EXIT (&ExitParms);

Replace MQ_CLUSTER_WORKLOAD_EXIT with the name of your cluster workload exit function.

Declare the MQ_CLUSTER_WORKLOAD_EXIT parameters as follows:

MQWXP ExitParms; /* Exit parameter block */

High Level Assembler invocation

CALL EXITNAME,(EXITPARMS)

Declare the parameters as follows:

EXITPARMS CMQWXPA Exit parameter block

Related reference
Parameters for MQ_CLUSTER_WORKLOAD_EXIT
Description of the parameters in the MQ_CLUSTER_WORKLOAD_EXIT call.
Usage notes

1524 IBM MQ Developing Applications Reference

The function performed by the cluster workload exit is defined by the provider of the exit. The exit,
however, must conform to the rules defined in the associated control block MQWXP.

MQXCLWLN - Navigate Cluster workload records
The MQXCLWLN call is used to navigate through the chains of MQWDR, MQWQR, and MQWCR records stored in
the cluster cache.

The cluster cache is an area of main storage used to store information relating to the cluster.

If the cluster cache is static, it has a fixed size. If you set it to dynamic, the cluster cache can expand as
required.

Set the type of cluster cache to STATIC or DYNAMIC using either a system parameter or macro.

• Use the system parameter ClusterCacheType on Multiplatforms.

• Use the CLCACHE parameter in the CSQ6SYSP macro on z/OS.

Syntax

 MQXCLWLN (ExitParms, CurrentRecord, NextOffset, NextRecord, Compcode, Reason)

Related reference
MQ_CLUSTER_WORKLOAD_EXIT - Call description
The cluster workload exit is called by the queue manager to route a message to an available queue
manager.
MQWXP - Cluster workload exit parameter structure
The following table summarizes the fields in the MQWXP - Cluster workload exit parameter structure.
MQWDR - Cluster workload destination record structure
The following table summarizes the fields in the MQWDR - Cluster workload destination record structure.
MQWQR - Cluster workload queue record structure
The following table summarizes the fields in the MQWQR - Cluster workload queue record structure.
MQWCR - Cluster workload cluster record structure
The following table summarizes the fields in the MQWCR cluster workload record structure.

Parameters for MQXCLWLN - Navigate Cluster workload records
Description of the parameters in the MQXCLWLN call.

ExitParms (MQWXP) - input/output
Exit parameter block.

This structure contains information relating to the invocation of the exit. The exit sets information in
this structure to indicate how to manage the workload.

CurrentRecord (MQPTR) - input
Address of current record.

This structure contains information relating to the address of the record currently being examined by
the exit. The record must be one of the following types:

• Cluster workload destination record (MQWDR)
• Cluster workload queue record (MQWQR)
• Cluster workload cluster record (MQWCR)

NextOffset (MQLONG) - input
Offset of next record.

Developing applications reference 1525

This structure contains information relating to the offset of the next record or structure. NextOffset
is the value of the appropriate offset field in the current record, and must be one of the following
fields:

• ChannelDefOffset field in MQWDR
• ClusterRecOffset field in MQWDR
• ClusterRecOffset field in MQWQR
• ClusterRecOffset field in MQWCR

NextRecord (MQPTR) - output
Address of next record or structure.

This structure contains information relating to the address of the next record or structure.
If CurrentRecord is the address of an MQWDR, and NextOffset is the value of the
ChannelDefOffset field, NextRecord is the address of the channel definition structure (MQCD).

If there is no next record or structure, the queue manager sets NextRecord to the null pointer, and
the call returns completion code MQCC_WARNING and reason code MQRC_NO_RECORD_AVAILABLE.

CompCode (MQLONG) - output
Completion code.

The completion code has one of the following values:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode

If CompCode is MQCC_OK:
MQRC_NONE
(0, X'0000')

No reason to report.

If CompCode is MQCC_WARNING:
MQRC_NO_RECORD_AVAILABLE
(2359, X'0937')

No record available. An MQXCLWLN call was issued from a cluster workload exit to obtain the
address of the next record in the chain. The current record is the last record in the chain.
Corrective action: None.

If CompCode is MQCC_FAILED:
MQRC_CURRENT_RECORD_ERROR
(2357, X'0935')

CurrentRecord parameter not valid. An MQXCLWLN call was issued from a cluster workload
exit to obtain the address of the next record in the chain. The address specified by the
CurrentRecord parameter is not the address of a valid record.
CurrentRecord must be the address of a destination record, MQWDR, queue record (MQWQR),
or cluster record (MQWCR) residing within the cluster cache. Corrective action: Ensure that the
cluster workload exit passes the address of a valid record residing in the cluster cache.

MQRC_ENVIRONMENT_ERROR
(2012, X'07DC')

Call not valid in environment. An MQXCLWLN call was issued, but not from a cluster workload exit.

1526 IBM MQ Developing Applications Reference

MQRC_NEXT_OFFSET_ERROR
(2358, X'0936')

NextOffset parameter not valid. An MQXCLWLN call was issued from a cluster workload exit
to obtain the address of the next record in the chain. The offset specified by the NextOffset
parameter is not valid. NextOffset must be the value of one of the following fields:

• ChannelDefOffset field in MQWDR
• ClusterRecOffset field in MQWDR
• ClusterRecOffset field in MQWQR
• ClusterRecOffset field in MQWCR

Corrective action: Ensure that the value specified for the NextOffset parameter is the value of
one of the fields listed previously.

MQRC_NEXT_RECORD_ERROR
(2361, X'0939')

NextRecord parameter not valid.
MQRC_WXP_ERROR
(2356, X'0934')

Workload exit parameter structure not valid. An MQXCLWLN call was issued from a cluster
workload exit to obtain the address of the next record in the chain. The workload exit parameter
structure ExitParms is not valid, for one of the following reasons:

• The parameter pointer is not valid. It is not always possible to detect parameter pointers that
are not valid; if not detected, unpredictable results occur.

• The StrucId field is not MQWXP_STRUC_ID.
• The Version field is not MQWXP_VERSION_2.
• The Context field does not contain the value passed to the exit by the queue manager.

Corrective action: Ensure that the parameter specified for ExitParms is the MQWXP structure that
was passed to the exit when the exit was invoked.

Related reference
Usage notes for MQXCLWLN - Navigate Cluster workload records
Use MQXCLWLN to navigate through cluster records, even if the cache is static.
Language invocations of MQXCLWLN
MQXCLWLN supports two languages, C and High Level Assembler.

Usage notes for MQXCLWLN - Navigate Cluster workload records
Use MQXCLWLN to navigate through cluster records, even if the cache is static.

If the cluster cache is dynamic, the MQXCLWLN call must be used to navigate through the records. The exit
ends abnormally if simple pointer-and-offset arithmetic is used to navigate through the records.

If the cluster cache is static, MQXCLWLN need not be used to navigate through the records. Typically use
MQXCLWLN even when the cache is static. You can then change the cluster cache to being dynamic without
needing to change the workload exit.

Related reference
Parameters for MQXCLWLN - Navigate Cluster workload records
Description of the parameters in the MQXCLWLN call.
Language invocations of MQXCLWLN

Developing applications reference 1527

MQXCLWLN supports two languages, C and High Level Assembler.

Language invocations of MQXCLWLN
MQXCLWLN supports two languages, C and High Level Assembler.

C invocation

MQXCLWLN (&ExitParms, CurrentRecord, NextOffset, &NextRecord, &CompCode, &Reason) ;

Declare the parameters as follows:

Typedef struct tagMQXCLWLN {
MQWXP ExitParms; /* Exit parameter block */
MQPTR CurrentRecord; /* Address of current record*/
MQLONG NextOffset; /* Offset of next record */
MQPTR NextRecord; /* Address of next record or structure */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

High Level Assembler invocation

CALL MQXCLWLN,(CLWLEXITPARMS,CURRENTRECORD,NEXTOFFSET,NEXTRECORD,COMPCODE,REASON)

Declare the parameters as follows:

CLWLEXITPARMS CMQWXPA, Cluster workload exit parameter block
CURRENTRECORD CMQWDRA, Current record
NEXTOFFSET DS F Next offset
NEXTRECORD DS F Next record
COMPCODE DS F Completion code
REASON DS F Reason code qualifying COMPCODE

Related reference
Parameters for MQXCLWLN - Navigate Cluster workload records
Description of the parameters in the MQXCLWLN call.
Usage notes for MQXCLWLN - Navigate Cluster workload records
Use MQXCLWLN to navigate through cluster records, even if the cache is static.

MQWXP - Cluster workload exit parameter structure
The following table summarizes the fields in the MQWXP - Cluster workload exit parameter structure.

Table 827. Fields in MQWXP

Field Description Page

StrucId Structure identifier StrucId

Version Structure version number Version

ExitId Type of exit ExitId

ExitReason Reason for invoking exit ExitReason

ExitResponse Response from exit ExitResponse

ExitResponse2 Secondary response from exit ExitResponse2

Feedback Feedback code Feedback

1528 IBM MQ Developing Applications Reference

Table 827. Fields in MQWXP (continued)

Field Description Page

Flags Flags values. These bit flags are used to indicate
information about the message being put

Flags

ExitUserArea Exit user area ExitUserArea

ExitData Exit data ExitData

MsgDescPtr Address of message descriptor (MQMD) MsgDescPtr

MsgBufferPtr Address of buffer containing some or all the
message data

MsgBufferPtr

MsgBufferLength Length of buffer containing message data MsgBufferLength

MsgLength Length of complete message MsgLength

QName Name of queue QName

QMgrName Name of local queue manager QMgrName

DestinationCount Number of possible destinations DestinationCount

DestinationChosen Destination chosen DestinationChosen

DestinationArrayPtr Address of an array of pointers to destination
records (MQWDR)

DestinationArrayPtr

QArrayPtr Address of an array of pointers to queue records
(MQWQR)

QArrayPtr

Note: The remaining fields are ignored if Version is less than MQWXP_VERSION_2.

CacheContext Context information CacheContext

CacheType Type of cluster cache CacheType

Note: The remaining fields are ignored if Version is less than MQWXP_VERSION_3.

CLWLMRUChannels Maximum number of allowed active outbound
cluster channels

CLWLMRUChannels

Note: The remaining fields are ignored if Version is less than MQWXP_VERSION_4.

pEntryPoints Address of the MQIEP structure to allow MQI and
DCI calls to be made

pEntryPoints

The cluster workload exit parameter structure describes the information that is passed to the cluster
workload exit.

The cluster workload exit parameter structure is supported on all platforms

Additionally, the MQWXP1, MQWXP2 and MQWXP3 structures are available for backwards compatibility.

Related reference
MQ_CLUSTER_WORKLOAD_EXIT - Call description
The cluster workload exit is called by the queue manager to route a message to an available queue
manager.
MQXCLWLN - Navigate Cluster workload records
The MQXCLWLN call is used to navigate through the chains of MQWDR, MQWQR, and MQWCR records stored in
the cluster cache.
MQWDR - Cluster workload destination record structure

Developing applications reference 1529

The following table summarizes the fields in the MQWDR - Cluster workload destination record structure.
MQWQR - Cluster workload queue record structure
The following table summarizes the fields in the MQWQR - Cluster workload queue record structure.
MQWCR - Cluster workload cluster record structure
The following table summarizes the fields in the MQWCR cluster workload record structure.

Fields in MQWXP - Cluster workload exit parameter structure
Description of the fields in the MQWXP - Cluster workload exit parameter structure

StrucId (MQCHAR4) - input
The structure identifier for the cluster workload exit parameter structure.

• The StrucId value is MQWXP_STRUC_ID.
• For the C programming language, the constant MQWXP_STRUC_ID_ARRAY is also defined. It has the

same value as MQWXP_STRUC_ID. It is an array of characters instead of a string.

Version (MQLONG) - input
Indicates the structure version number. Version takes one of the following values:
MQWXP_VERSION_1

Version-1 cluster workload exit parameter structure.
MQWXP_VERSION_1 is supported in all environments.

MQWXP_VERSION_2
Version-2 cluster workload exit parameter structure.
MQWXP_VERSION_2 is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

MQWXP_VERSION_3
Version-3 cluster workload exit parameter structure.
MQWXP_VERSION_3 is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

MQWXP_VERSION_4
Version-4 cluster workload exit parameter structure.
MQWXP_VERSION_4 is supported in the following environments:

• AIX

• IBM i

• Linux

• Windows

MQWXP_CURRENT_VERSION
Current version of cluster workload exit parameter structure.

1530 IBM MQ Developing Applications Reference

ExitId (MQLONG) - input
Indicates the type of exit being called. The cluster workload exit is the only supported exit.

• The ExitId value must be MQXT_CLUSTER_WORKLOAD_EXIT

ExitReason (MQLONG) - input
Indicates the reason for invoking the cluster workload exit. ExitReason takes one of the following
values:
MQXR_INIT

Indicates that the exit is being invoked for the first time.
Acquire and initialize any resources that the exit might need, such as main storage.

MQXR_TERM
Indicates that the exit is about to be terminated.
Free any resources that the exit might have acquired since it was initialized, such as main storage.

MQXR_CLWL_OPEN
Called by MQOPEN.

MQXR_CLWL_PUT
Called by MQPUT or MQPUT1.

MQXR_CLWL_MOVE
Called by MCA when the channel state has changed.

MQXR_CLWL_REPOS
Called by MQPUT or MQPUT1 for a repository-manager PCF message.

MQXR_CLWL_REPOS_MOVE
Called by MCA for a repository-manager PCF message if the channel state has changed.

ExitResponse (MQLONG) - output
Set ExitResponse to indicate whether processing of the message continues. It must be one of the
following values:
MQXCC_OK

Continue processing the message normally.

• DestinationChosen identifies the destination to which the message is to be sent.

MQXCC_SUPPRESS_FUNCTION
Discontinue processing the message.

• The actions taken by the queue manager depend on the reason the exit was invoked:

Table 828. Actions taken by the queue manager

ExitReason Action taken

– MQXR_CLWL_OPEN
– MQXR_CLWL_REPOS
– MQXR_CLWL_PUT

MQOPEN, MQPUT, or MQPUT1 call fail with completion code MQCC_FAILED
and reason code MQRC_STOPPED_BY_CLUSTER_EXIT.

– MQXR_CLWL_MOVE
– MQXR_CLWL_REPOS_MOVE

The message is placed on the dead-letter queue.

MQXCC_SUPPRESS_EXIT
Continue processing the current message normally. Do not invoke the exit again until the queue
manager shuts down.
The queue manager processes subsequent messages as if the ClusterWorkloadExit queue
manager attribute is blank. DestinationChosen identifies the destination to which the current
message is sent.

Developing applications reference 1531

Any other value
Process the message as if MQXCC_SUPPRESS_FUNCTION is specified.

ExitResponse2 (MQLONG) - input/output
Set ExitResponse2 to provide the queue manager with more information.

• MQXR2_STATIC_CACHE is the default value, and is set on entry to the exit.
• When ExitReason has the value MQXR_INIT, the exit can set one of the following values in
ExitResponse2:
MQXR2_STATIC_CACHE

The exit requires a static cluster cache.

– If the cluster cache is static, the exit need not use the MQXCLWLN call to navigate the chains of
records in the cluster cache.

– If the cluster cache is dynamic, the exit cannot navigate correctly through the records in the
cache.

Note: The queue manager processes the return from the MQXR_INIT call as though the exit
had returned MQXCC_SUPPRESS_EXIT in the ExitResponse field.

MQXR2_DYNAMIC_CACHE
The exit can operate with either a static or dynamic cache.

– If the exit returns this value, the exit must use the MQXCLWLN call to navigate the chains of
records in the cluster cache.

Feedback (MQLONG) - input
A reserved field. The value is zero.

Flags (MQLONG) - input
Indicates information about the message being put.

• The value of Flags is MQWXP_PUT_BY_CLUSTER_CHL. The message originates from a cluster
channel, rather than locally or from a non-cluster channel. In other words, the message has come
from another cluster queue manager.

Reserved (MQLONG) - input
A reserved field. The value is zero.

ExitUserArea (MQBYTE16) - input/output
Set ExitUserArea to communicate between calls to the exit.

• ExitUserArea is initialized to binary zero before the first invocation of the exit. Any changes made
to this field by the exit are preserved across the invocations of the exit that occur between the
MQCONN call and the matching MQDISC call. The field is reset to binary zero when the MQDISC call
occurs.

• The first invocation of the exit is indicated by the ExitReason field having the value MQXR_INIT.
• The following constants are defined:
MQXUA_NONE - string
MQXUA_NONE_ARRAY - character array

No user information. Both constants are binary zero for the length of the field.
MQ_EXIT_USER_AREA_LENGTH

The length of ExitUserArea.

ExitData (MQCHAR32) - input
The value of the ClusterWorkloadData queue manager attribute. If no value has been defined for
that attribute, this field is all blanks.

• The length of ExitData is given by MQ_EXIT_DATA_LENGTH.

MsgDescPtr (PMQMD) - input
The address of a copy of the message descriptor (MQMD) for the message being processed.

1532 IBM MQ Developing Applications Reference

• Any changes made to the message descriptor by the exit are ignored by the queue manager.
• If ExitReason has one of the following values MsgDescPtr is set to the null pointer, and no

message descriptor is passed to the exit:

– MQXR_INIT
– MQXR_TERM
– MQXR_CLWL_OPEN

MsgBufferPtr (PMQVOID) - input
The address of a buffer containing a copy of the first MsgBufferLength bytes of the message data.

• Any changes made to the message data by the exit are ignored by the queue manager.
• No message data is passed to the exit when:

– MsgDescPtr is the null pointer.
– The message has no data.
– The ClusterWorkloadLength queue manager attribute is zero.

In these cases, MsgBufferPtr is the null pointer.

MsgBufferLength (MQLONG) - input
The length of the buffer containing the message data passed to the exit.

• The length is controlled by the ClusterWorkloadLength queue manager attribute.
• The length might be less than the length of the complete message, see MsgLength.

MsgLength (MQLONG) - input
The length of the complete message passed to the exit.

• MsgBufferLength might be less than the length of the complete message.
• MsgLength is zero if ExitReason is MQXR_INIT, MQXR_TERM, or MQXR_CLWL_OPEN.

QName (MQCHAR48) - input
The name of the destination queue. The queue is a cluster queue.

• The length of QName is MQ_Q_NAME_LENGTH.

QMgrName (MQCHAR48) - input
The name of the local queue manager that has invoked the cluster workload exit.

• The length of QMgrName is MQ_Q_MGR_NAME_LENGTH.

DestinationCount (MQLONG) - input
The number of possible destinations. Destinations are instances of the destination queue and are
described by destination records.

• A destination record is a MQWDR structure. There is one structure for each possible route to each
instance of the queue.

• MQWDR structures are addressed by an array of pointers, see DestinationArrayPtr.

DestinationChosen (MQLONG) - input/output
The chosen destination.

• The number of the MQWDR structure that identifies the route and queue instance where the message
is to be sent.

• The value is in the range 1 - DestinationCount.
• On input to the exit, DestinationChosen indicates the route and queue instance that the queue

manager has selected. The exit can accept this choice, or choose a different route and queue
instance.

• The value set by the exit must be in the range 1 - DestinationCount. If any other value is
returned, the queue manager uses the value of DestinationChosen on input to the exit.

Developing applications reference 1533

DestinationArrayPtr (PPMQWDR) - input
The address of an array of pointers to destination records (MQWDR).

• There are DestinationCount destination records.

QArrayPtr (PPMQWQR) - input
The address of an array of pointers to queue records (MQWQR).

• If queue records are available, there are DestinationCount of them.
• If no queue records are available, QArrayPtr is the null pointer.

Note: QArrayPtr can be the null pointer even when DestinationCount is greater than zero.

CacheContext (MQPTR) : Version 2 - input
The CacheContext field is reserved for use by the queue manager. The exit must not alter the value
of this field.

CacheType (MQLONG) : Version 2 - input
The cluster cache has one of the following types:
MQCLCT_STATIC

The cache is static.

• The size of the cache is fixed, and cannot grow as the queue manager operates.
• You do not need to use the MQXCLWLN call to navigate the records in this type of cache.

MQCLCT_DYNAMIC
The cache is dynamic.

• The size of the cache can increase in order to accommodate the varying cluster information.
• You must use the MQXCLWLN call to navigate the records in this type of cache.

CLWLMRUChannels (MQLONG) : Version 3 - input
Indicates the maximum number of active outbound cluster channels, to be considered for use by the
cluster workload choice algorithm.

• CLWLMRUChannels is a value 1 - 999 999 999.

pEntryPoints (PMQIEP) : Version 4
The address of an MQIEP structure through which MQI and DCI calls can be made.

Related reference
Initial values and language declarations for MQWXP
Initial values and C and High Level Assembler Language declarations for MQWXP - Cluster workload exit
parameter structure.

Initial values and language declarations for MQWXP
Initial values and C and High Level Assembler Language declarations for MQWXP - Cluster workload exit
parameter structure.

Table 829. Initial values of fields in MQWXP

Field name Name of constant Value of constant

StrucId MQWXP_STRUC_ID 'WXP¬'

Version MQWXP_VERSION_2 2

ExitId None 0

ExitReason MQXCC_OK 0

ExitResponse None 0

ExitResponse2 None 0

Flags None 0

1534 IBM MQ Developing Applications Reference

Table 829. Initial values of fields in MQWXP (continued)

Field name Name of constant Value of constant

ExitUserArea {MQXUA_NONE_ARRAY} 0

ExitData None ""

MsgDescPtr None NULL

MsgBufferPtr None NULL

MsgBufferLength None 0

MsgBufferPtr None 0

QName None ""

QMgrName None ""

DestinationCount None 0

DestinationChosen None 0

DestinationArrayPt
r

None NULL

QArrayPtr None NULL

CacheContext None NULL

CacheType MQCLCT_DYNAMIC 1

CLWLMRUChannels None 0

pEntryPoints None NULL

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQWXP_DEFAULT contains the default values.

Use it in the following way to provide initial values for the fields in the structure:

MQWDR MyWXP = {MQWXP_DEFAULT};

C declaration

typedef struct tagMQWXP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG ExitId; /* Type of exit */
 MQLONG ExitReason; /* Reason for invoking exit */
 MQLONG ExitResponse; /* Response from exit */
 MQLONG ExitResponse2; /* Reserved */
 MQLONG Feedback; /* Reserved */
 MQLONG Flags; /* Flags */
 MQBYTE16 ExitUserArea; /* Exit user area */
 MQCHAR32 ExitData; /* Exit data */
 PMQMD MsgDescPtr; /* Address of message descriptor */
 PMQVOID MsgBufferPtr; /* Address of buffer containing some
 or all of the message data */
 MQLONG MsgBufferLength; /* Length of buffer containing message
 data */
 MQLONG MsgLength; /* Length of complete message */
 MQCHAR48 QName; /* Queue name */
 MQCHAR48 QMgrName; /* Name of local queue manager */
 MQLONG DestinationCount; /* Number of possible destinations */
 MQLONG DestinationChosen; /* Destination chosen */
 PPMQWDR DestinationArrayPtr; /* Address of an array of pointers to

Developing applications reference 1535

 destination records */
 PPMQWQR QArrayPtr; /* Address of an array of pointers to
 queue records */
 /* version 1 */
 MQPTR CacheContext; /* Context information */
 MQLONG CacheType; /* Type of cluster cache */
 /* version 2 */
 MQLONG CLWLMRUChannnels; /* Maximum number of most recently
 used cluster channels */
 /* version 3 */
 PMQIEP pEntryPoints; /* Address of the MQIEP structure */
 /* version 4 */
};

High Level Assembler

MQWXP DSECT
MQWXP_STRUCID DS CL4 Structure identifier
MQWXP_VERSION DS F Structure version number
MQWXP_EXITID DS F Type of exit
MQWXP_EXITREASON DS F Reason for invoking exit
MQWXP_EXITRESPONSE DS F Response from exit
MQWXP_EXITRESPONSE2 DS F Reserved
MQWXP_FEEDBACK DS F Reserved
MQWXP_RESERVED DS F Reserved
MQWXP_EXITUSERAREA DS XL16 Exit user area
MQWXP_EXITDATA DS CL32 Exit data
MQWXP_MSGDESCPTR DS F Address of message
* descriptor
MQWXP_MSGBUFFERPTR DS F Address of buffer containing
* some or all of the message
* data
MQWXP_MSGBUFFERLENGTH DS F Length of buffer containing
* message data
MQWXP_MSGLENGTH DS F Length of complete message
MQWXP_QNAME DS CL48 Queue name
MQWXP_QMGRNAME DS CL48 Name of local queue manager
MQWXP_DESTINATIONCOUNT DS F Number of possible
* destinations
MQWXP_DESTINATIONCHOSEN DS F Destination chosen
MQWXP_DESTINATIONARRAYPTR DS F Address of an array of
* pointers to destination
* records
MQWXP_QARRAYPTR DS F Address of an array of
* pointers to queue records
MQWXP_CACHECONTEXT DS F Context information
MQWXP_CACHETYPE DS F Type of cluster cache
MQWXP_CLWLMRUCHANNELS DS F Number of most recently used
* channels for workload balancing

MQWXP_LENGTH EQU *-MQWXP Length of structure
 ORG MQWXP
MQWXP_AREA DS CL(MQWXP_LENGTH)

Related reference
Fields in MQWXP - Cluster workload exit parameter structure
Description of the fields in the MQWXP - Cluster workload exit parameter structure

MQWDR - Cluster workload destination record structure
The following table summarizes the fields in the MQWDR - Cluster workload destination record structure.

Table 830. Fields in MQWDR

Field Description Page

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQWDR structure StrucLength

QMgrFlags Queue manager flags QMgrFlags

1536 IBM MQ Developing Applications Reference

Table 830. Fields in MQWDR (continued)

Field Description Page

QMgrIdentifier Queue manager identifier QMgrIdentifier

QMgrName Queue manager name QMgrName

ClusterRecOffset Logical offset of first cluster record (MQWCR) ClusterRecOffset

ChannelState Channel state ChannelState

ChannelDefOffset Logical offset of channel-definition structure (MQCD) ChannelDefOffset

Note: The remaining fields are ignored if Version is less than MQWDR_VERSION_2.

DestSeqNumber Channel destination sequence number DestSeqNumber

DestSeqFactor Channel destination sequence factor for weighting DestSeqFactor

The cluster workload destination record structure contains information relating to one of the possible
destinations for the message. There is one cluster workload destination record structure for each instance
of the destination queue.

The cluster workload destination record structure is supported in all environments.

Additionally, the MQWDR1 and MQWDR2 structures are available for backwards compatibility.

Related reference
MQ_CLUSTER_WORKLOAD_EXIT - Call description
The cluster workload exit is called by the queue manager to route a message to an available queue
manager.
MQXCLWLN - Navigate Cluster workload records
The MQXCLWLN call is used to navigate through the chains of MQWDR, MQWQR, and MQWCR records stored in
the cluster cache.
MQWXP - Cluster workload exit parameter structure
The following table summarizes the fields in the MQWXP - Cluster workload exit parameter structure.
MQWQR - Cluster workload queue record structure
The following table summarizes the fields in the MQWQR - Cluster workload queue record structure.
MQWCR - Cluster workload cluster record structure
The following table summarizes the fields in the MQWCR cluster workload record structure.

Fields in MQWDR - Cluster workload destination record structure
Description of the parameters in the MQWDR - Cluster workload destination record structure.

StrucId (MQCHAR4) - input
The structure identifier for the cluster workload destination record structure.

• The StrucId value is MQWDR_STRUC_ID.
• For the C programming language, the constant MQWDR_STRUC_ID_ARRAY is also defined. It has the

same value as MQWDR_STRUC_ID. It is an array of characters instead of a string.

Version (MQLONG) - input
The structure version number. Version takes one of the following values:
MQWDR_VERSION_1

Version-1 cluster workload destination record.
MQWDR_VERSION_2

Version-2 cluster workload destination record.
MQWDR_CURRENT_VERSION

Current version of cluster workload destination record.

Developing applications reference 1537

StrucLength (MQLONG) - input
The length of MQWDR structure. StrucLength takes one of the following values:
MQWDR_LENGTH_1

Length of version-1 cluster workload destination record.
MQWDR_LENGTH_2

Length of version-2 cluster workload destination record.
MQWDR_CURRENT_LENGTH

Length of current version of cluster workload destination record.
QMgrFlags (MQLONG) - input

Queue manager flags indicating properties of the queue manager that hosts the instance of the
destination queue described by the MQWDR structure. The following flags are defined:
MQQMF_REPOSITORY_Q_MGR

Destination is a full repository queue manager.
MQQMF_CLUSSDR_USER_DEFINED

Cluster-sender channel was defined manually.
MQQMF_CLUSSDR_AUTO_DEFINED

Cluster-sender channel was defined automatically.
MQQMF_AVAILABLE

Destination queue manager is available to receive messages.
Other values

Other flags in the field might be set by the queue manager for internal purposes.
QMgrIdentifier (MQCHAR48) - input

The queue manager identifier is a unique identifier for the queue manager that hosts the instance of
the destination queue described by the MQWDR structure.

• The identifier is generated by the queue manager.
• The length of QMgrIdentifier is MQ_Q_MGR_IDENTIFIER_LENGTH.

QMgrName (MQCHAR48) - input
The name of the queue manager that hosts the instance of the destination queue described by the
MQWDR structure.

• QMgrName can be the name of the local queue manager, as well another queue manager in the
cluster.

• The length of QMgrName is MQ_Q_MGR_NAME_LENGTH.

ClusterRecOffset (MQLONG) - input
The logical offset of the first MQWCR structure that belongs to the MQWDR structure.

• For static caches, ClusterRecOffset is the offset of the first MQWCR structure that belongs to the
MQWDR structure.

• The offset is measured in bytes from the start of the MQWDR structure.
• Do not use the logical offset for pointer arithmetic with dynamic caches. To obtain the address of the

next record, the MQXCLWLN call must be used.

ChannelState (MQLONG) - input
The state of the channel that links the local queue manager to the queue manager identified by the
MQWDR structure. The following values are possible:
MQCHS_BINDING

Channel is negotiating with the partner.
MQCHS_INACTIVE

Channel is not active.
MQCHS_INITIALIZING

Channel is initializing.

1538 IBM MQ Developing Applications Reference

MQCHS_PAUSED
Channel has paused.

MQCHS_REQUESTING
Requester channel is requesting connection.

MQCHS_RETRYING
Channel is reattempting to establish connection.

MQCHS_RUNNING
Channel is transferring or waiting for messages.

MQCHS_STARTING
Channel is waiting to become active.

MQCHS_STOPPING
Channel is stopping.

MQCHS_STOPPED
Channel has stopped.

ChannelDefOffset (MQLONG) - input
The logical offset of the channel definition (MQCD) for the channel that links the local queue manager
to the queue manager identified by the MQWDR structure.

• ChannelDefOffset is like ClusterRecOffset
• The logical offset cannot be used in pointer arithmetic. To obtain the address of the next record, the
MQXCLWLN call must be used.

DestSeqFactor (MQLONG) - input
The destination sequence factor that allows a choice of the channel based on weight.

• DestSeqFactor is used before the queue manager changes it.
• The workload manager increases DestSeqFactor in a way that ensures messages are distributed

down channels according to their weight.

DestSeqNumber (MQLONG) - input
The cluster channel destination value before the queue manager changes it.

• The workload manager increases DestSeqNumber every time a message is put down that channel.
• Workload exits can use DestSeqNumber to decide which channel to put a message down.

Related reference
Initial values and language declarations for MQWDR
Initial values and C and High Level Assembler Language declarations for MQWDR - Cluster workload
destination record.

Initial values and language declarations for MQWDR
Initial values and C and High Level Assembler Language declarations for MQWDR - Cluster workload
destination record.

Table 831. Initial values of fields in MQWDR

Field name Name of constant Value of constant

StrucId MQWDR_STRUC_ID 'WDR¬'

Version MQWDR_VERSION_1 1

StrucLength MQWDR_CURRENT_LENGTH 3 136

QMgrFlags MQWDR_NONE 0

QMgrIdentifier None ""

QMgrName None ""

Developing applications reference 1539

Table 831. Initial values of fields in MQWDR (continued)

Field name Name of constant Value of constant

ClusterRecOffset None 0

ChannelState None 0

ChannelDefOffset None 0

DestSeqNumber None 0

DestSeqFactor None 0

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQWDR_DEFAULT contains the default values.

Use it in the following way to provide initial values for the fields in the structure:

MQWDR MyWDR = {MQWDR_DEFAULT};

3. The initial values intentionally set the length of the structure to the length of the current version, and
not version 1 of the structure.

High Level Assembler

MQWDR DSECT
MQWDR_STRUCID DS CL4 Structure identifier
MQWDR_VERSION DS F Structure version number
MQWDR_STRUCLENGTH DS F Length of MQWDR structure
MQWDR_QMGRFLAGS DS F Queue manager flags
MQWDR_QMGRIDENTIFIER DS CL48 Queue manager identifier
MQWDR_QMGRNAME DS CL48 Queue manager name
MQWDR_CLUSTERRECOFFSET DS F Offset of first cluster
* record
MQWDR_CHANNELSTATE DS F Channel state
MQWDR_CHANNELDEFOFFSET DS F Offset of channel definition
* structure
MQWDR_LENGTH EQU *-MQWDR Length of structure
 ORG MQWDR
MQWDR_AREA DS CL(MQWDR_LENGTH)

C declaration

typedef struct tagMQWDR {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Length of MQWDR structure */
 MQLONG QMgrFlags; /* Queue managerflags */
 MQCHAR48 QMgrIdentifier; /* Queue manageridentifier */
 MQCHAR48 QMgrName; /* Queue manager name */
 MQLONG ClusterRecOffset; /* Offset of first cluster record */
 MQLONG ChannelState; /* Channel state */
 MQLONG ChannelDefOffset; /* Offset of channel definition structure */
 /* Ver:1 */
 MQLONG DestSeqNumber; /* Cluster channel destination sequence number */
 MQINT64 DestSeqFactor; /* Cluster channel factor sequence number */
 /* Ver:2 */
};

Related reference
Fields in MQWDR - Cluster workload destination record structure

1540 IBM MQ Developing Applications Reference

Description of the parameters in the MQWDR - Cluster workload destination record structure.

MQWQR - Cluster workload queue record structure
The following table summarizes the fields in the MQWQR - Cluster workload queue record structure.

Table 832. Fields in MQWQR

Field Description Page

StrucId Structure identifier StrucId

Version Structure version number Version

StrucLength Length of MQWQR structure StrucLength

QFlags Queue flags QFlags

QName Queue name QName

QMgrIdentifier Queue manager identifier QMgrIdentifier

ClusterRecOffset Offset of first cluster record (MQWCR) ClusterRecOffset

QType Queue type QType

QDesc Queue description QDesc

DefBind Default binding DefBind

DefPersistence Default message persistence DefPersistence

DefPriority Default message priority DefPriority

InhibitPut Whether put operations on the queue are allowed InhibitPut

Note: The remaining fields are ignored if Version is less than MQWQR_VERSION_2.

CWLQueuePriority A value 0 - 9 representing the priority of the queue CLWLQueuePriority

CLWLQueueRank A value 0 - 9 representing the rank of the queue CLWLQueueRank

Note: The remaining fields are ignored if Version is less than MQWQR_VERSION_3.

DefPutResponse Default put response DefPutResponse

The cluster workload queue record structure contains information relating to one of the possible
destinations for the message. There is one cluster workload queue record structure for each instance
of the destination queue.

The cluster workload queue record structure is supported in all environments.

Additionally, the MQWQR1 and MQWQR2 structures are available for backwards compatibility.

Related reference
MQ_CLUSTER_WORKLOAD_EXIT - Call description
The cluster workload exit is called by the queue manager to route a message to an available queue
manager.
MQXCLWLN - Navigate Cluster workload records
The MQXCLWLN call is used to navigate through the chains of MQWDR, MQWQR, and MQWCR records stored in
the cluster cache.
MQWXP - Cluster workload exit parameter structure
The following table summarizes the fields in the MQWXP - Cluster workload exit parameter structure.
MQWDR - Cluster workload destination record structure

Developing applications reference 1541

The following table summarizes the fields in the MQWDR - Cluster workload destination record structure.
MQWCR - Cluster workload cluster record structure
The following table summarizes the fields in the MQWCR cluster workload record structure.

Fields in MQWQR - Cluster workload queue record structure
Description of the fields in the MQWQR - Cluster workload queue record structure.

StrucId (MQCHAR4) - input
The structure identifier for the cluster workload queue record structure.

• The StrucId value is MQWQR_STRUC_ID.
• For the C programming language, the constant MQWQR_STRUC_ID_ARRAY is also defined. It has the

same value as MQWQR_STRUC_ID. It is an array of characters instead of a string.

Version (MQLONG) - input
The structure version number. Version takes one of the following values:
MQWQR_VERSION_1

Version-1 cluster workload queue record.
MQWQR_VERSION_2

Version-2 cluster workload queue record.
MQWQR_VERSION_3

Version-3 cluster workload queue record.
MQWQR_CURRENT_VERSION

Current version of cluster workload queue record.
StrucLength (MQLONG) - input

The length of MQWQR structure. StrucLength takes one of the following values:
MQWQR_LENGTH_1

Length of version-1 cluster workload queue record.
MQWQR_LENGTH_2

Length of version-2 cluster workload queue record.
MQWQR_LENGTH_3

Length of version-3 cluster workload queue record.
MQWQR_CURRENT_LENGTH

Length of current version of cluster workload queue record.
QFlags (MQLONG) - input

The queue flags indicate properties of the queue. The following flags are defined:
MQQF_LOCAL_Q

Destination is a local queue.
MQQF_CLWL_USEQ_ANY

Allow use of local and remote queues in puts.
MQQF_CLWL_USEQ_LOCAL

Allow only local queue puts.
Other values

Other flags in the field might be set by the queue manager for internal purposes.
QName (MQCHAR48) - input

The name of the queue that is one of the possible destinations of the message.

• The length of QName is MQ_Q_NAME_LENGTH.

QMgrIdentifier (MQCHAR48) - input
The queue manager identifier is a unique identifier for the queue manager that hosts the instance of
the queue described by the MQWQR structure.

• The identifier is generated by the queue manager.

1542 IBM MQ Developing Applications Reference

• The length of QMgrIdentifier is MQ_Q_MGR_IDENTIFIER_LENGTH.

ClusterRecOffset (MQLONG) - input
The logical offset of the first MQWCR structure that belongs to the MQWQR structure.

• For static caches, ClusterRecOffset is the offset of the first MQWCR structure that belongs to the
MQWQR structure.

• The offset is measured in bytes from the start of the MQWQR structure.
• Do not use the logical offset for pointer arithmetic with dynamic caches. To obtain the address of the

next record, the MQXCLWLN call must be used.

QType (MQLONG) - input
The queue type of the destination queue. The following values are possible:
MQCQT_LOCAL_Q

Local queue.
MQCQT_ALIAS_Q

Alias queue.
MQCQT_REMOTE_ Q

Remote queue.
MQCQT_Q_MGR_ALIAS

Queue manager alias.
QDesc (MQCHAR64) - input

The queue description queue attribute defined on the queue manager that hosts the instance of the
destination queue described by the MQWQR structure.

• The length of QDesc is MQ_Q_DESC_LENGTH.

DefBind (MQLONG) - input
The default binding queue attribute defined on the queue manager that hosts the instance
of the destination queue described by the MQWQR structure. Either MQBND_BIND_ON_OPEN or
MQBND_BIND_ON_GROUP must be specified when using groups with clusters. The following values
are possible:
MQBND_BIND_ON_OPEN

Binding fixed by MQOPEN call.
MQBND_BIND_NOT_FIXED

Binding not fixed.
MQBND_BIND_ON_GROUP

Allows an application to request that a group of messages are all allocated to the same
destination instance.

DefPersistence (MQLONG) - input
The default message persistence queue attribute defined on the queue manager that hosts the
instance of the destination queue described by the MQWQR structure. The following values are
possible:
MQPER_PERSISTENT

Message is persistent.
MQPER_NOT_PERSISTENT

Message is not persistent.
DefPriority (MQLONG) - input

The default message priority queue attribute defined on the queue manager that hosts the instance of
the destination queue described by the MQWQR structure. The priority range is 0 - MaxPriority.

• 0 is the lowest priority.
• MaxPriority is the queue manager attribute of the queue manager that hosts this instance of the

destination queue.

Developing applications reference 1543

InhibitPut (MQLONG) - input
The put inhibited queue attribute defined on the queue manager that hosts the instance of the
destination queue described by the MQWQR structure. The following values are possible:
MQQA_PUT_INHIBITED

Put operations are inhibited.
MQQA_PUT_ALLOWED

Put operations are allowed.
CLWLQueuePriority (MQLONG) - input

The cluster workload queue priority attribute defined on the queue manager that hosts the instance of
the destination queue described by the MQWQR structure.

CLWLQueueRank (MQLONG) - input
The cluster workload queue rank defined on the queue manager that hosts the instance of the
destination queue described by the MQWQR structure.

DefPutResponse (MQLONG) - input
The default put response queue attribute defined on the queue manager that hosts the instance of the
destination queue described by the MQWQR structure. The following values are possible:
MQPRT_SYNC_RESPONSE

Synchronous response to MQPUT or MQPUT1 calls.
MQPRT_ASYNC_RESPONSE

Asynchronous response to MQPUT or MQPUT1 calls.
Related reference
Initial values and language declarations for MQWQR
Initial values and C and High Level Assembler Language declarations for MQWQR - Cluster workload queue
record.

Initial values and language declarations for MQWQR
Initial values and C and High Level Assembler Language declarations for MQWQR - Cluster workload queue
record.

Table 833. Initial values of fields in MQWQR

Field name Name of constant Value of constant

StrucId MQWQR_STRUC_ID_ARRAY 'WQR¬'

Version MQWQR_VERSION_1 1

StrucLength MQWQR_CURRENT_LENGTH 3 212

QFlags None 0

QName None ""

QMgrIdentifier None ""

ClusterRecOffset None 0

QType None 0

QDesc None ""

DefBind None 0

DefPersistence None 0

DefPriority None 0

InhibitPut None 0

CLWLQueuePriority None 0

1544 IBM MQ Developing Applications Reference

Table 833. Initial values of fields in MQWQR (continued)

Field name Name of constant Value of constant

CLWLQueueRank None 0

DefPutResponse None 1

Notes:

1. The symbol ¬ represents a single blank character.
2. In the C programming language, the macro variable MQWQR_DEFAULT contains the default values.

Use it in the following way to provide initial values for the fields in the structure:

MQWQR MyWQR = {MQWQR_DEFAULT};

3. The initial values intentionally set the length of the structure to the length of the current version, and
not version 1 of the structure.

C declaration

typedef struct tagMQWQR {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Length of MQWQR structure */
 MQLONG QFlags; /* Queue flags */
 MQCHAR48 QName; /* Queue name */
 MQCHAR48 QMgrIdentifier; /* Queue manageridentifier */
 MQLONG ClusterRecOffset; /* Offset of first cluster record */
 MQLONG QType; /* Queue type */
 MQCHAR64 QDesc; /* Queue description */
 MQLONG DefBind; /* Default binding */
 MQLONG DefPersistence; /* Default message persistence */
 MQLONG DefPriority; /* Default message priority */
 MQLONG InhibitPut; /* Whether put operations on the queue
 are allowed */
 /* version 2 */
 MQLONG CLWLQueuePriority; /* Queue priority */
 MQLONG CLWLQueueRank; /* Queue rank */
 /* version 3 */
 MQLONG DefPutResponse; /* Default put response */
};

High Level Assembler

MQWQR DSECT
MQWQR_STRUCID DS CL4 Structure identifier
MQWQR_VERSION DS F Structure version number
MQWQR_STRUCLENGTH DS F Length of MQWQR structure
MQWQR_QFLAGS DS F Queue flags
MQWQR_QNAME DS CL48 Queue name
MQWQR_QMGRIDENTIFIER DS CL48 Queue manager identifier
MQWQR_CLUSTERRECOFFSET DS F Offset of first cluster
* record
MQWQR_QTYPE DS F Queue type
MQWQR_QDESC DS CL64 Queue description
MQWQR_DEFBIND DS F Default binding
MQWQR_DEFPERSISTENCE DS F Default message persistence
MQWQR_DEFPRIORITY DS F Default message priority
MQWQR_INHIBITPUT DS F Whether put operations on
* the queue are allowed
MQWQR_DEFPUTRESPONSE DS F Default put response
MQWQR_LENGTH EQU *-MQWQR Length of structure
 ORG MQWQR
MQWQR_AREA DS CL(MQWQR_LENGTH)

Developing applications reference 1545

Related reference
Fields in MQWQR - Cluster workload queue record structure
Description of the fields in the MQWQR - Cluster workload queue record structure.

MQWCR - Cluster workload cluster record structure
The following table summarizes the fields in the MQWCR cluster workload record structure.

Table 834. Fields in MQWCR

Field Description Page

ClusterName Name of cluster ClusterName

ClusterRecOffset Offset of next cluster record (MQWCR) ClusterRecOffset

ClusterFlags Cluster flags ClusterFlags

The cluster workload cluster record structure contains information about a cluster. For each cluster the
destination queue belongs to, there is one cluster workload cluster record structure.

The cluster workload cluster record structure is supported in all environments.

Related reference
MQ_CLUSTER_WORKLOAD_EXIT - Call description
The cluster workload exit is called by the queue manager to route a message to an available queue
manager.
MQXCLWLN - Navigate Cluster workload records
The MQXCLWLN call is used to navigate through the chains of MQWDR, MQWQR, and MQWCR records stored in
the cluster cache.
MQWXP - Cluster workload exit parameter structure
The following table summarizes the fields in the MQWXP - Cluster workload exit parameter structure.
MQWDR - Cluster workload destination record structure
The following table summarizes the fields in the MQWDR - Cluster workload destination record structure.
MQWQR - Cluster workload queue record structure
The following table summarizes the fields in the MQWQR - Cluster workload queue record structure.

Fields in the MQWCR - Cluster workload cluster record structure.
Description of the fields in the MQWCR - Cluster workload cluster record structure.

ClusterName (MQCHAR48) - input
The name of a cluster to which the instance of the destination queue that owns the MQWCR structure
belongs. The destination queue instance is described by an MQWDR structure.

• The length of ClusterName is MQ_CLUSTER_NAME_LENGTH.

ClusterRecOffset (MQLONG) - input
The logical offset of the next MQWCR structure.

• If there are no more MQWCR structures, ClusterRecOffset is zero.
• The offset is measured in bytes from the start of the MQWCR structure.

ClusterFlags (MQLONG) - input
The cluster flags indicate properties of the queue manager identified by the MQWCR structure. The
following flags are defined:
MQQMF_REPOSITORY_Q_MGR

Destination is a full repository queue manager.
MQQMF_CLUSSDR_USER_DEFINED

Cluster-sender channel was defined manually.

1546 IBM MQ Developing Applications Reference

MQQMF_CLUSSDR_AUTO_DEFINED
Cluster-sender channel was defined automatically.

MQQMF_AVAILABLE
Destination queue manager is available to receive messages.

Other values
Other flags in the field might be set by the queue manager for internal purposes.

Related reference
Initial values and language declarations for MQWCR
Initial values and C and High Level Assembler Language declarations for MQWCR - Cluster workload cluster
record structure.

Initial values and language declarations for MQWCR
Initial values and C and High Level Assembler Language declarations for MQWCR - Cluster workload cluster
record structure.

Table 835. Initial values of fields in MQWCR

Field name Name of constant Value of constant

ClusterName None ""

ClusterRecOffset None 0

ClusterFlags None 0

C declaration

typedef struct tagMQWCR {
 MQCHAR48 ClusterName; /* Cluster name */
 MQLONG ClusterRecOffset; /* Offset of next cluster record */
 MQLONG ClusterFlags; /* Cluster flags */
};

High Level Assembler

MQWCR DSECT
MQWCR_CLUSTERNAME DS CL48 Cluster name
MQWCR_CLUSTERRECOFFSET DS F Offset of next cluster
* record
MQWCR_CLUSTERFLAGS DS F Cluster flags
MQWCR_LENGTH EQU *-MQWCR Length of structure
 ORG MQWCR
MQWCR_AREA DS CL(MQWCR_LENGTH)

Related reference
Fields in the MQWCR - Cluster workload cluster record structure.
Description of the fields in the MQWCR - Cluster workload cluster record structure.

API exit reference
This section provides reference information mainly of interest to a programmer writing API exits.

General usage notes
notes:

1. All exit functions can issue the MQXEP call; this call is designed specifically for use from API exit
functions.

2. The MQ_INIT_EXIT function cannot issue any MQ calls other than MQXEP.

Developing applications reference 1547

3. You cannot issue the MQDISC call for the current connection.
4. If an exit function issues the MQCONN call, or the MQCONNX call with

the MQCNO_HANDLE_SHARE_NONE option, the call completes with reason code
MQRC_ALREADY_CONNECTED, and the handle returned is the same as the one passed to the exit
as a parameter.

5. In general when an API exit function issues an MQI call, API exits are not be called recursively.
However, if an exit function issues the MQCONNX call with the MQCNO_HANDLE_SHARE_BLOCK or
MQCNO_HANDLE_SHARE_NO_BLOCK options, the call returns a new shared handle. This provides
the exit suite with a connection handle of its own, and hence a unit of work that is independent of the
application's unit of work. The exit suite can use this handle to put and get messages within its own
unit of work, and commit or back out that unit of work; all of this can be done without affecting the
application's unit of work in any way.

Because the exit function is using a connection handle that is different from the handle being used
by the application, MQ calls issued by the exit function result in the relevant API exit functions being
invoked. Exit functions can therefore be invoked recursively. Note that both the ExitUserArea field
in MQAXP and the exit chain area have connection-handle scope. Consequently, an exit function
cannot use those areas to signal to another instance of itself invoked recursively that it is already
active.

6. Exit functions can also put and get messages within the application's unit of work. When the
application commits or backs out the unit of work, all messages within the unit of work are committed
or backed out together, regardless of who placed them in the unit of work (application or exit
function). However, the exit can cause the application to exceed system limits sooner than would
otherwise be the case (for example, by exceeding the maximum number of uncommitted messages in
a unit of work).

When an exit function uses the application's unit of work in this way, the exit function should usually
avoid issuing the MQCMIT call, as this commits the application's unit of work and might impair the
correct functioning of the application. However, the exit function might sometimes need to issue the
MQBACK call, if the exit function encounters a serious error that prevents the unit of work being
committed (for example, an error putting a message as part of the application's unit of work). When
MQBACK is called, take care to ensure that the application unit of work boundaries are not changed.
In this situation the exit function must set the appropriate values to ensure that completion code
MQCC_WARNING and reason code MQRC_BACKED_OUT are returned to the application, so that the
application can detect the fact that the unit of work has been backed out.

If an exit function uses the application's connection handle to issue MQ calls, those calls do not
themselves result in further invocations of API exit functions.

7. If an MQXR_BEFORE exit function terminates abnormally, the queue manager might be able to
recover from the failure. If it can, the queue manager continues processing as though the exit
function had returned MQXCC_FAILED. If the queue manager cannot recover, the application is
terminated.

8. If an MQXR_AFTER exit function terminates abnormally, the queue manager might be able to recover
from the failure. If it can, the queue manager continues processing as though the exit function had
returned MQXCC_FAILED. If the queue manager cannot recover, the application is terminated. Be
aware that in the latter case, messages retrieved outside a unit of work are lost (this is the same
situation as the application failing immediately after removing a message from the queue).

9. The MCA process performs a two phase commit.

If an API exit intercepts an MQCMIT from a prepared MCA process and attempts to perform an action
within the unit of work, then the action will fail with reason code MQRC_UOW_NOT_AVAILABLE.

10. For a multi-installation environment, the only way to have an exit that works with both IBM
WebSphere MQ 7.0 and IBM WebSphere MQ 7.1 is to write the exit in a way that links at IBM
WebSphere MQ 7.0 with mqm.Lib and, for non-primary or relocated exits, to ensure that the
application finds the correct mqm.Lib for the installation with which the queue manager is currently
associated, prior to the application launch. (For example, run the setmqenv -m QM command

1548 IBM MQ Developing Applications Reference

before launching the application, even if the queue manager is owned by an IBM WebSphere MQ 7.0
installation.)

11. Where multiple installations of IBM MQ are available, use the exits written for an earlier version of
IBM MQ, as new functionality added in the later version might not work with earlier versions. For
more information about changes between releases, see What's changed in IBM MQ 8.0.

IBM MQ API exit parameter structure (MQAXP)
The MQAXP structure, an external control block, is used as an input or output parameter to the API exit.
This topic also gives information about how queue managers process exit functions.

MQAXP has the following C declaration:

typedef struct tagMQAXP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG ExitId; /* Exit Identifier */
 MQLONG ExitReason; /* Exit invocation reason */
 MQLONG ExitResponse; /* Response code from exit */
 MQLONG ExitResponse2; /* Secondary response code from exit */
 MQLONG Feedback; /* Feedback code from exit */
 MQLONG APICallerType; /* MQSeries API caller type */
 MQBYTE16 ExitUserArea; /* User area for use by exit */
 MQCHAR32 ExitData; /* Exit data area */
 MQCHAR48 ExitInfoName; /* Exit information name */
 MQBYTE48 ExitPDArea; /* Problem determination area */
 MQCHAR48 QMgrName; /* Name of local queue manager */
 PMQACH ExitChainAreaPtr; /* Inter exit communication area */
 MQHCONFIG Hconfig; /* Configuration handle */
 MQLONG Function; /* Function Identifier */
 /* Ver:1 */
 MQHMSG ExitMsgHandle /* Exit message handle
 /* Ver:2 */
};

The following parameter list is passed when functions in an API exit are invoked:
StrucId (MQCHAR4) - input

The exit parameter structure identifier, with a value of:

MQAXP_STRUC_ID.

The exit handler sets this field on entry to each exit function.
Version (MQLONG) - input

The structure version number, with a value of:
MQAXP_VERSION_1

Version 1 API exit parameter structure.
MQAXP_VERSION_2

Version 2 API exit parameter structure.
MQAXP_CURRENT_VERSION

Current version number for the API exit parameter structure.
The exit handler sets this field on entry to each exit function.

ExitId (MQLONG) - input
The exit identifier, set on entry to the exit routine, indicating the type of exit:

MQXT_API_EXIT
API exit.

ExitReason (MQLONG) - input
The reason for invoking the exit, set on entry to each exit function:

Developing applications reference 1549

MQXR_CONNECTION
The exit is being invoked to initialize itself before an MQCONN or MQCONNX call, or to end itself
after an MQDISC call.

MQXR_BEFORE
The exit is being invoked before executing an API call, or before converting data on an MQGET.

MQXR_AFTER
The exit is being invoked after executing an API call.

ExitResponse (MQLONG) - output
The response from the exit, initialized on entry to each exit function to:
MQXCC_OK

Continue normally.

This field must be set by the exit function, to communicate to the queue manager the result of
executing the exit function. The value must be one of the following:
MQXCC_OK

The exit function completed successfully. Continue normally.

This value can be set by all MQXR_* exit functions. ExitResponse2 is used to decide whether to
invoke exit functions later in the chain.

MQXCC_FAILED
The exit function failed because of an error.

This value can be set by all MQXR_* exit functions. The queue manager sets CompCode to
MQCC_FAILED, and Reason to:

• MQRC_API_EXIT_INIT_ERROR if the function is MQ_INIT_EXIT
• MQRC_API_EXIT_TERM_ERROR if the function is MQ_TERM_EXIT
• MQRC_API_EXIT_ERROR for all other exit functions

The values set can be altered by an exit function later in the chain.

ExitResponse2 is ignored; the queue manager continues processing as though
MQXR2_SUPPRESS_CHAIN had been returned.

MQXCC_SUPPRESS_FUNCTION
Suppress IBM MQ API function.

This value can be set only by an MQXR_BEFORE exit function. It bypasses the API call. If it is
returned by the MQ_DATA_CONV_ON_GET_EXIT, data conversion is bypassed. The queue manager
sets CompCode to MQCC_FAILED, and Reason to MQRC_SUPPRESSED_BY_EXIT, but the values
set can be altered by an exit function later in the chain. Other parameters for the call remain as the
exit left them. ExitResponse2 is used to decide whether to invoke exit functions later in the chain.

If this value is set by an MQXR_AFTER or MQXR_CONNECTION exit function, the queue manager
continues processing as though MQXCC_FAILED had been returned.

MQXCC_SKIP_FUNCTION
Skip IBM MQ API function.

This value can be set only by an MQXR_BEFORE exit function. It bypasses the API call. If it is
returned by the MQ_DATA_CONV_ON_GET_EXIT, data conversion is bypassed. The exit function
must set CompCode and Reason to the values to be returned to the application, but the values set
can be altered by an exit function later in the chain. Other parameters for the call remain as the
exit left them. ExitResponse2 is used to decide whether to invoke exit functions later in the chain.

If this value is set by an MQXR_AFTER or MQXR_CONNECTION exit function, the queue manager
continues processing as though MQXCC_FAILED had been returned.

MQXCC_SUPPRESS_EXIT
Suppress all exit functions belonging to the set of exits.

1550 IBM MQ Developing Applications Reference

This value can be set only by the MQXR_BEFORE and MQXR_AFTER exit functions. It bypasses all
subsequent invocations of exit functions belonging to this set of exits for this logical connection.
This bypassing continues until the logical disconnect request occurs, when MQ_TERM_EXIT
function is invoked with an ExitReason of MQXR_CONNECTION.

The exit function must set CompCode and Reason to the values to be returned to the application,
but the values set can be altered by an exit function later in the chain. Other parameters for the
call remain as the exit left them. ExitResponse2 is ignored.

If this value is set by an MQXR_CONNECTION exit function, the queue manager continues
processing as though MQXCC_FAILED had been returned.

For information about the interaction between ExitResponse and ExitResponse2, and its effect on exit
processing, see “How queue managers process exit functions” on page 1553.

ExitResponse2 (MQLONG) - output
This is a secondary exit response code that qualifies the primary exit response code for
MQXR_BEFORE exit functions. It is initialized to:

MQXR2_DEFAULT_CONTINUATION

on entry to an IBM MQ API call exit function. It can then be set to one of the values:
MQXR2_DEFAULT_CONTINUATION

Whether to continue with the next exit in the chain, depending on the value of ExitResponse.

If ExitResponse is MQXCC_SUPPRESS_FUNCTION or MQXCC_SKIP_FUNCTION, bypass exit
functions later in the MQXR_BEFORE chain and the matching exit functions in the MQXR_AFTER
chain. Invoke exit functions in the MQXR_AFTER chain that match exit functions earlier in the
MQXR_BEFORE chain.

Otherwise, invoke the next exit in the chain.

MQXR2_SUPPRESS_CHAIN
Suppress the chain.

Bypass exit functions later in the MQXR_BEFORE chain and the matching exit functions in the
MQXR_AFTER chain for this API call invocation. Invoke exit functions in the MQXR_AFTER chain
that match exit functions earlier in the MQXR_BEFORE chain.

MQXR2_CONTINUE_CHAIN
Continue with the next exit in the chain.

For information about the interaction between ExitResponse and ExitResponse2, and its effect on exit
processing, see “How queue managers process exit functions” on page 1553.

Feedback (MQLONG) - input/output
Communicate feedback codes between exit function invocations. This is initialized to:

MQFB_NONE (0)

before invoking the first function of the first exit in a chain.

Exits can set this field to any value, including any valid MQFB_* or MQRC_* value. Exits can also set
this field to a user-defined feedback value in the range MQFB_APPL_FIRST to MQFB_APPL_LAST.

APICallerType (MQLONG) - input
The API caller type, indicating whether the IBM MQ API caller is external or internal to the queue
manager: MQXACT_EXTERNAL or MQXACT_INTERNAL.

ExitUserArea (MQBYTE16) - input/output
A user area, available to all the exits associated with a particular ExitInfoObject. It is initialized to
MQXUA_NONE (binary zeros for the length of the ExitUserArea) before invoking the first exit function
(MQ_INIT_EXIT) for the hconn. From then on, any changes made to this field by an exit function are
preserved across invocations of functions of the same exit.

Developing applications reference 1551

This field is aligned to a multiple of 4 MQLONGs.

Exits can also anchor any storage that they allocate from this area.

For each hconn, each exit in a chain of exits has a different ExitUserArea. The ExitUserArea cannot
be shared by exits in a chain, and the contents of the ExitUserArea for one exit are not available to
another exit in a chain.

For C programs, the constant MQXUA_NONE_ARRAY is also defined with the same value as
MQXUA_NONE, but as an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH.

ExitData (MQCHAR32) - input
Exit data, set on input to each exit function to the 32 characters of exit-specific data that is provided in
the exit. If you define no value in the exit this field is all blanks.

The length of this field is given by MQ_EXIT_DATA_LENGTH.

ExitInfoName (MQCHAR48) - input
The exit information name, set on input to each exit function to the ApiExit_name specified in the exit
definitions in the stanzas.

ExitPDArea (MQBYTE48) - input/output
A problem determination area, initialized to MQXPDA_NONE (binary zeros for the length of the field) for
each invocation of an exit function.

For C programs, the constant MQXPDA_NONE_ARRAY is also defined with the same value as
MQXPDA_NONE, but as an array of characters instead of a string.

The exit handler always writes this area to the IBM MQ trace at the end of an exit, even when the
function is successful.

The length of this field is given by MQ_EXIT_PD_AREA_LENGTH.

QMgrName (MQCHAR48) - input
The name of the queue manager the application is connected to, that has invoked an exit as a result of
processing an IBM MQ API call.

If the name of a queue manager supplied on an MQCONN or MQCONNX calls is blank, this field is still
set to the name of the queue manager to which the application is connected, whether the application
is server or client.

The exit handler sets this field on entry to each exit function.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH.

ExitChainAreaPtr (PMQACH) - input/output
This is used to communicate data across invocations of different exits in a chain. It is set to a NULL
pointer before invoking the first function (MQ_INIT_EXIT with ExitReason MQXR_CONNECTION) of the
first exit in a chain of exits. The value returned by the exit on one invocation is passed on to the next
invocation.

Refer to “The exit chain area and exit chain area header (MQACH)” on page 1556 for more details
about how to use the exit chain area.

Hconfig (MQHCONFIG) - input
The configuration handle, representing the set of functions being initialized. This value is generated by
the queue manager on the MQ_INIT_EXIT function, and is later passed to the API exit function. It is
set on entry to each exit function.

You can use Hconfig as a pointer to the MQIEP structure to make MQI and DCI calls. You must check
that the first 4 bytes of HConfig match the StrucId of the MQIEP structure before using the HConfig
parameter as a pointer to the MQIEP structure.

Function (MQLONG) - input
The function identifier, valid values for which are the MQXF_* constants described in “External
constants” on page 1558.

1552 IBM MQ Developing Applications Reference

The exit handler sets this field to the correct value, on entry to each exit function, depending on the
IBM MQ API call that resulted in the exit being invoked.

ExitMsgHandle (MQHMSG) - input/output
When Function is MQXF_GET and ExitReason is MQXR_AFTER, a valid message handle is returned
in this field allowing the API exit access to the message descriptor fields and any other properties
matching the ExitProperties string specified in the MQXEPO structure when registering the API exit.

Any non-message descriptor properties that are returned in the ExitMsgHandle will not be available
from the MsgHandle in the MQGMO structure if one was specified, or in the message data.

When Function is MQXF_GET and ExitReason is MQXR_BEFORE, if the exit program sets this field to
MQHM_NONE then it will suppress the populating of the ExitMsgHandle properties.

This field is not set if Version is less then MQAXP_VERSION_2.

How queue managers process exit functions
The processing performed by the queue manager on return from an exit function depends on both
ExitResponse and ExitResponse2.

Table 836 on page 1553 summarizes the possible combinations and their effects for an MQXR_BEFORE
exit function, showing:

• Who sets the CompCode and Reason parameters of the API call
• Whether the remaining exit functions in the MQXR_BEFORE chain and the matching exit functions in the

MQXR_AFTER chain are invoked
• Whether the API call is invoked

For an MQXR_AFTER exit function:

• CompCode and Reason are set in the same way as MQXR_BEFORE
• ExitResponse2 is ignored (the remaining exit functions in the MQXR_AFTER chain are always invoked)
• MQXCC_SUPPRESS_FUNCTION and MQXCC_SKIP_FUNCTION are not valid

For an MQXR_CONNECTION exit function:

• CompCode and Reason are set in the same way as MQXR_BEFORE
• ExitResponse2 is ignored
• MQXCC_SUPPRESS_FUNCTION, MQXCC_SKIP_FUNCTION, MQXCC_SUPPRESS_EXIT are not valid

In all cases, where an exit or the queue manager sets CompCode and Reason, the values set can be
changed by an exit invoked later, or by the API call (if the API call is invoked later).

Table 836. MQXR_BEFORE exit processing

Value of ExitResponse
CompCode and
Reason set by

Value of
ExitResponse2
(default
continuation) Chain

Value of
ExitResponse2
(default
continuation) API

MQXCC_OK exit Y Y

MQXCC_SUPPRESS_EXIT exit Y Y

MQXCC_SUPPRESS_FUNCTION queue manager N N

MQXCC_SKIP FUNCTION exit N N

MQXCC_FAILED queue manager N N

Developing applications reference 1553

How clients process exit functions
In general, clients process exit functions in the same way that server applications do, and the QMgrName
attribute in this structure applies whether the function is on a server or a client.

However, the client has no concept of the mqs.ini file, so the ApiExitCommon and APIExitTemplate stanzas
do not apply. Only the ApiExitLocal stanza applies, and this stanza is configured in the mqclient.ini file.

IBM MQ API exit context structure (MQAXC)
The MQAXC structure, an external control block, is used as an input parameter to an API exit.

MQAXC has the following C declaration:

typedef struct tagMQAXC {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG Environment; /* Environment */
 MQCHAR12 UserId; /* UserId associated with appl */
 MQBYTE40 SecurityId /* Extension to UserId running appl */
 MQCHAR264 ConnectionName; /* Connection name */
 MQLONG LongMCAUserIdLength; /* long MCA user identifier length */
 MQLONG LongRemoteUserIdLength; /* long remote user identifier length */
 MQPTR LongMCAUserIdPtr; /* long MCA user identifier address */
 MQPTR LongRemoteUserIdPtr; /* long remote user identifier address */
 MQCHAR28 ApplName; /* Application name */
 MQLONG ApplType; /* Application type */
 MQPID ProcessId; /* Process identifier */
 MQTID ThreadId; /* Thread identifier */

 /* Ver:1 */
 MQCHAR ChannelName[20] /* Channel Name */
 MQBYTE4 Reserved1; /* Reserved */
 PMQCD pChannelDefinition; /* Channel Definition pointer */
 };

The parameters to MQAXC are:
StrucId (MQCHAR4) - input

The exit context structure identifier, with a value of MQAXC_STRUC_ID. For C programs, the constant
MQAXC_STRUC_ID_ARRAY is also defined, with the same value as MQAXC_STRUC_ID, but as an array
of characters instead of a string.

The exit handler sets this field on entry to each exit function.

Version (MQLONG) - input
The structure version number, with a value of:
MQAXC_VERSION_2

Version number for the exit context structure.
MQAXC_CURRENT_VERSION

Current version number for the exit context structure.
The exit handler sets this field on entry to each exit function.

Environment (MQLONG) - input
The environment from which an IBM MQ API call was issued that resulted in an exit function being
driven. Valid values for this field are:
MQXE_OTHER

This value is consistent with invocations an API exit sees if the exit is called from a server
application. This means that an API exit runs unchanged on a client and does not see anything
different.

If the exit really needs to determine whether it is running on the client, the exit can do so by
looking at the ChannelName and ChannelDefinition fields.

MQXE_MCA
Message channel agent

1554 IBM MQ Developing Applications Reference

MQXE_MCA_SVRCONN
A message channel agent acting on behalf of a client

MQXE_COMMAND_SERVER
The command server

MQXE_MQSC
The runmqsc command interpreter

The exit handler sets this field on entry to each exit function.
UserId (MQCHAR12) - input

The user ID associated with the application. In particular, in the case of client connections, this field
contains the user ID of the adopted user as opposed to the user ID under which the channel code is
running. If a blank user ID flows from the client, then no change is made to the user ID already being
used. That is, no new user ID is adopted.

The exit handler sets this field on entry to each exit function. The length of this field is given by
MQ_USER_ID_LENGTH.

In the case of a client, this is the user ID sent from the client to the server. Note, that this might not be
the effective user ID the client is running against in the queue manager, as there could be an MCAUser
or CHLAUTH configuration which changes the user ID.

SecurityId (MQBYTE40) - input
An extension to the user ID running the application. Its length is given by MQ_SECURITY_ID_LENGTH.

In the case of a client, this is the user ID sent from the client to the server. Note, that this might not be
the effective user ID the client is running against in the queue manager, as there could be an MCAUser
or CHLAUTH configuration which changes the user ID.

ConnectionName (MQCHAR264) - input
The connection name field, set to the address of the client. For example, for TCP/IP, it would be the
client IP address.

The length of this field is given by MQ_CONN_NAME_LENGTH.

In the case of a client, this is the partner address of the queue manager.

LongMCAUserIdLength (MQLONG) - input
The length of the long MCA user identifier.

When MCA connects to the queue manager this field is set to the length of the long MCA user identifier
(or zero if there is no such identifier).

In the case of a client, this is the client long user identifier.

LongRemoteUserIdLength (MQLONG) - input
The length of the long remote user identifier.

When MCA connects to the queue manager this field is set to the length of the long remote user
identifier. Otherwise this field will be set to zero

In the case of a client, set this field to zero.

LongMCAUserIdPtr (MQPTR) - input
Address of long MCA user identifier.

When MCA connects to the queue manager this field is set to the address of the long MCA user
identifier (or to a null pointer if there is no such identifier).

In the case of a client, this is the client long user identifier.

LongRemoteUserIdPtr (MQPTR) - input
The address of the long remote user identifier.

When MCA connects to the queue manager this field is set to the address of the long remote user
identifier (or to a null pointer if there is no such identifier).

In the case of a client, set this field to zero.

Developing applications reference 1555

ApplName (MQCHAR28) - input
The name of the application or component that issued the IBM MQ API call.

The rules for generating the ApplName are the same as for generating the default name for an MQPUT.

The value of this field is found by querying the operating system for the program name. Its length is
given by MQ_APPL_NAME_LENGTH.

ApplType (MQLONG) - input
The type of application or component that issued the IBM MQ API call.

The value is MQAT_DEFAULT for the platform on which the application is compiled, or it equates to
one of the defined MQAT_* values.

The exit handler sets this field on entry to each exit function.

ProcessId (MQPID) - input
The operating system process identifier.

Where applicable, the exit handler sets this field on entry to each exit function.

ThreadId (MQTID) - input
The MQ thread identifier. This is the same identifier used in MQ trace and FFST dumps, but might be
different from the operating system thread identifier.

Where applicable, the exit handler sets this field on entry to each exit function.

ChannelName (MQCHAR) - input
The name of the channel, padded with blanks, if applicable and known.

If not applicable, this field is set to NULL characters.

Reserved1 (MQBYTE4) - input
This field is reserved.

ChanneDefinition (PMQCD) - input
A pointer to the channel definition being used, if applicable and known.

If not applicable, this field is set to NULL characters.

Note that the pointer is only completed if the connection is processing on behalf of an IBM MQ
channel and that channel definition has been read.

In particular, the channel definition is not given on the server when the first MQCONN call is made for
the channel. Furthermore, if the pointer is filled, the structure (and any sub structures) pointed to by
the pointer must be treated as read only; any updating of the structure would lead to unpredictable
results and is not supported.

In the case of a client, fields other than those with a value specified for a client, contain values that are
appropriate for a client application.

The exit chain area and exit chain area header (MQACH)
If required, an exit function can acquire storage for an exit chain area and set the ExitChainAreaPtr in
MQAXP to point to this storage.

Exits (either the same or different exit functions) can acquire multiple exit chain areas and link them
together. Exit chain areas must only be added or removed from this list while called from the exit handler.
This ensures that there are no serialization issues caused by different threads adding or removing areas
from the list at the same time.

An exit chain area must start with an MQACH header structure, the C declaration for which is:

typedef struct tagMQACH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Length of the MQACH structure */
 MQLONG ChainAreaLength; /* Exit chain area length */

1556 IBM MQ Developing Applications Reference

 MQCHAR48 ExitInfoName /* Exit information name */
 PMQACH NextChainAreaPtr; /* Pointer to next exit chain area */
 };

The fields in the exit chain area header are:
StrucId (MQCHAR4) - input

The exit chain area structure identifier, with an initial value, defined by MQACH_DEFAULT, of
MQACH_STRUC_ID.

For C programs, the constant MQACH_STRUC_ID_ARRAY is also defined; this has the same value as
MQACH_STRUC_ID, but as an array of characters instead of a string.

Version (MQLONG) - input
The structure version number, as follows:
MQACH_VERSION_1

The version number for the exit parameter structure.
MQACH_CURRENT_VERSION

The current version number for the exit context structure.

The initial value of this field, defined by MQACH_DEFAULT, is MQACH_CURRENT_VERSION.

Note: If you introduce a new version of this structure, the layout of the existing part does not change.
Exit functions must check that the version number is equal to or greater than the lowest version
containing the fields that the exit function needs to use.

StrucLength (MQLONG) - input
The length of the MQACH structure. Exits can use this field to determine the start of the exit data,
setting it to the length of the structure created by the exit.

The initial value of this field, defined by MQACH_DEFAULT, is MQACH_CURRENT_LENGTH.

ChainAreaLength (MQLONG) - input
The exit chain area length, set to the overall length of the current exit chain area, including the MQACH
header.

The initial value of this field, defined by MQACH_DEFAULT, is zero.

ExitInfoName (MQCHAR48) - input
The exit information name.

When an exit creates an MQACH structure, it must initialize this field with its own ExitInfoName,
so that later this MQACH structure can be found by either another instance of this exit, or by a
cooperating exit.

The initial value of this field, defined by MQACH_DEFAULT, is a zero length string ({""}).

NextChainAreaPtr (PMQACH) - input
A pointer to the next exit chain area with an initial value, defined by MQACH_DEFAULT, of null pointer
(NULL).

Exit functions must release the storage for any exit chain areas that they acquire, and manipulate the
chain pointers to remove their exit chain areas from the list.

An exit chain area can be constructed as follows:

MQAXP.ExitChainAreaPtr ───┬

 ┌───────────────────────┘

 └──→ ┌─────┬───┬────┬─────┬──┬
 │ ACH │ 1 │ 80 │ ──┬ │ First exit's chain area │
 └─────┴───┴────┴───│─┴──┘

 ┌───────────────────────┘

 └──→ ┌─────┬───┬────┬─────┬───────────────────────────┬
 │ ACH │ 1 │ 64 │ ──┬ │ Second exit's chain area │
 └─────┴───┴────┴───│─┴───────────────────────────┘

Developing applications reference 1557

 ┌───────────────────────┘

 └──→ ... etc.

External constants
Use this topic as reference information for external constants available for API exists.

The following external constants are available for API exits:
MQXF_* (exit function identifiers)

 MQXF_INIT 1 X'00000001'
 MQXF_TERM 2 X'00000002'
 MQXF_CONN 3 X'00000003'
 MQXF_CONNX 4 X'00000004'
 MQXF_DISC 5 X'00000005'
 MQXF_OPEN 6 X'00000006'
 MQXF_CLOSE 7 X'00000007'
 MQXF_PUT1 8 X'00000008'
 MQXF_PUT 9 X'00000009'
 MQXF_GET 10 X'0000000A'
 MQXF_DATA_CONV_ON_GET 11 X'0000000B'
 MQXF_INQ 12 X'0000000C'
 MQXF_SET 13 X'0000000D'
 MQXF_BEGIN 14 X'0000000E'
 MQXF_CMIT 15 X'0000000F'
 MQXF_BACK 16 X'00000010'
 MQXF_STAT 18 X'00000012'
 MQXF_CB 19 X'00000013'
 MQXF_CTL 20 X'00000014'
 MQXF_CALLBACK 21 X'00000015'
 MQXF_SUB 22 X'00000016'
 MQXF_SUBRQ 23 X'00000017'
 MQXF_XACLOSE 24 X'00000018'
 MQXF_XACOMMIT 25 X'00000019'
 MQXF_XACOMPLETE 26 X'0000001A'
 MQXF_XAEND 27 X'0000001B'
 MQXF_XAFORGET 28 X'0000001C'
 MQXF_XAOPEN 29 X'0000001D'
 MQXF_XAPREPARE 30 X'0000001E'
 MQXF_XARECOVER 31 X'0000001F'
 MQXF_XAROLLBACK 32 X'00000020'
 MQXF_XASTART 33 X'00000021'
 MQXF_AXREG 34 X'00000022'
 MQXF_AXUNREG 35 X'00000023'

MQXR_* (exit reasons)

 MQXR_BEFORE 1 X'00000001'
 MQXR_AFTER 2 X'00000002'
 MQXR_CONNECTION 3 X'00000003'

MQXE_* (environments)

 MQXE_OTHER 0 X'00000000'
 MQXE_MCA 1 X'00000001'
 MQXE_MCA_SVRCONN 2 X'00000002'
 MQXE_COMMAND_SERVER 3 X'00000003'
 MQXE_MQSC 4 X'00000004'

MQ*_* (additional constants)

 MQAXP_VERSION_1 1
 MQAXP_VERSION_2 2
 MQAXC_VERSION_1 1
 MQACH_VERSION_1 1

 MQAXP_CURRENT_VERSION 1
 MQAXC_CURRENT_VERSION 1
 MQACH_CURRENT_VERSION 1

1558 IBM MQ Developing Applications Reference

 MQXACT_EXTERNAL 1
 MQXACT_INTERNAL 2

 MQXT_API_EXIT 2

 MQACH_LENGTH_1 68 (32-bit platforms)
 72 (64-bit platforms)
 80 (128-bit platforms)

 MQACH_CURRENT_LENGTH 68 (32-bit platforms)
 72 (64-bit platforms)
 80 (128-bit platforms)

MQ*_* (null constants)

 MQXPDA_NONE X'00...00' (48 nulls)
 MQXPDA_NONE_ARRAY '\0','\0',...,'\0','\0'

MQXCC_* (completion codes)

 MQXCC_FAILED -8

MQRC_* (reason codes)
MQRC_API_EXIT_ERROR 2374 X'00000946'

An exit function invocation has returned an invalid response code, or has failed in some way, and
the queue manager cannot determine the next action to take.

Examine both the ExitResponse and ExitResponse2 fields of the MQAXP to determine the bad
response code, and change the exit to return a valid response code.

MQRC_API_EXIT_INIT_ERROR 2375 X'00000947'
The queue manager encountered an error while initializing the execution environment for an API
exit function.

MQRC_API_EXIT_TERM_ERROR 2376 X'00000948'
The queue manager encountered an error while closing the execution environment for an API exit
function.

MQRC_EXIT_REASON_ERROR 2377 X'00000949'
The value of the ExitReason field supplied on an exit entry point registration call (MQXEP) call is in
error.

Examine the value of the ExitReason field to determine and correct the bad exit reason value.

MQRC_RESERVED_VALUE_ERROR 2378 X'0000094A'
The value of the Reserved field is in error.

Examine the value of the Reserved field to determine and correct the Reserved value.

C language typedefs
This topic provides information about typedefs associated with API exits available in C language.

Here are the C language typedefs associated with the API exits:

 typedef PMQLONG MQPOINTER PPMQLONG;
 typedef PMQBYTE MQPOINTER PPMQBYTE;
 typedef PMQHOBJ MQPOINTER PPMQHOBJ;
 typedef PMQOD MQPOINTER PPMQOD;
 typedef PMQMD MQPOINTER PPMQMD;
 typedef PMQPMO MQPOINTER PPMQPMO;
 typedef PMQGMO MQPOINTER PPMQGMO;
 typedef PMQCNO MQPOINTER PPMQCNO;
 typedef PMQBO MQPOINTER PPMQBO;

 typedef MQAXP MQPOINTER PMQAXP;
 typedef MQACH MQPOINTER PMQACH;
 typedef MQAXC MQPOINTER PMQAXC;

Developing applications reference 1559

 typedef MQCHAR MQCHAR16[16];
 typedef MQCHAR16 MQPOINTER PMQCHAR16;

 typedef MQLONG MQPID;
 typedef MQLONG MQTID;

The exit entry point registration call (MQXEP)
Use this information to learn about MQXEP, MQXEP C language invocation, and MQXEP C function
prototype.

Use the MQXEP call to:

1. Register the before and after IBM MQ API exit invocation points at which to invoke exit functions
2. Specify the exit function entry points
3. Deregister the exit function entry points

You would typically code the MQXEP calls in the MQ_INIT_EXIT exit function, but you can specify them in
any subsequent exit function.

If you use an MQXEP call to register an already registered exit function, the second MQXEP call completes
successfully, replacing the registered exit function.

If you use an MQXEP call to register a NULL exit function, the MQXEP call completes successfully and the
exit function is deregistered.

If MQXEP calls are used to register, deregister, and reregister a particular exit function during the life
of a connection request, the previously registered exit function is reactivated. Any storage still allocated
and associated with this exit function instance is available for use by the exit's functions. (This storage is
typically released during the invocation of the termination exit function.)

The interface to MQXEP is:

MQXEP (Hconfig, ExitReason, Function, EntryPoint, &ExitOpts, &CompCode, &Reason)

where:
Hconfig (MQHCONFIG) - input

The configuration handle, representing the API exit that includes the set of functions being initialized.
This value is generated by the queue manager immediately before invoking the MQ_INIT_EXIT
function, and is passed in the MQAXP to each API exit function.

ExitReason (MQLONG) - input
The reason for which the entry point is being registered, from the following reasons:

• Connection level initialization or termination (MQXR_CONNECTION)
• Before an IBM MQ API call (MQXR_BEFORE)
• After an IBM MQ API call (MQXR_AFTER)

Function (MQLONG) - input
The function identifier, valid values for which are the MQXF_* constants (see “External constants” on
page 1558).

EntryPoint (PMQFUNC) - input
The address of the entry point for the exit function to be registered. The value NULL indicates either
that the exit function has not been provided, or that a previous registration of the exit function is being
deregistered.

ExitOpts(MQXEPO)
API exits can specify options that control how API exits are registered. If a null pointer is specified for
this field, the default values of the MQXEPO structure are assumed.

CompCode (MQLONG) - output
The completion code, valid values for which are:

1560 IBM MQ Developing Applications Reference

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) - output
The reason code that qualifies the completion code.

If the completion code is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.
If the completion code is MQCC_FAILED:
MQRC_HCONFIG_ERROR

(2280, X'8E8') The supplied configuration handle is not valid. Use the configuration handle from
the MQAXP.

MQRC_EXIT_REASON_ERROR
(2377, X'949') The supplied exit function invocation reason is either not valid or is not valid for the
supplied exit function identifier.

Either use one of the valid exit function invocation reasons (MQXR_* value), or use a valid function
identifier and exit reason combination. (See Table 837 on page 1561.)

MQRC_FUNCTION_ERROR
(2281, X'8E9') The supplied function identifier is not valid for API exit reason. The following table
shows valid combinations of function identifiers and ExitReasons.

Table 837. Valid combinations of function identifiers and ExitReasons

Function ExitReason

MQXF_INIT
MQXF_TERM

MQXR_CONNECTION

MQXF_CONN
MQXF_CONNX
MQXF_DISC
MQXF_OPEN
MQXF_CLOSE
MQXF_PUT1
MQXF_PUT
MQXF_GET
MQXF_INQ
MQXF_SET
MQXF_BEGIN
MQXF_CMIT
MQXF_BACK
MQXF_STAT
MQXF_CB
MQXF_CTL
MQXF_CALLBACK
MQXF_SUB
MQXF_SUBRQ

MQXR_BEFORE
MQXR_AFTER

MQXF_DATA_CONV_ON_GET MQXR_BEFORE

MQRC_RESOURCE_PROBLEM
(2102, X'836') An attempt to register or deregister an exit function has failed because of a
resource problem.

Developing applications reference 1561

MQRC_UNEXPECTED_ERROR
(2195, X'893') An attempt to register or deregister an exit function has failed unexpectedly.

MQRC_PROPERTY_NAME_ERROR
(2442, X'098A') Invalid ExitProperties name.

MQRC_XEPO_ERROR
(2507, X'09CB') Exit options structure not valid.

MQXEP C language invocation

MQXEP (Hconfig, ExitReason, Function, EntryPoint, &ExitOpts, &CompCode, &Reason);

Declaration for parameter list:

 MQHCONFIG Hconfig; /* Configuration handle */
 MQLONG ExitReason; /* Exit reason */
 MQLONG Function; /* Function identifier */
 PMQFUNC EntryPoint; /* Function entry point */
 MQXEPO ExitOpts; /* Options that control the action of MQXEP */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying completion
 code */

MQXEP C function prototype

void MQXEP (
MQHCONFIG Hconfig, /* Configuration handle */
MQLONG ExitReason, /* Exit reason */
MQLONG Function, /* Function identifier */
PMQFUNC EntryPoint, /* Function entry point */
PMQXEPO pExitOpts; /* Options that control the action of MQXEP */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying completion
 code */

Exit functions
This section provides some general information to help you when using the function calls and describes
how to invoke the individual exit functions.

Use this information to understand the general rules for API exit routines, and setting up and cleaning up
the exit execution environment.

General rules for API exit routines
The following general rules apply when invoking API exit routines:

• In all cases, API exit functions are driven before validating API call parameters, and before any security
checks (in the case of MQCONN, MQCONNX, or MQOPEN).

• The values of fields entered into and output from an exit routine are:

– On input to a before IBM MQ API exit function, the value of a field can be set by the application
program, or by a previous exit function invocation.

– On output from a before IBM MQ API exit function, the value of a field can be left unchanged, or set to
some other value by the exit function.

– On input to an after IBM MQ API exit function, the value of a field can be the value set by the queue
manager after processing the IBM MQ API call, or can be set to a value by a previous exit function
invocation in the chain of exit functions.

– On output from an after IBM MQ API call exit function, the value of a field can be left unchanged, or
set to some other value by the exit function.

1562 IBM MQ Developing Applications Reference

• Exit functions must communicate with the queue manager by using the ExitResponse and
ExitResponse2 fields.

• The CompCode and Reason code fields communicate back to the application. The queue manager and
exit functions can set the CompCode and Reason code fields.

• The MQXEP call returns new reason codes to the exit functions that call MQXEP. However, exit functions
can translate these new reason codes to any existing reasons codes that existing and new applications
can understand.

• Each exit function prototype has similar parameters to the API function with an extra level of indirection
except for the CompCode and Reason.

• API exits can issue MQI calls (except MQDISC), but these MQI calls do not themselves invoke API exits.

Note, that whether the application is on a server or a client, you cannot predict the sequencing of the API
exit calls. An API exit BEFORE call might not be followed immediately by an AFTER call.

The BEFORE call can be followed by another BEFORE call. For example:

BEFORE MQCTL
BEFORE Callback
BEFORE MQPUT
AFTER MQPUT
AFTER Callback
AFTER MQCTL

or

BEFORE XAOPEN
BEFORE MQCONNX
AFTER MQCONNX
AFTER XAOPEN

On the client, there is an exit that can modify the behavior of the MQCONN or MQCONNX call, called the
PreConnect exit. The PreConnect exit can modify any of the parameters on the MQCONN or MQCONNX
call including the queue manager name. The client calls this exit first and then invokes the MQCONN or
MQCONNX call. Note that only the initial MQCONN or MQCONNX call invokes the API exit; any subsequent
reconnect calls have no effect.

The execution environment
In general, all errors from exit functions are communicated back to the exit handler using the
ExitResponse and ExitResponse2 fields in MQAXP.

These errors in turn are converted into MQCC_* and MQRC_* values and communicated back to the
application in the CompCode and Reason fields. However, any errors encountered in the exit handler logic
are communicated back to the application as MQCC_* and MQRC_* values in the CompCode and Reason
fields.

If an MQ_TERM_EXIT function returns an error:

• The MQDISC call has already taken place
• There is no other opportunity to drive the after MQ_TERM_EXIT exit function (and thus perform exit

execution environment cleanup)
• Exit execution environment cleanup is not performed

The exit cannot be unloaded as it might still be in use. Also, other registered exits further down in the exit
chain for which the before exit was successful, will be driven in the reverse order.

Setting up the exit execution environment
While processing an explicit MQCONN or MQCONNX call, exit handling logic sets up the exit execution
environment before invoking the exit initialization function (MQ_INIT_EXIT). Exit execution environment

Developing applications reference 1563

setup involves loading the exit, acquiring storage for, and initializing exit parameter structures. The exit
configuration handle is also allocated.

If errors occur during this phase, the MQCONN or MQCONNX call fails with CompCode MQCC_FAILED and
one of the following reason codes:
MQRC_API_EXIT_LOAD_ERROR

An attempt to load an API exit module has failed.
MQRC_API_EXIT_NOT_FOUND

An API exit function could not be found in the API exit module.
MQRC_STORAGE_NOT_AVAILABLE

An attempt to initialize the execution environment for an API exit function failed because insufficient
storage was available.

MQRC_API_EXIT_INIT_ERROR
An error was encountered while initializing the execution environment for an API exit function.

Cleaning up the exit execution environment
While processing an explicit MQDISC call, or an implicit disconnect request as a result of an application
ending, exit handling logic might need to clean up the exit execution environment after invoking the exit
termination function (MQ_TERM_EXIT), if registered.

Cleaning up the exit execution environment involves releasing storage for exit parameter structures,
possibly deleting any modules previously loaded into memory.

If errors occur during this phase, an explicit MQDISC call fails with CompCode MQCC_FAILED and the
following reason code (errors are not highlighted on implicit disconnect requests):
MQRC_API_EXIT_TERM_ERROR

An error was encountered while closing the execution environment for an API exit function. The exit
should not return any failure from the MQDISC before or after the MQ_TERM* API exit function calls.

API exits on clients
A client uses the PreConnect exit to modify the behavior of the MQCONN and MQCONNX calls and does
not support API exit properties.

PreConnect exit
On a client, the PreConnect exit can be used to look up the channel definition from a central repository,
such as an LDAP server.

The PreConnect exit can also modify any parameter, or all the parameters, on an MQCONN or MQCONNX
call itself, for example, the queue manager name.

In the case of client applications, the PreConnect exit must be called before the API exit because the
MQCONN or MQCONNX API exit is called only once the name of the queue manager is known and this
name can be changed by the PreConnect exit.

Note that only the initial MQCONN or MQCONNX call invokes the exit.

API exit properties
On a server, API exits can register an MQXEPO structure at initialization time. The MQXEPO structure
contains the ExitProperties field which details the group of properties the exit is interested in. This has the
effect of generating a separate message property handle which the exit can manipulate separately from
any application message property handle.

On a client, API exit properties are not supported. If an attempt is made to register a property group name
on a client, the function fails with a reason code of MQRC_EXIT_PROPS_NOT_SUPPORTED.

1564 IBM MQ Developing Applications Reference

Backout - MQ_BACK_EXIT
MQ_BACK_EXIT provides a backout exit function to perform before and after backout processing. Use
function identifier MQXF_BACK with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and
after backout call exit functions.

The interface to this function is:

MQ_BACK_EXIT (&ExitParms, &ExitContext, &Hconn, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_BACK_EXIT (&ExitParms, &ExitContext, &Hconn, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_BACK_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying completion
 code */

Developing applications reference 1565

Begin - MQ_BEGIN_EXIT
MQ_BEGIN_EXIT provides a begin exit function to perform before and after MQBEGIN call processing. Use
function identifier MQXF_BEGIN with exit reasons MQXR_BEFORE and MQXR_AFTER to register before
and after MQBEGIN call exit functions.

The interface to this function is:

MQ_BEGIN_EXIT (&ExitParms, &ExitContext, &Hconn, &pBeginOptions, &CompCode,
 &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pBeginOptions (PMQBO)- input/output

Pointer to begin options.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 PMQBO pBeginOptions; /* Ptr to begin options */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_BEGIN_EXIT (&ExitParms, &ExitContext, &Hconn, &pBeginOptions, &CompCode,
 &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_BEGIN_EXIT (

1566 IBM MQ Developing Applications Reference

PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PPMQBO ppBeginOptions, /* Address of ptr to begin options */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying completion
 code */

Callback - MQ_CALLBACK_EXIT
MQ_CALLBACK_EXIT provides an exit function to perform before and after callback processing. Use
function identifier MQXF_CALLBACK with exit reasons MQXR_BEFORE and MQXR_AFTER to register
before and after callback call exit functions.

The interface to this function is:

MQ_CALLBACK_EXIT (&ExitParms, &ExitContext, &Hconn, &pMsgDesc, &pGetMsgOpts,
 &pBuffer, &pMQCBContext)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure
ExitContext (MQAXC) - input/output

Exit context structure
Hconn (MQHCONN) - input/output

Connection handle
pMsgDesc

Message descriptor
pGetMsgOpts

Options that control the action of MQGET
pBuffer

Area to contain the message data
pMQCBContext

Context data for the callback

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 PMQMD pMsgDesc; /* Message descriptor */
 PMQGMO pGetMsgOpts; /* Options that define the operation of the consumer */
 PMQVOID pBuffer; /* Area to contain the message data */
 PMQCBC pContext; /* Context data for the callback */

The queue manager then logically calls the exit as follows:

MQ_SUBRQ_EXIT (&ExitParms, &ExitContext, &Hconn, &pMsgDesc, &pGetMsgOpts, &pBuffer,
 &pContext);

Your exit must match the following C function prototype:

void MQENTRY MQ_CALLBACK_EXIT (
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PPMQMD ppMsgDesc; /* Message descriptor */
PPMQGMO ppGetMsgOpts; /* Options that define the operation of the consumer */

Developing applications reference 1567

PPMQVOID ppBuffer; /* Area to contain the message data */
PPMQCBC ppContext;) /* Context data for the callback */

Usage notes
1. The Callback exit is invoked before the consumer is invoked and after the consumer's consumer

function has completed. Although the MQMD and MQGMO structures are alterable, changing the
values in the before exit does not redrive the retrieval of a message from the queue as the message
has already been removed from the queue to be delivered to the consumer function

Manage callback functions - MQ_CB_EXIT
MQ_CB_EXIT provides an exit function to perform before and after the MQCB call. Use function identifier
MQXF_CB with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after MQCB call exit
functions.

The interface to this function is:

MQ_CB_EXIT (&ExitParms, &ExitContext, &Hconn, &Operation, &pCallbackDesc,
 &Hobj, &pMsgDesc, &pGetMsgOpts, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure
ExitContext (MQAXC) - input/output

Exit context structure
Hconn (MQHCONN) - input/output

Connection handle
Operation (MQLONG) - input/output

Operation value
pCallbackDesc (PMQCBD) - input/output

Callback descriptor
Hobj (MQHOBJ) - input/output

Object handle
pMsgDesc (PMQMD) - input/output

Message descriptor
pGetMsgOpts (PMQGMO) - input/output

Options that control the action of MQCB
CompCode (MQLONG) - input/output

Completion code
Reason (MQLONG) - input/output

Reason code qualifying CompCode

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQLONG Operation; /* Operation value. */
 MQCBD pMsgDesc; /* Callback descriptor. */
 MQHOBJ Hobj; /* Object handle. */
 PMQMD pMsgDesc; /* Message descriptor */
 PMQGMO pGetMsgOpts; /* Options that define the operation of the consumer */
 PMQLONG CompCode; /* Completion code. */
 PMQLONG Reason; /* Reason code qualifying CompCode. */

1568 IBM MQ Developing Applications Reference

The queue manager then logically calls the exit as follows:

 MQ_CB_EXIT (&ExitParms, &ExitContext, &Hconn, &Operation, &Hobj, &pMsgDesc,
 &pGetMsgOpts, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_CB_EXIT (
PMQAXP pExitParms; /* Exit parameter structure */
PMQAXC pExitContext; /* Exit context structure */
PMQHCONN pHconn; /* Connection handle */
PMQLONG pOperation; /* Callback operation */
PMQHOBJ pHobj; /* Object handle */
PPMQMD ppMsgDesc; /* Message descriptor */
PPMQGMO ppGetMsgOpts; /* Options that control the action of MQCB */
PMQLONG pCompCode; /* Completion code */
PMQLONG pReason; /* Reason code qualifying CompCode */

Close - MQ_CLOSE_EXIT
MQ_CLOSE_EXIT provides a close exit function to perform before and after MQCLOSE call processing. Use
function identifier MQXF_CLOSE with exit reasons MQXR_BEFORE and MQXR_AFTER to register before
and after MQCLOSE call exit functions.

The interface to this function is:

MQ_CLOSE_EXIT (&ExitParms, &ExitContext, &Hconn, &pHobj,
 &Options, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pHobj (PMQHOBJ) - input

Pointer to object handle.
Options (MQLONG)- input/output

Close options.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED, the exit function can set the reason code field to any valid
MQRC_* value.

Developing applications reference 1569

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 PMQHOBJ pHobj; /* Ptr to object handle */
 MQLONG Options; /* Close options */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_CLOSE_EXIT (&ExitParms, &ExitContext,&Hconn, &pHobj, &Options,
 &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_CLOSE_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PPMQHOBJ ppHobj, /* Address of ptr to object handle */
PMQLONG pOptions, /* Address of close options */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying
 completion code */

Commit - MQ_CMIT_EXIT
MQ_CMIT_EXIT provides a commit exit function to perform before and after commit processing. Use
function identifier MQXF_CMIT with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and
after commit call exit functions.

If a commit operation fails, and the transaction is backed out, the MQCMIT call fails with
MQCC_WARNING and MQRC_BACKED_OUT. These return and reason codes are passed into any after
MQCMIT exit functions to give the exit functions an indication that the unit of work has been backed out.

The interface to this function is:

MQ_CMIT_EXIT (&ExitParms, &ExitContext, &Hconn, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed

1570 IBM MQ Developing Applications Reference

Reason (MQLONG) - input/output
Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_CMIT_EXIT (&ExitParms, &ExitContext,&Hconn, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_CMIT_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying completion
 code */

Usage notes
1. The MQ_GET_EXIT function interface described here is used for both the MQXF_GET exit function and

the “MQXF_DATA_CONV_ON_GET” on page 1577 exit function.

Separate entry points are defined for these two exit functions, so to intercept both the MQXEP call
must be used twice; for this call use function identifier MQXF_GET.

Because the MQ_GET_EXIT interface is the same for MQXF_GET and MQXF_DATA_CONV_ON_GET, a
single exit function can be used for both; the Function field in the MQAXP structure indicates which
exit function has been invoked. Alternatively, the MQXEP call can be used to register different exit
functions for the two cases.

Connect and connect extension - MQ_CONNX_EXIT
MQ_CONNX_EXIT provides connection exit function to perform before and after MQCONN processing, and
connection extension exit function to perform before and after MQCONNX processing.

The same interface, as described here, is invoked for both MQCONN and MQCONNX call exit functions.

When the message channel agent (MCA) responds to an inbound client connection, the MCA can connect
and make a number of IBM MQ API calls before the client state is fully known. These API calls call the
API exit functions with the MQAXC based on the MCA program itself (for example in the UserId and
ConnectionName fields of the MQAXC).

When the MCA responds to subsequent inbound client API calls, the MQAXC structure is based on the
inbound client, setting the UserId and ConnectionName fields appropriately.

Developing applications reference 1571

The queue manager name set by the application on an MQCONN or MQCONNX call is passed to the
underlying connect call. Any attempt by a before MQ_CONNX_EXIT to change the name of the queue
manager has no effect.

Use function identifiers MQXF_CONN and MQXF_CONNX with exit reasons MQXR_BEFORE and
MQXR_AFTER to register before and after MQCONN and MQCONNX call exit functions.

An MQ_CONNX_EXIT exit called for reason MQXR_BEFORE must not issue any IBM MQ API calls, as the
correct environment has not been set up at this time.

An MQ_CONNX_EXIT cannot call MQDISC from an API exit call for the connection for which it is being
called. This restriction is applicable to both client and server API exits.

The interface to MQCONN and MQCONNX is identical:

MQ_CONNX_EXIT (&ExitParms, &ExitContext, &pQMgrName, &pConnectOpts,
&pHconn, &CompCode, &Reason);

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
pQMgrName (PMQCHAR) - input

Pointer to the queue manager name supplied on the MQCONNX call. The exit must not change this
name on the MQCONN or MQCONNX call.

pConnectOpts (PMQCNO) - input/output
Pointer to the options that control the action of the MQCONNX call.

See “MQCNO - Connect options” on page 314 for details.

For exit function MQXF_CONN, pConnectOpts points to the default connect options structure
(MQCNO_DEFAULT).

pHconn (PMQHCONN) - input
Pointer to the connection handle.

CompCode (MQLONG) - input/output
Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion)
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

1572 IBM MQ Developing Applications Reference

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 PMQCHAR pQMgrName; /* Ptr to Queue manager name */
 PMQCNO pConnectOpts; /* Ptr to Connection options */
 PMQHCONN pHconn; /* Ptr to Connection handle */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_CONNX_EXIT (&ExitParms, &ExitContext, &pQMgrName, &pConnectOps,
 &pHconn, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_CONNX_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PPMQCHAR ppQMgrName, /* Address of ptr to queue manager name */
PPMQCNO ppConnectOpts, /* Address of ptr to connection options */
PPMQHCONN ppHconn, /* Address of ptr to connection handle */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying
 completion code */

Usage notes
1. The MQ_CONNX_EXIT function interface described here is used for both the MQCONN call and the

MQCONNX call. However, separate entry points are defined for these two calls. To intercept both calls,
the MQXEP call must be used at least twice - once with function identifier MQXF_CONN, and again with
MQXF_CONNX.

Because the MQ_CONNX_EXIT interface is the same for MQCONN and MQCONNX, a single exit
function can be used for both calls; the Function field in the MQAXP structure indicates which call
is in progress. Alternatively, the MQXEP call can be used to register different exit functions for the two
calls.

2. When a message channel agent (MCA) responds to an inbound client connection, the MCA can issue
a number of MQ calls before the client state is fully known. These MQ calls result in the API exit
functions being invoked with the MQAXC structure containing data relating to the MCA, and not to the
client (for example, user identifier and connection name). However, once the client state is fully known,
subsequent MQ calls result in the API exit functions being invoked with the appropriate client data in
the MQAXC structure.

3. All MQXR_BEFORE exit functions are invoked before any parameter validation is performed by
the queue manager. The parameters might therefore be invalid (including invalid pointers for the
addresses of parameters).

The MQ_CONNX_EXIT function is invoked before any authorization checks are performed by the queue
manager.

4. The exit function must not change the name of the queue manager specified on the MQCONN or
MQCONNX call. If the name is changed by the exit function, the results are undefined.

5. An MQXR_BEFORE exit function for the MQ_CONNX_EXIT cannot issue MQ calls other than MQXEP.

Control callback - MQ_CTL_EXIT
MQ_CTL_EXIT provides a subscription request exit function to perform before and after control callback
processing. Use function identifier MQXF_CTL with exit reasons MQXR_BEFORE and MQXR_AFTER to
register before and after control callback call exit functions.

The interface to this function is:

Developing applications reference 1573

MQ_CTL_EXIT (&Hconn, &Operation, &ControlOpts, &CompCode, &Reason)

where the parameters are:
Hconn (MQHCONN) - input/output

Connection handle.
Operation (MQLONG) input/output

The operation being processed on the callback defined for the specified object handle
ControlOpts (MQCTLO) input/output

Options that control the action of MQCTL
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQHCONN Hconn; /* Connection handle */
 MQLONG Operation; /* Operation being processed */
 MQCTLO ControlOpts; /* Options that control the action of MQCTL */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_CTL_EXIT (&Hconn, &Operation, &ControlOpts, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_CTL_EXIT (
PMQHCONN pHconn; /* Address of connection handle */
PMQLONG pOperation; /* Address of operation being processed */
PMQCTLO pControlOpts; /* Address of options that control the action of MQCTL */
PMQLONG pCompCode; /* Address of completion code */
PMQLONG pReason;) /* Address of reason code qualifying completion code */

Disconnect - MQ_DISC_EXIT
MQ_DISC_EXIT provides a disconnect exit function to perform before and after MQDISC exit processing.
Use function identifier MQXF_DISC with exit reasons MQXR_BEFORE and MQXR_AFTER to register before
and after MQDISC call exit functions.

1574 IBM MQ Developing Applications Reference

The interface to this function is

MQ_DISC_EXIT (&ExitParms, &ExitContext, &pHconn,
&CompCode, &Reason);

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
pHconn (PMQHCONN) - input

Pointer to the connection handle.

For the before MQDISC call, the value of this field is one of:

• The connection handle returned on the MQCONN or MQCONNX call
• Zero, for environments where an environment-specific adapter has connected to the queue

manager
• A value set by a previous exit function invocation

For the after MQDISC call, the value of this field is zero or a value set by a previous exit function
invocation.

CompCode (MQLONG) - input/output
Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 PMQHCONN pHconn; /* Ptr to Connection handle */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_DISC_EXIT (&ExitParms, &ExitContext, &pHconn,
 &CompCode, &Reason);

Your exit must match the following C function prototype:

Developing applications reference 1575

void MQENTRY MQ_DISC_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PPMQHCONN ppHconn, /* Address of ptr to connection handle */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying
 completion code */

Get - MQ_GET_EXIT
MQ_GET_EXIT provides a get exit function to perform before and after MQGET call processing.

There are two function identifiers:

1. Use MQXF_GET with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and after
MQGET call exit functions.

2. See “MQXF_DATA_CONV_ON_GET” on page 1577 for information on using the
MQXF_DATA_CONV_ON_GET function identifier.

The interface to this function is:

MQ_GET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc,
 &pGetMsgOpts, &BufferLength, &pBuffer, &pDataLength,
 &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
Hobj (MQHOBJ) - input/output

Object handle.
pMsgDesc (PMQMD) - input/output

Pointer to message descriptor.
pGetMsgOpts (PMQGMO) - input/output

Pointer to get message options.
BufferLength (MQLONG) - input/output

Message buffer length.
pBuffer (PMQBYTE) - input/output

Pointer to message buffer.
pDataLength (PMQLONG) - input/output

Pointer to data length field.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:

1576 IBM MQ Developing Applications Reference

MQRC_NONE
(0, x'000') No reason to report.

If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQHOBJ Hobj; /* Object handle */
 PMQMD pMsgDesc; /* Ptr to message descriptor */
 PMQPMO pGetMsgOpts; /* Ptr to get message options */
 MQLONG BufferLength; /* Message buffer length */
 PMQBYTE pBuffer; /* Ptr to message buffer */
 PMQLONG pDataLength; /* Ptr to data length field */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_GET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc,
 &pGetMsgOpts, &BufferLength, &pBuffer, &pDataLength,
 &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_GET_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PMQHOBJ pHobj, /* Address of object handle */
PPMQMD ppMsgDesc, /* Address of ptr to message descriptor */
PPMQGMO ppGetMsgOpts, /* Address of ptr to get message options */
PMQLONG pBufferLength, /* Address of message buffer length */
PPMQBYTE ppBuffer, /* Address of ptr to message buffer */
PPMQLONG ppDataLength, /* Address of ptr to data length field */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying
 completion code */

Usage notes
1. The MQ_GET_EXIT function interface described here is used for both the MQXF_GET exit function and

the “MQXF_DATA_CONV_ON_GET” on page 1577 exit function.

Separate entry points are defined for these two exit functions, so to intercept both the MQXEP call
must be used twice; for this call use function identifier MQXF_GET.

Because the MQ_GET_EXIT interface is the same for MQXF_GET and MQXF_DATA_CONV_ON_GET, a
single exit function can be used for both; the Function field in the MQAXP structure indicates which
exit function has been invoked. Alternatively, the MQXEP call can be used to register different exit
functions for the two cases.

MQXF_DATA_CONV_ON_GET
The MQXF_DATA_CONV_ON_GET function identifier is used with MQ_GET_EXIT.

See MQ_GET_EXIT for information about the interface to this call, and a sample C language declaration.

Usage notes
If registered, this entry point is called when messages arrive at the application but before any data
conversion has occurred. This can be useful if the API exit needs to perform processing, such as

Developing applications reference 1577

decryption or decompression, before the message is passed to data conversion. The exit can, if necessary,
cause data conversion to be bypassed by returning MQXCC_SUPPRESS_FUNCTION; for more information,
see MQAXP structure.

Registering for this entry point on a client has the effect of causing the data conversion to be
performed locally on the client machine. For correct operation it might, therefore, be necessary to install
the application conversion exits on the client. Note that MQXF_DATA_CONV_ON_GET is also used for
asynchronous consume.

When using the MQ_GET_EXIT call, use MQXF_DATA_CONV_ON_GET, with exit reason MQXR_BEFORE, to
register a before MQGET data conversion exit function.

There is no MQXR_AFTER exit function for MQXF_DATA_CONV_ON_GET; the MQXR_AFTER exit function
for MQXF_GET provides the required capability for exit processing after data conversion.

Separate entry points are defined for the MQ_GET_EXIT call, so to intercept both exit functions, the
MQXEP call must be used twice; for this call use function identifier MQXF_DATA_CONV_ON_GET.

Because the MQ_GET_EXIT interface is the same for MQXF_GET and MQXF_DATA_CONV_ON_GET, a single
exit function can be used for both; the Function field in the MQAXP structure indicates which exit
function has been invoked. Alternatively, the MQXEP call can be used to register different exit functions
for the two cases.

Initialization - MQ_INIT_EXIT
MQ_INIT_EXIT provides connection level initialization, indicated by setting ExitReason in MQAXP to
MQXR_CONNECTION.

During the initialization, note the following:

• The MQ_INIT_EXIT function calls MQXEP to register the IBM MQ API verbs and the ENTRY and EXIT
points in which it is interested.

• Exits do not need to intercept all the IBM MQ API verbs. Exit functions are invoked only if an interest has
been registered.

• Storage that is to be used by the exit can be acquired while initializing it.
• If a call to this function fails, the MQCONN or MQCONNX call that invoked it also fails with a CompCode

and Reason that depend on the value of the ExitResponse field in MQAXP.
• An MQ_INIT_EXIT exit must not issue IBM MQ API calls, because the correct environment has not been

set up at this time.
• If an MQ_INIT_EXIT fails with MQXCC_FAILED, the queue manager returns from the MQCONN or

MQCONNX call that called it with MQCC_FAILED and MQRC_API_EXIT_ERROR.
• If the queue manager encounters an error while initializing the API exit function execution environment

before invoking the first MQ_INIT_EXIT, the queue manager returns from the MQCONN or MQCONNX
call that invoked MQ_INIT_EXIT with MQCC_FAILED and MQRC_API_EXIT_INIT_ERROR.

The interface to MQ_INIT_EXIT is:

MQ_INIT_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
CompCode (MQLONG) - input/output

Pointer to completion code, valid values for which are:
MQCC_OK

Successful completion.

1578 IBM MQ Developing Applications Reference

MQCC_WARNING
Partial completion.

MQCC_FAILED
Call failed

Reason (MQLONG) - input/output
Pointer to reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

The CompCode and Reason returned to the application depend on the value of the ExitResponse field
in MQAXP.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_INIT_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_INIT_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying
 completion code */

Usage notes
1. The MQ_INIT_EXIT function can issue the MQXEP call to register the addresses of the exit functions

for the particular MQ calls to be intercepted. It is not necessary to intercept all MQ calls, or to intercept
both MQXR_BEFORE and MQXR_AFTER calls. For example, an exit suite could choose to intercept only
the MQXR_BEFORE call of MQPUT.

2. Storage that is to be used by exit functions in the exit suite can be acquired by the MQ_INIT_EXIT
function. Alternatively, exit functions can acquire storage when they are invoked, as and when needed.
However, all storage should be freed before the exit suite is terminated; the MQ_TERM_EXIT function
can free the storage, or an exit function invoked earlier.

3. If MQ_INIT_EXIT returns MQXCC_FAILED in the ExitResponse field of MQAXP, or fails in some other
way, the MQCONN or MQCONNX call that caused MQ_INIT_EXIT to be invoked also fails, with the
CompCode and Reason parameters set to appropriate values.

4. An MQ_INIT_EXIT function cannot issue MQ calls other than MQXEP.

Inquire - MQ_INQ_EXIT
MQ_INQ_EXIT provides an inquire exit function to perform before and after MQINQ call processing. Use
function identifier MQXF_INQ with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and
after MQINQ call exit functions.

Developing applications reference 1579

The interface to this function is:

MQ_INQ_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount,
 &pSelectors, &IntAttrCount, &pIntAttrs, &CharAttrLength,
 &pCharAttrs, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
Hobj (MQHOBJ) - input

Object handle.
SelectorCount (MQLONG) - input

Count of selectors
pSelectors (PMQLONG) - input/output

Pointer to array of selector values.
IntAttrCount (MQLONG) - input

Count of integer attributes.
pIntAttrs (PMQLONG) - input/output

Pointer to array of integer attribute values.
CharAttrLength (MQLONG) - input/output

Character attributes array length.
pCharAttrs (PMQCHAR) - input/output

Pointer to character attributes array.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQHOBJ Hobj; /* Object handle */
 MQLONG SelectorCount; /* Count of selectors */

1580 IBM MQ Developing Applications Reference

 PMQLONG pSelectors; /* Ptr to array of attribute selectors */
 MQLONG IntAttrCount; /* Count of integer attributes */
 PMQLONG pIntAttrs; /* Ptr to array of integer attributes */
 MQLONG CharAttrLength; /* Length of char attributes array */
 PMQCHAR pCharAttrs; /* Ptr to character attributes */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_INQ_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount,
 &pSelectors, &IntAttrCount, &pIntAttrs, &CharAttrLength,
 &pCharAttrs, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_INQ_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PMQHOBJ pHobj, /* Address of object handle */
PMQLONG pSelectorCount, /* Address of selector count */
PPMQLONG ppSelectors, /* Address of ptr to array of selectors */
PMQLONG pIntAttrCount; /* Address of count of integer attributes */
PPMQLONG ppIntAttrs, /* Address of ptr to array of integer attributes */
PMQLONG pCharAttrLength, /* Address of character attribute length */
PPMQCHAR ppCharAttrs, /* Address of ptr to character attributes array */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying completion
 code */

Open - MQ_OPEN_EXIT
MQ_OPEN_EXIT provides an open exit function to perform before and after MQOPEN call processing. Use
function identifier MQXF_OPEN with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and
after MQOPEN call exit functions.

The interface to this function is

MQ_OPEN_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &Options,
&pHobj, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pObjDesc (PMQOD) - input/output

Pointer to object descriptor.
Options (MQLONG) - input/output

Open options.
pHobj (PMQHOBJ) - input

Pointer to object handle.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion

Developing applications reference 1581

MQCC_FAILED
Call failed

Reason (MQLONG) - input/output
Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 PMQOD pObjDesc; /* Ptr to object descriptor */
 MQLONG Options; /* Open options */
 PMQHOBJ pHobj; /* Ptr to object handle */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_OPEN_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &Options,
 &pHobj, &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_OPEN_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PPMQOD ppObjDesc, /* Address of ptr to object descriptor */
PMQLONG pOptions, /* Address of open options */
PPMQHOBJ ppHobj, /* Address of ptr to object handle */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying
 completion code */

Put - MQ_PUT_EXIT
MQ_PUT_EXIT provides a put exit function to perform before and after MQPUT call processing. Use
function identifier MQXF_PUT with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and
after MQPUT call exit functions.

The interface to this function is:

MQ_PUT_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc,
 &pPutMsgOpts, &BufferLength, &pBuffer, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.

1582 IBM MQ Developing Applications Reference

Hobj (MQHOBJ) - input/output
Object handle.

pMsgDesc (PMQMD) - input/output
Pointer to message descriptor.

pPutMsgOpts (PMQPMO) - input/output
Pointer to put message options.

BufferLength (MQLONG) - input/output
Message buffer length.

pBuffer (PMQBYTE) - input/output
Pointer to message buffer.

CompCode (MQLONG) - input/output
Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQHOBJ Hobj; /* Object handle */
 PMQMD pMsgDesc; /* Ptr to message descriptor */
 PMQPMO pPutMsgOpts; /* Ptr to put message options */
 MQLONG BufferLength; /* Message buffer length */
 PMQBYTE pBuffer; /* Ptr to message data */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_PUT_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &pMsgDesc,
 &pPutMsgOpts, &BufferLength, &pBuffer, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_PUT_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PMQHOBJ pHobj, /* Address of object handle */
PPMQMD ppMsgDesc, /* Address of ptr to message descriptor */
PPMQPMO ppPutMsgOpts, /* Address of ptr to put message options */
PMQLONG pBufferLength, /* Address of message buffer length */
PPMQBYTE ppBuffer, /* Address of ptr to message buffer */
PMQLONG pCompCode, /* Address of completion code */

Developing applications reference 1583

PMQLONG pReason); /* Address of reason code qualifying
 completion code */

Usage notes
• Report messages generated by the queue manager skip the normal call processing. As a result, such

messages cannot be intercepted by the MQ_PUT_EXIT function or the MQPUT1 function. However,
report messages generated by the message channel agent are processed normally, and hence can be
intercepted by the MQ_PUT_EXIT function or the MQ_PUT1_EXIT function. To be sure to intercepting all
of the report messages generated by the MCA, both MQ_PUT_EXIT and MQ_PUT1_EXIT should be used.

Put1 - MQ_PUT1_EXIT
MQ_PUT1_EXIT provides a put one message only exit function to perform before and after MQPUT1 call
processing. Use function identifier MQXF_PUT1 with exit reasons MQXR_BEFORE and MQXR_AFTER to
register before and after MQPUT1 call exit functions.

The interface to this function is:

MQ_PUT1_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &pMsgDesc,
&pPutMsgOpts, &BufferLength, &pBuffer, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pObjDesc (PMQOD) - input/output

Pointer to object descriptor.
pMsgDesc (PMQMD) - input/output

Pointer to message descriptor.
pPutMsgOpts (PMQPMO) - input/output

Pointer to put message options.
BufferLength (MQLONG) - input/output

Message buffer length.
pBuffer (PMQBYTE) - input/output

Pointer to message buffer.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.

1584 IBM MQ Developing Applications Reference

If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 PMQOD pObjDesc; /* Ptr to object descriptor */
 PMQMD pMsgDesc; /* Ptr to message descriptor */
 PMQPMO pPutMsgOpts; /* Ptr to put message options */
 MQLONG BufferLength; /* Message buffer length */
 PMQBYTE pBuffer; /* Ptr to message data */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_PUT1_EXIT (&ExitParms, &ExitContext, &Hconn, &pObjDesc, &pMsgDesc,
 &pPutMsgOpts, &BufferLength, &pBuffer, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_PUT1_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PPMQOD ppObjDesc, /* Address of ptr to object descriptor */
PPMQMD ppMsgDesc, /* Address of ptr to message descriptor */
PPMQPMO ppPutMsgOpts, /* Address of ptr to put message options */
PMQLONG pBufferLength, /* Address of message buffer length */
PPMQBYTE ppBuffer, /* Address of ptr to message buffer */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying
 completion code */

Set - MQ_SET_EXIT
MQ_SET_EXIT provides a set exit function to perform before and after MQSET call processing. Use
function identifier MQXF_SET with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and
after MQSET call exit functions.

The interface to this function is:

MQ_SET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount,
 &pSelectors, &IntAttrCount, &pIntAttrs, &CharAttrLength,
 &pCharAttr, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
Hobj (MQHOBJ) - input

Object handle.
SelectorCount (MQLONG) - input

Count of selectors

Developing applications reference 1585

pSelectors (PMQLONG) - input/output
Pointer to array of selector values.

IntAttrCount (MQLONG) - input
Count of integer attributes.

pIntAttrs (PMQLONG) - input/output
Pointer to array of integer attribute values.

CharAttrLength (MQLONG) - input/output
Character attributes array length.

pCharAttrs (PMQCHAR) - input/output
Pointer to character attribute values.

CompCode (MQLONG) - input/output
Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQHOBJ Hobj; /* Object handle */
 MQLONG SelectorCount; /* Count of selectors */
 PMQLONG pSelectors; /* Ptr to array of attribute selectors */
 MQLONG IntAttrCount; /* Count of integer attributes */
 PMQLONG pIntAttrs; /* Ptr to array of integer attributes */
 MQLONG CharAttrLength; /* Length of char attributes array */
 PMQCHAR pCharAttrs; /* Ptr to character attributes */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_SET_EXIT (&ExitParms, &ExitContext, &Hconn, &Hobj, &SelectorCount,
 &pSelectors, &IntAttrCount, &pIntAttrs, &CharAttrLength,
 &pCharAttrs, &CompCode, &Reason)

Your exit must match the following C function prototype:

void MQENTRY MQ_SET_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PMQHOBJ pHobj, /* Address of object handle */
PMQLONG pSelectorCount, /* Address of selector count */
PPMQLONG ppSelectors, /* Address of ptr to array of selectors */

1586 IBM MQ Developing Applications Reference

PMQLONG pIntAttrCount; /* Address of count of integer attributes */
PPMQLONG ppIntAttrs, /* Address of ptr to array of integer attributes */
PMQLONG pCharAttrLength, /* Address of character attribute length */
PPMQCHAR ppCharAttrs, /* Address of ptr to character attributes array */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying completion
 code */

Status - MQ_STAT_EXIT
MQ_STAT_EXIT provides a status exit function to perform before and after MQSTAT call processing. Use
function identifier MQXF_STAT with exit reasons MQXR_BEFORE and MQXR_AFTER to register before and
after MQSTAT call exit functions.

The interface to this function is:

MQ_STAT_EXIT (&ExitParms, &ExitContext, &Hconn, &Type, &pStatus
 &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
Type (MQLONG) - input

Type of status information to retrieve.
pStatus (PMQSTS) - output

Pointer to status buffer.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
Your exit must match the following C function prototype:

void MQENTRY MQ_STAT_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PMQLONG pType /* Address of status type */
PPMQSTS ppStatus /* Address of status buffer */
PMQLONG pCompCode, /* Address of completion code */

Developing applications reference 1587

PMQLONG pReason); /* Address of reason code qualifying completion
 code */

Termination - MQ_TERM_EXIT
MQ_TERM_EXIT provides connection level termination, registered with a function identifier of
MQXF_TERM and ExitReason MQXR_CONNECTION. If registered, MQ_TERM_EXIT is called once for every
disconnect request.

As part of the termination, storage no longer required by the exit can be released, and any clean up
required can be performed.

If an MQ_TERM_EXIT fails with MQXCC_FAILED, the queue manager returns from the MQDISC that called
it with MQCC_FAILED and MQRC_API_EXIT_ERROR.

If the queue manager encounters an error while terminating the API exit function execution environment
after invoking the last MQ_TERM_EXIT, the queue manager returns from the MQDISC call that invoked
MQ_TERM_EXIT with MQCC_FAILED and MQRC_API_EXIT_TERM_ERROR

The interface to this function is:

MQ_TERM_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED, the exit function can set the reason code field to any valid
MQRC_* value.

The CompCode and Reason returned to the application depend on the value of the ExitResponse field
in MQAXP.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */

The queue manager then logically calls the exit as follows:

MQ_TERM_EXIT (&ExitParms, &ExitContext, &CompCode, &Reason)

1588 IBM MQ Developing Applications Reference

Your exit must match the following C function prototype:

void MQENTRY MQ_TERM_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying
 completion code */

Usage notes
1. The MQ_TERM_EXIT function is optional. It is not necessary for an exit suite to register a termination

exit if there is no termination processing to be done.

If functions belonging to the exit suite acquire resources during the connection, an MQ_TERM_EXIT
function is a convenient point at which to free those resources, for example, freeing storage obtained
dynamically.

2. If an MQ_TERM_EXIT function is registered when the MQDISC call is issued, the exit function is
invoked after all of the MQDISC exit functions have been invoked.

3. If MQ_TERM_EXIT returns MQXCC_FAILED in the ExitResponse field of MQAXP, or fails in some
other way, the MQDISC call that caused MQ_TERM_EXIT to be invoked also fails, with the CompCode
and Reason parameters set to appropriate values.

Register subscription - MQ_SUB_EXIT
MQ_SUB_EXIT provides an exit function to perform before and after subscription reregistration
processing. Use function identifier MQXF_SUB with exit reasons MQXR_BEFORE and MQXR_AFTER to
register before and after subscription registrationcall exit functions.

The interface to this function is:

MQ_SUB_EXIT (&ExitParms, &ExitContext, &Hconn, &pSubDesc, &pHobj, &pHsub, &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input/output

Connection handle.
pSubDesc - input/output

Array of attribute selectors.
pHobj - input/output

Object handle
pHsub (MQHOBJ) input/output

Subscription handle
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed

Developing applications reference 1589

Reason (MQLONG) - input/output
Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 PMQSD pSubDesc; /* Subscription descriptor */
 PMQHOBJ pHobj; /* Object Handle */
 PMQHOBJ pHsub; /* Subscription handle */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_SUB_EXIT (&ExitParms, &ExitContext, &Hconn, &pSubDesc, &pHobj, &pHsub,
 &CompCode, &Reason);

Your exit must match the following C function prototype:

 PMQAXP pExitParms; /* Exit parameter structure */
 PMQAXC pExitContext; /* Exit context structure */
 PMQHCONN pHconn; /* Connection handle */
 PPMQSD ppSubDesc; /* Subscription descriptor */
 PPMQHOBJ ppHobj; /* Object Handle */
 PPMQHOBJ ppHsub; /* Subscription handle */
 PMQLONG pCompCode; /* Completion code */
 PMQLONG pReason; /* Reason code qualifying completion code */

Subscription request - MQ_SUBRQ_EXIT
MQ_SUBRQ_EXIT provides a subscription request exit function to perform before and after subscription
request processing. Use function identifier MQXF_SUBRQ with exit reasons MQXR_BEFORE and
MQXR_AFTER to register before and after subscription request call exit functions.

The interface to this function is:

MQ_SUBRQ_EXIT (&ExitParms, &ExitContext, &Hconn, &pHsub, &Action, &pSubRqOpts,
 &CompCode, &Reason)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input/output

Connection handle.
pHsub (MQHOBJ) input/output

Subscription handle
Action (MQLONG) input/output

Action

1590 IBM MQ Developing Applications Reference

pSubRqOpts (MQSRO) input/output
CompCode (MQLONG) - input/output

Completion code, valid values for which are:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed
Reason (MQLONG) - input/output

Reason code qualifying the completion code.

If the completion code is MQCC_OK, the only valid value is:
MQRC_NONE

(0, x'000') No reason to report.
If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 PMQLONG pHsub; /* Subscription handle */
 MQLONG Action; /* Action */
 PMQSRO pSubRqOpts; /* Subscription Request Options */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code qualifying completion code */

The queue manager then logically calls the exit as follows:

MQ_SUBRQ_EXIT (&ExitParms, &ExitContext, &Hconn, &pHsub, &Action, &pSubRqOpts,
 &CompCode, &Reason);

Your exit must match the following C function prototype:

void MQENTRY MQ_SUBRQ_EXIT (
PMQAXP pExitParms, /* Address of exit parameter structure */
PMQAXC pExitContext, /* Address of exit context structure */
PMQHCONN pHconn, /* Address of connection handle */
PPMQHOBJ ppHsub; /* Address of Subscription handle */
PMQLONG pAction; /* Address of Action */
PPMQSRO ppSubRqOpts; /* Address of Subscription Request Options */
PMQLONG pCompCode, /* Address of completion code */
PMQLONG pReason); /* Address of reason code qualifying completion
 code */

xa_close - XA_CLOSE_EXIT
XA_CLOSE_EXIT provides an xa_close exit function to perform before and after xa_close processing. Use
function identifier MQXF_XACLOSE with exit reasons MQXR_BEFORE and MQXR_AFTER to register the
before and after xa_close call exit functions.

The interface to this function is:

XA_CLOSE_EXIT (&ExitParms, &ExitContext, &Hconn, &pXa_info, &Rmid, &Flags, &XARetCode)

where the parameters are:

Developing applications reference 1591

ExitParms (MQAXP) - input/output
Exit parameter structure.

ExitContext (MQAXC) - input/output
Exit context structure.

Hconn (MQHCONN) - input
Connection handle.

pXa_info (PMQCHAR) - input/output
Instance-specific resource manager information.

Rmid (MQLONG) - input/output
Resource manager identifier.

Flags (MQLONG) - input/output
Resource manager options.

XARetCode (MQLONG) - input/output
Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 PMQCHAR pXa_info; /* Instance-specific RM info */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

XA_CLOSE_EXIT (&ExitParms, &ExitContext, &Hconn, &pXa_info, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY XA_CLOSE_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */
 PPMQCHAR ppXa_info, /* Address of instance-specific RM info */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

xa_commit - XA_COMMIT_EXIT
XA_COMMIT_EXIT provides an xa_commit exit function to perform before and after xa_commit
processing. Use function identifier MQXF_XACOMMIT with exit reasons MQXR_BEFORE and MQXR_AFTER
to register the before and after xa_commit call exit functions.

The interface to this function is:

XA_COMMIT_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.

1592 IBM MQ Developing Applications Reference

Hconn (MQHCONN) - input
Connection handle.

pXID (MQPTR) - input/output
Transaction branch ID.

Rmid (MQLONG) - input/output
Resource manager identifier.

Flags (MQLONG) - input/output
Resource manager options.

XARetCode (MQLONG) - input/output
Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQPTR pXID; /* Transaction branch ID */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

XA_COMMIT_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY XA_COMMIT_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */
 PMQPTR ppXID, /* Address of transaction branch ID */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

xa_complete - XA_COMPLETE_EXIT
XA_COMPLETE_EXIT provides an xa_complete exit function to perform before and after xa_complete
processing. Use function identifier MQXF_XACOMPLETE with exit reasons MQXR_BEFORE and
MQXR_AFTER to register the before and after xa_complete call exit functions.

The interface to this function is:

XA_COMPLETE_EXIT (&ExitParms, &ExitContext, &Hconn, &pHandle, &pRetval, &Rmid, &Flags,
&XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pHandle (PMQLONG) - input/output

Pointer to asynchronous operation.

Developing applications reference 1593

pRetVal (PMQLONG) - input/output
Return value of asynchronous operation.

Rmid (MQLONG) - input/output
Resource manager identifier.

Flags (MQLONG) - input/output
Resource manager options.

XARetCode (MQLONG) - input/output
Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 PMQLONG pHandle; /* Ptr to asynchronous op */
 PMQLONG pRetval; /* Return value of async op */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

XA_COMPLETE_EXIT (&ExitParms, &ExitContext, &Hconn, &pHandle, &pRetval, &Rmid, &Flags,
&XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY XA_COMPLETE_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */
 PPMQLONG ppHandle, /* Address of ptr to asynchronous op */
 PPMQLONG ppRetval, /* Address of return value of async op */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

xa_end - XA_END_EXIT
XA_END_EXIT provides an xa_end exit function to perform before and after xa_end processing. Use
function identifier MQXF_XAEND with exit reasons MQXR_BEFORE and MQXR_AFTER to register the
before and after xa_end call exit functions.

The interface to this function is:

XA_END_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pXID (MQPTR) - input/output

Transaction branch ID.
Rmid (MQLONG) - input/output

Resource manager identifier.

1594 IBM MQ Developing Applications Reference

Flags (MQLONG) - input/output
Resource manager options.

XARetCode (MQLONG) - input/output
Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQPTR pXID; /* Transaction branch ID */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

XA_END_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY XA_END_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */
 PMQPTR ppXID, /* Address of transaction branch ID */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

xa_forget - XA_FORGET_EXIT
XA_FORGET_EXIT provides an xa_forget exit function to perform before and after xa_forget processing.
Use function identifier MQXF_XAFORGET with exit reasons MQXR_BEFORE and MQXR_AFTER to register
the before and after xa_forget call exit functions.

The interface to this function is:

XA_FORGET_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pXID (MQPTR) - input/output

Transaction branch ID.
Rmid (MQLONG) - input/output

Resource manager identifier.
Flags (MQLONG) - input/output

Resource manager options.
XARetCode (MQLONG) - input/output

Response from XA call.

Developing applications reference 1595

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQPTR pXID; /* Transaction branch ID */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

XA_FORGET_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY XA_FORGET_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */
 PMQPTR ppXID, /* Address of transaction branch ID */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

xa_open - XA_OPEN_EXIT
XA_OPEN_EXIT provides an xa_open exit function to perform before and after xa_open processing. Use
function identifier MQXF_XAOPEN with exit reasons MQXR_BEFORE and MQXR_AFTER to register the
before and after xa_open call exit functions.

The interface to this function is:

XA_OPEN_EXIT (&ExitParms, &ExitContext, &Hconn, &pXa_info, &Rmid, &Flags, &XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pXa_info (PMQCHAR) - input/output

Instance-specific resource manager information.
Rmid (MQLONG) - input/output

Resource manager identifier.
Flags (MQLONG) - input/output

Resource manager options.
XARetCode (MQLONG) - input/output

Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */

1596 IBM MQ Developing Applications Reference

 PMQCHAR pXa_info; /* Instance-specific RM info */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

XA_OPEN_EXIT (&ExitParms, &ExitContext, &Hconn, &pXa_info, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY XA_OPEN_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */
 PPMQCHAR ppXa_info, /* Address of instance-specific RM info */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

xa_prepare - XA_PREPARE_EXIT
XA_PREPARE_EXIT provides an xa_prepare exit function to perform before and after xa_prepare
processing. Use function identifier MQXF_XAPREPARE with exit reasons MQXR_BEFORE and
MQXR_AFTER to register the before and after xa_prepare call exit functions.

The interface to this function is:

XA_PREPARE_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pXID (MQPTR) - input/output

Transaction branch ID.
Rmid (MQLONG) - input/output

Resource manager identifier.
Flags (MQLONG) - input/output

Resource manager options.
XARetCode (MQLONG) - input/output

Response from XA call.

C language invocation
The queue manager logically defines the following variables:

MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQPTR pXID; /* Transaction branch ID */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

Developing applications reference 1597

XA_PREPARE_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY XA_PREPARE_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */
 PMQPTR ppXID, /* Address of transaction branch ID */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

xa_recover - XA_RECOVER_EXIT
XA_RECOVER_EXIT provides an xa_recover exit function to perform before and after xa_recover
processing. Use function identifier MQXF_XARECOVER with exit reasons MQXR_BEFORE and
MQXR_AFTER to register the before and after xa_recover call exit functions.

The interface to this function is:

XA_RECOVER_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Count, &Rmid, &Flags, &XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pXID (MQPTR) - input/output

Transaction branch ID.
Count (MQLONG) - input/output

Maximum XIDs in XID array
Rmid (MQLONG) - input/output

Resource manager identifier.
Flags (MQLONG) - input/output

Resource manager options.
XARetCode (MQLONG) - input/output

Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQPTR pXID; /* Transaction branch ID */
 MQLONG Count; /* Max XIDs in XID array */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

XA_RECOVER_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Count, &Rmid, &Flags, &XARetCode);

1598 IBM MQ Developing Applications Reference

Your exit must match the following C function prototype:

typedef void MQENTRY XA_RECOVER_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */
 PMQPTR ppXID, /* Address of transaction branch ID */
 PMQLONG pCount, /* Address of max XIDs in XID array */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

xa_rollback - XA_ROLLBACK_EXIT
XA_ROLLBACK_EXIT provides an xa_rollback exit function to perform before and after xa_rollback
processing. Use function identifier MQXF_XAROLLBACK with exit reasons MQXR_BEFORE and
MQXR_AFTER to register the before and after xa_rollback call exit functions.

The interface to this function is:

XA_ROLLBACK_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pXID (MQPTR) - input/output

Transaction branch ID.
Rmid (MQLONG) - input/output

Resource manager identifier.
Flags (MQLONG) - input/output

Resource manager options.
XARetCode (MQLONG) - input/output

Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQPTR pXID; /* Transaction branch ID */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

XA_ROLLBACK_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY XA_ROLLBACK_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */

Developing applications reference 1599

 PMQPTR ppXID, /* Address of transaction branch ID */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

xa_start - XA_START_EXIT
XA_START_EXIT provides an xa_start exit function to perform before and after xa_start processing. Use
function identifier MQXF_XASTART with exit reasons MQXR_BEFORE and MQXR_AFTER to register the
before and after xa_start call exit functions.

The interface to this function is:

XA_START_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pXID (MQPTR) - input/output

Transaction branch ID.
Rmid (MQLONG) - input/output

Resource manager identifier.
Flags (MQLONG) - input/output

Resource manager options.
XARetCode (MQLONG) - input/output

Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQHCONN Hconn; /* Connection handle */
 MQPTR pXID; /* Transaction branch ID */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

XA_START_EXIT (&ExitParms, &ExitContext, &Hconn, &pXID, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY XA_START_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQHCONN pHconn, /* Address of connection handle */
 PMQPTR ppXID, /* Address of transaction branch ID */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

1600 IBM MQ Developing Applications Reference

ax_reg - AX_REG_EXIT
AX_REG_EXIT provides an ax_reg exit function to perform before and after ax_reg processing. Use
function identifier MQXF_AXREG with exit reasons MQXR_BEFORE and MQXR_AFTER to register the
before and after ax_reg call exit functions.

The interface to this function is:

AX_REG_EXIT (&ExitParms, &ExitContext, &pXID, &Rmid, &Flags, &XARetCode)

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Hconn (MQHCONN) - input

Connection handle.
pXID (MQPTR) - input/output

Transaction branch ID.
Rmid (MQLONG) - input/output

Resource manager identifier.
Flags (MQLONG) - input/output

Resource manager options.
XARetCode (MQLONG) - input/output

Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQPTR pXID; /* Transaction branch ID */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

AX_REG_EXIT (&ExitParms, &ExitContext, &pXID, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY AX_REG_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQPTR ppXID, /* Address of transaction branch ID */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

ax_unreg - AX_UNREG_EXIT
AX_UNREG_EXIT provides an ax_unreg exit function to perform before and after ax_unreg processing.
Use function identifier MQXF_AXUNREG with exit reasons MQXR_BEFORE and MQXR_AFTER to register
the before and after ax_unreg call exit functions.

The interface to this function is:

Developing applications reference 1601

AX_UNREG_EXIT (&ExitParms, &ExitContext, &Rmid, &Flags, &XARetCode);

where the parameters are:
ExitParms (MQAXP) - input/output

Exit parameter structure.
ExitContext (MQAXC) - input/output

Exit context structure.
Rmid (MQLONG) - input/output

Resource manager identifier.
Flags (MQLONG) - input/output

Resource manager options.
XARetCode (MQLONG) - input/output

Response from XA call.

C language invocation
The queue manager logically defines the following variables:

 MQAXP ExitParms; /* Exit parameter structure */
 MQAXC ExitContext; /* Exit context structure */
 MQLONG Rmid; /* Resource manager identifier */
 MQLONG Flags; /* Resource manager options*/
 MQLONG XARetCode; /* Response from XA call */

The queue manager then logically calls the exit as follows:

AX_UNREG_EXIT (&ExitParms, &ExitContext, &Rmid, &Flags, &XARetCode);

Your exit must match the following C function prototype:

typedef void MQENTRY AX_UNREG_EXIT (
 PMQAXP pExitParms, /* Address of exit parameter structure */
 PMQAXC pExitContext, /* Address of exit context structure */
 PMQLONG pRmid, /* Address of resource manager identifier */
 PMQLONG pFlags, /* Address of resource manager options*/
 PMQLONG pXARetCode); /* Address of response from XA call */

General information on invoking exit functions
This topic provides some general guidance to help you to plan your exits, particularly related to handling
errors and unexpected events.

Exit failure
If an exit function abnormally terminates after a destructive, out of syncpoint, MQGET call but before
the message has been passed to the application, the exit handler can recover from the failure, and pass
control to the application.

In this case, the message might be lost. This is like what happens when an application fails immediately
after receiving a message from a queue.

The MQGET call might complete with MQCC_FAILED and MQRC_API_EXIT_ERROR.

If a before API call exit function terminates abnormally, the exit handler can recover from the failure
and pass control to the application without processing the API call. In this event, the exit function must
recover any resources that it owns.

If chained exits are in use, the after API call exits for any before API call exits that had
successfully been driven can themselves be driven. The API call might fail with MQCC_FAILED and
MQRC_API_EXIT_ERROR.

1602 IBM MQ Developing Applications Reference

Example error handling for exit functions

The following diagram shows the points (e N) at which errors can occur. It is only an example to show
how exits behave and should be read together with the following table. In this example, two exit functions
are invoked both before and after each API call to show the behavior with chained exits.

Application ErrPt Exit function API call
----------- ----- ------------- --------

Start

MQCONN -->
 e1
 MQ_INIT_EXIT
 e2
 before MQ_CONNX_EXIT 1
 e3
 before MQ_CONNX_EXIT 2
 e4
 --> MQCONN
 e5
 after MQ_CONNX_EXIT 2
 e6
 after MQ_CONNX_EXIT 1
 e7
 <--
MQOPEN -->
 before MQ_OPEN_EXIT 1
 e8
 before MQ_OPEN_EXIT 2
 e9
 --> MQOPEN
 e10
 after MQ_OPEN_EXIT 2
 e11
 after MQ_OPEN_EXIT 1
 e12
 <--
MQPUT -->
 before MQ_PUT_EXIT 1
 e13
 before MQ_PUT_EXIT 2
 e14
 --> MQPUT
 e15
 after MQ_PUT_EXIT 2
 e16
 after MQ_PUT_EXIT 1
 e17
 <--
MQCLOSE -->
 before MQ_CLOSE_EXIT 1
 e18
 before MQ_CLOSE_EXIT 2
 e19
 --> MQCLOSE
 e20
 after MQ_CLOSE_EXIT 2
 e21
 after MQ_CLOSE_EXIT 1
 e22
 <--
MQDISC -->
 before MQ_DISC_EXIT 1
 e23
 before MQ_DISC_EXIT 2
 e24
 --> MQDISC
 e25
 after MQ_DISC_EXIT 2
 e26
 after MQ_DISC_EXIT 1
 e27

 <--

end

Developing applications reference 1603

The following table lists the actions to be taken at each error point. Only a subset of the error points have
been covered, as the rules shown here can apply to all others. It is the actions that specify the intended
behavior in each case.

Table 838. API exit errors and appropriate actions to take

Err
Pt

Description Actions

e1 Error while setting up environment
setup.

1. Undo environment setup as required
2. Drive no exit functions
3. Fail MQCONN with MQCC_FAILED,

MQRC_API_EXIT_LOAD_ERROR

e2 MQ_INIT_EXIT function completes
with:

• MQXCC_FAILED
• MQXCC_*

• For MQXCC_FAILED:

1. Clean up environment
2. Fail MQCONN with MQCC_FAILED,

MQRC_API_EXIT_INIT_ERROR
• For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_* 1

2. Clean up environment

e3 Before MQ_CONNX_EXIT 1 function
completes with:

• MQXCC_FAILED
• MQXCC_*

• For MQXCC_FAILED:

1. Drive MQ_TERM_EXIT function
2. Clean up environment
3. Fail MQCONN call with MQCC_FAILED,

MQRC_API_EXIT_ERROR
• For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_* 1

2. Drive MQ_TERM_EXIT function if required
3. Clean up environment if required

e4 Before MQ_CONNX_EXIT 2 function
completes with:

• MQXCC_FAILED
• MQXCC_*

• For MQXCC_FAILED:

1. Drive after MQ_CONNX_EXIT 1 function
2. Drive MQ_TERM_EXIT function
3. Clean up environment
4. Fail MQCONN call with MQCC_FAILED,

MQRC_API_EXIT_ERROR
• For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_* 1

2. Drive after MQ_CONNX_EXIT 1 function if exit not
suppressed

3. Drive MQ_TERM_EXIT function if required
4. Clean up environment if required

1604 IBM MQ Developing Applications Reference

Table 838. API exit errors and appropriate actions to take (continued)

Err
Pt

Description Actions

e5 MQCONN call fails. 1. Pass MQCONN CompCode and Reason
2. Drive after MQ_CONNX_EXIT 2 function if the before

MQ_CONNX_EXIT 2 succeeded and the exit is not suppressed
3. Drive after MQ_CONNX_EXIT 1 function if the before

MQ_CONNX_EXIT 1 succeeded and the exit is not suppressed
4. Drive MQ_TERM_EXIT function
5. Clean up environment

e6 After MQ_CONNX_EXIT 2 function
completes with:

• MQXCC_FAILED
• MQXCC_*

• For MQXCC_FAILED:

1. Drive after MQ_CONNX_EXIT 1 function
2. Complete MQCONN call with MQCC_FAILED,

MQRC_API_EXIT_ERROR
• For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_* 1

2. Drive after MQ_CONNX_EXIT 1 function if required

e7 After MQ_CONNX_EXIT 1 function
completes with:

• MQXCC_FAILED
• MQXCC_*

• For MQXCC_FAILED, complete MQCONN call with
MQCC_FAILED, MQRC_API_EXIT_ERROR

• For MQXCC_*, act as for the values of MQXCC_* and MQXR2_* 1

e8 Before MQ_OPEN_EXIT 1 function
completes with:

• MQXCC_FAILED
• MQXCC_*

• For MQXCC_FAILED, complete MQOPEN call with
MQCC_FAILED, MQRC_API_EXIT_ERROR

• For MQXCC_*, act as for the values of MQXCC_* and MQXR2_* 1

e9 Before MQ_OPEN_EXIT 2 function
completes with:

• MQXCC_FAILED
• MQXCC_*

• For MQXCC_FAILED:

1. Drive after MQ_OPEN_EXIT 1 function
2. Complete MQOPEN call with MQCC_FAILED,

MQRC_API_EXIT_ERROR
• For MQXCC_*, act as for the values of MQXCC_* and MQXR2_* 1

e1
0

MQOPEN call fails 1. Pass MQOPEN CompCode and Reason
2. Drive after MQ_OPEN_EXIT 2 function if exit not suppressed
3. Drive after MQ_OPEN_EXIT 1 function if exit not suppressed

and if chained exits not suppressed

Developing applications reference 1605

Table 838. API exit errors and appropriate actions to take (continued)

Err
Pt

Description Actions

e1
1

After MQ_OPEN_EXIT 2 function
completes with:

• MQXCC_FAILED
• MQXCC_*

• For MQXCC_FAILED:

1. Drive after MQ_OPEN_EXIT 1 function
2. Complete MQOPEN call with MQCC_FAILED,

MQRC_API_EXIT_ERROR
• For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_* 1

2. Drive after MQ_OPEN_EXIT 1 function if exit not suppressed

e2
5

After MQ_DISC_EXIT 2 function
completes with:

• MQXCC_FAILED
• MQXCC_*

• For MQXCC_FAILED:

1. Drive after MQ_DISC_EXIT 1 function
2. Drive MQ_TERM_EXIT function
3. Clean up exit execution environment
4. Complete MQDISC call with MQCC_FAILED,

MQRC_API_EXIT_ERROR
• For MQXCC_*

1. Act as for the values of MQXCC_* and MQXR2_* 1

2. Drive MQ_TERM_EXIT function
3. Clean up exit execution environment

Note:

1. The values of MQXCC_* and MQXR2_* and their corresponding actions are defined in How queue
managers process exit functions.

ExitResponse fields set incorrectly
This topic gives information about what would happen when the ExitResponse field is set to anything but
the supported values.

If the ExitResponse field is set to a value other than one of the supported values, the following actions
apply:

• For a before MQCONN or MQDISC API exit function:

– The ExitResponse2 value is ignored.
– No further before exit functions in the exit chain (if any) are invoked; the API call itself is not issued.
– For any before exits that were successfully called, the after exits are called in reverse order.
– If registered, the termination exit functions for those before MQCONN or MQDISC exit functions in the

chain that were successfully invoked are driven to clean up after these exit functions.
– The MQCONN or MQDISC call fails with MQRC_API_EXIT_ERROR.

• For a before IBM MQ API exit function other than MQCONN or MQDISC:

– The ExitResponse2 value is ignored.
– No further before or after data conversion functions in the exit chain (if any) are invoked.
– For any before exits that were successfully called, the after exits are called in reverse order.
– The IBM MQ API call itself is not issued.
– The IBM MQ API call fails with MQRC_API_EXIT_ERROR.

1606 IBM MQ Developing Applications Reference

• For an after MQCONN or MQDISC API exit function:

– The ExitResponse2 value is ignored.
– The remaining exit functions that were successfully called before the API call are called in reverse

order.
– If registered, the termination exit functions for those before or after MQCONN or MQDISC exit

functions in the chain that were successfully invoked are driven to clean up after the exit.
– A CompCode of the more severe of MQCC_WARNING and the CompCode returned by the exit is

returned to the application.
– A Reason of MQRC_API_EXIT_ERROR is returned to the application.
– The IBM MQ API call is successfully issued.

• For an after IBM MQ API call exit function other than MQCONN or MQDISC:

– The ExitResponse2 value is ignored.
– The remaining exit functions that were successfully called before the API call are called in reverse

order.
– A CompCode of the more severe of MQCC_WARNING and the CompCode returned by the exit is

returned to the application.
– A Reason of MQRC_API_EXIT_ERROR is returned to the application.
– The IBM MQ API call is successfully issued.

• For the before data conversion on get exit function:

– The ExitResponse2 value is ignored.
– The remaining exit functions that were successfully called before the API call are called in reverse

order.
– The message is not converted, and the unconverted message is returned to the application.
– A CompCode of the more severe of MQCC_WARNING and the CompCode returned by the exit is

returned to the application.
– A Reason of MQRC_API_EXIT_ERROR is returned to the application.
– The IBM MQ API call is successfully issued.

Note: As the error is with the exit, it is better to return MQRC_API_EXIT_ERROR than to return
MQRC_NOT_CONVERTED.

If an exit function sets the ExitResponse2 field to a value other than one of the supported values, a value
of MQXR2_DEFAULT_CONTINUATION is assumed instead.

Installable services interface reference information
This collection of topics provides reference information for the installable services.

The functions and data types are listed in alphabetical order within the group for each service type.

Related tasks
Extending queue manager facilities

Configuring installable services
Related reference

Installable services and components for UNIX, Linux and Windows

Installable services and components for IBM i

Installable services interface reference information for IBMi

Developing applications reference 1607

Use this information to understand the reference information for the installable services for IBM i.

How the functions are shown
How the installable services functions are documented.

For each function there is a description, including the function identifier (for MQZEP).

The parameters are shown listed in the order they must occur. They must all be present.

Each parameter name is followed by its data type. These are the elementary data types described in the
“Elementary data types” on page 235.

The C language invocation is also given, after the description of the parameters.

MQZ_AUTHENTICATE_USER - Authenticate user
This function is provided by an MQZAS_VERSION_5 authorization service component, and is invoked by
the queue manager to authenticate a user, or to set identity context fields. It is invoked when the IBM MQ
user application context is established.

The application context is established during connect calls at the point where the application's user
context is initialized, and at each point where the application's user context is changed. Each time a
connect call is made, the application's user context information is reacquired in the IdentityContext
field.

The function identifier for this function (for MQZEP) is MQZID_AUTHENTICATE_USER.

Syntax
MQZ_AUTHENTICATE_USER (QMgrName , SecurityParms , ApplicationContext , IdentityContext ,
CorrelationPtr , ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

SecurityParms
Type: MQCSP - input

Security parameters. Data relating to the user ID, password, and authentication
type. If the AuthenticationType attribute of the MQCSP structure is specified as
MQCSP_AUTH_USER_ID_AND_PWD, both the user ID and password are compared against the
equivalent fields in the IdentityContext (MQZIC) parameter to determine whether they match . For
more information, see “MQCSP - Security parameters” on page 335.

During an MQCONN MQI call this parameter contains null, or default values.

ApplicationContext
Type: MQZAC - input

Application context. Data relating to the calling application. See MQZAC - Application context for
details.

During every MQCONN or MQCONNX MQI call, the user context information in the MQZAC structure is
reacquired.

IdentityContext
Type: MQZIC - input/output

1608 IBM MQ Developing Applications Reference

Identity context. On input to the authenticate user function, this identifies the current identity context.
The authenticate user function can change this, at which point the queue manager adopts the new
identity context. See MQZIC - Identity context for more details on the MQZIC structure.

CorrelationPtr
Type: MQPTR - output

Correlation pointer. Specifies the address of any correlation data. This pointer is subsequently passed
on to other OAM calls.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength parameter
of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation flag. You can specify the following values:
MQZCI_DEFAULT

Continuation dependent on other components.
MQZCI_STOP

Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
For more information about these reason codes, see Messages and reason codes.

C invocation

MQZ_AUTHENTICATE_USER (QMgrName, SecurityParms, ApplicationContext,
 IdentityContext, &CorrelationPtr, ComponentData,
 &Continuation, &CompCode, &Reason);

Declare the parameters passed to the service as follows:

MQCHAR48 QMgrName; /* Queue manager name */

Developing applications reference 1609

MQCSP SecurityParms; /* Security parameters */
MQZAC ApplicationContext; /* Application context */
MQZIC IdentityContext; /* Identity context */
MQPTR CorrelationPtr; /* Correlation pointer */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_CHECK_AUTHORITY - Check authority
This function is provided by a MQZAS_VERSION_1 authorization service component, and is started by the
queue manager to check whether an entity has authority to perform a particular action, or actions, on a
specified object.

The function identifier for this function (for MQZEP) is MQZID_CHECK_AUTHORITY.

Syntax
MQZ_CHECK_AUTHORITY(QMgrName , EntityName , EntityType , ObjectName ,
ObjectType , Authority , ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityName
Type: MQCHAR12 - input

Entity name. The name of the entity whose authorization to the object is to be checked. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the right with blanks. The
name is not terminated by a null character.

It is not essential for this entity to be known to the underlying security service. If it is not known, the
authorizations of the special nobody group (to which all entities are assumed to belong) are used for
the check. An all-blank name is valid and can be used in this way.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityName. It must be one of the following values:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object to which access is required. The maximum length of the string is
48 characters; if it is shorter than that it is padded to the right with blanks. The name is not terminated
by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType
Type: MQLONG - input

1610 IBM MQ Developing Applications Reference

Object type. The type of entity specified by ObjectName. It must be one of the following values:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.

Authority
Type: MQLONG - input

Authority to be checked. If one authorization is being checked, this field is equal to the appropriate
authorization operation (MQZAO_* constant). If more than one authorization is being checked, it is the
bitwise OR of the corresponding MQZAO_* constants.

The following authorizations apply to use of the MQI calls:
MQZAO_CONNECT

Ability to use the MQCONN call.
MQZAO_BROWSE

Ability to use the MQGET call with a browse option.

This allows the MQGMO_BROWSE_FIRST, MQGMO_BROWSE_MSG_UNDER_CURSOR, or
MQGMO_BROWSE_NEXT option to be specified on the MQGET call.

MQZAO_INPUT
Principal. Ability to use the MQGET call with an input option.

This allows the MQOO_INPUT_SHARED, MQOO_INPUT_EXCLUSIVE, or MQOO_INPUT_AS_Q_DEF
option to be specified on the MQOPEN call.

MQZAO_OUTPUT
Ability to use the MQPUT call.

This allows the MQOO_OUTPUT option to be specified on the MQOPEN call.

MQZAO_INQUIRE
Ability to use the MQINQ call.

This allows the MQOO_INQUIRE option to be specified on the MQOPEN call.

MQZAO_SET
Ability to use the MQSET call.

This allows the MQOO_SET option to be specified on the MQOPEN call.

MQZAO_PASS_IDENTITY_CONTEXT
Ability to pass identity context.

Developing applications reference 1611

This allows the MQOO_PASS_IDENTITY_CONTEXT option to be specified on the MQOPEN call, and
the MQPMO_PASS_IDENTITY_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_PASS_ALL_CONTEXT
Ability to pass all context.

This allows the MQOO_PASS_ALL_CONTEXT option to be specified on the MQOPEN call, and the
MQPMO_PASS_ALL_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_IDENTITY_CONTEXT
Ability to set identity context.

This allows the MQOO_SET_IDENTITY_CONTEXT option to be specified on the MQOPEN call, and
the MQPMO_SET_IDENTITY_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_ALL_CONTEXT
Ability to set all context.

This allows the MQOO_SET_ALL_CONTEXT option to be specified on the MQOPEN call, and the
MQPMO_SET_ALL_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_ALTERNATE_USER_AUTHORITY
Ability to use alternate user authority.

This allows the MQOO_ALTERNATE_USER_AUTHORITY option to be specified on the MQOPEN
call, and the MQPMO_ALTERNATE_USER_AUTHORITY option to be specified on the MQPUT1 call.

MQZAO_ALL_MQI
All of the MQI authorizations.

This enables all of the authorizations.

The following authorizations apply to administration of a queue manager:
MQZAO_CREATE

Ability to create objects of a specified type.
MQZAO_DELETE

Ability to delete a specified object.
MQZAO_DISPLAY

Ability to display the attributes of a specified object.
MQZAO_CHANGE

Ability to change the attributes of a specified object.
MQZAO_CLEAR

Ability to delete all messages from a specified queue.
MQZAO_AUTHORIZE

Ability to authorize other users for a specified object.
MQZAO_CONTROL

Ability to start or stop a listener, service, or non-client channel object, and the ability to ping a
non-client channel object.

MQZAO_CONTROL_EXTENDED
Ability to reset a sequence number, or resolve an indoubt message on a non-client channel object.

MQZAO_ALL_ADMIN
Ability to set identity context.

All of the administration authorizations, other than MQZAO_CREATE.

The following authorizations apply to both use of the MQI and to administration of a queue manager:
MQZAO_ALL

All authorizations, other than MQZAO_CREATE.
MQZAO_NONE

No authorizations.

1612 IBM MQ Developing Applications Reference

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

If the call to a component fails (that is, CompCode returns MQCC_FAILED), and the Continuation
parameter is MQZCI_DEFAULT or MQZCI_CONTINUE, the queue manager continues to call other
components if there are any.

If the call succeeds (that is, CompCode returns MQCC_OK) no other components are called no matter
what the setting of Continuation is.

If the call fails and the Continuation parameter is MQZCI_STOP then no other components are called
and the error is returned to the queue manager. Components have no knowledge of previous calls, so
the Continuation parameter is always set to MQZCI_DEFAULT before the call.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
For more information about these reason codes, see API completion and reason codes.

Developing applications reference 1613

C invocation

MQZ_CHECK_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
 ObjectType, Authority, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_CHECK_AUTHORITY_2 - Check authority (extended)
This function is provided by a MQZAS_VERSION_2 authorization service component, and is started by the
queue manager to check whether an entity has authority to perform a particular action, or actions, on a
specified object.

The function identifier for this function (for MQZEP) is MQZID_CHECK_AUTHORITY.

MQZ_CHECK_AUTHORITY_2 is like MQZ_CHECK_AUTHORITY, but with the EntityName parameter
replaced by the EntityData parameter.

Syntax
MQZ_CHECK_AUTHORITY_2(QMgrName , EntityData , EntityType , ObjectName ,
ObjectType , Authority , ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityData
Type: MQZED - input

Entity data. Data relating to the entity with authorization to the object that is to be checked. See
“MQZED - Entity descriptor” on page 1665 for details.

It is not essential for this entity to be known to the underlying security service. If it is not known, the
authorizations of the special nobody group (to which all entities are assumed to belong) are used for
the check. An all-blank name is valid and can be used in this way.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityData. It must be one of the following values:
MQZAET_PRINCIPAL

Principal.

1614 IBM MQ Developing Applications Reference

MQZAET_GROUP
Group.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object to which access is required. The maximum length of the string is
48 characters; if it is shorter than that it is padded to the right with blanks. The name is not terminated
by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType
Type: MQLONG - input

Object type. The type of entity specified by ObjectName. It must be one of the following values:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.
MQOT_TOPIC

Topic.

Authority
Type: MQLONG - input

Authority to be checked. If one authorization is being checked, this field is equal to the appropriate
authorization operation (MQZAO_* constant). If more than one authorization is being checked, it is the
bitwise OR of the corresponding MQZAO_* constants.

The following authorizations apply to use of the MQI calls:
MQZAO_CONNECT

Ability to use the MQCONN call.
MQZAO_BROWSE

Ability to use the MQGET call with a browse option.

This allows the MQGMO_BROWSE_FIRST, MQGMO_BROWSE_MSG_UNDER_CURSOR, or
MQGMO_BROWSE_NEXT option to be specified on the MQGET call.

MQZAO_INPUT
Principal. Ability to use the MQGET call with an input option.

This allows the MQOO_INPUT_SHARED, MQOO_INPUT_EXCLUSIVE, or MQOO_INPUT_AS_Q_DEF
option to be specified on the MQOPEN call.

Developing applications reference 1615

MQZAO_OUTPUT
Ability to use the MQPUT call.

This allows the MQOO_OUTPUT option to be specified on the MQOPEN call.

MQZAO_INQUIRE
Ability to use the MQINQ call.

This allows the MQOO_INQUIRE option to be specified on the MQOPEN call.

MQZAO_SET
Ability to use the MQSET call.

This allows the MQOO_SET option to be specified on the MQOPEN call.

MQZAO_PASS_IDENTITY_CONTEXT
Ability to pass identity context.

This allows the MQOO_PASS_IDENTITY_CONTEXT option to be specified on the MQOPEN call, and
the MQPMO_PASS_IDENTITY_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_PASS_ALL_CONTEXT
Ability to pass all context.

This allows the MQOO_PASS_ALL_CONTEXT option to be specified on the MQOPEN call, and the
MQPMO_PASS_ALL_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_IDENTITY_CONTEXT
Ability to set identity context.

This allows the MQOO_SET_IDENTITY_CONTEXT option to be specified on the MQOPEN call, and
the MQPMO_SET_IDENTITY_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_ALL_CONTEXT
Ability to set all context.

This allows the MQOO_SET_ALL_CONTEXT option to be specified on the MQOPEN call, and the
MQPMO_SET_ALL_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_ALTERNATE_USER_AUTHORITY
Ability to use alternate user authority.

This allows the MQOO_ALTERNATE_USER_AUTHORITY option to be specified on the MQOPEN
call, and the MQPMO_ALTERNATE_USER_AUTHORITY option to be specified on the MQPUT1 call.

MQZAO_ALL_MQI
All of the MQI authorizations.

This enables all of the authorizations.

The following authorizations apply to administration of a queue manager:
MQZAO_CREATE

Ability to create objects of a specified type.
MQZAO_DELETE

Ability to delete a specified object.
MQZAO_DISPLAY

Ability to display the attributes of a specified object.
MQZAO_CHANGE

Ability to change the attributes of a specified object.
MQZAO_CLEAR

Ability to delete all messages from a specified queue.
MQZAO_AUTHORIZE

Ability to authorize other users for a specified object.

1616 IBM MQ Developing Applications Reference

MQZAO_CONTROL
Ability to start or stop a listener, service, or non-client channel object, and the ability to ping a
non-client channel object.

MQZAO_CONTROL_EXTENDED
Ability to reset a sequence number, or resolve an indoubt message on a non-client channel object.

MQZAO_ALL_ADMIN
Ability to set identity context.

All of the administration authorizations, other than MQZAO_CREATE.

The following authorizations apply to both use of the MQI and to administration of a queue manager:
MQZAO_ALL

All authorizations, other than MQZAO_CREATE.
MQZAO_NONE

No authorizations.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.

Developing applications reference 1617

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_CHECK_AUTHORITY_2 (QMgrName, &EntityData, EntityType,
 ObjectName, ObjectType, Authority, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity data */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_CHECK_PRIVILEGED - Check if user is privileged
This function is provided by an MQZAS_VERSION_6 authorization service component, and is invoked by
the queue manager to determine whether a specified user is a privileged user.

The function identifier for this function (for MQZEP) is MQZID_CHECK_PRIVILEGED.

Syntax
MQZ_CHECK_PRIVILEGED(QMgrName , EntityData , EntityType , ComponentData ,
Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityData
Type: MQZED - input

Entity data. Data relating to the entity that is to be checked. For more information, see “MQZED -
Entity descriptor” on page 1665.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityData. It must be one of the following values:
MQZAET_PRINCIPAL

Principal.

1618 IBM MQ Developing Applications Reference

MQZAET_GROUP
Group.

ComponentData
Type: MQBYTExComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

If the call to a component fails (that is, CompCode returns MQCC_FAILED), and the Continuation
parameter is MQZCI_DEFAULT or MQZCI_CONTINUE, the queue manager continues to call other
components if there are any.

If the call succeeds (that is, CompCode returns MQCC_OK) no other components are called no matter
what the setting of Continuation is.

If the call fails and the Continuation parameter is MQZCI_STOP then no other components are called
and the error is returned to the queue manager. Components have no knowledge of previous calls, so
the Continuation parameter is always set to MQZCI_DEFAULT before the call.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_PRIVILEGED

(2584, X'A18') This user is not a privileged user ID.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.

Developing applications reference 1619

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_CHECK_PRIVILEGED (QMgrName, &EntityData, EntityType,
 ComponentData, &Continuation,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity name */
MQLONG EntityType; /* Entity type */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_COPY_ALL_AUTHORITY - Copy all authority
This function is provided by an authorization service component. It is started by the queue manager to
copy all of the authorizations that are currently in force for a reference object to another object.

The function identifier for this function (for MQZEP) is MQZID_COPY_ALL_AUTHORITY.

Syntax
MQZ_COPY_ALL_AUTHORITY(QMgrName , RefObjectName , ObjectName , ObjectType ,
ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

RefObjectName
Type: MQCHAR48 - input

Reference object name. The name of the reference object, the authorizations for which are to be
copied. The maximum length of the string is 48 characters; if it is shorter than that it is padded to the
right with blanks. The name is not terminated by a null character.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object for which accesses are to be set. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with blanks. The name is not
terminated by a null character.

ObjectType
Type: MQLONG - input

Object type. The type of entity specified by RefObjectName and ObjectName. It must be one of the
following values:

1620 IBM MQ Developing Applications Reference

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

MQOT_TOPIC
Topic.

ComponentData
Type: MQBYTExComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength parameter
of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

Developing applications reference 1621

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_REF_OBJECT

(2294, X'8F6') Reference object unknown.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_COPY_ALL_AUTHORITY (QMgrName, RefObjectName, ObjectName, ObjectType,
 ComponentData, &Continuation, &CompCode,
 &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 RefObjectName; /* Reference object name */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_DELETE_AUTHORITY - Delete authority
This function is provided by an authorization service component, and is started by the queue manager to
delete all of the authorizations associated with the specified object.

The function identifier for this function (for MQZEP) is MQZID_DELETE_AUTHORITY.

Syntax
MQZ_DELETE_AUTHORITY(QMgrName , ObjectName , ObjectType , ComponentData ,
Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object for which accesses are to be deleted. The maximum length of
the string is 48 characters; if it is shorter than that it is padded to the right with blanks. The name is
not terminated by a null character.

1622 IBM MQ Developing Applications Reference

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType
Type: MQLONG - input

Object type. The type of entity specified by ObjectName. It must be one of the following values:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.
MQOT_TOPIC

Topic.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength parameter
of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.

Developing applications reference 1623

MQCC_FAILED
Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_DELETE_AUTHORITY (QMgrName, ObjectName, ObjectType, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_ENUMERATE_AUTHORITY_DATA - Enumerate authority data
This function is provided by an MQZAS_VERSION_4 authorization service component, and is started
repeatedly by the queue manager to retrieve all of the authority data that matches the selection criteria
specified on the first invocation.

The function identifier for this function (for MQZEP) is MQZID_ENUMERATE_AUTHORITY_DATA.

Syntax
MQZ_ENUMERATE_AUTHORITY_DATA(QMgrName , StartEnumeration , Filter ,
AuthorityBufferLength , AuthorityBuffer , AuthorityDataLength , ComponentData ,
Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

StartEnumeration
Type: MQLONG - input

1624 IBM MQ Developing Applications Reference

Flag indicating whether call can start enumeration. This indicates whether the call can start the
enumeration of authority data, or continue the enumeration of authority data started by a previous call
to MQZ_ENUMERATE_AUTHORITY_DATA. The value is one of the following values:
MQZSE_START

Start enumeration. The call is started with this value to start the enumeration of authority data.
The Filter parameter specifies the selection criteria to be used to select the authority data
returned by this and successive calls.

MQZSE_CONTINUE
Continue enumeration. The call is started with this value to continue the enumeration of authority
data. The Filter parameter is ignored in this case, and can be specified as the null pointer
(the selection criteria are determined by the Filter parameter specified by the call that had
StartEnumeration set to MQZSE_START).

Filter
Type: MQZAD - input

Filter. If StartEnumeration is MQZSE_START, Filter specifies the selection criteria to be used to
select the authority data to return. If Filter is the null pointer, no selection criteria are used, that is,
all authority data is returned. See “MQZAD - Authority data” on page 1662 for details of the selection
criteria that can be used.

If StartEnumeration is MQZSE_CONTINUE, Filter is ignored, and can be specified as the null
pointer.

AuthorityBufferLength
Type: MQLONG - input

Length of AuthorityBuffer. This is the length in bytes of the AuthorityBuffer parameter. The
authority buffer must be large enough to accommodate the data to be returned.

AuthorityBuffer
Type: MQZAD - output

Authority data. This is the buffer in which the authority data is returned. The buffer must be large
enough to accommodate an MQZAD structure, an MQZED structure, plus the longest entity name and
longest domain name defined.

Note: Note: This parameter is defined as an MQZAD, as the MQZAD always occurs at the start of the
buffer. However, if the buffer is declared as an MQZAD, the buffer will be too small - it must be bigger
than an MQZAD so that it can accommodate the MQZAD, MQZED, plus entity and domain names.

AuthorityDataLength
Type: MQLONG - output

Length of data returned in AuthorityBuffer. If the authority buffer is too small,
AuthorityDataLength is set to the length of the buffer required, and the call returns completion
code MQCC_FAILED and reason code MQRC_BUFFER_LENGTH_ERROR.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength parameter
of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

Developing applications reference 1625

For MQZ_ENUMERATE_AUTHORITY_DATA, this has the same effect as MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_NO_DATA_AVAILABLE

(2379, X'94B') No data available.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_ENUMERATE_AUTHORITY_DATA (QMgrName, StartEnumeration, &Filter,
 AuthorityBufferLength,
 &AuthorityBuffer,
 &AuthorityDataLength, ComponentData,
 &Continuation, &CompCode,
 &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQLONG StartEnumeration; /* Flag indicating whether call should
 start enumeration */
MQZAD Filter; /* Filter */
MQLONG AuthorityBufferLength; /* Length of AuthorityBuffer */
MQZAD AuthorityBuffer; /* Authority data */
MQLONG AuthorityDataLength; /* Length of data returned in
 AuthorityBuffer */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

1626 IBM MQ Developing Applications Reference

MQZ_FREE_USER - Free user
This function is provided by a MQZAS_VERSION_5 authorization service component, and is started by the
queue manager to free associated allocated resource.

It is started when an application has finished running under all user contexts, for example during an
MQDISC MQI call.

The function identifier for this function (for MQZEP) is MQZID_FREE_USER.

Syntax
MQZ_FREE_USER(QMgrName , FreeParms , ComponentData , Continuation , CompCode ,
Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

FreeParms
Type: MQZFP - input

Free parameters. A structure containing data relating to the resource to be freed. See “MQZFP - Free
parameters” on page 1667 for details.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength parameter
of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation flag. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on other components.
MQZCI_STOP

Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

Developing applications reference 1627

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_AUTHENTICATE_USER (QMgrName, SecurityParms, ApplicationContext,
 IdentityContext, CorrelationPtr, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQZFP FreeParms; /* Resource to be freed */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_GET_AUTHORITY - Get authority
This function is provided by a MQZAS_VERSION_1 authorization service component, and is started by the
queue manager to retrieve the authority that an entity has to access the specified object, including (if the
entity is a principal) authorities possessed by the groups in which the principal is a member. Authorities
from generic profiles are included in the returned authority set.

The function identifier for this function (for MQZEP) is MQZID_GET_AUTHORITY.

Syntax
MQZ_GET_AUTHORITY(QMgrName , EntityName , EntityType , ObjectName ,
ObjectType , Authority , ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityName
Type: MQCHAR12 - input

Entity name. The name of the entity whose access to the object is to be retrieved. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the right with blanks. The
name is not terminated by a null character.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityName. It must be one of the following values:

1628 IBM MQ Developing Applications Reference

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object to which access is to be retrieved. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with blanks. The name is not
terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType
Type: MQLONG - input

Object type. The type of entity specified by ObjectName. It must be one of the following values:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.
MQOT_TOPIC

Topic.

Authority
Type: MQLONG - input

Authority of entity. If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the bitwise OR of the
corresponding MQZAO_* constants.

ComponentData
Type: MQBYTE×ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:

Developing applications reference 1629

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_GET_AUTHORITY, this has the same effect as MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_GET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
 ObjectType, &Authority, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

1630 IBM MQ Developing Applications Reference

MQZ_GET_AUTHORITY_2 - Get authority (extended)
This function is provided by a MQZAS_VERSION_2 authorization service component, and is started by the
queue manager to retrieve the authority that an entity has to access the specified object.

The function identifier for this function (for MQZEP) is MQZID_GET_AUTHORITY.

MQZ_GET_AUTHORITY_2 is like MQZ_GET_AUTHORITY, but with the EntityName parameter replaced
by the EntityData parameter.

Syntax
MQZ_GET_AUTHORITY_2(QMgrName , EntityData , EntityType , ObjectName ,
ObjectType , Authority , ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityData
Type: MQZED - input

Entity data. Data relating to the entity for which authorization to the object is to be retrieved. See
“MQZED - Entity descriptor” on page 1665 for details.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityData. It must be one of the following values:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object for which the entity authority is to be retrieved. The maximum
length of the string is 48 characters; if it is shorter than that it is padded to the right with blanks. The
name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType
Type: MQLONG - input

Object type. The type of entity specified by ObjectName. It must be one of the following values:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.

Developing applications reference 1631

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

MQOT_TOPIC
Topic.

Authority
Type: MQLONG - input

Authority of entity. If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the bitwise OR of the
corresponding MQZAO_* constants.

ComponentData
Type: MQBYTE×ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

1632 IBM MQ Developing Applications Reference

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_GET_AUTHORITY_2 (QMgrName, &EntityData, EntityType, ObjectName,
 ObjectType, &Authority, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity data */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_GET_EXPLICIT_AUTHORITY - Get explicit authority
This function is provided by a MQZAS_VERSION_1 authorization service component, and is started by the
queue manager to retrieve the authority that an entity has to access the specified object, including (if the
entity is a principal) authorities possessed by the groups in which the principal is a member. Authorities
from generic profiles are included in the returned authority set.

On AIX and Linux, for the built-in IBM MQ object authority manager (OAM), the returned authority is that
possessed only by the principal's primary group.

The function identifier for this function (for MQZEP) is MQZID_GET_EXPLICIT_AUTHORITY.

Syntax
MQZ_GET_EXPLICIT_AUTHORITY(QMgrName , EntityName , EntityType , ObjectName ,
ObjectType , Authority , ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityName
Type: MQCHAR12 - input

Developing applications reference 1633

Entity name. The name of the entity for which access to the object is to be retrieved. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the right with blanks. The
name is not terminated by a null character.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityName. It must be one of the following values:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object for which the entity authority is to be retrieved. The maximum
length of the string is 48 characters; if it is shorter than that it is padded to the right with blanks. The
name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType
Type: MQLONG - input

Object type. The type of entity specified by ObjectName. It must be one of the following values:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.
MQOT_TOPIC

Topic.

Authority
Type: MQLONG - input

Authority of entity. If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the bitwise OR of the
corresponding MQZAO_* constants.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

1634 IBM MQ Developing Applications Reference

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_GET_AUTHORITY, this has the same effect as MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_GET_EXPLICIT_AUTHORITY (QMgrName, EntityName, EntityType,
 ObjectName, ObjectType, &Authority,
 ComponentData, &Continuation,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

Developing applications reference 1635

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_GET_EXPLICIT_AUTHORITY_2 - Get explicit authority (extended)
This function is provided by a MQZAS_VERSION_2 authorization service component, and is started by
the queue manager to retrieve the authority that a named group has to access a specified object (but
without the additional authority of the nobody group), or the authority that the primary group of the
named principal has to access a specified object.

The function identifier for this function (for MQZEP) is MQZID_GET_EXPLICIT_AUTHORITY.

MQZ_GET_EXPLICIT_AUTHORITY_2 is like MQZ_GET_EXPLICIT_AUTHORITY, but with the EntityName
parameter replaced by the EntityData parameter.

Syntax
MQZ_GET_EXPLICIT_AUTHORITY_2(QMgrName , EntityData , EntityType , ObjectName ,
ObjectType , Authority , ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityData
Type: MQZED - input

Entity data. Data relating to the entity whose authorization to the object is to be retrieved. See
“MQZED - Entity descriptor” on page 1665 for details.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityData. It must be one of the following values:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object for which the entity authority is to be retrieved. The maximum
length of the string is 48 characters; if it is shorter than that it is padded to the right with blanks. The
name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

1636 IBM MQ Developing Applications Reference

ObjectType
Type: MQLONG - input

Object type. The type of entity specified by ObjectName. It must be one of the following values:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.
MQOT_TOPIC

Topic.

Authority
Type: MQLONG - input

Authority of entity. If the entity has one authority, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If it has more than one authority, this field is the bitwise OR of the
corresponding MQZAO_* constants.

ComponentData
Type: MQBYTE×ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Developing applications reference 1637

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_GET_EXPLICIT_AUTHORITY_2 (QMgrName, &EntityData, EntityType,
 ObjectName, ObjectType, &Authority,
 ComponentData, &Continuation,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity data */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_INIT_AUTHORITY - Initialize authorization service
This function is provided by an authorization service component, and is started by the queue manager
during configuration of the component. It is expected to call MQZEP in order to provide information to the
queue manager.

The function identifier for this function (for MQZEP) is MQZID_INIT_AUTHORITY.

Syntax
MQZ_INIT_AUTHORITY(Hconfig , Options , QMgrName , ComponentDataLength ,
ComponentData , Version , CompCode , Reason)

1638 IBM MQ Developing Applications Reference

Parameters
Hconfig

Type: MQHCONFIG - input

Configuration handle. This handle represents the particular component being initialized. It is to be
used by the component when calling the queue manager with the MQZEP function.

Options
Type: MQLONG - input

Initialization options. It must be one of the following values:
MQZIO_PRIMARY

Primary initialization.
MQZIO_SECONDARY

Secondary initialization.

QMgrName
Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

ComponentDataLength
Type: MQLONG - input

Length of component data. Length in bytes of the ComponentData area. This length is defined in the
component configuration data.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This is initialized to all zeros before calling the component primary initialization
function. This data is kept by the queue manager on behalf of this particular component; any changes
made to it by any of the functions (including the initialization function) provided by this component are
preserved, and presented the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Version
Type: MQLONG - input/output

Version number. On input to the initialization function, this identifies the highest version number that
the queue manager supports. The initialization function must change this, if necessary, to the version
of the interface which it supports. If on return the queue manager does not support the version
returned by the component, it calls the component MQZ_TERM_AUTHORITY function and makes no
further use of this component.

The following values are supported:
MQZAS_VERSION_1

Version 1.
MQZAS_VERSION_2

Version 2.
MQZAS_VERSION_3

Version 3.
MQZAS_VERSION_4

Version 4.

Developing applications reference 1639

MQZAS_VERSION_5
Version 5.

MQZAS_VERSION_6
IBM WebSphere MQ 6.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_INITIALIZATION_FAILED

(2286, X'8EE') Initialization failed for an undefined reason.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_INIT_AUTHORITY (Hconfig, Options, QMgrName, ComponentDataLength,
 ComponentData, &Version, &CompCode,
 &Reason);

The parameters passed to the service are declared as follows:

MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Initialization options */
MQCHAR48 QMgrName; /* Queue manager name */
MQLONG ComponentDataLength; /* Length of component data */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Version; /* Version number */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_INQUIRE - Inquire authorization service
This function is provided by a MQZAS_VERSION_5 authorization service component, and is started by the
queue manager to query the supported functionality.

Where multiple service components are used, service components are called in reverse order to the order
they were installed in.

The function identifier for this function (for MQZEP) is MQZID_INQUIRE.

1640 IBM MQ Developing Applications Reference

Syntax
MQZ_INQUIRE(QMgrName , SelectorCount , Selectors , IntAttrCount , IntAttrs ,
CharAttrLength , CharAttrs , SelectorReturned , ComponentData , Continuation ,
CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

SelectorCount
Type: MQLONG - input

Number of selectors. The number of selectors supplied in the Selectors parameter.

The value must be in the range 0 through 256.

Selectors
Type: MQLONGxSelectorCount - input

Array of selectors. Each selector identifies a required attribute and must be one of the following:

• MQIACF_INTERFACE_VERSION (integer)
• MQIACF_USER_ID_SUPPORT (integer)
• MQCACF_SERVICE_COMPONENT (character)

Selectors can be specified in any order. The number of selectors in the array is indicated by the
SelectorCount parameter.

Integer attributes identified by selectors are returned in the IntAttrs parameter in the same order
as they appear in Selectors.

Character attributes identified by selectors are returned in the CharAttrs parameter in the same
order as they in appear Selectors.

IntAttrCount
Type: MQLONG - input

Number of integer attributes supplied in the IntAttrs parameter.

The value must be in the range 0 through 256.

IntAttrs
Type: MQLONG x IntAttrCount - output

Integer attributes. Array of integer attributes. The integer attributes are returned in the same order as
the corresponding integer selectors in the Selectors array.

CharAttrCount
Type: MQLONG - input

Length of the character attributes buffer. The length in bytes of the CharAttrs parameter.

The value must be at least the sum of the lengths of the requested character attributes. If no
character attributes are requested, zero is a valid value.

CharAttrs
Type: MQLONG x CharAttrCount - output

Developing applications reference 1641

Character attributes buffer. Buffer containing character attributes, concatenated together. The
character attributes are returned in the same order as the corresponding character selectors in the
Selectors array.

The length of the buffer is given by the CharAttrCount parameter.

SelectorReturned
Type: MQLONG x SelectorCount - input

Selector returned. Array of values identifying which attributes have been returned from the set
requested for by the selectors in the Selectors parameter. The number of values in this array is
indicated by the SelectorCount parameter. Each value in the array relates to the selector from the
corresponding position in the Selectors array. Each value is one of the following:
MQZSL_RETURNED

The attribute requested by the corresponding selector in the Selectors parameter has been
returned.

MQZSL_NOT_RETURNED
The attribute requested by the corresponding selector in the Selectors parameter has not been
returned.

The array is initialized with all values as MQZSL_NOT_RETURNED. When an authorization service
component returns an attribute, it sets the appropriate value in the array to MQZSL_NOT_RETURNED.
This allows any other authorization service components, to which the inquire call is made, to identify
which attributes have already been returned.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

1642 IBM MQ Developing Applications Reference

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_CHAR_ATTRS_TOO_SHORT

Not enough space for character attributes.
MQRC_INT_COUNT_TOO_SMALL

Not enough space for integer attributes.

If CompCode is MQCC_FAILED:
MQRC_SELECTOR_COUNT_ERROR

Number of selectors is not valid.
MQRC_SELECTOR_ERROR

Attribute selector not valid.
MQRC_SELECTOR_LIMIT_EXCEEDED

Too many selectors specified.
MQRC_INT_ATTR_COUNT_ERROR

Number of integer attributes is not valid.
MQRC_INT_ATTRS_ARRAY_ERROR

Integer attributes array not valid.
MQRC_CHAR_ATTR_LENGTH_ERROR

Number of character attributes is not valid.
MQRC_CHAR_ATTRS_ERROR

Character attributes string is not valid.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_INQUIRE (QMgrName, SelectorCount, Selectors, IntAttrCount,
 &IntAttrs, CharAttrLength, &CharAttrs,
 SelectorReturned, ComponentData, &Continuation,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQLONG SelectorCount; /* Selector count */
MQLONG Selectors[n]; /* Selectors */
MQLONG IntAttrCount; /* IntAttrs count */
MQLONG IntAttrs[n]; /* Integer attributes */
MQLONG CharAttrCount; /* CharAttrs count */
MQLONG CharAttrs[n]; /* Chatacter attributes */
MQLONG SelectorReturned[n]; /* Selector returned */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_REFRESH_CACHE - Refresh all authorizations
This function is provided by an MQZAS_VERSION_3 authorization service component, and is invoked by
the queue manager to refresh the list of authorizations held internally by the component.

The function identifier for this function (for MQZEP) is MQZID_REFRESH_CACHE (8L).

Developing applications reference 1643

Syntax
MQZ_REFRESH_CACHE(QMgrName , ComponentData , Continuation , CompCode ,
Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

ComponentData
Type: MQBYTE×ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.

1644 IBM MQ Developing Applications Reference

C invocation

MQZ_REFRESH_CACHE (QMgrName, ComponentData,
 &Continuation, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_SET_AUTHORITY - Set authority
This function is provided by a MQZAS_VERSION_1 authorization service component, and is started by the
queue manager to set the authority that an entity has to access the specified object.

The function identifier for this function (for MQZEP) is MQZID_SET_AUTHORITY.

Note: This function overrides any existing authorities. To preserve any existing authorities you must set
them again with this function.

Syntax
MQZ_SET_AUTHORITY(QMgrName , EntityName , EntityType , ObjectName ,
ObjectType , Authority , ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityName
Type: MQCHAR12 - input

Entity name. The name of the entity for which access to the object is to be retrieved. The maximum
length of the string is 12 characters; if it is shorter than that it is padded to the right with blanks. The
name is not terminated by a null character.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityName. It must be one of the following values:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object to which access is required. The maximum length of the string is
48 characters; if it is shorter than that it is padded to the right with blanks. The name is not terminated
by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

Developing applications reference 1645

ObjectType
Type: MQLONG - input

Object type. The type of entity specified by ObjectName. It must be one of the following values:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.
MQOT_TOPIC

Topic.

Authority
Type: MQLONG - input

Authority of entity. If one authority is being set, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If more than one authority is being set, this field is the bitwise OR of
the corresponding MQZAO_* constants.

ComponentDatarname>
Type: MQBYTExComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_GET_AUTHORITY, this has the same effect as MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

1646 IBM MQ Developing Applications Reference

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_SET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
 ObjectType, Authority, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_SET_AUTHORITY_2 - Set authority (extended)
This function is provided by a MQZAS_VERSION_2 authorization service component, and is started by the
queue manager to set the authority that an entity has to access the specified object.

The function identifier for this function (for MQZEP) is MQZID_SET_AUTHORITY.

Note: This function overrides any existing authorities. To preserve any existing authorities you must set
them again with this function.

MQZ_SET_AUTHORITY_2 is like MQZ_SET_AUTHORITY, but with the EntityName parameter replaced by
the EntityData parameter.

Developing applications reference 1647

Syntax
MQZ_SET_AUTHORITY_2(QMgrName , EntityData , EntityType , ObjectName ,
ObjectType , Authority , ComponentData , Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityData
Type: MQZED - input

Entity data. Data relating to the entity whose authorization to the object is to be set. See “MQZED -
Entity descriptor” on page 1665 for details.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityData. It must be one of the following values:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName
Type: MQCHAR48 - input

Object name. The name of the object to which the entity authority is to be set. The maximum length of
the string is 48 characters; if it is shorter than that it is padded to the right with blanks. The name is
not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType
Type: MQLONG - input

Object type. The type of entity specified by ObjectName. It must be one of the following values:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.

1648 IBM MQ Developing Applications Reference

MQOT_SERVICE
Service.

MQOT_TOPIC
Topic.

Authority
Type: MQLONG - input

Authority of entity. If one authority is being set, this field is equal to the appropriate authorization
operation (MQZAO_* constant). If more than one authority is being set, this field is the bitwise OR of
the corresponding MQZAO_* constants.

ComponentData
Type: MQBYTE×ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.

Developing applications reference 1649

MQRC_UNKNOWN_ENTITY
(2292, X'8F4') Entity unknown to service.

For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_SET_AUTHORITY_2 (QMgrName, &EntityData, EntityType, ObjectName,
 ObjectType, Authority, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity data */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_TERM_AUTHORITY - Terminate authorization service
This function is provided by an authorization service component, and is started by the queue manager
when it no longer requires the services of this component. The function must perform any cleanup
required by the component.

The function identifier for this function (for MQZEP) is MQZID_TERM_AUTHORITY.

Syntax
MQZ_TERM_AUTHORITY(Hconfig , Options , QMgrName , ComponentData , CompCode ,
Reason)

Parameters
Hconfig

Type: MQHCONFIG - input

Configuration handle. This handle represents the particular component being terminated. It is to be
used by the component when calling the queue manager with the MQZEP function.

Options
Type: MQLONG - input

Termination options. It must be one of the following values:
MQZTO_PRIMARY

Primary termination.
MQZTO_SECONDARY

Secondary termination.

QMgrName
Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

1650 IBM MQ Developing Applications Reference

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength parameter
on the MQZ_INIT_AUTHORITY call.

When the MQZ_TERM_AUTHORITY call has completed, the queue manager discards this data.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_TERMINATION_FAILED

(2287, X'8FF') Termination failed for an undefined reason.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_TERM_AUTHORITY (Hconfig, Options, QMgrName, ComponentData,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Termination options */
MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_DELETE_NAME - Delete name
This function is provided by a name service component, and is started by the queue manager to delete an
entry for the specified queue.

The function identifier for this function (for MQZEP) is MQZID_DELETE_NAME.

Developing applications reference 1651

Syntax
MQZ_DELETE_NAME(QMgrName , QName , ComponentData , Continuation , CompCode ,
Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

QName
Type: MQCHAR48 - input

Queue name. The name of the queue for which an entry is to be deleted. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null character.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength parameter
on the MQZ_INIT_NAME call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. It must be one of the following values:
MQZCI_DEFAULT

Continuation dependent on queue manager.
MQZCI_STOP

Do not continue with next component.
For the MQZ_DELETE_NAME command, the queue manager does not attempt to start another
component, no matter what is returned in the Continuation parameter.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_WARNING

Warning (partial completion).
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

1652 IBM MQ Developing Applications Reference

If CompCode is MQCC_WARNING:
MQRC_UNKNOWN_NAME

(2288, X'8F0') Queue name not found.

Note: It might not be possible to return this code if the underlying service responds with success
for this case.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_DELETE_NAME (QMgrName, QName, ComponentData, &Continuation,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 QName; /* Queue name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_INIT_NAME - Initialize name service
This function is provided by a name service component, and is started by the queue manager during
configuration of the component. It is expected to call MQZEP in order to provide information to the queue
manager.

The function identifier for this function (for MQZEP) is MQZID_INIT_NAME.

Syntax
MQZ_INIT_NAME(Hconfig , Options , QMgrName , ComponentDataLength ,
ComponentData , Version , CompCode , Reason)

Parameters
Hconfig

Type: MQHCONFIG - input

Configuration handle. This handle represents the particular component being initialized. It is to be
used by the component when calling the queue manager with the MQZEP function.

Options
Type: MQLONG - input

Initialization options. It must be one of the following values:
MQZIO_PRIMARY

Primary initialization.
MQZIO_SECONDARY

Secondary initialization.

Developing applications reference 1653

QMgrName
Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

ComponentDataLength
Type: MQLONG - input

Length of component data. Length in bytes of the ComponentData area. This length is defined in the
component configuration data.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This is initialized to all zeros before calling the component primary initialization
function. This data is kept by the queue manager on behalf of this particular component; any changes
made to it by any of the functions (including the initialization function) provided by this component are
preserved, and presented the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Version
Type: MQLONG - input/output

Version number. On input to the initialization function, this identifies the highest version number that
the queue manager supports. The initialization function must change this, if necessary, to the version
of the interface which it supports. If on return the queue manager does not support the version
returned by the component, it calls the component MQZ_TERM_NAME function and makes no further
use of this component.

The following values are supported:
MQZAS_VERSION_1

Version 1.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_INITIALIZATION_FAILED

(2286, X'8EE') Initialization failed for an undefined reason.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
For more information about these reason codes, see API completion and reason codes.

1654 IBM MQ Developing Applications Reference

C invocation

MQZ_INIT_NAME (Hconfig, Options, QMgrName, ComponentDataLength,
 ComponentData, &Version, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Initialization options */
MQCHAR48 QMgrName; /* Queue manager name */
MQLONG ComponentDataLength; /* Length of component data */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Version; /* Version number */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_INSERT_NAME - Insert name
This function is provided by a name service component, and is started by the queue manager to insert
an entry for the specified queue, containing the name of the queue manager that owns the queue. If the
queue is already defined in the service, the call fails.

The function identifier for this function (for MQZEP) is MQZID_INSERT_NAME.

Syntax
MQZ_INSERT_NAME(QMgrName , QName , ResolvedQMgrName , ComponentData ,
Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

QName
Type: MQCHAR48 - input

Queue name. The name of the queue for which an entry is to be inserted. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null character.

ResolvedQMgrName
Type: MQCHAR48 - input

Resolved queue manager name. The name of the queue manager to which the queue resolves. This
name is padded with blanks to the full length of the parameter; the name is not terminated by a null
character.

ComponentData
Type: MQBYTE×ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions (including the initialization function) provided by this
component are preserved, and presented the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_NAME call.

Continuation
Type: MQLONG - input/output

Developing applications reference 1655

Continuation indicator set by component. For MQZ_INSERT_NAME, the queue manager does not
attempt to start another component, whatever is returned in the Continuation parameter.

The following values are supported:
MQZCI_DEFAULT

Continuation dependent on queue manager.
MQZCI_STOP

Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_Q_ALREADY_EXISTS

(2290, X'8F2') Queue object already exists.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_INSERT_NAME (QMgrName, QName, ResolvedQMgrName, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 QName; /* Queue name */
MQCHAR48 ResolvedQMgrName; /* Resolved queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_LOOKUP_NAME - Lookup name
This function is provided by a name service component, and is started by the queue manager to retrieve
the name of the owning queue manager, for a specified queue.

The function identifier for this function (for MQZEP) is MQZID_LOOKUP_NAME.

1656 IBM MQ Developing Applications Reference

Syntax
MQZ_LOOKUP_NAME(QMgrName , QName , ResolvedQMgrName , ComponentData ,
Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

QName
Type: MQCHAR48 - input

Queue name. The name of the queue for which an entry is to be resolved. This name is padded with
blanks to the full length of the parameter; the name is not terminated by a null character.

ResolvedQMgrName
Type: MQCHAR48 - output

Resolved queue manager name. If the function completes successfully, this is the name of the queue
manager that owns the queue.

The name returned by the service component must be padded on the right with blanks to the full
length of the parameter; the name must not be terminated by a null character, or contain leading or
embedded blanks.

ComponentData
Type: MQBYTExComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions (including the initialization function) provided by this
component are preserved, and presented the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_NAME call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. For MQZ_LOOKUP_NAME, the queue manager specifies
whether to start another name service component, as follows:

• If CompCode is MQCC_OK, no further components are started, whatever value is returned in
Continuation.

• If CompCode is not MQCC_OK, a further component is started, unless Continuation is
MQZCI_STOP.

The following values are supported:
MQZCI_DEFAULT

Continuation dependent on queue manager.
MQZCI_CONTINUE

Continue with next component.
MQZCI_STOP

Do not continue with next component.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:

Developing applications reference 1657

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_Q_NAME

(2288, X'8F0') Queue name not found.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_LOOKUP_NAME (QMgrName, QName, ResolvedQMgrName, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 QName; /* Queue name */
MQCHAR48 ResolvedQMgrName; /* Resolved queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_TERM_NAME - Terminate name service
This function is provided by a name service component, and is started by the queue manager when it no
longer requires the services of this component. The function must perform any cleanup required by the
component.

The function identifier for this function (for MQZEP) is MQZID_TERM_NAME.

Syntax
MQZ_TERM_NAME(Hconfig , Options , QMgrName , ComponentData , CompCode ,
Reason)

Parameters
Hconfig

Type: MQHCONFIG - input

Configuration handle. This handle represents the particular component being terminated. It is used by
the component when calling the queue manager with the MQZEP function.

1658 IBM MQ Developing Applications Reference

Options
Type: MQLONG - input

Termination options. It must be one of the following values:
MQZTO_PRIMARY

Primary termination.
MQZTO_SECONDARY

Secondary termination.

QMgrName
Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

ComponentData
Type: MQBYTE x ComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component;
any changes made to it by any of the functions (including the initialization function) provided by this
component are preserved, and presented the next time one of these component functions is called.

Component data is in shared memory accessible to all processes.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_NAME call.

When the MQZ_TERM_NAME call has completed, the queue manager discards this data.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_TERMINATION_FAILED

(2287, X'8FF') Termination failed for an undefined reason.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_TERM_NAME (Hconfig, Options, QMgrName, ComponentData, &CompCode,
 &Reason);

Developing applications reference 1659

The parameters passed to the service are declared as follows:

MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Termination options */
MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZAC - Application context
The MQZAC structure is used on the MQZ_AUTHENTICATE_USER call for the ApplicationContext
parameter. This parameter specifies data related to the calling application.

Table 1 summarizes the fields in the structure.

Table 839. Fields in MQZAC

Field Description

StrucId Structure identifier

Version Structure version number

ProcessId Process identifier

ThreadId Thread identifier

ApplName Application name

UserID User identifier

EffectiveUserID Effective user identifier

Environment Environment

CallerType Caller type

AuthenticationType Authentication type

BindType Bind type

Fields
StrucId

Type: MQCHAR4 - input

Structure identifier. The value is as follows:
MQZAC_STRUC_ID

Identifier for application context structure.

For the C programming language, the constant MQZAC_STRUC_ID_ARRAY is also defined; this has
the same value as MQZAC_STRUC_ID, but is an array of characters instead of a string.

Version
Type: MQLONG - input

Structure version number. The value is as follows:
MQZAC_VERSION_1

Version-1 application context structure. The constant MQZAC_CURRENT_VERSION specifies the
version number of the current version.

ProcessId
Type: MQPID - input

Process identifier of the application.

1660 IBM MQ Developing Applications Reference

ThreadId
Type: MQTID - input

Thread identifier of the application.

ApplName
Type: MQCHAR28 - input

Application name.

UserID
Type: MQCHAR12 - input

User identifier. On AIX and Linux this field specifies the application's real user ID. On Windows this
field specifies the application's user ID.

EffectiveUserID
Type: MQCHAR12 - input

Effective user identifier. On AIX and Linux this field specifies the application's effective user ID. On
Windows this field is blank.

Environment
Type: MQLONG - input

Environment. This field specifies the environment from which the call was made. The field is one of
the following values:
MQXE_COMMAND_SERVER

Command server
MQXE_MQSC

runmqsc command interpreter
MQXE_MCA

Message channel agent MQXE_OTHER
MQXE_OTHER

Undefined environment

CallerType
Type: MQLONG - input

Caller Type. This field specifies the type of program that made the call. The field is one of the following
values:
MQXACT_EXTERNAL

The call is external to the queue manager.
MQXACT_INTERNAL

The call is internal to the queue manager.

AuthenticationType
Type: MQLONG - input

Authentication Type. This field specifies the type of authentication being performed. The field is one of
the following values:
MQZAT_INITIAL_CONTEXT

The authentication call is due to user context being initialized. This value is used during an
MQCONN or MQCONNX call.

MQZAT_CHANGE_CONTEXT
The authentication call is due to the user context being changed. This value is used when the MCA
changes the user context. Parent topic: MQZAC -

BindType
Type: MQLONG - input

Bind Type. This field specifies the type of binding in use. The field is one of the following values:

Developing applications reference 1661

MQCNO_FASTPATH_BINDING
Fastpath binding.

MQCNO_SHARED_BINDING
Shared binding.

MQCNO_ISOLATED_BINDING
Isolated binding.

C declaration
Declare the fields of the structure as follows:

typedef struct tagMQZAC MQZAC;
struct tagMQZAC {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQPID ProcessId; /* Process identifier */
 MQTID ThreadId; /* Thread identifier */
 MQCHAR28 ApplName; /* Application name */
 MQCHAR12 UserID; /* User identifier */
 MQCHAR12 EffectiveUserID; /* Effective user identifier */
 MQLONG Environment; /* Environment */
 MQLONG CallerType; /* Caller type */
 MQLONG AuthenticationType; /* Authentication type */
 MQLONG BindType; /* Bind type */
};

MQZAD - Authority data
The MQZAD structure is used on the MQZ_ENUMERATE_AUTHORITY_DATA call for two parameters, one
input and one output.

See “MQZ_ENUMERATE_AUTHORITY_DATA - Enumerate authority data” on page 1624 for further
information on the Filter and AuthorityBuffer parameters:

• MQZAD is used for the Filter parameter which is input to the call. This parameter specifies the
selection criteria that are to be used to select the authority data returned by the call.

• MQZAD is also used for the AuthorityBuffer parameter which is output from the call. This parameter
specifies the authorizations for one combination of profile name, object type, and entity.

Table 1. summarizes the fields in the structure.

Table 840. Fields in MQZAD

Field Description

StrucId Structure identifier

Version Structure version number

ProfileName Profile name

ObjectType Object type

Authority Authority

EntityDataPtr Pointer to entity data

EntityType Entity type

Options Options

Fields
StrucId

Type: MQCHAR4 - input

1662 IBM MQ Developing Applications Reference

Structure identifier. The value is as follows:
MQZAD_STRUC_ID

Identifier for authority data structure.

For the C programming language, the constant MQZAD_STRUC_ID_ARRAY is also defined; this has
the same value as MQZAD_STRUC_ID, but is an array of characters instead of a string.

Version
Type: MQLONG - input

Structure version number. The value is as follows:
MQZAD_VERSION_1

Version-1 application context structure. The constant MQZAD_CURRENT_VERSION specifies the
version number of the current version.

The following constant specifies the version number of the current version:
MQZAD_CURRENT_VERSION

Current version of authority data structure.

ProfileName
Type: MQCHAR48 - input

Profile name.

For the Filter parameter, this field is the profile name for which authority data is required. If the
name is entirely blank up to the end of the field or the first null character, authority data for all profile
names is returned.

For the AuthorityBuffer parameter, this field is the name of a profile that matches the specified
selection criteria.

ObjectType
Type: MQLONG - input

Object type.

For the Filter parameter, this field is the object type for which authority data is required. If the value
is MQOT_ALL, authority data for all object types is returned.

For the AuthorityBuffer parameter, this field is the object type to which the profile identified by
the ProfileName parameter applies.

The value is one of the following; for the Filter parameter, the value MQOT_ALL is also valid:
MQOT_AUTH_INFO

Authentication information
MQOT_CHANNEL

Channel
MQOT_CLNTCONN_CHANNEL

Client connection channel
MQOT_LISTENER

Listener
MQOT_NAMELIST

Namelist
MQOT_PROCESS

Process definition
MQOT_Q

Queue
MQOT_Q_MGR

Queue manager

Developing applications reference 1663

MQOT_SERVICE
Service

Authority
Type: MQLONG - input

Authority.

For the Filter parameter, this field is ignored.

For the AuthorityBuffer parameter, this field represents the authorizations that the entity has to
the objects identified by ProfileName and ObjectType. If the entity has only one authority, the
field is equal to the appropriate authorization value (MQZAO_* constant). If the entity has more than
one authority, the field is the bitwise OR of the corresponding MQZAO_* constants.

EntityDataPtr
Type: PMQZED - input

Address of MQZED structure identifying an entity.

For the Filter parameter, this field points to an MQZED structure that identifies the entity for which
authority data is required. If EntityDataPtr is the null pointer, authority data for all entities is
returned.

For the AuthorityBuffer parameter, this field points to an MQZED structure that identifies the
entity for which authority data has been returned.

EntityType
Type: MQLONG - input

Entity type.

For the Filter parameter, this field specifies the entity type for which authority data is required. If
the value is MQZAET_NONE, authority data for all entity types is returned.

For the AuthorityBuffer parameter, this field specifies the type of the entity identified by the
MQZED structure pointed to by the EntityDataPtr parameter.

The value is one of the following; for the Filter parameter, the value MQZAET_NONE is also valid:
MQZAET_PRINCIPAL

Principal
MQZAET_GROUP

Group

Options
Type: MQAUTHOPT - input

Options. This field specifies options that give control over the profiles that are displayed. One of the
following values must be specified:
MQAUTHOPT_NAME_ALL_MATCHING

Displays all profiles
MQAUTHOPT_NAME_EXPLICIT

Displays profiles that have exactly the same name as specified in the ProfileName field.

In addition, one of the following must also be specified:
MQAUTHOPT_ENTITY_SET

Display all profiles that are used to calculate the cumulative authority that the entity has to the
object specified by the ProfileName parameter. The ProfileName parameter must not contain
any wildcard characters.

• If the specified entity is a principal, for each member of the set {entity, groups} the most
applicable profile that applies to the object is displayed.

• If the specified entity is a group, the most applicable profile from the group that applies to the
object is displayed.

1664 IBM MQ Developing Applications Reference

• If this value is specified, then the values of ProfileName, ObjectType, EntityType, and the
entity name specified in the EntityDataPtr MQZED structure, must all be non-blank.

If you have specified MQAUTHOPT_NAME_ALL_MATCHING, you can also specify the following value:
MQAUTHOPT_ENTITY_EXPLICIT

Displays profiles that have exactly the same entity name as the entity name specified in the
EntityDataPtr MQZED structure.

C declaration

typedef struct tagMQZAD MQZAD;
struct tagMQZAD {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQCHAR48 ProfileName; /* Profile name */
 MQLONG ObjectType; /* Object type */
 MQLONG Authority; /* Authority */
 PMQZED EntityDataPtr; /* Address of MQZED structure identifying an
 entity */
 MQLONG EntityType; /* Entity type */
 MQAUTHOPT Options; /* Options */
};

MQZED - Entity descriptor
The MQZED structure is used in a number of authorization service calls to specify the entity for which
authorization is to be checked.

Table 1. summarizes the fields in the structure.

Table 841. Fields in MQZED

Field Description

StrucId Structure identifier

Version Version

EntityName Ptr Entity name

EntityDomainPtr Entity domain pointer

SecurityId Security identifier

CorrelationPtr Correlation pointer

Fields
StrucId

Type: MQCHAR4 - input

Structure identifier. The value is as follows:
MQZED_STRUC_ID

Identifier for entity descriptor structure.

For the C programming language, the constant MQZED_STRUC_ID_ARRAY is also defined; this has
the same value as MQZED_STRUC_ID, but is an array of characters instead of a string.

Version
Type: MQLONG - input

Structure version number. The value is as follows:
MQZED_VERSION_1

Version-1 entity descriptor structure.

Developing applications reference 1665

The following constant specifies the version number of the current version:
MQZED_CURRENT_VERSION

Current version of entity descriptor structure.

EntityNamePtr
Type: PMQCHAR - input

Profile name.

Address of entity name. This is a pointer to the name of the entity whose authorization is to be
checked.

EntityDomainPtr
Type: PMQCHAR - input

Address of entity domain name. This is a pointer to the name of the domain containing the definition
of the entity whose authorization is to be checked.

SecurityId
Type: MQBYTE40 - input

Authority.

Security identifier. This is the security identifier whose authorization is to be checked.

CorrelationPtr
Type: MQPTR - input

Correlation pointer. This facilitates the passing of correlational data between the authenticate user
function and other appropriate OAM functions.

C declaration

typedef struct tagMQZED MQZED;
struct tagMQZED {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 PMQCHAR EntityNamePtr; /* Address of entity name */
 PMQCHAR EntityDomainPtr; /* Address of entity domain name */
 MQBYTE40 SecurityId; /* Security identifier */
 MQPTR CorrelationPtr; /* Address of correlation data */

MQZEP - Add component entry point
A service component starts this function, during initialization, to add an entry point to the entry point
vector for that service component.

Syntax
MQZEP (Hconfig , Function , EntryPoint , CompCode , Reason)

Parameters
Hconfig

Type: MQHCONFIG - input

Configuration handle. This handle represents the component that is being configured for this
particular installable service. It must be the same as the component passed to the component
configuration function by the queue manager on the component initialization call.

Function
Type: MQLONG - input

Function identifier. Valid values for this are defined for each installable service.

1666 IBM MQ Developing Applications Reference

If MQZEP is called more than once for the same function, the last call made provides the entry point
that is used.

EntryPoint
Type: PMQFUNC - input

Function entry point. This is the address of the entry point provided by the component to perform the
function.

The value NULL is valid, and indicates that the function is not provided by this component. NULL is
assumed for entry points that are not defined using MQZEP.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_FUNCTION_ERROR

(2281, X'8E9') Function identifier not valid.
MQRC_HCONFIG_ERROR

(2280, X'8E8') Configuration handle not valid.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZEP (Hconfig, Function, EntryPoint, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Function; /* Function identifier */
PMQFUNC EntryPoint; /* Function entry point */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZFP - Free parameters
The MQZFP structure is used on the MQZ_FREE_USER call for the FreeParms parameter. This parameter
specifies data related to resource to be freed.

Table 1. summarizes the fields in the structure.

Table 842. Fields in MQZFP

Field Description

StrucId Structure identifier

Developing applications reference 1667

Table 842. Fields in MQZFP (continued)

Field Description

Version Version

Reserved Reserved field

CorrelationPtr Correlation pointer

Fields
StrucId

Type: MQCHAR4 - input

Structure identifier. The value is as follows:
MQZIC_STRUC_ID

Identifier for identity context structure. For the C programming language, the constant
MQZIC_STRUC_ID_ARRAY is also defined; this has the same value as MQZIC_STRUC_ID, but is an
array of characters instead of a string.

Version
Type: MQLONG - input

Structure version number. The value is as follows:
MQZFP_VERSION_1

Version-1 free parameters structure.

The following constant specifies the version number of the current version:
MQZFP_CURRENT_VERSION

Current version of free parameters structure.

Reserved
Type: MQBYTE8 - input

Reserved field. The initial value is null.

CorrelationPtr
Type: MQPTR - input

Correlation pointer. Address of correlation data relating to the resource to be freed.

C declaration

typedef struct tagMQZFP MQZFP;
struct tagMQZFP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQBYTE8 Reserved; /* Reserved field */
 MQPTR CorrelationPtr; /* Address of correlation data */
};

MQZIC - Identity context
The MQZIC structure is used on the MQZ_AUTHENTICATE_USER call for the IdentityContext parameter.

The MQZIC structure contains identity context information, which identifies the user of the application
that first put the message on a queue:

• The queue manager fills the UserIdentifier field with a name that identifies the user, the way that the
queue manager can do this depends on the environment in which the application is running.

• The queue manager fills the AccountingToken field with a token or number that it determined from the
application that put the message.

1668 IBM MQ Developing Applications Reference

• Applications can use the ApplIdentityData field for any extra information that they want to include about
the user (for example, an encrypted password).

Suitably authorized applications can set the identity context using the MQZ_AUTHENTICATE_USER
function.

A Windows systems security identifier (SID) is stored in the AccountingToken field when a message is
created under IBM MQ for Windows. The SID can be used to supplement the UserIdentifier field and to
establish the credentials of a user.

Table 1. summarizes the fields in the structure.

Table 843. Fields in MQZIC

Field Description

StrucId Structure identifier

Version Version

UserIdentifier User identifier

AccountingToken Accounting token

ApplIdentityData Application identity data

Fields
StrucId

Type: MQCHAR4 - input

Structure identifier. The value is as follows:
MQZIC_STRUC_ID

Identifier for identity context structure. For the C programming language, the constant
MQZIC_STRUC_ID_ARRAY is also defined; this has the same value as MQZIC_STRUC_ID, but is an
array of characters instead of a string.

Version
Type: MQLONG - input

Structure version number. The value is as follows:
MQZIC_VERSION_1

Version-1 identity context structure.

The following constant specifies the version number of the current version:
MQZIC_CURRENT_VERSION

Current version of identity context structure.

UserIdentifier
Type: MQCHAR12 - input

User identifier. This is part of the identity context of the message. UserIdentifier specifies the user
identifier of the application that originated the message. The queue manager treats this information as
character data, but does not define the format of it. For more information on the UserIdentifier field,
see “UserIdentifier (MQCHAR12)” on page 453.

AccountingToken
Type: MQBYTE32 - input

Accounting token. This is part of the identity context of the message. AccountingToken allows
an application to cause work done as a result of the message to be appropriately charged. The
queue manager treats this information as a string of bits and does not check its content. For more
information on the AccountingToken field, see “AccountingToken (MQBYTE32)” on page 454.

Developing applications reference 1669

ApplIdentityData
Type: MQCHAR32 - input

Application data relating to identity. This is part of the identity context of the message.
ApplIdentityData is information that is defined by the application suite that can be used to provide
additional information about the origin of the message. For example, it could be set by applications
running with suitable user authority to indicate whether the identity data is trusted. For more
information on the ApplIdentityData field, see “ApplIdentityData (MQCHAR32)” on page 456.

C declaration

typedef struct tagMQZED MQZED;
struct tagMQZED {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQCHAR12 UserIdentifier; /* User identifier */
 MQBYTE32 AccountingToken; /* Accounting token */
 MQCHAR32 ApplIdentityData; /* Application data relating to identity */
};

Installable services interface reference information on IBM i
Use this information to understand the reference information for the installable services for IBM i.

For each function there is a description, including the function identifier (for MQZEP).

The parameters are shown listed in the order they must occur. They must all be present.

Each parameter name is followed by its data type in parentheses. These are the elementary data types
described in “Elementary data types” on page 988.

The C language invocation is also given, after the description of the parameters.

Related reference

Installable services and components on IBM i

Installable services and components for AIX, Linux, and Windows
“Installable services interface reference information” on page 1607
This collection of topics provides reference information for the installable services.

MQZEP (Add component entry point) on IBM i
This function is invoked by a service component, during initialization, to add an entry point to the entry
point vector for that service component.

Syntax

MQZEP (Hconfig, Function, EntryPoint, CompCode, Reason)

Parameters
The MQZEP call has the following parameters.

Hconfig (MQHCONFIG) - input
Configuration handle.

This handle represents the component which is being configured for this particular installable service.
It must be the same as the one passed to the component configuration function by the queue
manager on the component initialization call.

1670 IBM MQ Developing Applications Reference

Function (MQLONG) - input
Function identifier.

Valid values for this are defined for each installable service. If MQZEP is called more than once for the
same function, the last call made provides the entry point which is used.

EntryPoint (PMQFUNC) - input
Function entry point.

This is the address of the entry point provided by the component to perform the function. The value
NULL is valid, and indicates that the function is not provided by this component. NULL is assumed for
entry points which are not defined using MQZEP.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_FUNCTION_ERROR

(2281, X'8E9') Function identifier not valid.
MQRC_HCONFIG_ERROR

(2280, X'8E8') Configuration handle not valid.

For more information about these reason codes, see Messages and reason codes.

C invocation

MQZEP (Hconfig, Function, EntryPoint, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Function; /* Function identifier */
PMQFUNC EntryPoint; /* Function entry point */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQHCONFIG (Configuration handle) on IBM i
The MQHCONFIG data type represents a configuration handle, that is, the component that is being
configured for a particular installable service. A configuration handle must be aligned on its natural
boundary.

Applications must test variables of this type for equality only.

C declaration

Developing applications reference 1671

typedef void MQPOINTER MQHCONFIG;

PMQFUNC (Pointer to function) on IBM i
Pointer to a function.

C declaration

typedef void MQPOINTER PMQFUNC;

MQZ_AUTHENTICATE_USER (Authenticate user) on IBM i
This function is provided by a MQZAS_VERSION_5 authorization service component. It is invoked by the
queue manager to authenticate a user, or to set identity context fields.

It is invoked when an IBM MQ user application context is established. This happens during connect calls
at the point where the application's user context is initialized, and at each point where the application's
user context is changed. Each time a connect call is made, the application's user context information is
reacquired in the IdentityContext field.

The function identifier for this function (for MQZEP) is MQZID_AUTHENTICATE_USER.

Syntax
MQZ_AUTHENTICATE_USER (QMgrName, SecurityParms, ApplicationContext,

IdentityContext, CorrelationPtr, ComponentData, Continuation, CompCode,
Reason)

Parameters
The MQZ_AUTHENTICATE_USER call has the following parameters.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character. The queue manager name
is passed to the component for information; the authorization service interface does not require the
component to use it in any defined manner.

SecurityParms (MQCSP) - input
Security parameters.

Data relating to the user ID, password, and authentication type.

During an MQCONN MQI call this parameter contains null, or default values.

ApplicationContext (MQZAC) - input
Application context.

Data relating to the calling application. See “MQZAC (Application context) on IBM i” on page 1702
for details. During every MQCONN or MQCONNX MQI call, the user context information in the MQZAC
structure is reacquired.

IdentityContext (MQZIC) - input/output
Identity context.

On input to the authenticate user function, this identifies the current identity context. The
authenticate user function can change this, at which point the queue manager adopts the new identity

1672 IBM MQ Developing Applications Reference

context. See “MQZIC (Identity context) on IBM i” on page 1708 for more details on the MQZIC
structure.

CorrelationPtr (MQPTR) - output
Correlation pointer.

Specifies the address of any correlation data. This pointer is then passed on to other OAM calls.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this components functions is called. The length of this data area is passed by the queue manager in
the ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation flag.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on other components.
MQZCI_STOP

Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.

For more information about these reason codes, see Messages and reason codes.

C invocation

MQZ_AUTHENTICATE_USER (QMgrName, SecurityParms, ApplicationContext,
 IdentityContext, &CorrelationPtr, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCSP SecurityParms; /* Security parameters */
MQZAC ApplicationContext; /* Application context */
MQZIC IdentityContext; /* Identity context */
MQPTR CorrelationPtr; /* Correlation pointer */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */

Developing applications reference 1673

MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_CHECK_AUTHORITY (Check authority) on IBM i
This function is provided by a MQZAS_VERSION_1 authorization service component, and is invoked by the
queue manager to check whether an entity has authority to perform a particular action, or actions, on a
specified object.

The function identifier for this function (for MQZEP) is MQZID_CHECK_AUTHORITY.

Syntax
MQZ_CHECK_AUTHORITY (QMgrName, EntityName, EntityType,

ObjectName, ObjectType, Authority, ComponentData, Continuation, CompCode,
Reason)

Parameters
The MQZ_CHECK_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character. The queue manager name
is passed to the component for information; the authorization service interface does not require the
component to make use of it in any defined manner.

EntityName (MQCHAR12) - input
Entity name.

The name of the entity whose authorization to the object is to be checked. The maximum length of the
string is 12 characters; if it is shorter than that it is padded to the right with blanks. The name is not
terminated by a null character.

It is not essential for this entity to be known to the underlying security service. If it is not known, then
the authorizations of the special nobody group (to which all entities are assumed to belong) are used
for the check. An all-blank name is valid and can be used in this way.

EntityType (MQLONG) - input
Entity type.

The type of entity specified by EntityName. It is one of the following:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName (MQCHAR48) - input
Object name.

The name of the object to which access is required. The maximum length of the string is 48
characters; if it is shorter than that it is padded to the right with blanks. The name is not terminated by
a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) - input
Object type.

The type of entity specified by ObjectName. It is one of the following:

1674 IBM MQ Developing Applications Reference

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

Authority (MQLONG) - input
Authority to be checked.

If one authorization is being checked, this field is equal to the appropriate authorization operation
(MQZAO_* constant). If more than one authorization is being checked, it is the bitwise OR of the
corresponding MQZAO_* constants.

The following authorizations apply to use of the MQI calls:
MQZAO_CONNECT

Ability to use the MQCONN call.
MQZAO_BROWSE

Ability to use the MQGET call with a browse option.

This allows the MQGMO_BROWSE_FIRST, MQGMO_BROWSE_MSG_UNDER_CURSOR, or
MQGMO_BROWSE_NEXT option to be specified on the MQGET call.

MQZAO_INPUT
Ability to use the MQGET call with an input option.

This allows the MQOO_INPUT_SHARED, MQOO_INPUT_EXCLUSIVE, or MQOO_INPUT_AS_Q_DEF
option to be specified on the MQOPEN call.

MQZAO_OUTPUT
Ability to use the MQPUT call.

This allows the MQOO_OUTPUT option to be specified on the MQOPEN call.

MQZAO_INQUIRE
Ability to use the MQINQ call.

This allows the MQOO_INQUIRE option to be specified on the MQOPEN call.

MQZAO_SET
Ability to use the MQSET call.

This allows the MQOO_SET option to be specified on the MQOPEN call.

MQZAO_PASS_IDENTITY_CONTEXT
Ability to pass identity context.

This allows the MQOO_PASS_IDENTITY_CONTEXT option to be specified on the MQOPEN call, and
the MQPMO_PASS_IDENTITY_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

Developing applications reference 1675

MQZAO_PASS_ALL_CONTEXT
Ability to pass all context.

This allows the MQOO_PASS_ALL_CONTEXT option to be specified on the MQOPEN call, and the
MQPMO_PASS_ALL_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_IDENTITY_CONTEXT
Ability to set identity context.

This allows the MQOO_SET_IDENTITY_CONTEXT option to be specified on the MQOPEN call, and
the MQPMO_SET_IDENTITY_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_ALL_CONTEXT
Ability to set all context.

This allows the MQOO_SET_ALL_CONTEXT option to be specified on the MQOPEN call, and the
MQPMO_SET_ALL_CONTEXT option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_ALTERNATE_USER_AUTHORITY
Ability to use alternate user authority.

This allows the MQOO_ALTERNATE_USER_AUTHORITY option to be specified on the MQOPEN
call, and the MQPMO_ALTERNATE_USER_AUTHORITY option to be specified on the MQPUT1 call.

MQZAO_ALL_MQI
All of the MQI authorizations.

This enables all of the authorizations described previously.

The following authorizations apply to administration of a queue manager:
MQZAO_CREATE

Ability to create objects of a specified type.
MQZAO_DELETE

Ability to delete a specified object.
MQZAO_DISPLAY

Ability to display the attributes of a specified object.
MQZAO_CHANGE

Ability to change the attributes of a specified object.
MQZAO_CLEAR

Ability to delete all messages from a specified queue.
MQZAO_AUTHORIZE

Ability to authorize other users for a specified object.
MQZAO_CONTROL

Ability to start, stop, or ping a non-client channel object.
MQZAO_CONTROL_EXTENDED

Ability to reset a sequence number, or resolve an indoubt message on a non-client channel object.
MQZAO_ALL_ADMIN

All of the administration authorizations, other than MQZAO_CREATE.

The following authorizations apply to both use of the MQI and to administration of a queue manager:
MQZAO_ALL

All authorizations, other than MQZAO_CREATE.
MQZAO_NONE

No authorizations.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

1676 IBM MQ Developing Applications Reference

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.

For more information about these reason codes, see Messages and reason codes.

C invocation

MQZ_CHECK_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
 ObjectType, Authority, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */

Developing applications reference 1677

MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_CHECK_PRIVILEGED - Check if user is privileged
This function is provided by an MQZAS_VERSION_6 authorization service component, and is invoked by
the queue manager to determine whether a specified user is a privileged user.

The function identifier for this function (for MQZEP) is MQZID_CHECK_PRIVILEGED.

Syntax
MQZ_CHECK_PRIVILEGED(QMgrName , EntityData , EntityType , ComponentData ,
Continuation , CompCode , Reason)

Parameters
QMgrName

Type: MQCHAR48 - input

Queue manager name. The name of the queue manager calling the component. This name is padded
with blanks to the full length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

EntityData
Type: MQZED - input

Entity data. Data relating to the entity that is to be checked. For more information, see “MQZED -
Entity descriptor” on page 1665.

EntityType
Type: MQLONG - input

Entity type. The type of entity specified by EntityData. It must be one of the following values:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ComponentData
Type: MQBYTExComponentDataLength - input/output

Component data. This data is kept by the queue manager on behalf of this particular component; any
changes made to it by any of the functions provided by this component are preserved, and presented
the next time one of these component functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation
Type: MQLONG - output

Continuation indicator set by component. The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY, this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

1678 IBM MQ Developing Applications Reference

MQZCI_STOP
Do not continue with next component.

If the call to a component fails (that is, CompCode returns MQCC_FAILED), and the Continuation
parameter is MQZCI_DEFAULT or MQZCI_CONTINUE, the queue manager continues to call other
components if there are any.

If the call succeeds (that is, CompCode returns MQCC_OK) no other components are called no matter
what the setting of Continuation is.

If the call fails and the Continuation parameter is MQZCI_STOP then no other components are called
and the error is returned to the queue manager. Components have no knowledge of previous calls, so
the Continuation parameter is always set to MQZCI_DEFAULT before the call.

CompCode
Type: MQLONG - output

Completion code. It must be one of the following values:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason
Type: MQLONG - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_PRIVILEGED

(2584, X'A18') This user is not a privileged user ID.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
For more information about these reason codes, see API completion and reason codes.

C invocation

MQZ_CHECK_PRIVILEGED (QMgrName, &EntityData, EntityType,
 ComponentData, &Continuation,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQZED EntityData; /* Entity name */
MQLONG EntityType; /* Entity type */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

Developing applications reference 1679

MQZ_COPY_ALL_AUTHORITY (Copy all authority) on IBM i
This function is provided by an authorization service component. It is invoked by the queue manager to
copy all of the authorizations that are currently in force for a reference object to another object.

The function identifier for this function (for MQZEP) is MQZID_COPY_ALL_AUTHORITY.

Syntax
MQZ_COPY_ALL_AUTHORITY (QMgrName, RefObjectName, ObjectName,

ObjectType, ComponentData, Continuation, CompCode, Reason)

Parameters
The MQZ_COPY_ALL_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

RefObjectName (MQCHAR48) - input
Reference object name.

The name of the reference object, the authorizations for which are to be copied. The maximum length
of the string is 48 characters; if it is shorter than that it is padded to the right with blanks. The name is
not terminated by a null character.

ObjectName (MQCHAR48) - input
Object name.

The name of the object for which accesses are to be set. The maximum length of the string is 48
characters; if it is shorter than that it is padded to the right with blanks. The name is not terminated by
a null character.

ObjectType (MQLONG) - input
Object type.

The type of object specified by RefObjectName and ObjectName. It is one of the following:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.

1680 IBM MQ Developing Applications Reference

MQOT_SERVICE
Service.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_COPY_ALL_AUTHORITY this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_REF_OBJECT

(2294, X'8F6') Reference object unknown.

For more information about these reason codes, see Messages and reason codes.

C invocation

MQZ_COPY_ALL_AUTHORITY (QMgrName, RefObjectName, ObjectName, ObjectType,
 ComponentData, &Continuation, &CompCode,
 &Reason);

The parameters passed to the service are declared as follows:

Developing applications reference 1681

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 RefObjectName; /* Reference object name */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_DELETE_AUTHORITY (Delete authority) on IBM i
This function is provided by an authorization service component, and is invoked by the queue manager to
delete all of the authorizations associated with the specified object.

The function identifier for this function (for MQZEP) is MQZID_DELETE_AUTHORITY.

Syntax
MQZ_DELETE_AUTHORITY (QMgrName, ObjectName, ObjectType,

ComponentData, Continuation, CompCode, Reason)

Parameters
The MQZ_DELETE_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

ObjectName (MQCHAR48) - input
Object name.

The name of the object for which accesses are to be deleted. The maximum length of the string is 48
characters; if it is shorter than that it is padded to the right with blanks. The name is not terminated by
a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) - input
Object type.

The type of entity specified by ObjectName. It is one of the following:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.

1682 IBM MQ Developing Applications Reference

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_DELETE_AUTHORITY this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.

For more information about these reason codes, see Messages and reason codes.

C invocation

MQZ_DELETE_AUTHORITY (QMgrName, ObjectName, ObjectType, ComponentData,
 &Continuation, &CompCode, &Reason);

Developing applications reference 1683

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_ENUMERATE_AUTHORITY_DATA (Enumerate authority data)
on IBM i
This function is provided by an MQZAS_VERSION_4 authorization service component, and is invoked
repeatedly by the queue manager to retrieve all of the authority data that matches the selection criteria
specified on the first invocation.

The function identifier for this function (for MQZEP) is MQZID_ENUMERATE_AUTHORITY_DATA.

Syntax
MQZ_ENUMERATE_AUTHORITY_DATA (QMgrName, StartEnumeration,

Filter, AuthorityBufferLength, AuthorityBuffer, AuthorityDataLength,
ComponentData, Continuation, CompCode, Reason)

Parameters
The MQZ_ENUMERATE_AUTHORITY_DATA call has the following parameters.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

StartEnumeration (MQLONG) - input
Flag indicating whether call should start enumeration.

This indicates whether the call should start the enumeration of authority data, or continue the
enumeration of authority data started by a previous call to MQZ_ENUMERATE_AUTHORITY_DATA.
The value is one of the following:
MQZSE_START

Start enumeration.

The call is invoked with this value to start the enumeration of authority data. The Filter
parameter specifies the selection criteria to be used to select the authority data returned by
this and successive calls.

MQZSE_CONTINUE
Continue enumeration.

The call is invoked with this value to continue the enumeration of authority data. The Filter
parameter is ignored in this case, and can be specified as the null pointer (the selection criteria
are determined by the Filter parameter specified by the call that had StartEnumeration set
to MQZSE_START).

Filter (MQZAD) - input
Filter.

1684 IBM MQ Developing Applications Reference

If StartEnumeration is MQZSE_START, Filter specifies the selection criteria to be used to select
the authority data to return. If Filter is the null pointer, no selection criteria are used, that is, all
authority data is returned. See “MQZAD (Authority data) on IBM i” on page 1704 for details of the
selection criteria that can be used.

If StartEnumeration is MQZSE_CONTINUE, Filter is ignored, and can be specified as the null
pointer.

AuthorityBufferLength (MQLONG) - input
Length of AuthorityBuffer.

This is the length in bytes of the AuthorityBuffer parameter. The authority buffer must be big
enough to accommodate the data to be returned.

AuthorityBuffer (MQZAD) - output
Authority data.

This is the buffer in which the authority data is returned. The buffer must be big enough to
accommodate an MQZAD structure, an MQZED structure, plus the longest entity name and longest
domain name defined.

Note: This parameter is defined as an MQZAD, as the MQZAD always occurs at the start of the buffer.
However, if the buffer is actually declared as an MQZAD, the buffer will be too small - it needs to
be bigger than an MQZAD so that it can accommodate the MQZAD, MQZED, plus entity and domain
names.

AuthorityDataLength (MQLONG) - output
Length of data returned in AuthorityBuffer.

This is the length of the data returned in AuthorityBuffer. If the authority buffer is too small,
AuthorityDataLength is set to the length of the buffer required, and the call returns completion
code MQCC_FAILED and reason code MQRC_BUFFER_LENGTH_ERROR.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_ENUMERATE_AUTHORITY_DATA this has the same effect as MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Developing applications reference 1685

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_BUFFER_LENGTH_ERROR

(2005, X'7D5') Buffer length parameter not valid.
MQRC_NO_DATA_AVAILABLE

(2379, X'94B') No data available.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.

For more information about these reason codes, see Messages and reason codes.

C invocation

MQZ_ENUMERATE_AUTHORITY_DATA (QMgrName, StartEnumeration, &Filter,
 AuthorityBufferLength,
 &AuthorityBuffer,
 &AuthorityDataLength, ComponentData,
 &Continuation, &CompCode,
 &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQLONG StartEnumeration; /* Flag indicating whether call should
 start enumeration */
MQZAD Filter; /* Filter */
MQLONG AuthorityBufferLength; /* Length of AuthorityBuffer */
MQZAD AuthorityBuffer; /* Authority data */
MQLONG AuthorityDataLength; /* Length of data returned in
 AuthorityBuffer */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_FREE_USER - Free user
This function is provided by a MQZAS_VERSION_5 authorization service component, and is invoked by
the queue manager to free associated allocated resource. It is invoked when an application has finished
running under all user contexts, for example during an MQDISC MQI call.

The function identifier for this function (for MQZEP) is MQZID_FREE_USER.

MQZ_GET_AUTHORITY (Get authority) on IBM i
This function is provided by a MQZAS_VERSION_1 authorization service component, and is invoked by the
queue manager to retrieve the authority that an entity has to access the specified object.

The function identifier for this function (for MQZEP) is MQZID_GET_AUTHORITY.

Syntax
MQZ_GET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

1686 IBM MQ Developing Applications Reference

Parameters
The MQZ_GET_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

EntityName (MQCHAR12) - input
Entity name.

The name of the entity whose access to the object is to be retrieved. The maximum length of the
string is 12 characters; if it is shorter than that it is padded to the right with blanks. The name is not
terminated by a null character.

EntityType (MQLONG) - input
Entity type.

The type of entity specified by EntityName. The following value can be specified:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName (MQCHAR48) - input
Object name.

The name of the object for which the entity's authority is to be retrieved. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with blanks. The name is not
terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) - input
Object type.

The type of entity specified by ObjectName. It is one of the following:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.

Developing applications reference 1687

Authority (MQLONG) - output
Authority of entity.

If the entity has one authority, this field is equal to the appropriate authorization operation (MQZAO_*
constant). If it has more than one authority, this field is the bitwise OR of the corresponding MQZAO_*
constants.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_GET_AUTHORITY this has the same effect as MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.

For more information about these reason codes, see Messages and reason codes.

C invocation

1688 IBM MQ Developing Applications Reference

MQZ_GET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
 ObjectType, &Authority, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_GET_EXPLICIT_AUTHORITY (Get explicit authority) on IBM i
This function is provided by a MQZAS_VERSION_1 authorization service component, and is invoked by
the queue manager to retrieve the authority that a named group has to access a specified object (but
without the additional authority of the nobody group), or the authority that the primary group of the
named principal has to access a specified object.

The function identifier for this function (for MQZEP) is MQZID_GET_EXPLICIT_AUTHORITY.

Syntax
MQZ_GET_EXPLICIT_AUTHORITY (QMgrName, EntityName, EntityType,

ObjectName, ObjectType, Authority, ComponentData, Continuation, CompCode,
Reason)

Parameters
The MQZ_GET_EXPLICIT_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

EntityName (MQCHAR12) - input
Entity name.

The name of the entity from which access to the object is to be retrieved. The maximum length of the
string is 12 characters; if it is shorter than that it is padded to the right with blanks. The name is not
terminated by a null character.

EntityType (MQLONG) - input
Entity type.

The type of entity specified by EntityName. The following value can be specified:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

Developing applications reference 1689

ObjectName (MQCHAR48) - input
Object name.

The name of the object for which the entity's authority is to be retrieved. The maximum length of the
string is 48 characters; if it is shorter than that it is padded to the right with blanks. The name is not
terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) - input
Object type.

The type of entity specified by ObjectName. It is one of the following:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.

Authority (MQLONG) - output
Authority of entity.

If the entity has one authority, this field is equal to the appropriate authorization operation (MQZAO_*
constant). If it has more than one authority, this field is the bitwise OR of the corresponding MQZAO_*
constants.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_GET_EXPLICIT_AUTHORITY this has the same effect as MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

1690 IBM MQ Developing Applications Reference

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.

For more information about these reason codes, see Messages and reason codes.

C invocation

MQZ_GET_EXPLICIT_AUTHORITY (QMgrName, EntityName, EntityType,
 ObjectName, ObjectType, &Authority,
 ComponentData, &Continuation,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority of entity */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_INIT_AUTHORITY (Initialize authorization service) on IBM i
This function is provided by an authorization service component, and is invoked by the queue manager
during configuration of the component. It is expected to call MQZEP in order to provide information to the
queue manager.

The function identifier for this function (for MQZEP) is MQZID_INIT_AUTHORITY.

Developing applications reference 1691

Syntax
MQZ_INIT_AUTHORITY (Hconfig, Options, QMgrName, ComponentDataLength,

ComponentData, Version, CompCode, Reason)

Parameters
The MQZ_INIT_AUTHORITY call has the following parameters.

Hconfig (MQHCONFIG) - input
Configuration handle.

This handle represents the particular component being initialized. It is to be used by the component
when calling the queue manager with the MQZEP function.

Options (MQLONG) - input
Initialization options.

It is one of the following:
MQZIO_PRIMARY

Primary initialization.
MQZIO_SECONDARY

Secondary initialization.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

ComponentDataLength (MQLONG) - input
Length of component data.

Length in bytes of the ComponentData area. This length is defined in the component configuration
data.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This is initialized to all zeros before calling the component's primary initialization function. This data
is kept by the queue manager on behalf of this particular component; any changes made to it by any
of the functions (including the initialization function) provided by this component are preserved, and
presented the next time one of this component's functions is called.

Version (MQLONG) - input/output
Version number.

On input to the initialization function, this identifies the highest version number that the queue
manager supports. The initialization function must change this, if necessary, to the version of the
interface which it supports. If on return the queue manager does not support the version returned by
the component, it calls the component's MQZ_TERM_AUTHORITY function and makes no further use
of this component.

The following values are supported:
MQZAS_VERSION_1

Version 1.
MQZAS_VERSION_2

Version 2.
MQZAS_VERSION_3

Version 3.

1692 IBM MQ Developing Applications Reference

MQZAS_VERSION_4
Version 4.

MQZAS_VERSION_5
Version 5.

MQZAS_VERSION_6
IBM WebSphere MQ 6.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_INITIALIZATION_FAILED

(2286, X'8EE') Initialization failed for an undefined reason.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.

For more information about these reason codes, see Messages and reason codes.

C invocation

MQZ_INIT_AUTHORITY (Hconfig, Options, QMgrName, ComponentDataLength,
 ComponentData, &Version, &CompCode,
 &Reason);

The parameters passed to the service are declared as follows:

MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Initialization options */
MQCHAR48 QMgrName; /* Queue manager name */
MQLONG ComponentDataLength; /* Length of component data */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Version; /* Version number */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_INQUIRE (Inquire authorization service) on IBM i
This function is provided by a MQZAS_VERSION_5 authorization service component, and is invoked by
the queue manager to query the supported functionality. Where multiple service components are used,
service components are called in reverse order to the order they were installed in.

The function identifier for this function (for MQZEP) is MQZID_INQUIRE.

Syntax

Developing applications reference 1693

MQZ_INQUIRE
(QMgrName, SelectorCount, Selectors, IntAttrCount, IntAttrs, CharAttrLength,
CharAttrs, SelectorReturned, ComponentData, Continuation, CompCode, Reason)

Parameters
The MQZ_INQUIRE call has the following parameters.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

SelectorCount (MQLONG) - input
Number of selectors.

The number of selectors supplied in the Selectors parameter.

The value must be between zero and 256.

Selectors (MQLONG x SelectorCount) - input
Selectors.

Array of selectors. Each selector identifies a required attribute and must be of one of the following
types:

• MQIACF_* (integer)
• MQCACF_* (character)

Selectors can be specified in any order. The number of selectors in the array is indicated by the
SelectorCount parameter.

Integer attributes identified by selectors are returned in the IntAttrs parameter in the same order as
they appear in Selectors.

Character attributes identified by selectors are returned in the CharAttrs parameter in the same order
as they in appear Selectors.

IntAttrCount (MQLONG) - input
Number of integer attributes.

The number of integer attributes supplied in the IntAttrs parameter.

The value must be in the range 0 through 256.

IntAttrs (MQLONG x IntAttrCount) - output
Integer attributes.

Array of integer attributes. The integer attributes are returned in the same order as the corresponding
integer selectors in the Selectors array.

CharAttrCount (MQLONG) - input
Length of the character attributes buffer.

The length in bytes of the CharAttrs parameter.

The value must at least sum of the lengths of the requested character attributes. If no character
attributes are requested, zero is a valid value.

CharAttrs (MQLONG x CharAttrCount) - output
Character attributes buffer.

Buffer containing character attributes, concatenated together. The character attributes are returned in
the same order as the corresponding character selectors in the Selectors array.

1694 IBM MQ Developing Applications Reference

The length of the buffer is given by the CharAttrCount parameter.

SelectorReturned (MQLONGxSelectorCount) - input
Selector returned.

Array of values identifying which attributes have been returned from the set requested for by
the selectors in the Selectors parameter. The number of values in this array is indicated by the
SelectorCount parameter. Each value in the array relates to the selector from the corresponding
position in the Selectors array. Each value is one of the following:
MQZSL_RETURNED

The attribute requested by the corresponding selector in the Selectors parameter has been
returned.

MQZSL_NOT_RETURNED
The attribute requested by the corresponding selector in the Selectors parameter has not been
returned.

The array is initialized with all values as MQZSL_NOT_RETURNED. When an authorization service
component returns an attribute, it sets the appropriate value in the array to MQZSL_RETURNED. This
allows any other authorization service components, to which the inquire call is made, to identify which
attributes have already been returned.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation flag.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on other components.
MQZCI_STOP

Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_WARNING

Partial completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.
If CompCode is MQCC_WARNING:
MQRC_CHAR_ATTRS_TOO_SHORT

Not enough space for character attributes.

Developing applications reference 1695

MQRC_INT_COUNT_TOO_SMALL
Not enough space for integer attributes.

If CompCode is MQCC_FAILED:
MQRC_SELECTOR_COUNT_ERROR

Number of selectors is not valid.
MQRC_SELECTOR_ERROR

Attribute selector not valid.
MQRC_SELECTOR_LIMIT_EXCEEDED

Too many selectors specified.
MQRC_INT_ATTR_COUNT_ERROR

Number of integer attributes is not valid.
MQRC_INT_ATTRS_ARRAY_ERROR

Integer attributes array not valid.
MQRC_CHAR_ATTR_LENGTH_ERROR

Number of character attributes is not valid.
MQRC_CHAR_ATTRS_ERROR

Character attributes string is not valid.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.

C invocation

MQZ_INQUIRE (QMgrName, SelectorCount, Selectors, IntAttrCount,
 &IntAttrs, CharAttrLength, &CharAttrs,
 SelectorReturned, ComponentData, &Continuation,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQLONG SelectorCount; /* Selector count */
MQLONG Selectors[n]; /* Selectors */
MQLONG IntAttrCount; /* IntAttrs count */
MQLONG IntAttrs[n]; /* Integer attributes */
MQLONG CharAttrCount; /* CharAttrs count */
MQLONG CharAttrs[n]; /* Chatacter attributes */
MQLONG SelectorReturned[n]; /* Selector returned */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_REFRESH_CACHE (Refresh all authorizations) on IBM i
This function is provided by an MQZAS_VERSION_3 authorization service component. It is invoked by the
queue manager to refresh the list of authorizations held internally by the component.

The function identifier for this function (for MQZEP) is MQZID_REFRESH_CACHE (8L).

Syntax
MQZ_REFRESH_CACHE

(QMgrName, ComponentData, Continuation, CompCode, Reason)

1696 IBM MQ Developing Applications Reference

Parameters
QMgrName (MQCHAR48) - input

Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to use it in any defined manner.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component. Any changes made to
it by any of the functions provided by this component are preserved, and presented the next time a
function of the component is called.

The length of this data area is passed by the queue manager in the ComponentDataLength parameter
of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_REFRESH_CACHE, this has the same effect as MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.

C invocation

MQZ_REFRESH_CACHE (QMgrName, ComponentData,
 &Continuation, &CompCode, &Reason);

Declare the parameters as follows:

Developing applications reference 1697

MQCHAR48 QMgrName; /* Queue manager name */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_SET_AUTHORITY (Set authority) on IBM i
This function is provided by a MQZAS_VERSION_1 authorization service component, and is invoked by the
queue manager to set the authority that an entity has to access the specified object.

The function identifier for this function (for MQZEP) is MQZID_SET_AUTHORITY.

Note: This function overrides any existing authorities. To preserve any existing authorities you must set
them again with this function.

Syntax
MQZ_SET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, Authority, ComponentData, Continuation, CompCode, Reason)

Parameters
The MQZ_SET_AUTHORITY call has the following parameters.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

EntityName (MQCHAR12) - input
Entity name.

The name of the entity for which access to the object is to be set. The maximum length of the string is
12 characters; if it is shorter than that it is padded to the right with blanks. The name is not terminated
by a null character.

EntityType (MQLONG) - input
Entity type.

The type of entity specified by EntityName. The following value can be specified:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

ObjectName (MQCHAR48) - input
Object name.

The name of the object to which access is required. The maximum length of the string is 48
characters; if it is shorter than that it is padded to the right with blanks. The name is not terminated by
a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) - input
Object type.

The type of entity specified by ObjectName. It is one of the following:

1698 IBM MQ Developing Applications Reference

MQOT_AUTH_INFO
Authentication information.

MQOT_CHANNEL
Channel.

MQOT_CLNTCONN_CHANNEL
Client connection channel.

MQOT_LISTENER
Listener.

MQOT_NAMELIST
Namelist.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

MQOT_SERVICE
Service.

Authority (MQLONG) - input
Authority to be checked.

If one authorization is being set, this field is equal to the appropriate authorization operation
(MQZAO_* constant). If more than one authorization is being set, it is the bitwise OR of the
corresponding MQZAO_* constants.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) - output
Continuation indicator set by component.

The following values can be specified:
MQZCI_DEFAULT

Continuation dependent on queue manager.

For MQZ_SET_AUTHORITY this has the same effect as MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Developing applications reference 1699

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_NOT_AUTHORIZED

(2035, X'7F3') Not authorized for access.
MQRC_SERVICE_ERROR

(2289, X'8F1') Unexpected error occurred accessing service.
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_UNKNOWN_ENTITY

(2292, X'8F4') Entity unknown to service.

C invocation

MQZ_SET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
 ObjectType, Authority, ComponentData,
 &Continuation, &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQCHAR48 QMgrName; /* Queue manager name */
MQCHAR12 EntityName; /* Entity name */
MQLONG EntityType; /* Entity type */
MQCHAR48 ObjectName; /* Object name */
MQLONG ObjectType; /* Object type */
MQLONG Authority; /* Authority to be checked */
MQBYTE ComponentData[n]; /* Component data */
MQLONG Continuation; /* Continuation indicator set by
 component */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZ_TERM_AUTHORITY - Terminate authorization service
This function is provided by an authorization service component, and is invoked by the queue manager
when it no longer requires the services of this component. The function must perform any cleanup
required by the component.

The function identifier for this function (for MQZEP) is MQZID_TERM_AUTHORITY.

Syntax
MQZ_TERM_AUTHORITY (Hconfig, Options, QMgrName, ComponentData,

CompCode, Reason)

Parameters
The MQZ_TERM_AUTHORITY call has the following parameters.

Hconfig (MQHCONFIG) - input
Configuration handle.

This handle represents the particular component being terminated.

Options (MQLONG) - input
Termination options.

1700 IBM MQ Developing Applications Reference

It is one of the following:
MQZTO_PRIMARY

Primary termination.
MQZTO_SECONDARY

Secondary termination.

QMgrName (MQCHAR48) - input
Queue manager name.

The name of the queue manager calling the component. This name is padded with blanks to the full
length of the parameter; the name is not terminated by a null character.

The queue manager name is passed to the component for information; the authorization service
interface does not require the component to make use of it in any defined manner.

ComponentData (MQBYTE x ComponentDataLength) - input/output
Component data.

This data is kept by the queue manager on behalf of this particular component; any changes made to
it by any of the functions provided by this component are preserved, and presented the next time one
of this component's functions is called.

The length of this data area is passed by the queue manager in the ComponentDataLength
parameter on the MQZ_INIT_AUTHORITY call.

When the MQZ_TERM_AUTHORITY call has completed, the queue manager discards this data.

CompCode (MQLONG) - output
Completion code.

It is one of the following:
MQCC_OK

Successful completion.
MQCC_FAILED

Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
MQRC_NONE

(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:
MQRC_SERVICE_NOT_AVAILABLE

(2285, X'8ED') Underlying service not available.
MQRC_TERMINATION_FAILED

(2287, X'8FF') Termination failed for an undefined reason.

For more information about these reason codes, see Messages and reason codes.

C invocation

MQZ_TERM_AUTHORITY (Hconfig, Options, QMgrName, ComponentData,
 &CompCode, &Reason);

The parameters passed to the service are declared as follows:

MQHCONFIG Hconfig; /* Configuration handle */
MQLONG Options; /* Termination options */
MQCHAR48 QMgrName; /* Queue manager name */

Developing applications reference 1701

MQBYTE ComponentData[n]; /* Component data */
MQLONG CompCode; /* Completion code */
MQLONG Reason; /* Reason code qualifying CompCode */

MQZAC (Application context) on IBM i
This parameter specifies data related to the calling application.

The MQZAC structure is used on the MQZ_AUTHENTICATE_USER call for the ApplicationContext
parameter.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:
MQZAC_STRUC_ID

Identifier for application context structure.

For the C programming language, the constant MQZAC_STRUC_ID_ARRAY is also defined; this has
the same value as MQZAC_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG
Structure version number.

The value is:
MQZAC_VERSION_1

Version-1 application context structure.

The following constant specifies the version number of the current version:
MQZAC_CURRENT_VERSION

Current version of application context structure.

This is an input field to the service.

ProcessId (MQPID)
Process identifier.

The process identifier of the application.

ThreadId (MQTID)
Thread identifier.

The thread identifier of the application.

ApplName (MQCHAR28)
Application name.

The application name.

UserID (MQCHAR12)
User identifier.

For IBM i systems the user profile that the application job was created under. (On IBM i, when a profile
swap is done with the QWTSETP API in the application job, the current user profile is returned).

EffectiveUserID (MQCHAR12)
Effective user identifier.

For IBM i systems the application job's current user profile.

Environment (MQLONG)
Environment.

1702 IBM MQ Developing Applications Reference

This field specifies the environment from which the call was made.

This can have one of the following values:
MQXE_COMMAND_SERVER

Command server.
MQXE_MQSC

runmqsc command interpreter.
MQXE_MCA

Message channel agent
MQXE_OTHER

Undefined environment

CallerType (MQLONG)
Caller Type.

This field specifies the type of program that made the call.

This can have one of the following values:
MQXACT_EXTERNAL

The call is external to the queue manager.
MQXACT_INTERNAL

The call is internal to the queue manager.

AuthenticationType (MQLONG)
Authentication Type.

This field specifies the type of authentication being performed.

This can have one of the following values:
MQZAT_INITIAL_CONTEXT

The authentication call is due to user context being initialized. This value is used during an
MQCONN or MQCONNX call.

MQZAT_CHANGE_CONTEXT
The authentication call is due to the user context being changed. This value is used when the MCA
changes the user context.

v
BindType (MQLONG

Bind Type.

This field specifies the type of binding in use.

This can have one of the following values:
MQCNO_FASTPATH_BINDING

Fastpath binding.
MQCNO_SHARED_BINDING

Shared binding.
MQCNO_ISOLATED_BINDING

Isolated binding.

C declaration

typedef struct tagMQZAC MQZAC;
struct tagMQZAC {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQPID ProcessId; /* Process identifier */
 MQTID ThreadId; /* Thread identifier */
 MQCHAR28 ApplName; /* Application name */

Developing applications reference 1703

 MQCHAR12 UserID; /* User identifier */
 MQCHAR12 EffectiveUserID; /* Effective user identifier */
 MQLONG Environment; /* Environment */
 MQLONG CallerType; /* Caller type */
 MQLONG AuthenticationType; /* Authentication type */
 MQLONG BindType; /* Bind type */
};

MQZAD (Authority data) on IBM i
The MQZAD structure is used on the MQZ_ENUMERATE_AUTHORITY_DATA call for two parameters.

See “MQZ_ENUMERATE_AUTHORITY_DATA (Enumerate authority data) on IBM i” on page 1684 for
further information on the Filter and AuthorityBuffer parameters:

• MQZAD is used for the Filter parameter which is input to the call. This parameter specifies the
selection criteria that are to be used to select the authority data returned by the call.

• MQZAD is also used for the AuthorityBuffer parameter which is output from the call. This parameter
specifies the authorizations for one combination of profile name, object type, and entity.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:
MQZAD_STRUC_ID

Identifier for authority data structure.

For the C programming language, the constant MQZAD_STRUC_ID_ARRAY is also defined; this has
the same value as MQZAD_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG)
Structure version number.

The value is:
MQZAD_VERSION_1

Version-1 authority data structure.

The following constant specifies the version number of the current version:
MQZAD_CURRENT_VERSION

Current version of authority data structure.

This is an input field to the service.

ProfileName (MQCHAR48)
Profile name.

For the Filter parameter, this field is the profile name from which authority data is required. If the
name is entirely blank up to the end of the field or the first null character, authority data for all profile
names is returned.

For the AuthorityBuffer parameter, this field is the name of a profile that matches the specified
selection criteria.

ObjectType (MQLONG)
Object type.

For the Filter parameter, this field is the object type for which authority data is required. If the value
is MQOT_ALL, authority data for all object types is returned.

For the AuthorityBuffer parameter, this field is the object type to which the profile identified by
ProfileName applies.

1704 IBM MQ Developing Applications Reference

The value is one of the following; for the Filter parameter, the value MQOT_ALL is also valid:
MQOT_AUTH_INFO

Authentication information.
MQOT_CHANNEL

Channel.
MQOT_CLNTCONN_CHANNEL

Client connection channel.
MQOT_LISTENER

Listener.
MQOT_NAMELIST

Namelist.
MQOT_PROCESS

Process definition.
MQOT_Q

Queue.
MQOT_Q_MGR

Queue manager.
MQOT_SERVICE

Service.

Authority (MQLONG)
Authority.

For the Filter parameter, this field is ignored.

For the AuthorityBuffer parameter, this field represents the authorizations that the entity has to
the objects identified by ProfileName and ObjectType. If the entity has only one authority, the
field is equal to the appropriate authorization value (MQZAO_* constant). If the entity has more than
one authority, the field is the bitwise OR of the corresponding MQZAO_* constants.

EntityDataPtr (PMQZED)
Address of MQZED structure identifying an entity.

For the Filter parameter, this field points to an MQZED structure that identifies the entity from
which authority data is required. If EntityDataPtr is the null pointer, authority data for all entities is
returned.

For the AuthorityBuffer parameter, this field points to an MQZED structure that identifies the
entity that the returned authority data came from.

EntityType (MQLONG)
Entity type.

For the Filter parameter, this field specifies the entity type for which authority data is required. If
the value is MQZAET_NONE, authority data for all entity types is returned.

For the AuthorityBuffer parameter, this field specifies the type of the entity identified by the
MQZED structure pointed to by EntityDataPtr.

The value is one of the following; for the Filter parameter, the value MQZAET_NONE is also valid:
MQZAET_PRINCIPAL

Principal.
MQZAET_GROUP

Group.

Options (MQAUTHOPT)
Options.

This field specifies options that give control over the profiles that are displayed.

Developing applications reference 1705

One of the following must be specified:
MQAUTHOPT_NAME_ALL_MATCHING

Displays all profiles
MQAUTHOPT_NAME_EXPLICIT

Displays profiles that have exactly the same name as specified in the ProfileName field.
In addition, one of the following must also be specified:
MQAUTHOPT_ENTITY_SET

Display all profiles used to calculate the cumulative authority that the entity has to the object
specified by ProfileName. The ProfileName field must not contain any wildcard characters.

• If the specified entity is a principal, for each member of the set {entity, groups} the most
applicable profile that applies to the object is displayed.

• If the specified entity is a group, the most applicable profile from the group that applies to the
object is displayed.

• If this value is specified, then the values of ProfileName, ObjectType, EntityType, and the
entity name specified in the EntityDataPtr MQZED structure, must all be non-blank.

If you have specified MQAUTHOPT_NAME_ALL_MATCHING, you can also specify the following:
MQAUTHOPT_ENTITY_EXPLICIT

Displays profiles that have exactly the same entity name as the entity name specified in the
EntityDataPtr MQZED structure.

C declaration

typedef struct tagMQZAD MQZAD;
struct tagMQZAD {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQCHAR48 ProfileName; /* Profile name */
 MQLONG ObjectType; /* Object type */
 MQLONG Authority; /* Authority */
 PMQZED EntityDataPtr; /* Address of MQZED structure identifying an
 entity */
 MQLONG EntityType; /* Entity type */
 MQAUTHOPT Options; /* Options */
};

MQZED (Entity descriptor) on IBM i
The MQZED structure is used in a number of authorization service calls to specify the entity for which
authorization is to be checked.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:
MQZED_STRUC_ID

Identifier for entity descriptor structure.

For the C programming language, the constant MQZED_STRUC_ID_ARRAY is also defined; this has
the same value as MQZED_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG)
Structure version number.

The value is:

1706 IBM MQ Developing Applications Reference

MQZED_VERSION_1
Version-1 entity descriptor structure.

The following constant specifies the version number of the current version:
MQZED_CURRENT_VERSION

Current version of entity descriptor structure.

This is an input field to the service.

EntityNamePtr (PMQCHAR)
Address of entity name.

This is a pointer to the name of the entity whose authorization is to be checked.

EntityDomainPtr (PMQCHAR)
Address of entity domain name.

This is a pointer to the name of the domain containing the definition of the entity whose authorization
is to be checked.

SecurityId (MQBYTE40)
Security identifier.

This is the security identifier whose authorization is to be checked.

CorrelationPtr (MQPTR)
Correlation pointer.

This facilitates the passing of correlational data between the authenticate user function and other
appropriate OAM functions.

C declaration

typedef struct tagMQZED MQZED;
struct tagMQZED {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 PMQCHAR EntityNamePtr; /* Address of entity name */
 PMQCHAR EntityDomainPtr; /* Address of entity domain name */
 MQBYTE40 SecurityId; /* Security identifier */
 MQPTR CorrelationPtr; /* Address of correlation data */

MQZFP (Free parameters) on IBM i
This parameter specifies data related to resource to be freed.

The MQZFP structure is used on the MQZ_FREE_USER call for the FreeParms parameter.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:
MQZFP_STRUC_ID

Identifier for free parameters structure.

For the C programming language, the constant MQZFP_STRUC_ID_ARRAY is also defined; this has
the same value as MQZFP_STRUC_ID, but is an array of characters instead of a string.

This is an input field to the service.

Version (MQLONG)
Structure version number.

The value is:

Developing applications reference 1707

MQZFP_VERSION_1
Version-1 free parameters structure.

The following constant specifies the version number of the current version:
MQZFP_CURRENT_VERSION

Current version of free parameters structure.

This is an input field to the service.

Reserved (MQBYTE8)
Reserved field.

The initial value is null.

CorrelationPtr (MQPTR)
Correlation pointer.

Address of correlation data relating to the resource to be freed.

C declaration

typedef struct tagMQZFP MQZFP;
struct tagMQZFP {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQBYTE8 Reserved; /* Reserved field */
 MQPTR CorrelationPtr; /* Address of correlation data */
};

MQZIC (Identity context) on IBM i
The MQZIC structure is used on the MQZ_AUTHENTICATE_USER call for the IdentityContext
parameter.

The MQZIC structure contains identity context information, that identifies the user of the application that
first put the message on a queue:

• The queue manager fills the UserIdentifier field with a name that identifies the user, the way that the
queue manager can do this depends on the environment in which the application is running.

• The queue manager fills the AccountingToken field with a token or number that it determined from the
application that put the message.

• Applications can use the ApplIdentityData field for any extra information that they want to include
about the user (for example, an encrypted password).

Suitably authorized applications may set the identity context using the MQZ_AUTHENTICATE_USER
function.

A Windows systems security identifier (SID) is stored in the AccountingToken field when a message is
created under IBM MQ for Windows. The SID can be used to supplement the UserIdentifier field and to
establish the credentials of a user.

Fields
StrucId (MQCHAR4)

Structure identifier.

The value is:
MQZIC_STRUC_ID

Identifier for identity context structure.

For the C programming language, the constant MQZIC_STRUC_ID_ARRAY is also defined; this has
the same value as MQZIC_STRUC_ID, but is an array of characters instead of a string.

1708 IBM MQ Developing Applications Reference

This is an input field to the service.
Version (MQLONG)

Structure version number.

The value is:
MQZIC_VERSION_1

Version-1 identity context structure.

The following constant specifies the version number of the current version:
MQZIC_CURRENT_VERSION

Current version of identity context structure.

This is an input field to the service.

UserIdentifier (MQCHAR12)
User identifier.

This is part of the identity context of the message.

UserIdentifier specifies the user identifier of the application that originated the message. The
queue manager treats this information as character data, but does not define the format of it. For
more information on the UserIdentifier field, see “UserIdentifier (MQCHAR12)” on page 453.

AccountingToken (MQBYTE32)
Accounting token.

This is part of the identity context of the message.

AccountingToken allows an application to cause work done as a result of the message to be
appropriately charged. The queue manager treats this information as a string of bits and does not
check its content. For more information on the AccountingToken field, see “AccountingToken
(MQBYTE32)” on page 454.

ApplIdentityData (MQCHAR32)
Application data relating to identity.

This is part of the identity context of the message.

ApplIdentityData is information that is defined by the application suite that can be used to
provide additional information about the origin of the message. For example, it could be set by
applications running with suitable user authority to indicate whether the identity data is trusted. For
more information on the ApplIdentityData field, see “ApplIdentityData (MQCHAR32)” on page
456.

C declaration

typedef struct tagMQZED MQZED;
struct tagMQZED {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQCHAR12 UserIdentifier; /* User identifier */
 MQBYTE32 AccountingToken; /* Accounting token */
 MQCHAR32 ApplIdentityData; /* Application data relating to identity */
};

Developing applications reference 1709

The IBM MQ .NET classes and interfaces
IBM MQ .NET classes and interfaces are listed alphabetically. The properties, methods and constructors
are described.

MQAsyncStatus.NET class
Use MQAsyncStatus to inquire on the status of previous MQI activity; for example inquiring on the
success of previous asynchronous put operations. MQAsyncStatus encapsulates features of the MQSTS
data structure.

Class

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQAsyncStatus

public class IBM.WMQ.MQAsyncStatus extends IBM.WMQ.MQBaseObject;

• “Properties” on page 1710
• “Constructors” on page 1711

Properties
Test for MQException being thrown when getting properties.

public static int CompCode {get;}

The completion code from the first error or warning.

public static int Reason {get;}

The reason code from the first error or warning.

public static int PutSuccessCount {get;}

The number of successful asynchronous MQI put calls.

public static int PutWarningCount {get;}

The number of asynchronous MQI put calls that succeeded with a warning.

public static int PutFailureCount {get;}

The number of failed asynchronous MQI put calls.

public static int ObjectType {get;}

The object type for the first error. The following values are possible:

• MQC.MQOT_ALIAS_Q
• MQC.MQOT_LOCAL_Q
• MQC.MQOT_MODEL_Q
• MQC.MQOT_Q
• MQC.MQOT_REMOTE_Q
• MQC.MQOT_TOPIC
• 0, meaning that no object is returned

1710 IBM MQ Developing Applications Reference

public static string ObjectName {get;}

The object name.

public static string ObjectQMgrName {get;}

The object queue manager name.

public static string ResolvedObjectName {get;}

The resolved object name.

public static string ResolvedObjectQMgrName {get;}

The resolved object queue manager name.

Constructors
public MQAsyncStatus() throws MQException;

Constructor method, constructs an object with fields initialized to zero or blank as appropriate.

MQAuthenticationInformationRecord.NET class
Use MQAuthenticationInformationRecord to specify information about an authenticator that is to
be used in an IBM MQ TLS client connection. MQAuthenticationInformationRecord encapsulates
an authentication information record, MQAIR.

Class

System.Object
 |
 └─ IBM.WMQ.MQAuthenticationInformationRecord

public class IBM.WMQ.MQAuthenticationInformationRecord extends System.Object;

• “Properties” on page 1711
• “Constructors” on page 1712

Properties
Test for MQException being thrown when getting properties.

public long Version {get; set;}

Structure version number.

public long AuthInfoType {get; set;}

The type of authentication information. This attribute must be set to one of the following values:

• OCSP - Certificate revocation status checking is done using OCSP.
• CRLLDAP - Certificate revocation status checking is done using Certificate Revocation Lists on LDAP

servers.

public string AuthInfoConnName {get; set;}

The DNS name or IP address of the host on which the LDAP server is running, with an optional port
number. This keyword is required.

public string LDAPPassword {get; set;}

The password associated with the distinguished name of the user who is accessing the LDAP server.
This property applies only when AuthInfoType is set to CRLLDAP.

Developing applications reference 1711

public string LDAPUserName {get; set;}

The distinguished name of the user who is accessing the LDAP server. When you set this property,
LDAPUserNameLength and LDAPUserNamePtr are automatically set correctly. This property applies
only when AuthInfoType is set to CRLLDAP.

public string OCSPResponderURL {get; set;}

The URL at which the OCSP responder can be contacted. This property applies only when
AuthInfoType is set to OCSP

This field is case sensitive. It must start with the string http:// in lowercase. The rest of the URL might
be case sensitive, depending on the OCSP server implementation.

Constructors
MQAuthenticationInformationRecord();

MQDestination.NET class
Use MQDestination to access methods that are common to MQQueue and MQTopic. MQDestination
is an abstract base class and cannot be instantiated.

Class

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQManagedObject
 |
 └─ IBM.WMQ.MQDestination
 |
 └─ IBM.WMQ.MQQueue
 |
 └─ IBM.WMQ.MQTopic

public class IBM.WMQ.MQDestination extends IBM.WMQ.MQManagedObject;

• “Properties” on page 1712
• “Methods” on page 1713
• “Constructors” on page 1714

Properties
Test for MQException being thrown when getting properties.

public DateTime CreationDateTime {get;}

The date and time that the queue or topic was created. Originally contained within MQQueue, this
property has been moved into the base MQDestination class.

There is no default value.

public int DestinationType {get;}

Integer value describing the type of destination being used. Initialized from the sub classes
constructor, MQQueue or MQTopic, this value can take one of these values:

• MQOT_Q
• MQOT_TOPIC

There is no default value.

1712 IBM MQ Developing Applications Reference

Methods
public void Get(MQMessage message);
public void Get(MQMessage message, MQGetMessageOptions getMessageOptions);
public void Get(MQMessage message, MQGetMessageOptions getMessageOptions, int
MaxMsgSize);

Throws MQException.

Gets a message from a queue if the destination is an MQQueue object or from a topic if the destination
is an MQTopic object, using a default instance of MQGetMessageOptions to do the get.

If the get fails, the MQMessage object is unchanged. If it succeeds, the message descriptor and
message data portions of the MQMessage are replaced with the message descriptor and message
data from the incoming message.

All calls to IBM MQ from a particular MQQueueManager are synchronous. Therefore, if you perform
a get with wait, all other threads using the same MQQueueManager are blocked from making further
IBM MQ calls until the Get call is accomplished. If you need multiple threads to access IBM MQ
simultaneously, each thread must create its own MQQueueManager object.

message
Contains the message descriptor and the returned message data. Some of the fields in the
message descriptor are input parameters. It is important to ensure that the MessageId and
CorrelationId input parameters are set as required.
A reconnectable client returns the reason code MQRC_BACKED_OUT after successful reconnection,
for messages received under MQGM_SYNCPOINT.

getMessageOptions
Options controlling the action of the get.

Using option MQC.MQGMO_CONVERT might result in an exception with reason code
MQC.MQRC_CONVERTED_STRING_TOO_BIG when converting from single-byte character codes to
double byte codes. In this case, the message is copied into the buffer without conversion.

If getMessageOptions is not specified, the message option used is MQGMO_NOWAIT.

If you use the MQGMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

MaxMsgSize
The largest message this message object is to receive. If the message on the queue is larger than
this size, one of two things occurs:

• If the MQGMO_ACCEPT_TRUNCATED_MSG flag is set in the MQGetMessageOptions object, the
message is filled with as much of the message data as possible. An exception is thrown with the
MQCC_WARNING completion code and MQRC_TRUNCATED_MSG_ACCEPTED reason code.

• If the MQGMO_ACCEPT_TRUNCATED_MSG flag is not set, the message remains on
the queue. An exception is thrown with the MQCC_WARNING completion code and
MQRC_TRUNCATED_MSG_FAILED reason code.

If MaxMsgSize is not specified, the whole message is retrieved.

public void Put(MQMessage message);
public void Put(MQMessage message, MQPutMessageOptions putMessageOptions);

Throws MQException.

Puts a message to a queue if the destination is an MQQueue object or publishes a message to a topic if
the destination is an MQTopic object.

Modifications to the MQMessage object after the Put call has been accomplished do not affect the
actual message on the IBM MQ queue or publication topic.

Developing applications reference 1713

Put updates the MessageId and CorrelationId properties of the MQMessage object and does
not clear message data. Further Put or Get calls refer to the updated information in the MQMessage
object. For example, in the following code snippet, the first message contains a and the second ab.

msg.WriteString("a");
q.Put(msg,pmo);
msg.WriteString("b");
q.Put(msg,pmo);

message
An MQMessage object containing the message descriptor data, and message to be sent. The
message descriptor can be altered as a consequence of this method. The values in the message
descriptor immediately after the completion of this method are the values that were put to the
queue or published to the topic.

The following reason codes are returned to a reconnectable client:

• MQRC_CALL_INTERRUPTED if the connection is broken while running a Put call on a persistent
message and the reconnection is successful.

• MQRC_NONE if the connection is successful while running a Put call on a non-persistent message
(see Application Recovery).

putMessageOptions
Options controlling the action of the put.
If putMessageOptions is not specified the default instance of MQPutMessageOptons is used.
If you use the MQPMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

Note: For simplicity and performance, if you want to put a single message to a queue, use
MQQueueManager.Put object. You should have an MQQueue object for this.

Constructors
MQDestination is an abstract base class and cannot be instantiated. Access destinations
using MQQueue and MQTopic constructors, or using MQQueueManager.AccessQueue and
MQQueueManager.AccessTopic methods.

MQEnvironment.NET class
Use MQEnvironment to control how the MQQueueManager constructor is called and to select an IBM
MQ MQI client connection. The MQEnvironment class contains properties that control the behavior of the
IBM MQ.

Class

System.Object
 |
 └─ IBM.WMQ.MQEnvironment

public class IBM.WMQ.MQEnvironment extends System.Object;

• “Properties - client only” on page 1714
• “Properties” on page 1715
• “Constructors” on page 1716

Properties - client only
Test for MQException being thrown when getting properties.

1714 IBM MQ Developing Applications Reference

public static int CertificateValPolicy {get; set;}

Set which TLS certificate validation policy is used to validate digital certificates received from remote
partner systems. Valid values are:

• MQC.CERTIFICATE_VALIDATION_POLICY_ANY
• MQC.CERTIFICATE_VALIDATION_POLICY_RFC5280

public static ArrayList EncryptionPolicySuiteB {get; set;}

Set the level of Suite B compliant cryptography. Valid values are:

• MQC.MQ_SUITE_B_NONE - This is the default value.
• MQC.MQ_SUITE_B_128_BIT
• MQC.MQ_SUITE_B_192_BIT

public static string Channel {get; set;}
The name of the channel to connect to the target queue manager. You must set the channel property
before instantiating an MQQueueManager instance in client mode.

public static int FipsRequired {get; set;}

Specify MQC.MQSSL_FIPS_YES to use only FIPS-certified algorithms if cryptography is carried out in
IBM MQ. The default is MQC.MQSSL_FIPS_NO.

If cryptographic hardware is configured, the cryptographic modules used are those provided by the
hardware product. Depending on the hardware in use, these might not be FIPS-certified to a particular
level.

public static string Hostname {get; set;}
The TCP/IP host name of the computer on which the IBM MQ server resides. If the host name is not
set, and no overriding properties are set, server bindings mode is used to connect to the local queue
manager.

public static int Port {get; set;}
The port to connect to. This is the port on which the IBM MQ server is listening for incoming
connection requests. The default value is 1414.

public static string SSLCipherSpec {get; set;}
Set SSLCipherSpec to the value of the CipherSpec set on the SVRCONN channel to enable TLS for
the connection. The default is Null, and TLS is not enabled for the connection.

public static string sslPeerName {get; set;}

A distinguished name pattern. If sslCipherSpec is set, this variable can be used to ensure that the
correct queue manager is used. If set to null (default), the DN of the queue manager is not performed.
sslPeerName is ignored if sslCipherSpec is null.

Properties
Test for MQException being thrown when getting properties.

public static ArrayList HdrCompList {get; set;}
Header Data Compression List

public static int KeyResetCount {get; set;}
Indicates the number of unencrypted bytes sent and received within an TLS conversation before the
secret key is renegotiated.

public static ArrayList MQAIRArray {get; set;}
An array of MQAuthenticationInformationRecord objects.

public static ArrayList MsgCompList {get; set;}
Message Data Compression List

Developing applications reference 1715

public static string Password {get; set;}
The password to be authenticated. The password referenced from the MQCSP structure gets
populated by setting this Password property.

public static string ReceiveExit {get; set;}
A receive exit allows you to examine and alter data received from a queue manager. It is normally
used with a corresponding send exit at the queue manager. If ReceiveExit is set to null, no receive exit
is called.

public static string ReceiveUserData {get; set;}
The user data associated with a receive exit. Limited to 32 characters.

public static string SecurityExit {get; set;}
A security exit allows you to customize the security flows that occur when an attempt is made to
connect to a queue manager. If SecurityExit is set to null, no security exit is called.

public static string SecurityUserData {get; set;}
The user data associated with a security exit. Limited to 32 characters.

public static string SendExit {get; set;}
A send exit allows you to examine or alter the data sent to a queue manager. It is normally used with a
corresponding receive exit at the queue manager. If SendExit is set to null, no send exit is called.

public static string SendUserData {get; set;}
The user data associated with a send exit. Limited to 32 characters.

public static string SharingConversations {get; set;}

The SharingConversations field is used on connections from .NET applications, when these
applications are not using a client channel definition table (CCDT).

SharingConversations determines the maximum number of conversations that can be shared on
a socket associated with this connection.

A value of 0 means that the channel operates as it did before IBM WebSphere MQ 7.0, with regard to
conversation sharing, read ahead, and heartbeat.

The field is passed in the hash table of properties as a SHARING_CONVERSATIONS_PROPERTY, when
instantiating an IBM MQ queue manager.

If you do not specify SharingConversations, a default value of 10 is used.

public static string SSLCryptoHardware {get; set;}

Sets the name of the parameter string required to configure the cryptographic hardware present on
the system. SSLCryptoHardware is ignored if sslCipherSpec is null.

public static string SSLKeyRepository {get; set;}

Set the fully qualified file name of the key repository.

If SSLKeyRepository is set to null (default), the certificate MQSSLKEYR environment variable is
used to locate the key repository. SSLCryptoHardware is ignored if sslCipherSpec is null.

Note: The .kdb extension is a mandatory part of the file name, but is not included as part of the
value of the parameter. The directory you specify must exist. IBM MQ creates the file the first time it
accesses the new key repository, unless the file already exists.

public static string UserId {get; set;}

The user ID to be authenticated. The user ID referenced from the MQCSP structure gets populated by
setting UserId. Authenticate UserId using an API or Security exit.

Constructors
public MQEnvironment()

1716 IBM MQ Developing Applications Reference

MQException.NET class
Use MQException to find out the completion and reason code of a failed IBM MQ function. An
MQException is thrown whenever an IBM MQ error occurs.

Class

System.Object
 |
 └─ System.Exception
 |
 └─ System.ApplicationException
 |
 └─ IBM.WMQ.MQException

public class IBM.WMQ.MQException extends System.ApplicationException ;

• “Properties” on page 1717
• “Constructors” on page 1717

Properties
public int CompletionCode {get; set;}

The IBM MQ completion code associated with the error. The possible values are:

• MQException.MQCC_OK
• MQException.MQCC_WARNING
• MQException.MQCC_FAILED

public int ReasonCode {get; set;}
IBM MQ reason code describing the error.

Constructors
public MQException(int completionCode, int reasonCode)

completionCode
The IBM MQ completion code.

reasonCode
The IBM MQ completion code.

MQGetMessageOptions.NET class
Use MQGetMessageOptions to specify how messages are retrieved. It modifies the behavior of
MQDestination.Get.

Class

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQGetMessageOptions

public class IBM.WMQ.MQGetMessageOptions extends IBM.WMQ.MQBaseObject;

• “Properties” on page 1718
• “Constructors” on page 1720

Developing applications reference 1717

Properties
Note: The behavior of some of the options available in this class depends on the environment in which
they are used. These elements are marked with an asterisk *.

Test for MQException being thrown when getting properties.

public int GroupStatus {get;}*
GroupStatus indicates whether the retrieved message is in a group and if it is the last in the group.
Possible values are:
MQC.MQGS_LAST_MSG_IN_GROUP

Message is the last or only message in the group.
MQC.MQGS_MSG_IN_GROUP

Message is in a group, but is not the last in the group.
MQC.MQGS_NOT_IN_GROUP

Message is not in a group.
public int MatchOptions {get; set;}*

MatchOptions determines how a message is selected. The following match options can be set:
MQC.MQMO_MATCH_CORREL_ID

Correlation ID to be matched.
MQC.MQMO_MATCH_GROUP_ID

Group ID to be matched.
MQC.MQMO_MATCH_MSG_ID

Message ID to be matched.
MQC.MQMO_MATCH_MSG_SEQ_NUMBER

Match message sequence number.
MQC.MQMO_NONE

No matching required.
public int Options {get; set;}

Options control the action of MQQueue.get. Any of the following values can be specified. If more
than one option is required, the values can be added, or combined using the bitwise OR operator.
MQC.MQGMO_ACCEPT_TRUNCATED_MSG

Allow truncation of message data.
MQC.MQGMO_ALL_MSGS_AVAILABLE*

Retrieve messages from a group only when all the messages in the group are available.
MQC.MQGMO_ALL_SEGMENTS_AVAILABLE*

Retrieve the segments of a logical message only when all the segments in the group are available.
MQC.MQGMO_BROWSE_FIRST

Browse from start of queue.
MQC.MQGMO_BROWSE_MSG_UNDER_CURSOR*

Browse message under browse cursor.
MQC.MQGMO_BROWSE_NEXT

Browse from the current position in the queue.
MQC.MQGMO_COMPLETE_MSG*

Retrieve only complete logical messages.
MQC.MQGMO_CONVERT

Request the application data to be converted, to conform to the CharacterSet and Encoding
attributes of the MQMessage, before the data is copied into the message buffer. Because data
conversion is also applied when the data is retrieved from the message buffer, applications do not
set this option.

1718 IBM MQ Developing Applications Reference

Using this option can cause problems when converting from single-byte character sets to
double-byte character sets. Instead, do the conversion using the readString, readLine, and
writeString methods after the message has been delivered.

MQC.MQGMO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQGMO_LOCK*
Lock the message that is browsed.

MQC.MQGMO_LOGICAL_ORDER*
Return messages in groups, and segments of logical messages, in logical order.
If you use the MQGMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned to the application.

MQC.MQGMO_MARK_SKIP_BACKOUT*
Allow a unit of work to be backed out without reinstating the message on the queue.

MQC.MQGMO_MSG_UNDER_CURSOR
Get message under browse cursor.

MQC.MQGMO_NONE
No other options have been specified; all options assume their default values.

MQC.MQGMO_NO_PROPERTIES
No properties of the message, except properties contained in the message descriptor (or
extension) are retrieved.

MQC.MQGMO_NO_SYNCPOINT
Get message without sync point control.

MQC.MQGMO_NO_WAIT
Return immediately if there is no suitable message.

MQC.MQGMO_PROPERTIES_AS_Q_DEF
Retrieve message properties as defined by the PropertyControl attribute of MQQueue. Access
to the message properties in the message descriptor, or extension, are not affected by the
PropertyControl attribute.

MQC.MQGMO_PROPERTIES_COMPATIBILITY
Retrieve message properties with a prefix of mcd, jms, usr, or mqext, in MQRFH2 headers. Other
properties of the message, except properties contained in the message descriptor, or extension,
are discarded.

MQC.MQGMO_PROPERTIES_FORCE_MQRFH2
Retrieve message properties, except properties contained in the message descriptor, or extension,
in MQRFH2 headers. Use MQC.MQGMO_PROPERTIES_FORCE_MQRFH2 in applications that are
expecting to retrieve properties but cannot be changed to use message handles.

MQC.MQGMO_PROPERTIES_IN_HANDLE
Retrieve message properties using a MsgHandle.

MQC.MQGMO_SYNCPOINT
Get the message under sync point control. The message is marked as being unavailable to other
applications, but it is deleted from the queue only when the unit of work is committed. The
message is made available again if the unit of work is backed out.

MQC.MQGMO_SYNCPOINT_IF_PERSISTENT*
Get message with sync point control if message is persistent.

MQC.MQGMO_UNLOCK*
Unlock a previously locked message.

MQC.MQGMO_WAIT
Wait for a message to arrive.

Developing applications reference 1719

public string ResolvedQueueName {get;}
The queue manager sets ResolvedQueueName to the local name of the queue from which the
message was retrieved. ResolvedQueueName is different from the name used to open the queue if
an alias queue or model queue was opened.

public char Segmentation {get;}*
Segmentation indicates whether you can allow segmentation for the retrieved message. Possible
values are:
MQC.MQSEG_INHIBITED

Do not allow segmentation.
MQC.MQSEG_ALLOWED

Allow segmentation
public byte SegmentStatus {get;}*

SegmentStatus is an output field that indicates whether the retrieved message is a segment of
a logical message. If the message is a segment, the flag indicates whether it is the last segment.
Possible values are:
MQC.MQSS_LAST_SEGMENT

Message is the last or only segment of the logical message.
MQC.MQSS_NOT_A_SEGMENT

Message is not a segment.
MQC.MQSS_SEGMENT

Message is a segment, but is not the last segment of the logical message.
public int WaitInterval {get; set;}

WaitInterval is the maximum time in milliseconds that an MQQueue.get call waits for
a suitable message to arrive. Use WaitInterval with MQC.MQGMO_WAIT. Set a value of
MQC.MQWI_UNLIMITED to wait an unlimited time for a message.

Constructors
public MQGetMessageOptions()

Construct a new MQGetMessageOptions object with Options set to MQC.MQGMO_NO_WAIT,
WaitInterval set to zero, and ResolvedQueueName set to blank.

MQManagedObject.NET class
Use MQManagedObject to inquire and set attributes of MQDestination, MQProcess,
MQQueueManager, and MQSubscription. MQManagedObject is a superclass of these classes.

Classes

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQManagedObject
 |
 └─ IBM.WMQ.MQProcess
 |
 └─ IBM.WMQ.MQQueueManager
 |
 └─ IBM.WMQ.MQSubscription
 |
 └─ IBM.WMQ.MQDestination

public class IBM.WMQ.MQManagedObject extends IBM.WMQ.MQBaseObject;

• “Properties” on page 1721

1720 IBM MQ Developing Applications Reference

• “Methods” on page 1721
• “Constructors” on page 1723

Properties
Test for MQException being thrown when getting properties.

public string AlternateUserId {get; set;}
The alternate user ID, if any, set when the resource was opened. AlternateUserID.set is ignored
when issued for an object that is opened. AlternateUserId is not valid for subscriptions.

public int CloseOptions {get; set;}

Set this attribute to control the way the resource is closed. The default value is MQC.MQCO_NONE.
MQC.MQCO_NONE s the only permissible value for all resources other than permanent dynamic
queues, temporary dynamic queues, subscriptions, and topics that are being accessed by the objects
that created them.

For queues and topics, the following additional values are permissible:
MQC.MQCO_DELETE

Delete the queue if there are no messages.
MQC.MQCO_DELETE_PURGE

Delete the queue, purging any messages on it.
MQC.MQCO_QUIESCE

Request the queue be closed, receiving a warning if any messages remain (allowing them to be
retrieved before final closing).

For subscriptions, the following additional values are permissible:
MQC.MQCO_KEEP_SUB

The subscription is not deleted. This option is valid only if the original subscription is durable.
MQC.MQCO_KEEP_SUB is the default value for a durable topic.

MQC.MQCO_REMOVE_SUB
The subscription is deleted. MQC.MQCO_REMOVE_SUB is the default value for a non-durable,
unmanaged topic.

MQC.MQCO_PURGE_SUB
The subscription is deleted. MQC.MQCO_PURGE_SUB is the default value for a non-durable,
managed topic.

public MQQueueManager ConnectionReference {get;}
The queue manager to which this resource belongs.

public string MQDescription {get;}
The description of the resource as held by the queue manager. MQDescription returns an empty
string for subscriptions and topics.

public boolean IsOpen {get;}
Indicates whether the resource is currently open.

public string Name {get;}
The name of the resource. The name is either the supplied on the access method, or the allocated by
the queue manager for a dynamic queue.

public int OpenOptions {get; set;}
OpenOptions are set when an IBM MQ object is opened. The OpenOptions.set method is ignored
and does not cause an error. Subscriptions have no OpenOptions.

Methods
public virtual void Close();

Throws MQException.

Developing applications reference 1721

Closes the object. No further operations against this resource are permitted after calling Close. To
change the behavior of the Close method, set the closeOptions attribute.

public string GetAttributeString(int selector, int length);
Throws MQException.
Gets an attribute string.
selector

Integer indicating which attribute is being queried.
length

Integer indicating the length of the string required.
public void Inquire(int[] selectors, int[] intAttrs, byte[] charAttrs);

Throws MQException.
Returns an array of integers and a set of character strings containing the attributes of a queue,
process, or queue manager. The attributes to be queried are specified in the selectors array.

Note: Many of the more common attributes can be queried using the Get methods defined in
MQManagedObject, MQQueue and MQQueueManager.

selectors
Integer array identifying the attributes with values to be inquired on.

intAttrs
The array in which the integer attribute values are returned. Integer attribute values are returned
in the same order as the integer attribute selectors in the selectors array.

charAttrs
The buffer in which the character attributes are returned, concatenated. Character attributes are
returned in the same order as the character attribute selectors in the selectors array. The length of
each attribute string is fixed for each attribute.

public void Set(int[] selectors, int[] intAttrs, byte[] charAttrs);
Throws MQException.
Sets the attributes defined in the vector of selectors. The attributes to be set are specified in the
selectors array.
selectors

Integer array identifying the attributes with values to be set.
intAttrs

The array of integer attribute values to be set. These values must be in the same order as the
integer attribute selectors in the selectors array.

charAttrs
The buffer in which the character attributes to be set are concatenated. These values must be
in the same order as the character attribute selectors in the selectors array. The length of each
character attribute is fixed.

public void SetAttributeString(int selector, string value, int length);
Throws MQException.
Sets an attribute string.
selector

Integer indicating which attribute is being set.
value

The string to set as the attribute value.
length

Integer indicating the length of the string required.

1722 IBM MQ Developing Applications Reference

Constructors
protected MQManagedObject()

Constructor method. This object is an abstract base class which cannot be instantiated by itself.

MQMessage.NET class
Use MQMessage to access the message descriptor and data for an IBM MQ message. MQMessage
encapsulates an IBM MQ message.

Class

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQMessage

public class IBM.WMQ.MQMessage extends IBM.WMQ.MQBaseObject;

Create an MQMessage object and then use the Read and Write methods to transfer data between the
message and other objects in your application. Send and receive MQMessage objects using the Put and
Get methods of the MQDestination, MQQueue and MQTopic classes.

Get and set the properties of the message descriptor using the properties of MQMessage. Set and Get
extended message properties using the SetProperty and GetProperty methods.

• “Properties” on page 1723
• “Read and Write message methods” on page 1729
• “Buffer methods” on page 1732
• “Property methods” on page 1732
• “Constructors” on page 1735

Properties
Test for MQException being thrown when getting properties.

public string AccountingToken {get; set;}
Part of the identity context of the message; it helps an application to charge for work done as a result
of the message. The default value is MQC.MQACT_NONE.

public string ApplicationIdData {get; set;}
Part of the identity context of the message. ApplicationIdData is information that is defined by
the application suite, and can be used to provide additional information about the message or its
originator. The default value is "".

public string ApplicationOriginData {get; set;}
Information defined by the application that can be used to provide additional information about the
origin of the message. The default value is "".

public int BackoutCount {get;}
A count of the number of times the message has previously been returned and backed out by an
MQQueue.Get call as part of a unit of work. The default value is zero.

public int CharacterSet {get; set;}

The coded character set identifier of character data in the message.

Set CharacterSet to identify the character set of character data in the message. Get
CharacterSet to find out in what character set has been used to encode character data in the
message.

Developing applications reference 1723

.NET applications always run in Unicode, whereas in other environments applications run in the same
character set as the queue manager is running under.

The ReadString and ReadLine methods convert the character data in the message to Unicode for
you.

The WriteString method converts from Unicode to the character set encoded in CharacterSet. If
CharacterSet is set to its default value, MQC.MQCCSI_Q_MGR, which is 0, no conversion takes place
and CharacterSet is set to 1200. If you set CharacterSet to some other value, WriteString
converts from Unicode to the alternate value.

Note: Other read and write methods do not use CharacterSet.

• ReadChar and WriteChar read and write a Unicode character to and from the message buffer
without conversion.

• ReadUTF and WriteUTF convert between a Unicode string in the application, and a UTF-8 string,
prefixed by a 2-byte length field, in the message buffer.

• Byte methods transfer bytes between the application and the message buffer without alteration.

public byte[] CorrelationId {get; set;}

• For an MQQueue.Get call, the correlation identifier of the message to be retrieved. The queue
manager returns the first message with a message identifier and a correlation identifier that match
the message descriptor fields. The default value, MQC.MQCI_NONE, helps any correlation identifier
to match.

• For an MQQueue.Put call, the correlation identifier to set.

public int DataLength {get;}
The number of bytes of message data remaining to be read.

public int DataOffset {get; set;}
The current cursor position within the message data. Reads and writes take effect at the current
position.

public int Encoding {get; set;}
The representation used for numeric values in the application message data. Encoding applies to
binary, packed decimal, and floating point data. The behavior of the read and write methods for these
numeric formats is altered accordingly. Construct a value for the encoding field by adding one value
from each of these three sections. Alternatively, construct the value combining the values from each
of the three sections using the bitwise OR operator.

1. Binary integer
MQC.MQENC_INTEGER_NORMAL

Big-endian integers.
MQC.MQENC_INTEGER_REVERSED

Little-endian integers, as used in Intel architecture.
2. Packed-decimal
MQC.MQENC_DECIMAL_NORMAL

Big-endian packed-decimal, as used by z/OS.
MQC.MQENC_DECIMAL_REVERSED

Little-endian packed-decimal.
3. Floating-point
MQC.MQENC_FLOAT_IEEE_NORMAL

Big-endian IEEE floats.
MQC.MQENC_FLOAT_IEEE_REVERSED

Little-endian IEEE floats, as used Intel architecture.
MQC.MQENC_FLOAT_S390

z/OS format floating points.

1724 IBM MQ Developing Applications Reference

The default value is:

MQC.MQENC_INTEGER_REVERSED |
MQC.MQENC_DECIMAL_REVERSED |
MQC.MQENC_FLOAT_IEEE_REVERSED

The default setting causes WriteInt to write a little-endian integer, and ReadInt to read a little-
endian integer. If you set the flag MQC.MQENC_INTEGER_NORMAL flag instead, WriteInt writes a
big-endian integer, and ReadInt reads a big-endian integer.

Note: A loss in precision can occur when converting from IEEE format floating points to zSeries format
floating points.

public int Expiry {get; set;}
An expiry time expressed in tenths of a second, set by the application that puts the message. After
the expiry time of a message has elapsed, it is eligible to be discarded by the queue manager. If the
message specified one of the MQC.MQRO_EXPIRATION flags, a report is generated when the message
is discarded. The default value is MQC.MQEI_UNLIMITED, meaning that the message never expires.

public int Feedback {get; set;}
Use Feedback with a message of type MQC.MQMT_REPORT to indicate the nature of the report. The
following feedback codes are defined by the system:

• MQC.MQFB_EXPIRATION
• MQC.MQFB_COA
• MQC.MQFB_COD
• MQC.MQFB_QUIT
• MQC.MQFB_PAN
• MQC.MQFB_NAN
• MQC.MQFB_DATA_LENGTH_ZERO
• MQC.MQFB_DATA_LENGTH_NEGATIVE
• MQC.MQFB_DATA_LENGTH_TOO_BIG
• MQC.MQFB_BUFFER_OVERFLOW
• MQC.MQFB_LENGTH_OFF_BY_ONE
• MQC.MQFB_IIH_ERROR

Application-defined feedback values in the range MQC.MQFB_APPL_FIRST to
MQC.MQFB_APPL_LAST can also be used. The default value of this field is MQC.MQFB_NONE,
indicating that no feedback is provided.

public string Format {get; set;}
A format name used by the sender of the message to indicate the nature of the data in the message
to the receiver. You can use your own format names, but names beginning with the letters MQ have
meanings that are defined by the queue manager. The queue manager built-in formats are:
MQC.MQFMT_ADMIN

Command server request/reply message.
MQC.MQFMT_COMMAND_1

Type 1 command reply message.
MQC.MQFMT_COMMAND_2

Type 2 command reply message.
MQC.MQFMT_DEAD_LETTER_HEADER

Dead-letter header.
MQC.MQFMT_EVENT

Event message.

Developing applications reference 1725

MQC.MQFMT_NONE
No format name.

MQC.MQFMT_PCF
User-defined message in programmable command format.

MQC.MQFMT_STRING
Message consisting entirely of characters.

MQC.MQFMT_TRIGGER
Trigger message

MQC.MQFMT_XMIT_Q_HEADER
Transmission queue header.

The default value is MQC.MQFMT_NONE.
public byte[] GroupId {get; set;}

A byte string that identifies the message group to which the physical message belongs. The default
value is MQC.MQGI_NONE.

public int MessageFlags {get; set;}
Flags controlling the segmentation and status of a message.

public byte[] MessageId {get; set;}

For an MQQueue.Get call, this field specifies the message identifier of the message to be retrieved.
Normally, the queue manager returns the first message with a message identifier and correlation
identifier that match the message descriptor fields. Allow any message identifier to match using the
special value MQC.MQMI_NONE.

For an MQQueue.Put call, this field specifies the message identifier to use. If MQC.MQMI_NONE s
specified, the queue manager generates a unique message identifier when the message is put. The
value of this member variable is updated after the put, to indicate the message identifier that was
used. The default value is MQC.MQMI_NONE.

public int MessageLength {get;}
The number of bytes of message data in the MQMessage object.

public int MessageSequenceNumber {get; set;}
The sequence number of a logical message within a group.

public int MessageType {get; set;}
Indicates the type of the message. The following values are currently defined by the system:

• MQC.MQMT_DATAGRAM
• MQC.MQMT_REPLY
• MQC.MQMT_REPORT
• MQC.MQMT_REQUEST

Application-defined values can also be used, in the range MQC.MQMT_APPL_FIRST to
MQC.MQMT_APPL_LAST. The default value of this field is MQC.MQMT_DATAGRAM.

public int Offset {get; set;}
In a segmented message, the offset of data in a physical message from the start of a logical message.

public int OriginalLength {get; set;}
The original length of a segmented message.

public int Persistence {get; set;}

Message persistence. The following values are defined:

• MQC.MQPER_NOT_PERSISTENT

If you set this option in a reconnectable client, the MQRC_NONE reason code is returned to the
application when the connection is successful.

• MQC.MQPER_PERSISTENT

1726 IBM MQ Developing Applications Reference

If you set this option in a reconnectable client, the MQRC_CALL_INTERRUPTED reason code is
returned to the application after the connection is successful.

• MQC.MQPER_PERSISTENCE_AS_Q_DEF

The default value is MQC.MQPER_PERSISTENCE_AS_Q_DEF, which takes the persistence for the
message from the default persistence attribute of the destination queue.

public int Priority {get; set;}
The message priority. The special value MQC.MQPRI_PRIORITY_AS_Q_DEF can also be set in
outbound message. The priority for the message is then taken from the default priority attribute
of the destination queue. The default value is MQC.MQPRI_PRIORITY_AS_Q_DEF.

public int PropertyValidation {get; set;}
Specifies whether validation of properties takes place when a property of the message is set. Possible
values are:

• MQCMHO_DEFAULT_VALIDATION
• MQCMHO_VALIDATE
• MQCMHO_NO_VALIDATION

The default value is MQCMHO_DEFAULT_VALIDATION.
public string PutApplicationName {get; set;}

The name of the application that put the message. The default value is "".
public int PutApplicationType {get; set;}

The type of application that put the message. PutApplicationType can be a system-defined or
user-defined value. The following values are defined by the system:

• MQC.MQAT_AIX
• MQC.MQAT_CICS
• MQC.MQAT_DOS
• MQC.MQAT_IMS
• MQC.MQAT_MVS
• MQC.MQAT_OS2
• MQC.MQAT_OS400
• MQC.MQAT_QMGR
• MQC.MQAT_UNIX
• MQC.MQAT_WINDOWS
• MQC.MQAT_JAVA

The default value is MQC.MQAT_NO_CONTEXT, which indicates that no context information is present
in the message.

public DateTime PutDateTime {get; set;}
The time and date that the message was put.

public string ReplyToQueueManagerName {get; set;}
The name of the queue manager to send reply or report messages. The default value is "", and the
queue manager provides the ReplyToQueueManagerName.

public string ReplyToQueueName {get; set;}
The name of the message queue to which the application that issued the get request for the message
sends MQC.MQMT_REPLY and MQC.MQMT_REPORT messages. The default ReplyToQueueName is "".

public int Report {get; set;}
Use Report to specify options about report and reply messages:

• Whether reports are required.
• Whether the application message data is to be included in the reports.
• How to set the message and correlation identifiers in the report or reply.

Developing applications reference 1727

Any combination of the four report types can be requested:

• Specify any combination of the four report types. Selecting any of the three options for each report
type, depending on whether the application message data is to be included in the report message.

1. Confirm on arrival

– MQC.MQRO_COA
– MQC.MQRO_COA_WITH_DATA
– MQC.MQRO_COA_WITH_FULL_DATA **

2. Confirm on delivery

– MQC.MQRO_COD
– MQC.MQRO_COD_WITH_DATA
– MQC.MQRO_COD_WITH_FULL_DATA **

3. Exception

– MQC.MQRO_EXCEPTION
– MQC.MQRO_EXCEPTION_WITH_DATA
– MQC.MQRO_EXCEPTION_WITH_FULL_DATA **

4. Expiration

– MQC.MQRO_EXPIRATION
– MQC.MQRO_EXPIRATION_WITH_DATA
– MQC.MQRO_EXPIRATION_WITH_FULL_DATA **

Note: Values marked with ** in the list are not supported by z/OS queue managers. Do not use
them if your application is likely to access a z/OS queue manager, regardless of the platform on
which the application is running.

• Specify one of the following to control how the message ID is generated for the report or reply
message:

– MQC.MQRO_NEW_MSG_ID
– MQC.MQRO_PASS_MSG_ID

• Specify one of the following to control how the correlation ID of the report or reply message is to be
set:

– MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID
– MQC.MQRO_PASS_CORREL_ID

• Specify one of the following to control the disposition of the original message when it cannot be
delivered to the destination queue:

– MQC.MQRO_DEAD_LETTER_Q
– MQC.MQRO_DISCARD_MSG **

• If no report options are specified, the default is:

MQC.MQRO_NEW_MSG_ID |
MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID |
MQC.MQRO_DEAD_LETTER_Q

• You can specify one or both of the following to request that the receiving application sends a
positive action or negative action report message.

– MQC.MQRO_PAN
– MQC.MQRO_NAN

1728 IBM MQ Developing Applications Reference

public int TotalMessageLength {get;}
The total number of bytes in the message as stored on the message queue from which this message
was received.

public string UserId {get; set;}
UserId is part of the identity context of the message. The queue manager generally provides the
value. You can override the value if you have authority to set the identity context.

public int Version {get; set;}
The version of the MQMD structure in use.

Read and Write message methods
The Read and Write methods perform the same functions as the members of the BinaryReader and
BinaryWriter classes in the .NET System.IO namespace. See MSDN for the full language syntax and
usage examples. The methods read or write from the current position in the message buffer. They move
the current position forward by the number of bytes read or written.

Note: If the message data contains an MQRFH or MQRFH2 header, you must use the ReadBytes method
to read the data.

• All the methods throw IOException.
• The ReadFully methods automatically resize the target byte or sbyte array to fit the message

exactly. A null array is also resized.
• Read methods throw EndOfStreamException.
• WriteDecimal methods throw MQException.
• ReadString, ReadLine and WriteString methods convert between Unicode and the character set

of the message; see CharacterSet .
• The Decimal methods read and write packed decimal numbers encoded either in big-endian,
MQC.MQENC_DECIMAL_NORMAL, or little-endian MQC.MQENC_DECIMAL_REVERSE format, according to
the value of Encoding. Decimal ranges and corresponding .NET types are as follows:
Decimal2/short

-999 to 999
Decimal4/int

-9999999 to 9999999
Decimal8/long

-999999999999999 to 999999999999999
• The Double and Float methods read and write floating values encoded in IEE big-endian and little-

endian formats, MQC.MQENC_FLOAT_IEEE_NORMAL and MQC.MQENC_FLOAT_IEEE_REVERSED, or in
S/390 format, MQC.MQENC_FLOAT_S390, according to the value of Encoding.

• The Int methods read and write integer values encoded in big-endian, MQC.MQENC_INTEGER_NORMAL,
or little-endian, MQC.MQENC_INTEGER_REVERSED, format, according to the value of Encoding. The
integers are all signed, except for the addition of an unsigned 2-byte integer type. The integer sizes,
and .NET and IBM MQ types are as follows:
2 byte

short, Int2, ushort, UInt2
4 byte

int, Int4
8 byte

long, Int8
• WriteObject transfers the class of an object, the values of its non-transient and non-static fields, and

the fields of its supertypes, to the message buffer.
• ReadObject creates an object from the class of the object, the signature of the class, and the values of

its non-transient and non-static fields, and the fields of its supertypes.

Developing applications reference 1729

Table 844. Read and Write message methods

Target
type Method signatures

Boolean
public bool ReadBoolean();

public void WriteBoolean(bool value);

Byte
public byte ReadByte()
public byte ReadUnsignedByte()

public void Write(int value)
public void WriteByte(int value)
public void WriteByte(byte value)
public void WriteByte(sbyte value)

Bytes
public byte[] ReadBytes(int count)
public void ReadFully(ref byte[] value)
public void ReadFully(ref sbyte[] value)
public void ReadFully(ref byte[] value, int offset,int length)
public void ReadFully(ref sbyte[] value, int offset,int length)

public void Write(byte[] value)
public void Write(sbyte[] value)
public void Write(byte[] value, int offset,int length)
public void Write(sbyte[] value, int offset,int length)
public void WriteBytes(string value)

Decimal2
public void WriteDecimal2(short value)

Decimal4
public void WriteDecimal4(short value)

Decimal8
public void WriteDecimal8(short value)

Double
public double ReadDouble()

public void WriteDouble(double value)

Float
public float ReadFloat()

public void WriteFloat(float value)

Int2
public void WriteInt2(int value)

1730 IBM MQ Developing Applications Reference

Table 844. Read and Write message methods (continued)

Target
type Method signatures

Int4
public int readDecimal4()
public int ReadInt()
public int ReadInt4()

public void WriteInt(int value)
public void WriteInt4(int value)

Int8
public void WriteInt8(long value)

Long
public long ReadDecimal8()
public long ReadLong()
public long ReadInt8()

public void WriteLong(long value)

Object
public Object ReadObject()

public void WriteObject(Object object)

Short
public short ReadShort()
public short ReadDecimal2()
public short ReadInt2()

public void WriteShort(int value)

string
public string ReadString(int length)

public void WriteString(string string)

Unsigned
Short public ushort ReadUnsignedShort()

public ushort ReadUInt2()

Unicode
public string ReadLine()
public char ReadChar()

public void WriteChar(int value)
public void WriteChars(string string)

Developing applications reference 1731

Table 844. Read and Write message methods (continued)

Target
type Method signatures

UTF
public string ReadUTF()

public void WriteUTF(string string)

Buffer methods
public void ClearMessage();

Throws IOException.

Discards any data in the message buffer and sets the data offset back to zero.

public void ResizeBuffer(int size)

Throws IOException.

A hint to the MQMessage object about the size of buffer that might be required for subsequent get
operations. If the message currently contains message data, and the new size is less than the current
size, the message data is truncated.

public void Seek(int pos)

Throws IOException, ArgumentOutOfRangeException, ArgumentException.

Moves the cursor to the absolute position in the message buffer given by pos. Subsequent reads and
writes act at this position in the buffer.

public int SkipBytes(int i)

Throws IOException, EndOfStreamException.

Moves forward n bytes in the message buffer and returns n, the number of bytes skipped.

SkipBytes method blocks until one of the following events occurs:

• All the bytes are skipped
• The end of message buffer is detected
• An exception is thrown

Property methods
public void DeleteProperty(string name);

Throws MQException.

Deletes a property with the specified name from the message.
name

The name of the property to delete.

public System.Collections.IEnumerator GetPropertyNames(string name)

Throws MQException.

Returns an IEnumerator of all the property names matching the specified name. The percent sign
'%' can be used at the end of the name as a wildcard character to filter the properties of the
message, matching on zero, or more characters, including the period.
name

The name of the property to match on.

1732 IBM MQ Developing Applications Reference

SetProperty and GetProperty methods
All the SetProperty and GetProperty methods throw MQException.

The SetProperty method of MQMessage .NET class adds a new property if a property does not
exist already. However, if the property already exists, then the supplied property value is added to
the end of the list. When multiple values are set to a property name using SetProperty, calling
GetProperty for that name returns those values sequentially in the order that those values were set.

The behavior is same for all the Set*Property and Get*Property typed methods such
as GetLongProperty, SetLongProperty, GetBooleanProperty, SetBooleanProperty,
GetStringProperty, and SetStringProperty.

Table 845. SetProperty and GetProperty methods

Type Method signatures

Boolea
n public boolean GetBooleanProperty(string name);

public boolean GetBooleanProperty(string name, MQPropertyDescriptor pd);

public void SetBooleanProperty(string name, boolean value);
public void SetBooleanProperty(string name, MQPropertyDescriptor pd, boolean value);

Byte
public sbyte GetByteProperty(string name);
public sbyte GetByteProperty(string name, MQPropertyDescriptor pd);

public void SetByteProperty(string name, sbyte value);
public void SetByteProperty(string name, MQPropertyDescriptor pd, sbyte value);

Bytes
public sbyte[] GetBytesProperty(string name);
public sbyte[] GetBytesProperty(string name, MQPropertyDescriptor pd);

public void SetBytesProperty(string name, sbyte[] value);
public void SetBytesProperty(string name, MQPropertyDescriptor pd, sbyte[] value);

Double
public double GetDoubleProperty(string name);
public double GetDoubleProperty(string name, MQPropertyDescriptor pd);

public void SetDoubleProperty(string name, double value);
public void SetDoubleProperty(string name, MQPropertyDescriptor pd, double value);

Float
public float GetFloatProperty(string name);
public float GetFloatProperty(string name, MQPropertyDescriptor pd);

public void SetFloatProperty(string name, float value);
public void SetFloatProperty(string name, MQPropertyDescriptor pd, float value);

Developing applications reference 1733

Table 845. SetProperty and GetProperty methods (continued)

Type Method signatures

Int2
public short GetInt2Property(string name);
public short GetInt2Property(string name, MQPropertyDescriptor pd);

public void SetInt2Property(string name, short value);
public void SetInt2Property(string name, MQPropertyDescriptor pd, short value);

Int4
public int GetInt4Property(string name);
public int GetInt4Property(string name, MQPropertyDescriptor pd);

public void SetInt4Property(string name, int value);
public void SetInt4Property(string name, MQPropertyDescriptor pd, int value);

Int8
public long GetInt8Property(string name);
public long GetInt8Property(string name, MQPropertyDescriptor pd);

public void SetInt8Property(string name, long value);
public void SetInt8Property(string name, MQPropertyDescriptor pd, long value);

Long
public long GetLongProperty(string name);
public long GetLongProperty(string name, MQPropertyDescriptor pd);

public void SetLongProperty(string name, long value);
public void SetLongProperty(string name, MQPropertyDescriptor pd, long value);

Object
public Object GetObjectProperty(string name);
public Object GetObjectProperty(string name, MQPropertyDescriptor pd);

public void SetObjectProperty(string name, Object value);
public void SetObjectProperty(string name, MQPropertyDescriptor pd, Object value);

Short
public short GetShortProperty(string name);
public short GetShortProperty(string name, MQPropertyDescriptor pd);

public void SetShortProperty(string name, short value);
public void SetShortProperty(string name, MQPropertyDescriptor pd, short value);

string

public string GetStringProperty(string name);
public string GetStringProperty(string name, MQPropertyDescriptor pd);

public void SetStringProperty(string name, string value);
public void SetStringProperty(string name, MQPropertyDescriptor pd, string value);

1734 IBM MQ Developing Applications Reference

Constructors
public MQMessage();

Creates an MQMessage object with default message descriptor information and an empty message
buffer.

MQProcess.NET class
Use MQProcess to query the attributes of an IBM MQ process. Create an MQProcess object using a
constructor, or an MQQueueManager AccessProcess method.

Class

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQManagedObject
 |
 └─ IBM.WMQ.MQProcess

public class IBM.WMQ.MQProcess extends IBM.WMQ.MQManagedObject;

• “Properties” on page 1735
• “Constructors” on page 1736

Properties
Test for MQException being thrown when getting properties.

public string ApplicationId {get;}

Gets the character string that identifies the application to be started. ApplicationId is used by
a trigger monitor application. ApplicationId is sent to the initiation queue as part of the trigger
message.

The default value is null.

public int ApplicationType {get;}

Identifies the type of the process to be started by a trigger monitor application. Standard types are
defined, but others can be used:

• MQAT_AIX
• MQAT_CICS
• MQAT_IMS
• MQAT_MVS
• MQAT_NATIVE
• MQAT_OS400
• MQAT_UNIX
• MQAT_WINDOWS
• MQAT_JAVA
• MQAT_USER_FIRST
• MQAT_USER_LAST

The default value is MQAT_NATIVE.

Developing applications reference 1735

public string EnvironmentData {get;}

Gets information about the environment of the application that is to be started.

The default value is null.

public string UserData {get;}

Gets information the user has provided about the application to be started.

The default value is null.

Constructors
public MQProcess(MQQueueManager queueManager, string processName, int
openOptions);
public MQProcess(MQQueueManager qMgr, string processName, int openOptions,
string queueManagerName, string alternateUserId);

Throws MQException.

Access an IBM MQ process on queue manager qMgr to inquire on process attributes.

qMgr
Queue manager to access.

processName
The name of the process to open.

openOptions
Options that control the opening of the process. The valid options that can be added, or combined
using a bitwise OR, are:

• MQC.MQOO_FAIL_IF_QUIESCING
• MQC.MQOO_INQUIRE
• MQC.MQOO_SET
• MQC.MQOO_ALTERNATE_USER_AUTHORITY

queueManagerName
The name of the queue manager on which the process is defined. You can leave a blank or null
queue manager name if the queue manager is the same as the one the process is accessing.

alternateUserId

If MQC.MQOO_ALTERNATE_USER_AUTHORITY is specified in the openOptions parameter,
alternateUserId specifies the alternative user ID used to check the authorization for the
action. If MQOO_ALTERNATE_USER_AUTHORITY is not specified, alternateUserId can be
blank or null.

Default user authority is used for connection to the queue manager if
MQC.MQOO_ALTERNATE_USER_AUTHORITY is not specified.

public MQProcess MQQueueManager.AccessProcess(string processName, int
openOptions);
public MQProcess MQQueueManager.AccessProcess(string processName, int
openOptions, string queueManagerName, string alternateUserId);

Throws MQException.

Access an IBM MQ process on this queue manager to inquire on process attributes.

processName
The name of the process to open.

openOptions
Options that control the opening of the process. The valid options that can be added, or combined
using a bitwise OR, are:

1736 IBM MQ Developing Applications Reference

• MQC.MQOO_FAIL_IF_QUIESCING
• MQC.MQOO_INQUIRE
• MQC.MQOO_SET
• MQC.MQOO_ALTERNATE_USER_AUTHORITY

queueManagerName
The name of the queue manager on which the process is defined. You can leave a blank or null
queue manager name if the queue manager is the same as the one the process is accessing.

alternateUserId

If MQC.MQOO_ALTERNATE_USER_AUTHORITY is specified in the openOptions parameter,
alternateUserId specifies the alternative user ID used to check the authorization for the
action. If MQOO_ALTERNATE_USER_AUTHORITY is not specified, alternateUserId can be
blank or null.

Default user authority is used for connection to the queue manager if
MQC.MQOO_ALTERNATE_USER_AUTHORITY is not specified.

MQPropertyDescriptor.NET class
Use MQPropertyDescriptor as a parameter to MQMessage GetProperty and SetProperty
methods. MQPropertyDescriptor describes an MQMessage property.

Class

System.Object
 |
 └─ IBM.WMQ.MQPropertyDescriptor

public class IBM.WMQ.MQPropertyDescriptor extends System.Object;

• “Properties” on page 1737
• “Constructors” on page 1738

Properties
Test for MQException being thrown when getting properties.

public int Context {get; set;}

The message context the property belongs to. Possible values are:
MQC.MQPD_NO_CONTEXT

The property is not associated with a message context.
MQC.MQPD_USER_CONTEXT

The property is associated with the user context.

If the user is authorized, a property associated with the user context is saved when a message is
retrieved. A subsequent Put method referencing the saved context, can pass the property into the
new message.

public int CopyOptions {get; set;}

CopyOptions describes which type of message the property can be copied into.

When a queue manager receives a message containing an IBM MQ defined property that the queue
manager recognizes as being incorrect, the queue manager corrects the value of the CopyOptions
field.

Any combination of the following options can be specified. Combine the options by adding the values,
or using bitwise OR.

Developing applications reference 1737

MQC.MQCOPY_ALL
The property is copied into all types of subsequent messages.

MQC.MQCOPY_FORWARD
The property is copied into a message being forwarded.

MQC.MQCOPY_PUBLISH
The property is copied into the message received by a subscriber when a message is being
published.

MQC.MQCOPY_REPLY
The property is copied into a reply message.

MQC.MQCOPY_REPORT
The property is copied into a report message.

MQC.MQCOPY_DEFAULT
The value indicated no other copy options have been specified. No relationship exists between
the property and subsequent messages. MQC.MQCOPY_DEFAULT is always returned for message
descriptor properties.

MQC.MQCOPY_NONE
The same as MQC.MQCOPY_DEFAULT

public int Options { set; }
Options defaults to CMQC.MQPD_NONE. You cannot set any other value.

public int Support { get; set; }

Set Support to specify the level of support required for IBM MQ-defined message properties.
Support for all other properties is optional. Any or none of the following values can be specified
MQC.MQPD_SUPPORT_OPTIONAL

The property is accepted by a queue manager even if it is not supported. The property can be
discarded in order for the message to flow to a queue manager that does not support message
properties. This value is also assigned to properties that are not IBM MQ defined.

MQC.MQPD_SUPPORT_REQUIRED
Support for the property is required. If you put the message to a queue manager that
does not support the IBM MQ-defined property, the method fails. It returns completion code
MQC.MQCC_FAILED and reason code MQC.MQRC_UNSUPPORTED_PROPERTY.

MQC.MQPD_SUPPORT_REQUIRED_IF_LOCAL

Support for the property is required, if the message is destined for a local queue. If you put
the message to a local queue on a queue manager that does not support the IBM MQ-defined
property, the method fails. It returns completion code MQC.MQCC_FAILED and reason code
MQC.MQRC_UNSUPPORTED_PROPERTY.

No check is made if the message is put to a remote queue manager.

Constructors
PropertyDescriptor();

Create a property descriptor.

MQPutMessageOptions.NET class
Use MQPutMessageOptions to specify how messages are sent. It modifies the behavior of
MQDestination.Put.

Class

1738 IBM MQ Developing Applications Reference

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQPutMessageOptions

public class IBM.WMQ.MQPutMessageOptions extends IBM.WMQ.MQBaseObject;

• “Properties” on page 1739 “Constructors” on page 1741

Properties
Test for MQException being thrown when getting properties.

Note: The behavior of some of the options available in this class depends on the environment in which
they are used. These elements are marked with an asterisk, *.

public MQQueue ContextReference {get; set;}

If the options field includes MQC.MQPMO_PASS_IDENTITY_CONTEXT or
MQC.MQPMO_PASS_ALL_CONTEXT, set this field to refer to the MQQueue from which to take the
context information.

The initial value of this field is null.

public int InvalidDestCount {get;} *

Generally, used for distribution lists, InvalidDestCount indicates the number of messages that
could not be sent to queues in a distribution list. The count includes queues that failed to open and
also the queues that were opened successfully, but for which the put operation had failed.

.NET does not support distribution lists, but InvalidDestCount is set when opening a single queue.

public int KnownDestCount {get;} *

Generally used for distribution lists, KnownDestCount indicates the number of messages that the
current call has sent successfully to queues that resolve to local queues.

.NET does not support distribution lists, but InvalidDestCount is set when opening a single queue.

public int Options {get; set;}

Options that control the action of MQDestination.put and MQQueueManager.put. Any or none of
the following values can be specified. If more than one option is required, the values can be added or
combined using the bitwise OR operator.
MQC.MQPMO_ASYNC_RESPONSE

This option causes the MQDestination.put call to be made asynchronously, with some
response data.

MQC.MQPMO_DEFAULT_CONTEXT
Associate default context with the message.

MQC.MQPMO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQPMO_LOGICAL_ORDER *
Put logical messages and segments in message groups into their logical order.
If you use the MQPMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned to the application.

MQC.MQPMO_NEW_CORREL_ID *
Generate a new correlation ID for each sent message.

MQC.MQPMO_NEW_MSG_ID *
Generate a new message ID for each sent message.

Developing applications reference 1739

MQC.MQPMO_NONE
No options specified. Do not use with other options.

MQC.MQPMO_NO_CONTEXT
No context is to be associated with the message.

MQC.MQPMO_NO_SYNCPOINT
Put a message without sync point control. If the sync point control option is not specified, a
default of no sync point is assumed.

MQC.MQPMO_PASS_ALL_CONTEXT
Pass all context from an input queue handle.

MQC.MQPMO_PASS_IDENTITY_CONTEXT
Pass identity context from an input queue handle.

MQC.MQPMO_RESPONSE_AS_Q_DEF

For an MQDestination.put call, this option takes the put response type from DEFPRESP
attribute of the queue.

For an MQQueueManager.put call, this option causes the call to be made synchronously.

MQC.MQPMO_RESPONSE_AS_TOPIC_DEF
MQC.MQPMO_RESPONSE_AS_TOPIC_DEF is a synonym for MQC.MQPMO_RESPONSE_AS_Q_DEF
for use with topic objects.

MQC.MQPMO_RETAIN

The publication being sent is to be retained by the queue manager. If this option is used
and the publication cannot be retained, the message is not published and the call fails with
MQC.MQRC_PUT_NOT_RETAINED.

Request a copy of this publication after the time it was published, by
calling the MQSubscription.RequestPublicationUpdate method. The saved
publication is sent to applications that create a subscription without setting the
MQC.MQSO_NEW_PUBLICATIONS_ONLY option. Check the MQIsRetained message property of
a publication, when it is received, to find out if it was the retained publication.

When retained publications are requested by a subscriber, the subscription used might contain a
wildcard in the topic string. If there are multiple retained publications in the topic tree that match
the subscription, they are all sent.

MQC.MQPMO_SET_ALL_CONTEXT
Set all context from the application.

MQC.MQPMO_SET_IDENTITY_CONTEXT
Set identity context from the application.

MQC.MQPMO_SYNC_RESPONSE
This option causes the MQDestination.put or MQQueueManager.put call to be made
synchronously, with full response data.

MQC.MQPMO_SUPPRESS_REPLYTO
Any information filled into the ReplyToQueueName and ReplyToQueueManagerName
fields of the publication is not passed on to subscribers. If this option is used in
combination with a report option that requires a ReplyToQueueName, the call fails with
MQC.MQRC_MISSING_REPLY_TO_Q.

MQC.MQPMO_SYNCPOINT
Put a message with sync point control. The message is not visible outside the unit of work until the
unit of work is committed. If the unit of work is backed out, the message is deleted.

public int RecordFields {get; set;} *

Information about distribution lists. Distribution lists are not supporting in .NET.

1740 IBM MQ Developing Applications Reference

public string ResolvedQueueManagerName {get;}

An output field set by the queue manager to the name of the queue manager that owns the queue
specified by the remote queue name. ResolvedQueueManagerName might be different from the
name of the queue manager from which the queue was accessed if the queue is a remote queue.

A nonblank value is returned only if the object is a single queue. If the object is a distribution list or a
topic, the value returned is undefined.

public string ResolvedQueueName {get;}

An output field that is set by the queue manager to the name of the queue on which the message
is placed. ResolvedQueueName might be different from the name used to open the queue if the
opened queue was an alias or model queue.

A non-blank value is returned only if the object is a single queue. If the object is a distribution list or a
topic, the value returned is undefined.

public int UnknownDestCount {get;} *

Generally used for distribution lists, UnknownDestCount is an output field set by the queue manager.
It reports the number of messages that the current call has sent successfully to queues that resolve to
remote queues.

.NET does not support distribution lists, but InvalidDestCount is set when opening a single queue.

Constructors
public MQPutMessageOptions();

Construct a new MQPutMessageOptions object with no options set, and a blank
ResolvedQueueName and ResolvedQueueManagerName.

MQQueue.NET class
Use MQQueue to send and receive messages, and query attributes of an IBM MQ queue. Create an
MQQueue object using a constructor, or an MQQueueManager.AccessProcess method.

Class

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQManagedObject
 |
 └─ IBM.WMQ.MQDestination
 |
 └─ IBM.WMQ.MQQueue

public class IBM.WMQ.MQQueue extends IBM.WMQ.MQDestination;

• “Properties” on page 1741
• “Methods” on page 1743
• “Constructors” on page 1746

Properties
Test for MQException being thrown when getting properties.

public int ClusterWorkLoadPriority {get;}
Specifies the priority of the queue. This parameter is valid only for local, remote, and alias queues.

Developing applications reference 1741

public int ClusterWorkLoadRank {get;}
Specifies the rank of the queue. This parameter is valid only for local, remote, and alias queues.

public int ClusterWorkLoadUseQ {get;}
Specifies the behavior of an MQPUT operation when the target queue has a local instance and at least
one remote cluster instance. This parameter does not apply if the MQPUT originates from a cluster
channel. This parameter is valid only for local queues.

public DateTime CreationDateTime {get;}
The date and time that this queue was created.

public int CurrentDepth {get;}
Gets the number of messages currently on the queue. This value is incremented during a put call, and
during backout of a get call. It is decremented during a non-browse get and during backout of a put
call.

public int DefinitionType {get;}
How the queue was defined. The possible values are:

• MQC.MQQDT_PREDEFINED
• MQC.MQQDT_PERMANENT_DYNAMIC
• MQC.MQQDT_TEMPORARY_DYNAMIC

public int InhibitGet {get; set;}
Controls whether you can get messages on this queue or for this topic. The possible values are:

• MQC.MQQA_GET_INHIBITED
• MQC.MQQA_GET_ALLOWED

public int InhibitPut {get; set;}
Controls whether you can put messages on this queue or for this topic. The possible values are:

• MQQA_PUT_INHIBITED
• MQQA_PUT_ALLOWED

public int MaximumDepth {get;}
The maximum number of messages that can exist on the queue at any one time. An attempt
to put a message to a queue that already contains this many messages fails with reason code
MQC.MQRC_Q_FULL.

public int MaximumMessageLength {get;}
The maximum length of the application data that can exist in each message on this queue. An attempt
to put a message larger than this value fails with reason code MQC.MQRC_MSG_TOO_BIG_FOR_Q.

public int NonPersistentMessageClass {get;}
The level of reliability for non-persistent messages put to this queue.

public int OpenInputCount {get;}
The number of handles that are currently valid for removing messages from the queue.
OpenInputCount is the total number of valid input handles known to the local queue manager,
not just handles created by the application.

public int OpenOutputCount {get;}
The number of handles that are currently valid for adding messages to the queue. OpenOutputCount
is the total number of valid output handles known to the local queue manager, not just handles
created by the application.

public int QueueAccounting {get;}
Specifies whether you can enable the collection of accounting information for the queue.

public int QueueMonitoring {get;}
Specifies whether you can enable the monitoring for the queue.

public int QueueStatistics {get;}
Specifies whether you can enable the collection of statistics for the queue.

1742 IBM MQ Developing Applications Reference

public int QueueType {get;}
The type of this queue with one of the following values:

• MQC.MQQT_ALIAS
• MQC.MQQT_LOCAL
• MQC.MQQT_REMOTE
• MQC.MQQT_CLUSTER

public int Shareability {get;}
Whether the queue can be opened for input multiple times. The possible values are:

• MQC.MQQA_SHAREABLE
• MQC.MQQA_NOT_SHAREABLE

public string TPIPE {get;}
The TPIPE name used for communication with OTMA using the IBM MQ IMS bridge.

public int TriggerControl {get; set;}
Whether trigger messages are written to an initiation queue, to start an application to service the
queue. The possible values are:

• MQC.MQTC_OFF
• MQC.MQTC_ON

public string TriggerData {get; set;}
The free-format data that the queue manager inserts into the trigger message. It inserts
TriggerData when a message arriving on this queue causes a trigger message to be
written to the initiation queue. The maximum permissible length of the string is given by
MQC.MQ_TRIGGER_DATA_LENGTH.

public int TriggerDepth {get; set;}
The number of messages that must be on the queue before a trigger message is written when trigger
type is set to MQC.MQTT_DEPTH.

public int TriggerMessagePriority {get; set;}
The message priority under which messages do not contribute to the generation of trigger messages.
That is, the queue manager ignores these messages when deciding whether to generate a trigger. A
value of zero causes all messages to contribute to the generation of trigger messages.

public int TriggerType {get; set;}
The conditions under which trigger messages are written as a result of messages arriving on this
queue. The possible values are:

• MQC.MQTT_NONE
• MQC.MQTT_FIRST
• MQC.MQTT_EVERY
• MQC.MQTT_DEPTH

Methods
public void Get(MQMessage message);
public void Get(MQMessage message, MQGetMessageOptions getMessageOptions);
public void Get(MQMessage message, MQGetMessageOptions getMessageOptions, int
MaxMsgSize);

Throws MQException.

Gets a message from a queue.

If the get fails, the MQMessage object is unchanged. If it succeeds, the message descriptor and
message data portions of the MQMessage are replaced with the message descriptor and message
data from the incoming message.

Developing applications reference 1743

All calls to IBM MQ from a particular MQQueueManager are synchronous. Therefore, if you perform
a get with wait, all other threads using the same MQQueueManager are blocked from making further
IBM MQ calls until the Get call is accomplished. If you need multiple threads to access IBM MQ
simultaneously, each thread must create its own MQQueueManager object.

message
Contains the message descriptor and the returned message data. Some of the fields in the
message descriptor are input parameters. It is important to ensure that the MessageId and
CorrelationId input parameters are set as required.
A reconnectable client returns the reason code MQRC_BACKED_OUT after successful reconnection,
for messages received under MQGM_SYNCPOINT.

getMessageOptions
Options controlling the action of the get.

Using option MQC.MQGMO_CONVERT might result in an exception with reason code
MQC.MQRC_CONVERTED_STRING_TOO_BIG when converting from single-byte character codes to
double byte codes. In this case, the message is copied into the buffer without conversion.

If getMessageOptions is not specified, the message option used is MQGMO_NOWAIT.

If you use the MQGMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

MaxMsgSize
The largest message this message object is to receive. If the message on the queue is larger than
this size, one of two things occurs:

• If the MQGMO_ACCEPT_TRUNCATED_MSG flag is set in the MQGetMessageOptions object, the
message is filled with as much of the message data as possible. An exception is thrown with the
MQCC_WARNING completion code and MQRC_TRUNCATED_MSG_ACCEPTED reason code.

• If the MQGMO_ACCEPT_TRUNCATED_MSG flag is not set, the message remains on
the queue. An exception is thrown with the MQCC_WARNING completion code and
MQRC_TRUNCATED_MSG_FAILED reason code.

If MaxMsgSize is not specified, the whole message is retrieved.

public void Put(MQMessage message);
public void Put(MQMessage message, MQPutMessageOptions putMessageOptions);

Throws MQException.

Puts a message to a queue.

Modifications to the MQMessage object after the Put call has been accomplished do not affect the
actual message on the IBM MQ queue or publication topic.

Put updates the MessageId and CorrelationId properties of the MQMessage object and does
not clear message data. Further Put or Get calls refer to the updated information in the MQMessage
object. For example, in the following code snippet, the first message contains a and the second ab.

msg.WriteString("a");
q.Put(msg,pmo);
msg.WriteString("b");
q.Put(msg,pmo);

message
An MQMessage object containing the message descriptor data, and message to be sent. The
message descriptor can be altered as a consequence of this method. The values in the message
descriptor immediately after the completion of this method are the values that were put to the
queue or published to the topic.

The following reason codes are returned to a reconnectable client:

1744 IBM MQ Developing Applications Reference

• MQRC_CALL_INTERRUPTED if the connection is broken while running a Put call on a persistent
message and the reconnection is successful.

• MQRC_NONE if the connection is successful while running a Put call on a non-persistent message
(see Application Recovery).

putMessageOptions
Options controlling the action of the put.
If putMessageOptions is not specified the default instance of MQPutMessageOptons is used.
If you use the MQPMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

Note: For simplicity and performance, if you want to put a single message to a queue, use
MQQueueManager.Put object. You should have an MQQueue object for this.

public void PutForwardMessage(MQMessage message);
public void PutForwardMessage(MQMessage message, MQPutMessageOptions
putMessageOptions);

Throws MQException

Put a message being forwarded onto the queue, where message is the original message.

message
An MQMessage object containing the message descriptor data, and message to be sent. The
message descriptor can be altered as a consequence of this method. The values in the message
descriptor immediately after the completion of this method are the values that were put to the
queue or published to the topic.

The following reason codes are returned to a reconnectable client:

• MQRC_CALL_INTERRUPTED if the connection is broken while running a Put call on a persistent
message and the reconnection is successful.

• MQRC_NONE if the connection is successful while running a Put call on a non-persistent message
(see Application Recovery).

putMessageOptions
Options controlling the action of the put.
If putMessageOptions is not specified the default instance of MQPutMessageOptons is used.
If you use the MQPMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

public void PutReplyMessage(MQMessage message)
public void PutReplyMessage(MQMessage message, MQPutMessageOptions
putMessageOptions)

Throws MQException.

Put a reply message onto the queue, where message is the original message.

message
Contains the message descriptor and the returned message data. Some of the fields in the
message descriptor are input parameters. It is important to ensure that the MessageId and
CorrelationId input parameters are set as required.
A reconnectable client returns the reason code MQRC_BACKED_OUT after successful reconnection,
for messages received under MQGM_SYNCPOINT.

putMessageOptions
Options controlling the action of the put.
If putMessageOptions is not specified the default instance of MQPutMessageOptons is used.
If you use the MQPMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

Developing applications reference 1745

public void PutReportMessage(MQMessage message)
public void PutReportMessage(MQMessage message, MQPutMessageOptions
putMessageOptions)

Throws MQException.

Put a report message onto the queue, where message is the original message.

message
Contains the message descriptor and the returned message data. Some of the fields in the
message descriptor are input parameters. It is important to ensure that the MessageId and
CorrelationId input parameters are set as required.
A reconnectable client returns the reason code MQRC_BACKED_OUT after successful reconnection,
for messages received under MQGM_SYNCPOINT.

putMessageOptions
Options controlling the action of the put.
If putMessageOptions is not specified the default instance of MQPutMessageOptons is used.
If you use the MQPMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

Constructors
public MQQueue MQQueueManager.AccessQueue(string queueName, int openOptions);
public MQQueue MQQueueManager.AccessQueue(string queueName, int openOptions,
string queueManagerName, string dynamicQueueName, string alternateUserId);

Throws MQException.

Accesses a queue on this queue manager.

You can get or browse messages, put messages, inquire about the attributes of the queue or set the
attributes of the queue. If the queue named is a model queue, a dynamic local queue is created.
Query the name attribute of the resultant MQQueue object to find out the name of the dynamic queue.

queueName
Name of queue to open.

openOptions
Options that control the opening of the queue.
MQC.MQOO_ALTERNATE_USER_AUTHORITY

Validate with the specified user identifier.
MQC.MQOO_BIND_AS_QDEF

Use default binding for queue.
MQC.MQOO_BIND_NOT_FIXED

Do not bind to a specific destination.
MQC.MQOO_BIND_ON_OPEN

Bind handle to destination when queue is opened.
MQC.MQOO_BROWSE

Open to browse message.
MQC.MQOO_FAIL_IF_QUIESCING

Fail if the queue manager is quiescing.
MQC.MQOO_INPUT_AS_Q_DEF

Open to get messages using queue-defined default.
MQC.MQOO_INPUT_SHARED

Open to get messages with shared access.
MQC.MQOO_INPUT_EXCLUSIVE

Open to get messages with exclusive access.

1746 IBM MQ Developing Applications Reference

MQC.MQOO_INQUIRE
Open for inquiry - required if you want to query properties.

MQC.MQOO_OUTPUT
Open to put messages.

MQC.MQOO_PASS_ALL_CONTEXT
Allow all context to be passed.

MQC.MQOO_PASS_IDENTITY_CONTEXT
Allow identity context to be passed.

MQC.MQOO_SAVE_ALL_CONTEXT
Save context when message retrieved.

MQC.MQOO_SET
Open to set attributes - required if you want to set properties.

MQC.MQOO_SET_ALL_CONTEXT
Allows all context to be set.

MQC.MQOO_SET_IDENTITY_CONTEXT
Allows identity context to be set.

queueManagerName
Name of the queue manager on which the queue is defined. A name that is entirely blank or null
denotes the queue manager to which the MQQueueManager object is connected.

dynamicQueueName
dynamicQueueName is ignored unless queueName specifies the name of a model queue. If it
does, dynamicQueueName specifies the name of the dynamic queue to be created. A blank or
null name is not valid if queueName specifies the name of a model queue. If the last nonblank
character in the name is an asterisk, *, the queue manager replaces the asterisk with a string of
characters. The characters guarantee that the name generated for the queue is unique on this
queue manager.

alternateUserId
If MQC.MQOO_ALTERNATE_USER_AUTHORITY is specified in the openOptions parameter,
alternateUserId specifies the alternate user identifier that is used to check the authorization
for the open. If MQC.MQOO_ALTERNATE_USER_AUTHORITY is not specified, alternateUserId
can be left blank, or null.

public MQQueue(MQQueueManager queueManager, string queueName, int openOptions,
string queueManagerName, string dynamicQueueName, string alternateUserId);

Throws MQException.

Accesses a queue on queueManager.

You can get or browse messages, put messages, inquire about the attributes of the queue or set the
attributes of the queue. If the queue named is a model queue, a dynamic local queue is created.
Query the name attribute of the resultant MQQueue object to find out the name of the dynamic queue.

queueManager
Queue manager to access queue on.

queueName
Name of queue to open.

openOptions
Options that control the opening of the queue.
MQC.MQOO_ALTERNATE_USER_AUTHORITY

Validate with the specified user identifier.
MQC.MQOO_BIND_AS_QDEF

Use default binding for queue.
MQC.MQOO_BIND_NOT_FIXED

Do not bind to a specific destination.

Developing applications reference 1747

MQC.MQOO_BIND_ON_OPEN
Bind handle to destination when queue is opened.

MQC.MQOO_BROWSE
Open to browse message.

MQC.MQOO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQOO_INPUT_AS_Q_DEF
Open to get messages using queue-defined default.

MQC.MQOO_INPUT_SHARED
Open to get messages with shared access.

MQC.MQOO_INPUT_EXCLUSIVE
Open to get messages with exclusive access.

MQC.MQOO_INQUIRE
Open for inquiry - required if you want to query properties.

MQC.MQOO_OUTPUT
Open to put messages.

MQC.MQOO_PASS_ALL_CONTEXT
Allow all context to be passed.

MQC.MQOO_PASS_IDENTITY_CONTEXT
Allow identity context to be passed.

MQC.MQOO_SAVE_ALL_CONTEXT
Save context when message retrieved.

MQC.MQOO_SET
Open to set attributes - required if you want to set properties.

MQC.MQOO_SET_ALL_CONTEXT
Allows all context to be set.

MQC.MQOO_SET_IDENTITY_CONTEXT
Allows identity context to be set.

queueManagerName
Name of the queue manager on which the queue is defined. A name that is entirely blank or null
denotes the queue manager to which the MQQueueManager object is connected.

dynamicQueueName
dynamicQueueName is ignored unless queueName specifies the name of a model queue. If it
does, dynamicQueueName specifies the name of the dynamic queue to be created. A blank or
null name is not valid if queueName specifies the name of a model queue. If the last nonblank
character in the name is an asterisk, *, the queue manager replaces the asterisk with a string of
characters. The characters guarantee that the name generated for the queue is unique on this
queue manager.

alternateUserId
If MQC.MQOO_ALTERNATE_USER_AUTHORITY is specified in the openOptions parameter,
alternateUserId specifies the alternate user identifier that is used to check the authorization
for the open. If MQC.MQOO_ALTERNATE_USER_AUTHORITY is not specified, alternateUserId
can be left blank, or null.

MQQueueManager.NET class
Use MQQueueManager to connect to a queue manager and access queue manager objects. It also
controls transactions. The MQQueueManager constructor creates either a client or server connection.

Class

1748 IBM MQ Developing Applications Reference

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.ManagedObject
 |
 └─ IBM.WMQ.MQQueueManager

public class IBM.WMQ.MQQueueManager extends IBM.WMQ.MQManagedObject;

• “Properties” on page 1749
• “Methods” on page 1752
• “Constructors” on page 1757

Properties
Test for MQException being thrown when getting properties.

public int AccountingConnOverride {get;}
Whether applications can override the setting of the MQI accounting and queue accounting values.

public int AccountingInterval {get;}
How long before intermediate accounting records are written (in seconds).

public int ActivityRecording {get;}
Controls the generation of activity reports.

public int AdoptNewMCACheck {get;}
Specifies which elements are checked to determine whether the MCA is adopted when a new inbound
channel is detected. To be adopted, the MCA name must match the name of an active MCA.

public int AdoptNewMCAInterval {get;}
The amount of time, in seconds, that the new channel waits for the orphaned channel to end.

public int AdoptNewMCAType {get;}
Whether an orphaned MCA instance is to be adopted (restarted) when a new inbound channel request
is detected matching the AdoptNewMCACheck value.

public int BridgeEvent {get;}
Whether IMS bridge events are generated.

public int ChannelEvent {get;}
Whether channel events are generated.

public int ChannelInitiatorControl {get;}
Whether the channel initiator starts automatically when the queue manager starts.

public int ChannelInitiatorAdapters {get;}
The number of adapter subtasks to process IBM MQ calls.

public int ChannelInitiatorDispatchers {get;}
The number of dispatchers to use for the channel initiator.

public int ChannelInitiatorTraceAutoStart {get;}
Specifies whether the channel initiator trace starts automatically.

public int ChannelInitiatorTraceTableSize {get;}
The size, in megabytes, of the trace data space of a channel initiator.

public int ChannelMonitoring {get;}
Whether channel monitoring is used.

public int ChannelStatistics {get;}
Controls the collection of statistics data for channels.

Developing applications reference 1749

public int CharacterSet {get;}
Returns the coded character set identifier (CCSID) of the queue manager. CharacterSet is used by
the queue manager for all character string fields in the application programming interface.

public int ClusterSenderMonitoring {get;}
Controls the collection of online monitoring data for automatically defined cluster sender channels.

public int ClusterSenderStatistics {get;}
Controls the collection of statistics data for automatically defined cluster sender channels.

public int ClusterWorkLoadMRU {get;}
The maximum number of outbound cluster channels.

public int ClusterWorkLoadUseQ {get;}
The default value of the MQQueue property, ClusterWorkLoadUseQ, if it specifies a value of QMGR.

public int CommandEvent {get;}
Specifies whether command events are generated.

public string CommandInputQueueName {get;}
Returns the name of the command input queue defined on the queue manager. Applications can send
commands to this queue, if authorized to do so.

public int CommandLevel {get;}
Indicates the function level of the queue manager. The set of functions that correspond to a particular
function level depends on the platform. On a particular platform, you can rely on every queue manager
supporting the functions at the lowest functional level common to all the queue managers.

public int CommandLevel {get;}
Whether the command server starts automatically when the queue manager starts.

public string DNSGroup {get;}
No longer used.

public int DNSWLM {get;}
No longer used.

public int IPAddressVersion {get;}
Which IP protocol (IPv4 or IPv6) to use for a channel connection.

public boolean IsConnected {get;}
Returns the value of the isConnected.
If true, a connection to the queue manager has been made, and is not known to be broken. Any calls
to IsConnected do not actively attempt to reach the queue manager, so it is possible that physical
connectivity can break, but IsConnected can still return true. The IsConnected state is only updated
when activity, for example, putting a message, getting a message, is performed on the queue manager.
If false, a connection to the queue manager has not been made, or has been broken, or has been
disconnected.

public int KeepAlive {get;}
Specifies whether the TCP KEEPALIVE facility is to be used to check that the other end of the
connection is still available. If it is unavailable, the channel is closed.

public int ListenerTimer {get;}
The time interval, in seconds, between attempts by IBM MQ to restart the listener after an APPC or
TCP/IP failure.

public int LoggerEvent {get;}
Whether logger events are generated.

public string LU62ARMSuffix {get;}
The suffix of the APPCPM member of SYS1.PARMLIB. This suffix nominates the LUADD for this
channel initiator. When automatic restart manager (ARM) restarts the channel initiator, the z/OS
command SET APPC=xx is issued.

public string LUGroupName {get; z/os}
The generic LU name to be used by the LU 6.2 listener that handles inbound transmissions for the
queue sharing group.

1750 IBM MQ Developing Applications Reference

public string LUName {get;}
The name of the LU to use for outbound LU 6.2 transmissions.

public int MaximumActiveChannels {get;}
The maximum number of channels that can be active at any time.

public int MaximumCurrentChannels {get;}
The maximum number of channels that can be current at any time (including server-connection
channels with connected clients).

public int MaximumLU62Channels {get;}
The maximum number of channels that can be current, or clients that can be connected, that use the
LU 6.2 transmission protocol.

public int MaximumMessageLength {get;}
Returns the maximum length of a message (in bytes) that can be handled by the queue manager. No
queue can be defined with a maximum message length greater than MaximumMessageLength.

public int MaximumPriority {get;}
Returns the maximum message priority supported by the queue manager. Priorities range from zero
(lowest) to this value. Throws MQException if you call this method after disconnecting from the
queue manager.

public int MaximumTCPChannels {get;}
The maximum number of channels that can be current, or clients that can be connected, that use the
TCP/IP transmission protocol.

public int MQIAccounting {get;}
Controls the collection of accounting information for MQI data.

public int MQIStatistics {get;}
Controls the collection of statistics monitoring information for the queue manager.

public int OutboundPortMax {get;}
The maximum value in the range of port numbers to be used when binding outgoing channels.

public int OutboundPortMin {get;}
The minimum value in the range of port numbers to be used when binding outgoing channels.

public int QueueAccounting {get;}
Whether class 3 accounting (thread-level and queue-level accounting) data is to be used for all
queues.

public int QueueMonitoring {get;}
Controls the collection of online monitoring data for queues.

public int QueueStatistics {get;}
Controls the collection of statistics data for queues.

public int ReceiveTimeout {get;}
The length of time that a TCP/IP channel waits to receive data, including heartbeats, from its partner
before returning to the inactive state.

public int ReceiveTimeoutMin {get;}
The minimum length of time that a TCP/IP channel waits to receive data, including heartbeats, from
its partner before returning to an inactive state.

public int ReceiveTimeoutType {get;}
The qualifier to apply to the value in ReceiveTimeout.

public int SharedQueueQueueManagerName {get;}
Specifies how to deliver messages to a shared queue. If the put specifies a different queue manager
from the same queue sharing group as the target queue manager, the message is delivered in two
ways:
MQC.MQSQQM_USE

Messages are delivered to the object queue manager before being put on the shared queue.
MQCMQSQQM_IGNORE

Messages are put directly on the shared queue.

Developing applications reference 1751

public int SSLEvent {get;}
Whether TLS events are generated.

public int SSLFips {get;}
Whether only FIPS-certified algorithms are to be used if cryptography is performed in IBM MQ, rather
than cryptographic hardware.

public int SSLKeyResetCount {get;}
Indicates the number of unencrypted bytes sent and received within a TLS conversation before the
secret key is renegotiated.

public int ClusterSenderStatistics {get;}
Specifies the interval, in minutes, between consecutive gatherings of statistics.

public int SyncpointAvailability {get;}
Indicates whether the queue manager supports units of work and sync points with the MQQueue.get
and MQQueue.put methods.

public string TCPName {get;}
The name of either the only, or default, TCP/IP system to be used, depending on the value of
TCPStackType.

public int TCPStackType {get;}
Specifies whether the channel initiator uses only the TCP/IP address space specified in TCPName.
Alternatively, the channel initiator can bind to any TCP/IP address.

public int TraceRouteRecording {get;}
Controls the recording of route tracing information.

Methods
public MQProcess AccessProcess(string processName, int openOptions);
public MQProcess AccessProcess(string processName, int openOptions, string
queueManagerName, string alternateUserId);

Throws MQException.

Access an IBM MQ process on this queue manager to inquire on process attributes.

processName
The name of the process to open.

openOptions
Options that control the opening of the process. The valid options that can be added, or combined
using a bitwise OR, are:

• MQC.MQOO_FAIL_IF_QUIESCING
• MQC.MQOO_INQUIRE
• MQC.MQOO_SET
• MQC.MQOO_ALTERNATE_USER_AUTHORITY

queueManagerName
The name of the queue manager on which the process is defined. You can leave a blank or null
queue manager name if the queue manager is the same as the one the process is accessing.

alternateUserId

If MQC.MQOO_ALTERNATE_USER_AUTHORITY is specified in the openOptions parameter,
alternateUserId specifies the alternative user ID used to check the authorization for the
action. If MQOO_ALTERNATE_USER_AUTHORITY is not specified, alternateUserId can be
blank or null.

Default user authority is used for connection to the queue manager if
MQC.MQOO_ALTERNATE_USER_AUTHORITY is not specified.

1752 IBM MQ Developing Applications Reference

public MQQueue AccessQueue(string queueName, int openOptions);
public MQQueue AccessQueue(string queueName, int openOptions, string
queueManagerName, string dynamicQueueName, string alternateUserId);

Throws MQException.

Accesses a queue on this queue manager.

You can get or browse messages, put messages, inquire about the attributes of the queue or set the
attributes of the queue. If the queue named is a model queue, a dynamic local queue is created.
Query the name attribute of the resultant MQQueue object to find out the name of the dynamic queue.

queueName
Name of queue to open.

openOptions
Options that control the opening of the queue.
MQC.MQOO_ALTERNATE_USER_AUTHORITY

Validate with the specified user identifier.
MQC.MQOO_BIND_AS_QDEF

Use default binding for queue.
MQC.MQOO_BIND_NOT_FIXED

Do not bind to a specific destination.
MQC.MQOO_BIND_ON_OPEN

Bind handle to destination when queue is opened.
MQC.MQOO_BROWSE

Open to browse message.
MQC.MQOO_FAIL_IF_QUIESCING

Fail if the queue manager is quiescing.
MQC.MQOO_INPUT_AS_Q_DEF

Open to get messages using queue-defined default.
MQC.MQOO_INPUT_SHARED

Open to get messages with shared access.
MQC.MQOO_INPUT_EXCLUSIVE

Open to get messages with exclusive access.
MQC.MQOO_INQUIRE

Open for inquiry - required if you want to query properties.
MQC.MQOO_OUTPUT

Open to put messages.
MQC.MQOO_PASS_ALL_CONTEXT

Allow all context to be passed.
MQC.MQOO_PASS_IDENTITY_CONTEXT

Allow identity context to be passed.
MQC.MQOO_SAVE_ALL_CONTEXT

Save context when message retrieved.
MQC.MQOO_SET

Open to set attributes - required if you want to set properties.
MQC.MQOO_SET_ALL_CONTEXT

Allows all context to be set.
MQC.MQOO_SET_IDENTITY_CONTEXT

Allows identity context to be set.
queueManagerName

Name of the queue manager on which the queue is defined. A name that is entirely blank or null
denotes the queue manager to which the MQQueueManager object is connected.

Developing applications reference 1753

dynamicQueueName
dynamicQueueName is ignored unless queueName specifies the name of a model queue. If it
does, dynamicQueueName specifies the name of the dynamic queue to be created. A blank or
null name is not valid if queueName specifies the name of a model queue. If the last nonblank
character in the name is an asterisk, *, the queue manager replaces the asterisk with a string of
characters. The characters guarantee that the name generated for the queue is unique on this
queue manager.

alternateUserId
If MQC.MQOO_ALTERNATE_USER_AUTHORITY is specified in the openOptions parameter,
alternateUserId specifies the alternate user identifier that is used to check the authorization
for the open. If MQC.MQOO_ALTERNATE_USER_AUTHORITY is not specified, alternateUserId
can be left blank, or null.

public MQTopic AccessTopic(MQDestination destination, string topicName, string
topicObject, int options);
public MQTopic AccessTopic(MQDestination destination, string topicName, string
topicObject, int options, string alternateUserId);
public MQTopic AccessTopic(MQDestination destination, string topicName, string
topicObject, int options, string alternateUserId, string subscriptionName);
public MQTopic AccessTopic(MQDestination destination, string topicName, string
topicObject, int options, string alternateUserId, string subscriptionName,
System.Collections.Hashtable properties);
public MQTopic AccessTopic(string topicName, string topicObject, int openAs,
int options);
public MQTopic AccessTopic(string topicName, string topicObject, int openAs,
int options, string alternateUserId);
public MQTopic AccessTopic(string topicName, string topicObject, int options,
string alternateUserId, string subscriptionName);
public MQTopic AccessTopic(string topicName, string topicObject, int options,
string alternateUserId, string subscriptionName, System.Collections.Hashtable
properties);

Access a topic on this queue manager.

MQTopic objects are closely related to administrative topic objects, which are sometimes called topic
objects. On input, topicObject points to an administrative topic object. The MQTopic constructor
obtains a topic string from the topic object and combines it with topicName to create a topic name.
Either or both topicObject or topicName can be null. The topic name is matched to the topic tree,
and the name of the closest matching administrative topic object is returned in topicObject.

The topics that are associated with the MQTopic object are the result of combining two topic strings.
The first topic string is defined by the administrative topic object identified by topicObject. The
second topic string is topicString. The resulting topic string associated with the MQTopic object
can identify multiple topics by including wildcards.

Depending on whether the topic is opened for publishing or subscribing, you can use the
MQTopic.Put methods to publish on topics, or MQTopic.Get methods to receive publications on
topics. If you want to publish and subscribe to the same topic, you must access the topic twice, once
for publish and once for subscribe.

If you create an MQTopic object for subscription, without providing an MQDestination object, a
managed subscription is assumed. If you pass a queue as an MQDestination object, an unmanaged
subscription is assumed. You must ensure the subscription options you set are consistent with the
subscription being managed or unmanaged.

destination
destination is an MQQueue instance. By providing destination, MQTopic is opened as
an unmanaged subscription. Publications on the topic are delivered to the queue accessed as
destination.

1754 IBM MQ Developing Applications Reference

topicName
A topic string that is the second part of the topic name. topicName is concatenated with the topic
string defined in the topicObject administrative topic object. You can set topicName to null, in
which case the topic name is defined by the topic string in topicObject.

topicObject
On input, topicObject is the name of the topic object that contains the topic string that
forms the first part of the topic name. The topic string in topicObject is concatenated with
topicName. The rules for constructing topic strings are defined in Combining topic strings.
On output, topicObject contains the name of the administrative topic object that is the closest
match in the topic tree to the topic identified by the topic string.

openAs
Access the topic to publish or subscribe. The parameter can contain only one of these options:

• MQC.MQTOPIC_OPEN_AS_SUBSCRIPTION
• MQC.MQTOPIC_OPEN_AS_PUBLICATION

options

Combine the options that control the opening of the topic for either publication or subscription.
Use MQC.MQSO_* constants to access a topic for subscription and MQC.MQOO_* constants to
access a topic for publication.

If more than one option is required, add the values together, or combine the option values using
the bitwise OR operator.

alternateUserId
Specify the alternate user ID that is used to check for the required
authorization to finish the operation. You must specify alternateUserId, if either
MQC.MQOO_ALTERNATE_USER_AUTHORITY or MQC.MQSO_ALTERNATE_USER_AUTHORITY is set
in the options parameter.

subscriptionName
subscriptionName is required if the options MQC.MQSO_DURABLE or MQC.MQSO_ALTER are
provided. In both cases, MQTopic is implicitly opened for subscription. An exception is thrown if
the MQC.MQSO_DURABLE is set, and the subscription exists, or if MQC.MQSO_ALTER is set, and the
subscription does not exist.

properties
Set any of the special subscription properties listed using a hash table. Specified entries in the
hash table are updated with output values. Entries are not added to the hash table to report
output values.

• MQC.MQSUB_PROP_ALTERNATE_SECURITY_ID
• MQC.MQSUB_PROP_SUBSCRIPTION_EXPIRY
• MQC.MQSUB_PROP_SUBSCRIPTION_USER_DATA
• MQC.MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID
• MQC.MQSUB_PROP_PUBLICATION_PRIORITY
• MQC.MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN
• MQC.MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

public MQAsyncStatus GetAsyncStatus();

Throws MQException

Returns an MQAsyncStatus object, which represents the asynchronous activity for the queue
manager connection.

public void Backout();

Throws MQException.

Developing applications reference 1755

Backout any messages that were read or written within sync point since the last sync point.

Messages that were written with the MQC.MQPMO_SYNCPOINT flag set are removed from queues.
Messages read with the MQC.MQGMO_SYNCPOINT flag are reinstated on the queues they came from. If
the messages are persistent, the changes are logged.

For reconnectable clients, the MQRC_NONE reason code is returned to a client after reconnection is
successful.

public void Begin();

Throws MQException.

Begin is supported only in server bindings mode. It starts a global unit of work.

public void Commit();

Throws MQException.

Commit any messages that were read or written within sync point since the last sync point.

Messages written with the MQC.MQPMO_SYNCPOINT flag set are made available to other applications.
Messages retrieved with the MQC.MQGMO_SYNCPOINT flag set are deleted. If the messages are
persistent, the changes are logged.

The following reason codes are returned to a reconnectable client:

• MQRC_CALL_INTERRUPTED if connection is lost while carrying out the commit call.
• MQRC_BACKED_OUT if the commit call is issued after reconnection.

Disconnect();

Throws MQException.

Close the connection to the queue manager. All objects accessed on this queue manager are not
longer accessible to this application. To reaccess the objects, create a MQQueueManager object.

Generally, any work performed as part of a unit of work is committed. However, if the unit of work is
managed by .NET, the unit of work might be rolled back.

public void Put(int type, string destinationName, MQMessage message);
public void Put(int type, string destinationName, MQMessage message
MQPutMessageOptions putMessageOptions);
public void Put(int type, string destinationName, string queueManagerName,
string topicString, MQMessage message);
public void Put(string queueName, MQMessage message);
public void Put(string queueName, MQMessage message, MQPutMessageOptions
putMessageOptions);
public void Put(string queueName, string queueManagerName, MQMessage message);
public void Put(string queueName, string queueManagerName, MQMessage message,
MQPutMessageOptions putMessageOptions);
public void Put(string queueName, string queueManagerName, MQMessage message,
MQPutMessageOptions putMessageOptions, string alternateUserId);

Throws MQException.

Places a single message onto a queue or topic without creating an MQQueue or MQTopic object first.

queueName
The name of the queue onto which to place the message.

destinationName
The name of a destination object. It is either a queue or a topic depending on the value of type.

type
The type of destination object. You must not combine the options.
MQC.MQOT_Q

Queue

1756 IBM MQ Developing Applications Reference

MQC.MQOT_TOPIC
Topic

queueManagerName

The name of the queue manager or queue manager alias, on which the queue is defined. If type
MQC.MQOT_TOPIC is specified this parameter is ignored.

If the queue is a model queue, and the resolved queue manager name is not this queue manager,
an MQException is thrown.

topicString

topicString is combined with the topic name in the destinationName topic object.

topicString is ignored if destinationName is a queue.

message
The message to send. Message is an input/output object.
The following reason codes are returned to a reconnectable client:

• MQRC_CALL_INTERRUPTED if the connection is broken while performing a Put call on a
persistent message.

• MQRC_NONE if the connection is successful while performing a Put call on a non-persistent
message (see Application Recovery).

putMessageOptions

Options controlling the actions of the put.

If you omit putMessageOptions, a default instance of putMessageOptions is created.
putMessageOptions is an input/output object.

If you use the MQPMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

alternateUserId

Specifies an alternate user identifier used to check authorization when placing the message on a
queue.

You can omit alternateUserId if you do not set MQC.MQOO_ALTERNATE_USER_AUTHORITY
in putMessageOptions. If you set MQC.MQOO_ALTERNATE_USER_AUTHORITY, you must
also set alternateUserId. alternateUserId has not effect unless you also set
MQC.MQOO_ALTERNATE_USER_AUTHORITY.

Constructors
public MQQueueManager();
public MQQueueManager(string queueManagerName);
public MQQueueManager(string queueManagerName, Int options);
public MQQueueManager(string queueManagerName, Int options, string channel,
string connName);
public MQQueueManager(string queueManagerName, string channel, string
connName);
public MQQueueManager(string queueManagerName, System.Collections.Hashtable
properties);

Throws MQException.

Creates a connection to a queue manager. Select between creating a client connection or a server
connection.

You must have inquire (inq) authority on the queue manager when attempting to connect to the
queue manager. Without inquire authority, the connection attempt fails.

A client connection is created if one of the following conditions is true:

Developing applications reference 1757

1. channel or connName are specified in the constructor.
2. HostName, Port, or Channel are specified in properties.
3. MQEnvironment.HostName, MQEnvironment.Port, or MQEnvironment.Channel are

specified.

The values of the connection properties are defaulted in the order shown. The channel and
connName in the constructor take precedence over the property values in the constructor. The
constructor property values take precedence of the MQEnvironment properties.

The host name, channel name, and port are defined in the MQEnvironment class.

queueManagerName
Name of the queue manager, or queue manager group to connect to.
Omit the parameter, or leave it null, or blank to make a default queue manager selection. The
default queue manager connection on a server is to the default queue manager on the server. The
default queue manager connection on a client connection is to the queue manager the listener is
connected to.

options
Specify MQCNO connection options. The values must be applicable to the type of connection
being made. For example, if you specify the following server connection properties for a client
connection an MQException is thrown.

• MQC.MQCNO_FASTPATH_BINDING
• MQC.MQCNO_STANDARD_BINDING

properties

The properties parameter takes a series of key/value pairs that override the properties set by
MQEnvironment ; see the example, “Override MQEnvironment properties” on page 1760. The
following properties can be overridden:

• MQC.CONNECT_OPTIONS_PROPERTY
• MQC.CONNECTION_NAME_PROPERTY
• MQC.ENCRYPTION_POLICY_SUITE_B
• MQC.HOST_NAME_PROPERTY
• MQC.PORT_PROPERTY
• MQC.CHANNEL_PROPERTY
• MQC.SSL_CIPHER_SPEC_PROPERTY
• MQC.SSL_PEER_NAME_PROPERTY
• MQC.SSL_CERT_STORE_PROPERTY
• MQC.SSL_CRYPTO_HARDWARE_PROPERTY
• MQC.SECURITY_EXIT_PROPERTY
• MQC.SECURITY_USERDATA_PROPERTY
• MQC.SEND_EXIT_PROPERTY
• MQC.SEND_USERDATA_PROPERTY
• MQC.RECEIVE_EXIT_PROPERTY
• MQC.RECEIVE_USERDATA_PROPERTY
• MQC.USER_ID_PROPERTY
• MQC.PASSWORD_PROPERTY
• MQC.MQAIR_ARRAY
• MQC.KEY_RESET_COUNT
• MQC.FIPS_REQUIRED

1758 IBM MQ Developing Applications Reference

• MQC.HDR_CMP_LIST
• MQC.MSG_CMP_LIST
• MQC.TRANSPORT_PROPERTY

channel
Name of a server connection channel

connName
Connection name in the format HostName (Port).

You can supply a list of hostnames and ports as an argument to the constructor
MQQueueManager (String queueManagerName, Hashtable properties) using
CONNECTION_NAME_PROPERTY.

For example:

ConnectionName = "fred.mq.com(2344),nick.mq.com(3746),tom.mq.com(4288)";

Hashtable Properties-new Hashtable();

properties.Add(MQC.CONNECTION_NAME_PROPERTY,ConnectionName);

MQQueueManager qmgr=new MQQueue Manager("qmgrname",properties);

When a connection attempt is made, the connection name list is processed in order. If the
connection attempt to the first host name and port fails, then connection to the second pair of
attributes is attempted. The client repeats this process until either a successful connection is
made or the list is exhausted. If the list is exhausted, an appropriate reason code and completion
code is returned to the client application.

When a port number is not provided for the connection name, the default port (configured in
mqclient.ini) is used.

Set the Connection List
You can set the connection list by using the following methods when the automatic client reconnection
options are set:

Set the connection list through MQSERVER
You can set the connection list through the command prompt.

At the command prompt, set the following command:

MQSERVER=SYSTEM.DEF.SVRCONN/TCP/Hostname1(Port1),Hostname2(Por2),Hostname3(Port3)

For example:

MQSERVER=SYSTEM.DEF.SVRCONN/TCP/fred.mq.com(5266),nick.mq.com(6566),jack.mq.com(8413)

If you set the connection in the MQSERVER, do not set it in the application.

If you set the connection list in the application, the application overwrites whatever is set in the
MQSERVER environment variable.

Set the connection list through the application
You can set the connection list in the application by specifying the host name and port properties.

String connName = "fred.mq.com(2344), nick.mq.com(3746), chris.mq.com(4288)";
MQQueueManager qm = new MQQueueManager("QM1", "TestChannel", connName);

Set the connection list through app.config
App.config is an XML file where you specify the key-value pairs.

Developing applications reference 1759

In the connection list specify

<app.Settings>
<add key="Connection1" value="Hostname1(Port1)"/>
<add key="Connection2" value="Hostname2(Port2)"/>
<app.Settings>

For example:

<app.Settings>
<add key>="Connection1" value="fred.mq.com(2966)"/>
<add key>="Connection2" value="alex.mq.com(6533)"/>
<app.Settings>

You can directly change the connection list in the app.config file.

Set the connection list through MQEnvironment
To set the Connection list through the MQEnvironment, use the ConnectionName property.

MQEnvironment.ConnectionName = "fred.mq.com(4288),"alex.mq.com(5211);

The ConnectionName property overwrites the host name and port properties set in the
MQEnvironment.

Create a client connection

The following example shows you how to create a client connection to a queue manager. You can create
a client connection by setting the MQEnvironment variables before creating a new MQQueueManager
Object.

MQEnvironment.Hostname = "fred.mq.com"; // host to connect to
MQEnvironment.Port = 1414; // port to connect to
 //If not explicitly set,
 // defaults to 1414
 // (the default IBM MQ port)
MQEnvironment.Channel = "channel.name"; // the case sensitive
 // name of the
 // SVR CONN channel on
 // the queue manager
MQQueueManager qMgr = new MQQueueManager("MYQM");

Figure 11. Client connection

Override MQEnvironment properties

The following example shows you how to create a queue manager with its user ID and password defined
in a hash table.

Hashtable properties = new Hashtable();

properties.Add(MQC.USER_ID_PROPERTY, "ExampleUserId");
properties.Add(MQC.PASSWORD_PROPERTY, "ExamplePassword");

try
{
 MQQueueManager qMgr = new MQQueueManager("qmgrname", properties);
}
catch (MQException mqe)
{
 System.Console.WriteLine("Connect failed with " + mqe.Message);
 return((int)mqe.Reason);
}

Figure 12. Overriding MQEnvironment properties

1760 IBM MQ Developing Applications Reference

Create a reconnectable connection

The following example shows you how to automatically reconnect a client to a Queue Manager.

Hashtable properties = new Hashtable(); // The queue manager name and the
 // properties how it has to be connected

properties.Add(MQC.CONNECT_OPTIONS_PROPERTY, MQC.MQCNO_RECONNECT); // Options
 // through which reconnection happens

properties.Add(MQC.CONNECTION_NAME_PROPERTY,"fred.mq.com(4789),nick.mq.com(4790)"); // The list
 // of queue managers through which reconnection happens

MQ QueueManager qmgr = new MQQueueManager("qmgrname", properties);

Figure 13. Automatically reconnecting a client to a queue manager

MQSubscription.NET class
Use MQSubscription to request that retained publications are sent to the subscriber.
MQSubscription is a property of an MQTopic object opened for subscription.

Class

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQManagedObject
 |
 └─ IBM.WMQ.MQSubscription

public class IBM.WMQ.MQSubscription extends IBM.WMQ.MQManagedObject;

• “Properties” on page 1761
• “Methods” on page 1761
• “Constructors” on page 1762

Properties
Access subscription properties using the MQManagedObject class; see “Properties” on page 1721.

Methods
Access subscription Inquire, Set and Get methods using the MQManagedObject class; see “Methods”
on page 1721.
public int RequestPublicationUpdate(int options);

Throws MQException.

Request an updated publication for the current topic. If the queue manager has a retained
publications for the topic, they are sent to the subscriber.

Before calling RequestPublicationUpdate, open a topic for subscription to obtain an
MQSubscription object.

Typically, open the subscription with the MQC.MQSO_PUBLICATIONS_ON_REQUEST option. If no
wildcards are present in the topic string, then only one publication is sent as a result of this call. If
the topic string contains wildcards, many publications might be sent. The method returns the number
of retained publications that are sent to the subscription queue. There is no guarantee that this many
publications are received, especially if they are non-persistent messages.

Developing applications reference 1761

options
MQC.MQSRO_FAIL_IF_QUIESCING

The method fails if the queue manager is in a quiescent state. On z/OS, for a CICS or
IMS application, MQC.MQSRO_FAIL_IF_QUIESCING also forces the method to fail if the
connection is in a quiescent state.

MQC.MQSRO_NONE
No options are specified.

Constructors
No Public constructor.

An MQSubscription object is returned in the SubscriptionReference property of an MQTopic
object that is opened for subscription,

Call the RequestPublicationUpdate method. MQSubscription is a subclass of MQManagedObject.
Use the reference to access the properties and methods of MQManagedObject.

MQTopic.NET class
Use MQTopic to publish or subscribe messages on a topic, or to query or set attributes of
a topic. Create an MQTopic object for publishing or subscribing by using a constructor or the
MQQueueManager.AccessTopic method.

Class

System.Object
 |
 └─ IBM.WMQ.MQBase
 |
 └─ IBM.WMQ.MQBaseObject
 |
 └─ IBM.WMQ.MQManagedObject
 |
 └─ IBM.WMQ.MQDestination
 |
 └─ IBM.WMQ.MQTopic

public class IBM.WMQ.MQTopic extends IBM.WMQ.MQDestination;

• “Properties” on page 1762
• “Methods” on page 1763
• “Constructors” on page 1765

Properties
Test for MQException being thrown when getting properties.

public Boolean IsDurable {get;}
Read only property that returns True if the subscription is durable or False otherwise. If the topic
was opened for publication, the property is ignored and would always return False.

public Boolean IsManaged {get;};
Read only property that returns True if the subscription is managed by the queue manager, or False
otherwise. If the topic was opened for publication, the property is ignored and would always return
False.

public Boolean IsSubscribed {get;};
Read only property that returns True if the topic was opened for subscription and False if the topic
was opened for publication.

1762 IBM MQ Developing Applications Reference

public MQSubscription SubscriptionReference {get;};
Read only property that returns the MQSubscription object associated with a topic object opened
for subscription. The reference is available if you want to modify the close options or start any of the
objects methods.

public MQDestination UnmanagedDestinationReference {get;};
Read only property that returns the MQQueue associated with an unmanaged subscription. It is the
destination specified when the topic object was created. The property returns null for any topic
objects opened for publication or with a managed subscription.

Methods
public void Put(MQMessage message);
public void Put(MQMessage message, MQPutMessageOptions putMessageOptions);

Throws MQException.

Publishes a message to the topic.

Modifications to the MQMessage object after the Put call has been accomplished do not affect the
actual message on the IBM MQ queue or publication topic.

Put updates the MessageId and CorrelationId properties of the MQMessage object and does
not clear message data. Further Put or Get calls refer to the updated information in the MQMessage
object. For example, in the following code snippet, the first message contains a and the second ab.

msg.WriteString("a");
q.Put(msg,pmo);
msg.WriteString("b");
q.Put(msg,pmo);

message
An MQMessage object containing the message descriptor data, and message to be sent. The
message descriptor can be altered as a consequence of this method. The values in the message
descriptor immediately after the completion of this method are the values that were put to the
queue or published to the topic.

The following reason codes are returned to a reconnectable client:

• MQRC_CALL_INTERRUPTED if the connection is broken while running a Put call on a persistent
message and the reconnection is successful.

• MQRC_NONE if the connection is successful while running a Put call on a non-persistent message
(see Application Recovery).

putMessageOptions
Options controlling the action of the put.
If putMessageOptions is not specified the default instance of MQPutMessageOptons is used.
If you use the MQPMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

Note: For simplicity and performance, if you want to put a single message to a queue, use
MQQueueManager.Put object. You should have an MQQueue object for this.

public void Get(MQMessage message);
public void Get(MQMessage message, MQGetMessageOptions getMessageOptions);
public void Get(MQMessage message, MQGetMessageOptions getMessageOptions, int
MaxMsgSize);

Throws MQException.

Retrieves a message from the topic.

This method uses a default instance of MQGetMessageOptions to do the get. The message option
used is MQGMO_NOWAIT.

Developing applications reference 1763

If the get fails, the MQMessage object is unchanged. If it succeeds, the message descriptor and
message data portions of the MQMessage are replaced with the message descriptor and message
data from the incoming message.

All calls to IBM MQ from a particular MQQueueManager are synchronous. Therefore, if you perform
a get with wait, all other threads using the same MQQueueManager are blocked from making further
IBM MQ calls until the Get call is accomplished. If you need multiple threads to access IBM MQ
simultaneously, each thread must create its own MQQueueManager object.

message
Contains the message descriptor and the returned message data. Some of the fields in the
message descriptor are input parameters. It is important to ensure that the MessageId and
CorrelationId input parameters are set as required.
A reconnectable client returns the reason code MQRC_BACKED_OUT after successful reconnection,
for messages received under MQGM_SYNCPOINT.

getMessageOptions
Options controlling the action of the get.

Using option MQC.MQGMO_CONVERT might result in an exception with reason code
MQC.MQRC_CONVERTED_STRING_TOO_BIG when converting from single-byte character codes to
double byte codes. In this case, the message is copied into the buffer without conversion.

If getMessageOptions is not specified, the message option used is MQGMO_NOWAIT.

If you use the MQGMO_LOGICAL_ORDER option in a reconnectable client, the
MQRC_RECONNECT_INCOMPATIBLE reason code is returned.

MaxMsgSize
The largest message this message object is to receive. If the message on the queue is larger than
this size, one of two things occurs:

• If the MQGMO_ACCEPT_TRUNCATED_MSG flag is set in the MQGetMessageOptions object, the
message is filled with as much of the message data as possible. An exception is thrown with the
MQCC_WARNING completion code and MQRC_TRUNCATED_MSG_ACCEPTED reason code.

• If the MQGMO_ACCEPT_TRUNCATED_MSG flag is not set, the message remains on
the queue. An exception is thrown with the MQCC_WARNING completion code and
MQRC_TRUNCATED_MSG_FAILED reason code.

If MaxMsgSize is not specified, the whole message is retrieved.

1764 IBM MQ Developing Applications Reference

Constructors
public MQTopic(MQQueueManager queueManager, MQDestination destination, string
topicName, string topicObject, int options);
public MQTopic(MQQueueManager queueManager, MQDestination destination, string
topicName, string topicObject, int options, string alternateUserId);
public MQTopic(MQQueueManager queueManager, MQDestination destination, string
topicName, string topicObject, int options, string alternateUserId, string
subscriptionName);
public MQTopic(MQQueueManager queueManager, MQDestination destination, string
topicName, string topicObject, int options, string alternateUserId, string
subscriptionName, System.Collections.Hashtable properties);
public MQTopic(MQQueueManager queueManager, string topicName, string
topicObject, int openAs, int options);
public MQTopic(MQQueueManager queueManager, string topicName, string
topicObject, int openAs, int options, string alternateUserId);
public MQTopic(MQQueueManager queueManager, string topicName, string
topicObject, int options, string alternateUserId, string subscriptionName);
public MQTopic(MQQueueManager queueManager, string topicName, string
topicObject, int options, string alternateUserId, string subscriptionName,
System.Collections.Hashtable properties);

Access a topic on queueManager.

MQTopic objects are closely related to administrative topic objects, which are sometimes called topic
objects. On input, topicObject points to an administrative topic object. The MQTopic constructor
obtains a topic string from the topic object and combines it with topicName to create a topic name.
Either or both topicObject or topicName can be null. The topic name is matched to the topic tree,
and the name of the closest matching administrative topic object is returned in topicObject.

The topics that are associated with the MQTopic object are the result of combining two topic strings.
The first topic string is defined by the administrative topic object identified by topicObject. The
second topic string is topicString. The resulting topic string associated with the MQTopic object
can identify multiple topics by including wildcards.

Depending on whether the topic is opened for publishing or subscribing, you can use the
MQTopic.Put methods to publish on topics, or MQTopic.Get methods to receive publications on
topics. If you want to publish and subscribe to the same topic, you must access the topic twice, once
for publish and once for subscribe.

If you create an MQTopic object for subscription, without providing an MQDestination object, a
managed subscription is assumed. If you pass a queue as an MQDestination object, an unmanaged
subscription is assumed. You must ensure the subscription options you set are consistent with the
subscription being managed or unmanaged.

queueManager
Queue manager to access a topic on.

destination
destination is an MQQueue instance. By providing destination, MQTopic is opened as
an unmanaged subscription. Publications on the topic are delivered to the queue accessed as
destination.

topicName
A topic string that is the second part of the topic name. topicName is concatenated with the topic
string defined in the topicObject administrative topic object. You can set topicName to null, in
which case the topic name is defined by the topic string in topicObject.

topicObject
On input, topicObject is the name of the topic object that contains the topic string that
forms the first part of the topic name. The topic string in topicObject is concatenated with
topicName. The rules for constructing topic strings are defined in Combining topic strings.

Developing applications reference 1765

On output, topicObject contains the name of the administrative topic object that is the closest
match in the topic tree to the topic identified by the topic string.

openAs
Access the topic to publish or subscribe. The parameter can contain only one of these options:

• MQC.MQTOPIC_OPEN_AS_SUBSCRIPTION
• MQC.MQTOPIC_OPEN_AS_PUBLICATION

options

Combine the options that control the opening of the topic for either publication or subscription.
Use MQC.MQSO_* constants to access a topic for subscription and MQC.MQOO_* constants to
access a topic for publication.

If more than one option is required, add the values together, or combine the option values using
the bitwise OR operator.

alternateUserId
Specify the alternate user ID that is used to check for the required
authorization to finish the operation. You must specify alternateUserId, if either
MQC.MQOO_ALTERNATE_USER_AUTHORITY or MQC.MQSO_ALTERNATE_USER_AUTHORITY is set
in the options parameter.

subscriptionName
subscriptionName is required if the options MQC.MQSO_DURABLE or MQC.MQSO_ALTER are
provided. In both cases, MQTopic is implicitly opened for subscription. An exception is thrown if
the MQC.MQSO_DURABLE is set, and the subscription exists, or if MQC.MQSO_ALTER is set, and the
subscription does not exist.

properties
Set any of the special subscription properties listed using a hash table. Specified entries in the
hash table are updated with output values. Entries are not added to the hash table to report
output values.

• MQC.MQSUB_PROP_ALTERNATE_SECURITY_ID
• MQC.MQSUB_PROP_SUBSCRIPTION_EXPIRY
• MQC.MQSUB_PROP_SUBSCRIPTION_USER_DATA
• MQC.MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID
• MQC.MQSUB_PROP_PUBLICATION_PRIORITY
• MQC.MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN
• MQC.MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

1766 IBM MQ Developing Applications Reference

public MQTopic MQQueueManager.AccessTopic(MQDestination destination, string
topicName, string topicObject, int options);
public MQTopic MQQueueManager.AccessTopic(MQDestination destination, string
topicName, string topicObject, int options, string alternateUserId);
public MQTopic MQQueueManager.AccessTopic(MQDestination destination, string
topicName, string topicObject, int options, string alternateUserId, string
subscriptionName);
public MQTopic MQQueueManager.AccessTopic(MQDestination destination, string
topicName, string topicObject, int options, string alternateUserId, string
subscriptionName, System.Collections.Hashtable properties);
public MQTopic MQQueueManager.AccessTopic(string topicName, string topicObject,
int openAs, int options);
public MQTopic MQQueueManager.AccessTopic(string topicName, string topicObject,
int openAs, int options, string alternateUserId);
public MQTopic MQQueueManager.AccessTopic(string topicName, string topicObject,
int options, string alternateUserId, string subscriptionName);
public MQTopic MQQueueManager.AccessTopic(string topicName, string
topicObject, int options, string alternateUserId, string subscriptionName,
System.Collections.Hashtable properties);

Access a topic on this queue manager.

MQTopic objects are closely related to administrative topic objects, which are sometimes called topic
objects. On input, topicObject points to an administrative topic object. The MQTopic constructor
obtains a topic string from the topic object and combines it with topicName to create a topic name.
Either or both topicObject or topicName can be null. The topic name is matched to the topic tree,
and the name of the closest matching administrative topic object is returned in topicObject.

The topics that are associated with the MQTopic object are the result of combining two topic strings.
The first topic string is defined by the administrative topic object identified by topicObject. The
second topic string is topicString. The resulting topic string associated with the MQTopic object
can identify multiple topics by including wildcards.

Depending on whether the topic is opened for publishing or subscribing, you can use the
MQTopic.Put methods to publish on topics, or MQTopic.Get methods to receive publications on
topics. If you want to publish and subscribe to the same topic, you must access the topic twice, once
for publish and once for subscribe.

If you create an MQTopic object for subscription, without providing an MQDestination object, a
managed subscription is assumed. If you pass a queue as an MQDestination object, an unmanaged
subscription is assumed. You must ensure the subscription options you set are consistent with the
subscription being managed or unmanaged.

destination
destination is an MQQueue instance. By providing destination, MQTopic is opened as
an unmanaged subscription. Publications on the topic are delivered to the queue accessed as
destination.

topicName
A topic string that is the second part of the topic name. topicName is concatenated with the topic
string defined in the topicObject administrative topic object. You can set topicName to null, in
which case the topic name is defined by the topic string in topicObject.

topicObject
On input, topicObject is the name of the topic object that contains the topic string that
forms the first part of the topic name. The topic string in topicObject is concatenated with
topicName. The rules for constructing topic strings are defined in Combining topic strings.
On output, topicObject contains the name of the administrative topic object that is the closest
match in the topic tree to the topic identified by the topic string.

openAs
Access the topic to publish or subscribe. The parameter can contain only one of these options:

Developing applications reference 1767

• MQC.MQTOPIC_OPEN_AS_SUBSCRIPTION
• MQC.MQTOPIC_OPEN_AS_PUBLICATION

options

Combine the options that control the opening of the topic for either publication or subscription.
Use MQC.MQSO_* constants to access a topic for subscription and MQC.MQOO_* constants to
access a topic for publication.

If more than one option is required, add the values together, or combine the option values using
the bitwise OR operator.

alternateUserId
Specify the alternate user ID that is used to check for the required
authorization to finish the operation. You must specify alternateUserId, if either
MQC.MQOO_ALTERNATE_USER_AUTHORITY or MQC.MQSO_ALTERNATE_USER_AUTHORITY is set
in the options parameter.

subscriptionName
subscriptionName is required if the options MQC.MQSO_DURABLE or MQC.MQSO_ALTER are
provided. In both cases, MQTopic is implicitly opened for subscription. An exception is thrown if
the MQC.MQSO_DURABLE is set, and the subscription exists, or if MQC.MQSO_ALTER is set, and the
subscription does not exist.

properties
Set any of the special subscription properties listed using a hash table. Specified entries in the
hash table are updated with output values. Entries are not added to the hash table to report
output values.

• MQC.MQSUB_PROP_ALTERNATE_SECURITY_ID
• MQC.MQSUB_PROP_SUBSCRIPTION_EXPIRY
• MQC.MQSUB_PROP_SUBSCRIPTION_USER_DATA
• MQC.MQSUB_PROP_SUBSCRIPTION_CORRELATION_ID
• MQC.MQSUB_PROP_PUBLICATION_PRIORITY
• MQC.MQSUB_PROP_PUBLICATION_ACCOUNTING_TOKEN
• MQC.MQSUB_PROP_PUBLICATION_APPLICATIONID_DATA

IMQObjectTrigger.NET interface
Implement IMQObjectTrigger to process messages passed by the runmqdnm.NET monitor.

Interface

public interface IBM.WMQMonitor.IMQObjectTrigger();

Depending on whether sync point control is specified in the runmqdnm command the message is removed
from the queue before or after the Execute method returns.

Methods
void Execute (MQQueueManager queueManager, MQQueue queue, MQMessage message,
string param);

queueManager
Queue manager hosting the queue being monitored.

queue
Queue being monitored.

1768 IBM MQ Developing Applications Reference

message
Message read from the queue.

param
Data passed from UserParameter.

MQC.NET interface
Refer to an MQI constant by prefixing the constant name with MQC.. MQC defines all the constants used by
the MQI.

Interface

System.Object
 |
 └─ IBM.WMQ.MQC

public interface IBM.WMQ.MQC extends System.Object;

Example

MQQueue queue;
queue.closeOptions = MQC.MQCO_DELETE;

Character set identifiers for .NET applications
Descriptions of the character sets you can select to encode .NET IBM MQ messages

Character set Description

37 ibm037

437 ibm437 / PC Original

500 ibm500

819 iso-8859-1 / latin1 / ibm819

1200 Unicode

1208 UTF-8

273 ibm273

277 ibm277

278 ibm278

280 ibm280

284 ibm284

285 ibm285

297 ibm297

420 ibm420

424 ibm424

737 ibm737 / PC Greek

775 ibm775 / PC Baltic

Developing applications reference 1769

Character set Description

813 iso-8859-7 / greek / ibm813

838 ibm838

850 ibm850 / PC Latin 1

852 ibm852 / PC Latin 2

855 ibm855 / PC Cyrillic

856 ibm856

857 ibm857 / PC Turkish

860 ibm860 / PC Portuguese

861 ibm861 / PC Icelandic

862 ibm862 / PC Hebrew

863 ibm863 / PC Canadian French

864 ibm864 / PC Arabic

865 ibm865 / PC Nordic

866 ibm866 / PC Russian

868 ibm868

869 ibm869 / PC Modern Greek

870 ibm870

871 ibm871

874 ibm874

875 ibm875

912 iso-8859-2 / latin2 / ibm912

913 iso-8859-3 / latin3 / ibm913

914 iso-8859-4 / latin4 / ibm914

915 iso-8859-5 / cyrillic / ibm915

916 iso-8859-8 / hebrew / ibm916

918 ibm918

920 iso-8859-9 / latin5 / ibm920

921 ibm921

922 ibm922

930 ibm930

932 PC Japanese

933 ibm933

935 ibm935

937 ibm937

939 ibm939

1770 IBM MQ Developing Applications Reference

Character set Description

942 ibm942

943 ibm943

948 ibm948

949 ibm949

950 ibm950 / Big 5 Traditional Chinese

954 EUCJIS

964 ibm964 / CNS 11643 Traditional Chinese

970 ibm970

1006 ibm1006

1025 ibm1025

1026 ibm1026

1089 iso-8859-6 / arabic / ibm1089

1097 ibm1097

1098 ibm1098

1112 ibm1112

1122 ibm1122

1123 ibm1123

1124 ibm1124

1250 Windows Latin 2

1251 Windows Cyrillic

1252 Windows Latin 1

1253 Windows Greek

1254 Windows Turkish

1255 Windows Hebrew

1256 Windows Arabic

1257 Windows Baltic

1258 Windows Vietnamese

1381 ibm1381

1383 ibm1383

2022 JIS

5601 ksc-5601 Korean

33722 ibm33722

Developing applications reference 1771

IBM MQ C++ classes
The IBM MQ C++ classes encapsulate the IBM MQ Message Queue Interface (MQI). There is a single C++
header file, imqi.hpp, which covers all of these classes.

For each class, the following information is shown:
Class hierarchy diagram

A class diagram showing the class in its inheritance relation to its immediate parent classes, if any.
Other relevant classes

Document links to other relevant classes, such as parent classes, and the classes of objects used in
method signatures.

Object attributes
Attributes of the class. These are in addition to those attributes defined for any parent classes. Many
attributes reflect IBM MQ data-structure members (see “C++ and MQI cross-reference” on page
1773). For detailed descriptions, see “Attributes of objects” on page 789.

Constructors
Signatures of the special methods used to create an object of the class.

Object methods (public)
Signatures of methods that require an instance of the class for their operation, and that have no usage
restrictions.

Where it applies, the following information is also shown:
Class methods (public)

Signatures of methods that do not require an instance of the class for their operation, and that have
no usage restrictions.

Overloaded (parent class) methods
Signatures of those virtual methods that are defined in parent classes, but exhibit different,
polymorphic, behavior for this class.

Object methods (protected)
Signatures of methods that require an instance of the class for their operation, and are reserved for
use by the implementations of derived classes. This section is of interest only to class writers, as
opposed to class users.

Object data (protected)
Implementation details for object instance data available to the implementations of derived classes.
This section is of interest only to class writers, as opposed to class users.

Reason codes
MQRC_* values (see API completion and reason codes) that can be expected from those methods that
fail. For an exhaustive list of reason codes that can occur for an object of a class, consult the parent
class documentation. The documented list of reason codes for a class does not include the reason
codes for parent classes.

Note:

1. Objects of these classes are not thread-safe. This ensures optimal performance, but take care not to
access any object from more than one thread.

2. It is recommended that, for a multithreaded program, a separate ImqQueueManager object is used for
each thread. Each manager object must have its own independent collection of other objects, ensuring
that objects in different threads are isolated from one another.

The classes are:

• “ImqAuthenticationRecord C++ class” on page 1789
• “ImqBinary C++ class” on page 1791
• “ImqCache C++ class” on page 1793
• “ImqChannel C++ class” on page 1796

1772 IBM MQ Developing Applications Reference

• “ImqCICSBridgeHeader C++ class” on page 1801
• “ImqDeadLetterHeader C++ class” on page 1807
• “ImqDistributionList C++ class” on page 1810
• “ImqError C++ class” on page 1811
• “ImqGetMessageOptions C++ class” on page 1812
• “ImqHeader C++ class” on page 1816
• “ImqIMSBridgeHeader C++ class” on page 1817
• “ImqItem C++ class” on page 1820
• “ImqMessage C++ class” on page 1822
• “ImqMessageTracker C++ class” on page 1828
• “ImqNamelist C++ class” on page 1831
• “ImqObject C++ class” on page 1832
• “ImqProcess C++ class” on page 1838
• “ImqPutMessageOptions C++ class” on page 1839
• “ImqQueue C++ class” on page 1842
• “ImqQueueManager C++ class” on page 1852
• “ImqReferenceHeader C++ class” on page 1868
• “ImqString C++ class” on page 1871
• “ImqTrigger C++ class” on page 1876
• “ImqWorkHeader C++ class” on page 1879

C++ and MQI cross-reference
This collection of topics contains information relating C++ to the MQI.

Read this information together with “Data types used in the MQI” on page 235.

This table relates MQI data structures to the C++ classes and include files. The following topics show
cross-reference information for each C++ class. These cross-references relate to the use of the underlying
IBM MQ procedural interfaces. The classes ImqBinary, ImqDistributionList, and ImqString have no
attributes that fall into this category and are excluded.

Table 846. Data structure, class, and include-file cross-reference

Data structure Class Include file

MQAIR ImqAuthenticationRecord imqair.hpp

ImqBinary imqbin.hpp

ImqCache imqcac.hpp

MQCD ImqChannel imqchl.hpp

MQCIH ImqCICSBridgeHeader imqcih.hpp

MQDLH ImqDeadLetterHeader imqdlh.hpp

MQOR ImqDistributionList imqdst.hpp

ImqError imqerr.hpp

MQGMO ImqGetMessageOptions imqgmo.hpp

ImqHeader imqhdr.hpp

MQIIH ImqIMSBridgeHeader imqiih.hpp

Developing applications reference 1773

Table 846. Data structure, class, and include-file cross-reference (continued)

Data structure Class Include file

ImqItem imqitm.hpp

MQMD ImqMessage imqmsg.hpp

ImqMessageTracker imqmtr.hpp

ImqNamelist imqnml.hpp

MQOD, MQRR ImqObject imqobj.hpp

MQPMO, MQPMR, MQRR ImqPutMessageOptions imqpmo.hpp

ImqProcess imqpro.hpp

ImqQueue imqque.hpp

MQBO, MQCNO, MQCSP ImqQueueManager imqmgr.hpp

MQRMH ImqReferenceHeader imqrfh.hpp

ImqString imqstr.hpp

MQTM ImqTrigger imqtrg.hpp

MQTMC

MQTMC2 ImqTrigger imqtrg.hpp

MQXQH

MQWIH ImqWorkHeader imqwih.hpp

ImqAuthenticationRecord cross-reference
Cross-reference of attributes, data structures, fields, and calls for the ImqAuthenticationRecord C++
class.

Table 847. Attributes, data structures, fields, and calls

Attribute Data
structure

Field Call

connection name MQAIR AuthInfoConnName MQCONNX

password MQAIR LDAPPassword MQCONNX

type MQAIR AuthInfoType MQCONNX

user name MQAIR LDAPUserNamePtr MQCONNX

MQAIR LDAPUserNameOffset MQCONNX

MQAIR LDAPUserNameLength MQCONNX

ImqCache cross-reference
Cross-reference of attributes and calls for the ImqCache C++ class.

Table 848. Attributes and calls

Attribute Call

automatic buffer MQGET

buffer length MQGET

1774 IBM MQ Developing Applications Reference

Table 848. Attributes and calls (continued)

Attribute Call

buffer pointer MQGET, MQPUT

data length MQGET

data offset MQGET

data pointer MQGET

message length MQGET, MQPUT

ImqChannel cross-reference
Cross-reference of attributes, data structures, fields, and calls for the ImqChannel C++ class.

Table 849. Attributes, data structures, fields, and calls

Attribute Data
structure

Field Call

batch heart-beat MQCD BatchHeartbeat MQCONNX

channel name MQCD ChannelName MQCONNX

connection name MQCD ConnectionName MQCONNX

MQCD ShortConnectionName MQCONNX

header compression MQCD HdrCompList MQCONNX

heart-beat interval MQCD HeartbeatInterval MQCONNX

keep alive interval MQCD KeepAliveInterval MQCONNX

local address MQCD LocalAddress MQCONNX

maximum message length MQCD MaxMsgLength MQCONNX

message compression MQCD MsgCompList MQCONNX

mode name MQCD ModeName MQCONNX

password MQCD Password MQCONNX

receive exit count MQCD MQCONNX

receive exit names MQCD ReceiveExit MQCONNX

MQCD ReceiveExitsDefined MQCONNX

MQCD ReceiveExitPtr MQCONNX

receive user data MQCD ReceiveUserData MQCONNX

MQCD ReceiveUserDataPtr MQCONNX

security exit name MQCD SecurityExit MQCONNX

security user data MQCD SecurityUserData MQCONNX

send exit count MQCD MQCONNX

send exit names MQCD SendExit MQCONNX

MQCD SendExitsDefined MQCONNX

MQCD SendExitPtr MQCONNX

Developing applications reference 1775

Table 849. Attributes, data structures, fields, and calls (continued)

Attribute Data
structure

Field Call

send user data MQCD SendUserData MQCONNX

MQCD SendUserDataPtr MQCONNX

SSL CipherSpec MQCD sslCipherSpecification MQCONNX

SSL client authentication type MQCD sslClientAuthentication MQCONNX

SSL peer name MQCD sslPeerName MQCONNX

transaction program name MQCD TpName MQCONNX

transport type MQCD TransportType MQCONNX

user id MQCD UserIdentifier MQCONNX

ImqCICSBridgeHeader cross-reference
Cross-reference of attributes, data structures, and fields for the ImqCICSBridgeHeader C++ class.

Table 850. Mapping of attributes, data structures, and fields

Attribute Data structure Field

bridge abend code MQCIH AbendCode

ADS descriptor MQCIH AdsDescriptor

attention identifier MQCIH AttentionId

authenticator MQCIH Authenticator

bridge completion code MQCIH BridgeCompletionCode

bridge error offset MQCIH ErrorOffset

bridge reason code MQCIH BridgeReason

bridge cancel code MQCIH CancelCode

conversational task MQCIH ConversationalTask

cursor position MQCIH CursorPosition

facility token MQCIH Facility

facility keep time MQCIH FacilityKeepTime

facility like MQCIH FacilityLike

function MQCIH Function

get wait interval MQCIH GetWaitInterval

link type MQCIH LinkType

next transaction identifier MQCIH NextTransactionId

output data length MQCIH OutputDataLength

reply-to format MQCIH ReplyToFormat

bridge return code MQCIH ReturnCode

start code MQCIH StartCode

1776 IBM MQ Developing Applications Reference

Table 850. Mapping of attributes, data structures, and fields (continued)

Attribute Data structure Field

task end status MQCIH TaskEndStatus

transaction identifier MQCIH TransactionId

uow control MQCIH UowControl

version MQCIH Version

ImqDeadLetterHeader cross-reference
Cross-reference of attributes, data structures, and fields for the ImqDeadLetterHeader C++ class.

Table 851. Mapping of attributes, data structures, and fields

Attribute Data structure Field

dead-letter reason code MQDLH Reason

destination queue manager name MQDLH DestQMgrName

destination queue name MQDLH DestQName

put application name MQDLH PutApplName

put application type MQDLH PutApplType

put date MQDLH PutDate

put time MQDLH PutTime

ImqError cross-reference
Cross-reference of attributes and calls for the ImqError C++ class.

Table 852. Attributes and calls

Attribute Call

completion code MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,
MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQSET

reason code MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,
MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQSET

ImqGetMessageOptions cross-reference
Cross-reference of attributes, data structures, and fields for the ImqGetMessageOptions C++ class.

Table 853. Mapping of attributes, data structures, and fields

Attribute Data structure Field

group status MQGMO GroupStatus

match options MQGMO MatchOptions

message token MQGMO MessageToken

options MQGMO Options

resolved queue name MQGMO ResolvedQName

returned length MQGMO ReturnedLength

Developing applications reference 1777

Table 853. Mapping of attributes, data structures, and fields (continued)

Attribute Data structure Field

segmentation MQGMO Segmentation

segment status MQGMO SegmentStatus

MQGMO Signal1

MQGMO Signal2

syncpoint participation MQGMO Options

wait interval MQGMO WaitInterval

ImqHeader cross-reference
Cross-reference of attributes, data structures, and fields for the ImqHeader C++ class.

Table 854. Mapping of attributes, data structures, and fields

Attribute Data structure Field

character set MQDLH, MQIIH CodedCharSetId

encoding MQDLH, MQIIH Encoding

format MQDLH, MQIIH Format

header flags MQIIH, MQRMH Flags

ImqIMSBridgeHeader cross-reference
Cross-reference of attributes, data structures, and fields for the ImqAuthenticationRecord C++ class.

Table 855. Mapping of attributes, data structures, and fields

Attribute Data structure Field

authenticator MQIIH Authenticator

commit mode MQIIH CommitMode

logical terminal override MQIIH LTermOverride

message format services map name MQIIH MFSMapName

reply-to format MQIIH ReplyToFormat

security scope MQIIH SecurityScope

transaction instance id MQIIH TranInstanceId

transaction state MQIIH TranState

ImqItem cross-reference
Cross-reference of attributes and calls for the ImqItem C++ class.

Table 856. Attributes and calls

Attribute Call

structure id MQGET

1778 IBM MQ Developing Applications Reference

ImqMessage cross-reference
Cross-reference of attributes, data structures, fields, and calls for the ImqMessage C++ class.

Table 857. Attributes, data structures, fields, and calls

Attribute Data
structure

Field Call

application ID data MQMD ApplIdentityData

application origin data MQMD ApplOriginData

backout count MQMD BackoutCount

character set MQMD CodedCharSetId

encoding MQMD Encoding

expiry MQMD Expiry

format MQMD Format

message flags MQMD MsgFlags

message type MQMD MsgType

offset MQMD Offset

original length MQMD OriginalLength

persistence MQMD Persistence

priority MQMD Priority

put application name MQMD PutApplName

put application type MQMD PutApplType

put date MQMD PutDate

put time MQMD PutTime

reply-to queue manager name MQMD ReplyToQMgr

reply-to queue name MQMD ReplyToQ

report MQMD Report

sequence number MQMD MsgSeqNumber

total message length DataLength MQGET

user id MQMD UserIdentifier

ImqMessageTracker cross-reference
Cross-reference of attributes, data structures, and fields for the ImqMessageTracker C++ class.

Table 858. Mapping of attributes, data structures, and fields

Attribute Data structure Field

accounting token MQMD AccountingToken

correlation id MQMD CorrelId

feedback MQMD Feedback

group id MQMD GroupId

Developing applications reference 1779

Table 858. Mapping of attributes, data structures, and fields (continued)

Attribute Data structure Field

message id MQMD MsgId

ImqNamelist cross-reference
Cross-reference of attributes, inquiries, and calls for the ImqNamelist C++ class.

Table 859. Attributes, inquiries, and calls

Attribute Inquiry Call

name count MQIA_NAME_COUNT MQINQ

namelist name MQCA_NAMELIST_NAME MQINQ

ImqObject cross-reference
Cross-reference of attributes, data structures, fields, inquiries, and calls for the ImqObject C++ class.

Table 860. Attributes, data structures, fields, inquiries, and calls

Attribute Data
structure

Field Inquiry Call

alteration date MQCA_ALTERATION_DATE MQINQ

alteration time MQCA_ALTERATION_TIME MQINQ

alternate user id MQOD AlternateUserId

alternate security id

close options MQCLOSE

description MQCA_Q_DESC, MQCA_Q_MGR_DESC,
MQCA_PROCESS_DESC

MQINQ

name MQOD ObjectName MQCA_Q_MGR_NAME,
MQCQ_Q_NAME,
MQCA_PROCESS_NAME

MQINQ

open options MQOPEN

open status MQOPEN,
MQCLOSE

queue manager
identifier

queue
manager
identifier

MQCA_Q_MGR_IDENTIFIER MQINQ

ImqProcess cross-reference
Cross-reference of attributes, inquiries, and calls for the ImqAuthenticationRecord C++ class.

Table 861. Attributes, inquiries, and calls

Attribute Inquiry Call

application id MQCA_APPL_ID MQINQ

application type MQIA_APPL_TYPE MQINQ

environment data MQCA_ENV_DATA MQINQ

1780 IBM MQ Developing Applications Reference

Table 861. Attributes, inquiries, and calls (continued)

Attribute Inquiry Call

user data MQCA_USER_DATA MQINQ

ImqPutMessageOptions cross-reference
Cross-reference of attributes, data structures, and fields for the ImqAuthenticationRecord C++ class.

Table 862. Mapping of attributes, data structures, and fields

Attribute Data structure Field

context reference MQPMO Context

MQPMO InvalidDestCount

MQPMO KnownDestCount

options MQPMO Options

record fields MQPMO PutMsgRecFields

resolved queue manager name MQPMO ResolvedQMgrName

resolved queue name MQPMO ResolvedQName

MQPMO Timeout

MQPMO UnknownDestCount

syncpoint participation MQPMO Options

ImqQueue cross-reference
Cross-reference of attributes, data structures, fields, inquiries, and calls for the ImqQueue C++ class.

Table 863. ImqQueue cross-reference

Attribute Data
structure

Field Inquiry Call

backout requeue
name

MQCA_BACKOUT_REQ_Q_NAME MQINQ

backout threshold MQIA_BACKOUT_THRESHOLD MQINQ

base queue name MQCA_BASE_Q_NAME MQINQ

cluster name MQCA_CLUSTER_NAME MQINQ

cluster namelist
name

MQCA_CLUSTER_NAMELIST MQINQ

cluster workload rank MQIA_CLWL_Q_RANK MQINQ

cluster workload
priority

MQIA_CLWL_Q_PRIORITY MQINQ

cluster workload use
queue

MQIA_CLWL_USEQ MQINQ

creation date MQCA_CREATION_DATE MQINQ

creation time MQCA_CREATION_TIME MQINQ

current depth MQIA_CURRENT_Q_DEPTH MQINQ

Developing applications reference 1781

Table 863. ImqQueue cross-reference (continued)

Attribute Data
structure

Field Inquiry Call

default bind MQIA_DEF_BIND MQINQ

default input open
option

MQIA_DEF_INPUT_OPEN_OPTION MQINQ

default persistence MQIA_DEF_PERSISTENCE MQINQ

default priority MQIA_DEF_PRIORITY MQINQ

definition type MQIA_DEFINITION_TYPE MQINQ

depth high event MQIA_Q_DEPTH_HIGH_EVENT MQINQ

depth high limit MQIA_Q_DEPTH_HIGH_LIMIT MQINQ

depth low event MQIA_Q_DEPTH_LOW_EVENT MQINQ

depth low limit MQIA_Q_DEPTH_LOW_LIMIT MQINQ

depth maximum
event

MQIA_Q_DEPTH_MAX_LIMIT MQINQ

distribution lists MQIA_DIST_LISTS MQINQ,
MQSET

dynamic queue name MQOD DynamicQName

harden get backout MQIA_HARDEN_GET_BACKOUT MQINQ

index type MQIA_INDEX_TYPE MQINQ

inhibit get MQIA_INHIBIT_GET MQINQ,
MQSET

inhibit put MQIA_INHIBIT_PUT MQINQ,
MQSET

initiation queue name MQCA_INITIATION_Q_NAME MQINQ

maximum depth MQIA_MAX_Q_DEPTH MQINQ

maximum message
length

MQIA_MAX_MSG_LENGTH MQINQ

message delivery
sequence

MQIA_MSG_DELIVERY_SEQUENCE MQINQ

next distributed
queue

non persistent
message class

MQIA_NPM_CLASS MQINQ

open input count MQIA_OPEN_INPUT_COUNT MQINQ

open output count MQIA_OPEN_OUTPUT_COUNT MQINQ

previous distributed
queue

process name MQCA_PROCESS_NAME MQINQ

queue accounting MQIA_ACCOUNTING_Q MQINQ

1782 IBM MQ Developing Applications Reference

Table 863. ImqQueue cross-reference (continued)

Attribute Data
structure

Field Inquiry Call

queue manager name MQOD ObjectQMgrName

queue monitoring MQIA_MONITORING_Q MQINQ

queue statistics MQIA_STATISTICS_Q MQINQ

queue type MQIA_Q_TYPE MQINQ

remote queue
manager name

MQCA_REMOTE_Q_MGR_NAME MQINQ

remote queue name MQCA_REMOTE_Q_NAME MQINQ

resolved queue
manager name

MQOD ResolvedQMgrNam
e

resolved queue name MQOD ResolvedQName

retention interval MQIA_RETENTION_INTERVAL MQINQ

scope MQIA_SCOPE MQINQ

service interval MQIA_Q_SERVICE_INTERVAL MQINQ

service interval event MQIA_Q_SERVICE_INTERVAL_EVENT MQINQ

shareability MQIA_SHAREABILITY MQINQ

storage class MQCA_STORAGE_CLASS MQINQ

transmission queue
name

MQCA_XMIT_Q_NAME MQINQ

trigger control MQIA_TRIGGER_CONTROL MQINQ,
MQSET

trigger data MQCA_TRIGGER_DATA MQINQ,
MQSET

trigger depth MQIA_TRIGGER_DEPTH MQINQ,
MQSET

trigger message
priority

MQIA_TRIGGER_MSG_PRIORITY MQINQ,
MQSET

trigger type MQIA_TRIGGER_TYPE MQINQ,
MQSET

usage MQIA_USAGE MQINQ

Developing applications reference 1783

ImqQueueManager cross-reference
Cross-reference of attributes, data structures, fields, inquiries, and calls for the ImqQueueManager C++
class.

Table 864. Attributes, data structures, fields, inquiries, and calls

Attribute Data
structur
e

Field Inquiry Call

accounting
connections
override

MQIA_ACCOUNTING_CONN_OVERRIDE MQINQ

accounting interval MQIA_ACCOUNTING_INTERVAL MQINQ

activity recording MQIA_ACTIVITY_RECORDING MQINQ

adopt new mca
check

MQIA_ADOPTNEWMCA_CHECK MQINQ

adopt new mca
type

MQIA_ADOPTNEWMCA_TYPE MQINQ

authentication type MQCSP AuthenticationType MQCONNX

authority event MQIA_AUTHORITY_EVENT MQINQ

begin options MQBO Options MQBEGIN

bridge event MQIA_BRIDGE_EVENT MQINQ

channel auto
definition

MQIA_CHANNEL_AUTO_DEF MQINQ

channel auto
definition event

MQIA_CHANNEL_AUTO_EVENT MQIA

channel auto
definition exit

MQIA_CHANNEL_AUTO_EXIT MQIA

channel event MQIA_CHANNEL_EVENT MQINQ

channel initiator
adapters

MQIA_CHINIT_ADAPTERS MQINQ

channel initiator
control

MQIA_CHINIT_CONTROL MQINQ

channel initiator
dispatchers

MQIA_CHINIT_DISPATCHERS MQINQ

channel initiator
trace auto start

MQIA_CHINIT_TRACE_AUTO_START MQINQ

channel initiator
trace table size

MQIA_CHINIT_TRACE_TABLE_SIZE MQINQ

channel monitoring MQIA_MONITORING_CHANNEL MQINQ

channel reference MQCD ChannelType MQCONNX

channel statistics MQIA_STATISTICS_CHANNEL MQINQ

character set MQIA_CODED_CHAR_SET_ID MQINQ

1784 IBM MQ Developing Applications Reference

Table 864. Attributes, data structures, fields, inquiries, and calls (continued)

Attribute Data
structur
e

Field Inquiry Call

cluster sender
monitoring

MQIA_MONITORING_AUTO_CLUSSDR MQINQ

cluster sender
statistics

MQIA_STATISTICS_AUTO_CLUSSDR MQINQ

cluster workload
data

MQCA_CLUSTER_WORKLOAD_DATA MQINQ

cluster workload
exit

MQCA_CLUSTER_WORKLOAD_EXIT MQINQ

cluster workload
length

MQIA_CLUSTER_WORKLOAD_LENGTH MQINQ

cluster workload
mru

MQIA_CLWL_MRU_CHANNELS MQINQ

cluster workload
use queue

MQIA_CLWL_USEQ MQINQ

command event MQIA_COMMAND_EVENT MQINQ

command input
queue name

MQCA_COMMAND_INPUT_Q_NAME MQINQ

command level MQIA_COMMAND_LEVEL MQINQ

command server
control

MQIA_CMD_SERVER_CONTROL MQINQ

connect options MQCNO Options MQCONN,
MQCONNX

connection id MQCNO ConnectionId MQCONNX

connection status MQCONN,
MQCONNX,
MQDISC

connection tag MQCD ConnTag MQCONNX

cryptographic
hardware

MQSCO CryptoHardware MQCONNX

dead-letter queue
name

MQCA_DEAD_LETTER_Q_NAME MQINQ

default
transmission
queue name

MQCA_DEF_XMIT_Q_NAME MQINQ

distribution lists MQIA_DIST_LISTS MQINQ

dns group MQCA_DNS_GROUP MQINQ

dns wlm MQIA_DNS_WLM MQINQ

first authentication
record

MQSCO AuthInfoRecOffset MQCONNX

Developing applications reference 1785

Table 864. Attributes, data structures, fields, inquiries, and calls (continued)

Attribute Data
structur
e

Field Inquiry Call

MQSCO AuthInfoRecPtr MQCONNX

inhibit event MQIA_INHIBIT_EVENT MQINQ

ip address version MQIA_IP_ADDRESS_VERSION MQINQ

key repository MQSCO KeyRepository MQCONNX

key reset count MQSCO KeyResetCount MQCONNX

listener timer MQIA_LISTENER_TIMER MQINQ

local event MQIA_LOCAL_EVENT MQINQ

logger event MQIA_LOGGER_EVENT MQINQ

lu group name MQCA_LU_GROUP_NAME MQINQ

lu name MQCA_LU_NAME MQINQ

lu62 arm suffix MQCA_LU62_ARM_SUFFIX MQINQ

lu62 channels MQIA_LU62_CHANNELS MQINQ

maximum active
channels

MQIA_ACTIVE_CHANNELS MQINQ

maximum
channels

MQIA_MAX_CHANNELS MQINQ

maximum handles MQIA_MAX_HANDLES MQINQ

maximum message
length

MQIA_MAX_MSG_LENGTH MQINQ

maximum priority MQIA_MAX_PRIORITY MQINQ

maximum
uncommitted
messages

MQIA_MAX_UNCOMMITTED_MSGS MQINQ

mqi accounting MQIA_ACCOUNTING_MQI MQINQ

mqi statistics MQIA_STATISTICS_MQI MQINQ

outbound port
maximum

MQIA_OUTBOUND_PORT_MAX MQINQ

outbound port
minimum

MQIA_OUTBOUND_PORT_MIN MQINQ

password MQCSP CSPPasswordPtr MQCONNX

MQCSP CSPPasswordOffset MQCONNX

MQCSP CSPPasswordLengt
h

MQCONNX

performance event MQIA_PERFORMANCE_EVENT MQINQ

platform MQIA_PLATFORM MQINQ

queue accounting MQIA_ACCOUNTING_Q MQINQ

1786 IBM MQ Developing Applications Reference

Table 864. Attributes, data structures, fields, inquiries, and calls (continued)

Attribute Data
structur
e

Field Inquiry Call

queue monitoring MQIA_MONITORING_Q MQINQ

queue statistics MQIA_STATISTICS_Q MQINQ

receive timeout MQIA_RECEIVE_TIMEOUT MQINQ

receive timeout
minimum

MQIA_RECEIVE_TIMEOUT_MIN MQINQ

receive timeout
type

MQIA_RECEIVE_TIMEOUT_TYPE MQINQ

remote event MQIA_REMOTE_EVENT MQINQ

repository name MQCA_REPOSITORY_NAME MQINQ

repository namelist MQCA_REPOSITORY_NAMELIST MQINQ

shared queue
queue manager
name

MQIA_SHARED_Q_Q_MGR_NAME MQINQ

ssl event MQIA_SSL_EVENT MQINQ

ssl fips MQIA_SSL_FIPS_REQUIRED MQINQ

ssl key reset count MQIA_SSL_RESET_COUNT MQINQ

start-stop event MQIA_START_STOP_EVENT MQINQ

statistics interval MQIA_STATISTICS_INTERVAL MQINQ

syncpoint
availability

MQIA_SYNCPOINT MQINQ

tcp channels MQIA_TCP_CHANNELS MQINQ

tcp keep alive MQIA_TCP_KEEP_ALIVE MQINQ

tcp name MQCA_TCP_NAME MQINQ

tcp stack type MQIA_TCP_STACK_TYPE MQINQ

trace route
recording

MQIA_TRACE_ROUTE_RECORDING MQINQ

trigger interval MQIA_TRIGGER_INTERVAL MQINQ

user id MQCSP CSPUserIdPtr MQCONNX

MQCSP CSPUserIdOffset MQCONNX

MQCSP CSPUserIdLength MQCONNX

Developing applications reference 1787

ImqReferenceHeader cross-reference
Cross-reference of attributes, data structures, and fields for the ImqAuthenticationRecord C++ class.

Table 865. Mapping of attributes, data structures, and fields

Attribute Data structure Field

destination environment MQRMH DestEnvLength, DestEnvOffset

destination name MQRMH DestNameLength, DestNameOffset

instance id MQRMH ObjectInstanceId

logical length MQRMH DataLogicalLength

logical offset MQRMH DataLogicalOffset

logical offset 2 MQRMH DataLogicalOffset2

reference type MQRMH ObjectType

source environment MQRMH SrcEnvLength, SrcEnvOffset

source name MQRMH SrcNameLength, SrcNameOffset

ImqTrigger cross-reference
Cross-reference of attributes, data structures, and fields for the ImqAuthenticationRecord C++ class.

Table 866. Mapping of attributes, data structures, and fields

Attribute Data structure Field

application id MQTM ApplId

application type MQTM ApplType

environment data MQTM EnvData

process name MQTM ProcessName

queue name MQTM QName

trigger data MQTM TriggerData

user data MQTM UserData

ImqWorkHeader cross-reference
Cross-reference of attributes, data structures, and fields for the ImqAuthenticationRecord C++ class.

Table 867. Mapping of attributes, data structures, and fields

Attribute Data structure Field

message token MQWIH MessageToken

service name MQWIH ServiceName

service step MQWIH ServiceStep

1788 IBM MQ Developing Applications Reference

ImqAuthenticationRecord C++ class
This class encapsulates an authentication information record (MQAIR) for use during execution of the
ImqQueueManager::connect method, for custom TLS client connections.

Figure 14. ImqAuthenticationRecord class

See the description of the ImqQueueManager::connect method for more details. This class is not
available on the z/OS platform.

• “Object attributes” on page 1789
• “Constructors” on page 1790
• “Object methods (public)” on page 1790
• “Object methods (protected)” on page 1790

Object attributes
connection name

The name of the connection to the LDAP CRL server. This is the IP address or DNS name, followed
optionally by the port number, in parentheses.

connection reference
A reference to an ImqQueueManager object that provides the required connection to a (local) queue
manager. The initial value is zero. Do not confuse this with the queue manager name that identifies a
queue manager (possibly remote) for a named queue.

next authentication record
Next object of this class, in no particular order, having the same connection reference as this object.
The initial value is zero.

password
A password supplied for connection authentication to the LDAP CRL server.

previous authentication record
Previous object of this class, in no particular order, having the same connection reference as this
object. The initial value is zero.

type
The type of authentication information contained in the record.

user name
A user identifier supplied for authorization to the LDAP CRL server.

Developing applications reference 1789

Constructors
ImqAuthenticationRecord();

The default constructor.

Object methods (public)
void operator = (const ImqAuthenticationRecord & air);

Copies instance data from air, replacing the existing instance data.
const ImqString & connectionName () const ;

Returns the connection name.
void setConnectionName (const ImqString & name);

Sets the connection name.
void setConnectionName (const char * name = 0);

Sets the connection name.
ImqQueueManager * connectionReference () const ;

Returns the connection reference.
void setConnectionReference (ImqQueueManager & manager);

Sets the connection reference.
void setConnectionReference (ImqQueueManager * manager = 0);

Sets the connection reference.
void copyOut (MQAIR * pAir);

Copies instance data to pAir, replacing the existing instance data. This might involve allocating
dependent storage.

void clear (MQAIR * pAir);
Clears the structure and releases dependent storage referenced by pAir.

ImqAuthenticationRecord * nextAuthenticationRecord () const ;
Returns the next authentication record.

const ImqString & password () const ;
Returns the password.

void setPassword (const ImqString & password);
Sets the password.

void setPassword (const char * password = 0);
Sets the password.

ImqAuthenticationRecord * previousAuthenticationRecord () const ;
Returns the previous authentication record.

MQLONG type () const ;
Returns the type.

void setType (const MQLONG type);
Sets the type.

const ImqString & userName () const ;
Returns the user name.

void setUserName (const ImqString & name);
Sets the user name.

void setUserName (const char * name = 0);
Sets the user name.

Object methods (protected)
void setNextAuthenticationRecord (ImqAuthenticationRecord * pAir = 0);

Sets the next authentication record.

Attention: Use this function only if you are sure that it will not break the authentication record list.

1790 IBM MQ Developing Applications Reference

void setPreviousAuthenticationRecord (ImqAuthenticationRecord * pAir = 0);
Sets the previous authentication record.

Attention: Use this function only if you are sure that it will not break the authentication record list.

ImqBinary C++ class
This class encapsulates a binary byte array that can be used for ImqMessage accounting token,
correlation id, and message id values. It allows easy assignment, copying, and comparison.

Figure 15. ImqBinary class

• “Object attributes” on page 1791
• “Constructors” on page 1791
• “Overloaded ImqItem methods” on page 1792
• “Object methods (public)” on page 1792
• “Object methods (protected)” on page 1792
• “Reason codes” on page 1792

Object attributes
data

An array of bytes of binary data. The initial value is null.
data length

The number of bytes. The initial value is zero.
data pointer

The address of the first byte of the data. The initial value is zero.

Constructors
ImqBinary();

The default constructor.
ImqBinary(const ImqBinary & binary);

The copy constructor.
ImqBinary(const void * data, const size_t length);

Copies length bytes from data.

Developing applications reference 1791

Overloaded ImqItem methods
virtual ImqBoolean copyOut (ImqMessage & msg);

Copies the data to the message buffer, replacing any existing content. Sets the msg format to
MQFMT_NONE.

See the ImqItem class method description for further details.

virtual ImqBoolean pasteIn (ImqMessage & msg);
Sets the data by transferring the remaining data from the message buffer, replacing the existing data.

To be successful, the ImqMessage format must be MQFMT_NONE.

See the ImqItem class method description for further details.

Object methods (public)
void operator = (const ImqBinary & binary);

Copies bytes from binary.
ImqBoolean operator == (const ImqBinary & binary);

Compares this object with binary. It returns FALSE if not equal and TRUE otherwise. The objects are
equal if they have the same data length and the bytes match.

ImqBoolean copyOut (void * buffer, const size_t length, const char pad = 0);
Copies up to length bytes from the data pointer to buffer. If the data length is insufficient, the
remaining space in buffer is filled with pad bytes. buffer can be zero if length is also zero. length must
not be negative. It returns TRUE if successful.

size_t dataLength () const ;
Returns the data length.

ImqBoolean setDataLength (const size_t length);
Sets the data length. If the data length is changed as a result of this method, the data in the object is
uninitialized. It returns TRUE if successful.

void * dataPointer () const ;
Returns the data pointer.

ImqBoolean isNull () const ;
Returns TRUE if the data length is zero, or if all the data bytes are zero. Otherwise it returns FALSE.

ImqBoolean set (const void * buffer, const size_t length);
Copies length bytes from buffer. It returns TRUE if successful.

Object methods (protected)
void clear ();

Reduces the data length to zero.

Reason codes
• MQRC_NO_BUFFER
• MQRC_STORAGE_NOT_AVAILABLE
• MQRC_INCONSISTENT_FORMAT

1792 IBM MQ Developing Applications Reference

ImqCache C++ class
Use this class to hold or marshal data in memory.

Figure 16. ImqCache class

Use this class to hold or marshal data in memory. You can nominate a buffer of memory of fixed size, or
the system can provide a flexible amount of memory automatically. This class relates to the MQI calls
listed in “ImqCache cross-reference” on page 1774.

• “Object attributes” on page 1793
• “Constructors” on page 1794
• “Object methods (public)” on page 1794
• “Reason codes” on page 1795

Object attributes
automatic buffer

Indicates whether buffer memory is managed automatically by the system (TRUE) or is supplied by
the user (FALSE). It is initially set to TRUE.

This attribute is not set directly. It is set indirectly using either the useEmptyBuffer or the
useFullBuffer method.

If user storage is supplied, this attribute is FALSE, buffer memory cannot grow, and buffer overflow
errors can occur. The address and length of the buffer remain constant.

If user storage is not supplied, this attribute is TRUE, and buffer memory can grow incrementally to
accommodate an arbitrary amount of message data. However, when the buffer grows, the address of
the buffer might change, so be careful when using the buffer pointer and data pointer.

buffer length
The number of bytes of memory in the buffer. The initial value is zero.

buffer pointer
The address of the buffer memory. The initial value is null.

data length
The number of bytes succeeding the data pointer. This must be equal to or less than the message
length. The initial value is zero.

Developing applications reference 1793

data offset
The number of bytes preceding the data pointer. This must be equal to or less than the message
length. The initial value is zero.

data pointer
The address of the part of the buffer that is to be written to or read from next. The initial value is null.

message length
The number of bytes of significant data in the buffer. The initial value is zero.

Constructors
ImqCache();

The default constructor.
ImqCache(const ImqCache & cache);

The copy constructor.

Object methods (public)
void operator = (const ImqCache & cache);

Copies up to message length bytes of data from the cache object to the object. If automatic buffer is
FALSE, the buffer length must already be sufficient to accommodate the copied data.

ImqBoolean automaticBuffer () const ;
Returns the automatic buffer value.

size_t bufferLength () const ;
Returns the buffer length.

char * bufferPointer () const ;
Returns the buffer pointer.

void clearMessage ();
Sets the message length and data offset to zero.

size_t dataLength () const ;
Returns the data length.

size_t dataOffset () const ;
Returns the data offset.

ImqBoolean setDataOffset (const size_t offset);
Sets the data offset. The message length is increased if necessary to ensure that it is no less than the
data offset. This method returns TRUE if successful.

char * dataPointer () const ;
Returns a copy of the data pointer.

size_t messageLength () const ;
Returns the message length.

ImqBoolean setMessageLength (const size_t length);
Sets the message length. Increases the buffer length if necessary to ensure that the message length
is no greater than the buffer length. Reduces the data offset if necessary to ensure that it is no
greater than the message length. It returns TRUE if successful.

ImqBoolean moreBytes (const size_t bytes-required);
Assures that bytes-required more bytes are available (for writing) between the data pointer and the
end of the buffer. It returns TRUE if successful.

If automatic buffer is TRUE, more memory is acquired as required; otherwise, the buffer length must
already be adequate.

ImqBoolean read (const size_t length, char * & external-buffer);
Copies length bytes, from the buffer starting at the data pointer position, into the external-buffer.
After the data has been copied, the data offset is increased by length. This method returns TRUE if
successful.

1794 IBM MQ Developing Applications Reference

ImqBoolean resizeBuffer (const size_t length);
Varies the buffer length, provided that automatic buffer is TRUE. This is achieved by reallocating
the buffer memory. Up to message length bytes of data from the existing buffer are copied to the
new one. The maximum number copied is length bytes. The buffer pointer is changed. The message
length and data offset are preserved as closely as possible within the confines of the new buffer. It
returns TRUE if successful, and FALSE if automatic buffer is FALSE.

Note: This method can fail with MQRC_STORAGE_NOT_AVAILABLE if there is any problem with
system resources.

ImqBoolean useEmptyBuffer (const char * external-buffer, const size_t length);
Identifies an empty user buffer, setting the buffer pointer to point to external-buffer, the buffer
length to length, and the message length to zero. Performs a clearMessage. If the buffer is fully
primed with data, use the useFullBuffer method instead. If the buffer is partially primed with data,
use the setMessageLength method to indicate the correct amount. This method returns TRUE if
successful.

This method can be used to identify a fixed amount of memory, as described previously (external-
buffer is not null and length is nonzero), in which case automatic buffer is set to FALSE, or it can
be used to revert to system-managed flexible memory (external-buffer is null and length is zero), in
which case automatic buffer is set to TRUE.

ImqBoolean useFullBuffer (const char * externalBuffer, const size_t length);
As for useEmptyBuffer, except that the message length is set to length. It returns TRUE if successful.

ImqBoolean write (const size_t length, const char * external-buffer);
Copies length bytes, from the external-buffer, into the buffer starting at the data pointer position.
After the data has been copied, the data offset is increased by length, and the message length is
increased if necessary to ensure that it is no less than the new data offset value. This method returns
TRUE if successful.

If automatic buffer is TRUE, an adequate amount of memory is guaranteed; otherwise, the ultimate
data offset must not exceed the buffer length.

Reason codes
• MQRC_BUFFER_NOT_AUTOMATIC
• MQRC_DATA_TRUNCATED
• MQRC_INSUFFICIENT_BUFFER
• MQRC_INSUFFICIENT_DATA
• MQRC_NULL_POINTER
• MQRC_STORAGE_NOT_AVAILABLE
• MQRC_ZERO_LENGTH

Developing applications reference 1795

ImqChannel C++ class
This class encapsulates a channel definition (MQCD) for use during execution of the Manager::connect
method, for custom client connections.

Figure 17. ImqChannel class

See the description of the Manager::connect method, and Sample program HELLO WORLD (imqwrld.cpp),
for more details.

Not all the listed methods are applicable to all platforms. See the descriptions of the DEFINE CHANNEL
and ALTER CHANNEL commands for more information.

The ImqChannel class is not supported on z/OS.

• “Object attributes” on page 1796
• “Constructors” on page 1797
• “Object methods (public)” on page 1798
• “Reason codes” on page 1801

Object attributes
batch heart-beat

The number of milliseconds between checks that a remote channel is active. The initial value is 0.
channel name

The name of the channel. The initial value is null.
connection name

The name of the connection. For example, the IP address of a host computer. The initial value is null.
header compression

The list of header data compression techniques supported by the channel. The initial values are all set
to MQCOMPRESS_NOT_AVAILABLE.

heart-beat interval
The number of seconds between checks that a connection is still working. The initial value is 300.

keep alive interval
The number of seconds passed to the communications stack specifying the keep alive timing for the
channel. The initial value is MQKAI_AUTO.

1796 IBM MQ Developing Applications Reference

local address
The local communications address for the channel.

maximum message length
The maximum length of message supported by the channel in a single communication. The initial
value is 4 194 304.

message compression
The list of message data compression techniques supported by the channel. The initial values are all
set to MQCOMPRESS_NOT_AVAILABLE.

mode name
The name of the mode. The initial value is null.

password
A password supplied for connection authentication. The initial value is null.

receive exit count
The number of receive exits. The initial value is zero. This attribute is read-only.

receive exit names
The names of receive exits.

receive user data
Data associated with receive exits.

security exit name
The name of a security exit to be invoked on the server side of the connection. The initial value is null.

security user data
Data to be passed to the security exit. The initial value is null.

send exit count
The number of send exits. The initial value is zero. This attribute is read-only.

send exit names
The names of send exits.

send user data
Data associated with send exits.

SSL CipherSpec
CipherSpec for use with TLS.

SSL client authentication type
Client authentication type for use with TLS.

SSL peer name
Peer name for use with TLS.

transaction program name
The name of the transaction program. The initial value is null.

transport type
The transport type of the connection. The initial value is MQXPT_LU62.

user id
A user identifier supplied for authorization. The initial value is null.

Constructors
ImqChannel() ;

The default constructor.
ImqChannel(const ImqChannel & channel);

The copy constructor.

Developing applications reference 1797

Object methods (public)
void operator = (const ImqChannel & channel);

Copies instance data from channel, replacing any existing instance data.
MQLONG batchHeartBeat() const ;

Returns the batch heart-beat.
ImqBoolean setBatchHeartBeat(const MQLONG heartbeat = 0L);

Sets the batch heart-beat. This method returns TRUE if successful.
ImqString channelName() const ;

Returns the channel name.
ImqBoolean setChannelName(const char * name = 0);

Sets the channel name. This method returns TRUE if successful.
ImqString connectionName() const ;

Returns the connection name.
ImqBoolean setConnectionName(const char * name = 0);

Sets the connection name. This method returns TRUE if successful.
size_t headerCompressionCount() const ;

Returns the supported header data compression techniques count.
ImqBoolean headerCompression(const size_t count, MQLONG compress []) const ;

Returns copies of the supported header data compression techniques in compress. This method
returns TRUE if successful.

ImqBoolean setHeaderCompression(const size_t count, const MQLONG compress []);

Sets the supported header data compression techniques to compress.

Sets the supported header data compression techniques count to count.

This method returns TRUE if successful.

MQLONG heartBeatInterval() const ;
Returns the heart-beat interval.

ImqBoolean setHeartBeatInterval(const MQLONG interval = 300L);
Sets the heart-beat interval. This method returns TRUE if successful.

MQLONG keepAliveInterval() const ;
Returns the keep alive interval.

ImqBoolean setKeepAliveInterval(const MQLONG interval = MQKAI_AUTO);
Sets the keep alive interval. This method returns TRUE if successful.

ImqString localAddress() const ;
Returns the local address.

ImqBoolean setLocalAddress (const char * address = 0);
Sets the local address. This method returns TRUE if successful.

MQLONG maximumMessageLength() const ;
Returns the maximum message length.

ImqBoolean setMaximumMessageLength(const MQLONG length = 4194304L);
Sets the maximum message length. This method returns TRUE if successful.

size_t messageCompressionCount() const ;
Returns the supported message data compression techniques count.

ImqBoolean messageCompression(const size_t count, MQLONG compress []) const ;
Returns copies of the supported message data compression techniques in compress. This method
returns TRUE if successful.

ImqBoolean setMessageCompression(const size_t count, const MQLONG compress []);

Sets the supported message data compression techniques to compress.

Sets the supported message data compression techniques count to count.

1798 IBM MQ Developing Applications Reference

This method returns TRUE if successful.

ImqString modeName() const ;
Returns the mode name.

ImqBoolean setModeName(const char * name = 0);
Sets the mode name. This method returns TRUE if successful.

ImqString password() const ;
Returns the password.

ImqBoolean setPassword(const char * password = 0);
Sets the password. This method returns TRUE if successful.

size_t receiveExitCount() const ;
Returns the receive exit count.

ImqString receiveExitName();
Returns the first of the receive exit names, if any. If the receive exit count is zero, it returns an empty
string.

ImqBoolean receiveExitNames(const size_t count, ImqString * names []);
Returns copies of the receive exit names in names. Sets any names in excess of receive exit count to
null strings. This method returns TRUE if successful.

ImqBoolean setReceiveExitName(const char * name = 0);
Sets the receive exit names to the single name. name can be blank or null. Sets the receive exit
count to either 1 or zero. Clears the receive user data. This method returns TRUE if successful.

ImqBoolean setReceiveExitNames(const size_t count, const char * names []);
Sets the receive exit names to names. Individual names values must not be blank or null. Sets the
receive exit count to count. Clears the receive user data. This method returns TRUE if successful.

ImqBoolean setReceiveExitNames(const size_t count, const ImqString * names []);
Sets the receive exit names to names. Individual names values must not be blank or null. Sets the
receive exit count to count. Clears the receive user data. This method returns TRUE if successful.

ImqString receiveUserData();
Returns the first of the receive user data items, if any. If the receive exit count is zero, returns an
empty string.

ImqBoolean receiveUserData(const size_t count, ImqString * data []);
Returns copies of the receive user data items in data. Sets any data in excess of receive exit count to
null strings. This method returns TRUE if successful.

ImqBoolean setReceiveUserData(const char * data = 0);
Sets the receive user data to the single item data. If data is not null, receive exit count must be at
least 1. This method returns TRUE if successful.

ImqBoolean setReceiveUserData(const size_t count, const char * data []);
Sets the receive user data to data. count must be no greater than the receive exit count. This
method returns TRUE if successful.

ImqBoolean setReceiveUserData(const size_t count, const ImqString * data []);
Sets the receive user data to data. count must be no greater than the receive exit count. This
method returns TRUE if successful.

ImqString securityExitName() const ;
Returns the security exit name.

ImqBoolean setSecurityExitName(const char * name = 0);
Sets the security exit name. This method returns TRUE if successful.

ImqString securityUserData() const ;
Returns the security user data.

ImqBoolean setSecurityUserData(const char * data = 0);
Sets the security user data. This method returns TRUE if successful.

size_t sendExitCount() const ;
Returns the send exit count.

Developing applications reference 1799

ImqString sendExitName();
Returns the first of the send exit names, if any. Returns an empty string if the send exit count is zero.

ImqBoolean sendExitNames(const size_t count, ImqString * names []);
Returns copies of the send exit names in names. Sets any names in excess of send exit count to null
strings. This method returns TRUE if successful.

ImqBoolean setSendExitName(const char * name = 0);
Sets the send exit names to the single name. name can be blank or null. Sets the send exit count to
either 1 or zero. Clears the send user data. This method returns TRUE if successful

ImqBoolean setSendExitNames(const size_t count, const char * names []);
Sets the send exit names to names. Individual names values must not be blank or null. Sets the send
exit count to count. Clears the send user data. This method returns TRUE if successful.

ImqBoolean setSendExitNames(const size_t count, const ImqString * names []);
Sets the send exit names to names. Individual names values must not be blank or null. Sets the send
exit count to count. Clears the send user data. This method returns TRUE if successful.

ImqString sendUserData();
Returns the first of the send user data items, if any. , Returns an empty string if the send exit count is
zero.

ImqBoolean sendUserData(const size_t count, ImqString * data []);
Returns copies of the send user data items in data. Sets any data in excess of send exit count to null
strings. This method returns TRUE if successful.

ImqBoolean setSendUserData(const char * data = 0);
Sets the send user data to the single item data. If data is not null, send exit count must be at least 1.
This method returns TRUE if successful.

ImqBoolean setSendUserData(const size_t count, const char * data []);
Sets the send user data to data. count must be no greater than the send exit count. This method
returns TRUE if successful.

ImqBoolean setSendUserData(const size_t count, const ImqString * data []);
Sets the send user data to data. count must be no greater than the send exit count. This method
returns TRUE if successful.

ImqString sslCipherSpecification() const ;
Returns the TLS cipher specification.

ImqBoolean setSslCipherSpecification(const char * name = 0);
Sets the TLS cipher specification. This method returns TRUE if successful.

MQLONG sslClientAuthentication() const ;
Returns the TLS client authentication type.

ImqBoolean setSslClientAuthentication(const MQLONG auth = MQSCA_REQUIRED);
Sets the TLS client authentication type. This method returns TRUE if successful.

ImqString sslPeerName() const ;
Returns the TLS peer name.

ImqBoolean setSslPeerName(const char * name = 0);
Sets the TLS peer name. This method returns TRUE if successful.

ImqString transactionProgramName() const ;
Returns the transaction program name.

ImqBoolean setTransactionProgramName(const char * name = 0);
Sets the transaction program name. This method returns TRUE if successful.

MQLONG transportType() const ;
Returns the transport type.

ImqBoolean setTransportType(const MQLONG type = MQXPT_LU62);
Sets the transport type. This method returns TRUE if successful.

ImqString userId() const ;
Returns the user id.

1800 IBM MQ Developing Applications Reference

ImqBoolean setUserId(const char * id = 0);
Sets the user id. This method returns TRUE if successful.

Reason codes
• MQRC_DATA_LENGTH_ERROR
• MQRC_ITEM_COUNT_ERROR
• MQRC_NULL_POINTER
• MQRC_SOURCE_BUFFER_ERROR

ImqCICSBridgeHeader C++ class
This class encapsulates specific features of the MQCIH data structure.

Figure 18. ImqCICSBridgeHeader class

Objects of this class are used by applications that send messages to the CICS bridge through IBM MQ for
z/OS.

• “Object attributes” on page 1801
• “Constructors” on page 1804
• “Overloaded ImqItem methods” on page 1804
• “Object methods (public)” on page 1804
• “Object data (protected)” on page 1806
• “Reason codes” on page 1806
• “Return codes” on page 1806

Object attributes
ADS descriptor

Send/receive ADS descriptor. This is set using MQCADSD_NONE. The initial value is MQCADSD_NONE.
The following additional values are possible:

• MQCADSD_NONE
• MQCADSD_SEND
• MQCADSD_RECV

Developing applications reference 1801

• MQCADSD_MSGFORMAT

attention identifier
AID key. The field must be of length MQ_ATTENTION_ID_LENGTH.

authenticator
RACF password or passticket. The initial value contains blanks, of length
MQ_AUTHENTICATOR_LENGTH.

bridge abend code
Bridge abend code, of length MQ_ABEND_CODE_LENGTH. The initial value is four blank characters.
The value returned in this field is dependent on the return code. See Table 868 on page 1806 for more
details.

bridge cancel code
Bridge abend transaction code. The field is reserved, must contain blanks, and be of length
MQ_CANCEL_CODE_LENGTH.

bridge completion code
Completion code, which can contain either the IBM MQ completion code or the CICS EIBRESP value.
The field has the initial value of MQCC_OK. The value returned in this field is dependent on the return
code. See Table 868 on page 1806 for more details.

bridge error offset
Bridge error offset. The initial value is zero. This attribute is read-only.

bridge reason code
Reason code. This field can contain either the IBM MQ reason or the CICS EIBRESP2 value. The field
has the initial value of MQRC_NONE. The value returned in this field is dependent on the return code.
See Table 868 on page 1806 for more details.

bridge return code
Return code from the CICS bridge. The initial value is MQCRC_OK.

conversational task
Whether the task can be conversational. The initial value is MQCCT_NO. The following additional
values are possible:

• MQCCT_YES
• MQCCT_NO

cursor position
Cursor position. The initial value is zero.

facility keep time
CICS bridge facility release time.

facility like
Terminal emulated attribute. The field must be of length MQ_FACILITY_LIKE_LENGTH.

facility token
BVT token value. The field must be of length MQ_FACILITY_LENGTH. The initial value is
MQCFAC_NONE.

function
Function, which can contain either the IBM MQ call name or the CICS EIBFN function. The field has
the initial value of MQCFUNC_NONE, with length MQ_FUNCTION_LENGTH. The value returned in this
field is dependent on the return code. See Table 868 on page 1806 for more details.

The following additional values are possible when function contains an IBM MQ call name:

• MQCFUNC_MQCONN
• MQCFUNC_MQGET
• MQCFUNC_MQINQ
• MQCFUNC_NONE
• MQCFUNC_MQOPEN

1802 IBM MQ Developing Applications Reference

• MQCFUNC_PUT
• MQCFUNC_MQPUT1

get wait interval
Wait interval for an MQGET call issued by the CICS bridge task. The initial value is MQCGWI_DEFAULT.
The field applies only when uow control has the value MQCUOWC_FIRST. The following additional
values are possible:

• MQCGWI_DEFAULT
• MQWI_UNLIMITED

link type
Link type. The initial value is MQCLT_PROGRAM. The following additional values are possible:

• MQCLT_PROGRAM
• MQCLT_TRANSACTION

next transaction identifier
ID of the next transaction to attach. The field must be of length MQ_TRANSACTION_ID_LENGTH.

output data length
COMMAREA data length. The initial value is MQCODL_AS_INPUT.

reply-to format
Format name of the reply message. The initial value is MQFMT_NONE with length
MQ_FORMAT_LENGTH.

start code
Transaction start code. The field must be of length MQ_START_CODE_LENGTH. The initial value is
MQCSC_NONE. The following additional values are possible:

• MQCSC_START
• MQCSC_STARTDATA
• MQCSC_TERMINPUT
• MQCSC_NONE

task end status
Task end status. The initial value is MQCTES_NOSYNC. The following additional values are possible:

• MQCTES_COMMIT
• MQCTES_BACKOUT
• MQCTES_ENDTASK
• MQCTES_NOSYNC

transaction identifier
ID of the transaction to attach. The initial value must contain blanks, and must be of
length MQ_TRANSACTION_ID_LENGTH. The field applies only when uow control has the value
MQCUOWC_FIRST or MQCUOWC_ONLY.

UOW control
UOW control. The initial value is MQCUOWC_ONLY. The following additional values are possible:

• MQCUOWC_FIRST
• MQCUOWC_MIDDLE
• MQCUOWC_LAST
• MQCUOWC_ONLY
• MQCUOWC_COMMIT
• MQCUOWC_BACKOUT
• MQCUOWC_CONTINUE

Developing applications reference 1803

version
The MQCIH version number. The initial value is MQCIH_VERSION_2. The only other supported value is
MQCIH_VERSION_1.

Constructors
ImqCICSBridgeHeader();

The default constructor.
ImqCICSBridgeHeader(const ImqCICSBridgeHeader & header);

The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQCIH data structure into the message buffer at the beginning, moving existing message
data further along, and sets the message format to MQFMT_CICS.

See the parent class method description for more details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQCIH data structure from the message buffer. To be successful, the encoding of the msg
object must be MQENC_NATIVE. Retrieve messages with MQGMO_CONVERT to MQENC_NATIVE. To
be successful, the ImqMessage format must be MQFMT_CICS.

See the parent class method description for more details.

Object methods (public)
void operator = (const ImqCICSBridgeHeader & header);

Copies instance data from the header, replacing the existing instance data.
MQLONG ADSDescriptor() const;

Returns a copy of the ADS descriptor.
void setADSDescriptor(const MQLONG descriptor = MQCADSD_NONE);

Sets the ADS descriptor.
ImqString attentionIdentifier() const;

Returns a copy of the attention identifier, padded with trailing blanks to length
MQ_ATTENTION_ID_LENGTH.

void setAttentionIdentifier(const char * data = 0);
Sets the attention identifier, padded with trailing blanks to length MQ_ATTENTION_ID_LENGTH. If
no data is supplied, resets attention identifier to the initial value.

ImqString authenticator() const;
Returns a copy of the authenticator, padded with trailing blanks to length
MQ_AUTHENTICATOR_LENGTH.

void setAuthenticator(const char * data = 0);
Sets the authenticator, padded with trailing blanks to length MQ_AUTHENTICATOR_LENGTH. If no
data is supplied, resets authenticator to the initial value.

ImqString bridgeAbendCode() const;
Returns a copy of the bridge abend code, padded with trailing blanks to length
MQ_ABEND_CODE_LENGTH.

ImqString bridgeCancelCode() const;
Returns a copy of the bridge cancel code, padded with trailing blanks to length
MQ_CANCEL_CODE_LENGTH.

void setBridgeCancelCode(const char * data = 0);
Sets the bridge cancel code, padded with trailing blanks to length MQ_CANCEL_CODE_LENGTH. If no
data is supplied, resets the bridge cancel code to the initial value.

1804 IBM MQ Developing Applications Reference

MQLONG bridgeCompletionCode() const;
Returns a copy of the bridge completion code.

MQLONG bridgeErrorOffset() const ;
Returns a copy of the bridge error offset.

MQLONG bridgeReasonCode() const;
Returns a copy of the bridge reason code.

MQLONG bridgeReturnCode() const;
Returns the bridge return code.

MQLONG conversationalTask() const;
Returns a copy of the conversational task.

void setConversationalTask(const MQLONG task = MQCCT_NO);
Sets the conversational task.

MQLONG cursorPosition() const ;
Returns a copy of the cursor position.

void setCursorPosition(const MQLONG position = 0);
Sets the cursor position.

MQLONG facilityKeepTime() const;
Returns a copy of the facility keep time.

void setFacilityKeepTime(const MQLONG time = 0);
Sets the facility keep time.

ImqString facilityLike() const;
Returns a copy of the facility like, padded with trailing blanks to length MQ_FACILITY_LIKE_LENGTH.

void setFacilityLike(const char * name = 0);
Sets the facility like, padded with trailing blanks to length MQ_FACILITY_LIKE_LENGTH. If no name is
supplied, resets facility like the initial value.

ImqBinary facilityToken() const;
Returns a copy of the facility token.

ImqBoolean setFacilityToken(const ImqBinary & token);
Sets the facility token. The data length of token must be either zero or MQ_FACILITY_LENGTH. It
returns TRUE if successful.

void setFacilityToken(const MQBYTE8 token = 0);
Sets the facility token. token can be zero, which is the same as specifying MQCFAC_NONE. If token
is nonzero it must address MQ_FACILITY_LENGTH bytes of binary data. When using predefined values
such as MQCFAC_NONE, you might need to make a cast to ensure a signature match. For example,
(MQBYTE *)MQCFAC_NONE.

ImqString function() const;
Returns a copy of the function, padded with trailing blanks to length MQ_FUNCTION_LENGTH.

MQLONG getWaitInterval() const;
Returns a copy of the get wait interval.

void setGetWaitInterval(const MQLONG interval = MQCGWI_DEFA
Sets the get wait interval.

MQLONG linkType() const;
Returns a copy of the link type.

void setLinkType(const MQLONG type = MQCLT_PROGRAM);
Sets the link type.

ImqString nextTransactionIdentifier() const ;
Returns a copy of the next transaction identifier data, padded with trailing blanks to length
MQ_TRANSACTION_ID_LENGTH.

MQLONG outputDataLength() const;
Returns a copy of the output data length.

Developing applications reference 1805

void setOutputDataLength(const MQLONG length = MQCODL_AS_INPUT);
Sets the output data length.

ImqString replyToFormat() const;
Returns a copy of the reply-to format name, padded with trailing blanks to length
MQ_FORMAT_LENGTH.

void setReplyToFormat(const char * name = 0);
Sets the reply-to format, padded with trailing blanks to length MQ_FORMAT_LENGTH. If no name is
supplied, resets reply-to format to the initial value.

ImqString startCode() const;
Returns a copy of the start code, padded with trailing blanks to length MQ_START_CODE_LENGTH.

void setStartCode(const char * data = 0);
Sets the start code data, padded with trailing blanks to length MQ_START_CODE_LENGTH. If no data
is supplied, resets start code to the initial value.

MQLONG taskEndStatus() const;
Returns a copy of the task end status.

ImqString transactionIdentifier() const;
Returns a copy of the transaction identifier data, padded with trailing blanks to the length
MQ_TRANSACTION_ID_LENGTH.

void setTransactionIdentifier(const char * data = 0);
Sets the transaction identifier, padded with trailing blanks to length
MQ_TRANSACTION_ID_LENGTH. If no data is supplied, resets transaction identifier to the initial
value.

MQLONG UOWControl() const;
Returns a copy of the UOW control.

void setUOWControl(const MQLONG control = MQCUOWC_ONLY);
Sets the UOW control.

MQLONG version() const;
Returns the version number.

ImqBoolean setVersion(const MQLONG version = MQCIH_VERSION_2);
Sets the version number. It returns TRUE if successful.

Object data (protected)
MQLONG olVersion

The maximum MQCIH version number that can be accommodated in the storage allocated for opcih.
PMQCIH opcih

The address of an MQCIH data structure. The amount of storage allocated is indicated by olVersion.

Reason codes
• MQRC_BINARY_DATA_LENGTH_ERROR
• MQRC_WRONG_VERSION

Return codes
Table 868. ImqCICSBridgeHeader class return codes

Return Code Function CompCode Reason Abend
Code

MQCRC_OK

MQCRC_BRIDGE_ERROR MQFB_CICS

1806 IBM MQ Developing Applications Reference

Table 868. ImqCICSBridgeHeader class return codes (continued)

Return Code Function CompCode Reason Abend
Code

MQCRC_MQ_API_ERROR IBM MQ call
name

IBM MQ
CompCode

IBM MQ
Reason

MQCRC_BRIDGE_TIMEOUT IBM MQ call
name

IBM MQ
CompCode

IBM MQ
Reason

MQCRC_CICS_EXEC_ERROR CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_SECURITY_ERROR CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_PROGRAM_NOT_AVAILABLE CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_TRANSID_NOT_AVAILABLE CICS EIBFN CICS EIBRESP CICS EIBRESP2

MQCRC_BRIDGE_ABEND CICS
ABCODE

MQCRC_APPLICATION_ABEND CICS
ABCODE

ImqDeadLetterHeader C++ class
This class encapsulates features of the MQDLH data structure.

Figure 19. ImqDeadLetterHeader class

Objects of this class are typically used by an application that encounters an message that cannot be
processed. A new message comprising a dead-letter header and the message content is placed on the
dead-letter queue, and the message is discarded.

• “Object attributes” on page 1808
• “Constructors” on page 1808
• “Overloaded ImqItem methods” on page 1808
• “Object methods (public)” on page 1808
• “Object data (protected)” on page 1809
• “Reason codes” on page 1809

Developing applications reference 1807

Object attributes
dead-letter reason code

The reason the message arrived on the dead-letter queue. The initial value is MQRC_NONE.
destination queue manager name

The name of the original destination queue manager. The name is a string of length
MQ_Q_MGR_NAME_LENGTH. Its initial value is null.

destination queue name
The name of the original destination queue. The name is a string of length MQ_Q_NAME_LENGTH. Its
initial value is null.

put application name
The name of the application that put the message on the dead-letter queue. The name is a string of
length MQ_PUT_APPL_NAME_LENGTH. Its initial value is null.

put application type
The type of application that put the message on the dead-letter queue. The initial value is zero.

put date
The date when the message was put on the dead-letter queue. The date is a string of length
MQ_PUT_DATE_LENGTH. Its initial value is a null string.

put time
The time when the message was put on the dead-letter queue. The time is a string of length
MQ_PUT_TIME_LENGTH. Its initial value is a null string.

Constructors
ImqDeadLetterHeader();

The default constructor.
ImqDeadLetterHeader(const ImqDeadLetterHeader & header);

The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut (ImqMessage & msg);

Inserts an MQDLH data structure into the message buffer at the beginning, moving existing message
data further along. Sets the msg format to MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description on page “ImqHeader C++ class” on page 1816 for
further details.

virtual ImqBoolean pasteIn (ImqMessage & msg);
Reads an MQDLH data structure from the message buffer.

To be successful, the ImqMessage format must be MQFMT_DEAD_LETTER_HEADER.

See the ImqHeader class method description on page “ImqHeader C++ class” on page 1816 for
further details.

Object methods (public)
void operator = (const ImqDeadLetterHeader & header);

Copies instance data is copied from header, replacing the existing instance data.
MQLONG deadLetterReasonCode () const ;

Returns the dead-letter reason code.
void setDeadLetterReasonCode (const MQLONG reason);

Sets the dead-letter reason code.
ImqString destinationQueueManagerName () const ;

Returns the destination queue manager name, stripped of any trailing blanks.

1808 IBM MQ Developing Applications Reference

void setDestinationQueueManagerName (const char * name);
Sets the destination queue manager name. Truncates data longer than MQ_Q_MGR_NAME_LENGTH
(48 characters).

ImqString destinationQueueName () const ;
Returns a copy of the destination queue name, stripped of any trailing blanks.

void setDestinationQueueName (const char * name);
Sets the destination queue name. Truncates data longer than MQ_Q_NAME_LENGTH (48 characters).

ImqString putApplicationName () const ;
Returns a copy of the put application name, stripped of any trailing blanks.

void setPutApplicationName (const char * name = 0);
Sets the put application name. Truncates data longer than MQ_PUT_APPL_NAME_LENGTH (28
characters).

MQLONG putApplicationType () const ;
Returns the put application type.

void setPutApplicationType (const MQLONG type = MQAT_NO_CONTEXT);
Sets the put application type.

ImqString putDate () const ;
Returns a copy of the put date, stripped of any trailing blanks.

void setPutDate (const char * date = 0);
Sets the put date. Truncates data longer than MQ_PUT_DATE_LENGTH (8 characters).

ImqString putTime () const ;
Returns a copy of the put time, stripped of any trailing blanks.

void setPutTime (const char * time = 0);
Sets the put time. Truncates data longer than MQ_PUT_TIME_LENGTH (8 characters).

Object data (protected)
MQDLH omqdlh

The MQDLH data structure.

Reason codes
• MQRC_INCONSISTENT_FORMAT
• MQRC_STRUC_ID_ERROR
• MQRC_ENCODING_ERROR

Developing applications reference 1809

ImqDistributionList C++ class
This class encapsulates a dynamic distribution list that references one or more queues for the purpose of
sending a message or messages to multiple destinations.

Figure 20. ImqDistributionList class

• “Object attributes” on page 1810
• “Constructors” on page 1810
• “Object methods (public)” on page 1810
• “Object methods (protected)” on page 1811

Object attributes
first distributed queue

The first of one or more objects of class , in no particular order, in which the distribution list
reference addresses this object.

Initially there are no such objects. To open an ImqDistributionList successfully, there must be at least
one such object.

Note: When an ImqDistributionList object is opened, any open objects that reference it are
automatically closed.

Constructors
ImqDistributionList();

The default constructor.
ImqDistributionList(const ImqDistributionList & list);

The copy constructor.

Object methods (public)
void operator = (const ImqDistributionList & list);

All objects that reference this object are dereferenced before copying. No objects will reference this
object after the invocation of this method.

1810 IBM MQ Developing Applications Reference

* firstDistributedQueue () const ;
Returns the first distributed queue.

Object methods (protected)
void setFirstDistributedQueue (* queue = 0);

Sets the first distributed queue.

ImqError C++ class
This abstract class provides information on errors associated with an object.

Figure 21. ImqError class

• “Object attributes” on page 1811
• “Constructors” on page 1811
• “Object methods (public)” on page 1811
• “Object methods (protected)” on page 1812
• “Reason codes” on page 1812

Object attributes
completion code

The most recent completion code. The initial value is zero. The following additional values are
possible:

• MQCC_OK
• MQCC_WARNING
• MQCC_FAILED

reason code
The most recent reason code. The initial value is zero.

Constructors
ImqError();

The default constructor.
ImqError(const ImqError & error);

The copy constructor.

Object methods (public)
void operator = (const ImqError & error);

Copies instance data from error, replacing the existing instance data.
void clearErrorCodes ();

Sets the completion code and reason code both to zero.

Developing applications reference 1811

MQLONG completionCode () const ;
Returns the completion code.

MQLONG reasonCode () const ;
Returns the reason code.

Object methods (protected)
ImqBoolean checkReadPointer (const void * pointer, const size_t length);

Verifies that the combination of pointer and length is valid for read-only access, and returns TRUE if
successful.

ImqBoolean checkWritePointer (const void * pointer, const size_t length);
Verifies that the combination of pointer and length is valid for read-write access, and returns TRUE if
successful.

void setCompletionCode (const MQLONG code = 0);
Sets the completion code.

void setReasonCode (const MQLONG code = 0);
Sets the reason code.

Reason codes
• MQRC_BUFFER_ERROR

ImqGetMessageOptions C++ class
This class encapsulates the MQGMO data structure

Figure 22. ImqGetMessageOptions class

• “Object attributes” on page 1813
• “Constructors” on page 1814
• “Object methods (public)” on page 1814
• “Object methods (protected)” on page 1815
• “Object data (protected)” on page 1815
• “Reason codes” on page 1815

1812 IBM MQ Developing Applications Reference

Object attributes
group status

Status of a message for a group of messages. The initial value is MQGS_NOT_IN_GROUP. The
following additional values are possible:

• MQGS_MSG_IN_GROUP
• MQGS_LAST_MSG_IN_GROUP

match options
Options for selecting incoming messages. The initial value is MQMO_MATCH_MSG_ID |
MQMO_MATCH_CORREL_ID. The following additional values are possible:

• MQMO_GROUP_ID
• MQMO_MATCH_MSG_SEQ_NUMBER
• MQMO_MATCH_OFFSET
• MQMO_MSG_TOKEN
• MQMO_NONE

message token
Message token. A binary value (MQBYTE16) of length MQ_MSG_TOKEN_LENGTH. The initial value is
MQMTOK_NONE.

options
Options applicable to a message. The initial value is MQGMO_NO_WAIT. The following additional
values are possible:

• MQGMO_WAIT
• MQGMO_SYNCPOINT
• MQGMO_SYNCPOINT_IF_PERSISTENT
• MQGMO_NO_SYNCPOINT
• MQGMO_MARK_SKIP_BACKOUT
• MQGMO_BROWSE_FIRST
• MQGMO_BROWSE_NEXT
• MQGMO_BROWSE_MSG_UNDER_CURSOR
• MQGMO_MSG_UNDER_CURSOR
• MQGMO_LOCK
• MQGMO_UNLOCK
• MQGMO_ACCEPT_TRUNCATED_MSG
• MQGMO_SET_SIGNAL
• MQGMO_FAIL_IF_QUIESCING
• MQGMO_CONVERT
• MQGMO_LOGICAL_ORDER
• MQGMO_COMPLETE_MSG
• MQGMO_ALL_MSGS_AVAILABLE
• MQGMO_ALL_SEGMENTS_AVAILABLE
• MQGMO_NONE

resolved queue name
Resolved queue name. This attribute is read-only. Names are never longer than 48 characters and can
be padded to that length with nulls. The initial value is a null string.

returned length
Returned length. The initial value is MQRL_UNDEFINED. This attribute is read-only.

Developing applications reference 1813

segmentation
The ability to segment a message. The initial value is MQSEG_INHIBITED. The additional value,
MQSEG_ALLOWED, is possible.

segment status
The segmentation status of a message. The initial value is MQSS_NOT_A_SEGMENT. The following
additional values are possible:

• MQSS_SEGMENT
• MQSS_LAST_SEGMENT

syncpoint participation
TRUE when messages are retrieved under syncpoint control.

wait interval
The length of time that the class get method pauses while waiting for a suitable message to
arrive, if one is not already available. The initial value is zero, which effects an indefinite wait. The
additional value, MQWI_UNLIMITED, is possible. This attribute is ignored unless the options include
MQGMO_WAIT.

Constructors
ImqGetMessageOptions();

The default constructor.
ImqGetMessageOptions(const ImqGetMessageOptions & gmo);

The copy constructor.

Object methods (public)
void operator = (const ImqGetMessageOptions & gmo);

Copies instance data from gmo, replacing the existing instance data.
MQCHAR groupStatus () const ;

Returns the group status.
void setGroupStatus (const MQCHAR status);

Sets the group status.
MQLONG matchOptions () const ;

Returns the match options.
void setMatchOptions (const MQLONG options);

Sets the match options.
ImqBinary messageToken() const;

Returns the message token.
ImqBoolean setMessageToken(const ImqBinary & token);

Sets the message token. The data length of token must be either zero or MQ_MSG_TOKEN_LENGTH.
This method returns TRUE if successful.

void setMessageToken(const MQBYTE16 token = 0);
Sets the message token. token can be zero, which is the same as specifying MQMTOK_NONE. If token
is nonzero, then it must address MQ_MSG_TOKEN_LENGTH bytes of binary data.

When using predefined values, such as MQMTOK_NONE, you might not need to make a cast to ensure
a signature match, for example (MQBYTE *)MQMTOK_NONE.

MQLONG options () const ;
Returns the options.

void setOptions (const MQLONG options);
Sets the options, including the syncpoint participation value.

ImqString resolvedQueueName () const ;
Returns a copy of the resolved queue name.

1814 IBM MQ Developing Applications Reference

MQLONG returnedLength() const;
Returns the returned length.

MQCHAR segmentation () const ;
Returns the segmentation.

void setSegmentation (const MQCHAR value);
Sets the segmentation.

MQCHAR segmentStatus () const ;
Returns the segment status.

void setSegmentStatus (const MQCHAR status);
Sets the segment status.

ImqBoolean syncPointParticipation () const ;
Returns the syncpoint participation value, which is TRUE if the options include either
MQGMO_SYNCPOINT or MQGMO_SYNCPOINT_IF_PERSISTENT.

void setSyncPointParticipation (const ImqBoolean sync);
Sets the syncpoint participation value. If sync is TRUE, alters the options
to include MQGMO_SYNCPOINT, and to exclude both MQGMO_NO_SYNCPOINT and
MQGMO_SYNCPOINT_IF_PERSISTENT. If sync is FALSE, alters the options to
include MQGMO_NO_SYNCPOINT, and to exclude both MQGMO_SYNCPOINT and
MQGMO_SYNCPOINT_IF_PERSISTENT.

MQLONG waitInterval () const ;
Returns the wait interval.

void setWaitInterval (const MQLONG interval);
Sets the wait interval.

Object methods (protected)
static void setVersionSupported (const MQLONG);

Sets the MQGMO version. Defaults to MQGMO_VERSION_3.

Object data (protected)
MQGMO omqgmo

An MQGMO Version 2 data structure. Access MQGMO fields supported for MQGMO_VERSION_2 only.
PMQGMO opgmo

The address of an MQGMO data structure. The version number for this address is indicated in
olVersion. Inspect the version number before accessing MQGMO fields, to ensure that they are
present.

MQLONG olVersion
The version number of the MQGMO data structure addressed by opgmo.

Reason codes
• MQRC_BINARY_DATA_LENGTH_ERROR

Developing applications reference 1815

ImqHeader C++ class
This abstract class encapsulates common features of the MQDLH data structure.

Figure 23. ImqHeader class

• “Object attributes” on page 1816
• “Constructors” on page 1816
• “Object methods (public)” on page 1817

Object attributes
character set

The original coded character set identifier. Initially MQCCSI_Q_MGR.
encoding

The original encoding. Initially MQENC_NATIVE.
format

The original format. Initially MQFMT_NONE.
header flags

The initial values are:

• Zero for objects of the ImqDeadLetterHeader class
• MQIIH_NONE for objects of the ImqIMSBridgeHeader class
• MQRMHF_LAST for objects of the ImqReferenceHeader class
• MQCIH_NONE for objects of the ImqCICSBridgeHeader class
• MQWIH_NONE for objects of the ImqWorkHeader class

Constructors
ImqHeader();

The default constructor.
ImqHeader(const ImqHeader & header);

The copy constructor.

1816 IBM MQ Developing Applications Reference

Object methods (public)
void operator = (const ImqHeader & header);

Copies instance data from header, replacing the existing instance data.
virtual MQLONG characterSet () const ;

Returns the character set.
virtual void setCharacterSet (const MQLONG ccsid = MQCCSI_Q_MGR);

Sets the character set.
virtual MQLONG encoding () const ;

Returns the encoding.
virtual void setEncoding (const MQLONG encoding = MQENC_NATIVE);

Sets the encoding.
virtual ImqString format () const ;

Returns a copy of the format, including trailing blanks.
virtual void setFormat (const char * name = 0);

Sets the format, padded to 8 characters with trailing blanks.
virtual MQLONG headerFlags () const ;

Returns the header flags.
virtual void setHeaderFlags (const MQLONG flags = 0);

Sets the header flags.

ImqIMSBridgeHeader C++ class
This class encapsulates features of the MQIIH data structure.

Figure 24. ImqIMSBridgeHeader class

Objects of this class are used by applications that send messages to the IMS bridge through IBM MQ for
z/OS.

Note: The ImqHeader character set and encoding must have default values and must not be set to any
other values.

• “Object attributes” on page 1818
• “Constructors” on page 1818
• “Overloaded ImqItem methods” on page 1818

Developing applications reference 1817

• “Object methods (public)” on page 1819
• “Object data (protected)” on page 1819
• “Reason codes” on page 1819

Object attributes
authenticator

RACF password or passticket, of length MQ_AUTHENTICATOR_LENGTH. The initial value is
MQIAUT_NONE.

commit mode
Commit mode. See the OTMA User's Guide for more information about IMS commit modes. The
initial value is MQICM_COMMIT_THEN_SEND. The additional value, MQICM_SEND_THEN_COMMIT, is
possible.

logical terminal override
Logical terminal override, of length MQ_LTERM_OVERRIDE_LENGTH. The initial value is a null string.

message format services map name
MFS map name, of length MQ_MFS_MAP_NAME_LENGTH. The initial value is a null string.

reply-to format
Format of any reply, of length MQ_FORMAT_LENGTH. The initial value is MQFMT_NONE.

security scope
Scope of IMS security processing. The initial value is MQISS_CHECK. The additional value,
MQISS_FULL, is possible.

transaction instance id
Transaction instance identity, a binary (MQBYTE16) value of length
MQ_TRAN_INSTANCE_ID_LENGTH. The initial value is MQITII_NONE.

transaction state
State of the IMS conversation. The initial value is MQITS_NOT_IN_CONVERSATION. The additional
value, MQITS_IN_CONVERSATION, is possible.

Constructors
ImqIMSBridgeHeader();

The default constructor.
ImqIMSBridgeHeader(const ImqIMSBridgeHeader & header);

The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut (ImqMessage & msg);

Inserts an MQIIH data structure into the message buffer at the beginning, moving existing message
data further along. Sets the msg format to MQFMT_IMS.

See the parent class method description for further details.

virtual ImqBoolean pasteIn (ImqMessage & msg);
Reads an MQIIH data structure from the message buffer.

To be successful, the encoding of the msg object must be MQENC_NATIVE. Retrieve messages with
MQGMO_CONVERT to MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_IMS.

See the parent class method description for further details.

1818 IBM MQ Developing Applications Reference

Object methods (public)
void operator = (const ImqIMSBridgeHeader & header);

Copies instance data from header, replacing the existing instance data.
ImqString authenticator () const ;

Returns a copy of the authenticator, padded with trailing blanks to length
MQ_AUTHENTICATOR_LENGTH.

void setAuthenticator (const char * name);
Sets the authenticator.

MQCHAR commitMode () const ;
Returns the commit mode.

void setCommitMode (const MQCHAR mode);
Sets the commit mode.

ImqString logicalTerminalOverride () const ;
Returns a copy of the logical terminal override.

void setLogicalTerminalOverride (const char * override);
Sets the logical terminal override.

ImqString messageFormatServicesMapName () const ;
Returns a copy of the message format services map name.

void setMessageFormatServicesMapName (const char * name);
Sets the message format services map name.

ImqString replyToFormat () const ;
Returns a copy of the reply-to format, padded with trailing blanks to length MQ_FORMAT_LENGTH.

void setReplyToFormat (const char * format);
Sets the reply-to format, padded with trailing blanks to length MQ_FORMAT_LENGTH.

MQCHAR securityScope () const ;
Returns the security scope.

void setSecurityScope (const MQCHAR scope);
Sets the security scope.

ImqBinary transactionInstanceId () const ;
Returns a copy of the transaction instance id.

ImqBoolean setTransactionInstanceId (const ImqBinary & id);
Sets the transaction instance id. The data length of token must be either zero or
MQ_TRAN_INSTANCE_ID_LENGTH. This method returns TRUE if successful.

void setTransactionInstanceId (const MQBYTE16 id = 0);
Sets the transaction instance id. id can be zero, which is the same as specifying MQITII_NONE. If
id is nonzero, it must address MQ_TRAN_INSTANCE_ID_LENGTH bytes of binary data. When using
predefined values such as MQITII_NONE, you might need to make a cast to ensure a signature match,
for example (MQBYTE *)MQITII_NONE.

MQCHAR transactionState () const ;
Returns the transaction state.

void setTransactionState (const MQCHAR state);
Sets the transaction state.

Object data (protected)
MQIIH omqiih

The MQIIH data structure.

Reason codes
• MQRC_BINARY_DATA_LENGTH_ERROR

Developing applications reference 1819

• MQRC_INCONSISTENT_FORMAT
• MQRC_ENCODING_ERROR
• MQRC_STRUC_ID_ERROR

ImqItem C++ class
This abstract class represents an item, perhaps one of several, within a message.

Figure 25. ImqItem class

Items are concatenated together in a message buffer. Each specialization is associated with a particular
data structure that begins with a structure ID.

Polymorphic methods in this abstract class allow items to be copied to and from messages.
The ImqMessage class readItem and writeItem methods provide another style of invoking these
polymorphic methods that is more natural for application programs.

• “Object attributes” on page 1820
• “Constructors” on page 1820
• “Class methods (public)” on page 1821
• “Object methods (public)” on page 1821
• “Reason codes” on page 1821

Object attributes
structure id

A string of four characters at the beginning of the data structure. This attribute is read-only. Consider
this attribute for derived classes. It is not included automatically.

Constructors
ImqItem();

The default constructor.
ImqItem(const ImqItem & item);

The copy constructor.

1820 IBM MQ Developing Applications Reference

Class methods (public)
static ImqBoolean structureIdIs (const char * structure-id-to-test, const ImqMessage & msg);

Returns TRUE if the structure id of the next ImqItem in the incoming msg is the same as structure-
id-to-test. The next item is identified as that part of the message buffer currently addressed by the
ImqCache data pointer. This method relies on the structure id and therefore is not guaranteed to
work for all ImqItem derived classes.

Object methods (public)
void operator = (const ImqItem & item);

Copies instance data from item, replacing the existing instance data.
virtual ImqBoolean copyOut (ImqMessage & msg) = 0 ;

Writes this object as the next item in an outgoing message buffer, appending it to any existing items.
If the write operation is successful, increases the ImqCache data length. This method returns TRUE if
successful.

Override this method to work with a specific subclass.

virtual ImqBoolean pasteIn (ImqMessage & msg) = 0 ;
Reads this object destructively from the incoming message buffer. The read is destructive in that the
ImqCache data pointer is moved on. However, the buffer content remains the same, so data can be
re-read by resetting the ImqCache data pointer.

The (sub)class of this object must be consistent with the structure id found next in the message
buffer of the msg object.

The encoding of the msg object should be MQENC_NATIVE. It is recommended that
messages be retrieved with the ImqMessage encoding set to MQENC_NATIVE, and with the
ImqGetMessageOptions options including MQGMO_CONVERT.

If the read operation is successful, the ImqCache data length is reduced. This method returns TRUE if
successful.

Override this method to work with a specific subclass.

Reason codes
• MQRC_ENCODING_ERROR
• MQRC_STRUC_ID_ERROR
• MQRC_INCONSISTENT_FORMAT
• MQRC_INSUFFICIENT_BUFFER
• MQRC_INSUFFICIENT_DATA

Developing applications reference 1821

ImqMessage C++ class
This class encapsulates an MQMD data structure and also handles the construction and reconstruction of
message data.

Figure 26. ImqMessage class

• “Object attributes” on page 1822
• “Constructors” on page 1826
• “Object methods (public)” on page 1826
• “Object methods (protected)” on page 1828
• “Object data (protected)” on page 1828

Object attributes
application ID data

Identity information associated with a message. The initial value is a null string.
application origin data

Origin information associated with a message. The initial value is a null string.
backout count

The number of times that a message has been tentatively retrieved and subsequently backed out. The
initial value is zero. This attribute is read-only.

character set
Coded Character Set Id. The initial value is MQCCSI_Q_MGR. The following additional values are
possible:

• MQCCSI_INHERIT
• MQCCSI_EMBEDDED

You can also use a Coded Character Set Id of your choice. For information about this, see “Code page
conversion” on page 928.

encoding
The machine encoding of the message data. The initial value is MQENC_NATIVE.

expiry
A time-dependent quantity that controls how long IBM MQ retains an unretrieved message before
discarding it. The initial value is MQEI_UNLIMITED.

1822 IBM MQ Developing Applications Reference

format
The name of the format (template) that describes the layout of data in the buffer. Names longer
than eight characters are truncated to eight characters. Names are always padded with blanks to
eight characters. The initial constant value is MQFMT_NONE. The following additional constants are
possible:

• MQFMT_ADMIN
• MQFMT_CICS
• MQFMT_COMMAND_1
• MQFMT_COMMAND_2
• MQFMT_DEAD_LETTER_HEADER
• MQFMT_DIST_HEADER
• MQFMT_EVENT
• MQFMT_IMS
• MQFMT_IMS_VAR_STRING
• MQFMT_MD_EXTENSION
• MQFMT_PCF
• MQFMT_REF_MSG_HEADER
• MQFMT_RF_HEADER
• MQFMT_STRING
• MQFMT_TRIGGER
• MQFMT_WORK_INFO_HEADER
• MQFMT_XMIT_Q_HEADER

You can also use an application-specific string of your choice. For more information about this, see the
“Format (MQCHAR8)” on page 442 field of the message descriptor (MQMD).

message flags
Segmentation control information. The initial value is MQMF_SEGMENTATION_INHIBITED. The
following additional values are possible:

• MQMF_SEGMENTATION_ALLOWED
• MQMF_MSG_IN_GROUP
• MQMF_LAST_MSG_IN_GROUP
• MQMF_SEGMENT
• MQMF_LAST_SEGMENT
• MQMF_NONE

message type
The broad categorization of a message. The initial value is MQMT_DATAGRAM. The following
additional values are possible:

• MQMT_SYSTEM_FIRST
• MQMT_SYSTEM_LAST
• MQMT_DATAGRAM
• MQMT_REQUEST
• MQMT_REPLY
• MQMT_REPORT
• MQMT_APPL_FIRST
• MQMT_APPL_LAST

Developing applications reference 1823

You can also use an application-specific value of your choice. For more information about this, see the
“MsgType (MQLONG)” on page 433 field of the message descriptor (MQMD).

offset
Offset information. The initial value is zero.

original length
The original length of a segmented message. The initial value is MQOL_UNDEFINED.

persistence
Indicates that the message is important and must at all times be backed up using persistent storage.
This option implies a performance penalty. The initial value is MQPER_PERSISTENCE_AS_Q_DEF. The
following additional values are possible:

• MQPER_PERSISTENT
• MQPER_NOT_PERSISTENT

priority
The relative priority for transmission and delivery. Messages of the same priority are usually delivered
in the same sequence as they were supplied (although there are several criteria that must be satisfied
to guarantee this). The initial value is MQPRI_PRIORITY_AS_Q_DEF.

property validation
Specifies whether validation of properties should take place when a property of the message is set.
The initial value is MQCMHO_DEFAULT_VALIDATION. The following additional values are possible:

• MQCMHO_VALIDATE
• MQCMHO_NO_VALIDATION

The following methods act on property validation:
MQLONG propertyValidation() const ;

Returns the property validation option.
void setPropertyValidation(const MQLONG option);

Sets the property validation option.

put application name
The name of the application that put a message. The initial value is a null string.

put application type
The type of application that put a message. The initial value is MQAT_NO_CONTEXT. The following
additional values are possible:

• MQAT_AIX
• MQAT_CICS
• MQAT_CICS_BRIDGE
• MQAT_DOS
• MQAT_IMS
• MQAT_IMS_BRIDGE
• MQAT_MVS
• MQAT_NOTES_AGENT
• MQAT_OS2
• MQAT_OS390
• MQAT_OS400
• MQAT_QMGR
• MQAT_UNIX
• MQAT_WINDOWS
• MQAT_WINDOWS_NT

1824 IBM MQ Developing Applications Reference

• MQAT_XCF
• MQAT_DEFAULT
• MQAT_UNKNOWN
• MQAT_USER_FIRST
• MQAT_USER_LAST

You can also use an application-specific string of your choice. For more information about this, see the
“PutApplType (MQLONG)” on page 456 field of the message descriptor (MQMD).

put date
The date on which a message was put. The initial value is a null string.

put time
The time at which a message was put. The initial value is a null string.

reply-to queue manager name
The name of the queue manager to which any reply should be sent. The initial value is a null string.

reply-to queue name
The name of the queue to which any reply should be sent. The initial value is a null string.

report
Feedback information associated with a message. The initial value is MQRO_NONE. The following
additional values are possible:

• MQRO_EXCEPTION
• MQRO_EXCEPTION_WITH_DATA
• MQRO_EXCEPTION_WITH_FULL_DATA *
• MQRO_EXPIRATION
• MQRO_EXPIRATION_WITH_DATA
• MQRO_EXPIRATION_WITH_FULL_DATA *
• MQRO_COA
• MQRO_COA_WITH_DATA
• MQRO_COA_WITH_FULL_DATA *
• MQRO_COD
• MQRO_COD_WITH_DATA
• MQRO_COD_WITH_FULL_DATA *
• MQRO_PAN
• MQRO_NAN
• MQRO_NEW_MSG_ID
• MQRO_NEW_CORREL_ID
• MQRO_COPY_MSG_ID_TO_CORREL_ID
• MQRO_PASS_CORREL_ID
• MQRO_DEAD_LETTER_Q
• MQRO_DISCARD_MSG

where * indicates values that are not supported on IBM MQ for z/OS.
sequence number

Sequence information identifying a message within a group. The initial value is one.
total message length

The number of bytes that were available during the most recent attempt to read a message. This
number will be greater than the ImqCache message length if the last message was truncated, or if
the last message was not read because truncation would have occurred. This attribute is read-only.
The initial value is zero.

Developing applications reference 1825

This attribute can be useful in any situation involving truncated messages.

user id
A user identity associated with a message. The initial value is a null string.

Constructors
ImqMessage();

The default constructor.
ImqMessage(const ImqMessage & msg);

The copy constructor. See the operator = method for details.

Object methods (public)
void operator = (const ImqMessage & msg);

Copies the MQMD and message data from msg. If a buffer has been supplied by the user for this
object, the amount of data copied is restricted to the available buffer size. Otherwise, the system
ensures that a buffer of adequate size is made available for the copied data.

ImqString applicationIdData () const ;
Returns a copy of the application ID data.

void setApplicationIdData (const char * data = 0);
Sets the application ID data.

ImqString applicationOriginData () const ;
Returns a copy of the application origin data.

void setApplicationOriginData (const char * data = 0);
Sets the application origin data.

MQLONG backoutCount () const ;
Returns the backout count.

MQLONG characterSet () const ;
Returns the character set.

void setCharacterSet (const MQLONG ccsid = MQCCSI_Q_MGR);
Sets the character set.

MQLONG encoding () const ;
Returns the encoding.

void setEncoding (const MQLONG encoding = MQENC_NATIVE);
Sets the encoding.

MQLONG expiry () const ;
Returns the expiry.

void setExpiry (const MQLONG expiry);
Sets the expiry.

ImqString format () const ;
Returns a copy of the format, including trailing blanks.

ImqBoolean formatIs (const char * format-to-test) const ;
Returns TRUE if the format is the same as format-to-test.

void setFormat (const char * name = 0);
Sets the format, padded to eight characters with trailing blanks.

MQLONG messageFlags () const ;
Returns the message flags.

void setMessageFlags (const MQLONG flags);
Sets the message flags.

MQLONG messageType () const ;
Returns the message type.

1826 IBM MQ Developing Applications Reference

void setMessageType (const MQLONG type);
Sets the message type.

MQLONG offset () const ;
Returns the offset.

void setOffset (const MQLONG offset);
Sets the offset.

MQLONG originalLength () const ;
Returns the original length.

void setOriginalLength (const MQLONG length);
Sets the original length.

MQLONG persistence () const ;
Returns the persistence.

void setPersistence (const MQLONG persistence);
Sets the persistence.

MQLONG priority () const ;
Returns the priority.

void setPriority (const MQLONG priority);
Sets the priority.

ImqString putApplicationName () const ;
Returns a copy of the put application name.

void setPutApplicationName (const char * name = 0);
Sets the put application name.

MQLONG putApplicationType () const ;
Returns the put application type.

void setPutApplicationType (const MQLONG type = MQAT_NO_CONTEXT);
Sets the put application type.

ImqString putDate () const ;
Returns a copy of the put date.

void setPutDate (const char * date = 0);
Sets the put date.

ImqString putTime () const ;
Returns a copy of the put time.

void setPutTime (const char * time = 0);
Sets the put time.

ImqBoolean readItem (ImqItem & item);
Reads into the item object from the message buffer, using the ImqItem pasteIn method. It returns
TRUE if successful.

ImqString replyToQueueManagerName () const ;
Returns a copy of the reply-to queue manager name.

void setReplyToQueueManagerName (const char * name = 0);
Sets the reply-to queue manager name.

ImqString replyToQueueName () const ;
Returns a copy of the reply-to queue name.

void setReplyToQueueName (const char * name = 0);
Sets the reply-to queue name.

MQLONG report () const ;
Returns the report.

void setReport (const MQLONG report);
Sets the report.

Developing applications reference 1827

MQLONG sequenceNumber () const ;
Returns the sequence number.

void setSequenceNumber (const MQLONG number);
Sets the sequence number.

size_t totalMessageLength () const ;
Returns the total message length.

ImqString userId () const ;
Returns a copy of the user id.

void setUserId (const char * id = 0);
Sets the user id.

ImqBoolean writeItem (ImqItem & item);
Writes from the item object into the message buffer, using the ImqItem copyOut method. Writing can
take the form of insertion, replacement, or an append: this depends on the class of the item object.
This method returns TRUE if successful.

Object methods (protected)
static void setVersionSupported (const MQLONG);

Sets the MQMD version. Defaults to MQMD_VERSION_2.

Object data (protected)

MQMD1 omqmd
The MQMD data structure on z/OS.

MQMD2 omqmd
The MQMD data structure on Multiplatforms.

ImqMessageTracker C++ class
This class encapsulates those attributes of an ImqMessage or ImqQueue object that can be associated
with either object.

Figure 27. ImqMessageTracker class

This class relates to the MQI calls listed in “ImqMessageTracker cross-reference” on page 1779.

• “Object attributes” on page 1829

1828 IBM MQ Developing Applications Reference

• “Constructors” on page 1830
• “Object methods (public)” on page 1830
• “Reason codes” on page 1831

Object attributes
accounting token

A binary value (MQBYTE32) of length MQ_ACCOUNTING_TOKEN_LENGTH. The initial value is
MQACT_NONE.

correlation id
A binary value (MQBYTE24) of length MQ_CORREL_ID_LENGTH that you assign to correlate messages.
The initial value is MQCI_NONE. The additional value, MQCI_NEW_SESSION, is possible.

feedback
Feedback information to be sent with a message. The initial value is MQFB_NONE. The following
additional values are possible:

• MQFB_SYSTEM_FIRST
• MQFB_SYSTEM_LAST
• MQFB_APPL_FIRST
• MQFB_APPL_LAST
• MQFB_COA
• MQFB_COD
• MQFB_EXPIRATION
• MQFB_PAN
• MQFB_NAN
• MQFB_QUIT
• MQFB_DATA_LENGTH_ZERO
• MQFB_DATA_LENGTH_NEGATIVE
• MQFB_DATA_LENGTH_TOO_BIG
• MQFB_BUFFER_OVERFLOW
• MQFB_LENGTH_OFF_BY_ONE
• MQFB_IIH_ERROR
• MQFB_NOT_AUTHORIZED_FOR_IMS
• MQFB_IMS_ERROR
• MQFB_IMS_FIRST
• MQFB_IMS_LAST
• MQFB_CICS_APPL_ABENDED
• MQFB_CICS_APPL_NOT_STARTED
• MQFB_CICS_BRIDGE_FAILURE
• MQFB_CICS_CCSID_ERROR
• MQFB_CICS_CIH_ERROR
• MQFB_CICS_COMMAREA_ERROR
• MQFB_CICS_CORREL_ID_ERROR
• MQFB_CICS_DLQ_ERROR
• MQFB_CICS_ENCODING_ERROR
• MQFB_CICS_INTERNAL_ERROR
• MQFB_CICS_NOT_AUTHORIZED

Developing applications reference 1829

• MQFB_CICS_UOW_BACKED_OUT
• MQFB_CICS_UOW_ERROR

You can also use an application-specific string of your choice. For more information about this, see the
“Feedback (MQLONG)” on page 437 field of the message descriptor (MQMD).

group id
A binary value (MQBYTE24) of length MQ_GROUP_ID_LENGTH unique within a queue. The initial value
is MQGI_NONE.

message id
A binary value (MQBYTE24) of length MQ_MSG_ID_LENGTH unique within a queue. The initial value is
MQMI_NONE.

Constructors
ImqMessageTracker();

The default constructor.
ImqMessageTracker(const ImqMessageTracker & tracker);

The copy constructor. See the operator = method for details.

Object methods (public)
void operator = (const ImqMessageTracker & tracker);

Copies instance data from tracker, replacing the existing instance data.
ImqBinary accountingToken () const ;

Returns a copy of the accounting token.
ImqBoolean setAccountingToken (const ImqBinary & token);

Sets the accounting token. The data length of token must be either zero or
MQ_ACCOUNTING_TOKEN_LENGTH. This method returns TRUE if successful.

void setAccountingToken (const MQBYTE32 token = 0);
Sets the accounting token. token can be zero, which is the same as specifying MQACT_NONE. If token
is nonzero, it must address MQ_ACCOUNTING_TOKEN_LENGTH bytes of binary data. When using
predefined values such as MQACT_NONE, you might need to make a cast to ensure a signature match;
for example, (MQBYTE *)MQACT_NONE.

ImqBinary correlationId () const ;
Returns a copy of the correlation id.

ImqBoolean setCorrelationId (const ImqBinary & token);
Sets the correlation id. The data length of token must be either zero or MQ_CORREL_ID_LENGTH.
This method returns TRUE if successful.

void setCorrelationId (const MQBYTE24 id = 0);
Sets the correlation id. id can be zero, which is the same as specifying MQCI_NONE. If id is nonzero,
it must address MQ_CORREL_ID_LENGTH bytes of binary data. When using predefined values such
as MQCI_NONE, you might need to make a cast to ensure a signature match; for example, (MQBYTE
*)MQCI_NONE.

MQLONG feedback () const ;
Returns the feedback.

void setFeedback (const MQLONG feedback);
Sets the feedback.

ImqBinary groupId () const ;
Returns a copy of the group id.

ImqBoolean setGroupId (const ImqBinary & token);
Sets the group id. The data length of token must be either zero or MQ_GROUP_ID_LENGTH. This
method returns TRUE if successful.

1830 IBM MQ Developing Applications Reference

void setGroupId (const MQBYTE24 id = 0);
Sets the group id. id can be zero, which is the same as specifying MQGI_NONE. If id is nonzero, it
must address MQ_GROUP_ID_LENGTH bytes of binary data. When using predefined values such as
MQGI_NONE, you might need to make a cast to ensure a signature match, for example (MQBYTE
*)MQGI_NONE.

ImqBinary messageId () const ;
Returns a copy of the message id.

ImqBoolean setMessageId (const ImqBinary & token);
Sets the message id. The data length of token must be either zero or MQ_MSG_ID_LENGTH. This
method returns TRUE if successful.

void setMessageId (const MQBYTE24 id = 0);
Sets the message id. id can be zero, which is the same as specifying MQMI_NONE. If id is nonzero,
it must address MQ_MSG_ID_LENGTH bytes of binary data. When using predefined values such as
MQMI_NONE, you might need to make a cast to ensure a signature match, for example (MQBYTE
*)MQMI_NONE.

Reason codes
• MQRC_BINARY_DATA_LENGTH_ERROR

ImqNamelist C++ class
This class encapsulates a namelist.

Figure 28. ImqNamelist class

This class relates to the MQI calls listed in “ImqNamelist cross-reference” on page 1780.

• “Object attributes” on page 1831
• “Constructors” on page 1832
• “Object methods (public)” on page 1832
• “Reason codes” on page 1832

Object attributes
name count

The number of object names in namelist names. This attribute is read-only.

Developing applications reference 1831

namelist names
Object names, the number of which is indicated by the name count. This attribute is read-only.

Constructors
ImqNamelist();

The default constructor.
ImqNamelist(const ImqNamelist & list);

The copy constructor. The ImqObject open status is false.
ImqNamelist(const char * name);

Sets the ImqObject name to name.

Object methods (public)
void operator = (const ImqNamelist & list);

Copies instance data from list, replacing the existing instance data. The ImqObject open status is
false.

ImqBoolean nameCount(MQLONG & count);
Provides a copy of the name count. It returns TRUE if successful.

MQLONG nameCount ();
Returns the name count without any indication of possible errors.

ImqBoolean namelistName (const MQLONG index, ImqString & name);
Provides a copy of one the namelist names by zero based index. It returns TRUE if successful.

ImqString namelistName (const MQLONG index);
Returns one of the namelist names by zero-based index without any indication of possible errors.

Reason codes
• MQRC_INDEX_ERROR
• MQRC_INDEX_NOT_PRESENT

ImqObject C++ class
This class is abstract. When an object of this class is destroyed, it is automatically closed, and its
ImqQueueManager connection severed.

Figure 29. ImqObject class

1832 IBM MQ Developing Applications Reference

This class relates to the MQI calls listed in “ImqObject cross-reference” on page 1780.

• “Class attributes” on page 1833
• “Object attributes” on page 1833
• “Constructors” on page 1834
• “Class methods (public)” on page 1834
• “Object methods (public)” on page 1834
• “Object methods (protected)” on page 1836
• “Object data (protected)” on page 1837
• “Reason codes” on page 1837
•

Class attributes
behavior

Controls the behavior of implicit opening.
IMQ_IMPL_OPEN (8L)

Implicit opening is allowed. This is the default.

Object attributes
alteration date

The alteration date. This attribute is read-only.
alteration time

The alteration time. This attribute is read-only.
alternate user id

The alternate user ID, up to MQ_USER_ID_LENGTH characters. The initial value is a null string.
alternate security id

The alternate security ID. A binary value (MQBYTE40) of length MQ_SECURITY_ID_LENGTH. The initial
value is MQSID_NONE.

close options
Options that apply when an object is closed. The initial value is MQCO_NONE. This attribute is ignored
during implicit reopen operations, where a value of MQCO_NONE is always used.

connection reference
A reference to an ImqQueueManager object that provides the required connection to a (local) queue
manager. For an ImqQueueManager object, it is the object itself. The initial value is zero.

Note: Do not confuse this with the queue manager name that identifies a queue manager (possibly
remote) for a named queue.

description
The descriptive name (up to 64 characters) of the queue manager, queue, namelist, or process. This
attribute is read-only.

name
The name (up to 48 characters) of the queue manager, queue, namelist, or process. The initial value is
a null string. The name of a model queue changes after an open to the name of the resulting dynamic
queue.

Note: An ImqQueueManager can have a null name, representing the default queue manager. The
name changes to the actual queue manager after a successful open. An ImqDistributionList is
dynamic and must have a null name.

next managed object
This is the next object of this class, in no particular order, having the same connection reference as
this object. The initial value is zero.

Developing applications reference 1833

open options
Options that apply when an object is opened. The initial value is MQOO_INQUIRE. There are two ways
to set appropriate values:

1. Do not set the open options and do not use the open method. IBM MQ automatically adjusts the
open options and automatically opens, reopens, and closes objects as required. This can result in
unnecessary reopen operations, because IBM MQ uses the openFor method, and this adds open
options incrementally only.

2. Set the open options before using any methods that result in an MQI call (see “C++ and MQI
cross-reference” on page 1773). This ensures that unnecessary reopen operations do not occur.
Set open options explicitly if any of the potential reopen problems are likely to occur (see Reopen).

If you use the open method, you must ensure that the open options are appropriate first. However,
using the open method is not mandatory; IBM MQ still exhibits the same behavior as in case 1, but
in this circumstance, the behavior is efficient.

Zero is not a valid value; set the appropriate value before attempting to open the object. This
can be done using either setOpenOptions (lOpenOptions) followed by open (), or openFor
(lRequiredOpenOption).

Note:

1. MQOO_OUTPUT is substituted for MQOO_INQUIRE during the open method for a distribution list,
as MQOO_OUTPUT is the only valid open option at this time. However, it is good practice always
to set MQOO_OUTPUT explicitly in application programs that use the open method.

2. Specify MQOO_RESOLVE_NAMES if you want to use the resolved queue manager name and
resolved queue name attributes of the class.

open status
Whether the object is open (TRUE) or closed (FALSE). The initial value is FALSE. This attribute is
read-only.

previous managed object
The previous object of this class, in no particular order, having the same connection reference as this
object. The initial value is zero.

queue-manager-identifier
The queue manager identifier. This attribute is read-only.

Constructors
ImqObject();

The default constructor.
ImqObject(const ImqObject & object);

The copy constructor. The open status will be FALSE.

Class methods (public)
static MQLONG behavior();

Returns the behavior.
void setBehavior(const MQLONG behavior = 0);

Sets the behavior.

Object methods (public)
void operator = (const ImqObject & object);

Performs a close if necessary, and copies the instance data from object. The open status will be
FALSE.

ImqBoolean alterationDate(ImqString & date);
Provides a copy of the alteration date. It returns TRUE if successful.

1834 IBM MQ Developing Applications Reference

ImqString alterationDate();
Returns the alteration date without any indication of possible errors.

ImqBoolean alterationTime(ImqString & time);
Provides a copy of the alteration time. It returns TRUE if successful.

ImqString alterationTime();
Returns the alteration time without any indication of possible errors.

ImqString alternateUserId () const ;
Returns a copy of the alternate user id.

ImqBoolean setAlternateUserId (const char * id);
Sets the alternate user id. The alternate user id can be set only while the open status is FALSE. This
method returns TRUE if successful.

ImqBinary alternateSecurityId() const ;
Returns a copy of the alternate security ID.

ImqBoolean setAlternateSecurityId(const ImqBinary & token);
Sets the alternate security id. The alternate security id can be set only while the open status is
FALSE. The data length of token must be either zero or MQ_SECURITY_ID_LENGTH. It returns TRUE if
successful.

ImqBoolean setAlternateSecurityId(const MQBYTE* token = 0);
Sets the alternate security id. token can be zero, which is the same as specifying MQSID_NONE.
If token is nonzero, it must address MQ_SECURITY_ID_LENGTH bytes of binary data. When using
predefined values such as MQSID_NONE, you might need to make a cast to ensure signature match;
for example, (MQBYTE *)MQSID_NONE.

The alternate security id can be set only while the open status is TRUE. It returns TRUE if successful.

ImqBoolean setAlternateSecurityId(const unsigned char * id = 0);
Sets the alternate security id.

ImqBoolean close ();
Sets the open status to FALSE. It returns TRUE if successful.

MQLONG closeOptions () const ;
Returns the close options.

void setCloseOptions (const MQLONG options);
Sets the close options.

ImqQueueManager * connectionReference () const ;
Returns the connection reference.

void setConnectionReference (ImqQueueManager & manager);
Sets the connection reference.

void setConnectionReference (ImqQueueManager * manager = 0);
Sets the connection reference.

virtual ImqBoolean description (ImqString & description) = 0 ;
Provides a copy of the description. It returns TRUE if successful.

ImqString description ();
Returns a copy of the description without any indication of possible errors.

virtual ImqBoolean name (ImqString & name);
Provides a copy of the name. It returns TRUE if successful.

ImqString name ();
Returns a copy of the name without any indication of possible errors.

ImqBoolean setName (const char * name = 0);
Sets the name. The name can only be set while the open status is FALSE, and, for an
ImqQueueManager, while the connection status is FALSE. It returns TRUE if successful.

ImqObject * nextManagedObject () const ;
Returns the next managed object.

Developing applications reference 1835

ImqBoolean open ();
Changes the open status to TRUE by opening the object as necessary, using among other attributes
the open options and the name. This method uses the connection reference information and the
ImqQueueManager connect method if necessary to ensure that the ImqQueueManager connection
status is TRUE. It returns the open status.

ImqBoolean openFor (const MQLONG required-options = 0);
Attempts to ensure that the object is open with open options, or with open options that guarantee the
behavior implied by the required-options parameter value.

If required-options is zero, input is required, and any input option suffices. So, if the open options
already contain one of:

• MQOO_INPUT_AS_Q_DEF
• MQOO_INPUT_SHARED
• MQOO_INPUT_EXCLUSIVE

the open options are already satisfactory and are not changed; if the open options do not already
contain any of these options, MQOO_INPUT_AS_Q_DEF is set in the open options.

If required-options is nonzero, the required options are added to the open options ; if required-options
is any of these options, the others are reset.

If any of the open options are changed and the object is already open, the object is closed temporarily
and reopened in order to adjust the open options.

It returns TRUE if successful. Success indicates that the object is open with appropriate options.

MQLONG openOptions () const ;
Returns the open options.

ImqBoolean setOpenOptions (const MQLONG options);
Sets the open options. The open options can be set only while the open status is FALSE. It returns
TRUE if successful.

ImqBoolean openStatus () const ;
Returns the open status.

ImqObject * previousManagedObject () const ;
Returns the previous managed object.

ImqBoolean queueManagerIdentifier(ImqString & id);
Provides a copy of the queue manager identifier. It returns TRUE if successful.

ImqString queueManagerIdentifier();
Returns the queue manager identifier without any indication of possible errors.

Object methods (protected)
virtual ImqBoolean closeTemporarily ();

Closes an object safely before reopening. It returns TRUE if successful. This method assumes that the
open status is TRUE.

MQHCONN connectionHandle () const ;
Returns the MQHCONN associated with the connection reference. This value is zero if there is no
connection reference or if the Manager is not connected.

ImqBoolean inquire (const MQLONG int-attr, MQLONG & value);
Returns an integer value, the index of which is an MQIA_* value. In case of error, the value is set to
MQIAV_UNDEFINED.

ImqBoolean inquire (const MQLONG char-attr, char * & buffer, const size_t length);
Returns a character string, the index of which is an MQCA_* value.

Note: Both of these methods return only a single attribute value. If a snapshot is required of more
than one value, where the values are consistent with each other for an instant, IBM MQ C++ does not
provide this facility and you must use the MQINQ call with appropriate parameters.

1836 IBM MQ Developing Applications Reference

virtual void openInformationDisperse ();
Disperses information from the variable section of the MQOD data structure immediately after an
MQOPEN call.

virtual ImqBoolean openInformationPrepare ();
Prepares information for the variable section of the MQOD data structure immediately before an
MQOPEN call, and returns TRUE if successful.

ImqBoolean set (const MQLONG int-attr, const MQLONG value);
Sets an IBM MQ integer attribute.

ImqBoolean set (const MQLONG char-attr, const char * buffer, const size_t required-length);
Sets an IBM MQ character attribute.

void setNextManagedObject (const ImqObject * object = 0);
Sets the next managed object.

Attention: Use this function only if you are sure it will not break the managed object list.

void setPreviousManagedObject (const ImqObject * object = 0);
Sets the previous managed object.

Attention: Use this function only if you are sure it will not break the managed object list.

Object data (protected)
MQHOBJ ohobj

The IBM MQ object handle (valid only when open status is TRUE).
MQOD omqod

The embedded MQOD data structure. The amount of storage allocated for this data structure is that
required for an MQOD Version 2. Inspect the version number (omqod.Version) and access the other
fields as follows:
MQOD_VERSION_1

All other fields in omqod can be accessed.
MQOD_VERSION_2

All other fields in omqod can be accessed.
MQOD_VERSION_3

omqod.pmqod is a pointer to a dynamically allocated, larger, MQOD. No other fields in omqod can
be accessed. All fields addressed by omqod.pmqod can be accessed.

Note: omqod.pmqod.Version can be less than omqod.Version, indicating that the IBM MQ MQI
client has more functionality than the IBM MQ server.

Reason codes
• MQRC_ATTRIBUTE_LOCKED
• MQRC_INCONSISTENT_OBJECT_STATE
• MQRC_NO_CONNECTION_REFERENCE
• MQRC_STORAGE_NOT_AVAILABLE
• MQRC_REOPEN_SAVED_CONTEXT_ERR
• (reason codes from MQCLOSE)
• (reason codes from MQCONN)
• (reason codes from MQINQ)
• (reason codes from MQOPEN)
• (reason codes from MQSET)

Developing applications reference 1837

ImqProcess C++ class
This class encapsulates an application process (an IBM MQ object of type MQOT_PROCESS) that can be
triggered by a trigger monitor.

Figure 30. ImqProcess class

• “Object attributes” on page 1838
• “Constructors” on page 1838
• “Object methods (public)” on page 1838

Object attributes
application id

The identity of the application process. This attribute is read-only.
application type

The type of the application process. This attribute is read-only.
environment data

The environment information for the process. This attribute is read-only.
user data

User data for the process. This attribute is read-only.

Constructors
ImqProcess();

The default constructor.
ImqProcess(const ImqProcess & process);

The copy constructor. The ImqObject open status is FALSE.
ImqProcess(const char * name);

Sets the ImqObject name.

Object methods (public)
void operator = (const ImqProcess & process);

Performs a close if necessary, and then copies instance data from process. The ImqObject open
status will be FALSE.

1838 IBM MQ Developing Applications Reference

ImqBoolean applicationId (ImqString & id);
Provides a copy of the application id. It returns TRUE if successful.

ImqString applicationId ();
Returns the application id without any indication of possible errors.

ImqBoolean applicationType (MQLONG & type);
Provides a copy of the application type. It returns TRUE if successful.

MQLONG applicationType ();
Returns the application type without any indication of possible errors.

ImqBoolean environmentData (ImqString & data);
Provides a copy of the environment data. It returns TRUE if successful.

ImqString environmentData ();
Returns the environment data without any indication of possible errors.

ImqBoolean userData (ImqString & data);
Provides a copy of the user data. It returns TRUE if successful.

ImqString userData ();
Returns the user data without any indication of possible errors.

ImqPutMessageOptions C++ class
This class encapsulates the MQPMO data structure.

Figure 31. ImqPutMessageOptions class

• “Object attributes” on page 1839
• “Constructors” on page 1840
• “Object methods (public)” on page 1840
• “Object data (protected)” on page 1841
• “Reason codes” on page 1841

Object attributes
context reference

An ImqQueue that provides a context for messages. Initially there is no reference.

Developing applications reference 1839

options
The put message options. The initial value is MQPMO_NONE. The following additional values are
possible:

• MQPMO_SYNCPOINT
• MQPMO_NO_SYNCPOINT
• MQPMO_NEW_MSG_ID
• MQPMO_NEW_CORREL_ID
• MQPMO_LOGICAL_ORDER
• MQPMO_NO_CONTEXT
• MQPMO_DEFAULT_CONTEXT
• MQPMO_PASS_IDENTITY_CONTEXT
• MQPMO_PASS_ALL_CONTEXT
• MQPMO_SET_IDENTITY_CONTEXT
• MQPMO_SET_ALL_CONTEXT
• MQPMO_ALTERNATE_USER_AUTHORITY
• MQPMO_FAIL_IF_QUIESCING

record fields
The flags that control the inclusion of put message records when a message is put. The initial value is
MQPMRF_NONE. The following additional values are possible:

• MQPMRF_MSG_ID
• MQPMRF_CORREL_ID
• MQPMRF_GROUP_ID
• MQPMRF_FEEDBACK
• MQPMRF_ACCOUNTING_TOKEN

ImqMessageTracker attributes are taken from the object for any field that is specified.
ImqMessageTracker attributes are taken from the ImqMessage object for any field that is not
specified.

resolved queue manager name
Name of a destination queue manager determined during a put. The initial value is null. This attribute
is read-only.

resolved queue name
Name of a destination queue determined during a put. The initial value is null. This attribute is
read-only.

syncpoint participation
TRUE when messages are put under syncpoint control.

Constructors
ImqPutMessageOptions();

The default constructor.
ImqPutMessageOptions(const ImqPutMessageOptions & pmo);

The copy constructor.

Object methods (public)
void operator = (const ImqPutMessageOptions & pmo);

Copies instance data from pmo, replacing the existing instance data.
ImqQueue * contextReference () const ;

Returns the context reference.

1840 IBM MQ Developing Applications Reference

void setContextReference (const ImqQueue & queue);
Sets the context reference.

void setContextReference (const ImqQueue * queue = 0);
Sets the context reference.

MQLONG options () const ;
Returns the options.

void setOptions (const MQLONG options);
Sets the options, including the syncpoint participation value.

MQLONG recordFields () const ;
Returns the record fields.

void setRecordFields (const MQLONG fields);
Sets the record fields.

ImqString resolvedQueueManagerName () const ;
Returns a copy of the resolved queue manager name.

ImqString resolvedQueueName () const ;
Returns a copy of the resolved queue name.

ImqBoolean syncPointParticipation () const ;
Returns the syncpoint participation value, which is TRUE if the options include MQPMO_SYNCPOINT.

void setSyncPointParticipation (const ImqBoolean sync);
Sets the syncpoint participation value. If sync is TRUE, the options are altered to include
MQPMO_SYNCPOINT, and to exclude MQPMO_NO_SYNCPOINT. If sync is FALSE, the options are
altered to include MQPMO_NO_SYNCPOINT, and to exclude MQPMO_SYNCPOINT.

Object data (protected)
MQPMO omqpmo

The MQPMO data structure.

Reason codes
• MQRC_STORAGE_NOT_AVAILABLE

Developing applications reference 1841

ImqQueue C++ class
This class encapsulates a message queue (an IBM MQ object of type MQOT_Q).

Figure 32. ImqQueue class

This class relates to the MQI calls listed in Table 863 on page 1781.

• “Object attributes” on page 1842
• “Constructors” on page 1845
• “Object methods (public)” on page 1845
• “Object methods (protected)” on page 1851
• “Reason codes” on page 1851

Object attributes
backout requeue name

Excessive backout requeue name. This attribute is read-only.
backout threshold

Backout threshold. This attribute is read-only.
base queue name

Name of the queue that the alias resolves to. This attribute is read-only.
cluster name

Cluster name. This attribute is read-only.
cluster namelist name

Cluster namelist name. This attribute is read-only.
cluster workload rank

Cluster workload rank. This attribute is read-only.
cluster workload priority

Cluster workload priority. This attribute is read-only.
cluster workload use queue

Cluster workload use queue value. This attribute is read-only.
creation date

Queue creation data. This attribute is read-only.

1842 IBM MQ Developing Applications Reference

creation time
Queue creation time. This attribute is read-only.

current depth
Number of messages on the queue. This attribute is read-only.

default bind
Default bind. This attribute is read-only.

default input open option
Default open-for-input option. This attribute is read-only.

default persistence
Default message persistence. This attribute is read-only.

default priority
Default message priority. This attribute is read-only.

definition type
Queue definition type. This attribute is read-only.

depth high event
Control attribute for queue depth high events. This attribute is read-only.

depth high limit
High limit for the queue depth. This attribute is read-only.

depth low event
Control attribute for queue depth low events. This attribute is read-only.

depth low limit
Low limit for the queue depth. This attribute is read-only.

depth maximum event
Control attribute for queue depth maximum events. This attribute is read-only.

distribution list reference
Optional reference to an ImqDistributionList that can be used to distribute messages to more than
one queue, including this one. The initial value is null.

Note: When an ImqQueue object is opened, any open ImqDistributionList object that it references is
automatically closed.

distribution lists
The capability of a transmission queue to support distribution lists. This attribute is read-only.

dynamic queue name
Dynamic queue name. The initial value is AMQ.* for all AIX, Linux, and Windows platforms.

harden get backout
Whether to harden the backout count. This attribute is read-only.

index type
Index type. This attribute is read-only.

inhibit get
Whether get operations are allowed. The initial value is dependent on the queue definition. This
attribute is valid for an alias or local queue only.

inhibit put
Whether put operations are allowed. The initial value is dependent on the queue definition.

initiation queue name
Name of the initiation queue. This attribute is read-only.

maximum depth
Maximum number of messages allowed on the queue. This attribute is read-only.

maximum message length
Maximum length for any message on this queue, which can be less than the maximum for any queue
managed by the associated queue manager. This attribute is read-only.

Developing applications reference 1843

message delivery sequence
Whether message priority is relevant. This attribute is read-only.

next distributed queue
Next object of this class, in no particular order, having the same distribution list reference as this
object. The initial value is zero.

If an object in a chain is deleted, the previous object and next object are updated so that their
distributed queue links no longer point to the deleted object.

non-persistent message class
Level of reliability for non-persistent messages put to this queue. This attribute is read-only.

open input count
Number of ImqQueue objects that are open for input. This attribute is read-only.

open output count
Number of ImqQueue objects that are open for output. This attribute is read-only.

previous distributed queue
Previous object of this class, in no particular order, having the same distribution list reference as this
object. The initial value is zero.

If an object in a chain is deleted, the previous object and next object are updated so that their
distributed queue links no longer point to the deleted object.

process name
Name of the process definition. This attribute is read-only.

queue accounting
Level of accounting information for queues. This attribute is read-only.

queue-manager-name
Name of the queue manager (possibly remote) where the queue resides. Do not confuse the queue
manager named here with the ImqObject connection reference, which references the (local) queue
manager providing a connection. The initial value is null.

queue monitoring
Level of monitoring data collection for the queue. This attribute is read-only.

queue statistics
Level of statistics data for the queue. This attribute is read-only.

queue type
Queue type. This attribute is read-only.

remote queue manager name
Name of the remote queue manager. This attribute is read-only.

remote queue name
Name of the remote queue as known on the remote queue manager. This attribute is read-only.

resolved queue manager name
Resolved queue manager name. This attribute is read-only.

resolved queue name
Resolved queue name. This attribute is read-only.

retention interval
Queue retention interval. This attribute is read-only.

scope
Scope of the queue definition. This attribute is read-only.

service interval
Service interval. This attribute is read-only.

service interval event
Control attribute for service interval events. This attribute is read-only.

shareability
Whether the queue can be shared. This attribute is read-only.

1844 IBM MQ Developing Applications Reference

storage class
Storage class. This attribute is read-only.

transmission queue name
Name of the transmission queue. This attribute is read-only.

trigger control
Trigger control. The initial value depends on the queue definition. This attribute is valid for a local
queue only.

trigger data
Trigger data. The initial value depends on the queue definition. This attribute is valid for a local queue
only.

trigger depth
Trigger depth. The initial value depends on the queue definition. This attribute is valid for a local
queue only.

trigger message priority
Threshold message priority for triggers. The initial value depends on the queue definition. This
attribute is valid for a local queue only.

trigger type
Trigger type. The initial value depends on the queue definition. This attribute is valid for a local queue
only.

usage
Usage. This attribute is read-only.

Constructors
ImqQueue();

The default constructor.
ImqQueue(const ImqQueue & queue);

The copy constructor. The ImqObject open status will be FALSE.
ImqQueue(const char * name);

Sets the ImqObject name.

Object methods (public)
void operator = (const ImqQueue & queue);

Performs a close if necessary, and then copies instance data from queue. The ImqObject open status
will be FALSE.

ImqBoolean backoutRequeueName (ImqString & name);
Provides a copy of the backout requeue name. It returns TRUE if successful.

ImqString backoutRequeueName ();
Returns the backout requeue name without any indication of possible errors.

ImqBoolean backoutThreshold (MQLONG & threshold);
Provides a copy of the backout threshold. It returns TRUE if successful.

MQLONG backoutThreshold ();
Returns the backout threshold value without any indication of possible errors.

ImqBoolean baseQueueName (ImqString & name);
Provides a copy of the base queue name. It returns TRUE if successful.

ImqString baseQueueName ();
Returns the base queue name without any indication of possible errors.

ImqBoolean clusterName(ImqString & name);
Provides a copy of the cluster name. It returns TRUE if successful.

ImqString clusterName();
Returns the cluster name without any indication of possible errors.

Developing applications reference 1845

ImqBoolean clusterNamelistName(ImqString & name);
Provides a copy of the cluster namelist name. It returns TRUE if successful.

ImqString clusterNamelistName();
Returns the cluster namelist name without any indication of errors.

ImqBoolean clusterWorkLoadPriority (MQLONG & priority);
Provides a copy of the cluster workload priority value. It returns TRUE if successful.

MQLONG clusterWorkLoadPriority ();
Returns the cluster workload priority value without any indication of possible errors.

ImqBoolean clusterWorkLoadRank (MQLONG & rank);
Provides a copy of the cluster workload rank value. It returns TRUE if successful.

MQLONG clusterWorkLoadRank ();
Returns the cluster workload rank value without any indication of possible errors.

ImqBoolean clusterWorkLoadUseQ (MQLONG & useq);
Provides a copy of the cluster workload use queue value. It returns TRUE if successful.

MQLONG clusterWorkLoadUseQ ();
Returns the cluster workload use queue value without any indication of possible errors.

ImqBoolean creationDate (ImqString & date);
Provides a copy of the creation date. It returns TRUE if successful.

ImqString creationDate ();
Returns the creation date without any indication of possible errors.

ImqBoolean creationTime (ImqString & time);
Provides a copy of the creation time. It returns TRUE if successful.

ImqString creationTime ();
Returns the creation time without any indication of possible errors.

ImqBoolean currentDepth (MQLONG & depth);
Provides a copy of the current depth. It returns TRUE if successful.

MQLONG currentDepth ();
Returns the current depth without any indication of possible errors.

ImqBoolean defaultInputOpenOption (MQLONG & option);
Provides a copy of the default input open option. It returns TRUE if successful.

MQLONG defaultInputOpenOption ();
Returns the default input open option without any indication of possible errors.

ImqBoolean defaultPersistence (MQLONG & persistence);
Provides a copy of the default persistence. It returns TRUE if successful.

MQLONG defaultPersistence ();
Returns the default persistence without any indication of possible errors.

ImqBoolean defaultPriority (MQLONG & priority);
Provides a copy of the default priority. It returns TRUE if successful.

MQLONG defaultPriority ();
Returns the default priority without any indication of possible errors.

ImqBoolean defaultBind (MQLONG & bind);
Provides a copy of the default bind. It returns TRUE if successful.

MQLONG defaultBind ();
Returns the default bind without any indication of possible errors.

ImqBoolean definitionType (MQLONG & type);
Provides a copy of the definition type. It returns TRUE if successful.

MQLONG definitionType ();
Returns the definition type without any indication of possible errors.

ImqBoolean depthHighEvent (MQLONG & event);
Provides a copy of the enablement state of the depth high event. It returns TRUE if successful.

1846 IBM MQ Developing Applications Reference

MQLONG depthHighEvent ();
Returns the enablement state of the depth high event without any indication of possible errors.

ImqBoolean depthHighLimit (MQLONG & limit);
Provides a copy of the depth high limit. It returns TRUE if successful.

MQLONG depthHighLimit ();
Returns the depth high limit value without any indication of possible errors.

ImqBoolean depthLowEvent (MQLONG & event);
Provides a copy of the enablement state of the depth low event. It returns TRUE if successful.

MQLONG depthLowEvent ();
Returns the enablement state of the depth low event without any indication of possible errors.

ImqBoolean depthLowLimit (MQLONG & limit);
Provides a copy of the depth low limit. It returns TRUE if successful.

MQLONG depthLowLimit ();
Returns the depth low limit value without any indication of possible errors.

ImqBoolean depthMaximumEvent (MQLONG & event);
Provides a copy of the enablement state of the depth maximum event. It returns TRUE if successful.

MQLONG depthMaximumEvent ();
Returns the enablement state of the depth maximum event without any indication of possible errors.

ImqDistributionList * distributionListReference () const ;
Returns the distribution list reference.

void setDistributionListReference (ImqDistributionList & list);
Sets the distribution list reference.

void setDistributionListReference (ImqDistributionList * list = 0);
Sets the distribution list reference.

ImqBoolean distributionLists (MQLONG & support);
Provides a copy of the distribution lists value. It returns TRUE if successful.

MQLONG distributionLists ();
Returns the distribution lists value without any indication of possible errors.

ImqBoolean setDistributionLists (const MQLONG support);
Sets the distribution lists value. It returns TRUE if successful.

ImqString dynamicQueueName () const ;
Returns a copy of the dynamic queue name.

ImqBoolean setDynamicQueueName (const char * name);
Sets the dynamic queue name. The dynamic queue name can be set only while the ImqObject open
status is FALSE. It returns TRUE if successful.

ImqBoolean get (ImqMessage & msg, ImqGetMessageOptions & options);
Retrieves a message from the queue, using the specified options. Invokes the ImqObject openFor
method if necessary to ensure that the ImqObject open options include either one of the
MQOO_INPUT_* values, or the MQOO_BROWSE value, depending on the options. If the msg object
has an ImqCache automatic buffer, the buffer grows to accommodate any message retrieved. The
clearMessage method is invoked against the msg object before retrieval.

This method returns TRUE if successful.

Note: The result of the method invocation is FALSE if the ImqObject reason code is
MQRC_TRUNCATED_MSG_FAILED, even though this reason code is classified as a warning. If a
truncated message is accepted, the ImqCache message length reflects the truncated length. In
either event, the ImqMessage total message length indicates the number of bytes that were
available.

ImqBoolean get (ImqMessage & msg);
As for the previous method, except that default get message options are used.

Developing applications reference 1847

ImqBoolean get (ImqMessage & msg, ImqGetMessageOptions & options, const size_t buffer-size);
As for the previous two methods, except that an overriding buffer-size is indicated. If the msg object
employs an ImqCache automatic buffer, the resizeBuffer method is invoked on the msg object prior
to message retrieval, and the buffer does not grow further to accommodate any larger message.

ImqBoolean get (ImqMessage & msg, const size_t buffer-size);
As for the previous method, except that default get message options are used.

ImqBoolean hardenGetBackout (MQLONG & harden);
Provides a copy of the harden get backout value. It returns TRUE if successful.

MQLONG hardenGetBackout ();
Returns the harden get backout value without any indication of possible errors.

ImqBoolean indexType(MQLONG & type);
Provides a copy of the index type. It returns TRUE if successful.

MQLONG indexType();
Returns the index type without any indication of possible errors.

ImqBoolean inhibitGet (MQLONG & inhibit);
Provides a copy of the inhibit get value. It returns TRUE if successful.

MQLONG inhibitGet ();
Returns the inhibit get value without any indication of possible errors.

ImqBoolean setInhibitGet (const MQLONG inhibit);
Sets the inhibit get value. It returns TRUE if successful.

ImqBoolean inhibitPut (MQLONG & inhibit);
Provides a copy of the inhibit put value. It returns TRUE if successful.

MQLONG inhibitPut ();
Returns the inhibit put value without any indication of possible errors.

ImqBoolean setInhibitPut (const MQLONG inhibit);
Sets the inhibit put value. It returns TRUE if successful.

ImqBoolean initiationQueueName (ImqString & name);
Provides a copy of the initiation queue name. It returns TRUE if successful.

ImqString initiationQueueName ();
Returns the initiation queue name without any indication of possible errors.

ImqBoolean maximumDepth (MQLONG & depth);
Provides a copy of the maximum depth. It returns TRUE if successful.

MQLONG maximumDepth ();
Returns the maximum depth without any indication of possible errors.

ImqBoolean maximumMessageLength (MQLONG & length);
Provides a copy of the maximum message length. It returns TRUE if successful.

MQLONG maximumMessageLength ();
Returns the maximum message length without any indication of possible errors.

ImqBoolean messageDeliverySequence (MQLONG & sequence);
Provides a copy of the message delivery sequence. It returns TRUE if successful.

MQLONG messageDeliverySequence ();
Returns the message delivery sequence value without any indication of possible errors.

ImqQueue * nextDistributedQueue () const ;
Returns the next distributed queue.

ImqBoolean nonPersistentMessageClass (MQLONG & monq);
Provides a copy of the non persistent message class value. It returns TRUE if successful.

MQLONG nonPersistentMessageClass ();
Returns the non persistent message class value without any indication of possible errors.

ImqBoolean openInputCount (MQLONG & count);
Provides a copy of the open input count. It returns TRUE if successful.

1848 IBM MQ Developing Applications Reference

MQLONG openInputCount ();
Returns the open input count without any indication of possible errors.

ImqBoolean openOutputCount (MQLONG & count);
Provides a copy of the open output count. It returns TRUE if successful.

MQLONG openOutputCount ();
Returns the open output count without any indication of possible errors.

ImqQueue * previousDistributedQueue () const ;
Returns the previous distributed queue.

ImqBoolean processName (ImqString & name);
Provides a copy of the process name. It returns TRUE if successful.

ImqString processName ();
Returns the process name without any indication of possible errors.

ImqBoolean put (ImqMessage & msg);
Places a message onto the queue, using default put message options. Uses the ImqObject openFor
method if necessary to ensure that the ImqObject open options include MQOO_OUTPUT.

This method returns TRUE if successful.

ImqBoolean put (ImqMessage & msg, ImqPutMessageOptions & pmo);
Places a message onto the queue, using the specified pmo. Uses the ImqObject
openFor method as necessary to ensure that the ImqObject open options include
MQOO_OUTPUT, and (if the pmo options include any of MQPMO_PASS_IDENTITY_CONTEXT,
MQPMO_PASS_ALL_CONTEXT, MQPMO_SET_IDENTITY_CONTEXT, or MQPMO_SET_ALL_CONTEXT)
corresponding MQOO_*_CONTEXT values.

This method returns TRUE if successful.

Note: If the pmo includes a context reference, the referenced object is opened, if necessary, to
provide a context.

ImqBoolean queueAccounting (MQLONG & acctq);
Provides a copy of the queue accounting value. It returns TRUE if successful.

MQLONG queueAccounting ();
Returns the queue accounting value without any indication of possible errors.

ImqString queueManagerName () const ;
Returns the queue manager name.

ImqBoolean setQueueManagerName (const char * name);
Sets the queue manager name. The queue manager name can be set only while the ImqObject open
status is FALSE. This method returns TRUE if successful.

ImqBoolean queueMonitoring (MQLONG & monq);
Provides a copy of the queue monitoring value. It returns TRUE if successful.

MQLONG queueMonitoring ();
Returns the queue monitoring value without any indication of possible errors.

ImqBoolean queueStatistics (MQLONG & statq);
Provides a copy of the queue statistics value. It returns TRUE if successful.

MQLONG queueStatistics ();
Returns the queue statistics value without any indication of possible errors.

ImqBoolean queueType (MQLONG & type);
Provides a copy of the queue type value. It returns TRUE if successful.

MQLONG queueType ();
Returns the queue type without any indication of possible errors.

ImqBoolean remoteQueueManagerName (ImqString & name);
Provides a copy of the remote queue manager name. It returns TRUE if successful.

Developing applications reference 1849

ImqString remoteQueueManagerName ();
Returns the remote queue manager name without any indication of possible errors.

ImqBoolean remoteQueueName (ImqString & name);
Provides a copy of the remote queue name. It returns TRUE if successful.

ImqString remoteQueueName ();
Returns the remote queue name without any indication of possible errors.

ImqBoolean resolvedQueueManagerName(ImqString & name);
Provides a copy of the resolved queue manager name. It returns TRUE if successful.

Note: This method fails unless MQOO_RESOLVE_NAMES is among the ImqObject open options.

ImqString resolvedQueueManagerName() ;
Returns the resolved queue manager name, without any indication of possible errors.

ImqBoolean resolvedQueueName(ImqString & name);
Provides a copy of the resolved queue name. It returns TRUE if successful.

Note: This method fails unless MQOO_RESOLVE_NAMES is among the ImqObject open options.

ImqString resolvedQueueName() ;
Returns the resolved queue name, without any indication of possible errors.

ImqBoolean retentionInterval (MQLONG & interval);
Provides a copy of the retention interval. It returns TRUE if successful.

MQLONG retentionInterval ();
Returns the retention interval without any indication of possible errors.

ImqBoolean scope (MQLONG & scope);
Provides a copy of the scope. It returns TRUE if successful.

MQLONG scope ();
Returns the scope without any indication of possible errors.

ImqBoolean serviceInterval (MQLONG & interval);
Provides a copy of the service interval. It returns TRUE if successful.

MQLONG serviceInterval ();
Returns the service interval without any indication of possible errors.

ImqBoolean serviceIntervalEvent (MQLONG & event);
Provides a copy of the enablement state of the service interval event. It returns TRUE if successful.

MQLONG serviceIntervalEvent ();
Returns the enablement state of the service interval event without any indication of possible errors.

ImqBoolean shareability (MQLONG & shareability);
Provides a copy of the shareability value. It returns TRUE if successful.

MQLONG shareability ();
Returns the shareability value without any indication of possible errors.

ImqBoolean storageClass(ImqString & class);
Provides a copy of the storage class. It returns TRUE if successful.

ImqString storageClass();
Returns the storage class without any indication of possible errors.

ImqBoolean transmissionQueueName (ImqString & name);
Provides a copy of the transmission queue name. It returns TRUE if successful.

ImqString transmissionQueueName ();
Returns the transmission queue name without any indication of possible errors.

ImqBoolean triggerControl (MQLONG & control);
Provides a copy of the trigger control value. It returns TRUE if successful.

MQLONG triggerControl ();
Returns the trigger control value without any indication of possible errors.

1850 IBM MQ Developing Applications Reference

ImqBoolean setTriggerControl (const MQLONG control);
Sets the trigger control value. It returns TRUE if successful.

ImqBoolean triggerData (ImqString & data);
Provides a copy of the trigger data. It returns TRUE if successful.

ImqString triggerData ();
Returns a copy of the trigger data without any indication of possible errors.

ImqBoolean setTriggerData (const char * data);
Sets the trigger data. It returns TRUE if successful.

ImqBoolean triggerDepth (MQLONG & depth);
Provides a copy of the trigger depth. It returns TRUE if successful.

MQLONG triggerDepth ();
Returns the trigger depth without any indication of possible errors.

ImqBoolean setTriggerDepth (const MQLONG depth);
Sets the trigger depth. It returns TRUE if successful.

ImqBoolean triggerMessagePriority (MQLONG & priority);
Provides a copy of the trigger message priority. It returns TRUE if successful.

MQLONG triggerMessagePriority ();
Returns the trigger message priority without any indication of possible errors.

ImqBoolean setTriggerMessagePriority (const MQLONG priority);
Sets the trigger message priority. It returns TRUE if successful.

ImqBoolean triggerType (MQLONG & type);
Provides a copy of the trigger type. It returns TRUE if successful.

MQLONG triggerType ();
Returns the trigger type without any indication of possible errors.

ImqBoolean setTriggerType (const MQLONG type);
Sets the trigger type. It returns TRUE if successful.

ImqBoolean usage (MQLONG & usage);
Provides a copy of the usage value. It returns TRUE if successful.

MQLONG usage ();
Returns the usage value without any indication of possible errors.

Object methods (protected)
void setNextDistributedQueue (ImqQueue * queue = 0);

Sets the next distributed queue.

Attention: Use this function only if you are sure it will not break the distributed queue list.

void setPreviousDistributedQueue (ImqQueue * queue = 0);
Sets the previous distributed queue.

Attention: Use this function only if you are sure it will not break the distributed queue list.

Reason codes
• MQRC_ATTRIBUTE_LOCKED
• MQRC_CONTEXT_OBJECT_NOT_VALID
• MQRC_CONTEXT_OPEN_ERROR
• MQRC_CURSOR_NOT_VALID
• MQRC_NO_BUFFER
• MQRC_REOPEN_EXCL_INPUT_ERROR
• MQRC_REOPEN_INQUIRE_ERROR

Developing applications reference 1851

• MQRC_REOPEN_TEMPORARY_Q_ERROR
• (reason codes from MQGET)
• (reason codes from MQPUT)

ImqQueueManager C++ class
This class encapsulates a queue manager (an IBM MQ object of type MQOT_Q_MGR).

Figure 33. ImqQueueManager class

This class relates to the MQI calls listed in “ImqQueueManager cross-reference” on page 1784. Not all
the listed methods are applicable to all platforms; see ALTER QMGR for more details.

• “Class attributes” on page 1852
• “Object attributes” on page 1853
• “Constructors” on page 1858
• “Destructors” on page 1858
• “Class methods (public)” on page 1858
• “Object methods (public)” on page 1858
• “Object methods (protected)” on page 1867
• “Object data (protected)” on page 1867
• “Reason codes” on page 1867

Class attributes
behavior

Controls the behavior of implicit connection and disconnection.
IMQ_EXPL_DISC_BACKOUT (0L)

An explicit call to the disconnect method implies backout. This attribute is mutually exclusive with
IMQ_EXPL_DISC_COMMIT.

IMQ_EXPL_DISC_COMMIT (1L)
An explicit call to the disconnect method implies commit (the default). This attribute is mutually
exclusive with IMQ_EXPL_DISC_BACKOUT.

1852 IBM MQ Developing Applications Reference

IMQ_IMPL_CONN (2L)
Implicit connection is allowed (the default).

IMQ_IMPL_DISC_BACKOUT (0L)
An implicit call to the disconnect method, which can occur during object destruction, implies
backout. This attribute is mutually exclusive with the IMQ_IMPL_DISC_COMMIT.

IMQ_IMPL_DISC_COMMIT (4L)
An implicit call to the disconnect method, which can occur during object destruction, implies
commit (the default). This attribute is mutually exclusive with IMQ_IMPL_DISC_BACKOUT.

At IBM MQ V7.0 and above, C++ applications that make use of an implicit connection, need to specify
IMQ_IMPL_CONN along with any other options provided in the setBehavior() method on an object of
class ImqQueueManager. If your application does not use the setBehavior() method to explicitly set
the behavior options, for example,

ImqQueueManager_object.setBehavior(IMQ_IMPL_DISC_COMMIT)

this change does not affect you since MQ_IMPL_CONN is enabled by default.

If your application explicitly sets the behavior options, for example,

ImqQueueManager_object.setBehavior(IMQ_IMPL_DISC_COMMIT)

you need to include IMQ_IMPL_CONN in the setBehavior() method as follows, to allow your
application to complete an implicit connection:

ImqQueueManager_object.setBehavior(IMQ_IMPL_CONN | IMQ_IMPL_DISC_COMMIT)

Object attributes
accounting connections override

Allows applications to override the setting of the MQI accounting and queue accounting values.This
attribute is read-only.

accounting interval
How long before intermediate accounting records are written (in seconds). This attribute is read-only.

activity recording
Controls the generation of activity reports. This attribute is read-only.

adopt new mca check
The elements checked to determine if an MCA should be adopted when a new inbound channel is
detected that has the same name as an MCA that is already active. This attribute is read-only.

adopt new mca type
Whether an orphaned instance of an MCA of a particular channel type should be restarted
automatically when a new inbound channel request matching the adopt new mca check parameters is
detected. This attribute is read-only.

authentication type
Indicates the type of authentication which is being performed.

authority event
Controls authority events. This attribute is read-only.

begin options
Options that apply to the begin method. The initial value is MQBO_NONE.

bridge event
Whether IMS bridge events are generated. This attribute is read-only.

channel auto definition
Channel auto definition value. This attribute is read-only.

Developing applications reference 1853

channel auto definition event
Channel auto definition event value. This attribute is read-only.

channel auto definition exit
Channel auto definition exit name. This attribute is read-only.

channel event
Whether channel events are generated. This attribute is read-only.

channel initiator adapters
The number of adapter subtasks to use for processing IBM MQ calls. This attribute is read-only.

channel initiator control
Whether the Channel Initiator should be started automatically when the Queue Manager is started.
This attribute is read-only.

channel initiator dispatchers
The number of dispatchers to use for the channel initiator. This attribute is read-only.

channel initiator trace autostart
Whether channel initiator trace should start automatically or not. This attribute is read-only.

channel initiator trace table size
The size of the channel initiator's trace data space (in MB). This attribute is read-only.

channel monitoring
Controls the collection of online monitoring data for channels. This attribute is read-only.

channel reference
A reference to a channel definition for use during client connection. While connected, this attribute
can be set to null, but cannot be changed to any other value. The initial value is null.

channel statistics
Controls the collection of statistics data for channels. This attribute is read-only.

character set
Coded character set identifier (CCSID). This attribute is read-only.

cluster sender monitoring
Controls the collection of online monitoring data for automatically-defined cluster sender channels.
This attribute is read-only.

cluster sender statistics
Controls the collection of statistics data for automatically defined cluster sender channels. This
attribute is read-only.

cluster workload data
Cluster workload exit data. This attribute is read-only.

cluster workload exit
Cluster workload exit name. This attribute is read-only.

cluster workload length
Cluster workload length. This attribute is read-only.

cluster workload mru
Cluster workload most recently used channels value. This attribute is read-only.

cluster workload use queue
Cluster workload use queue value. This attribute is read-only.

command event
Whether command events are generated. This attribute is read-only.

command input queue name
System command input queue name. This attribute is read-only.

command level
Command level supported by the queue manager. This attribute is read-only.

1854 IBM MQ Developing Applications Reference

command server control
Whether the Command Server should be started automatically when the Queue Manager is started.
This attribute is read-only.

connect options
Options that apply to the connect method. The initial value is MQCNO_NONE. The following additional
values may be possible, depending on platform:

• MQCNO_STANDARD_BINDING
• MQCNO_FASTPATH_BINDING
• MQCNO_HANDLE_SHARE_NONE
• MQCNO_HANDLE_SHARE_BLOCK
• MQCNO_HANDLE_SHARE_NO_BLOCK
• MQCNO_SERIALIZE_CONN_TAG_Q_MGR
• MQCNO_SERIALIZE_CONN_TAG_QSG
• MQCNO_RESTRICT_CONN_TAG_Q_MGR
• MQCNO_RESTRICT_CONN_TAG_QSG

connection id
A unique identifier that allows MQ to reliably identify an application.

connection status
TRUE when connected to the queue manager. This attribute is read-only.

connection tag
A tag to be associated with a connection. This attribute can only be set when not connected. The
initial value is null.

cryptographic hardware
Configuration details for cryptographic hardware. For MQ MQI client connections.

dead-letter queue name
Name of the dead-letter queue. This attribute is read-only.

default transmission queue name
Default transmission queue name. This attribute is read-only.

distribution lists
Capability of the queue manager to support distribution lists.

dns group
The name of the group that the TCP listener that handles inbound transmissions for the queue
sharing group should join when using Workload Manager Dynamic Domain Name Services support.
This attribute is read-only.

dns wlm
Whether the TCP listener that handles inbound transmissions for the queue sharing group should
register with Workload Manager for Dynamic Domain Name Services. This attribute is read-only.

first authentication record
The first of one or more objects of class ImqAuthenticationRecord, in no particular order, in
which the ImqAuthenticationRecord connection reference addresses this object. For MQ MQI client
connections.

first managed object
The first of one or more objects of class ImqObject, in no particular order, in which the ImqObject
connection reference addresses this object. The initial value is zero.

inhibit event
Controls inhibit events. This attribute is read-only.

ip address version
Which IP protocol (IPv4 or IPv6) to use for a channel connection. This attribute is read-only.

Developing applications reference 1855

key repository
Location of the key database file in which keys and certificates are stored. For IBM MQ MQI client
connections.

key reset count
The number of unencrypted bytes sent and received within a TLS conversation before the secret key is
renegotiated. This attribute applies only to client connections using MQCONNX. See also ssl key reset
count.

listener timer
The time interval (in seconds) between attempts by IBM MQ to restart the listener if there has been an
APPC or TCP/IP failure. This attribute is read-only.

local event
Controls local events. This attribute is read-only.

logger event
Controls whether recovery log events are generated. This attribute is read-only.

lu group name
The generic LU name that the LU 6.2 listener that handles inbound transmissions for the queue
sharing group should use. This attribute is read-only.

lu name
The name of the LU to use for outbound LU 6.2 transmissions. This attribute is read-only.

lu62 arm suffix
The suffix of the SYS1.PARMLIB member APPCPMxx, that nominates the LUADD for this channel
initiator. This attribute is read-only.

lu62 channels
The maximum number of channels that can be current or clients that can be connected, that use the
LU 6.2 transmission protocol. This attribute is read-only.

maximum active channels
The maximum number of channels that can be active at any time. This attribute is read-only.

maximum channels
The maximum number of channels that can be current (including server-connection channels with
connected clients). This attribute is read-only.

maximum handles
Maximum number of handles. This attribute is read-only.

maximum message length
Maximum possible length for any message on any queue managed by this queue manager. This
attribute is read-only.

maximum priority
Maximum message priority. This attribute is read-only.

maximum uncommitted messages
Maximum number of uncommitted messages within a unit or work. This attribute is read-only.

mqi accounting
Controls the collection of accounting information for MQI data. This attribute is read-only.

mqi statistics
Controls the collection of statistics monitoring information for the queue manager. This attribute is
read-only.

outbound port maximum
The higher end of the range of port numbers to be used when binding outgoing channels. This
attribute is read-only.

outbound port minimum
The lower end of the range of port numbers to be used when binding outgoing channels. This attribute
is read-only.

1856 IBM MQ Developing Applications Reference

password
password associated with user ID

performance event
Controls performance events. This attribute is read-only.

platform
Platform on which the queue manager resides. This attribute is read-only.

queue accounting
Controls the collection of accounting information for queues. This attribute is read-only.

queue monitoring
Controls the collection of online monitoring data for queues. This attribute is read-only.

queue statistics
Controls the collection of statistics data for queues. This attribute is read-only.

receive timeout
Approximately how long a TCP/IP message channel will wait to receive data, including heartbeats,
from its partner, before returning to the inactive state. This attribute is read-only.

receive timeout minimum
The minimum time that a TCP/IP channel will wait to receive data, including heartbeats, from its
partner, before returning to the inactive state. This attribute is read-only.

receive timeout type
A qualifier applied to receive timeout. This attribute is read-only.

remote event
Controls remote events. This attribute is read-only.

repository name
Repository name. This attribute is read-only.

repository namelist
Repository namelist name. This attribute is read-only.

shared queue manager name
Whether MQOPENs of a shared queue where the ObjectQMgrName is another queue manager in the
queue sharing group should resolve to an open of the shared queue on the local queue manager. This
attribute is read-only.

ssl event
Whether SSL events are generated. This attribute is read-only.

ssl FIPS required
Whether only FIPS-certified algorithms should be used if the cryptography is executed in IBM MQ
software. This attribute is read-only.

ssl key reset count
The number of unencrypted bytes sent and received within an SSL conversation before the secret key
is renegotiated. This attribute is read-only.

start-stop event
Controls start-stop events. This attribute is read-only.

statistics interval
How often statistics monitoring data is written to the monitoring queue. This attribute is read-only.

syncpoint availability
Availability of syncpoint participation. This attribute is read-only.

Note: Queue manager-coordinated global units of work are not supported on the IBM i platform.

You can program a unit of work, externally coordinated by IBM i, using the _Rcommit
and _Rback native system calls. Start this type of unit of work by starting the IBM MQ application
under job-level commitment control using the STRCMTCTL command. See Interfaces to the IBM i
external syncpoint manager for further details. Backout and commit are supported on the IBM i
platform for local units of work coordinated by a queue manager.

Developing applications reference 1857

tcp channels
The maximum number of channels that can be current or clients that can be connected, that use the
TCP/IP transmission protocol. This attribute is read-only.

tcp keepalive
Whether the TCP KEEPALIVE facility is to be used to check that the other end of the connection is still
available. This attribute is read-only.

tcp name
The name of either the sole or default TCP/IP system to be used, depending on the value of tcp stack
type. This attribute is read-only.

tcp stack type
Whether the channel initiator is permitted to only use the TCP/IP address space specified in tcp name
or can bind to any selected TCP/IP address. This attribute is read-only.

trace route recording
Controls the recording of route tracing information. This attribute is read-only.

trigger interval
Trigger interval. This attribute is read-only.

user id
On AIX and Linux platforms, the application's real user ID. On Windows platforms, the application's
user ID.

Constructors
ImqQueueManager();

The default constructor.
ImqQueueManager(const ImqQueueManager & manager);

The copy constructor. The connection status will be FALSE.
ImqQueueManager(const char * name);

Sets the ImqObject name to name.

Destructors
When an ImqQueueManager object is destroyed, it is automatically disconnected.

Class methods (public)
static MQLONG behavior();

Returns the behavior.
void setBehavior(const MQLONG behavior = 0);

Sets the behavior.

Object methods (public)
void operator = (const ImqQueueManager & mgr);

Disconnects if necessary, and copies instance data from mgr. The connection status is be FALSE.
ImqBoolean accountingConnOverride (MQLONG & statint);

Provides a copy of the accounting connections override value. It returns TRUE if successful.
MQLONG accountingConnOverride ();

Returns the accounting connections override value without any indication of possible errors.
ImqBoolean accountingInterval (MQLONG & statint);

Provides a copy of the accounting interval value. It returns TRUE if successful.
MQLONG accountingInterval ();

Returns the accounting interval value without any indication of possible errors.

1858 IBM MQ Developing Applications Reference

ImqBoolean activityRecording (MQLONG & rec);
Provides a copy of the activity recording value. It returns TRUE if successful.

MQLONG activityRecording ();
Returns the activity recording value without any indication of possible errors.

ImqBoolean adoptNewMCACheck (MQLONG & check);
Provides a copy of the adopt new MCA check value. It returns TRUE if successful.

MQLONG adoptNewMCACheck ();
Returns the adopt new MCA check value without any indication of possible errors.

ImqBoolean adoptNewMCAType (MQLONG & type);
Provides a copy of the adopt new MCA type. It returns TRUE if successful.

MQLONG adoptNewMCAType ();
Returns the adopt new MCA type without any indication of possible errors.

QLONG authenticationType () const;
Returns the authentication type.

void setAuthenticationType (const MQLONG type = MQCSP_AUTH_NONE);
Sets the authentication type.

ImqBoolean authorityEvent(MQLONG & event);
Provides a copy of the enablement state of the authority event. It returns TRUE if successful.

MQLONG authorityEvent();
Returns the enablement state of the authority event without any indication of possible errors.

ImqBoolean backout();
Backs out uncommitted changes. It returns TRUE if successful.

ImqBoolean begin();
Begins a unit of work. The begin options affect the behavior of this method. It returns
TRUE if successful, but it also returns TRUE even if the underlying MQBEGIN call returns
MQRC_NO_EXTERNAL_PARTICIPANTS or MQRC_PARTICIPANT_NOT_AVAILABLE (which are both
associated with MQCC_WARNING).

MQLONG beginOptions() const ;
Returns the begin options.

void setBeginOptions(const MQLONG options = MQBO_NONE);
Sets the begin options.

ImqBoolean bridgeEvent (MQLONG & event);
Provides a copy of the bridge event value. It returns TRUE if successful.

MQLONG bridgeEvent ();
Returns the bridge event value without any indication of possible errors.

ImqBoolean channelAutoDefinition(MQLONG & value);
Provides a copy of the channel auto definition value. It returns TRUE if successful.

MQLONG channelAutoDefinition();
Returns the channel auto definition value without any indication of possible errors.

ImqBoolean channelAutoDefinitionEvent(MQLONG & value);
Provides a copy of the channel auto definition event value. It returns TRUE if successful.

MQLONG channelAutoDefinitionEvent();
Returns the channel auto definition event value without any indication of possible errors.

ImqBoolean channelAutoDefinitionExit(ImqString & name);
Provides a copy of the channel auto definition exit name. It returns TRUE if successful.

ImqString channelAutoDefinitionExit();
Returns the channel auto definition exit name without any indication of possible errors.

ImqBoolean channelEvent (MQLONG & event);
Provides a copy of the channel event value. It returns TRUE if successful.

Developing applications reference 1859

MQLONG channelEvent();
Returns the channel event value without any indication of possible errors.

MQLONG channelInitiatorAdapters ();
Returns the channel initiator adapters value without any indication of possible errors.

ImqBoolean channelInitiatorAdapters (MQLONG & adapters);
Provides a copy of the channel initiator adapters value. It returns TRUE if successful.

MQLONG channelInitiatorControl ();
Returns the channel initiator startup value without any indication of possible errors.

ImqBoolean channelInitiatorControl (MQLONG & init);
Provides a copy of the channel initiator control startup value. It returns TRUE if successful.

MQLONG channelInitiatorDispatchers ();
Returns the channel initiator dispatchers value without any indication of possible errors.

ImqBoolean channelInitiatorDispatchers (MQLONG & dispatchers);
Provides a copy of the channel initiator dispatchers value. It returns TRUE if successful.

MQLONG channelInitiatorTraceAutoStart ();
Returns the channel initiator trace auto start value without any indication of possible errors.

ImqBoolean channelInitiatorTraceAutoStart (MQLONG & auto);
Provides a copy of the channel initiator trace auto start value. It returns TRUE if successful.

MQLONG channelInitiatorTraceTableSize ();
Returns the channel initiator trace table size value without any indication of possible errors.

ImqBoolean channelInitiatorTraceTableSize (MQLONG & size);
Provides a copy of the channel initiator trace table size value. It returns TRUE if successful.

ImqBoolean channelMonitoring (MQLONG & monchl);
Provides a copy of the channel monitoring value. It returns TRUE if successful.

MQLONG channelMonitoring ();
Returns the channel monitoring value without any indication of possible errors.

ImqBoolean channelReference(ImqChannel * & pchannel);
Provides a copy of the channel reference. If the channel reference is invalid, sets pchannel to null.
This method returns TRUE if successful.

ImqChannel * channelReference();
Returns the channel reference without any indication of possible errors.

ImqBoolean setChannelReference(ImqChannel & channel);
Sets the channel reference. This method returns TRUE if successful.

ImqBoolean setChannelReference(ImqChannel * channel = 0);
Sets or resets the channel reference. This method returns TRUE if successful.

ImqBoolean channelStatistics (MQLONG & statchl);
Provides a copy of the channel statistics value. It returns TRUE if successful.

MQLONG channelStatistics ();
Returns the channel statistics value without any indication of possible errors.

ImqBoolean characterSet(MQLONG & ccsid);
Provides a copy of the character set. It returns TRUE if successful.

MQLONG characterSet();
Returns a copy of the character set, without any indication of possible errors.

MQLONG clientSslKeyResetCount () const;
Returns the SSL key reset count value used on client connections.

void setClientSslKeyResetCount(const MQLONG count);
Sets the SSL key reset count used on client connections.

ImqBoolean clusterSenderMonitoring (MQLONG & monacls);
Provides a copy of the cluster sender monitoring default value. It returns TRUE if successful.

1860 IBM MQ Developing Applications Reference

MQLONG clusterSenderMonitoring ();
Returns the cluster sender monitoring default value without any indication of possible errors.

ImqBoolean clusterSenderStatistics (MQLONG & statacls);
Provides a copy of the cluster sender statistics value. It returns TRUE if successful.

MQLONG clusterSenderStatistics ();
Returns the cluster sender statistics value without any indication of possible errors.

ImqBoolean clusterWorkloadData(ImqString & data);
Provides a copy of the cluster workload exit data. It returns TRUE if successful.

ImqString clusterWorkloadData();
Returns the cluster workload exit data without any indication of possible errors.

ImqBoolean clusterWorkloadExit(ImqString & name);
Provides a copy of the cluster workload exit name. It returns TRUE if successful.

ImqString clusterWorkloadExit();
Returns the cluster workload exit name without any indication of possible errors.

ImqBoolean clusterWorkloadLength(MQLONG & length);
Provides a copy of the cluster workload length. It returns TRUE if successful.

MQLONG clusterWorkloadLength();
Returns the cluster workload length without any indication of possible errors.

ImqBoolean clusterWorkLoadMRU (MQLONG & mru);
Provides a copy of the cluster workload most recently used channels value. It returns TRUE if
successful.

MQLONG clusterWorkLoadMRU ();
Returns the cluster workload most recently used channels value without any indication of possible
errors.

ImqBoolean clusterWorkLoadUseQ (MQLONG & useq);
Provides a copy of the cluster workload use queue value. It returns TRUE if successful.

MQLONG clusterWorkLoadUseQ ();
Returns the cluster workload use queue value without any indication of possible errors.

ImqBoolean commandEvent (MQLONG & event);
Provides a copy of the command event value. It returns TRUE if successful.

MQLONG commandEvent ();
Returns the command event value without any indication of possible errors.

ImqBoolean commandInputQueueName(ImqString & name);
Provides a copy of the command input queue name. It returns TRUE if successful.

ImqString commandInputQueueName();
Returns the command input queue name without any indication of possible errors.

ImqBoolean commandLevel(MQLONG & level);
Provides a copy of the command level. It returns TRUE if successful.

MQLONG commandLevel();
Returns the command level without any indication of possible errors.

MQLONG commandServerControl ();
Returns the command server startup value without any indication of possible errors.

ImqBoolean commandServerControl (MQLONG & server);
Provides a copy of the command server control startup value. It returns TRUE if successful.

ImqBoolean commit();
Commits uncommitted changes. It returns TRUE if successful.

ImqBoolean connect();
Connects to the queue manager with the given ImqObject name, the default being the local queue
manager. If you want to connect to a specific queue manager, use the ImqObject setName method
before connection. If there is a channel reference, it is used to pass information about the channel

Developing applications reference 1861

definition to MQCONNX in an MQCD. The ChannelType in the MQCD is set to MQCHT_CLNTCONN.
channel reference information, which is only meaningful for client connections, is ignored for server
connections. The connect options affect the behavior of this method. This method sets the connection
status to TRUE if successful. It returns the new connection status.

If there is a first authentication record, the chain of authentication records is used to authenticate
digital certificates for secure client channels.

You can connect more than one ImqQueueManager object to the same queue manager. All use
the same MQHCONN connection handle and share UOW functionality for the connection associated
with the thread. The first ImqQueueManager to connect obtains the MQHCONN handle. The last
ImqQueueManager to disconnect performs the MQDISC.

For a multithreaded program, it is recommended that a separate ImqQueueManager object is used for
each thread.

ImqBinary connectionId () const ;
Returns the connection ID.

ImqBinary connectionTag () const ;
Returns the connection tag.

ImqBoolean setConnectionTag (const MQBYTE128 tag = 0);
Sets the connection tag. If tag is zero, clears the connection tag. This method returns TRUE if
successful.

ImqBoolean setConnectionTag (const ImqBinary & tag);
Sets the connection tag. The data length of tag must be either zero (to clear the connection tag) or
MQ_CONN_TAG_LENGTH. This method returns TRUE if successful.

MQLONG connectOptions() const ;
Returns the connect options.

void setConnectOptions(const MQLONG options = MQCNO_NONE);
Sets the connect options.

ImqBoolean connectionStatus() const ;
Returns the connection status.

ImqString cryptographicHardware ();
Returns the cryptographic hardware.

ImqBoolean setCryptographicHardware (const char * hardware = 0);
Sets the cryptographic hardware. This method returns TRUE if successful.

ImqBoolean deadLetterQueueName(ImqString & name);
Provides a copy of the dead-letter queue name. It returns TRUE if successful.

ImqString deadLetterQueueName();
Returns a copy of the dead-letter queue name, without any indication of possible errors.

ImqBoolean defaultTransmissionQueueName(ImqString & name);
Provides a copy of the default transmission queue name. It returns TRUE if successful.

ImqString defaultTransmissionQueueName();
Returns the default transmission queue name without any indication of possible errors.

ImqBoolean disconnect();
Disconnects from the queue manager and sets the connection status to FALSE. Closes all ImqProcess
and ImqQueue objects associated with this object, and severs their connection reference before
disconnection. If more than one ImqQueueManager object is connected to the same queue manager,
only the last to disconnect performs a physical disconnection; others perform a logical disconnection.
Uncommitted changes are committed on physical disconnection only.

This method returns TRUE if successful. If it is called when there is no existing connection, the return
code is also true.

ImqBoolean distributionLists(MQLONG & support);
Provides a copy of the distribution lists value. It returns TRUE if successful.

1862 IBM MQ Developing Applications Reference

MQLONG distributionLists();
Returns the distribution lists value without any indication of possible errors.

ImqBoolean dnsGroup (ImqString & group);
Provides a copy of the DNS group name. It returns TRUE if successful.

ImqString dnsGroup ();
Returns the DNS group name without any indication of possible errors.

ImqBoolean dnsWlm (MQLONG & wlm);
Provides a copy of the DNS WLM value. It returns TRUE if successful.

MQLONG dnsWlm ();
Returns the DNS WLM value without any indication of possible errors.

ImqAuthenticationRecord * firstAuthenticationRecord () const ;
Returns the first authentication record.

void setFirstAuthenticationRecord (const ImqAuthenticationRecord * air = 0);
Sets the first authentication record.

ImqObject * firstManagedObject() const ;
Returns the first managed object.

ImqBoolean inhibitEvent(MQLONG & event);
Provides a copy of the enablement state of the inhibit event. It returns TRUE if successful.

MQLONG inhibitEvent();
Returns the enablement state of the inhibit event without any indication of possible errors.

ImqBoolean ipAddressVersion (MQLONG & version);
Provides a copy of the IP address version value. It returns TRUE if successful.

MQLONG ipAddressVersion ();
Returns the IP address version value without any indication of possible errors.

ImqBoolean keepAlive (MQLONG & keepalive);
Provides a copy of the keep alive value. It returns TRUE if successful.

MQLONG keepAlive ();
Returns the keep alive value without any indication of possible errors.

ImqString keyRepository ();
Returns the key repository.

ImqBoolean setKeyRepository (const char * repository = 0);
Sets the key repository. It returns TRUE if successful.

ImqBoolean listenerTimer (MQLONG & timer);
Provides a copy of the listener timer value. It returns TRUE if successful.

MQLONG listenerTimer ();
Returns the listener timer value without any indication of possible errors.

ImqBoolean localEvent(MQLONG & event);
Provides a copy of the enablement state of the local event. It returns TRUE if successful.

MQLONG localEvent();
Returns the enablement state of the local event without any indication of possible errors.

ImqBoolean loggerEvent (MQLONG & count);
Provides a copy of the logger event value. It returns TRUE if successful.

MQLONG loggerEvent ();
Returns the logger event value without any indication of possible errors.

ImqBoolean luGroupName (ImqString & name);.
Provides a copy of the LU group name. It returns TRUE if successful

ImqString luGroupName ();
Returns the LU group name without any indication of possible errors.

ImqBoolean lu62ARMSuffix (ImqString & suffix);
Provides a copy of the LU62 ARM suffix. It returns TRUE if successful.

Developing applications reference 1863

ImqString lu62ARMSuffix ();
Returns the LU62 ARM suffix without any indication of possible errors

ImqBoolean luName (ImqString & name);
Provides a copy of the LU name. It returns TRUE if successful.

ImqString luName ();
Returns the LU name without any indication of possible errors.

ImqBoolean maximumActiveChannels (MQLONG & channels);
Provides a copy of the maximum active channels value. It returns TRUE if successful.

MQLONG maximumActiveChannels ();
Returns the maximum active channels value without any indication of possible errors.

ImqBoolean maximumCurrentChannels (MQLONG & channels);
Provides a copy of the maximum current channels value. It returns TRUE if successful.

MQLONG maximumCurrentChannels ();
Returns the maximum current channels value without any indication of possible errors.

ImqBoolean maximumHandles(MQLONG & number);
Provides a copy of the maximum handles. It returns TRUE if successful.

MQLONG maximumHandles();
Returns the maximum handles without any indication of possible errors.

ImqBoolean maximumLu62Channels (MQLONG & channels);
Provides a copy of the maximum LU62 channels value. It returns TRUE if successful.

MQLONG maximumLu62Channels ();.
Returns the maximum LU62 channels value without any indication of possible errors

ImqBoolean maximumMessageLength(MQLONG & length);
Provides a copy of the maximum message length. It returns TRUE if successful.

MQLONG maximumMessageLength();
Returns the maximum message length without any indication of possible errors.

ImqBoolean maximumPriority(MQLONG & priority);
Provides a copy of the maximum priority. It returns TRUE if successful.

MQLONG maximumPriority();
Returns a copy of the maximum priority, without any indication of possible errors.

ImqBoolean maximumTcpChannels (MQLONG & channels);
Provides a copy of the maximum TCP channels value. It returns TRUE if successful.

MQLONG maximumTcpChannels ();
Returns the maximum TCP channels value without any indication of possible errors.

ImqBoolean maximumUncommittedMessages(MQLONG & number);
Provides a copy of the maximum uncommitted messages. It returns TRUE if successful.

MQLONG maximumUncommittedMessages();
Returns the maximum uncommitted messages without any indication of possible errors.

ImqBoolean mqiAccounting (MQLONG & statint);
Provides a copy of the MQI accounting value. It returns TRUE if successful.

MQLONG mqiAccounting ();
Returns the MQI accounting value without any indication of possible errors.

ImqBoolean mqiStatistics (MQLONG & statmqi);
Provides a copy of the MQI statistics value. It returns TRUE if successful.

MQLONG mqiStatistics ();
Returns the MQI statistics value without any indication of possible errors.

ImqBoolean outboundPortMax (MQLONG & max);
Provides a copy of the maximum outbound port value. It returns TRUE if successful.

MQLONG outboundPortMax ();
Returns the maximum outbound port value without any indication of possible errors.

1864 IBM MQ Developing Applications Reference

ImqBoolean outboundPortMin (MQLONG & min);
Provides a copy of the minimum outbound port value. It returns TRUE if successful.

MQLONG outboundPortMin ();
Returns the minimum outbound port value without any indication of possible errors.

ImqBinary password () const;
Returns the password used on client connections.

ImqBoolean setPassword (const ImqString & password);
Sets the password used on client connections.

ImqBoolean setPassword (const char * = 0 password);
Sets the password used on client connections.

ImqBoolean setPassword (const ImqBinary & password);
Sets the password used on client connections.

ImqBoolean performanceEvent(MQLONG & event);
Provides a copy of the enablement state of the performance event. It returns TRUE if successful.

MQLONG performanceEvent();
Returns the enablement state of the performance event without any indication of possible errors.

ImqBoolean platform(MQLONG & platform);
Provides a copy of the platform. It returns TRUE if successful.

MQLONG platform();
Returns the platform without any indication of possible errors.

ImqBoolean queueAccounting (MQLONG & acctq);
Provides a copy of the queue accounting value. It returns TRUE if successful.

MQLONG queueAccounting ();
Returns the queue accounting value without any indication of possible errors.

ImqBoolean queueMonitoring (MQLONG & monq);
Provides a copy of the queue monitoring value. It returns TRUE if successful.

MQLONG queueMonitoring ();
Returns the queue monitoring value without any indication of possible errors.

ImqBoolean queueStatistics (MQLONG & statq);
Provides a copy of the queue statistics value. It returns TRUE if successful.

MQLONG queueStatistics ();
Returns the queue statistics value without any indication of possible errors.

ImqBoolean receiveTimeout (MQLONG & timeout);
Provides a copy of the receive timeout value. It returns TRUE if successful.

MQLONG receiveTimeout ();
Returns the receive timeout value without any indication of possible errors.

ImqBoolean receiveTimeoutMin (MQLONG & min);
Provides a copy of the minimum receive timeout value. It returns TRUE if successful.

MQLONG receiveTimeoutMin ();
Returns the minimum receive timeout value without any indication of possible errors.

ImqBoolean receiveTimeoutType (MQLONG & type);
Provides a copy of the receive timeout type. It returns TRUE if successful.

MQLONG receiveTimeoutType ();
Returns the receive timeout type without any indication of possible errors.

ImqBoolean remoteEvent(MQLONG & event);
Provides a copy of the enablement state of the remote event. It returns TRUE if successful.

MQLONG remoteEvent();
Returns the enablement state of the remote event without any indication of possible errors.

ImqBoolean repositoryName(ImqString & name);
Provides a copy of the repository name. It returns TRUE if successful.

Developing applications reference 1865

ImqString repositoryName();
Returns the repository name without any indication of possible errors.

ImqBoolean repositoryNamelistName(ImqString & name);
Provides a copy of the repository namelist name. It returns TRUE if successful.

ImqString repositoryNamelistName();
Returns a copy of the repository namelist name without any indication of possible errors.

ImqBoolean sharedQueueQueueManagerName (MQLONG & name);
Provides a copy of the shared queue queue manager name value. It returns TRUE if successful.

MQLONG sharedQueueQueueManagerName ();
Returns the shared queue queue manager name value without any indication of possible errors.

ImqBoolean sslEvent (MQLONG & event);
Provides a copy of the SSL event value. It returns TRUE if successful.

MQLONG sslEvent ();
Returns the SSL event value without any indication of possible errors.

ImqBoolean sslFips (MQLONG & sslfips);
Provides a copy of the SSL FIPS value. It returns TRUE if successful.

MQLONG sslFips ();
Returns the SSL FIPS value without any indication of possible errors.

ImqBoolean sslKeyResetCount (MQLONG & count);
Provides a copy of the SSL key reset count value. It returns TRUE if successful.

MQLONG sslKeyResetCount ();
Returns the SSL key reset count value without any indication of possible errors.

ImqBoolean startStopEvent(MQLONG & event);
Provides a copy of the enablement state of the start-stop event. It returns TRUE if successful.

MQLONG startStopEvent();
Returns the enablement state of the start-stop event without any indication of possible errors.

ImqBoolean statisticsInterval (MQLONG & statint);
Provides a copy of the statistics interval value. It returns TRUE if successful.

MQLONG statisticsInterval ();
Returns the statistics interval value without any indication of possible errors.

ImqBoolean syncPointAvailability(MQLONG & sync);
Provides a copy of the syncpoint availability value. It returns TRUE if successful.

MQLONG syncPointAvailability();
Returns a copy of the syncpoint availability value, without any indication of possible errors.

ImqBoolean tcpName (ImqString & name);
Provides a copy of the TCP system name. It returns TRUE if successful.

ImqString tcpName ();
Returns the TCP system name without any indication of possible errors.

ImqBoolean tcpStackType (MQLONG & type);
Provides a copy of the TCP stack type. It returns TRUE if successful.

MQLONG tcpStackType ();
Returns the TCP stack type without any indication of possible errors.

ImqBoolean traceRouteRecording (MQLONG & routerec);
Provides a copy of the trace route recording value. It returns TRUE if successful.

MQLONG traceRouteRecording ();
Returns the trace route recording value without any indication of possible errors.

ImqBoolean triggerInterval(MQLONG & interval);
Provides a copy of the trigger interval. It returns TRUE if successful.

MQLONG triggerInterval();
Returns the trigger interval without any indication of possible errors.

1866 IBM MQ Developing Applications Reference

ImqBinary userId () const;
Returns the user ID used on client connections.

ImqBoolean setUserId (const ImqString & id);
Sets the user ID used on client connections.

ImqBoolean setUserId (const char * = 0 id);
Sets the user ID used on client connections.

ImqBoolean setUserId (const ImqBinary & id);
Sets the user ID used on client connections.

Object methods (protected)
void setFirstManagedObject (const ImqObject * object = 0);

Sets the first managed object.

Object data (protected)
MQHCONN ohconn

The IBM MQ connection handle (meaningful only while the connection status is TRUE).

Reason codes
• MQRC_ATTRIBUTE_LOCKED
• MQRC_ENVIRONMENT_ERROR
• MQRC_FUNCTION_NOT_SUPPORTED
• MQRC_REFERENCE_ERROR
• (reason codes for MQBACK)
• (reason codes for MQBEGIN)
• (reason codes for MQCMIT)
• (reason codes for MQCONNX)
• (reason codes for MQDISC)
• (reason codes for MQCONN)

Developing applications reference 1867

ImqReferenceHeader C++ class
This class encapsulates features of the MQRMH data structure.

Figure 34. ImqReferenceHeader class

This class relates to the MQI calls listed in “ImqReferenceHeader cross-reference” on page 1788.

• “Object attributes” on page 1868
• “Constructors” on page 1869
• “Overloaded ImqItem methods” on page 1869
• “Object methods (public)” on page 1869
• “Object data (protected)” on page 1870
• “Reason codes” on page 1870

Object attributes
destination environment

Environment for the destination. The initial value is a null string.
destination name

Name of the data destination. The initial value is a null string.
instance id

Instance identifier. A binary value (MQBYTE24) of length MQ_OBJECT_INSTANCE_ID_LENGTH. The
initial value is MQOII_NONE.

logical length
Logical, or intended, length of message data that follows this header. The initial value is zero.

logical offset
Logical offset for the message data that follows, to be interpreted in the context of the data as a
whole, at the ultimate destination. The initial value is zero.

logical offset 2
High-order extension to the logical offset. The initial value is zero.

reference type
Reference type. The initial value is a null string.

source environment
Environment for the source. The initial value is a null string.

1868 IBM MQ Developing Applications Reference

source name
Name of the data source. The initial value is a null string.

Constructors
ImqReferenceHeader();

The default constructor.
ImqReferenceHeader(const ImqReferenceHeader & header);

The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut (ImqMessage & msg);

Inserts an MQRMH data structure into the message buffer at the beginning, moving existing message
data further along, and sets the msg format to MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description on “ImqHeader C++ class” on page 1816 for further
details.

virtual ImqBoolean pasteIn (ImqMessage & msg);
Reads an MQRMH data structure from the message buffer.

To be successful, the ImqMessage format must be MQFMT_REF_MSG_HEADER.

See the ImqHeader class method description on “ImqHeader C++ class” on page 1816 for further
details.

Object methods (public)
void operator = (const ImqReferenceHeader & header);

Copies instance data from header, replacing the existing instance data.
ImqString destinationEnvironment () const ;

Returns a copy of the destination environment.
void setDestinationEnvironment (const char * environment = 0);

Sets the destination environment.
ImqString destinationName () const ;

Returns a copy of the destination name.
void setDestinationName (const char * name = 0);

Sets the destination name.
ImqBinary instanceId () const ;

Returns a copy of the instance id.
ImqBoolean setInstanceId (const ImqBinary & id);

Sets the instance id. The data length of token must be either 0 or
MQ_OBJECT_INSTANCE_ID_LENGTH. This method returns TRUE if successful.

void setInstanceId (const MQBYTE24 id = 0);
Sets the instance id. id can be zero, which is the same as specifying MQOII_NONE. If id is nonzero,
it must address MQ_OBJECT_INSTANCE_ID_LENGTH bytes of binary data. When using pre-defined
values such as MQOII_NONE, you might need to make a cast to ensure a signature match, for
example (MQBYTE *)MQOII_NONE.

MQLONG logicalLength () const ;
Returns the logical length.

void setLogicalLength (const MQLONG length);
Sets the logical length.

MQLONG logicalOffset () const ;
Returns the logical offset.

Developing applications reference 1869

void setLogicalOffset (const MQLONG offset);
Sets the logical offset.

MQLONG logicalOffset2 () const ;
Returns the logical offset 2.

void setLogicalOffset2 (const MQLONG offset);
Sets the logical offset 2.

ImqString referenceType () const ;
Returns a copy of the reference type.

void setReferenceType (const char * name = 0);
Sets the reference type.

ImqString sourceEnvironment () const ;
Returns a copy of the source environment.

void setSourceEnvironment (const char * environment = 0);
Sets the source environment.

ImqString sourceName () const ;
Returns a copy of the source name.

void setSourceName (const char * name = 0);
Sets the source name.

Object data (protected)
MQRMH omqrmh

The MQRMH data structure.

Reason codes
• MQRC_BINARY_DATA_LENGTH_ERROR
• MQRC_STRUC_LENGTH_ERROR
• MQRC_STRUC_ID_ERROR
• MQRC_INSUFFICIENT_DATA
• MQRC_INCONSISTENT_FORMAT
• MQRC_ENCODING_ERROR

1870 IBM MQ Developing Applications Reference

ImqString C++ class
This class provides character string storage and manipulation for null-terminated strings.

Figure 35. ImqString class

Use an ImqString in place of a char * in most situations where a parameter calls for a char *.

• “Object attributes” on page 1871
• “Constructors” on page 1871
• “Class methods (public)” on page 1872
• “Overloaded ImqItem methods” on page 1872
• “Object methods (public)” on page 1872
• “Object methods (protected)” on page 1875
• “Reason codes” on page 1875

Object attributes
characters

Characters in the storage that precede a trailing null.
length

Number of bytes in the characters. If there is no storage, the length is zero. The initial value is zero.
storage

A volatile array of bytes of arbitrary size. A trailing null must always be present in the storage after
the characters, so that the end of the characters can be detected. Methods ensure that this situation
is maintained, but ensure, when setting bytes in the array directly, that a trailing null exists after
modification. Initially, there is no storage attribute.

Constructors
ImqString();

The default constructor.
ImqString(const ImqString & string);

The copy constructor.
ImqString(const char c);

The characters comprise c.

Developing applications reference 1871

ImqString(const char * text);
The characters are copied from text.

ImqString(const void * buffer, const size_t length);
Copies length bytes starting from buffer and assigns them to the characters. Substitution is made for
any null characters copied. The substitution character is a period (.). No special consideration is given
to any other non-printable or non-displayable characters copied.

Class methods (public)
static ImqBoolean copy(char * destination-buffer, const size_t length, const char * source-buffer,
const char pad = 0);

Copies up to length bytes from source-buffer to destination-buffer. If the number of characters
in source-buffer is insufficient, fills the remaining space in destination-buffer with pad characters.
source-buffer can be zero. destination-buffer can be zero if length is also zero. Any error codes are lost.
This method returns TRUE if successful.

static ImqBoolean copy (char * destination-buffer, const size_t length, const char * source-buffer,
ImqError & error-object, const char pad = 0);

Copies up to length bytes from source-buffer to destination-buffer. If the number of characters
in source-buffer is insufficient, fills the remaining space in destination-buffer with pad characters.
source-buffer can be zero. destination-buffer can be zero if length is also zero. Any error codes are set
in error-object. This method returns TRUE if successful.

Overloaded ImqItem methods
virtual ImqBoolean copyOut (ImqMessage & msg);

Copies the characters to the message buffer, replacing any existing content. Sets the msg format to
MQFMT_STRING.

See the parent class method description for further details.

virtual ImqBoolean pasteIn (ImqMessage & msg);
Sets the characters by transferring the remaining data from the message buffer, replacing the existing
characters.

To be successful, the encoding of the msg object must be MQENC_NATIVE. Retrieve messages with
MQGMO_CONVERT to MQENC_NATIVE.

To be successful, the ImqMessage format must be MQFMT_STRING.

See the parent class method description for further details.

Object methods (public)
char & operator [] (const size_t offset) const ;

References the character at offset offset in the storage. Ensure that the relevant byte exists and is
addressable.

ImqString operator () (const size_t offset, const size_t length = 1) const ;
Returns a substring by copying bytes from the characters starting at offset. If length is zero, returns
the rest of the characters. If the combination of offset and length does not produce a reference within
the characters, returns an empty ImqString.

void operator = (const ImqString & string);
Copies instance data from string, replacing the existing instance data.

ImqString operator + (const char c) const ;
Returns the result of appending c to the characters.

1872 IBM MQ Developing Applications Reference

ImqString operator + (const char * text) const ;
Returns the result of appending text to the characters. This can also be inverted. For example:

strOne + "string two" ;
"string one" + strTwo ;

Note: Although most compilers accept strOne + "string two"; Microsoft Visual C++ requires strOne +
(char *)"string two" ;

ImqString operator + (const ImqString & string1) const ;
Returns the result of appending string1 to the characters.

ImqString operator + (const double number) const ;
Returns the result of appending number to the characters after conversion to text.

ImqString operator + (const long number) const ;
Returns the result of appending number to the characters after conversion to text.

void operator += (const char c);
Appends c to the characters.

void operator += (const char * text);
Appends text to the characters.

void operator += (const ImqString & string);
Appends string to the characters.

void operator += (const double number);
Appends number to the characters after conversion to text.

void operator += (const long number);
Appends number to the characters after conversion to text.

operator char * () const ;
Returns the address of the first byte in the storage. This value can be zero, and is volatile. Use this
method only for read-only purposes.

ImqBoolean operator < (const ImqString & string) const ;
Compares the characters with those of string using the compare method. The result is TRUE if less
than and FALSE if greater than or equal to.

ImqBoolean operator > (const ImqString & string) const ;
Compares the characters with those of string using the compare method. The result is TRUE if greater
than and FALSE if less than or equal to.

ImqBoolean operator <= (const ImqString & string) const ;
Compares the characters with those of string using the compare method. The result is TRUE if less
than or equal to and FALSE if greater than.

ImqBoolean operator >= (const ImqString & string) const ;
Compares the characters with those of string using the compare method. The result is TRUE if greater
than or equal to and FALSE if less than.

ImqBoolean operator == (const ImqString & string) const ;
Compares the characters with those of string using the compare method. It returns either TRUE or
FALSE.

ImqBoolean operator != (const ImqString & string) const ;
Compares the characters with those of string using the compare method. It returns either TRUE or
FALSE.

short compare(const ImqString & string) const ;
Compares the characters with those of string. The result is zero if the characters are equal, negative
if less than and positive if greater than. Comparison is case sensitive. A null ImqString is regarded as
less than a nonnull ImqString.

Developing applications reference 1873

ImqBoolean copyOut(char * buffer, const size_t length, const char pad = 0);
Copies up to length bytes from the characters to the buffer. If the number of characters is
insufficient, fills the remaining space in buffer with pad characters. buffer can be zero if length is
also zero. It returns TRUE if successful.

size_t copyOut(long & number) const ;
Sets number from the characters after conversion from text, and returns the number of characters
involved in the conversion. If this is zero, no conversion has been performed and number is not set. A
convertible character sequence must begin with the following values:

<blank(s)>
<+|->
digit(s)

size_t copyOut(ImqString & token, const char c = ' ') const ;
If the characters contain one or more characters that are different from c, identifies a token as the
first contiguous sequence of such characters. In this case token is set to that sequence, and the value
returned is the sum of the number of leading characters c and the number of bytes in the sequence.
Otherwise, returns zero and does not set token.

size_t cutOut(long & number);
Sets number as for the copy method, but also removes from characters the number of bytes indicated
by the return value. For example, the string shown in the following example can be cut into three
numbers by using cutOut (number) three times:

strNumbers = "-1 0 +55 "

while (strNumbers.cutOut(number));
number becomes -1, then 0, then 55
leaving strNumbers == " "

size_t cutOut(ImqString & token, const char c = ' ' '
Sets token as for the copyOut method, and removes from characters the strToken characters and
also any characters c that precede the token characters. If c is not a blank, removes characters c that
directly succeed the token characters. Returns the number of characters removed. For example, the
string shown in the following example can be cut into three tokens by using cutOut (token) three
times:

strText = " Program Version 1.1 "

while (strText.cutOut(token));

// token becomes "Program", then "Version",
// then "1.1" leaving strText == " "

The following example shows how to parse a DOS path name:

strPath = "C:\OS2\BITMAP\OS2LOGO.BMP"

strPath.cutOut(strDrive, ':');
strPath.stripLeading(':');
while (strPath.cutOut(strFile, '\'));

// strDrive becomes "C".
// strFile becomes "OS2", then "BITMAP",
// then "OS2LOGO.BMP" leaving strPath empty.

ImqBoolean find(const ImqString & string);
Searches for an exact match for string anywhere within the characters. If no match is found, it returns
FALSE. Otherwise, it returns TRUE. If string is null, it returns TRUE.

1874 IBM MQ Developing Applications Reference

ImqBoolean find(const ImqString & string, size_t & offset);
Searches for an exact match for string somewhere within the characters from offset offset onwards. If
string is null, it returns TRUE without updating offset. If no match is found, it returns FALSE (the value
of offset might have been increased). If a match is found, it returns TRUE and updates offset to the
offset of string within the characters.

size_t length() const ;
Returns the length.

ImqBoolean pasteIn(const double number, const char * format = "%f");
Appends number to the characters after conversion to text. It returns TRUE if successful.

The specification format is used to format the floating point conversion. If specified, it must be one
suitable for use with printf and floating point numbers, for example %.3f.

ImqBoolean pasteIn(const long number);
Appends number to the characters after conversion to text. It returns TRUE if successful.

ImqBoolean pasteIn(const void * buffer, const size_t length);
Appends length bytes from buffer to the characters, and adds a final trailing null. Substitutes any null
characters copied. The substitution character is a period (.). No special consideration is given to any
other nonprintable or nondisplayable characters copied. This method returns TRUE if successful.

ImqBoolean set(const char * buffer, const size_t length);
Sets the characters from a fixed-length character field, which might contain a null. Appends a null to
the characters from the fixed-length field if necessary. This method returns TRUE if successful.

ImqBoolean setStorage(const size_t length);
Allocates (or reallocates) the storage. Preserves any original characters, including any trailing null, if
there is still room for them, but does not initialize any additional storage.

This method returns TRUE if successful.

size_t storage() const ;
Returns the number of bytes in the storage.

size_t stripLeading(const char c = ' ');
Strips leading characters c from the characters and returns the number removed.

size_t stripTrailing(const char c = ' ');
Strips trailing characters c from the characters and returns the number removed.

ImqString upperCase() const ;
Returns an uppercase copy of the characters.

Object methods (protected)
ImqBoolean assign (const ImqString & string);

Equivalent to the equivalent operator = method, but non-virtual. It returns TRUE if successful.

Reason codes
• MQRC_DATA_TRUNCATED
• MQRC_NULL_POINTER
• MQRC_STORAGE_NOT_AVAILABLE
• MQRC_BUFFER_ERROR
• MQRC_INCONSISTENT_FORMAT

Developing applications reference 1875

ImqTrigger C++ class
This class encapsulates the MQTM (trigger message) data structure.

Figure 36. ImqTrigger class

Objects of this class are typically used by a trigger monitor program. The task of a trigger monitor program
is to wait for these particular messages and act on them to ensure that other IBM MQ applications are
started when messages are waiting for them.

See the IMQSTRG sample program for a usage example.

• “Object attributes” on page 1876
• “Constructors” on page 1877
• “Overloaded ImqItem methods” on page 1877
• “Object methods (public)” on page 1877
• “Object data (protected)” on page 1878
• “Reason codes” on page 1878

Object attributes
application id

Identity of the application that sent the message. The initial value is a null string.
application type

Type of application that sent the message. The initial value is zero. The following additional values are
possible:

• MQAT_AIX
• MQAT_CICS
• MQAT_DOS
• MQAT_IMS
• MQAT_MVS
• MQAT_NOTES_AGENT
• MQAT_OS2
• MQAT_OS390
• MQAT_OS400

1876 IBM MQ Developing Applications Reference

• MQAT_UNIX
• MQAT_WINDOWS
• MQAT_WINDOWS_NT
• MQAT_USER_FIRST
• MQAT_USER_LAST

environment data
Environment data for the process. The initial value is a null string.

process name
Process name. The initial value is a null string.

queue name
Name of the queue to be started. The initial value is a null string.

trigger data
Trigger data for the process. The initial value is a null string.

user data
User data for the process. The initial value is a null string.

Constructors
ImqTrigger();

The default constructor.
ImqTrigger(const ImqTrigger & trigger);

The copy constructor.

Overloaded ImqItem methods
virtual ImqBoolean copyOut (ImqMessage & msg);

Writes an MQTM data structure to the message buffer, replacing any existing content. Sets the msg
format to MQFMT_TRIGGER.

See the ImqItem class method description at “ImqItem C++ class” on page 1820 for further details.

virtual ImqBoolean pasteIn (ImqMessage & msg);
Reads an MQTM data structure from the message buffer.

To be successful, the ImqMessage format must be MQFMT_TRIGGER.

See the ImqItem class method description at “ImqItem C++ class” on page 1820 for further details.

Object methods (public)
void operator = (const ImqTrigger & trigger);

Copies instance data from trigger, replacing the existing instance data.
ImqString applicationId () const ;

Returns a copy of the application id.
void setApplicationId (const char * id);

Sets the application id.
MQLONG applicationType () const ;

Returns the application type.
void setApplicationType (const MQLONG type);

Sets the application type.
ImqBoolean copyOut (MQTMC2 * ptmc2);

Encapsulates the MQTM data structure, which is the one received on initiation queues. Fills in an
equivalent MQTMC2 data structure provided by the caller, and sets the QMgrName field (which is not
present in the MQTM data structure) to all blanks. The MQTMC2 data structure is traditionally used as
a parameter to applications started by a trigger monitor. This method returns TRUE if successful.

Developing applications reference 1877

ImqString environmentData () const ;
Returns a copy of the environment data.

void setEnvironmentData (const char * data);
Sets the environment data.

ImqString processName () const ;
Returns a copy of the process name.

void setProcessName (const char * name);
Sets the process name, padded with blanks to 48 characters.

ImqString queueName () const ;
Returns a copy of the queue name.

void setQueueName (const char * name);
Sets the queue name, padding with blanks to 48 characters.

ImqString triggerData () const ;
Returns a copy of the trigger data.

void setTriggerData (const char * data);
Sets the trigger data.

ImqString userData () const ;
Returns a copy of the user data.

void setUserData (const char * data);
Sets the user data.

Object data (protected)
MQTM omqtm

The MQTM data structure.

Reason codes
• MQRC_NULL_POINTER
• MQRC_INCONSISTENT_FORMAT
• MQRC_ENCODING_ERROR
• MQRC_STRUC_ID_ERROR

1878 IBM MQ Developing Applications Reference

ImqWorkHeader C++ class
This class encapsulates specific features of the MQWIH data structure.

Figure 37. ImqWorkHeader class

Objects of this class are used by applications putting messages to the queue managed by the z/OS
Workload Manager.

• “Object attributes” on page 1879
• “Constructors” on page 1879
• “Overloaded ImqItem methods” on page 1880
• “Object methods (public)” on page 1880
• “Object data (protected)” on page 1880
• “Reason codes” on page 1880

Object attributes
message token

Message token for the z/OS Workload Manager, of length MQ_MSG_TOKEN_LENGTH. The initial value
is MQMTOK_NONE.

service name
The 32-character name of a process. The name is initially blanks.

service step
The 8-character name of a step within the process. The name is initially blanks.

Constructors
ImqWorkHeader();

The default constructor.
ImqWorkHeader(const ImqWorkHeader & header);

The copy constructor.

Developing applications reference 1879

Overloaded ImqItem methods
virtual ImqBoolean copyOut(ImqMessage & msg);

Inserts an MQWIH data structure into the beginning of the message buffer, moving the existing
message data further along, and sets the msg format to MQFMT_WORK_INFO_HEADER.

See the parent class method description for more details.

virtual ImqBoolean pasteIn(ImqMessage & msg);
Reads an MQWIH data structure from the message buffer.

To be successful, the encoding of the msg object must be MQENC_NATIVE. Retrieve messages with
MQGMO_CONVERT to MQENC_NATIVE.

The ImqMessage format must be MQFMT_WORK_INFO_HEADER.

See the parent class method description for more details.

Object methods (public)
void operator = (const ImqWorkHeader & header);

Copies instance data from header, replacing the existing instance data.
ImqBinary messageToken () const;

Returns the message token.
ImqBoolean setMessageToken(const ImqBinary & token);

Sets the message token. The data length of token must be either zero or MQ_MSG_TOKEN_LENGTH.
It returns TRUE if successful.

void setMessageToken(const MQBYTE16 token = 0);
Sets the message token. token can be zero, which is the same as specifying MQMTOK_NONE. If token
is nonzero, it must address MQ_MSG_TOKEN_LENGTH bytes of binary data.

When using predefined values such as MQMTOK_NONE, you might need make a cast to ensure a
signature match; for example, (MQBYTE *)MQMTOK_NONE.

ImqString serviceName () const;
Returns the service name, including trailing blanks.

void setServiceName(const char * name);
Sets the service name.

ImqString serviceStep () const;
Returns the service step, including trailing blanks.

void setServiceStep(const char * step);
Sets the service step.

Object data (protected)
MQWIH omqwih

The MQWIH data structure.

Reason codes
• MQRC_BINARY_DATA_LENGTH_ERROR

1880 IBM MQ Developing Applications Reference

Properties of IBM MQ classes for JMS objects
All objects in IBM MQ classes for JMS have properties. Different properties apply to different object types.
Different properties have different allowable values, and symbolic property values differ between the
administration tool and program code.

IBM MQ classes for JMS provides facilities to set and query the properties of objects using the IBM MQ
JMS administration tool, IBM MQ Explorer, or in an application. Many of the properties are relevant only to
a specific subset of the object types.

For information on how you use the IBM MQ JMS administration tool, see Configuring JMS objects using
the administration tool.

Table 869 on page 1881 gives a brief description of each property and shows for each property which
object types it applies to. The object types are identified using keywords; see Configuring JMS objects
using the administration tool for an explanation of these objects.

Numbers refer to notes at the end of the table. See also “Dependencies between properties of IBM MQ
classes for JMS objects” on page 1884.

A property consists of a name-value pair in the format:

PROPERTY_NAME(property_value)

The topics in this section list, for each property, the name of the property and a brief description, and
shows the valid property values used in the administration tool. and the set method that is used to set the
value of the property in an application. The topics also show the valid property values for each property
and the mapping between symbolic property values used in the tool and their programmable equivalents.

Property names are not case-sensitive, and are restricted to the set of recognized names shown in these
topics.

Table 869. Property names and applicable object types

Property Short form Object type

CF QCF TCF Q T XACF XAQCF XATCF

“APPLICATIONNAME” on page 1886 APPNAME Y Y Y Y Y Y

“ASYNCEXCEPTION” on page 1886 AEX Y Y Y Y Y Y

“BROKERCCDURSUBQ” on page 1887
1

CCDSUB Y

“BROKERCCSUBQ” on page 1888 1 CCSUB Y Y Y Y

“BROKERCONQ” on page 1888 1 BCON Y Y Y Y

“BROKERDURSUBQ” on page 1889 1 BDSUB Y

“BROKERPUBQ” on page 1889 1 BPUB Y Y Y Y Y

“BROKERPUBQMGR” on page 1890 1 BPQM Y

“BROKERQMGR” on page 1890 1 BQM Y Y Y Y

“BROKERSUBQ” on page 1890 1 BSUB Y Y Y Y

“BROKERVER” on page 1891 1 BVER Y 2 Y 2 Y Y Y

“CCDTURL” on page 1892 3 CCDT Y Y Y Y Y Y

“CCSID” on page 1892 CCS Y Y Y Y Y Y Y Y

“CHANNEL” on page 1893 3 CHAN Y Y Y Y Y Y

Developing applications reference 1881

Table 869. Property names and applicable object types (continued)

Property Short form Object type

CF QCF TCF Q T XACF XAQCF XATCF

“CLEANUP” on page 1893 1 CL Y Y Y Y

“CLEANUPINT” on page 1894 1 CLINT Y Y Y Y

“CONNECTIONNAMELIST” on page
1894

CNLIST Y Y Y

“CLIENTRECONNECTOPTIONS” on
page 1894

CROPT Y Y Y

“CLIENTRECONNECTTIMEOUT” on
page 1895

CRT Y Y Y

“CLIENTID” on page 1896 CID Y 2 Y Y 2 Y Y Y

“CLONESUPP” on page 1896 CLS Y Y Y Y

“COMPHDR” on page 1897 HC Y Y Y Y

“COMPMSG” on page 1897 MC Y Y Y Y Y Y

“CONNOPT” on page 1898 CNOPT Y Y Y Y Y Y

“CONNTAG” on page 1899 CNTAG Y Y Y Y Y Y

“DESCRIPTION” on page 1899 DESC Y 2 Y Y 2 Y Y Y Y Y

“DIRECTAUTH” on page 1900 DAUTH Y 2 Y 2

“ENCODING” on page 1900 ENC Y Y

“EXPIRY” on page 1901 EXP Y Y

“FAILIFQUIESCE” on page 1901 FIQ Y Y Y Y Y Y Y Y

“HOSTNAME” on page 1902 HOST Y 2 Y Y 2 Y Y Y

“LOCALADDRESS” on page 1903 LA Y 2 Y Y 2 Y Y Y

“MAPNAMESTYLE” on page 1903 MNST Y Y Y Y Y Y

“MAXBUFFSIZE” on page 1904 MBSZ Y 2 Y 2

“MDREAD” on page 1904 MDR Y Y

“MDWRITE” on page 1905 MDW Y Y

“MDMSGCTX” on page 1905 MDCTX Y Y

“MSGBATCHSZ” on page 1906 1 MBS Y Y Y Y Y Y

“MSGBODY” on page 1906 MBODY Y Y

“MSGRETENTION” on page 1907 MRET Y Y Y Y

“MSGSELECTION” on page 1907 1 MSEL Y Y Y Y

“MULTICAST” on page 1908 MCAST Y 2 Y 2 Y

“OPTIMISTICPUBLICATION” on page
1909 1

OPTPUB Y Y

“OUTCOMENOTIFICATION” on page
1909 1

NOTIFY Y Y

1882 IBM MQ Developing Applications Reference

Table 869. Property names and applicable object types (continued)

Property Short form Object type

CF QCF TCF Q T XACF XAQCF XATCF

“PERSISTENCE” on page 1910 PER Y Y

“POLLINGINT” on page 1910 1 PINT Y Y Y Y Y Y

“PORT” on page 1911 PORT Y 2 Y Y 2 Y Y Y

“PRIORITY” on page 1911 PRI Y Y

“PROCESSDURATION” on page 1912
1

PROCDUR Y Y

“PROVIDERVERSION” on page 1912 PVER Y Y Y Y Y Y

“PROXYHOSTNAME” on page 1915 PHOST Y 2 Y 2

“PROXYPORT” on page 1915 PPORT Y 2 Y 2

“PUBACKINT” on page 1916 1 PAI Y Y Y Y

“PUTASYNCALLOWED” on page 1916 PAALD Y Y

“QMANAGER” on page 1917 QMGR Y Y Y Y Y Y Y

“QUEUE” on page 1917 QU Y

“READAHEADALLOWED” on page
1918

RAALD Y Y

“READAHEADCLOSEPOLICY” on page
1918

RACP Y Y

“RECEIVECCSID” on page 1919 RCCS Y Y

“RECEIVECONVERSION” on page
1919

RCNV Y Y

“RECEIVEISOLATION” on page 1920 1 RCVISOL Y Y

“RECEXIT” on page 1920 RCX Y Y Y Y Y Y

“RECEXITINIT” on page 1921 RCXI Y Y Y Y Y Y

“REPLYTOSTYLE” on page 1921 RTOST Y Y

“RESCANINT” on page 1922 1 RINT Y Y Y Y

“SECEXIT” on page 1922 SCX Y Y Y Y Y Y

“SECEXITINIT” on page 1923 SCXI Y Y Y Y Y Y

“SENDCHECKCOUNT” on page 1923 SCC Y Y Y Y Y Y

“SENDEXIT” on page 1924 SDX Y Y Y Y Y Y

“SENDEXITINIT” on page 1924 SDXI Y Y Y Y Y Y

“SHARECONVALLOWED” on page
1925

SCALD Y Y Y Y Y Y

“SPARSESUBS” on page 1925 1 SSUBS Y Y

“SSLCIPHERSUITE” on page 1926 SCPHS Y Y Y Y Y Y

“SSLCRL” on page 1926 SCRL Y Y Y Y Y Y

Developing applications reference 1883

Table 869. Property names and applicable object types (continued)

Property Short form Object type

CF QCF TCF Q T XACF XAQCF XATCF

“SSLFIPSREQUIRED” on page 1927 SFIPS Y Y Y Y Y Y

“SSLPEERNAME” on page 1927 SPEER Y Y Y Y Y Y

“SSLRESETCOUNT” on page 1928 SRC Y Y Y Y Y Y

“STATREFRESHINT” on page 1928 1 SRI Y Y Y Y

“SUBSTORE” on page 1929 1 SS Y Y Y Y

“SYNCPOINTALLGETS” on page 1929 SPAG Y Y Y Y Y Y

“TARGCLIENT” on page 1930 TC Y Y

“TARGCLIENTMATCHING” on page
1930

TCM Y Y Y Y

“TEMPMODEL” on page 1931 TM Y Y Y Y

“TEMPQPREFIX” on page 1931 TQP Y Y Y Y

“TEMPTOPICPREFIX” on page 1932 TTP Y Y Y Y

“TOPIC” on page 1932 TOP Y

“TRANSPORT” on page 1932 TRAN Y 2 Y Y 2 Y Y Y

“WILDCARDFORMAT” on page 1933 WCFMT Y Y Y Y

Note:

1. This property can be used with version 70 of IBM MQ classes for JMS but has no effect for an application
connected to a IBM WebSphere MQ 7.0 queue manager unless the PROVIDERVERSION property of the
connection factory is set to a version number less than 7.

2. Only the BROKERVER, CLIENTID, DESCRIPTION, DIRECTAUTH, HOSTNAME, LOCALADDRESS,
MAXBUFFSIZE, MULTICAST, PORT, PROXYHOSTNAME, PROXYPORT, and TRANSPORT properties are
supported for a ConnectionFactory or TopicConnectionFactory object when using a real-time connection
to a broker.

3. The CCDTURL and CHANNEL properties of an object must not both be set at the same time.

Dependencies between properties of IBM MQ classes for JMS objects
The validity of some properties is dependent on the particular values of other properties.

This dependency can occur in the following groups of properties:

• Client properties
• Properties for a real-time connection to a broker
• Exit initialization strings

Client properties
For a connection to a queue manager, the following properties are relevant only if TRANSPORT has the
value CLIENT:

• HOSTNAME
• PORT
• CHANNEL

1884 IBM MQ Developing Applications Reference

• LOCALADDRESS
• CCDTURL
• CCSID
• COMPHDR
• COMPMSG
• RECEXIT
• RECEXITINIT
• SECEXIT
• SECEXITINIT
• SENDEXIT
• SENDEXITINIT
• SHARECONVALLOWED
• SSLCIPHERSUITE
• SSLCRL
• SSLFIPSREQUIRED
• SSLPEERNAME
• SSLRESETCOUNT
• APPLICATIONNAME

You cannot set values for these properties by using the administration tool if TRANSPORT has the
value BIND.

If TRANSPORT has the value CLIENT, the default value of the BROKERVER property is V1 and the
default value of the PORT property is 1414. If you set the value of BROKERVER or PORT explicitly, a
later change to the value of TRANSPORT does not override your choices.

Properties for a real-time connection to a broker
Only the following properties are relevant if TRANSPORT has the value DIRECT or DIRECTHTTP:

• BROKERVER
• CLIENTID
• DESCRIPTION
• DIRECTAUTH
• HOSTNAME
• LOCALADDRESS
• MAXBUFFSIZE
• MULTICAST (supported only for DIRECT)
• PORT
• PROXYHOSTNAME (supported only for DIRECT)
• PROXYPORT (supported only for DIRECT)

If TRANSPORT has the value DIRECT or DIRECTHTTP, the default value of the BROKERVER property is
V2, and the default value of the PORT property is 1506. If you set the value of BROKERVER or PORT
explicitly, a later change to the value of TRANSPORT does not override your choices.

Exit initialization strings
Do not set any of the exit initialization strings without supplying the corresponding exit name. The exit
initialization properties are:

• RECEXITINIT
• SECEXITINIT

Developing applications reference 1885

• SENDEXITINIT

For example, specifying RECEXITINIT(myString) without specifying
RECEXIT(some.exit.classname) causes an error.

Related reference
“TRANSPORT” on page 1932
The nature of a connection to a queue manager or broker.

APPLICATIONNAME
An application can set a name that identifies its connection to the queue manager. This application name
is shown by the DISPLAY CONN MQSC/PCF command (where the field is called APPLTAG) or in the IBM
MQ Explorer Application Connections display (where the field is called App name).

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: APPLICATIONNAME

JMS administration tool short name: APPNAME

Programmatic access
Setters/getters

• MQConnectionFactory.setAppName()
• MQConnectionFactory.getAppName()

Values
Any valid string that is no longer than 28 characters. Longer names are
adjusted to fit by removing leading package names, if necessary. For example, if
the invoking class is com.example.MainApp, the full name is used, but if the
invoking class is com.example.dictionaryAndThesaurus.multilingual.mainApp, the name
multilingual.mainApp is used, because it is the longest combination of class name and rightmost
package name that fits into the available length.

If the class name itself is more than 28 characters long, it is truncated
to fit. For example, com.example.mainApplicationForSecondTestCase becomes
mainApplicationForSecondTest.

On z/OS, the APPNAME in:

• Bindings mode is ignored if set and, if set, can only be set to blanks.
• Client mode can be set and used.

ASYNCEXCEPTION
This property determines whether IBM MQ classes for JMS informs an ExceptionListener only when a
connection is broken, or when any exception occurs asynchronously to a JMS API call. This applies to all
Connections created from this ConnectionFactory that have an ExceptionListener registered.

Applicable objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: ASYNCEXCEPTION

1886 IBM MQ Developing Applications Reference

JMS administration tool short name: AEX

Programmatic access
Setters/Getters

• MQConnectionFactory.setAsyncExceptions()
• MQConnectionFactory.getAsyncExceptions()

Values
ASYNC_EXCEPTIONS_ALL

Any exception detected asynchronously, outside the scope of a synchronous API call, and all
connection broken exceptions are sent to the ExceptionListener.

Table 870. All async exceptions: environments and related constant names

Environment Value

JMS Administration Tool ALL

Programmatic WMQCONSTANTS.ASYNC_EXCEPTIONS_ALL = -1

IBM MQ Explorer All

ASYNC_EXCEPTIONS_CONNECTIONBROKEN

Only exceptions indicating a broken connection are sent to the ExceptionListener. Any other
exceptions occurring during asynchronous processing are not reported to the ExceptionListener, and
hence the application is not informed of these exceptions. This is the default value from IBM MQ 8.0.0
Fix Pack 2. See JMS: Exception listener changes in IBM MQ 8.0.

Table 871. Exceptions indicating a broken connection: environments and related constant names

Environment Value

JMS Administration Tool CONNECTIONBROKEN

Programmatic WMQCONSTANTS.ASYNC_EXCEPTIONS_CONNECTIONBROKEN = 1

IBM MQ Explorer Connection Broken

The following additional constant is defined:

• From IBM MQ 8.0.0 Fix Pack 2: WMQCONSTANTS.ASYNC_EXCEPTIONS_DEFAULT =
ASYNC_EXCEPTIONS_CONNECTIONBROKEN

• Before IBM MQ 8.0.0 Fix Pack 2: WMQCONSTANTS.ASYNC_EXCEPTIONS_DEFAULT =
ASYNC_EXCEPTIONS_ALL

Related concepts
Exceptions in IBM MQ classes for JMS

BROKERCCDURSUBQ
The name of the queue from which durable subscription messages are retrieved for a
ConnectionConsumer.

Applicable objects
Topic

JMS administration tool long name: BROKERCCDURSUBQ

Developing applications reference 1887

JMS administration tool short name: CCDSUB

Programmatic access
Setters/getters

• MQTopic.setBrokerCCDurSubQueue()
• MQTopic.getBrokerCCDurSubQueue()

Values
SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

This is the default value.
Any valid string

BROKERCCSUBQ
The name of the queue from which non-durable subscription messages are retrieved for a
ConnectionConsumer.

Applicable objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: BROKERCCSUBQ

JMS administration tool short name: CCSUB

Programmatic access
Setters/getters

• MQConnectionFactory.setBrokerCCSubQueue()
• MQConnectionFactory.getBrokerCCSubQueue()

Values
SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

This is the default value.
Any valid string

BROKERCONQ
The control queue name of the broker.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: BROKERCONQ

JMS administration tool short name: BCON

Programmatic access
Setters/getters

• MQConnectionFactory.setBrokerControlQueue()
• MQConnectionFactory.getBrokerControlQueue()

1888 IBM MQ Developing Applications Reference

Values
SYSTEM.BROKER.CONTROL.QUEUE

This is the default value.
Any valid string

BROKERDURSUBQ
When the IBM MQ classes for JMS are being used in IBM MQ messaging provider migration mode, this
property specifies the name of the queue from which durable subscription messages are retrieved.

Applicable objects
Topic

JMS administration tool long name: BROKERDURSUBQ

JMS administration tool short name: BDSUB

Programmatic access
Setters/getters

• MQTopic.setBrokerDurSubQueue()
• MQTopic.getBrokerDurSubQueue()

Values
SYSTEM.JMS.D.SUBSCRIBER.QUEUE

This is the default value.
Any valid string

Starting with SYSTEM.JMS.D
Related tasks
Configuring the JMS PROVIDERVERSION property

BROKERPUBQ
The name of the queue where published messages are sent (the stream queue).

Applicable Objects
ConnectionFactory, TopicConnectionFactory, Topic, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: BROKERPUBQ

JMS administration tool short name: BPUB

Programmatic access
Setters/getters

• MQConnectionFactory.setBrokerPubQueue
• MQConnectionFactory.getBrokerPubQueue

Values
SYSTEM.BROKER.DEFAULT.STREAM

This is the default value.
Any valid string

Developing applications reference 1889

BROKERPUBQMGR
The name of the queue manager that owns the queue where messages published on the topic are sent.

Applicable Objects
Topic

JMS administration tool long name: BROKERPUBQMGR

JMS administration tool short name: BPQM

Programmatic access
Setters/getters

• MQTopic.setBrokerPubQueueManager()
• MQTopic.getBrokerPubQueueManager()

Values
null

This is the default value.
Any valid string

BROKERQMGR
The name of the queue manager on which the broker is running.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: BROKERQMGR

JMS administration tool short name: BQM

Programmatic access
Setters/getters

• MQConnectionFactory.setBrokerQueueManager()
• MQConnectionFactory.getBrokerQueueManager()

Values
null

This is the default value.
Any valid string

BROKERSUBQ
When the IBM MQ classes for JMS are being used in IBM MQ messaging provider migration mode, this
property specifies the name of the queue from which non-durable subscription messages are retrieved.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: BROKERSUBQ

1890 IBM MQ Developing Applications Reference

JMS administration tool short name: BSUB

Programmatic access
Setters/getters

• MQConnectionFactory.setBrokerSubQueue()
• MQConnectionFactory.getBrokerSubQueue()

Values
SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

This is the default value.
Any valid string

Starting with SYSTEM.JMS.ND
Related tasks
Configuring the JMS PROVIDERVERSION property

BROKERVER
The version of the broker being used.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, Topic, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: BROKERVER

JMS administration tool short name: BVER

Programmatic access
Setters/getters

• MQConnectionFactory.setBrokerVersion()
• MQConnectionFactory.getBrokerVersion()

Values
V1

To use an IBM MQ Publish/Subscribe broker, or to use a broker of IBM MQ Integrator, WebSphere
Event Broker, WebSphere Business Integration Event Broker, or WebSphere Business Integration
Message Broker in compatibility mode. This is the default value if TRANSPORT is set to BIND or
CLIENT.

V2
To use a broker of IBM MQ Integrator, WebSphere Event Broker, WebSphere Business Integration
Event Broker, or WebSphere Business Integration Message Broker in native mode. This is the default
value if TRANSPORT is set to DIRECT or DIRECTHTTP.

unspecified
After the broker has migrated from V6 to V7, set this property so that RFH2 headers are no longer
used. After migration this property is no longer relevant.

Developing applications reference 1891

CCDTURL
A Uniform Resource Locator (URL) that identifies the name and location of the file containing the client
channel definition table and specifies how the file can be accessed.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: CCDTURL

JMS administration tool short name: CCDT

Programmatic access
Setters/getters

• MQConnectionFactory.setCCDTURL()
• MQConnectionFactory.getCCDTURL()

Values
null

This is the default value.
A Uniform Resource Locator (URL)

CCSID
For connection factories, this property specifies the coded character set ID (CCSID) to be used for internal
data flows with the queue manager. For destinations, the property defines the CCSID to be used to
encode string data in MapMessages, StreamMessages, and TextMessages put to that destination.

Note: It is not normally necessary to change this property for connection factories.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, Queue, Topic,
XAConnectionFactory, XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: CCSID

JMS administration tool short name: CCS

Programmatic access
Setters/getters

• MQConnectionFactory.setCCSID()
• MQConnectionFactory.getCCSID()

Values
819

The default value for a connection factory.
1208

The default value for a destination.
Any positive integer
Related concepts
JMS message conversion

1892 IBM MQ Developing Applications Reference

CHANNEL
The name of the client connection channel being used.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: CHANNEL

JMS administration tool short name: CHAN

Programmatic access
Setters/getters

• MQConnectionFactory.setChannel()
• MQConnectionFactory.getChannel()

Values
SYSTEM.DEF.SVRCONN

This is the default value.
Any valid string

CLEANUP
Cleanup Level for BROKER or MIGRATE Subscription Stores.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: CLEANUP

JMS administration tool short name: CL

Programmatic access
Setters/getters

• MQConnectionFactory.setCleanupLevel()
• MQConnectionFactory.getCleanupLevel()

Values
SAFE

Use safe cleanup. This is the default value.
ASPROP

Use safe, strong, or no cleanup according to a property set on the Java command line.
NONE

Use no cleanup.
STRONG

Use strong cleanup.

Developing applications reference 1893

CLEANUPINT
The interval, in milliseconds, between background executions of the publish/subscribe cleanup utility.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: CLEANUPINT

JMS administration tool short name: CLINT

Programmatic access
Setters/getters

• MQConnectionFactory.setCleanupInterval()
• MQConnectionFactory.getCleanupInterval()

Values
3600000

This is the default value.
Any positive integer

CONNECTIONNAMELIST
List of TCP/IP connection names. The list is tried in order, once per each reconnection retry attempt.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory

JMS administration tool long name: CONNECTIONNAMELIST

JMS administration tool short name: CNLIST

Programmatic access
Setters/getters

• MQConnectionFactory.setconnectionNameList()
• MQConnectionFactory.getconnectionNameList()

Values
Comma separated list of HOSTNAME(PORT). HOSTNAME can be either a DNS name or IP address.

PORT defaults to 1414.

CLIENTRECONNECTOPTIONS
Options governing reconnection.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory

JMS administration tool long name: CLIENTRECONNECTOPTIONS

JMS administration tool short name: CROPT

1894 IBM MQ Developing Applications Reference

Programmatic access
Setters/getters

• MQConnectionFactory.setClientReconnectOptions()
• MQConnectionFactory.getClientReconnectOptions()

Values
QMGR

The application can reconnect to the same queue manager that it is originally connected to.

An error with reason code MQRC_RECONNECT_QMID_MISMATCH is returned if the queue manager that
the application tries to connect to, as specified in the connection name list, has a different QMID to
the queue manager that it originally connected to.

Use this value if an application can be reconnected, but there is an affinity between the IBM MQ
classes for JMS application, and the queue manager to which it first established a connection.

Choose this value if you want an application to automatically reconnect to the standby instance of a
highly available queue manager.

To use this value programmatically, use the constant
WMQConstants.WMQ_CLIENT_RECONNECT_Q_MGR.

ANY

The application can reconnect to any of the queue managers specified in the connection name list.

Use the reconnect option only if there is no affinity between the IBM MQ classes for JMS application
and the queue manager with which it initially established a connection.

To use this value from a program, use the constant WMQConstants.WMQ_CLIENT_RECONNECT.

DISABLED

The application will not be reconnected.

To use this value programmatically, use the constant
WMQConstants.WMQ_CLIENT_RECONNECT_DISABLED.

ASDEF

Whether the application will reconnect automatically depends on the value of the IBM MQ channel
attribute DefReconnect.

This is the default value.

To use this value from a program, use the constant
WMQConstants.WMQ_CLIENT_RECONNECT_AS_DEF.

CLIENTRECONNECTTIMEOUT
Time before reconnection retries cease.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory

JMS administration tool long name: CLIENTRECONNECTTIMEOUT

JMS administration tool short name: CRT

Programmatic access
Setters/getters

Developing applications reference 1895

• MQConnectionFactory.setClientReconnectTimeout()
• MQConnectionFactory.setClientReconnectTimeout()

Values
Interval in seconds. Default 1800 (30 minutes).

CLIENTID
The client identifier is used to uniquely identify the application connection for durable subscriptions.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: CLIENTID

JMS administration tool short name: CID

Programmatic access
Setters/getters

• MQConnectionFactory.setClientId()
• MQConnectionFactory.getClientId()

Values
null

This is the default value.
Any valid string

CLONESUPP
Whether two or more instances of the same durable topic subscriber can run simultaneously.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: CLONESUPP

JMS administration tool short name: CLS

Programmatic access
Setters/getters

• MQConnectionFactory.setCloneSupport()
• MQConnectionFactory.getCloneSupport()

Values
DISABLED

Only one instance of a durable topic subscriber can run at a time. This is the default value.
ENABLED

Two or more instances of the same durable topic subscriber can run simultaneously, but each
instance must run in a separate Java virtual machine (JVM).

1896 IBM MQ Developing Applications Reference

COMPHDR
A list of the techniques that can be used for compressing header data on a connection.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: COMPHDR

JMS administration tool short name: HC

Programmatic access
Setters/getters

• MQConnectionFactory.setHdrCompList()
• MQConnectionFactory.getHdrCompList()

Values
NONE

This is the default value.
SYSTEM

RLE message header compression is performed.

COMPMSG
A list of the techniques that can be used for compressing message data on a connection.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: COMPMSG

JMS administration tool short name: MC

Programmatic access
Setters/getters

• MQConnectionFactory.setMsgCompList()
• MQConnectionFactory.getMsgCompList()

Values
NONE

This is the default value.
A list of one or more of the following values separated by blank characters:

RLE ZLIBFAST ZLIBHIGH

Developing applications reference 1897

CONNOPT
Controls how IBM MQ classes for JMS applications that use the bindings transport connect to the queue
manager.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory.

JMS administration tool long name: CONNOPT

JMS administration tool short name: CNOPT

Programmatic access
Setters/getters

• MQConnectionFactory.setMQConnectionOptions()
• MQConnectionFactory.getMQConnectionOptions()

Values
STANDARD

The nature of the binding between the application and the queue manager depends on the value
of the DefaultBindType attribute of the queue manager. The STANDARD value maps to the IBM MQ
ConnectOption MQCNO_STANDARD_BINDING.

SHARED
The application and the local queue manager agent run in separate units of execution but share some
resources. This value maps to the IBM MQ ConnectOption MQCNO_SHARED_BINDING.

ISOLATED
The application and the local queue manager agent run in separate units of execution and share no
resources. The ISOLATED value maps to the IBM MQ ConnectOption MQCNO_ISOLATED_BINDING.

FASTPATH
The application and the local queue manager agent run in the same unit of execution. This value maps
to the IBM MQ ConnectOption MQCNO_FASTPATH_BINDING.

SERIALQM
The application requests exclusive use of the connection tag within the scope of the queue manager.
This value maps to the IBM MQ ConnectOption MQCNO_SERIALIZE_CONN_TAG_Q_MGR.

SERIALQSG
The application requests exclusive use of the connection tag within the scope of the queue
sharing group to which the queue manager belongs. The SERIALQSG value maps to the IBM MQ
ConnectOption MQCNO_SERIALIZE_CONN_TAG_QSG.

RESTRICTQM
The application requests shared use of the connection tag, but there are restrictions on the shared
use of the connection tag within the scope of the queue manager. This value maps to the IBM MQ
ConnectOption MQCNO_RESTRICT_CONN_TAG_Q_MGR.

RESTRICTQSG
The application requests shared use of the connection tag, but there are restrictions on the shared
use of the connection tag within the scope of the queue sharing group to which the queue manager
belongs. This value maps to the IBM MQ ConnectOption MQCNO_RESTRICT_CONN_TAG_QSG.

For further information on IBM MQ connection options, see Connecting to a queue manager using the
MQCONNX call.

1898 IBM MQ Developing Applications Reference

CONNTAG
A tag that the queue manager associates with the resources updated by the application within a unit of
work while the application is connected to the queue manager.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: CONNTAG

JMS administration tool short name: CNTAG

Programmatic access
Setters/getters

• MQConnectionFactory.setConnTag()
• MQConnectionFactory.getConnTag()

Values
A byte array of 128 elements, where each element is 0

This is the default value.
Any string

The value is truncated if it is longer than 128 bytes.

DESCRIPTION
A description of the stored object.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, Queue, Topic,
XAConnectionFactory, XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: DESCRIPTION

JMS administration tool short name: DESC

Programmatic access
Setters/getters

• MQConnectionFactory.setDescription()
• MQConnectionFactory.getDescription()

Values
null

This is the default value.
Any valid string

`

Developing applications reference 1899

DIRECTAUTH
Whether TLS authentication is used on a real-time connection to a broker.

Applicable Objects
ConnectionFactory, TopicConnectionFactory

JMS administration tool long name: DIRECTAUTH

JMS administration tool short name: DAUTH

Programmatic access
Setters/getters

• MQConnectionFactory.setDirectAuth()
• MQConnectionFactory.getDirectAuth()

Values
BASIC

No authentication, username authentication, or password authentication. This is the default value.
CERTIFICATE

Public key certificate authentication.

ENCODING
How numeric data in the body of a message is represented when the message is sent to this destination.
The property specifies the representation of binary integers, packed decimal integers, and floating point
numbers.

Applicable Objects
Queue, Topic

JMS administration tool long name: ENCODING

JMS administration tool short name: ENC

Programmatic access
Setters/getters

• MQDestination.setEncoding()
• MQDestination.getEncoding()

Values
ENCODING property

The valid values that the ENCODING property can take are constructed from the three sub-properties:
integer encoding

Either normal or reversed
decimal encoding

Either normal or reversed
floating-point encoding

IEEE normal, IEEE reversed, or z/OS

1900 IBM MQ Developing Applications Reference

The ENCODING property is expressed as a three-character string with the following syntax:

{N|R}{N|R}{N|R|3}

In this string:

• N denotes normal
• R denotes reversed
• 3 denotes z/OS
• The first character represents integer encoding
• The second character represents decimal encoding
• The third character represents floating-point encoding

This provides a set of twelve possible values for the ENCODING property.

There is an additional value, the string NATIVE, which sets appropriate encoding values for the Java
platform.

The following examples show valid combinations for ENCODING:

ENCODING(NNR)
ENCODING(NATIVE)
ENCODING(RR3)

EXPIRY
The time after which messages at a destination expire.

Applicable Objects
Queue, Topic

JMS administration tool long name: EXPIRY

JMS administration tool short name: EXP

Programmatic access
Setters/getters

• MQDestination.setExpiry()
• MQDestination.getExpiry()

Values
APP

Expiry can be defined by the JMS application. This is the default value.
UNLIM

No expiry occurs.
0

No expiry occurs.
Any positive integer representing expiry in milliseconds.

FAILIFQUIESCE
This property determines whether calls to certain methods fail if either the queue manager is in a
quiescing state, or an application is connecting to a queue manager using the CLIENT transport and the

Developing applications reference 1901

channel that the application is using has been put into a quiescing state, for example, by using the STOP
CHANNEL or STOP CHANNEL MODE(QUIESCE) MQSC command.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, Queue, Topic,
XAConnectionFactory, XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: FAILIFQUIESCE

JMS administration tool short name: FIQ

Programmatic access
Setters/getters

• MQConnectionFactory.setFailIfQuiesce()
• MQConnectionFactory.getFailIfQuiesce()

Values
YES

Calls to certain methods fail if either the queue manager is in a quiescing state, or the channel
being used to connect to a queue manager is quiescing. If an application detects either of these
conditions, the application can complete its immediate task and close the connection, allowing the
queue manager or channel instance to stop. This is the default value.

NO
No method call fails because either the queue manager, or the channel being used to connect to a
queue manager, is in a quiescing state. If you specify this value, an application cannot detect that the
queue manager or channel is quiescing. The application might continue to perform operations against
the queue manager, and therefore prevent the queue manager from stopping.

HOSTNAME
For a connection to a queue manager, the host name or IP address of the system on which the queue
manager is running or, for a real-time connection to a broker, the host name or IP address of the system
on which the broker is running.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: HOSTNAME

JMS administration tool short name: HOST

Programmatic access
Setters/getters

• MQConnectionFactory.setHostName()
• MQConnectionFactory.getHostName()

Values
localhost

This is the default value.
Any valid string

1902 IBM MQ Developing Applications Reference

LOCALADDRESS
For a connection to a queue manager, this property specifies either the local network interface to be used,
or the local port, or range of local ports, to be used.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: LOCALADDRESS

JMS administration tool short name: LA

Programmatic access
Setters/getters

• MQConnectionFactory.setLocalAddress()
• MQConnectionFactory.getLocalAddress()

Values
"" (empty string)

This is the default value.
A string in the format [ip-addr][(low-port[,high-port])]

Here are some examples:

192.0.2.0

The channel binds to address 192.0.2.0 locally.

192.0.2.0(1000)

The channel binds to address 192.0.2.0 locally and uses port 1000.

192.0.2.0(1000,2000)

The channel binds to address 192.0.2.0 locally and uses a port in the range 1000 to 2000.

(1000)

The channel binds to port 1000 locally.

(1000,2000)

The channel binds to a port in the range 1000 to 2000 locally.

You can specify a host name instead of an IP address. For a real-time connection to a broker, this
property is relevant only when multicast is used, and the value of the property must not contain a port
number, or a range of port numbers. The only valid values of the property in this case are null, an IP
address, or a host name.

MAPNAMESTYLE
Allows compatibility style to be used for MapMessage element names.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: MAPNAMESTYLE

JMS administration tool short name: MNST

Developing applications reference 1903

Programmatic access
Setters/getters

• MQConnectionFactory.setMapNameStyle()
• MQConnectionFactory.getMapNameStyle()

Values
STANDARD

The standard com.ibm.jms.JMSMapMessage element naming format is to be used. This is the default
value and allows non-legal Java identifiers to be used as the element name.

COMPATIBLE
The older com.ibm.jms.JMSMapMessage element naming format is to be used. Only legal Java
identifiers can be used as the element name. This is needed only if map messages are being sent
to an application that is using a version of IBM MQ classes for JMS earlier than 5.3.

MAXBUFFSIZE
The maximum number of received messages that can be stored in an internal message buffer while
waiting to be processed by the application. This property applies only when TRANSPORT has the value
DIRECT or DIRECTHTTP.

Applicable Objects
ConnectionFactory, TopicConnectionFactory

JMS administration tool long name: MAXBUFFSIZE

JMS administration tool short name: MBSZ

Programmatic access
Setters/getters

• MQConnectionFactory.setMaxBufferSize()
• MQConnectionFactory.getMaxBufferSize()

Values
1000

This is the default value.
Any positive integer

MDREAD
This property determines whether a JMS application can extract the values of MQMD fields.

Applicable Objects
JMS administration tool long name: MDREAD

JMS administration tool short name: MDR

Programmatic access
Setters/getters

• MQDestination.setMQMDReadEnabled()
• MQDestination.getMQMDReadEnabled()

1904 IBM MQ Developing Applications Reference

Values
NO

When sending messages, the JMS_IBM_MQMD* properties on a sent message are not updated
to reflect the updated field values in the MQMD. When receiving messages, none of the
JMS_IBM_MQMD* properties are available on a received message, even if the sender had set some or
all of them. This is the default value for administrative tools.
For programs, use False.

Yes
When sending messages, all of the JMS_IBM_MQMD* properties on a sent message are updated
to reflect the updated field values in the MQMD, including the properties that the sender did not
set explicitly. When receiving messages, all of the JMS_IBM_MQMD* properties are available on a
received message, including the properties that the sender did not set explicitly.
For programs, use True.

MDWRITE
This property determines whether a JMS application can set the values of MQMD fields.

Applicable Objects
Queue, Topic

JMS administration tool long name: MDWRITE

JMS administration tool short name: MDR

Programmatic access
Setters/getters

• MQDestination.setMQMDWriteEnabled()
• MQDestination.getMQMDWriteEnabled()

Values
NO

All JMS_IBM_MQMD* properties are ignored and their values are not copied into the underlying
MQMD structure. This is the default value for administrative tools.
For programs, use False.

YES
JMS_IBM_MQMD* properties are processed. Their values are copied into the underlying MQMD
structure.
For programs, use True.

MDMSGCTX
What level of message context is to be set by the JMS application. The application must be running with
appropriate context authority for this property to take effect.

Applicable Objects
JMS administration tool long name: MDMSGCTX

JMS administration tool short name: MDCTX

Developing applications reference 1905

Programmatic access
Setters/getters

• MQDestination.setMQMDMessageContext()
• MQDestination.getMQMDMessageContext()

Values
DEFAULT

The MQOPEN API call and the MQPMO structure specify no explicit message context options. This is
the default value for administrative tools.
For programs, use WMQ_MDCTX_DEFAULT.

SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message context option MQOO_SET_IDENTITY_CONTEXT and the
MQPMO structure specifies MQPMO_SET_IDENTITY_CONTEXT.
For programs, use WMQ_MDCTX_SET_IDENTITY_CONTEXT.

SET_ALL_CONTEXT
The MQOPEN API call specifies the message context option MQOO_SET_ALL_CONTEXT and the
MQPMO structure specifies MQPMO_SET_ALL_CONTEXT.
For programs, use WMQ_MDCTX_SET_ALL_CONTEXT.

MSGBATCHSZ
The maximum number of messages to be taken from a queue in one packet when using asynchronous
message delivery.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: MAXBUFFSIZE

JMS administration tool short name: MBSZ

Programmatic access
Setters/getters

• MQConnectionFactory.setMsgBatchSize()
• MQConnectionFactory.getMsgBatchSize()

Values
10

This is the default value.
Any positive integer

MSGBODY
Determines whether a JMS application accesses the MQRFH2 of an IBM MQ message as part of the
message payload.

Applicable Objects
Queue, Topic

1906 IBM MQ Developing Applications Reference

JMS administration tool long name: WMQ_MESSAGE_BODY

JMS administration tool short name: MBODY

Programmatic access
Setters/getters

• MQConnectionFactory.setMessageBodyStyle()
• MQConnectionFactory.getMessageBodyStyle()

Values
UNSPECIFIED

When sending, IBM MQ classes for JMS does or does not generate and include an MQRFH2 header,
depending on the value of WMQ_TARGET_CLIENT. When receiving, acts as value JMS.

JMS
When sending, IBM MQ classes for JMS automatically generates an MQRFH2 header and includes it in
the IBM MQ message.

When receiving, IBM MQ classes for JMS set the JMS message properties according to values in the
MQRFH2 (if present); it does not present the MQRFH2 as part of the JMS message body.

MQ
When sending, IBM MQ classes for JMS does not generate an MQRFH2.

When receiving, IBM MQ classes for JMS presents the MQRFH2 as part of the JMS message body.

MSGRETENTION
Whether the connection consumer keeps undelivered messages on the input queue.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, XAConnectionFactory, XAQueueConnectionFactory,

JMS administration tool long name: MSGRETENTION

JMS administration tool short name: MRET

Programmatic access
Setters/getters

• MQConnectionFactory.setMessageRetention()
• MQConnectionFactory.getMessageRetention()

Values
Yes

Undelivered messages remain on the input queue. This is the default value.
No

Undelivered messages are dealt with according to their disposition options.

MSGSELECTION
Determines whether message selection is done by the IBM MQ classes for JMS or by the broker. If
TRANSPORT has the value DIRECT, message selection is always done by the broker and the value of

Developing applications reference 1907

MSGSELECTION is ignored. Message selection by the broker is not supported when BROKERVER has the
value V1.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: MSGSELECTION

JMS administration tool short name: MSEL

Programmatic access
Setters/getters

• MQConnectionFactory.setMessageSelection()
• MQConnectionFactory.getMessageSelection()

Values
CLIENT

Message selection is done by IBM MQ classes for JMS. This is the default value.
BROKER

Message selection is done by the broker.

MULTICAST
To enable multicast on a real-time connection to a broker and, if enabled, to specify the precise way in
which multicast is used to deliver messages from the broker to a message consumer. The property has no
effect on how a message producer sends messages to a broker.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, Topic

JMS administration tool long name: MULTICAST

JMS administration tool short name: MCAST

Programmatic access
Setters/getters

• MQConnectionFactory.setMulticast()
• MQConnectionFactory.getMulticast()

Values
DISABLED

Messages are not delivered to a message consumer using multicast transport. This is the default value
for ConnectionFactory and TopicConnectionFactory objects.

ASCF
Messages are delivered to a message consumer according to the multicast setting for the connection
factory associated with the message consumer. The multicast setting for the connection factory is
noted at the time that the message consumer is created. This value is valid only for Topic objects, and
is the default value for Topic objects.

1908 IBM MQ Developing Applications Reference

ENABLED
If the topic is configured for multicast in the broker, messages are delivered to a message consumer
using multicast transport. A reliable quality of service is used if the topic is configured for reliable
multicast.

RELIABLE
If the topic is configured for reliable multicast in the broker, messages are delivered to the message
consumer using multicast transport with a reliable quality of service. If the topic is not configured for
reliable multicast, you cannot create a message consumer for the topic.

NOTR
If the topic is configured for multicast in the broker, messages are delivered to the message consumer
using multicast transport. A reliable quality of service is not used even if the topic is configured for
reliable multicast.

OPTIMISTICPUBLICATION
This property determines whether IBM MQ classes for JMS returns control immediately to a publisher
that has published a message, or whether it returns control only after it has completed all the processing
associated with the call and can report the outcome to the publisher.

Applicable Objects
ConnectionFactory, TopicConnectionFactory

JMS administration tool long name: OPTIMISTICPUBLICATION

JMS administration tool short name: OPTPUB

Programmatic access
Setters/getters

• MQConnectionFactory.setOptimisticPublication()
• MQConnectionFactory.getOptimisticPublication()

Values
NO

When a publisher publishes a message, IBM MQ classes for JMS do not return control to the publisher
until it has completed all the processing associated with the call and can report the outcome to the
publisher. This is the default value.

YES
When a publisher publishes a message, IBM MQ classes for JMS returns control to the publisher
immediately, before it has completed all the processing associated with the call and can report the
outcome to the publisher. IBM MQ classes for JMS reports the outcome only when the publisher
commits the message.

OUTCOMENOTIFICATION
This property determines whether IBM MQ classes for JMS return control immediately to a subscriber
that has just acknowledged or committed a message, or whether it returns control only after it has
completed all the processing associated with the call and can report the outcome to the subscriber.

Applicable Objects
ConnectionFactory, TopicConnectionFactory

JMS administration tool long name: OUTCOMENOTIFICATION

JMS administration tool short name: NOTIFY

Developing applications reference 1909

Programmatic access
Setters/getters

• MQConnectionFactory.setOutcomeNotification()
• MQConnectionFactory.getOutcomeNotification()

Values
YES

When a subscriber acknowledges or commits a message, IBM MQ classes for JMS do not return
control to the subscriber until it has completed all the processing associated with the call and can
report the outcome to the subscriber. This is the default value.

NO
When a subscriber acknowledges or commits a message, IBM MQ classes for JMS returns control to
the subscriber immediately, before it has completed all the processing associated with the call and
can report the outcome to the subscriber.

PERSISTENCE
The persistence of messages sent to a destination.

Applicable Objects
Queue, Topic

JMS administration tool long name: PERSISTENCE

JMS administration tool short name: PER

Programmatic access
Setters/getters

• MQDestination.setPersistence()
• MQDestination.getPersistence()

Values
APP

Persistence is defined by the JMS application. This is the default value.
QDEF

Persistence takes the value of the queue default.
PERS

Messages are persistent.
NON

Messages are nonpersistent.
HIGH

See JMS persistent messages for further information on the use of this value.

POLLINGINT
If each message listener within a session has no suitable message on its queue, this is the maximum
interval, in milliseconds, that elapses before each message listener tries again to get a message from its
queue. If it frequently happens that no suitable message is available for any of the message listeners in
a session, consider increasing the value of this property. This property is relevant only if TRANSPORT has
the value BIND or CLIENT.

1910 IBM MQ Developing Applications Reference

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: POLLINGINT

JMS administration tool short name: PINT

Programmatic access
Setters/getters

• MQConnectionFactory.setPollingInterval()
• MQConnectionFactory.getPollingInterval()

Values
5000

This is the default value.
Any positive integer

PORT
For a connection to a queue manager, the number of the port on which the queue manager is listening or,
for a real-time connection to a broker, the number of the port on which the broker is listening for real-time
connections.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: PORT

JMS administration tool short name: PORT

Programmatic access
Setters/getters

• MQConnectionFactory.setPort()
• MQConnectionFactory.getPort()

Values
1414

This is the default value if TRANSPORT is set to CLIENT.
1506

This is the default value if TRANSPORT is set to DIRECT or DIRECTHTTP.
Any positive integer

PRIORITY
The priority for messages sent to a destination.

Applicable Objects
Queue, Topic

Developing applications reference 1911

JMS administration tool long name: PRIORITY

JMS administration tool short name: PRI

Programmatic access
Setters/getters

• MQDestination.setPriority()
• MQDestination.getPriority()

Values
APP

Priority is defined by the JMS application. This is the default value.
QDEF

Priority takes the value of the queue default.
Any integer in the range 0-9

Lowest to highest.

PROCESSDURATION
This property determines whether a subscriber guarantees to process quickly any message it receives
before returning control to IBM MQ classes for JMS.

Applicable Objects
ConnectionFactory, TopicConnectionFactory

JMS administration tool long name: PROCESSDURATION

JMS administration tool short name: PROCDUR

Programmatic access
Setters/getters

• MQConnectionFactory.setProcessDuration()
• MQConnectionFactory.getProcessDuration()

Values
UNKNOWN

A subscriber can give no guarantee about how quickly it can process any message it receives. This is
the default value.

SHORT
A subscriber guarantees to process quickly any message it receives before returning control to IBM
MQ classes for JMS.

PROVIDERVERSION
This property differentiates between the three IBM MQ messaging modes of operation: IBM MQ
messaging provider normal mode, IBM MQ messaging provider normal mode with restrictions, and IBM
MQ messaging provider migration mode.

The IBM MQ messaging provider normal mode uses all the features of an IBM MQ queue manager to
implement JMS. This mode is optimized to use the JMS 2.0 API and functionality. The IBM MQ messaging
provider normal mode with restrictions uses the JMS 2.0 API, but not the new features such as shared
subscriptions, delayed delivery, or asynchronous send.

1912 IBM MQ Developing Applications Reference

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnection Factory, XATopicConnectionFactory

JMS administration tool long name: PROVIDERVERSION

JMS administration tool short name: PVER

Programmatic access
Setters/getters

• MQConnectionFactory.setProviderVersion()
• MQConnectionFactory.getProviderVersion()

Values
You can set the PROVIDERVERSION property to any of the values 8 (normal mode), 7 (normal mode with
restrictions), 6 (migration mode), or unspecified (the default value). The value that you specify for the
PROVIDERVERSION property must be a string. If you are specifying an option of 8, 7 or 6, you can do this
in any of the following formats:

• V.R.M.F
• V.R.M
• V.R
• V

where V, R, M and F are integer values greater than or equal to zero. The extra R, M and F values are
optional and are available for you to use in case fine grained control is needed. For example, if you wanted
to use a PROVIDERVERSION level of 7, you could set PROVIDERVERSION=7, 7.0, 7.0.0 or 7.0.0.0.

8 - Normal mode
The JMS application uses the IBM MQ messaging provider normal mode. Normal mode uses all the
features of an IBM MQ queue manager to implement JMS. This mode is optimized to use the JMS 2.0
API and functionality.

If you are connecting to a queue manager with a command level of 800, then all of the JMS 2.0 API
and features, such as asynchronous send, delayed delivery, or shared subscription, can be used.

If the queue manager specified in the connection factory settings is not an IBM MQ 8.0.0 queue
manager, the createConnection method fails with an exception JMSFMQ0003.

The IBM MQ messaging provider normal mode uses the sharing conversations feature and the
number of conversations that can be shared is controlled by the SHARECNV() property on the server
connection channel. If this property is set to 0, you cannot use IBM MQ messaging provider normal
mode and the createConnection method fails with an exception JMSCC5007.

7 - Normal mode with restrictions
The JMS application uses the IBM MQ messaging provider normal mode with restrictions. This mode
uses the JMS 2.0 API, but not the new features such as shared subscriptions, delayed delivery, or
asynchronous send.

If you set PROVIDERVERSION to 7 only the IBM MQ messaging provider normal with restrictions
mode of operation is available. If the queue manager specified in the connection factory settings is
not an IBM WebSphere MQ 7.0.1, or later, queue manager, the createConnection method fails with
exception JMSFCC5008.

If you are connecting using normal mode with restrictions, to a queue manager with a command level
between 700 and 800 then you can use the JMS 2.0 API, but not the asynchronous send, delayed
delivery, or shared subscription features.

Developing applications reference 1913

The IBM MQ messaging provider normal mode with restrictions uses the sharing conversations
feature and the number of conversations that can be shared is controlled by the SHARECNV()
property on the server connection channel. If this property is set to 0, you cannot use IBM MQ
messaging provider normal mode with restrictions and the createConnection method fails with an
exception JMSCC5007.

6 - Migration mode
The JMS application uses the IBM MQ messaging provider migration mode.

The IBM MQ classes for JMS use the features and algorithms supplied with IBM WebSphere MQ 6.0.
If you want to connect to WebSphere Message Broker 6.0 or 6.1 using IBM WebSphere MQ Enterprise
Transport 6.0, you must use this mode. You can connect to an IBM MQ 8.0 queue manager using
this mode, but none of the new features of an IBM MQ classes for JMS queue manager are used, for
example, read ahead or streaming.

If you have an IBM MQ 8.0 or later client connecting to an IBM MQ 8.0 or later queue manager, then
the message selection is done by the queue manager rather than on the client system.

If IBM MQ messaging provider migration mode is specified and you attempt to use any of the JMS 2.0
API, the API method call fails with the exception JMSCC5007.

unspecified (default)
The PROVIDERVERSION property is set to unspecified by default.

A connection factory that was created with a previous version of IBM MQ classes for JMS in JNDI
takes this value when the connection factory is used with the new version of IBM MQ classes for JMS.
The following algorithm is used to determine which mode of operation is used. This algorithm is used
when the createConnection method is called and uses other aspects of the connection factory to
determine if IBM MQ messaging provider normal mode, normal mode with restrictions, or IBM MQ
messaging provider migration mode is required.

1. First, an attempt to use IBM MQ messaging provider normal mode is made.
2. If the queue manager connected is not IBM MQ 8.0 or later, an attempt to use IBM MQ messaging

provider normal mode with restrictions is made.
3. If the queue manager connected is not IBM WebSphere MQ 7.0.1, or later, the connection is closed

and IBM MQ messaging provider migration mode is used instead.
4. If the SHARECNV property on the server connection channel is set to 0, the connection is closed

and IBM MQ messaging provider migration mode is used instead.
5. If BROKERVER is set to V1 or the default unspecified value, IBM MQ messaging provider normal

mode continues to be used, and therefore any publish/subscribe operations use the new IBM
WebSphere MQ 7.0.1, or later, features.

See ALTER QMGR for information about the PSMODE parameter of the ALTER QMGR command for
further information on compatibility.

6. If BROKERVER is set to V2 the action taken depends on the value of BROKERQMGR :

• If the BROKERQMGR is blank:

If the queue specified by the BROKERCONQ property can be opened for output (that is,
MQOPEN for output succeeds) and PSMODE on the queue manager is set to COMPAT or
DISABLED, then IBM MQ messaging provider migration mode is used.

• If the queue specified by the BROKERCONQ property cannot be opened for output, or the PSMODE
attribute is set to ENABLED:

IBM MQ messaging provider normal mode is used.
• If BROKERQMGR is non-blank :

IBM MQ messaging provider migration mode is used.

If you cannot change the connection factory that you are using, you can use the
com.ibm.msg.client.wmq.overrideProviderVersion property to override any setting on the

1914 IBM MQ Developing Applications Reference

connection factory. This override applies to all connection factories in the JVM but the actual connection
factory objects are not modified.

Related tasks
Configuring the JMS PROVIDERVERSION property

PROXYHOSTNAME
The host name or IP address of the system on which the proxy server is running when using a real-time
connection to a broker through a proxy server.

Applicable Objects
ConnectionFactory, TopicConnectionFactory

JMS administration tool long name: PROXYHOSTNAME

JMS administration tool short name: PHOST

Programmatic access
Setters/getters

• MQConnectionFactory.setProxyHostName()
• MQConnectionFactory.getProxyHostName()

Values
null

The host name of the proxy server. This is the default value.

PROXYPORT
The number of the port on which the proxy server is listening when using a real-time connection to a
broker through a proxy server.

Applicable Objects
ConnectionFactory, TopicConnectionFactory

JMS administration tool long name: PROXYPORT

JMS administration tool short name: PPORT

Programmatic access
Setters/getters

MQConnectionFactory.setProxyPort()

MQConnectionFactory.getProxyPort()

Values
443

The port number of the proxy server. This is the default value.

Developing applications reference 1915

PUBACKINT
The number of messages published by a publisher before IBM MQ classes for JMS requests an
acknowledgment from the broker.

When you lower the value of this property, IBM MQ classes for JMS requests acknowledgments more
often, therefore the performance of the publisher decreases. When you raise the value, IBM MQ classes
for JMS take a longer time to throw an exception if the broker fails. This property is relevant only if
TRANSPORT has the value BIND or CLIENT.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: PROXYPORT

JMS administration tool short name: PPORT

Programmatic access
Setters/getters

MQConnectionFactory.setPubAckInterval()

MQConnectionFactory.getPubAckInterval()

Values
25

Any positive integer may be the default value.

PUTASYNCALLOWED
This property determines whether message producers are allowed to use asynchronous puts to send
messages to this destination.

Applicable Objects
Queue, Topic

JMS administration tool long name: PUTASYNCALLOWED

JMS administration tool short name: PAALD

Programmatic access
Setters/getters

MQDestination.setPutAsyncAllowed()

MQDestination.getPutAsyncAllowed()

Values
AS_DEST

Determine whether asynchronous puts are allowed by referring to the queue or topic definition. This is
the default value.

AS_Q_DEF
Determine whether asynchronous puts are allowed by referring to the queue definition.

AS_TOPIC_DEF
Determine whether asynchronous puts are allowed by referring to the topic definition.

1916 IBM MQ Developing Applications Reference

NO
Asynchronous puts are not allowed.

YES
Asynchronous puts are allowed.

QMANAGER
The name of the queue manager to connect to.

However, if your application uses a client channel definition table to connect to a queue manager, see
Using a client channel definition table with IBM MQ classes for JMS.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, Queue, XAConnectionFactory,
XAQueueConnection Factory, XATopicConnectionFactory

JMS administration tool long name: QMANAGER

JMS administration tool short name: QMGR

Programmatic access
Setters/getters

• MQConnectionFactory.setQueueManager()
• MQConnectionFactory.getQueueManager()

Values
" " (empty string)

Any string can be the default value.

QUEUE
The name of the JMS queue destination. This matches the name of the queue used by the queue
manager.

Applicable Objects
Queue

JMS administration tool long name: QUEUE

JMS administration tool short name: QU

Values
Any string

Any valid IBM MQ queue name.
Related concepts
Rules for naming IBM MQ objects>

Developing applications reference 1917

READAHEADALLOWED
This property determines whether message consumers and queue browsers are allowed to use read
ahead to get nonpersistent messages from this destination into an internal buffer before receiving them.

Applicable Objects
Queue, Topic

JMS administration tool long name: READAHEADALLOWED

JMS administration tool short name: RAALD

Programmatic access
Setters/getters

• MQDestination.setReadAheadAllowed()
• MQDestination.getReadAheadAllowed()

Values
AS_DEST

Determine whether read ahead is allowed by referring to the queue or topic definition. This is the
default value in administrative tools.
Use WMQConstants.WMQ_READ_AHEAD_ALLOWED_AS_DEST in programs.

AS_Q_DEF
Determine whether read ahead is allowed by referring to the queue definition.
Use WMQConstants.WMQ_READ_AHEAD_ALLOWED_AS_Q_DEF in programs.

AS_TOPIC_DEF
Determine whether read ahead is allowed by referring to the topic definition.
Use WMQConstants.WMQ_READ_AHEAD_ALLOWED_AS_TOPIC_DEF in programs.

NO
Read ahead is not allowed.
Use WMQConstants.WMQ_READ_AHEAD_ALLOWED_DISABLED in programs.

YES
Read ahead is allowed.
Use WMQConstants.WMQ_READ_AHEAD_ALLOWED_ENABLED in programs.

READAHEADCLOSEPOLICY
For messages being delivered to an asynchronous message listener, what happens to messages in the
internal read ahead buffer when the message consumer is closed.

Applicable Objects
Queue, Topic

JMS administration tool long name: READAHEADCLOSEPOLICY

JMS administration tool short name: RACP

Programmatic access
Setters/getters

• MQDestination.setReadAheadClosePolicy()

1918 IBM MQ Developing Applications Reference

• MQDestination.getReadAheadClosePolicy()

Values
DELIVER_ALL

All messages in the internal read ahead buffer are delivered to the message listener of the application
before returning. This is the default value in administrative tools.
Use WMQConstants.WMQ_READ_AHEAD_DELIVERALL in programs.

DELIVER_CURRENT
Only the current message listener invocation completes before returning, potentially leaving
messages in the internal read ahead buffer, which are then discarded.
Use WMQConstants.WMQ_READ_AHEAD_DELIVERCURRENT in programs.

RECEIVECCSID
Destination property that sets the target CCSID for queue manager message conversion. The value is
ignored unless RECEIVECONVERSION is set to WMQ_RECEIVE_CONVERSION_QMGR

Applicable Objects
Queue, Topic

JMS administration tool long name: RECEIVECCSID

JMS administration tool short name: RCCS

Programmatic access
Setters/Getters

• MQDestination.setReceiveCCSID
• MQDestination.getReceiveCCSID

Values
WMQConstants.WMQ_RECEIVE_CCSID_JVM_DEFAULT

0 - Use JVM Charset.defaultCharset
1208

UTF-8
CCSID

Supported coded character set identifier.

RECEIVECONVERSION
Destination property that determines if data conversion is going to be performed by the queue manager.

Applicable Objects
Queue, Topic

JMS administration tool long name: RECEIVECONVERSION

JMS administration tool short name: RCNV

Programmatic access
Setters/Getters

• MQDestination.setReceiveConversion

Developing applications reference 1919

• MQDestination.getReceiveConversion

Values
WMQConstants.WMQ_RECEIVE_CONVERSION_CLIENT_MSG

1 - Only perform data conversion on the JMS client. The default value from up to V7.0, and from, and
including, 7.0.1.5.

WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR
2 - Perform data conversion on the queue manager before sending a message to the client. The
default (and only) value from V7.0 to V7.0.1.4 inclusive, except if APAR IC72897 is applied.

RECEIVEISOLATION
This property determines whether a subscriber might receive messages that have not been committed on
the subscriber queue.

Applicable Objects
ConnectionFactory, TopicConnectionFactory

JMS administration tool long name: RECEIVEISOLATION

JMS administration tool short name: RCVISOL

Values
COMMITTED

A subscriber receives only those messages on the subscriber queue that have been committed. This is
the default value in administrative tools.
Use WMQConstants.WMQ_RCVISOL_COMMITTED in programs.

UNCOMMITTED
A subscriber can receive messages that have not been committed on the subscriber queue.
Use WMQConstants.WMQ_RCVISOL_UNCOMMITTED in programs.

RECEXIT
Identifies a channel receive exit, or a sequence of receive exits, to be run in succession.

Additional configuration might be required in order for the IBM MQ classes for JMS to locate receive exits.
For more information, see Configuring the IBM MQ classes for JMS to use channel exits.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: RECEXIT

JMS administration tool short name: RCX

Programmatic access
Setters/getters

• MQConnectionFactory.setReceiveExit()
• MQConnectionFactory.getReceiveExit()

Values
• null. This is the default value.

1920 IBM MQ Developing Applications Reference

• A string comprising one or more items separated by commas, where each item is either:

– The name of a class that implements the WMQReceiveExit interface (for a channel receive exit
written in Java).

– A string in the format libraryName(entryPointName) (for a channel receive exit not written in Java).

RECEXITINIT
The user data that is passed to channel receive exits when they are called.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: RECEXITINIT

JMS administration tool short name: RCXI

Programmatic access
Setters/getters

• MQConnectionFactory.setReceiveExitInit()
• MQConnectionFactory.getReceiveExitInit()

Values
null

A string comprising one or more items of user data separated by commas. This is the default value.

REPLYTOSTYLE
Determines how the JMSReplyTo field in a received message is constructed.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: REPLYTOSTYLE

JMS administration tool short name: RTOST

Programmatic access
Setters/getters

• MQConnectionFactory.setReplyToStyle()
• MQConnectionFactory.getReplyToStyle()

Values
DEFAULT

Equivalent to MQMD.
RFH2

Use the value supplied in the RFH2 header. If a JMSReplyTo value has been set in the sending
application, use that value.

Developing applications reference 1921

MQMD
Use the MQMD supplied value. This behavior is equivalent to the default behavior of IBM WebSphere
MQ 6.0.2.4 and 6.0.2.5.

If the JMSReplyTo value set by the sending application does not contain a queue manager name, the
receiving queue manager inserts its own name in the MQMD. If you set this parameter to MQMD, the
reply-to queue you use is on the receiving queue manager. If you set this parameter to RFH2, the reply-to
queue you use is on the queue manager specified in the RFH2 of the sent message as originally set by the
sending application.

If the JMSReplyTo value set by the sending application contains a queue manager name, the value of this
parameter is unimportant because both the MQMD and RFH2 contain the same value.

RESCANINT
When a message consumer in the point-to-point domain uses a message selector to select which
messages it wants to receive, IBM MQ classes for JMS search the IBM MQ queue for suitable messages in
the sequence determined by the MsgDeliverySequence attribute of the queue.

After IBM MQ classes for JMS find a suitable message and deliver it to the consumer, IBM MQ classes
for JMS resume the search for the next suitable message from its current position in the queue. IBM MQ
classes for JMS continue to search the queue in this way until it reaches the end of the queue, or until
the interval of time in milliseconds, as determined by the value of this property, has expired. In each case,
IBM MQ classes for JMS return to the beginning of the queue to continue the search, and a new time
interval commences.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, XAConnectionFactory, XAQueueConnectionFactory

JMS administration tool long name: RESCANINT

JMS administration tool short name: RINT

Programmatic access
Setters/getters

• MQConnectionFactory.setRescanInterval()
• MQConnectionFactory.getRescanInterval()

Values
5000

Any positive integer can be the default value.

SECEXIT
Identifies a channel security exit.

Additional configuration might be required in order for the IBM MQ classes for JMS to locate security
exits. For more information, see Configuring the IBM MQ classes for JMS to use channel exits.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SECEXIT

JMS administration tool short name: SXC

1922 IBM MQ Developing Applications Reference

Programmatic access
Setters/getters

• MQConnectionFactory.setSecurityExit()
• MQConnectionFactory.getSecurityExit()

Values
• null. This is the default value.
• A string comprising one or more items separated by commas, where each item is either:

– The name of a class that implements the WMQSecurityExit interface (for a channel security exit
written in Java).

– A string in the format libraryName(entryPointName) (for a channel security exit not written in Java).

SECEXITINIT
The user data that is passed to a channel security exit when it is called.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SECEXITINIT

JMS administration tool short name: SCXI

Programmatic access
Setters/getters

• MQConnectionFactory.setSecurityExitInit()
• MQConnectionFactory.getSecurityExitInit()

Values
null

Any string can be the default value.

SENDCHECKCOUNT
The number of send calls to allow between checking for asynchronous put errors, within a single non-
transacted JMS session.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SENDCHECKCOUNT

JMS administration tool short name: SCC

Programmatic access
Setters/getters

• MQConnectionFactory.setSendCheckCount()
• MQConnectionFactory.getSendCheckCount()

Developing applications reference 1923

Values
null

Any string can be the default value.

SENDEXIT
Identifies a channel send exit, or a sequence of send exits to be run in succession.

Additional configuration might be required in order for the IBM MQ classes for JMS to locate send exits.
For more information, see Configuring the IBM MQ classes for JMS to use channel exits.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SENDEXIT

JMS administration tool short name: SDX

Programmatic access
Setters/getters

• MQConnectionFactory.setSendExit()
• MQConnectionFactory.getSendExit()

Values
• null. This is the default value.
• A string comprising one or more items separated by commas, where each item is either:

– The name of a class that implements the WMQSendExit interface (for a channel send exit written in
Java).

– A string in the format libraryName(entryPointName) (for a channel send exit not written in Java).

SENDEXITINIT
The user data that is passed to channel send exits when they are called.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SENDEXITINIT

JMS administration tool short name: SDXI

Programmatic access
Setters/getters

• MQConnectionFactory.setSendExitInit()
• MQConnectionFactory.getSendExitInit()

Values
null

Any string comprising one or more items of user data separated by commas can be the default value.

1924 IBM MQ Developing Applications Reference

SHARECONVALLOWED
For applications that use IBM MQ messaging provider normal mode or normal mode with restrictions, this
property determines whether the sharing conversations function is used for JMS connections, sessions,
and contexts created from the connection factory.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SHARECONVALLOWED

JMS administration tool short name: SCALD

Programmatic access
Setters/getters

• MQConnectionFactory.setShareConvAllowed()
• MQConnectionFactory.getShareConvAllowed()

Values
YES

JMS connections, sessions, and contexts that are created from the connection factory within the same
JVM can share a channel instance (which maps to a TCP/IP connection) where appropriate.
This is the default value for administrative tools.
For programs, use WMQConstants.WMQ_SHARE_CONV_ALLOWED_YES.

NO
Every JMS connection created from the connection factory, and every JMS session that is created
from those JMSconnections, has its own channel instance (TCP/IP connection) to a queue manager.
For JMS contexts, the first context that is created from the connection factory creates two channel
instances (TCP/IP connections). Other JMS contexts that are created from the first one have their own
channel instance (TCP/IP connection).
For programs, use WMQConstants.WMQ_SHARE_CONV_ALLOWED_NO.

Related concepts
IBM MQ messaging provider modes of operation
Sharing a TCP/IP connection in IBM MQ classes for JMS

SPARSESUBS
Controls the message retrieval policy of a TopicSubscriber object.

Applicable Objects
ConnectionFactory, TopicConnectionFactory

JMS administration tool long name: SPARSESUBS

JMS administration tool short name: SSUBS

Programmatic access
Setters/getters

• MQConnectionFactory.setSparseSubscriptions()
• MQConnectionFactory.getSparseSubscriptions()

Developing applications reference 1925

Values
NO

Subscriptions receive frequent matching messages. This is the default value for administrative tools.
For programs, use false.

YES
Subscriptions receive infrequent matching messages. This value requires that the subscription queue
can be opened for browse.
For programs, use true.

SSLCIPHERSUITE
The CipherSuite to use for a TLS connection.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SSLCIPHERSUITE

JMS administration tool short name: SCPHS

Programmatic access
Setters/getters

• MQConnectionFactory.setSSLCipherSuite()
• MQConnectionFactory.getSSLCipherSuite()

Values
null

This is the default value. For more information, see TLS properties of JMS objects.

SSLCRL
CRL servers to check for TLS certificate revocation.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SSLCRL

JMS administration tool short name: SCRL

Programmatic access
Setters/getters

• MQConnectionFactory.setSSLCertStores()
• MQConnectionFactory.getSSLCertStores()

Values
null

Space-separated list of LDAP URLs. This is the default value. For more information, see TLS properties
of JMS objects.

1926 IBM MQ Developing Applications Reference

SSLFIPSREQUIRED
This property determines whether a TLS connection must use a CipherSuite that is supported by the IBM
Java JSSE FIPS provider (IBMJSSEFIPS).

Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SSLFIPSREQUIRED

JMS administration tool short name: SFIPS

Programmatic access
Setters/getters

• MQConnectionFactory.setSSLFipsRequired()
• MQConnectionFactory.getSSLFipsRequired()

Values
NO

A TLS connection can use any CipherSuite that is not supported by the IBM Java JSSE FIPS provider
(IBMJSSEFIPS).
This is the default value. In programs, use false.

YES
A TLS connection must use a CipherSuite that is supported by IBMJSSEFIPS.
In programs, use true.

SSLPEERNAME
For TLS, a distinguished name skeleton that must match that provided by the queue manager.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SSLPEERNAME

JMS administration tool short name: SPEER

Programmatic access
Setters/getters

• MQConnectionFactory.setSSLPeerName()
• MQConnectionFactory.getSSLPeerName()

Developing applications reference 1927

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

Values
null

This is the default value. For more information, see TLS properties of JMS objects.

SSLRESETCOUNT
For TLS, the total number of bytes sent and received by a connection before the secret key that is used for
encryption is renegotiated.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SSLRESETCOUNT

JMS administration tool short name: SRC

Programmatic access
Setters/getters

• MQConnectionFactory.setSSLResetCount()
• MQConnectionFactory.getSSLResetCount()

Values
0

Zero, or any positive integer less than or equal to 999, 999, 999. This is the default value. For more
information, see TLS properties of JMS objects.

STATREFRESHINT
The interval, in milliseconds, between refreshes of the long running transaction that detects when a
subscriber loses its connection to the queue manager.

This property is relevant only if SUBSTORE has the value QUEUE.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: STATREFRESHINT

JMS administration tool short name: SRI

Programmatic access
Setters/getters

• MQConnectionFactory.setStatusRefreshInterval()
• MQConnectionFactory.getStatusRefreshInterval()

Values
60000

Any positive integer can be the default value. For more information, see TLS properties of JMS objects.

1928 IBM MQ Developing Applications Reference

SUBSTORE
Where IBM MQ classes for JMS stores persistent data relating to active subscriptions.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SUBSTORE

JMS administration tool short name: SS

Programmatic access
Setters/getters

• MQConnectionFactory.setSubscriptionStore()
• MQConnectionFactory.getSubscriptionStore()

Values
BROKER

Use the broker-based subscription store to hold details of subscriptions. This is the default value for
administrative tools.
For programs, use WMQConstants.WMQ_SUBSTORE_BROKER.

MIGRATE
Transfer subscription information from the queue-based subscription store to the broker-based
subscription store.
For programs, use WMQConstants.WMQ_SUBSTORE_MIGRATE.

QUEUE
Use the queue-based subscription store to hold details of subscriptions.
For programs, use WMQConstants.WMQ_SUBSTORE_QUEUE.

SYNCPOINTALLGETS
This property determines whether all gets are to be performed under syncpoint.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: SYNCPOINTALLGETS

JMS administration tool short name: SPAG

Programmatic access
Setters/getters

• MQConnectionFactory.setSyncpointAllGets()
• MQConnectionFactory.getSyncpointAllGets()

Values
No

This is the default value.
Yes

Developing applications reference 1929

TARGCLIENT
This property determines whether the IBM MQ RFH2 format is used to exchange information with target
applications.

Applicable Objects
Queue, Topic

JMS administration tool long name: TARGCLIENT

JMS administration tool short name: TC

Programmatic access
Setters/getters

• MQDestination.setTargetClient()
• MQDestination.getTargetClient()

Values
JMS

The target of the message is a JMS application. This is the default value for administrative tools.
For programs, use WMQConstants.WMQ_CLIENT_JMS_COMPLIANT.

MQ
The target of the message is a non-JMS IBM MQ application.
For programs, use WMQConstants.WMQ_CLIENT_NONJMS_MQ.

TARGCLIENTMATCHING
This property determines whether a reply message, sent to the queue identified by the JMSReplyTo
header field of an incoming message, has an MQRFH2 header only if the incoming message has an
MQRFH2 header.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, XAConnectionFactory, XAQueueConnectionFactory

JMS administration tool long name: TARGCLIENTMATCHING

JMS administration tool short name: TCM

Programmatic access
Setters/getters

• MQConnectionFactory.setTargetClientMatching()
• MQConnectionFactory.getTargetClientMatching()

Values
YES

If an incoming message does not have an MQRFH2 header, the TARGCLIENT property of the Queue
object derived from the JMSReplyTo header field of the message is sent to MQ. If the message does
have an MQRFH2 header, the TARGCLIENT property is set to JMS instead. This is the default value for
administrative tools.
For programs, use true.

1930 IBM MQ Developing Applications Reference

NO
The TARGCLIENT property of the Queue object derived from the JMSReplyTo header field of an
incoming message is always set to JMS.
For programs, use false.

TEMPMODEL
The name of the model queue from which JMS temporary queues are created.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, XAConnectionFactory, XAQueueConnectionFactory

JMS administration tool long name: TEMPMODEL

JMS administration tool short name: TM

Programmatic access
Setters/getters

• MQConnectionFactory.setTemporaryModel()
• MQConnectionFactory.getTemporaryModel()

Values
SYSTEM.DEFAULT.MODEL.QUEUE

Any string can be the default value.

TEMPQPREFIX
The prefix that is used to form the name of an IBM MQ dynamic queue.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, XAConnectionFactory, XAQueueConnectionFactory

JMS administration tool long name: TEMPQPREFIX

JMS administration tool short name: TQP

Programmatic access
Setters/getters

• MQConnectionFactory.setTempQPrefix()
• MQConnectionFactory.getTempQPrefix()

Values
'' '' (empty string)

The prefix used is CSQ.* on z/OS and AMQ.* on all other platforms. These are the default values.
queue prefix

The queue prefix is any string that conforms to the rules for forming contents of the DynamicQName
field in an IBM MQ object descriptor (structure MQOD), but the last non-blank character must be an
asterisk.

Developing applications reference 1931

TEMPTOPICPREFIX
When creating temporary topics, JMS generates a topic string of the form ''TEMP /TEMPTOPICPREFIX/
unique_id '', or if this property is left with the default value, just ''TEMP /unique_id ''. Specifying a
non-empty TEMPTOPICPREFIX allows specific model queues to be defined for creating the managed
queues for subscribers to temporary topics created under this connection.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: TEMPTOPICPREFIX

JMS administration tool short name: TTP

Programmatic access
Setters/getters

• MQConnectionFactory.setTempTopicPrefix()
• MQConnectionFactory.getTempTopicPrefix()

Values
Any non-null string consisting only of valid characters for an IBM MQ topic string. The default value is '' ''
(empty string).

TOPIC
The name of the JMS topic destination, this value is used by the queue manager as the topic string of a
publication or subscription.

Applicable Objects
Topic

JMS administration tool long name: TOPIC

JMS administration tool short name: TOP

Values
Any string

A string that forms a valid IBM MQ topic string. When using IBM MQ as a messaging provider with
WebSphere Application Server, specify a value that matches the name by which the topic is known for
administrative purposes within WebSphere Application Server.

Related concepts
Topic strings

TRANSPORT
The nature of a connection to a queue manager or broker.

Applicable Objects
ConnectionFactory, QueueConnectionFactory, TopicConnectionFactory, XAConnectionFactory,
XAQueueConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: TRANSPORT

JMS administration tool short name: TRAN

1932 IBM MQ Developing Applications Reference

Programmatic access
Setters/getters

• MQConnectionFactory.setTransportType()
• MQConnectionFactory.getTransportType()

Values
BIND

For a connection to a queue manager in bindings mode. This is the default value for administrative
tools.
For programs, use WMQConstants.WMQ_CM_BINDINGS.

CLIENT
For a connection to a queue manager in client mode.
For programs, use WMQConstants.WMQ_CM_CLIENT.

DIRECT
For a real-time connection to a broker not using HTTP tunnelling.
For programs, use WMQConstants.WMQ_CM_DIRECT_TCPIP.

DIRECTHTTP
For a real-time connection to a broker using HTTP tunnelling. Only HTTP 1.0 is supported.
For programs, use WMQConstants.WMQ_CM_DIRECT_HTTP.

Related concepts
“Dependencies between properties of IBM MQ classes for JMS objects” on page 1884
The validity of some properties is dependent on the particular values of other properties.

WILDCARDFORMAT
This property determines which version of wildcard syntax is to be used.

Applicable Objects
ConnectionFactory, TopicConnectionFactory, XAConnectionFactory, XATopicConnectionFactory

JMS administration tool long name: WILDCARDFORMAT

JMS administration tool short name: WCFMT

Programmatic access
Setters/getters

• MQConnectionFactory.setWildCardFormat()
• MQConnectionFactory.getWildCardFormat()

Values
TOPIC_ONLY

Recognizes topic level wildcards only, as used in broker version 2. This is the default value for
administrative tools.
For programs, use WMQConstants.WMQ_WILDCARD_TOPIC_ONLY.

CHAR_ONLY
Recognizes character wildcards only, as used in broker version 1.
For programs, use WMQConstants.WMQ_WILDCARD_CHAR_ONLY.

Developing applications reference 1933

The ENCODING property
The ENCODING property comprises three sub-properties, in twelve possible combinations.

The valid values that the ENCODING property can take are constructed from the three sub-properties:
integer encoding

Either normal or reversed
decimal encoding

Either normal or reversed
floating-point encoding

IEEE normal, IEEE reversed, or z/OS

The ENCODING property is expressed as a three-character string with the following syntax:

{N|R}{N|R}{N|R|3}

In this string:

• N denotes normal
• R denotes reversed
• 3 denotes z/OS
• The first character represents integer encoding
• The second character represents decimal encoding
• The third character represents floating-point encoding

This provides a set of twelve possible values for the ENCODING property.

There is an additional value, the string NATIVE, which sets appropriate encoding values for the Java
platform.

The following examples show valid combinations for ENCODING:

 ENCODING(NNR)
 ENCODING(NATIVE)
 ENCODING(RR3)

TLS properties of JMS objects
Enable Transport Layer Security (TLS) encryption using the SSLCIPHERSUITE property. You can then
change the characteristics of the TLS encryption using several other properties.

When you specify TRANSPORT(CLIENT), you can enable TLS encrypted communication using the
SSLCIPHERSUITE property. Set this property to a valid CipherSuite provided by your JSSE provider; it
must match the CipherSpec named on the SVRCONN channel named by the CHANNEL property.

However, CipherSpecs (as specified on the SVRCONN channel) and CipherSuites (as specified on
ConnectionFactory objects) use different naming schemes to represent the same TLS encryption
algorithms. If a recognized CipherSpec name is specified on the SSLCIPHERSUITE property, JMSAdmin
issues a warning and maps the CipherSpec to its equivalent CipherSuite. See TLS CipherSpecs and
CipherSuites in IBM MQ classes for JMS for a list of CipherSpecs recognized by IBM MQ and JMSAdmin.

If you require a connection to use a CipherSuite that is supported by the IBM Java JSSE FIPS provider
(IBMJSSEFIPS), set the SSLFIPSREQUIRED property of the connection factory to YES. The default value
of this property is NO, which means that a connection can use any supported CipherSuite. The property is
ignored if SSLCIPHERSUITE is not set.

The SSLPEERNAME matches the format of the SSLPEER parameter, which can be set on channel
definitions. It is a list of attribute name-value pairs separated by commas or semicolons. For example:

1934 IBM MQ Developing Applications Reference

SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

The set of names and values makes up a distinguished name. For more details about distinguished names
and their use with IBM MQ, see Securing IBM MQ.

The example given checks the identifying certificate presented by the server at connect-time. For the
connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at
least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is
not case-sensitive.

If SSLPEERNAME is not set, no such checking is performed. SSLPEERNAME is ignored if SSLCIPHERSUITE
is not set.

The SSLCRL property specifies zero or more CRL (Certificate Revocation List) servers. Use of this property
requires a JVM at Java 2 v1.4. This is a space-delimited list of entries of the form:

ldap:// hostname:[port]

optionally followed by a single /. If port is omitted, the default LDAP port of 389 is assumed. At
connect-time, the TLS certificate presented by the server is checked against the specified CRL servers.
See Securing IBM MQ for more about CRL security.

If SSLCRL is not set, no such checking is performed. SSLCRL is ignored if SSLCIPHERSUITE is not set.

The SSLRESETCOUNT property represents the total number of bytes sent and received by a connection
before the secret key that is used for encryption is renegotiated. The number of bytes sent is the number
before encryption, and the number of bytes received is the number after decryption. The number of bytes
also includes control information sent and received by IBM MQ classes for JMS.

For example, to configure a ConnectionFactory object that can be used to create a connection over an
TLS enabled MQI channel with a secret key that is renegotiated after 4 MB of data have flowed, issue the
following command to JMSAdmin:

ALTER CF(my.cf) SSLRESETCOUNT(4194304)

If the value of SSLRESETCOUNT is zero, which is the default value, the secret key is never renegotiated.
The SSLRESETCOUNT property is ignored if SSLCIPHERSUITE is not set.

IBM MQ Message Service Client (XMS) for .NET reference
This reference section provides information about the IBM MQ Message Service Client (XMS) for .NET
(XMS .NET) class interfaces and about the object properties defined by XMS.

.NET interfaces
This section describes the .NET class interfaces and their properties and methods.

The following table summarizes the interfaces, which are defined within the IBM.XMS namespace.

Table 872. Summary of the .NET class interfaces

Interface Description

“IBytesMessage” on page 1938 A bytes message is a message whose body
comprises a stream of bytes.

“IConnection” on page 1947 A Connection object represents the active
connection of the application to a messaging
server.

Developing applications reference 1935

Table 872. Summary of the .NET class interfaces (continued)

Interface Description

“IConnectionFactory” on page 1950 An application uses a connection factory to create
a connection.

“IConnectionMetaData” on page 1951 A ConnectionMetaData object provides information
about a connection.

“IDestination” on page 1952 A destination is where an application sends
messages, or it is a source from which an
application receives messages, or both.

“ExceptionListener” on page 1953 An application uses an exception listener to be
notified asynchronously of a problem with a
connection.

“IllegalStateException” on page 1954 XMS throws this exception if an application calls
a method at an incorrect or inappropriate time,
or if XMS is not in an appropriate state for the
requested operation.

“InitialContext” on page 1954 An application uses an InitialContext object
to create objects from object definitions that
are retrieved from a repository of administered
objects.

“InvalidClientIDException” on page 1956 XMS throws this exception if an application
attempts to set a client identifier for a connection,
but the client identifier is not valid or is already in
use.

“InvalidDestinationException” on page 1956 XMS throws this exception if an application
specifies a destination that is not valid.

“InvalidSelectorException” on page 1956 XMS throws this exception if an application
provides a message selector expression whose
syntax is not valid.

“IMapMessage” on page 1957 A map message is a message whose body
comprises a set of name-value pairs, where each
value has an associated data type.

“IMessage” on page 1965 A Message object represents a message that
an application sends or receives. IMessage is
a superclass for the message classes such as
IMapMessage.

“IMessageConsumer” on page 1971 An application uses a message consumer to
receive messages sent to a destination.

“MessageEOFException” on page 1973 XMS throws this exception if XMS encounters
the end of a bytes message stream when an
application is reading the body of a bytes message.

“MessageFormatException” on page 1974 XMS throws this exception if XMS encounters a
message with a format that is not valid.

“IMessageListener (delegate)” on page 1974 An application uses a message listener to receive
messages asynchronously.

1936 IBM MQ Developing Applications Reference

Table 872. Summary of the .NET class interfaces (continued)

Interface Description

“MessageNotReadableException” on page 1974 XMS throws this exception if an application
attempts to read the body of a message that is
write only.

“MessageNotWritableException” on page 1975 XMS throws this exception if an application
attempts to write to the body of a message that
is read-only.

“IMessageProducer” on page 1975 An application uses a message producer to send
messages to a destination.

“IObjectMessage” on page 1980 An object message is a message whose body
comprises a serialized Java or .NET object.

“IPropertyContext” on page 1981 IPropertyContext is an abstract superclass that
contains methods that get and set properties.
These methods are inherited by other classes.

“IQueueBrowser” on page 1990 An application uses a queue browser to browse
messages on a queue without removing them.

“Requestor” on page 1992 An application uses a requestor to send a request
message and then wait for, and receive, the reply.

“ResourceAllocationException” on page 1993 XMS throws this exception if XMS cannot allocate
the resources required by a method.

“SecurityException” on page 1993 XMS throws this exception if the user identifer and
password provided to authenticate an application
are rejected. XMS also throws this exception if an
authority check fails and prevents a method from
completing.

“ISession” on page 1994 A session is a single threaded context for sending
and receiving messages.

“IStreamMessage” on page 2004 A stream message is a message whose body
comprises a stream of values, where each value
has an associated data type.

“ITextMessage” on page 2012 A text message is a message whose body
comprises a string.

“TransactionInProgressException” on page 2013 XMS throws this exception if an application
requests an operation that is not valid because a
transaction is in progress.

“TransactionRolledBackException” on page 2014 XMS throws this exception if an application
calls Session.commit() to commit the current
transaction, but the transaction is then rolled back.

XMSC For .NET, XMS property names and values are
defined in this class as public constants. For
further details, see “Properties of XMS objects” on
page 2016.

Developing applications reference 1937

Table 872. Summary of the .NET class interfaces (continued)

Interface Description

“XMSException” on page 2014 If XMS detects an error while processing a call
to a .NET method, XMS throws an exception.
An exception is an object that encapsulates
information about the error.

There are different types of XMS exception, and an
XMSException object is just one type of exception.
However, the XMSException class is a superclass
of the other XMS exception classes. XMS throws an
XMSException object in situations where none of
the other types of exception are appropriate.

“XMSFactoryFactory” on page 2015 If an application is not using administered objects,
use this class to create connection factories,
queues, and topics.

The definition of each method lists the exception codes that XMS might return if it detects an error while
processing a call to the method. Each exception code is represented by its named constant, which has a
corresponding exception.

IBytesMessage
A bytes message is a message whose body comprises a stream of bytes.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.IBytesMessage

.NET properties

BodyLength - Get Body Length

Interface:

Int64 BodyLength
 {
 get;
 }

Get the length of the body of the message in bytes when the body of the message is read-only.

The value returned is the length of the whole body regardless of where the cursor for reading the message
is currently positioned.

Exceptions:

• XMSException
• MessageNotReadableException

Methods

1938 IBM MQ Developing Applications Reference

ReadBoolean - Read Boolean Value

Interface:

Boolean ReadBoolean();

Read a boolean value from the bytes message stream.

Parameters:
None

Returns:
The boolean value that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadSignedByte - Read Byte

Interface:

Int16 ReadSignedByte();

Read the next byte from the bytes message stream as a signed 8-bit integer.

Parameters:
None

Returns:
The byte that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadBytes - Read Bytes

Interface:

Int32 ReadBytes(Byte[] array);
Int32 ReadBytes(Byte[] array, Int32 length);

Read an array of bytes from the bytes message stream starting from the current position of the cursor.

Parameters:
array (output)

The buffer to contain the array of bytes that is read. If the number of bytes remaining to be read
from the stream before the call is greater than or equal to the length of the buffer, the buffer is
filled. Otherwise, the buffer is partially filled with all the remaining bytes.

If you specify a null pointer on input, the method skips over the bytes without reading them.
If the number of bytes remaining to be read from the stream before the call is greater than or
equal to the length of the buffer, the number of bytes skipped is equal to the length of the buffer.
Otherwise, all the remaining bytes are skipped. The cursor remains at the next position to read in
the byte message stream.

length (input)
The length of the buffer in bytes

Developing applications reference 1939

Returns:
The number of bytes that are read into the buffer. If the buffer is partially filled, the value is less than
the length of the buffer, indicating that there are no more bytes remaining to be read. If there are no
bytes remaining to be read from the stream before the call, the value is XMSC_END_OF_STREAM.

If you specify a null pointer on input, the method returns no value.

Exceptions:

• XMSException
• MessageNotReadableException

ReadChar - Read Character

Interface:

Char ReadChar();

Read the next 2 bytes from the bytes message stream as a character.

Parameters:
None

Returns:
The character that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadDouble - Read Double Precision Floating Point Number

Interface:

Double ReadDouble();

Read the next 8 bytes from the bytes message stream as a double precision floating point number.

Parameters:
None

Returns:
The double precision floating point number that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadFloat - Read Floating Point Number

Interface:

Single ReadFloat();

Read the next 4 bytes from the bytes message stream as a floating point number.

Parameters:
None

1940 IBM MQ Developing Applications Reference

Returns:
The floating point number that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadInt - Read Integer

Interface:

Int32 ReadInt();

Read the next 4 bytes from the bytes message stream as a signed 32-bit integer.

Parameters:
None

Returns:
The integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadLong - Read Long Integer

Interface:

Int64 ReadLong();

Read the next 8 bytes from the bytes message stream as a signed 64-bit integer.

Parameters:
None

Returns:
The long integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadShort - Read Short Integer

Interface:

Int16 ReadShort();

Read the next 2 bytes from the bytes message stream as a signed 16-bit integer.

Parameters:
None

Returns:
The short integer that is read.

Developing applications reference 1941

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadByte - Read Unsigned Byte

Interface:

Byte ReadByte();

Read the next byte from the bytes message stream as an unsigned 8-bit integer.

Parameters:
None

Returns:
The byte that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadUnsignedShort - Read Unsigned Short Integer

Interface:

Int32 ReadUnsignedShort();

Read the next 2 bytes from the bytes message stream as an unsigned 16-bit integer.

Parameters:
None

Returns:
The unsigned short integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadUTF - Read UTF String

Interface:

String ReadUTF();

Read a string, encoded in UTF-8, from the bytes message stream.

Note: Before calling ReadUTF(), ensure that the cursor of the buffer is pointing to beginning of the byte
message stream.

Parameters:
None

Returns:
A String object encapsulating the string that is read.

1942 IBM MQ Developing Applications Reference

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

Reset - Reset

Interface:

void Reset();

Put the body of the message into read-only mode and reposition the cursor at the beginning of the bytes
message stream.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• MessageNotReadableException

WriteBoolean - Write Boolean Value

Interface:

void WriteBoolean(Boolean value);

Write a boolean value to the bytes message stream.

Parameters:
value (input)

The boolean value to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteByte - Write Byte

Interface:

void WriteByte(Byte value);
void WriteSignedByte(Int16 value);

Write a byte to the bytes message stream.

Parameters:
value (input)

The byte to be written.
Returns:

Void

Developing applications reference 1943

Exceptions:

• XMSException
• MessageNotWritableException

WriteBytes - Write Bytes

Interface:

void WriteBytes(Byte[] value);

Write an array of bytes to the bytes message stream.

Parameters:
value (input)

The array of bytes to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteBytes - Write Partial Bytes Array

Interface:

void WriteBytes(Byte[] value, int offset, int length);

Write a partial array of bytes to the bytes message stream, as defined by the specified length.

Parameters:
value (input)

The array of bytes to be written.
offset (input)

The starting point for the array of bytes to be written.
length (input)

The number of bytes to write.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteChar - Write Character

Interface:

void WriteChar(Char value);

Write a character to the bytes message stream as 2 bytes, high-order byte first.

Parameters:
value (input)

The character to be written.

1944 IBM MQ Developing Applications Reference

Returns:
Void

Exceptions:

• XMSException
• MessageNotWritableException

WriteDouble - Write Double Precision Floating Point Number

Interface:

void WriteDouble(Double value);

Convert a double precision floating point number to a long integer and write the long integer to the bytes
message stream as 8 bytes, high-order byte first.

Parameters:
value (input)

The double precision floating point number to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteFloat - Write Floating Point Number

Interface:

void WriteFloat(Single value);

Convert a floating point number to an integer and write the integer to the bytes message stream as 4
bytes, high-order byte first.

Parameters:
value (input)

The floating point number to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteInt - Write Integer

Interface:

void WriteInt(Int32 value);

Write an integer to the bytes message stream as 4 bytes, high-order byte first.

Parameters:
value (input)

The integer to be written.

Developing applications reference 1945

Returns:
Void

Exceptions:

• XMSException
• MessageNotWritableException

WriteLong - Write Long Integer

Interface:

void WriteLong(Int64 value);

Write a long integer to the bytes message stream as 8 bytes, high-order byte first.

Parameters:
value (input)

The long integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteObject - Write Object

Interface:

void WriteObject(Object value);

Write the specified object into the byte message stream.

Parameters:
value (input)

The object to be written, which must be a reference to a primitive type.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteShort - Write Short Integer

Interface:

void WriteShort(Int16 value);

Write a short integer to the bytes message stream as 2 bytes, high-order byte first.

Parameters:
value (input)

The short integer to be written.
Returns:

Void

1946 IBM MQ Developing Applications Reference

Exceptions:

• XMSException
• MessageNotWritableException

WriteUTF - Write UTF String

Interface:

void WriteUTF(String value);

Write a string, encoded in UTF-8, to the bytes message stream.

Parameters:
value (input)

A String object encapsulating the string to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IConnection
A Connection object represents the active connection of the application to a messaging server.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IConnection

For a list of the XMS defined properties of a Connection object, see “Properties of Connection” on page
2017.

.NET properties

Developing applications reference 1947

ClientID - Get and Set Client ID

Interface:

String ClientID
 {
 get;
 set;
 }

Get and set the client identifier for the connection.

The client identifier can either be preconfigured by the administrator in a ConnectionFactory, or assigned
by setting ClientID.

A client identifier is used only to support durable subscriptions in the publish/subscribe domain, and is
ignored in the point-to-point domain.

If an application sets a client identifier for a connection, the application must do so immediately after
creating the connection, and before performing any other operation on the connection. If the application
tries to set a client identifier after this point, the call throws exception IllegalStateException.

This property is not valid for a real-time connection to a broker.

Exceptions:

• XMSException
• IllegalStateException
• InvalidClientIDException

ExceptionListener - Get and Set Exception Listener

Interface:

 ExceptionListener ExceptionListener
 {
 get;
 set;
 }

Get the exception listener that is registered with the connection, and register an exception listener with
the connection.

If no exception listener is registered with the connection, the method returns null. If an exception listener
is already registered with the connection, you can cancel the registration by specifying a null instead of
the exception listener.

For more information about using exception listeners, see Using message and exception listeners in .NET.

Exceptions:

• XMSException

Metadata - Get Metadata

Interface:

IConnectionMetaData MetaData
 {
 get;
 }

Get the metadata for the connection.

Exceptions:

• XMSException

1948 IBM MQ Developing Applications Reference

Methods

Close - Close Connection

Interface:

void Close();

Close the connection.

If an application tries to close a connection that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

CreateSession - Create Session

Interface:

 ISession CreateSession(Boolean transacted,
 AcknowledgeMode acknowledgeMode);

Create a session.

Parameters:
transacted (input)

The value True means that the session is transacted. The value False means that the session is
not transacted.

For a real-time connection to a broker, the value must be False.

acknowledgeMode (input)
Indicates that how messages received by an application are acknowledged. The value must be
one of the following from the AcknowledgeMode enumerator:

AcknowledgeMode.AutoAcknowledge
AcknowledgeMode.ClientAcknowledge
AcknowledgeMode.DupsOkAcknowledge

For a real-time connection to a broker, the value must be
AcknowledgeMode.AutoAcknowledge or AcknowledgeMode.DupsOkAcknowledge

This parameter is ignored if the session is transacted. For more information about
acknowledgment modes, see Message acknowledgment.

Returns:
The Session object

Exceptions:

• XMSException

Start - Start Connection

Interface:

void Start();

Developing applications reference 1949

Start or restart the delivery of incoming messages for the connection. The call is ignored if the connection
is already started.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

Stop - Stop Connection

Interface:

void Stop();

Stop the delivery of incoming messages for the connection. The call is ignored if the connection is already
stopped.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IConnectionFactory
An application uses a connection factory to create a connection.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IConnectionFactory

For a list of the XMS defined properties of a ConnectionFactory object, see “Properties of
ConnectionFactory” on page 2018.

Methods

CreateConnection - Create Connection Factory (using the default user identity)

Interface:

IConnection CreateConnection();

Create a connection factory with the default properties.

1950 IBM MQ Developing Applications Reference

If you are connecting to IBM MQ and XMSC_USERID is not set, then the queue manager uses the userID
of the logged on user by default. If you require further connection-level authentication of individual users
you can write a client authentication exit which is configured in IBM MQ.

Parameters:
None

Exceptions:

• XMSException

CreateConnection - Create Connection (using a specified user identity)

Interface:

IConnection CreateConnection(String userId, String password);

Create a connection using a specified user identity.

If you are connecting to IBM MQ and XMSC_USERID is not set, then the queue manager uses the userID
of the logged on user by default. If you require further connection-level authentication of individual users
you can write a client authentication exit which is configured in IBM MQ.

The connection is created in stopped mode. No messages are delivered until the application calls
Connection.start().

Parameters:
userID (input)

A String object encapsulating the user identifier to be used to authenticate the application. If you
provide a null, an attempt is made to create the connection without authentication.

password (input)
A String object encapsulating the password to be used to authenticate the application. If you
provide a null, an attempt is made to create the connection without authentication.

Returns:
The Connection object.

Exceptions:

• XMSException
• XMS_X_SECURITY_EXCEPTION

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IConnectionMetaData
A ConnectionMetaData object provides information about a connection.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IConnectionMetaData

For a list of the XMS defined properties of a ConnectionMetaData object, see “Properties of
ConnectionMetaData” on page 2023.

Developing applications reference 1951

.NET properties

JMSXPropertyNames - Get JMS Defined Message Properties

Interface:

System.Collections.IEnumerator JMSXPropertyNames
 {
 get;
 }

Return an enumeration of the names of the JMS defined message properties supported by the
connection.

JMS defined message properties are not supported by a real-time connection to a broker.

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IDestination
A destination is where an application sends messages, or it is a source from which an application receives
messages, or both.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IDestination

For a list of the XMS defined properties of a Destination object, see “Properties of Destination” on page
2024.

.NET properties

Name - Get Destination Name

Interface:

String Name
{
 get;
}

Get the name of the destination. The name is a string encapsulating either the name of a queue or the
name of a topic.

Exceptions:

• XMSException

1952 IBM MQ Developing Applications Reference

TypeId - Get Destination Type

Interface:

DestinationType TypeId
{
 get;
}

Get the type of the destination. The type of the destination is one of the following values:

DestinationType.Queue
DestinationType.Topic

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

ExceptionListener
An application uses an exception listener to be notified asynchronously of a problem with a connection.

Inheritance hierarchy:
None

If an application uses a connection only to consume messages asynchronously, and for no other purpose,
then the only way the application can learn about a problem with the connection is by using an exception
listener. In other situations, an exception listener can provide a more immediate way of learning about a
problem with a connection than waiting until the next synchronous call to XMS.

Delegate

ExceptionListener - Exception Listener

Interface:

public delegate void ExceptionListener(Exception ex)

Notify the application of a problem with a connection.

Methods that implement this delegate can be registered with the connection.

For more information about using exception listeners, see Using message and exception listeners in .NET.

Parameters:
exception (input)

A pointer to an exception created by XMS.
Returns:

Void

Developing applications reference 1953

IllegalStateException
XMS throws this exception if an application calls a method at an incorrect or inappropriate time, or if XMS
is not in an appropriate state for the requested operation.

Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.Exception
 |
 +----IBM.XMS.IllegalStateException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

InitialContext
An application uses an InitialContext object to create objects from object definitions that are retrieved
from a repository of administered objects.

Inheritance hierarchy:
None

.NET properties

Environment - Get the environment

Interface:

Hashtable Environment
{
 get;
}

Get the environment.

Exceptions:

• Exceptions are specific to the directory service being used.

Constructors

InitialContext - Create Initial Context

Interface:

InitialContext(Hashtable env);

Create an InitialContext object.

Parameters:

The information required to establish a connection to the repository of administered objects is
provided to the constructor in an environment Hashtable.

Exceptions:

• XMSException

1954 IBM MQ Developing Applications Reference

Methods

AddToEnvironment - Add a New Property to the Environment

Interface:

Object AddToEnvironment(String propName, Object propVal);

Add a new property to the environment.

Parameters:
propName (input)

A String object encapsulating the name of the property to be added.
propVal (input)

The value of the property to be added.
Returns:

The old value of the property.
Exceptions:

• Exceptions are specific to the directory service being used.

Close - Close this context

Interface:

void Close()

Close this context.

Parameters:
None

Returns:
None

Exceptions:

• Exceptions are specific to the directory service being used.

Lookup - Look Up Object in Initial Context

Interface:

Object Lookup(String name);

Create an object from an object definition that is retrieved from the repository of administered objects.

Parameters:
name (input)

A String object encapsulating the name of the administered object to be retrieved. The name can
be either a simple name or a complex name. For further details, see Retrieval of administered
objects.

Returns:
Either an IConnectionFactory or an IDestination, depending on the type of object being retrieved. If
the function can access the directory, but cannot find the required object, a null is returned.

Exceptions:

• Exceptions are specific to the directory service being used.

Developing applications reference 1955

RemoveFromEnvironment - Remove a Property from the Environment

Interface:

Object RemoveFromEnvironment(String propName);

Remove a property from the environment.

Parameters:
propName (input)

A String object encapsulating the name of the property to be removed.
Returns:

The object that was removed.
Exceptions:

• Exceptions are specific to the directory service being used.

InvalidClientIDException
XMS throws this exception if an application attempts to set a client identifier for a connection, but the
client identifier is not valid or is already in use.

Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.InvalidClientIDException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

InvalidDestinationException
XMS throws this exception if an application specifies a destination that is not valid.

Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.InvalidDestinationException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

InvalidSelectorException
XMS throws this exception if an application provides a message selector expression whose syntax is not
valid.

Inheritance hierarchy:

IBM.XMS.XMSException
 |

1956 IBM MQ Developing Applications Reference

 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.InvalidSelectorException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

IMapMessage
A map message is a message whose body comprises a set of name-value pairs, where each value has an
associated data type.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.IMapMessage

When an application gets the value of name-value pair, the value can be converted by XMS into another
data type. For more information about this form of implicit conversion, see the information about map
messages in The body of an XMS message.

.NET properties

MapNames - Get Map Names

Interface:

System.Collections.IEnumerator MapNames
{
 get;
}

Get an enumeration of the names in the body of the map message.

Exceptions:

• XMSException

Methods

GetBoolean - Get Boolean Value

Interface:

Boolean GetBoolean(String name);

Get the boolean value identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the boolean value.
Returns:

The boolean value retrieved from the body of the map message.
Exceptions:

• XMSException

Developing applications reference 1957

GetByte - Get Byte

Interface:

Byte GetByte(String name);
 Int16 GetSignedByte(String name);

Get the byte identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the byte.
Returns:

The byte retrieved from the body of the map message. No data conversion is performed on the byte.
Exceptions:

• XMSException

GetBytes - Get Bytes

Interface:

Byte[] GetBytes(String name);

Get the array of bytes identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the array of bytes.
Returns:

The number of bytes in the array.
Exceptions:

• XMSException

GetChar - Get Character

Interface:

Char GetChar(String name);

Get the character identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the character.
Returns:

The character retrieved from the body of the map message.
Exceptions:

• XMSException

GetDouble - Get Double Precision Floating Point Number

Interface:

Double GetDouble(String name);

Get the double precision floating point number identified by name from the body of the map message.

1958 IBM MQ Developing Applications Reference

Parameters:
name (input)

A String object encapsulating the name that identifies the double precision floating point number.
Returns:

The double precision floating point number retrieved from the body of the map message.
Exceptions:

• XMSException

GetFloat - Get Floating Point Number

Interface:

Single GetFloat(String name);

Get the floating point number identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the floating point number.
Returns:

The floating point number retrieved from the body of the map message.
Exceptions:

• XMSException

GetInt - Get Integer

Interface:

Int32 GetInt(String name);

Get the integer identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the integer.
Returns:

The integer retrieved from the body of the map message.
Exceptions:

• XMSException

GetLong - Get Long Integer

Interface:

Int64 GetLong(String name);

Get the long integer identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the long integer.
Returns:

The long integer retrieved from the body of the map message.

Developing applications reference 1959

Exceptions:

• XMSException

GetObject - Get Object

Interface:

Object GetObject(String name);

Get a reference to the value of a name-value pair, from the body of the map message. The name-value
pair is identified by name.

Parameters:
name (input)

A String object encapsulating the name of the name-value pair.
Returns:

The value, which is one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32
Int64
Int16
String

Exceptions:
XMSException

GetShort - Get Short Integer

Interface:

Int16 GetShort(String name);

Get the short integer identified by name from the body of the map message.

Parameters:
name (input)

A String object encapsulating the name that identifies the short integer.
Returns:

The short integer retrieved from the body of the map message.
Exceptions:

• XMSException

GetString - Get String

Interface:

String GetString(String name);

Get the string identified by name from the body of the map message.

1960 IBM MQ Developing Applications Reference

Parameters:
name (input)

A String object encapsulating the name that identifies the string in the body of the map message.
Returns:

A String object encapsulating the string retrieved from the body of the map message. If data
conversion is required, this value is the string after conversion.

Exceptions:

• XMSException

ItemExists - Check Name-Value Pair Exists

Interface:

Boolean ItemExists(String name);

Check whether the body of the map message contains a name-value pair with the specified name.

Parameters:
name (input)

A String object encapsulating the name of the name-value pair.
Returns:

• True, if the body of the map message contains a name-value pair with the specified name.
• False, if the body of the map message does not contain a name-value pair with the specified name.

Exceptions:

• XMSException

SetBoolean - Set Boolean Value

Interface:

void SetBoolean(String name, Boolean value);

Set a boolean value in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the boolean value in the body of the map
message.

value (input)
The boolean value to be set.

Returns:
Void

Exceptions:

• XMSException

SetByte - Set Byte

Interface:

void SetByte(String name, Byte value);
void SetSignedByte(String name, Int16 value);

Set a byte in the body of the map message.

Developing applications reference 1961

Parameters:
name (input)

A String object encapsulating the name to identify the byte in the body of the map message.
value (input)

The byte to be set.
Returns:

Void
Exceptions:

• XMSException

SetBytes - Set Bytes

Interface:

void SetBytes(String name, Byte[] value);

Set an array of bytes in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the array of bytes in the body of the map
message.

value (input)
The array of bytes to be set.

Returns:
Void

Exceptions:

• XMSException

SetChar - Set Character

Interface:

void SetChar(String name, Char value);

Set a 2-byte character in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the character in the body of the map message.
value (input)

The character to be set.
Returns:

Void
Exceptions:

• XMSException

SetDouble - Set Double Precision Floating Point Number

Interface:

void SetDouble(String name, Double value);

Set a double precision floating point number in the body of the map message.

1962 IBM MQ Developing Applications Reference

Parameters:
name (input)

A String object encapsulating the name to identify the double precision floating point number in
the body of the map message.

value (input)
The double precision floating point number to be set.

Returns:
Void

Exceptions:

• XMSException

SetFloat - Set Floating Point Number

Interface:

void SetFloat(String name, Single value);

Set a floating point number in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the floating point number in the body of the
map message.

value (input)
The floating point number to be set.

Returns:
Void

Exceptions:

• XMSException

SetInt - Set Integer

Interface:

void SetInt(String name, Int32 value);

Set an integer in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the integer in the body of the map message.
value (input)

The integer to be set.
Returns:

Void
Exceptions:

• XMSException

SetLong - Set Long Integer

Interface:

void SetLong(String name, Int64 value);

Developing applications reference 1963

Set a long integer in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the long integer in the body of the map
message.

value (input)
The long integer to be set.

Returns:
Void

Exceptions:

• XMSException

SetObject - Set Object

Interface:

void SetObject(String name, Object value);

Set a value, which must be an XMS primitive type, in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the value in the body of the map message.
value (input)

An array of bytes containing the value to be set.
Returns:

Void
Exceptions:

• XMSException

SetShort - Set Short Integer

Interface:

void SetShort(String name, Int16 value);

Set a short integer in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the short integer in the body of the map
message.

value (input)
The short integer to be set.

Returns:
Void

Exceptions:

• XMSException

1964 IBM MQ Developing Applications Reference

SetString - Set String

Interface:

void SetString(String name, String value);

Set a string in the body of the map message.

Parameters:
name (input)

A String object encapsulating the name to identify the string in the body of the map message.
value (input)

A String object encapsulating the string to be set.
Returns:

Void
Exceptions:

• XMSException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IMessage
A Message object represents a message that an application sends or receives. IMessage is a superclass
for the message classes such as IMapMessage.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage

For a list of the JMS message header fields in a Message object, see Header fields of an XMS message.
For a list of the JMS defined properties of a Message object, see JMS-defined properties of a message. For
a list of the IBM defined properties of a Message object, see IBM-defined properties of a message. For a
list of JMS_IBM_MQMD* properties for the Message object, see “JMS_IBM_MQMD* properties” on page
2027

Messages are deleted by the garbage collector. When a message is deleted, this frees the resources it was
using.

.NET properties

Developing applications reference 1965

GetJMSCorrelationID - Get and Set JMSCorrelationID

Interface:

String JMSCorrelationID
{
 get;
 set;
}

Get and set the correlation identifier of the message as a String object.

Exceptions:

• XMSException

JMSDeliveryMode - Get and Set JMSDeliveryMode

Interface:

DeliveryMode JMSDeliveryMode
{
 get;
 set;
}

Get and set the delivery mode of the message.

The delivery mode of the message is one of the following values:

DeliveryMode.Persistent
DeliveryMode.NonPersistent

For a newly created message that was not sent, the delivery mode is DeliveryMode.Persistent,
except for a real-time connection to a broker for which the delivery mode is
DeliveryMode.NonPersistent. For a message that is received, the method returns the delivery mode
that was set by the IMessageProducer.send() call when the message was sent unless the receiving
application changes the delivery mode by setting JMSDeliveryMode.

Exceptions:

• XMSException

JMSDestination - Get and Set JMSDestination

Interface:

IDestination JMSDestination
{
 get;
 set;
}

Get and set the destination of the message.

The destination is set by the IMessageProducer.send() call when the message is sent. The value of
JMSDestination is ignored. However, you can use JMSDestination to change the destination of a message
that was received.

For a newly created message that was not sent, the method returns a null Destination object, unless
the sending application sets a destination by setting JMSDestination. For a message that was received,
the method returns a Destination object for the destination that was set by the IMessageProducer.send()
call when the message was sent unless the receiving application changes the destination by setting
JMSDestination.

1966 IBM MQ Developing Applications Reference

Exceptions:

• XMSException

JMSExpiration - Get and Set JMSExpiration

Interface:

Int64 JMSExpiration
{
 get;
 set;
}

Get and set the expiration time of the message.

The expiration time is set by the IMessageProducer.send() call when the message is sent. Its value is
calculated by adding the time to live, as specified by the sending application, to the time when the
message is sent. The expiration time is expressed in milliseconds since 00:00:00 GMT on the 1 January
1970.

For a newly created message that was not sent, the expiration time is 0 unless the sending application
sets a different expiration time by setting JMSExpiration. For a message that was received, the method
returns the expiration time that was set by the IMessageProducer.send() call when the message was sent
unless the receiving application changes the expiration time by setting JMSExpiration.

If the time to live is 0, the IMessageProducer.send() call sets the expiration time to 0 to indicate that the
message does not expire.

XMS discards expired messages and does not deliver them to applications.

Exceptions:

• XMSException

JMSMessageID - Get and Set JMSMessageID

Interface:

String JMSMessageID
{
 get;
 set;
}

Get and set the message identifier of the message as a string object encapsulating the message identifier.

The message identifier is set by the IMessageProducer.send() call when the message is sent. For
a message that was received, the method returns the message identifier that was set by the
IMessageProducer.send() call when the message was sent unless the receiving application changes the
message identifier by setting JMSMessageID.

If the message has no message identifier, the method returns a null.

Exceptions:

• XMSException

JMSPriority - Get and Set JMSPriority

Interface:

Int32 JMSPriority
{
 get;
 set;
}

Developing applications reference 1967

Get and set the priority of the message.

The priority is set by the IMessageProducer.send() call when the message is sent. The value is an integer
in the range 0, the lowest priority, to 9, the highest priority.

For a newly created message that was not sent, the priority is 4 unless the sending application sets
a different priority by setting JMSPriority. For a message that was received, the method returns the
priority that was set by the IMessageProducer.send() call when the message was sent unless the receiving
application changes the priority by setting JMSPriority.

Exceptions:

• XMSException

JMSRedelivered - Get and Set JMSRedelivered

Interface:

Boolean JMSRedelivered
{
 get;
 set;
}

Get an indication of whether the message is being redelivered, and indicate whether the message is being
redelivered. The indication is set by the IMessageConsumer.receive() call when the message is received.

This property has the following values:

• True, if the message is being redelivered.
• False, if the message is not being redelivered.

For a real-time connection to a broker, the value is always False.

An indication of redelivery set by JMSRedelivered before the message is sent is ignored by the
IMessageProducer.send() call when the message is sent, and is ignored and replaced by the
IMessageConsumer.receive() call when the message is received. However, you can use JMSRedelivered to
change the indication for a message that was received.

Exceptions:

• XMSException

JMSReplyTo - Get and Set JMSReplyTo

Interface:

IDestination JMSReplyTo
{
 get;
 set;
}

Get and set the destination where a reply to the message is to be sent.

The value of this property is a Destination object for the destination where a reply to the message is to be
sent. A null Destination object means that no reply is expected.

Exceptions:

• XMSException

JMSTimestamp - Get and Set JMSTimestamp

Interface:

Int64 JMSTimestamp

1968 IBM MQ Developing Applications Reference

{
 get;
 set;
}

Get and set the time when the message was sent.

The time stamp is set by the IMessageProducer.send() call when the message is sent and is expressed in
milliseconds since 00:00:00 GMT on the 1 January 1970.

For a newly created message that was not sent, the time stamp is 0 unless the sending application sets
a different time stamp by setting JMSTimestamp. For a message that was received, the method returns
the time stamp that was set by the IMessageProducer.send() call when the message was sent unless the
receiving application changes the time stamp by setting JMSTimestamp.

Exceptions:

• XMSException

Notes:

1. If the time stamp is undefined, the method returns 0 but throws no exception.

JMSType - Get and Set JMSType

Interface:

String JMSType
{
 get;
 set;
}

Get and set the type of the message.

The value of JMSType is a string encapsulating the type of the message. If data conversion is required,
this value is the type after conversion.

Exceptions:

• XMSException

PropertyNames - Get Properties

Interface:

System.Collections.IEnumerator PropertyNames
{
 get;
}

Get an enumeration of the names properties of the message.

Exceptions:

• XMSException

Methods

Acknowledge - Acknowledge

Interface:

void Acknowledge();

Acknowledge this message and all previously unacknowledged messages received by the session.

Developing applications reference 1969

An application can call this method if the acknowledgment mode of the session is
AcknowledgeMode.ClientAcknowledge. Calls to the method are ignored if the session has any other
acknowledgment mode or is transacted.

Messages that were received but not acknowledged might be redelivered.

For more information about acknowledging messages, see ../com.ibm.mq.dev.doc/
xms_cmesack.dita#xms_cmesack.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• IllegalStateException

ClearBody - Clear Body

Interface:

void ClearBody();

Clear the body of the message. The header fields and message properties are not cleared.

If an application clears a message body, the body remains in the same state as an empty body in a
newly created message. The state of an empty body in a newly created message depends on the type of
message body. For more information, see The body of an XMS message.

An application can clear a message body at any time, no matter what state the body is in. If a message
body is read-only, the only way that an application can write to the body is for the application to clear the
body first.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

ClearProperties - Clear Properties

Interface:

void ClearProperties();

Clear the properties of the message. The header fields and the message body are not cleared.

If an application clears the properties of a message, the properties become readable and writable.

An application can clear the properties of a message at any time, no matter what state the properties are
in. If the properties of a message are read-only, the only way that the properties can become writable is
for the application to clear the properties first.

Parameters:
None

Returns:
Void

1970 IBM MQ Developing Applications Reference

Exceptions:

• XMSException

PropertyExists - Check Property Exists

Interface:

Boolean PropertyExists(String propertyName);

Check whether the message has a property with the specified name.

Parameters:
propertyName (input)

A String object encapsulating the name of the property.
Returns:

• True, if the message has a property with the specified name.
• False, if the message does not have a property with the specified name.

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IMessageConsumer
An application uses a message consumer to receive messages sent to a destination.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessageConsumer

For a list of the XMS defined properties of a MessageConsumer object, see “Properties of
MessageConsumer” on page 2031.

.NET properties

MessageListener - Get and Set Message Listener

Interface:

MessageListener MessageListener
{
 get;
 set;
}

Get the message listener that is registered with the message consumer, and register a message listener
with the message consumer.

Developing applications reference 1971

If no message listener is registered with the message consumer, MessageListener is null. If a message
listener is already registered with the message consumer, you can cancel the registration by specifying a
null instead.

For more information about using message listeners, see Using message and exception listeners in .NET.

Exceptions:

• XMSException

MessageSelector - Get Message Selector

Interface:

String MessageSelector
{
 get;
}

Get the message selector for the message consumer. The return value is a String object encapsulating
the message selector expression. If data conversion is required, this value is the message selector
expression after conversion. If the message consumer does not have a message selector, the value of
MessageSelector is a null String object.

Exceptions:

• XMSException

Methods

Close - Close Message Consumer

Interface:

void Close();

Close the message consumer.

If an application tries to close a message consumer that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

Receive - Receive

Interface:

IMessage Receive();

Receive the next message for the message consumer. The call waits indefinitely for a message, or until the
message consumer is closed.

Parameters:
None

Returns:
A pointer to the Message object. If the message consumer is closed while the call is waiting for a
message, the method returns a pointer to a null Message object.

1972 IBM MQ Developing Applications Reference

Exceptions:

• XMSException

Receive - Receive (with a wait interval)

Interface:

IMessage Receive(Int64 delay);

Receive the next message for the message consumer. The call waits only a specified period for a message,
or until the message consumer is closed.

Parameters:
delay (input)

The time, in milliseconds, that the call waits for a message. If you specify a wait interval of 0, the
call waits indefinitely for a message.

Returns:
A pointer to the Message object. If no message arrives during the wait interval, or if the message
consumer is closed while the call is waiting for a message, the method returns a pointer to a null
Message object but throws no exception.

Exceptions:

• XMSException

ReceiveNoWait - Receive with No Wait

Interface:

IMessage ReceiveNoWait();

Receive the next message for the message consumer if one is available immediately.

Parameters:
None

Returns:
A pointer to a Message object. If no message is available immediately, the method returns a pointer to
a null Message object.

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

MessageEOFException
XMS throws this exception if XMS encounters the end of a bytes message stream when an application is
reading the body of a bytes message.

Inheritance hierarchy:

IBM.XMS.XMSException
 |

Developing applications reference 1973

 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.MessageEOFException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

MessageFormatException
XMS throws this exception if XMS encounters a message with a format that is not valid.

Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.MessageFormatException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

IMessageListener (delegate)
An application uses a message listener to receive messages asynchronously.

Inheritance hierarchy:
None

Delegate

MessageListener - Message Listener

Interface:

public delegate void MessageListener(IMessage msg);

Deliver a message asynchronously to the message consumer.

Methods that implement this delegate can be registered with the connection.

For more information about using message listeners, see Using message and exception listeners in .NET.

Parameters:
mesg (input)

The Message object.
Returns:

Void

MessageNotReadableException
XMS throws this exception if an application attempts to read the body of a message that is write only.

Inheritance hierarchy:

IBM.XMS.XMSException
 |

1974 IBM MQ Developing Applications Reference

 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.MessageNotReadableException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

MessageNotWritableException
XMS throws this exception if an application attempts to write to the body of a message that is read-only.

Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.MessageNotWritableException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

IMessageProducer
An application uses a message producer to send messages to a destination.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessageProducer

For a list of the XMS defined properties of a MessageProducer object, see “Properties of
MessageProducer” on page 2031.

.NET properties

DeliveryMode - Get and Set Default Delivery Mode

Interface:

DeliveryMode DeliveryMode
{
 get;
 set;
}

Get and set the default delivery mode for messages sent by the message producer.

The default delivery mode has one of the following values:

DeliveryMode.Persistent
DeliveryMode.NonPersistent

For a real-time connection to a broker, the value must be DeliveryMode.NonPersistent.

The default value is DeliveryMode.Persistent, except for a real-time connection to a broker for
which the default value is DeliveryMode.NonPersistent.

Developing applications reference 1975

Exceptions:

• XMSException

Destination - Get Destination

Interface:

IDestination Destination
{
 get;
}

Get the destination for the message producer.

Parameters:
None

Returns:
The Destination object. If the message producer does not have a destination, the method returns a
null Destination object.

Exceptions:

• XMSException

DisableMsgID - Get and Set Disable Message ID Flag

Interface:

Boolean DisableMessageID
{
 get;
 set;
}

Get an indication of whether a receiving application requires message identifiers to be included in
messages sent by the message producer, and indicate whether a receiving application requires message
identifiers to be included in messages sent by the message producer.

On a connection to a queue manager, or on a real-time connection to a broker, this flag is ignored. On a
connection to a service integration bus, the flag is honored.

DisabledMsgID has the following values:

• True, if a receiving application does not require message identifiers to be included in messages sent by
the message producer.

• False, if a receiving application does require message identifiers to be included in messages sent by
the message producer.

Exceptions:

• XMSException

DisableMsgTS - Get and Set Disable Time Stamp Flag

Interface:

Boolean DisableMessageTimestamp
{
 get;
 set;
}

Get an indication of whether a receiving application requires time stamps to be included in messages
sent by the message producer, and indicate whether a receiving application requires time stamps to be
included in messages sent by the message producer.

1976 IBM MQ Developing Applications Reference

On a real-time connection to a broker, this flag is ignored. On a connection to a queue manager, or on a
connection to a service integration bus, the flag is honored.

DisableMsgTS has the following values:

• True, if a receiving application does not require time stamps to be included in messages sent by the
message producer.

• False, if a receiving application does require time stamps to be included in messages sent by the
message producer.

Returns:
Exceptions:

• XMSException

Priority - Get and Set Default Priority

Interface:

Int32 Priority
{
 get;
 set;
}

Get and set the default priority for messages sent by the message producer.

The value of the default message priority is an integer in the range 0, the lowest priority, to 9, the highest
priority.

On a real-time connection to a broker, the priority of a message is ignored.

Exceptions:

• XMSException

TimeToLive - Get and Set Default Time to Live

Interface:

Int64 TimeToLive
{
 get;
 set;
}

Get and set the default length of time that a message exists before it expires.

The time is measured from when the message producer sends the message and is the default time to live
in milliseconds. A value of 0 means that a message never expires.

For a real-time connection to a broker, this value is always 0.

Exceptions:

• XMSException

Methods

Close - Close Message Producer

Interface:

void Close();

Close the message producer.

Developing applications reference 1977

If an application tries to close a message producer that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

Send - Send

Interface:

void Send(IMessage msg) ;

Send a message to the destination that was specified when the message producer was created. Send the
message using the message producer default delivery mode, priority, and time to live.

Parameters:
msg (input)

The Message object.
Returns:

Void
Exceptions:

• XMSException
• MessageFormatException
• InvalidDestinationException

Send - Send (specifying a delivery mode, priority, and time to live)

Interface:

void Send(IMessage msg,
 DeliveryMode deliveryMode,
 Int32 priority,
 Int64 timeToLive);

Send a message to the destination that was specified when the message producer was created. Send the
message using the specified delivery mode, priority, and time to live.

Parameters:
msg (input)

The Message object.
deliveryMode (input)

The delivery mode for the message, which must be one of the following values:

DeliveryMode.Persistent
DeliveryMode.NonPersistent

For a real-time connection to a broker, the value must be DeliveryMode.NonPersistent.

priority (input)
The priority of the message. The value can be an integer in the range 0, for the lowest priority, to 9,
for the highest priority. On a real-time connection to a broker, the value is ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of 0 means that the message never
expires. For a real-time connection to a broker, the value must be 0.

1978 IBM MQ Developing Applications Reference

Returns:
Void

Exceptions:

• XMSException
• MessageFormatException
• InvalidDestinationException
• IllegalStateException

Send - Send (to a specified destination)

Interface:

void Send(IDestination dest, IMessage msg) ;

Send a message to a specified destination if you are using a message producer for which no destination
was specified when the message producer was created. Send the message using the message producer
default delivery mode, priority, and time to live.

Typically, you specify a destination when you create a message producer but, if you do not, you must
specify a destination every time you send a message.

Parameters:
dest (input)

The Destination object.
msg (input)

The Message object.
Returns:

Void
Exceptions:

• XMSException
• MessageFormatException
• InvalidDestinationException

Send - Send (to a specified destination, specifying a delivery mode, priority, and time to live)

Interface:

void Send(IDestination dest,
 IMessage msg,
 DeliveryMode deliveryMode,
 Int32 priority,
 Int64 timeToLive) ;

Send a message to a specified destination if you are using a message producer for which no destination
was specified when the message producer was created. Send the message using the specified delivery
mode, priority, and time to live.

Typically, you specify a destination when you create a message producer but, if you do not, you must
specify a destination every time you send a message.

Parameters:
dest (input)

The Destination object.
msg (input)

The Message object.

Developing applications reference 1979

deliveryMode (input)
The delivery mode for the message, which must be one of the following values:

DeliveryMode.Persistent
DeliveryMode.NonPersistent

For a real-time connection to a broker, the value must be DeliveryMode.NonPersistent.

priority (input)
The priority of the message. The value can be an integer in the range 0, for the lowest priority, to 9,
for the highest priority. On a real-time connection to a broker, the value is ignored.

timeToLive (input)
The time to live for the message in milliseconds. A value of 0 means that the message never
expires. For a real-time connection to a broker, the value must be 0.

Returns:
Void

Exceptions:

• XMSException
• MessageFormatException
• InvalidDestinationException
• IllegalStateException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IObjectMessage
An object message is a message whose body comprises a serialized Java or .NET object.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.IObjectMessage

.NET properties

Object - Get and Set Object as Bytes

Interface:

System.Object Object
 {
 get;
 set;
 }

 Byte[] GetObject();

Get and set the object that forms the body of the object message.

1980 IBM MQ Developing Applications Reference

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException
• MessageNotWritableException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

IPropertyContext
IPropertyContext is an abstract superclass that contains methods that get and set properties. These
methods are inherited by other classes.

Inheritance hierarchy:
None

Methods

GetBooleanProperty - Get Boolean Property

Interface:

Boolean GetBooleanProperty(String property_name);

Get the value of the boolean property with the specified name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

Developing applications reference 1981

GetByteProperty - Get Byte Property

Interface:

Byte GetByteProperty(String property_name) ;
Int16 GetSignedByteProperty(String property_name) ;

Get the value of the byte property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetBytesProperty - Get Byte Array Property

Interface:

Byte[] GetBytesProperty(String property_name) ;

Get the value of the byte array property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The number of bytes in the array.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetCharProperty - Get Character Property

Interface:

Char GetCharProperty(String property_name) ;

Get the value of the 2-byte character property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

1982 IBM MQ Developing Applications Reference

GetDoubleProperty - Get Double Precision Floating Point Property

Interface:

Double GetDoubleProperty(String property_name) ;

Get the value of the double precision floating point property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetFloatProperty - Get Floating Point Property

Interface:

Single GetFloatProperty(String property_name) ;

Get the value of the floating point property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetIntProperty - GetIntProperty

Interface:

Int32 GetIntProperty(String property_name) ;

Get the value of the integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

Developing applications reference 1983

GetLongProperty - Get Long Integer Property

Interface:

Int64 GetLongProperty(String property_name) ;

Get the value of the long integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetObjectProperty - Get Object Property

Interface:

Object GetObjectProperty(String property_name) ;

Get the value and data type of the property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property, which is one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32
Int64
Int16
String

Thread context:
Determined by the subclass

Exceptions:

• XMSException

GetShortProperty - Get Short Integer Property

Interface:

Int16 GetShortProperty(String property_name) ;

Get the value of the short integer property identified by name.

1984 IBM MQ Developing Applications Reference

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

The value of the property.
Thread context:

Determined by the subclass
Exceptions:

• XMSException

GetStringProperty - GetStringProperty

Interface:

String GetStringProperty(String property_name) ;

Get the value of the string property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
Returns:

A String object encapsulating the string that is the value of the property. If data conversion is required,
this value is the string after conversion.

Thread context:
Determined by the subclass

Exceptions:

• XMSException

SetBooleanProperty - Set Boolean Property

Interface:

void SetBooleanProperty(String property_name, Boolean value) ;

Set the value of the boolean property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

Developing applications reference 1985

SetByteProperty - Set Byte Property

Interface:

void SetByteProperty(String property_name, Byte value) ;
 void SetSignedByteProperty(String property_name, Int16 value) ;

Set the value of the byte property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetBytesProperty - Set Byte Array Property

Interface:

void SetBytesProperty(String property_name, Byte[] value) ;

Set the value of the byte array property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property, which is an array of bytes.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetCharProperty - Set Character Property

Interface:

void SetCharProperty(String property_name, Char value) ;

Set the value of the 2-byte character property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.

1986 IBM MQ Developing Applications Reference

value (input)
The value of the property.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

• XMSException
• MessageNotWritableException

SetDoubleProperty - Set Double Precision Floating Point Property

Interface:

void SetDoubleProperty(String property_name, Double value) ;

Set the value of the double precision floating point property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetFloatProperty - Set Floating Point Property

Interface:

void SetFloatProperty(String property_name, Single value) ;

Set the value of the floating point property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

Developing applications reference 1987

SetIntProperty - Set Integer Property

Interface:

void SetIntProperty(String property_name, Int32 value) ;

Set the value of the integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetLongProperty - Set Long Integer Property

Interface:

void SetLongProperty(String property_name, Int64 value) ;

Set the value of the long integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetObjectProperty - Set Object Property

Interface:

void SetObjectProperty(String property_name, Object value) ;

Set the value and data type of a property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.

1988 IBM MQ Developing Applications Reference

objectType (input)
The value of the property, which must be one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32
Int64
Int16
String

value (input)
The value of the property as an array of bytes.

length (input)
The number of bytes in the array.

Returns:
Void

Thread context:
Determined by the subclass

Exceptions:

• XMSException
• MessageNotWritableException

SetShortProperty - Set Short Integer Property

Interface:

void SetShortProperty(String property_name, Int16 value) ;

Set the value of the short integer property identified by name.

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

The value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

SetStringProperty - Set String Property

Interface:

void SetStringProperty(String property_name, String value);

Set the value of the string property identified by name.

Developing applications reference 1989

Parameters:
property_name (input)

A String object encapsulating the name of the property.
value (input)

A String object encapsulating the string that is the value of the property.
Returns:

Void
Thread context:

Determined by the subclass
Exceptions:

• XMSException
• MessageNotWritableException

IQueueBrowser
An application uses a queue browser to browse messages on a queue without removing them.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
System.Collections.IEnumerable
 |
 +----IBM.XMS.IQueueBrowser

.NET properties

MessageSelector - Get Message Selector

Interface:

String MessageSelector
{
 get;
}

Get the message selector for the queue browser.

The message selector is a String object encapsulating the message selector expression. If data
conversion is required, this value is the message selector expression after conversion. If the queue
browser does not have a message selector, the method returns a null String object.

Exceptions:

• XMSException

Queue - Get Queue

Interface:

IDestination Queue
{
 get;
}

Get the queue associated with the queue browser as a destination object representing the queue.

Exceptions:

• XMSException

1990 IBM MQ Developing Applications Reference

Methods

Close - Close Queue Browser

Interface:

void Close();

Close the queue browser.

If an application tries to close a queue browser that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException

GetEnumerator - Get Messages

Interface:

IEnumerator GetEnumerator();

Get a list of the messages on the queue.

The method returns an enumerator that encapsulates a list of Message objects. The order of the Message
objects is the same as the order in which the messages would be retrieved from the queue. The
application can then use the enumerator to browse each message in turn.

The enumerator is updated dynamically as messages are put on the queue and removed from the queue.
Each time the application calls IEnumerator.MoveNext() to browse the next message on the queue, the
message reflects the current contents of the queue.

If an application calls this method more than once for a queue browser, each call returns a new
enumerator. The application can therefore use more than one enumerator to browse the messages on
a queue and maintain multiple positions within the queue.

Parameters:
None

Returns:
The Iterator object.

Exceptions:

• XMSException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

Developing applications reference 1991

Requestor
An application uses a requestor to send a request message and then wait for, and receive, the reply.

Inheritance hierarchy:
None

Constructors

Requestor - Create Requestor

Interface:

Requestor(ISession sess, IDestination dest);

Create a requestor.

Parameters:
sess (input)

A Session object. The session must not be transacted and must have one of the following
acknowledgment modes:

AcknowledgeMode.AutoAcknowledge
AcknowledgeMode.DupsOkAcknowledge

dest (input)
A Destination object representing the destination where the application can send request
messages.

Thread context:
The session associated with the requestor

Exceptions:

• XMSException

Methods

Close - Close Requestor

Interface:

void Close();

Close the requestor.

If an application tries to close a requestor that is already closed, the call is ignored.

Note: When an application closes a requestor, the associated session does not close as well. In this
respect, XMS behaves differently compared to JMS.

Parameters:
None

Returns:
Void

Thread context:
Any

Exceptions:

• XMSException

1992 IBM MQ Developing Applications Reference

Request - Request Response

Interface:

IMessage Request(IMessage requestMessage);

Send a request message and then wait for, and receive, a reply from the application that receives the
request message.

A call to this method blocks until a reply is received or until the session ends, whichever is the sooner.

Parameters:
requestMessage (input)

The Message object encapsulating the request message.
Returns:

A pointer to the Message object encapsulating the reply message.
Thread context:

The session associated with the requestor
Exceptions:

• XMSException

ResourceAllocationException
XMS throws this exception if XMS cannot allocate the resources required by a method.

Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.ResourceAllocationException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

SecurityException
XMS throws this exception if the user identifer and password provided to authenticate an application
are rejected. XMS also throws this exception if an authority check fails and prevents a method from
completing.

Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.SecurityException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

Developing applications reference 1993

ISession
A session is a single threaded context for sending and receiving messages.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.ISession

For a list of the XMS defined properties of a Session object, see “Properties of Session” on page 2031.

.NET properties

AcknowledgeMode - Get Acknowledgement Mode

Interface:

AcknowledgeMode AcknowledgeMode
 {
 get;
 }

Get the acknowledgment mode for the session.

The acknowledgment mode is specified when the session is created.

Provided the session is not transacted, the acknowledgment mode is one of the following values:

AcknowledgeMode.AutoAcknowledge
AcknowledgeMode.ClientAcknowledge
AcknowledgeMode.DupsOkAcknowledge

For more information about acknowledgment modes, see Message acknowledgment.

A session that is transacted has no acknowledgment mode. If the session is transacted, the method
returns AcknowledgeMode.SessionTransacted instead.

Exceptions:

• XMSException

Transacted - Determine Whether Transacted

Interface:

Boolean Transacted
 {
 get;
 }

Determine whether the session is transacted.

The transacted stated is:

• True, if the session is transacted.
• False, if the session is not transacted.

For a real-time connection to a broker, the method always returns False.

Exceptions:

• XMSException

Methods

1994 IBM MQ Developing Applications Reference

Close - Close Session

Interface:

void Close();

Close the session. If the session is transacted, any transaction in progress is rolled back.

If an application tries to close a session that is already closed, the call is ignored.

Parameters:
None

Returns:
Void

Thread context:
Any

Exceptions:

• XMSException

Commit - Commit

Interface:

void Commit();

Commit all messages processed in the current transaction.

The session must be a transacted session.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• IllegalStateException
• TransactionRolledBackException

CreateBrowser - Create Queue Browser

Interface:

IQueueBrowser CreateBrowser(IDestination queue) ;

Create a queue browser for the specified queue.

Parameters:
queue (input)

A Destination object representing the queue.
Returns:

The QueueBrowser object.
Exceptions:

• XMSException
• InvalidDestinationException

Developing applications reference 1995

CreateBrowser - Create Queue Browser (with message selector)

Interface:

IQueueBrowser CreateBrowser(IDestination queue, String selector) ;

Create a queue browser for the specified queue using a message selector.

Parameters:
queue (input)

A Destination object representing the queue.
selector (input)

A String object encapsulating a message selector expression. Only those messages with
properties that match the message selector expression are delivered to the queue browser.

A null String object means that there is no message selector for the queue browser.

Returns:
The QueueBrowser object.

Exceptions:

• XMSException
• InvalidDestinationException
• InvalidSelectorException

CreateBytesMessage - Create Bytes Message

Interface:

IBytesMessage CreateBytesMessage();

Create a bytes message.

Parameters:
None

Returns:
The BytesMessage object.

Exceptions:

• XMSException
• IllegalStateException (The session is closed)

CreateConsumer - Create Consumer

Interface:

IMessageConsumer CreateConsumer(IDestination dest) ;

Create a message consumer for the specified destination.

Parameters:
dest (input)

The Destination object.
Returns:

The MessageConsumer object.
Exceptions:

• XMSException

1996 IBM MQ Developing Applications Reference

• InvalidDestinationException

CreateConsumer - Create Consumer (with message selector)

Interface:

IMessageConsumer CreateConsumer(IDestination dest,
 String selector) ;

Create a message consumer for the specified destination using a message selector.

Parameters:
dest (input)

The Destination object.
selector (input)

A String object encapsulating a message selector expression. Only those messages with
properties that match the message selector expression are delivered to the message consumer.

A null String object means that there is no message selector for the message consumer.

Returns:
The MessageConsumer object.

Exceptions:

• XMSException
• InvalidDestinationException
• InvalidSelectorException

CreateConsumer - Create Consumer (with message selector and local message flag)

Interface:

IMessageConsumer CreateConsumer(IDestination dest,
 String selector,
 Boolean noLocal) ;

Create a message consumer for the specified destination using a message selector and, if the destination
is a topic, specifying whether the message consumer receives the messages published by its own
connection.

Parameters:
dest (input)

The Destination object.
selector (input)

A String object encapsulating a message selector expression. Only those messages with
properties that match the message selector expression are delivered to the message consumer.

A null String object means that there is no message selector for the message consumer.

noLocal (input)
The value True means that the message consumer does not receive the messages published by its
own connection. The value False means that the message consumer does receive the messages
published by its own connection. The default value is False.

Returns:
The MessageConsumer object.

Exceptions:

• XMSException
• InvalidDestinationException

Developing applications reference 1997

• InvalidSelectorException

CreateDurableSubscriber - Create Durable Subscriber

Interface:

IMessageConsumer CreateDurableSubscriber(IDestination dest,
 String subscription) ;

Create a durable subscriber for the specified topic.

This method is not valid for a real-time connection to a broker.

For more information about durable subscribers, see Durable subscribers.

Parameters:
dest (input)

A Destination object representing the topic. The topic must not be a temporary topic.
subscription (input)

A String object encapsulating a name that identifies the durable subscription. The name must be
unique within the client identifier for the connection.

Returns:
The MessageConsumer object representing the durable subscriber.

Exceptions:

• XMSException
• InvalidDestinationException

CreateDurableSubscriber - Create Durable Subscriber (with message selector and local message flag)

Interface:

IMessageConsumer CreateDurableSubscriber(IDestination dest,
 String subscription,
 String selector,
 Boolean noLocal) ;

Create a durable subscriber for the specified topic using a message selector and specifying whether the
durable subscriber receives the messages published by its own connection.

This method is not valid for a real-time connection to a broker.

For more information about durable subscribers, see Durable subscribers.

Parameters:
dest (input)

A Destination object representing the topic. The topic must not be a temporary topic.
subscription (input)

A String object encapsulating a name that identifies the durable subscription. The name must be
unique within the client identifier for the connection.

selector (input)
A String object encapsulating a message selector expression. Only those messages with
properties that match the message selector expression are delivered to the durable subscriber.

A null String object means that there is no message selector for the durable subscriber.

noLocal (input)
The value True means that the durable subscriber does not receive the messages published by its
own connection. The value False means that the durable subscriber does receive the messages
published by its own connection. The default value is False.

1998 IBM MQ Developing Applications Reference

Returns:
The MessageConsumer object representing the durable subscriber.

Exceptions:

• XMSException
• InvalidDestinationException
• InvalidSelectorException

CreateMapMessage - Create Map Message

Interface:

IMapMessage CreateMapMessage();

Create a map message.

Parameters:
None

Returns:
The MapMessage object.

Exceptions:

• XMSException
• IllegalStateException (The session is closed)

CreateMessage - Create Message

Interface:

IMessage CreateMessage();

Create a message that has no body.

Parameters:
None

Returns:
The Message object.

Exceptions:

• XMSException
• IllegalStateException (The session is closed)

CreateObjectMessage - Create Object Message

Interface:

IObjectMessage CreateObjectMessage();

Create an object message.

Parameters:
None

Returns:
The ObjectMessage object.

Exceptions:

• XMSException
• IllegalStateException (The session is closed)

Developing applications reference 1999

CreateProducer - Create Producer

Interface:

IMessageProducer CreateProducer(IDestination dest) ;

Create a message producer to send messages to the specified destination.

Parameters:
dest (input)

The Destination object.

If you specify a null Destination object, the message producer is created without a destination. In
this case, the application must specify a destination every time it uses the message producer to
send a message.

Returns:
The MessageProducer object.

Exceptions:

• XMSException
• InvalidDestinationException

CreateQueue - Create Queue

Interface:

IDestination CreateQueue(String queue) ;

Create a Destination object to represent a queue in the messaging server.

This method does not create the queue in the messaging server. You must create the queue before an
application can call this method.

Parameters:
queue (input)

A String object encapsulating the name of the queue, or encapsulating a uniform resource
identifier (URI) that identifies the queue.

Returns:
The Destination object representing the queue.

Exceptions:

• XMSException

CreateStreamMessage - Create Stream Message

Interface:

IStreamMessage CreateStreamMessage();

Create a stream message.

Parameters:
None

Returns:
The StreamMessage object.

Exceptions:

• XMSException
• XMS_ILLEGAL_STATE_EXCEPTION

2000 IBM MQ Developing Applications Reference

CreateTemporaryQueue - Create Temporary Queue

Interface:

IDestination CreateTemporaryQueue() ;

Create a temporary queue.

The scope of the temporary queue is the connection. Only the sessions created by the connection can use
the temporary queue.

The temporary queue remains until it is explicitly deleted, or the connection ends, whichever is the
sooner.

For more information about temporary queues, see Temporary destinations.

Parameters:
None

Returns:
The Destination object representing the temporary queue.

Exceptions:

• XMSException

CreateTemporaryTopic - Create Temporary Topic

Interface:

IDestination CreateTemporaryTopic() ;

Create a temporary topic.

The scope of the temporary topic is the connection. Only the sessions created by the connection can use
the temporary topic.

The temporary topic remains until it is explicitly deleted, or the connection ends, whichever is the sooner.

For more information about temporary topics, see Temporary destinations.

Parameters:
None

Returns:
The Destination object representing the temporary topic.

Exceptions:

• XMSException

CreateTextMessage - Create Text Message

Interface:

ITextMessage CreateTextMessage();

Create a text message with an empty body.

Parameters:
None

Returns:
The TextMessage object.

Exceptions:

• XMSException

Developing applications reference 2001

CreateTextMessage - Create Text Message (initialized)

Interface:

ITextMessage CreateTextMessage(String initialValue);

Create a text message whose body is initialized with the specified text.

Parameters:
initialValue (input)

A String object encapsulating the text to initialize the body of the text message.
None

Returns:
The TextMessage object.

Exceptions:

• XMSException

CreateTopic - Create Topic

Interface:

IDestination CreateTopic(String topic) ;

Create a Destination object to represent a topic.

Parameters:
topic (input)

A String object encapsulating the name of the topic, or encapsulating a uniform resource identifier
(URI) that identifies the topic.

Returns:
The Destination object representing the topic.

Exceptions:

• XMSException

Recover - Recover

Interface:

void Recover();

Recover the session. Message delivery is stopped and then restarted with the oldest unacknowledged
message.

The session must not be a transacted session.

For more information about recovering a session, see Message acknowledgment.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• IllegalStateException

2002 IBM MQ Developing Applications Reference

Rollback - Rollback

Interface:

void Rollback();

Roll back all messages processed in the current transaction.

The session must be a transacted session.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• IllegalStateException

Unsubscribe - Unsubscribe

Interface:

void Unsubscribe(String subscription);

Delete a durable subscription. The messaging server deletes the record of the durable subscription that it
is maintaining and does not send any more messages to the durable subscriber.

An application cannot delete a durable subscription in any of the following circumstances:

• While there is an active message consumer for the durable subscription
• While a consumed message is part of a pending transaction
• While a consumed message was not acknowledged

This method is not valid for a real-time connection to a broker.

Parameters:
subscription (input)

A String object encapsulating the name that identifies the durable subscription.
Returns:

Void
Exceptions:

• XMSException
• InvalidDestinationException
• IllegalStateException

Inherited properties and methods
The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

Developing applications reference 2003

IStreamMessage
A stream message is a message whose body comprises a stream of values, where each value has an
associated data type. The contents of the body are written and read sequentially.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.IStreamMessage

When an application reads a value from the message stream, the value can be converted by XMS into
another data type. For more information about this form of implicit conversion, see The body of an XMS
message.

Methods

ReadBoolean - Read Boolean Value

Interface:

Boolean ReadBoolean();

Read a boolean value from the message stream.

Parameters:
None

Returns:
The boolean value that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadByte - Read Byte

Interface:

Int16 ReadSignedByte();
 Byte ReadByte();

Read a signed 8-bit integer from the message stream.

Parameters:
None

Returns:
The byte that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

2004 IBM MQ Developing Applications Reference

ReadBytes - Read Bytes

Interface:

Int32 ReadBytes(Byte[] array);

Read an array of bytes from the message stream.

Parameters:
array (input)

The buffer containing the array of bytes that is read and the length of the buffer in bytes.

If the number of bytes in the array is less than or equal to the length of the buffer, the whole array
is read into the buffer. If the number of bytes in the array is greater than the length of the buffer,
the buffer is filled with part of the array, and an internal cursor marks the position of the next byte
to be read. A subsequent call to readBytes() reads bytes from the array starting from the current
position of the cursor.

If you specify a null pointer on input, the call skips over the array of bytes without reading it.

Returns:
The number of bytes that are read into the buffer. If the buffer is partially filled, the value is less
than the length of the buffer, indicating that there are no more bytes in the array remaining to
be read. If there are no bytes remaining to be read from the array before the call, the value is
XMSC_END_OF_BYTEARRAY.

If you specify a null pointer on input, the method returns no value.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadChar - Read Character

Interface:

Char ReadChar();

Read a 2-byte character from the message stream.

Parameters:
None

Returns:
The character that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadDouble - Read Double Precision Floating Point Number

Interface:

Double ReadDouble();

Read an 8-byte double precision floating point number from the message stream.

Developing applications reference 2005

Parameters:
None

Returns:
The double precision floating point number that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadFloat - Read Floating Point Number

Interface:

Single ReadFloat();

Read a 4-byte floating point number from the message stream.

Parameters:
None

Returns:
The floating point number that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadInt - Read Integer

Interface:

Int32 ReadInt();

Read a signed 32-bit integer from the message stream.

Parameters:
None

Returns:
The integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadLong - Read Long Integer

Interface:

Int64 ReadLong();

Read a signed 64-bit integer from the message stream.

Parameters:
None

2006 IBM MQ Developing Applications Reference

Returns:
The long integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

ReadObject - Read Object

Interface:

Object ReadObject();

Read a value from the message stream, and return its data type.

Parameters:
None

Returns:
The value, which is one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32
Int64
Int16
String

Exceptions:
XMSException

ReadShort - Read Short Integer

Interface:

Int16 ReadShort();

Read a signed 16-bit integer from the message stream.

Parameters:
None

Returns:
The short integer that is read.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

Developing applications reference 2007

ReadString - Read String

Interface:

String ReadString();

Read a string from the message stream. If required, XMS converts the characters in the string into the
local code page.

Parameters:
None

Returns:
A String object encapsulating the string that is read. If data conversion is required, this is the string
after conversion.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

Reset - Reset

Interface:

void Reset();

Put the body of the message into read-only mode and reposition the cursor at the beginning of the
message stream.

Parameters:
None

Returns:
Void

Exceptions:

• XMSException
• MessageNotReadableException
• MessageEOFException

WriteBoolean - Write Boolean Value

Interface:

void WriteBoolean(Boolean value);

Write a boolean value to the message stream.

Parameters:
value (input)

The boolean value to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

2008 IBM MQ Developing Applications Reference

WriteByte - Write Byte

Interface:

void WriteByte(Byte value);
void WriteSignedByte(Int16 value);

Write a byte to the message stream.

Parameters:
value (input)

The byte to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteBytes - Write Bytes

Interface:

void WriteBytes(Byte[] value);

Write an array of bytes to the message stream.

Parameters:
value (input)

The array of bytes to be written.
length (input)

The number of bytes in the array.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteChar - Write Character

Interface:

void WriteChar(Char value);

Write a character to the message stream as 2 bytes, high-order byte first.

Parameters:
value (input)

The character to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

Developing applications reference 2009

WriteDouble - Write Double Precision Floating Point Number

Interface:

void WriteDouble(Double value);

Convert a double precision floating point number to a long integer and write the long integer to the
message stream as 8 bytes, high-order byte first.

Parameters:
value (input)

The double precision floating point number to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteFloat - Write Floating Point Number

Interface:

void WriteFloat(Single value);

Convert a floating point number to an integer and write the integer to the message stream as 4 bytes,
high-order byte first.

Parameters:
value (input)

The floating point number to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteInt - Write Integer

Interface:

void WriteInt(Int32 value);

Write an integer to the message stream as 4 bytes, high-order byte first.

Parameters:
value (input)

The integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

2010 IBM MQ Developing Applications Reference

WriteLong - Write Long Integer

Interface:

void WriteLong(Int64 value);

Write a long integer to the message stream as 8 bytes, high-order byte first.

Parameters:
value (input)

The long integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteObject - Write Object

Interface:

void WriteObject(Object value);

Write a value, with a specified data type, to the message stream.

Parameters:
objectType (input)

The value, which must be one of the following object types:

Boolean
Byte
Byte[]
Char
Double
Single
Int32
Int64
Int16
String

value (input)
An array of bytes containing the value to be written.

length (input)
The number of bytes in the array.

Returns:
Void

Exceptions:

• XMSException

WriteShort - Write Short Integer

Interface:

void WriteShort(Int16 value);

Developing applications reference 2011

Write a short integer to the message stream as 2 bytes, high-order byte first.

Parameters:
value (input)

The short integer to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

WriteString - Write String

Interface:

void WriteString(String value);

Write a string to the message stream.

Parameters:
value (input)

A String object encapsulating the string to be written.
Returns:

Void
Exceptions:

• XMSException
• MessageNotWritableException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

ITextMessage
A text message is a message whose body comprises a string.

Inheritance hierarchy:

IBM.XMS.IPropertyContext
 |
 +----IBM.XMS.IMessage
 |
 +----IBM.XMS.ITextMessage

2012 IBM MQ Developing Applications Reference

.NET properties

Text - Get and Set Text

Interface:

String Text
{
 get;
 set;
}

Get and set the string that forms the body of the text message.

If required, XMS converts the characters in the string into the local code page.

Exceptions:

• XMSException
• MessageNotReadableException
• MessageNotWritableException
• MessageEOFException

Inherited properties and methods
The following properties are inherited from the IMessage interface:

JMSCorrelationID, JMSDeliveryMode, JMSDestination, JMSExpiration, JMSMessageID, JMSPriority,
JMSRedelivered, JMSReplyTo, JMSTimestamp, JMSType, Properties

The following methods are inherited from the IMessage interface:

clearBody, clearProperties, PropertyExists

The following methods are inherited from the IPropertyContext interface:

GetBooleanProperty, GetByteProperty, GetBytesProperty, GetCharProperty, GetDoubleProperty,
GetFloatProperty, GetIntProperty, GetLongProperty, GetObjectProperty, GetShortProperty,
GetStringProperty, SetBooleanProperty, SetByteProperty, SetBytesProperty, SetCharProperty,
SetDoubleProperty, SetFloatProperty, SetIntProperty, SetLongProperty, SetObjectProperty,
SetShortProperty, SetStringProperty

TransactionInProgressException
XMS throws this exception if an application requests an operation that is not valid because a transaction is
in progress.

Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.TransactionInProgressException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

Developing applications reference 2013

TransactionRolledBackException
XMS throws this exception if an application calls Session.commit() to commit the current transaction, but
the transaction is then rolled back.

Inheritance hierarchy:

IBM.XMS.XMSException
 |
 +----IBM.XMS.XMSException
 |
 +----IBM.XMS.TransactionRolledBackException

Inherited properties and methods
The following methods are inherited from the XMSException interface:

GetErrorCode, GetLinkedException

XMSException
If XMS detects an error while processing a call to a .NET method, XMS throws an exception. An exception
is an object that encapsulates information about the error.

Inheritance hierarchy:

System.Exception
 |
 +----IBM.XMS.XMSException

There are different types of XMS exception, and an XMSException object is just one type of exception.
However, the XMSException class is a superclass of the other XMS exception classes. XMS throws an
XMSException object in situations where none of the other types of exception are appropriate.

.NET properties

ErrorCode - Get Error Code

Interface:

public String ErrorCode
{
 get {return errorCode_;}
}

Get the error code.

Exceptions:

• XMSException

LinkedException - Get Linked Exception

Interface:

public Exception LinkedException
{
 get { return linkedException_;}
 set { linkedException_ = value;}
}

Get the next exception in the chain of exceptions.

The method returns a null if there are no more exceptions in the chain.

2014 IBM MQ Developing Applications Reference

Exceptions:

• XMSException

XMSFactoryFactory
If an application is not using administered objects, use this class to create connection factories, queues,
and topics.

Inheritance hierarchy:
None

.NET properties

Metadata - Retrieve metadata

Interface:

IConnectionMetaData MetaData

Get the metadata that is appropriate to the connection type of the XMSFactoryFactory object.

Exceptions:
None

Methods

CreateConnectionFactory - Create Connection Factory

Interface:

IConnectionFactory CreateConnectionFactory();

Create a ConnectionFactory object of the declared type.

Parameters:
None

Returns:
The ConnectionFactory object.

Exceptions:

• XMSException

CreateQueue - Create Queue

Interface:

IDestination CreateQueue(String name);

Create a Destination object to represent a queue in the messaging server.

This method does not create the queue in the messaging server. You must create the queue before an
application can call this method.

Parameters:
name (input)

A String object encapsulating the name of the queue, or encapsulating a uniform resource
identifier (URI) that identifies the queue.

Returns:
The Destination object representing the queue.

Developing applications reference 2015

Exceptions:

• XMSException

CreateTopic - Create Topic

Interface:

IDestination CreateTopic(String name);

Create a Destination object to represent a topic.

Parameters:
name (input)

A String object encapsulating the name of the topic, or encapsulating a uniform resource identifier
(URI) that identifies the topic.

Returns:
The Destination object representing the topic.

Exceptions:

• XMSException

GetInstance - Get an instance of XMSFactoryFactory

Interface:

static XMSFactoryFactory GetInstance(int connectionType);

Create an instance of XMSFactoryFactory. An XMS application uses an XMSFactoryFactory object to get
a reference to a ConnectionFactory object that is appropriate to the required type of protocol. This
ConnectionFactory object can then produce connections for that protocol type only.

Parameters:
connectionType (input)

The type of connection for which the ConnectionFactory object produces connections:

• XMSC.CT_WPM
• XMSC.CT_RTT
• XMSC.CT_WMQ

Returns:
The XMSFactoryFactory object dedicated to the declared connection type.

Exceptions:

• NotSupportedException

Properties of XMS objects
This section documents the object properties defined by XMS.

This section contains information about the following types of object:

• “Properties of Connection” on page 2017
• “Properties of ConnectionFactory” on page 2018
• “Properties of ConnectionMetaData” on page 2023
• “Properties of Destination” on page 2024
• “Properties of InitialContext” on page 2025
• “Properties of Message” on page 2026

2016 IBM MQ Developing Applications Reference

• “Properties of MessageConsumer” on page 2031
• “Properties of MessageProducer” on page 2031
• “Properties of Session” on page 2031

The description of each object type lists the properties of an object of the specified type and provides a
short description of each property.

This section also provides a definition of each property (see “Property definitions” on page 2031).

If an application defines its own properties of the objects described in this section, it does not cause an
error, but it might cause unpredictable results.

Note: The property names and values in this section are shown in the form XMSC.NAME, which is the
form used for C and C++. However, in .NET, the form of the property name can be either XMSC.NAME or
XMSC_NAME, depending on how you are using it:

• If you are specifying a property, the property name must be in the form XMSC.NAME as shown in the
following example:

cf.SetStringProperty(XMSC.WMQ_CHANNEL, "DOTNET.SVRCONN");

• If you are specifying a string, the property name must be in the form XMSC_NAME as shown in the
following example:

cf.SetStringProperty("XMSC_WMQ_CHANNEL", "DOTNET.SVRCONN");

In .NET, property names and values are provided as constants in the XMSC class. These constants
identify strings and would be used by any XMS .NET application. If you are using these predefined
constants, the property names and values are in the form XMSC.NAME, so, for example, you would use
XMSC.USERID, rather than XMSC_USERID.

The data types are also in the form used for C/C++. You can find the corresponding values for .NET in Data
types for .NET.

Properties of Connection
An overview of the properties of the Connection object, with links to more detailed reference information.

Table 873. Properties of Connection

Name of property Description

“XMSC_WMQ_RESOLVED_QUEUE_MANAGER” on
page 2065

This property is used to obtain the name of the queue
manager to which it is connected.

“XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID”
on page 2065

This property is populated with the ID of the queue
manager after the connection.

XMSC_WPM_CONNECTION_PROTOCOL The communications protocol used for the connection to
the messaging engine. This property is read-only.

XMSC_WPM_HOST_NAME The host name or IP address of the system that
contains the messaging engine to which the application is
connected. This property is read-only.

XMSC_WPM_ME_NAME The name of the messaging engine to which the application
is connected. This property is read-only.

XMSC_WPM_PORT The number of the port listened on by the messaging
engine to which the application is connected. This property
is read-only.

A Connection object also has read-only properties that are derived from the properties of the connection
factory that was used to create the connection. These properties are derived not only from the connection

Developing applications reference 2017

factory properties that were set at the time the connection was created, but also from the default values
of the properties that were not set. The properties include only the ones that are relevant for the type of
messaging server that the application is connected to. The names of the properties are the same as the
names of the connection factory properties.

Properties of ConnectionFactory
An overview of the properties of the ConnectionFactory object, with links to more detailed reference
information.

Table 874. Properties of ConnectionFactory

Name of property Description

“XMSC_ASYNC_EXCEPTIONS” on page 2041 This property determines whether XMS informs an
ExceptionListener only when a connection is broken, or
when any exception occurs asynchronously to an XMS API
call. This property applies to all Connections created from
this ConnectionFactory that have an ExceptionListener
registered.

“XMSC_WMQ_BALANCING_APPLICATION_TYPE”
on page 2049

Type of balancing option

“XMSC_WMQ_BALANCING_OPTIONS” on page
2050

Balancing options set by the issuing application

“XMSC_WMQ_BALANCING_TIMEOUT” on page
2050

Timeout after which re-balancing might interrupt
application activity.

XMSC_CLIENT_ID The client identifier for a connection.

XMSC_CONNECTION_TYPE The type of messaging server to which an application
connects.

XMSC_PASSWORD A password that can be used to authenticate the
application when it attempts to connect to a messaging
server.

“XMSC_RTT_BROKER_PING_INTERVAL” on page
2046

The time interval, in milliseconds, after which XMS .NET
checks the connection to a Real Time messaging server to
detect any activity.

XMSC_RTT_CONNECTION_PROTOCOL The communications protocol used for a real-time
connection to a broker.

XMSC_RTT_HOST_NAME The host name or IP address of the system on which a
broker runs.

XMSC_RTT_LOCAL_ADDRESS The host name or IP address of the local network interface
to be used for a real-time connection to a broker.

XMSC_RTT_MULTICAST The multicast setting for a connection factory or
destination.

XMSC_RTT_PORT The number of the port on which a broker listens for
incoming requests.

2018 IBM MQ Developing Applications Reference

Table 874. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_USERID A user identifier that can be used to authenticate the
application when it attempts to connect to a messaging
server.

XMSC_WMQ_BROKER_CONTROLQ The name of the control queue used by a broker.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

XMSC_WMQ_BROKER_PUBQ The name of the queue monitored by a broker where
applications send messages that they publish.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

XMSC_WMQ_BROKER_QMGR The name of the queue manager to which a broker is
connected.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

XMSC_WMQ_BROKER_SUBQ The name of the subscriber queue for a nondurable
message consumer.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

XMSC_WMQ_BROKER_VERSION The type of broker used by the application for a connection
or for the destination.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

“XMSC_WMQ_CCDTURL” on page 2052 A Uniform Resource Locator (URL) that identifies the name
and location of the file that contains the client channel
definition table and also specifies how the file can be
accessed.

Developing applications reference 2019

Table 874. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_WMQ_CHANNEL The name of the channel to be used for a connection.

“XMSC_WMQ_CLIENT_RECONNECT_OPTIONS”
on page 2053

This property specifies the client reconnect options for new
connections created by this factory

“XMSC_WMQ_CLIENT_RECONNECT_TIMEOUT”
on page 2053

This property specifies the duration of time, in seconds,
that a client connection attempts to reconnect.

XMSC_WMQ_CONNECTION_MODE The mode by which an application connects to a queue
manager.

“XMSC_WMQ_CONNECTION_NAME_LIST” on
page 2054

This property specifies the hosts to which the client
attempts to reconnect to after its connection are broken.

XMSC_WMQ_FAIL_IF_QUIESCE Whether calls to certain methods fail if the queue manager
to which the application is connected is in a quiescing
state.

XMSC_WMQ_HOST_NAME The host name or IP address of the system on which a
queue manager runs.

XMSC_WMQ_LOCAL_ADDRESS For a connection to a queue manager, this property
specifies the local network interface to be used, or the
local port or range of local ports to be used, or both.

XMSC_WMQ_MESSAGE_SELECTION Determines whether message selection is done by the XMS
client or by the broker.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

XMSC_WMQ_MSG_BATCH_SIZE The maximum number of messages to be retrieved from
a queue in one batch when using asynchronous message
delivery.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

XMSC_WMQ_POLLING_INTERVAL If each message listener within a session has no suitable
message on its queue, this value is the maximum interval,
in milliseconds, that elapses before each message listener
tries again to get a message from its queue.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

2020 IBM MQ Developing Applications Reference

Table 874. Properties of ConnectionFactory (continued)

Name of property Description

“XMSC_WMQ_PROVIDER_VERSION” on page
2062

The version, release, modification level and fix pack of
the queue manager to which the application intends to
connect.

XMSC_WMQ_PORT The number of the port on which a queue manager listens
for incoming requests.

XMSC_WMQ_PUB_ACK_INTERVAL The number of messages published by a publisher before
the XMS client requests an acknowledgment from the
broker.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

“XMSC_WMQ_PUT_ASYNC_ALLOWED” on page
2058

This property determines whether message producers are
allowed to use asynchronous puts to send messages to this
destination.

XMSC_WMQ_QMGR_CCSID The identifier (CCSID) of the coded character set, or code
page, in which fields of character data defined in the
Message Queue Interface (MQI) are exchanged between
the XMS client and the IBM MQ client.

XMSC_WMQ_QUEUE_MANAGER The name of the queue manager to connect to.

XMSC_WMQ_RECEIVE_EXIT Identifies a channel receive exit to be run.

XMSC_WMQ_RECEIVE_EXIT_INIT The user data that is passed to a channel receive exit when
it is called.

XMSC_WMQ_SECURITY_EXIT Identifies a channel security exit.

XMSC_WMQ_SECURITY_EXIT_INIT The user data that is passed to a channel security exit
when it is called.

“XMSC_WMQ_SEND_CHECK_COUNT” on page
2067

The number of send calls to allow between checking for
asynchronous put errors, within a single non-transacted
XMS session.

XMSC_WMQ_SEND_EXIT Identifies a channel send exit.

XMSC_WMQ_SEND_EXIT_INIT The user data that is passed to channel send exits when
they are called.

“XMSC_WMQ_SHARE_CONV_ALLOWED” on page
2067

Whether a client connection can share its socket with other
top-level XMS connections from the same process to the
same queue manager, if the channel definitions match.
This property is provided to allow complete isolation of
Connections in separate sockets if required for application
development, maintenance, or operational reasons.

XMSC_WMQ_SSL_CERT_STORES The locations of the servers that hold the certificate
revocation lists (CRLs) to be used on an SSL connection
to a queue manager.

Developing applications reference 2021

Table 874. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_WMQ_SSL_CIPHER_SPEC The name of the CipherSpec to be used on a secure
connection to a queue manager.

XMSC_WMQ_SSL_CIPHER_SUITE The name of the CipherSuite to be used on a TLS
connection to a queue manager. The protocol used
in negotiating the secure connection depends on the
specified CipherSuite.

XMSC_WMQ_SSL_CRYPTO_HW Configuration details for the cryptographic hardware
connected to the client system.

XMSC_WMQ_SSL_FIPS_REQUIRED The value of this property determines whether an
application can or cannot use non-FIPS compliant cipher
suites. If this property is set to true, only FIPS algorithms
are used for the client-server connection.

XMSC_WMQ_SSL_KEY_REPOSITORY The location of the key database file in which keys and
certificates are stored.

XMSC_WMQ_SSL_KEY_RESETCOUNT The KeyResetCount represents the total number of
unencrypted bytes sent and received within an SSL
conversation before the secret key is renegotiated.

XMSC_WMQ_SSL_PEER_NAME The peer name to be used on an SSL connection to a queue
manager.

XMSC_WMQ_SYNCPOINT_ALL_GETS Whether all messages must be retrieved from queues
within sync point control.

“XMSC_WMQ_TARGET_CLIENT” on page 2074

XMSC_WMQ_TEMP_Q_PREFIX The prefix used to form the name of the IBM MQ dynamic
queue that is created when the application creates an XMS
temporary queue.

XMSC_WMQ_TEMP_TOPIC_PREFIX When creating temporary topics, XMS generates a
topic string of the form "TEMP/TEMPTOPICPREFIX/
unique_id", or if this property contains the default
value, then this string, "TEMP/unique_id", is generated.
Specifying a non-empty value allows specific model
queues to be defined for creating the managed queues
for subscribers to temporary topics created under this
connection.

XMSC_WMQ_TEMPORARY_MODEL The name of the IBM MQ model queue from which a
dynamic queue is created when the application creates an
XMS temporary queue.

XMSC_WPM_BUS_NAME For a connection factory, the name of the service
integration bus that the application connects to or, for
a destination, the name of the service integration bus in
which the destination exists.

XMSC_WPM_CONNECTION_PROXIMITY The connection proximity setting for the connection.

XMSC_WPM_DUR_SUB_HOME The name of the messaging engine where all durable
subscriptions for a connection or a destination are
managed.

2022 IBM MQ Developing Applications Reference

Table 874. Properties of ConnectionFactory (continued)

Name of property Description

XMSC_WPM_LOCAL_ADDRESS For a connection to a service integration bus, this property
specifies the local network interface to be used, or the
local port or range of local ports to be used, or both.

XMSC_WPM_NON_PERSISTENT_MAP The reliability level of nonpersistent messages that are
sent using the connection.

XMSC_WPM_PERSISTENT_MAP The reliability level of persistent messages that are sent
using the connection.

XMSC_WPM_PROVIDER_ENDPOINTS A sequence of one or more endpoint addresses of
bootstrap servers.

XMSC_WPM_TARGET_GROUP The name of a target group of messaging engines.

XMSC_WPM_TARGET_SIGNIFICANCE The significance of the target group of messaging engines.

XMSC_WPM_TARGET_TRANSPORT_CHAIN The name of the inbound transport chain that the
application must use to connect to a messaging engine.

XMSC_WPM_TARGET_TYPE The type of the target group of messaging engines.

XMSC_WPM_TEMP_Q_PREFIX The prefix used to form the name of the temporary queue
that is created in the service integration bus when the
application creates an XMS temporary queue.

XMSC_WPM_TEMP_TOPIC_PREFIX The prefix used to form the name of a temporary topic that
is created by the application.

Properties of ConnectionMetaData
An overview of the properties of the ConnectionMetaData object, with links to more detailed reference
information.

Table 875. Properties of ConnectionMetaData

Name of property Description

XMSC_JMS_MAJOR_VERSION The major version number of the JMS specification upon
which XMS is based. This property is read-only.

XMSC_JMS_MINOR_VERSION The minor version number of the JMS specification upon
which XMS is based. This property is read-only.

XMSC_JMS_VERSION The version identifier of the JMS specification upon which
XMS is based. This property is read-only.

XMSC_MAJOR_VERSION The version number of the XMS client. This property is
read-only.

XMSC_MINOR_VERSION The release number of the XMS client. This property is
read-only.

XMSC_PROVIDER_NAME The provider of the XMS client. This property is read-only.

XMSC_VERSION The version identifier of the cliXMSent. This property is
read-only.

Developing applications reference 2023

Properties of Destination
An overview of the properties of the Destination object, with links to more detailed reference information.

Table 876. Properties of Destination

Name of property Description

XMSC_DELIVERY_MODE The delivery mode of messages sent to the destination.

XMSC_PRIORITY The priority of messages sent to the destination.

XMSC_RTT_MULTICAST The multicast setting for a connection factory or
destination.

XMSC_TIME_TO_LIVE The time to live for messages sent to the destination.

XMSC_WMQ_BROKER_VERSION The type of broker used by the application for a connection
or for the destination.

XMSC_WMQ_CCSID The identifier (CCSID) of the coded character set, or code
page, that the strings of character data in the body of a
message are in when the XMS client forwards the message
to the destination.

XMSC_WMQ_DUR_SUBQ The name of the subscriber queue for a durable subscriber
that is receiving messages from the destination.

Note: This property can be used with version 2.0 of IBM
Message Service Client for .NET but has no effect for an
application connected to an IBM WebSphere MQ 7.0 queue
manager unless the XMSC_WMQ_PROVIDER_VERSION
property of the connection factory is set to a version
number less than 7.

XMSC_WMQ_ENCODING How numerical data in the body of a message is
represented when the XMS client forwards the message
to the destination.

XMSC_WMQ_FAIL_IF_QUIESCE Whether calls to certain methods fail if the queue manager
to which the application is connected is in a quiescing
state.

“XMSC_WMQ_MESSAGE_BODY” on page 2056 This property determines whether an XMS application
processes the MQRFH2 of an IBM MQ message as part of
the message payload (that is, as part of the message body).

“XMSC_WMQ_MQMD_MESSAGE_CONTEXT” on
page 2057

Determines what level of message context is to be set
by the XMS application. The application must be running
with appropriate context authority for this property to take
effect.

“XMSC_WMQ_MQMD_READ_ENABLED” on page
2057

This property determines whether an XMS application can
extract the values of MQMD fields or not.

“XMSC_WMQ_MQMD_WRITE_ENABLED” on page
2058

This property determines whether an XMS application can
set the values of MQMD fields or not.

“XMSC_WMQ_READ_AHEAD_ALLOWED” on page
2059

This property determines whether message consumers
and queue browsers are allowed to use read ahead to
get non-persistent, non-transactional messages from this
destination into an internal buffer before receiving them.

2024 IBM MQ Developing Applications Reference

Table 876. Properties of Destination (continued)

Name of property Description

“XMSC_WMQ_READ_AHEAD_CLOSE_POLICY” on
page 2059

This property determines, for messages being delivered
to an asynchronous message listener, what happens to
messages in the internal read ahead buffer when the
message consumer is closed.

“XMSC_WMQ_RECEIVE_CCSID” on page 2064 Destination property that sets the target CCSID for
queue manager message conversion. The value is ignored
unless XMSC_WMQ_RECEIVE_CONVERSION is set to
WMQ_RECEIVE_CONVERSION_QMGR.

“XMSC_WMQ_RECEIVE_CONVERSION” on page
2064

Destination property that determines whether data
conversion is going to be performed by the queue manager.

XMSC_WMQ_TARGET_CLIENT Whether messages sent to the destination contain an
MQRFH2 header.

XMSC_WMQ_TEMP_TOPIC_PREFIX When creating temporary topics, XMS generates a
topic string of the form "TEMP/TEMPTOPICPREFIX/
unique_id", or if this property contains the default
value, then this string, "TEMP/unique_id", is generated.
Specifying a non-empty value allows specific model
queues to be defined for creating the managed queues
for subscribers to temporary topics created under this
connection.

XMSC_WPM_BUS_NAME For a connection factory, the name of the service
integration bus that the application connects to or, for
a destination, the name of the service integration bus in
which the destination exists.

XMSC_WPM_TOPIC_SPACE The name of the topic space that contains the topic.

Properties of InitialContext
An overview of the properties of the InitialContext object, with links to more detailed reference
information.

Table 877. Properties of InitialContext

Name of property Description

XMSC_IC_PROVIDER_URL Used to locate the JNDI naming directory so that the COS
naming service does not need to be on the same server as
the web service.

XMSC_IC_SECURITY_AUTHENTICATION Based on the Java Context interface
SECURITY_AUTHENTICATION. This property is only
applicable to the COS naming context.

XMSC_IC_SECURITY_CREDENTIALS Based on the Java Context interface
SECURITY_CREDENTIALS. This property is only applicable
to the COS naming context.

XMSC_IC_SECURITY_PRINCIPAL Based on the Java Context interface
SECURITY_PRINCIPAL. This property is only applicable to
the COS naming context.

XMSC_IC_SECURITY_PROTOCOL Based on the Java Context interface SECURITY_PROTOCOL
This property is only applicable to the COS naming context.

Developing applications reference 2025

Table 877. Properties of InitialContext (continued)

Name of property Description

XMSC_IC_URL For LDAP and FileSystem contexts, the address of
the repository containing administered objects. For COS
naming contexts, the address of the web service that looks
up the objects in the directory.

Properties of Message
An overview of the properties of the Message object, with links to more detailed reference information.

Table 878. Properties of Message

Name of property Description

JMS_IBM_CHARACTER_SET The identifier (CCSID) of the coded character set, or code
page, that the strings of character data in the body of the
message is in when the XMS client forwards the message
to its intended destination. In XMS, this property has a
numeric value and maps to CCSID. However, this property
is based on a JMS property so has a string type value
and maps to the Java character set that represents this
numeric CCSID.

JMS_IBM_ENCODING How numerical data in the body of the message is
represented when the XMS client forwards the message
to its intended destination.

JMS_IBM_EXCEPTIONMESSAGE Text that describes why the message was sent to the
exception destination. This property is read-only.

JMS_IBM_EXCEPTIONPROBLEMDESTINATION The name of the destination that the message was at
before the message was sent to the exception destination.

JMS_IBM_EXCEPTIONREASON A reason code indicating the reason why the message was
sent to the exception destination.

JMS_IBM_EXCEPTIONTIMESTAMP The time when the message was sent to the exception
destination.

JMS_IBM_FEEDBACK A code that indicates the nature of a report message.

JMS_IBM_FORMAT The nature of the application data in the message.

JMS_IBM_LAST_MSG_IN_GROUP Indicate whether the message is the last message in a
message group.

JMS_IBM_MSGTYPE The type of the message.

JMS_IBM_PUTAPPLTYPE The type of application that sent the message.

JMS_IBM_PUTDATE The date when the message was sent.

JMS_IBM_PUTTIME The time when the message was sent.

JMS_IBM_REPORT_COA Request 'confirm on arrival' report messages, specifying
how much application data from the original message must
be included in a report message.

JMS_IBM_REPORT_COD Request 'confirm on delivery' report messages, specifying
how much application data from the original message must
be included in a report message.

2026 IBM MQ Developing Applications Reference

Table 878. Properties of Message (continued)

Name of property Description

JMS_IBM_REPORT_DISCARD_MSG Request that the message is discarded if it cannot be
delivered to its intended destination.

JMS_IBM_REPORT_EXCEPTION Request exception report messages, specifying how much
application data from the original message must be
included in a report message.

JMS_IBM_REPORT_EXPIRATION Request expiration report messages, specifying how much
application data from the original message must be
included in a report message.

JMS_IBM_REPORT_NAN Request negative action notification report messages.

JMS_IBM_REPORT_PAN Request positive action notification report messages.

JMS_IBM_REPORT_PASS_CORREL_ID Request that the correlation identifier of any report or reply
message is the same as the correlation identifier of the
original message.

JMS_IBM_REPORT_PASS_MSG_ID Request that the message identifier of any report or reply
message is the same as the message identifier of the
original message.

JMS_IBM_RETAIN Setting this property indicates to the queue manager to
treat a message as Retained Publication.

JMS_IBM_SYSTEM_MESSAGEID An identifier that identifies the message uniquely within
the service integration bus. This property is read-only.

JMSX_APPID The name of the application that sent the message.

JMSX_DELIVERY_COUNT The number of attempts to deliver the message.

JMSX_GROUPID The identifier of the message group to which the message
belongs.

JMSX_GROUPSEQ The sequence number of the message within a message
group.

JMSX_USERID The user identifier associated with the application that sent
the message.

JMS_IBM_MQMD* properties
IBM Message Service Client for .NET enables client applications to read/write MQMD fields using APIs.
It also allows access to MQ message data. By default access to MQMD is disabled and must be
enabled explicitly by the application using Destination properties XMSC_WMQ_MQMD_WRITE_ENABLED
and XMSC_WMQ_MQMD_READ_ENABLED. These two properties are independent of each other.

All MQMD fields except StrucId and Version are exposed as additional Message object properties and are
prefixed JMS_IBM_MQMD.

JMS_IBM_MQMD* properties take higher precedence over other properties like JMS_IBM* described in
the previous table.

Sending messages
All MQMD fields except StrucId and Version are represented. These properties refer only to the MQMD
fields; where a property occurs both in the MQMD and in the MQRFH2 header, the version in the MQRFH2

Developing applications reference 2027

is not set or extracted. Any of these properties can be set, except JMS_IBM_MQMD_BackoutCount. Any
value set for JMS_IBM_MQMD_BackoutCount is ignored.

If a property has a maximum length and you supply a value that is too long, the value is truncated.

For certain properties, you must also set the XMSC_WMQ_MQMD_MESSAGE_CONTEXT property on the
Destination object. The application must be running with appropriate context authority for this property
to take effect. If you do not set XMSC_WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value, the
property value is ignored. If you set XMSC_WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value but
you do not have sufficient context authority for the queue manager, an exception is issued. Properties
requiring specific values of XMSC_WMQ_MQMD_MESSAGE_CONTEXT are as follows.

The following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT to be set to
XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT or XMSC_WMQ_MDCTX_SET_ALL_CONTEXT:

• JMS_IBM_MQMD_UserIdentifier
• JMS_IBM_MQMD_AccountingToken
• JMS_IBM_MQMD_ApplIdentityData

The following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT to be set to
XMSC_WMQ_MDCTX_SET_ALL_CONTEXT:

• JMS_IBM_MQMD_PutApplType
• JMS_IBM_MQMD_PutApplName
• JMS_IBM_MQMD_PutDate
• JMS_IBM_MQMD_PutTime
• JMS_IBM_MQMD_ApplOriginData

Receiving messages
All these properties are available on a received message if XMSC_WMQ_MQMD_READ_ENABLED property
is set to true, irrespective of the actual properties that the producing application set. An application
cannot modify the properties of a received message unless all properties are cleared first, according to
the JMS specification. The received message can be forwarded without modifying the properties.

Note: If your application receives a message from a destination with
XMSC_WMQ_MQMD_READ_ENABLED property set to true, and forwards it to a destination with
XMSC_WMQ_MQMD_WRITE_ENABLED set to true, this results in all the MQMD field values of the received
message being copied into the forwarded message. Table of properties

Table 879. Properties of the Message object representing the MQMD fields

Property Description Type

JMS_IBM_MQMD_REPORT Options for report messages System.Int32

JMS_IBM_MQMD_MSGTYPE Message type System.Int32

JMS_IBM_MQMD_EXPIRY message lifetime System.Int32

JMS_IBM_MQMD_FEEDBACK Feedback or reason code System.Int32

JMS_IBM_MQMD_ENCODING Numeric encoding of message data System.Int32

JMS_IBM_MQMD_CODEDCHARSETID Character set identifier of message
data

System.Int32

JMS_IBM_MQMD_FORMAT Format name of message data System.String

2028 IBM MQ Developing Applications Reference

Table 879. Properties of the Message object representing the MQMD fields (continued)

Property Description Type

JMS_IBM_MQMD_PRIORITY

Note: If you assign a value to
JMS_IBM_MQMD_PRIORITY that is not
within the range 0-9, this value violates the
JMS specification.

Message priority System.Int32

JMS_IBM_MQMD_PERSISTENCE Message persistence System.Int32

JMS_IBM_MQMD_MSGID

Note: The JMS specification states that
the message ID must be set by the
JMS provider and that it must either be
unique or null. If you assign a value
to JMS_IBM_MQMD_MSGID, this value is
copied to the JMSMessageID. Thus it is
not set by the JMS provider and might
not be unique: this value violates the JMS
specification.

Message identifier Byte Array

Note: The use of byte
array properties on a
message violates the JMS
specification.

JMS_IBM_MQMD_CORRELID

Note: If you assign a value to
JMS_IBM_MQMD_CORRELID that starts
with the string 'ID:', this value violates the
JMS specification.

Correlation identifier Byte Array

Note: The use of byte
array properties on a
message violates the JMS
specification.

JMS_IBM_MQMD_BACKOUTCOUNT Backout counter System.Int32

JMS_IBM_MQMD_REPLYTOQ Name of reply queue System.String

JMS_IBM_MQMD_REPLYTOQMGR Name of reply queue manager System.String

JMS_IBM_MQMD_USERIDENTIFIER User identifier System.String

JMS_IBM_MQMD_ACCOUNTINGTOKEN Accounting token Byte Array

Note: The use of byte
array properties on a
message violates the JMS
specification.

JMS_IBM_MQMD_APPLIDENTITYDATA Application data relating to identity System.String

JMS_IBM_MQMD_PUTAPPLTYPE Type of application that put the
message

System.Int32

JMS_IBM_MQMD_PUTAPPLNAME Name of the application that put
the message

System.String

JMS_IBM_MQMD_PUTDATE Date when message was put System.String

JMS_IBM_MQMD_PUTTIME Time when message was put System.String

JMS_IBM_MQMD_APPLORIGINDATA Application data relating to origin System.String

Developing applications reference 2029

Table 879. Properties of the Message object representing the MQMD fields (continued)

Property Description Type

JMS_IBM_MQMD_GROUPID Group identifier Byte Array

Note: The use of byte
array properties on a
message violates the JMS
specification.

JMS_IBM_MQMD_MSGSEQNUMBER Sequence number of local message
within group

System.Int32

JMS_IBM_MQMD_OFFSET Offset of data in physical message
from start of logical message

System.Int32

JMS_IBM_MQMD_MSGFLAGS Message flags System.Int32

JMS_IBM_MQMD_ORIGINALLENGTH Length of original message System.Int32

See MQMD for further details.

Examples
This example results in a message being put to a queue or topic with MQMD.UserIdentifier set to
"JoeBloggs".

 // Create a ConnectionFactory, connection, session, producer, message
 // ...

 // Create a destination
 // ...

 // Enable MQMD write
 dest.setBooleanProperty(XMSC_WMQ_MQMD_WRITE_ENABLED,
 XMSC_WMQ_MQMD_WRITE_ENABLED_YES);

 // Optionally, set a message context if applicable for this MD field
 dest.setIntProperty(XMSC_WMQ_MQMD_MESSAGE_CONTEXT,
 XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT);

 // On the message, set property to provide custom UserId
 msg.setStringProperty(JMS_IBM_MQMD_USERIDENTIFIER, "JoeBloggs");

 // Send the message
 // ...

It is necessary to set XMSC_WMQ_MQMD_MESSAGE_CONTEXT before setting
JMS_IBM_MQMD_USERIDENTIFIER. For more information about the use of
XMSC_WMQ_MQMD_MESSAGE_CONTEXT, see Message object properties.

Similarly, you can extract the contents of the MQMD fields by setting
XMSC_WMQ_MQMD_READ_ENABLED to true before receiving a message and then using the get methods
of the message, such as getStringProperty. Any properties received are read-only.

This example results in the value field holding the value of the MQMD.ApplIdentityData field of a message
got from a queue or a topic.

 // Create a ConnectionFactory, connection, session, consumer
 // ...

 // Create a destination
 // ...

 // Enable MQMD read
 dest.setBooleanProperty(XMSC_WMQ_MQMD_READ_ENABLED, XMSC_WMQ_MQMD_READ_ENABLED_YES);

2030 IBM MQ Developing Applications Reference

 // Receive a message
 // ...

 // Get required MQMD field value using a property
 System.String value = rcvMsg.getStringProperty(JMS_IBM_MQMD_APPLIDENTITYDATA);

Properties of MessageConsumer
An overview of the properties of the MessageConsumer object, with links to more detailed reference
information.

Table 880. Properties of MessageConsumer

Name of property Description

XMSC_IS_SUBSCRIPTION_MULTICAST Indicates whether messages are being delivered to
the message consumer using WebSphere MQ Multicast
Transport. This property is read-only.

XMSC_IS_SUBSCRIPTION_RELIABLE_MULTICAS
T

Indicates whether messages are being delivered to
the message consumer using WebSphere MQ Multicast
Transport with a reliable quality of service. This property
is read-only.

Refer to .NET properties of IMessageConsumer for more details.

Properties of MessageProducer
An overview of the properties of the MessageProducer object, with links to more detailed reference
information.

See .NET properties of IMessageProducer for more details.

Properties of Session
An overview of the properties of the Session object, with links to more detailed reference information.

See .NET properties of ISession for more details.

Property definitions
This section provides a definition of each object property.

Each property definition includes the following information:

• The data type of the property
• The types of object that have the property
• For a property of Destination, the name that can be used in a uniform resource identifier (URI)
• A more detailed description of the property
• The valid values of the property
• The default value of the property

Properties whose names commence with one of the following prefixes are relevant only for the specified
type of connection:
XMSC_RTT

The properties are relevant only for a real-time connection to a broker. The names of the properties
are defined as named constants in the header file xmsc_rtt.h.

XMSC_WMQ
The properties are relevant only when an application connects to an IBM MQ queue manager. The
names of the properties are defined as named constants in the header file xmsc_wmq.h.

Developing applications reference 2031

XMSC_WPM
The properties are relevant only when an application connects to a WebSphere service integration
bus. The names of the properties are defined as named constants in the header file xmsc_wpm.h.

Unless stated otherwise in their definitions, the remaining properties are relevant for all types of
connection. The names of the properties are defined as named constants in the header file xmsc.h.
Properties whose names commence with the prefix JMSX are JMS defined properties of a message, and
properties whose names commence with the prefix JMS_IBM are IBM defined properties of a message.
For more information about the properties of messages, see Properties of an XMS message.

Unless stated otherwise in its definition, each property is relevant in both the point-to-point and publish
subscribe domains.

An application can get and set the value of any property, unless the property is designated as read-only.

JMS_IBM_CHARACTER_SET
Data type:

System.Int32
Property of:

Message

The identifier (CCSID) of the coded character set, or code page, that the strings of character data in the
body of the message is in when the XMS client forwards the message to its intended destination. In XMS,
this property has a numeric value and maps to CCSID. However, this property is based on a JMS property
so has a string type value and maps to the Java character set that represents this numeric CCSID. This
property overrides any CCSID specified for the destination by the XMSC_WMQ_CCSID property.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_ENCODING
Data type:

System.Int32
Property of:

Message

How numerical data in the body of the message is represented when the XMS client forwards the
message to its intended destination. This property overrides any encoding specified for the destination
by the XMSC_WMQ_ENCODING property. The property specifies the representation of binary integers,
packed decimal integers, and floating point numbers.

The valid values of the property are the same as the values that can be specified in the Encoding field of
a message descriptor.

An application can use the following named constants to set the property:

Named constant Meaning

MQENC_INTEGER_NORMAL Normal integer encoding

MQENC_INTEGER_REVERSED Reversed integer encoding

MQENC_DECIMAL_NORMAL Normal packed decimal encoding

MQENC_DECIMAL_REVERSED Reversed packed decimal encoding

MQENC_FLOAT_IEEE_NORMAL Normal IEEE floating point encoding

MQENC_FLOAT_IEEE_REVERSED Reversed IEEE floating point encoding

MQENC_FLOAT_S390 z/OS architecture floating point encoding

MQENC_NATIVE Native machine encoding

2032 IBM MQ Developing Applications Reference

To form a value for the property, the application can add three of these constants as follows:

• A constant whose name commences with MQENC_INTEGER, to specify the representation of binary
integers

• A constant whose name commences with MQENC_DECIMAL, to specify the representation of packed
decimal integers

• A constant whose name commences with MQENC_FLOAT, to specify the representation of floating point
numbers

Alternatively, the application can set the property to MQENC_NATIVE, whose value is environment-
dependent.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_EXCEPTIONMESSAGE
Data type:

String
Property of:

Message

Text that describes why the message was sent to the exception destination. This property is read-only.

This property is relevant only when an application connects to a service integration bus and receives a
message from an exception destination.

JMS_IBM_EXCEPTIONPROBLEMDESTINATION
Data type:

String
Property of:

Message

The name of the destination that the message was at before the message was sent to the exception
destination.

This property is relevant only when an application connects to a service integration bus and receives a
message from an exception destination.

JMS_IBM_EXCEPTIONREASON
Data type:

System.Int32
Property of:

Message

A reason code indicating the reason why the message was sent to the exception destination.

This property is relevant only when an application connects to a service integration bus and receives a
message from an exception destination.

JMS_IBM_EXCEPTIONTIMESTAMP
Data type:

System.Int64
Property of:

Message

The time when the message was sent to the exception destination.

The time is expressed in milliseconds since 00:00:00 GMT on the 1 January 1970.

Developing applications reference 2033

This property is relevant only when an application connects to a service integration bus and receives a
message from an exception destination.

JMS_IBM_FEEDBACK
Data type:

System.Int32
Property of:

Message

A code that indicates the nature of a report message.

The valid values of the property are the feedback codes and reason codes that can be specified in the
Feedback field of a message descriptor.

By default, the property is not set.

JMS_IBM_FORMAT
Data type:

String
Property of:

Message

The nature of the application data in the message.

The valid values of the property are the same as the values that can be specified in the Format field of a
message descriptor.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_LAST_MSG_IN_GROUP
Data type:

System.Boolean
Property of:

Message

Indicate whether the message is the last message in a message group.

Set the property to true if the message is the last message in a message group. Otherwise, set the
property to false, or do not set the property. By default, the property is not set.

The value true corresponds to the status flag MQMF_LAST_MSG_IN_GROUP, which can be specified in the
MsgFlags field of a message descriptor. .

This property is ignored in the publish/subscribe domain and is not relevant when an application connects
to a service integration bus.

JMS_IBM_MSGTYPE
Data type:

System.Int32
Property of:

Message

The type of the message.

The valid values of the property are as follows:

Valid value Meaning

MQMT_DATAGRAM The message is one that does not require a reply.

2034 IBM MQ Developing Applications Reference

Valid value Meaning

MQMT_REQUEST The message is one that requires a reply.

MQMT_REPLY The message is a reply message.

MQMT_REPORT The message is a report message.

These values correspond to the message types that can be specified in the MsgType field of a message
descriptor.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_PUTAPPLTYPE
Data type:

System.Int32
Property of:

Message

The type of application that sent the message.

The valid values of the property are the application types that can be specified in the PutApplType field
of a message descriptor.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_PUTDATE
Data type:

String
Property of:

Message

The date when the message was sent.

The valid values of the property are the same as the values that can be specified in the PutDate field of a
message descriptor.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_PUTTIME
Data type:

String
Property of:

Message

The time when the message was sent.

The valid values of the property are the same as the values that can be specified in the PutTime field of a
message descriptor.

By default, the property is not set.

This property is not relevant when an application connects to a service integration bus.

JMS_IBM_REPORT_COA
Data type:

System.Int32

Developing applications reference 2035

Property of:
Message

Request 'confirm on arrival' report messages, specifying how much application data from the original
message must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_COA Request 'confirm on arrival' report messages, with no
application data from the original message included in a
report message.

MQRO_COA_WITH_DATA Request 'confirm on arrival' report messages, with the first
100 bytes of application data from the original message
included in a report message.

MQRO_COA_WITH_FULL_DATA Request 'confirm on arrival' report messages, with all the
application data from the original message included in a
report message.

These values correspond to report options that can be specified in the Report field of a message
descriptor. For more information about these options, see Report (MQLONG).

By default, the property is not set.

JMS_IBM_REPORT_COD
Data type:

System.Int32
Property of:

Message

Request 'confirm on delivery' report messages, specifying how much application data from the original
message must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_COD Request 'confirm on delivery' report messages, with no
application data from the original message included in a
report message.

MQRO_COD_WITH_DATA Request 'confirm on delivery' report messages, with the
first 100 bytes of application data from the original
message included in a report message.

MQRO_COD_WITH_FULL_DATA Request 'confirm on delivery' report messages, with all the
application data from the original message included in a
report message.

These values correspond to report options that can be specified in the Report field of a message
descriptor.

By default, the property is not set.

JMS_IBM_REPORT_DISCARD_MSG
Data type:

System.Int32
Property of:

Message

2036 IBM MQ Developing Applications Reference

Request that the message is discarded if it cannot be delivered to its intended destination.

Set the property to MQRO_DISCARD_MSG to request that the message is discarded if it cannot be
delivered to its intended destination. If you require the message to be put on a dead letter queue instead,
or sent to an exception destination, do not set the property. By default, the property is not set.

The value MQRO_DISCARD_MSG corresponds to a report option that can be specified in the Report field
of a message descriptor.

JMS_IBM_REPORT_EXCEPTION
Data type:

System.Int32
Property of:

Message

Request exception report messages, specifying how much application data from the original message
must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_EXCEPTION Request exception report messages, with no
application data from the original message
included in a report message.

MQRO_EXCEPTION_WITH_DATA Request exception report messages, with the
first 100 bytes of application data from the
original message included in a report message.

MQRO_EXCEPTION_WITH_FULL_DATA Request exception report messages, with all
the application data from the original message
included in a report message.

These values correspond to report options that can be specified in the Report field of a message
descriptor.

By default, the property is not set.

JMS_IBM_REPORT_EXPIRATION
Data type:

System.Int32
Property of:

Message

Request expiration report messages, specifying how much application data from the original message
must be included in a report message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_EXPIRATION Request expiration report messages, with no
application data from the original message
included in a report message.

MQRO_EXPIRATION_WITH_DATA Request expiration report messages, with the
first 100 bytes of application data from the
original message included in a report message.

MQRO_EXPIRATION_WITH_FULL_DATA Request expiration report messages, with all
the application data from the original message
included in a report message.

Developing applications reference 2037

These values correspond to report options that can be specified in the Report field of a message
descriptor.

By default, the property is not set.

JMS_IBM_REPORT_NAN
Data type:

System.Int32
Property of:

Message

Request negative action notification report messages.

Set the property to MQRO_NAN to request negative action notification report messages. If you do not
require negative action notification report messages, do not set the property. By default, the property is
not set.

The value MQRO_NAN corresponds to a report option that can be specified in the Report field of a
message descriptor.

JMS_IBM_REPORT_PAN
Data type:

System.Int32
Property of:

Message

Request positive action notification report messages.

Set the property to MQRO_PAN to request positive action notification report messages. If you do not
require positive action notification report messages, do not set the property. By default, the property is
not set.

The value MQRO_PAN corresponds to a report option that can be specified in the Report field of a
message descriptor.

JMS_IBM_REPORT_PASS_CORREL_ID
Data type:

System.Int32
Property of:

Message

Request that the correlation identifier of any report or reply message is the same as the correlation
identifier of the original message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_PASS_CORREL_ID Request that the correlation identifier of any
report or reply message is the same as the
correlation identifier of the original message.

MQRO_COPY_MSG_ID_TO_CORREL_ID Request that the correlation identifier of any
report or reply message is the same as the
message identifier of the original message.

These values correspond to report options that can be specified in the Report field of a message
descriptor. .

The default value of the property is MQRO_COPY_MSG_ID_TO_CORREL_ID.

2038 IBM MQ Developing Applications Reference

JMS_IBM_REPORT_PASS_MSG_ID
Data type:

System.Int32
Property of:

Message

Request that the message identifier of any report or reply message is the same as the message identifier
of the original message.

The valid values of the property are as follows:

Valid value Meaning

MQRO_PASS_MSG_ID Request that the message identifier of any report or reply message is
the same as the message identifier of the original message.

MQRO_NEW_MSG_ID Request that a new message identifier is generated for each report or
reply message.

These values correspond to report options that can be specified in the Report field of a message
descriptor.

The default value of the property is MQRO_NEW_MSG_ID.

JMS_IBM_RETAIN
Data type:

System.Int32
Property of:

Message

Setting this property indicates to the queue manager to treat a message as Retained Publication. When
a subscriber receives messages from topics, it might receive additional messages immediately after
subscribing, beyond the messages received in previous releases. These messages are the optional
retained publications for the topics subscribed. For each topic matching the subscription, if there is a
retained publication the publication is made available for delivery to the subscribing message consumer.

RETAIN_PUBLICATION is the only valid value for this property. By default this property is not set.

Note: This property is relevant only in publish/subscribe domain only

JMS_IBM_SYSTEM_MESSAGEID
Data type:

String
Property of:

Message

An identifier that identifies the message uniquely within the service integration bus. This property is
read-only.

This property is relevant only when an application connects to a service integration bus.

JMSX_APPID
Data type:

String
Property of:

Message

The name of the application that sent the message.

Developing applications reference 2039

This property is the JMS defined property with the JMS name JMSXAppID. For more information about the
property, see the Java Message Service Specification, Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_DELIVERY_COUNT
Data type:

System.Int32
Property of:

Message

The number of attempts to deliver the message.

This property is the JMS defined property with the JMS name JMSXDeliveryCount. For more information
about the property, see the Java Message Service Specification, Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_GROUPID
Data type:

String
Property of:

Message

The identifier of the message group to which the message belongs.

This property is the JMS defined property with the JMS name JMSXGroupID. For more information about
the property, see the Java Message Service Specification, Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_GROUPSEQ
Data type:

System.Int32
Property of:

Message

The sequence number of the message within a message group.

This property is the JMS defined property with the JMS name JMSXGroupSeq. For more information about
the property, see the Java Message Service Specification, Version 1.1.

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

JMSX_USERID
Data type:

String
Property of:

Message

The user identifier associated with the application that sent the message.

This property is the JMS defined property with the JMS name JMSXUserID. For more information about
the property, see the Java Message Service Specification, Version 1.1.

2040 IBM MQ Developing Applications Reference

By default, the property is not set.

This property is not valid for a real-time connection to a broker.

XMSC_ASYNC_EXCEPTIONS
Data type:

System.Int32
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: ASYNCEXCEPTION
JMS administration tool short name: AEX

This property determines whether XMS informs an ExceptionListener only when a connection is broken,
or when any exception occurs asynchronously to an XMS API call. This property applies to all Connections
created from this ConnectionFactory that have an ExceptionListener registered.

Valid values for this property are:

XMSC_ASYNC_EXCEPTIONS_ALL
Any exception detected asynchronously, outside the scope of a synchronous API call, and all
connection broken exceptions are sent to the ExceptionListener.

XMSC_ASYNC_EXCEPTIONS_CONNECTIONBROKEN
Only exceptions indicating a broken connection are sent to the ExceptionListener. Any other
exceptions occurring during asynchronous processing are not reported to the ExceptionListener, and
hence the application is not informed of these exceptions.

By default this property is set to XMSC_ASYNC_EXCEPTIONS_ALL.

XMSC_CLIENT_ID
Data type:

String
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: CLIENTID
JMS administration tool short name: CID

The client identifier for a connection.

A client identifier is used only to support durable subscriptions in the publish/subscribe domain, and
is ignored in the point-to-point domain. For more information about setting client identifiers, see
ConnectionFactories and Connection objects.

This property is not relevant for a real-time connection to a broker.

XMSC_CONNECTION_TYPE
Data type:

System.Int32
Property of:

ConnectionFactory

The type of messaging server to which an application connects.

The valid values of the property are as follows:

Valid value Meaning

XMSC_CT_RTT A real-time connection to a broker.

Developing applications reference 2041

Valid value Meaning

XMSC_CT_WMQ A connection to an IBM MQ queue manager.

XMSC_CT_WPM A connection to a WebSphere Application Server service
integration bus.

By default, the property is not set.

XMSC_DELIVERY_MODE
Data type:

System.Int32
Property of:

Destination
Name used in a URI:

persistence (for an IBM MQ destination)
deliveryMode (for a WebSphere default messaging provider destination)

Applicable objects:
JMS administration tool long name: PERSISTENCE
JMS administration tool short name: PER

The delivery mode of messages sent to the destination.

The valid values of the property are as follows:

Valid value Meaning

XMSC_DELIVERY_NOT_PERSISTENT A message sent to the destination is nonpersistent.
The default delivery mode of the message
producer, or any delivery mode specified on the
Send call, is ignored. If the destination is an
IBM MQ queue, the value of the queue attribute
DefPersistence is also ignored.

XMSC_DELIVERY_PERSISTENT A message sent to the destination is persistent.
The default delivery mode of the message
producer, or any delivery mode specified on the
Send call, is ignored. If the destination is an
IBM MQ queue, the value of the queue attribute
DefPersistence is also ignored.

XMSC_DELIVERY_AS_APP A message sent to the destination has the delivery
mode specified on the Send call. If the Send call
specifies no delivery mode, the default delivery
mode of the message producer is used instead. If
the destination is an IBM MQ queue, the value of
the queue attribute DefPersistence is ignored.

XMSC_DELIVERY_AS_DEST If the destination is an IBM MQ queue, a
message put on the queue has the delivery mode
specified by the value of the queue attribute
DefPersistence. The default delivery mode of
the message producer, or any delivery mode
specified on the Send call, is ignored.

If the destination is not an IBM MQ
queue, the meaning is the same as that of
XMSC_DELIVERY_AS_APP.

2042 IBM MQ Developing Applications Reference

The default value is XMSC_DELIVERY_AS_APP.

XMSC_IC_PROVIDER_URL
Data type:

String
Property of:

InitialContext

Used to locate the JNDI naming directory so that the COS naming service does not need to be on the
same server as the web service.

XMSC_IC_SECURITY_AUTHENTICATION
Data type:

String
Property of:

InitialContext

Based on the Java Context interface SECURITY_AUTHENTICATION. This property is only applicable to the
COS naming context.

XMSC_IC_SECURITY_CREDENTIALS
Data type:

String
Property of:

InitialContext

Based on the Java Context interface SECURITY_CREDENTIALS. This property is only applicable to the COS
naming context.

XMSC_IC_SECURITY_PRINCIPAL
Data type:

String
Property of:

InitialContext

Based on the Java Context interface SECURITY_PRINCIPAL. This property is only applicable to the COS
naming context.

XMSC_IC_SECURITY_PROTOCOL
Data type:

String
Property of:

InitialContext

Based on the Java Context interface SECURITY_PROTOCOL This property is only applicable to the COS
naming context.

XMSC_IC_URL
Data type:

String
Property of:

InitialContext

For LDAP and FileSystem contexts, the address of the repository containing administered objects.

For LDAP and FileSystem contexts, the address of the repository containing administered objects.

Developing applications reference 2043

XMSC_IS_SUBSCRIPTION_MULTICAST
Data type:

System.Boolean
Property of:

MessageConsumer

Indicates whether messages are being delivered to the message consumer using WebSphere MQ
Multicast Transport. This property is read-only.

The value of the property is true if messages are being delivered to the message consumer using
WebSphere MQ Multicast Transport. Otherwise, the value is false.

This property is relevant only for a real-time connection to a broker.

XMSC_IS_SUBSCRIPTION_RELIABLE_MULTICAST
Data type:

System.Boolean
Property of:

MessageConsumer

Indicates whether messages are being delivered to the message consumer using WebSphere MQ
Multicast Transport with a reliable quality of service. This property is read-only.

The value of the property is true if messages are being delivered to the message consumer using
WebSphere MQ Multicast Transport with a reliable quality of service. Otherwise, the value is false.

This property is relevant only for a real-time connection to a broker.

XMSC_JMS_MAJOR_VERSION
Data type:

System.Int32
Property of:

ConnectionMetaData

The major version number of the JMS specification upon which XMS is based. This property is read-only.

XMSC_JMS_MINOR_VERSION
Data type:

System.Int32
Property of:

ConnectionMetaData

The minor version number of the JMS specification upon which XMS is based. This property is read-only.

XMSC_JMS_VERSION
Data type:

String
Property of:

ConnectionMetaData

The version identifier of the JMS specification upon which XMS is based. This property is read-only.

XMSC_MAJOR_VERSION
Data type:

System.Int32
Property of:

ConnectionMetaData

2044 IBM MQ Developing Applications Reference

The version number of the XMS client. This property is read-only.

XMSC_MINOR_VERSION
Data type:

System.Int32
Property of:

ConnectionMetaData

The release number of the XMS client. This property is read-only.

XMSC_PASSWORD
Data type:

Byte array
Property of:

ConnectionFactory

A password that can be used to authenticate the application when it attempts to connect to a messaging
server. The password is used with the XMSC_USERID property.

By default, the property is not set.

If you are connecting to IBM MQ on Multiplatforms, and you set the XMSC_USERID property
of the connection factory, it must match the userid of the logged on user. If you do not set these
properties, the queue manager uses the userid of the logged on user by default. If you require further
connection-level authentication of individual users you can write a client authentication exit which is
configured in IBM MQ. For more information about creating a client authentication exit, see Planning
authentication for a client application.

To authenticate the user when connecting to IBM MQ for z/OS you need to use a security
exit.

XMSC_PRIORITY
Data type:

System.Int32
Property of:

Destination
Name used in a URI:

priority

The priority of messages sent to the destination.

The valid values of the property are as follows:

Valid value Meaning

An integer in the range 0, the lowest
priority, to 9, the highest priority

A message sent to the destination has the specified priority. The
default priority of the message producer, or any priority specified
on the Send call, is ignored. If the destination is an IBM MQ
queue, the value of the queue attribute DefPriority is also
ignored.

XMSC_PRIORITY_AS_APP A message sent to the destination has the priority specified
on the Send call. If the Send call specifies no priority, the
default priority of the message producer is used instead. If the
destination is an IBM MQ queue, the value of the queue attribute
DefPriority is ignored.

Developing applications reference 2045

Valid value Meaning

XMSC_PRIORITY_AS_DEST If the destination is an IBM MQ queue, a message put on the
queue has the priority specified by the value of the queue
attribute DefPriority. The default priority of the message
producer, or any priority specified on the Send call, is ignored.

If the destination is not an IBM MQ queue, the meaning is the
same as that of XMSC_PRIORITY_AS_APP.

The default value is XMSC_PRIORITY_AS_APP.

WebSphere MQ Real-Time Transport and WebSphere MQ Multicast Transport take no action based upon
the priority of a message.

XMSC_PROVIDER_NAME
Data type:

String
Property of:

ConnectionMetaData

The provider of the XMS client. This property is read-only.

XMSC_RTT_BROKER_PING_INTERVAL
Data type:

System.Int32
Property of:

ConnectionFactory

The time interval, in milliseconds, after which XMS .NET checks the connection to a Real Time messaging
server to detect any activity. If no activity is detected, the client initiates a ping; the connection is closed if
no response is detected to the ping.

The default value of the property is 30000.

XMSC_RTT_CONNECTION_PROTOCOL
Data type:

System.Int32
Property of:

ConnectionFactory

The communications protocol used for a real-time connection to a broker.

The value of the property must be XMSC_RTT_CP_TCP, which means a real-time connection to a broker
over TCP/IP. The default value is XMSC_RTT_CP_TCP.

XMSC_RTT_HOST_NAME
Data type:

String
Property of:

ConnectionFactory

The host name or IP address of the system on which a broker runs.

This property is used with the XMSC_RTT_PORT property to identify the broker.

By default, the property is not set.

2046 IBM MQ Developing Applications Reference

XMSC_RTT_LOCAL_ADDRESS
Data type:

String
Property of:

ConnectionFactory

The host name or IP address of the local network interface to be used for a real-time connection to a
broker.

This property is useful only if the system on which the application is running has two or more network
interfaces and you need to be able to specify which interface must be used for a real-time connection. If
the system has only one network interface, only that interface can be used. If the system has two or more
network interfaces and the property is not set, the interface is selected at random.

By default, the property is not set.

XMSC_RTT_MULTICAST
Data type:

System.Int32
Property of:

ConnectionFactory and Destination
Name used in a URI:

mulicast

The multicast setting for a connection factory or destination. Only a destination that is a topic can have
this property.

An application uses this property to enable multicast in association with a real-time connection to a
broker and, if multicast is enabled, to specify the precise way in which multicast is used to deliver
messages from the broker to a message consumer. The property has no effect on how a message
producer sends messages to the broker.

The valid values of the property are as follows:

Valid value Meaning

XMSC_RTT_MULTICAST_DISABLED Messages are not delivered to a message
consumer using WebSphere MQ Multicast
Transport. This value is the default value for a
ConnectionFactory object.

XMSC_RTT_MULTICAST_ASCF Messages are delivered to a message
consumer according to the multicast setting
for the connection factory associated with the
message consumer. The multicast setting for
the connection factory is noted at the time that
the connection is created. This value is valid
only for a Destination object, and is the default
value for a Destination object.

XMSC_RTT_MULTICAST_ENABLED If the topic is configured for multicast in the
broker, messages are delivered to a message
consumer using WebSphere MQ Multicast
Transport. A reliable quality of service is used
if the topic is configured for reliable multicast.

Developing applications reference 2047

Valid value Meaning

XMSC_RTT_MULTICAST_RELIABLE If the topic is configured for reliable multicast
in the broker, messages are delivered to
a message consumer using WebSphere MQ
Multicast Transport with a reliable quality of
service. If the topic is not configured for
reliable multicast, you cannot create a message
consumer for the topic.

XMSC_RTT_MULTICAST_NOT_RELIABLE If the topic is configured for multicast in the
broker, messages are delivered to a message
consumer using WebSphere MQ Multicast
Transport. A reliable quality of service is not
used even if the topic is configured for reliable
multicast.

XMSC_RTT_PORT
Data type:

System.Int32
Property of:

ConnectionFactory

The number of the port on which a broker listens for incoming requests. On the broker, you must configure
a Real-timeInput or Real-timeOptimizedFlow message processing node to listen on this port.

This property is used with the XMSC_RTT_HOST_NAME property to identify the broker.

The default value of the property is XMSC_RTT_DEFAULT_PORT, or 1506.

XMSC_TIME_TO_LIVE
Data type:

System.Int32
Property of:

Destination
Name used in a URI:

expiry (for an IBM MQ destination)
timeToLive (for a WebSphere default messaging provider destination)

The time to live for messages sent to the destination.

The valid values of the property are as follows:

Valid value Meaning

0 A message sent to the destination never expires.

A positive integer A message sent to the destination has the specified time to
live in milliseconds. The default time to live of the message
producer, or any time to live specified on the Send call, is
ignored.

XMSC_TIME_TO_LIVE_AS_APP A message sent to the destination has the time to live
specified on the Send call. If the Send call specifies no time to
live, the default time to live of the message producer is used
instead.

The default value is XMSC_TIME_TO_LIVE_AS_APP.

2048 IBM MQ Developing Applications Reference

XMSC_USERID
Data type:

String
Property of:

ConnectionFactory

A user identifier that can be used to authenticate the application when it attempts to connect to a
messaging server. The user identifier is used with the XMSC_PASSWORD property.

By default, the property is not set.

If you are connecting to IBM MQ for Multiplatforms, and you set the XMSC_USERID property
of the connection factory, it must match the userid of the logged on user. If you do not set these
properties, the queue manager uses the userid of the logged on user by default. If you require further
connection-level authentication of individual users, you can write a client authentication exit that is
configured in IBM MQ. For more information about creating a client authentication exit, see Planning
authentication for a client application.

To authenticate the user when connecting to IBM MQ for z/OS you need to use a security
exit.

XMSC_VERSION
Data type:

String
Property of:

ConnectionMetaData

The version identifier of the cliXMSent. This property is read-only.

XMSC_WMQ_BALANCING_APPLICATION_TYPE
Data type:

System.Int32
Property of:

ConnectionFactory

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_BALANCING_APPLICATION_TYPE_SIMPLE Simple balancing; no specific rules are
applied in addition to those described
in Influencing application re-balancing
in uniform clusters. This is the default
value.

XMSC_WMQ_BALANCING_APPLICATION_TYPE_REQUEST_R
EPLY

Request-Reply balancing; after each
MQPUT call, a matching MQGET call
is expected for a response message.
Balancing is delayed until such a
message is received, or the request
message EXPIRY has been exceeded

Additionally, this property can be set in the client.ini file. The order of preference is:

1. Properties set in the application
2. Matching named Application stanza in the mqclient.ini file.
3. Application defaults stanza in the mqclient.ini file.

Developing applications reference 2049

XMSC_WMQ_BALANCING_OPTIONS
Data type:

System.Int32
Property of:

ConnectionFactory

The valid values of the property are as follows:

Valid value Corresponding value

XMSC_WMQ_BALANCING_OPTIONS_NONE No options are set. This is the default
value

XMSC_WMQ_BALANCING_OPTIONS_IGNORE_TRANSACTIO
NS

Setting this option allows applications to
be rebalanced even if in the middle of a
transaction.

Additionally, this property can be set in the client.ini file. The order of preference is:

1. Properties set in the application
2. Matching named Application stanza in the mqclient.ini file.
3. Application defaults stanza in the mqclient.ini file.

XMSC_WMQ_BALANCING_TIMEOUT
Data type:

System.Int32
Property of:

ConnectionFactory

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_BALANCING_TIMEOUT_IMMEDIATE Immediate timeout occurs

XMSC_WMQ_BALANCING_TIMEOUT_AS_DEFAULT The set default timeout value. This is the
default value

XMSC_WMQ_BALANCING_TIMEOUT_NEVER No timeout occurs

Note: You must provide one value only from the defined values, or a value of 0-999999999 seconds.

Additionally, this property can be set in the client.ini file. The order of preference is:

1. Properties set in the application
2. Matching named Application stanza in the mqclient.ini file.
3. Application defaults stanza in the mqclient.ini file.

XMSC_WMQ_BROKER_CONTROLQ
Data type:

String
Property of:

ConnectionFactory

The name of the control queue used by a broker.

The default value of the property is SYSTEM.BROKER.CONTROL.QUEUE.

This property is relevant only in the publish/subscribe domain.

2050 IBM MQ Developing Applications Reference

XMSC_WMQ_BROKER_PUBQ
Data type:

String
Property of:

ConnectionFactory

The name of the queue monitored by a broker where applications send messages that they publish.

The default value of the property is SYSTEM.BROKER.DEFAULT.STREAM.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_QMGR
Data type:

String
Property of:

ConnectionFactory

The name of the queue manager to which a broker is connected.

By default, the property is not set.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_SUBQ
Data type:

String
Property of:

ConnectionFactory

The name of the subscriber queue for a nondurable message consumer.

The name of the subscriber queue must start with the following characters:

SYSTEM.JMS.ND.

If you want all nondurable message consumers to share a subscriber queue, specify the complete name
of the shared queue. A queue with the specified name must exist before an application can create a
nondurable message consumer.

If you want each nondurable message consumer to retrieve messages from its own exclusive subscriber
queue, specify a queue name that ends with an asterisk (*). Then, when an application creates a
nondurable message consumer, the XMS client creates a dynamic queue for exclusive use by the message
consumer. The XMS client uses the value of the property to set the contents of the DynamicQName field in
the object descriptor that is used to create the dynamic queue.

The default value of the property is SYSTEM.JMS.ND.SUBSCRIBER.QUEUE, which means that XMS uses
the shared queue approach by default.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_BROKER_VERSION
Data type:

System.Int32
Property of:

ConnectionFactory and Destination
Name used in a URI:

brokerVersion

The type of broker used by the application for a connection or for the destination. Only a destination that
is a topic can have this property.

Developing applications reference 2051

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_BROKER_V1 The application is using an IBM MQ publish/subscribe broker.

The application can also use this value if you migrate from IBM
MQ publish/subscribe to WebSphere Message Broker but did not
change the application.

XMSC_WMQ_BROKER_V2 The application is using a broker of IBM Integration Bus.

XMSC_WMQ_BROKER_UNSPECIFIED After the broker is migrated, set this property so that RFH2
headers are no longer used. After migration, this property is no
longer relevant.

The default value for a connectionfactory is XMSC_WMQ_BROKER_UNSPECIFIED but, by default, the
property is not set for a destination. Setting the property for a destination overrides any value specified by
the connection factory property.

XMSC_WMQ_CCDTURL
Data type:

System.String
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: CCDTURL
JMS administration tool short name: CCDT

A Uniform Resource Locator (URL) that identifies the name and location of the file that contains the client
channel definition table and also specifies how the file can be accessed.

By default, this property is not set.

XMSC_WMQ_CCSID
Data type:

System.Int32
Property of:

Destination
Name used in a URI:

CCSID

The identifier (CCSID) of the coded character set, or code page, that the strings of character data in
the body of a message are in when the XMS client forwards the message to the destination. If set for
an individual message, the JMS_IBM_CHARACTER_SET property overrides the CCSID specified for the
destination by this property.

The default value of the property is 1208.

This property is relevant only to messages sent to the destination, not to messages received from the
destination.

XMSC_WMQ_CHANNEL
Data type:

String
Property of:

ConnectionFactory

2052 IBM MQ Developing Applications Reference

Applicable objects:
JMS administration tool long name: CHANNEL
JMS administration tool short name: CHAN

The name of the channel to be used for a connection.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in client mode.

XMSC_WMQ_CLIENT_RECONNECT_OPTIONS
Data type:

String
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: CLIENTRECONNECTOPTIONS
JMS administration tool short name: CROPT

This property specifies the client reconnect options for new connections created by this factory. It is
found in XMSC, and is one of:

• WMQ_CLIENT_RECONNECT_AS_DEF (default). Use the value specified in the mqclient.ini file. Set
the value by using the DefRecon property within the Channels stanza. It can be set to one of:

1. YES. Behaves as the WMQ_CLIENT_RECONNECT option
2. NO. Default. Does not specify any reconnection options
3. QMGR. Behaves as the WMQ_CLIENT_RECONNECT_Q_MGR option
4. DISABLED. Behaves as the WMQ_CLIENT_RECONNECT_DISABLED option

• WMQ_CLIENT_RECONNECT. Reconnect to any of the queue managers specified in the connection name
list.

• WMQ_CLIENT_RECONNECT_Q_MGR. Reconnects to the same queue manager that it is originally
connected to. It returns MQRC_RECONNECT_QMID_MISMATCH if the queue manager it tries to connect
to (specified in the connection name list) has a different QMID to the queue manager originally
connected to.

• WMQ_CLIENT_RECONNECT_DISABLED. Reconnection is disabled.

XMSC_WMQ_CLIENT_RECONNECT_TIMEOUT
Data type:

String
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: CLIENTRECONNECTTIMEOUT
JMS administration tool short name: CRT

The XMSC_WMQ_CLIENT_RECONNECT_TIMEOUT property is valid only for the Managed XMS .NET client.

This property specifies the duration of time, in seconds, that a client connection attempts to reconnect.

After attempting to reconnect for this duration of time, the client will
fail with MQRC_RECONNECT_FAILED. The default setting for this property is
XMSC.WMQ_CLIENT_RECONNECT_TIMEOUT_DEFAULT.

The default value of this property is 1800.

Developing applications reference 2053

XMSC_WMQ_CONNECTION_MODE
Data type:

System.Int32
Property of:

ConnectionFactory

The mode by which an application connects to a queue manager.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_CM_BINDINGS A connection to a queue manager in bindings mode, for optimal
performance. This value is the default value for C/C++.

XMSC_WMQ_CM_CLIENT A connection to a queue manager in client mode, to ensure a
fully managed stack. This value is the default value for .NET.

XMSC_WMQ_CM_CLIENT_UNMANAGED
(for .NET only)

A connection to a queue manager which forces an unmanaged
client stack.

XMSC_WMQ_CONNECTION_NAME_LIST
Data type:

String
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: CONNECTIONNAMELIST
JMS administration tool short name: CNLIST

This property specifies the hosts to which the client attempts to reconnect to after its connection are
broken.

The connection name list is a comma-separated list of host/ip port pairs. The default setting for this
property is WMQ_CONNECTION_NAME_LIST_DEFAULT.

For example,127.0.0.1(1414),host2.example.com(1400)

The default setting of this property is localhost(1414).

XMSC_WMQ_DUR_SUBQ
Data type:

String
Property of:

Destination

The name of the subscriber queue for a durable subscriber that is receiving messages from the
destination. Only a destination that is a topic can have this property.

The name of the subscriber queue must start with the following characters:

SYSTEM.JMS.D.

If you want all durable subscribers to share a subscriber queue, specify the complete name of the shared
queue. A queue with the specified name must exist before an application can create a durable subscriber.

If you want each durable subscriber to retrieve messages from its own exclusive subscriber queue,
specify a queue name that ends with an asterisk (*). Then, when an application creates a durable
subscriber, the XMS client creates a dynamic queue for exclusive use by the durable subscriber. The
XMS client uses the value of the property to set the contents of the DynamicQName field in the object
descriptor that is used to create the dynamic queue.

2054 IBM MQ Developing Applications Reference

The default value of the property is SYSTEM.JMS.D.SUBSCRIBER.QUEUE, which means that XMS uses the
shared queue approach by default.

This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_ENCODING
Data type:

System.Int32
Property of:

Destination

How numerical data in the body of a message is represented when the XMS client forwards the message
to the destination. If set for an individual message, the JMS_IBM_ENCODING property overrides the
encoding specified for the destination by this property. The property specifies the representation of binary
integers, packed decimal integers, and floating point numbers.

The valid values of the property are the same as the values that can be specified in the Encoding field of
a message descriptor.

An application can use the following named constants to set the property:

Named constant Meaning

MQENC_INTEGER_NORMAL Normal integer encoding

MQENC_INTEGER_REVERSED Reversed integer encoding

MQENC_DECIMAL_NORMAL Normal packed decimal encoding

MQENC_DECIMAL_REVERSED Reversed packed decimal encoding

MQENC_FLOAT_IEEE_NORMAL Normal IEEE floating point encoding

MQENC_FLOAT_IEEE_REVERSED Reversed IEEE floating point encoding

MQENC_FLOAT_S390 z/OS architecture floating point encoding

MQENC_NATIVE Native machine encoding

To form a value for the property, the application can add three of these constants as follows:

• A constant whose name commences with MQENC_INTEGER, to specify the representation of binary
integers

• A constant whose name commences with MQENC_DECIMAL, to specify the representation of packed
decimal integers

• A constant whose name commences with MQENC_FLOAT, to specify the representation of floating point
numbers

Alternatively, the application can set the property to MQENC_NATIVE, whose value is environment-
dependent.

The default value of the property is MQENC_NATIVE.

This property is relevant only to messages sent to the destination, not to messages received from the
destination.

XMSC_WMQ_FAIL_IF_QUIESCE
Data type:

System.Int32
Property of:

ConnectionFactory and Destination
Name used in a URI:

failIfQuiesce

Developing applications reference 2055

Applicable objects:
JMS administration tool long name: FAILIFQUIESCE
JMS administration tool short name: FIQ

Whether calls to certain methods fail if the queue manager to which the application is connected is in a
quiescing state.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_FIQ_YES Calls to certain methods fail if the queue manager is in a quiescing state. When
the application detects that the queue manager is quiescing, the application
can complete its immediate task and close the connection, allowing the queue
manager to stop.

XMSC_WMQ_FIQ_NO No method calls fail because the queue manager is in a quiescing state. If
you specify this value, the application cannot detect that the queue manager
is quiescing. The application might continue to perform operations against the
queue manager and therefore prevent the queue manager from stopping.

The default value for a connection factory is XMSC_WMQ_FIQ_YES but, by default, the property is not set
for a destination. Setting the property for a destination overrides any value specified by the connection
factory property.

XMSC_WMQ_MESSAGE_BODY
Data type:

System.Int32
Property of:

Destination

This property determines whether an XMS application processes the MQRFH2 of an IBM MQ message as
part of the message payload (that is, as part of the message body).

Note: When sending messages to a destination, XMSC_WMQ_MESSAGE_BODY property supersedes
existing XMS Destination property XMSC_WMQ_TARGET_CLIENT.

Valid values for this property are:

XMSC_WMQ_MESSAGE_BODY_JMS
Receive: The inbound XMS message type and body are determined by the contents of the MQRFH2 (if
present) or the MQMD (if there is no MQRFH2) in the received IBM MQ message.
Send: The outbound XMS message body contains a prepended and auto-generated MQRFH2 header
based on XMS Message properties and header fields.

XMSC_WMQ_MESSAGE_BODY_MQ
Receive: The inbound XMS message type is always ByteMessage, irrespective of the contents of
received IBM MQ message or the format field of the received MQMD. The XMS message body is the
unaltered message data returned by the underlying messaging provider API call. The character set
and encoding of the data in the message body is determined by the CodedCharSetId and Encoding
fields of the MQMD. The format of the data in the message body is determined by the Format field of
the MQMD.
Send: The outbound XMS message body contains the application payload as-is; and no auto-
generated IBM MQ header is added to the body.

XMSC_WMQ_MESSAGE_BODY_UNSPECIFIED
Receive: The XMS client determines a suitable value for this property. On receive path, this value is
the WMQ_MESSAGE_BODY_JMS property value.
Send: The XMS client determines a suitable value for this property. On send path, this value is the
XMSC_WMQ_TARGET_CLIENT property value.

2056 IBM MQ Developing Applications Reference

By default this property is set to XMSC_WMQ_MESSAGE_BODY_UNSPECIFIED.

XMSC_WMQ_MQMD_MESSAGE_CONTEXT
Data type:

System.Int32
Property of:

Destination

Determines what level of message context is to be set by the XMS application. The application must be
running with appropriate context authority for this property to take effect.

The valid values for this property are:

XMSC_WMQ_MDCTX_DEFAULT
For outbound messages, the MQOPEN API call and the MQPMO structure specifies no explicit
message context options.

XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message context option MQOO_SET_IDENTITY_CONTEXT and the
MQPMO structure specifies MQPMO_SET_IDENTITY_CONTEXT.

XMSC_WMQ_MDCTX_SET_ALL_CONTEXT
The MQOPEN API call specifies the message context option MQOO_SET_ALL_CONTEXT and the
MQPMO structure specifies MQPMO_SET_ALL_CONTEXT.

By default this property is set to XMSC_WMQ_MDCTX_DEFAULT.

Note: This property is not relevant when an application connects to WebSphere Application Server service
integration bus.

The following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT property
to be set to XMSC_WMQ_MDCTX_SET_IDENTITY_CONTEXT property value or
XMSC_WMQ_MDCTX_SET_ALL_CONTEXT property value when sending a message for in order to have
wanted effect:

• JMS_IBM_MQMD_USERIDENTIFIER
• JMS_IBM_MQMD_ACCOUNTINGTOKEN
• JMS_IBM_MQMD_APPLIDENTITYDATA

Following properties require XMSC_WMQ_MQMD_MESSAGE_CONTEXT property to be set to
XMSC_WMQ_MDCTX_SET_ALL_CONTEXT property value when sending a message for in order to have
wanted effect:

• JMS_IBM_MQMD_PUTAPPLTYPE
• JMS_IBM_MQMD_PUTAPPLNAME
• JMS_IBM_MQMD_PUTDATE
• JMS_IBM_MQMD_PUTTIME
• JMS_IBM_MQMD_APPLORIGINDATA

XMSC_WMQ_MQMD_READ_ENABLED
Data type:

System.Int32
Property of:

Destination

This property determines whether an XMS application can extract the values of MQMD fields or not.

The valid values for this property are:

Developing applications reference 2057

XMSC_WMQ_READ_ENABLED_NO
When sending messages, the JMS_IBM_MQMD* properties on a sent message are not updated to
reflect the updated field values in the MQMD.
When receiving messages, none of the JMS_IBM_MQMD* properties are available on a received
message, even if some or all of them are set by the sender.

XMSC_WMQ_READ_ENABLED_YES
When sending messages, all of the JMS_IBM_MQMD* properties on a sent message are updated to
reflect the updated field values in the MQMD, including those properties that the sender did not set
explicitly.
When receiving messages, all of the JMS_IBM_MQMD* properties are available on a received
message, including those properties that the sender did not set explicitly.

By default this property is set to XMSC_WMQ_READ_ENABLED_NO.

XMSC_WMQ_MQMD_WRITE_ENABLED
Data type:

System.Int32
Property of:

Destination

This property determines whether an XMS application can set the values of MQMD fields or not.

The valid values for this property are:

XMSC_WMQ_WRITE_ENABLED_NO
All JMS_IBM_MQMD* properties are ignored and their values are not copied into the underlying
MQMD structure.

XMSC_WMQ_WRITE_ENABLED_YES
JMS_IBM_MQMD* properties are processed. Their values are copied into the underlying MQMD
structure.

By default this property is set to XMSC_WMQ_WRITE_ENABLED_NO.

XMSC_WMQ_PUT_ASYNC_ALLOWED
Data type:

System.Int32
Property of:

Destination

This property determines whether message producers are allowed to use asynchronous puts to send
messages to this destination.

The valid values for this property are:

XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_DEST
Determine whether asynchronous puts are allowed by referring to the queue or topic definition.

XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_Q_DEF
Determine whether asynchronous puts are allowed by referring to the queue definition.

XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_TOPIC_DEF
Determine whether asynchronous puts are allowed by referring to the topic definition.

XMSC_WMQ _PUT_ASYNC_ALLOWED_DISABLED
Asynchronous puts are not allowed.

2058 IBM MQ Developing Applications Reference

XMSC_WMQ _PUT_ASYNC_ALLOWED_ENABLED
Asynchronous puts are allowed.

By default this property is set to XMSC_WMQ _PUT_ASYNC_ALLOWED_AS_DEST.

Note: This property is not relevant when an application is connecting to WebSphere Application Server
service integration bus.

XMSC_WMQ_READ_AHEAD_ALLOWED
Data type:

System.Int32
Property of:

Destination

This property determines whether message consumers and queue browsers are allowed to use read
ahead to get non-persistent, non-transactional messages from this destination into an internal buffer
before receiving them.

The valid values for this property are:

XMSC_WMQ_READ_AHEAD_ALLOWED_AS_Q_DEF
Determine whether read ahead is allowed by referring to the queue definition.

XMSC_WMQ_READ_AHEAD_ALLOWED_AS_ TOPIC _DEF
Determine whether read ahead is allowed by referring to the topic definition.

XMSC_WMQ_READ_AHEAD_ALLOWED_AS_DEST
Determine whether read ahead is allowed by referring to the queue or topic definition.

XMSC_WMQ_READ_AHEAD_ALLOWED_DISABLED
Read ahead is not allowed while consuming or browsing messages.

XMSC_WMQ_READ_AHEAD_ALLOWED_ENABLED
Read ahead is allowed.

By default this property is set to XMSC_WMQ _READ_AHEAD_ALLOWED_AS_DEST.

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY
Data type:

System.Int32
Property of:

Destination

This property determines, for messages being delivered to an asynchronous message listener, what
happens to messages in the internal read ahead buffer when the message consumer is closed.

This property is applicable in specifying closing queue options when consuming messages from a
destination and not applicable when sending messages to a destination.

This property is ignored for queue browsers since during browse the messages are still available in the
queues.

The valid values for this property are:

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY_DELIVER_CURRENT
Only the current message listener invocation completes before returning, potentially leaving
messages in the internal read ahead buffer, which are then discarded.

XMSC_WMQ_READ_AHEAD_CLOSE_POLICY_DELIVER_ALL
All messages in the internal read ahead buffer are delivered to the application message listener
before returning.

Developing applications reference 2059

By default this property is set to XMSC_WMQ _READ_AHEAD_CLOSE_POLICY_DELIVER_CURRENT.

Note:
Abnormal application termination

All the messages in the read ahead buffer are lost when an XMS application terminates abruptly.
Implications for transactions

The read ahead is disabled when the applications use transactions. So, the application is not seeing
any difference in the behavior when they use transacted sessions.

Implications of session scknowledgement modes
The read ahead is enabled on a non-transacted session when the acknowledgment modes are either
XMSC_AUTO_ACKNOWLEDGE or XMSC_DUPS_OK_ACKNOWLEDGE. The read ahead is disabled if
the session acknowledgment mode is XMSC_CLIENT_ACKNOWLEDGE irrespective of transacted or
non-transacted sessions.

Implications for queue browsers and queue browser selectors
The queue browsers and queue browser selectors, used in XMS applications, get the performance
advantage from read ahead. Closing the queue browser does not degrade performance because the
message is still available in the queue for ay further operations. There are no other implications for
queue browsers and queue browser selectors apart from performance benefits of read ahead.

XMSC_WMQ_HOST_NAME
Data type:

String
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: HOSTNAME
JMS administration tool short name: HOST

The host name or IP address of the system on which a queue manager runs.

This property is used only when an application connects to a queue manager in client mode. The property
is used with the XMSC_WMQ_PORT property to identify the queue manager.

The default value of the property is localhost.

XMSC_WMQ_LOCAL_ADDRESS
Data type:

String
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: LOCALADDRESS
JMS administration tool short name: LA

For a connection to a queue manager, this property specifies the local network interface to be used, or the
local port or range of local ports to be used, or both.

The value of the property is a string with the following format:

[host_name][(low_port)[,high_port])]

The meanings of the variables are as follows:
host_name

The host name or IP address of the local network interface to be used for the connection.

Providing this information is necessary only if the system on which the application is running has
two or more network interfaces and you need to be able to specify which interface must be used for

2060 IBM MQ Developing Applications Reference

the connection. If the system has only one network interface, only that interface can be used. If the
system has two or more network interfaces and you do not specify which interface must be used, the
interface is selected at random.

low_port
The number of the local port to be used for the connection.

If high_port is also specified, low_port is interpreted the lowest port number in a range of port
numbers.

high_port
The highest port number in a range of port numbers. One of the ports in the specified range must be
used for the connection.

The maximum length of the string is 48 characters.

Here are some examples of valid values of the property:

JUPITER
9.20.4.98
JUPITER(1000)
9.20.4.98(1000,2000)
(1000)
(1000,2000)

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in client mode.

XMSC_WMQ_MESSAGE_SELECTION
Data type:

System.Int32
Property of:

ConnectionFactory

Determines whether message selection is done by the XMS client or by the broker.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_MSEL_CLIENT Message selection is done by the XMS client.

XMSC_WMQ_MSEL_BROKER Message selection is done by the broker.

The default value is XMSC_WMQ_MSEL_CLIENT.

This property is relevant only in the publish/subscribe domain. Message selection by the broker is not
supported if the XMSC_WMQ_BROKER_VERSION property is set to XMSC_WMQ_BROKER_V1.

XMSC_WMQ_MSG_BATCH_SIZE
Data type:

System.Int32
Property of:

ConnectionFactory

The maximum number of messages to be retrieved from a queue in one batch when using asynchronous
message delivery.

When an application is using asynchronous message delivery, under certain conditions, the XMS client
retrieves a batch of messages from a queue before forwarding each message individually to the
application. This property specifies the maximum number of messages that can be in the batch.

Developing applications reference 2061

The value of the property is a positive integer, and the default value is 10. Consider setting the property to
a different value only if you have a specific performance problem that you need to address.

If an application is connected to a queue manager over a network, raising the value of this property can
reduce network overheads and response times, but increase the amount of memory required to store the
messages on the client system. Conversely, lowering the value of this property might increase network
overheads and response times, but reduce the amount of memory required to store the messages.

XMSC_WMQ_POLLING_INTERVAL
Data type:

System.Int32
Property of:

ConnectionFactory

If each message listener within a session has no suitable message on its queue, this value is the
maximum interval, in milliseconds, that elapses before each message listener tries again to get a message
from its queue.

If it frequently happens that no suitable message is available for any of the message listeners in a session,
consider increasing the value of this property.

The value of the property is a positive integer. The default value is 5000.

XMSC_WMQ_PORT
Data type:

System.Int32
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: PORT
JMS administration tool short name: PORT

The number of the port on which a queue manager listens for incoming requests.

This property is used only when an application connects to a queue manager in client mode. The property
is used with the XMSC_WMQ_HOST_NAME property to identify the queue manager.

The default value of the property is XMSC_WMQ_DEFAULT_CLIENT_PORT, or 1414.

XMSC_WMQ_PROVIDER_VERSION
Data type:

String
Property of:

ConnectionFactory

The version, release, modification level and fix pack of the queue manager to which the application
intends to connect. Valid values for this property are:

• Unspecified

Or a string in one of the following formats

• V.R.M.F
• V.R.M
• V.R
• V

Where V, R, M and F are integer values greater than or equal to zero.

2062 IBM MQ Developing Applications Reference

A value of 7 or greater indicates that this version is intended as an IBM WebSphere MQ 7.0
ConnectionFactory for connections to an IBM WebSphere MQ 7.0 queue manager. A value earlier than
7 (for example "6.0.2.0"), indicates that it is intended for use with queue managers earlier than Version
7.0. The default value, unspecified, allows connections to any level of queue manager, determining the
applicable properties and functionality available based on the queue manager's capabilities.

By default this property is set to "unspecified".

Note:

• No socket sharing happens if XMSC_WMQ_PROVIDER_VERSION is set to 6. 2.
• Connection fails if XMSC_WMQ_PROVIDER_VERSION is set to 7 and on the server SHARECNV for the

channel is set to 0.
• IBM WebSphere MQ 7.0 specific features are disabled if XMSC_WMQ_PROVIDER_VERSION is set to

UNSPECIFIED and SHARECNV is set to 0.

The version of IBM MQ Client also plays major role in whether an XMS client application can use IBM
WebSphere MQ 7.0 specific features. The following table describes the behavior.

Note: A system property XMSC_WMQ_OVERRIDEPROVIDERVERSION overrides the
XMSC_WMQ_PROVIDER_VERSION property. This property can be used if you are unable to change
connection factory setting.

Table 881. XMS client - Ability to use IBM WebSphere MQ 7.0 specific features.

XMSC_WMQ_PROVIDER_VERSION IBM MQ client version
IBM WebSphere MQ 7.0
features

1 unspecified 7 ON

2 unspecified 6 OFF

3 7 7 ON

4 7 6 Exception

5 6 6 OFF

6 6 7 OFF

XMSC_WMQ_PUB_ACK_INTERVAL
Data type:

System.Int32
Property of:

ConnectionFactory

The number of messages published by a publisher before the XMS client requests an acknowledgment
from the broker.

If you decrease the value of this property, the client requests acknowledgments more often, and therefore
the performance of the publisher decreases. If you raise the value, the client takes a longer time to throw
an exception if the broker fails.

The value of the property is a positive integer. The default value is 25.

XMSC_WMQ_QMGR_CCSID
Data type:

System.Int32
Property of:

ConnectionFactory

Developing applications reference 2063

The identifier (CCSID) of the coded character set, or code page, in which fields of character data defined
in the Message Queue Interface (MQI) are exchanged between the XMS client and the IBM MQ client. This
property does not apply to the strings of character data in the bodies of messages.

When XMS application connects to a queue manager in client mode, the XMS client links to the IBM
MQ client. The information exchanged between the two clients contains fields of character data that are
defined in the MQI. Under normal circumstances, the IBM MQ client assumes that these fields are in
the code page of the system on which the clients are running. If the XMS client provides and expects to
receive these fields in a different code page, you must set this property to inform the IBM MQ client.

When the IBM MQ client forwards these fields of character data to the queue manager, the data in them
must be converted if necessary into the code page used by the queue manager. Similarly, when the IBM
MQ client receives these fields from the queue manager, the data in them must be converted if necessary
into the code page in which the XMS client expects to receive the data. The IBM MQ client uses this
property to perform these data conversions.

By default, the property is not set.

Setting this property is equivalent to setting the MQCCSID environment variable for an IBM MQ client that
is supporting native IBM MQ client applications. For more information about this environment variable,
see MQCCSID.

XMSC_WMQ_QUEUE_MANAGER
Data type:

String
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: QMANAGER
JMS administration tool short name: QMGR

The name of the queue manager to connect to.

By default, the property is not set.

XMSC_WMQ_RECEIVE_CCSID
Destination property that sets the target CCSID for queue manager message conversion. The value is
ignored unless XMSC_WMQ_RECEIVE_CONVERSION is set to WMQ_RECEIVE_CONVERSION_QMGR.

Data type:
Integer

Value:
Any positive integer.

The default value is 1208.

Specifying a GMO_CONVERT value in a message is optional. If a GMO_CONVERT value is specified,
conversion takes place according to the value specified.

XMSC_WMQ_RECEIVE_CONVERSION
Destination property that determines whether data conversion is going to be performed by the queue
manager.

Data type:
Integer

Values:
XMSC_WMQ_RECEIVE_CONVERSION_CLIENT_MSG (DEFAULT): Perform data conversion on the XMS
client only. Conversion is always done using codepage 1208.

2064 IBM MQ Developing Applications Reference

XMSC_WMQ_RECEIVE_CONVERSION_QMGR: Perform data conversion on the queue manager before
sending a message to the XMS client.

XMSC_WMQ_RECEIVE_EXIT
Data type:

String
Property of:

ConnectionFactory

Identifies a channel receive exit to be run.

The value of the property is a string that identifies a channel receive exit and has the following format:

libraryName(entryPointName)

where,

• libraryName is the full path of the managed exit .dll
• entryPointName is the class name qualified by the namespace

For example, C:\MyReceiveExit.dll(MyReceiveExitNameSpace.MyReceiveExitClassName)

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode.
Also, only managed exits are supported.

XMSC_WMQ_RECEIVE_EXIT_INIT
Data type:

String
Property of:

ConnectionFactory

The user data that is passed to a channel receive exit when it is called.

The value of the property is a string. By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode
and the “XMSC_WMQ_RECEIVE_EXIT” on page 2065 property is set.

XMSC_WMQ_RESOLVED_QUEUE_MANAGER
Data type:

String
Property of:

ConnectionFactory

This property is used to obtain the name of the queue manager to which it is connected.

When used with a CCDT (Client Channel Definition Table), this name might be different from the queue
manager name specified in the Connection Factory.

XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID
Data type:

String
Property of:

ConnectionFactory

This property is populated with the ID of the queue manager after the connection.

Developing applications reference 2065

XMSC_WMQ_SECURITY_EXIT
Data type:

String
Property of:

ConnectionFactory

Identifies a channel security exit.

The value of the property is a string that identifies a channel security exit and has the following format:

libraryName(entryPointName)

where,

• libraryName is the full path of the managed exit .dll
• entryPointName is the class name qualified by the namespace

For example, C:\MySecurityExit.dll(MySecurityExitNameSpace.MySecurityExitClassName)

The maximum length of the string is 128 characters.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode.
Also, only managed exits are supported.

XMSC_WMQ_SECURITY_EXIT_INIT
Data type:

String
Property of:

ConnectionFactory

The user data that is passed to a channel security exit when it is called.

The maximum length of the string of user data is 32 characters.

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode
and the “XMSC_WMQ_SECURITY_EXIT” on page 2066 property is set.

XMSC_WMQ_SEND_EXIT
Data type:

String
Property of:

ConnectionFactory

Identifies a channel send exit.

The value of the property is a string. A channel send exit has the following format:

libraryName(entryPointName)

where,

• libraryName is the full path of the managed exit .dll
• entryPointName is the class name qualified by the namespace

For example, C:\MySendExit.dll(MySendExitNameSpace.MySendExitClassName)

By default, the property is not set.

This property is relevant only when an application connects to a queue manager in managed client mode.
Also, only managed exits are supported.

2066 IBM MQ Developing Applications Reference

XMSC_WMQ_SEND_EXIT_INIT
Data type:

String
Property of:

ConnectionFactory

The user data that is passed to channel send exits when they are called.

The value of the property is a string of one or more items of user data separated by commas. By default,
the property is not set.

The rules for specifying user data that is passed to a sequence of channel send exits, are the same as
the rules for specifying user data that is passed to a sequence of channel receive exits. For the rules
therefore, see “XMSC_WMQ_RECEIVE_EXIT_INIT” on page 2065.

This property is relevant only when an application connects to a queue manager in managed client mode
and the “XMSC_WMQ_SEND_EXIT” on page 2066 property is set.

XMSC_WMQ_SEND_CHECK_COUNT
Data type:

System.Int32
Property of:

ConnectionFactory

The number of send calls to allow between checking for asynchronous put errors, within a single non-
transacted XMS session.

By default this property is set to 0.

XMSC_WMQ_SHARE_CONV_ALLOWED
Data type:

System.Int32
Property of:

ConnectionFactory
Applicable objects:

JMS administration tool long name: SHARECONVALLOWED
JMS administration tool short name: SCALD

Whether a client connection can share its socket with other top-level XMS connections from the same
process to the same queue manager, if the channel definitions match. This property is provided to
allow complete isolation of Connections in separate sockets if required for application development,
maintenance, or operational reasons. Setting this property merely indicates to XMS to make the
underlying socket shared. It does not indicate how many connections shares a single socket. The number
of connections sharing a socket is determined by SHARECNV value which is negotiated between IBM MQ
client and IBM MQ server.

An application can set the following named constants to set the property:

• XMSC_WMQ_SHARE_CONV_ALLOWED_FALSE - Connections do not share a socket.
• XMSC_WMQ_SHARE_CONV_ALLOWED_TRUE - Connections share a socket.

By default the property is set to XMSC_WMQ_SHARE_CONV_ALLOWED_ENABLED.

This property is relevant only when an application connects to a queue manager in client mode.

XMSC_WMQ_SSL_CERT_STORES
Data type:

String

Developing applications reference 2067

Property of:
ConnectionFactory

The locations of the servers that hold the certificate revocation lists (CRLs) to be used on an SSL
connection to a queue manager.

The value of the property is a list of one or more URLs separated by commas. Each URL has the following
format:

[user[/password]@]ldap://[serveraddress][:portnum][,...]

This format is compatible with, but extended from, the basic MQJMS format.

It is valid to have an empty serveraddress. In this case, XMS assumes that the value is the string
"localhost".

An example list is:

myuser/mypassword@ldap://server1.mycom.com:389
ldap://server1.mycom.com
ldap://
ldap://:389

For .NET only: From IBM MQ 8.0, managed connections to IBM MQ (WMQ_CM_CLIENT) and unmanaged
connections to IBM MQ (WMQ_CM_CLIENT_UNMANAGED) both support TLS/SSL connections.

By default, the property is not set.

Related concepts
SSL and TLS support for the unmanaged .NET client
SSL and TLS support for the managed .NET client

XMSC_WMQ_SSL_CIPHER_SPEC
Data type:

String
Property of:

ConnectionFactory

The name of the CipherSpec to be used on a secure connection to a queue manager.

Cipher specifications that you can use with IBM MQ TLS support are listed in the following table. When
you request a personal certificate, you specify a key size for the public and private key pair. The key size
that is used during the SSL handshake is the size stored in the certificate unless it is determined by the
CipherSpec, as noted in the table. By default, this property is not set.

CipherSpec name Protocol
used

Hash
algorith
m

Encrypt
ion
algorith
m

Encrypt
ion bits

FIPS1 Suite B
128 bit

Suite B
192 bit

TLS_RSA_WITH_AES_128_CBC_SHA TLS 1.0 SHA-1 AES 128 Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA2 TLS 1.0 SHA-1 AES 256 Yes No No

TLS_RSA_WITH_DES_CBC_SHA TLS 1.0 SHA-1 DES 56 No No No

TLS_RSA_WITH_3DES_EDE_CBC_SHA4 TLS 1.0 SHA-1 3DES 168 Yes No No

TLS_RSA_WITH_AES_128_GCM_SHA25
6

TLS 1.2 SHA-25
6

AES 128 Yes No No

TLS_RSA_WITH_AES_256_GCM_SHA38
4

TLS 1.2 SHA-38
4

AES 256 Yes No No

2068 IBM MQ Developing Applications Reference

CipherSpec name Protocol
used

Hash
algorith
m

Encrypt
ion
algorith
m

Encrypt
ion bits

FIPS1 Suite B
128 bit

Suite B
192 bit

TLS_RSA_WITH_AES_128_CBC_SHA25
6

TLS 1.2 SHA-25
6

AES 128 Yes No No

TLS_RSA_WITH_AES_256_CBC_SHA25
6

TLS 1.2 SHA-25
6

AES 256 Yes No No

ECDHE_ECDSA_RC4_128_SHA256 TLS 1.2 SHA-25
6

RC4 128 No No No

ECDHE_ECDSA_3DES_EDE_CBC_SHA25
6

TLS 1.2 SHA-25
6

3DES 168 Yes No No

ECDHE_RSA_RC4_128_SHA256 TLS 1.2 SHA-25
6

RC4 128 No No No

ECDHE_RSA_3DES_EDE_CBC_SHA256 TLS 1.2 SHA-25
6

3DES 168 Yes No No

ECDHE_ECDSA_AES_128_CBC_SHA256 TLS 1.2 SHA-25
6

AES 128 Yes No No

ECDHE_ECDSA_AES_256_CBC_SHA384 TLS 1.2 SHA-38
4

AES 256 Yes No No

ECDHE_RSA_AES_128_CBC_SHA256 TLS 1.2 SHA-25
6

AES 128 Yes No No

ECDHE_RSA_AES_256_CBC_SHA384 TLS 1.2 SHA-38
4

AES 256 Yes No No

ECDHE_ECDSA_AES_128_GCM_SHA256 TLS 1.2 SHA-25
6

AES 128 Yes Yes No

ECDHE_ECDSA_AES_256_GCM_SHA384 TLS 1.2 SHA-38
4

AES 256 Yes No Yes

ECDHE_RSA_AES_128_GCM_SHA256 TLS 1.2 SHA-25
6

AES 128 Yes No No

ECDHE_RSA_AES_256_GCM_SHA384 TLS 1.2 SHA-38
4

AES 256 Yes No No

TLS_RSA_WITH_NULL_SHA256 TLS 1.2 SHA-25
6

None 0 No No No

ECDHE_RSA_NULL_SHA256 TLS 1.2 SHA-25
6

None 0 No No No

ECDHE_ECDSA_NULL_SHA256 TLS 1.2 SHA-25
6

None 0 No No No

TLS_RSA_WITH_NULL_NULL TLS 1.2 None None 0 No No No

TLS_RSA_WITH_RC4_128_SHA256 TLS 1.2 SHA-25
6

RC4 128 No No No

Developing applications reference 2069

CipherSpec name Protocol
used

Hash
algorith
m

Encrypt
ion
algorith
m

Encrypt
ion bits

FIPS1 Suite B
128 bit

Suite B
192 bit

Notes:

1. Specifies whether the CipherSpec complies with Federal Information Processing Standards (FIPS) 140-2.
For an explanation of FIPS and information about how to configure IBM MQ for FIPS 140-2 compliant
operation, see Federal Information Processing Standards (FIPS).

2. This CipherSpec cannot be used to secure a connection from the IBM MQ Explorer to a queue manager
unless the appropriate unrestricted policy files are applied to the JRE used by the IBM MQ Explorer.

3. This CipherSpec was FIPS 140-2 certified before 19 May 2007.
4. When IBM MQ is configured for FIPS 140-2 compliant operation, this CipherSpec can be used to transfer up

to 32 GB of data before the connection is terminated with error AMQ9288. To avoid this error, either avoid
using triple DES (which is deprecated), or enable secret key reset when using this CipherSpec in a FIPS
140-2 configuration.

Related concepts
Data integrity of messages
Related tasks
Securing
Specifying CipherSpecs

XMSC_WMQ_SSL_CIPHER_SUITE
Data type:

String
Property of:

ConnectionFactory

The name of the CipherSuite to be used on a TLS connection to a queue manager. The protocol used in
negotiating the secure connection depends on the specified CipherSuite.

This property has the following canonical values:

• SSL_RSA_WITH_DES_CBC_SHA
• SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA
• SSL_RSA_EXPORT1024_WITH_RC4_56_SHA
• SSL_RSA_EXPORT_WITH_RC4_40_MD5
• SSL_RSA_WITH_RC4_128_MD5
• SSL_RSA_WITH_RC4_128_SHA
• SSL_RSA_WITH_3DES_EDE_CBC_SHA
• SSL_RSA_WITH_AES_128_CBC_SHA
• SSL_RSA_WITH_AES_256_CBC_SHA
• SSL_RSA_WITH_DES_CBC_SHA
• SSL_RSA_WITH_3DES_EDE_CBC_SHA

This value can be supplied as an alternative to XMSC_WMQ_SSL_CIPHER_SPEC.

If a non-empty value is specified for XMSC_WMQ_SSL_CIPHER_SPEC, this value overrides the setting for
XMSC_WMQ_SSL_CIPHER_SUITE. If XMSC_WMQ_SSL_CIPHER_SPEC does not have a value, the value of
XMSC_WMQ_SSL_CIPHER_SUITE is used as the cipher suite to be given to GSKit. In this case, the value
is mapped on to the equivalent CipherSpec value, as described in CipherSuite and CipherSpec name
mappings for XMS connections to an IBM MQ queue manager.

2070 IBM MQ Developing Applications Reference

If both XMSC_WMQ_SSL_CIPHER_SPEC and XMSC_WMQ_SSL_CIPHER_SUITE are empty, the field
pChDef->SSLCipherSpec is filled with spaces.

For .NET only: From IBM MQ 8.0, managed connections to IBM MQ (WMQ_CM_CLIENT) and unmanaged
connections to IBM MQ (WMQ_CM_CLIENT_UNMANAGED) both support TLS/SSL connections.

By default, the property is not set.

Related concepts
SSL and TLS support for the unmanaged .NET client
SSL and TLS support for the managed .NET client

XMSC_WMQ_SSL_CRYPTO_HW
Data type:

String
Property of:

ConnectionFactory

Configuration details for the cryptographic hardware connected to the client system.

This property has the following canonical values:

• GSK_ACCELERATOR_RAINBOW_CS_OFF
• GSK_ACCELERATOR_RAINBOW_CS_ON
• GSK_ACCELERATOR_NCIPHER_NF_OFF
• GSK_ACCELERATOR_NCIPHER_NF_ON

There is a special format for PKCS11 cryptographic hardware (where DriverPath, TokenLabel, and
TokenPassword are user-specified strings):

GSK_PKCS11=PKCS#11 DriverPath; PKCS#11 TokenLabel;PKCS#11 TokenPassword

XMS does not interpret or alter the contents of the string. It copies the value supplied, up to a limit of 256
single-byte characters, into the MQSCO.CryptoHardware field.

For .NET only: From IBM MQ 8.0, managed connections to IBM MQ (WMQ_CM_CLIENT) and unmanaged
connections to IBM MQ (WMQ_CM_CLIENT_UNMANAGED) both support TLS/SSL connections.

By default, the property is not set.

Related concepts
SSL and TLS support for the unmanaged .NET client
SSL and TLS support for the managed .NET client

XMSC_WMQ_SSL_FIPS_REQUIRED
Data type:

Boolean
Property of:

ConnectionFactory

The value of this property determines whether an application can or cannot use non-FIPS compliant
cipher suites. If this property is set to true, only FIPS algorithms are used for the client-server connection.

This property can have the following values, which translate to the two canonical values for
MQSCO.FipsRequired:

Developing applications reference 2071

Table 882. Table of values for MQSCO.FlipsRequired property

Value Description
Corresponding value of
MQSCO.FipsRequired

false Any CipherSpec can be used. MQSSL_FIPS_NO (the default)

true Only FIPS-certified cryptographic
algorithms can be used in the
CipherSpec applying to this client
connection.

MQSSL_FIPS_YES

XMS copies the relevant value into MQSCO.FipsRequired before calling MQCONNX.

The parameter MQSCO.FipsRequired is only available from IBM WebSphere MQ 6.0. For IBM WebSphere
MQ 5.3, if this property is set, XMS does not attempt to make the connection to the queue manager, and
throws an appropriate exception instead.

For .NET only: From IBM MQ 8.0, managed connections to IBM MQ (WMQ_CM_CLIENT) and unmanaged
connections to IBM MQ (WMQ_CM_CLIENT_UNMANAGED) both support TLS/SSL connections.

Related concepts
SSL and TLS support for the unmanaged .NET client
SSL and TLS support for the managed .NET client

XMSC_WMQ_SSL_KEY_REPOSITORY
Data type:

String
Property of:

ConnectionFactory

The location of the key database file in which keys and certificates are stored.

XMS copies the string, up to a limit of 256 single-byte characters, into the MQSCO.KeyRepository field.
IBM MQ interprets this string as a filename, including the full path.

For .NET only: From IBM MQ 8.0, managed connections to IBM MQ (WMQ_CM_CLIENT) and unmanaged
connections to IBM MQ (WMQ_CM_CLIENT_UNMANAGED) both support TLS/SSL connections.

By default, the property is not set.

Related concepts
SSL and TLS support for the unmanaged .NET client
SSL and TLS support for the managed .NET client

XMSC_WMQ_SSL_KEY_RESETCOUNT
Data type:

System.Int32
Property of:

ConnectionFactory

The KeyResetCount represents the total number of unencrypted bytes sent and received within an SSL
conversation before the secret key is renegotiated. The number of bytes includes control information sent
by the MCA.

XMS copies the value that you supply for this property into MQSCO.KeyResetCount before calling
MQCONNX.

The parameter MQSCO.KeyRestCount is only available from IBM MQ version 6. If IBM MQ version 5.3, if
this property is set, XMS does not attempt to make the connection to the queue manager, and throws an
appropriate exception instead.

2072 IBM MQ Developing Applications Reference

For .NET only: From IBM MQ 8.0, managed connections to IBM MQ (WMQ_CM_CLIENT) and unmanaged
connections to IBM MQ (WMQ_CM_CLIENT_UNMANAGED) both support TLS/SSL connections.

The default value of this property is zero, which means that secret keys are never renegotiated.

Related concepts
SSL and TLS support for the unmanaged .NET client
SSL and TLS support for the managed .NET client

XMSC_WMQ_SSL_PEER_NAME
Data type:

String
Property of:

ConnectionFactory

The peer name to be used on an SSL connection to a queue manager.

There is no list of canonical values for this property. Instead, you must build this string according to the
rules for SSLPEER.

An example of a peer name is:

"CN=John Smith, O=IBM ,OU=Test , C=GB"

XMS copies the string into the correct single-byte code page, and places the correct values into
MQCD.SSLPeerNamePtr and MQCD.SSLPeerNameLength before calling MQCONNX.

This property is relevant only if the application connects to a queue manager in client mode.

For .NET only: From IBM MQ 8.0, managed connections to IBM MQ (WMQ_CM_CLIENT) and unmanaged
connections to IBM MQ (WMQ_CM_CLIENT_UNMANAGED) both support TLS/SSL connections.

By default, the property is not set.

Related concepts
SSL and TLS support for the unmanaged .NET client
SSL and TLS support for the managed .NET client
Related reference
SSLPEERNAME

XMSC_WMQ_SYNCPOINT_ALL_GETS
Data type:

System.Boolean
Property of:

ConnectionFactory

Whether all messages must be retrieved from queues within sync point control.

The valid values of the property are as follows:

Valid value Meaning

false When the circumstances are appropriate, the XMS client
can retrieve messages from queues outside of sync point
control.

true The XMS client must retrieve all messages from queues
within sync point control.

The default value is false.

Developing applications reference 2073

XMSC_WMQ_TARGET_CLIENT
Data type:

System.Int32
Property of:

Destination
Name used in a URI:

targetClient

Whether messages sent to the destination contain an MQRFH2 header.

If an application sends a message containing an MQRFH2 header, the receiving application must be able
to handle the header.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WMQ_TARGET_DEST_JMS Messages sent to the destination contain an MQRFH2 header.
Specify this value if the application is sending the messages to
another XMS application, an IBM MQ classes for JMS application,
or a native IBM MQ application that is designed to handle an
MQRFH2 header.

XMSC_WMQ_TARGET_DEST_MQ Messages sent to the destination do not contain an MQRFH2
header. Specify this value if the application is sending the
messages to a native IBM MQ application that is not designed to
handle an MQRFH2 header.

The default value is XMSC_WMQ_TARGET_DEST_JMS.

XMSC_WMQ_TEMP_Q_PREFIX
Data type:

String
Property of:

ConnectionFactory

The prefix used to form the name of the IBM MQ dynamic queue that is created when the application
creates an XMS temporary queue.

The rules for forming the prefix are the same as the rules for forming the contents of the DynamicQName
field in an object descriptor, but the last non-blank character must be an asterisk(*). If the property is not
set, the value used is CSQ.* on z/OS and AMQ.* on the other platforms. By default, the property is not
set.

This property is relevant only in the point-to-point domain.

XMSC_WMQ_TEMP_TOPIC_PREFIX
Data type:

String
Property of:

ConnectionFactory, Destination

When creating temporary topics, XMS generates a topic string of the form "TEMP/TEMPTOPICPREFIX/
unique_id", or if this property contains the default value, then this string, "TEMP/unique_id", is
generated. Specifying a non-empty value allows specific model queues to be defined for creating the
managed queues for subscribers to temporary topics created under this connection.

Any non-null string consisting only of valid characters for an IBM MQ topic string is a valid value for this
property.

2074 IBM MQ Developing Applications Reference

By default this property is set to "" (empty string).

Note: This property is relevant only in the publish/subscribe domain.

XMSC_WMQ_TEMPORARY_MODEL
Data type:

String
Property of:

ConnectionFactory

The name of the IBM MQ model queue from which a dynamic queue is created when the application
creates an XMS temporary queue.

The default value of the property is SYSTEM.DEFAULT.MODEL.QUEUE.

This property is relevant only in the point-to-point domain.

XMSC_WMQ_WILDCARD_FORMAT
Data type:

System.Int32
Property of:

ConnectionFactory, Destination

This property determines which version of wildcard syntax is to be used.

When using publish/subscribe with IBM MQ '*' and '?' are treated as wildcards. Whereas '#' and '+' are
treated as wildcards when using publish subscribe with IBM Integration Bus. This property replaces the
XMSC_WMQ_BROKER_VERSION property.

The valid values for this property are:

XMSC_WMQ_WILDCARD_TOPIC_ONLY
Recognizes the topic level wildcards only i.e. '#' and '+' are treated as wildcards. This value is same as
XMSC_WMQ_BROKER_V2.

XMSC_WMQ_WILDCARD_CHAR_ONLY
Recognizes the character wildcards only i.e. '*' and '?' are treated as wildcards. This value is same as
XMSC_WMQ_BROKER_V1.

By default this property is set to XMSC_WMQ_WILDCARD_TOPIC_ONLY.

XMSC_WPM_BUS_NAME
Data type:

String
Property of:

ConnectionFactory and Destination
Name used in a URI:

busName

For a connection factory, the name of the service integration bus that the application connects to or, for a
destination, the name of the service integration bus in which the destination exists.

For a destination that is a topic, this property is the name of the service integration bus in which the
associated topic space exists. This topic space is specified by the XMSC_WPM_TOPIC_SPACE property.

If the property is not set for a destination, the queue or associated topic space is assumed to exist in the
service integration bus to which the application connects.

By default, the property is not set.

Developing applications reference 2075

XMSC_WPM_CONNECTION_PROTOCOL
Data type:

System.Int32
Property of:

Connection

The communications protocol used for the connection to the messaging engine. This property is read-
only.

The possible values of the property are as follows:

Value Meaning

XMSC_WPM_CP_HTTP The connection uses HTTP over TCP/IP.

XMSC_WPM_CP_TCP The connection uses TCP/IP.

XMSC_WPM_CONNECTION_PROXIMITY
Data type:

System.Int32
Property of:

ConnectionFactory

The connection proximity setting for the connection. This property determines how close the messaging
engine that the application connects to must be to the bootstrap server.

The valid values of the property are as follows:

Valid value
Connection proximity
setting

XMSC_WPM_CONNECTION_PROXIMITY_BUS Bus

XMSC_WPM_CONNECTION_PROXIMITY_CLUSTER Cluster

XMSC_WPM_CONNECTION_PROXIMITY_HOST Host

XMSC_WPM_CONNECTION_PROXIMITY_SERVER Server

The default value is XMSC_WPM_CONNECTION_PROXIMITY_BUS.

XMSC_WPM_DUR_SUB_HOME
Data type:

String
Property of:

ConnectionFactory
Name used in a URI:

durableSubscriptionHome

The name of the messaging engine where all durable subscriptions for a connection or a destination are
managed. Messages to be delivered to the durable subscribers are stored at the publication point of the
same messaging engine.

A durable subscription home must be specified for a connection before an application can create a
durable subscriber that uses the connection. Any value specified for a destination overrides the value
specified for the connection.

By default, the property is not set.

This property is relevant only in the publish/subscribe domain.

2076 IBM MQ Developing Applications Reference

XMSC_WPM_HOST_NAME
Data type:

String
Property of:

Connection

The host name or IP address of the system that contains the messaging engine to which the application is
connected. This property is read-only.

XMSC_WPM_LOCAL_ADDRESS
Data type:

String
Property of:

ConnectionFactory

For a connection to a service integration bus, this property specifies the local network interface to be
used, or the local port or range of local ports to be used, or both.

The value of the property is a string with the following format:

[host_name][(low_port)[,high_port])]

The meanings of the variables are as follows:
host_name

The host name or IP address of the local network interface to be used for the connection.

Providing this information is necessary only if the system on which the application is running has
two or more network interfaces and you need to be able to specify which interface must be used for
the connection. If the system has only one network interface, only that interface can be used. If the
system has two or more network interfaces and you do not specify which interface must be used, the
interface is selected at random.

low_port
The number of the local port to be used for the connection.

If high_port is also specified, low_port is interpreted the lowest port number in a range of port
numbers.

high_port
The highest port number in a range of port numbers. One of the ports in the specified range must be
used for the connection.

Here are some examples of valid values of the property:

JUPITER
9.20.4.98
JUPITER(1000)
9.20.4.98(1000,2000)
(1000)
(1000,2000)

By default, the property is not set.

XMSC_WPM_ME_NAME
Data type:

String
Property of:

Connection

The name of the messaging engine to which the application is connected. This property is read-only.

Developing applications reference 2077

XMSC_WPM_NON_PERSISTENT_MAP
Data type:

System.Int32
Property of:

ConnectionFactory

The reliability level of nonpersistent messages that are sent using the connection.

The valid values of the property are as follows:

Valid value Reliability level

XMSC_WPM_MAPPING_AS_DESTINATION Determined by the default
reliability level specified for the
queue or topic space in the
service integration bus

XMSC_WPM_MAPPING_BEST_EFFORT_NON_
 PERSISTENT

Best effort nonpersistent

XMSC_WPM_MAPPING_EXPRESS_NON_
 PERSISTENT

Express nonpersistent

XMSC_WPM_MAPPING_RELIABLE_NON_
 PERSISTENT

Reliable nonpersistent

XMSC_WPM_MAPPING_RELIABLE_PERSISTENT Reliable persistent

XMSC_WPM_MAPPING_ASSURED_PERSISTENT Assured persistent

The default value is XMSC_WPM_MAPPING_EXPRESS_NON_PERSISTENT.

XMSC_WPM_PERSISTENT_MAP
Data type:

System.Int32
Property of:

ConnectionFactory

The reliability level of persistent messages that are sent using the connection.

The valid values of the property are as follows:

Valid value Reliability level

XMSC_WPM_MAPPING_AS_DESTINATION Determined by the default
reliability level specified for the
queue or topic space in the
service integration bus

XMSC_WPM_MAPPING_BEST_EFFORT_NON_
 PERSISTENT

Best effort nonpersistent

XMSC_WPM_MAPPING_EXPRESS_NON_
 PERSISTENT

Express nonpersistent

XMSC_WPM_MAPPING_RELIABLE_NON_
 PERSISTENT

Reliable nonpersistent

2078 IBM MQ Developing Applications Reference

Valid value Reliability level

XMSC_WPM_MAPPING_RELIABLE_PERSISTENT Reliable persistent

XMSC_WPM_MAPPING_ASSURED_PERSISTENT Assured persistent

The default value is XMSC_WPM_MAPPING_RELIABLE_PERSISTENT.

XMSC_WPM_PORT
Data type:

System.Int32
Property of:

Connection

The number of the port listened on by the messaging engine to which the application is connected. This
property is read-only.

XMSC_WPM_PROVIDER_ENDPOINTS
Data type:

String
Property of:

ConnectionFactory

A sequence of one or more endpoint addresses of bootstrap servers. The endpoint addresses are
separated by commas.

A bootstrap server is an application server that is responsible for selecting the messaging engine to which
the application connects. The endpoint address of a bootstrap server has the following format:

host_name:port_number:chain_name

The meanings of the components of an endpoint address are as follows:
host_name

The host name or IP address of the system on which the bootstrap server resides. If no host name or
IP address is specified, the default is localhost.

port_number
The number of the port on which the bootstrap server listens for incoming requests. If no port number
is specified, the default is 7276.

chain_name
The name of a bootstrap transport chain used by the bootstrap server. The valid values are as follows:

Valid value Name of the bootstrap transport chain

XMSC_WPM_BOOTSTRAP_HTTP BootstrapTunneledMessaging

XMSC_WPM_BOOTSTRAP_HTTPS BootstrapTunneledSecureMessaging

XMSC_WPM_BOOTSTRAP_SSL BootstrapSecureMessaging

XMSC_WPM_BOOTSTRAP_TCP BootstrapBasicMessaging

If no name is specified, the default value is XMSC_WPM_BOOTSTRAP_TCP.

If no endpoint address is specified, the default is localhost:7276:BootstrapBasicMessaging.

XMSC_WPM_SSL_CIPHER_SUITE
Data type:

String
Property of:

ConnectionFactory

Developing applications reference 2079

The name of the CipherSuite to be used on a TLS connection to a WebSphere Application Server service
integration bus messaging engine. The protocol used in negotiating the secure connection depends on the
specified CipherSuite.

Table 883. CipherSuite options for connection to a WebSphere Application Server service integration bus
messaging engine

Cipher suite Protocol used

TLS_RSA_WITH_DES_CBC_SHA TLSv1

TLS_RSA_WITH_3DES_EDE_CBC_SHA TLSv1

TLS_RSA_WITH_AES_128_CBC_SHA TLSv1

TLS_RSA_WITH_AES_256_CBC_SHA TLSv1

Notes:

1. TLS_RSA_WITH_AES_128_CBC_SHA and TLS_RSA_WITH_AES_256_CBC_SHA
CipherSuites are supported on Windows only. (This is dictated by GSKit.)

2. TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used to transfer up to 32
GB of data before the connection is terminated with error AMQ9288. To avoid this error, you need to
either avoid using triple DES, or enable secret key reset when using this CipherSpec.

There is no default for this property. If you want to use SSL or TLS, you must specify a value for this
property, otherwise your application is not able to connect successfully to the server.

XMSC_WPM_SSL_FIPS_REQUIRED
Note: On AIX, Linux, and Windows, IBM MQ provides FIPS 140-2 compliance through the "IBM Crypto
for C" cryptographic module. The certificate for this module has been moved to the Historical status.
Customers should view the IBM Crypto for C certificate and be aware of any advice provided by NIST. A
replacement FIPS 140-3 module is currently in progress and its status can be viewed by searching for it in
the NIST CMVP modules in process list.

Data type:
Boolean

Property of:
ConnectionFactory

The value of this property determines whether an application can or cannot use non-FIPS compliant
cipher suites. If this property is set to true, only FIPS algorithms are used for the client-server
connection.Setting the value of this property to TRUE prevents the application from using non-FIPS
compliant cipher suites.

By default, the property is set to FALSE (that is, FIPS mode off).

XMSC_WPM_SSL_KEY_REPOSITORY
Data type:

String
Property of:

ConnectionFactory

A path to the file that is the keyring file containing the public or private keys to be used in the secure
connection.

Setting the keyring file property to the special value of XMSC_WPM_SSL_MS_CERTIFICATE_STORE
specifies the use the Microsoft Windows key database. Using the Microsoft Windows key database, which
is found under Control Panel > Internet Options > Content > Certificates, removes the need for a
separate key file database. Use of this constant on Windows x64 and other platforms is not permitted.

2080 IBM MQ Developing Applications Reference

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/3064
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/modules-in-process-list

By default, the property is not set.

XMSC_WPM_SSL_KEYRING_LABEL
Data type:

String
Property of:

ConnectionFactory

The certificate to be used when authenticating with the server. If no value is specified, the default
certificate is used.

By default, the property is not set.

XMSC_WPM_SSL_KEYRING_PW
Data type:

String
Property of:

ConnectionFactory

The password for the keyring file.

This property can be used as an alternative to using XMSC_WPM_SSL_KEYRING_STASH_FILE to configure
the password for the keyring file.

By default, the property is not set.

XMSC_WPM_SSL_KEYRING_STASH_FILE
Data type:

String
Property of:

ConnectionFactory

The name of a binary file containing the password of the key repository file.

This property can be used as an alternative to using XMSC_WPM_SSL_KEYRING_PW to configure the
password for the keyring file.

By default, the property is not set.

XMSC_WPM_TARGET_GROUP
Data type:

String
Property of:

ConnectionFactory

The name of a target group of messaging engines. The nature of the target group is determined by the
XMSC_WPM_TARGET_TYPE property.

Set this property if you want to restrict the search for a messaging engine to a subgroup of the messaging
engines in the service integration bus. If you want your application to be able to connect to any messaging
engine in the service integration bus, do not set this property.

By default, the property is not set.

XMSC_WPM_TARGET_SIGNIFICANCE
Data type:

System.Int32
Property of:

ConnectionFactory

Developing applications reference 2081

The significance of the target group of messaging engines.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WPM_TARGET_SIGNIFICANCE_
 PREFERRED

A messaging engine in the target group is
selected if one is available. Otherwise, a
messaging engine outside the target group is
selected, provided it is in the same service
integration bus.

XMSC_WPM_TARGET_SIGNIFICANCE_
 REQUIRED

The selected messaging engine must be in the
target group. If a messaging engine in the target
group is not available, the connection process
fails.

The default value of the property is XMSC_WPM_TARGET_SIGNIFICANCE_PREFERRED.

XMSC_WPM_TARGET_TRANSPORT_CHAIN
Data type:

String
Property of:

ConnectionFactory

The name of the inbound transport chain that the application must use to connect to a messaging engine.

The value of the property can be the name of any inbound transport chain that is available in the
application server that hosts the messaging engine. The following named constant is provided for one of
the predefined inbound transport chains:

Named constant Name of transport chain

XMSC_WPM_TARGET_TRANSPORT_CHAIN_BASIC InboundBasicMessaging

The default value of the property is XMSC_WPM_TARGET_TRANSPORT_CHAIN_BASIC.

XMSC_WPM_TARGET_TYPE
Data type:

System.Int32
Property of:

ConnectionFactory

The type of the target group of messaging engines. This property determines the nature of the target
group identified by the XMSC_WPM_TARGET_GROUP property.

The valid values of the property are as follows:

Valid value Meaning

XMSC_WPM_TARGET_TYPE_BUSMEMBER The name of the target group is the name
of a bus member. The target group is all the
messaging engines in the bus member.

XMSC_WPM_TARGET_TYPE_CUSTOM The name of the target group is the name of a
user-defined group of messaging engines. The
target group is all the messaging engines that
are registered with the user-defined group.

XMSC_WPM_TARGET_TYPE_ME The name of the target group is the name of
a messaging engine. The target group is the
specified messaging engine.

2082 IBM MQ Developing Applications Reference

By default, the property is not set.

XMSC_WPM_TEMP_Q_PREFIX
Data type:

String
Property of:

ConnectionFactory

The prefix used to form the name of the temporary queue that is created in the service integration bus
when the application creates an XMS temporary queue. The prefix can contain up to 12 characters.

The name of a temporary queue starts with the characters "_Q" followed by the prefix. The remainder of
the name consists of system generated characters.

By default, the property is not set, which means that the name of a temporary queue does not have a
prefix.

This property is relevant only in the point-to-point domain.

XMSC_WPM_TEMP_TOPIC_PREFIX
Data type:

String
Property of:

ConnectionFactory

The prefix used to form the name of a temporary topic that is created by the application. The prefix can
contain up to 12 characters.

The name of a temporary topic starts with the characters "_T" followed by the prefix. The remainder of
the name consists of system generated characters.

By default, the property is not set, which means that the name of a temporary topic does not have a
prefix.

This property is relevant only in the publish/subscribe domain.

XMSC_WPM_TOPIC_SPACE
Data type:

String
Property of:

Destination
Name used in a URI:

topicSpace

The name of the topic space that contains the topic. Only a destination that is a topic can have this
property.

By default, the property is not set, which means that the default topic space is assumed.

This property is relevant only in the publish/subscribe domain.

Managed File Transfer developing applications reference
Reference information to help you develop applications for Managed File Transfer.

Examples of using fteCreateTransfer to start programs
You can use the fteCreateTransfer command to specify programs to run before or after a transfer.

In addition to using fteCreateTransfer, there are other ways to invoke a program before or after a
transfer. For more information, see Specifying programs to run with MFT.

Developing applications reference 2083

All these examples use the following syntax to specify a program:

[type:]commandspec[,[retrycount][,[retrywait][,successrc]]]

For more information about this syntax, see fteCreateTransfer: start a new file transfer.

Running an executable program
The following example specifies an executable program called mycommand and passes two arguments, a
and b, to the program.

mycommand(a,b)

To run this program at the source agent AGENT1 before the transfer starts, use the following command:

fteCreateTransfer -sa AGENT1 -da AGENT2 -presrc mycommand(a,b)
destinationSpecification sourceSpecification

Running, and retrying, an executable program
The following example specifies an executable program called simple, which does not take any
arguments. A value of 1 is specified for retrycount and a value of 5 is specified for retrywait. These
values mean that the program will be retried once if it does not return a successful return code, after
a wait of five seconds. No value is specified for successrc, so the only successful return code is the
default value of 0.

executable:simple,1,5

To run this program at the source agent AGENT1 after the transfer has completed, use the following
command:

fteCreateTransfer -sa AGENT1 -da AGENT2 -postsrc executable:simple,1,5
destinationSpecification sourceSpecification

Running an Ant script and specifying successful return codes
The following example specifies an Ant script called myscript and passes two properties to the script.
The script is run using the fteAnt command. The value for successrc is specified as >2&<7&!5|0|14,
which specifies that return codes of 0, 3, 4, 6, and 14 indicate success.

antscript:myscript(prop1=fred,prop2=bob),,,>2&<7&!5|0|14

To run this program at the destination agent AGENT2 before the transfer has started, use the following
command:

fteCreateTransfer -sa AGENT1 -da AGENT2 -predst
"antscript:myscript(prop1=fred,prop2=bob),,,>2&<7&!5|0|14"destinationSpecification sourceSpecification

Running an Ant script and specifying targets to call
The following example specifies an Ant script called script2 and two targets, target1 and target2, to
call. The property prop1 is also passed in, with a value of recmfm(F,B). The comma (,) and parentheses
in this value are escaped using a backslash character (\).

antscript:script2(target1,target2,prop1=recmfm\(F\,B\)),,,>2&<7&!5|0|14

To run this program at the destination agent AGENT2 after the transfer has completed, use the following
command:

2084 IBM MQ Developing Applications Reference

fteCreateTransfer -sa AGENT1 -da AGENT2
-postdst "antscript:script2(target1,target2,prop1=recmfm\(F\,B\)),,,>2&<7&!5|0|14"
destinationSpecification sourceSpecification

Using metadata in an Ant script

You can specify an Ant task as any of the following calls for a transfer:

• pre source
• post source
• predestination
• post destination

When the Ant task is run, the user meta data of the transfer is made available using environment
variables. You can access this data using, for example, the following code:

<property environment="environment" />
<echo>${environment.mymetadata}</echo>

where mymetadata is the name of some meta data inserted into the transfer.

Running a JCL script

The following example specifies a JCL script called ZOSBATCH. A value of 3 is specified for retrycount,
a value of 30 is specified for retrywait and a value of 0 is specified for successrc. These values mean
that the script is retried three times if it does not return a successful return code of 0, with a wait of thirty
seconds between each attempt.

jcl:ZOSBATCH,3,30,0

where ZOSBATCH is a member of a PDS called MYSYS.JCL, and the agent.properties file contains the
line commandPath=....://'MYSYS.JCL':...

To run this program at the source agent AGENT1 after the transfer has completed, use the following
command:

fteCreateTransfer -sa AGENT1 -da AGENT2 -postsrc jcl:ZOSBATCH,3,30,0
destinationSpecification sourceSpecification

Related tasks
Specifying programs to run with MFT
Related reference
fteCreateTransfer: start a new file transfer

fteAnt: run Ant tasks in MFT
The fteAnt command runs Ant scripts in an environment that has Managed File Transfer Ant tasks
available. Unlike the standard ant command, fteAnt requires that you define a script file.

MFT Ant tasks and nested parameters
Managed File Transfer provides a number of Ant tasks that you can use to access file transfer capabilities.
There is also a set of nested parameters available; these parameters describe nested sets of elements
that are common across several of the supplied Ant tasks.

The fteAnt command syntax, parameters, usage example and return codes are described in the rest of
this topic. For details of the Ant tasks and nested parameters that are provided by MFT, see the subtopics.

Developing applications reference 2085

fteAnt syntax

fteAnt
fteAnt

-d

-debug

-q

-quiet

-v

-verbose

-k

-keep-going

-Dproperty=value -propertyfile (name)

-f (Ant script)

-file (Ant script)

-buildfile (Ant script)

(targets)

Parameters
-debug or -d

Optional. Generate debugging output.
-quiet or -q

Optional. Generate minimal output.
-verbose or -v

Optional. Generate verbose output.
-keep-going or -k

Optional. Execute all targets that do not depend on failed targets.
-D property=value

Optional. Use value for a given property. Properties that are set with -D take precedence over those
set in a properties file.

Use the property com.ibm.wmqfte.propertyset to specify the set of configuration options that
are used for Ant tasks. Use the name of a non-default coordination queue manager as the value
for this property. Ant tasks then use the set of configuration options that are associated with
this non-default coordination queue manager. If you do not specify this property, the default set
of configuration options that are based on the default coordination queue manager is used. If
you specify the cmdqm attribute for an Ant task, this attribute takes precedence over the set of
configuration options that are specified for the fteAnt command. This behavior applies regardless
of whether you are using the default set of configuration options or specifying a set with the
com.ibm.wmqfte.propertyset property.

-propertyfile (name)
Optional. Load all properties from a file with -D properties taking precedence.

-f (Ant script), -file (Ant script), or -buildfile (Ant script)
Required. Specifies the name of the Ant script to run.

targets
Optional. The name of one or more targets to run from the Ant script. If you do not specify a value for
this parameter, the default target for the script is run.

-version
Optional. Displays the Managed File Transfer command and Ant versions.

-? or -h
Optional. Displays command syntax.

2086 IBM MQ Developing Applications Reference

Example
In this example, the target copy in Ant script fte_script.xml is run and the command writes
debugging output to standard out.

fteAnt -d -f fte_script.xml copy

Return codes
0

Command completed successfully.
1

Command ended unsuccessfully.
Other status return codes can also be specified from Ant scripts, for example by using the Ant fail task.

See Fail for more information.

fte:awaitoutcome Ant task
Waits for a fte:filecopy, fte:filemove, or fte:call operation to complete.

Attributes
id

Required. Identifies the transfer to await an outcome from. Typically, this is a property set by the
idProperty attribute of the fte:filecopy, fte:filemove, or fte:call tasks.

rcproperty
Required. Names a property to store the return code of the fte:awaitoutcome task in.

timeout
Optional. The maximum amount of time, in seconds, to wait for the operation to complete. The
minimum timeout is one second. If you do not specify a timeout value, the fte:awaitoutcome task
waits forever for the outcome of the operation to be determined.

Example
In this example a file copy is started, and its identifier is stored in the copy.id property. While the copy
is progressing, other processing can take place. The fte:awaitoutcome statement is used to wait until
the copy operation completes. The fte:awaitoutcome statement identifies which operation to wait
for using the identifier stored in the copy.id property. The fte:awaitoutcome stores a return code
indicating the outcome of the copy operation into a property called copy.result.

<-- issue a file copy request -->
<fte:filecopy
src="AGENT1@QM1"
dst="AGENT2@QM2"
idproperty="copy.id"
outcome="defer">

<fte:filespec
 srcfilespec="/home/fteuser1/file.bin"
 dstdir="/home/fteuser2"/>

</fte:filecopy>

<fte:awaitoutcome id="${copy.id}" rcProperty="copy.rc"/>

<echo>Copy id=${copy.id} rc=${copy.rc}</echo>

Related tasks
Using Apache Ant with MFT

Developing applications reference 2087

https://ant.apache.org/manual/Tasks/fail.html

fte:call Ant task
You can use the fte:call task to remotely call scripts and programs.

This task allows you to send a fte:call request to an agent. The agent processes this request by
running a script or program and returning the outcome. The commands to call must be accessible to the
agent. Ensure the commandPath property value in the agent.properties file includes the location of
the commands to call. Any path information specified by the command nested element must be relative
to the locations specified by the commandPath property. By default commandPath is empty so that
the agent cannot call any commands. For more information about this property, see commandPath MFT
property.

For more information about the agent.properties file, see The MFT agent.properties file.

Attributes
agent

Required. Specifies the agent to submit the fte:call request to. Specify the agent information in the
form: agentname@qmgrname where agentname is the name of the agent and qmgrname is the name
of the queue manager that this agent is directly connected to.

cmdqm
Optional. The command queue manager to submit the request to. Specify this information in the form
qmgrname@host@port@channel, where:

• qmgrname is the name of the queue manager
• host is the optional host name of the system where the queue manager is running
• port is the optional port number that the queue manager is listening on
• channel is the optional SVRCONN channel to use

If you omit the host, port, or channel information for the command queue manager, the connection
information specified in the command.properties file is used.

Attention: If no value is specified for the:

• host variable, bindings mode is used
• port variable, the value 1414 is used
• channel variable, the SYSTEM.DEF.SVRCONN is used.

See The MFT command.properties file for more information.

However, you cannot skip the attributes in the middle, for example,
qmgrname@host@@channel. You can have, for example, qmgrname@host, or
qmgrname@host@port, or qmgrname@hostport@@channel.

MFT splits the given attribute using the @ delimiter. Depending on the number of tokens found,
it takes the first token as qmgrname, the second one as host, the third one as port and finally
channel.

For more information, see The MFT command.properties file.
You can use the com.ibm.wmqfte.propertySet property to specify which command.properties
file to use. For more information, see com.ibm.wmqfte.propertySet.
If you do not use the cmdqm attribute, the task defaults to using the
com.ibm.wmqfte.ant.commandQueueManager property, if this property is set. If the
com.ibm.wmqfte.ant.commandQueueManager property is not set, a connection to the default
queue manager, defined in the command.properties file, is attempted. The format of the
com.ibm.wmqfte.ant.commandQueueManager property is the same as the cmdqm attribute, that
is, qmgrname@host@port@channel.

idproperty
Optional unless you have specified an outcome of defer. Specifies the name of a property to assign
the transfer identifier to. Transfer identifiers are generated at the point a transfer request is submitted

2088 IBM MQ Developing Applications Reference

and you can use transfer identifiers to track the progress of a transfer, diagnose problems with a
transfer, and cancel a transfer.
You cannot specify this property if you have also specified an outcome property of ignore. However,
you must specify idproperty if you have also specified an outcome property of defer.

jobname
Optional. Assigns a job name to the fte:call request. You can use job names to create
logical groups of transfers. Use the “fte:uuid Ant task” on page 2100 task to generate pseudo-
unique job names. If you do not use the jobname attribute, the task defaults to using the
com.ibm.wmqfte.ant.jobName property value, if this property is set. If you do not set this
property, no job name is associated with the fte:call request.

origuser
Optional. Specifies the originating user identifier to associate with the fte:call request. If you do
not use the origuser attribute, the task defaults to using the user ID that is used to run the Ant script.

outcome
Optional. Determines whether the task waits for the fte:call operation to complete before
returning control to the Ant script. Specify one of the following options:
await

The task waits for the fte:call operation to complete before returning. When an outcome of
await is specified the idproperty attribute is optional.

defer
The task returns as soon as the fte:call request has been submitted and assumes that the
outcome of the call operation is dealt with later using either the awaitoutcome or ignoreoutcome
tasks. When an outcome of defer is specified the idproperty attribute is required.

ignore
If the outcome of the fte:call operation is not important, you can specify a value of ignore.
The task then returns as soon as the fte:call request has been submitted, without allocating
any resources for tracking the outcome of the command. When an outcome of ignore is
specified the idproperty attribute cannot be specified.

If you do not specify the outcome attribute, the task defaults to using the value await.
rcproperty

Optional. Specifies the name of a property to assign the result code of the fte:call request to. The
result code reflects the overall outcome of the fte:call request.
You cannot specify this property if you have also specified an outcome property of ignore or defer.
However, you must specify rcproperty if you have specified an outcome of await.

Parameters specified as nested elements
fte:command

Specifies the command to be called by the agent. You can only associate a single fte:command
element with a givenfte:call operation. The command to be called must be located on the path
specified by the commandPath property in the agent's agent.properties file.

fte:metadata
You can specify metadata to associate with the call operation. This metadata is recorded in the log
messages generated by the call operation. You can only associate a single block of metadata with a
given transfer element; however this block can contain many pieces of metadata.

Example
This example shows how to call a command at AGENT1 running on queue manager QM1. The
command to call is the script command.sh, and the script is called with a single argument of xyz. The
command command.sh is located on the path specified by the commandPath property in the agent's
agent.properties file.

<fte:call cmdqm="QM0@localhost@1414@SYSTEM.DEF.SVRCONN"

Developing applications reference 2089

 agent="AGENT1@QM1"
 rcproperty="call.rc"
 origuser="bob"
 jobname="${job.id}">

 <fte:command command="command.sh" successrc="1" retrycount="5" retrywait="30">
 <fte:arg value="xyz"/>
 </fte:command>

 <fte:metadata>
 <fte:entry name="org.foo.accountName" value="BDG3R"/>
 </fte:metadata>

</fte:call>

Related tasks
Using Apache Ant with MFT

fte:cancel Ant task
Cancels a Managed File Transfer managed transfer or managed call. A managed transfer might have been
created using the fte:filecopy or fte:filemove tasks. A managed call might have been created
using the fte:call task.

Attributes
agent

Required. Specifies the agent to submit the fte:cancel request to. The value is in the form:
agentname@qmgrname where agentname is the name of the agent and qmgrname is the name
of the queue manager that this agent is directly connected to.

cmdqm
Optional. The command queue manager to submit the request to. Specify this information in the form
qmgrname@host@port@channel, where:

• qmgrname is the name of the queue manager
• host is the optional host name of the system where the queue manager is running
• port is the optional port number that the queue manager is listening on
• channel is the optional SVRCONN channel to use

If you omit the host, port, or channel information for the command queue manager, the connection
information specified in the command.properties file is used.

Attention: If no value is specified for the:

• host variable, bindings mode is used
• port variable, the value 1414 is used
• channel variable, the SYSTEM.DEF.SVRCONN is used.

See The MFT command.properties file for more information.

However, you cannot skip the attributes in the middle, for example,
qmgrname@host@@channel. You can have, for example, qmgrname@host, or
qmgrname@host@port, or qmgrname@hostport@@channel.

MFT splits the given attribute using the @ delimiter. Depending on the number of tokens found,
it takes the first token as qmgrname, the second one as host, the third one as port and finally
channel.

For more information, see The MFT command.properties file.
You can use the com.ibm.wmqfte.propertySet property to specify which command.properties
file to use. For more information, see com.ibm.wmqfte.propertySet.
If you do not use the cmdqm attribute, the task defaults to using the
com.ibm.wmqfte.ant.commandQueueManager property, if this property is set. If the

2090 IBM MQ Developing Applications Reference

com.ibm.wmqfte.ant.commandQueueManager property is not set, a connection to the default
queue manager, defined in the command.properties file, is attempted. The format of the
com.ibm.wmqfte.ant.commandQueueManager property is the same as the cmdqm attribute, that
is, qmgrname@host@port@channel.

id
Required. Specifies the transfer identifier of the transfer to cancel. Transfer identifiers are generated
at the point a transfer request is submitted by both the fte:filecopy and fte:filemove tasks.

origuser
Optional. Specifies the originating user identifier to associate with the cancel request. If the origuser
attribute is not used, the task defaults to using the user ID that is used to run the Ant script.

Example
The example sends a fte:cancel request to the command queue manager qm0. The fte:cancel
request is targeted at agent1 on queue manager qm1 for the transfer identifier populated by the
transfer.id variable. The request is run using the "bob" user ID.

<fte:cancel cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 agent="agent1@qm1"
 id="${transfer.id}"
 origuser="bob"/>

Related tasks
Using Apache Ant with MFT

fte:filecopy Ant task
The fte:filecopy task copies files between Managed File Transfer agents. The file is not deleted from
the source agent.

Attributes
cmdqm

Optional. The command queue manager to submit the request to. Specify this information in the form
qmgrname@host@port@channel, where:

• qmgrname is the name of the queue manager
• host is the optional host name of the system where the queue manager is running
• port is the optional port number that the queue manager is listening on
• channel is the optional SVRCONN channel to use

If you omit the host, port, or channel information for the command queue manager, the connection
information specified in the command.properties file is used.

Attention: If no value is specified for the:

• host variable, bindings mode is used
• port variable, the value 1414 is used
• channel variable, the SYSTEM.DEF.SVRCONN is used.

See The MFT command.properties file for more information.

However, you cannot skip the attributes in the middle, for example,
qmgrname@host@@channel. You can have, for example, qmgrname@host, or
qmgrname@host@port, or qmgrname@hostport@@channel.

MFT splits the given attribute using the @ delimiter. Depending on the number of tokens found,
it takes the first token as qmgrname, the second one as host, the third one as port and finally
channel.

Developing applications reference 2091

For more information, see The MFT command.properties file.
You can use the com.ibm.wmqfte.propertySet property to specify which command.properties
file to use. For more information, see com.ibm.wmqfte.propertySet.
If you do not use the cmdqm attribute, the task defaults to using the
com.ibm.wmqfte.ant.commandQueueManager property, if this property is set. If the
com.ibm.wmqfte.ant.commandQueueManager property is not set, a connection to the default
queue manager, defined in the command.properties file, is attempted. The format of the
com.ibm.wmqfte.ant.commandQueueManager property is the same as the cmdqm attribute, that
is, qmgrname@host@port@channel.

dst
Required. Specifies the destination agent for the copy operation. Specify this information in the form:
agentname@qmgrname where agentname is the name of the destination agent and qmgrname is the
name of the queue manager that this agent is directly connected to.

idproperty
Optional unless you have specified an outcome of defer. Specifies the name of a property to assign
the transfer identifier to. Transfer identifiers are generated at the point a transfer request is submitted
and you can use transfer identifiers to track the progress of a transfer, diagnose problems with a
transfer, and cancel a transfer.
You cannot specify this property if you have also specified an outcome property of ignore. However,
you must specify idproperty if you have also specified an outcome property of defer.

jobname
Optional. Assigns a job name to the copy request. You can use job names to create logical groups of
transfers. Use the “fte:uuid Ant task” on page 2100 task to generate pseudo-unique job names. If you
do not use the jobname attribute, the task defaults to using the com.ibm.wmqfte.ant.jobName
property value, if this property is set. If you do not set this property, no job name is associated with
the copy request.

origuser
Optional. Specifies the originating user identifier to associate with the copy request. If you do not use
the origuser attribute, the task defaults to using the user ID that is used to run the Ant script.

outcome
Optional. Determines whether the task waits for the copy operation to complete before returning
control to the Ant script. Specify one of the following options:
await

The task waits for the copy operation to complete before returning. When an outcome of await is
specified the idproperty attribute is optional.

defer
The task returns as soon as the copy request has been submitted and assumes that the outcome
of the copy operation is dealt with later using either the “fte:awaitoutcome Ant task” on page
2087 or “fte:ignoreoutcome Ant task” on page 2098 tasks. When an outcome of defer is
specified the idproperty attribute is required.

ignore
If the outcome of the copy operation is not important, you can specify a value of ignore. The task
then returns as soon as the copy request has been submitted, without allocating any resources for
tracking the outcome of the transfer. When an outcome of ignore is specified the idproperty
attribute cannot be specified.

If you do not specify the outcome attribute, the task defaults to using the value await.
priority

Optional. Specifies the priority to associate with the copy request. In general, higher priority transfer
requests take precedence over lower priority requests. The priority value must be in the range 0 - 9
(inclusive). A priority value of 0 is the lowest priority and a value of 9 is the highest priority. If you do
not specify the priority attribute, the transfer defaults to a priority of 0.

2092 IBM MQ Developing Applications Reference

rcproperty
Optional. Specifies the name of a property to assign the result code of the copy request to. The result
code reflects the overall outcome of the copy request.
You cannot specify this property if you have also specified an outcome property of ignore or defer.
However, you must specify rcproperty if you specify an outcome of await.

transferRecoveryTimeout
Optional. Sets the amount of time, in seconds, during which a source agent keeps trying to recover a
stalled file transfer. Specify one of the following options:
-1

The agent continues to attempt to recover the stalled transfer until the transfer is complete. Using
this option is the equivalent of the default behavior of the agent when the property is not set.

0
The agent stops the file transfer as soon as it enters recovery.

>0
The agent continues to attempt to recover the stalled transfer for the amount of time in seconds
as set by the positive integer value specified. For example,

<fte:filecopy cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 src="agent1@qm1" dst="agent2@qm2"
 rcproperty="copy.result" transferRecoveryTimeout="21600">

 <fte:filespec srcfilespec="/home/fteuser1/file.bin" dstfile="/home/fteuser2/
file.bin"/>

</fte:filecopy>

indicates that the agent keeps trying to recover the transfer for 6 hours from when it enters
recovery. Maximum value for this attribute is 999999999.

Specifying the transfer recovery timeout value in this way sets it on a per transfer basis. To set a global
value for all transfers in a Managed File Transfer network, you can add a property to the Transfer
recovery timeout properties. For more information, see Timeout option for transfers in recovery.

src
Required. Specifies the source agent for the copy operation. Specify this information in the form:
agentname@qmgrname where agentname is the name of the source agent and qmgrname is the name
of the queue manager that this agent is directly connected to.

Parameters specified as nested elements
fte:filespec

Required. You must specify at least one file specification that identifies the files to copy. You can
specify more than one file specification if required. See “fte:filespec Ant nested element” on page
2100 for more information.

fte:metadata
You can specify metadata to associate with the copy operation. This metadata is carried with the
transfer and is recorded in the log messages generated by the transfer. You can only associate a
single block of metadata with a given transfer element; however this block can contain many pieces of
metadata. See the fte:metadata topic for more information.

fte:presrc
Specifies a program invocation to take place at the source agent before the transfer starts. You can
only associate a single fte:presrc element with a given transfer. See the program invocation topic
for more information.

fte:predst
Specifies a program invocation to take place at the destination agent before the transfer starts. You
can only associate a single fte:predst element with a given transfer. See the program invocation
topic for more information.

Developing applications reference 2093

fte:postsrc
Specifies a program invocation to take place at the source agent after the transfer has completed. You
can only associate a single fte:postsrc element with a given transfer. See the program invocation
topic for more information.

fte:postdst
Specifies a program invocation to take place at the destination agent after the transfer has completed.
You can only associate a single fte:postdst element with a given transfer. See the program
invocation topic for more information.

If fte:presrc, fte:predst, fte:postsrc, fte:postdst, and exits do not return a success status, the rules are as
follows in the order specified:

1. Run the source start exits. If source start exits fail the transfer fails and nothing further is run.
2. Run the pre-source call (when present). If the pre-source call fails, the transfer fails and nothing

further is run.
3. Run the destination start exits. If the destination start exits fail the transfer fails and nothing further is

run.
4. Run the pre-destination call (when present). If the pre-destination call fails, the transfer fails and

nothing further is run.
5. Perform the file transfers.
6. Run the destination end exits. There is no failure status for these exits.
7. If the transfer is successful (if some files transfer successfully, it is deemed successful) run the

post-destination call (if present). If the post-destination call fails, the transfer fails.
8. Run the source end exits. There is no failure status for these exits.
9. If the transfer is successful run the post-source call (if present). If the post-source call fails, the

transfer fails.

Examples

This example shows a basic file transfer between agent1 and agent2. The command to start the file
transfer is sent to a queue manager called qm0, using a client transport mode connection. The result of
the file transfer operation is assigned to the property called copy.result.

<fte:filecopy cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 src="agent1@qm1" dst="agent2@qm2"
 rcproperty="copy.result">

 <fte:filespec srcfilespec="/home/fteuser1/file.bin" dstfile="/home/fteuser2/file.bin"/>

</fte:filecopy>

This example shows the same file transfer, but with the addition of metadata and a program start to take
place at the source agent after the transfer has completed.

<fte:filecopy cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 src="agent1@qm"1 dst="agent2@qm2"
 rcproperty="copy.result">

 <fte:metadata>
 <fte:entry name="org.example.departId" value="ACCOUNTS"/>
 <fte:entry name="org.example.batchGroup" value="A1"/>
 </fte:metadata>

 <fte:filespec srcfilespec="/home/fteuser1/file.bin" dstfile="/home/fteuser2/file.bin"/>

 <fte:postsrc command="/home/fteuser2/scripts/post.sh" successrc="1" >
 <fte:arg value="/home/fteuser2/file.bin"/>
 </fte:postsrc>
</fte:filecopy>

2094 IBM MQ Developing Applications Reference

Related concepts
Timeout option for file transfers in recovery
Related tasks
Using Apache Ant with MFT

fte:filemove Ant task
The fte:filemove task moves files between Managed File Transfer agents. When a file has been
successfully transferred from the source agent to the destination agent, the file is deleted from the source
agent.

Attributes
cmdqm

Optional. The command queue manager to submit the request to. Specify this information in the form
qmgrname@host@port@channel, where:

• qmgrname is the name of the queue manager
• host is the optional host name of the system where the queue manager is running
• port is the optional port number that the queue manager is listening on
• channel is the optional SVRCONN channel to use

If you omit the host, port, or channel information for the command queue manager, the connection
information specified in the command.properties file is used.

Attention: If no value is specified for the:

• host variable, bindings mode is used
• port variable, the value 1414 is used
• channel variable, the SYSTEM.DEF.SVRCONN is used.

See The MFT command.properties file for more information.

However, you cannot skip the attributes in the middle, for example,
qmgrname@host@@channel. You can have, for example, qmgrname@host, or
qmgrname@host@port, or qmgrname@hostport@@channel.

MFT splits the given attribute using the @ delimiter. Depending on the number of tokens found,
it takes the first token as qmgrname, the second one as host, the third one as port and finally
channel.

For more information, see The MFT command.properties file.
You can use the com.ibm.wmqfte.propertySet property to specify which command.properties
file to use. For more information, see com.ibm.wmqfte.propertySet.
If you do not use the cmdqm attribute, the task defaults to using the
com.ibm.wmqfte.ant.commandQueueManager property, if this property is set. If the
com.ibm.wmqfte.ant.commandQueueManager property is not set, a connection to the default
queue manager, defined in the command.properties file, is attempted. The format of the
com.ibm.wmqfte.ant.commandQueueManager property is the same as the cmdqm attribute, that
is, qmgrname@host@port@channel.

dst
Required. Specifies the destination agent for the copy operation. Specify this information in the form:
agentname@qmgrname where agentname is the name of the destination agent and qmgrname is the
name of the queue manager that this agent is directly connected to.

idproperty
Optional unless you have specified an outcome of defer. Specifies the name of a property to assign
the transfer identifier to. Transfer identifiers are generated at the point a transfer request is submitted

Developing applications reference 2095

and you can use transfer identifiers to track the progress of a transfer, diagnose problems with a
transfer, and cancel a transfer.
You cannot specify this property if you have also specified an outcome property of ignore. However,
you must specify idproperty if you have also specified an outcome property of defer.

jobname
Optional. Assigns a job name to the move request. You can use job names to create logical groups
of transfers. Use the fte:uuid task to generate pseudo-unique job names. If you do not use the
jobname attribute, the task defaults to using the com.ibm.wmqfte.ant.jobName property value, if
this property is set. If you do not set this property, no job name is associated with the move request.

origuser
Optional. Specifies the originating user identifier to associate with the move request. If you do not use
the origuser attribute, the task defaults to using the user ID that is used to run the Ant script.

outcome
Optional. Determines whether the task waits for the move operation to complete before returning
control to the Ant script. Specify one of the following options:
await

The task waits for the move operation to complete before returning. When an outcome of await
is specified the idproperty attribute is optional.

defer
The task returns as soon as the move request has been submitted and assumes that the outcome
of the move operation is dealt with later using either the “fte:awaitoutcome Ant task” on page
2087 or “fte:ignoreoutcome Ant task” on page 2098 task. When an outcome of defer is
specified the idproperty attribute is required.

ignore
If the outcome of the move operation is not important, you can specify a value of ignore.
The task then returns as soon as the move request has been submitted, without allocating any
resources for tracking the outcome of the transfer. When an outcome of ignore is specified the
idproperty attribute cannot be specified.

If you do not specify the outcome attribute, the task defaults to using the value await.
priority

Optional. Specifies the priority to associate with the move request. In general, higher priority transfer
requests take precedence over lower priority requests. The priority value must be in the range 0 - 9
(inclusive). A priority value of 0 is the lowest priority and a value of 9 is the highest priority. If you do
not specify the priority attribute, the transfer defaults to a priority of 0.

rcproperty
Optional. Specifies the name of a property to assign the result code of the move request to. The result
code reflects the overall outcome of the move request.
You cannot specify this property if you have also specified an outcome property of ignore or defer.
However, you must specify rcproperty if you have specified an outcome of await.

transferRecoveryTimeout
Optional. Sets the amount of time, in seconds, during which a source agent keeps trying to recover a
stalled file transfer. Specify one of the following options:
-1

The agent continues to attempt to recover the stalled transfer until the transfer is complete. Using
this option is the equivalent of the default behavior of the agent when the property is not set.

0
The agent stops the file transfer as soon as it enters recovery.

>0
The agent continues to attempt to recover the stalled transfer for the amount of time in seconds
as set by the positive integer value specified. For example,

<fte:filemove cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 src=agent1@qm1 dst="agent2@qm2"

2096 IBM MQ Developing Applications Reference

 rcproperty="move.result" transferRecoveryTimeout="21600">

 <fte:filespec srcfilespec="/home/fteuser1/file.bin" dstfile="/home/fteuser2/
file.bin"/>

</fte:filemove

indicates that the agent keeps trying to recover the transfer for 6 hours from when it enters
recovery. Maximum value for this attribute is 999999999.

Specifying the transfer recovery timeout value in this way sets it on a per transfer basis. To set a global
value for all transfers in a Managed File Transfer network, you can add a property to the Transfer
recovery timeout properties. For more information, see Timeout option for transfers in recovery.

src
Required. Specifies the source agent for the move operation. Specify this information in the form:
agentname@qmgrname where agentname is the name of the source agent and qmgrname is the
name of the queue manager that this agent is directly connected to.

Parameters specified as nested elements
fte:filespec

Required. You must specify at least one file specification that identifies the files to move. You can
specify more than one file specification if required. See “fte:filespec Ant nested element” on page
2100 for more information.

fte:metadata
Optional. You can specify metadata to associate with the file move operation. This metadata is
carried with the transfer and is recorded in the log messages generated by the transfer. You can only
associate a single block of metadata with a given transfer element; however this block can contain
many pieces of metadata. See the fte:metadata topic for more information.

fte:presrc
Optional. Specifies a program invocation to take place at the source agent before the transfer
starts. You can only associate a single fte:presrc element with a given transfer. See the program
invocation topic for more information.

fte:predst
Optional. Specifies a program invocation to take place at the destination agent before the transfer
starts. You can only associate a single fte:predst element with a given transfer. See the program
invocation topic for more information.

fte:postsrc
Optional. Specifies a program invocation to take place at the source agent after the transfer has
completed. You can only associate a single fte:postsrc element with a given transfer. See the
program invocation topic for more information.

fte:postdst
Optional. Specifies a program invocation to take place at the destination agent after the transfer has
completed. You can only associate a single fte:postdst element with a given transfer. See the
program invocation topic for more information.

If fte:presrc, fte:predst, fte:postsrc, fte:postdst, and exits do not return a success status, the rules are as
follows in the order specified:

1. Run the source start exits. If source start exits fail the transfer fails and nothing further is run.
2. Run the pre-source call (when present). If the pre-source call fails, the transfer fails and nothing

further is run.
3. Run the destination start exits. If the destination start exits fail the transfer fails and nothing further is

run.
4. Run the pre-destination call (when present). If the pre-destination call fails, the transfer fails and

nothing further is run.
5. Perform the file transfers.

Developing applications reference 2097

6. Run the destination end exits. There is no failure status for these exits.
7. If the transfer is successful (if some files transfer successfully, the transfer is considered successful),

run the post-destination call (if present). If the post-destination call fails, the transfer fails.
8. Run the source end exits. There is no failure status for these exits.
9. If the transfer is successful, run the post-source call (if present). If the post-source call fails, the

transfer fails.

Examples
This example shows a basic file move between agent1 and agent2. The command to start the file move
is sent to a queue manager called qm0, using a client transport mode connection. The result of the file
transfer operation is assigned to the property called move.result.

<fte:filemove cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 src="agent1@qm1" dst="agent2@qm2"
 rcproperty="move.result">

 <fte:filespec srcfilespec="/home/fteuser1/file.bin" dstfile="/home/fteuser2/file.bin"/>

</fte:filemove>

Related concepts
Timeout option for file transfers in recovery
Related tasks
Using Apache Ant with MFT

fte:ignoreoutcome Ant task
Ignore the outcome of an fte:filecopy, fte:filemove, or fte:call command. When you specify an
fte:filecopy, fte:filemove, or fte:call task to have an outcome of defer, the Ant task allocates
resources to tracking this outcome. If you are no longer interested in the outcome, you can use the
fte:ignoreoutcome task to free those resources.

Attributes
id

Required. Identifies the outcome that is no longer of interest. Typically you specify this identifier using
a property that you set using the idproperty attribute of the “fte:filecopy Ant task” on page 2091,
“fte:filemove Ant task” on page 2095, or “fte:call Ant task” on page 2088 task.

Example
This example shows how you can use the fte:ignoreoutcome task to free the resources allocated to
tracking the outcome of the earlier “fte:filecopy Ant task” on page 2091 task.

<!-- issue a file copy request -->
<fte:filecopy cmdqm="qm1@localhost@1414@SYSTEM.DEF.SVRCONN"
 src="agent1@qm1" dst="agent1@qm1"
 idproperty="copy.id"
 outcome="defer"/>

<!-- do some other things -->

<!-- decide that the result of the copy is not interesting -->
<fte:ignoreoutcome id="${copy.id}"/>

Related tasks
Using Apache Ant with MFT

2098 IBM MQ Developing Applications Reference

fte:ping Ant task
This IBM MQ Managed File Transfer Ant task pings an agent to elicit a response, and so determines if the
agent is able to process transfers.

Note: IBM WebSphere MQ File Transfer Edition (FTE) is no longer a supported product. To migrate from
FTE to the Managed File Transfer component in IBM MQ, see Migrating Managed File Transfer.

Attributes
agent

Required. Specifies the agent to submit the fte:ping request to. The value is in the form:
agentname@qmgrname where agentname is the name of the agent and qmgrname is the name
of the queue manager that this agent is directly connected to.

cmdqm
Optional. The command queue manager to submit the request to. Specify this information in the form
qmgrname@host@port@channel, where:

• qmgrname is the name of the queue manager
• host is the optional host name of the system where the queue manager is running
• port is the optional port number that the queue manager is listening on
• channel is the optional SVRCONN channel to use

If you omit the host, port, or channel information for the command queue manager, the connection
information specified in the command.properties file is used.

Attention: If no value is specified for the:

• host variable, bindings mode is used
• port variable, the value 1414 is used
• channel variable, the SYSTEM.DEF.SVRCONN is used.

See The MFT command.properties file for more information.

However, you cannot skip the attributes in the middle, for example,
qmgrname@host@@channel. You can have, for example, qmgrname@host, or
qmgrname@host@port, or qmgrname@hostport@@channel.

MFT splits the given attribute using the @ delimiter. Depending on the number of tokens found,
it takes the first token as qmgrname, the second one as host, the third one as port and finally
channel.

For more information, see The MFT command.properties file.
You can use the com.ibm.wmqfte.propertySet property to specify which command.properties
file to use. For more information, see com.ibm.wmqfte.propertySet.
If you do not use the cmdqm attribute, the task defaults to using the
com.ibm.wmqfte.ant.commandQueueManager property, if this property is set. If the
com.ibm.wmqfte.ant.commandQueueManager property is not set, a connection to the default
queue manager, defined in the command.properties file, is attempted. The format of the
com.ibm.wmqfte.ant.commandQueueManager property is the same as the cmdqm attribute, that
is, qmgrname@host@port@channel.

rcproperty
Required. Names a property to store the return code of the ping operation in.

timeout
Optional. The maximum amount of time, in seconds, for the task to wait for the agent to respond. The
minimum timeout is zero seconds, however a timeout of minus one can also be specified such that
the command waits forever for the agent to respond. If no value is specified for the timeout then the
default is to wait up to 5 seconds for the agent to respond.

Developing applications reference 2099

Example
This example sends a fte:ping request to agent1 hosted by qm1. The fte:ping request waits 15
seconds for the agent to respond. The outcome of the fte:ping request is stored in a property called
ping.rc.

<fte:ping agent="agent1@qm1" rcproperty="ping.rc" timeout="15"/>

Return codes
0

Command completed successfully.
2

Command timed out.
Related tasks
Using Apache Ant with MFT

fte:uuid Ant task
Generates a pseudo-random unique identifier and assigns it to a given property. For example, you can use
this identifier to generate job names for other file transfer operations.

Attributes
length

Required. The numeric length of UUID to generate. This length value does not include the length of
any prefix, specified by the prefix parameter.

property
Required. The name of the property to assign the generated UUID to.

prefix
Optional. A prefix to add to the generated UUID. This prefix is not counted as part of the length of the
UUID, as specified by the length parameter.

Example
This example defines a UUID that starts with the letters ABC followed by 16 pseudo-random hex
characters. The UUID is assigned to a property named uuid.property.

<fte:uuid length="16" property="uuid.property" prefix="ABC"/>

Related tasks
Using Apache Ant with MFT

fte:filespec Ant nested element
The fte:filespec parameter is used as a nested element in other tasks. Use fte:filespec to

describe a mapping between one or more source files, directories or data sets, and a

destination. Typically this element is used when expressing a set of files or directories or
data sets to move or copy.

Nested by:
• The fte:filecopy task
• The fte:filemove task

2100 IBM MQ Developing Applications Reference

Source specification attributes
You must specify one of srcfilespec or srcqueue.
srcfilespec

Specifies the source of the file operation. The value of this attribute can include a wildcard.
srcqueue

Specifies the source of the transfer is a queue. The transfer moves data from messages stored on
the queue specified by this attribute. You cannot specify this attribute if the fte:filespec task is
nested within the fte:filecopy task.

The srcqueue attribute is not supported when the source agent is a protocol bridge agent.

Destination specification attributes
You must specify one of dstdir, dstds, dstfilespace, dstfile, dstqueue or dstpds.
dstdir

Specifies a directory as the destination for a file operation.

dstds
Specifies a data set as the destination for a file operation.

This attribute is supported only when the destination agent is running on the z/OS platform.

dstfile
Specifies a file as the destination for a file operation.

dstfilespace
Specifies a file space as the destination for a file operation.
This attribute applies only if the destination agent is an IBM MQ 8.0 web agent that has access to the
web gateway file space.

dstpds
Specifies a partitioned data set as the destination for a file operation.

This attribute is supported only when the destination agent is running on the z/OS platform.

dstqueue

Specifies a queue as the destination for a file to message operation. You can optionally include a
queue manager name in this specification, using the format QUEUE@QUEUEMANAGER. If you do not
specify a queue manager name the destination agent queue manager is used if you have not set
the enableClusterQueueInputOutput agent property to true. If the enableClusterQueueInputOuput
property is set to true, the destination agent uses standard IBM MQ procedures to determine where
the queue is located. You must specify a valid queue name that exists on the queue manager.

If you specify the dstqueue attribute, you cannot specify the srcqueue attributes because these
attributes are mutually exclusive.

The dstqueue attribute is not supported when the destination agent is a protocol bridge agent.

Source option attributes
srcencoding

Optional. The character set encoding used by the file to transfer.

You can specify this attribute only when the conversion attribute is set to a value of text.

If you do not specify the srcencoding attribute, the character set of the source system is used for text
transfers.

srceol
Optional. The end of line delimiter used by the file being transferred. The valid values are as follows:

Developing applications reference 2101

• CRLF - Use a carriage return character followed by a line-feed character as the end of line delimiter.
This convention is typical for Windows systems.

• LF - Use a line-feed character as the end of line delimiter. This convention is typical for UNIX
systems.

You can specify this attribute only when the conversion attribute is set to a value of text. If you do
not specify the srceol attribute, text transfers automatically determine the correct value based on the
operating system of the source agent.

srckeeptrailingspaces
Optional. Determines whether trailing spaces are kept on source records read from a fixed-length-
format data set as part of a text mode transfer. The valid values are as follows:

• true - trailing spaces are kept.
• false - trailing spaces are stripped.

If you do not specify the srckeeptrailingspaces attribute, a default value of false is specified.

You can specify this attribute only if you also specify the srcfilespec attribute and you set the
conversion attribute to a value of text.

srcmsgdelimbytes
Optional. Specifies one or more byte values to insert as the delimiter when appending
multiple messages to a binary file. Each value must be specified as two hexadecimal digits
in the range 00-FF, prefixed by x. Multiple bytes must be comma-separated. For example,
srcmsgdelimbytes="x08,xA4". You can specify the srcmsgdelimbytes attribute only if you have
also specified the srcqueue attribute. You cannot specify the srcmsgdelimbytes attribute if you have
also specified the value text for the conversion attribute.

srcmsgdelimtext
Optional. Specifies a sequence of text to insert as the delimiter when appending multiple messages
to a text file. You can include Java escape sequences for String literals in the delimiter. For example,
srcmsgdelimtext="\u007d\n". The text delimiter is inserted after each message by the source
agent. The text delimiter is encoded to binary format using the source encoding of the transfer. Each
message is read in binary format, the encoded delimiter is appended in binary format to the message,
and the result is transferred in binary format to the destination agent. If the source agent code page
includes shift-in and shift-out states, the agent assumes that each message is in the shift-out state at
the end of the message. At the destination agent the binary data is converted in the same way as a file
to file text transfer. You can only specify the srcmsgdelimtext attribute if you have also specified the
srcqueue attribute and a value of text for the conversion attribute.

srcmsgdelimposition
Optional. Specifies the position that the text or binary delimiter is inserted into. The valid values are as
follows:

• prefix - the delimiters are inserted into the destination file before the data from each message.
• postfix - the delimiters are inserted into the destination file after the data from each message.

You can specify the srcmsgdelimposition attribute only if you have also specified one of the
srcmsgdelimbytes or srcmsgdelimtext attributes.

srcmsggroups
Optional. Specifies that the messages are grouped by IBM MQ group ID. The first complete group
is written to the destination file. If this attribute is not specified, all messages on the source queue
are written to the destination file. You can specify the srcmsggroups attribute only if you have also
specified the srcqueue attribute.

srcqueuetimeout
Optional. Specifies the time, in seconds, to wait for one of the following conditions to be met:

• For a new message to be written to the queue.
• If the srcmsggroups attribute was specified, for a complete group to be written on the queue.

2102 IBM MQ Developing Applications Reference

If neither of these conditions are met within the time specified by the value of srcqueuetimeout,
the source agent stops reading from the queue and completes the transfer. If the srcqueuetimeout
attribute is not specified, the source agent stops reading from the source queue immediately if the
source queue is empty or, in the case where the srcmsggroups attribute is specified, if there is no
complete group on the queue. You can specify the srcqueuetimeout attribute only if you have also
specified the srcqueue attribute.

For information about setting the srcqueuetimeout value, see Guidance for specifying a wait time on a
message-to-file transfer.

srcrecdelimbytes
Optional. Specifies one or more byte values to insert as the delimiter when appending multiple
records from a record-oriented source file to a binary file. You must specify each value as two
hexadecimal digits in the range 00-FF, prefixed by x. Multiple bytes must be comma-separated. For
example:

srcrecdelimbytes="x08,xA4"

You can specify the srcrecdelimbytes attribute only if the transfer source file is record oriented, for
example a z/OS data set, and the destination file is a normal, non-record-oriented file. You cannot
specify the srcrecdelimbytes attribute if you have also specified the value text for the conversion
attribute.

srcrecdelimpos
Optional. Specifies the position that the binary delimiter is inserted into. The valid values are as
follows:

• prefix - the delimiters are inserted into the destination file before the data from each source
record-oriented file record.

• postfix - the delimiters are inserted into the destination file after the data from each source record-
oriented file record.

You can specify the srcrecdelimpos attribute only if you have also specified the srcrecdelimbytes
attribute.

Destination option attributes
dstencoding

Optional. The character set encoding to use for the transferred file.

You can specify this attribute only when the conversion attribute is set to a value of text.

If the dstencoding attribute is not specified, the character set of the destination system is used for
text transfers.

dsteol
Optional. The end of line delimiter to use for the transferred file. The valid values are as follows:

• CRLF - Use a carriage return character followed by a line-feed character as the end of line delimiter.
This convention is typical for Windows systems.

• LF - Use a line-feed character as the end of line delimiter. This convention is typical for UNIX
systems.

You can specify this attribute only when the conversion attribute is set to a value of text.

If you do not specify the dsteol attribute, text transfers automatically determine the correct value
based on the operating system of the destination agent.

dstmsgdelimbytes
Optional. Specifies the hexadecimal delimiter to use when splitting a binary file into multiple
messages. All the messages have the same IBM MQ group ID; the last message in the group has
the IBM MQ LAST_MSG_IN_GROUP flag set. The format for specifying a hexadecimal byte as a
delimiter is xNN, where N is a character in the range 0-9 or a-f. You can specify a sequence of

Developing applications reference 2103

hexadecimal bytes as a delimiter by specifying a comma-separated list of hexadecimal bytes, for
example: x3e,x20,x20,xbf.

You can specify the dstmsgdelimbytes attribute only if you have also specified the dstqueue attribute
and the transfer is in binary mode. You can specify only one of the dstmsgsize, dstmsgdelimbytes, and
dstmsgdelimpattern attributes.

dstmsgdelimpattern
Optional. Specifies the Java regular expression to use when splitting a text file into multiple
messages. All the messages have the same IBM MQ group ID; the last message in the group has the
IBM MQ LAST_MSG_IN_GROUP flag set. The format for specifying a regular expression as a delimiter
is a regular expression enclosed in parentheses, (regular_expression), or enclosed in double
quotation marks, "regular_expression". For more information, see Regular expressions used by
MFT.

By default, the length of the string that the regular expression can match is limited by the destination
agent to five characters. You can change this behavior using the maxDelimiterMatchLength agent
property. For more information, see MFT advanced agent properties.

You can specify the dstmsgdelimpattern attribute only if you have also specified the dstqueue
attribute and the transfer is in text mode. You can specify only one of the dstmsgsize,
dstmsgdelimbytes, and dstmsgdelimpattern attributes.

dstmsgdelimposition
Optional. Specifies the position that the text or binary delimiter is expected to be in. The valid values
are as follows:

• prefix - The delimiters are expected at the beginning of each line.
• postfix - The delimiters are expected at the end of each line.

You can specify the dstmsgdelimposition attribute only if you have also specified the
dstmsgdelimpattern attribute.

dstmsgincludedelim
Optional. Specifies whether to include the delimiter that is used to split the file into multiple
messages in the messages. If the dstmsgincludedelim attribute is specified, the delimiter is included
at the end of the message that contains the file data preceding the delimiter. By default the delimiter
is not included in the messages. You can specify the dstmsgincludedelim attribute only if you have
also specified one of the dstmsgdelimpattern and dstmsgdelimbytes attributes.

dstmsgpersist
Optional. Specifies whether messages written to the destination queue are persistent. The valid
values are as follows:

• true - Write persistent messages to the destination queue. This is the default value.
• false - Write non-persistent messages to the destination queue.
• qdef - The persistence value is taken from the DefPersistence attribute of the destination queue.

You can specify this attribute only when the dstqueue attribute is also specified.

dstmsgprops
Optional. Specifies whether the first message written to the destination queue by the transfer has IBM
MQ message properties set. Possible values are:

• true - Set message properties on the first message created by the transfer.
• false - Do not set message properties on the first message created by the transfer. This is the

default value.

For more information, see MQ message properties set by MFT on messages written to destination
queues.

You can specify this attribute only when the dstqueue attribute is also specified.

2104 IBM MQ Developing Applications Reference

dstmsgsize
Optional. Specifies whether to split the file into multiple fixed-length messages. All of the
messages have the same IBM MQ group ID; the last message in the group has the IBM MQ
LAST_MSG_IN_GROUP flag set. The size of the messages is specified by the value of dstmsgsize.
The format of dstmsgsize is lengthunits, where length is a positive integer value and units is one of the
following values:

• B - Bytes. The minimum value allowed is two times the maximum bytes-per-character value of the
code page of the destination messages.

• K - Kibibytes. This is equivalent to 1024 bytes.
• M - Mebibytes. This is equivalent to 1024 kibibytes.

If the file is transferred in text mode, and is in a double-byte character set or multibyte character set,
the file is split into messages on the closest character boundary to the specified message size.

You can specify the dstmsgsize attribute only if you have also specified the dstqueue attribute. You
can specify only one of the dstmsgsize, dstmsgdelimbytes, and dstmsgdelimpattern attributes.

dstunsupportedcodepage
Optional. Specifies the action to take if the destination queue manager, as specified by the dstqueue
attribute, does not support the code page used when transferring file data to a queue as a text
transfer. The valid values for this attribute are as follows:

• binary - continue the transfer but do not apply code page conversion to the data being transferred.
Specifying this value is equivalent to not setting the conversion attribute to text.

• fail - do not continue with the transfer operation. The file is recorded as having failed to transfer.
This is the default.

You can only specify the dstunsupportedcodepage attribute if you have also specified the dstqueue
attribute and a value of text for the conversion attribute.

dsttruncaterecords
Optional. Specifies that destination records longer than the LRECL data set attribute are truncated. If
set to true, the records are truncated. If set to false, the records are wrapped. The default setting is
false. This parameter is valid only for text mode transfers where the destination is a data set.

Other attributes
checksum

Optional. Determines the algorithm used to checksum transferred files.

• MD5 - use the MD5 hashing algorithm.
• NONE - do not use a checksum algorithm.

If you do not specify the checksum attribute, a default value of MD5 is used.
conversion

Optional. Specifies the type of conversion to apply to the file as it is being transferred. Possible values
are:

• binary - apply no conversion.
• text - apply code page conversion between the source and destination systems. Also apply

conversion of line delimiters. The srcencoding, dstencoding, srceol and dsteol attributes
influence the conversion that is applied.

If you do not specify the conversion attribute, a default value of binary is specified.
overwrite

Optional. Determines whether an existing destination file or data set can be overwritten

by the operation. When you specify a value of true, any existing destination file or data

sets are overwritten. When you specify a value of false, the existence of a duplicate file

Developing applications reference 2105

or data set at the destination results in the operation failing. If the overwrite attribute is not specified,
a default value of false is specified.

recurse
Optional. Determines whether the file transfer recurses into subdirectories. When you specify a value
of true, the transfer recurses into subdirectories. When you specify a value of false, the transfer
does not recurse into subdirectories. If the recurse attribute is not specified, a default value of false
is specified.

Example
This example specifies a fte:filespec with a source file of file1.bin and a destination file of
file2.bin.

<fte:filespec srcfilespec="/home/fteuser/file1.bin" dstfile="/home/fteuser/file2.bin"/>

Related tasks
Using Apache Ant with MFT

fte:metadata Ant nested elements
Metadata is used to carry additional user-defined information with a file transfer operation.

See “Metadata for MFT user exits” on page 2110 for more information about how Managed File Transfer
uses metadata.

Nested by:
• The fte:filecopy task
• The fte:filemove task
• The fte:call task

Parameters specified as nested elements
fte:entry

You must specify at least one entry inside the fte:metadata nested element. You can choose to specify
more than one entry. Entries associate a key name with a value. Keys must be unique in a block of
fte:metadata

Entry attributes
name

Required. The name of the key belonging to this entry. This name must be unique across all entry
parameters nested inside a fte:metadata element.

value
Required. The value to assign to this entry.

Example
This example shows a fte:metadata definition that contains two entries.

<fte:metadata>
 <fte:entry name="org.foo.partColor" value="red"/>
 <fte:entry name="org.foo.partSize" value="medium"/>
</fte:metadata>

Related tasks
Using Apache Ant with MFT

2106 IBM MQ Developing Applications Reference

Program invocation nested elements
Programs can be started using one of five nested elements: fte:presrc, fte:predst, fte:postdst,
fte:postsrc, and fte:command. These nested elements instruct an agent to call an external program
as part of its processing. Before you can start a program, you must ensure that the command is in a
location specified by the commandPath property in the agent.properties file of the agent that runs
the command.

Even though each program invocation element has a different name, they share the same set of attributes
and the same set of nested elements. Programs can be started by the fte:filecopy, fte:filemove,
and fte:command Ant tasks.

You cannot invoke programs from a Connect:Direct® bridge agent.

Ant tasks that can invoke programs:
• The fte:filecopy task nests program invocation parameters using the fte:predst, fte:postdst,
fte:presrc, and fte:postsrc nested elements.

• The fte:filemove task nests program invocation parameters using the fte:predst, fte:postdst,
fte:presrc, and fte:postsrc nested elements.

• The fte:call task nests program invocation parameters using the fte:command nested element.

Attributes
command

Required. Names the program to call. For the agent to be able to run a command, the command must
be in a location specified by the commandPath property in the agent's agent.properties file. For
more information, see commandPath MFT property. Any path information specified in the command
attribute is considered relative to a location specified by the commandPath property. When type is
executable, an executable program is expected otherwise a script appropriate for the call type is
expected.

retrycount
Optional. The number of times to retry calling the program if the program does not return a success
return code. The program named by the command attribute is called up to this number of times.
The value assigned to this attribute must be non-negative. If you do not specify the retrycount
attribute, a default value of zero is used.

retrywait
Optional. The time to wait, in seconds, before trying the program invocation again. If the program
named by the command attribute does not return a success return code and the retrycount
attribute specifies a non-zero value, this parameter determines the time to wait between retries. The
value assigned to this attribute must be non-negative. If you do not specify the retrywait attribute,
a default value of zero is used.

successrc
Optional. The value of this attribute is used to determine when the program invocation successfully
runs. The process return code for the command is evaluated using this expression. The value can be
composed of one or more expressions combined with a vertical bar character (|) to signify Boolean
OR, or an ampersand (&) character to signify Boolean AND. Each expression can be one of the
following types of expression:

• A number to indicate an equality test between the process return code and the number.
• A number prefixed with a ">" character to indicate a greater-than test between the number and the

process return code.
• A number prefixed with a "<" character to indicate a less-than test between the number and the

process return code.
• A number prefixed with a "!" character to indicate a not-equal-to test between the number and the

process return code.

Developing applications reference 2107

For example: >2&<7&!5|0|14 is interpreted as the following return codes being successful: 0, 3,
4, 6, 14. All other return codes are interpreted as being unsuccessful. If you do not specify the
successrc attribute, a default value of zero is used. This means that the command is judged to have
successfully run if, and only if, it returns a code of zero.

type
Optional. The value of this attribute specifies what type of program is being called. Specify one of the
following options:
executable

The task calls an executable program. Can have additional arguments specified using the arg
nested element. The program is expected to be accessible on the commandPath and where
applicable have execute permission set. UNIX scripts can be called as long as they specify a shell
program (for example, first line of shell script file is: #!/bin/sh). Command output written to
stderr or stdout is sent to the Managed File Transfer log for the call. However, the amount of data
output is limited by the agent configuration. The default is 10K bytes of data, but you can override
this default using the agent property: maxCommandOutput.

antscript
The task runs the specified Ant script, using the fteAnt command. Properties can be specified
using the property nested element. Ant targets can be specified using the target nested element.
The Ant script is expected to be accessible on the commandPath. Ant output written to stderr or
stdout is sent to the Managed File Transfer log for the call. However, the amount of data output
is limited by the agent configuration. The default is 10K bytes of data but you can override this
default using the agent property: maxCommandOutput.

jcl
The value jcl is supported on z/OS only and runs the specified z/OS JCL script. The JCL is
submitted as a job and requires the job card to be present. When the job is submitted successfully
the JCL command output, written to the Managed File Transfer log, contains the following text:
JOB job_name(job_id) where:

• job_name is the name of the job identified by the job card in the JCL.
• job_id is the z/OS system generated job ID.

If the job cannot be submitted successfully, the JCL script command fails and writes a message
to the log indicating the reason for the failure (for example no job card is present). To understand
whether the job has been run or completed successfully, use a system service such as SDSF.
Managed File Transfer does not provide the information because it only submits the job; the
system then determines when to run the job and how the job output is presented. Because a JCL
script is submitted as a batch job it is not advisable to specify jcl for a presrc or predst nested
element because you only know that the job has been submitted successfully and not whether it
ran to completion successfully before the transfer starts. There are no nested elements that are
valid with a type of jcl.

The following example shows a JCL job:

//MYJOB JOB
//*
//MYJOB EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=H
//SYSUT1 DD DSN=FRED.DEMO.TXT,DISP=SHR
//SYSUT2 DD DSN=BOB.DEMO.TXT,DISP=(NEW,CATLG),
// RECFM=VB,LRECL=133,BLKSIZE=2048,
// SPACE=(TRK,(30,5),RLSE)
//SYSIN DD DUMMY

Parameters specified as nested elements
fte:arg

Only valid where the value of the type attribute is executable. Use nested fte:arg elements to
specify arguments to the program that is being called as part of the program invocation. The program

2108 IBM MQ Developing Applications Reference

arguments are built from the values specified by the fte:arg elements in the order that the fte:arg
elements are encountered. You can choose to specify zero or more fte:arg elements as nested
elements of a program invocation.

fte:property
Only valid where the value of the type attribute is antscript. Use the name and value attributes of
the nested fte:property elements to pass in name-value pairs to the Ant script. You can choose to
specify zero or more fte:property elements as nested elements of a program invocation.

fte:target
Only valid where the value of the type attribute is antscript. Specify a target in the Ant script to call.
You can choose to specify zero or more fte:target elements as nested elements of a program
invocation.

Arg attributes
value

Required. The value of the argument to pass to the program being called.

Property attributes
name

Required. The name of a property to pass to the Ant script.
value

Required. The value to associate with the property name being passed to the Ant script.

Examples
This example shows an fte:postsrc program invocation being specified as part of an fte:filecopy task.
The program invocation is for a program called post.sh and is supplied a single argument of /home/
fteuser2/file.bin.

<fte:filecopy cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 src="agent1@qm1" dst="agent2@qm2"
 rcproperty="copy.result">
 <fte:filespec srcfilespec="/home/fteuser1/file.bin" dstfile="/home/fteuser2/file.bin"/>

 <fte:postsrc command="post.sh" successrc="1" >
 <fte:arg value="/home/fteuser2/file.bin"/>
 </fte:postsrc>

</fte:filecopy>

This example shows an fte:command program invocation being specified as part of a fte:call task. The
program invocation is for an executable called command.sh, which is not passed any command-line
arguments. If command.sh does not return a success return code of 1, the command is tried again after
30 seconds.

<fte:call cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 agent="agent1@qm1"
 rcproperty="call.rc"
 origuser="bob"
 jobname="${job.id}">
 <fte:command command="command.sh" successrc="1" retrycount="5" retrywait="30"/>
</fte:call>

This example shows an fte:command program invocation being specified as part of a fte:call task. The
program invocation is for the copy and compress targets in an Ant script called script.xml, which is
passed two properties.

<fte:call cmdqm="qm0@localhost@1414@SYSTEM.DEF.SVRCONN"
 agent="agent1@qm1"
 rcproperty="call.rc"
 origuser="bob"

Developing applications reference 2109

 jobname="${job.id}">
 <fte:command command="script.xml" type="antscript">
 <property name="src" value="AGENT5@QM5"/>
 <property name="dst" value="AGENT3@QM3"/>
 <target name="copy"/>
 <target name="compress"/>
 </fte:command>
</fte:call>

Related tasks
Specifying programs to run with MFT
Using Apache Ant with MFT

MFT user exits for customization reference
Reference information to help you configure user exits for Managed File Transfer.
Related reference
MFT source and destination user exits

Metadata for MFT user exits
There are three different types of metadata that can be supplied to user exit routines for Managed File
Transfer: environment, transfer, and file metadata. This metadata is presented as maps of Java key-value
pairs.

Environment metadata
Environment metadata is passed to all user exit routines and describes the agent runtime environment
that the user exit routine is being called from. This metadata is read-only and cannot be updated by any
user exit routine.

Table 884. Environment metadata

Key Description

AGENT_CONFIGURATION_DIRECTORY_KEY The name of the directory that contains the agent's
configuration information.

AGENT_PRODUCT_DIRECTORY_KEY The name of the directory that the agent code has
been installed in.

AGENT_VERSION_KEY Version number for the agent runtime that calls the
exit routine.

The key names and value names given in Table 1 are constants that are defined in the
EnvironmentMetaDataConstants interface.

Transfer metadata
Transfer metadata is passed to all user exit routines. The metadata consists of system-supplied values
and user-supplied values. If you change any system-supplied values, these changes are ignored. The
initial user-supplied values for the source transfer start user exit are based on those values you supply
when you define the transfer. The source agent can change user-supplied values as part of the processing
of the source transfer start user exit. This user exit is called before the entire file transfer starts. These
changes are used in subsequent calls to other exit routines that relate to that transfer. Transfer metadata
is applied to an entire transfer.

Although all user exits can read values from the transfer metadata, only the source transfer start user exit
can change transfer metadata

You cannot use transfer metadata to propagate information between different file transfers.

The system-supplied transfer metadata is detailed in Table 2:

2110 IBM MQ Developing Applications Reference

Table 885. Transfer metadata

Key Description

DESTINATION_AGENT_KEY The name of the agent that is the destination for the transfer.

JOB_NAME_KEY The job name associated with the transfer request

MQMD_USER_KEY The MQMD user field from the message used to submit the
transfer request

ORIGINATING_HOST_KEY The host name specified as the originating host name in the
transfer request

ORIGINATING_USER_KEY The user name specified as the originating user ID in the
transfer request

SOURCE_AGENT_KEY The name of the agent that is the source of the transfer

TRANSFER_ID_KEY The identifier of the transfer

The key names and value names given in Table 2 are constants that are defined in the
TransferMetaDataConstants interface.

File metadata
The file metadata is passed to the source transfer start exit as part of the file specification. There is
separate file metadata for the source and destination files.

You cannot use file metadata to propagate information between different file transfers.

Table 886. File metadata

Key Permitted values Description

CONVERT_LINE_SEPARATORS Key value used for text transfers
to indicate whether CRLF (carriage
return-line feed) or LF (line
feed) line separator sequences in
source data are converted to the
line separator sequence at the
destination.

DELIMITER_KEY Key value used to define a delimiter
to separate record data when
transferring record-oriented data to
normal files.

Also used for message-to-file and
file-to-message transfers.

DELIMITER_POSITION_KEY DELIMITER_POSITION_PREFIX_VALUE
DELIMITER_POSITION_POSTFIX_VALUE

Use with the DELIMITER_KEY to
define the position of the delimiter;
either prefix or postfix.

DELIMITER_TYPE_KEY DELIMITER_TYPE_BINARY_VALUE
DELIMITER_TYPE_TEXT_VALUE
DELIMITER_TYPE_SIZE_VALUE

Use with the DELIMITER_KEY to
define the type of delimiter.

DESTINATION_EXIST_KEY DESTINATION_EXIST_KEY_ERROR_VALUE
DESTINATION_EXIST_KEY_OVERWRITE_VALUE

Determines the file transfer
behavior if the destination file
exists.

FILE_ALIAS_KEY Key value used to define an alias for
the file being transferred.

FILE_CHECKSUM_METHOD_KEY FILE_CHECKSUM_METHOD_NONE_VALUE
FILE_CHECKSUM_METHOD_MD5_VALUE

Determines the checksum method
to use when transferring the file.

FILE_CONVERSION_KEY FILE_CONVERSION_TEXT_VALUE
FILE_CONVERSION_BINARY_VALUE

Determines the type of conversion
applied to the file contents.

Developing applications reference 2111

Table 886. File metadata (continued)

Key Permitted values Description

FILE_ENCODING_KEY Determines the encoding used for a
text file.

FILE_END_OF_LINE_KEY FILE_END_OF_LINE_LF_VALUE
FILE_END_OF_LINE_CRLF_VALUE

Determines the character sequence
that denotes the end of a line: <LF>
or <CR><LF>.

FILE_SPACE_ALIAS Determines the alias of a file in the
file space.

Note: This metadata can be used
only if the FILE_TYPE_KEY is
FILE_TYPE_FILE_SPACE_VALUE

FILE_SPACE_NAME Determines the name of the file
space.

Note: This metadata can be used
only if the FILE_TYPE_KEY is
FILE_TYPE_FILE_SPACE_VALUE

FILE_TYPE_KEY FILE_TYPE_FILE_VALUE FILE_TYPE_DIRECTORY_VALUE
FILE_TYPE_DATASET_VALUE FILE_TYPE_PDS_VALUE
FILE_TYPE_QUEUE_VALUE FILE_TYPE_FILE_SPACE_VALUE

Determines the destination file,
queue, or file space specification.

GROUP_ID_KEY Key value used for message-to-
file transfers to determine the
group of messages to read
from the source queue. This
attribute is valid only when the
value of USE_GROUPS_KEY is
USE_GROUPS_TRUE_VALUE.

INCLUDE_DELIMITER_IN_MESSAGE_
KEY

INCLUDE_DELIMITER_IN_MESSAGE_TRUE_VALUE
INCLUDE_DELIMITER_IN_MESSAGE_FALSE_VALUE

Key value used for file-to-message
transfers to determine whether
to include the delimiters that
were used to split the file
into multiple messages at the
end of the messages. This
attribute is valid only when the
value of DELIMITER_TYPE_KEY is
DELIMITER_TYPE_BINARY_VALUE
DELIMITER_TYPE_TEXT_VALUE.

INSERT_RECORD_LINE_SEPARATOR_
KEY

Key value used for text transfers
from record-oriented files to
specify whether line separators are
inserted into the data after each
record.

KEEP_TRAILING_SPACES_KEY KEEP_TRAILING_SPACES_TRUE_VALUE
KEEP_TRAILING_SPACES_FALSE_VALUE

Key value used to determine
whether trailing spaces are
removed from records read from
fixed-length-format data sets.

NEW_RECORD_ON_LINE_SEPARATOR
_KEY

Key value used for text transfers
to record- oriented files to specify
whether line separators in the data
are included with the record data
or cause a new record (and are not
written).

PERSISTENT_KEY PERSISTENT_TRUE_VALUE
PERSISTENT_FALSE_VALUE
PERSISTENT_QDEF_VALUE

Key value used for file-to-message
transfers to determine whether the
messages are persistent.

2112 IBM MQ Developing Applications Reference

Table 886. File metadata (continued)

Key Permitted values Description

SET_MQ_PROPS_KEY SET_MQ_PROPS_TRUE_VALUE
SET_MQ_PROPS_FALSE_VALUE

Key value used for file-to-message
transfers to determine whether
IBM MQ message properties are set
on the first message in a file, and
any messages written to the queue
when an error occurs.

UNRECOGNISED_CODE_PAGE_KEY UNRECOGNISED_CODE_PAGE_FAIL_VALUE
UNRECOGNISED_CODE_PAGE_BINARY_VALUE

Key value used for file-to-message
transfers to determine whether
a text mode transfer fails or
conversion is performed, if the code
page of the data is not recognized
by the destination queue manager.

USE_GROUPS_KEY USE_GROUPS_TRUE_VALUE USE_GROUPS_FALSE_VALUE Key value used for message-to-file
transfers to determine whether to
transfer only a complete group of
messages from the source queue.

WAIT_TIME_KEY Key value used for message-to-file
transfers to determine the time, in
seconds, for the source agent to
wait for one of the following cases:

• A message to appear on the
source queue, if the queue is
empty or has become empty, if
the value of USE_GROUPS_KEY is
FALSE.

• A complete group to appear on
the source queue, if the value of
USE_GROUPS_KEY is TRUE.

The key names and value names given in Table 3 are constants that are defined in the
FileMetaDataConstants interface.

MFT resource monitor user exits
Resource monitor user exits allow you to configure custom code to run when a monitor's trigger condition
is satisfied, before the associated task is started.

It is not recommended to invoke new transfers directly from user exit code. In some circumstances this
causes files to be transferred multiple times as user exits are not resilient to agent restarts.

Resource monitor user exits use the existing infrastructure for user exits. The monitor user exits are called
after a monitor has triggered but before the corresponding task has been run by the monitor's task. This
allows the user exit to modify the task to be run and decide whether a task should proceed or not. You can
modify the monitor task by updating the monitor metadata, which is then used for variable substitution
in the task document created by the creation of the original monitor. Alternatively, the monitor exit can
replace or update the task definition XML string passed as a parameter. The monitor exit can return a
result code of either 'proceed' or 'cancel' for the task. If cancel is returned, the task will not be started
and the monitor will not start again until the monitored resource matches the trigger conditions. If the
resource has not changed, the trigger will not start. As with the other user exits, you can chain monitor
exits together. If one of the exits returns a cancel result code, the overall result is cancel and the task is
not started.

• A map of environment metadata (same as other user exits)
• A map of monitor metadata including immutable system metadata and mutable user metadata. The

immutable system metadata is as follows:

– FILENAME - name of the file that satisfied the trigger condition

Developing applications reference 2113

– FILEPATH - path to the file that satisfied the trigger condition
– FILESIZE (in bytes - this metadata might not be present) - size of the file that satisfied the trigger

condition
– LASTMODIFIEDDATE (Local) - date that the file that satisfied the trigger condition was last changed.

This date is expressed as the local date of the time zone the agent is running in and is formatted as an
ISO 8601 date.

– LASTMODIFIEDTIME (Local) - time in local format that the file that satisfied the trigger condition was
last changed. This time is expressed as the local time of the time zone the agent is running in and is
formatted as an ISO 8601 time.

– LASTMODIFIEDDATEUTC - date in universal format that the file that satisfied the trigger condition
was last changed. This date is expressed as the local date converted to the UTC time zone and is
formatted as an ISO 8601 date.

– LASTMODIFIEDTIMEUTC - time in universal format that the file that satisfied the trigger condition
was last changed. This time is expressed the local time converted to the UTC time zone and is
formatted as an ISO 8601 time.

– AGENTNAME - the monitor agent name
• An XML string representing the task to be run as a result of the monitor trigger.

Monitor exits return the following data:

• An indicator that specifies whether to progress further (proceed or cancel)
• A string to insert into the trigger-satisfied log message

As a result of running the monitor exit code, the monitor metadata and task definition XML string that
were originally passed as parameters might also have been updated.

The value of the agent property monitorExitClasses (in the agent.properties file) specifies which
monitor exit classes to load, with each exit class separated by a comma. For example:

monitorExitClasses=testExits.TestExit1,testExits.testExit2

The interface to the monitor user exit is:

package com.ibm.wmqfte.exitroutine.api;

import java.util.Map;

/**
 * An interface that is implemented by classes that want to be invoked as part of
 * user exit routine processing. This interface defines a method that will be
 * invoked immediately prior to starting a task as the result of a monitor trigger
 */
public interface MonitorExit {

 /**
 * Invoked immediately prior to starting a task as the result of a monitor
 * trigger.
 *
 * @param environmentMetaData
 * meta data about the environment in which the implementation
 * of this method is running. This information can only be read,
 * it cannot be updated by the implementation. The constant
 * defined in <code>EnvironmentMetaDataConstants</code> class can
 * be used to access the data held by this map.
 *
 * @param monitorMetaData
 * meta data to associate with the monitor. The meta data passed
 * to this method can be altered, and the changes will be
 * reflected in subsequent exit routine invocations. This map
 * also contains keys with IBM reserved names. These entries are
 * defined in the <code>MonitorMetaDataConstants</code> class and
 * have special semantics. The the values of the IBM reserved names

2114 IBM MQ Developing Applications Reference

 * cannot be modified by the exit
 *
 * @param taskDetails
 * An XML String representing the task to be executed as a result of
 * the monitor triggering. This XML string may be modified by the
 * exit
 *
 * @return a monitor exit result object which is used to determine if the
 * task should proceed, or be cancelled.
 */
 MonitorExitResult onMonitor(Map<String, String> environmentMetaData,
 Map<String, String> monitorMetaData,
 Reference<String> taskDetails);
}

The constants for the IBM-reserved values in the monitor metadata are as follows:

package com.ibm.wmqfte.exitroutine.api;

/**
* Constants for IBM reserved values placed into the monitor meta data
* maps used by the monitor exit routines.
*/
public interface MonitorMetaDataConstants {

/**
* The value associated with this key is the name of the trigger
* file associated with the monitor. Any modification performed
* to this property by user exit routines will be ignored.
*/
final String FILE_NAME_KEY = "FILENAME";

/**
* The value associated with this key is the path to the trigger
* file associated with the monitor. Any modification performed
* to this property by user exit routines will be ignored.
*/
final String FILE_PATH_KEY = "FILEPATH";

/**
* The value associated with this key is the size of the trigger
* file associated with the monitor. This will not be present in
* the cases where the size cannot be determined. Any modification
* performed to this property by user exit routines will be ignored.
*/
final String FILE_SIZE_KEY = "FILESIZE";

/**
* The value associated with this key is the local date on which
* the trigger file associated with the monitor was last modified.
* Any modification performed to this property by user exit routines
* will be ignored.
*/
final String LAST_MODIFIED_DATE_KEY = "LASTMODIFIEDDATE";

/**
* The value associated with this key is the local time at which
* the trigger file associated with the monitor was last modified.
* Any modification performed to this property by user exit routines
* will be ignored.
*/
final String LAST_MODIFIED_TIME_KEY = "LASTMODIFIEDTIME";

/**
* The value associated with this key is the UTC date on which
* the trigger file associated with the monitor was last modified.
* Any modification performed to this property by user exit routines
* will be ignored.
*/
final String LAST_MODIFIED_DATE_KEY_UTC = "LASTMODIFIEDDATEUTC";

/**
* The value associated with this key is the UTC time at which
* the trigger file associated with the monitor was last modified.
* Any modification performed to this property by user exit routines
* will be ignored.
*/
final String LAST_MODIFIED_TIME_KEY_UTC = "LASTMODIFIEDTIMEUTC";

Developing applications reference 2115

/**
* The value associated with this key is the name of the agent on which
* the monitor is running. Any modification performed to this property by
* user exit routines will be ignored.
*/
final String MONITOR_AGENT_KEY = "AGENTNAME";

}

Example monitor user exit
This example class implements the MonitorExit interface. This example adds a custom substitution
variable into the monitor metadata called REDIRECTEDAGENT that will be populated with a value of
LONDON if the hour of the day is odd, and a value of PARIS for even hours. The monitor exit result code is
set to always return proceed.

package com.ibm.wmqfte.monitor;

import java.util.Calendar;
import java.util.Map;

import com.ibm.wmqfte.exitroutine.api.MonitorExit;
import com.ibm.wmqfte.exitroutine.api.MonitorExitResult;
import com.ibm.wmqfte.exitroutine.api.Reference;

/**
 * Example resource monitor user exit that changes the monitor mutable
 * metadata value between 'LONDON' and 'PARIS' depending on the hour of the day.
 *
 */
public class TestMonitorExit implements MonitorExit {

 // custom variable that will substitute destination agent
 final static String REDIRECTED_AGENT = "REDIRECTEDAGENT";

 public MonitorExitResult onMonitor(
Map<String, String> environmentMetaData,
 Map<String, String> monitorMetaData,
Reference<String> taskDetails) {

 // always succeed
 final MonitorExitResult result = MonitorExitResult.PROCEED_RESULT;

 final int hour = Calendar.getInstance().get(Calendar.HOUR_OF_DAY);

 if (hour%2 == 1) {
 monitorMetaData.put(REDIRECTED_AGENT, "LONDON");
 } else {
 monitorMetaData.put(REDIRECTED_AGENT, "PARIS");
 }

 return result;
 }
}

The corresponding task for a monitor that makes use of the REDIRECTEDAGENT substitution variable
could look similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<request version="4.00"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="FileTransfer.xsd">
 <managedTransfer>
 <originator>
 <hostName>reportserver.com</hostName>
 <userID>USER1</userID>
 </originator>
 <sourceAgent agent="AGENT1"
 QMgr="QM1"/>
 <destinationAgent agent="${REDIRECTEDAGENT}"
 QMgr="QM2"/>
 <transferSet>
 <item mode="binary" checksumMethod="MD5">
 <source recursive="false" disposition="delete">

2116 IBM MQ Developing Applications Reference

 <file>c:\sourcefiles\reports.doc</file>
 </source>
 <destination type="file" exist="overwrite">
 <file>c:\destinationfiles\reports.doc</file>
 </destination>
 </item>
 </transferSet>
 </managedTransfer>
</request>

Before this transfer is started, the value of the <destinationAgent> element's agent attribute is replaced
with either LONDON or PARIS.

You must specify the substitution variable in the monitor exit class and the task definition XML in
uppercase.

Related concepts
“Metadata for MFT user exits” on page 2110
There are three different types of metadata that can be supplied to user exit routines for Managed File
Transfer: environment, transfer, and file metadata. This metadata is presented as maps of Java key-value
pairs.
“Java interfaces for MFT user exits” on page 2119
Use the topics in this section for reference information about Java interfaces for user exit routines.
MFT source and destination user exits
Related tasks
Customizing MFT with user exits
Related reference
“MFT Agent properties for user exits” on page 2117
In addition to the standard properties in the agent.properties file, there are several advanced
properties specifically for user exit routines. These properties are not included by default so if you
want to use any of them, you must manually edit the agent.properties file. If you make a change to
agent.properties file while that agent is running, stop and restart the agent to pick up the changes.

MFT Agent properties for user exits
In addition to the standard properties in the agent.properties file, there are several advanced
properties specifically for user exit routines. These properties are not included by default so if you
want to use any of them, you must manually edit the agent.properties file. If you make a change to
agent.properties file while that agent is running, stop and restart the agent to pick up the changes.

For IBM WebSphere MQ 7.5 or later, environment variables can be used in some Managed File Transfer
properties that represent file or directory locations. This allows the locations of files or directories used
when running parts of the product, to vary depending on environment changes, such as which user is
running the process. For more information, see Environment variables in MFT properties.

User exit routine properties
The user exit routines are called in the order listed in the following table. For more information about the
agent.properties file, see Advanced agent properties: User exit routine.

Table 887. Agent properties for user exits

Property name Description

sourceTransferEndExitClasses Specifies a comma-separated list of classes that implement a source transfer end
exit routine.

sourceTransferStartExitClasses Specifies a comma-separated list of classes that implement a source transfer start
exit routine.

destinationTransferStartExitClasses Specifies a comma-separated list of classes that implement a destination transfer
start user exit routine.

Developing applications reference 2117

Table 887. Agent properties for user exits (continued)

Property name Description

destinationTransferEndExitClasses Specifies a comma-separated list of classes that implement a destination transfer
user exit routine.

exitClassPath Specifies a platform-specific, character-delimited list of directories that act as the
class path for user exit routines.

The agent exits directory is searched before any entries in this class path.

If you are using this property on Windows, use a forward slash character (/) as a
path delimiter, not the backslash character (\). For example:

exitClassPath=C:/mycomp/mqft/exits/encryptFileExit.jar;
C:/mycomp/mqft/exits/fileFilter.jar.

For IBM WebSphere MQ 7.5 or later, the value of this property can contain
environment variables.

exitNativeLibraryPath Specifies a platform-specific, character-delimited list of directories that act as the
native library path for user exit routines.

For IBM WebSphere MQ 7.5 or later, the value of this property can contain
environment variables.

monitorExitClasses Specifies a comma-separated list of classes that implement a monitor exit routine.
For more information, see MFT resource monitor user exits.

protocolBridgeCredentialExitClasses Specifies a comma-separated list of classes that implement a protocol bridge
credential user exit routine. For more information, see Mapping credentials for a
file server by using exit classes.

protocolBridgePropertiesExitClasses Specifies a comma-separated list of classes that implement a protocol
bridge server properties user exit routine. For more information, see
ProtocolBridgePropertiesExit2: Looking up protocol file server properties.

IOExitClasses Specifies a comma-separated list of classes that implement an I/O user exit
routine. List only the classes that implement the IOExit interface, that is, do
not list classes that implement the other I/O user exit interfaces, for example
IOExitResourcePath and IOExitChannel. For more information, see Using MFT
transfer I/O user exits.

Order of exit invocation
The source and destination exits are invoked in the following order:

1. SourceTransferStartExit
2. DestinationTransferStartExit
3. DestinationTransferEndExit
4. SourceTransferEndExit

Chaining source and destination exits
If you specify multiple exits, the first exit in the list is invoked first, followed by the second exit, and so on.
Any changes made by the first exit are passed as input to the exit that is subsequently invoked and so on.
For example, if the there are two source transfer start exits any changes made to the transfer metadata
by the first exit are input to the second exit. Each exit returns its own result. If all the exits of a given
type return PROCEED as a transfer result code, the overall result is PROCEED. If one or more exits return
CANCEL_TRANSFER, the overall result is CANCEL_TRANSFER. All of the result codes and strings returned
by the exits are output in the transfer log.

If the overall result from the source transfer start exit is PROCEED, the transfer proceeds using any
changes made by the exits. If the overall result is CANCEL_TRANSFER, the source transfer end exits are
invoked and then the transfer is canceled. The completion status in the transfer log is "cancelled".

2118 IBM MQ Developing Applications Reference

If the overall result from the destination transfer start exits is PROCEED, the transfer proceeds using
any changes made by the exits. If the overall result is CANCEL_TRANSFER, the destination transfer end
exits are invoked, then the source transfer end exits are invoked. Finally the transfer is canceled. The
completion status in the transfer log is "cancelled".

If a source or destination exit needs to pass information to following exits either in the chain or in the
order of execution it must be done by updating the transfer metadata. The usage of the transfer metadata
is exit implementation specific. For instance, if an exit sets the return result to CANCEL_TRANSFER and
needs to communicate to the following exits that the transfer has been canceled it must done by setting a
transfer metadata value in a way understood by the other exits.

Example

sourceTransferStartExitClasses=com.ibm.wmqfte.test.MFTTestSourceTransferStartExit
sourceTransferEndExitClasses=com.ibm.wmqfte.test.MFTTestSourceTransferEndExit
destinationTransferStartExitClasses=com.ibm.wmqfte.test.MFTTestDestinationTransferStartExit
destinationTransferEndExitClasses=com.ibm.wmqfte.test.MFTTestDestinationTransferEndExit
exitClassPath=C:/mycomp/mqft/exits/encryptFileExit.jar;C:/mycomp/mqft/exits/fileFilter.jar

Related concepts
Customizing MFT with user exits
“Metadata for MFT user exits” on page 2110
There are three different types of metadata that can be supplied to user exit routines for Managed File
Transfer: environment, transfer, and file metadata. This metadata is presented as maps of Java key-value
pairs.
“Java interfaces for MFT user exits” on page 2119
Use the topics in this section for reference information about Java interfaces for user exit routines.
Related reference
“MFT resource monitor user exits” on page 2113
Resource monitor user exits allow you to configure custom code to run when a monitor's trigger condition
is satisfied, before the associated task is started.
Environment variables in MFT properties
The MFT agent.properties file

Java interfaces for MFT user exits
Use the topics in this section for reference information about Java interfaces for user exit routines.

CDCredentialExit.java interface

CDCredentialExit.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.util.Map;

/**
 * An interface that is implemented by classes that are invoked as part of
 * user exit routine processing. This interface defines methods that are

Developing applications reference 2119

 * invoked by a Connect:Direct bridge agent to map the IBM MQ user ID of the transfer to credentials
 * that are used to access the Connect:Direct node.
 * There will be one instance of each implementation class per Connect:Direct bridge agent. The methods
 * can be called from different threads so the methods must be synchronized.
 */
public interface CDCredentialExit {

 /**
 * Invoked once when a Connect:Direct bridge agent is started. It is intended to initialize
 * any resources that are required by the exit
 *
 * @param bridgeProperties
 * The values of properties defined for the Connect:Direct bridge.
 * These values can only be read, they cannot be updated by
 * the implementation.
 *
 * @return true if the initialisation is successful and false if unsuccessful
 * If false is returned from an exit the Connect:Direct bridge agent does not
 * start.
 */
 public boolean initialize(final Map<String, String> bridgeProperties);

 /**
 * Invoked once per transfer to map the IBM MQ user ID in the transfer message to the
 * credentials to be used to access the Connect:Direct node.
 *
 * @param mqUserId The IBM MQ user ID from which to map to the credentials to be used
 * to access the Connect:Direct node
 * @param snode The name of the Connect:Direct SNODE specified as the cdNode in the
 * file path. This is used to map the correct user ID and password for the
 * SNODE.
 * @return A credential exit result object that contains the result of the map and
 * the credentials to use to access the Connect:Direct node
 */

 public CDCredentialExitResult mapMQUserId(final String mqUserId, final String snode);

 /**
 * Invoked once when a Connect:Direct bridge agent is shutdown. This method releases
 * any resources that were allocated by the exit
 *
 * @param bridgeProperties
 * The values of properties defined for the Connect:Direct bridge.
 * These values can only be read, they cannot be updated by
 * the implementation.
 *
 * @return
 */
 public void shutdown(final Map<String, String> bridgeProperties); }

CredentialExitResult.java interface

CredentialExitResult.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2008, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */

package com.ibm.wmqfte.exitroutine.api;

/**
 * The result of invoking a Credential mapMQUserId exit method. It is composed of a result
 * code, which determines whether the mapping of the user id was successful, and an optional
 * Credentials object if the mapping is successful.
 */
public class CredentialExitResult {

 private final CredentialExitResultCode resultCode;

2120 IBM MQ Developing Applications Reference

 private final Credentials credentials;

 /**
 * Constructor. Creates a credential exit result object with a specified result
 * code and optionally credentials.
 *
 * @param resultCode
 * The result code to associate with the exit result being created.
 *
 * @param credentials
 * The credentials to associate with the exit result being created.
 * A value of <code>null</code> can be specified to indicate no
 * credentials. If the resultCode is USER_SUCCESSFULLY_MAPPED the
 * credentials must be set to a non-null value,
 */
 public CredentialExitResult(CredentialExitResultCode resultCode, Credentials credentials) {
 this.resultCode = resultCode;
 this.credentials = credentials;
 }

 /**
 * Returns the result code associated with this credential exit result
 *
 * @return the result code associated with this exit result.
 */
 public CredentialExitResultCode getResultCode() {
 return resultCode;
 }

 /**
 * Returns the credentials associated with this credential exit result
 *
 * @return the explanation associated with this credential exit result.
 */
 public Credentials getCredentials() {
 return credentials;
 }
}

Related tasks
Customizing MFT with user exits
Related reference
“SourceTransferStartExit.java interface” on page 2147
“DestinationTransferStartExit.java interface” on page 2122
“DestinationTransferEndExit.java interface” on page 2121
“MonitorExit.java interface” on page 2141
“ProtocolBridgeCredentialExit.java interface” on page 2142

DestinationTransferEndExit.java interface

DestinationTransferEndExit.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2008, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitpoint.api;

/**
 * An interface that is implemented by classes that want to be invoked as part of
 * user exit routine processing. This interface defines a method that will be
 * invoked immediately after completing a transfer on the agent acting as the

Developing applications reference 2121

 * destination of the transfer.
 */
public interface DestinationTransferEndExit {

 /**
 * Invoked immediately after the completion of a transfer on the agent acting as
 * the destination of the transfer.
 *
 * @param transferExitResult
 * a result object reflecting whether or not the transfer completed
 * successfully.
 *
 * @param sourceAgentName
 * the name of the agent acting as the source of the transfer.
 *
 * @param destinationAgentName
 * the name of the agent acting as the destination of the
 * transfer. This is the name of the agent that the
 * implementation of this method will be invoked from.
 *
 * @param environmentMetaData
 * meta data about the environment in which the implementation
 * of this method is running. This information can only be read,
 * it cannot be updated by the implementation. The constants
 * defined in <code>EnvironmentMetaDataConstants</code> class can
 * be used to access the data held by this map.
 *
 * @param transferMetaData
 * meta data to associate with the transfer. The information can
 * only be read, it cannot be updated by the implementation. This
 * map may also contain keys with IBM reserved names. These
 * entries are defined in the <code>TransferMetaDataConstants</code>
 * class and have special semantics.
 *
 * @param fileResults
 * a list of file transfer result objects that describe the source
 * file name, destination file name and result of each file transfer
 * operation attempted.
 *
 * @return an optional description to enter into the log message describing
 * transfer completion. A value of <code>null</code> can be used
 * when no description is required.
 */
 String onDestinationTransferEnd(TransferExitResult transferExitResult,
 String sourceAgentName,
 String destinationAgentName,
 Map<String, String>environmentMetaData,
 Map<String, String>transferMetaData,
 List<FileTransferResult>fileResults);
}

Related tasks
Customizing MFT with user exits
Related reference
“SourceTransferStartExit.java interface” on page 2147
“SourceTransferEndExit.java interface” on page 2146
“DestinationTransferStartExit.java interface” on page 2122
“MonitorExit.java interface” on page 2141
“ProtocolBridgeCredentialExit.java interface” on page 2142

DestinationTransferStartExit.java interface

DestinationTransferStartExit.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2008, 2024. All Rights Reserved.

2122 IBM MQ Developing Applications Reference

 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitpoint.api;

/**
 * An interface that is implemented by classes that want to be invoked as part of
 * user exit routine processing. This interface defines a method that will be
 * invoked immediately prior to starting a transfer on the agent acting as the
 * destination of the transfer.
 */
public interface DestinationTransferStartExit {

 /**
 * Invoked immediately prior to starting a transfer on the agent acting as
 * the destination of the transfer.
 *
 * @param sourceAgentName
 * the name of the agent acting as the source of the transfer.
 *
 * @param destinationAgentName
 * the name of the agent acting as the destination of the
 * transfer. This is the name of the agent that the
 * implementation of this method will be invoked from.
 *
 * @param environmentMetaData
 * meta data about the environment in which the implementation
 * of this method is running. This information can only be read,
 * it cannot be updated by the implementation. The constants
 * defined in <code>EnvironmentMetaDataConstants</code> class can
 * be used to access the data held by this map.
 *
 * @param transferMetaData
 * meta data to associate with the transfer. The information can
 * only be read, it cannot be updated by the implementation. This
 * map may also contain keys with IBM reserved names. These
 * entries are defined in the <code>TransferMetaDataConstants</code>
 * class and have special semantics.
 *
 * @param fileSpecs
 * a list of file specifications that govern the file data to
 * transfer. The implementation of this method can modify the
 * entries in this list and the changes will be reflected in the
 * files transferred. However, new entries may not be added and
 * existing entries may not be removed.
 *
 * @return a transfer exit result object which is used to determine if the
 * transfer should proceed, or be cancelled.
 */
 TransferExitResult onDestinationTransferStart(String sourceAgentName,
 String destinationAgentName,
 Map<String, String> environmentMetaData,
 Map<String, String> transferMetaData,
 List<Reference<String>> fileSpecs);

Related tasks
Customizing MFT with user exits
Related reference
“SourceTransferStartExit.java interface” on page 2147
“SourceTransferEndExit.java interface” on page 2146
“DestinationTransferEndExit.java interface” on page 2121
“MonitorExit.java interface” on page 2141
“ProtocolBridgeCredentialExit.java interface” on page 2142

FileTransferResult.java interface

FileTransferResult.java

/*
 * Licensed Materials - Property of IBM

Developing applications reference 2123

 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2008, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */

package com.ibm.wmqfte.exitroutine.api;

/**
 * Result information about a file transfer.
 */
public interface FileTransferResult {

 /** An enumeration for the <code>getCorrelatorType()</code> method. */
 public enum CorrelationInformationType {
 /** No correlation information is available for this result */
 NONE,
 /**
 * The correlation information relates to work done in
 * IBM Sterling File Gateway.
 */
 SFG
 }

 /**
 * Returns the source file specification, from which the file was transferred.
 *
 * @return the source file specification, from which the file was
 * transferred.
 */
 String getSourceFileSpecification();

 /**
 * Returns the destination file specification, to which the file was transferred.
 *
 * @return the destination file specification, to which the file was
 * transferred. A value of <code>null</code> may be returned
 * if the transfer did not complete successfully.
 */
 String getDestinationFileSpecification();

 /**
 * Returns the result of the file transfer operation.
 *
 * @return the result of the file transfer operation.
 */
 FileExitResult getExitResult();

 /**
 * @return an enumerated value that identifies the product to which this correlating
 * information relates.
 */
 CorrelationInformationType getCorrelatorType();

 /**
 * @return the first string component of the correlating identifier that relates
 * this transfer result to work done in another product. A value of null
 * may be returned either because the other product does not utilize a
 * string based correlation information or because there is no correlation
 * information.
 */
 String getString1Correlator();

 /**
 * @return the first long component of the correlating identifier that relates
 * this transfer result to work done in another product. A value of zero
 * is returned when there is no correlation information or the other
 * product does not utilize long based correlation information or because
 * the value really is zero!
 */
 long getLong1Correlator();
}

2124 IBM MQ Developing Applications Reference

Related tasks
Customizing MFT with user exits
Related reference
“SourceTransferStartExit.java interface” on page 2147
“DestinationTransferStartExit.java interface” on page 2122
“DestinationTransferEndExit.java interface” on page 2121
“MonitorExit.java interface” on page 2141
“ProtocolBridgeCredentialExit.java interface” on page 2142

IOExit.java interface

IOExit.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.io.IOException;
import java.util.Map;

import com.ibm.wmqfte.exitroutine.api.IOExitRecordResourcePath.RecordFormat;

/**
 * An interface that is implemented by classes that you want to be invoked as
 * part of user exit routine processing. This interface defines methods that
 * will be invoked during transfers to perform the underlying file system I/O
 * work for WMQFTE transfers.
 * <p>
 * The {@link #initialize(Map)} method will be called once when the exit is
 * first installed. The WMQFTE agent properties are passed to this method, thus
 * enabling the exit to understand its environment.
 * <p>
 * The {@link #isSupported(String)} method will be invoked during WMQFTE
 * transfers to determine whether the user exit should be used. If the
 * {@link #isSupported(String)} method returns a value of {@code true}, the
 * {@link #newPath(String)} method will be invoked for the paths specified for
 * the transfer request. The returned {@link IOExitPath} instance from a
 * {@link #newPath(String)} method invocation will then be used by the WMQFTE
 * transfer to obtain information about the resource and to transfer data to or
 * from the resource.
 * <p>
 * To obtain transfer context for an I/O exit, a {@link SourceTransferStartExit}
 * or {@link DestinationTransferStartExit} as appropriate, should be installed
 * to enable information to be seen by this exit. The
 * {@link SourceTransferStartExit} or {@link DestinationTransferStartExit} are
 * passed the transfer's environment, metadata, and a list of file
 * specifications for the transfer. The paths for the file specifications are
 * the paths passed to the I/O exit's {@link #newPath(String)} method.
 * <p>
 * Note also that the {@link #isSupported(String)} and {@link #newPath(String)}
 * methods might be called at other times by a WMQFTE agent and not just during
 * transfers. For example, at transfer setup time the I/O system is queried to
 * resolve the full resource paths for transfer.
 */
public interface IOExit {

 /**
 * Invoked once when the I/O exit is first required for use. It is intended
 * to initialize any resources that are required by the exit.
 *
 * @param agentProperties

Developing applications reference 2125

 * The values of properties defined for the WMQFTE agent. These
 * values can only be read, they cannot be updated by the
 * implementation.
 * @return {@code true} if the initialization is successful and {@code
 * false} if unsuccessful. If {@code false} is returned from an
 * exit, the exit will not be used.
 */
 boolean initialize(final Map<String, String> agentProperties);

 /**
 * Indicates whether this I/O user exit supports the specified path.
 * <p>
 * This method is used by WMQFTE to determine whether the I/O user exit
 * should be used within a transfer. If no I/O user exit returns true for
 * this method, the default WMQFTE file I/O function will be used.
 *
 * @param path
 * The path to the required I/O resource.
 * @return {@code true} if the specified path is supported by the I/O exit,
 * {@code false} otherwise
 */
 boolean isSupported(String path);

 /**
 * Obtains a new {@link IOExitPath} instance for the specified I/O resource
 * path.
 * <p>
 * This method will be invoked by WMQFTE only if the
 * {@link #isSupported(String)} method has been called for the path and
 * returned {@code true}.
 *
 * @param path
 * The path to the required I/O resource.
 * @return A {@link IOExitPath} instance for the specified path.
 * @throws IOException
 * If the path cannot be created for any reason.
 */
 IOExitPath newPath(String path) throws IOException;

 /**
 * Obtains a new {@link IOExitPath} instance for the specified I/O resource
 * path and passes record format and length information required by the
 * WMQFTE transfer.
 * <p>
 * Typically this method will be called for the following cases:
 *
 * A path where a call to {@link #newPath(String)} has previously
 * returned a {@link IOExitRecordResourcePath} instance and WMQFTE is
 * re-establishing a new {@link IOExitPath} instance for the path, from an
 * internally-serialized state. The passed recordFormat and recordLength
 * will be the same as those for the original
 * {@link IOExitRecordResourcePath} instance.
 * A transfer destination path where the source of the transfer is
 * record oriented. The passed recordFormat and recordLength will be the
 * same as those for the source.
 *
 * The implementation can act on the record format and length information as
 * deemed appropriate. For example, for a destination agent if the
 * destination does not already exist and the source of the transfer is
 * record oriented, the passed recordFormat and recordLength information
 * could be used to create an appropriate record-oriented destination path.
 * If the destination path already exists, the passed recordFormat and
 * recordLength information could be used to perform a compatibility check
 * and throw an {@link IOException} if the path is not compatible. A
 * compatibility check could ensure that a record oriented path's record
 * format is the same as the passed record format or that the record length
 * is greater or equal to the passed record length.
 * <p>
 * This method will be invoked by WMQFTE only if the
 * {@link #isSupported(String)} method has been called for the path and
 * returned {@code true}.
 *
 * @param path
 * The path to the required I/O resource.
 * @param recordFormat
 * The advised record format.
 * @param recordLength
 * The advised record length.
 * @return A {@link IOExitPath} instance for the specified path.
 * @throws IOException
 * If the path cannot be created for any reason. For example,
 * the passed record format or length is incompatible with the

2126 IBM MQ Developing Applications Reference

 * path's actual record format or length.
 */
 IOExitPath newPath(String path, RecordFormat recordFormat, int recordLength)
 throws IOException;

Related tasks
Using MFT transfer I/O user exits
Customizing MFT with user exits

IOExitChannel.java interface

IOExitChannel.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.io.IOException;
import java.nio.ByteBuffer;

/**
 * Represents a channel that enables data to be read from or written to an
 * {@link IOExitResourcePath} resource.
 */
public interface IOExitChannel {

 /**
 * Obtains the data size for the associated {@link IOExitResourcePath} in
 * bytes.
 *
 * @return The data size in bytes.
 * @throws IOException
 * If a problem occurs while attempting obtain the size.
 */
 long size() throws IOException;

 /**
 * Closes the channel, flushing any buffered write data to the resource and
 * releasing any locks.
 *
 * @throws RecoverableIOException
 * If a recoverable problem occurs while closing the resource.
 * This means that WMQFTE can attempt to recover the transfer.
 * @throws IOException
 * If some other I/O problem occurs. For example, the channel might
 * already be closed.
 */
 void close() throws RecoverableIOException, IOException;

 /**
 * Reads data from this channel into the given buffer, starting at this
 * channel's current position, and updates the current position by the
 * amount of data read.
 * <p>
 * Data is copied into the buffer starting at its current position and up to
 * its limit. On return, the buffer's position is updated to reflect the
 * number of bytes read.
 *
 * @param buffer
 * The buffer that the data is to be copied into.
 * @return The number of bytes read, which might be zero, or -1 if the end of
 * data has been reached.
 * @throws RecoverableIOException
 * If a recoverable problem occurs while reading the data. For a
 * WMQFTE transfer this means that it will attempt to recover.

Developing applications reference 2127

 * @throws IOException
 * If some other I/O problem occurs. For a WMQFTE transfer this
 * means that it will be failed.
 */
 int read(ByteBuffer buffer) throws RecoverableIOException, IOException;

 /**
 * Writes data to this channel from the given buffer, starting at this
 * channel's current position, and updates the current position by the
 * amount of data written. The channel's resource is grown to accommodate
 * the data, if necessary.
 * <p>
 * Data is copied from the buffer starting at its current position and up to
 * its limit. On return, the buffer's position is updated to reflect the
 * number of bytes written.
 *
 * @param buffer
 * The buffer containing the data to be written.
 * @return The number of bytes written, which might be zero.
 * @throws RecoverableIOException
 * If a recoverable problem occurs while writing the data. For a
 * WMQFTE transfer this means that it will attempt to recover.
 * @throws IOException
 * If some other I/O problem occurs. For a WMQFTE transfer this
 * means that it will be failed.
 */
 int write(ByteBuffer buffer) throws RecoverableIOException, IOException;

 /**
 * Forces any updates to this channel's resource to be written to its
 * storage device.
 * <p>
 * This method is required to force changes to both the resource's content
 * and any associated metadata to be written to storage.
 *
 * @throws RecoverableIOException
 * If a recoverable problem occurs while performing the force.
 * For a WMQFTE transfer this means that it will attempt to
 * recover.
 * @throws IOException
 * If some other I/O problem occurs. For a WMQFTE transfer this
 * means that it will be failed.
 */
 void force() throws RecoverableIOException, IOException;

 /**
 * Attempts to lock the entire resource associated with the channel for
 * shared or exclusive access.
 * <p>
 * The intention is for this method not to block if the lock is currently
 * unavailable.
 *
 * @param shared
 * {@code true} if a shared lock is required, {@code false} if an
 * exclusive lock is required.
 * @return A {@link IOExitLock} instance representing the newly acquired
 * lock or null if the lock cannot be obtained.
 * @throws IOException
 * If a problem occurs while attempting to acquire the lock.
 */
 IOExitLock tryLock(boolean shared) throws IOException;
}

Related tasks
Using MFT transfer I/O user exits
Customizing MFT with user exits

IOExitLock.java interface

IOExitLock.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *

2128 IBM MQ Developing Applications Reference

 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.io.IOException;

/**
 * Represents a lock on a resource for either shared or exclusive access.
 * {@link IOExitLock} instances are returned from
 * {@link IOExitChannel#tryLock(boolean)} calls and WMQFTE will request the
 * release of the lock at the appropriate time during a transfer. Additionally, when
 * a {@link IOExitChannel#close()} method is called it will be the
 * responsibility of the channel to release any associated locks.
 */
public interface IOExitLock {

 /**
 * Releases the lock.
 * <p>
 * After this method has been successfully called the lock is to be deemed as invalid.
 *
 * @throws IOException
 * If the channel associated with the lock is not open or
 * another problem occurs while attempting to release the lock.
 */
 void release() throws IOException;

 /**
 * Indicates whether this lock is valid.
 * <p>
 * A lock is considered valid until its @ {@link #release()} method is
 * called or the associated {@link IOExitChannel} is closed.
 *
 * @return {@code true} if this lock is valid, {@code false} otherwise.
 */
 boolean isValid();

 /**
 * @return {@code true} if this lock is for shared access, {@code false} if
 * this lock is for exclusive access.
 */
 boolean isShared();
}

Related tasks
Using MFT transfer I/O user exits
Customizing MFT with user exits

IOExitPath.java interface

IOExitPath.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

/**
 * Represents an abstract path that can be inspected and queried by WMQFTE for
 * transfer purposes.

Developing applications reference 2129

 * <p>
 * There are two types of path supported:
 *
 * {@link IOExitResourcePath} - Represents a path that denotes a data
 * resource. For example, a file, directory, or group of database records.
 * {@link IOExitWildcardPath} - Represents a wildcard path that can be
 * expanded to multiple {@link IOExitResourcePath} instances.
 *
 */
public abstract interface IOExitPath {

 /**
 * Obtains the abstract path as a {@link String}.
 *
 * @return The abstract path as a {@link String}.
 */
 String getPath();

 /**
 * Obtains the name portion of this abstract path as a {@link String}.
 * <p>
 * For example, a UNIX-style file system implementation evaluates the
 * path {@code /home/fteuser/file1.txt} as having a name of {@code
 * file1.txt}.
 *
 * @return the name portion of this abstract path as a {@link String}.
 */
 String getName();

 /**
 * Obtains the parent path for this abstract path as a {@link String}.
 * <p>
 * For example, a UNIX-style file system implementation evaluates the
 * path {@code /home/fteuser/file1.txt} as having a parent path of {@code
 * /home/fteuser}.
 *
 * @return The parent portion of the path as a {@link String}.
 */
 String getParent();

 /**
 * Obtains the abstract paths that match this abstract path.
 * <p>
 * If this abstract path denotes a directory resource, a list of paths
 * for all resources within the directory are returned.
 * <p>
 * If this abstract path denotes a wildcard, a list of all paths
 * matching the wildcard are returned.
 * <p>
 * Otherwise null is returned, because this abstract path probably denotes a
 * single file resource.
 *
 * @return An array of {@IOExitResourcePath}s that
 * match this path, or null if this method is not applicable.
 */
 IOExitResourcePath[] listPaths();
}

Related tasks
Using MFT transfer I/O user exits
Customizing MFT with user exits

IOExitProperties.java interface

IOExitProperties.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or

2130 IBM MQ Developing Applications Reference

 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

/**
 * Properties that determine how WMQFTE treats an {@link IOExitPath} for certain
 * aspects of I/O. For example, whether to use intermediate files.
 */
public class IOExitProperties {

 private boolean rereadSourceOnRestart = true;
 private boolean rechecksumSourceOnRestart = true;
 private boolean rechecksumDestinationOnRestart = true;
 private boolean useIntermediateFileAtDestination = true;
 private boolean requiresSingleThreadedChannelIO = false;

 /**
 * Determines whether the I/O exit implementation expects the resource to be
 * re-read from the start if a transfer is restarted.
 *
 * @return {@code true} if, on restart, the I/O exit expects the source
 * resource to be opened at the beginning and re-read from the
 * beginning (the {@link IOExitPath#openForRead(long)} method is
 * always invoked with 0L as an argument). {@code false} if, on
 * restart, the I/O exit expects the source to be opened at the
 * offset that the source agent intends to start reading from (the
 * {@link IOExitPath#openForRead(long)} method can be invoked with a
 * non-zero value as its argument).
 */
 public boolean getRereadSourceOnRestart() {
 return rereadSourceOnRestart;
 }

 /**
 * Sets the value to determine whether the I/O exit implementation expects
 * the resource to be re-read from the beginning if a transfer is restarted.
 * <p>
 * The default is {@code true}. The I/O exit should call this method when
 * required to change this value.
 *
 * @param rereadSourceOnRestart
 * {@code true} if, on restart, the I/O exit expects the source
 * resource to be opened at the beginning and re-read from the
 * beginning (the {@link IOExitPath#openForRead(long)} method
 * is always invoked with 0L as an argument). {@code false}
 * if, on restart, the I/O exit expects the source to be opened
 * at the offset that the source agent intends to start reading
 * from (the {@link IOExitPath#openForRead(long)} method can be
 * invoked with a non-zero value as its argument).
 */
 public void setRereadSourceOnRestart(boolean rereadSourceOnRestart) {
 this.rereadSourceOnRestart = rereadSourceOnRestart;
 }

 /**
 * Determines whether the I/O exit implementation requires the source
 * resource to be re-checksummed if the transfer is restarted.
 * Re-checksumming takes place only if the
 * {@link #getRereadSourceOnRestart()} method returns {@code true}.
 *
 * @return {@code true} if, on restart, the I/O exit expects the already-
 * transferred portion of the source to be re-checksummed for
 * inconsistencies. Use this option in environments
 * where the source could be changed during a restart. {@code
 * false} if, on restart, the I/O exit does not require the
 * already-transferred portion of the source to be re-checksummed.
 */
 public boolean getRechecksumSourceOnRestart() {
 return rechecksumSourceOnRestart;
 }

 /**
 * Sets the value to determine whether the I/O exit implementation requires
 * the source resource to be re-checksummed if the transfer is restarted.
 * Re-checksumming takes place only if the
 * {@link #getRereadSourceOnRestart()} method returns {@code true}.
 * <p>
 * The default is {@code true}. The I/O exit should call this method when
 * required to change this value.
 *
 * @param rechecksumSourceOnRestart

Developing applications reference 2131

 * {@code true} if, on restart, the I/O exit expects the already
 * transferred portion of the source to be re-checksummed
 * for inconsistencies. Use this option in environments
 * where the source could be changed during a restart.
 * {@code false} if, on restart, the I/O exit does not
 * require the already-transferred portion of the source to be
 * re-checksummed.
 */
 public void setRechecksumSourceOnRestart(boolean rechecksumSourceOnRestart) {
 this.rechecksumSourceOnRestart = rechecksumSourceOnRestart;
 }

 /**
 * Determines whether the I/O exit implementation requires the destination
 * resource to be re-checksummed if the transfer is restarted.
 *
 * @return {@code true} if, on restart, the I/O exit expects the already
 * transferred portion of the destination to be re-checksummed to
 * check for inconsistencies. This option should be used in
 * environments where the destination could have been changed while
 * a restart is occurring. {@code false} if, on restart, the I/O exit
 * does not require the already transferred portion of the
 * destination to be re-checksummed.
 */
 public boolean getRechecksumDestinationOnRestart() {
 return rechecksumDestinationOnRestart;
 }

 /**
 * Sets the value to determine whether the I/O exit implementation requires
 * the destination resource to be re-checksummed if the transfer is
 * restarted.
 * <p>
 * The default is {@code true}. The I/O exit should call this method when
 * required to change this value.
 *
 * @param rechecksumDestinationOnRestart
 * {@code true} if, on restart, the I/O exit expects the already-
 * transferred portion of the destination to be re-checksummed
 * for inconsistencies. Use this option in environments
 * where the destination could have been changed during a
 * restart. {@code false} if, on restart, the I/O exit does not
 * require the already-transferred portion of the destination
 * to be re-checksummed.
 */
 public void setRechecksumDestinationOnRestart(
 boolean rechecksumDestinationOnRestart) {
 this.rechecksumDestinationOnRestart = rechecksumDestinationOnRestart;
 }

 /**
 * Determines whether the I/O exit implementation requires the use of an
 * intermediate file when writing the data at the destination. The
 * intermediate file mechanism is typically used to prevent an incomplete
 * destination resource from being processed.
 *
 * @return {@code true} if data should be written to an intermediate file at
 * the destination and then renamed (to the requested destination
 * path name as specified in the transfer request) after the transfer is
 * complete. {@code false} if data should be written directly to the
 * requested destination path name without the use of an
 * intermediate file.
 */
 public boolean getUseIntermediateFileAtDestination() {
 return useIntermediateFileAtDestination;
 }

 /**
 * Sets the value to determine whether the I/O exit implementation requires
 * the use of an intermediate file when writing the data at the destination.
 * The intermediate file mechanism is typically used to prevent an
 * incomplete destination resource from being processed.
 *
 * <p>
 * The default is {@code true}. The I/O exit should call this method when
 * required to change this value.
 *
 * @param useIntermediateFileAtDestination
 * {@code true} if data should be written to an intermediate file
 * at the destination and then renamed (to the requested
 * destination path name as specified in the transfer request) after
 * the transfer is complete. {@code false} if data should be written

2132 IBM MQ Developing Applications Reference

 * directly to the requested destination path name without the
 * use of an intermediate file
 */
 public void setUseIntermediateFileAtDestination(
 boolean useIntermediateFileAtDestination) {
 this.useIntermediateFileAtDestination = useIntermediateFileAtDestination;
 }

 /**
 * Determines whether the I/O exit implementation requires
 * {@link IOExitChannel} instances to be accessed by a single thread only.
 *
 * @return {@code true} if {@link IOExitChannel} instances are to be
 * accessed by a single thread only.
 */
 public boolean requiresSingleThreadedChannelIO() {
 return requiresSingleThreadedChannelIO;
 }

 /**
 * Sets the value to determine whether the I/O exit implementation requires
 * channel operations for a particular instance to be accessed by a
 * single thread only.
 * <p>
 * For certain I/O implementations it is necessary that resource path
 * operations such as open, read, write, and close are invoked only from a
 * single execution {@link Thread}. When set {@code true}, WMQFTE ensures
 * that the following are invoked on a single thread:
 *
 * {@link IOExitResourcePath#openForRead(long) method and all methods of
 * the returned {@link IOExitChannel} instance.
 * {@link IOExitResourcePath#openForWrite(boolean)) method and all
 * methods of the returned {@link IOExitChannel} instance.
 *
 * <p>
 * This has a slight performance impact, hence enable single-threaded channel
 * I/O only when absolutely necessary.
 * <p>
 * The default is {@code false}. The I/O exit should call this method when
 * required to change this value.
 *
 * @param requiresSingleThreadedChannelIO
 * {@code true} if {@link IOExitChannel} instances are to be
 * accessed by a single thread only.
 */
 public void setRequiresSingleThreadedChannelIO(boolean requiresSingleThreadedChannelIO) {
 this.requiresSingleThreadedChannelIO = requiresSingleThreadedChannelIO;
 }
}

Related tasks
Using MFT transfer I/O user exits
Customizing MFT with user exits

IOExitRecordChannel.java interface

IOExitRecordChannel.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.io.IOException;
import java.nio.ByteBuffer;

Developing applications reference 2133

/**
 * Represents a channel that enables records of data to be read from or written
 * to an {@link IOExitRecordResourcePath} resource.
 * <p>
 * This is an extension of the {@link IOExitChannel} interface such that the
 * {@link #read(java.nio.ByteBuffer)} and {@link #write(java.nio.ByteBuffer)}
 * methods are expected to deal in whole records of data only. That is, the
 * {@link java.nio.ByteBuffer} returned from the read method and passed to the
 * write method is assumed to contain one or more complete records.
 */
public interface IOExitRecordChannel extends IOExitChannel {

 /**
 * Reads records from this channel into the given buffer, starting at this
 * channel's current position, and updates the current position by the
 * amount of data read.
 * <p>
 * Record data is copied into the buffer starting at its current position
 * and up to its limit. On return, the buffer's position is updated to
 * reflect the number of bytes read.
 * <p>
 * Only whole records are copied into the buffer.
 * <p>
 * For a fixed-record-format resource, this might be multiple records. The
 * amount of data in the return buffer does not necessarily need to be a
 * multiple of the record length, but the last record is still to be treated
 * as a complete record and padded as required by the caller.
 * <p>
 * For a variable-format resource, this is a single whole record of a size
 * corresponding to the amount of return data or multiple whole records with
 * all except the last being treated as records of maximum size.
 *
 * @param buffer
 * The buffer that the record data is to be copied into.
 * @return The number of bytes read, which might be zero, or -1 if the end of
 * data has been reached.
 * @throws RecoverableIOException
 * If a recoverable problem occurs while reading the data. For a
 * WMQFTE transfer this means that it will attempt to recover.
 * @throws IOException
 * If some other I/O problem occurs, for example, if the passed
 * buffer is insufficient to contain at least one complete
 * record). For a WMQFTE transfer this means that it will be
 * failed.
 */
 int read(ByteBuffer buffer) throws RecoverableIOException, IOException;

 /**
 * Writes records to this channel from the given buffer, starting at this
 * channel's current position, and updates the current position by the
 * amount of data written. The channel's resource is grown to accommodate
 * the data, if necessary.
 * <p>
 * Record data is copied from the buffer starting at its current position
 * and up to its limit. On return, the buffer's position is updated to
 * reflect the number of bytes written.
 * <p>
 * The buffer is expected to contain only whole records.
 * <p>
 * For a fixed-record-format resource, this might be multiple records and if
 * there is insufficient data in the buffer for a complete record, the
 * record is to be padded as required to complete the record.
 * <p>
 * For a variable-record format resource the buffer is normally expected to
 * contain a single record of length corresponding to the amount of data
 * within the buffer. However, if the amount of data within the buffer
 * exceeds the maximum record length, the implementation can either:
 *
 * throw an {@link IOException} indicating that it cannot handle the
 * situation.
 * Consume a record's worth of data from the buffer, leaving the remaining
 * data within the buffer.
 * Consume all the buffer data and just write what it can to the current
 * record. This effectively truncates the data.
 * Consume all the buffer data and write to multiple records.
 *
 *
 * @param buffer
 * The buffer containing the data to be written.
 * @return The number of bytes written, which might be zero.
 * @throws RecoverableIOException
 * If a recoverable problem occurs while writing the data. For a

2134 IBM MQ Developing Applications Reference

 * WMQFTE transfer this means that it will attempt to recover.
 * @throws IOException
 * If some other I/O problem occurs. For a WMQFTE transfer this
 * means that it will be failed.
 */
 int write(ByteBuffer buffer) throws RecoverableIOException, IOException;

}

Related tasks
Using MFT transfer I/O user exits
Customizing MFT with user exits

IOExitRecordResourcePath.java interface

IOExitRecordResourcePath.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.io.IOException;

/**
 * Represents a path that denotes a record-oriented data resource (for example,
 * a z/OS data set). It allows the data to be located, the record format to be
 * understood, and {@link IOExitRecordChannel} instances to be created for read
 * or write operations.
 */
public interface IOExitRecordResourcePath extends IOExitResourcePath {

 /**
 * Record formats for record-oriented resources.
 */
 public enum RecordFormat {
 FIXED, VARIABLE
 }

 /**
 * Obtains the record length for records that are maintained by the resource
 * denoted by this abstract path.
 * <p>
 * For a resource with fixed-length records, the data for each record read
 * and written is assumed to be this length.
 * <p>
 * For a resource with variable-length records, this is the maximum length
 * for a record's data.
 * <p>
 * This method should return a value greater than zero, otherwise it can
 * result in the failure of a WMQFTE transfer that involves this abstract
 * path.
 *
 * @return The record length, in bytes, for records maintained by the
 * resource.
 */
 int getRecordLength();

 /**
 * Obtains record format, as a {@link RecordFormat} instance, for records
 * that are maintained by the resource denoted by this abstract path.
 *
 * @return A {@link RecordFormat} instance for the record format for records
 * that are maintained by the resource denoted by this abstract
 * path.
 */

Developing applications reference 2135

 RecordFormat getRecordFormat();

 /**
 * Opens a {@link IOExitRecordChannel} instance for reading data from the
 * resource denoted by this abstract path. The current data byte position
 * for the resource is expected to be the passed position value, such that
 * when {@link IOExitRecordChannel#read(java.nio.ByteBuffer)} is called,
 * data starting from that position is read.
 * <p>
 * Note that the data byte read position will be on a record boundary.
 *
 * @param position
 * The required data byte read position.
 * @return A new {@link IOExitRecordChannel} instance allowing data to be
 * read from the resource denoted by this abstract path.
 * @throws RecoverableIOException
 * If a recoverable problem occurs while attempting to open the
 * resource for reading. This means that WMQFTE can attempt to
 * recover the transfer.
 * @throws IOException
 * If some other I/O problem occurs.
 */
 IOExitRecordChannel openForRead(long position)
 throws RecoverableIOException, IOException;

 /**
 * Opens a {@link IOExitRecordChannel} instance for writing data to the
 * resource denoted by this abstract path. Writing of data, using the
 * {@link IOExitRecordChannel#write(java.nio.ByteBuffer)} method, starts at
 * either the beginning of the resource or end of the current data for the
 * resource, depending on the specified append parameter.
 *
 * @param append
 * When {@code true} indicates that data written to the resource
 * should be appended to the end of the current data. When
 * {@code false} indicates that writing of data is to start at
 * the beginning of the resource; any existing data is lost.
 * @return A new {@link IOExitRecordChannel} instance allowing data to be
 * written to the resource denoted by this abstract path.
 * @throws RecoverableIOException
 * If a recoverable problem occurs while attempting to open the
 * resource for writing. This means that WMQFTE can attempt to
 * recover the transfer.
 * @throws IOException
 * If some other I/O problem occurs.
 */
 IOExitRecordChannel openForWrite(boolean append)
 throws RecoverableIOException, IOException;
}

Related tasks
Using MFT transfer I/O user exits
Customizing MFT with user exits

IOExitResourcePath.java interface

IOExitResourcePath.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.io.IOException;

/**

2136 IBM MQ Developing Applications Reference

 * Represents a path that denotes a data resource (for example, a file,
 * directory, or group of database records). It allows the data to be located
 * and {@link IOExitChannel} instances to be created for read or write
 * operations.
 * <p>
 * There are two types of data resources as follows:
 *
 * Directory - a container for other data resources. The
 * {@link #isDirectory()} method returns {@code true} for these.
 * File - a data container. This allows data to be read from or written to
 * it. The {@link #isFile()} method returns {@code true} for these.
 *
 */
public interface IOExitResourcePath extends IOExitPath {

 /**
 * Creates a new {@link IOExitResourcePath} instance for a child path of the
 * resource denoted by this abstract path.
 * <p>
 * For example, with a UNIX-style path, {@code
 * IOExitResourcePath("/home/fteuser/test").newPath("subtest")} could be
 * equivalent to: {@code IOExitResourcePath("/home/fteuser/test/subtest")}
 *
 * @param child
 * The child path name.
 * @return A new {@link IOExitResourcePath} instance that represents a child
 * of this path.
 */
 IOExitResourcePath newPath(final String child);

 /**
 * Creates the directory path for the resource denoted by this abstract
 * path, including any necessary but nonexistent parent directories. If the
 * directory path already exists, this method has no effect.
 * <p>
 * If this operation fails, it might have succeeded in creating some of the
 * necessary parent directories.
 *
 * @throws IOException
 * If the directory path cannot be fully created, when it does
 * not already exist.
 */
 void makePath() throws IOException;

 /**
 * Obtains the canonical path of the abstract path as a {@link String}.
 * <p>
 * A canonical path is defined as being absolute and unique. For example,
 * the path can be represented as UNIX-style relative path: {@code
 * test/file.txt} but the absolute and unique canonical path representation
 * is: {@code /home/fteuser/test/file.txt}
 *
 * @return The canonical path as a {@link String}.
 * @throws IOException
 * If the canonical path cannot be determined for any reason.
 */
 String getCanonicalPath() throws IOException;

 /**
 * Tests if this abstract path is an absolute path.
 * <p>
 * For example, a UNIX-style path, {@code /home/fteuser/test} is an absolute
 * path, whereas {@code fteuser/test} is not.
 *
 * @return {@code true} if this abstract path is an absolute path, {@code
 * false} otherwise.
 */
 boolean isAbsolute();

 /**
 * Tests if the resource denoted by this abstract path exists.
 *
 * @return {@code true} if the resource denoted by this abstract path
 * exists, {@code false} otherwise.
 * @throws IOException
 * If the existence of the resource cannot be determined for any
 * reason.
 */
 boolean exists() throws IOException;

 /**
 * Tests whether the calling application can read the resource denoted by

Developing applications reference 2137

 * this abstract path.
 *
 * @return {@code true} if the resource for this path exists and can be
 * read, {@code false} otherwise.
 * @throws IOException
 * If a problem occurs while attempting to determine if the
 * resource can be read.
 */
 boolean canRead() throws IOException;

 /**
 * Tests whether the calling application can modify the resource denoted by
 * this abstract path.
 *
 * @return {@code true} if the resource for this path exists and can be
 * modified, {@code false} otherwise.
 * @throws IOException
 * If a problem occurs while attempting to determine if the
 * resource can be modified.
 */
 boolean canWrite() throws IOException;

 /**
 * Tests whether the specified user is permitted to read the resource
 * denoted by this abstract path.
 * <p>
 * When WMQFTE invokes this method, the user identifier is the MQMD user
 * identifier for the requesting transfer.
 *
 * @param userId
 * User identifier to test for access.
 * @return {@code true} if the resource for this abstract path exists and is
 * permitted to be read by the specified user, {@code false}
 * otherwise.
 * @throws IOException
 * If a problem occurs while attempting to determine if the user
 * is permitted to read the resource.
 */
 boolean readPermitted(String userId) throws IOException;

 /**
 * Tests whether the specified user is permitted to modify the resource
 * denoted by this abstract path.
 * <p>
 * When WMQFTE invokes this method, the user identifier is the MQMD user
 * identifier for the requesting transfer.
 *
 * @param userId
 * User identifier to test for access.
 * @return {@code true} if the resource for this abstract path exists and is
 * permitted to be modified by the specified user, {@code false}
 * otherwise.
 * @throws IOException
 * If a problem occurs while attempting to determine if the user
 * is permitted to modify the resource.
 */
 boolean writePermitted(String userId) throws IOException;

 /**
 * Tests if the resource denoted by this abstract path is a directory-type
 * resource.
 *
 * @return {@code true} if the resource denoted by this abstract path is a
 * directory type resource, {@code false} otherwise.
 */
 boolean isDirectory();

 /**
 * Creates the resource denoted by this abstract path, if it does not
 * already exist.
 *
 * @return {@code true} if the resource does not exist and was successfully
 * created, {@code false} if the resource already existed.
 * @throws RecoverableIOException
 * If a recoverable problem occurs while attempting to create
 * the resource. This means that WMQFTE can attempt to recover
 * the transfer.
 * @throws IOException
 * If some other I/O problem occurs.
 */
 boolean createNewPath() throws RecoverableIOException, IOException;

2138 IBM MQ Developing Applications Reference

 /**
 * Tests if the resource denoted by this abstract path is a file-type
 * resource.
 *
 * @return {@code true} if the resource denoted by this abstract path is a
 * file type resource, {@code false} otherwise.
 */
 boolean isFile();

 /**
 * Obtains the last modified time for the resource denoted by this abstract
 * path.
 * <p>
 * This time is measured in milliseconds since the epoch (00:00:00 GMT,
 * January 1, 1970).
 *
 * @return The last modified time for the resource denoted by this abstract
 * path, or a value of 0L if the resource does not exist or a
 * problem occurs.
 */
 long lastModified();

 /**
 * Deletes the resource denoted by this abstract path.
 * <p>
 * If the resource is a directory, it must be empty for the delete to work.
 *
 * @throws IOException
 * If the delete of the resource fails for any reason.
 */
 void delete() throws IOException;

 /**
 * Renames the resource denoted by this abstract path to the specified
 * destination abstract path.
 * <p>
 * The rename should still be successful if the resource for the specified
 * destination abstract path already exists and it is possible to replace
 * it.
 *
 * @param destination
 * The new abstract path for the resource denoted by this
 * abstract path.
 * @throws IOException
 * If the rename of the resource fails for any reason.
 */
 void renameTo(IOExitResourcePath destination) throws IOException;

 /**
 * Creates a new path to use for writing to a temporary resource that did
 * not previously exist.
 * <p>
 * The implementation can choose the abstract path name for the temporary
 * resource. However, for clarity and problem diagnosis, the abstract path
 * name for the temporary resource should be based on this abstract path
 * name with the specified suffix appended and additional characters to make
 * the path unique (for example, sequence numbers), as required.
 * <p>
 * When WMQFTE transfers data to a destination it normally attempts to first
 * write to a temporary resource then on transfer completion renames the
 * temporary resource to the required destination. This method is called by
 * WMQFTE to create a new temporary resource path. The returned path should
 * be new and the resource should not previously exist.
 *
 * @param suffix
 * Recommended suffix to use for the generated temporary path.
 *
 * @return A new {@link IOExitResourcePath} instance for the temporary
 * resource path, that did not previously exist.
 * @throws RecoverableIOException
 * If a recoverable problem occurs whilst attempting to create
 * the temporary resource. This means that WMQFTE can attempt to
 * recover the transfer.
 * @throws IOException
 * If some other I/O problem occurs.
 */
 IOExitResourcePath createTempPath(String suffix)
 throws RecoverableIOException, IOException;

 /**
 * Opens a {@link IOExitChannel} instance for reading data from the resource
 * denoted by this abstract path. The current data byte position for the

Developing applications reference 2139

 * resource is expected to be the passed position value, such that when
 * {@link IOExitChannel#read(java.nio.ByteBuffer)} is called, data starting
 * from that position is read.
 *
 * @param position
 * The required data byte read position.
 * @return A new {@link IOExitChannel} instance allowing data to be read
 * from the resource denoted by this abstract path.
 * @throws RecoverableIOException
 * If a recoverable problem occurs while attempting to open the
 * resource for reading. This means that WMQFTE can attempt to
 * recover the transfer.
 * @throws IOException
 * If some other I/O problem occurs.
 */
 IOExitChannel openForRead(long position) throws RecoverableIOException,
 IOException;

 /**
 * Opens a {@link IOExitChannel} instance for writing data to the resource
 * denoted by this abstract path. Writing of data, using the
 * {@link IOExitChannel#write(java.nio.ByteBuffer)} method, starts at either
 * the beginning of the resource or end of the current data for the
 * resource, depending on the specified append parameter.
 *
 * @param append
 * When {@code true} indicates that data written to the resource
 * should be appended to the end of the current data. When
 * {@code false} indicates that writing of data is to start at
 * the beginning of the resource; any existing data is lost.
 * @return A new {@link IOExitChannel} instance allowing data to be written
 * to the resource denoted by this abstract path.
 * @throws RecoverableIOException
 * If a recoverable problem occurs whilst attempting to open the
 * resource for writing. This means that WMQFTE can attempt to
 * recover the transfer.
 * @throws IOException
 * If some other I/O problem occurs.
 */
 IOExitChannel openForWrite(boolean append) throws RecoverableIOException,
 IOException;

 /**
 * Tests if the resource denoted by this abstract path is in use by another
 * application. Typically, this is because another application has a lock on
 * the resource either for shared or exclusive access.
 *
 * @return {code true} if resource denoted by this abstract path is in use
 * by another application, {@code false} otherwise.
 */
 boolean inUse();

 /**
 * Obtains a {@link IOExitProperties} instance for properties associated
 * with the resource denoted by this abstract path.
 * <p>
 * WMQFTE will read these properties to govern how a transfer behaves when
 * interacting with the resource.
 *
 * @return A {@link IOExitProperties} instance for properties associated
 * with the resource denoted by this abstract path.
 */
 IOExitProperties getProperties();

}

Related tasks
Using MFT transfer I/O user exits
Customizing MFT with user exits

IOExitWildcardPath.java interface

IOExitWildcardPath.java

/*
 * Licensed Materials - Property of IBM

2140 IBM MQ Developing Applications Reference

 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 * Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

/**
 * Represents a path that denotes a wildcard. This can be used to match multiple
 * resource paths.
 */
public interface IOExitWildcardPath extends IOExitPath {

Related tasks
Using MFT transfer I/O user exits
Customizing MFT with user exits

MonitorExit.java interface

MonitorExit.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 * Copyright IBM Corp. 2009, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.util.Map;

/**
 * An interface that is implemented by classes that want to be invoked as part of
 * user exit routine processing. This interface defines a method that will be
 * invoked immediately prior to starting a task as the result of a monitor trigger
 */
public interface MonitorExit {

 /**
 * Invoked immediately prior to starting a task as the result of a monitor
 * trigger.
 *
 * @param environmentMetaData
 * meta data about the environment in which the implementation
 * of this method is running. This information can only be read,
 * it cannot be updated by the implementation. The constant
 * defined in <code>EnvironmentMetaDataConstants</code> class can
 * be used to access the data held by this map.
 *
 * @param monitorMetaData
 * meta data to associate with the monitor. The meta data passed
 * to this method can be altered, and the changes will be
 * reflected in subsequent exit routine invocations. This map
 * also contains keys with IBM reserved names. These entries are
 * defined in the <code>MonitorMetaDataConstants</code> class and
 * have special semantics. The the values of the IBM reserved names
 * cannot be modified by the exit
 *
 * @param taskDetails
 * An XML String representing the task to be executed as a result of
 * the monitor triggering. This XML string may be modified by the
 * exit
 *

Developing applications reference 2141

 * @return a monitor exit result object which is used to determine if the
 * task should proceed, or be cancelled.
 */
 MonitorExitResult onMonitor(Map<String, String> environmentMetaData,
 Map<String, String> monitorMetaData,
 Reference<String> taskDetails);
}

Related tasks
Monitoring MFT resources
Customizing MFT with user exits
Related reference
“SourceTransferStartExit.java interface” on page 2147
“SourceTransferEndExit.java interface” on page 2146
“DestinationTransferStartExit.java interface” on page 2122
“DestinationTransferEndExit.java interface” on page 2121
“ProtocolBridgeCredentialExit.java interface” on page 2142

ProtocolBridgeCredentialExit.java interface

ProtocolBridgeCredentialExit.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2008, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.util.Map;

/**
 * An interface that is implemented by classes that are to be invoked as part of
 * user exit routine processing. This interface defines methods that will
 * be invoked by a protocol bridge agent to map the MQ user ID of the transfer to credentials
 * that are to be used to access the protocol server.
 * There will be one instance of each implementation class per protocol bridge agent. The methods
 * can be called from different threads so the methods must be synchronized.
 */
public interface ProtocolBridgeCredentialExit {

 /**
 * Invoked once when a protocol bridge agent is started. It is intended to initialize
 * any resources that are required by the exit
 *
 * @param bridgeProperties
 * The values of properties defined for the protocol bridge.
 * These values can only be read, they cannot be updated by
 * the implementation.
 *
 *
 * @return true if the initialization is successful and false if unsuccessful
 * If false is returned from an exit the protocol bridge agent will not
 * start
 */

 public boolean initialize(final Map<String> bridgeProperties);

 /**
 * Invoked once for each transfer to map the MQ user ID in the transfer message to the
 * credentials to be used to access the protocol server
 *
 * @param mqUserId The MQ user ID from which to map to the credentials to be used

2142 IBM MQ Developing Applications Reference

 * access the protocol server
 * @return A credential exit result object that contains the result of the map and
 * the credentials to use to access the protocol server
 */

 public CredentialExitResult mapMQUserId(final String mqUserId);

 /**
 * Invoked once when a protocol bridge agent is shutdown. It is intended to release
 * any resources that were allocated by the exit
 *
 * @param bridgeProperties
 * The values of properties defined for the protocol bridge.
 * These values can only be read, they cannot be updated by
 * the implementation.
 *
 * @return
 */

 public void shutdown(final Map<String> bridgeProperties);

}

Related tasks
Customizing MFT with user exits
Mapping credentials for a file server by using exit classes

ProtocolBridgeCredentialExit2.java interface

ProtocolBridgeCredentialExit2.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

/**
 * An interface that is implemented by classes that are invoked as part of user
 * exit routine processing. This interface defines methods that are invoked by a
 * protocol bridge agent to map the MQ user ID of the transfer to credentials
 * used to access a specified protocol bridge server. There will be one instance
 * of each implementation class for each protocol bridge agent. The methods can
 * be called from different threads so the methods must be synchronized.
 */
public interface ProtocolBridgeCredentialExit2 extends
 ProtocolBridgeCredentialExit {

 /**
 * Invoked once for each transfer to map the MQ user ID in the transfer
 * message to the credentials used to access a specified protocol server.
 *
 * @param endPoint
 * Information that describes the protocol server to be accessed.
 * @param mqUserId
 * The MQ user ID from which to map the credentials used to
 * access the protocol server.
 * @return A {@link CredentialExitResult) instance that contains the result
 * of the map and the credentials to use to access the protocol
 * server.
 */
 public CredentialExitResult mapMQUserId(
 final ProtocolServerEndPoint endPoint, final String mqUserId);
}

Developing applications reference 2143

Related tasks
Customizing MFT with user exits
Mapping credentials for a file server by using exit classes

ProtocolBridgePropertiesExit2.java interface

ProtocolBridgePropertiesExit2.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2011, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.util.Map;
import java.util.Properties;

/**
 * An interface that is implemented by classes that are to be invoked as part of
 * user exit routine processing. This interface defines methods that will be
 * invoked by a protocol bridge agent to look up properties for protocol servers
 * that are referenced in transfers.
 * <p>
 * There will be one instance of each implementation class for each protocol
 * bridge agent. The methods can be called from different threads so the methods
 * must be synchronised.
 */
public interface ProtocolBridgePropertiesExit2 {

 /**
 * Invoked once when a protocol bridge agent is started. It is intended to
 * initialize any resources that are required by the exit.
 *
 * @param bridgeProperties
 * The values of properties defined for the protocol bridge.
 * These values can only be read, they cannot be updated by the
 * implementation.
 * @return {@code true} if the initialization is successful and {@code
 * false} if unsuccessful. If {@code false} is returned from an exit
 * the protocol bridge agent will not start.
 */
 public boolean initialize(final Map<String, String> bridgeProperties);

 /**
 * Invoked when the Protocol Bridge needs to access the protocol bridge credentials XML file.
 *
 * @return a {@link String} object giving the location of the ProtocolBridgeCredentials.xml
 */
 public String getCredentialLocation ();

 /**
 * Obtains a set of properties for the specified protocol server name.
 * <p>
 * The returned {@link Properties} must contain entries with key names
 * corresponding to the constants defined in
 * {@link ProtocolServerPropertyConstants} and in particular must include an
 * entry for all appropriate constants described as required.
 *
 * @param protocolServerName
 * The name of the protocol server whose properties are to be
 * returned. If a null or a blank value is specified, properties
 * for the default protocol server are to be returned.
 * @return The {@link Properties} for the specified protocol server, or null
 * if the server cannot be found.
 */
 public Properties getProtocolServerProperties(
 final String protocolServerName);

2144 IBM MQ Developing Applications Reference

 /**
 * Invoked once when a protocol bridge agent is shut down. It is intended to
 * release any resources that were allocated by the exit.
 *
 * @param bridgeProperties
 * The values of properties defined for the protocol bridge.
 * These values can only be read, they cannot be updated by the
 * implementation.
 */
 public void shutdown(final Map<String, String> bridgeProperties);

}

Related tasks
ProtocolBridgePropertiesExit: Looking up protocol file server properties
Customizing MFT with user exits
Mapping credentials for a file server by using exit classes

SourceFileExitFileSpecification.java class

SourceFileExitFileSpecification.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2012, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitroutine.api;

import java.util.Map;

/**
 * A specification of the file names to use for a file transfer, as evaluated by the
 * agent acting as the source of the transfer.
 */
public final class SourceFileExitFileSpecification {

 private final String sourceFileSpecification;
 private final String destinationFileSpecification;
 private final Map<String, String> sourceFileMetaData;
 private final Map<String, String> destinationFileMetaData;

 /**
 * Constructor. Creates a source file exit file specification.
 *
 * @param sourceFileSpecification
 * the source file specification to associate with the source file
 * exit file specification.
 *
 * @param destinationFileSpecification
 * the destination file specification to associate with the
 * source file exit file specification.
 *
 * @param sourceFileMetaData
 * the source file meta data.
 *
 * @param destinationFileMetaData
 * the destination file meta data .
 */
 public SourceFileExitFileSpecification(final String sourceFileSpecification,
 final String destinationFileSpecification,
 final Map<String, String> sourceFileMetaData,
 final Map<String, String> destinationFileMetaData) {
 this.sourceFileSpecification = sourceFileSpecification;
 this.destinationFileSpecification = destinationFileSpecification;
 this.sourceFileMetaData = sourceFileMetaData;
 this.destinationFileMetaData = destinationFileMetaData;
 }

Developing applications reference 2145

 /**
 * Returns the destination file specification.
 *
 * @return the destination file specification. This represents the location,
 * on the agent acting as the destination for the transfer, where the
 * file should be written. Exit routines installed into the agent
 * acting as the destination for the transfer may override this value.
 */
 public String getDestination() {
 return destinationFileSpecification;
 }

 /**
 * Returns the source file specification.
 *
 * @return the source file specification. This represents the location where
 * the file data will be read from.
 */
 public String getSource() {
 return sourceFileSpecification;
 }

 /**
 * Returns the file meta data that relates to the source file specification.
 *
 * @return the file meta data that relates to the source file specification.
 */
 public Map<String, String> getSourceFileMetaData() {
 return sourceFileMetaData;
 }

 /**
 * Returns the file meta data that relates to the destination file specification.
 *
 * @return the file meta data that relates to the destination file specification.
 */
 public Map<String, String> getDestinationFileMetaData() {
 return destinationFileMetaData;
 }
}

Related concepts
“Metadata for MFT user exits” on page 2110
There are three different types of metadata that can be supplied to user exit routines for Managed File
Transfer: environment, transfer, and file metadata. This metadata is presented as maps of Java key-value
pairs.

SourceTransferEndExit.java interface

SourceTransferEndExit.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2008, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitpoint.api;

/**
 * An interface that is implemented by classes that want to be invoked as part of
 * user exit routine processing. This interface defines a method that will be
 * invoked immediately after completing a transfer on the agent acting as the
 * source of the transfer.
 */
public interface SourceTransferEndExit {

 /**

2146 IBM MQ Developing Applications Reference

 * Invoked immediately after the completion of a transfer on the agent acting as
 * the source of the transfer.
 *
 * @param transferExitResult
 * a result object reflecting whether or not the transfer completed
 * successfully.
 *
 * @param sourceAgentName
 * the name of the agent acting as the source of the transfer.
 * This is the name of the agent that the implementation of this
 * method will be invoked from.
 *
 * @param destinationAgentName
 * the name of the agent acting as the destination of the
 * transfer.
 *
 * @param environmentMetaData
 * meta data about the environment in which the implementation
 * of this method is running. This information can only be read,
 * it cannot be updated by the implementation. The constants
 * defined in <code>EnvironmentMetaDataConstants</code> class can
 * be used to access the data held by this map.
 *
 * @param transferMetaData
 * meta data to associate with the transfer. The information can
 * only be read, it cannot be updated by the implementation. This
 * map may also contain keys with IBM reserved names. These
 * entries are defined in the <code>TransferMetaDataConstants</code>
 * class and have special semantics.
 *
 * @param fileResults
 * a list of file transfer result objects that describe the source
 * file name, destination file name and result of each file transfer
 * operation attempted.
 *
 * @return an optional description to enter into the log message describing
 * transfer completion. A value of <code>null</code> can be used
 * when no description is required.
 */
 String onSourceTransferEnd(TransferExitResult transferExitResult,
 String sourceAgentName,
 String destinationAgentName,
 Map<String, String>environmentMetaData,
 Map<String, String>transferMetaData,
 List<FileTransferResult>fileResults);

}

Related tasks
Customizing MFT with user exits
Related reference
“SourceTransferStartExit.java interface” on page 2147
“DestinationTransferStartExit.java interface” on page 2122
“DestinationTransferEndExit.java interface” on page 2121
“MonitorExit.java interface” on page 2141
“ProtocolBridgeCredentialExit.java interface” on page 2142

SourceTransferStartExit.java interface

SourceTransferStartExit.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2008, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or

Developing applications reference 2147

 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */
package com.ibm.wmqfte.exitpoint.api;

import java.util.List;
import java.util.Map;

/**
 * An interface that is implemented by classes that want to be invoked as part of
 * user exit routine processing. This interface defines a method that will be
 * invoked immediately prior to starting a transfer on the agent acting as the
 * source of the transfer.
 */
public interface SourceTransferStartExit {

 /**
 * Invoked immediately prior to starting a transfer on the agent acting as
 * the source of the transfer.
 *
 * @param sourceAgentName
 * the name of the agent acting as the source of the transfer.
 * This is the name of the agent that the implementation of this
 * method will be invoked from.
 *
 * @param destinationAgentName
 * the name of the agent acting as the destination of the
 * transfer.
 *
 * @param environmentMetaData
 * meta data about the environment in which the implementation
 * of this method is running. This information can only be read,
 * it cannot be updated by the implementation. The constants
 * defined in <code>EnvironmentMetaDataConstants</code> class can
 * be used to access the data held by this map.
 *
 * @param transferMetaData
 * meta data to associate with the transfer. The meta data passed
 * to this method can be altered, and the changes to will be
 * reflected in subsequent exit routine invocations. This map may
 * also contain keys with IBM reserved names. These entries are
 * defined in the <code>TransferMetaDataConstants</code> class and
 * have special semantics.
 *
 * @param fileSpecs
 * a list of file specifications that govern the file data to
 * transfer. The implementation of this method can add entries,
 * remove entries, or modify entries in this list and the changes
 * will be reflected in the files transferred.
 *
 * @return a transfer exit result object which is used to determine if the
 * transfer should proceed, or be cancelled.
 */
 TransferExitResult onSourceTransferStart(String sourceAgentName,
 String destinationAgentName,
 Map<String, String> environmentMetaData,
 Map<String, String>transferMetaData,
 List<SourceFileExitFileSpecification>fileSpecs);
}

Related tasks
Customizing MFT with user exits
Related reference
“SourceFileExitFileSpecification.java class” on page 2145
“SourceTransferEndExit.java interface” on page 2146
“DestinationTransferStartExit.java interface” on page 2122
“DestinationTransferEndExit.java interface” on page 2121
“MonitorExit.java interface” on page 2141
“ProtocolBridgeCredentialExit.java interface” on page 2142

2148 IBM MQ Developing Applications Reference

TransferExitResult.java interface

TransferExitResult.java

/*
 * Licensed Materials - Property of IBM
 *
 * "Restricted Materials of IBM"
 *
 * 5724-H72
 *
 *  Copyright IBM Corp. 2008, 2024. All Rights Reserved.
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with
 * IBM Corp.
 */

package com.ibm.wmqfte.exitroutine.api;

/**
 * The result of invoking a transfer exit routine. It is composed of a result
 * code, which determines if the transfer should proceed, and an optional explanatory
 * message. The explanation, if present, is entered into the log message.
 */
public class TransferExitResult {

 private final TransferExitResultCode resultCode;
 private final String explanation;

 /**
 * For convenience, a static "proceed" result with no associated explanation
 * message.
 */
 public static final TransferExitResult PROCEED_RESULT =
 new TransferExitResult(TransferExitResultCode.PROCEED, null);

 /**
 * Constructor. Creates a transfer exit result object with a specified result
 * code and explanation.
 *
 * @param resultCode
 * The result code to associate with the exit result being created.
 *
 * @param explanation
 * The explanation to associate with the exit result being created.
 * A value of <code>null</code> can be specified to indicate no
 * explanation.
 */
 public TransferExitResult(TransferExitResultCode resultCode, String explanation) {
 this.resultCode = resultCode;
 this.explanation = explanation;
 }

 /**
 * Returns the explanation associated with this transfer exit result.
 *
 * @return the explanation associated with this exit result.
 */
 public String getExplanation() {
 return explanation;
 }

 /**
 * Returns the result code associated with this transfer exit result.
 *
 * @return the result code associated with this exit result.
 */
 public TransferExitResultCode getResultCode() {
 return resultCode;
 }
}

Developing applications reference 2149

Related tasks
Customizing MFT with user exits
Related reference
“SourceTransferStartExit.java interface” on page 2147
“DestinationTransferStartExit.java interface” on page 2122
“DestinationTransferEndExit.java interface” on page 2121
“MonitorExit.java interface” on page 2141
“ProtocolBridgeCredentialExit.java interface” on page 2142

Message formats for messages you can put on the MFT Agent command
queue

These XML schemas define the formats for messages that can be put on the agent command queue to
request that the agent perform an action. The XML message can be placed on the agent command queue
by using the command-line commands or by an application.

• File transfer request message format
• MFT monitor request message formats
• Ping MFT agent request message format
• MFT agent reply message format

Messaging REST API reference
Reference information about the messaging REST API.

For more information about using the messaging REST API, see Messaging using the REST API.

REST API resources
This collection of topics provides reference information for each of the messaging REST API resources.

For more information about using the messaging REST API, see Messaging using the REST API.

/messaging/qmgr/{qmgrName}/queue/{queueName}/message

The messaging REST API allows messages to be put to a queue, or messages to be browsed
or destructively got from a queue, using the /messaging/qmgr/{qmgrName}/queue/{queueName}/
message resource.

POST
You can use the HTTP POST method with the /messaging/qmgr/{qmgrName}/queue/{queueName}/
message resource to put messages to the specified queue on the specified queue manager.

Puts an IBM MQ message containing the HTTP request body to the specified queue manager and queue.
The queue manager must be on the same machine as the mqweb server. The method only supports text
based HTTP request bodies. Messages are sent as MQSTR or JMS TextMessage formatted messages,
and are put using the current user context.

REST API V3 adds the ability to specify user-defined message properties and to include
message priority. The ibm-mq-md-priority and ibm-mq-usr request headers are only available with REST
API V3. The ibm-mq-md-correlationId request header has a different format in REST API V3. The header
can be an application-specific ID, or, if an encoded string, requires the ID: prefix. If your POST request
contains user-defined messages, or application-specific correlation ID, the message is formatted as a JMS
TextMessage.

2150 IBM MQ Developing Applications Reference

• “Resource URL” on page 2151
• “Request headers” on page 2151
• “Request body format” on page 2154
• “Security requirements” on page 2154
• “Response status codes” on page 2154
• “Response headers” on page 2155
• “Response body format” on page 2155
• “Examples” on page 2156

Resource URL
https://host:port/ibmmq/rest/v1/messaging/qmgr/{qmgrName}/queue/{queueName}/
message

https://host:port/ibmmq/rest/v2/messaging/qmgr/{qmgrName}/queue/{queueName}/
message

https://host:port/ibmmq/rest/v3/messaging/qmgr/{qmgrName}/queue/
{queueName}/message

qmgrName
Specifies the name of the queue manager to connect to for messaging. The queue manager must be
on the same machine as the mqweb server.
The queue manager name is case-sensitive.
If the queue manager name includes a forward slash, a period, or a percent sign, these characters
must be URL encoded:

• A forward slash must be encoded as %2F.
• A period must be encoded as %2E.
• A percent sign must be encoded as %25.

queueName
Specifies the name of the queue on which to put the message.
The queue must be defined as being local, remote, or an alias to the specified queue manager - it may
also reference a clustered queue.
The queue name is case sensitive.
If the queue name includes a forward slash or a percent sign, these characters must be URL encoded:

• A forward slash, /, must be encoded as %2F.
• A percent sign, %, must be encoded as %25.

You can use HTTP instead of HTTPS if you enable HTTP connections. For more information about enabling
HTTP, see Configuring HTTP and HTTPS ports.

Request headers
The following headers must be sent with the request:
Authorization

This header must be sent if you are using basic authentication. For more information, see Using HTTP
basic authentication with the REST API.

Content-Type
This header must be sent with one of the following values:

• text/plain;charset=utf-8
• text/html;charset=utf-8

Developing applications reference 2151

• text/xml;charset=utf-8
• application/json;charset=utf-8
• application/xml;charset=utf-8

Note: If charset is omitted from the Context-Type header, UTF-8 is assumed.

ibm-mq-rest-csrf-token
This header must be set, but the value can be anything, including being blank.

The following headers can optionally be sent with the request:
Accept-Language

This header specifies the required language for any exceptions or error messages returned in the
response message body.

ibm-mq-md-correlationId
This header sets the correlation ID of the created message. The header must be specified as a 48
character hexadecimal encoded string, representing 24 bytes. Do not prefix the value with "ID:", the
REST API adds that string automatically.
For example:

ibm-mq-md-correlationId: 414d5120514d4144455620202020202067d8bf5923582e02

ibm-mq-md-correlationId
This header sets the correlation ID of the created message. The correlation ID can take one of the
following forms:

• A 48 character hexadecimal encoded string, representing 24 bytes, prefixed with the string "ID:".
For example:

ibm-mq-md-correlationId: ID:414d5120514d4144455620202020202067d8bf5923582e02

• An application-specific value. The value is an application-specific string:

ibm-mq-md-correlationId: My-Custom-CorrelId

If you specify this form of correlation ID, the message destination is targeted as
WMQ_CLIENT_JMS_COMPLIANT, and therefore incorporates an MQRFH2 header.

ibm-mq-md-expiry
This header sets the expiry duration for the created message. The expiry of a message starts from the
time the message arrives on the queue. As a result network latency is ignored. The header must be
specified as one of the following values:
unlimited

The message does not expire.
This value is the default value.

Integer value
Milliseconds before message expiry.
Limited to the range 0 - 99999999900.

ibm-mq-md-persistence
This header sets the persistence for the created message. The header must be specified as one of the
following values:
nonPersistent

The message does not survive system failures or queue manager restarts.
This value is the default value.

2152 IBM MQ Developing Applications Reference

persistent
The message survives system failures or queue manager restarts.

ibm-mq-md-priority
This header sets the priority of the created message. The header must be specified as one of the
following values:
asDestination

The message uses the priority specified in the DEFPRTY attribute of the underlying IBM MQ queue
object.

Integer value
Specify the actual priority as an integer in the range 0-9.

For example:

ibm-mq-md-priority: asDestination

ibm-mq-md-replyTo
This header sets the reply-to destination for the created message. The format of the header
uses the standard notation of supplying the reply-to queue and an optional queue manager:
replyQueue[@replyQmgr]
For example:

ibm-mq-md-replyTo: myReplyQueue@myReplyQMgr

ibm-mq-usr
Set the request message user-defined properties. Multiple properties can be set on a message. You
can specify multiple comma-separated properties in a single ibm-mq-usr request header, or you can
use two or more separate instances of the ibm-mq-usr request header.
For example:

ibm-mq-usr: myIProp;5;short
ibm-mq-usr: mySProp;”hi”;string
ibm-mq-usr: myBProp;true;boolean
ibm-mq-usr: myA;5;byte,myB;-10;integer

The properties have the following syntax:

ibm-mq-usr: property_name; user_value; user_type

property_name
The name of the user property being specified. This must be a valid JMS property name.

user_value
The value of the property.

user_type
The type of the property:

• boolean (true/false, MQBOOL)
• byte (8-bit integer, MQINT8)
• short (16-bit integer, MQINT16)
• integer (32-bit integer, MQINT32)
• long (64-bit integer, MQINT64)
• float (32-bit real, MQFLOAT32)
• double (64-bit real, MQFLOAT64)
• string (quoted string)

Developing applications reference 2153

Note: The message priority for POST is always 4 for REST API V1 and REST API V2 , by default it is set to
asDestination for REST API V3.

Request body format
The request body must be text and use UTF-8 encoding. No specific text structure is required. An MQSTR
formatted message containing the request body text is created and put to the specified queue.

If the REST API V3 user-defined properties, or application-specific correlation
ID features are used, then an JMS TextMessage formatted message containing the request body text is
created and put to the specified queue.

For more information, see examples.

Security requirements
The caller must be authenticated to the mqweb server. The MQWebAdmin and MQWebAdminRO roles are
not applicable for the messaging REST API. For more information about security for the REST API, see
IBM MQ Console and REST API security.

Once authenticated to the mqweb server the user is capable of using both the messaging REST API and
the administrative REST API.

The security principal of the caller must be granted the ability to put messages to the specified queue:

• The queue that is specified by the {queueName} portion of the resource URL, must be PUT enabled.

• For the queue that is specified by the {queueName} portion of the resource
URL, +PUT authority must be granted to the security principal of the caller.

• For the queue that is specified by the {queueName} portion of the resource URL, UPDATE
access must be granted to the security principal of the caller.

On AIX, Linux, and Windows, you can grant authority to security principals to use IBM
MQ resources by using the setmqaut command. For more information, see setmqaut (grant or revoke
authority).

On z/OS, see Setting up security on z/OS.

If you use Advanced Message Security (AMS) with the messaging REST API, note that all messages are
encrypted by using the context of the mqweb server, not the context of the user that posts the message.

Response status codes
201

Message created and sent successfully.
400

Invalid data provided.
For example, an invalid request header value was specified.

401
Not authenticated.
The caller must be authenticated to the mqweb server and must be a member of one or more of the
MQWebAdmin, MQWebAdminRO, or MQWebUser roles. The ibm-mq-rest-csrf-token header must
also be specified. For more information, see “Security requirements” on page 2154.

403
Not authorized.
The caller is authenticated to the mqweb server and is associated with a valid principal. However, the
principal does not have access to all, or a subset of the required IBM MQ resources, or is not in the

2154 IBM MQ Developing Applications Reference

MQWebUser role. For more information about the access that is required, see “Security requirements”
on page 2154.

404
Queue does not exist.

405
Queue is PUT inhibited.

415
A message header or body is an unsupported media type.
For example, the Content-Type header is set to an unsupported media type.

500
Server issue or error code from IBM MQ.

502
The current security principal cannot send the message as the messaging provider does not support
the required function. For example, if the mqweb server class path is invalid.

503
Queue manager not running.

Response headers
The following headers are returned with the response:
Content-Language

Specifies the language identifier of the response message in the event of any errors or exceptions.
Used in conjunction with Accept-Language request header to indicate the required language for
any error or exception conditions. The mqweb server default is used if the requested language is
unsupported.

Content-Length
Specifies the length of the HTTP response body, even when there is no content. Upon success the
value is zero.

Content-Type
Specifies the type of response body. Upon success the value is text/plain;charset=utf-8. In
the event of any errors or exceptions, the value is application/json;charset=utf-8.

ibm-mq-md-messageId
Specifies the message ID that is allocated by IBM MQ to this message. Like the ibm-mq-md-
correlationId request header, it is represented as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

ibm-mq-md-messageId: 414d5120514d4144455620202020202067d8ce5923582f07

ibm-mq-md-messageId
Specifies the message ID that is allocated by IBM MQ to this message. Like the ibm-mq-md-
correlationId request header, it is represented as a 48 character hexadecimal encoded string,
representing 24 bytes, prefixed by the string ID:.
For example:

ibm-mq-md-messageId: ID:414d5120514d4144455620202020202067d8ce5923582f07

Response body format
The response body is empty if the message is sent successfully. If an error occurs, the response body
contains an error message. For more information, see REST API error handling.

Developing applications reference 2155

Examples
The following examples use the v2 resource URL. If you are using a version of IBM MQ earlier than IBM
MQ 9.1.5 you must use the v1 resource URL instead. That is, in the resource URL, substitute v1 where the
example URL uses v2.

The following example logs in a user called mquser with the password mquser. In cURL, the log in
request might look like the following Windows example. The LTPA token is stored in the cookiejar.txt
file by using the -c flag:

curl -k "https://localhost:9443/ibmmq/rest/v2/login" -X POST
-H "Content-Type: application/json" --data "{\"username\":\"mquser\",\"password\":\"mquser\"}"
-c c:\cookiejar.txt

After the user is logged in, the LTPA token and ibm-mq-rest-csrf-token HTTP header are used
to authenticate further requests. The ibm-mq-rest-csrf-token token_value can be any value,
including blank.

• The following Windows cURL example sends a message to queue Q1 on queue manager QM1, using
default options. The message contains the text "Hello World!":

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message"
-X POST -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token_value"
-H "Content-Type: text/plain;charset=utf-8" --data "Hello World!"

• The following Windows cURL example sends a persistent message to queue Q1 on queue manager QM1,
with an expiry of 2 minutes. The message contains the text "Hello World!":

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message"
-X POST -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token_value"
-H "Content-Type: text/plain;charset=utf-8" -H "ibm-mq-md-persistence: persistent"
-H "ibm-mq-md-expiry: 120000" --data "Hello World!"

• The following Windows cURL example sends a non-persistent message to queue Q1 on queue manager
QM1, with no expiry and defined correlation ID. The message contains the text "Hello World!":

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message"
-X POST -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Content-Type: text/plain;charset=utf-8" -H "ibm-mq-md-persistence: nonPersistent"
-H "ibm-mq-md-expiry: unlimited" -H "ibm-mq-md-correlationId:
414d5120514d4144455620202020202067d8b
f5923582e02" --data "Hello World!"

GET
You can use the HTTP GET method with the /messaging/qmgr/{qmgrName}/queue/{queueName}/
message resource to browse messages from the associated queue manager and queue.

Browses the first available message from the specified queue manager and queue. The queue manager
must be on the same machine as the mqweb server. The message body is returned in the HTTP response
body. The message must have a format of MQSTR or JMS TextMessage and is received using the current
user context.

All messages are left on the queue and an appropriate status code is returned to the caller for any
inappropriate messages. For example, a message which does not have a MQSTR or JMS TextMessage
format.

REST API V3 adds the ability to specify user-defined message properties and to include
message priority with messages. The ibm-mq-md-priority and ibm-mq-usr response headers are only
available with REST API V3. The ibm-mq-md-correlationId request header has a different format in REST
API V3. The header can be an application-specific ID, or, if an encoded string, retains the ID: prefix. The
ibm-mq-md-messageId response header and query parameter has a different format in REST API V3, it
retains the ID: prefix.

• “Resource URL” on page 2157
• “Optional query parameters” on page 2157

2156 IBM MQ Developing Applications Reference

• “Request headers” on page 2158
• “Request body format” on page 2158
• “Security requirements” on page 2159
• “Response status codes” on page 2159
• “Response headers” on page 2160
• “Response body format” on page 2162
• “Examples” on page 2162

Resource URL
https://host:port/ibmmq/rest/v1/messaging/qmgr/{qmgrName}/queue/{queueName}/
message

https://host:port/ibmmq/rest/v2/messaging/qmgr/{qmgrName}/queue/{queueName}/
message

https://host:port/ibmmq/rest/v3/messaging/qmgr/{qmgrName}/queue/
{queueName}/message

qmgrName
Specifies the name of the queue manager to connect to for messaging. The queue manager must be
on the same machine as the mqweb server.
The queue manager name is case-sensitive.
If the queue manager name includes a forward slash, a period, or a percent sign, these characters
must be URL encoded:

• A forward slash (/) must be encoded as %2F.
• A percent sign (%) must be encoded as %25.

queueName
Specifies the name of the queue from which to browse the message.
The queue must be defined as being local or an alias that points to a local queue.
The queue name is case sensitive.
If the queue name includes a forward slash or a percent sign, these characters must be URL encoded:

• A forward slash, /, must be encoded as %2F.
• A percent sign, %, must be encoded as %25.

You can use HTTP instead of HTTPS if you enable HTTP connections. For more information about enabling
HTTP, see Configuring HTTP and HTTPS ports.

Optional query parameters

correlationId=hexValue
Specifies that the HTTP method returns the next message with the corresponding correlation ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

../message?correlationId=414d5120514d4144455620202020202067d8bf5923582e02

correlationId=ID:hexValue or correlationId=application_specific_value
Specifies that the HTTP method returns the next message with the corresponding correlation ID.

Developing applications reference 2157

hexValue
The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes, and preceded by the string "ID:".
For example:

../message?correlationId=ID:414d5120514d4144455620202020202067d8bf5923582e02

application_specific_value
The query parameter can be specified as an application-specific string.
For example:

../message?correlationId=My-Custom-CorrelId

messageId=hexValue
Specifies that the HTTP method returns the next message with the corresponding message ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

../message?messageId=414d5120514d4144455620202020202067d8ce5923582f07

messageId=ID:hexValue
Specifies that the HTTP method returns the next message with the corresponding message ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes, and preceded by the string "ID:".
For example:

../message?messageId=ID:414d5120514d4144455620202020202067d8ce5923582f07

Request headers
The following headers must be sent with the request:
Authorization

This header must be sent if you are using basic authentication. For more information, see Using HTTP
basic authentication with the REST API.

ibm-mq-rest-csrf-token
This header must be set, but the value can be anything, including being blank.

The following headers can optionally be sent with the request:
Accept-Charset

This header can be used to indicate what character set is acceptable for the response. If specified,
this header must be set as UTF-8.

Accept-Language
This header specifies the required language for any exceptions or error messages returned in the
response message body.

Request body format
None.

2158 IBM MQ Developing Applications Reference

Security requirements
The caller must be authenticated to the mqweb server. The MQWebAdmin and MQWebAdminRO roles are
not applicable for the messaging REST API. For more information about security for the REST API, see
IBM MQ Console and REST API security.

Once authenticated to the mqweb server the user is capable of using both the messaging REST API and
the administrative REST API.

The security principal of the caller must be granted the ability to browse messages from the specified
queue:

• The queue that is specified by the {queueName} portion of the resource URL, must be BROWSE enabled.

• For the queue that is specified by the {queueName} portion of the resource
URL, +GET, +INQ, and +BROWSE authority must be granted to the security principal of the caller.

• For the queue that is specified by the {queueName} portion of the resource URL, UPDATE,
access must be granted to the security principal of the caller.

On AIX, Linux, and Windows, you can grant authority to security principals to use IBM
MQ resources by using the setmqaut command. For more information, see setmqaut (grant or revoke
authority).

On z/OS, see Setting up security on z/OS.

Response status codes
200

Message received successfully.
204

No message available.
400

Invalid data provided.
For example, an invalid query parameter value was specified.

401
Not authenticated.
The caller must be authenticated to the mqweb server and must be a member of one or more of the
MQWebAdmin, MQWebAdminRO, or MQWebUser roles. The ibm-mq-rest-csrf-token header must
also be specified. For more information, see “Security requirements” on page 2159.

403
Not authorized.
The caller is authenticated to the mqweb server and is associated with a valid principal. However, the
principal does not have access to all, or a subset of the required IBM MQ resources, or is not in the
MQWebUser role. For more information about the access that is required, see “Security requirements”
on page 2159.

404
Queue does not exist.

500
Server issue or error code from IBM MQ.

501
The HTTP response could not be constructed.
For example, the received message has an incorrect type, or has the correct type but the body could
not be processed.

Developing applications reference 2159

502
The current security principal cannot receive the message as the messaging provider does not support
the required function. For example, if the mqweb server class path is invalid.

503
Queue manager not running.

Response headers
The following headers are returned with the response:
Content-Language

Specifies the language identifier of the response message in the event of any errors or exceptions.
Used in conjunction with Accept-Language request header to indicate the required language for
any error or exception conditions. The mqweb server default is used if the requested language is
unsupported.

Content-Length
Specifies the length of the HTTP response body, even when there is no content. The value contains
the length (bytes) of the message data.

Content-Type
Specifies the type of content returned in the response body of the received message. Upon success
the value is text/plain;charset=utf-8. In the event of any errors or exceptions, the value is
application/json;charset=utf-8.

ibm-mq-md-correlationId
Specifies the correlation ID of the received message. The header is returned if the received message
contains a valid correlation ID. It is represented as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

ibm-mq-md-correlationId: 414d5120514d4144455620202020202067d8bf5923582e02

ibm-mq-md-correlationId
Specifies the correlation ID of the received message. The header is returned if the received message
contains a valid correlation ID. The correlation ID can take one of the following forms:

• A 48 character hexadecimal encoded string, representing 24 bytes, prefixed with the string "ID:".
For example:

ibm-mq-md-correlationId: ID:414d5120514d4144455620202020202067d8bf5923582e02

• An application-specific value. The value is an application-specific string:

ibm-mq-md-correlationId: My-Custom-CorrelId

ibm-mq-md-expiry
Specifies the remaining expiry duration of the received message. The header can be one of the
following values:
unlimited

The message does not expire.
Integer value

Remaining milliseconds before message expiry.

ibm-mq-md-messageId
Specifies the message ID that is allocated by IBM MQ to this message. Like the ibm-mq-
md-correlationId header, it is represented as a 48 character hexadecimal encoded string,
representing 24 bytes.

2160 IBM MQ Developing Applications Reference

For example:

ibm-mq-md-messageId: 414d5120514d4144455620202020202067d8ce5923582f07

ibm-mq-md-messageId
Specifies the message ID that is allocated by IBM MQ to this message. Like the ibm-mq-
md-correlationId header, it is represented as a 48 character hexadecimal encoded string,
representing 24 bytes, prefixed with the string "ID:"
For example:

ibm-mq-md-messageId: ID:414d5120514d4144455620202020202067d8ce5923582f07

ibm-mq-md-persistence
Specifies the persistence of the received message. The header can be one of the following values:
nonPersistent

The message does not survive system failures or queue manager restarts.
persistent

The message survives system failures or queue manager restarts.

ibm-mq-md-priority
Returns the setting of the message priority. For example:

ibm-mq-md-priority: 3

ibm-mq-md-replyTo
Specifies the reply-to destination for the received message. The format of the header uses the
standard notation of the reply-to queue and queue manager, replyQueue@replyQmgr.
For example:

ibm-mq-md-replyTo: myReplyQueue@myReplyQMgr

ibm-mq-usr
Returns message user-defined properties. Multiple properties can be set on a message, in which case
there will be two or more separate instances of the ibm-mq-usr response header.
For example:

ibm-mq-usr: myIProp;5;short
ibm-mq-usr: mySProp;”hi”;string
ibm-mq-usr: myBProp;true;boolean

The properties have the following syntax:

ibm-mq-usr: property_name; user_value; user_type

property_name
The name of the user property being specified. This must be a valid JMS property name.

user_value
The value of the property.

user_type
The type of the property:

• boolean (true/false, MQBOOL)
• byte (8-bit integer, MQINT8)
• short (16-bit integer, MQINT16)

Developing applications reference 2161

• integer (32-bit integer, MQINT32)
• long (64-bit integer, MQINT64)
• float (32-bit real, MQFLOAT32)
• double (64-bit real, MQFLOAT64)
• string (quoted string)

Response body format
Upon success, the response body contains the message body from the received message. If an error
occurs, the response body contains a JSON formatted error message. Both responses are UTF-8
encoded. For more information, see REST API error handling.

Be aware that when receiving a message only IBM MQ MQSTR or JMS TextMessage formatted messages
are supported.

Browsing a queue that has been marked as GET inhibited returns no content.

If the queue that is being browsed contains messages with duplicate message identifiers, the first
message is returned when filtering on the message identifier.

Examples
The following examples use the v2 resource URL. If you are using a version of IBM MQ earlier than IBM
MQ 9.1.5 you must use the v1 resource URL instead. That is, in the resource URL, substitute v1 where the
example URL uses v2.

The following example logs in a user called mquser with the password mquser. In cURL, the log in
request might look like the following Windows example. The LTPA token is stored in the cookiejar.txt
file by using the -c flag:

curl -k "https://localhost:9443/ibmmq/rest/v2/login" -X POST
-H "Content-Type: application/json" --data "{\"username\":\"mquser\",\"password\":\"mquser\"}"
-c c:\cookiejar.txt

After the user is logged in, the LTPA token and ibm-mq-rest-csrf-token HTTP header are used
to authenticate further requests. The ibm-mq-rest-csrf-token token_value can be any value,
including blank.

• The following Windows cURL example browses the next available message from queue Q1 on queue
manager QM1, using default options:

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message"
-X GET -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: text/plain"

• The following Windows cURL example browses a message with a specific
correlation ID, 00abcdabcd, from queue Q1 on
queue manager QM1:

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message?
correlationId=00abcdabcd"
-X GET -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: text/plain"

•

The following Windows cURL example is the same as the previous example, but uses
REST API V3. The example lists only those messages with the corresponding correlation ID,
00abcdabcd, from queue Q1 on queue manager
QM1:

curl -k "https://localhost:9443/ibmmq/rest/v3/messaging/qmgr/QM1/queue/Q1/message?
correlationId=ID:00abcdabcd"

2162 IBM MQ Developing Applications Reference

-X GET -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: text/plain"

DELETE
You can use the HTTP DELETE method with the /messaging/qmgr/{qmgrName}/queue/
{queueName}/message resource to get messages from the associated queue manager and queue.

Destructively gets the next available message from the specified queue manager and queue, returning
the message body in the HTTP response body. The queue manager must be on the same machine as the
mqweb server. The message must have a format of MQSTR or JMS TextMessage, and is received using
the current user context.

Incompatible messages are left on the queue and an appropriate status code returned to the caller. For
example, a message which does not have a MQSTR or JMS TextMessage format.

REST API V3 adds the ability to specify user-defined message properties and to include
message priority with messages. The ibm-mq-md-priority and ibm-mq-usr response headers are only
available with REST API V3. The ibm-mq-md-correlationId request header has a different format in REST
API V3. The header can be an application-specific ID, or, if an encoded string, retains the ID: prefix. The
ibm-mq-md-messageId response header and query parameter has a different format in REST API V3, it
retains the ID: prefix.

• “Resource URL” on page 2163
• “Optional query parameters” on page 2164
• “Request headers” on page 2165
• “Request body format” on page 2165
• “Security requirements” on page 2165
• “Response status codes” on page 2166
• “Response headers” on page 2166
• “Response body format” on page 2168
• “Examples” on page 2168

Resource URL
https://host:port/ibmmq/rest/v1/messaging/qmgr/{qmgrName}/queue/{queueName}/
message

https://host:port/ibmmq/rest/v2/messaging/qmgr/{qmgrName}/queue/{queueName}/
message

https://host:port/ibmmq/rest/v3/messaging/qmgr/{qmgrName}/queue/
{queueName}/message

qmgrName
Specifies the name of the queue manager to connect to for messaging. The queue manager must be
on the same machine as the mqweb server.
The queue manager name is case-sensitive.
If the queue manager name includes a forward slash, a period, or a percent sign, these characters
must be URL encoded:

• A forward slash (/) must be encoded as %2F.
• A percent sign (%) must be encoded as %25.

queueName
Specifies the name of the queue from which to get the next message.
The queue must be defined as being local or an alias pointing to a local queue.
The queue name is case sensitive.

Developing applications reference 2163

If the queue name includes a forward slash or a percent sign, these characters must be URL encoded:

• A forward slash, /, must be encoded as %2F.
• A percent sign, %, must be encoded as %25.

You can use HTTP instead of HTTPS if you enable HTTP connections. For more information about enabling
HTTP, see Configuring HTTP and HTTPS ports.

Optional query parameters

correlationId=hexValue
Specifies that the HTTP method returns the next message with the corresponding correlation ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

../message?correlationId=414d5120514d4144455620202020202067d8bf5923582e02

correlationId=ID:hexValue or correlationId=application_specific_value
Specifies that the HTTP method returns the next message with the corresponding correlation ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes, and preceded by the string "ID:".
For example:

../message?correlationId=ID:414d5120514d4144455620202020202067d8bf5923582e02

application_specific_value
The query parameter can be specified as an application-specific string.
For example:

../message?correlationId=My-Custom-CorrelId

messageId=hexValue
Specifies that the HTTP method returns the next message with the corresponding message ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

../message?messageId=414d5120514d4144455620202020202067d8ce5923582f07

messageId=ID:hexValue
Specifies that the HTTP method returns the next message with the corresponding message ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes, and preceded by the string "ID:".
For example:

../message?messageId=ID:414d5120514d4144455620202020202067d8ce5923582f07

2164 IBM MQ Developing Applications Reference

wait=integerValue
Specifies that the HTTP method will wait integerValue milliseconds for the next message to become
available.
integerValue

The query parameter must be specified as an integer value representing the millisecond duration.
The maximum value is 2147483647.
For example:

../message?wait=120000

Request headers
The following headers must be sent with the request:
Authorization

This header must be sent if you are using basic authentication. For more information, see Using HTTP
basic authentication with the REST API.

ibm-mq-rest-csrf-token
This header must be set, but the value can be anything, including being blank.

The following headers can optionally be sent with the request:
Accept-Charset

This header can be used to indicate what character set is acceptable for the response. If specified,
this header must be set as UTF-8.

Accept-Language
This header specifies the required language for any exceptions or error messages returned in the
response message body.

Request body format
None.

Security requirements
The caller must be authenticated to the mqweb server. The MQWebAdmin and MQWebAdminRO roles are
not applicable for the messaging REST API. For more information about security for the REST API, see
IBM MQ Console and REST API security.

Once authenticated to the mqweb server the user is capable of using both the messaging REST API and
the administrative REST API.

The security principal of the caller must be granted the ability to get messages from the specified queue:

• The queue that is specified by the {queueName} portion of the resource URL, must be GET enabled.

• For the queue that is specified by the {queueName} portion of the resource
URL, +GET, +INQ, and +BROWSE authority must be granted to the security principal of the caller.

• For the queue that is specified by the {queueName} portion of the resource URL, UPDATE,
access must be granted to the security principal of the caller.

On AIX, Linux, and Windows, you can grant authority to security principals to use IBM
MQ resources by using the setmqaut command. For more information, see setmqaut (grant or revoke
authority).

On z/OS, see Setting up security on z/OS.

Developing applications reference 2165

Response status codes
200

Message received successfully.
204

No message available.
400

Invalid data provided.
For example, an invalid query parameter value was specified.

401
Not authenticated.
The caller must be authenticated to the mqweb server and must be a member of one or more of the
MQWebAdmin, MQWebAdminRO, or MQWebUser roles. The ibm-mq-rest-csrf-token header must
also be specified. For more information, see “Security requirements” on page 2165.

403
Not authorized.
The caller is authenticated to the mqweb server and is associated with a valid principal. However, the
principal does not have access to all, or a subset of the required IBM MQ resources, or is not in the
MQWebUser role. For more information about the access that is required, see “Security requirements”
on page 2165.

404
Queue does not exist.

405
Queue is GET inhibited.

500
Server issue or error code from IBM MQ.

501
The HTTP response could not be constructed.
For example, the received message has an incorrect type, or has the correct type but the body could
not be processed.

502
The current security principal cannot receive the message as the messaging provider does not support
the required function. For example, if the mqweb server class path is invalid.

503
Queue manager not running.

Response headers
The following headers are returned with the response:
Content-Language

Specifies the language identifier of the response message in the event of any errors or exceptions.
Used in conjunction with Accept-Language request header to indicate the required language for
any error or exception conditions. The mqweb server default is used if the requested language is
unsupported.

Content-Length
Specifies the length of the HTTP response body, even when there is no content. The value contains
the length (bytes) of the message data.

Content-Type
Specifies the type of content returned in the response body of the received message. Upon success
the value is text/plain;charset=utf-8. In the event of any errors or exceptions, the value is
application/json;charset=utf-8.

2166 IBM MQ Developing Applications Reference

ibm-mq-md-correlationId
Specifies the correlation ID of the received message. The header is returned if the received message
contains a valid correlation ID. It is represented as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

ibm-mq-md-correlationId: 414d5120514d4144455620202020202067d8bf5923582e02

ibm-mq-md-correlationId
Specifies the correlation ID of the received message. The header is returned if the received message
contains a valid correlation ID. The correlation ID can take one of the following forms:

• A 48 character hexadecimal encoded string, representing 24 bytes, prefixed with the string "ID:".
For example:

ibm-mq-md-correlationId: ID:414d5120514d4144455620202020202067d8bf5923582e02

• An application-specific value. The value is an application-specific string:

ibm-mq-md-correlationId: My-Custom-CorrelId

ibm-mq-md-expiry
Specifies the remaining expiry duration of the received message. The header can be one of the
following values:
unlimited

The message does not expire.
Integer value

Remaining milliseconds before message expiry.

ibm-mq-md-messageId
Specifies the message ID that is allocated by IBM MQ to this message. Like the ibm-mq-
md-correlationId header, it is represented as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

ibm-mq-md-messageId: 414d5120514d4144455620202020202067d8ce5923582f07

ibm-mq-md-messageId
Specifies the message ID that is allocated by IBM MQ to this message. Like the ibm-mq-
md-correlationId header, it is represented as a 48 character hexadecimal encoded string,
representing 24 bytes, prefixed with the string "ID:"
For example:

ibm-mq-md-messageId: ID:414d5120514d4144455620202020202067d8ce5923582f07

ibm-mq-md-persistence
Specifies the persistence of the received message. The header can be one of the following values:
nonPersistent

The message does not survive system failures or queue manager restarts.
persistent

The message survives system failures or queue manager restarts.

ibm-mq-md-priority
Returns the setting of the message priority. For example:

Developing applications reference 2167

ibm-mq-md-priority: 3

ibm-mq-md-replyTo
Specifies the reply-to destination for the received message. The format of the header uses the
standard notation of the reply-to queue and queue manager, replyQueue@replyQmgr.
For example:

ibm-mq-md-replyTo: myReplyQueue@myReplyQMgr

ibm-mq-usr
Returns message user-defined properties. Multiple properties can be set on a message, in which case
there will be two or more separate instances of the ibm-mq-usr response header.
For example:

ibm-mq-usr: myIProp;5;short
ibm-mq-usr: mySProp;”hi”;string
ibm-mq-usr: myBProp;true;boolean

The properties have the following syntax:

ibm-mq-usr: property_name; user_value; user_type

property_name
The name of the user property being specified. This must be a valid JMS property name.

user_value
The value of the property.

user_type
The type of the property:

• boolean (true/false, MQBOOL)
• byte (8-bit integer, MQINT8)
• short (16-bit integer, MQINT16)
• integer (32-bit integer, MQINT32)
• long (64-bit integer, MQINT64)
• float (32-bit real, MQFLOAT32)
• double (64-bit real, MQFLOAT64)
• string (quoted string)

Response body format
Upon success, the response body contains the message body from the received message. If an error
occurs, the response body contains a JSON formatted error message. Both responses are UTF-8
encoded. For more information, see REST API error handling.

Be aware that when receiving a message only IBM MQ MQSTR and JMS TextMessage formatted
messages are supported. Subsequently, all messages are received under sync-point and any unhandled
messages are left on the queue. The IBM MQ queue can be configured to move these poison messages
to an alternate destination. For further information, see Handling poison messages in IBM MQ classes for
JMS.

Examples
The following examples use the v2 resource URL. If you are using a version of IBM MQ earlier than IBM
MQ 9.1.5 you must use the v1 resource URL instead. That is, in the resource URL, substitute v1 where the
example URL uses v2.

2168 IBM MQ Developing Applications Reference

The following example logs in a user called mquser with the password mquser. In cURL, the log in
request might look like the following Windows example. The LTPA token is stored in the cookiejar.txt
file by using the -c flag:

curl -k "https://localhost:9443/ibmmq/rest/v2/login" -X POST
-H "Content-Type: application/json" --data "{\"username\":\"mquser\",\"password\":\"mquser\"}"
-c c:\cookiejar.txt

After the user is logged in, the LTPA token and ibm-mq-rest-csrf-token HTTP header are used
to authenticate further requests. The ibm-mq-rest-csrf-token token_value can be any value,
including blank.

• The following Windows cURL example removes the next available message from queue Q1 on queue
manager QM1, using default options:

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message"
-X DELETE -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: text/plain"

• The following Windows cURL example removes a message with a specific correlation ID,
00abcdabcd, from queue Q1 on queue manager
QM1:

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message?
correlationId=00abcdabcd"
-X DELETE -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: text/plain"

• The following Windows cURL example removes a message with a specific correlation ID,
00abcdabcd, from queue Q1 on queue manager
QM1, waiting for up to 30 seconds for the message to become available. If 30 seconds passes without
the specified message being put to the queue, the DELETE call returns without a message:

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/message?
correlationId=00abcdabcd&wait=30000"
-X DELETE -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: text/plain"

/messaging/qmgr/{qmgrName}/queue/{queueName}/messagelist

You can use the HTTP GET method with the /messaging/qmgr/{qmgrName}/queue/
{queueName}/messagelist resource to get a list of available messages from the specified queue on
the specified queue manager.

GET
You can use the HTTP GET method with the /messaging/qmgr/{qmgrName}/queue/{queueName}/
messagelist resource to get a list of available messages from the specified queue on the specified
queue manager.

Browses a summary list of messages from the specified queue manager and queue. The queue manager
must be on the same machine as the mqweb server. The summary data is returned in the HTTP response
body as a JSON formatted array. The data does not contain the payload of the messages and is received
using the current user context. No messages are removed from the associated queue.

If a request is made to get a list of available messages from a queue that is GET inhibited, an empty JSON
array is returned.

• “Resource URL” on page 2170
• “Optional query parameters” on page 2170
• “Request headers” on page 2171
• “Request body format” on page 2172

Developing applications reference 2169

• “Security requirements” on page 2172
• “Response status codes” on page 2172
• “Response headers” on page 2173
• “Response body format” on page 2173
• “Examples” on page 2174

Resource URL
https://host:port/ibmmq/rest/v1/messaging/qmgr/{qmgrName}/queue/{queueName}/
messagelist

https://host:port/ibmmq/rest/v2/messaging/qmgr/{qmgrName}/queue/{queueName}/
messagelist

https://host:port/ibmmq/rest/v3/messaging/qmgr/{qmgrName}/queue/
{queueName}/messagelist

qmgrName
Specifies the name of the queue manager to connect to for messaging. The queue manager must be
on the same machine as the mqweb server.
The queue manager name is case-sensitive.
If the queue manager name includes a forward slash, a period, or a percent sign, these characters
must be URL encoded:

• A forward slash (/) must be encoded as %2F.
• A percent sign (%) must be encoded as %25.

queueName
Specifies the name of the queue from which to browse the messages.
The queue must be defined as being local or an alias that points to a local queue.
The queue name is case sensitive.
If the queue name includes a forward slash or a percent sign, these characters must be URL encoded:

• A forward slash, /, must be encoded as %2F.
• A percent sign, %, must be encoded as %25.

You can use HTTP instead of HTTPS if you enable HTTP connections. For more information about enabling
HTTP, see Configuring HTTP and HTTPS ports.

Optional query parameters

correlationId=hexValue
Specifies that the HTTP method returns the next message with the corresponding correlation ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

../messagelist?correlationId=414d5120514d4144455620202020202067d8bf5923582e02

correlationId=ID:hexValue or correlationId=application_specific_value
Specifies that the HTTP method returns a list of messages with the corresponding correlation ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes, and preceded by the string "ID:".

2170 IBM MQ Developing Applications Reference

For example:

../message?correlationId=ID:414d5120514d4144455620202020202067d8bf5923582e02

application_specific_value
The query parameter can be specified as an application-specific string.
For example:

../message?correlationId=My-Custom-CorrelId

messageId=hexValue
Specifies that the HTTP method returns the next message with the corresponding message ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes.
For example:

../message?messageId=414d5120514d4144455620202020202067d8ce5923582f07

messageId=ID:hexValue
Specifies that the HTTP method returns the next message with the corresponding message ID.
hexValue

The query parameter must be specified as a 48 character hexadecimal encoded string,
representing 24 bytes, and preceded by the string "ID:".
For example:

../message?messageId=ID:414d5120514d4144455620202020202067d8ce5923582f07

limit=integerValue
Specifies that the HTTP method response body is limited to integerValue JSON elements.
integerValue

The query parameter must be specified as an integer value that represents the maximum number
of elements that are contained in the JSON response body.
The default value is 10, and the maximum value is 2147483647.
For example:

../messagelist?limit=250

Request headers
The following headers must be sent with the request:
Authorization

This header must be sent if you are using basic authentication. For more information, see Using HTTP
basic authentication with the REST API.

ibm-mq-rest-csrf-token
This header must be set, but the value can be anything, including being blank.

The following headers can optionally be sent with the request:
Accept-Charset

This header can be used to indicate what character set is acceptable for the response. If specified,
this header must be set as UTF-8.

Developing applications reference 2171

Accept-Language
This header specifies the required language for any exceptions or error messages returned in the
response message body.

Request body format
None.

Security requirements
The caller must be authenticated to the mqweb server. The MQWebAdmin and MQWebAdminRO roles are
not applicable for the messaging REST API. For more information about security for the REST API, see
IBM MQ Console and REST API security.

Once authenticated to the mqweb server the user is capable of using both the messaging REST API and
the administrative REST API.

The security principal of the caller must be granted the ability to browse messages from the specified
queue:

• The queue that is specified by the {queueName} portion of the resource URL, must be BROWSE enabled.

• For the queue that is specified by the {queueName} portion of the resource
URL, +GET, +INQ, and +BROWSE authority must be granted to the security principal of the caller.

• For the queue that is specified by the {queueName} portion of the resource URL, UPDATE,
access must be granted to the security principal of the caller.

On AIX, Linux, and Windows, you can grant authority to security principals to use IBM
MQ resources by using the setmqaut command. For more information, see setmqaut (grant or revoke
authority).

On z/OS, see Setting up security on z/OS.

Response status codes
200

Message list received successfully.
400

Invalid data provided.
For example, an invalid query parameter value was specified.

401
Not authenticated.
The caller must be authenticated to the mqweb server and must be a member of one or more of the
MQWebAdmin, MQWebAdminRO, or MQWebUser roles. The ibm-mq-rest-csrf-token header must
also be specified. For more information, see “Security requirements” on page 2172.

403
Not authorized.
The caller is authenticated to the mqweb server and is associated with a valid principal. However, the
principal does not have access to all, or a subset of the required IBM MQ resources, or is not in the
MQWebUser role. For more information about the access that is required, see “Security requirements”
on page 2172.

404
Queue does not exist.

500
Server issue or error code from IBM MQ.

2172 IBM MQ Developing Applications Reference

501
The HTTP response could not be constructed.
For example, the received message has an incorrect type, or has the correct type but the body could
not be processed.

502
The current security principal cannot receive the message as the messaging provider does not support
the required function. For example, if the mqweb server class path is invalid.

503
Queue manager not running.

Response headers
Content-Language

Specifies the language identifier of the response message in the event of any errors or exceptions.
Used in conjunction with Accept-Language request header to indicate the required language for
any error or exception conditions. The mqweb server default is used if the requested language is
unsupported.

Content-Length
Specifies the length of the HTTP response body, even when there is no content. The value contains
the length of the message data, in bytes.

Content-Type
Specifies the type of response body. The value is application/json;charset=utf-8.

Response body format
Upon success, the response body is a UTF-8 encoded response. The response contains an outer JSON
object that contains a single JSON array called messages. Each element in the array is a JSON object that
contains information about a message on the queue. Each element contains the following attributes:

correlationId
Specifies the correlation ID of the message. The value is returned if the message contains a valid
correlation ID.

correlationId
Specifies the correlation ID of the message. The value is returned if the message contains a valid
correlation ID. The correlation ID is prefixed with the "ID:" string, or can be an application-specific
value.

messageId
Specifies the message ID that is allocated by IBM MQ to this message. It is represented as a 48-
character hexadecimal encoded string, representing 24 bytes.

messageId
Specifies the message ID that is allocated by IBM MQ to this message. It is represented as a
48-character hexadecimal encoded string, representing 24 bytes. The message ID is prefixed with
the "ID:" string.

format
Specifies the MQMD format field. Under normal circumstances text messages will contain the IBM MQ
MQSTR value.

If a request is made to get a list of messages on a queue that is GET inhibited, an empty JSON array is
returned.

If an error occurs, the response body contains a JSON formatted error message. For more information,
see REST API error handling.

Developing applications reference 2173

Examples
The following examples use the v2 resource URL. If you are using a version of IBM MQ earlier than IBM
MQ 9.1.5 you must use the v1 resource URL instead. That is, in the resource URL, substitute v1 where the
example URL uses v2.

The following example logs in a user called mquser with the password mquser. In cURL, the log in
request might look like the following Windows example. The LTPA token is stored in the cookiejar.txt
file by using the -c flag:

curl -k "https://localhost:9443/ibmmq/rest/v2/login" -X POST
-H "Content-Type: application/json" --data "{\"username\":\"mquser\",\"password\":\"mquser\"}"
-c c:\cookiejar.txt

After the user is logged in, the LTPA token and ibm-mq-rest-csrf-token HTTP header are used
to authenticate further requests. The ibm-mq-rest-csrf-token token_value can be any value,
including blank.

• The following Windows cURL example lists the next ten available messages from queue Q1 on queue
manager QM1, using default options:

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/messagelist"
-X GET -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: application/json"

• The following Windows cURL example lists the next two hundred available messages from queue Q1 on
queue manager QM1, using default options:

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/messagelist?
limit=200"
-X GET -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: application/json"

• The following Windows cURL example lists only those messages with
the corresponding correlation ID, 00abcdabcd, from
queue Q1 on queue manager QM1:

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/queue/Q1/messagelist?
correlationId=00abcdabcd"
-X GET -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: application/json"

•

The following Windows cURL example is the same as the previous example, but uses
REST API V3. The example lists only those messages with the corresponding correlation ID,
00abcdabcd, from queue Q1 on queue manager
QM1:

curl -k "https://localhost:9443/ibmmq/rest/v3/messaging/qmgr/QM1/queue/Q1/messagelist?
correlationId=ID:00abcdabcd"
-X GET -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token-value"
-H "Accept: application/json"

/messaging/qmgr/{qmgrName}/topic/{topicString}/message
You can use the HTTP POST method with the /messaging/qmgr/{qmgrName}/topic/
{topicString}/message resource to publish messages to the specified topic on the specified queue
manager.

2174 IBM MQ Developing Applications Reference

POST
You can use the HTTP POST method with the /messaging/qmgr/{qmgrName}/topic/
{topicString}/message resource to publish messages to the specified topic on the specified queue
manager.

Publishes a text-based message in the HTTP request body to the specified queue manager and topic.
The queue manager must be on the same machine as the mqweb server, and only text-based messages
are supported. Messages are published as MQSTR or JMS TextMessage formatted messages using the
current user context, and have a default message priority of 4 for REST API V2, and asDestination for
REST API V3.

REST API V3 adds the ability to specify user-defined message properties and to include
message priority. The ibm-mq-md-priority and ibm-mq-usr request headers are only available with REST
API V3. The ibm-mq-md-correlationId request header has a different format in REST API V3. The header
can be an application-specific ID, or, if an encoded string, requires the ID: prefix. If your POST request
contains user-defined messages, or application-specific correlation ID, the message is formatted as a JMS
TextMessage.

• “Resource URL” on page 2175
• “Request headers” on page 2176
• “Request body format” on page 2178
• “Security requirements” on page 2178
• “Response status codes” on page 2178
• “Response headers” on page 2179
• “Response body format” on page 2179
• “Examples” on page 2179

Resource URL
https://host:port/ibmmq/rest/v2/messaging/qmgr/{qmgrName}/topic/{topicString}/
message

https://host:port/ibmmq/rest/v3/messaging/qmgr/{qmgrName}/topic/
{topicString}/message

qmgrName
Specifies the name of the queue manager to connect to for messaging. The queue manager must be
on the same machine as the mqweb server.
The queue manager name is case-sensitive.
If the queue manager name includes a forward slash, a period, or a percent sign, these characters
must be URL encoded:

• A forward slash must be encoded as %2F.
• A period must be encoded as %2E.
• A percent sign must be encoded as %25.

topicString
Specifies the topic string on which to publish the message.
The topic string is case sensitive. The topic string can contain multiple topic levels, separated by the
forward slash delimiter.
If the topic string contains a percent sign, a period, or a question mark, these characters must be URL
encoded:

• A percent sign must be encoded as %25.
• A period must be encoded as %2E.

Developing applications reference 2175

• A question mark must be encoded as %3F.

If the topic string starts or ends with a forwards slash, it must be encoded with a %2F.
For example, to publish to the topic string:

• sport/football on queue manager MY.QMGR, you use the following URL:

https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/MY%2EQMGR/topic/sport/football/message

• /sport/football on queue manager MY.QMGR, you use the following URL:

https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/MY%2EQMGR/topic/%2Fsport/football/
message

You can use HTTP instead of HTTPS if you enable HTTP connections. For more information about enabling
HTTP, see Configuring HTTP and HTTPS ports.

Request headers
The following headers must be sent with the request:
Authorization

This header must be sent if you are using basic authentication. For more information, see Using HTTP
basic authentication with the REST API.

Content-Type
This header must be sent with one of the following values:

• text/plain;charset=utf-8
• text/html;charset=utf-8
• text/xml;charset=utf-8
• application/json;charset=utf-8
• application/xml;charset=utf-8

Note: If charset is omitted from the Context-Type header, UTF-8 is assumed.

ibm-mq-rest-csrf-token
This header must be set, but the value can be anything, including being blank.

The following headers can optionally be sent with the request:
Accept-Language

This header specifies the required language for any exceptions or error messages returned in the
response message body.

ibm-mq-md-expiry
This header sets the expiry duration for the created message. The expiry of a message starts from the
time the message arrives at the queue manager. As a result network latency is ignored. The header
must be specified as one of the following values:
unlimited

The message does not expire.
This value is the default value.

Integer value
Milliseconds before message expiry.
Limited to the range 0 - 99999999900.

ibm-mq-md-persistence
This header sets the persistence for the created message. The header must be specified as one of the
following values:
nonPersistent

The message does not survive system failures or queue manager restarts.

2176 IBM MQ Developing Applications Reference

This value is the default value.
persistent

The message survives system failures or queue manager restarts.

ibm-mq-md-priority
This header sets the priority of the created message. The header must be specified as one of the
following values:
asDestination

The message uses the priority specified in the DEFPRTY attribute of the underlying IBM MQ queue
object.

Integer value
Specify the actual priority as an integer in the range 0-9.

For example:

ibm-mq-md-priority: asDestination

ibm-mq-md-replyTo
This header sets the reply-to destination for the created message. The format of the header
uses the standard notation of supplying the reply-to queue and an optional queue manager:
replyQueue[@replyQmgr]
For example:

ibm-mq-md-replyTo: myReplyQueue@myReplyQMgr

ibm-mq-usr
Set the request message user-defined properties. Multiple properties can be set on a message. You
can specify multiple comma-separated properties in a single ibm-mq-usr request header, or you can
use two or more separate instances of the ibm-mq-usr request header.
For example:

ibm-mq-usr: myIProp;5;short
ibm-mq-usr: mySProp;”hi”;string
ibm-mq-usr: myBProp;true;boolean
ibm-mq-usr: myA;5;byte,myB;-10;integer

The properties have the following syntax:

ibm-mq-usr: property_name; user_value; user_type

property_name
The name of the user property being specified. This must be a valid JMS property name.

user_value
The value of the property.

user_type
The type of the property:

• boolean (true/false, MQBOOL)
• byte (8-bit integer, MQINT8)
• short (16-bit integer, MQINT16)
• integer (32-bit integer, MQINT32)
• long (64-bit integer, MQINT64)
• float (32-bit real, MQFLOAT32)
• double (64-bit real, MQFLOAT64)
• string (quoted string)

Developing applications reference 2177

Request body format
The request body must be text and use UTF-8 encoding. No specific text structure is required. An MQSTR
formatted message containing the request body text is created and published to the specified topic.

If the REST API V3 user-defined properties, or application-specific correlation
ID features are used, then an JMS TextMessage formatted message containing the request body text is
created and put to the specified queue.

For more information, see examples.

Security requirements
The caller must be authenticated to the mqweb server. The MQWebAdmin and MQWebAdminRO roles are
not applicable for the messaging REST API. For more information about security for the REST API, see
IBM MQ Console and REST API security.

Once authenticated to the mqweb server the user is capable of using both the messaging REST API and
the administrative REST API.

The security principal of the caller must be granted the ability to publish messages to the specified topic:

• The topic that is specified by the {topicString} portion of the resource URL must be PUBLISH enabled.

• For the topic that is specified by the {topicString} portion of the resource
URL, +PUB authority must be granted to the security principal of the caller.

• For the topic that is specified by the {topicString} portion of the resource URL, UPDATE
access must be granted to the security principal of the caller.

On AIX, Linux, and Windows, you can grant authority to security principals to use IBM
MQ resources by using the setmqaut command. For more information, see setmqaut (grant or revoke
authority).

On z/OS, see Setting up security on z/OS.

If you use Advanced Message Security (AMS) with the messaging REST API, note that all messages are
encrypted by using the context of the mqweb server, not the context of the user that posts the message.

Response status codes
201

Message created and published successfully.
400

Invalid data provided.
For example, an invalid request header value was specified.

401
Not authenticated.
The caller must be authenticated to the mqweb server and must be a member of one or more of the
MQWebAdmin, MQWebAdminRO, or MQWebUser roles. The ibm-mq-rest-csrf-token header must
also be specified. For more information, see “Security requirements” on page 2178.

403
Not authorized.
The caller is authenticated to the mqweb server and is associated with a valid principal. However, the
principal does not have access to all, or a subset of the required IBM MQ resources, or is not in the
MQWebUser role. For more information about the access that is required, see “Security requirements”
on page 2178.

404
Queue manager does not exist.

2178 IBM MQ Developing Applications Reference

405
Topic is PUBLISH inhibited.

415
A message header or body is an unsupported media type.
For example, the Content-Type header is set to an unsupported media type.

500
Server issue or error code from IBM MQ.

502
The current security principal cannot publish the message as the messaging provider does not
support the required function. For example, if the mqweb server class path is invalid.

503
Queue manager not running.

Response headers
The following headers are returned with the response:
Content-Language

Specifies the language identifier of the response message in the event of any errors or exceptions.
Used in conjunction with Accept-Language request header to indicate the required language for
any error or exception conditions. The mqweb server default is used if the requested language is
unsupported.

Content-Length
Specifies the length of the HTTP response body, even when there is no content. Upon success the
value is zero.

Content-Type
Specifies the type of response body. Upon success the value is text/plain;charset=utf-8. In
the event of any errors or exceptions, the value is application/json;charset=utf-8.

Response body format
The response body is empty if the message is published successfully. If an error occurs, the response
body contains an error message. For more information, see REST API error handling.

Examples
The following example logs in a user called mquser with the password mquser. In cURL, the log in
request might look like the following Windows example. The LTPA token is stored in the cookiejar.txt
file by using the -c flag:

curl -k "https://localhost:9443/ibmmq/rest/v1/login" -X POST
-H "Content-Type: application/json" --data "{\"username\":\"mquser\",\"password\":\"mquser\"}"
-c c:\cookiejar.txt

After the user is logged in, the LTPA token and ibm-mq-rest-csrf-token HTTP header are used
to authenticate further requests. The ibm-mq-rest-csrf-token token_value can be any value,
including blank.

• The following Windows cURL example publishes a message to the topic string myTopic on queue
manager QM1, using default options. The message contains the text "Hello World!":

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/topic/myTopic/message"
-X POST -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token_value"
-H "Content-Type: text/plain;charset=utf-8" --data "Hello World!"

Developing applications reference 2179

• The following Windows cURL example publishes a persistent message to the topic string myTopic/
thisTopic on queue manager QM1, with an expiry of 2 minutes. The message contains the text "Hello
World!":

curl -k "https://localhost:9443/ibmmq/rest/v2/messaging/qmgr/QM1/topic/myTopic%2FthisTopic/
message"
-X POST -b c:\cookiejar.txt -H "ibm-mq-rest-csrf-token: token_value"
-H "Content-Type: text/plain;charset=utf-8" -H "ibm-mq-md-persistence: persistent"
-H "ibm-mq-md-expiry: 120000" --data "Hello World!"

2180 IBM MQ Developing Applications Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2024 2181

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

2182 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (https://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 2183

2184 IBM MQ Developing Applications Reference

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Developing applications reference
	MQI applications reference
	Code examples
	C language examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about the attributes of an object
	Setting the attributes of a queue
	Retrieving status information with MQSTAT

	COBOL examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about the attributes of an object
	Setting the attributes of a queue

	System/390 assembler-language examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about and setting the attributes of a queue

	PL/I examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about the attributes of an object
	Setting the attributes of a queue

	Constants
	IBM MQ COPY, header, include, and module files
	C header files
	COBOL COPY files
	PL/I include files
	RPG copy files
	Visual Basic module files
	z/OS Assembler COPY files

	MQ_* (String Lengths)
	MQ_* (Command format String Lengths)

	MQACH_* (API exit chain area header structure)
	MQACT_* (Accounting Token)
	MQACTP_* (Action)
	MQACTT_* (Accounting Token Types)
	MQADOPT_* (Adopt New MCA Checks and Adopt New MCA Types)
	MQAIR_* (Authentication information record structure)
	MQAIT_* (Authentication Information Type)
	MQAS_* (Command format Asynchronous State Values)
	MQAT_* (Put Application Types)
	MQAUTH_* (Command format Authority Values)
	MQAUTHOPT_* (Command format Authority Options)
	MQAXC_* (API exit context structure)
	MQAXP_* (API exit parameter structure)
	MQBA_* (Byte Attribute Selectors)
	MQBACF_* (Command format Byte Parameter Types)
	MQBL_* (Buffer Length for mqAddString and mqSetString)
	MQBMHO_* (Buffer to message handle options and structure)
	MQBND_* (Default Bindings)
	MQBO_* (Begin options and structure)
	MQBT_* (Command format Bridge Types)
	MQCA_* (Character Attribute Selectors)
	MQCACF_* (Command format Character Parameter Types)
	MQCACH_* (Command format Character Channel Parameter Types)
	MQCADSD_* (CICS information header ADS Descriptors)
	MQCAFTY_* (Connection Affinity Values)
	MQCAMO_* (Command format Character Monitoring Parameter Types)
	MQCBC_* (MQCBC constants structure)
	MQCBCF_* (MQCBC constants Flags)
	MQCBCT_* (MQCBC constants Callback type)
	MQCBD_* (MQCBD constants structure)
	MQCBDO_* (MQCBD constants Callback Options)
	MQCBO_* (Create-Bag Options for mqCreateBag)
	MQCBT_* (MQCBD constants This is the type of the Callback Function)
	MQCC_* (completion codes)
	MQCCSI_* (Coded Character Set Identifiers)
	MQCCT_* (CICS information header Conversational Task Options)
	MQCD_* (Channel definition structure)
	MQCDC_* (Channel Data Conversion)
	MQCERT_* (Certificate Validation Policy Type)
	MQCF_* (Capability Flags)
	MQCFAC_* (CICS information header Facility)
	MQCFBF_* (Command format byte string filter parameter structure)
	MQCFBS_* (Command format byte string parameter structure)
	MQCFC_* (Command format header Control Options)
	MQCFGR_* (Command format group parameter structure)
	MQCFH_* (Command format header structure)
	MQCFIF_* (Command format integer filter parameter structure)
	MQCFIL_* (Command format integer list parameter structure)
	MQCFIL64_* (Command format 64-bit integer list parameter structure)
	MQCFIN_* (Command format integer parameter structure)
	MQCFIN64_* (Command format 64-bit integer parameter structure)
	MQCFO_* (Command format Refresh Repository Options and Command format Remove Queues Options)
	MQCFOP_* (Command format Filter Operators)
	MQCFR_* (CF Recoverability)
	MQCFSF_* (Command format string filter parameter structure)
	MQCFSL_* (Command format string list parameter structure)
	MQCFST_* (Command format string parameter structure)
	MQCFSTATUS_* (Command format CF Status)
	MQCFT_* (Command format Types of Structure)
	MQCFTYPE_* (Command format CF Types)
	MQCFUNC_* (CICS information header Functions)
	MQCGWI_* (CICS information header Get Wait Interval)
	MQCHAD_* (Channel Auto Definition)
	MQCHIDS_* (Command format Indoubt Status)
	MQCHLD_* (Command format Channel Dispositions)
	MQCHS_* (Command format Channel Status)
	MQCHSH_* (Command format Channel Shared Restart Options)
	MQCHSR_* (Command format Channel Stop Options)
	MQCHSSTATE_* (Command format Channel Substates)
	MQCHT_* (Channel Types)
	MQCHTAB_* (Command format Channel Table Types)
	MQCI_* (Correlation Identifier)
	MQCIH_* (CICS information header structure and Flags)
	MQCLCT_* (Cluster Cache Types)
	MQCLRS_* (Command format Clear Topic String Scope)
	MQCLRT_* (Command format Clear Topic String Type)
	MQCLT_* (CICS information header Link Types)
	MQCLWL_* (Cluster Workload)
	MQCLXQ_* (Cluster transmission queue type)
	MQCMD_* (Command Codes)
	MQCMDI_* (Command format Command Information Values)
	MQCMDL_* (Command Levels)
	MQCMHO_* (Create message handle options and structure)
	MQCNO_* (Connect options and structure)
	MQCO_* (Close Options)
	MQCODL_* (CICS information header Output Data Length)
	MQCOMPRESS_* (Channel Compression)
	MQCONNID_* (Connection Identifier)
	MQCOPY_* (Property Copy Options)
	MQCQT_* (Cluster Queue Types)
	MQCRC_* (CICS information header Return Codes)
	MQCS_* (MQCBC constants Consumer state)
	MQCSC_* (CICS information header Start Codes)
	MQCSP_* (Connection security parameters structure and Authentication Types)
	MQCSRV_* (Command Server Options)
	MQCT_* (Queue Manager Connection Tag)
	MQCTES_* (CICS information header Task End Status)
	MQCTLO_* (MQCTL options structure and Consumer Control Options)
	MQCUOWC_* (CICS information header Unit-of-Work Controls)
	MQCXP_* (Channel exit parameter structure)
	MQDC_* (Destination Class)
	MQDCC_* (Conversion Options, and Masks and Factors)
	MQDELO_* (Publish/Subscribe Delete Options)
	MQDH_* (Distribution header structure)
	MQDHF_* (Distribution header Flags)
	MQDISCONNECT_* (Command format Disconnect Types)
	MQDL_* (Distribution Lists)
	MQDLH_* (Dead-letter header structure)
	MQDLV_* (Persistent/Non-persistent Message Delivery)
	MQDMHO_* (Delete message handle options and structure)
	MQDMPO_* (Delete message property options and structure)
	MQDNSWLM_* (DNS WLM)
	MQDT_* (Destination Types)
	MQDXP_* (Conversion exit parameter structure)
	MQEC_* (Signal Values)
	MQEI_* (Expiry)
	MQENC_* (Encoding)
	MQEPH_* (Embedded command format header structure and Flags)
	MQET_* (Command format Escape Types)
	MQEVO_* (Command format Event Origins)
	MQEVR_* (Command format Event Recording)
	MQEXPI_* (Expiration Scan Interval)
	MQFB_* (Feedback Values)
	MQFC_* (Command format Force Options)
	MQFMT_* (Formats)
	MQFUN_* (Application Function Types)
	MQGA_* (Group Attribute Selectors)
	MQGACF_* (Command format Group Parameter Types)
	MQGI_* (Group Identifier)
	MQGMO_* (Get message options and structure)
	MQGS_* (Group Status)
	MQHA_* (Handle Selectors)
	MQHB_* (Bag Handles)
	MQHC_* (Connection Handles)
	MQHM_* (Message handle)
	MQHO_* (Object Handle)
	MQHSTATE_* (Command format Handle States)
	MQIA_* (Integer Attribute Selectors)
	MQIACF_* (Command format Integer Parameter Types)
	MQIACH_* (Command format Integer Channel Types)
	MQIAMO_* (Command format Integer Monitoring Parameter Types)
	MQIAMO64_* (Command format 64-bit Integer Monitoring Parameter Types)
	MQIASY_* (Integer System Selectors)
	MQIAUT_* (IMS information header Authenticator)
	MQIAV_* (Integer Attribute Values)
	MQICM_* (IMS information header Commit Modes)
	MQIDO_* (Command format Indoubt Options)
	MQIEP_* (Interface entry points)
	MQIGQ_* (Intra-Group queuing)
	MQIGQPA_* (Intra-Group queuing Put Authority)
	MQIIH_* (IMS information header structure and Flags)
	MQIMPO_* (Inquire message property options and structure)
	MQINBD_* (Command format Inbound Dispositions)
	MQIND_* (Special Index Values)
	MQIPADDR_* (IP Address Versions)
	MQISS_* (IMS information header Security Scopes)
	MQIT_* (Index Types)
	MQITEM_* (Item Type for mqInquireItemInfo)
	MQITII_* (IMS information header Transaction Instance Identifier)
	MQITS_* (IMS information header Transaction States)
	MQKAI_* (KeepAlive Interval)
	MQMASTER_* (Master administration)
	MQMCAS_* (Command format Message Channel Agent Status)
	MQMCAT_* (MCA Types)
	MQMCD_* (Publish/Subscribe Options Tag Information)
	MQMD_* (Message descriptor structure)
	MQMDE_* (Message descriptor extension structure)
	MQMDEF_* (Message descriptor extension Flags)
	MQMDS_* (Message Delivery Sequence)
	MQMF_* (Message Flags)
	MQMHBO_* (Message handle to buffer options and structure)
	MQMI_* (Message Identifier)
	MQMMBI_* (Message Mark-Browse Interval)
	MQMO_* (Match Options)
	MQMODE_* (Command format Mode Options)
	MQMON_* (Monitoring Values)
	MQMT_* (Message Types)
	MQMTOK_* (Message Token)
	MQNC_* (Name Count)
	MQNPM_* (Nonpersistent Message Class)
	MQNPMS_* (NonPersistent-Message Speeds)
	MQNT_* (Namelist Types)
	MQNVS_* (Names for Name/Value String)
	MQOA_* (Limits for Selectors for Object Attributes)
	MQOD_* (Object descriptor structure)
	MQOII_* (Object Instance Identifier)
	MQOL_* (Original Length)
	MQOM_* (Obsolete Db2 Messages options on Inquire Group)
	MQOO_* (Open Options)
	MQOO_* (Following used in C++ only)

	MQOP_* (Operation codes for MQCTL and MQCB)
	MQOPEN_* (Values related to MQOPEN_PRIV structure)
	MQOPER_* (Activity Operations)
	MQOT_* (Object Types and Extended Object Types)
	MQPA_* (Put Authority)
	MQPD_* (Property descriptor, support and context)
	MQPER_* (Persistence Values)
	MQPL_* (Platforms)
	MQPMO_* (Put message options and structure for publish mask)
	MQPMRF_* (Put Message Record Fields)
	MQPO_* (Command format Purge Options)
	MQPRI_* (Priority)
	MQPROP_* (Queue and Channel Property Control Values and Maximum Properties Length)
	MQPRT_* (Put Response Values)
	MQPS_* (Publish/Subscribe)
	MQPSC_* (Publish/Subscribe Options Tag Publish/Subscribe Command Folder (psc) Tags)
	MQPSC_* (Publish/Subscribe Options Tag Tag names)
	MQPSC_* (Publish/Subscribe Options Tag XML tag names)
	MQPSC_* (Publish/Subscribe Options Tag Publisher Values as strings)
	MQPSC_* (Publish/Subscribe Options Tag Name Values as strings)

	MQPSCR_* (Publish/Subscribe Options)
	MQPSM_* (Pub/Sub Mode)
	MQPSPROP_* (Pub/Sub Message Properties)
	MQPSST_* (Command format Pub/Sub Status Type)
	MQPUBO_* (Publish/Subscribe Publication Options)
	MQPXP_* (Publish/subscribe routing exit parameter structure)
	MQQA_* (Queue attributes)
	MQQDT_* (Queue Definition Types)
	MQQF_* (Queue Flags)
	MQQMDT_* (Command format Queue Manager Definition Types)
	MQQMF_* (Queue Manager Flags)
	MQQMFAC_* (Command format Queue Manager Facility)
	MQQMSTA_* (Command format Queue Manager Status)
	MQQMT_* (Command format Queue Manager Types)
	MQQO_* (Command format Quiesce Options)
	MQQSGD_* (Queue sharing group dispositions)
	MQQSGS_* (Command format queue sharing group status)
	MQQSIE_* (Command format Queue Service-Interval Events)
	MQQSO_* (Command format Queue Status Open Options for SET, BROWSE, INPUT)
	MQQSOT_* (Command format Queue Status Open Types)
	MQQSUM_* (Command format Queue Status Uncommitted Messages)
	MQQT_* (Queue Types and Extended Queue Types)
	MQRC_* (reason codes)
	MQRCCF_* (Command format header reason codes)
	MQRCN_* (Client reconnect Constants)
	MQRCVTIME_* (Receive Timeout Types)
	MQREADA_* (Read Ahead Values)
	MQRECORDING_* (Recording Options)
	MQREGO_* (Publish/Subscribe Registration Options)
	MQRFH_* (Rules and formatting header structure and Flags)
	MQRFH2_* (Publish/Subscribe Options Tag RFH2 Top-level folder Tags)
	MQRFH2_* (Publish/Subscribe Options Tag Tag names)
	MQRFH2_* (Publish/Subscribe Options Tag XML tag names)

	MQRL_* (Returned Length)
	MQRMH_* (Reference message header structure)
	MQRMHF_* (Reference message header Flags)
	MQRO_* (Report Options)
	MQRO_* (Report Options Masks)

	MQROUTE_* (Trace-route)
	MQRP_* (Command format Replace Options)
	MQRQ_* (Command format Reason Qualifiers)
	MQRT_* (Command format Refresh Types)
	MQRU_* (Request Only)
	MQSCA_* (TLS Client Authentication)
	MQSCO_* (TLS configuration options)
	MQSCOPE_* (Publish scope)
	MQSCYC_* (Security Case)
	MQSD_* (Object descriptor structure)
	MQSECITEM_* (Command format Security Items)
	MQSECPROT_* (Security Protocol Types)
	MQSECSW_* (Command format Security Switches and Switch States)
	MQSECTYPE_* (Command format Security Types)
	MQSEG_* (Segmentation)
	MQSEL_* (Special Selector Values)
	MQSELTYPE_* (Selector Types)
	MQSID_* (Security Identifier)
	MQSIDT_* (Security Identifier Types)
	MQSMPO_* (Set message property options and structure)
	MQSO_* (Subscribe Options)
	MQSP_* (Sync point Availability)
	MQSPL_* (Security Policy Protection Options)
	MQSQQM_* (Shared Queue Queue Manager Name)
	MQSR_* (Action)
	MQSRO_* (Subscription request options structure)
	MQSS_* (Segment Status)
	MQSSL_* (TLS FIPS Requirements)
	MQSTAT_* (Stat Options)
	MQSTS_* (Status reporting structure structure)
	MQSUB_* (Durable subscriptions)
	MQSUBTYPE_* (Command format Subscription Types)
	MQSUS_* (Command format Suspend Status)
	MQSVC_* (Service)
	MQSYNCPOINT_* (Command format Syncpoint values for Pub/Sub migration)
	MQSYSP_* (Command format System Parameter Values)
	MQTA_* (Topic attributes)
	MQTC_* (Trigger Controls)
	MQTCPKEEP_* (TCP Keepalive)
	MQTCPSTACK_* (TCP Stack Types)
	MQTIME_* (Command format Time units)
	MQTM_* (Trigger message structure)
	MQTMC_* (Trigger message character format structure)
	MQTOPT_* (Topic Type)
	MQTRAXSTR_* (Channel Initiator Trace Autostart)
	MQTSCOPE_* (Subscription Scope)
	MQTT_* (Trigger Types)
	MQTYPE_* (Property data types)
	MQUA_* (Publish/Subscribe User Attribute Selectors)
	MQUIDSUPP_* (Command format User ID Support)
	MQUNDELIVERED_* (Command format Undelivered values for Pub/Sub migration)
	MQUOWST_* (Command format UOW States)
	MQUOWT_* (Command format UOW Types)
	MQUS_* (Queue Usages)
	MQUSAGE_* (Command format Page Set Usage Values and Data Set Usage Values)
	MQVL_* (Value Length)
	MQVU_* (Variable User ID)
	MQWDR_* (Cluster workload exit destination record structure)
	MQWI_* (Wait Interval)
	MQWIH_* (Workload information header structure and Flags)
	MQWQR_* (Cluster workload exit queue record structure)
	MQWS_* (Wildcard Schema)
	MQWXP_* (Cluster workload exit parameter structure)
	MQXACT_* (API Caller Types)
	MQXC_* (Exit Commands)
	MQXCC_* (Exit Responses)
	MQXDR_* (Exit Response)
	MQXE_* (Environments)
	MQXEPO_* (Register Entry Point Options structure and Exit Options)
	MQXF_* (API Function Identifiers)
	MQXP_* (API crossing exit parameter structure)
	MQXPDA_* (Problem Determination Area)
	MQXPT_* (Transport Types)
	MQXQH_* (Transmission queue header structure)
	MQXR_* (Exit Reasons)
	MQXR2_* (Exit Response 2)
	MQXT_* (Exit Identifiers)
	MQXUA_* (Exit User Area Value)
	MQXWD_* (Exit wait descriptor structure)
	MQZAC_* (Application context structure)
	MQZAD_* (Authority data structure)
	MQZAET_* (Installable Services Entity Types)
	MQZAO_* (Installable Services Authorizations)
	MQZAS_* (Installable Services Service Interface Version)
	MQZAT_* (Authentication Types)
	MQZCI_* (Installable Services Continuation Indicator)
	MQZED_* (Entity data structure)
	MQZFP_* (Free parameters structure)
	MQZIC_* (Identity context structure)
	MQZID_* (Function ids for services)
	MQZIO_* (Installable Services Initialization Options)
	MQZNS_* (Name Service Interface Version)
	MQZSE_* (Installable Services Start-Enumeration Indicator)
	MQZSL_* (Installable Services Selector Indicator)
	MQZTO_* (Installable Services Termination Options)
	MQZUS_* (Userid Service Interface Version)

	Data types used in the MQI
	Data types and programming for the MQI
	Elementary data types
	C declarations
	COBOL declarations
	PL/I declarations
	System/390 assembler declarations

	Structure data types
	C programming
	COBOL programming
	High Level Assembler programming
	Structures

	MQAIR - Authentication information record
	StrucId (MQCHAR4)
	Version (MQLONG)
	AuthInfoType (MQLONG)
	AuthInfoConnName (MQCHAR264)
	LDAPUserNamePtr (PMQCHAR)
	LDAPUserNameOffset (MQLONG)
	LDAPUserNameLength (MQLONG)
	LDAPPassword (MQCHAR32)
	OCSPResponderURL (MQCHAR256)

	MQBMHO - Buffer to message handle options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)

	MQBNO - Balancing options
	StrucId (MQCHAR4)
	Version (MQLONG)
	ApplicationType (MQLONG)
	Timeout (MQLONG)
	BalanceOptions (MQLONG)

	MQBO - Begin options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)

	MQCBC - Callback context
	StrucId (MQCHAR4)
	Version (MQLONG)
	CallType (MQLONG)
	Hobj (MQHOBJ)
	CallbackArea (MQPTR)
	ConnectionArea (MQPTR)
	CompCode (MQLONG)
	Reason (MQLONG)
	State (MQLONG)
	DataLength (MQLONG)
	BufferLength (MQLONG)
	Flags (MQLONG)
	ReconnectDelay (MQLONG)

	MQCBD - Callback descriptor
	StrucId (MQCHAR4)
	Version (MQLONG)
	CallbackType (MQLONG)
	Options (MQLONG)
	CallbackArea (MQPTR)
	CallbackFunction (MQPTR)
	CallbackName (MQCHAR128)
	MaxMsgLength (MQLONG)

	MQCHARV - Variable Length String
	VSPtr (MQPTR)
	VSOffset (MQLONG)
	VSBufSize (MQLONG)
	VSLength (MQLONG)
	VSCCSID (MQLONG)

	MQCIH - CICS bridge header
	StrucId (MQCHAR4)
	Version (MQLONG)
	StrucLength (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Flags (MQLONG)
	ReturnCode (MQLONG)
	CompCode (MQLONG)
	Reason (MQLONG)
	UOWControl (MQLONG)
	GetWaitInterval (MQLONG)
	LinkType (MQLONG)
	OutputDataLength (MQLONG)
	FacilityKeepTime (MQLONG)
	ADSDescriptor (MQLONG)
	ConversationalTask (MQLONG)
	TaskEndStatus (MQLONG)
	Facility (MQBYTE8)
	Function (MQCHAR4)
	AbendCode (MQCHAR4)
	Authenticator (MQCHAR8)
	Reserved1 (MQCHAR8)
	ReplyToFormat (MQCHAR8)
	RemoteSysId (MQCHAR4)
	RemoteTransId (MQCHAR4)
	TransactionId (MQCHAR4)
	FacilityLike (MQCHAR4)
	AttentionId (MQCHAR4)
	StartCode (MQCHAR4)
	CancelCode (MQCHAR4)
	NextTransactionId (MQCHAR4)
	Reserved2 (MQCHAR8)
	Reserved3 (MQCHAR8)
	CursorPosition (MQLONG)
	ErrorOffset (MQLONG)
	InputItem (MQLONG)
	Reserved4 (MQLONG)

	MQCMHO - Create message handle options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)

	MQCNO - Connect options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)
	ClientConnOffset (MQLONG)
	ClientConnPtr (MQPTR)
	ConnTag (MQBYTE128) on Multiplatforms
	ConnTag (MQBYTE128) on IBM MQ for z/OS
	SSLConfigPtr (PMQSCO)
	SSLConfigOffset (MQLONG)
	ConnectionId (MQBYTE24)
	SecurityParmsOffset (MQLONG)
	SecurityParmsPtr (PMQCSP)
	Reserved (MQBYTE4)
	CCDTUrlLength (MQLONG)
	CCDTUrlPtr (PMQCHAR)
	CCDTUrlOffset (MQLONG)
	ApplName (MQCHAR28)
	Reserved2 (MQBYTE4)
	BalanceParmsOffset (MQLONG)
	BalanceParmsPtr (MQPTR)

	MQCSP - Security parameters
	StrucId (MQCHAR4)
	Version (MQLONG)
	AuthenticationType (MQLONG)
	Reserved1 (MQBYTE4)
	CSPUserIdPtr (MQPTR)
	CSPUserIdOffset (MQLONG)
	CSPUserIdLength (MQLONG)
	Reserved2 (MQBYTE8)
	CSPPasswordPtr (MQPTR)
	CSPPasswordOffset (MQLONG)
	CSPPasswordLength (MQLONG)

	MQCTLO - Control callback options structure
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)
	Reserved (MQLONG)
	ConnectionArea (MQPTR)

	MQDH - Distribution header
	StrucId (MQCHAR4)
	Version (MQLONG)
	StrucLength (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Flags (MQLONG)
	PutMsgRecFields (MQLONG)
	RecsPresent (MQLONG)
	ObjectRecOffset (MQLONG)
	PutMsgRecOffset (MQLONG)

	MQDLH - Dead letter header
	StrucId (MQCHAR4)
	Version (MQLONG)
	Reason (MQLONG)
	DestQName (MQCHAR48)
	DestQMgrName (MQCHAR48)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	PutApplType (MQLONG)
	PutApplName (MQCHAR28)
	PutDate (MQCHAR8)
	PutTime (MQCHAR8)

	MQDMHO - Delete message handle options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)

	MQDMPO - Delete message property options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)

	MQEPH - Embedded PCF header
	StrucId (MQCHAR4)
	Version (MQLONG)
	StrucLength (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Flags (MQLONG)
	PCFHeader (MQCFH)

	MQGMO - Get-message options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG) for MQGMO
	WaitInterval (MQLONG)
	Signal1 (MQLONG)
	Signal2 (MQLONG)
	ResolvedQName (MQCHAR48)
	MatchOptions (MQLONG)
	GroupStatus (MQCHAR)
	SegmentStatus (MQCHAR)
	Segmentation (MQCHAR)
	Reserved1 (MQCHAR)
	MsgToken (MQBYTE16)
	ReturnedLength (MQLONG)
	Reserved2 (MQLONG)
	MsgHandle (MQHMSG)

	MQIIH - IMS information header
	StrucId (MQCHAR4)
	Version (MQLONG)
	StrucLength (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Flags (MQLONG)
	LTermOverride (MQCHAR8)
	MFSMapName (MQCHAR8)
	ReplyToFormat (MQCHAR8)
	Authenticator (MQCHAR8)
	TranInstanceId (MQBYTE16)
	TranState (MQCHAR)
	CommitMode (MQCHAR)
	SecurityScope (MQCHAR)
	Reserved (MQCHAR)

	MQIMPO - Inquire message property options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)
	RequestedEncoding (MQLONG)
	RequestedCCSID (MQLONG)
	ReturnedEncoding (MQLONG)
	ReturnedCCSID (MQLONG)
	Reserved1 (MQCHAR)
	ReturnedName (MQCHARV)
	TypeString (MQCHAR8)

	MQMD - Message descriptor
	StrucId (MQCHAR4)
	Version (MQLONG)
	Report (MQLONG)
	MsgType (MQLONG)
	Expiry (MQLONG)
	Expired messages on z/OS
	Enforcing lower expiration times

	Feedback (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Priority (MQLONG)
	Persistence (MQLONG)
	MsgId (MQBYTE24)
	CorrelId (MQBYTE24)
	BackoutCount (MQLONG)
	ReplyToQ (MQCHAR48)
	ReplyToQMgr (MQCHAR48)
	UserIdentifier (MQCHAR12)
	AccountingToken (MQBYTE32)
	ApplIdentityData (MQCHAR32)
	PutApplType (MQLONG)
	PutApplName (MQCHAR28)
	PutDate (MQCHAR8)
	PutTime (MQCHAR8)
	ApplOriginData (MQCHAR4)
	GroupId (MQBYTE24)
	MsgSeqNumber (MQLONG)
	Offset (MQLONG)
	MsgFlags (MQLONG)
	OriginalLength (MQLONG)

	MQMDE - Message descriptor extension
	StrucId (MQCHAR4)
	Version (MQLONG)
	StrucLength (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Flags (MQLONG)
	GroupId (MQBYTE24)
	MsgSeqNumber (MQLONG)
	Offset (MQLONG)
	MsgFlags (MQLONG)
	OriginalLength (MQLONG)

	MQMHBO - Message handle to buffer options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)

	MQOD - Object descriptor
	StrucId (MQCHAR4)
	Version (MQLONG)
	ObjectType (MQLONG)
	ObjectName (MQCHAR48)
	ObjectQMgrName (MQCHAR48)
	DynamicQName (MQCHAR48)
	AlternateUserId (MQCHAR12)
	RecsPresent (MQLONG)
	KnownDestCount (MQLONG)
	UnknownDestCount (MQLONG)
	InvalidDestCount (MQLONG)
	ObjectRecOffset (MQLONG)
	ResponseRecOffset (MQLONG)
	ObjectRecPtr (MQPTR)
	ResponseRecPtr (MQPTR)
	AlternateSecurityId (MQBYTE40)
	ResolvedQName (MQCHAR48)
	ResolvedQMgrName (MQCHAR48)
	ObjectString (MQCHARV)
	SelectionString (MQCHARV)
	ResObjectString (MQCHARV)
	ResolvedType (MQLONG)

	MQOR - Object record
	ObjectName (MQCHAR48)
	ObjectQMgrName (MQCHAR48)

	MQPD - Property descriptor
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)
	Support (MQLONG)
	Context (MQLONG)
	CopyOptions (MQLONG)

	MQPMO - Put message options
	StrucId (MQCHAR4)
	Version (MQLONG)
	MQPMO options (MQLONG)
	Timeout (MQLONG)
	Context (MQHOBJ)
	KnownDestCount (MQLONG)
	UnknownDestCount (MQLONG)
	InvalidDestCount (MQLONG)
	ResolvedQName (MQCHAR48)
	ResolvedQMgrName (MQCHAR48)
	RecsPresent (MQLONG)
	PutMsgRecFields (MQLONG)
	PutMsgRecOffset (MQLONG)
	ResponseRecOffset (MQLONG)
	PutMsgRecPtr (MQPTR)
	ResponseRecPtr (MQPTR)
	OriginalMsgHandle (MQHMSG)
	NewMsgHandle (MQHMSG)
	Action (MQLONG)
	PubLevel (MQLONG)

	MQPMR - Put-message record
	MsgId (MQBYTE24)
	CorrelId (MQBYTE24)
	GroupId (MQBYTE24)
	Feedback (MQLONG)
	AccountingToken (MQBYTE32)

	MQRFH - Rules and formatting header
	StrucId (MQCHAR4)
	Version (MQLONG)
	StrucLength (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Flags (MQLONG)
	NameValueString (MQCHARn)

	MQRFH2 - Rules and formatting header 2
	StrucId (MQCHAR4)
	Version (MQLONG)
	StrucLength (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Flags (MQLONG)
	NameValueCCSID (MQLONG)
	NameValueLength (MQLONG)
	NameValueData (MQCHARn)

	MQRMH - Reference message header
	StrucId (MQCHAR4)
	Version (MQLONG)
	StrucLength (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Flags (MQLONG)
	ObjectType (MQCHAR8)
	ObjectInstanceId (MQBYTE24)
	SrcEnvLength (MQLONG)
	SrcEnvOffset (MQLONG)
	SrcNameLength (MQLONG)
	SrcNameOffset (MQLONG)
	DestEnvLength (MQLONG)
	DestEnvOffset (MQLONG)
	DestNameLength (MQLONG)
	DestNameOffset (MQLONG)
	DataLogicalLength (MQLONG)
	DataLogicalOffset (MQLONG)
	DataLogicalOffset2 (MQLONG)

	MQRR - Response record
	CompCode (MQLONG)
	Reason (MQLONG)

	MQSCO - SSL/TLS configuration options
	StrucId (MQCHAR4)
	Version (MQLONG)
	KeyRepository (MQCHAR256)
	CryptoHardware (MQCHAR256)
	AuthInfoRecCount (MQLONG)
	AuthInfoRecOffset (MQLONG)
	AuthInfoRecPtr (PMQAIR)
	KeyResetCount (MQLONG)
	FipsRequired (MQLONG)
	EncryptionPolicySuiteB(MQLONG)
	CertificateValPolicy (MQLONG)
	CertificateLabel (MQCHAR64)

	MQSD - Subscription descriptor
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)
	ObjectName (MQCHAR48)
	AlternateUserId (MQCHAR12)
	AlternateSecurityId (MQBYTE40)
	SubExpiry (MQLONG)
	ObjectString (MQCHARV)
	SubName (MQCHARV)
	SubUserData (MQCHARV)
	SubCorrelId (MQBYTE24)
	PubPriority (MQLONG)
	PubAccountingToken (MQBYTE32)
	PubApplIdentityData (MQCHAR32)
	SelectionString (MQCHARV)
	SubLevel (MQLONG)
	ResObjectString (MQCHARV)

	MQSMPO - Set message property options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)
	ValueEncoding (MQLONG)
	ValueCCSID (MQLONG)

	MQSRO - Subscription request options
	StrucId (MQCHAR4)
	Version (MQLONG)
	Options (MQLONG)
	NumPubs (MQLONG)

	MQSTS - Status reporting structure
	StrucId (MQCHAR4)
	Version (MQLONG)
	CompCode (MQLONG)
	Reason (MQLONG)
	PutSuccessCount (MQLONG)
	PutWarningCount (MQLONG)
	PutFailureCount (MQLONG)
	ObjectType (MQLONG)
	ObjectName (MQCHAR48)
	ObjectQMgrName (MQCHAR48)
	ResolvedObjectName (MQCHAR48)
	ResolvedQMgrName (MQCHAR48)
	ObjectString (MQCHARV)
	SubName (MQCHARV)
	OpenOptions (MQLONG)
	SubOptions (MQLONG)

	MQTM - Trigger message
	StrucId (MQCHAR4)
	Version (MQLONG)
	QName (MQCHAR48)
	ProcessName (MQCHAR48)
	TriggerData (MQCHAR64)
	ApplType (MQLONG)
	ApplId (MQCHAR256)
	EnvData (MQCHAR128)
	UserData (MQCHAR128)

	MQTMC2 - Trigger message 2 (character format)
	StrucId (MQCHAR4)
	Version (MQCHAR4)
	QName (MQCHAR48)
	ProcessName (MQCHAR48)
	TriggerData (MQCHAR64)
	ApplType (MQCHAR4)
	ApplId (MQCHAR256)
	EnvData (MQCHAR128)
	UserData (MQCHAR128)
	QMgrName (MQCHAR48)

	MQWIH - Work information header
	StrucId (MQCHAR4)
	Version (MQLONG)
	StrucLength (MQLONG)
	Encoding (MQLONG)
	CodedCharSetId (MQLONG)
	Format (MQCHAR8)
	Flags (MQLONG)
	ServiceName (MQCHAR32)
	ServiceStep (MQCHAR8)
	MsgToken (MQBYTE16)
	Reserved (MQCHAR32)

	MQXP - Exit parameter block
	StrucId (MQCHAR4)
	Version (MQLONG)
	ExitId (MQLONG)
	ExitReason (MQLONG)
	ExitResponse (MQLONG)
	ExitCommand (MQLONG)
	ExitParmCount (MQLONG)
	Reserved (MQLONG)
	ExitUserArea (MQBYTE16)

	MQXQH - Transmission-queue header
	StrucId (MQCHAR4)
	Version (MQLONG)
	RemoteQName (MQCHAR48)
	RemoteQMgrName (MQCHAR48)
	MsgDesc (MQMD1)

	Function calls
	Call descriptions
	Conventions used in the call descriptions
	Using the calls in the C language
	Declaring the Buffer parameter

	MQBACK - Back out changes
	MQBEGIN - Begin unit of work
	MQBUFMH - Convert buffer into message handle
	MQCB - Manage callback
	MQCB_FUNCTION - Callback function
	MQCLOSE - Close object
	MQCMIT - Commit changes
	MQCONN - Connect queue manager
	MQCONNX - Connect queue manager (extended)
	MQCRTMH - Create message handle
	MQCTL - Control callbacks
	MQDISC - Disconnect queue manager
	MQDLTMH - Delete message handle
	MQDLTMP - Delete message property
	MQGET - Get message
	MQINQ - Inquire object attributes
	MQINQMP - Inquire message property
	MQMHBUF - Convert message handle into buffer
	MQOPEN - Open object
	MQPUT - Put message
	MQPUT1 - Put one message
	MQSET - Set object attributes
	MQSETMP - Set message property
	MQSTAT - Retrieve status information
	MQSUB - Register subscription
	MQSUBRQ - Subscription request

	Attributes of objects
	Attributes for the queue manager
	AccountingConnOverride (MQLONG)
	AccountingInterval (MQLONG)
	ActivityConnOverride (MQLONG)
	ActivityTrace (MQLONG)
	AdoptNewMCACheck (MQLONG)
	AdoptNewMCAType (MQLONG)
	AlterationDate (MQCHAR12)
	AlterationTime (MQCHAR8)
	AuthorityEvent (MQLONG)
	BridgeEvent (MQLONG)
	ChannelAutoDef (MQLONG)
	ChannelAutoDefEvent (MQLONG)
	ChannelAutoDefExit (MQCHARn)
	ChannelEvent (MQLONG)
	ChannelInitiatorControl (MQLONG)
	ChannelMonitoring (MQLONG)
	ChannelStatistics (MQLONG)
	ChinitAdapters (MQLONG)
	ChinitDispatchers (MQLONG)
	ChinitTraceAutoStart (MQLONG)
	ChinitTraceTableSize (MQLONG)
	ClusterSenderMonitoringDefault (MQLONG)
	ClusterSenderStatistics (MQLONG)
	ClusterWorkloadData (MQCHAR32)
	ClusterWorkloadExit (MQCHARn)
	ClusterWorkloadLength (MQLONG)
	CLWLMRUChannels (MQLONG)
	CLWLUseQ (MQLONG)
	CodedCharSetId (MQLONG)
	CommandEvent (MQLONG)
	CommandInputQName (MQCHAR48)
	CommandLevel (MQLONG)
	CommandServerControl (MQLONG)
	ConfigurationEvent (MQLONG)
	CurrentQFileSize (MQLONG)
	CurrentMaxQFileSize (MQLONG)
	DeadLetterQName (MQCHAR48)
	DefClusterXmitQueueType (MQLONG)
	DefXmitQName (MQCHAR48)
	DistLists (MQLONG)
	DNSGroup (MQCHAR18)
	DNSWLM (MQLONG)
	ExpiryInterval (MQLONG)
	IGQPutAuthority (MQLONG)
	IGQUserId (MQLONG)
	InhibitEvent (MQLONG)
	IntraGroupqueuing (MQLONG)
	IPAddressVersion (MQLONG)
	ListenerTimer (MQLONG)
	LocalEvent (MQLONG)
	LoggerEvent (MQLONG)
	LUGroupName (MQCHAR8)
	LUName (MQCHAR8)
	LU62ARMSuffix (MQCHAR2)
	LU62Channels (MQLONG)
	MaxActiveChannels (MQLONG)
	MaxChannels (MQLONG)
	MaxHandles (MQLONG)
	MaxMsgLength (MQLONG)
	MaxPriority (MQLONG)
	MaxPropertiesLength (MQLONG)
	MaxQFileSize (MQLONG)
	MaxUncommittedMsgs (MQLONG)
	MQIAccounting (MQLONG)
	MQIStatistics (MQLONG)
	MsgMarkBrowseInterval (MQLONG)
	OutboundPortMax (MQLONG)
	OutboundPortMin (MQLONG)
	PerformanceEvent (MQLONG)
	Platform (MQLONG)
	PubSubNPInputMsg (MQLONG)
	PubSubNPResponse (MQLONG)
	PubSubMaxMsgRetryCount (MQLONG)
	PubSubSyncPoint (MQLONG)
	PubSubMode (MQLONG)
	QMgrDesc (MQCHAR64)
	QMgrIdentifier (MQCHAR48)
	QMgrName (MQCHAR48)
	QSGName (MQCHAR4)
	QueueAccounting (MQLONG)
	QueueMonitoring (MQLONG)
	QueueStatistics (MQLONG)
	ReceiveTimeout (MQLONG)
	ReceiveTimeoutMin (MQLONG)
	ReceiveTimeoutType (MQLONG)
	RemoteEvent (MQLONG)
	RepositoryName (MQCHAR48)
	RepositoryNamelist (MQCHAR48)
	ScyCase(MQCHAR8)
	SharedQMgrName (MQLONG)
	SPLCAP
	SSLEvent (MQLONG)
	SSLFIPSRequired (MQLONG)
	SSLKeyResetCount (MQLONG)
	StartStopEvent (MQLONG)
	StatisticsInterval (MQLONG)
	SyncPoint (MQLONG)
	TCPChannels (MQLONG)
	TCPKeepAlive (MQLONG)
	TCPName (MQCHAR8)
	TCPStackType (MQLONG)
	TraceRouteRecording (MQLONG)
	TriggerInterval (MQLONG)
	TriggerInterval (MQLONG)
	Version (MQCFST)
	XrCapability(MQLONG)

	Attributes for queues
	AlterationDate (MQCHAR12)
	AlterationTime (MQCHAR8)
	BackoutRequeueQName (MQCHAR48)
	BackoutThreshold (MQLONG)
	BaseQName (MQCHAR48)
	BaseType (MQCFIN)
	CFStrucName (MQCHAR12)
	ClusterChannelName (MQCHAR20)
	ClusterName (MQCHAR48)
	ClusterNamelist (MQCHAR48)
	CLWLQueuePriority (MQLONG)
	CLWLQueueRank (MQLONG)
	CLWLUseQ (MQLONG)
	CreationDate (MQCHAR12)
	CreationTime (MQCHAR8)
	CurrentQDepth (MQLONG)
	DefaultPutResponse (MQLONG)
	DefBind (MQLONG)
	DefinitionType (MQLONG)
	DefInputOpenOption (MQLONG)
	DefPersistence (MQLONG)
	DefPriority (MQLONG)
	DefReadAhead (MQLONG)
	DefPResp (MQLONG)
	DistLists (MQLONG)
	HardenGetBackout (MQLONG)
	IndexType (MQLONG)
	InhibitGet (MQLONG)
	InhibitPut (MQLONG)
	InitiationQName (MQCHAR48)
	MaxMsgLength (MQLONG)
	MaxQDepth (MQLONG)
	MsgDeliverySequence (MQLONG)
	NonPersistentMessageClass (MQLONG)
	OpenInputCount (MQLONG)
	OpenOutputCount (MQLONG)
	ProcessName (MQCHAR48)
	PropertyControl (MQLONG)
	QDepthHighEvent (MQLONG)
	QDepthHighLimit (MQLONG)
	QDepthLowEvent (MQLONG)
	QDepthLowLimit (MQLONG)
	QDepthMaxEvent (MQLONG)
	QDesc (MQCHAR64)
	QName (MQCHAR48)
	QServiceInterval (MQLONG)
	QServiceIntervalEvent (MQLONG)
	QSGDisp (MQLONG)
	QueueAccounting (MQLONG)
	QueueMonitoring (MQLONG)
	QueueStatistics (MQCHAR12)
	QType (MQLONG)
	RemoteQMgrName (MQCHAR48)
	RemoteQName (MQCHAR48)
	RetentionInterval (MQLONG)
	Scope (MQLONG)
	Shareability (MQLONG)
	StorageClass (MQCHAR8)
	TriggerControl (MQLONG)
	TriggerData (MQCHAR64)
	TriggerDepth (MQLONG)
	TriggerMsgPriority (MQLONG)
	TriggerType (MQLONG)
	Usage (MQLONG)
	XmitQName (MQCHAR48)

	Attributes for namelists
	AlterationDate (MQCHAR12)
	AlterationTime (MQCHAR8)
	NameCount (MQLONG)
	NamelistDesc (MQCHAR64)
	NamelistName (MQCHAR48)
	NamelistType (MQLONG)
	Names (MQCHAR48xNameCount)
	QSGDisp (MQLONG)

	Attributes for process definitions
	AlterationDate (MQCHAR12)
	AlterationTime (MQCHAR8)
	ApplId (MQCHAR256)
	ApplType (MQLONG)
	EnvData (MQCHAR128)
	ProcessDesc (MQCHAR64)
	ProcessName (MQCHAR48)
	QSGDisp (MQLONG)
	UserData (MQCHAR128)

	Return codes
	Rules for validating MQI options
	Queued publish/subscribe command messages
	Delete Publication message
	Properties
	Example

	Deregister Subscriber message
	Properties
	Example

	Publish message
	Register Subscriber message
	Request Update message
	Properties
	Example

	Queue Manager Response message
	Properties
	Examples

	Publish/subscribe reason codes
	MQMD settings in command messages to the queue manager
	MQMD settings for publications forwarded by a queue manager
	MQMD settings in queue manager response messages

	Machine encodings
	Binary-integer encoding
	Packed-decimal-integer encoding
	Floating-point encoding
	Constructing encodings
	Analyzing encodings
	Summary of machine architecture encodings

	Report options and message flags
	Structure of the report field
	Analyzing the report field
	Structure of the message-flags field

	Data-conversion exit
	Conversion processing
	Processing conventions
	Conversion of report messages
	MQDXP - Data-conversion exit parameter
	MQXCNVC - Convert characters
	MQ_DATA_CONV_EXIT - Data conversion exit

	Properties specified as MQRFH2 elements
	Mapping property data types to MQRFH2 data types
	Supported MQRFH2 folders
	Generation of MQRFH2 headers
	MQRFH2 folder restrictions
	MQRFH2 element name conflicts
	Mapping from property names to MQRFH2 folder and element names
	Mapping property descriptor fields into MQRFH2 headers
	MQRFH2 headers that are not valid

	Code page conversion
	Codeset names and CCSIDs
	National languages
	US English
	German
	Danish and Norwegian
	Finnish and Swedish
	Italian
	Spanish
	UK English /Gaelic
	French
	Multilingual
	Portuguese
	Icelandic
	Eastern European languages
	Cyrillic
	Estonian
	Latvian and Lithuanian
	Ukrainian
	Greek
	Turkish
	Hebrew
	Arabic
	Farsi
	Urdu
	Thai
	Lao
	Vietnamese
	Japanese Latin SBCS
	Japanese Katakana SBCS
	Japanese Kanji/ Latin Mixed
	Japanese Kanji/ Katakana Mixed
	Korean
	Simplified Chinese
	Traditional Chinese

	z/OS conversion support
	IBM i conversion support
	Unicode conversion support

	Coding standards on 64-bit platforms
	Standard data types on AIX, Linux, and Windows

	IBM i Application Programming Reference (ILE/RPG)
	Data type descriptions on IBM i
	Elementary data types
	MQBOOL on IBM i
	MQBYTE on IBM i
	MQBYTEn (String of n bytes) on IBM i
	MQCHAR (character) on IBM i
	MQCHARn (String of n characters) on IBM i
	MQFLOAT32 on IBM i
	MQFLOAT64 on IBM i
	MQHCONFIG - configuration handle
	MQHCONN (Connection handle) on IBM i
	MQHMSG (Message handle) on IBM i
	MQHOBJ (Object handle) on IBM i
	MQINT8 (8-bit signed integer) on IBM i
	MQINT16 (16-bit signed integer) on IBM i
	MQINT32 (32-bit integer) on IBM i
	MQINT64 (64-bit integer) on IBM i
	MQLONG (Long integer) on IBM i
	MQPID - process identifier
	MQPTR - pointer
	MQTID - thread identifier
	MQUINT8 (8-bit unsigned integer) on IBM i
	MQUINT16 - 16-bit unsigned integer
	MQUINT32 (32-bit unsigned integer) on IBM i
	MQUINT64 - 64-bit unsigned integer
	MQULONG - 32-bit unsigned integer
	PMQACH - pointer to a data structure of type MQACH
	PMQAIR - pointer to a data structure of type MQAIR
	PMQAXC - pointer to a data structure of type MQAXC
	PMQAXP - pointer to a data structure of type MQAXP
	PMQBMHO - pointer to a data structure of type MQBMHO
	PMQBO - pointer to a data structure of type MQBO
	PMQBOOL - pointer to data of type MQBOOL
	PMQBYTE - pointer to a data type of MQBYTE
	PMQBYTEn - pointer to a data structure of type MQBYTEn
	PMQCBC - pointer to a data structure of type MQCBC
	PMQCBD - pointer to a data structure of type MQCBD
	PMQCHAR - pointer to data of type MQCHAR
	PMQCHARV - pointer to a data structure of type MQCHARV
	PMQCHARn - pointer to a data type of MQCHARn
	PMQCIH - pointer to a data structure of type of MQCIH
	PMQCMHO - pointer to a data structure of type MQCMHO
	PMQCNO - pointer to a data structure of type of MQCNO
	PMQCSP - pointer to a data structure of type MQCSP
	PMQCTLO - pointer to a data structure of type MQCTLO
	PMQDH - pointer to a data structure of type MQDH
	PMQDHO - pointer to a data structure of type MQDHO
	PMQDLH - pointer to a data structure of type of MQDLH
	PMQDMHO - pointer to a data structure of type MQDMHO
	PMQDMPO - pointer to a data structure of type MQDMPO
	PMQEPH - pointer to a data structure of type MQEPH
	PMQFLOAT32 - pointer to data of type MQFLOAT32
	PMQFLOAT64 - pointer to data of type MQFLOAT64
	PMQFUNC - pointer to a function
	PMQGMO - pointer to a data structure of type MQGMO
	PMQHCONFIG - pointer to a data type of MQHCONFIG
	PMQHCONN - pointer to a data type of MQHCONN
	PMQHMSG - pointer to a data type of MQHMSG
	PMQHOBJ - pointer to data of type MQHOBJ
	PMQIIH - pointer to a data structure of type MQIIH
	PMQIMPO - pointer to a data structure of type MQIMPO
	PMQINT8 - pointer to data of type MQINT8
	PMQINT16 - pointer to data of type MQINT16
	PMQINT32 (Pointer to data of type MQINT32) on IBM i
	PMQINT64 (Pointer to data of type MQINT64) on IBM i
	PMQLONG - pointer to data of type MQLONG
	PMQMD - pointer to structure of type MQMD
	PMQMDE - pointer to a data structure of type MQMDE
	PMQMDI - pointer to a data structure of type MQMDI
	PMQMD2 - pointer to a data structure of type MQMD2
	PMQMHBO - pointer to a data structure of type MQMHBO
	PMQOD - pointer to a data structure of type MQOD
	PMQOR - pointer to a data structure of type MQOR
	PMQPD - pointer to a data structure of type MQPD
	PMQPID - pointer to a process identifier
	PMQPMO - pointer to a data structure of type MQPMO
	PMQPTR - pointer to data of type MQPTR
	PMQRFH - pointer to a data structure of type MQRFH
	PMQRFH2 - pointer to a data structure of type MQRFH2
	PMQRMH - pointer to a data structure of type MQRMH
	PMQRR - pointer to a data structure of type MQRR
	PMQSCO - pointer to a data structure of type MQSCO
	PMQSD - pointer to a data structure of type MQSD
	PMQSMPO - pointer to a data structure of type MQSMPO
	PMQSRO - pointer to a data structure of type MQSRO
	PMQSTS - pointer to a data structure of type MQSTS
	PMQTID - pointer to a data structure of type MQTID
	PMQTM - pointer to a data structure of type MQTM
	PMQTMC2 - pointer to a data structure of type MQTMC2
	PMQUINT8 - pointer to data of type MQUINT8
	PMQUINT16 - pointer to data of type MQUINT16
	PMQUINT32 (Pointer to data of type MQUINT32) on IBM i
	PMQUINT64 (Pointer to data of type MQUINT64) on IBM i
	PMQULONG - pointer to data of type MQULONG
	PMQVOID - pointer
	PMQWIH - pointer to a data structure of type MQWIH
	PMQXQH - pointer to a data structure of type MQXQH

	Language considerations
	MQAIR (Authentication information record) on IBM i
	MQBMHO (Buffer to message handle options) on IBM i
	MQBO (Begin options) on IBM i
	MQCBC (Callback context) on IBM i
	MQCBD (Callback descriptor) on IBM i
	MQCHARV (Variable Length String) on IBM i
	MQCIH (CICS bridge header) on IBM i
	MQCMHO (Create message handle options) on IBM i
	MQCNO (Connect options) on IBM i
	MQCSP (Security parameters) on IBM i
	MQCTLO (Control callback options structure) on IBM i
	MQDH (Distribution header) on IBM i
	MQDLH (Dead-letter header) on IBM i
	MQDMHO (Delete message handle options) on IBM i
	MQDMPO (Delete message property options) on IBM i
	MQEPH (Embedded PCF header) on IBM i
	MQGMO (Get-message options) on IBM i
	MQIIH (IMS information header) on IBM i
	MQIMPO (Inquire message property options) on IBM i
	MQMD (Message descriptor) on IBM i
	MQMDE (Message descriptor extension) on IBM i
	MQMHBO (Message handle to buffer options) on IBM i
	MQOD (Object descriptor) on IBM i
	MQOR (Object record) on IBM i
	MQPD - Property descriptor
	MQPMO (Put-message options) on IBM i
	MQPMR (Put-message record) on IBM i
	MQRFH (Rules and formatting header) on IBM i
	MQRFH2 (Rules and formatting header 2) on IBM i
	MQRMH (Reference message header) on IBM i
	MQRR (Response record) on IBM i
	MQSCO (TLS configuration options) on IBM i
	MQSD (Subscription descriptor) on IBM i
	MQSMPO (Set message property options) on IBM i
	MQSRO (Subscription Request Options) on IBM i
	MQSTS (Status reporting structure) on IBM i
	MQTM - Trigger message
	MQTMC2 (Trigger message 2 - character format) on IBM i
	MQWIH (Work information header) on IBM i
	MQXQH (Transmission-queue header) on IBM i

	Function calls on IBM i
	MQBACK (Back out changes) on IBM i
	MQBEGIN (Begin unit of work) on IBM i
	MQBUFMH (Convert buffer into message handle) on IBM i
	MQCB (Manage callback) on IBM i
	MQCLOSE (Close object) on IBM i
	MQCMIT (Commit changes) on IBM i
	MQCONN (Connect queue manager) on IBM i
	MQCONNX (Connect queue manager (extended)) on IBM i
	MQCRTMH (Create message handle) on IBM i
	MQCTL (Control callback) on IBM i
	MQDISC (Disconnect queue manager) on IBM i
	MQDLTMH (Delete message handle) on IBM i
	MQDLTMP - Delete message property
	MQGET (Get message) on IBM i
	MQINQ (Inquire about object attributes) on IBM i
	MQINQMP (Inquire message property) on IBM i
	MQMHBUF (Convert message handle into buffer) on IBM i
	MQOPEN (Open object) on IBM i
	MQPUT (Put message) on IBM i
	MQPUT1 (Put one message) on IBM i
	MQSET (Set object attributes) on IBM i
	MQSETMP (Set message handle property) on IBM i
	MQSTAT (Retrieve status information) on IBM i
	MQSUB (Register Subscription) on IBM i
	MQSUBRQ (Subscription Request) on IBM i

	Attributes of objects on IBM i
	Attributes for queues
	AlterationDate (12-byte character string) on IBM i
	AlterationTime (8-byte character string) on IBM i
	BackoutRequeueQName (48-byte character string) on IBM i
	BackoutThreshold (10-digit signed integer) on IBM i
	BaseQName (48-byte character string) on IBM i
	BaseType (integer parameter structure) on IBM i
	CFStrucName (12-byte character string) on IBM i
	ClusterChannelName (20-byte character string)
	ClusterName (48-byte character string) on IBM i
	ClusterNamelist (48-byte character string) on IBM i
	CreationDate (12-byte character string) on IBM i
	CreationTime (8-byte character string) on IBM i
	CurrentQDepth (10-digit signed integer) on IBM i
	DefBind (10-digit signed integer) on IBM i
	DefinitionType (10-digit signed integer) on IBM i
	DefInputOpenOption (10-digit signed integer) on IBM i
	DefPersistence (10-digit signed integer) on IBM i
	DefPriority (10-digit signed integer) on IBM i
	DefReadAhead (10-digit signed integer) on IBM i
	DefPResp (10-digit signed integer) on IBM i
	DistLists (10-digit signed integer) on IBM i
	HardenGetBackout (10-digit signed integer) on IBM i
	InhibitGet (10-digit signed integer) on IBM i
	InhibitPut (10-digit signed integer) on IBM i
	InitiationQName (48-byte character string) on IBM i
	MaxMsgLength (10-digit signed integer) on IBM i
	MaxQDepth (10-digit signed integer) on IBM i
	MediaLog (10-digit signed integer) on IBM i
	MsgDeliverySequence (10-digit signed integer) on IBM i
	OpenInputCount (10-digit signed integer) on IBM i
	OpenOutputCount (10-digit signed integer) on IBM i
	ProcessName (48-byte character string) on IBM i
	QDepthHighEvent (10-digit signed integer) on IBM i
	QDepthHighLimit (10-digit signed integer) on IBM i
	QDepthLowEvent (10-digit signed integer) on IBM i
	QDepthLowLimit (10-digit signed integer) on IBM i
	QDepthMaxEvent (10-digit signed integer) on IBM i
	QDesc (64-byte character string) on IBM i
	QName (48-byte character string) on IBM i
	QServiceInterval (10-digit signed integer) on IBM i
	QServiceIntervalEvent (10-digit signed integer) on IBM i
	QSGDisp (10-digit signed integer) on IBM i
	QType (10-digit signed integer) on IBM i
	RemoteQMgrName (48-byte character string) on IBM i
	RemoteQName (48-byte character string) on IBM i
	RetentionInterval (10-digit signed integer) on IBM i
	Scope (10-digit signed integer) on IBM i
	Shareability (10-digit signed integer) on IBM i
	TriggerControl (10-digit signed integer) on IBM i
	TriggerData (64-byte character string) on IBM i
	TriggerDepth (10-digit signed integer) on IBM i
	TriggerMsgPriority (10-digit signed integer) on IBM i
	TriggerType (10-digit signed integer) on IBM i
	Usage (10-digit signed integer) on IBM i
	XmitQName (48-byte character string) on IBM i

	Attributes for namelists
	Attributes for process definitions on IBM i
	Attributes for the queue manager on IBM i
	AlterationDate (12-byte character string) on IBM i
	AlterationTime (8-byte character string) on IBM i
	AuthorityEvent (10-digit signed integer) on IBM i
	BridgeEvent (character string) on IBM i
	ChannelAutoDef (10-digit signed integer) on IBM i
	ChannelAutoDefEvent (10-digit signed integer) on IBM i
	ChannelAutoDefExit (20-byte character string) on IBM i
	ChannelEvent (character string) on IBM i
	ClusterCacheType (32-byte character string) on IBM i
	ClusterWorkloadData (32-byte character string) on IBM i
	ClusterWorkloadExit (20-byte character string) on IBM i
	ClusterWorkloadLength (10-digit signed integer) on IBM i
	CodedCharSetId (10-digit signed integer) on IBM i
	CommandEvent (integer) on IBM i
	CommandInputQName (48-byte character string) on IBM i
	CommandLevel (10-digit signed integer) on IBM i
	ConfigurationEvent on IBM i
	DeadLetterQName (48-byte character string) on IBM i
	DefClusterXmitQueueType (10-digit signed integer)
	DefXmitQName (48-byte character string) on IBM i
	DistLists (10-digit signed integer) on IBM i
	InhibitEvent (10-digit signed integer) on IBM i
	LocalEvent (10-digit signed integer) on IBM i
	LoggerEvent (10-digit signed integer) on IBM i
	MaxHandles (10-digit signed integer) on IBM i
	MaxMsgLength (10-digit signed integer) on IBM i
	MaxPriority (10-digit signed integer) on IBM i
	MaxUncommittedMsgs (10-digit signed integer) on IBM i
	PerformanceEvent (10-digit signed integer) on IBM i
	Platform (10-digit signed integer) on IBM i
	PubSubMode (10-digit signed integer) on IBM i
	QMgrDesc (64-byte character string) on IBM i
	QMgrIdentifier (48-byte character string) on IBM i
	QMgrName (48-byte character string) on IBM i
	RemoteEvent (10-digit signed integer) on IBM i
	RepositoryName (48-byte character string) on IBM i
	RepositoryNamelist (48-byte character string) on IBM i
	SSLEvent (character string) on IBM i
	SSLKeyResetCount (integer) on IBM i
	StartStopEvent (10-digit signed integer) on IBM i
	SyncPoint (10-digit signed integer) on IBM i
	TraceRouteRecording (10-digit signed integer) on IBM i
	TreeLifeTime (10-digit signed integer) on IBM i
	TriggerInterval (10-digit signed integer) on IBM i

	Applications
	Building your application
	IBM MQ copy files on IBM i
	Preparing your programs to run
	Interfaces to the IBM i external syncpoint manager
	Syncpoints in CICS for IBM i applications

	Sample programs on IBM i
	Features demonstrated in the sample programs on IBM i
	Preparing and running the sample programs on IBM i
	The Put sample program on IBM i
	The Browse sample program on IBM i
	The Get sample program on IBM i
	The Request sample program on IBM i
	Using triggering with the Request sample on IBM i

	The Echo sample program on IBM i
	The Inquire sample program on IBM i
	The Set sample program on IBM i
	The Triggering sample programs on IBM i
	The AMQ3TRG4 sample trigger monitor on IBM i
	The AMQ3SRV4 sample trigger server
	Ending the Triggering sample programs on IBM i

	Running the samples using remote queues on IBM i

	Return codes for IBM i (ILE RPG)
	Completion codes for IBM i (ILE RPG)
	Reason codes for IBM i (ILE RPG)

	Rules for validating MQI options for IBM i (ILE RPG)
	MQOPEN call on IBM i
	MQPUT call on IBM i
	MQPUT1 call on IBM i
	MQGET call on IBM i
	MQCLOSE call on IBM i
	MQSUB call on IBM i

	Machine encodings on IBM i
	Binary-integer encoding on IBM i
	Packed-decimal-integer encoding on IBM i
	Floating-point encoding on IBM i
	Constructing encodings on IBM i
	Analyzing encodings on IBM i
	Summary of machine architecture encodings on IBM i

	Report options and message flags on IBM i
	Structure of the report field
	Analyzing the report field on IBM i
	Structure of the message-flags field on IBM i

	Data conversion on IBM i
	Conversion processing on IBM i
	Processing conventions on IBM i
	Conversion of report messages on IBM i
	MQDXP (Data-conversion exit parameter) on IBM i
	MQXCNVC (Convert characters) on IBM i
	MQCONVX (Data conversion exit) on IBM i

	User exits, API exits, and installable services reference
	MQIEP structure
	Data-conversion exit reference
	Skeleton source file
	Convert characters call
	Utility for creating conversion-exit code
	Valid syntax

	MQ_PUBLISH_EXIT - Publish exit
	MQPSXP - Publish exit data structure
	MQPBC - Publication context data structure
	MQSBC - Subscription context data structure

	Channel-exit calls and data structures
	MQ_CHANNEL_EXIT - Channel exit
	MQ_CHANNEL_AUTO_DEF_EXIT - Channel auto-definition exit
	MQXWAIT - Wait in exit
	MQCD - Channel definition
	Fields
	BatchDataLimit (MQLONG)
	BatchHeartbeat (MQLONG)
	BatchInterval (MQLONG)
	BatchSize (MQLONG)
	CertificateLabel (MQCHAR64)
	ChannelMonitoring (MQLONG)
	ChannelName (MQCHAR20)
	ChannelStatistics (MQLONG)
	ChannelType (MQLONG)
	ClientChannelWeight (MQLONG)
	ClusterPtr (MQPTR)
	ClustersDefined (MQLONG)
	CLWLChannelPriority (MQLONG)
	CLWLChannelRank (MQLONG)
	CLWLChannelWeight (MQLONG)
	ConnectionAffinity (MQLONG)
	ConnectionName (MQCHAR264)
	DataConversion (MQLONG)
	DefReconnect (MQLONG)
	Desc (MQCHAR64)
	DiscInterval (MQLONG)
	ExitDataLength (MQLONG)
	ExitNameLength (MQLONG)
	HdrCompList [2] (MQLONG)
	HeartbeatInterval (MQLONG)
	KeepAliveInterval (MQLONG)
	LocalAddress (MQCHAR48)
	LongMCAUserIdLength (MQLONG)
	LongMCAUserIdPtr (MQPTR)
	LongRemoteUserIdLength (MQLONG)
	LongRemoteUserIdPtr (MQPTR)
	LongRetryCount (MQLONG)
	LongRetryInterval (MQLONG)
	MaxInstances (MQLONG)
	MaxInstancesPerClient (MQLONG)
	MaxMsgLength (MQLONG)
	MCAName (MQCHAR20)
	MCASecurityId (MQBYTE40)
	MCAType (MQLONG)
	MCAUserIdentifier (MQCHAR12)
	ModeName (MQCHAR8)
	MsgCompList [16] (MQLONG)
	MsgExit (MQCHARn)
	MsgExitPtr (MQPTR)
	MsgExitsDefined (MQLONG)
	MsgRetryCount (MQLONG)
	MsgRetryExit (MQCHARn)
	MsgRetryInterval (MQLONG)
	MsgRetryUserData (MQCHAR32)
	MsgUserData (MQCHAR32)
	MsgUserDataPtr (MQPTR)
	NetworkPriority (MQLONG)
	NonPersistentMsgSpeed (MQLONG)
	Password (MQCHAR12)
	PropertyControl (MQLONG)
	PutAuthority (MQLONG)
	QMgrName (MQCHAR48)
	ReceiveExit (MQCHARn)
	ReceiveExitPtr (MQPTR)
	ReceiveExitsDefined (MQLONG)
	ReceiveUserData (MQCHAR32)
	ReceiveUserDataPtr (MQPTR)
	RemotePassword (MQCHAR12)
	RemoteSecurityId (MQBYTE40)
	RemoteUserIdentifier (MQCHAR12)
	SecurityExit (MQCHARn)
	SecurityUserData (MQCHAR32)
	SendExit (MQCHARn)
	SendExitPtr (MQPTR)
	SendExitsDefined (MQLONG)
	SendUserData (MQCHAR32)
	SendUserDataPtr (MQPTR)
	SeqNumberWrap (MQLONG)
	SharingConversations (MQLONG)
	ShortConnectionName (MQCHAR20)
	ShortRetryCount (MQLONG)
	ShortRetryInterval (MQLONG)
	SPLProtection (MQLONG)
	SSLCipherSpec (MQCHAR32)
	SSLClientAuth (MQLONG)
	SSLPeerNameLength (MQLONG)
	SSLPeerNamePtr (MQPTR)
	StrucLength (MQLONG)
	TpName (MQCHAR64)
	TransportType (MQLONG)
	UseDLQ (MQLONG)
	UserIdentifier (MQCHAR12)
	Version (MQLONG)
	XmitQName (MQCHAR48)

	C declaration
	COBOL declaration
	RPG declaration (ILE)
	System/390 assembler declaration
	Visual Basic declaration
	Changing MQCD fields in a channel exit

	MQCXP - Channel exit parameter
	Fields
	StrucId (MQCHAR4)
	Version (MQLONG)
	ExitId (MQLONG)
	ExitReason (MQLONG)
	ExitResponse (MQLONG)
	ExitResponse2 (MQLONG)
	Feedback (MQLONG)
	MaxSegmentLength (MQLONG)
	ExitUserArea (MQBYTE16)
	ExitData (MQCHAR32)
	MsgRetryCount (MQLONG)
	MsgRetryInterval (MQLONG)
	MsgRetryReason (MQLONG)
	HeaderLength (MQLONG)
	PartnerName (MQCHAR48)
	FAPLevel (MQLONG)
	CapabilityFlags (MQLONG)
	ExitNumber (MQLONG)
	ExitSpace (MQLONG)
	SSLCertUserId (MQCHAR12)
	SSLRemCertIssNameLength (MQLONG)
	SSLRemCertIssNamePtr (PMQVOID)
	SecurityParms (PMQCSP)
	CurHdrCompression (MQLONG)
	CurMsgCompression (MQLONG)
	Hconn (MQHCONN)
	SharingConversations (MQBOOL)
	MCAUserSource (MQLONG)
	pEntryPoints (PMQIEP)
	RemoteProduct (MQCHAR4)
	RemoteVersion (MQCHAR8)

	C declaration
	COBOL declaration
	RPG declaration (ILE)
	System/390 assembler declaration

	MQXWD - Exit wait descriptor
	Fields
	StrucId (MQCHAR4)
	Version (MQLONG)
	Reserved1 (MQLONG)
	Reserved2 (MQLONG)
	Reserved3 (MQLONG)
	ECB (MQLONG)

	C declaration
	System/390 assembler declaration

	Cluster workload exit call and data structures
	MQ_CLUSTER_WORKLOAD_EXIT - Call description
	Parameters for MQ_CLUSTER_WORKLOAD_EXIT
	Usage notes
	Language invocations for MQ_CLUSTER_WORKLOAD_EXIT

	MQXCLWLN - Navigate Cluster workload records
	Parameters for MQXCLWLN - Navigate Cluster workload records
	Usage notes for MQXCLWLN - Navigate Cluster workload records
	Language invocations of MQXCLWLN

	MQWXP - Cluster workload exit parameter structure
	Fields in MQWXP - Cluster workload exit parameter structure
	Initial values and language declarations for MQWXP

	MQWDR - Cluster workload destination record structure
	Fields in MQWDR - Cluster workload destination record structure
	Initial values and language declarations for MQWDR

	MQWQR - Cluster workload queue record structure
	Fields in MQWQR - Cluster workload queue record structure
	Initial values and language declarations for MQWQR

	MQWCR - Cluster workload cluster record structure
	Fields in the MQWCR - Cluster workload cluster record structure.
	Initial values and language declarations for MQWCR

	API exit reference
	IBM MQ API exit parameter structure (MQAXP)
	IBM MQ API exit context structure (MQAXC)
	The exit chain area and exit chain area header (MQACH)
	External constants
	C language typedefs
	The exit entry point registration call (MQXEP)
	Exit functions
	API exits on clients
	Backout - MQ_BACK_EXIT
	Begin - MQ_BEGIN_EXIT
	Callback - MQ_CALLBACK_EXIT
	Manage callback functions - MQ_CB_EXIT
	Close - MQ_CLOSE_EXIT
	Commit - MQ_CMIT_EXIT
	Connect and connect extension - MQ_CONNX_EXIT
	Control callback - MQ_CTL_EXIT
	Disconnect - MQ_DISC_EXIT
	Get - MQ_GET_EXIT
	MQXF_DATA_CONV_ON_GET
	Initialization - MQ_INIT_EXIT
	Inquire - MQ_INQ_EXIT
	Open - MQ_OPEN_EXIT
	Put - MQ_PUT_EXIT
	Put1 - MQ_PUT1_EXIT
	Set - MQ_SET_EXIT
	Status - MQ_STAT_EXIT
	Termination - MQ_TERM_EXIT
	Register subscription - MQ_SUB_EXIT
	Subscription request - MQ_SUBRQ_EXIT
	xa_close - XA_CLOSE_EXIT
	xa_commit - XA_COMMIT_EXIT
	xa_complete - XA_COMPLETE_EXIT
	xa_end - XA_END_EXIT
	xa_forget - XA_FORGET_EXIT
	xa_open - XA_OPEN_EXIT
	xa_prepare - XA_PREPARE_EXIT
	xa_recover - XA_RECOVER_EXIT
	xa_rollback - XA_ROLLBACK_EXIT
	xa_start - XA_START_EXIT
	ax_reg - AX_REG_EXIT
	ax_unreg - AX_UNREG_EXIT

	General information on invoking exit functions
	Exit failure
	Example error handling for exit functions

	ExitResponse fields set incorrectly

	Installable services interface reference information
	How the functions are shown
	MQZ_AUTHENTICATE_USER - Authenticate user
	MQZ_CHECK_AUTHORITY - Check authority
	MQZ_CHECK_AUTHORITY_2 - Check authority (extended)
	MQZ_CHECK_PRIVILEGED - Check if user is privileged
	MQZ_COPY_ALL_AUTHORITY - Copy all authority
	MQZ_DELETE_AUTHORITY - Delete authority
	MQZ_ENUMERATE_AUTHORITY_DATA - Enumerate authority data
	MQZ_FREE_USER - Free user
	MQZ_GET_AUTHORITY - Get authority
	MQZ_GET_AUTHORITY_2 - Get authority (extended)
	MQZ_GET_EXPLICIT_AUTHORITY - Get explicit authority
	MQZ_GET_EXPLICIT_AUTHORITY_2 - Get explicit authority (extended)
	MQZ_INIT_AUTHORITY - Initialize authorization service
	MQZ_INQUIRE - Inquire authorization service
	MQZ_REFRESH_CACHE - Refresh all authorizations
	MQZ_SET_AUTHORITY - Set authority
	MQZ_SET_AUTHORITY_2 - Set authority (extended)
	MQZ_TERM_AUTHORITY - Terminate authorization service
	MQZ_DELETE_NAME - Delete name
	MQZ_INIT_NAME - Initialize name service
	MQZ_INSERT_NAME - Insert name
	MQZ_LOOKUP_NAME - Lookup name
	MQZ_TERM_NAME - Terminate name service
	MQZAC - Application context
	MQZAD - Authority data
	MQZED - Entity descriptor
	MQZEP - Add component entry point
	MQZFP - Free parameters
	MQZIC - Identity context

	Installable services interface reference information on IBM i
	MQZEP (Add component entry point) on IBM i
	MQHCONFIG (Configuration handle) on IBM i
	PMQFUNC (Pointer to function) on IBM i
	MQZ_AUTHENTICATE_USER (Authenticate user) on IBM i
	MQZ_CHECK_AUTHORITY (Check authority) on IBM i
	MQZ_CHECK_PRIVILEGED - Check if user is privileged
	MQZ_COPY_ALL_AUTHORITY (Copy all authority) on IBM i
	MQZ_DELETE_AUTHORITY (Delete authority) on IBM i
	MQZ_ENUMERATE_AUTHORITY_DATA (Enumerate authority data) on IBM i
	MQZ_FREE_USER - Free user
	MQZ_GET_AUTHORITY (Get authority) on IBM i
	MQZ_GET_EXPLICIT_AUTHORITY (Get explicit authority) on IBM i
	MQZ_INIT_AUTHORITY (Initialize authorization service) on IBM i
	MQZ_INQUIRE (Inquire authorization service) on IBM i
	MQZ_REFRESH_CACHE (Refresh all authorizations) on IBM i
	MQZ_SET_AUTHORITY (Set authority) on IBM i
	MQZ_TERM_AUTHORITY - Terminate authorization service
	MQZAC (Application context) on IBM i
	MQZAD (Authority data) on IBM i
	MQZED (Entity descriptor) on IBM i
	MQZFP (Free parameters) on IBM i
	MQZIC (Identity context) on IBM i

	The IBM MQ .NET classes and interfaces
	MQAsyncStatus.NET class
	MQAuthenticationInformationRecord.NET class
	MQDestination.NET class
	MQEnvironment.NET class
	MQException.NET class
	MQGetMessageOptions.NET class
	MQManagedObject.NET class
	MQMessage.NET class
	MQProcess.NET class
	MQPropertyDescriptor.NET class
	MQPutMessageOptions.NET class
	MQQueue.NET class
	MQQueueManager.NET class
	MQSubscription.NET class
	MQTopic.NET class
	IMQObjectTrigger.NET interface
	MQC.NET interface
	Character set identifiers for .NET applications

	IBM MQ C++ classes
	C++ and MQI cross-reference
	ImqAuthenticationRecord cross-reference
	ImqCache cross-reference
	ImqChannel cross-reference
	ImqCICSBridgeHeader cross-reference
	ImqDeadLetterHeader cross-reference
	ImqError cross-reference
	ImqGetMessageOptions cross-reference
	ImqHeader cross-reference
	ImqIMSBridgeHeader cross-reference
	ImqItem cross-reference
	ImqMessage cross-reference
	ImqMessageTracker cross-reference
	ImqNamelist cross-reference
	ImqObject cross-reference
	ImqProcess cross-reference
	ImqPutMessageOptions cross-reference
	ImqQueue cross-reference
	ImqQueueManager cross-reference
	ImqReferenceHeader cross-reference
	ImqTrigger cross-reference
	ImqWorkHeader cross-reference

	ImqAuthenticationRecord C++ class
	ImqBinary C++ class
	ImqCache C++ class
	ImqChannel C++ class
	ImqCICSBridgeHeader C++ class
	ImqDeadLetterHeader C++ class
	ImqDistributionList C++ class
	ImqError C++ class
	ImqGetMessageOptions C++ class
	ImqHeader C++ class
	ImqIMSBridgeHeader C++ class
	ImqItem C++ class
	ImqMessage C++ class
	ImqMessageTracker C++ class
	ImqNamelist C++ class
	ImqObject C++ class
	ImqProcess C++ class
	ImqPutMessageOptions C++ class
	ImqQueue C++ class
	ImqQueueManager C++ class
	ImqReferenceHeader C++ class
	ImqString C++ class
	ImqTrigger C++ class
	ImqWorkHeader C++ class

	Properties of IBM MQ classes for JMS objects
	Dependencies between properties of IBM MQ classes for JMS objects
	APPLICATIONNAME
	ASYNCEXCEPTION
	BROKERCCDURSUBQ
	BROKERCCSUBQ
	BROKERCONQ
	BROKERDURSUBQ
	BROKERPUBQ
	BROKERPUBQMGR
	BROKERQMGR
	BROKERSUBQ
	BROKERVER
	CCDTURL
	CCSID
	CHANNEL
	CLEANUP
	CLEANUPINT
	CONNECTIONNAMELIST
	CLIENTRECONNECTOPTIONS
	CLIENTRECONNECTTIMEOUT
	CLIENTID
	CLONESUPP
	COMPHDR
	COMPMSG
	CONNOPT
	CONNTAG
	DESCRIPTION
	DIRECTAUTH
	ENCODING
	EXPIRY
	FAILIFQUIESCE
	HOSTNAME
	LOCALADDRESS
	MAPNAMESTYLE
	MAXBUFFSIZE
	MDREAD
	MDWRITE
	MDMSGCTX
	MSGBATCHSZ
	MSGBODY
	MSGRETENTION
	MSGSELECTION
	MULTICAST
	OPTIMISTICPUBLICATION
	OUTCOMENOTIFICATION
	PERSISTENCE
	POLLINGINT
	PORT
	PRIORITY
	PROCESSDURATION
	PROVIDERVERSION
	PROXYHOSTNAME
	PROXYPORT
	PUBACKINT
	PUTASYNCALLOWED
	QMANAGER
	QUEUE
	READAHEADALLOWED
	READAHEADCLOSEPOLICY
	RECEIVECCSID
	RECEIVECONVERSION
	RECEIVEISOLATION
	RECEXIT
	RECEXITINIT
	REPLYTOSTYLE
	RESCANINT
	SECEXIT
	SECEXITINIT
	SENDCHECKCOUNT
	SENDEXIT
	SENDEXITINIT
	SHARECONVALLOWED
	SPARSESUBS
	SSLCIPHERSUITE
	SSLCRL
	SSLFIPSREQUIRED
	SSLPEERNAME
	SSLRESETCOUNT
	STATREFRESHINT
	SUBSTORE
	SYNCPOINTALLGETS
	TARGCLIENT
	TARGCLIENTMATCHING
	TEMPMODEL
	TEMPQPREFIX
	TEMPTOPICPREFIX
	TOPIC
	TRANSPORT
	WILDCARDFORMAT
	The ENCODING property
	TLS properties of JMS objects

	IBM MQ Message Service Client (XMS) for .NET reference
	.NET interfaces
	IBytesMessage
	.NET properties
	BodyLength - Get Body Length

	Methods
	ReadBoolean - Read Boolean Value
	ReadSignedByte - Read Byte
	ReadBytes - Read Bytes
	ReadChar - Read Character
	ReadDouble - Read Double Precision Floating Point Number
	ReadFloat - Read Floating Point Number
	ReadInt - Read Integer
	ReadLong - Read Long Integer
	ReadShort - Read Short Integer
	ReadByte - Read Unsigned Byte
	ReadUnsignedShort - Read Unsigned Short Integer
	ReadUTF - Read UTF String
	Reset - Reset
	WriteBoolean - Write Boolean Value
	WriteByte - Write Byte
	WriteBytes - Write Bytes
	WriteBytes - Write Partial Bytes Array
	WriteChar - Write Character
	WriteDouble - Write Double Precision Floating Point Number
	WriteFloat - Write Floating Point Number
	WriteInt - Write Integer
	WriteLong - Write Long Integer
	WriteObject - Write Object
	WriteShort - Write Short Integer
	WriteUTF - Write UTF String

	Inherited properties and methods

	IConnection
	.NET properties
	ClientID - Get and Set Client ID
	ExceptionListener - Get and Set Exception Listener
	Metadata - Get Metadata

	Methods
	Close - Close Connection
	CreateSession - Create Session
	Start - Start Connection
	Stop - Stop Connection

	Inherited properties and methods

	IConnectionFactory
	Methods
	CreateConnection - Create Connection Factory (using the default user identity)
	CreateConnection - Create Connection (using a specified user identity)

	Inherited properties and methods

	IConnectionMetaData
	.NET properties
	JMSXPropertyNames - Get JMS Defined Message Properties

	Inherited properties and methods

	IDestination
	.NET properties
	Name - Get Destination Name
	TypeId - Get Destination Type

	Inherited properties and methods

	ExceptionListener
	Delegate
	ExceptionListener - Exception Listener

	IllegalStateException
	Inherited properties and methods

	InitialContext
	.NET properties
	Environment - Get the environment

	Constructors
	InitialContext - Create Initial Context

	Methods
	AddToEnvironment - Add a New Property to the Environment
	Close - Close this context
	Lookup - Look Up Object in Initial Context
	RemoveFromEnvironment - Remove a Property from the Environment

	InvalidClientIDException
	Inherited properties and methods

	InvalidDestinationException
	Inherited properties and methods

	InvalidSelectorException
	Inherited properties and methods

	IMapMessage
	.NET properties
	MapNames - Get Map Names

	Methods
	GetBoolean - Get Boolean Value
	GetByte - Get Byte
	GetBytes - Get Bytes
	GetChar - Get Character
	GetDouble - Get Double Precision Floating Point Number
	GetFloat - Get Floating Point Number
	GetInt - Get Integer
	GetLong - Get Long Integer
	GetObject - Get Object
	GetShort - Get Short Integer
	GetString - Get String
	ItemExists - Check Name-Value Pair Exists
	SetBoolean - Set Boolean Value
	SetByte - Set Byte
	SetBytes - Set Bytes
	SetChar - Set Character
	SetDouble - Set Double Precision Floating Point Number
	SetFloat - Set Floating Point Number
	SetInt - Set Integer
	SetLong - Set Long Integer
	SetObject - Set Object
	SetShort - Set Short Integer
	SetString - Set String

	Inherited properties and methods

	IMessage
	.NET properties
	GetJMSCorrelationID - Get and Set JMSCorrelationID
	JMSDeliveryMode - Get and Set JMSDeliveryMode
	JMSDestination - Get and Set JMSDestination
	JMSExpiration - Get and Set JMSExpiration
	JMSMessageID - Get and Set JMSMessageID
	JMSPriority - Get and Set JMSPriority
	JMSRedelivered - Get and Set JMSRedelivered
	JMSReplyTo - Get and Set JMSReplyTo
	JMSTimestamp - Get and Set JMSTimestamp
	JMSType - Get and Set JMSType
	PropertyNames - Get Properties

	Methods
	Acknowledge - Acknowledge
	ClearBody - Clear Body
	ClearProperties - Clear Properties
	PropertyExists - Check Property Exists

	Inherited properties and methods

	IMessageConsumer
	.NET properties
	MessageListener - Get and Set Message Listener
	MessageSelector - Get Message Selector

	Methods
	Close - Close Message Consumer
	Receive - Receive
	Receive - Receive (with a wait interval)
	ReceiveNoWait - Receive with No Wait

	Inherited properties and methods

	MessageEOFException
	Inherited properties and methods

	MessageFormatException
	Inherited properties and methods

	IMessageListener (delegate)
	Delegate
	MessageListener - Message Listener

	MessageNotReadableException
	Inherited properties and methods

	MessageNotWritableException
	Inherited properties and methods

	IMessageProducer
	.NET properties
	DeliveryMode - Get and Set Default Delivery Mode
	Destination - Get Destination
	DisableMsgID - Get and Set Disable Message ID Flag
	DisableMsgTS - Get and Set Disable Time Stamp Flag
	Priority - Get and Set Default Priority
	TimeToLive - Get and Set Default Time to Live

	Methods
	Close - Close Message Producer
	Send - Send
	Send - Send (specifying a delivery mode, priority, and time to live)
	Send - Send (to a specified destination)
	Send - Send (to a specified destination, specifying a delivery mode, priority, and time to live)

	Inherited properties and methods

	IObjectMessage
	.NET properties
	Object - Get and Set Object as Bytes

	Inherited properties and methods

	IPropertyContext
	Methods
	GetBooleanProperty - Get Boolean Property
	GetByteProperty - Get Byte Property
	GetBytesProperty - Get Byte Array Property
	GetCharProperty - Get Character Property
	GetDoubleProperty - Get Double Precision Floating Point Property
	GetFloatProperty - Get Floating Point Property
	GetIntProperty - GetIntProperty
	GetLongProperty - Get Long Integer Property
	GetObjectProperty - Get Object Property
	GetShortProperty - Get Short Integer Property
	GetStringProperty - GetStringProperty
	SetBooleanProperty - Set Boolean Property
	SetByteProperty - Set Byte Property
	SetBytesProperty - Set Byte Array Property
	SetCharProperty - Set Character Property
	SetDoubleProperty - Set Double Precision Floating Point Property
	SetFloatProperty - Set Floating Point Property
	SetIntProperty - Set Integer Property
	SetLongProperty - Set Long Integer Property
	SetObjectProperty - Set Object Property
	SetShortProperty - Set Short Integer Property
	SetStringProperty - Set String Property

	IQueueBrowser
	.NET properties
	MessageSelector - Get Message Selector
	Queue - Get Queue

	Methods
	Close - Close Queue Browser
	GetEnumerator - Get Messages

	Inherited properties and methods

	Requestor
	Constructors
	Requestor - Create Requestor

	Methods
	Close - Close Requestor
	Request - Request Response

	ResourceAllocationException
	Inherited properties and methods

	SecurityException
	Inherited properties and methods

	ISession
	.NET properties
	AcknowledgeMode - Get Acknowledgement Mode
	Transacted - Determine Whether Transacted

	Methods
	Close - Close Session
	Commit - Commit
	CreateBrowser - Create Queue Browser
	CreateBrowser - Create Queue Browser (with message selector)
	CreateBytesMessage - Create Bytes Message
	CreateConsumer - Create Consumer
	CreateConsumer - Create Consumer (with message selector)
	CreateConsumer - Create Consumer (with message selector and local message flag)
	CreateDurableSubscriber - Create Durable Subscriber
	CreateDurableSubscriber - Create Durable Subscriber (with message selector and local message flag)
	CreateMapMessage - Create Map Message
	CreateMessage - Create Message
	CreateObjectMessage - Create Object Message
	CreateProducer - Create Producer
	CreateQueue - Create Queue
	CreateStreamMessage - Create Stream Message
	CreateTemporaryQueue - Create Temporary Queue
	CreateTemporaryTopic - Create Temporary Topic
	CreateTextMessage - Create Text Message
	CreateTextMessage - Create Text Message (initialized)
	CreateTopic - Create Topic
	Recover - Recover
	Rollback - Rollback
	Unsubscribe - Unsubscribe

	Inherited properties and methods

	IStreamMessage
	Methods
	ReadBoolean - Read Boolean Value
	ReadByte - Read Byte
	ReadBytes - Read Bytes
	ReadChar - Read Character
	ReadDouble - Read Double Precision Floating Point Number
	ReadFloat - Read Floating Point Number
	ReadInt - Read Integer
	ReadLong - Read Long Integer
	ReadObject - Read Object
	ReadShort - Read Short Integer
	ReadString - Read String
	Reset - Reset
	WriteBoolean - Write Boolean Value
	WriteByte - Write Byte
	WriteBytes - Write Bytes
	WriteChar - Write Character
	WriteDouble - Write Double Precision Floating Point Number
	WriteFloat - Write Floating Point Number
	WriteInt - Write Integer
	WriteLong - Write Long Integer
	WriteObject - Write Object
	WriteShort - Write Short Integer
	WriteString - Write String

	Inherited properties and methods

	ITextMessage
	.NET properties
	Text - Get and Set Text

	Inherited properties and methods

	TransactionInProgressException
	Inherited properties and methods

	TransactionRolledBackException
	Inherited properties and methods

	XMSException
	.NET properties
	ErrorCode - Get Error Code
	LinkedException - Get Linked Exception

	XMSFactoryFactory
	.NET properties
	Metadata - Retrieve metadata

	Methods
	CreateConnectionFactory - Create Connection Factory
	CreateQueue - Create Queue
	CreateTopic - Create Topic
	GetInstance - Get an instance of XMSFactoryFactory

	Properties of XMS objects
	Properties of Connection
	Properties of ConnectionFactory
	Properties of ConnectionMetaData
	Properties of Destination
	Properties of InitialContext
	Properties of Message
	Properties of MessageConsumer
	Properties of MessageProducer
	Properties of Session
	Property definitions
	JMS_IBM_CHARACTER_SET
	JMS_IBM_ENCODING
	JMS_IBM_EXCEPTIONMESSAGE
	JMS_IBM_EXCEPTIONPROBLEMDESTINATION
	JMS_IBM_EXCEPTIONREASON
	JMS_IBM_EXCEPTIONTIMESTAMP
	JMS_IBM_FEEDBACK
	JMS_IBM_FORMAT
	JMS_IBM_LAST_MSG_IN_GROUP
	JMS_IBM_MSGTYPE
	JMS_IBM_PUTAPPLTYPE
	JMS_IBM_PUTDATE
	JMS_IBM_PUTTIME
	JMS_IBM_REPORT_COA
	JMS_IBM_REPORT_COD
	JMS_IBM_REPORT_DISCARD_MSG
	JMS_IBM_REPORT_EXCEPTION
	JMS_IBM_REPORT_EXPIRATION
	JMS_IBM_REPORT_NAN
	JMS_IBM_REPORT_PAN
	JMS_IBM_REPORT_PASS_CORREL_ID
	JMS_IBM_REPORT_PASS_MSG_ID
	JMS_IBM_RETAIN
	JMS_IBM_SYSTEM_MESSAGEID
	JMSX_APPID
	JMSX_DELIVERY_COUNT
	JMSX_GROUPID
	JMSX_GROUPSEQ
	JMSX_USERID
	XMSC_ASYNC_EXCEPTIONS
	XMSC_CLIENT_ID
	XMSC_CONNECTION_TYPE
	XMSC_DELIVERY_MODE
	XMSC_IC_PROVIDER_URL
	XMSC_IC_SECURITY_AUTHENTICATION
	XMSC_IC_SECURITY_CREDENTIALS
	XMSC_IC_SECURITY_PRINCIPAL
	XMSC_IC_SECURITY_PROTOCOL
	XMSC_IC_URL
	XMSC_IS_SUBSCRIPTION_MULTICAST
	XMSC_IS_SUBSCRIPTION_RELIABLE_MULTICAST
	XMSC_JMS_MAJOR_VERSION
	XMSC_JMS_MINOR_VERSION
	XMSC_JMS_VERSION
	XMSC_MAJOR_VERSION
	XMSC_MINOR_VERSION
	XMSC_PASSWORD
	XMSC_PRIORITY
	XMSC_PROVIDER_NAME
	XMSC_RTT_BROKER_PING_INTERVAL
	XMSC_RTT_CONNECTION_PROTOCOL
	XMSC_RTT_HOST_NAME
	XMSC_RTT_LOCAL_ADDRESS
	XMSC_RTT_MULTICAST
	XMSC_RTT_PORT
	XMSC_TIME_TO_LIVE
	XMSC_USERID
	XMSC_VERSION
	XMSC_WMQ_BALANCING_APPLICATION_TYPE
	XMSC_WMQ_BALANCING_OPTIONS
	XMSC_WMQ_BALANCING_TIMEOUT
	XMSC_WMQ_BROKER_CONTROLQ
	XMSC_WMQ_BROKER_PUBQ
	XMSC_WMQ_BROKER_QMGR
	XMSC_WMQ_BROKER_SUBQ
	XMSC_WMQ_BROKER_VERSION
	XMSC_WMQ_CCDTURL
	XMSC_WMQ_CCSID
	XMSC_WMQ_CHANNEL
	XMSC_WMQ_CLIENT_RECONNECT_OPTIONS
	XMSC_WMQ_CLIENT_RECONNECT_TIMEOUT
	XMSC_WMQ_CONNECTION_MODE
	XMSC_WMQ_CONNECTION_NAME_LIST
	XMSC_WMQ_DUR_SUBQ
	XMSC_WMQ_ENCODING
	XMSC_WMQ_FAIL_IF_QUIESCE
	XMSC_WMQ_MESSAGE_BODY
	XMSC_WMQ_MQMD_MESSAGE_CONTEXT
	XMSC_WMQ_MQMD_READ_ENABLED
	XMSC_WMQ_MQMD_WRITE_ENABLED
	XMSC_WMQ_PUT_ASYNC_ALLOWED
	XMSC_WMQ_READ_AHEAD_ALLOWED
	XMSC_WMQ_READ_AHEAD_CLOSE_POLICY
	XMSC_WMQ_HOST_NAME
	XMSC_WMQ_LOCAL_ADDRESS
	XMSC_WMQ_MESSAGE_SELECTION
	XMSC_WMQ_MSG_BATCH_SIZE
	XMSC_WMQ_POLLING_INTERVAL
	XMSC_WMQ_PORT
	XMSC_WMQ_PROVIDER_VERSION
	XMSC_WMQ_PUB_ACK_INTERVAL
	XMSC_WMQ_QMGR_CCSID
	XMSC_WMQ_QUEUE_MANAGER
	XMSC_WMQ_RECEIVE_CCSID
	XMSC_WMQ_RECEIVE_CONVERSION
	XMSC_WMQ_RECEIVE_EXIT
	XMSC_WMQ_RECEIVE_EXIT_INIT
	XMSC_WMQ_RESOLVED_QUEUE_MANAGER
	XMSC_WMQ_RESOLVED_QUEUE_MANAGER_ID
	XMSC_WMQ_SECURITY_EXIT
	XMSC_WMQ_SECURITY_EXIT_INIT
	XMSC_WMQ_SEND_EXIT
	XMSC_WMQ_SEND_EXIT_INIT
	XMSC_WMQ_SEND_CHECK_COUNT
	XMSC_WMQ_SHARE_CONV_ALLOWED
	XMSC_WMQ_SSL_CERT_STORES
	XMSC_WMQ_SSL_CIPHER_SPEC
	XMSC_WMQ_SSL_CIPHER_SUITE
	XMSC_WMQ_SSL_CRYPTO_HW
	XMSC_WMQ_SSL_FIPS_REQUIRED
	XMSC_WMQ_SSL_KEY_REPOSITORY
	XMSC_WMQ_SSL_KEY_RESETCOUNT
	XMSC_WMQ_SSL_PEER_NAME
	XMSC_WMQ_SYNCPOINT_ALL_GETS
	XMSC_WMQ_TARGET_CLIENT
	XMSC_WMQ_TEMP_Q_PREFIX
	XMSC_WMQ_TEMP_TOPIC_PREFIX
	XMSC_WMQ_TEMPORARY_MODEL
	XMSC_WMQ_WILDCARD_FORMAT
	XMSC_WPM_BUS_NAME
	XMSC_WPM_CONNECTION_PROTOCOL
	XMSC_WPM_CONNECTION_PROXIMITY
	XMSC_WPM_DUR_SUB_HOME
	XMSC_WPM_HOST_NAME
	XMSC_WPM_LOCAL_ADDRESS
	XMSC_WPM_ME_NAME
	XMSC_WPM_NON_PERSISTENT_MAP
	XMSC_WPM_PERSISTENT_MAP
	XMSC_WPM_PORT
	XMSC_WPM_PROVIDER_ENDPOINTS
	XMSC_WPM_SSL_CIPHER_SUITE
	XMSC_WPM_SSL_FIPS_REQUIRED
	XMSC_WPM_SSL_KEY_REPOSITORY
	XMSC_WPM_SSL_KEYRING_LABEL
	XMSC_WPM_SSL_KEYRING_PW
	XMSC_WPM_SSL_KEYRING_STASH_FILE
	XMSC_WPM_TARGET_GROUP
	XMSC_WPM_TARGET_SIGNIFICANCE
	XMSC_WPM_TARGET_TRANSPORT_CHAIN
	XMSC_WPM_TARGET_TYPE
	XMSC_WPM_TEMP_Q_PREFIX
	XMSC_WPM_TEMP_TOPIC_PREFIX
	XMSC_WPM_TOPIC_SPACE

	Managed File Transfer developing applications reference
	Examples of using fteCreateTransfer to start programs
	fteAnt: run Ant tasks in MFT
	fte:awaitoutcome Ant task
	fte:call Ant task
	fte:cancel Ant task
	fte:filecopy Ant task
	fte:filemove Ant task
	fte:ignoreoutcome Ant task
	fte:ping Ant task
	fte:uuid Ant task
	fte:filespec Ant nested element
	fte:metadata Ant nested elements
	Program invocation nested elements

	MFT user exits for customization reference
	Metadata for MFT user exits
	MFT resource monitor user exits
	MFT Agent properties for user exits
	Java interfaces for MFT user exits
	CDCredentialExit.java interface
	CredentialExitResult.java interface
	DestinationTransferEndExit.java interface
	DestinationTransferStartExit.java interface
	FileTransferResult.java interface
	IOExit.java interface
	IOExitChannel.java interface
	IOExitLock.java interface
	IOExitPath.java interface
	IOExitProperties.java interface
	IOExitRecordChannel.java interface
	IOExitRecordResourcePath.java interface
	IOExitResourcePath.java interface
	IOExitWildcardPath.java interface
	MonitorExit.java interface
	ProtocolBridgeCredentialExit.java interface
	ProtocolBridgeCredentialExit2.java interface
	ProtocolBridgePropertiesExit2.java interface
	SourceFileExitFileSpecification.java class
	SourceTransferEndExit.java interface
	SourceTransferStartExit.java interface
	TransferExitResult.java interface

	Message formats for messages you can put on the MFT Agent command queue

	Messaging REST API reference
	REST API resources
	/messaging/qmgr/{qmgrName}/queue/{queueName}/message
	POST
	GET
	DELETE

	/messaging/qmgr/{qmgrName}/queue/{queueName}/messagelist
	GET

	/messaging/qmgr/{qmgrName}/topic/{topicString}/message
	POST

	Notices
	Programming interface information
	Trademarks

