
9.2

IBM MQ Configuration Reference

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
249.

This edition applies to version 9 release 2 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Configuration reference... 5
Example IBM MQ configuration for all platforms..5

How to use the communication examples...7
Multiple thread support - pipelining.. 8
Example IBM MQ configuration for AIX... 9
Example IBM MQ configuration for IBM i.. 14
Example IBM MQ configuration for Linux.. 29
Example IBM MQ configuration for Windows..35
Example IBM MQ configuration for z/OS... 41
Example IBM MQ configuration for z/OS using QSGs... 45
Example MQ configuration for z/OS using intra-group queuing..52

IBM MQ file system permissions applied to /var/mqm... 60
IBM MQ file permissions in /opt/mqm with setuid for mqm..64

IBM MQ file system permissions on Windows.. 65
Naming restrictions for queues... 66
Naming restrictions for other objects..68
Queue name resolution... 69

What is queue name resolution?..71
How are destination object attributes resolved for aliases, remote queues and cluster queues?....72

System and default objects... 72
SYSTEM.BASE.TOPIC... 77

Stanza information...78
Configuration file stanzas for distributed queuing.. 80

Channel attributes... 81
Channel attributes and channel types...82
Channel attributes in alphabetical order of MQSC keywords... 86

IBM MQ cluster commands... 119
Queue manager definition commands.. 120
Channel definition commands... 121
Queue definition commands..123
DISPLAY CLUSQMGR...126
SUSPEND QMGR, RESUME QMGR and clusters.. 128
REFRESH CLUSTER.. 129
RESET CLUSTER: Forcibly removing a queue manager from a cluster...130
Workload balancing in clusters..131
Asynchronous behavior of CLUSTER commands on z/OS...139

Channel programs... 140
Intercommunication jobs on IBM i..140
Channel states on IBM i...140
Message channel planning example for AIX, Linux, and Windows.. 141

What the example for AIX, Linux, and Windows shows..141
Running the example for AIX, Linux, and Windows.. 144

Message channel planning example for IBM i.. 145
What the example for IBM i shows..145
Running the example for IBM i.. 149
Expanding the example for IBM i...149

Message channel planning example for z/OS... 149
What the example for z/OS shows...150
Running the example for z/OS... 153
Expanding the example for z/OS... 153

Message channel planning example for z/OS using queue sharing groups...153
What the queue sharing group example for z/OS shows.. 153

 iii

Queue sharing group definitions..155
Queue manager QM3 example for z/OS.. 156
Running the queue sharing group example for z/OS...156

Using an alias to refer to an MQ library... 157
Managed File Transfer configuration reference..157

The use of environment variables in MFT properties..157
The MFT installation.properties file...158
The MFT agent.properties file..162
The MFT coordination.properties file.. 185
The MFT command.properties file...189
The MFT logger.properties file... 193
Output produced by the LogTransfer function.. 202
Java system properties for MFT.. 205
SHA-2 CipherSpecs and CipherSuites for MFT... 206
MFT file logger configuration files... 206
The SCSQFCMD library...213
SYSTEM.FTE topic.. 215
MFT Agent queue settings... 216
MFT system queues and the system topic.. 218
MFT object naming conventions..219
MFT agent status messages.. 220

IBM MQ Internet Pass-Thru configuration reference... 221
Summary of MQIPT properties.. 222
MQIPT global properties..228
MQIPT route properties... 231
mqiptAdmin properties.. 248

Notices..249
Programming interface information..250
Trademarks.. 250

iv

Configuration reference

Use the reference information in this section to help you configure IBM MQ.

The configuration reference information is provided in the following subtopics:

Related tasks
Configuring

Configuring z/OS

Example IBM MQ configuration for all platforms
The configuration examples describe tasks performed to establish a working IBM MQ network. The tasks
are to establish IBM MQ sender and receiver channels to enable bidirectional message flow between the
platforms over all supported protocols.

To use channel types other than sender-receiver, see the DEFINE CHANNEL command.

Figure 1 on page 5 is a conceptual representation of a single channel and the IBM MQ objects
associated with it.

Figure 1. IBM MQ channel to be set up in the example configuration

This example is a simple one, intended to introduce only the basic elements of the IBM MQ network. It
does not demonstrate the use of triggering which is described in Triggering channels.

The objects in this network are:

• A remote queue
• A transmission queue
• A local queue
• A sender channel
• A receiver channel

Appl1 and Appl2 are both application programs; Appl1 is putting messages and Appl2 is receiving them.

© Copyright IBM Corp. 2007, 2024 5

Appl1 puts messages to a remote queue. The definition for this remote queue specifies the name of a
target queue manager, a local queue on that queue manager, and a transmission queue on this local
queue manager.

When the queue manager receives the request from Appl1 to put a message to the remote queue, the
queue manager determines from the queue definition that the destination is remote. It therefore puts
the message, along with a transmission header, straight onto the transmission queue specified in the
definition. The message remains on the transmission queue until the channel becomes available, which
might happen immediately.

A sender channel has in its definition a reference to one, and one only, transmission queue. When a
channel is started, and at other times during its normal operation, it looks at this transmission queue and
send any messages on it to the target system. The message has in its transmission header details of the
destination queue and queue manager.

The intercommunication examples describe in detail the creation of each of the preceding objects
described, for various platform combinations.

On the target queue manager, definitions are required for the local queue and the receiver side of the
channel. These objects operate independently of each other and so can be created in any sequence.

On the local queue manager, definitions are required for the remote queue, the transmission queue, and
the sender side of the channel. Since both the remote queue definition and the channel definition refer to
the transmission queue name, it is advisable to create the transmission queue first.

Network infrastructure in the example
The configuration examples assume that particular network infrastructures are in place for particular
platforms:

• z/OS communicates by using a 3745 network controller (or equivalent) that is attached to
a token ring

• All other platforms are connected to a token-ring network

It is also assumed that, for SNA, all the required definitions in VTAM and network control program (NCP)
are in place and activated for the LAN-attached platforms to communicate over the wide area network
(WAN).

Similarly, for TCP, it is assumed that name server function is available, either by using a domain name
server or by using locally held tables (for example a host file).

Communications software in the example
Working configurations are given in the examples for the following network software products:

• SNA

– IBM Personal Communications for Windows 5.9

– IBM Communications Server for AIX® 6.3
– Hewlett-Packard SNAplus2

– IBM i
– Data Connection SNAP-IX 7 or later
– OS/390® 2.4

• TCP

– Microsoft Windows

– AIX 4.1.4

6 IBM MQ Configuration Reference

– IBM i

– TCP for z/OS
• NetBIOS
• SPX

Related tasks
Configuring distributed queuing
Setting up communications with other queue managers on z/OS

How to use the communication examples
The example-configurations describe the tasks that are carried out on a single platform to set up
communication to another of the platforms. Then they describe the tasks to establish a working channel
to that platform.

Wherever possible, the intention is to make the information as generic as possible. Thus, to connect any
two queue managers on different platforms, you need to refer to only the relevant two sections. Any
deviations or special cases are highlighted as such. You can also connect two queue managers running on
the same platform (on different machines or on the same machine). In this case, all the information can
be derived from the one section.

On AIX, Linux®, and Windows, before you begin to follow the instructions for your platform
you must set various environment variables. Do this by entering one of the following commands:

• On AIX and Linux:

MQ_INSTALLATION_PATH/bin/setmqenv

where MQ_INSTALLATION_PATH refers to the location where IBM MQ is installed. This command sets
the environment variables for the shell you are currently working in. If you open another shell, you must
enter the command again.

• On Windows:

MQ_INSTALLATION_PATH/bin/setmqenv

where MQ_INSTALLATION_PATH refers to the location where IBM MQ is installed.

There are examples in which you can find the parameters used in the sample configurations. There is a
short description of each parameter and some guidance on where to find the equivalent values in your
system. When you have a set of values of your own, make sure that you use those values when working
through the examples in this section.

The examples do not cover how to set up communications where clustering is being used. For information
about setting up communications while using clustering, see Configuring a queue manager cluster. The
communication configuration values given here still apply.

There are example configurations for the following platforms:

• “Example IBM MQ configuration for AIX” on page 9

• “Example IBM MQ configuration for IBM i” on page 14

• “Example IBM MQ configuration for Linux” on page 29

• “Example IBM MQ configuration for Windows” on page 35

• “Example IBM MQ configuration for z/OS” on page 41

Configuration reference 7

• “Example IBM MQ configuration for z/OS using QSGs” on page 45

• “Example MQ configuration for z/OS using intra-group queuing” on page 52

IT responsibilities
To understand the terminology used in the examples, consider the following guidelines as a starting point.

• System administrator: The person (or group of people) who installs and configures the software for a
specific platform.

• Network administrator: The person who controls LAN connectivity, LAN address assignments, network
naming conventions, and other network tasks. This person can be in a separate group or can be part of
the system administration group.

In most z/OS installations, there is a group responsible for updating the ACF/VTAM, ACF/NCP, and
TCP/IP software to support the network configuration. The people in this group are the main source of
information needed when connecting any IBM MQ platform to IBM MQ for z/OS. They can also influence
or mandate network naming conventions on LANs and you must verify their span of control before
creating your definitions.

• A specific type of administrator, for example CICS® administrator, is indicated in cases where we can
more clearly describe the responsibilities of the person.

The example-configuration sections do not attempt to indicate who is responsible for and able to set each
parameter. In general, several different people might be involved.

Related concepts
“Example IBM MQ configuration for all platforms” on page 5
The configuration examples describe tasks performed to establish a working IBM MQ network. The tasks
are to establish IBM MQ sender and receiver channels to enable bidirectional message flow between the
platforms over all supported protocols.
Related reference
setmqenv

Multiple thread support - pipelining
You can optionally allow a message channel agent (MCA) to transfer messages using multiple threads.
This process, called pipelining, enables the MCA to transfer messages more efficiently, with fewer wait
states, which improves channel performance. Each MCA is limited to a maximum of two threads.

You control pipelining with the PipeLineLength parameter in the qm.ini file. This parameter is added to the
CHANNELS stanza:
PipeLineLength= 1 | number

This attribute specifies the maximum number of concurrent threads a channel uses. The default is 1.
Any value greater than 1 is treated as 2.

Note: Pipelining is effective only for TCP/IP channels.

When you use pipelining, the queue managers at both ends of the channel must be configured to have a
PipeLineLength greater than 1.

Channel exit considerations
Pipelining can cause some exit programs to fail, because:

• Exits might not be called serially.
• Exits might be called alternately from different threads.

Check the design of your exit programs before you use pipelining:

• Exits must be reentrant at all stages of their execution.

8 IBM MQ Configuration Reference

• When you use MQI calls, remember that you cannot use the same MQI handle when the exit is invoked
from different threads.

Consider a message exit that opens a queue and uses its handle for MQPUT calls on all subsequent
invocations of the exit. This fails in pipelining mode because the exit is called from different threads. To
avoid this failure, keep a queue handle for each thread and check the thread identifier each time the exit
is invoked.

Example IBM MQ configuration for AIX
This section gives an example of how to set up communication links from IBM MQ for AIX to IBM MQ
products.

The following platforms are covered in the examples:

• Windows

• Linux

• IBM i

• z/OS
• VSE/ESA

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Establishing an LU 6.2 connection
Describes the parameters needed for an LU 6.2 connection.

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM
documentation: Communications Server for AIX Library.

Establishing a TCP connection
The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

The IBM MQ command used to start the IBM MQ for TCP listener is:

runmqlsr -t tcp

Alternatively, if you want to use the supplied TCP/IP listener, complete the following steps:

1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have the
following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown, replacing
MQ_INSTALLATION_PATH with the high-level directory in which IBM MQ is installed:

MQSeries stream tcp nowait root MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Enter the command refresh -s inetd.

Configuration reference 9

https://www.ibm.com/support/pages/communications-server-aix-library

Note: You must add root to the mqm group. You need not have the primary group set to mqm. As long as
mqm is in the set of groups, you can use the commands. If you are running only applications that use the
queue manager you do not need mqm group authority.

What next?
The connection is now established. You are ready to complete the configuration. Go to “IBM MQ for AIX
configuration” on page 10.

IBM MQ for AIX configuration
Defining channels to complete the configuration.

Note:

1. Before beginning the installation process ensure that you have first created the mqm user and group,
and set the password.

2. If installation fails as a result of insufficient space in the file system you can increase the size as
follows, using the command smit C sna. (Use df to display the status of the file system. This
indicates the logical volume that is full.)

-- Physical and Logical Storage
 -- File Systems
 -- Add / Change / Show / Delete File Systems
 -- Journaled File Systems
 -- Change/Show Characteristics of a Journaled File System

3. Start any channel using the command:

runmqchl -c channel.name

4. Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which IBM MQ is installed.

5. Error logs are stored in /var/mqm/qmgrs/ qmgrname /errors.
6. On AIX, you can start a trace of the IBM MQ components by using standard IBM MQ trace commands,

or using AIX system trace. See Using trace for more information about IBM MQ Trace and AIX system
trace.

7. When you are using the command interpreter runmqsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the last
parameter and the continuation character.

Basic configuration
1. Create the queue manager from the AIX command line using the command:

crtmqm -u dlqname -q aix

where:
aix

Is the name of the queue manager
-q

Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.

10 IBM MQ Configuration Reference

2. Start the queue manager from the AIX command line using the command:

strmqm aix

where aix is the name given to the queue manager when it was created.
3. Start runmqsc from the AIX command line and use it to create the undeliverable message queue by

entering the command:

def ql (dlqname)

where dlqname is the name given to the undeliverable message queue when the queue manager was
created.

Channel configuration for AIX
Includes information about configuring a queue manager for a given channel and platform.

The following section details the configuration to be performed on the AIX queue manager to implement
the channel described in “Example IBM MQ configuration for all platforms” on page 5.

In each case the MQSC command is shown. Either start runmqsc from an AIX command line and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for AIX and IBM MQ for Windows. To connect to IBM MQ on
another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section

Table 1. Configuration examples for IBM MQ for AIX

ID Parameter Name Refere
nce

Example Used

Definition for local node

A Queue Manager Name AIX

B Local queue name AIX.LOCALQ

 Connection to IBM MQ for Windows

The values in this section of the table must match those used in “Channel configuration for Windows” on page
38, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name AIX.WINNT.SNA

H Sender (TCP/IP) channel name AIX.WINNT.TCP

I Receiver (SNA) channel name G WINNT.AIX.SNA

J Receiver (TCP) channel name H WINNT.AIX.TCP

Configuration reference 11

Table 1. Configuration examples for IBM MQ for AIX (continued)

ID Parameter Name Refere
nce

Example Used

 Connection to IBM MQ for Linux

The values in this section of the table must match those used in “Channel configuration for Linux” on page 32,
as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name AIX.LINUX.SNA

H Sender (TCP/IP) channel name AIX.LINUX.TCP

I Receiver (SNA) channel name G LINUX.AIX.SNA

J Receiver (TCP/IP) channel name H LINUX.AIX.TCP

 Connection to IBM MQ for IBM i

The values in this section of the table must match those used in “Channel configuration for IBM i” on page 26,
as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name AIX.AS400.SNA

H Sender (TCP) channel name AIX.AS400.TCP

I Receiver (SNA) channel name G AS400.AIX.SNA

J Receiver (TCP) channel name H AS400.AIX.TCP

 Connection to IBM MQ for z/OS

The values in this section of the table must match those used in “Channel configuration for z/OS” on page 42,
as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name AIX.MVS.SNA

H Sender (TCP) channel name AIX.MVS.TCP

I Receiver (SNA) channel name G MVS.AIX.SNA

J Receiver (TCP) channel name H MVS.AIX.TCP

12 IBM MQ Configuration Reference

Table 1. Configuration examples for IBM MQ for AIX (continued)

ID Parameter Name Refere
nce

Example Used

 Connection to IBM MQ for z/OS using queue sharing groups

The values in this section of the table must match those used in “Shared channel configuration example” on
page 49, as indicated.

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ

E Queue name at remote system B QSG.SHAREDQ

F Transmission queue name QSG

G Sender (SNA) channel name AIX.QSG.SNA

H Sender (TCP) channel name AIX.QSG.TCP

I Receiver (SNA) channel name G QSG.AIX.SNA

J Receiver (TCP) channel name H QSG.AIX.TCP

IBM MQ for AIX sender-channel definitions using SNA
Example commands.

def ql (WINNT) + F
 usage(xmitq) +
 replace

def qr (WINNT.REMOTEQ) + D
 rname(WINNT.LOCALQ) + E
 rqmname(WINNT) + C
 xmitq(WINNT) + F
 replace

def chl (AIX.WINNT.SNA) chltype(sdr) + G
 trptype(lu62) +
 conname('WINNTCPIC') + 17
 xmitq(WINNT) + F
 replace

IBM MQ for AIX receiver-channel definitions using SNA
Example commands.

def ql (AIX.LOCALQ) replace B

def chl (WINNT.AIX.SNA) chltype(rcvr) + I
 trptype(lu62) +
 replace

IBM MQ for AIX TPN setup
Alternative ways of ensuring that SNA receiver channels activate correctly when a sender channel initiates
a conversation.

During the AIX Communications Server configuration process, an LU 6.2 TPN profile was created, which
contained the full path to a TP executable program. In the example, the file was called u/interops/

Configuration reference 13

AIX.crs6a. You can choose a name, but consider including the name of your queue manager in it. The
contents of the executable file must be:

#!/bin/sh
MQ_INSTALLATION_PATH/bin/amqcrs6a -m aix

where aix is the queue manager name (A) and MQ_INSTALLATION_PATH is the high-level directory in
which IBM MQ is installed. After creating this file, enable it for execution by running the command:

chmod 755 /u/interops/AIX.crs6a

As an alternative to creating an executable file, you can specify the path on the Add LU 6.2 TPN Profile
panel, using command-line parameters.

Specifying a path in one of these two ways ensures that SNA receiver channels activate correctly when a
sender channel initiates a conversation.

IBM MQ for AIX sender-channel definitions using TCP
Example commands.

def ql (WINNT) + F
 usage(xmitq) +
 replace

def qr (WINNT.REMOTEQ) + D
 rname(WINNT.LOCALQ) + E
 rqmname(WINNT) + C
 xmitq(WINNT) + F
 replace

def chl (AIX.WINNT.TCP) chltype(sdr) + H
 trptype(tcp) +
 conname(remote_tcpip_hostname) +
 xmitq(WINNT) + F
 replace

IBM MQ for AIX receiver-channel definitions using TCP
Example commands.

def ql (AIX.LOCALQ) replace B

def chl (WINNT.AIX.TCP) chltype(rcvr) + J
 trptype(tcp) +
 replace

Example IBM MQ configuration for IBM i
This section gives an example of how to set up communication links from IBM MQ for IBM i to IBM MQ
products on other platforms.

Other platforms covered are the following platforms:

• Windows

• AIX

• Linux

• z/OS or MVS
• VSE/ESA

14 IBM MQ Configuration Reference

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Configuration parameters for an LU 6.2 connection
The following worksheet lists all the parameters needed to set up communication from IBM i system to
one of the other IBM MQ platforms. The worksheet shows examples of the parameters, which have been
tested in a working environment, and leaves space for you to enter your own values.

Use the worksheet in this section to record the values for this configuration. Use the worksheet with the
worksheet in the section for the platform to which you are connecting.

Where numbers appear in the Reference column they indicate that the value must match that in the
appropriate worksheet elsewhere in this section. The examples that follow in this section refer to the
values in the ID column of this table.

The entries in the Parameter Name column are explained in “Explanation of terms” on page 17.

Table 2. Configuration worksheet for SNA on an IBM i system

ID Parameter Name Reference Example Used User Value

Definition for local node

1 Local network ID NETID

2 Local control point name AS400PU

3 LU name AS400LU

4 LAN destination address 10005A5962EF

5 Subsystem description QCMN

6 Line description TOKENRINGL

7 Resource name LIN041

8 Local Transaction Program name MQSERIES

 Connection to a Windows system

9 Network ID 2 NETID

10 Control point name 3 WINNTCP

11 LU name 5 WINNTLU

12 Controller description WINNTCP

13 Device WINNTLU

14 Side information NTCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 9 08005AA5FAB9

17 Mode 17 #INTER

 Connection to an AIX system

9 Network ID 1 NETID

10 Control point name 2 AIXPU

11 LU name 4 AIXLU

12 Controller description AIXPU

Configuration reference 15

Table 2. Configuration worksheet for SNA on an IBM i system (continued)

ID Parameter Name Reference Example Used User Value

13 Device AIXLU

14 Side information AIXCPIC

15 Transaction Program 6 MQSERIES

16 LAN adapter address 8 123456789012

17 Mode 14 #INTER

 Connection to a Linux (x86 platform) system

9 Network ID 4 NETID

10 Control point name 2 LINUXPU

11 LU name 5 LINUXLU

12 Controller description LINUXPU

13 Device LINUXLU

14 Side information LXCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 08005AC6DF33

17 Mode 6 #INTER

 Connection to a z/OS system

9 Network ID 2 NETID

10 Control point name 3 MVSPU

11 LU name 4 MVSLU

12 Controller description MVSPU

13 Device MVSLU

14 Side information MVSCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 400074511092

17 Mode 6 #INTER

Connection to a VSE/ESA system

9 Network ID 1 NETID

10 Control point name 2 VSEPU

11 LU name 3 VSELU

12 Controller description VSEPU

13 Device VSELU

14 Side information VSECPIC

15 Transaction Program 4 MQ01 MQ01

16 LAN adapter address 5 400074511092

16 IBM MQ Configuration Reference

Table 2. Configuration worksheet for SNA on an IBM i system (continued)

ID Parameter Name Reference Example Used User Value

17 Mode #INTER

Explanation of terms
An explanation of the terms used in the configuration worksheet.

1 2 3
See “How to find network attributes” on page 17 for the details of how to find the configured values.

4 LAN destination address
The hardware address of the IBM i system token-ring adapter. You can find the value using the
command DSPLIND Line description (6).

5 Subsystem description
This parameter is the name of any IBM i subsystem that is active while using the queue manager. The
name QCMN has been used because it is the IBM i communications subsystem.

6 Line description
If this parameter has been specified it is indicated in the Description field of the resource Resource
name. See “How to find the value of Resource name” on page 18 for details. If the value is not
specified you need to create a line description.

7 Resource name
See “How to find the value of Resource name” on page 18 for details of how to find the configured
value.

8 Local Transaction Program name
IBM MQ applications trying to converse with this workstation specify a symbolic name for the program
to be run at the receiving end. This name is defined on the channel definition at the sender. For
simplicity, wherever possible use a transaction program name of MQSERIES, or in the case of a
connection to VSE/ESA, where the length is limited to 4 bytes, use MQTP.

See Settings on the local IBM i system for a remote queue manager platform for more information.

12 Controller description
This parameter is an alias for the Control Point name (or Node name) of the partner system. For
convenience, we have used the actual name of the partner in this example.

13 Device
This parameter is an alias for the LU of the partner system. For convenience, we have used the LU
name of the partner in this example.

14 Side information
This parameter is the name given to the CPI-C side information profile. You specify your own 8-
character name.

How to find network attributes
The local node has been partially configured as part of the IBM i installation. To display the current
network attributes enter the command DSPNETA.

If you need to change these values use the command CHGNETA. An IPL might be required to apply your
changes.

Configuration reference 17

Display Network Attributes
System: AS400PU
Current system name : AS400PU
Pending system name :
Local network ID : NETID
Local control point name : AS400PU
Default local location : AS400LU
Default mode : BLANK
APPN node type : *ENDNODE
Data compression : *NONE
Intermediate data compression : *NONE
Maximum number of intermediate sessions : 200
Route addition resistance : 128
Server network ID/control point name : NETID NETCP

More...
Press Enter to continue.

F3=Exit F12=Cancel

Check that the values for Local network ID (1), Local control point name (2), and Default local location
(3), correspond to the values on your worksheet.

How to find the value of Resource name
To find the value of resource name, type WRKHDWRSC TYPE(*CMN) and press enter.

The Work with Communication Resources panel is displayed. The value for Resource name is found as
the token-ring Port. It is LIN041 in this example.

Work with Communication Resources
System: AS400PU
Type options, press Enter.
2=Edit 4=Remove 5=Work with configuration description
7=Add configuration description ...

Configuration
Opt Resource Description Type Description
CC02 2636 Comm Processor
LIN04 2636 LAN Adapter
LIN041 TOKEN-RING 2636 Token-ring Port

Bottom
F3=Exit F5=Refresh F6=Print F11=Display resource addresses/statuses
F12=Cancel F23=More options

18 IBM MQ Configuration Reference

Establishing an LU 6.2 connection
This section describes how to establish an LU 6.2 connection.

Local node configuration
To configure the local node you need to create a line description and add a routing entry.

Creating a line description
1. If the line description has not already been created use the command CRTLINTRN.
2. Specify values for Line description (6) and Resource name (7).

Create Line Desc (token-ring) (CRTLINTRN)

Type choices, press Enter.

Line description TOKENRINGL Name
Resource name LIN041 Name, *NWID
NWI type *FR *FR, *ATM
Online at IPL *YES *YES, *NO
Vary on wait *NOWAIT *NOWAIT, 15-180 (1 second)
Maximum controllers 40 1-256
Attached NWI *NONE Name, *NONE

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter LIND required. +

Adding a routing entry
1. Type the command ADDRTGE and press enter.

Add Routing Entry (ADDRTGE)

Type choices, press Enter.

Subsystem description QCMN Name
Library *LIBL Name, *LIBL, *CURLIB
Routing entry sequence number . 1 1-9999
Comparison data:
Compare value 'MQSERIES'

Starting position 37 1-80
Program to call AMQCRC6B Name, *RTGDTA
Library QMAS400 Name, * LI BL, *CURLIB
Class *SBSD Name, *SBSD
Library *LIBL Name, *LIBL, *CURLIB
Maximum active routing steps . . *NOMAX 0-1000, *NOMAX
Storage pool identifier 1 1-10

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required. +

2. Specify your value for Subsystem description (5), and the values shown here for Routing entry
sequence number, Compare value (8), Starting position, Program to call, and the Library containing
the program to call.

3. Type the command STRSBS subsystem description (5) and press enter.

Configuration reference 19

Connection to partner node
To connect to a partner node, you need to: create a controller description, create a device description,
create CPI-C side information, add a communications entry for APPC, and add a configuration list entry.

This example is for a connection to a Windows system, but the steps are the same for other nodes.

Creating a controller description
1. At a command-line, type CRTCTLAPPC and press enter.

Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Controller description WINNTCP Name
Link type *LAN *FAX, *FR, *IDLC,
*LAN...
Online at IPL *NO *YES, *NO

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter CTLD required. +

2. Specify a value for Controller description (12), set Link type to *LAN, and set Online at IPL to *NO.
3. Press enter twice, followed by F10.

Create Ctl Desc (APPC) (CRTCTLAPPC)

Type choices, press Enter.

Controller description > WINNTCP Name
Link type > *LAN *FAX, *FR, *IDLC, *LAN...
Online at IPL > *NO *YES, *NO
APPN-capable *YES *YES, *NO
Switched line list TOKENRINGL Name
+ for more values
Maximum frame size *LINKTYPE 265-16393, 256, 265, 512...
Remote network identifier . . . NETID Name, *NETATR, *NONE, *ANY
Remote control point WINNTCP Name, *ANY
Exchange identifier 00000000-FFFFFFFF
Initial connection *DIAL *DIAL, *ANS
Dial initiation *LINKTYPE *LINKTYPE, *IMMED, *DELAY
LAN remote adapter address . . . 10005AFC5D83 000000000001-FFFFFFFFFFFF
APPN CP session support *YES *YES, *NO
APPN node type *ENDNODE *ENDNODE, *LENNODE...
APPN transmission group number 1 1-20, *CALC
More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

4. Specify values for Switched line list (6), Remote network identifier (9), Remote control point (10),
and LAN remote adapter address (16).

5. Press enter.

Creating a device description
1. Type the command CRTDEVAPPC and press enter.

20 IBM MQ Configuration Reference

Create Device Desc (APPC) (CRTDEVAPPC)

Type choices, press Enter.

Device description WINNTLU Name
Remote location WINNTLU Name
Online at IPL *YES *YES, *NO
Local location AS400LU Name, *NETATR
Remote network identifier . . . NETID Name, *NETATR, *NONE
Attached controller WINNTCP Name
Mode *NETATR Name, *NETATR
+ for more values
Message queue QSYSOPR Name, QSYSOPR
Library *LIBL Name, *LIBL, *CURLIB
APPN-capable *YES *YES, *NO
Single session:
Single session capable *NO *NO, *YES
Number of conversations . . . 1-512

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter DEVD required. +

2. Specify values for Device description (13), Remote location (11), Local location (3), Remote network
identifier (9), and Attached controller (12).

Note: You can avoid having to create controller and device descriptions manually by taking advantage of
the IBM i auto-configuration service. Consult the IBM i documentation for details.

Creating CPI-C side information
1. Type CRTCSI and press F10.

Create Comm Side Information (CRTCSI)

Type choices, press Enter.

Side information NTCPIC Name
Library *CURLIB Name, *CURLIB
Remote location WINNTLU Name
Transaction program MQSERIES

Text 'description' *BLANK

Additional Parameters

Device *LOC Name, *LOC
Local location AS400LU Name, *LOC, *NETATR
Mode #INTER Name, *NETATR
Remote network identifier . . . NETID Name, *LOC, *NETATR, *NONE
Authority *LIBCRTAUT Name, *LIBCRTAUT, *CHANGE...

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter CSI required.

2. Specify values for Side information (14), Remote location (11), Transaction program (15), Local
location (3), Mode, and Remote network identifier (9).

3. Press enter.

Adding a communications entry for APPC
1. At a command-line, type ADDCMNE and press enter.

Configuration reference 21

Add Communications Entry (ADDCMNE)

Type choices, press Enter.

Subsystem description QCMN Name
Library *LIBL Name, *LIBL, *CURLIB
Device WINNTLU Name, generic*, *ALL...
Remote location Name
Job description *USRPRF Name, *USRPRF, *SBSD
Library Name, *LIBL, *CURLIB
Default user profile *NONE Name, *NONE, *SYS
Mode *ANY Name, *ANY
Maximum active jobs *NOMAX 0-1000, *NOMAX

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required.

2. Specify values for Subsystem description (5) and Device (13), and press enter.

Adding a configuration list entry
1. Type ADDCFGLE *APPNRMT and press F4.

Add Configuration List Entries (ADDCFGLE)

Type choices, press Enter.

Configuration list type > *APPNRMT *APPNLCL, *APPNRMT...
APPN remote location entry:
Remote location name WINNTLU Name, generic*, *ANY
Remote network identifier . . NETID Name, *NETATR, *NONE
Local location name AS400LU Name, *NETATR
Remote control point WINNTCP Name, *NONE
Control point net ID NETID Name, *NETATR, *NONE
Location password *NONE
Secure location *NO *YES, *NO
Single session *NO *YES, *NO
Locally controlled session . . *NO *YES, *NO
Pre-established session . . . *NO *YES, *NO
Entry 'description' *BLANK
Number of conversations . . . 10 1-512
+ for more values

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

2. Specify values for Remote location name (11), Remote network identifier (9), Local location name
(3), Remote control point (10), and Control point net ID (9).

3. Press enter.

What next?
The LU 6.2 connection is now established. You are ready to complete the configuration.

Go to “IBM MQ for IBM i configuration” on page 24.

22 IBM MQ Configuration Reference

Establishing a TCP connection
If TCP is already configured there are no extra configuration tasks. If TCP/IP is not configured you need to:
add a TCP/IP interface, add a TCP/IP loopback interface, and add a default route.

Adding a TCP/IP interface
1. At a command-line, type ADDTCPIFC and press enter.

Add TCP/IP Interface (ADDTCPIFC)

Type choices, press Enter.

Internet address 19.22.11.55
Line description TOKENRINGL Name, *LOOPBACK
Subnet mask 255.255.0.0
Type of service *NORMAL *MINDELAY, *MAXTHRPUT..
Maximum transmission unit . . . *LIND 576-16388, *LIND
Autostart *YES *YES, *NO
PVC logical channel identifier 001-FFF
+ for more values
X.25 idle circuit timeout . . . 60 1-600
X.25 maximum virtual circuits . 64 0-64
X.25 DDN interface *NO *YES, *NO
TRLAN bit sequencing *MSB *MSB, *LSB

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

2. Specify the IP address and Line description, and a Subnet mask of the machine.
3. Press enter.

Adding a TCP/IP loopback interface
1. At a command-line, type ADDTCPIFC and press enter.

Add TCP Interface (ADDTCPIFC)

Type choices, press Enter.

Internet address 127.0.0.1
Line description *LOOPBACK Name, *LOOPBACK
Subnet mask 255.0.0.0
Type of service *NORMAL *MINDELAY, *MAXTHRPUT..
Maximum transmission unit . . . *LIND 576-16388, *LIND
Autostart *YES *YES, *NO
PVC logical channel identifier 001-FFF
+ for more values
X.25 idle circuit timeout . . . 60 1-600
X.25 maximum virtual circuits . 64 0-64
X.25 DDN interface *NO *YES, *NO
TRLAN bit sequencing *MSB *MSB, *LSB

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

2. Specify the values for IP address, Line description, and Subnet mask.

Configuration reference 23

Adding a default route
1. At a command-line, type ADDTCPRTE and press enter.

Add TCP Route (ADDTCPRTE)

Type choices, press Enter.

Route destination *DFTROUTE
Subnet mask *NONE
Type of service *NORMAL *MINDELAY, *MAXTHRPUT.
Next hop 19.2.3.4
Maximum transmission unit . . . 576 576-16388, *IFC

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Command prompting ended when user pressed F12.

2. Enter values appropriate to your network and press enter to create a default route entry.

What next?
The TCP connection is now established. You are ready to complete the configuration. Go to “IBM MQ for
IBM i configuration” on page 24.

IBM MQ for IBM i configuration
To configure IBM MQ for IBM i, use the WRKMQMQ command to display the configuration menu.

Start the TCP channel listener using the command STRMQMLSR.

Start any sender channel using the command STRMQMCHL CHLNAME(channel_name).

Use the WRKMQMQ command to display the IBM MQ configuration menu.

Note: AMQ* errors are placed in the log relating to the job that found the error. Use the WRKACTJOB
command to display the list of jobs. Under the subsystem name QSYSWRK, locate the job and enter 5
against it to work with that job. IBM MQ logs are prefixed AMQ.

Creating a queue manager
Use the following steps to set up the basic configuration queue manager.

1. First you need to create a queue manager. Type CRTMQM and press enter.

24 IBM MQ Configuration Reference

 Create Message Queue Manager (CRTMQM)

 Type choices, press Enter.

 Message Queue Manager name . . .

 Text 'description' *BLANK

 Trigger interval 999999999 0-999999999
 Undelivered message queue . . . *NONE

 Default transmission queue . . . *NONE

 Maximum handle limit 256 1-999999999
 Maximum uncommitted messages . . 1000 1-10000
 Default Queue manager *NO *YES, *NO

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

2. In the Message Queue Manager name field, type AS400. In the Undelivered message queue field,
type DEAD.LETTER.QUEUE.

3. Press enter.
4. Now start the queue manager by entering STRMQM MQMNAME(AS400).
5. Create the undelivered message queue using the following parameters. (For details and an example

refer to “Defining a queue” on page 25.)

 Local Queue
 Queue name : DEAD.LETTER.QUEUE
 Queue type : *LCL

Defining a queue
You can define a queue using the CRTMQMQ command.

Type CRTMQMQ on the command line.

Create MQM Queue (CRTMQMQ)

Type choices, press Enter.

Queue name

Queue type *ALS, *LCL, *RMT

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter QNAME required.

Configuration reference 25

Complete the two fields of this panel and press enter. Another panel is shown, with entry fields for the
other parameters you have. Defaults can be taken for all other queue attributes.

Defining a channel on IBM i
On IBM i, you can define a channel using the CRTMQMCHL command.

Type CRTMQMCHL on the command line.

Create MQM Channel (CRTMQMCHL)

Type choices, press Enter.

Channel name
Channel type *RCVR, *SDR, *SVR, *RQSTR

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter CHLNAME required.

Complete the two fields of this panel and press enter. Another panel is displayed on which you can specify
the values for the other parameters given earlier. Defaults can be taken for all other channel attributes.

Channel configuration for IBM i
You need to configure your channels to implement the example configuration channels.

This section details the configuration to be performed on the IBM i queue manager to implement the
channel described in “Example IBM MQ configuration for all platforms” on page 5.

Examples are given for connecting IBM MQ for IBM i and IBM MQ for Windows. To connect to IBM MQ on
another platform, use the appropriate values from the table in place of those values for Windows

Note:

1. The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you
use your own values when working through the examples in this section.

2. The IBM MQ channel ping command (PNGMQMCHL) runs interactively, whereas starting a channel
causes a batch job to be submitted. If a channel ping completes successfully but the channel does not
start, the network and IBM MQ definitions are probably correct, but that the IBM i environment for the
batch job is not. For example, make sure that QSYS2 is included in the system portion of the library list
and not just your personal library list.

For details and examples of how to create the objects listed refer to “Defining a queue” on page 25 and
“Defining a channel on IBM i” on page 26.

Table 3. Configuration examples for IBM i

ID Parameter Name Reference Example Used

Definition for local node

26 IBM MQ Configuration Reference

Table 3. Configuration examples for IBM i (continued)

ID Parameter Name Reference Example Used

A Queue Manager Name AS400

B Local queue name AS400.LOCALQ

 Connection to IBM MQ for Windows

The values in this section of the table must match the values used in “Channel configuration for Windows” on
page 38, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name AS400.WINNT.SNA

H Sender (TCP/IP) channel name AS400.WINNT.TCP

I Receiver (SNA) channel name G WINNT.AS400.SNA

J Receiver (TCP/IP) channel name H WINNT.AS400.TCP

 Connection to IBM MQ for AIX

The values in this section of the table must match the values used in “Channel configuration for AIX” on page
11, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name AS400.AIX.SNA

H Sender (TCP/IP) channel name AS400.AIX.TCP

I Receiver (SNA) channel name G AIX.AS400.SNA

J Receiver (TCP) channel name H AIX.AS400.TCP

 Connection to IBM MQ for Linux

The values in this section of the table must match the values used in “Channel configuration for Linux” on page
32, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name AS400.LINUX.SNA

H Sender (TCP/IP) channel name AS400.LINUX.TCP

I Receiver (SNA) channel name G LINUX.AS400.SNA

Configuration reference 27

Table 3. Configuration examples for IBM i (continued)

ID Parameter Name Reference Example Used

J Receiver (TCP/IP) channel name H LINUX.AS400.TCP

 Connection to IBM MQ for z/OS

The values in this section of the table must match the values used in “Channel configuration for z/OS” on page
42, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name AS400.MVS.SNA

H Sender (TCP) channel name AS400.MVS.TCP

I Receiver (SNA) channel name G MVS.AS400.SNA

J Receiver (TCP) channel name H MVS.AS400.TCP

Connection to MQSeries® for VSE/ESA

The values in this section of the table must match the values used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name AS400.VSE.SNA

I Receiver channel name G VSE.AS400.SNA

Sender-channel definitions for IBM i
Example sender-channel definitions for SNA and TCP.

Using SNA

 Local Queue
 Queue name : WINNT F
 Queue type : *LCL
 Usage : *TMQ

 Remote Queue
 Queue name : WINNT.REMOTEQ D
 Queue type : *RMT
 Remote queue : WINNT.LOCALQ E
 Remote Queue Manager : WINNT C
 Transmission queue : WINNT F

 Sender Channel
 Channel Name : AS400.WINNT.SNA G
 Channel Type : *SDR
 Transport type : *LU62
 Connection name : WINNTCPIC 14
 Transmission queue : WINNT F

28 IBM MQ Configuration Reference

Using TCP

 Local Queue
 Queue name : WINNT F
 Queue type : *LCL
 Usage : *TMQ

 Remote Queue
 Queue name : WINNT.REMOTEQ D
 Queue type : *RMT
 Remote queue : WINNT.LOCALQ E
 Remote Queue Manager : WINNT C
 Transmission queue : WINNT F

 Sender Channel
 Channel Name : AS400.WINNT.TCP H
 Channel Type : *SDR
 Transport type : *TCP
 Connection name : WINNT.tcpip.hostname
 Transmission queue : WINNT F

Receiver-channel definitions for IBM i
Example receiver-channel definitions for SNA and TCP

Using SNA

 Local Queue
 Queue name : AS400.LOCALQ B
 Queue type : *LCL

 Receiver Channel
 Channel Name : WINNT.AS400.SNA I
 Channel Type : *RCVR
 Transport type : *LU62

Using TCP

 Local Queue
 Queue name : AS400.LOCALQ B
 Queue type : *LCL

 Receiver Channel
 Channel Name : WINNT.AS400.TCP J
 Channel Type : *RCVR
 Transport type : *TCP

Example IBM MQ configuration for Linux
This section gives an example of how to set up communication links from IBM MQ for Linux to IBM MQ
products.

The examples given are on the following platforms:

• Windows

• AIX

• IBM i

• z/OS
• VSE/ESA

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Configuration reference 29

Establishing an LU 6.2 connection
Use this worksheet to record the values you use for your configuration.

Note: The information in this section applies only to IBM MQ for Linux (x86 platform). It does not apply
to IBM MQ for Linux (x86-64 platform), IBM MQ for Linux (zSeries s390x platform), or IBM MQ for Linux
(Power platform).

For the latest information about configuring SNA over TCP/IP, refer to the the Administration Guide for
your version of Linux from the following documentation: Communications Server for Linux library.

Establishing a TCP connection on Linux
Some Linux distributions now use the extended inet daemon (XINETD) instead of the inet daemon
(INETD). The following instructions tell you how to establish a TCP connection using either the inet
daemon or the extended inet daemon.

Using the inet daemon (INETD)
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To establish a TCP connection, follow these steps.

1. Edit the file /etc/services. If you do not have the following line in the file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

Note: To edit this file, you must be logged in as a superuser or root.
2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown:

MQSeries stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:

ps -ef | grep inetd

4. Run the command:

kill -1 inetd processid

If you have more than one queue manager on your system, and therefore require more than one service,
you must add a line for each additional queue manager to both /etc/services and inetd.conf.

For example:

MQSeries1 1414/tcp
MQSeries2 1822/tcp

MQSeries1 stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta -m QM1
MQSeries2 stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta -m QM2

This avoids error messages being generated if there is a limitation on the number of outstanding
connection requests queued at a single TCP port. For information about the number of outstanding
connection requests, see Using the TCP listener backlog option.

The inetd process on Linux can limit the rate of inbound connections on a TCP port. The default is 40
connections in a 60 second interval. If you need a higher rate, specify a new limit on the number of
inbound connections in a 60 second interval by appending a period (.) followed by the new limit to the

30 IBM MQ Configuration Reference

https://www.ibm.com/support/pages/node/317755

nowait parameter of the appropriate service in inetd.conf. For example, for a limit of 500 connections in a
60 second interval use:

MQSeries stream tcp nowait.500 mqm / MQ_INSTALLATION_PATH/bin/amqcrsta amqcrsta -m QM1

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Using the extended inet daemon (XINETD)
The following instructions describe how the extended inet daemon is implemented on Red Hat Linux. If
you are using a different Linux distribution, you might have to adapt these instructions.

To establish a TCP connection, follow these steps.

1. Edit the file /etc/services. If you do not have the following line in the file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

Note: To edit this file, you must be logged in as a superuser or root.
2. Create a file called IBM MQ in the XINETD configuration directory, /etc/xinetd.d. Add the following

stanza to the file:

IBM MQ service for XINETD
service MQSeries
{
 disable = no
 flags = REUSE
 socket_type = stream
 wait = no
 user = mqm
 server = MQ_INSTALLATION_PATH/bin/amqcrsta
 server_args = -m queue.manager.name
 log_on_failure += USERID
}

3. Restart the extended inet daemon by issuing the following command:

/etc/rc.d/init.d/xinetd restart

If you have more than one queue manager on your system, and therefore require more than one service,
you must add a line to /etc/services for each additional queue manager. You can create a file in the /etc/
xinetd.d directory for each service, or you can add additional stanzas to the IBM MQ file you created
previously.

The xinetd process on Linux can limit the rate of inbound connections on a TCP port. The default is 50
connections in a 10 second interval. If you need a higher rate, specify a new limit on the rate of inbound
connections by specifying the 'cps' attribute in the xinetd configuration file. For example, for a limit of 500
connections in a 60 second interval use:

cps = 500 60

What next?
The TCP/IP connection is now established. You are ready to complete the configuration. Go to “IBM MQ
for Linux configuration” on page 32.

Configuration reference 31

IBM MQ for Linux configuration
Before beginning the installation process ensure that you have first created the mqm user ID and the
mqm group, and set the password.

Start any channel using the command:

runmqchl -c channel.name

Note:

1. Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which IBM MQ is installed.

2. Error logs are stored in /var/mqm/qmgrs/ qmgrname /errors.
3. When you are using the command interpreter runmqsc to enter administration commands, a + at the

end of a line indicates that the next line is a continuation. Ensure that there is a space between the last
parameter and the continuation character.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmqm -u dlqname -q linux

where:
linux

Is the name of the queue manager
-q

Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the dead letter queue

This command creates a queue manager and a set of default objects.
2. Start the queue manager from the UNIX prompt using the command:

strmqm linux

where linux is the name given to the queue manager when it was created.

Channel configuration for Linux
The following section details the configuration to be performed on the Linux queue manager to implement
the channel described in “Example IBM MQ configuration for all platforms” on page 5.

The MQSC command to create each object is shown. Either start runmqsc from a UNIX prompt and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for Linux.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section

Table 4. Configuration examples for IBM MQ for Linux

ID Parameter Name Refer
ence

Example Used

Definition for local node

32 IBM MQ Configuration Reference

Table 4. Configuration examples for IBM MQ for Linux (continued)

ID Parameter Name Refer
ence

Example Used

A Queue Manager Name LINUX

B Local queue name LINUX.LOCALQ

 Connection to IBM MQ for Windows

The values in this section of the table must match those used in “Channel configuration for Windows” on page
38, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name LINUX.WINNT.SNA

H Sender (TCP/IP) channel name LINUX.WINNT.TCP

I Receiver (SNA) channel name G WINNT.LINUX.SNA

J Receiver (TCP) channel name H WINNT.LINUX.TCP

 Connection to IBM MQ for AIX

The values in this section of the table must match those used in “Channel configuration for AIX” on page 11, as
indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name LINUX.AIX.SNA

H Sender (TCP) channel name LINUX.AIX.TCP

I Receiver (SNA) channel name G AIX.LINUX.SNA

J Receiver (TCP) channel name H AIX.LINUX.TCP

 Connection to IBM MQ for IBM i

The values in this section of the table must match those used in Table 3 on page 26, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name LINUX.AS400.SNA

H Sender (TCP) channel name LINUX.AS400.TCP

I Receiver (SNA) channel name G AS400.LINUX.SNA

Configuration reference 33

Table 4. Configuration examples for IBM MQ for Linux (continued)

ID Parameter Name Refer
ence

Example Used

J Receiver (TCP) channel name H AS400.LINUX.TCP

 Connection to IBM MQ for z/OS

The values in this section of the table must match those used in Table 6 on page 42, as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name LINUX.MVS.SNA

H Sender (TCP) channel name LINUX.MVS.TCP

I Receiver (SNA) channel name G MVS.LINUX.SNA

IBM MQ for Linux (x86 platform) sender-channel definitions using SNA
Example coding.

def ql (HPUX) + F
 usage(xmitq) +
 replace

def qr (HPUX.REMOTEQ) + D
 rname(HPUX.LOCALQ) + E
 rqmname(HPUX) + C
 xmitq(HPUX) + F
 replace

def chl (LINUX.HPUX.SNA) chltype(sdr) + G
 trptype(lu62) +
 conname('HPUXCPIC') + 14
 xmitq(HPUX) + F
 replace

IBM MQ for Linux (x86 platform) receiver-channel definitions using SNA
Example coding.

def ql (LINUX.LOCALQ) replace B

def chl (HPUX.LINUX.SNA) chltype(rcvr) + I
 trptype(lu62) +
 replace

IBM MQ for Linux sender-channel definitions using TCP
Example coding.

def ql (HPUX) + F
 usage(xmitq) +
 replace

def qr (HPUX.REMOTEQ) + D
 rname(HPUX.LOCALQ) + E
 rqmname(HPUX) + C
 xmitq(HPUX) + F
 replace

34 IBM MQ Configuration Reference

def chl (LINUX.HPUX.TCP) chltype(sdr) + H
 trptype(tcp) +
 conname(remote_tcpip_hostname) +
 xmitq(HPUX) + F
 replace

IBM MQ for Linux receiver-channel definitions using TCP/IP
Example coding.

def ql (LINUX.LOCALQ) replace B

def chl (HPUX.LINUX.TCP) chltype(rcvr) + J
 trptype(tcp) +
 replace

Example IBM MQ configuration for Windows
This section gives an example of how to set up communication links from IBM MQ for Windows to IBM MQ
products on other platforms.

Setup of communication links is shown on the following platforms:

• AIX

• Linux

• IBM i

• z/OS
• VSE/ESA

When the connection is established, you must define some channels to complete the configuration.
Example programs and commands for configuration are described in “IBM MQ for Windows configuration”
on page 37.

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Establishing an LU 6.2 connection
Reference to information about configuring AnyNet® SNA over TCP/IP.

For the latest information about configuring AnyNet SNA over TCP/IP, see the following online IBM
documentation: AnyNet SNA over TCP/IP, SNA Node Operations, and Communications Server for
Windows

Establishing a TCP connection
The TCP stack that is shipped with Windows systems does not include an inet daemon or equivalent.

The IBM MQ command used to start the IBM MQ for TCP listener is:

runmqlsr -t tcp

The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

What next?
When the TCP/IP connection is established, you are ready to complete the configuration. Go to “IBM MQ
for Windows configuration” on page 37.

Configuration reference 35

https://www.ibm.com/software/network/commserver/windows/library/index.html
https://www.ibm.com/software/network/commserver/windows/library/index.html

Establishing a NetBIOS connection
A NetBIOS connection is initiated from a queue manager that uses the ConnectionName parameter on its
channel definition to connect to a target listener.

To set up a NetBIOS connection, follow these steps:

1. At each end of the channel specify the local NetBIOS name to be used by the IBM MQ channel
processes in the queue manager configuration file qm.ini. For example, the NETBIOS stanza in
Windows at the sending end might look like the following:

NETBIOS:
 LocalName=WNTNETB1

and at the receiving end:

NETBIOS:
 LocalName=WNTNETB2

Each IBM MQ process must use a different local NetBIOS name. Do not use your system name as the
NetBIOS name because Windows already uses it.

2. At each end of the channel, verify the LAN adapter number being used on your system. The IBM MQ for
Windows default for logical adapter number 0 is NetBIOS running over an Internet Protocol network.
To use native NetBIOS you must select logical adapter number 1. See Establishing the LAN adapter
number.

Specify the correct LAN adapter number in the NETBIOS stanza of the Windows registry. For example:

NETBIOS:
 AdapterNum=1

3. So that sender channel initiation works, specify the local NetBIOS name by the MQNAME environment
variable:

 SET MQNAME=WNTNETB1I

This name must be unique.
4. At the sending end, define a channel specifying the NetBIOS name being used at the other end of the

channel. For example:

DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(SDR) +
 TRPTYPE(NETBIOS) +
 CONNAME(WNTNETB2) +
 XMITQ(OS2) +
 MCATYPE(THREAD) +
 REPLACE

You must specify the option MCATYPE(THREAD) because, on Windows, sender channels must be run
as threads.

5. At the receiving end, define the corresponding receiver channel. For example:

DEFINE CHANNEL (WINNT.OS2.NET) CHLTYPE(RCVR) +
 TRPTYPE(NETBIOS) +
 REPLACE

6. Start the channel initiator because each new channel is started as a thread rather than as a new
process.

runmqchi

36 IBM MQ Configuration Reference

7. At the receiving end, start the IBM MQ listener:

runmqlsr -t netbios

Optionally you can specify values for the queue manager name, NetBIOS local name, number of
sessions, number of names, and number of commands. See Defining a NetBIOS connection on
Windows for more information about setting up NetBIOS connections.

IBM MQ for Windows configuration
Example programs and commands for configuration.

Note:

1. You can use the sample program, AMQSBCG, to show the contents and headers of all the messages in
a queue. For example:

AMQSBCG q_name qmgr_name

shows the contents of the queue q_name defined in queue manager qmgr_name.

Alternatively, you can use the message browser in the IBM MQ Explorer.
2. You can start any channel from the command prompt using the command

runmqchl -c channel.name

3. Error logs can be found in the directories MQ_INSTALLATION_PATH\qmgrs\ qmgrname \errors and
MQ_INSTALLATION_PATH\qmgrs\@system\errors. In both cases, the most recent messages are at the
end of amqerr01.log.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
4. When you are using the command interpreter runmqsc to enter administration commands, a + at the

end of a line indicates that the next line is a continuation. Ensure that there is a space between the last
parameter and the continuation character.

Basic configuration
You can create and start a queue manager from the IBM MQ Explorer or from the command prompt.

.If you choose the command prompt:

1. Create the queue manager using the command:

crtmqm -u dlqname -q winnt

where:
winnt

Is the name of the queue manager
-q

Indicates that this is to become the default queue manager
-u dlqname

Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects.
2. Start the queue manager using the command:

strmqm winnt

Configuration reference 37

where winnt is the name given to the queue manager when it was created.

Channel configuration for Windows
Example configuration to be performed on the Windows queue manager to implement a given channel.

The following sections detail the configuration to be performed on the Windows queue manager to
implement the channel described in “Example IBM MQ configuration for all platforms” on page 5.

In each case the MQSC command is shown. Either start runmqsc from a command prompt and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for Windows and IBM MQ for AIX. To connect to IBM MQ on
another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section.

Table 5. Configuration examples for IBM MQ for Windows

Parameter Name Reference Example Used

Definition for local node

A Queue Manager Name WINNT

B Local queue name WINNT.LOCALQ

 Connection to IBM MQ for AIX

The values in this section of the table must match those used in “Channel configuration for AIX” on page 11, as
indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name WINNT.AIX.SNA

H Sender (TCP) channel name WINNT.AIX.TCP

I Receiver (SNA) channel name G AIX.WINNT.SNA

J Receiver (TCP) channel name H AIX.WINNT.TCP

 Connection to IBM MQ for Linux

The values in this section of the table must match those used in “Channel configuration for Linux” on page 32,
as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name WINNT.LINUX.SNA

H Sender (TCP) channel name WINNT.LINUX.TCP

I Receiver (SNA) channel name G LINUX.WINNT.SNA

38 IBM MQ Configuration Reference

Table 5. Configuration examples for IBM MQ for Windows (continued)

Parameter Name Reference Example Used

J Receiver (TCP) channel name H LINUX.WINNT.TCP

 Connection to IBM MQ for IBM i

The values in this section of the table must match those used in “Channel configuration for IBM i” on page 26,
as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name WINNT.AS400.SNA

H Sender (TCP) channel name WINNT.AS400.TCP

I Receiver (SNA) channel name G AS400.WINNT.SNA

J Receiver (TCP) channel name H AS400.WINNT.TCP

 Connection to IBM MQ for z/OS

The values in this section of the table must match those used in “Channel configuration for z/OS” on page 42,
as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name WINNT.MVS.SNA

H Sender (TCP) channel name WINNT.MVS.TCP

I Receiver (SNA) channel name G MVS.WINNT.SNA

J Receiver (TCP/IP) channel name H MVS.WINNT.TCP

 Connection to IBM MQ for z/OS using queue sharing groups

The values in this section of the table must match those used in “Shared channel configuration example” on
page 49, as indicated.

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ

E Queue name at remote system B QSG.SHAREDQ

F Transmission queue name QSG

G Sender (SNA) channel name WINNT.QSG.SNA

H Sender (TCP) channel name WINNT.QSG.TCP

I Receiver (SNA) channel name G QSG.WINNT.SNA

J Receiver (TCP/IP) channel name H QSG.WINNT.TCP

Configuration reference 39

IBM MQ for Windows sender-channel definitions using SNA
A code sample.

def ql (AIX) + F
 usage(xmitq) +
 replace

def qr (AIX.REMOTEQ) + D
 rname(AIX.LOCALQ) + E
 rqmname(AIX) + C
 xmitq(AIX) + F
 replace

def chl (WINNT.AIX.SNA) chltype(sdr) + G
 trptype(lu62) +
 conname(AIXCPIC) + 18
 xmitq(AIX) + F
 replace

IBM MQ for Windows receiver-channel definitions using SNA
A code sample.

def ql (WINNT.LOCALQ) replace B

def chl (AIX.WINNT.SNA) chltype(rcvr) + I
 trptype(lu62) +
 replace

IBM MQ for Windows sender-channel definitions using TCP/IP
A code sample.

def ql (AIX) + F
 usage(xmitq) +
 replace

def qr (AIX.REMOTEQ) + D
 rname(AIX.LOCALQ) + E
 rqmname(AIX) + C
 xmitq(AIX) + F
 replace

def chl (WINNT.AIX.TCP) chltype(sdr) + H
 trptype(tcp) +
 conname(remote_tcpip_hostname) +
 xmitq(AIX) + F
 replace

IBM MQ for Windows receiver-channel definitions using TCP
A code sample.

def ql (WINNT.LOCALQ) replace B

def chl (AIX.WINNT.TCP) chltype(rcvr) + J
 trptype(tcp) +
 replace

Automatic startup
IBM MQ for Windows allows you to automate the startup of a queue manager and its channel initiator,
channels, listeners, and command servers.

Use the IBM MQ Services snap-in to define the services for the queue manager. When you have
successfully completed testing of your communications setup, set the relevant services to automatic
within the snap-in. This file can be read by the supplied IBM MQ service when the system is started.

40 IBM MQ Configuration Reference

For more information, see Administering IBM MQ .

Running channels as processes or threads
IBM MQ for Windows provides the flexibility to run sending channels as Windows processes or Windows
threads. This is specified in the MCATYPE parameter on the sender channel definition.

Most installations run their sending channels as threads, because the virtual and real memory required
to support many concurrent channel connections is reduced. However, a NetBIOS connection needs a
separate process for the sending Message Channel Agent.

Example IBM MQ configuration for z/OS
This section gives an example of how to set up communication links from IBM MQ for z/OS to IBM MQ
products on other platforms.

These are the other platforms covered by this example:

• Windows

• AIX

• Linux

• IBM i
• VSE/ESA

You can also connect any of the following:

• z/OS to z/OS
• z/OS to MVS
• MVS to MVS

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Establishing a connection
To establish a connection there are a number of things to configure.

Establishing an LU 6.2 connection
For the latest information about configuring SNA over TCP/IP, refer to the following online IBM
documentation: Communications Server for z/OS .

Establishing a TCP connection
Alter the queue manager object to use the correct distributed queuing parameters using the following
command. You must add the name of the TCP address space to the TCPNAME queue manager attribute.

ALTER QMGR TCPNAME(TCPIP)

The TCP connection is now established. You are ready to complete the configuration.

IBM MQ for z/OS configuration
The following steps outline how to configure IBM MQ; starting and configuring channels and listeners.

1. Start the channel initiator using the command:

Configuration reference 41

https://www.ibm.com/software/network/commserver/zos/library/

/cpf START CHINIT 1

2. Start an LU 6.2 listener using the command:

/cpf START LSTR LUNAME(M1) TRPTYPE(LU62)

The LUNAME of M1 refers to the symbolic name you gave your LU (5). You must specify
TRPTYPE(LU62), otherwise the listener assumes that you want TCP.

3. Start a TCP listener using the command:

/cpf START LSTR

If you want to use a port other than 1414 (the default IBM MQ port), use the command:

/cpf START LSTR PORT(1555)

IBM MQ channels do not initialize successfully if the channel negotiation detects that the message
sequence number is different at each end. You might need to reset these channels manually.

Channel configuration for z/OS
To implement the example channels, there is some configuration necessary on the z/OS queue manager.

The following sections detail the configuration to be performed on the z/OS queue manager to implement
the channel described in “Example IBM MQ configuration for all platforms” on page 5.

Examples are given for connecting IBM MQ for z/OS and IBM MQ for Windows. To connect to IBM MQ on
another platform use the appropriate set of values from the table in place of the values for Windows.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section

Table 6. Configuration examples for IBM MQ for z/OS

ID Parameter Name Reference Example Used

Definition for local node

A Queue Manager Name MVS

B Local queue name MVS.LOCALQ

 Connection to IBM MQ for Windows

The values in this section of the table must match the values used in “Channel configuration for Windows” on
page 38, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (LU 6.2) channel name MVS.WINNT.SNA

H Sender (TCP) channel name MVS.WINNT.TCP

I Receiver (LU 6.2) channel name G WINNT.MVS.SNA

J Receiver (TCP/IP) channel name H WINNT.MVS.TCP

42 IBM MQ Configuration Reference

Table 6. Configuration examples for IBM MQ for z/OS (continued)

ID Parameter Name Reference Example Used

 Connection to IBM MQ for AIX

The values in this section of the table must match the values used in “Channel configuration for AIX” on page
11, as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (LU 6.2) channel name MVS.AIX.SNA

H Sender (TCP/IP) channel name MVS.AIX.TCP

I Receiver (LU 6.2) channel name G AIX.MVS.SNA

J Receiver (TCP/IP) channel name H AIX.MVS.TCP

 Connection to IBM MQ for Linux

The values in this section of the table must match the values used in “Channel configuration for Linux” on page
32, as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (LU 6.2) channel name MVS.LINUX.SNA

H Sender (TCP) channel name MVS.LINUX.TCP

I Receiver (LU 6.2) channel name G LINUX.MVS.SNA

J Receiver (TCP/IP) channel name H LINUX.MVS.TCP

 Connection to IBM MQ for IBM i

The values in this section of the table must match the values used in “Channel configuration for IBM i” on page
26, as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (LU 6.2) channel name MVS.AS400.SNA

H Sender (TCP/IP) channel name MVS.AS400.TCP

I Receiver (LU 6.2) channel name G AS400.MVS.SNA

J Receiver (TCP/IP) channel name H AS400.MVS.TCP

Configuration reference 43

IBM MQ for z/OS sender-channel definitions
This topic details the sender-channel definitions required to configure IBM MQ for z/OS using LU 6.2 or
TCP.

For LU 6.2:

 Local Queue
 Object type : QLOCAL
 Name : WINNT F
 Usage : X (XmitQ)

 Remote Queue
 Object type : QREMOTE
 Name : WINNT.REMOTEQ D
 Name on remote system : WINNT.LOCALQ E
 Remote system name : WINNT C
 Transmission queue : WINNT F

 Sender Channel
 Channel name : MVS.WINNT.SNA G
 Transport type : L (LU6.2)
Transmission queue name : WINNT F
 Connection name : M3 13

For TCP:

 Local Queue
 Object type : QLOCAL
 Name : WINNT F
 Usage : X (XmitQ)

 Remote Queue
 Object type : QREMOTE
 Name : WINNT.REMOTEQ D
 Name on remote system : WINNT.LOCALQ E
 Remote system name : WINNT C
 Transmission queue : WINNT F

 Sender Channel
 Channel name : MVS.WINNT.TCP H
 Transport type : T (TCP)
Transmission queue name : WINNT F
 Connection name : winnt.tcpip.hostname

IBM MQ for z/OS receiver-channel definitions
This topic details the receiver-channel definitions required to configure IBM MQ for z/OS using LU6.2 or
TCP.

For LU 6.2:

 Local Queue
 Object type : QLOCAL
 Name : MVS.LOCALQ B
 Usage : N (Normal)

 Receiver Channel
 Channel name : WINNT.MVS.SNA I

For TCP:

 Local Queue
 Object type : QLOCAL
 Name : MVS.LOCALQ B
 Usage : N (Normal)

 Receiver Channel
 Channel name : WINNT.MVS.TCP J

44 IBM MQ Configuration Reference

Example IBM MQ configuration for z/OS using QSGs
This section gives an example of how to set up communication links to a queue sharing group (QSG) from
IBM MQ on Windows and AIX. You can also connect from z/OS to z/OS.

Setting up communication links from a queue sharing group to a platform other than z/OS is the same as
described in “Example IBM MQ configuration for z/OS” on page 41. There are examples to other platforms
in that section.

When the connection is established, you must define some channels to complete the configuration. This
process is described in “IBM MQ for z/OS shared channel configuration” on page 49.

See “Example IBM MQ configuration for all platforms” on page 5 for background information about this
section and how to use it.

Configuration parameters for an LU 6.2 connection
The following worksheet lists all the parameters required to set up communication from a z/OS system to
one of the other IBM MQ platforms. The worksheet shows examples of the parameters, which have been
tested in a working environment, and leaves space for you to enter your own values.

The steps required to set up an LU 6.2 connection are described in “Establishing an LU 6.2 connection into
a queue sharing group” on page 47, with numbered cross-references to the parameters in the example.

Numbers in the Reference column indicate that the value must match that in the appropriate example
elsewhere in this section. The examples that follow in this section refer to the values in the ID column.
The entries in the Parameter Name column are explained in “Explanation of terms” on page 46.

Table 7. Configuration examples for z/OS using LU 6.2

ID Parameter Name Reference Example Used

Definition for local node using generic resources

1 Command prefix /cpf

2 Network ID NETID

3 Node name MVSPU

6 Modename #INTER

7 Local Transaction Program name MQSERIES

8 LAN destination address 400074511092

9 Local LU name MVSLU1

10 Generic resource name MVSGR

11 Symbolic destination G1

12 Symbolic destination for generic resource name G2

 Connection to a Windows system

13 Symbolic destination M3

14 Modename 21 #INTER

15 Remote Transaction Program name 7 MQSERIES

16 Partner LU name 5 WINNTLU

21 Remote node ID 4 05D 30F65

 Connection to an AIX system

Configuration reference 45

Table 7. Configuration examples for z/OS using LU 6.2 (continued)

ID Parameter Name Reference Example Used

13 Symbolic Destination M4

14 Modename 18 #INTER

15 Remote Transaction Program name 6 MQSERIES

16 Partner LU name 4 AIXLU

Explanation of terms
An explanation of the terms used in the configuration worksheet.

1 Command prefix
This term is the unique command prefix of your IBM MQ for z/OS queue manager subsystem. The z/OS
system programmer defines this value at installation time, in SYS1.PARMLIB(IEFSSNss), and can tell
you the value.

2 Network ID
The VTAM startup procedure in your installation is partly customized by the ATCSTRxx member of the
data set referenced by the DDNAME VTAMLST. The Network ID is the value specified for the NETID
parameter in this member. For Network ID, you must specify the name of the NETID that owns the
IBM MQ communications subsystem. Your network administrator can tell you the value.

3 Node name
VTAM, being a low-entry network node, does not have a Control Point name for Advanced Peer-
to-Peer Networking (APPN) use. It does however have a system services control point name
(SSCPNAME). For node name, you must specify the name of the SSCP that owns the IBM MQ
communications subsystem. This value is defined in the same ATCSTRxx member as the Network
ID. Your network administrator can tell you the value.

9 Local LU name
A logical unit (LU) is software that serves as an interface or translator between a transaction program
and the network. It manages the exchange of data between transaction programs. The local LU name
is the unique VTAM APPLID of this IBM MQ subsystem. Your network administrator can tell you this
value.

11 12 13 Symbolic destination
This term is the name you give to the CPI-C side information profile. You need a side information entry
for each LU 6.2 listener.

6 14 Modename
This term is the name given to the set of parameters that control the LU 6.2 conversation. An entry
with this name and similar attributes must be defined at each end of the session. In VTAM, this
corresponds to a mode table entry. You network administrator can assign this table entry to you.

7 15 Transaction Program name
IBM MQ applications trying to converse with this queue manager specify a symbolic name for the
program to be run at the receiving end. This has been specified in the TPNAME attribute on the
channel definition at the sender. For simplicity, wherever possible use a transaction program name
of MQSERIES, or in the case of a connection to VSE/ESA, where the length is limited to 4 bytes, use
MQTP.

See Defining an LU6.2 connection for z/OS using APPC/MVS for more information.

8 LAN destination address
This term is the LAN destination address that your partner nodes use to communicate with this host.
When you are using a 3745 network controller, it is the value specified in the LOCADD parameter
for the line definition to which your partner is physically connected. If your partner nodes use other
devices such as 317X or 6611 devices, the address is set during the customization of those devices.
Your network administrator can tell you this value.

46 IBM MQ Configuration Reference

10 Generic resource name
A generic resource name is a unique name assigned to a group of LU names used by the channel
initiators in a queue sharing group.

16 Partner LU name
This term is the LU name of the IBM MQ queue manager on the system with which you are setting up
communication. This value is specified in the side information entry for the remote partner.

21 Remote node ID
For a connection to Windows, this ID is the ID of the local node on the Windows system with which
you are setting up communication.

Establishing an LU 6.2 connection into a queue sharing group
There are two steps to establish an LU 6.2 connection. Defining yourself to the network and defining a
connection to the partner.

Defining yourself to the network using generic resources
You can use VTAM Generic Resources to have one connection name to connect to the queue sharing
group.

1. SYS1.PARMLIB(APPCPMxx) contains the start-up parameters for APPC. You must add a line to this file
to tell APPC where to locate the sideinfo. This line must be of the form:

SIDEINFO
 DATASET(APPC.APPCSI)

2. Add another line to SYS1.PARMLIB(APPCPMxx) to define the local LU name you intend to use for the
IBM MQ LU 6.2 group listener. The line you add must take the form

LUADD ACBNAME(mvslu1)
 NOSCHED
 TPDATA(csq.appctp)
 GRNAME(mvsgr)

Specify values for ACBNAME (9), TPDATA and GRNAME(10).

The NOSCHED parameter tells APPC that our new LU is not using the LU 6.2 scheduler (ASCH), but has
one of its own. TPDATA refers to the Transaction Program data set in which LU 6.2 stores information
about transaction programs. Again, IBM MQ does not use this parameter, but it is required by the
syntax of the LUADD command.

3. Start the APPC subsystem with the command:

START APPC,SUB=MSTR,APPC=xx

where xx is the suffix of the PARMLIB member in which you added the LU in step 1.

Note: If APPC is already running, it can be refreshed with the command:

SET APPC=xx

The effect of this is cumulative, that is, APPC does not lose its knowledge of objects already defined to
it in this member or another PARMLIB member.

4. Add the new LU to a suitable VTAM major node definition. These are typically in SYS1.VTAMLST. The
APPL definition will look like the sample shown.

 MVSLU APPL ACBNAME=MVSLU1, 9
 APPXC=YES,
 AUTOSES=0,
 DDRAINL=NALLOW,

Configuration reference 47

 DLOGMOD=#INTER, 6
 DMINWML=10,
 DMINWNR=10,
 DRESPL=NALLOW,
 DSESLIM=60,
 LMDENT=19,
 MODETAB=MTCICS,
 PARSESS=YES,
 VERIFY=NONE,
 SECACPT=ALREADYV,
 SRBEXIT=YES

5. Activate the major node. This activation can be done with the command:

V,NET,ACT,majornode

6. Add entries defining your LU and generic resource name to the CPI-C side information data set. Use
the APPC utility program ATBSDFMU to do so. Sample JCL is in thlqual.SCSQPROC(CSQ4SIDE) (where
thlqual is the target library high-level qualifier for IBM MQ data sets in your installation.)

The entries you add will look like this example:

 SIADD
 DESTNAME(G1) 11
 MODENAME(#INTER)
 TPNAME(MQSERIES)
 PARTNER_LU(MVSLU1) 9
 SIADD
 DESTNAME(G2) 12
 MODENAME(#INTER)
 TPNAME(MQSERIES)
 PARTNER_LU(MVSGR) 10

7. Alter the queue manager object to use the correct distributed queuing parameters using the following
command. You must specify the local LU (9) assigned to your queue manager in the LUGROUP attribute
of the queue manager.

ALTER QMGR LUGROUP(MVSLU1)

Defining a connection to a partner
You can define a connection to a partner by adding an entry to the CPI-C side information data set.

Note: This example is for a connection to a Windows system but the task is the same for other platforms.

Add an entry to the CPI-C side information data set to define the connection. Sample JCL to do this
definition is in thlqual.SCSQPROC(CSQ4SIDE).

The entry you add will look like this:

 SIADD
 DESTNAME(M3) 13
 MODENAME(#INTER) 14
 TPNAME(MQSERIES) 15
 PARTNER_LU(WINNTLU) 16

What next?
The connection is now established. You are ready to complete the configuration.

Go to “IBM MQ for z/OS shared channel configuration” on page 49.

Establishing a TCP connection Using Sysplex Distributor
You can set up Sysplex distributor to use one connection name to connect to the queue sharing group.

1. Define a Distributed DVIPA address as follows:

48 IBM MQ Configuration Reference

a. Add a DYNAMICXCF statement to the IPCONFIG. This statement is used for inter-image
connectivity using dynamically created XCF TCP/IP links.

b. Use the VIPADYNAMIC block on each image in the Sysplex.

i) On the owning image, code a VIPADEFINE statement to create the DVIPA Then code a
VIPADISTRIBUTE statement to distribute it to all other or selected images.

ii) On the backup image, code a VIPABACKUP statement for the DVIPA address.
2. If more than one channel initiator will be started on any LPAR in the sysplex then add the SHAREPORT

option for the port to be shared in the PORT reservation list in the PROFILE data set.

See PORT statement in the z/OS Communications Server: IP Configuration Reference for more information.

Sysplex Distributor balances the inbound connections between each LPAR. If there is more than one
channel initiator on an LPAR, then the use of SHAREPORT passes that inbound connection to the listener
port with the smallest number of connections.

When you have completed these steps, the TCP connection is established. You are ready to complete the
configuration.

Go to “IBM MQ for z/OS shared channel configuration” on page 49.

IBM MQ for z/OS shared channel configuration
Configure the shared channel by starting the channel initiator and issuing appropriate commands for your
configuration.

1. Start the channel initiator using the command:

/cpf START CHINIT

2. Start an LU6.2 group listener using the command:

/cpf START LSTR TRPTYPE(LU62) LUNAME(G1) INDISP(GROUP)

The LUNAME of G1 refers to the symbolic name you gave your LU (11).
3. If you are using Virtual IP Addressing using Sysplex Distributor and want to listen on a specific

address, use the command:

/cpf START LSTR TRPTYPE(TCP) PORT(1555) IPADDR(mvsvipa) INDISP(GROUP)

There can be only one instance of the shared channel running at a time. If you try to start a second
instance of the channel it fails (the error message varies depending on other factors). The shared
synchronization queue tracks the channel status.

IBM MQ channels do not initialize successfully if the channel negotiation detects that the message
sequence number is different at each end. You might need to reset this manually.

Shared channel configuration example
To configure a shared channel, a number of steps must be completed.

The subsequent topics detail the configuration to be performed on the z/OS queue manager to implement
the channel described in “Example IBM MQ configuration for all platforms” on page 5.

Examples are given for connecting IBM MQ for z/OS and Windows. To connect to IBM MQ on another
platform use the appropriate set of values from the table in place of the values for Windows.

Note: The words in bold are suggested values and reflect the names of IBM MQ objects used throughout
these examples. You can change them in your product installation but, if you do, make sure that you use
your own values when working through the examples in this section.

Configuration reference 49

https://www.ibm.com/docs/en/zos/3.1.0?topic=statements-port-statement

Table 8. Configuration examples for IBM MQ for z/OS using queue sharing groups

ID Parameter Name Reference Example Used

Definition for local node

A Queue Manager Name QSG

B Local queue name QSG.SHAREDQ

 Connection to IBM MQ for Windows

The values in this section of the table must match the values used in “Channel configuration for Windows” on
page 38, as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (LU 6.2) channel name QSG.WINNT.SNA

H Sender (TCP) channel name QSG.WINNT.TCP

I Receiver (LU 6.2) channel name G WINNT.QSG.SNA

J Receiver (TCP/IP) channel name H WINNT.QSG.TCP

 Connection to IBM MQ for AIX

The values in this section of the table must match the values used in “Channel configuration for AIX” on page
11, as indicated.

C Remote queue manager name AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (LU 6.2) channel name QSG.AIX.SNA

H Sender (TCP/IP) channel name QSG.AIX.TCP

I Receiver (LU 6.2) channel name G AIX.QSG.SNA

J Receiver (TCP/IP) channel name H AIX.QSG.TCP

IBM MQ for z/OS shared sender-channel definitions
An example definition of shared sender-channels for LU 6.2 and TCP.

Using LU 6.2

Local Queue
 Object type : QLOCAL
 Name : WINNT F
 Usage : X (XmitQ)
 Disposition : SHARED

 Remote Queue
 Object type : QREMOTE
 Name : WINNT.REMOTEQ D
 Name on remote system : WINNT.LOCALQ E
 Remote system name : WINNT C

50 IBM MQ Configuration Reference

 Transmission queue : WINNT F
 Disposition : GROUP

 Sender Channel
 Channel name : MVS.WINNT.SNA G
 Transport type : L (LU6.2)
Transmission queue name : WINNT F
 Connection name : M3 13
 Disposition : GROUP

Using TCP

 Local Queue
 Object type : QLOCAL
 Name : WINNT F
 Usage : X (XmitQ)
 Disposition : SHARED

 Remote Queue
 Object type : QREMOTE
 Name : WINNT.REMOTEQ D
 Name on remote system : WINNT.LOCALQ E
 Remote system name : WINNT C
 Transmission queue : WINNT F
 Disposition : GROUP

 Sender Channel
 Channel name : QSG.WINNT.TCP H
 Transport type : T (TCP)
Transmission queue name : WINNT F
 Connection name : winnt.tcpip.hostname
 Disposition : GROUP

IBM MQ for z/OS shared receiver-channel definitions
An example definition of shared receiver-channels for LU 6.2 and TCP.

Using LU 6.2

 Local Queue
 Object type : QLOCAL
 Name : QSG.SHAREDQ B
 Usage : N (Normal)
 Disposition : SHARED

 Receiver Channel
 Channel name : WINNT.QSG.SNA I
 Disposition : GROUP

Using TCP

 Local Queue
 Object type : QLOCAL
 Name : QSG.SHAREDQ B
 Usage : N (Normal)
 Disposition : SHARED

 Receiver Channel
 Channel name : WINNT.QSG.TCP J
 Disposition : GROUP

Configuration reference 51

Example MQ configuration for z/OS using intra-group queuing
This section describes how a typical payroll query application, that currently uses distributed queuing to
transfer small messages between queue managers, could be migrated to use queue sharing groups and
shared queues.

Three configurations are described to illustrate the use of distributed queuing, intra-group queuing with
shared queues, and shared queues. The associated diagrams show only the flow of data in one direction,
that is, from queue manager QMG1 to queue manager QMG3.

Configuration 1
Configuration 1 describes how distributed queuing is currently used to transfer messages between queue
managers QMG1 and QMG3.

Configuration 1 shows a distributed queuing system that is used to transfer messages received by queue
manager QMG1 from the payroll query to queue manager QMG2 and then finally on to queue manager
QMG3, to be sent to the payroll server.

Figure 2. Configuration 1: z/OS using intra-group queuing

The flow of operations is as follows:

1. A query is entered using the payroll request application connected to queue manager QMG1.
2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue

PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue PAYROLL on queue
manager QMG3. As queue PAYROLL on QMG3 resolves to transmission queue QMG3, the query is
put on to transmission queue QMG3.

5. Sender channel (S) on queue manager QMG2 delivers the query to the partner receiver channel (R) on
queue manager QMG3.

6. Receiver channel (R) on queue manager QMG3 puts the query on to local queue PAYROLL.
7. The payroll server application connected to queue manager QMG3 retrieves the query from local

queue PAYROLL, processes it, and generates a suitable reply.

52 IBM MQ Configuration Reference

Configuration 1 definitions
The definitions required for Configuration 1 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

On QMG1
Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT(ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME('MVSQMG2(1415)')

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On QMG2
Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMG1') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

DEFINE QLOCAL(QMG3) DESCR('Transmission queue to QMG3') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

DEFINE CHANNEL(QMG2.TO.QMG3) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG3') XMITQ(QMG3) CONNAME('MVSQMG3(1416)')

Here you replace MVSQMG3(1416) with your queue manager connection name and port.

Configuration reference 53

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

DEFINE CHANNEL(QMG3.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG3')

On QMG3
Local queue definition:

DEFINE QLOCAL(PAYROLL) DESCR('Payroll query request queue') REPLACE +
PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG3.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2) XMITQ(QMG2) CONNAME('MVSQMG2(1415)')

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG3) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2)

Configuration 2
Configuration 2 describes how queue sharing groups and intra-group queuing can be used, with no effect
on the back-end payroll server application, to transfer messages between queue managers QMG1 and
QMG3.

Configuration 2 shows a distributed queuing system that uses queue sharing groups and intra-group
queuing to transfer messages from the payroll request application to the payroll server. This configuration
removes the need for channel definitions between queue managers QMG2 and QMG3 because intra-
group queuing is used to transfer messages between these two queue managers.

Figure 3. Configuration 2

The flow of operations is as follows:

1. A query is entered using the payroll request application connected to queue manager QMG1.

54 IBM MQ Configuration Reference

2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue
PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue PAYROLL
on queue manager QMG3. As queue PAYROLL on QMG3 resolves to shared transmission
queue SYSTEM.QSG.TRANSMIT.QUEUE, the query is put on to shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE.

5. IGQ agent on queue manager QMG3 retrieves the query from shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE, and puts it on to local queue PAYROLL on queue manager QMG3.

6. The payroll server application connected to queue manager QMG3 retrieves the query from local
queue PAYROLL, processes it, and generates a suitable reply.

Note: The payroll query example transfers small messages only. If you need to transfer both persistent
and non-persistent messages, a combination of Configuration 1 and Configuration 2 can be established,
so that large messages can be transferred using the distributed queuing route, while small messages can
be transferred using the potentially faster intra-group queuing route.

Configuration 2 definitions
The definitions required for Configuration 2 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

It is assumed that queue managers QMG2 and QMG3 are already configured to be members of the same
queue sharing group.

On QMG1
Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT(ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME('MVSQMG2(1415)')

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

Configuration reference 55

On QMG2
Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMG1') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

DEFINE QLOCAL(SYSTEM.QSG.TRANSMIT.QUEUE) QSGDISP(SHARED) +
DESCR('IGQ Transmission queue') REPLACE PUT(ENABLED) USAGE(XMITQ) +
GET(ENABLED) INDXTYPE(CORRELID) CFSTRUCT('APPLICATION1') +
DEFSOPT(SHARED) DEFPSIST(NO)

Here you replace APPLICATION1 with your defined CF structure name. Also note that this queue, being a
shared queue, need only be defined on one of the queue managers in the queue sharing group.

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

Queue Manager definition:

ALTER QMGR IGQ(ENABLED)

On QMG3
Local queue definition:

DEFINE QLOCAL(PAYROLL) DESCR('Payroll query request queue') REPLACE +
PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE

Queue Manager definition:

ALTER QMGR IGQ(ENABLED)

Configuration 3
Configuration 3 describes how queue sharing groups and shared queues can be used, with no effect
on the back-end payroll server application, to transfer messages between queue managers QMG1 and
QMG3.

Configuration 3 shows a distributed queuing system that uses queue sharing groups and shared queues to
transfer messages between queue manager QMG1 and queue manager QMG3.

56 IBM MQ Configuration Reference

Figure 4. Configuration 3

The flow of operations is:

1. A query is entered using the payroll request application connected to queue manager QMG1.
2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue

PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to shared queue PAYROLL.
5. The payroll server application connected to queue manager QMG3 retrieves the query from shared

queue PAYROLL, processes it, and generates a suitable reply.

This configuration is certainly the simplest to configure. However, distributed queuing or intra-group
queuing would need to be configured to transfer replies (generated by the payroll server application
connected to queue manager QMG3) from queue manager QMG3 to queue manager QMG2, and then on
to queue manager QMG1. (See “What the queue sharing group example for z/OS shows” on page 153 for
the configuration used to transfer replies back to the payroll request application.)

No definitions are required on QMG3.

Configuration 3 definitions
The definitions required for Configuration 3 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

It is assumed that queue managers QMG2 and QMG3 are already configured to be members of the same
queue sharing group.

On QMG1
Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT(ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Configuration reference 57

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME('MVSQMG2(1415)')

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On QMG2
Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMG1') REPLACE +
PUT(ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

Local queue definition:

DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) DESCR('Payroll query request queue') +
REPLACE PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE +
DEFSOPT(SHARED) DEFPSIST(NO) CFSTRUCT(APPLICATION1)

Here you replace APPLICATION1 with your defined CF structure name. Also note that this queue, being a
shared queue, need only be defined on one of the queue managers in the queue sharing group.

On QMG3
No definitions are required on QMG3.

Running the example
After setting up the sample, you can run the sample.

For Configuration 1:

1. Start queue managers QMG1, QMG2, and QMG3.
2. Start channel initiators for QMG2 and QMG3.

58 IBM MQ Configuration Reference

3. Start the listeners on QMG1 to listen to port 1414, QMG2 to listen on port 1415, and QMG3 to listen on
port 1416.

4. Start sender channels on QMG1, QMG2, and QMG3.
5. Start the payroll query requesting application connected to QMG1.
6. Start the payroll server application connected to QMG3.
7. Submit a payroll query request to QMG3 and wait for the payroll reply.

For Configuration 2:

1. Start queue managers QMG1, QMG2, and QMG3.
2. Start the channel initiator for QMG2.
3. Start the listeners on QMG1 to listen on port 1414, and QMG2 to listen on port 1415.
4. Start the sender channel on QMG1 and QMG2.
5. Start the payroll query requesting application connected to QMG1.
6. Start the payroll server application connected to QMG3.
7. Submit a payroll query request to QMG3 and wait for the payroll reply.

For Configuration 3:

1. Start queue managers QMG1, QMG2, and QMG3.
2. Start the channel initiator for QMG2.
3. Start the listeners on QMG1 to listen on port 1414, and QMG2 to listen on port 1415.
4. Start sender channels on QMG1 and QMG2.
5. Start the payroll query requesting application connected to QMG1.
6. Start the payroll server application connected to QMG3.
7. Submit a payroll query request to QMG3 and wait for the payroll reply.

Expanding the example
The example can be expanded in a number of ways.

The example can be:

• Expanded to use channel triggering as well as application (PAYROLL and PAYROLL.REPLY queue)
triggering.

• Configured for communication using LU6.2.
• Expanded to configure more queue managers to the queue sharing group. Then the server application

can be cloned to run on other queue manager instances to provide multiple servers for the PAYROLL
query queue.

• Expanded to increase the number of instances of the payroll query requesting application to
demonstrate the processing of requests from multiple clients.

• Expanded to use security (IGQAUT and IGQUSER).

Configuration reference 59

IBM MQ file system permissions applied
to /var/mqm

The following information describes the security applied to the files and directories under /var/mqm/
and why the file-system permissions are set as they are. In order to ensure the correct operation of IBM
MQ you should not alter the file system permissions as set by IBM MQ

crtmqdir command
If your enterprise has changed any of the /var/mqm file permissions, for whatever reason, you can
update the permissions, or add directories, by using the crtmqdir command

IBM MQ file system Security on AIX, Linux, and IBM i
The files under the IBM MQ data directory (/var/mqm) are used to store:

• IBM MQ configuration data
• Application data (IBM MQ objects and the data contained within IBM MQ messages)
• Run-time control information
• Monitoring information (messages and FFST files)

Access to this data is controlled using file system permissions with some of the data being accessible
to all users while other data is restricted only to members of the IBM MQ Administrator group 'mqm' (or
QMQM on IBM i).

Access is granted in the following three categories:

mqm group only
The files and directories in this category are only accessible to IBM MQ Administrators (members of the
'mqm' group) and the IBM MQ queue manager processes.

The file permissions for these files and directories are:

 -rwxrwx--- mqm:mqm (UNIX and Linux)
 -rwxrwx--- QMQMADM:QMQM (IBM i)

An example of the files and directories in this category is:

 /var/mqm/qmgrs/QMGR/qm.ini
 /var/mqm/qmgrs/QMGR/channel/
 /var/mqm/qmgrs/QMGR/channel/SYSTEM!DEF!SCRVONN
 /var/mqm/qmgrs/QMGR/queues/
 /var/mqm/qmgrs/QMGR/queues/SYSTEM!DEFAULT!LOCAL!QUEUES/
 /var/mqm/qmgrs/QMGR/errors/
 /var/mqm/qmgrs/QMGR/errors/AMQERR01.LOG
 /var/mqm/qmgrs/QMGR/ssl/
 /var/mqm/qmgrs/QMGR/@qmgr/
 /var/mqm/qmgrs/QMGR/@qmpersist/
 ...

All users read access - mqm group members read and write access
The files and directories in this category can be read by all users, but only members of the 'mqm' group can
modify these files and manipulate these directories.

The file permissions for these files and directories are:

 -rwxrwxr-x mqm:mqm (UNIX and Linux)
 -rwxrwxr-x QMQMADM:QMQM (IBM i)

60 IBM MQ Configuration Reference

An example of the files and directories in this category is:

/var/mqm/mqs.ini
/var/mqm/exits/
/var/mqm/qmgrs/
/var/mqm/qmgrs/QMGR/
/var/mqm/qmgrs/QMGR/@app/
/var/mqm/qmgrs/QMGR/@ipcc/

Attention: You should only set execute permissions on executable files and scripts. For example,
on Linux when the crtmqm command runs, the following file permissions are set:

-rw-rw---- mqm mqm /var/mqm/qmgrs/QMGR/qm.ini
-rw-rw---- mqm mqm /var/mqm/qmgrs/QMGR/channel/SYSTEM!DEF!SCRVONN
-rw-rw---- mqm mqm /var/mqm/qmgrs/QMGR/errors/AMQERR01.LOG
-rw-rw-r-- mqm mqm /var/mqm/mqs.ini

IBM MQ 8.0:

/var/mqm/sockets/@SYSTEM
/var/mqm/sockets/QMGR/@app/hostname
/var/mqm/sockets/QMGR/@ipcc/hostname

All users read and write access
Files that have read and write access for all users

IBM MQ has no regular files that have world writable file permissions (777). However there are a number
of special files that appear as having world writable file permissions.

These special files provide no security exposure. Although the permissions are shown as 777, they are not
regular files and you cannot write directly to them.

These special files are:
Symbolic links

Symbolic links are identified by the 'l' character at the start of their permissions. The permissions on
the symbolic link have no effect on who is able to access the target file, as access to the command is
controlled by the permissions on the target of the symbolic link.
On most AIX and Linux systems it is not possible to change the permissions on symbolic links, so they
always appear as lrwxrwxrwx.

Socket files
Socket files are special files created by the operating system, as a result of a process creating a UNIX
domain socket. These files can be identified by the 's' at the start of the file permissions, that is
srwxrwxrwx.
The permissions on the file do not grant access to the file itself, but define who can connect to the
UNIX domain socket.
IBM MQ uses a number of these socket files and the permissions are always set according to who is
allowed to communicate with the socket.
The following directories contain socket files that have read/write permissions for all users
(srwxrwxrwx).
IBM MQ 8.0:

/var/mqm/sockets/QMGR/zsocketEC/hostname/Zsocket_*

Socket files used by applications that connect to IBM MQ using isolated bindings.

/var/mqm/sockets/QMGR/@ipcc/ssem/hostname/*

Configuration reference 61

Directories that have read and write access for all users

There are times when IBM MQ applications need to create files under the IBM MQ data directory.
To ensure that applications are able to create files when they are required, a number of directories
are granted world write access, which means that any user on the system can create files within that
directory.

With the exception of the errors logs files, that can be written to by any member of the 'mqm' group, all
files created in these directories are created with restricted permissions that allows only the file creator
write access. This allows the system administrator to track the user ID of all data written to files in these
directories.
/var/mqm/errors/

This directory contains the system error log files and FFST files. The permission of this directory is
'drwxrwsrwt' meaning that all users on the system can create files in this directory.
The SetGroupId bit 's' indicates that all files created in this directory have the group ownership of
'mqm'.
The 't' sticky bit is not set by default on this directory, but an IBM MQ administrator can set this
explicitly, to allow users to delete only the files that they create.

Note: This feature is not available on IBM i.

AMQERR0*.LOG
These error log files can only be written to directly by members of the group but any user can
read the messages written to these files (permission: -rw-rw-r--).

AMQnnnnn.*.FDC
These files contain FFST information written when an error occurs in the queue manager or in an
application written by a user. These files are created with the permissions -rw-r-----.

/var/mqm/trace/
Trace files are written to this directory when IBM MQ trace is enabled. IBM MQ trace is written by all
process associated with a queue manager for which trace is enabled.
The permissions of this directory are 'drwxrwsrwt' meaning that all users on the system can create
files in this directory.
The SetGroupId bit 's' indicates that all files created in this directory have the group ownership of
'mqm'.
The 't' sticky bit is not set by default on this directory, but an IBM MQ administrator can set this
explicitly, to allow users to delete only the files that they create.

Note: This feature is not available on IBM i.

AMQnnnnn.*.TRC
These files contain the trace data written by each process which is tracing and are created with
permissions -rw-r-----
The permissions on this directory are drwxrwsrwt and the permissions of the socket files created
in this directory are srwx------.

IBM MQ 8.0:

/var/mqm/sockets/QMGR/zsocketapp/hostname/

This directory is used by applications that connect to the IBM MQ queue manager using isolated
bindings. During connect processing a socket file is created by the connecting application in this
directory. The socket file is removed after the connection is made to the queue manager.
The permissions on this directory are drwxrwsrwt and the permissions of the socket files created
in this directory are srwx------.
The SetGroupId bit 's' on this directory ensures that all files created in this directory have the
group ownership of 'mqm'.

62 IBM MQ Configuration Reference

On all platforms except IBM i, this directories also has the 't' sticky bit set which prevents a
user from deleting any files except the ones for which they are the owner. This prevents an
unauthorized user from deleting files that they do not own.

/var/mqm/sockets/QMGR/@ipcc/ssem/hostname/
/var/mqm/sockets/QMGR/@app/ssem/hostname/

For processes that connect to IBM MQ using shared bindings then UNIX domain
sockets might be used to synchronize between the application and the queue manager. When
UNIX domain sockets are being used then the associated socket file is created in these
directories.
The permissions on these directories are drwxrwsrwt and the permissions of the socket files
created in these directories are srwxrwxrwx.
The SetGroupId bit 's' on these directories ensures that all files created in these directories have
the group ownership of 'mqm'.
On all platforms except IBM i, these directories also have the 't' sticky bit set which prevents
a user from deleting any files except the ones for which they are the owner. This prevents an
unauthorized user from deleting files that they do not own.

HOME
A ${HOME}/.mqm directory is created when using an unregistered or non-installed version of IBM MQ,
such as the redistributable client.
The directory is created so that IBM MQ has a reliable way of accessing its socket files using a path
that fits within the sun_path length. If IBM MQ cannot write to the HOME directory you receive an
error message.

Use of System V IPC resources by IBM MQ

IBM MQ uses System V shared memory and semaphores for inter-process communication. These
resources are grouped according to how they are used with each group having appropriate ownership
and access permissions.

To verify which of the System V IPC resources on a system belong to IBM MQ you can:

• Check the ownership.

The owning user of IBM MQ System V IPC resources is always the 'mqm' user on AIX and Linux
platforms. On IBM i the owning user is 'QMQM'.

• IBM MQ 8.0 and later, use the amqspdbg utility.

The amqspdbg utility which is shipped with IBM MQ can be used to display the shared memory and
semaphore id's for a given queue manager.

You must issue the command once for the 'system' group of System V resources created by IBM MQ

amqspbg -z -I

and then four times for each queue manager on the system to get the complete list of System V
resources used by IBM MQ. Assume a queue manager name of QMGR1 in the following examples:.

amqspdbg -i QMGR1 -I
amqspdbg -q QMGR1 -I
amqspdbg -p QMGR1 -I
amqspdbg -a QMGR1 -I

The access permissions on the System V resources created by IBM MQ are set to grant only the correct
level of access to the permitted users. A number of the System V IPC resources created by IBM MQ are
accessible to all users on the machine and have permissions of -rw-rw-rw-.

Configuration reference 63

The -g ApplicationGroup parameter on the crtmqm command can be used to restrict access to a
queue manager to membership of a specific operating system group. The use of this restricted group
functionality restricts the permissions granted on the System V IPC resources further.

IBM MQ file permissions in /opt/mqm with setuid for mqm
The following information covers the situation where your security team has flagged some of the
executable IBM MQ files in the directory tree $MQ_INSTALLATION_PATH, in violation of local security
policies. The default location in AIX is /usr/mqm and for the other UNIX operating systems is /opt/mqm.
If you have installed IBM MQ in a non-default directory, such as /opt/mqm90, or if you have multiple
installations, the details in this topic still apply.

Cause of the problem
Your security team has identified the following areas of concern under $MQ_INSTALLATION_PATH:

1. Files in /opt/mqm/bin directory are setuid for the owner of the directory tree where they reside. For
example:

dr-xr-xr-x mqm mqm ${MQ_INSTALLATION_PATH}/bin
-r-sr-s--- mqm mqm ${MQ_INSTALLATION_PATH}/bin/addmqinf
-r-sr-s--- mqm mqm ${MQ_INSTALLATION_PATH}/bin/amqcrsta
-r-sr-s--- mqm mqm ${MQ_INSTALLATION_PATH}/bin/amqfcxba
...

2. Practically all the directories and files are owned by "mqm:mqm" except for the following, which are
owned by root:

dr-xr-x--- root mqm ${MQ_INSTALLATION_PATH}/bin/security
-r-sr-x--- root mqm ${MQ_INSTALLATION_PATH}/bin/security/amqoamax
-r-sr-x--- root mqm ${MQ_INSTALLATION_PATH}/bin/security/amqoampx

This subdirectory needs to be owned by root, because these are the executable files that interact with
the operating system when the user from an IBM MQ client specifies a password, and this password is
passed by the IBM MQ queue manager to the operating system to confirm if the password is valid or is
not valid.

3. User does not own files in /opt/mqm/lib/iconv directory (this directory does not exist on AIX). For
example:

dr-xr-xr-x mqm mqm ${MQ_INSTALLATION_PATH}/lib/iconv
-r--r--r-- bin bin ${MQ_INSTALLATION_PATH}/lib/iconv/002501B5.tbl
-r--r--r-- bin bin ${MQ_INSTALLATION_PATH}/lib/iconv/002501F4.tbl
-r--r--r-- bin bin ${MQ_INSTALLATION_PATH}/lib/iconv/00250333.tbl
...

4. The fix pack maintenance directory on RPM-based Linux systems. When fix packs are installed, the
existing files are saved under this directory in a structure similar to that shown in the following
example, except that in this example V.R represents the IBM MQ version and release number and the
subdirectories that appear depend on the fix packs that have been installed:

drwx------ root root ${MQ_INSTALLATION_PATH}/maintenance
drwxr-xr-x root root ${MQ_INSTALLATION_PATH}/maintenance/V.R.0.1
drwxr-xr-x root root ${MQ_INSTALLATION_PATH}/maintenance/V.R.0.3
drwxr-xr-x root root ${MQ_INSTALLATION_PATH}/maintenance/V.R.0.4
...

Resolving the problem
One of the concerns on UNIX systems with respect to setuid programs was that the system security could
be compromised by manipulating environment variables such as LD* (LD_LIBRARY_PATH, LIBPATH on
AIX, and so on). This is no longer a concern, as various UNIX operating systems now ignore these LD*
environment variables when loading setuid programs.

1. Why some of the IBM MQ programs are mqm-setuid or mqm-setgid.

64 IBM MQ Configuration Reference

In IBM MQ, the user id "mqm" and any ID which is a part of the "mqm" group are the IBM MQ
administrative users.

IBM MQ queue manager resources are protected by authenticating against this user. Since the queue
manager processes use and modify these queue manager resources, the queue manager processes
require "mqm" authority to access the resources. Therefore, IBM MQ queue manager support processes
are designed to run with the effective user-id of "mqm".

To help non-administrative users accessing IBM MQ objects, IBM MQ provides an Object Authority
Manager (OAM) facility, whereby authorities can be granted and revoked on the need of the application
run by the non-administrative user.

With the ability to grant different levels of authentications for users and the fact that setuid and
setgid programs ignore LD* variables, the IBM MQ binary and library files do not compromise the
security of your system in any way.

2. It is not possible to change the permissions to satisfy the security policy of your enterprise without
jeopardizing IBM MQ functionality.

You must not change the permissions and ownerships of any of the IBM MQ binaries and libraries. IBM
MQ functionality can suffer due to this kind of change, such that queue manager processes might fail
to access some of the resources.

Note that the permissions and ownerships do not pose any security threat to the system.

Linux hard drives/disks where IBM MQ is installed or where IBM MQ data is located must not be
mounted with the nosuid option. This configuration might inhibit IBM MQ functionality.

For more information see “IBM MQ file system permissions applied to /var/mqm” on page 60.

Related reference
Filesystem

IBM MQ file system permissions on Windows
The following information describes the security applied to the files and directories on Windows. In order
to ensure the correct operation of IBM MQ you should not alter the file system permissions as set by IBM
MQ.

Data directory
Note: The permissions that are set on the root of this directory, are inherited downwards throughout the
directory structure.

The directories under the data directory (DATADIR) are set with the following permissions, apart from the
exceptions detailed in the following text.
Administrators

Full control
mqm group

Full control
SYSTEM

Full control
Everyone

Read and execute

The exceptions are:
DATADIR\errors

Everyone full control
DATADIR\trace

Everyone full control

Configuration reference 65

DATADIR\log
Administrators

Full control
mqm group

Full control
SYSTEM

Full control
Everyone

Read

DATADIR\log\<qmgrname>\active
Administrators

Full control
mqm group

Full control
SYSTEM

Full control
No access granted to Everyone.
The error log files AMQERR01.LOG, and so on, do not inherit their security settings from their directory
but are instead set to Everyone: Full Control.

Earlier releases of the product
In releases of the product prior to IBM MQ 8.0, the default program and default data directories were
co-located.

In any installation that was originally installed before IBM MQ 8.0. and which was installed to the
default locations, and then upgraded from that, the data and program directories remain co-located (in
C:\Program Files\IBM\WebSphere MQ.

In the case of co-located data and program directories, the preceding information applies only to the
directories that belong to the data directory, and not those that are part of the program directory.

Naming restrictions for queues
There are restrictions on the length of queue names. Some queue names are reserved for queues defined
by the queue manager.

Restrictions on name lengths
Queues can have names up to 48 characters long.

Reserved queue names
Names that start with "SYSTEM." are reserved for queues defined by the queue manager. You can use the
ALTER or DEFINE REPLACE commands to change these queue definitions to suit your installation. The
following names are defined for IBM MQ:

Table 9. Reserved queue names and descriptions

Queue Name Description

SYSTEM.ADMIN.ACTIVITY.QUEUE Queue for activity reports

SYSTEM.ADMIN.CHANNEL.EVENT Queue for channel events

SYSTEM.ADMIN.COMMAND.EVENT Queue for command events

66 IBM MQ Configuration Reference

Table 9. Reserved queue names and descriptions (continued)

Queue Name Description

SYSTEM.ADMIN.COMMAND.QUEUE Queue to which PCF command messages are sent

SYSTEM.ADMIN.CONFIG.EVENT Queue for configuration events

SYSTEM.ADMIN.PERFM.EVENT Queue for performance events

SYSTEM.ADMIN.PUBSUB.EVENT System publish/subscribe related event queue

SYSTEM.ADMIN.QMGR.EVENT Queue for queue manager events

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE Queue for trace-route reply messages

SYSTEM.AUTH.DATA.QUEUE The queue that holds access control lists for the queue
manager. (Not for z/OS)

SYSTEM.CHANNEL.INITQ Initiation queue for channels

SYSTEM.CHANNEL.SYNCQ The queue that holds the synchronization data for
channels

SYSTEM.CHLAUTH.DATA.QUEUE IBM MQ channel authentication data queue

SYSTEM.CICS.INITIATION.QUEUE Queue used for triggering (not for z/OS)

SYSTEM.CLUSTER.COMMAND.QUEUE Queue used to communicate repository changes between
queue managers

SYSTEM.CLUSTER.HISTORY.QUEUE The queue is used to store the history of cluster state
information for service purposes.

SYSTEM.CLUSTER.REPOSITORY.QUEUE Queue used to hold information about the repository

SYSTEM.CLUSTER.TRANSMIT.MODEL.QUE
UE

The queue used to create individual transmit queues for
each cluster-sender channel.

SYSTEM.CLUSTER.TRANSMIT.QUEUE Transmission queue for all destinations managed by
cluster support

SYSTEM.COMMAND.INPUT Queue to which command messages are sent on z/OS

SYSTEM.COMMAND.REPLY.MODEL Model queue definition for command replies (for z/OS)

SYSTEM.DEAD.LETTER.QUEUE Dead-letter queue (not for z/OS)

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue definition

SYSTEM.DEFAULT.INITIATION.QUEUE Queue used to trigger a specified process (not for z/OS)

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue definition

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue definition

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue definition

SYSTEM.DURABLE.SUBSCRIBER.QUEUE A local queue used to hold a persistent copy of the
durable subscriptions in the queue manager

SYSTEM.HIERARCHY.STATE Queue used to hold information about the state of
inter-queue manager relationships in a publish/subscribe
hierarchy

SYSTEM.JMS.TEMPQ.MODEL Model for JMS temporary queues

SYSTEM.INTERNAL.REPLY.QUEUE IBM MQ internal reply queue (not for z/OS)

Configuration reference 67

Table 9. Reserved queue names and descriptions (continued)

Queue Name Description

SYSTEM.INTER.QMGR.CONTROL Queue used in a publish/subscribe hierarchy to receive
requests from a remote queue manager to create a proxy
subscription

SYSTEM.INTER.QMGR.PUBS Queue used in a publish/subscribe hierarchy to receive
publications from a remote queue manager

SYSTEM.INTER.QMGR.FANREQ Queue used in a publish/subscribe hierarchy to process
requests to create a proxy subscription on a remote
queue manager

SYSTEM.MQEXPLORER.REPLY.MODEL Model queue definition for replies for IBM MQ Explorer

SYSTEM.MQSC.REPLY.QUEUE Model queue definition for MQSC command replies (not
for z/OS)

SYSTEM.QSG.CHANNEL.SYNCQ Shared local queue used for storing messages that
contain the synchronization information for shared
channels (z/OS only)

SYSTEM.QSG.TRANSMIT.QUEUE Shared local queue used by the intra-group queuing
agent when transmitting messages between queue
managers in the same queue sharing group (z/OS only)

SYSTEM.RETAINED.PUB.QUEUE A local queue used to hold a copy of each retained
publication in the queue manager.

SYSTEM.SELECTION.EVALUATION.QUEUE IBM MQ internal selection evaluation queue (not for
z/OS)

SYSTEM.SELECTION.VALIDATION.QUEUE IBM MQ internal selection validation queue (not for z/OS)

Naming restrictions for other objects
There are restrictions on the length of object names. Some object names are reserved for objects defined
by the queue manager.

Restrictions on name length
Processes, namelists, clusters, topics, services, and authentication information objects can have names
up to 48 characters long.

Channels can have names up to 20 characters long.

Storage classes can have names up to 8 characters long.

CF structures can have names up to 12 characters long.

Reserved object names
Names that start with SYSTEM. are reserved for objects defined by the queue manager. You can use the
ALTER or DEFINE REPLACE commands to change these object definitions to suit your installation. The
following names are defined for IBM MQ:

Table 10. Reserved object names and descriptions

Object Name Description

SYSTEM.ADMIN.SVRCONN Server-connection channel used for remote
administration of a queue manager

68 IBM MQ Configuration Reference

Table 10. Reserved object names and descriptions (continued)

Object Name Description

SYSTEM.AUTO.RECEIVER Default receiver channel for auto definition (AIX, Linux,
and Windows systems only)

SYSTEM.AUTO.SVRCONN Default server-connection channel for auto definition
(Multiplatforms only)

SYSTEM.BASE.TOPIC Base topic for ASPARENT resolution. If a particular
administrative topic object has no parent administrative
topic objects, any ASPARENT attributes are inherited
from this object

SYSTEM.DEF.CLNTCONN Default client-connection channel definition

SYSTEM.DEF.CLUSRCVR Default cluster-receiver channel definition

SYSTEM.DEF.CLUSSDR Default cluster-sender channel definition

SYSTEM.DEF.RECEIVER Default receiver channel definition

SYSTEM.DEF.REQUESTER Default requester channel definition

SYSTEM.DEF.SENDER Default sender channel definition

SYSTEM.DEF.SERVER Default server channel definition

SYSTEM.DEF.SVRCONN Default server-connection channel definition

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP Default authentication information object definition for
defining authentication information objects of type
CRLLDAP

SYSTEM.DEFAULT.AUTHINFO.OCSP Default authentication information object definition for
defining authentication information objects of type OCSP

SYSTEM.DEFAULT.LISTENER.LU62 Default SNA listener (Windows only)

SYSTEM.DEFAULT.LISTENER.NETBIOS Default NetBIOS listener (Windows only)

SYSTEM.DEFAULT.LISTENER.SPX Default SPX listener (Windows only)

SYSTEM.DEFAULT.LISTENER.TCP Default TCP/IP listener (Multiplatforms only)

SYSTEM.DEFAULT.NAMELIST Default namelist definition

SYSTEM.DEFAULT.PROCESS Default process definition

SYSTEM.DEFAULT.SEVICE Default service (Multiplatforms only)

SYSTEM.DEFAULT.TOPIC Default topic definition

SYSTEM.QPUBSUB.QUEUE.NAMELIST A list of queues for the Queued Publish/Subscribe
interface to monitor

SYSTEMST Default storage class definition (z/OS only)

Queue name resolution
In larger networks, the use of queue managers has a number of advantages over other forms of
communication. These advantages derive from the name resolution function in distributed queue
management, which ensures that queue name resolution is performed by queue managers at both
sending and receiving ends of a channel.

The main benefits of this approach are as follows:

Configuration reference 69

• Applications do not need to make routing decisions
• Applications do not need to know the network structure
• Network links are created by systems administrators
• Network structure is controlled by network planners
• Multiple channels can be used between nodes to partition traffic

The following figure shows an example of queue name resolution. The figure shows two machines
in a network, one running a put application, the other running a get application. The applications
communicate with each other through the IBM MQ channel, controlled by the MCAs.

Figure 5. Name resolution

Referring to Figure 5 on page 70, the basic mechanism for putting messages on a remote queue, as far as
the application is concerned, is the same as for putting messages on a local queue:

• The application putting the message issues MQOPEN and MQPUT calls to put messages on the target
queue.

• The application getting the messages issues MQOPEN and MQGET calls to get the messages from the
target queue.

If both applications are connected to the same queue manager then no inter-queue manager
communication is required, and the target queue is described as local to both applications.

However, if the applications are connected to different queue managers, two MCAs and their associated
network connection are involved in the transfer, as shown in the figure. In this case, the target queue is
considered to be a remote queue to the putting application.

The sequence of events is as follows:

1. The putting application issues MQOPEN and MQPUT calls to put messages to the target queue.
2. During the MQOPEN call, the name resolution function detects that the target queue is not local, and

decides which transmission queue is appropriate. Thereafter, on the MQPUT calls associated with the
MQOPEN call, all messages are placed on this transmission queue.

3. The sending MCA gets the messages from the transmission queue and passes them to the receiving
MCA at the remote computer.

70 IBM MQ Configuration Reference

4. The receiving MCA puts the messages on the target queue, or queues.
5. The getting application issues MQOPEN and MQGET calls to get the messages from the target queue.

Note: Only step 1 and step 5 involve application code; steps 2 through 4 are performed by the local queue
managers and the MCA programs. The putting application is unaware of the location of the target queue,
which could be in the same processor, or in another processor on another continent.

The combination of sending MCA, the network connection, and the receiving MCA, is called a message
channel, and is inherently a unidirectional device. Normally, it is necessary to move messages in both
directions, and two channels are set up for this movement, one in each direction.

Related tasks
Putting messages on remote queues

What is queue name resolution?
Queue name resolution is vital to distributed queue management. It removes the need for applications
to be concerned with the physical location of queues, and insulates applications from the details of
networks.

A systems administrator can move queues from one queue manager to another, and change the routing
between queue managers without applications needing to know anything about it.

To uncouple from the application design the exact path over which the data travels, there is a level of
indirection between the name used by the application when it refers to the target queue, and the naming
of the channel over which the flow occurs. This indirection is achieved using the queue name resolution
mechanism.

In essence, when an application refers to a queue name, the name is mapped by the resolution
mechanism either to a transmission queue or to a local queue that is not a transmission queue. For
mapping to a transmission queue, a second name resolution is needed at the destination, and the
received message is placed on the target queue as intended by the application designer. The application
remains unaware of the transmission queue and channel used for moving the message.

Note: The definition of the queue and channel is a system management responsibility and can be changed
by an operator or a system management utility, without the need to change applications.

An important requirement for the system management of message flows is that alternative paths need to
be provided between queue managers. For example, business requirements might dictate that different
classes of service are sent over different channels to the same destination. This decision is a system
management decision and the queue name resolution mechanism provides a flexible way to achieve it.
The Application Programming Guide describes this in detail, but the basic idea is to use queue name
resolution at the sending queue manager to map the queue name supplied by the application to the
appropriate transmission queue for the type of traffic involved. Similarly at the receiving end, queue name
resolution maps the name in the message descriptor to a local (not a transmission) queue or again to an
appropriate transmission queue.

Not only is it possible for the forward path from one queue manager to another to be partitioned
into different types of traffic, but the return message that is sent to the reply-to queue definition in
the outbound message can also use the same traffic partitioning. Queue name resolution satisfies this
requirement and the application designer need not be involved in these traffic partitioning decisions.

The point that the mapping is carried out at both the sending and receiving queue managers is an
important aspect of the way name resolution works. This mapping allows the queue name supplied by the
putting application to be mapped to a local queue or a transmission queue at the sending queue manager,
and again remapped to a local queue or a transmission queue at the receiving queue manager.

Reply messages from receiving applications or MCAs have the name resolution carried out in the same
way, allowing return routing over specific paths with queue definitions at all the queue managers on route.

Configuration reference 71

How are destination object attributes resolved for aliases, remote queues
and cluster queues?

When name resolution is performed on behalf of an application API call, attributes affecting the use of
the object are resolved from a combination of the originally named object, the "path" (see “Queue name
resolution” on page 69), and the resolved target object. In a queue manager cluster, the "named object" in
question is the clustered object (queue or topic) definition. This is a subset of the object attributes shared
between queue managers and visible through. for example, DISPLAY QCLUSTER.

Where an attribute can be defined on the named object opened by the application, this takes precedence.
For example, all DEF**** attributes (default persistence, priority, and asynchronous put response) can be
configured on alias and remote queue definitions. These take effect when the alias or remote queue is
opened by an application, rather than any resolved destination queue or transmission queue.

Attributes designed to restrict or limit application interaction with a target object cannot typically be
defined on the named object (remote queue definition or alias). For example, MAXMSGL and MAXDEPTH
cannot be set on a remote queue definition or alias, and are not passed between members of a queue
manager cluster. These attributes are therefore taken from the resolved queue (for example the local
queue, appropriate transmission queue, or SYSTEM.CLUSTER.TRANSMIT.QUEUE). On arrival at a remote
queue manager, a second constraint might be applied on delivery to the target queue, which could result
in a message being placed on a dead letter queue, or the channel being forced to stop.

Note that a special case of attribute resolution is PUT and GET enablement. For both of these attributes,
any instance of DISABLED in the queue path results in an overall resolved attribute of DISABLED.

System and default objects
Lists the system and default objects created by the crtmqm command.

When you create a queue manager using the crtmqm control command, the system objects and the
default objects are created automatically.

• The system objects are those IBM MQ objects needed to operate a queue manager or channel.
• The default objects define all the attributes of an object. When you create an object, such as a local

queue, any attributes that you do not specify explicitly are inherited from the default object.

The following tables list the system and default objects created by crtmqm.

Note: There are two other default objects not included in the tables: the queue manager object and the
object catalogue. These are objects in the sense that they are logged and recoverable.

• System and default objects: queues
• System and default objects: topics
• System and default objects: server channels
• System and default objects: client channels
• System and default objects: authentication information
• System and default objects: communications information
• System and default objects: listeners
• System and default objects: namelists
• System and default objects: processes
• System and default objects: services

Table 11. System and default objects: queues

Object name Description

SYSTEM.ADMIN.ACCOUNTING.QUEUE Queue for accounting message data generated when
an application disconnects from the queue manager.

72 IBM MQ Configuration Reference

Table 11. System and default objects: queues (continued)

Object name Description

SYSTEM.ADMIN.ACTIVITY.QUEUE Queue that holds returned activity report messages.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.EVENT Event queue for command events.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for remote
MQSC commands and PCF commands.

SYSTEM.ADMIN.CONFIG.EVENT Event queue for configuration events.

SYSTEM.ADMIN.LOGGER.EVENT Event queue for logger event (journal receiver)
messages.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.PUBSUB.EVENT System publish/subscribe related event queue

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.STATISTICS.QUEUE The queue that holds MQI, queue and channel
statistics monitoring data.

SYSTEM.ADMIN.TRACE.ACTIVITY.QUEUE The queue that displays trace activity.

SYSTEM.ADMIN.TRACE.ROUTE.QUEUE The queue that holds returned trace-route reply
messages.

SYSTEM.AMQP.COMMAND.QUEUE IBM MQ Administration Command Queue for AMQP

SYSTEM.AUTH.DATA.QUEUE The queue that holds access control lists for the
queue manager. Used by the object authority manager
(OAM).

SYSTEM.BROKER.ADMIN.STREAM Administration stream for queued Pub/Sub interface

SYSTEM.BROKER.CONTROL.QUEUE Publish/subscribe interface control queue.

SYSTEM.BROKER.DEFAULT.STREAM Default stream for queued Pub/Sub interface

SYSTEM.BROKER.INTER.BROKER.COMMUNICA
TIONS

Broker to broker communications queue.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ The queue that holds the synchronization data for
channels.

SYSTEM.CHLAUTH.DATA.QUEUE IBM MQ channel authentication data queue

SYSTEM.CICS.INITIATION.QUEUE The default CICS initiation queue.

SYSTEM.CLUSTER.COMMAND.QUEUE The queue used to carry messages to the repository
queue manager.

SYSTEM.CLUSTER.HISTORY.QUEUE The queue used to store the history of cluster state
information for service purposes.

SYSTEM.CLUSTER.REPOSITORY.QUEUE The queue used to store all repository information.

SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE The queue used to create individual transmit queues
for each cluster-sender channel.

SYSTEM.CLUSTER.TRANSMIT.QUEUE The transmission queue for all messages to all
clusters.

Configuration reference 73

Table 11. System and default objects: queues (continued)

Object name Description

SYSTEM.DEAD.LETTER.QUEUE Dead-letter (undelivered-message) queue.

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

SYSTEM.DOTNET.XARECOVERY.QUEUE IBM MQ .NET XA Recovery Queue

SYSTEM.DURABLE.MODEL.QUEUE The queue used as a model for managed durable
subscriptions.

SYSTEM.DURABLE.SUBSCRIBER.QUEUE The queue used to hold a persistent copy of the
durable subscriptions in the queue manager.

SYSTEM.HIERARCHY.STATE IBM MQ distributed publish/subscribe hierarchy
relationship state.

SYSTEM.INTER.QMGR.CONTROL IBM MQ distributed publish/subscribe control queue.

SYSTEM.INTER.QMGR.FANREQ IBM MQ distributed publish/subscribe internal proxy
subscription fan-out process input queue.

SYSTEM.INTER.QMGR.PUBS IBM MQ distributed publish/subscribe publications.

SYSTEM.INTERNAL.REPLY.QUEUE

SYSTEM.INTERNAL.REQUEST.QUEUE

SYSTEM.JMS.TEMPQ.MODEL Model for JMS temporary queues

SYSTEM.MQEXPLORER.REPLY.MODEL The IBM MQ Explorer reply-to queue. This is a model
queue that creates a temporary dynamic queue for
replies to the IBM MQ Explorer.

SYSTEM.MQSC.REPLY.QUEUE MQSC command reply-to queue. This is a model
queue that creates a temporary dynamic queue for
replies to remote MQSC commands.

SYSTEM.NDURABLE.MODEL.QUEUE A queue used as a model for managed non durable
subscriptions.

SYSTEM.PENDING.DATA.QUEUE Support deferred messages in JMS.

SYSTEM.PROTECTION.ERROR.QUEUE IBM MQ Message Protection Error Queue.

SYSTEM.PROTECTION.POLICY.QUEUE IBM MQ Message Protection Policy Queue.

SYSTEM.REST.REPLY.QUEUE

SYSTEM.RETAINED.PUB.QUEUE A queue used to hold a copy of each retained
publication in the queue manager.

SYSTEM.SELECTION.EVALUATION.QUEUE

SYSTEM.SELECTION.VALIDATION.QUEUE

74 IBM MQ Configuration Reference

Table 12. System and default objects: topics

Object name Description

SYSTEM.ADMIN.TOPIC Administration topic.

SYSTEM.BASE.TOPIC Base topic for ASPARENT resolution. If a particular
topic has no parent administrative topic objects,
or those parent objects also have ASPARENT, any
remaining ASPARENT attributes are inherited from this
object.

SYSTEM.BROKER.ADMIN.STREAM Admin stream used by the queued publish/subscribe
interface.

SYSTEM.BROKER.DEFAULT.STREAM The default stream used by the queued publish/
subscribe interface.

SYSTEM.BROKER.DEFAULT.SUBPOINT The default subpoint used by the queued publish/
subscribe interface.

SYSTEM.DEFAULT.TOPIC Default topic definition.

Table 13. System and default objects: server channels

Object name Description

SYSTEM.AUTO.RECEIVER Dynamic receiver channel.

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel.

SYSTEM.DEF.AMQP Default AMQP channel. Note that the object is defined,
but the AMQP service is not supported.

SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster, used to supply
default values for any attributes not specified when a
CLUSRCVR channel is created on a queue manager in
the cluster.

SYSTEM.DEF.CLUSSDR Default sender channel for the cluster, used to supply
default values for any attributes not specified when a
CLUSSDR channel is created on a queue manager in the
cluster.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.SVRCONN Default server-connection channel.

SYSTEM.DEFAULT.AUTHINFO.IDPWLDAP

SYSTEM.DEFAULT.AUTHINFO.IDPWOS

Table 14. System and default objects: client channels

Object name Description

SYSTEM.DEF.CLNTCONN Default client-connection channel.

Configuration reference 75

Table 15. System and default objects: authentication information

Object name Description

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP Default authentication information object for defining
authentication information objects of type CRLLDAP.

SYSTEM.DEFAULT.AUTHINFO.OCSP Default authentication information object for defining
authentication information objects of type OCSP.

Table 16. System and default objects: communications information

Object name Description

SYSTEM.DEFAULT.COMMINFO.MULTICAST Default communications information object for
multicast.

Table 17. System and default objects: listeners

Object name Description

SYSTEM.DEFAULT.LISTENER.TCP Default listener for TCP transport.

SYSTEM.DEFAULT.LISTENER.LU62

Default LU62 listener.

SYSTEM.DEFAULT.LISTENER.NETBIOS

Default NETBIOS listener.

SYSTEM.DEFAULT.LISTENER.SPX

Default SPX listener.

Table 18. System and default objects: namelists

Object name Description

SYSTEM.DEFAULT.NAMELIST Default namelist definition.

SYSTEM.QPUBSUB.QUEUE.NAMELIST A list of queue names monitored by the queued
publish/subscribe interface.

SYSTEM.QPUBSUB.SUBPOINT.NAMELIST A list of topic objects used by the queued publish/
subscribe interface to match topic objects to
subscription points.

Table 19. System and default objects: processes

Object name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

Table 20. System and default objects: services

Object name Description

SYSTEM.AMQP.SERVICE MQ Light API service. Note that the object is defined,
but the service is not supported.

SYSTEM.DEFAULT.SERVICE Default service.

76 IBM MQ Configuration Reference

SYSTEM.BASE.TOPIC
Base topic for ASPARENT resolution. If a particular topic has no parent administrative topic objects, or
those parent objects also have ASPARENT, any remaining ASPARENT attributes are inherited from this
object.

Table 21. Default values of SYSTEM.BASE.TOPIC

Parameter Value

TOPICSTR "

CLROUTE DIRECT

CLUSTER The default value is an empty string.

COMMINFO SYSTEM.DEFAULT.COMMINFO.MULTICAST

DEFPRESP SYNC

DEFPRTY 0

DEFPSIST NO

DESCR 'Base topic for resolving attributes'

DURSUB YES

MCAST DISABLED

MDURMDL SYSTEM.DURABLE.MODEL.QUEUE

MNDURMDL SYSTEM.NDURABLE.MODEL.QUEUE

NPMSGDLV ALLAVAIL

PMSGDLV ALLDUR

PROXYSUB FIRSTUSE

PUB ENABLED

PUBSCOPE ALL

 QSGDISP
(z/OS platform only)

QMGR

SUB ENABLED

SUBSCOPE ALL

USEDLQ YES

WILDCARD PASSTHRU

If this object does not exist, its default values are still used by IBM MQ for ASPARENT attributes that are
not resolved by parent topics further up the topic tree.

Setting the PUB or SUB attributes of SYSTEM.BASE.TOPIC to DISABLED prevents applications publishing
or subscribing to topics in the topic tree, with two exceptions:

1. Any topic objects in the topic tree that have PUB or SUB explicitly set to ENABLE. Applications can
publish or subscribe to those topics, and their children.

2. Publication and subscription to SYSTEM.BROKER.ADMIN.STREAM is not disabled by the setting the
PUB or SUB attributes of SYSTEM.BASE.TOPIC to DISABLED.

See also Special handling for the PUB parameter.

Configuration reference 77

Stanza information
The following information helps you configure the information within stanzas, and lists the contents of the
mqs.ini, qm.ini, and mqclient.ini files.

Configuring stanzas
Use the links to help you configure the system, or systems, in your enterprise:

• Changing IBM MQ configuration information helps you configure the:

– AllQueueManagers stanza
– DefaultQueueManager stanza
– ExitProperties stanza
– LogDefaults stanza
– Security stanza in the qm.ini file

• Changing queue manager configuration information helps you configure the:

– AccessMode stanza (Windows only)
– Service stanza - for Installable services
– Log stanza

– RestrictedMode stanza (AIX and Linux systems only)
– XAResourceManager stanza
– TCP, LU62, and NETBIOS stanzas
– ExitPath stanza
– QMErrorLog stanza
– SSL stanza
– ExitPropertiesLocal stanza

• Configuring services and components helps you configure the:

– Service stanza
– ServiceComponent stanza

and contains links to how they are used for different services on AIX, Linux, and Windows platforms.
• Configuring API exits helps you configure the:

– AllActivityTrace stanza
– AppplicationTrace stanza

• Configuring activity trace behavior helps you configure the:

– ApiExitCommon stanza
– ApiExitTemplate stanza
– ApiExitLocal stanza

• Configuration information for clients helps you configure the:

– CHANNELS stanza
– ClientExitPath stanza

– LU62, NETBIOS and SPX stanza (Windows only)
– MessageBuffer stanza
– SSL stanza
– TCP stanza

78 IBM MQ Configuration Reference

• “Configuration file stanzas for distributed queuing” on page 80 helps you configure the:

– CHANNELS stanza
– TCP stanza
– LU62 stanza
– NETBIOS
– ExitPath stanza

• Setting queued publish/subscribe message attributes helps you configure the:

– PersistentPublishRetry attribute
– NonPersistentPublishRetry attribute
– PublishBatchSize attribute
– PublishRetryInterval attribute

in the Broker stanza.

Attention: You must create a Broker stanza if you need one.

• Using automatic configuration helps you configure the:

– AutoConfig stanza
– AutoCluster stanza
– Variables stanza

Configuration files
See:

• mqs.ini file
• qm.ini file
• mqclient.ini file

for a list of the possible stanzas in each configuration file.
mqs.ini file

Example of an IBM MQ configuration file for AIX and Linux systems shows an example mqs.ini file.

An mqs.ini file can contain the following stanzas:

• AllQueueManagers
• DefaultQueueManager
• ExitProperties
• LogDefaults

In addition, there is one QueueManager stanza for each queue manager.

qm.ini file

Example queue manager configuration file for IBM MQ for AIX or Linux systems shows an example
qm.ini file.

A qm.ini file can contain the following stanzas:

• ExitPath
• Log
• QMErrorLog
• QueueManager

Configuration reference 79

• Security
• ServiceComponent

To configure InstallableServices use the Service and ServiceComponent stanzas.
• Connection for DefaultBindType

Attention: You must create a Connection stanza if you need one.

• SSL and TLS
• TCP, LU62, and NETBIOS
• XAResourceManager

In addition, you can change the:

• AccessMode (Windows only)

• RestrictedMode (AIX and Linux systems only)

by using the crtmqm command.

mqclient.ini file

An mqclient.ini file can contain the following stanzas:

• CHANNELS
• ClientExitPath
• LU62, NETBIOS, and SPX
• MessageBuffer
• SSL
• TCP

In addition, you might need a PreConnect stanza to configure a preconnect exit.

Configuration file stanzas for distributed queuing
A description of the stanzas of the queue manager configuration file, qm.ini, related to distributed
queuing.

This topic shows the stanzas in the queue manager configuration file that relate to distributed queuing. It
applies to the queue manager configuration file for IBM MQ for Multiplatforms. The file is called qm.ini
on all platforms.

The stanzas that relate to distributed queuing are:

• CHANNELS
• TCP
• LU62
• NETBIOS
• EXITPATH

Figure 6 on page 81 shows the values that you can set using these stanzas. When you are defining one
of these stanzas, you do not need to start each item on a new line. You can use either a semicolon (;) or a
hash character (#) to indicate a comment.

80 IBM MQ Configuration Reference

CHANNELS:
 MAXCHANNELS=n ; Maximum number of channels allowed, the
 ; default value is 100.
 MAXACTIVECHANNELS=n ; Maximum number of channels allowed to be active at
 ; any time, the default is the value of MaxChannels.
 MAXINITIATORS=n ; Maximum number of initiators allowed, the default
 ; and maximum value is 3.
 MQIBINDTYPE=type ; Whether the binding for applications is to be
 ; "fastpath" or "standard".
 ; The default is "standard".
 PIPELINELENGTH=n ; The maximum number of concurrent threads a channel will use.
 ; The default is 1. Any value greater than 1 is treated as 2.
 ADOPTNEWMCA=chltype ; Stops previous process if channel fails to start.
 ; The default is "NO".
 ADOPTNEWMCATIMEOUT=n ; Specifies the amount of time that the new
 ; process should wait for the old process to end.
 ; The default is 60.
 ADOPTNEWMCACHECK= ; Specifies the type checking required.
 typecheck ; The default is "NAME","ADDRESS", and "QM".
 CHLAUTHEARLYADOPT=Y/N ; The order in which connection authentication and channel
authentication rules are
 ; processed. If not present in the qm.ini file the default is "N".
From MQ9.0.4 all
 ; queue managers are created with a defa\ult of "Y"
 PASSWORDPROTECTION= ; From MQ8.0,set protected passwords in the MQCSP structure, rather
than using TLS.
 options ; The options are "compatible", "always", "optional" and "warn"
 ; The default is "compatible".
 IGNORESEQNUMBERMISMATCH ; How the queue manager handles a sequence number mismatch during
channel startup.
 =Y/N ; The options are "Y" and "N" with the default being "N".
 CHLAUTHIGNOREUSERCASE ; Enables a queue manager to make username matching within CHLAUTH
rules case-insensitive.
 =Y/N ; The options are "Y" and "N" with the default being "N".
 CHLAUTHISSUEWARN=Y ; If you want message AMQ9787 to be generated when you set theWARN=YES
attribute
 ; on the SET CHLAUTH command.
TCP: ; TCP entries
 PORT=n ; Port number, the default is 1414
 KEEPALIVE=Yes ; Switch TCP/IP KeepAlive on
LU62:
 LIBRARY2=DLLName2 ; Used if code is in two libraries
EXITPATH:1 Location of user exits
 EXITPATHS= ; String of directory paths.

Figure 6. qm.ini stanzas for distributed queuing

Notes:

1. EXITPATH applies only to the following platforms:

• AIX

• Windows

Related tasks
Configuring

Configuring z/OS
Changing configuration information on AIX, Linux, and Windows systems

Changing configuration information on IBM i

Channel attributes
This section describes the channel attributes held in the channel definitions.

You choose the attributes of a channel to be optimal for a particular set of circumstances for each
channel. However, when the channel is running, the actual values might have changed during startup
negotiations. See Preparing channels.

Configuration reference 81

Many attributes have default values, and you can use these values for most channels. However, in those
circumstances where the defaults are not optimal, see this section for guidance in selecting the correct
values.

For cluster channels, you specify the cluster channel attributes on the cluster-receiver channels at the
target queue managers. Any attributes you specify on the matching cluster-sender channels are likely to
be ignored. See Cluster channels.

Note: In IBM MQ for IBM i, most attributes can be specified as *SYSDFTCHL, which means that the value
is taken from the system default channel in your system.

Channel attributes and channel types
Different types of channel support different channel attributes.

The channel types for IBM MQ channel attributes are listed in the following table, in the order of the MQSC
command parameters.

Note: For cluster channels (the CLUSSDR and CLUSRCVR columns in the table), if an attribute can be set
on both channels, set it on both and ensure that the settings are identical. If there is any discrepancy
between the settings, those that you specify on the CLUSRCVR channel are likely to be used. This is
explained in Cluster channels.

Table 22. Channel attributes for the channel types

Attribute field MQSC
command
paramete

r

SDR SVR RCV
R

RQST
R

CLNT-
CONN

SVR-
CONN

CLUS
- SDR

CLUS-
RCVR

AM
QP

Connection
affinity

AFFINITY Yes

Alter date ALTDATE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Alter time ALTTIME Yes Yes Yes Yes Yes Yes Yes Yes Yes

AMQP keep alive

AMQPKA Yes

Batch heartbeat
interval

BATCHHB Yes Yes Yes Yes

Batch interval BATCHINT Yes Yes Yes Yes

Batch limit BATCHLIM Yes Yes Yes Yes

Batch size BATCHSZ Yes Yes Yes Yes Yes Yes

Certificate label CERTLABL Yes Yes Yes Yes Yes Yes Yes
“1” on
page

85

Yes Yes

Channel name CHANNEL Yes Yes Yes Yes Yes Yes Yes Yes Yes

Channel type CHLTYPE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Client channel
weight

CLNTWGH
T

Yes

Cluster namelist CLUSNL Yes Yes

Cluster CLUSTER Yes Yes

82 IBM MQ Configuration Reference

Table 22. Channel attributes for the channel types (continued)

Attribute field MQSC
command
paramete

r

SDR SVR RCV
R

RQST
R

CLNT-
CONN

SVR-
CONN

CLUS
- SDR

CLUS-
RCVR

AM
QP

Cluster workload
priority

CLWLPRT
Y

Yes Yes

Cluster workload
rank

CLWLRAN
K

Yes Yes

Cluster workload
weight

CLWLWGH
T

Yes Yes

Header
compression

COMPHDR Yes Yes Yes Yes Yes Yes Yes Yes

Data compression COMPMSG Yes Yes Yes Yes Yes Yes Yes Yes

Connection name CONNAME Yes Yes Yes Yes Yes Yes

Convert message CONVERT Yes Yes Yes Yes

Default
reconnection

DEFRECO
N

Yes

Description DESCR Yes Yes Yes Yes Yes Yes Yes Yes Yes

Disconnect
interval

DISCINT Yes Yes Yes “2”
on page

85

Yes Yes

Heartbeat interval HBINT Yes Yes Yes Yes Yes Yes Yes Yes

Keepalive interval KAINT Yes Yes Yes Yes Yes Yes Yes Yes

Local address LOCLADD
R

Yes Yes Yes Yes Yes Yes Yes

Long retry count LONGRTY Yes Yes Yes Yes

Long retry interval LONGTMR Yes Yes Yes Yes

Maximum
instances

MAXINST Yes Yes

Maximum
instances per
client

MAXINST
C

Yes

Maximum
message length

MAXMSGL Yes Yes Yes Yes Yes Yes Yes Yes Yes

Message channel
agent name

MCANAME Yes Yes Yes Yes Yes

Message channel
agent type

MCATYPE Yes Yes Yes Yes Yes

Message channel
agent user

MCAUSER Yes Yes Yes Yes Yes Yes Yes Yes

LU 6.2 mode
name

MODENA
ME

Yes Yes Yes Yes Yes Yes

Configuration reference 83

Table 22. Channel attributes for the channel types (continued)

Attribute field MQSC
command
paramete

r

SDR SVR RCV
R

RQST
R

CLNT-
CONN

SVR-
CONN

CLUS
- SDR

CLUS-
RCVR

AM
QP

Monitoring MONCHL Yes Yes Yes Yes Yes Yes Yes

Message-retry exit
user data

MRDATA Yes Yes Yes

Message-retry exit
name

MREXIT Yes Yes Yes

Message retry
count

MRRTY Yes Yes Yes

Message retry
interval

MRTMR Yes Yes Yes

Message exit user
data

MSGDATA Yes Yes Yes Yes Yes Yes

Message exit
name

MSGEXIT Yes Yes Yes Yes Yes Yes

Network-
connection
priority

NETPRTY Yes

Nonpersistent
message speed

NPMSPEE
D

Yes Yes Yes Yes Yes Yes

Password PASSWOR
D

Yes Yes Yes Yes Yes

Port number PORT Yes

Property control PROPCTL Yes Yes Yes Yes

PUT authority PUTAUT Yes Yes Yes “2”
on page

85

Yes

Queue manager
name

QMNAME Yes

Disposition “2” on
page 85

QSGDISP Yes Yes Yes Yes Yes Yes Yes Yes

Receive exit user
data

RCVDATA Yes Yes Yes Yes Yes Yes Yes Yes

Receive exit name RCVEXIT Yes Yes Yes Yes Yes Yes Yes Yes

Security exit user
data

SCYDATA Yes Yes Yes Yes Yes Yes Yes Yes

Security exit name SCYEXIT Yes Yes Yes Yes Yes Yes Yes Yes

Send exit user
data

SENDDAT
A

Yes Yes Yes Yes Yes Yes Yes Yes

Send exit name SENDEXIT Yes Yes Yes Yes Yes Yes Yes Yes

84 IBM MQ Configuration Reference

Table 22. Channel attributes for the channel types (continued)

Attribute field MQSC
command
paramete

r

SDR SVR RCV
R

RQST
R

CLNT-
CONN

SVR-
CONN

CLUS
- SDR

CLUS-
RCVR

AM
QP

Sequence number
wrap

SEQWRAP Yes Yes Yes Yes Yes Yes

Shared
connections

SHARECN
V

Yes Yes

Short retry count SHORTRT
Y

Yes Yes Yes Yes

Short retry
interval

SHORTTM
R

Yes Yes Yes Yes

Security policy
protection

SPLPROT Yes Yes Yes Yes

SSL Client
Authentication

SSLCAUTH Yes Yes Yes Yes Yes Yes

SSL Cipher
Specification

SSLCIPH Yes Yes Yes Yes Yes Yes Yes Yes Yes

SSL Peer SSLPEER Yes Yes Yes Yes Yes Yes Yes Yes Yes

Channel statistics STATCHL Yes Yes Yes Yes Yes Yes

LU 6.2 transaction
program name

TPNAME Yes Yes Yes Yes Yes Yes

Topic root TPROOT Yes

Transport type TRPTYPE Yes Yes Yes Yes Yes Yes Yes Yes

Use client ID USECLTID Yes

Use Dead-Letter
Queue

USEDLQ Yes Yes Yes Yes Yes Yes

User ID USERID Yes Yes Yes Yes Yes

Transmission
queue name

XMITQ Yes Yes

Notes:

1. None of the administrative interfaces allow this attribute to be inquired or set for CLUSSDR channels.
You will receive an MQRCCF_WRONG_CHANNEL_TYPE message. However, the attribute is present in
CLUSSDR channel objects (including MQCD structures) and a CHAD exit can set it programmatically if
required.

2. Valid on z/OS only.

Related concepts
“Channel attributes in alphabetical order of MQSC keywords” on page 86

Configuration reference 85

This section describes each attribute of a channel object, with its valid values and notes on its use where
appropriate.
Related reference
MQSC commands

Channel attributes in alphabetical order of MQSC keywords
This section describes each attribute of a channel object, with its valid values and notes on its use where
appropriate.

IBM MQ for some platforms might not implement all the attributes shown in this section. Exceptions and
platform differences are mentioned in the individual attribute descriptions, where relevant.

The name of each attribute is shown in brackets.

The attributes are arranged in alphabetical order.

AFFINITY (Connection affinity)
This attribute specifies whether client applications that connect multiple times using the same queue
manager name, use the same client channel.

Use this attribute (MQIACH_CONNECTION_AFFINITY) when multiple applicable channel definitions are
available.

The possible values are:
PREFERRED

The first connection in a process reading a client channel definition table (CCDT) creates a list of
applicable definitions based on the client channel weight, with any definitions having a weight of
0 first and in alphabetical order. Each connection in the process attempts to connect using the
first definition in the list. If a connection is unsuccessful the next definition is used. Unsuccessful
definitions with client channel weight values other than 0 are moved to the end of the list. Definitions
with a client channel weight of 0 remain at the start of the list and are selected first for each
connection.

Each client process with the same host name always creates the same list.

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET), and for applications that use the IBM MQ classes for Java and IBM MQ classes
for JMS, the list is updated if the CCDT has been modified since the list was created.

This value is the default, and has the value of 1.

NONE
The first connection in a process reading a CCDT creates a list of applicable definitions. All
connections in a process select an applicable definition based on the client channel weight, with
any definitions having a weight of 0 selected first in alphabetical order.

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET), and for applications that use the IBM MQ classes for Java and IBM MQ classes
for JMS, the list is updated if the CCDT has been modified since the list was created.

This attribute is valid for the client-connection channel type only.

ALTDATE (Alter date)
This attribute is the date on which the definition was last altered, in the form yyyy-mm-dd.

This attribute is valid for all channel types.

86 IBM MQ Configuration Reference

ALTTIME (Alter time)
This attribute is the time at which the definition was last altered, in the form hh.mm.ss.

This attribute is valid for all channel types.

AMQPKA (AMQP keep alive)
Use the AMQPKA attribute to specify a keep alive time for the AMQP client connection. If the AMQP client
has not sent any frames within the keep alive interval, then the connection is closed.

The AMQPKA attribute determines the value of the idle-timeout attribute sent from IBM MQ to an AMQP
client. The attribute is a period of time in milliseconds.

If AMQPKA is set to a value > 0, then IBM MQ flows half that value as the idle-timeout attribute. For
example, a value of 10000 causes the queue manager to send an idle-timeout value of 5000. The client
should ensure that data is sent to IBM MQ at least every 10000 milliseconds. If data is not received
by IBM MQ in that time, IBM MQ assumes that the client has lost its connection and forcibly closes the
connection with an amqp:resource-limit-exceeded error condition.

A value of AUTO or 0 means the IBM MQ does not flow an idle-timeout attribute to the AMQP client.

An AMQP client can still flow an idle-timeout value of its own. If it does, IBM MQ flows data (or an empty
AMQP frame) at least that frequently to inform the client that it is available.

BATCHHB (Batch Heartbeat Interval)
This attribute allows a sending channel to verify that the receiving channel is still active just before
committing a batch of messages.

The batch heartbeat interval thus allows the batch to be backed out rather than becoming in-doubt if the
receiving channel is not active. By backing out the batch, the messages remain available for processing so
they could, for example, be redirected to another channel.

If the sending channel has had a communication from the receiving channel within the batch heartbeat
interval, the receiving channel is assumed to be still active, otherwise a 'heartbeat' is sent to the receiving
channel to check. The sending channel waits for a response from the receiving end of the channel for an
interval, based on the number of seconds specified in the channel Heartbeat Interval (HBINT) attribute.

The value is in milliseconds and must be in the range zero through 999999. A value of zero indicates that
batch heart beating is not used.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

BATCHINT (Batch interval)
This attribute is a period, in milliseconds, during which the channel keeps a batch open even if there are
no messages on the transmission queue.

You can specify any number of milliseconds, from zero through 999 999 999. The default value is zero.

If you do not specify a batch interval, the batch closes when one of the following conditions is met:

• The number of messages specified in BATCHSZ have been sent.
• The number of bytes specified in BATCHLIM have been sent.
• The transmission queue is empty.

On channels with a light load, where the transmission queue frequently becomes empty, the effective
batch size might be much smaller than BATCHSZ.

Configuration reference 87

You can use the BATCHINT attribute to make your channels more efficient by reducing the number of
short batches. Be aware, however, that you can slow down the response time, because batches last
longer and messages remain uncommitted for longer.

If you specify a BATCHINT, batches close only when one of the following conditions is met:

• The number of messages specified in BATCHSZ have been sent.
• The number of bytes specified in BATCHLIM have been sent.
• There are no more messages on the transmission queue and a time interval of BATCHINT has elapsed

while waiting for messages (since the first message of the batch was retrieved).

Note: BATCHINT specifies the total amount of time that is spent waiting for messages. It does not include
the time spent retrieving messages that are already available on the transmission queue, or the time
spent transferring messages.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

BATCHLIM (Batch limit)
This attribute is the limit, in kilobytes, of the amount of data that can be sent through a channel before
taking a sync point.

A sync point is taken after the message that caused the limit to be reached has flowed across the channel.

The value must be in the range 0 - 999999. The default value is 5000.

A value of zero in this attribute means that no data limit is applied to batches over this channel.

The batch is terminated when one of the following conditions is met:

• BATCHSZ messages have been sent.
• BATCHLIM bytes have been sent.
• The transmission queue is empty and BATCHINT is exceeded.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

This parameter is supported on all platforms.

BATCHSZ (Batch size)
This attribute is the maximum number of messages to be sent before a sync point is taken.

The batch size does not affect the way the channel transfers messages; messages are always transferred
individually, but are committed or backed out as a batch.

To improve performance, you can set a batch size to define the maximum number of messages to be
transferred between two sync points. The batch size to be used is negotiated when a channel starts, and
the lower of the two channel definitions is taken. On some implementations, the batch size is calculated
from the lowest of the two channel definitions and the two queue manager MAXUMSGS values. The actual
size of a batch can be less; for example, a batch completes when there are no messages left on the
transmission queue or the batch interval expires.

88 IBM MQ Configuration Reference

A large value for the batch size increases throughput, but recovery times are increased because there are
more messages to back out and send again. The default BATCHSZ is 50, and you are advised to try that
value first. You might choose a lower value for BATCHSZ if your communications are unreliable, making
the need to recover more likely.

Sync point procedure needs a unique logical unit of work identifier to be exchanged across the link every
time a sync point is taken, to coordinate batch commit procedures.

If the synchronized batch commit procedure is interrupted, an in-doubt situation might arise. In-doubt
situations are resolved automatically when a message channel starts. If this resolution is not successful,
manual intervention might be necessary, using the RESOLVE command.

Some considerations when choosing the number for batch size:

• If the number is too large, the amount of queue space taken up on both ends of the link becomes
excessive. Messages take up queue space when they are not committed, and cannot be removed from
queues until they are committed.

• If there is likely to be a steady flow of messages, you can improve the performance of a channel by
increasing the batch size because fewer confirm flows are needed to transfer the same quantity of
bytes.

• If message flow characteristics indicate that messages arrive intermittently, a batch size of 1 with a
relatively large disconnect time interval might provide a better performance.

• The number can be in the range 1 through 9999.
• Even though nonpersistent messages on a fast channel do not wait for a sync point, they do contribute

to the batch-size count.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

CERTLABL (Certificate label)
This attribute specifies the certificate label of the channel definition.

The label identifies which personal certificate in the key repository is sent to the remote peer. The
certificate is defined as described in Digital certificate labels.

Inbound channels (including RCVR, RQSTR, CLUSRCVR, unqualified SERVER, and SVRCONN channels) will
only send the configured certificate if the IBM MQ version of the remote peer fully supports certificate
label configuration and the channel is using a TLS CipherSpec. If that is not the case, the queue manager
CERTLABL attribute determines the certificate sent. This restriction is because the certificate label
selection mechanism for inbound channels depends upon a TLS protocol extension that is not supported
in all cases. In particular, Java clients and JMS clients do not support the required protocol extension and
will only ever receive the certificate configured by the queue manager CERTLABL attribute, regardless of
the channel-specific label setting.

An unqualified server channel is one that does not have the CONNAME field set.

None of the administrative interfaces allow this attribute to be inquired or set for CLUSSDR channels. You
will receive an MQRCCF_WRONG_CHANNEL_TYPE message. However, the attribute is present in CLUSSDR
channel objects (including MQCD structures) and a CHAD exit can set it programmatically if required.

For more information about what the certificate label can contain, see Digital certificate labels,
understanding the requirements.

This attribute is valid for all channel types.

Configuration reference 89

Note: For SSL/TLS, the CERTLABL must be defined on the QMGR definition. You can, optionally, set a
CERTLABL on the CHANNEL definition.

The queue manager CERTLABL is checked and must be a valid personal certificate, even if you are setting
a CERTLABL on the CHANNEL definition.

CHANNEL (Channel name)
This attribute specifies the name of the channel definition.

The name can contain up to 20 characters, although as both ends of a message channel must have
the same name, and other implementations might have restrictions on the size, the actual number of
characters might have to be smaller.

Where possible, channel names are unique to one channel between any two queue managers in a
network of interconnected queue managers.

The name must contain characters from the following list:

Alphabetic (A-Z, a-z; note that uppercase and lowercase are significant)

Numerics (0-9)

Period (.)

Forward slash (/)

Underscore (_)

Percentage sign (%)

Note:

1. Embedded blanks are not allowed, and leading blanks are ignored.
2. On systems using EBCDIC Katakana, you cannot use lowercase characters.

This attribute is valid for all channel types.

CHLTYPE (Channel type)
This attribute specifies the type of the channel being defined.

The possible channel types are:
Message channel types:

• Sender
• Server
• Receiver
• Requester
• Cluster-sender
• Cluster-receiver

MQI channel types:

• Client-connection (AIX, Linux, and Windows only)

Note: Client-connection channels can also be defined on z/OS for use on other platforms.
• Server-connection
• AMQP

The two ends of a channel must have the same name and have compatible types:

• Sender with receiver
• Requester with server

90 IBM MQ Configuration Reference

• Requester with sender (for callback)
• Server with receiver (server is used as a sender)
• Client-connection with server-connection
• Cluster-sender with cluster-receiver
• AMQP with AMQP

CLNTWGHT (Client channel weight)
This attribute specifies a weighting to influence which client-connection channel definition is used.

The client channel weighting attribute is used so that client channel definitions can be selected at random
based on their weighting when more than one suitable definition is available.

When a client issues an MQCONN requesting connection to a queue manager group, by specifying a queue
manager name starting with an asterisk, which enables client weight balancing across several queue
managers, and more than one suitable channel definition is available in the client channel definition
table (CCDT), the definition to use is randomly selected based on the weighting, with any applicable
CLNTWGHT(0) definitions selected first in alphabetical order.

Note: When a JSON CCDT is used it is possible to have multiple channels with the same
name. If multiple channels with the same name exist, and they have CLNTWGHT(0) then the channels will
be selected in the order that they are defined in the JSON CCDT.

Specify a value in the range 0 - 99. The default is 0.

A value of 0 indicates that no load balancing is performed and applicable definitions are selected in
alphabetical order. To enable load balancing choose a value in the range 1 - 99 where 1 is the lowest
weighting and 99 is the highest. The distribution of connections between two or more channels with
non-zero weightings is proportional to the ratio of those weightings. For example, three channels with
CLNTWGHT values of 2, 4, and 14 are selected approximately 10%, 20%, and 70% of the time. This
distribution is not guaranteed. If the AFFINITY attribute of the connection is set to PREFERRED, the first
connection chooses a channel definition according to client weightings, and then subsequent connections
continue to use the same channel definition.

This attribute is valid for the client-connection channel type only.

CLUSNL (Cluster namelist)
This attribute is the name of the namelist that specifies a list of clusters to which the channel belongs.

Up to one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of the values is nonblank,
the other must be blank.

This attribute is valid for channel types of:

• Cluster sender
• Cluster receiver

CLUSTER (Cluster)
This attribute is the name of the cluster to which the channel belongs.

The maximum length is 48 characters conforming to the rules for naming IBM MQ objects.

Up to one of the resultant values of CLUSTER or CLUSNL can be non-blank. If one of the values is
non-blank, the other must be blank.

This attribute is valid for channel types of:

• Cluster sender
• Cluster receiver

Configuration reference 91

CLWLPRTY (Cluster workload priority)
The CLWLPRTY channel attribute specifies the priority order for channels for cluster workload distribution.
The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY channel attribute to set a priority order for the available cluster destinations. IBM
MQ selects the destinations with the highest priority before selecting destinations with the lowest cluster
destination priority. If there are multiple destinations with the same priority, it selects the least recently
used destination.

If there are two possible destinations, you can use this attribute to allow failover. Messages go to the
queue manager with the highest priority channel. If it becomes unavailable then messages go to the next
highest priority queue manager. Lower priority queue managers act as reserves.

IBM MQ checks channel status before prioritizing the channels. Only available queue managers are
candidates for selection.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• The availability of a remote queue manager is based on the status of the channel to that queue
manager. When channels start, their state changes several times, with some of the states being less
preferential to the cluster workload management algorithm. In practice this means that lower priority
(backup) destinations can be chosen while the channels to higher priority (primary) destinations are
starting.

• If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider
using separate queues, or CLWLRANK with a manual switch over from the primary to back up.

CLWLRANK (Cluster workload rank)
The CLWLRANK channel attribute specifies the rank of channels for cluster workload distribution. The
value must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK channel attribute if you want control over the final destination for messages sent to
a queue manager in another cluster. Control the choice of final destination by setting the rank of the
channels connecting a queue manager to the gateway queue managers at the intersection of the clusters.

When you set CLWLRANK, messages take a specified route through the interconnected clusters towards a
higher ranked destination. For example, messages arrive at a gateway queue manager that can send them
to either of two queue managers using channels ranked 1 and 2. They are automatically sent to the queue
manager connected by a channel with the highest rank, in this case the channel to the queue manager
ranked 2.

IBM MQ gets the rank of channels before checking channel status. Getting the rank before checking
channel status means that even non-accessible channels are available for selection. It allows messages
to be routed through the network even if the final destination is unavailable.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• If you also used the priority attribute CLWLPRTY, IBM MQ selects between available destinations.
If a channel is not available to the destination with the highest rank, the message is held on the
transmission queue. It is released when the channel becomes available. The message does not get sent
to the next available destination in the rank order.

92 IBM MQ Configuration Reference

CLWLWGHT (Cluster workload weight)
The CLWLWGHT channel attribute specifies the weight applied to CLUSSDR and CLUSRCVR channels for
cluster workload distribution. The value must be in the range 1-99, where 1 is the lowest weight and 99 is
the highest.

Use CLWLWGHT to send servers with more processing power more messages. The higher the channel
weight, the more messages are sent over that channel.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• When CLWLWGHT is modified from the default of 50 on any channel, workload balancing becomes
dependent on the total number of times each channel was chosen for a message sent to any clustered
queue. For more information, see “The cluster workload management algorithm” on page 136.

COMPHDR (Header compression)
This attribute is a list of header data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the values specified
are in order of preference with the first compression technique supported by the remote end of the
channel being used. The channels' mutually supported compression techniques are passed to the sending
channel's message exit where the compression technique used can be altered on a per message basis.
Compression alters the data passed to send and receive exits.

Possible values are:
NONE

No header data compression is performed. This value is the default value.
SYSTEM

Header data compression is performed.

This attribute is valid for all channel types.

COMPMSG (Data compression)
This attribute is a list of message data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the values specified
are in order of preference. The first compression technique supported by the remote end of the
channel is used. The channels' mutually supported compression techniques are passed to the sending
channel's message exit where the compression technique used can be altered on a per message basis.
Compression alters the data passed to send and receive exits. See “COMPHDR (Header compression)” on
page 93 for compression of the message header.

The possible values are:
NONE

No message data compression is performed. This value is the default value.
RLE

Message data compression is performed using run-length encoding.
ZLIBFAST

Message data compression is performed using the zlib compression technique. A fast compression
time is preferred.

ZLIBFAST can optionally be offloaded to the zEnterprise® Data Compression facility. See zEDC Express
facility for further information.

ZLIBHIGH
Message data compression is performed using the zlib compression technique. A high level of
compression is preferred.

Configuration reference 93

ANY
Allows the channel to support any compression technique that the queue manager supports. Only
supported for Receiver, Requester and Server-Connection channels.

This attribute is valid for all channel types.

From IBM MQ 9.2.1, the ZLIBFAST and ZLIBHIGH techniques can use the hardware-
accelerated zlibNX library on IBM MQ for AIX if it is installed. The zlibNX library is an enhanced version of
the zlib compression library that supports hardware-accelerated data compression and decompression by
using co-processors called Nest accelerators (NX) on IBM POWER9 processor-based servers. The zlibNX
library is available in IBM AIX 7.2 with Technology Level 4 Expansion Pack, and later. Highly compressible
messages that are over 2KB in size are most likely to benefit from opting to use the zlibNX library,
by reducing CPU usage. To enable a message channel agent (MCA) to use the zlibNX library, set the
environment variable AMQ_USE_ZLIBNX.

CONNAME (Connection name)
This attribute is the communications connection identifier. It specifies the particular communications
links to be used by this channel.

It is optional for server channels, unless the server channel is triggered, in which case it must specify a
connection name.

Specify CONNAME as a comma-separated list of names of machines for the stated TRPTYPE. Typically
only one machine name is required. You can provide multiple machine names to configure multiple
connections with the same properties. The connections are usually tried in the order they are specified
in the connection list until a connection is successfully established. The order is modified for clients if
the CLNTWGHT attribute is provided. If no connection is successful, the channel attempts the connection
again, as determined by the attributes of the channel. With client channels, a connection-list provides an
alternative to using queue manager groups to configure multiple connections. With message channels, a
connection list is used to configure connections to the alternative addresses of a multi-instance queue
manager.

Providing multiple connection names in a list was first supported in IBM WebSphere® MQ 7.0.1. It
changes the syntax of the CONNAME parameter. Earlier clients and queue managers connect using the first
connection name in the list, and do not read the rest of the connection names in the list. In order for the
earlier clients and queue managers to parse the new syntax, you must specify a port number on the first
connection name in the list. Specifying a port number avoids problems when connecting to the channel
from a client or queue manager that is running at a level earlier than IBM WebSphere MQ 7.0.1.

On Multiplatforms, the TCP/IP connection name parameter of a cluster-receiver channel
is optional. If you leave the connection name blank, IBM MQ generates a connection name for you,
assuming the default port and using the current IP address of the system. You can override the default
port number, but still use the current IP address of the system. For each connection name leave the IP
name blank, and provide the port number in parentheses; for example:

(1415)

The generated CONNAME is always in the dotted decimal (IPv4) or hexadecimal (IPv6) form, rather than in
the form of an alphanumeric DNS host name.

The maximum name length depends on the platform:

• 264 characters.

• 48 characters (see note 1).

If the transport type is TCP
CONNAME is either the host name or the network address of the remote machine
(or the local machine for cluster-receiver channels). For example, (ABC.EXAMPLE.COM),

94 IBM MQ Configuration Reference

(2001:DB8:0:0:0:0:0:0) or (127.0.0.1). It can include the port number, for example
(MACHINE(123)).

It can include the IP_name of a dynamic DNS group or a Network Dispatcher input port.
If you use an IPv6 address in a network that only supports IPv4, the connection name is not resolved.
In a network which uses both IPv4 and IPv6, the connection name interacts with the local address
to determine which IP stack is used. See “LOCLADDR (Local Address) ” on page 99 for further
information.

If the transport type is LU 6.2
If the TPNAME and MODENAME are specified, give the fully-qualified name of the

partner LU. If the TPNAME and MODENAME are blank, give the CPI-C side information object name for
your specific platform.

There are two forms in which to specify the value:

• Logical unit name

The logical unit information for the queue manager, comprising the logical unit name, TP name, and
optional mode name. This name can be specified in one of three forms:

Table 23. Logical unit names and forms

Form Example

luname IGY12355

luname/TPname IGY12345/APING

luname/TPname/modename IGY12345/APINGD/#INTER

For the first form, the TP name and mode name must be specified for the TPNAME and MODENAME
attributes; otherwise these attributes must be blank. For client-connection channels, only the first
form is allowed.

• Symbolic name

The symbolic destination name for the logical unit information for the queue manager, as defined in
the side information data set. The TPNAME and MODENAME attributes must be blank. Note that, for
cluster-receiver channels, the side information is on the other queue managers in the cluster. In this
case it can be a name that a channel auto-definition exit can resolve into the appropriate logical unit
information for the local queue manager.

The specified or implied LU name can be that of a VTAM generic resources group.
If the transmission protocol is NetBIOS

CONNAME is the NetBIOS name defined on the remote machine.
If the transmission protocol is SPX

CONNAME is an SPX-style address consisting of a 4 byte network address, a 6 byte node address and
a 2 byte socket number. Enter these values in hexadecimal, with the network and node addresses
separated by a period and the socket number in brackets. For example:

CONNAME('0a0b0c0d.804abcde23a1(5e86)')

If the socket number is omitted, the default IBM MQ SPX socket number is used. The default is
X'5E86'.

This attribute is valid for channel types of:

• Sender
• Server
• Requester

Configuration reference 95

• Client connection
• Cluster sender
• Cluster receiver

It is optional for server channels, unless the server channel is triggered, in which case it must specify a
connection name.

Note:

1. For name lengths, you can work around the 48 character limit in either of the following ways:

• Set up your DNS servers so that you use, for example, host name of "myserver" instead of
"myserver.location.company.com", ensuring you can use the short host name.

• Use IP addresses.
2. The definition of transmission protocol is contained in “TRPTYPE (Transport type)” on page 117.

CONVERT (Convert message)
This attribute specifies that the message must be converted into the format required by the receiving
system before transmission.

Application message data is typically converted by the receiving application. However, if the remote
queue manager is on a platform that does not support data conversion, use this channel attribute to
specify that the message must be converted into the format required by the receiving system before
transmission.

The possible values are yes and no. If you specify yes, the application data in the message is converted
before sending if you have specified one of the built-in format names, or a data conversion exit is available
for a user-defined format (See Writing data-conversion exits). If you specify no, the application data in
the message is not converted before sending.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

DEFRECON (Default reconnection)
Specifies whether a client connection automatically reconnects a client application if its connection
breaks.

The possible values are:
NO (default)

Unless overridden by MQCONNX, the client is not reconnected automatically.
YES

Unless overridden by MQCONNX, the client reconnects automatically.
QMGR

Unless overridden by MQCONNX, the client reconnects automatically, but only to the same queue
manager. The QMGR option has the same effect as MQCNO_RECONNECT_Q_MGR.

DISABLED
Reconnection is disabled, even if requested by the client program using the MQCONNX MQI call.

This attribute is valid only for client connection channels.

96 IBM MQ Configuration Reference

DESCR (Description)
This attribute describes the channel definition and contains up to 64 bytes of text.

Note: The maximum number of characters is reduced if the system is using a double byte character set
(DBCS).

Use characters from the character set identified by the coded character set identifier (CCSID) for the
queue manager to ensure that the text is translated correctly if it is sent to another queue manager.

This attribute is valid for all channel types.

DISCINT (Disconnect interval)
This attribute is the length of time after which a channel closes down, if no message arrives during that
period.

This attribute is a time-out attribute, specified in seconds, for the server, cluster-sender, sender, and
cluster-receiver channels. The interval is measured from the point at which a batch ends, that is when
the batch size is reached or when the batch interval expires and the transmission queue becomes empty.
If no messages arrive on the transmission queue during the specified time interval, the channel closes
down. (The time is approximate.)

The close-down exchange of control data between the two ends of the channel includes an indication of
the reason for closing. This ensures that the corresponding end of the channel remains available to start
again.

You can specify any number of seconds from zero through 999 999 where a value of zero means no
disconnect; wait indefinitely.

For server-connection channels using the TCP protocol, the interval represents the client inactivity
disconnect value, specified in seconds. If a server-connection has received no communication from its
partner client for this duration, it terminates the connection.

The server-connection inactivity interval applies between IBM MQ API calls from a client.

Note: A potentially long-running MQGET with wait call is not classified as inactivity and, therefore, never
times out as a result of DISCINT expiring.

This attribute is valid for channel types of:

• Sender
• Server
• Server connection
• Cluster sender
• Cluster receiver

This attribute is not applicable for server-connection channels using protocols other than TCP.

Note: Performance is affected by the value specified for the disconnect interval.

A low value (for example a few seconds) can be detrimental to system performance by constantly starting
the channel. A large value (more than an hour) might mean that system resources are needlessly held
up. You can also specify a heartbeat interval, so that when there are no messages on the transmission
queue, the sending MCA sends a heartbeat flow to the receiving MCA, thus giving the receiving MCA
an opportunity to quiesce the channel without waiting for the disconnect interval to expire. For these
two values to work together effectively, the heartbeat interval value must be significantly lower than the
disconnect interval value.

The default DISCINT value is set to 100 minutes. However, a value of a few minutes is often a reasonable
value to use without impacting performance or keeping channels running for unnecessarily long periods of
time. If it is appropriate for your environment you can change this value, either on each individual channel
or through changing the value in the default channel definitions, for example SYSTEM.DEF.SENDER.

For more information, see Stopping and quiescing channels.

Configuration reference 97

HBINT (Heartbeat interval)
This attribute specifies the approximate time between heartbeat flows that are to be passed from a
sending message channel agent (MCA) when there are no messages on the transmission queue.

Heartbeat flows unblock the receiving MCA, which is waiting for messages to arrive or for the disconnect
interval to expire. When the receiving MCA is unblocked, it can disconnect the channel without waiting for
the disconnect interval to expire. Heartbeat flows also free any storage buffers that have been allocated
for large messages and close any queues that have been left open at the receiving end of the channel.

The value is in seconds and must be in the range 0 - 999 999. A value of zero means that no heartbeat
flows are to be sent. The default value is 300. To be most useful, the value must be significantly less than
the disconnect interval value.

With applications that use IBM MQ classes for Java, JMS or .NET APIs, the HBINT value is determined in
one of the following ways:

• Either by the value on the SVRCONN channel that is used by the application.
• Or by the value on the CLNTCONN channel, if the application has been configured to use a CCDT.

For server-connection and client-connection channels, heartbeats can flow from both the server side as
well as the client side independently. If no data has been transferred across the channel for the heartbeat
interval, the client-connection MQI agent sends a heartbeat flow and the server-connection MQI agent
responds to it with another heartbeat flow. This happens irrespective of the state of the channel, for
example, irrespective of whether it is inactive while making an API call, or is inactive waiting for client
user input. The server-connection MQI agent is also capable of initiating a heartbeat to the client, again
irrespective of the state of the channel. To prevent both server-connection and client-connection MQI
agents heart beating to each other at the same time, the server heartbeat is flowed after no data has been
transferred across the channel for the heartbeat interval plus 5 seconds.

For server-connection and client-connection channels working in the channel mode before IBM
WebSphere MQ 7.0, heartbeats flow only when a server MCA is waiting for an MQGET command with
the WAIT option specified, which it has issued on behalf of a client application.

For more information about making MQI channels work in the two modes, see SharingConversations
(MQLONG).

Related reference
DEFINE CHANNEL
ALTER CHANNEL

KAINT (Keepalive Interval)
This attribute is used to specify a timeout value for a channel.

The Keepalive Interval attribute is a value passed to the communications stack specifying the Keepalive
timing for the channel. It allows you to specify a different keepalive value for each channel.

You can set the Keepalive Interval (KAINT) attribute for channels on a per-channel basis.

On Multiplatforms, you can access and modify the parameter, but it is only stored and
forwarded; there is no functional implementation of the parameter. If you need the functionality provided
by the KAINT parameter, use the Heartbeat Interval (HBINT) parameter, as described in “HBINT
(Heartbeat interval)” on page 98.

For this attribute to have any effect, TCP/IP keepalive must be enabled.

• On z/OS, you do enable keepalive by issuing the ALTER QMGR TCPKEEP(YES) MQSC
command.

• On Multiplatforms, it occurs when the KEEPALIVE=YES parameter is specified in the TCP
stanza in the distributed queuing configuration file, qm.ini, or through the IBM MQ Explorer.

Keepalive must also be enabled within TCP/IP itself, using the TCP profile configuration data set.

98 IBM MQ Configuration Reference

The value indicates a time, in seconds, and must be in the range 0 - 99999. A Keepalive Interval value
of 0 indicates that channel-specific Keepalive is not enabled for the channel and only the system-wide
Keepalive value set in TCP/IP is used. You can also set KAINT to a value of AUTO (this value is the default).
If KAINT is set to AUTO, the Keepalive value is based on the value of the negotiated heartbeat interval
(HBINT) as follows:

Table 24. Negotiated HBINT value and the corresponding KAINT value

Negotiated HBINT KAINT

>0 Negotiated HBINT + 60 seconds

0 0

This attribute is valid for all channel types.

The value is ignored for all channels that have a TransportType (TRPTYPE) other than TCP or SPX

LOCLADDR (Local Address)
This attribute specifies the local communications address for the channel.

Note: AMQP channels do not support the same format of LOCLADDR as other IBM MQ channels. For more
information, see “LOCLADDR for AMQP channels” on page 101.

LOCLADDR for all channels except AMQP channels
This attribute only applies if the transport type (TRPTYPE) is TCP/IP. For all other transport types, it is
ignored.

When a LOCLADDR value is specified, a channel that is stopped and then restarted continues to use the
TCP/IP address specified in LOCLADDR. In recovery scenarios, this attribute might be useful when the
channel is communicating through a firewall. It is useful because it removes problems caused by the
channel restarting with the IP address of the TCP/IP stack to which it is connected. LOCLADDR can also
force a channel to use an IPv4 or IPv6 stack on a dual stack system, or a dual-mode stack on a single
stack system.

This attribute is valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender
• Cluster receiver

When LOCLADDR includes a network address, the address must be a network addresses belonging to a
network interface on the system where the channel is run. For example, when defining a sender channel
on queue manager ALPHA to queue manager BETA with the following MSQC command:

DEFINE CHANNEL(TO.BETA) CHLTYPE(SDR) CONNAME(192.0.2.0) XMITQ(BETA) LOCLADDR(192.0.2.1)

The LOCLADDR address is the IPv4 address 192.0.2.1. This sender channel runs on the system of
queue manager ALPHA, so the IPv4 address must belong to one of the network interfaces its system.

The value is the optional IP address, and optional port or port range used for outbound TCP/IP
communications. The format for this information is as follows:

Configuration reference 99

LOCLADDR([ip-addr][(low-port[,high-port])][,[ip-addr][(low-port[,high-port])]])

The maximum length of LOCLADDR, including multiple addresses, is MQ_LOCAL_ADDRESS_LENGTH.

If you omit LOCLADDR, a local address is automatically allocated.

Note, that you can set LOCLADDR for a C client using the Client Channel Definition Table (CCDT).

All the parameters are optional. Omitting the ip-addr part of the address is useful to enable the
configuration of a fixed port number for an IP firewall. Omitting the port number is useful to select a
particular network adapter without having the identify a unique local port number. The TCP/IP stack
generates a unique port number.

Specify [,[ip-addr][(low-port[,high-port])]] multiple times for each additional local address.
Use multiple local addresses if you want to specify a specific subset of local network adapters. You can
also use [,[ip-addr][(low-port[,high-port])]] to represent a particular local network address
on different servers that are part of a multi-instance queue manager configuration.

ip-addr
ip-addr is specified in one of three forms:
IPv4 dotted decimal

For example, 192.0.2.1
IPv6 hexadecimal notation

For example, 2001:DB8:0:0:0:0:0:0
Alphanumeric host name form

For example WWW.EXAMPLE.COM
low-port and high-port

low-port and high-port are port numbers enclosed in parentheses.
The following table shows how the LOCLADDR parameter can be used:

Table 25. Examples of how the LOCLADDR parameter can be used

LOCLADDR Meaning

9.20.4.98 Channel binds to this address locally

9.20.4.98, 9.20.4.99 Channel binds to either IP address. The address might be two network
adapters on one server, or a different network adapter on two different
servers in a multi-instance configuration.

9.20.4.98(1000) Channel binds to this address and port 1000 locally

9.20.4.98(1000,2000) Channel binds to this address and uses a port in the range 1000 - 2000
locally

(1000) Channel binds to port 1000 locally

(1000,2000) Channel binds to port in range 1000 - 2000 locally

When a channel is started the values specified for connection name (CONNAME) and local address
(LOCLADDR) determine which IP stack is used for communication. The IP stack used is determined as
follows:

• If the system has only an IPv4 stack configured, the IPv4 stack is always used. If a local address
(LOCLADDR) or connection name (CONNAME) is specified as an IPv6 network address, an error is
generated and the channel fails to start.

• If the system has only an IPv6 stack configured, the IPv6 stack is always used. If a local address
(LOCLADDR) is specified as an IPv4 network address, an error is generated and the channel fails to start.
On platforms supporting IPv6 mapped addressing, if a connection name (CONNAME) is specified as an
IPv4 network address, the address is mapped to an IPv6 address. For example, xxx.xxx.xxx.xxx

100 IBM MQ Configuration Reference

is mapped to ::ffff:xxx.xxx.xxx.xxx. The use of mapped addresses might require protocol
translators. Avoid the use of mapped addresses where possible.

• If a local address (LOCLADDR) is specified as an IP address for a channel, the stack for that IP address
is used. If the local address (LOCLADDR) is specified as a host name resolving to both IPv4 and IPv6
addresses, the connection name (CONNAME) determines which of the stacks is used. If both the local
address (LOCLADDR) and connection name (CONNAME) are specified as host names resolving to both
IPv4 and IPv6 addresses, the stack used is determined by the queue manager attribute IPADDRV.

• If the system has dual IPv4 and IPv6 stacks configured and a local address (LOCLADDR) is not specified
for a channel, the connection name (CONNAME) specified for the channel determines which IP stack to
use. If the connection name (CONNAME) is specified as a host name resolving to both IPv4 and IPv6
addresses, the stack used is determined by the queue manager attribute IPADDRV.

On Multiplatforms, you can set a default local address value that is used for all sender
channels that do not have a local address defined. The default value is defined by setting the
MQ_LCLADDR environment variable prior to starting the queue manager. The format of the value matches
that of MQSC attribute LOCLADDR.

Local addresses with cluster sender channels
Cluster sender channels always inherit the configuration of the corresponding cluster receiver channel as
defined on the target queue manager. This is true even if there is a locally defined cluster sender channel
of the same name, in which case the manual definition is only used for initial communication.

For this reason, it is not possible to depend on the LOCLADDR defined in the cluster receiver channel as
it is likely that the IP address is not owned by the system where the cluster senders are created. For this
reason, the LOCLADDR on the cluster receiver should not be used unless there is a reason to restrict only
the ports but not the IP address for all potential cluster senders, and it is known that those ports are
available on all systems where a cluster sender channel may be created.

If a cluster must use LOCLADDR to get the outbound communication channels to bind to a specific IP
address, either use a Channel Auto-Definition Exit, or use the default LOCLADDR for the queue manager
when possible. When using a channel exit, it forces the LOCLADDR value from the exit into any of the
automatically defined CLUSSDR channels.

If using a non-default LOCLADDR for cluster sender channels through the use of an exit or a default value,
any matching manually defined cluster sender channel, for example to a full repository queue manager,
must also have the LOCLADDR value set to enable initial communication over the channel.

Note: If the operating system returns a bind error for the port supplied in LOCLADDR (or all ports, if a port
range is supplied), the channel does not start; the system issues an error message.

LOCLADDR for AMQP channels
AMQP channels support a different format of LOCLADDR than other IBM MQ channels:

LOCLADDR (ip-addr)

LOCLADDR is the local communications address for the channel. Use this parameter if you want to
force the client to use a particular IP address. LOCLADDR is also useful to force a channel to use an
IPv4 or IPv6 address if a choice is available, or to use a particular network adapter on a system with
multiple network adapters.

The maximum length of LOCLADDR is MQ_LOCAL_ADDRESS_LENGTH.

If you omit LOCLADDR, a local address is automatically allocated.

ip-addr
ip-addr is a single network address, specified in one of three forms:
IPv4 dotted decimal

For example 192.0.2.1

Configuration reference 101

IPv6 hexadecimal notation
For example 2001:DB8:0:0:0:0:0:0

Alphanumeric host name form
For example WWW.EXAMPLE.COM

If an IP address is entered, only the address format is validated. The IP address itself is not validated.

Related concepts
Working with auto-defined cluster-sender channels

LONGRTY (Long retry count)
This attribute specifies the maximum number of times that the channel is to try allocating a session to its
partner.

The long retry count attribute can be set from zero through 999 999 999.

This attribute is valid for the following channel types:

• Sender
• Server
• Cluster sender
• Cluster receiver

If the initial allocation attempt fails, the short retry count number is decremented and the channel retries
the remaining number of times. If it still fails, it retries a long retry count number of times with an interval
of long retry interval between each try. If it is still unsuccessful, the channel closes down. The channel
must then be restarted with a command; it is not started automatically by the channel initiator.

On z/OS, a channel cannot enter retry if the maximum number of channels (MAXCHL) has
been exceeded.

On Multiplatforms, in order for retry to be attempted a channel initiator must be running.
The channel initiator must be monitoring the initiation queue specified in the definition of the
transmission queue that the channel is using.

If the channel initiator (on z/OS) or the channel (on Multiplatforms) is stopped while the channel is
retrying, the short retry count and long retry count are reset when the channel initiator or the channel is
restarted, or when a message is successfully put at the sender channel. However, if the channel initiator
(on z/OS) or queue manager (on Multiplatforms) is shut down and restarted, the short retry count and
long retry count are not reset. The channel retains the retry count values it had before the queue manager
restart or the message being put.

On Multiplatforms:

1. When a channel goes from RETRYING state to RUNNING state, the short retry count and long retry
count are not reset immediately. They are reset only when the first message flows across the channel
successfully after the channel went into RUNNING state, that is; when the local channel confirms the
number of messages sent to the other end.

2. The short retry count and long retry count are reset when the channel is restarted.

LONGTMR (Long retry interval)
This attribute is the approximate interval in seconds that the channel is to wait before retrying to establish
connection, during the long retry mode.

The interval between retries can be extended if the channel has to wait to become active.

The channel tries to connect long retry count number of times at this long interval, after trying the short
retry count number of times at the short retry interval.

This attribute can be set from zero through 999 999.

102 IBM MQ Configuration Reference

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

MAXINST (Maximum instances)
This attribute specifies the maximum number of simultaneous instances of a server-connection channel
or AMQP channel that can be started.

Maximum instances of server-connection channel connections
For a server-connection channel, this attribute specifies the maximum number of simultaneous instances
of a server-connection channel that can be started.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

If the value is reduced so that it is less than the number of instances of the server-connection channel
that are currently running, then the running channels are not affected. However, new instances are not
able to start until sufficient existing ones have ceased to run.

Maximum instances of AMQP channel connections
For an AMQP channel, this attribute specifies the maximum number of simultaneous instances of an
AMQP channel that can be started.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

If a client attempts to connect, and the number of connected clients has reached MAXINST, the channel
closes the connection with a close frame. The close frame contains the following message:

amqp:resource-limit-exceeded

If a client connects with an ID that is already connected (that is, it performs a client-takeover), the
takeover will succeed regardless of whether the number of connected clients has reached MAXINST.

Related concepts
Server-connection channel limits
Related reference
DEFINE CHANNEL

MAXINSTC (Maximum instances per client)
This attribute specifies the maximum number of simultaneous instances of a server-connection channel
that can be started from a single client.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

If the value is reduced so that it is less than the number of instances of the server-connection channel
that are currently running from individual clients, then the running channels are not affected. However,
new instances from those clients are not able to start until sufficient existing ones have ceased to run.

This attribute is valid for server-connection channels only.

Related concepts
Server-connection channel limits

Configuration reference 103

Related reference
DEFINE CHANNEL

MAXMSGL (Maximum message length)
This attribute specifies the maximum length of a message that can be transmitted on the channel.

On Multiplatforms, specify a value greater than or equal to zero, and less than or equal to
the maximum message length for the queue manager. See the MAXMSGL parameter of the ALTER QMGR
command in ALTER QMGR for more information.

On IBM MQ for z/OS, specify a value greater than or equal to zero, and less than or equal to
104 857 600 bytes (that is, 100 MB).

Because various implementations of IBM MQ systems exist on different platforms, the size available for
message processing might be limited in some applications. This number must reflect a size that your
system can handle without stress. When a channel starts, the lower of the two numbers at each end of the
channel is taken.

By adding the digital signature and key to the message, Advanced Message Security increases the length
of the message.

Note: You can use a maximum message size of 0 which is taken to mean that the size is to be set to the
local queue manager maximum value.

This attribute is valid for all channel types.

MCANAME (Message channel agent name)
This attribute is reserved and if specified must only be set to blanks.

Its maximum length is 20 characters.

MCATYPE (Message channel agent type)
This attribute can specify the message channel agent as a process or a thread.

Advantages of running as a process include:

• Isolation for each channel providing greater integrity
• Job authority specific for each channel
• Control over job scheduling

Advantages of threads include:

• Much reduced use of storage
• Easier configuration by typing on the command line
• Faster execution - it is quicker to start a thread than to instruct the operating system to start a process

For channel types of sender, server, and requester, the default is process. For channel types of cluster-
sender and cluster-receiver, the default is thread. These defaults can change during your installation.

If you specify process on the channel definition, a RUNMQCHL process is started. If you specify thread,
the MCA runs on a thread of the AMQRMPPA process, or of the RUNMQCHI process if MQNOREMPOOL
is specified. On the machine that receives the inbound allocates, the MCA runs as a thread if you use
RUNMQLSR. It runs as a process if you use inetd.

On IBM MQ for z/OS, this attribute is supported only for channels with a channel type of
cluster-receiver.

On other platforms, this attribute is valid for channel types of:

• Sender

104 IBM MQ Configuration Reference

• Server
• Requester
• Cluster sender
• Cluster receiver

MCAUSER (Message channel agent user identifier)
This attribute is the user identifier (a string) to be used by the MCA for authorization to access IBM MQ
resources.

Note: An alternative way of providing a user ID for a channel to run under is to use channel authentication
records. With channel authentication records, different connections can use the same channel while using
different credentials. If both MCAUSER on the channel is set and channel authentication records are used
to apply to the same channel, the channel authentication records take precedence. The MCAUSER on the
channel definition is only used if the channel authentication record uses USERSRC(CHANNEL).

This authorization includes (if PUT authority is DEF) putting the message to the destination queue for
receiver or requester channels.

On IBM MQ for Windows, the user identifier can be domain-qualified by using the format, user@domain,
where the domain must be either the Windows systems domain of the local system, or a trusted domain.

If this attribute is blank, the MCA uses its default user identifier. For more information, see DEFINE
CHANNEL.

This attribute is valid for channel types of:

• Receiver
• Requester
• Server connection
• Cluster receiver

Related concepts
Channel authentication records

MODENAME (LU 6.2 mode name)
This attribute is for use with LU 6.2 connections. It gives extra definition for the session characteristics of
the connection when a communication session allocation is performed.

When using side information for SNA communications, the mode name is defined in the CPI-C
Communications Side Object or APPC side information, and this attribute must be left blank; otherwise, it
must be set to the SNA mode name.

The name must be one to eight alphanumeric characters long.

This attribute is valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender
• Cluster receiver

It is not valid for receiver or server-connection channels.

Configuration reference 105

MONCHL (Monitoring)
This attribute controls the collection of online Monitoring data.

Possible values are:
QMGR

The collection of Online Monitoring Data is inherited from the setting of the MONCHL attribute in the
queue manager object. This value is the default value.

OFF
Online Monitoring Data collection for this channel is disabled.

LOW
A low ratio of data collection with a minimal effect on performance. However, the monitoring results
shown might not be up to date.

MEDIUM
A moderate ratio of data collection with limited effect on the performance of the system.

HIGH
A high ratio of data collection with the possibility of an effect on performance. However, the
monitoring results shown are the most current.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Server connection
• Cluster sender
• Cluster receiver

For more information about monitoring data, see Displaying queue and channel monitoring data.

MRDATA (Message-retry exit user data)
This attribute specifies data passed to the channel message-retry exit when it is called.

This attribute is valid for channel types of:

• Receiver
• Requester
• Cluster receiver

MREXIT (Message-retry exit name)
This attribute specifies the name of the user exit program to be run by the message-retry user exit.

Leave blank if no message-retry exit program is in effect.

The format and maximum length of the name depend on the platform, as for “RCVEXIT (Receive exit
name)” on page 111. However, there can only be one message-retry exit specified

This attribute is valid for channel types of:

• Receiver
• Requester
• Cluster receiver

106 IBM MQ Configuration Reference

MRRTY (Message retry count)
This attribute specifies the number of times the channel tries to redeliver the message.

This attribute controls the action of the MCA only if the message-retry exit name is blank. If the exit
name is not blank, the value of MRRTY is passed to the exit, but the number of attempts made (if any) is
controlled by the exit, and not by this attribute.

The value must be in the range 0 - 999 999 999. A value of zero means that no additional attempts are
made. The default is 10.

This attribute is valid for channel types of:

• Receiver
• Requester
• Cluster receiver

MRTMR (Message retry interval)
This attribute specifies the minimum interval of time that must pass before the channel can retry the
MQPUT operation.

This time interval is in milliseconds.

This attribute controls the action of the MCA only if the message-retry exit name is blank. If the exit
name is not blank, the value of MRTMR is passed to the exit for use by the exit, but the retry interval is
controlled by the exit, and not by this attribute.

The value must be in the range 0 - 999 999 999. A value of zero means that the retry is performed as soon
as possible (if the value of MRRTY is greater than zero). The default is 1000.

This attribute is valid for the following channel types:

• Receiver
• Requester
• Cluster receiver

MSGDATA (Message exit user data)
This attribute specifies user data that is passed to the channel message exits.

You can run a sequence of message exits. The limitations on the user data length and an example of how
to specify MSGDATA for more than one exit are as shown for RCVDATA. See “RCVDATA (Receive exit user
data)” on page 111.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

MSGEXIT (Message exit name)
This attribute specifies the name of the user exit program to be run by the channel message exit.

This attribute can be a list of names of programs that are to be run in succession. Leave blank, if no
channel message exit is in effect.

The format and maximum length of this attribute depend on the platform, as for “RCVEXIT (Receive exit
name)” on page 111.

Configuration reference 107

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

NETPRTY (Network-connection priority)
The NETPRTY channel attribute specifies the priority for a CLUSRCVR channel. The value must be in the
range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the NETPRTY attribute to make one network the primary network, and another network the backup
network. Given a set of equally ranked channels, clustering chooses the path with the highest priority
when multiple paths are available.

A typical example of using the NETPRTY channel attribute is to differentiate between networks that have
different costs or speeds and connect the same destinations.

Note: Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing
you specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

NPMSPEED (Nonpersistent message speed)
This attribute specifies the speed at which nonpersistent messages are to be sent.

Possible values are:
NORMAL

Nonpersistent messages on a channel are transferred within transactions.
FAST

Nonpersistent messages on a channel are not transferred within transactions.
The default is FAST. The advantage of this is that nonpersistent messages become available for retrieval
far more quickly. The disadvantage is that because they are not part of a transaction, messages might be
lost if there is a transmission failure or if the channel stops when the messages are in transit. See Safety
of messages.

Notes:

1. If the active recovery logs for IBM MQ for z/OS are switching and archiving more frequently
than expected, given that the messages being sent across a channel are non-persistent, setting
NPMSPEED(FAST) on both the sending and receiving ends of the channel can minimize the
SYSTEM.CHANNEL.SYNCQ updates.

2. If you are seeing high CPU usage relating to updates to the SYSTEM.CHANNEL.SYNCQ, setting
NPMSPEED(FAST) can significantly reduce the CPU usage.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

108 IBM MQ Configuration Reference

PASSWORD (Password)
This attribute specifies a password that can be used by the MCA when attempting to initiate a secure LU
6.2 session with a remote MCA.

You can specify a password of maximum length 12 characters, although only the first 10 characters are
used.

It is valid for channel types of sender, server, requester, or client-connection.

On IBM MQ for z/OS, this attribute is valid only for client connection channels.

On other platforms, this attribute is valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender

PORT (Port number)
Specify the port number that is used to connect the AMQP client.

The default port for AMQP 1.0 connections is 5672. If you are already using port 5672, you can specify a
different port.

PUTAUT (PUT authority)
This attribute specifies the type of security processing to be carried out by the MCA.

This attribute is valid for channel types of:

• Receiver
• Requester

• Server connection (z/OS only)
• Cluster receiver

Use this attribute to choose the type of security processing to be carried out by the MCA when executing:

• An MQPUT command to the destination queue (for message channels), or
• An MQI call (for MQI channels).

On z/OS, the user IDs that are checked, and how many user IDs are checked, depends on
the setting of the MQADMIN RACF® class hlq.RESLEVEL profile. Depending on the level of access the user
ID of the channel initiator has to hlq.RESLEVEL, zero, one or two user IDs are checked. To see how many
user IDs are checked, see RESLEVEL and channel initiator connections. For more information about which
user IDs are checked, see User IDs used by the channel initiator.

You can choose one of the following:
Process security, also called default authority (DEF)

The default user ID is used.

On platforms other than z/OS, the user ID used to check open authority on the queue is
that of the process or user running the MCA at the receiving end of the message channel.

On z/OS, both the user ID received from the network, and the user ID derived from
MCAUSER might be used, depending on the number of user IDs that are to be checked.

The queues are opened with this user ID and the open option MQOO_SET_ALL_CONTEXT.

Configuration reference 109

Context security (CTX)
The user ID from the context information associated with the message is used as an alternate user ID.

The UserIdentifier in the message descriptor is moved into the AlternateUserId field in
the object descriptor. The queue is opened with the open options MQOO_SET_ALL_CONTEXT and
MQOO_ALTERNATE_USER_AUTHORITY.

On platforms other than z/OS, the user ID used to check open authority on the queue
for MQOO_SET_ALL_CONTEXT and MQOO_ALTERNATE_USER_AUTHORITY is that of the process or
user running the MCA at the receiving end of the message channel. The user ID used to check open
authority on the queue for MQOO_OUTPUT is the UserIdentifier in the message descriptor.

On z/OS, the user ID received from the network or that derived from MCAUSER might be
used, as well as the user ID from the context information in the message descriptor, depending on the
number of user IDs that are to be checked.

Context security (CTX) is not supported on server-connection channels.

Only Message Channel Agent security (ONLYMCA)
The user ID derived from MCAUSER is used.

Queues are opened with the open option MQOO_SET_ALL_CONTEXT.

This value only applies to z/OS.

Alternate Message Channel Agent security (ALTMCA)
The user ID from the context information (the UserIdentifier field) in the message descriptor
might be used, as well as the user ID derived from MCAUSER, depending on the number of user IDs
that are to be checked.

This value only applies to z/OS.

Further details about context fields and open options can be found in Controlling context information.

More information about security can be found here:

• Securing

• Setting up security on AIX, Linux, and Windows

• Setting up security on IBM i

• Setting up security on z/OS

QMNAME (Queue manager name)
This attribute specifies the name of the queue manager or queue manager group to which an IBM MQ MQI
client application can request connection.

This attribute is valid for channel types of:

• Client connection

QSGDISP (Disposition)
This attribute specifies the disposition of the channel in a queue sharing group. It is valid on z/OS only.

Values are:
QMGR

The channel is defined on the page set of the queue manager that executes the command. This value
is the default.

110 IBM MQ Configuration Reference

GROUP
The channel is defined in the shared repository. This value is allowed only if there is a shared queue
manager environment. When a channel is defined with QSGDISP(GROUP), the command DEFINE
CHANNEL(name) NOREPLACE QSGDISP(COPY) is generated automatically and sent to all active
queue managers to cause them to make local copies on page set 0. For queue managers which
are not active, or which join the queue sharing group at a later date, the command is generated when
the queue manager starts.

COPY
The channel is defined on the page set of the queue manager that executes the command, copying its
definition from the QSGDISP(GROUP) channel of the same name. This value is allowed only if there is
a shared queue manager environment.

This attribute is valid for all channel types.

RCVDATA (Receive exit user data)
This attribute specifies user data that is passed to the receive exit.

You can run a sequence of receive exits. The string of user data for a series of exits must be separated by
a comma, spaces, or both. For example:

RCVDATA(exit1_data exit2_data)
MSGDATA(exit1_data,exit2_data)
SENDDATA(exit1_data, exit2_data)

In IBM MQ for UNIX systems, and Windows systems, the length of the string of exit names
and strings of user data is limited to 500 characters.

In IBM MQ for IBM i, you can specify up to 10 exit names and the length of user data for
each is limited to 32 characters.

In IBM MQ for z/OS, you can specify up to eight strings of user data each of length 32
characters.

This attribute is valid for all channel types.

RCVEXIT (Receive exit name)
This attribute specifies the name of the user exit program to be run by the channel receive user exit.

This attribute can be a list of names of programs that are to be run in succession. Leave it blank if no
channel receive user exit is in effect.

The format and maximum length of this attribute depend on the platform:

• On z/OS it is a load module name, maximum length 8 characters, except for client-
connection channels where the maximum length is 128 characters.

• On IBM i, it is of the form:

libname/progname

when specified in CL commands.

When specified in IBM MQ Commands (MQSC) it has the form:

progname libname

where progname occupies the first 10 characters, and libname the second 10 characters (both
blank-padded to the right if necessary). The maximum length of the string is 20 characters.

Configuration reference 111

• On AIX and Linux, it is of the form:

libraryname(functionname)

The maximum length of the string is 40 characters.

• On Windows, it is of the form:

dllname(functionname)

where dllname is specified without the suffix .DLL. The maximum length of the string is 40 characters.

During cluster sender channel auto-definition on z/OS, channel exit names are converted to
z/OS format. If you want to control how exit names are converted, you can write a channel auto-definition
exit. For more information, see Channel auto-definition exit program.

You can specify a list of receive, send, or message exit program names. The names must be separated by
a comma, a space, or both. For example:

RCVEXIT(exit1 exit2)
MSGEXIT(exit1,exit2)
SENDEXIT(exit1, exit2)

The total length of the string of exit names and strings of user data for a particular type of exit is limited to
500 characters.

• On IBM MQ for IBM i, you can list up to 10 exit names.

• On IBM MQ for z/OS, you can list up to eight exit names.

This attribute is valid for all channel types.

SCYDATA (Security exit user data)
This attribute specifies user data that is passed to the security exit.

The maximum length is 32 characters.

This attribute is valid for all channel types.

SCYEXIT (Security exit name)
This attribute specifies the name of the exit program to be run by the channel security exit.

Leave blank if no channel security exit is in effect.

The format and maximum length of the name depend on the platform, as for “RCVEXIT (Receive exit
name)” on page 111. However, you can only specify one security exit.

This attribute is valid for all channel types.

SENDDATA (Send exit user data)
This attribute specifies user data that is passed to the send exit.

You can run a sequence of send exits. The limitations on the user data length and an example of how to
specify SENDDATA for more than one exit, are as shown for RCVDATA. See “RCVDATA (Receive exit user
data)” on page 111.

This attribute is valid for all channel types.

112 IBM MQ Configuration Reference

SENDEXIT (Send exit name)
This attribute specifies the name of the exit program to be run by the channel send exit.

This attribute can be a list of names of programs that are to be run in sequence. Leave blank if no channel
send exit is in effect.

The format and maximum length of this attribute depend on the platform, as for “RCVEXIT (Receive exit
name)” on page 111.

This attribute is valid for all channel types.

SEQWRAP (Sequence number wrap)
This attribute specifies the highest number the message sequence number reaches before it restarts at 1.

The value of the number must be high enough to avoid a number being reissued while it is still being used
by an earlier message. The two ends of a channel must have the same sequence number wrap value when
a channel starts; otherwise, an error occurs.

The value can be set from 100 through 999 999 999.

This attribute is valid for channel types of:

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

SHORTRTY (Short retry count)
This attribute specifies the maximum number of times that the channel is to try allocating a session to its
partner.

The SHORTRTY attribute can be set from zero through 999 999 999.

This attribute is valid for the following channel types:

• Sender
• Server
• Cluster sender
• Cluster receiver

If multiple IP addresses have been defined within the channel and reconnection is necessary, IBM MQ
evaluates the channel definition and attempts to connect to each IP address in the order it is defined until
either a successful connection is established or all addresses have been attempted.

In this case, SHORTRTY relates to how many total attempts the overall channel tries to reconnect, and not
the individual IP addresses

If the initial allocation attempt fails, the short retry count is decremented and the channel retries the
remaining number of times with an interval, defined in the short retry interval attribute, between
each attempt. If it still fails, it retries long retry count number of times with an interval of long retry interval
between each attempt. If it is still unsuccessful, the channel closes down.

On z/OS, a channel cannot enter retry if the maximum number of channels (MAXCHL) has
been exceeded.

Configuration reference 113

On Multiplatforms, in order for retry to be attempted a channel initiator must be running.
The channel initiator must be monitoring the initiation queue specified in the definition of the
transmission queue that the channel is using.

If the channel initiator (on z/OS) or the channel (on Multiplatforms) is stopped while the channel is
retrying, the short retry count and long retry count are reset when the channel initiator or the channel is
restarted, or when a message is successfully put at the sender channel. However, if the channel initiator
(on z/OS) or queue manager (on Multiplatforms) is shut down and restarted, the short retry count and
long retry count are not reset. The channel retains the retry count values it had before the queue manager
restart or the message being put.

On Multiplatforms:

1. When a channel goes from RETRYING state to RUNNING state, the short retry count and long retry
count are not reset immediately. They are reset only when the first message flows across the channel
successfully after the channel went into RUNNING state, that is; when the local channel confirms the
number of messages sent to the other end.

2. The short retry count and long retry count are reset when the channel is restarted.

SHORTTMR (Short retry interval)
This attribute specifies the approximate interval in seconds that the channel is to wait before retrying to
establish connection, during the short retry mode.

The interval between retries might be extended if the channel has to wait to become active.

This attribute can be set from zero through 999 999.

This attribute is valid for channel types of:

• Sender
• Server
• Cluster sender
• Cluster receiver

If multiple IP addresses have been defined within the channel and reconnection is necessary, IBM MQ
evaluates the channel definition and attempts to connect to each IP address in the order it is defined until
either a successful connection is established or all addresses have been attempted.

In this case, SHORTTMR relates to how long the overall channel waits to restart the connection process,
and not the individual IP addresses.

SPLPROT (Security policy protection)
This attribute specifies how a server-to-server Message Channel Agent should deal with message
protection when AMS is active and an applicable policy exists.

This attribute can be set to:
PASSTHRU

On sender, server, receiver, and requester channels
REMOVE

On sender and server channels
ASPOLICY

On receiver and requester channels

This attribute is valid for channel types of:

• Sender
• Server
• Receiver

114 IBM MQ Configuration Reference

• Requester

SSLCAUTH (SSL Client Authentication)
The SSLCAUTH attribute specifies whether the channel needs to receive and authenticate a TLS certificate
from a TLS client.

The SSLCAUTH attribute is valid on all channel types that can ever receive a channel initiation flow, except
for sender channels. This attribute is valid for channel types of:

• Server
• Receiver
• Requester
• Server connection
• Cluster receiver

SSLCAUTH is an optional attribute. Possible values of this attribute are:
OPTIONAL

If the peer TLS client sends a certificate, the certificate is processed as normal but authentication
does not fail if no certificate is sent.

REQUIRED
If the TLS client does not send a certificate, authentication fails.

The default value is REQUIRED.

You can specify a value for SSLCAUTH on a non-TLS channel definition. That is, a channel definition on
which the SSLCIPH attribute is missing or blank. .

For more information about SSLCAUTH, see DEFINE CHANNEL (MQTT) and Securing.

SSLCIPH (SSL Cipher Specification)
The SSLCIPH attribute specifies an Alias or a single named CipherSpec for a TLS connection.

Every IBM MQ channel definition includes the SSLCIPH attribute. The value is a string with a maximum
length of 32 characters.

The SSLCIPH attribute is valid only for channels with a transport type (TRPTYPE) of TCP. If the TRPTYPE
is not TCP, the data is ignored and no error message is issued.

Notes:

• The SSLCIPH attribute can contain a blank value, meaning that you are not using TLS. If one end of the
channel has a blank SSLCIPH attribute, the other end of the channel must also have a blank SSLCIPH
attribute.

If SecureCommsOnly is enabled, plain text communication is not supported
and the channel fails to start.

• Alternatively, if SSLCIPH contains a nonblank value, the value can be either an Alias or a named
CipherSpec. The channels negotiate the strongest CipherSpec supported by both ends of the channel.

• A fully-managed .NET client can specify the special value *NEGOTIATE. This option allows the
channel to select the most recent protocol version supported by the .NET framework, and negotiate
a CipherSpec that the server supports.

For more information about SSLCIPH, see DEFINE CHANNEL and Specifying CipherSpecs.

SSLPEER (SSL Peer)
The SSLPEER attribute is used to check the Distinguished Name (DN) of the certificate from the peer
queue manager or client at the other end of an IBM MQ channel.

The SSLPEER attribute is valid for all channel types.

Configuration reference 115

Note: An alternative way of restricting connections into channels by matching against the TLS Subject
Distinguished Name, is to use channel authentication records. With channel authentication records,
different TLS Subject Distinguished Name patterns can be applied to the same channel. If both SSLPEER
on the channel and a channel authentication record are used to apply to the same channel, the inbound
certificate must match both patterns in order to connect.

If the DN received from the peer does not match the SSLPEER value, the channel does not start.

SSLPEER is an optional attribute. If a value is not specified, the peer DN is not checked when the channel
is started.

The maximum length of the SSLPEER attribute depends on the platform:

• On z/OS, the maximum length of the attribute is 256 bytes.

• On all other platforms, it is 1024 bytes.

Channel authentication records provide greater flexibility when using SSLPEER and support a maximum
length of 1024 bytes on all platforms.

The checking of SSLPEER attribute values also depends on the platform:

• On z/OS, the attribute values that are used are not checked. If you enter incorrect values,
the channel fails at startup, and error messages are written to the error log at both ends of the channel.
A Channel SSL Error event is also generated at both ends of the channel.

• On platforms other than z/OS that support SSLPEER, the validity of the string is checked
when it is first entered.

You can specify a value for SSLPEER on a non-TLS channel definition, one on which the SSLCIPH attribute
is missing or blank. You can use this to temporarily disable TLS for debugging without having to clear and
later re-input the TLS parameters.

For more information about using SSLPEER, see SET CHLAUTH and Securing.

Related reference
Channel authentication records

STATCHL (Channel statistics)
This attribute controls the collection of statistics data for channels.

The possible values are:
QMGR

Statistics data collection for this channel is based upon the setting of the queue manager attribute
STATCHL. This value is the default value.

OFF
Statistics data collection for this channel is disabled.

LOW
Statistics data collection for this channel is enabled with a low ratio of data collection.

MEDIUM
Statistics data collection for this channel is enabled with a moderate ratio of data collection.

HIGH
Statistics data collection for this channel is enabled with a high ratio of data collection.

For more information about channel statistics, see Monitoring reference.

On z/OS systems, enabling this parameter simply turns on statistics data collection,
regardless of the value you select. Specifying LOW, MEDIUM, or HIGH makes no difference to your results.
This parameter must be enabled in order to collect channel accounting records.

This attribute is valid for channel types of:

116 IBM MQ Configuration Reference

• Sender
• Server
• Receiver
• Requester
• Cluster sender
• Cluster receiver

TPNAME (LU 6.2 transaction program name)
This attribute is for use with LU 6.2 connections. It is the name, or generic name, of the transaction
program (MCA) to be run at the far end of the link.

When using side information for SNA communications, the transaction program name is defined in the
CPI-C Communications Side Object or APPC side information and this attribute must be left blank.
Otherwise, this name is required by sender channels and requester channels.

The name can be up to 64 characters long.

The name must be set to the SNA transaction program name, unless the CONNAME contains a side-
object name in which case it must be set to blanks. The actual name is taken instead from the CPI-C
Communications Side Object, or the APPC side information data set.

This information is set in different ways on different platforms; see Configuring distributed queuing for
more information about setting up communication for your platform.

This attribute is valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender
• Cluster receiver

TPROOT (Topic root)
This attribute specifies the topic root for an AMQP channel.

You can use the TPROOT attribute to specify a topic root for an AMQP channel. Using this attribute
ensures that an MQ Light application, when deployed to a queue manager, does not publish or subscribe
to messages to or from areas of the topic tree that are being used by other applications.

The default value for TPROOT is SYSTEM.BASE.TOPIC. With this value, the topic string an AMQP client
uses to publish or subscribe has no prefix, and the client can exchange messages with other MQ pub/sub
applications. To have AMQP clients publish and subscribe under a topic prefix, first create an MQ topic
object with a topic string set to the prefix you want, then change the value of the AMQP channel TPROOT
attribute to the name of the MQ topic object you created. The following example shows the topic root
being set to APPGROUP1.BASE.TOPIC for AMQP channel MYAMQP:

DEFINE CHANNEL(MYAMQP) CHLTYPE(AMQP) TPROOT(APPGROUP1.BASE.TOPIC) PORT(5673)

Note: If the TPROOT attribute value, or the topic string that underpins it, is changed, existing AMQP topics
and their messages might be orphaned.

TRPTYPE (Transport type)
This attribute specifies the transport type to be used.

The possible values are:

Configuration reference 117

LU62 LU 6.2

TCP TCP/IP

NETBIOS NetBIOS (“1” on page 118)

SPX SPX (“1” on page 118)

Notes:

1. For use on Windows. Can also be used on z/OS for defining client-connection channels for use on
Windows.

This attribute is valid for all channel types, but is ignored by responding message channel agents.

USECLTID (Use client ID)
Use client ID for connection to AMQP channel.

Specify whether the client ID is used for connection on an AMQP channel. Set to Yes or No.

USEDLQ (Use Dead-Letter Queue)
This attribute determines whether the dead-letter queue (or undelivered message queue) is used when
messages cannot be delivered by channels.

Possible values are:
NO

Messages that cannot be delivered by a channel are treated as a failure. The channel either discards
these messages, or the channel ends, in accordance with the setting of NPMSPEED.

YES (default)
If the queue manager DEADQ attribute provides the name of a dead-letter queue, then it is used,
otherwise the behavior is as for NO.

USERID (User ID)
This attribute specifies the user ID to be used by the MCA when attempting to initiate a secure SNA
session with a remote MCA.

You can specify a task user identifier of 20 characters.

It is valid for channel types of sender, server, requester, or client-connection.

This attribute does not apply to IBM MQ for z/OS except for client-connection channels.

On the receiving end, if passwords are kept in encrypted format and the LU 6.2 software is using a
different encryption method, an attempt to start the channel fails with invalid security details. You can
avoid this failure by modifying the receiving SNA configuration to either:

• Turn off password substitution, or
• Define a security user ID and password.

On IBM MQ for z/OS, this attribute is valid only for client connection channels.

On other platforms, it is valid for channel types of:

• Sender
• Server
• Requester
• Client connection
• Cluster sender

118 IBM MQ Configuration Reference

XMITQ (Transmission queue name)
This attribute specifies the name of the transmission queue from which messages are retrieved.

This attribute is required for channels of type sender or server, it is not valid for other channel types.

Provide the name of the transmission queue to be associated with this sender or server channel, that
corresponds to the queue manager at the far side of the channel. You can give the transmission queue the
same name as the queue manager at the remote end.

This attribute is valid for channel types of:

• Sender
• Server

IBM MQ cluster commands
The IBM MQ Script commands runmqsc commands have special attributes and parameters that apply to
clusters. There are other administrative interfaces you can use to manager clusters.

The MQSC commands are shown as they would be entered by the system administrator at the command
console. Remember that you do not have to issue the commands in this way. There are a number of other
methods, depending on your platform; for example:

• On IBM MQ for IBM i, you run MQSC commands interactively from option 26 of WRKMQM. You can also
use CL commands or you can store MQSC commands in a file and use the STRMQMMQSC CL command.

• On z/OS you can use the COMMAND function of the CSQUTIL utility, the operations and
control panels or you can use the z/OS console.

• On all other platforms, you can store the commands in a file and use runmqsc.

In a MQSC command, a cluster name, specified using the CLUSTER attribute, can be up to 48 characters
long.

A list of cluster names, specified using the CLUSNL attribute, can contain up to 256 names. To create a
cluster namelist, use the DEFINE NAMELIST command.

IBM MQ Explorer
The IBM MQ Explorer GUI can administer a cluster with repository queue managers on IBM WebSphere
MQ for z/OS 6.0 or later. You do not need to nominate an additional repository on a separate system.
For earlier versions of IBM MQ for z/OS, the IBM MQ Explorer cannot administer a cluster with repository
queue managers. You must therefore nominate an additional repository on a system that the IBM MQ
Explorer can administer.

On IBM MQ for Windows and IBM MQ for Linux, you can also use IBM MQ Explorer to work with clusters.
You can also use the stand-alone IBM MQ Explorer client.

Using the IBM MQ Explorer, you can view cluster queues and inquire about the status of cluster-sender
and cluster-receiver channels. IBM MQ Explorer includes two wizards, which you can use to guide you
through the following tasks:

• Create a cluster
• Join an independent queue manager to a cluster

Programmable command formats (PCF)
Table 26. PCF equivalents of MQSC commands specifically to work with clusters

runmqsc command PCF equivalent

DISPLAY CLUSQMGR MQCMD_INQUIRE_CLUSTER_Q_MGR

Configuration reference 119

Table 26. PCF equivalents of MQSC commands specifically to work with clusters (continued)

runmqsc command PCF equivalent

SUSPEND QMGR MQCMD_SUSPEND_Q_MGR_CLUSTER

RESUME QMGR MQCMD_RESUME_Q_MGR_CLUSTER

REFRESH CLUSTER MQCMD_REFRESH_CLUSTER

RESET CLUSTER MQCMD_RESET_CLUSTER

Related information
Clustering: Using REFRESH CLUSTER best practices

Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.

To specify that a queue manager holds a full repository for a cluster, use the ALTER QMGR command
specifying the attribute REPOS(clustername). To specify a list of several cluster names, define a
cluster namelist and then use the attribute REPOSNL(namelist) on the ALTER QMGR command:

DEFINE NAMELIST(CLUSTERLIST)
 DESCR('List of clusters whose repositories I host')
 NAMES(CLUS1, CLUS2, CLUS3)
 ALTER QMGR REPOSNL(CLUSTERLIST)

You can provide additional cluster attributes on the ALTER QMGR command

CLWLEXIT(name)
Specifies the name of a user exit to be called when a message is put to a cluster queue.

CLWLDATA(data)
Specifies the data to be passed to the cluster workload user exit.

CLWLLEN(length)
Specifies the maximum amount of message data to be passed to the cluster workload user exit

CLWLMRUC(channels)
Specifies the maximum number of outbound cluster channels.
CLWLMRUC is a local queue manager attribute that is not propagated around the cluster. It is made
available to cluster workload exits and the cluster workload algorithm that chooses the destination for
messages.

CLWLUSEQ(LOCAL|ANY)
Specifies the behavior of MQPUT when the target queue has both a local instance and at least one
remote cluster instance. If the put originates from a cluster channel, this attribute does not apply. It is
possible to specify CLWLUSEQ as both a queue attribute and a queue manager attribute.
If you specify ANY, both the local queue and the remote queues are possible targets of the MQPUT.
If you specify LOCAL, the local queue is the only target of the MQPUT.

The equivalent PCFs are MQCMD_CHANGE_Q_MGR and MQCMD_INQUIRE_Q_MGR.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS

120 IBM MQ Configuration Reference

The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

Channel definition commands
Cluster attributes that can be specified on channel definition commands.

The DEFINE CHANNEL, ALTER CHANNEL, and DISPLAY CHANNEL commands have two specific
CHLTYPE parameters for clusters: CLUSRCVR and CLUSSDR. To define a cluster-receiver channel you use
the DEFINE CHANNEL command, specifying CHLTYPE(CLUSRCVR). Many attributes on a cluster-receiver
channel definition are the same as the attributes on a receiver or sender-channel definition. To define a
cluster-sender channel you use the DEFINE CHANNEL command, specifying CHLTYPE(CLUSSDR), and
many of the same attributes as you use to define a sender-channel.

It is no longer necessary to specify the name of the full repository queue manager when you define
a cluster-sender channel. If you know the naming convention used for channels in your cluster, you
can make a CLUSSDR definition using the +QMNAME+ construction. The +QMNAME+ construction is not
supported on z/OS. After connection, IBM MQ changes the name of the channel and substitutes the
correct full repository queue manager name in place of +QMNAME+. The resulting channel name is
truncated to 20 characters.

For more information on naming conventions, see Cluster naming conventions.

The technique works only if your convention for naming channels includes the name of the
queue manager. For example, you define a full repository queue manager called QM1 in a cluster
called CLUSTER1 with a cluster-receiver channel called CLUSTER1.QM1.ALPHA. Every other queue
manager can define a cluster-sender channel to this queue manager using the channel name,
CLUSTER1.+QMNAME+.ALPHA.

If you use the same naming convention for all your channels, be aware that only one +QMNAME+ definition
can exist at one time.

The following attributes on the DEFINE CHANNEL and ALTER CHANNEL commands are specific to cluster
channels:
CLUSTER

The CLUSTER attribute specifies the name of the cluster with which this channel is associated.
Alternatively use the CLUSNL attribute.

CLUSNL
The CLUSNL attribute specifies a namelist of cluster names.

Configuration reference 121

NETPRTY
Cluster-receivers only.
The NETPRTY attribute specifies a network priority for the channel. NETPRTY helps the workload
management routines. If there is more than one possible route to a destination, the workload
management routine selects the one with the highest priority.

CLWLPRTY
The CLWLPRTY parameter applies a priority factor to channels to the same destination for workload
management purposes. This parameter specifies the priority of the channel for the purposes of cluster
workload distribution. The value must be in the range zero through 9, where zero is the lowest priority
and 9 is the highest.

CLWLRANK
The CLWLRANK parameter applies a ranking factor to a channel for workload management purposes.
This parameter specifies the rank of a channel for the purposes of cluster workload distribution. The
value must be in the range zero through 9, where zero is the lowest rank and 9 is the highest.

CLWLWGHT
The CLWLWGHT parameter applies a weighting factor to a channel for workload management
purposes. CLWLWGHT weights the channel so that the proportion of messages sent down that channel
can be controlled. The cluster workload algorithm uses CLWLWGHT to bias the destination choice so
that more messages can be sent over a particular channel. By default all channel weight attributes
are the same default value. The weight attribute allows you to allocate a channel on a powerful
UNIX machine a larger weight than another channel on small desktop PC. The greater weight means
that the cluster workload algorithm selects the UNIX machine more frequently than the PC as the
destination for messages.

CONNAME
The CONNAME specified on a cluster-receiver channel definition is used throughout the cluster to
identify the network address of the queue manager. Take care to select a value for the CONNAME
parameter that resolves throughout your IBM MQ cluster. Do not use a generic name. Remember that
the value specified on the cluster-receiver channel takes precedence over any value specified in a
corresponding cluster-sender channel.

These attributes on the DEFINE CHANNEL command and ALTER CHANNEL command also apply to the
DISPLAY CHANNEL command.

Note: Auto-defined cluster-sender channels take their attributes from the corresponding cluster-receiver
channel definition on the receiving queue manager. Even if there is a manually defined cluster-sender
channel, its attributes are automatically modified to ensure that they match the attributes on the
corresponding cluster-receiver definition. Beware that you can, for example, define a CLUSRCVR without
specifying a port number in the CONNAME parameter, while manually defining a CLUSSDR that does specify
a port number. When the auto-defined CLUSSDR replaces the manually defined one, the port number
(taken from the CLUSRCVR) becomes blank. The default port number would be used and the channel
would fail.

Note: The DISPLAY CHANNEL command does not display auto-defined channels. However, you can use
the DISPLAY CLUSQMGR command to examine the attributes of auto-defined cluster-sender channels.

Use the DISPLAY CHSTATUS command to display the status of a cluster-sender or cluster-receiver
channel. This command gives the status of both manually defined channels and auto-defined channels.

The equivalent PCFs are MQCMD_CHANGE_CHANNEL, MQCMD_COPY_CHANNEL, MQCMD_CREATE_CHANNEL,
and MQCMD_INQUIRE_CHANNEL.

Omitting the CONNAME value on a CLUSRCVR definition
In some circumstances you can omit the CONNAME value on a CLUSRCVR definition. You must not omit the
CONNAME value on z/OS.

On Multiplatforms, the TCP/IP connection name parameter of a cluster-receiver channel
is optional. If you leave the connection name blank, IBM MQ generates a connection name for you,
assuming the default port and using the current IP address of the system. You can override the default

122 IBM MQ Configuration Reference

port number, but still use the current IP address of the system. For each connection name leave the IP
name blank, and provide the port number in parentheses; for example:

(1415)

The generated CONNAME is always in the dotted decimal (IPv4) or hexadecimal (IPv6) form, rather than in
the form of an alphanumeric DNS host name.

This facility is useful when you have machines using Dynamic Host Configuration Protocol (DHCP). If you
do not supply a value for the CONNAME on a CLUSRCVR channel, you do not need to change the CLUSRCVR
definition. DHCP allocates you a new IP address.

If you specify a blank for the CONNAME on the CLUSRCVR definition, IBM MQ generates a CONNAME from
the IP address of the system. Only the generated CONNAME is stored in the repositories. Other queue
managers in the cluster do not know that the CONNAME was originally blank.

If you issue the DISPLAY CLUSQMGR command you see the generated CONNAME. However, if you issue
the DISPLAY CHANNEL command from the local queue manager, you see that the CONNAME is blank.

If the queue manager is stopped and restarted with a different IP address, because of DHCP, IBM MQ
regenerates the CONNAME and updates the repositories accordingly.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

Queue definition commands
Cluster attributes that can be specified on the queue definition commands.

The DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands
The cluster attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands, and
the three equivalent ALTER commands, are:

Configuration reference 123

CLUSTER
Specifies the name of the cluster to which the queue belongs.

CLUSNL
Specifies a namelist of cluster names.

DEFBIND
Specifies the binding to be used when an application specifies MQOO_BIND_AS_Q_DEF on the MQOPEN
call. The options for this attribute are:

• Specify DEFBIND(OPEN) to bind the queue handle to a specific instance of the cluster queue when
the queue is opened. DEFBIND(OPEN) is the default for this attribute.

• Specify DEFBIND(NOTFIXED) so that the queue handle is not bound to any instance of the cluster
queue.

• Specify DEFBIND(GROUP) to allow an application to request that a group of messages are all
allocated to the same destination instance.

When multiple queues with the same name are advertised in a Queue Manager Cluster,
applications can choose whether to send all messages from this application to a single instance
(MQOO_BIND_ON_OPEN), to allow the workload management algorithm to select the most
suitable destination on a per message basis (MQOO_BIND_NOT_FIXED), or allow an application
to request that a 'group' of messages be all allocated to the same destination instance
(MQOO_BIND_ON_GROUP). The workload balancing is re-driven between groups of messages
(without requiring an MQCLOSE and MQOPEN of the queue).
When you specify DEFBIND on a queue definition, the queue is defined with one of the
attributes, MQBND_BIND_ON_OPEN, MQBND_BIND_NOT_FIXED, or MQBND_BIND_ON_GROUP. Either
MQBND_BIND_ON_OPEN or MQBND_BIND_ON_GROUP must be specified when using groups with
clusters.
We recommend that you set the DEFBIND attribute to the same value on all instances of the same
cluster queue. Because MQOO_BIND_ON_GROUP is new in IBM WebSphere MQ 7.1, it must not be
used if any of the applications opening this queue are connecting to IBM WebSphere MQ 7.0.1 or
earlier queue managers.

CLWLRANK
Applies a ranking factor to a queue for workload management purposes. CLWLRANK parameter is not
supported on model queues. The cluster workload algorithm selects a destination queue with the
highest rank. By default CLWLRANK for all queues is set to zero.
If the final destination is a queue manager on a different cluster, you can set the rank of
any intermediate gateway queue managers at the intersection of neighboring clusters. With the
intermediate queue managers ranked, the cluster workload algorithm correctly selects a destination
queue manager nearer the final destination.
The same logic applies to alias queues. The rank selection is made before the channel status is
checked, and therefore even non-accessible queue managers are available for selection. This has the
effect of allowing a message to be routed through a network, rather than having it select between two
possible destinations (as the priority would). So, if a channel is not started to the place where the rank
has indicated, the message is not routed to the next highest rank, but waits until a channel is available
to that destination (the message is held on the transmit queue).

CLWLPRTY
Applies a priority factor to a queue for workload management purposes. The cluster workload
algorithm selects a destination queue with the highest priority. By default priority for all queues is
set to zero.
If there are two possible destination queues, you can use this attribute to make one destination
failover to the other destination. The priority selection is made after the channel status is checked.
All messages are sent to the queue with the highest priority unless the status of the channel to that
destination is not as favorable as the status of channels to other destinations. This means that only
the most accessible destinations are available for selection. This has the effect of prioritizing between
multiple destinations that are all available.

124 IBM MQ Configuration Reference

CLWLUSEQ
Specifies the behavior of an MQPUT operation for a queue. This parameter specifies the behavior of an
MQPUT operation when the target queue has a local instance and at least one remote cluster instance
(except where the MQPUT originates from a cluster channel). This parameter is only valid for local
queues.
Possible values are: QMGR (the behavior is as specified by the CLWLUSEQ parameter of the queue
manager definition), ANY (the queue manager treats the local queue as another instance of the cluster
queue, for the purposes of workload distribution), LOCAL (the local queue is the only target of the
MQPUT operation, providing the local queue is put enabled). The MQPUT behavior depends upon the
cluster workload management algorithm.

The DISPLAY QUEUE and DISPLAY QCLUSTER commands
The attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands also apply
to the DISPLAY QUEUE command.

To display information about cluster queues, specify a queue type of QCLUSTER or the keyword
CLUSINFO on the DISPLAY QUEUE command, or use the command DISPLAY QCLUSTER.

The DISPLAY QUEUE or DISPLAY QCLUSTER command returns the name of the queue manager that
hosts the queue (or the names of all queue managers if there is more than one instance of the queue). It
also returns the system name for each queue manager that hosts the queue, the queue type represented,
and the date and time at which the definition became available to the local queue manager. This
information is returned using the CLUSQMGR, QMID, CLUSQT, CLUSDATE, and CLUSTIME attributes.

The system name for the queue manager (QMID), is a unique, system-generated name for the queue
manager.

You can define a cluster queue that is also a shared queue. For example. on z/OS you can define:

DEFINE QLOCAL(MYQUEUE) CLUSTER(MYCLUSTER) QSGDISP(SHARED) CFSTRUCT(STRUCTURE)

The equivalent PCFs are MQCMD_CHANGE_Q, MQCMD_COPY_Q, MQCMD_CREATE_Q, and
MQCMD_INQUIRE_Q.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER

Configuration reference 125

Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.

If you issue this command from a queue manager with a full repository, the information returned applies
to every queue manager in the cluster. Otherwise the information returned applies only to the queue
managers in which it has an interest. That is, every queue manager to which it has tried to send a message
and every queue manager that holds a full repository.

The information includes most channel attributes that apply to cluster-sender and cluster-receiver
channels. In addition, the following attributes can be displayed:

CHANNEL
The cluster-receiver channel name for the queue manager.

CLUSDATE
The date at which the definition became available to the local queue manager.

CLUSTER
What clusters the queue manager is in.

CLUSTIME
The time at which the definition became available to the local queue manager.

DEFTYPE
How the queue manager was defined. DEFTYPE can be one of the following values:
CLUSSDR

A cluster sender-channel has been administratively defined on the local queue manager but not
yet recognized by the target queue manager. To be in this state the local queue manager has
defined a manual cluster-sender channel but the receiving queue manager has not accepted
the cluster information. This may be due to the channel never having been established due to
availability or to an error in the cluster-sender configuration, for example a mismatch in the
CLUSTER property between the sender and receiver definitions. This is a transitory condition or
error state and should be investigated.

CLUSSDRA
This value represents an automatically discovered cluster queue manager, no cluster-sender
channel is defined locally. This is the DEFTYPE for cluster queue managers for which the local
queue manager has no local configuration but has been informed of. For example

• If the local queue manager is a full repository queue manager it should be the DEFTYPE value
for all partial repository queue managers in the cluster.

• If the local queue manager is a partial repository, this could be the host of a cluster queue that is
being used from this local queue manager or from a second full repository queue manager that
this queue manager has been told to work with.

If the DEFTYPE value is CLUSSDRA and the local and remote queue managers are both full
repositories for the named cluster, the configuration is not correct as a locally defined cluster-
sender channel must be defined to convert this to a DEFTYPE of CLUSSDRB.

CLUSSDRB
A cluster sender-channel has been administratively defined on the local queue manager and
accepted as a valid cluster channel by the target queue manager. This is the expected DEFTYPE of
a partial repository queue manager's manually configured full repository queue manager. It should
also be the DEFTYPE of any CLUSQMGR from one full repository to another full repository in the
cluster. Manual cluster-sender channels should not be configured to partial repositories or from a

126 IBM MQ Configuration Reference

partial repository queue manager to more than one full repository. If a DEFTYPE of CLUSSDRB is
seen in either of these situations it should be investigated and corrected.

CLUSRCVR
Administratively defined as a cluster-receiver channel on the local queue manager. This
represents the local queue manager in the cluster.

Note: To identify which CLUSQMGRs are full repository queue managers for the cluster, see the
QMTYPE property.

For more information on defining cluster channels, see Cluster channels.

QMTYPE
Whether it holds a full repository or only a partial repository.

STATUS
The status of the cluster-sender channel for this queue manager.

SUSPEND
Whether the queue manager is suspended.

VERSION
The version of the IBM MQ installation that the cluster queue manager is associated with.

The version has the format VVRRMMFF:

• VV: Version
• RR: Release
• MM: Maintenance level
• FF: Fix level

XMITQ
The cluster transmission queue used by the queue manager.

See also the DISPLAY QCLUSTER command. This is briefly described in DISPLAY QUEUE and in the
DISPLAY QUEUE and DISPLAY QCLUSTER commands section of “Queue definition commands” on page
123. For examples of using DISPLAY QCLUSTER, search the information set for "DISPLAY QCLUSTER"
and "DIS QCLUSTER".

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER

Configuration reference 127

Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.
MQSC command DISPLAY CLUSQMGR

SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.

While a queue manager is suspended from a cluster, it does not receive messages on cluster queues that
it hosts if there is an available queue of the same name on an alternative queue manager in the cluster.
However, messages that are explicitly targeted at this queue manager, or where the target queue is only
available on this queue manager, are still directed to this queue manager.

Receiving further inbound messages while the queue manager is suspended can be prevented by
stopping the cluster receiver channels for this cluster. To stop the cluster receiver channels for a cluster,
use the FORCE mode of the SUSPEND QMGR command.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related tasks
Maintaining a queue manager
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.
SUSPEND QMGR
RESUME QMGR

128 IBM MQ Configuration Reference

REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.

There are three forms of this command:

REFRESH CLUSTER(clustername) REPOS(NO)
The default. The queue manager retains knowledge of all locally defined cluster queue manager and
cluster queues and all cluster queue managers that are full repositories. In addition, if the queue
manager is a full repository for the cluster it also retains knowledge of the other cluster queue
managers in the cluster. Everything else is removed from the local copy of the repository and rebuilt
from the other full repositories in the cluster. Cluster channels are not stopped if REPOS(NO) is used.
A full repository uses its CLUSSDR channels to inform the rest of the cluster that it has completed its
refresh.

REFRESH CLUSTER(clustername) REPOS(YES)
In addition to the default behavior, objects representing full repository cluster queue managers are
also refreshed. It is not valid to use this option if the queue manager is a full repository, if used
the command will fail with an error AMQ9406/CSQX406E logged. If it is a full repository, you must
first alter it so that it is not a full repository for the cluster in question. The full repository location
is recovered from the manually defined CLUSSDR definitions. After refreshing with REPOS(YES) has
been issued the queue manager can be altered so that it is once again a full repository, if required.

REFRESH CLUSTER(*)
Refreshes the queue manager in all the clusters it is a member of. If used with REPOS(YES) REFRESH
CLUSTER(*) has the additional effect of forcing the queue manager to restart its search for full
repositories from the information in the local CLUSSDR definitions. The search takes place even if the
CLUSSDR channel connects the queue manager to several clusters.

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while it
is in progress, and again at 27 day intervals thereafter when the cluster objects automatically send status
updates to all interested queue managers. See Refreshing in a large cluster can affect performance and
availability of the cluster.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
RESET CLUSTER: Forcibly removing a queue manager from a cluster

Configuration reference 129

Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.
Related information
Clustering: Using REFRESH CLUSTER best practices

RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

You are unlikely to need to use this command, except in exceptional circumstances.

You can issue the RESET CLUSTER command only from full repository queue managers. The command
takes two forms, depending on whether you reference the queue manager by name or identifier.

1.
RESET CLUSTER(clustername
) QMNAME(qmname) ACTION(FORCEREMOVE) QUEUES(NO)

2.
RESET CLUSTER(clustername
) QMID(qmid) ACTION(FORCEREMOVE) QUEUES(NO)

You cannot specify both QMNAME and QMID. If you use QMNAME, and there is more than one queue
manager in the cluster with that name, the command is not run. Use QMID instead of QMNAME to ensure
the RESET CLUSTER command is run.

Specifying QUEUES(NO) on a RESET CLUSTER command is the default. Specifying QUEUES(YES)
removes references to cluster queues owned by the queue manager from the cluster. The references
are removed in addition to removing the queue manager from the cluster itself.

The references are removed even if the cluster queue manager is not visible in the cluster; perhaps
because it was previously forcibly removed, without the QUEUES option.

You might use the RESET CLUSTER command if, for example, a queue manager has been deleted but
still has cluster-receiver channels defined to the cluster. Instead of waiting for IBM MQ to remove these
definitions (which it does automatically) you can issue the RESET CLUSTER command to tidy up sooner.
All other queue managers in the cluster are then informed that the queue manager is no longer available.

If a queue manager is temporarily damaged, you might want to tell the other queue managers in the
cluster before they try to send it messages. RESET CLUSTER removes the damaged queue manager.
Later, when the damaged queue manager is working again, use the REFRESH CLUSTER command
to reverse the effect of RESET CLUSTER and return the queue manager to the cluster.If the queue
manager is in a publish/subscribe cluster, you then need to reinstate any required proxy subscriptions.
See REFRESH CLUSTER considerations for publish/subscribe clusters.

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while it
is in progress, and again at 27 day intervals thereafter when the cluster objects automatically send status
updates to all interested queue managers. See Refreshing in a large cluster can affect performance and
availability of the cluster.

Using the RESET CLUSTER command is the only way to delete auto-defined cluster-sender channels.

Important: If the auto-defined channel to be removed is in-doubt, RESET CLUSTER does not immediately
remove that channel. In this situation you need to issue a RESOLVE CHANNEL command, prior to the
RESET CLUSTER command.

You are unlikely to need this command in normal circumstances. The IBM Support Center might advise
you to issue the command to tidy up the cluster information held by cluster queue managers. Do not use
this command as a short cut to removing a queue manager from a cluster. The correct way to remove a
queue manager from a cluster is described in Removing a queue manager from a cluster.

Because repositories retain information for only 90 days, after that time a queue manager that was
forcibly removed can reconnect to a cluster. It reconnects automatically, unless it has been deleted. If

130 IBM MQ Configuration Reference

you want to prevent a queue manager from rejoining a cluster, you need to take appropriate security
measures.

All cluster commands, except DISPLAY CLUSQMGR, work asynchronously. Commands that change
object attributes involving clustering update the object and send a request to the repository processor.
Commands for working with clusters are checked for syntax, and a request is sent to the repository
processor.

The requests sent to the repository processor are processed asynchronously, along with cluster requests
received from other members of the cluster. Processing might take a considerable time if they have to be
propagated around the whole cluster to determine if they are successful or not.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER (reset a cluster)

Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Suitable destinations are chosen, by the cluster workload management algorithm, based on the
availability of the queue manager and queue, and on a number of cluster workload-specific attributes
associated with queue managers, queues, and channels. These attributes are described in the subtopics.

Note: Specify the cluster workload channel attributes on the cluster-receiver channels at the target queue
managers. Any balancing you specify on the matching cluster-sender channels is likely to be ignored. See
Cluster channels.

After you configure the cluster workload-specific attributes, if the configuration does not behave as you
expected, explore the details of how the algorithm chooses a queue manager. See “The cluster workload
management algorithm” on page 136. If the results of this algorithm do not meet your needs, you can
write a cluster workload user exit program, and use this exit to route messages to the queue of your
choice in the cluster. See Writing and compiling cluster workload exits.

Configuration reference 131

Related concepts

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER
Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

Cluster workload balancing - channel attributes
An alphabetical list of the channel attributes used in cluster workload balancing.

CLWLPRTY (Cluster workload priority)
The CLWLPRTY channel attribute specifies the priority order for channels for cluster workload distribution.
The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY channel attribute to set a priority order for the available cluster destinations. IBM
MQ selects the destinations with the highest priority before selecting destinations with the lowest cluster
destination priority. If there are multiple destinations with the same priority, it selects the least recently
used destination.

If there are two possible destinations, you can use this attribute to allow failover. Messages go to the
queue manager with the highest priority channel. If it becomes unavailable then messages go to the next
highest priority queue manager. Lower priority queue managers act as reserves.

IBM MQ checks channel status before prioritizing the channels. Only available queue managers are
candidates for selection.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• The availability of a remote queue manager is based on the status of the channel to that queue
manager. When channels start, their state changes several times, with some of the states being less
preferential to the cluster workload management algorithm. In practice this means that lower priority
(backup) destinations can be chosen while the channels to higher priority (primary) destinations are
starting.

132 IBM MQ Configuration Reference

• If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider
using separate queues, or CLWLRANK with a manual switch over from the primary to back up.

CLWLRANK (Cluster workload rank)
The CLWLRANK channel attribute specifies the rank of channels for cluster workload distribution. The
value must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK channel attribute if you want control over the final destination for messages sent to
a queue manager in another cluster. Control the choice of final destination by setting the rank of the
channels connecting a queue manager to the gateway queue managers at the intersection of the clusters.

When you set CLWLRANK, messages take a specified route through the interconnected clusters towards a
higher ranked destination. For example, messages arrive at a gateway queue manager that can send them
to either of two queue managers using channels ranked 1 and 2. They are automatically sent to the queue
manager connected by a channel with the highest rank, in this case the channel to the queue manager
ranked 2.

IBM MQ gets the rank of channels before checking channel status. Getting the rank before checking
channel status means that even non-accessible channels are available for selection. It allows messages
to be routed through the network even if the final destination is unavailable.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• If you also used the priority attribute CLWLPRTY, IBM MQ selects between available destinations.
If a channel is not available to the destination with the highest rank, the message is held on the
transmission queue. It is released when the channel becomes available. The message does not get sent
to the next available destination in the rank order.

CLWLWGHT (Cluster workload weight)
The CLWLWGHT channel attribute specifies the weight applied to CLUSSDR and CLUSRCVR channels for
cluster workload distribution. The value must be in the range 1-99, where 1 is the lowest weight and 99 is
the highest.

Use CLWLWGHT to send servers with more processing power more messages. The higher the channel
weight, the more messages are sent over that channel.

Notes:

• Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

• When CLWLWGHT is modified from the default of 50 on any channel, workload balancing becomes
dependent on the total number of times each channel was chosen for a message sent to any clustered
queue. For more information, see “The cluster workload management algorithm” on page 136.

NETPRTY (Network-connection priority)
The NETPRTY channel attribute specifies the priority for a CLUSRCVR channel. The value must be in the
range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the NETPRTY attribute to make one network the primary network, and another network the backup
network. Given a set of equally ranked channels, clustering chooses the path with the highest priority
when multiple paths are available.

A typical example of using the NETPRTY channel attribute is to differentiate between networks that have
different costs or speeds and connect the same destinations.

Note: Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing
you specify on the matching cluster-sender channel is likely to be ignored. See Cluster channels.

Configuration reference 133

Related concepts
The cluster workload management algorithm
The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.
Related reference
Cluster workload balancing - queue attributes
An alphabetical list of queue attributes used in cluster workload balancing.
Cluster workload balancing - queue manager attributes
An alphabetical list of queue manager attributes used in cluster workload balancing.

Cluster workload balancing - queue attributes
An alphabetical list of queue attributes used in cluster workload balancing.

CLWLPRTY
The CLWLPRTY queue attribute specifies the priority of local, remote, or alias queues for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY queue attribute to set a preference for destination queues. IBM MQ selects the
destinations with the highest priority before selecting destinations with the lowest cluster destination
priority. If there are multiple destinations with the same priority, it selects the least recently used
destination.

IBM MQ obtains the priority of queue managers after checking channel status. Only available queue
managers are candidates for selection.

Note:

The availability of a remote queue manager is based on the status of the channel to that queue manager.
When channels start, their state changes several times, with some of the states being less preferential
to the cluster workload management algorithm. In practice this means that lower priority (backup)
destinations can be chosen while the channels to higher priority (primary) destinations are starting.

If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider using
separate queues, or CLWLRANK with a manual switch over from the primary to back up.

If there are two possible destinations, you can use this attribute to allow failover. The highest priority
queue manager receives requests, lower priority queue managers act as reserves. If the highest priority
queue manager fails, then the next highest priority queue manager that is available, takes over.

CLWLRANK
The CLWLRANK queue attribute specifies the rank of a local, remote, or alias queue for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK queue attribute if you want control over the final destination for messages sent to a
queue manager in another cluster. When you set CLWLRANK, messages take a specified route through the
interconnected clusters towards a higher ranked destination.

For example, you might have defined two identically configured gateway queue managers to improve the
availability of a gateway. Suppose you have defined cluster alias queues at the gateways for a local queue
defined in the cluster. If the local queue becomes unavailable, you intend the message to be held at one
of the gateways pending the queue becoming available again. To hold the queue at a gateway, you must
define the local queue with a higher rank than the cluster alias queues at the gateway.

If you define the local queue with the same rank as the queue aliases and the local queue is unavailable,
the message travels between the gateways. On finding the local queue unavailable the first gateway
queue manager routes the message to the other gateway. The other gateway tries to deliver the message
to the target local queue again. If the local queue is still unavailable, it routes the message back to the
first gateway. The message keeps being moved back and forth between the gateways until the target local

134 IBM MQ Configuration Reference

queue became available again. By giving the local queue a higher rank, even if the queue is unavailable,
the message is not rerouted to a destination of lower rank.

IBM MQ obtains the rank of queues before checking channel status. Obtaining the rank before checking
channel status means that even non-accessible queues are available for selection. It allows messages to
be routed through the network even if the final destination is unavailable.

If you used the priority attribute IBM MQ selects between available destinations. If a channel is not
available to the destination with the highest rank, the message is held on the transmission queue. It
is released when the channel becomes available. The message does not get sent to the next available
destination in the rank order.

CLWLUSEQ
The CLWLUSEQ queue attribute specifies whether a local instance of a queue is given preference as a
destination over other instances in a cluster.

The CLWLUSEQ queue attribute is valid only for local queues. It only applies if the message is put by an
application, or a channel that is not a cluster channel.
LOCAL

The local queue is the only target of MQPUT, providing the local queue is put enabled. MQPUT behavior
depends upon the cluster workload management.

QMGR
The behavior is as specified by the CLWLUSEQ queue manager attribute.

ANY
MQPUT treats the local queue the same as any other instance of the queue in the cluster for workload
distribution.

Related concepts
The cluster workload management algorithm
The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.
Related reference
Cluster workload balancing - channel attributes
An alphabetical list of the channel attributes used in cluster workload balancing.
Cluster workload balancing - queue manager attributes
An alphabetical list of queue manager attributes used in cluster workload balancing.

Cluster workload balancing - queue manager attributes
An alphabetical list of queue manager attributes used in cluster workload balancing.

CLWLMRUC
The CLWLMRUC queue manager attribute sets the number of most recently chosen channels. The cluster
workload management algorithm uses CLWLMRUC to restrict the number of active outbound cluster
channels. The value must be in the range 1 - 999 999 999.

The initial default value is 999 999 999.

CLWLUSEQ
The CLWLUSEQ queue manager attribute specifies whether a local instance of a queue is given preference
as a destination over other instances of the queue in a cluster. The attribute applies if the CLWLUSEQ
queue attribute is set to QMGR.

The CLWLUSEQ queue attribute is valid only for local queues. It only applies if the message is put by an
application, or a channel that is not a cluster channel.

Configuration reference 135

LOCAL
The local queue is the only target of MQPUT. LOCAL is the default.

ANY
MQPUT treats the local queue the same as any other instance of the queue in the cluster for workload
distribution.

Related concepts
The cluster workload management algorithm
The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.
Related reference
Cluster workload balancing - channel attributes
An alphabetical list of the channel attributes used in cluster workload balancing.
Cluster workload balancing - queue attributes
An alphabetical list of queue attributes used in cluster workload balancing.

The cluster workload management algorithm
The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.

The workload management algorithm is exercised every time a choice of destination is required:

• It is used at the point a cluster queue is opened, by using the MQOO_BIND_ON_OPEN option.
• It is used each time a message is put to a cluster queue when it is opened with
MQOO_BIND_NOT_FIXED.

• It is used each time a new message group is started when MQOO_BIND_ON_GROUP is used to open a
cluster queue.

• For topic host routing, it is used each time a message is published to a clustered topic. If the local queue
manager is not a host for this topic, the algorithm is used to choose a host queue manager to route the
message through.

The following section describes the workload management algorithm used when determining the final
destination for messages being put onto cluster queues. These rules are influenced by the settings
applied to the following attributes for queues, queue managers, and channels:

Table 27. Attributes for cluster workload management

Queues Queue managers Channels

• CLWLPRTY 1

• CLWLRANK 1

• CLWLUSEQ 1

• PUT / PUB

• CLWLMRUC
• CLWLUSEQ 1

• CLWLPRTY
• CLWLRANK
• CLWLWGHT
• NETPRTY

Initially, the queue manager builds a list of possible destinations from two procedures:

• Matching the target ObjectName and ObjectQmgrName with queue manager alias definitions that are
shared in the same clusters as the queue manager.

• Finding unique routes (that is, channels) to a queue manager that hosts a queue with the name
ObjectName and is in one of the clusters that the queue manager is a member of.

The algorithm steps through the following rules to eliminate destinations from the list of possible
destinations.

1 This attribute applies only when choosing a clustered queue, not when choosing a topic.

136 IBM MQ Configuration Reference

1. Remote instances of queues or topics or remote CLUSRCVR channels that do not share a cluster with
the local queue manager are eliminated.

2. If a queue or topic name is specified, remote CLUSRCVR channels that are not in the same cluster as
the queue or topic are eliminated.

Note: All remaining queues, topics and channels at this stage are made available to the cluster
workload exit, if it is configured.

3. All channels to queue managers or queue manager aliases that have a CLWLRANK less than the
maximum rank of all remaining channels or queue manager aliases are eliminated.

4. All queues (not queue manager aliases) with a CLWLRANK less than the maximum rank of all
remaining queues are eliminated.

5. If more than one instance of a queue, topic, or queue manager alias remains, and if any are pub put
enabled, all those that are put disabled are eliminated.

Note: If only put disabled instances remain then only inquire operations will succeed, all other
operations will fail with MQRC_CLUSTER_PUT_INHIBITED.

6. When choosing a queue, if the resulting set of queues contains the local instance of the queue,
the local instance is typically used. The local instance of the queue is used if one of the following
conditions are true:

• The use-queue attribute of the queue, CLWLUSEQ, is set to LOCAL.
• Both the following statements are true:

– The use-queue attribute of the queue, CLWLUSEQ, is set to QMGR.
– The use-queue attribute of the queue manager, CLWLUSEQ, is set to LOCAL.

• The message is received over a cluster channel rather than by being put by a local application.
• For locally defined queues that are defined with CLWLUSEQ(ANY), or which inherit that same

setting from the queue manager, the following points are true, within the wider set of conditions
that apply:

– The local queue is chosen, based on the status of the locally-defined CLUSRCVR channels in
the same cluster as the queue. This status is compared to the status of the CLUSSDR channels
that would take the message to remotely defined queues of the same name.

For example, there is one CLUSRCVR in the same cluster as the queue. That CLUSRCVR has
STOPPING status, whereas the other queues of the same name in the cluster have RUNNING or
INACTIVE status. In this case the remote channels will be chosen, and the local queue is not
used.

– The local queue is chosen based on the number of CLUSRCVR channels, in any comparison with
CLUSSDR channels of the same status, that would take the message to remotely defined queues
of the same name.

For example, there are four CLUSRCVR channels in the same cluster as the queue, and one
CLUSSDR channel. All the channels have the same status of either INACTIVE or RUNNING.
Therefore, there are five channels to choose from, and two instances of the queue. Four-fifths
(80 percent) of the messages go to the local queue.

7. If more than one queue manager remains, if any are not suspended then all those that are suspended
are eliminated.

8. If more than one remote instance of a queue or topic remains, all channels that are inactive or
running are included. The state constants are listed:

• MQCHS_INACTIVE
• MQCHS_RUNNING

9. If no remote instance of a queue or topic remains, all channels that are in binding, initializing,
starting, or stopping state are included. The state constants are listed:

• MQCHS_BINDING

Configuration reference 137

• MQCHS_INITIALIZING
• MQCHS_STARTING
• MQCHS_STOPPING

10. If no remote instance of a queue or topic remains, all channels that are being tried again are included.
The state constant is listed:

• MQCHS_RETRYING
11. If no remote instance of a queue or topic remains, all channels in requesting, paused, or stopped

state are included. The state constants are listed:

• MQCHS_REQUESTING
• MQCHS_PAUSED
• MQCHS_STOPPED
• MQCHS_SWITCHING

12. If more than one remote instance of a queue or topic on any queue manager remains, channels with
the highest NETPRTY value for each queue manager are chosen.

13. All remaining channels and queue manager aliases other than channels and aliases with the highest
priority, CLWLPRTY, are eliminated. If any queue manager aliases remain, channels to the queue
manager are kept.

14. If a queue is being chosen:

• All queues other than queues with the highest priority, CLWLPRTY, are eliminated, and channels are
kept.

15. The remaining channels are then reduced to no more than the maximum allowed number of
most recently-used channels, CLWLMRUC, by eliminating the channels with the lowest values of
MQWDR.DestSeqNumber.

Note: Internal cluster control messages are sent using the same cluster workload algorithm where
appropriate.

After the list of valid destinations has been calculated, messages are workload balanced across them,
using the following logic:

• When more than one remote instance of a destination remains and all channels to that destination
have CLWLWGHT set to the default setting of 50, the least recently used channel is chosen. This
approximately equates to a round-robin style of workload balancing when multiple remote instances
exist.

• When more than one remote instance of a destination remains and one or more of the channels to those
queues has CLWLWGHT set to a non-default setting (even if they all have a matching non-default value),
then routing becomes dependent on the relative weightings of each channel and the total number of
times each channel has previously been chosen when sending messages.

• When observing the distribution of messages for a single clustered queue with multiple instances, this
can appear to lead to an unbalanced distribution across a subset of queue instances. This is because it
is the historic use of each cluster sender channel from this queue manager that is being balanced, not
just the message traffic for that queue. If this behavior is not desirable, complete one of the following
steps:

– Set CLWLWGHT to 50 on all cluster receiver channels if even distribution is required.
– Or, if certain queue instances need to be weighted differently from others, define those queues in a

dedicated cluster, with defined dedicated cluster receiver channels. This action isolates the workload
balancing of these queues from others in the cluster.

• The historic data that is used to balance the channels is reset if any cluster workload attributes of
available cluster receiver channels are altered or the status of a cluster receiver channel becomes
available. Modification to the workload attributes of manually defined cluster sender channels does not
reset the historic data.

138 IBM MQ Configuration Reference

• When you are considering cluster workload exit logic, the chosen channel is the one with the lowest
MQWDR.DestSeqFactor. Each time a channel is chosen, this value is increased by approximately 1000/
CLWLWGHT. If there is more than one channel with the lowest value, one of the channels with the
lowest MQWDR.DestSeqNumber value is chosen.

The distribution of user messages is not always exact because administration and maintenance of the
cluster causes messages to flow across channels. The result is an uneven distribution of user messages
that can take some time to stabilize. Because of the mixture of administration and user messages, place
no reliance on the exact distribution of messages during workload balancing.

Related reference
Cluster workload balancing - channel attributes
An alphabetical list of the channel attributes used in cluster workload balancing.
Cluster workload balancing - queue attributes
An alphabetical list of queue attributes used in cluster workload balancing.
Cluster workload balancing - queue manager attributes
An alphabetical list of queue manager attributes used in cluster workload balancing.

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.

For both REFRESH CLUSTER and RESET CLUSTER, message CSQM130I is sent to the command issuer
indicating that a request has been sent. This message is followed by message CSQ9022I to indicate that
the command has completed successfully, in that a request has been sent. It does not indicate that the
cluster request has been completed successfully.

Any errors are reported to the z/OS console on the system where the channel initiator is running, they are
not sent to the command issuer.

The asynchronous behavior is in contrast to CHANNEL commands. A message indicating that a channel
command has been accepted is issued immediately. At some later time, when the command has been
completed, a message indicating either normal or abnormal completion is sent to the command issuer.

Related concepts
Workload balancing in clusters
If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager
to route a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.
Related tasks
Checking that async commands for distributed networks have finished
Related reference
Queue manager definition commands
Cluster attributes that can be specified on queue manager definition commands.
Channel definition commands
Cluster attributes that can be specified on channel definition commands.
Queue definition commands
Cluster attributes that can be specified on the queue definition commands.
DISPLAY CLUSQMGR
Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.
SUSPEND QMGR, RESUME QMGR and clusters
Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity
to this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.
REFRESH CLUSTER

Configuration reference 139

Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information
about a cluster. You are unlikely to need to use this command, except in exceptional circumstances.
RESET CLUSTER: Forcibly removing a queue manager from a cluster
Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

Channel programs
This section looks at the different types of channel programs (MCAs) available for use at the channels.

The names of the MCAs are shown in the following tables.

Table 28. Channel programs for AIX, Linux, and Windows systems

Program name Direction of connection Communication

amqrmppa Any

runmqlsr Inbound Any

amqcrs6a Inbound LU 6.2

amqcrsta Inbound TCP

runmqchl Outbound Any

runmqchi Outbound Any

runmqlsr (Run IBM MQ listener), runmqchl (Run IBM MQ channel), and runmqchi (Run IBM MQ channel
initiator) are control commands that you can enter at the command line.

amqcrsta is invoked for TCP channels on AIX and Linux systems using inetd, where no listener is started.

amqcrs6a is invoked as a transaction program when using LU6.2

Intercommunication jobs on IBM i
The following jobs are associated with Intercommunication on IBM i. The names are contained in the
following table.

Table 29. Job names and descriptions

Job name Description

AMQCLMAA Non-threaded Listener

AMQCRSTA Non-threaded Responder Job

AMQRMPPA Channel Pool Job

RUNMQCHI Channel Initiator

RUNMQCHL Channel Job

RUNMQLSR Threaded Listener

Channel states on IBM i
Channel states are displayed on the Work with Channels panel

Table 30. Channel states on IBM i

State name Meaning

STARTING Channel is ready to begin negotiation with target MCA

BINDING Establishing a session and initial data exchange

140 IBM MQ Configuration Reference

Table 30. Channel states on IBM i (continued)

State name Meaning

REQUESTING Requester channel initiating a connection

RUNNING Transferring or ready to transfer

PAUSED Waiting for message-retry interval

STOPPING Establishing whether to retry or stop

RETRYING Waiting until next retry attempt

STOPPED Channel stopped because of an error or because an end-channel command is
issued

INACTIVE Channel ended processing normally or channel never started

*None No state (for server-connection channels only)

Message channel planning example for AIX, Linux, and
Windows

This section provides a detailed example of how to connect two queue managers together so that
messages can be sent between them.

The example illustrates the preparations required to enable an application using queue manager QM1
to put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that channels are to be
triggered to start when the first message arrives on the transmission queue they are servicing. You must
start the channel initiator in order for triggering to work.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue is already defined by IBM
MQ. You can use a different initiation queue, but you must define it yourself and specify the name of the
queue when you start the channel initiator.

Note: A message channel using TCP/IP can be pointed at an
IBM Aspera fasp.io Gateway, which provides a fast TCP/IP tunnel that can significantly increase network
throughput. See Defining an Aspera gateway connection on Linux or Windows.

What the example for AIX, Linux, and Windows shows
The example shows the IBM MQ commands (MQSC) that you can use.

In all the examples, the MQSC commands are shown as they would appear in a file of commands, and as
they would be typed at the command line. The two methods look identical, but, to issue a command at the
command line, you must first type runmqsc, for the default queue manager, or runmqsc qmname where
qmname is the name of the required queue manager. Then type any number of commands, as shown in the
examples.

An alternative method is to create a file containing these commands. Any errors in the commands are
then easy to correct. If you called your file mqsc.in then to run it on queue manager QMNAME use:

runmqsc QMNAME < mqsc.in > mqsc.out

You could verify the commands in your file before running it using:

runmqsc -v QMNAME < mqsc.in > mqsc.out

Configuration reference 141

For portability, you should restrict the line length of your commands to 72 characters. Use a
concatenation character to continue over more than one line. On Windows use Ctrl-z to end the input
at the command line. On AIX and Linux systems use Ctrl-d. Alternatively, use the end command.

Figure 7 on page 142 shows the example scenario.

Figure 7. The message channel example for AIX, Linux, and Windows systems

The example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1. The payroll query messages are sent from
QM1 to QM2 on a sender-receiver channel called QM1.TO.QM2, and the reply messages are sent back
from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1. Both of these channels are
triggered to start as soon as they have a message to send to the other queue manager.

The payroll query application puts a query message to the remote queue "PAYROLL.QUERY" defined on
QM1. This remote queue definition resolves to the local queue "PAYROLL" on QM2. In addition, the payroll
query application specifies that the reply to the query is sent to the local queue "PAYROLL.REPLY" on
QM1. The payroll processing application gets messages from the local queue "PAYROLL" on QM2, and
sends the replies to wherever they are required; in this case, local queue "PAYROLL.REPLY" on QM1.

In the example definitions for TCP/IP, QM1 has a host address of 192.0.2.0 and is listening on port 1411,
and QM2 has a host address of 192.0.2.1 and is listening on port 1412. The example assumes that these
are already defined on your system and available for use.

The object definitions that need to be created on QM1 are:

• Remote queue definition, PAYROLL.QUERY
• Transmission queue definition, QM2 (default=remote queue manager name)
• Sender channel definition, QM1.TO.QM2
• Receiver channel definition, QM2.TO.QM1
• Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

• Local queue definition, PAYROLL
• Transmission queue definition, QM1 (default=remote queue manager name)
• Sender channel definition, QM2.TO.QM1
• Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in Figure 7 on page 142.

142 IBM MQ Configuration Reference

Queue manager QM1 example for AIX, Linux, and Windows
These object definitions allow applications connected to queue manager QM1 to send request messages
to a queue called PAYROLL on QM2, and to receive replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE attributes. The other
attributes supplied are the minimum required to make the example work. The attributes that are not
supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1.
Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of directing messages to the
transmission queue, QM2, so that they can be sent to queue manager QM2.

Transmission queue definition

DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM1.TO.QM2.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('192.0.2.1(1412)')

Receiver channel definition

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED). This ensures that reply messages can be put to the
queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter queue on
QM1 or, if this queue is not available, remain on transmission queue QM1 on queue manager QM2.
The queue has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

Configuration reference 143

Queue manager QM2 example for AIX, Linux, and Windows
The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL, and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM1.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1.
The message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to
queue and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE attributes and are the
minimum required to make the example work. The attributes that are not supplied take the default values
for queue manager QM2.

Run the following commands on queue manager QM2.
Local queue definition

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the reply-to
queue definition on queue manager QM1.

Transmission queue definition

DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM2.TO.QM1.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('192.0.2.0(1411)')

Receiver channel definition

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

Running the example for AIX, Linux, and Windows
Information about starting the channel initiator and listener and suggestions for expanding on this
scenario.

Once these definitions have been created, you need to:

• Start the channel initiator on each queue manager.
• Start the listener for each queue manager.

144 IBM MQ Configuration Reference

For information about starting the channel initiator and listener, see Setting up communication for
Windows and Setting up communication on AIX and Linux systems.

Expanding this example
This simple example could be expanded with:

• The use of LU 6.2 communications for interconnection with CICS systems, and transaction processing.
• Adding more queue, process, and channel definitions to allow other applications to send messages

between the two queue managers.
• Adding user-exit programs on the channels to allow for link encryption, security checking, or additional

message processing.
• Using queue manager aliases and reply-to queue aliases to understand more about how these can be

used in the organization of your queue manager network.

Message channel planning example for IBM i
This section provides a detailed example of how to connect two IBM i queue managers together so that
messages can be sent between them.

The example illustrates the preparations needed to allow an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that channels are to be
triggered to start when the first message arrives on the transmission queue they are servicing.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue is already defined by IBM
MQ. You can use a different initiation queue, but you have to define it yourself, start a new instance of the
channel initiator using the STRMQMCHLI command, and provide it with the name of your initiation queue.
For more information about triggering channels, see Triggering channels.

Note: A message channel using TCP/IP can be pointed at an
IBM Aspera fasp.io Gateway, which provides a fast TCP/IP tunnel that can significantly increase network
throughput. See Defining an Aspera gateway connection on Linux or Windows.

What the example for IBM i shows
This example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1.

Figure 8. The message channel example for IBM MQ for IBM i

The payroll query messages are sent from QM1 to QM2 on a sender-receiver channel called QM1.TO.QM2,
and the reply messages are sent back from QM2 to QM1 on another sender-receiver channel called

Configuration reference 145

QM2.TO.QM1. Both of these channels are triggered to start as soon as they have a message to send to the
other queue manager.

The payroll query application puts a query message to the remote queue "PAYROLL.QUERY" defined on
QM1. This remote queue definition resolves to the local queue "PAYROLL" on QM2. In addition, the payroll
query application specifies that the reply to the query is sent to the local queue "PAYROLL.REPLY" on
QM1. The payroll processing application gets messages from the local queue "PAYROLL" on QM2, and
sends the replies to wherever they are required; in this case, local queue "PAYROLL.REPLY" on QM1.

Both queue managers are assumed to be running on IBM i. In the example definitions, QM1 has a host
address of 192.0.2.0 and is listening on port 1411. QM2 has a host address of 192.0.2.1 and is listening
on port 1412. The example assumes that these queue managers are already defined on your IBM i
system, and are available for use.

The object definitions that need to be created on QM1 are:

• Remote queue definition, PAYROLL.QUERY
• Transmission queue definition, QM2 (default=remote queue manager name)
• Sender channel definition, QM1.TO.QM2
• Receiver channel definition, QM2.TO.QM1
• Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

• Local queue definition, PAYROLL
• Transmission queue definition, QM1 (default=remote queue manager name)
• Sender channel definition, QM2.TO.QM1
• Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in Figure 8 on page 145.

Queue manager QM1 example for IBM i
The following object definitions allow applications connected to queue manager QM1 to send request
messages to a queue called PAYROLL on QM2, and to receive replies on a queue called PAYROLL.REPLY
on QM1.

All the object definitions have been provided with the TEXT attributes. The other attributes supplied are
the minimum required to make the example work. The attributes that are not supplied take the default
values for queue manager QM1.

Run the following commands on queue manager QM1:
Remote queue definition

The CRTMQMQ command with the following attributes:

QNAME 'PAYROLL.QUERY'

QTYPE *RMT

TEXT 'Remote queue for QM2'

PUTENBL *YES

TMQNAME 'QM2' (default = remote queue manager name)

RMTQNAME 'PAYROLL'

RMTMQMNAME 'QM2'

Note: The remote queue definition is not a physical queue, but a means of directing messages to the
transmission queue, QM2, so that they can be sent to queue manager QM2.

146 IBM MQ Configuration Reference

Transmission queue definition
The CRTMQMQ command with the following attributes:

QNAME QM2

QTYPE *LCL

TEXT 'Transmission queue to QM2'

USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITQNAME SYSTEM.CHANNEL.INITQ

TRIGDATA QM1.TO.QM2

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the named process.

Sender channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM1.TO.QM2

CHLTYPE *SDR

TRPTYPE *TCP

TEXT 'Sender channel to QM2'

TMQNAME QM2

CONNAME '192.0.2.1(1412)'

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM2.TO.QM1

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT 'Receiver channel from QM2'

Reply-to queue definition
The CRTMQMQ command with the following attributes:

QNAME PAYROLL.REPLY

QTYPE *LCL

TEXT 'Reply queue for replies to query messages sent to QM2'

PUTENBL *YES

GETENBL *YES

The reply-to queue is defined as PUT(ENABLED). This definition ensures that reply messages can be
put to the queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter
queue on QM1 or, if this queue is not available, remain on transmission queue QM1 on queue manager
QM2. The queue has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

Configuration reference 147

Queue manager QM2 example for IBM i
The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL, and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM1.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1.
The message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to
queue and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the TEXT attribute and are the minimum required to
make the example work. The attributes that are not supplied take the default values for queue manager
QM2.

Run the following commands on queue manager QM2:
Local queue definition

The CRTMQMQ command with the following attributes:

QNAME PAYROLL

QTYPE *LCL

TEXT 'Local queue for QM1 payroll details'

PUTENBL *YES

GETENBL *YES

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the reply-to
queue definition on queue manager QM1.

Transmission queue definition
The CRTMQMQ command with the following attributes:

QNAME QM1

QTYPE *LCL

TEXT 'Transmission queue to QM1'

USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITQNAME SYSTEM.CHANNEL.INITQ

TRIGDATA QM2.TO.QM1

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data.

Sender channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM2.TO.QM1

CHLTYPE *SDR

148 IBM MQ Configuration Reference

TRPTYPE *TCP

TEXT 'Sender channel to QM1'

TMQNAME QM1

CONNAME '192.0.2.0(1411)'

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM1.TO.QM2

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT 'Receiver channel from QM1'

Running the example for IBM i
When you have created the required objects you must start the channel initiators and listeners for both
queue managers.

The applications can then send messages to each other. The channels are triggered to start by the first
message arriving on each transmission queue, so you do not need to issue the STRMQMCHL command.

For details about starting a channel initiator and a listener, see Monitoring and controlling channels on
IBM i .

Expanding the example for IBM i
The example can be expanded in a number of ways.

This example can be expanded by:

• Adding more queue and channel definitions to allow other applications to send messages between the
two queue managers.

• Adding user exit programs on the channels to allow for link encryption, security checking, or additional
message processing.

• Using queue manager aliases and reply-to queue aliases to understand more about how these objects
can be used in the organization of your queue manager network.

For a version of this example that uses MQSC commands, see “Message channel planning example for
z/OS” on page 149.

Message channel planning example for z/OS
This section provides a detailed example of how to connect z/OS or MVS queue managers together so that
messages can be sent between them.

The example illustrates the preparations needed to allow an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of both TCP/IP and LU 6.2 connections. The example assumes that
channels are to be triggered to start when the first message arrives on the transmission queue they are
servicing.

Note: A message channel using TCP/IP can be pointed at an
IBM Aspera fasp.io Gateway, which provides a fast TCP/IP tunnel that can significantly increase network
throughput. See Defining an Aspera gateway connection on Linux or Windows.

Configuration reference 149

What the example for z/OS shows
This example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1.

Figure 9. The first example for IBM MQ for z/OS

The payroll query messages are sent from QM1 to QM2 on a sender-receiver channel called QM1.TO.QM2,
and the reply messages are sent back from QM2 to QM1 on another sender-receiver channel called
QM2.TO.QM1. Both of these channels are triggered to start as soon as they have a message to send to the
other queue manager.

The payroll query application puts a query message to the remote queue "PAYROLL.QUERY" defined on
QM1. This remote queue definition resolves to the local queue "PAYROLL" on QM2. In addition, the payroll
query application specifies that the reply to the query is sent to the local queue "PAYROLL.REPLY" on
QM1. The payroll processing application gets messages from the local queue "PAYROLL" on QM2, and
sends the replies to wherever they are required; in this case, local queue "PAYROLL.REPLY" on QM1.

Both queue managers are assumed to be running on z/OS. In the example definitions for TCP/IP, QM1
has a host address of 192.0.2.0 and is listening on port 1411, and QM2 has a host address of 192.0.2.1
and is listening on port 1412. In the definitions for LU 6.2, QM1 is listening on a symbolic luname called
LUNAME1 and QM2 is listening on a symbolic luname called LUNAME2. The example assumes that these
lunames are already defined on your z/OS system and available for use. To define them, see “Example
IBM MQ configuration for z/OS” on page 41.

The object definitions that need to be created on QM1 are:

• Remote queue definition, PAYROLL.QUERY
• Transmission queue definition, QM2 (default=remote queue manager name)
• Sender channel definition, QM1.TO.QM2
• Receiver channel definition, QM2.TO.QM1
• Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

• Local queue definition, PAYROLL
• Transmission queue definition, QM1 (default=remote queue manager name)
• Sender channel definition, QM2.TO.QM1
• Receiver channel definition, QM1.TO.QM2

The example assumes that all the SYSTEM.COMMAND.* and SYSTEM.CHANNEL.* queues required to run
DQM have been defined as shown in the supplied sample definitions, CSQ4INSG and CSQ4INSX.

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in Figure 9 on page 150.

150 IBM MQ Configuration Reference

Queue manager QM1 example for z/OS
The following object definitions allow applications connected to queue manager QM1 to send request
messages to a queue called PAYROLL on QM2. It also allows applications to receive replies on a queue
called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE attributes. The other
attributes supplied are the minimum required to make the example work. The attributes that are not
supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT(ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME(QM2)

Note: The remote queue definition is not a physical queue, but a means of directing messages to the
transmission queue, QM2, so that they can be sent to queue manager QM2.

Transmission queue definition

DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM1.TO.QM2) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data. The channel initiator can only get trigger messages from
the SYSTEM.CHANNEL.INITQ queue, so do not use any other queue as the initiation queue.

Sender channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('192.0.2.1(1412)')

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('LUNAME2')

Receiver channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

For an LU 6.2 connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM2')

Configuration reference 151

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED) which ensures that reply messages can be put to the
queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter queue on QM1
or, if this queue is not available, remain on transmission queue QM1 on queue manager QM2. The queue
has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

Queue manager QM2 example for z/OS
The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM1.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1.
The message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to
queue and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM2, the reply message can be
sent. In this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE attributes and are the
minimum required to make the example work. The attributes that are not supplied take the default values
for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the reply-to queue
definition on queue manager QM1.

Transmission queue definition

DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM2.TO.QM1) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data. The channel initiator can only get trigger messages from
SYSTEM.CHANNEL.INITQ so do not use any other queue as the initiation queue.

Sender channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('192.0.2.0(1411)')

For an LU 6.2 connection:

152 IBM MQ Configuration Reference

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('LUNAME1')

Receiver channel definition
For a TCP/IP connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM1')

Running the example for z/OS
When you have created the required objects, you must start the channel initiators and listeners for both
queue managers.

The applications can then send messages to each other. Because the channels are triggered to start by
the arrival of the first message on each transmission queue, you do not need to issue the START CHANNEL
MQSC command.

For details about starting a channel initiator see Starting a channel initiator, and for details about starting
a listener see Starting a channel listener.

Expanding the example for z/OS
The example can be expanded in a number of ways.

The example can be expanded by:

• Adding more queue, and channel definitions to allow other applications to send messages between the
two queue managers.

• Adding user exit programs on the channels to allow for link encryption, security checking, or additional
message processing.

• Using queue manager aliases and reply-to queue aliases to understand more about how these aliases
can be used in the organization of your queue manager network.

Message channel planning example for z/OS using queue
sharing groups

This example illustrates the preparations needed to allow an application using queue manager QM3 to put
a message on a queue in a queue sharing group that has queue members QM4 and QM5.

Ensure you are familiar with the example in “Message channel planning example for z/OS” on page 149
before trying this example.

What the queue sharing group example for z/OS shows
This example shows the IBM MQ commands (MQSC) that you can use in IBM MQ for z/OS for distributed
queuing with queue sharing groups.

This example expands the payroll query scenario of the example in “Message channel planning example
for z/OS” on page 149 to show how to add higher availability of query processing by adding more serving
applications to serve a shared queue.

Configuration reference 153

The payroll query application is now connected to queue manager QM3 and puts a query to the remote
queue 'PAYROLL QUERY' defined on QM3. This remote queue definition resolves to the shared queue
'PAYROLL' hosted by the queue managers in the queue sharing group QSG1. The payroll processing
application now has two instances running, one connected to QM4 and one connected to QM5.

Figure 10. Message channel planning example for IBM MQ for z/OS using queue sharing groups

All three queue managers are assumed to be running on z/OS. In the example definitions for TCP/IP,
QM4 has a VIPA address of MVSIP01 and QM5 has a VIPA address of MVSIP02. Both queue managers
are listening on port 1414. The generic address that Sysplex Distributor provides for this group is
QSG1.MVSIP. QM3 has a host address of 192.0.2.0 and is listening on port 1411.

In the example definitions for LU6.2, QM3 is listening on a symbolic luname called LUNAME1. The name
of the generic resource defined for VTAM for the lunames listened on by QM4 and QM5 is LUQSG1. The
example assumes that they are already defined on your z/OS system and are available for use. To define
them see “Defining yourself to the network using generic resources” on page 47.

In this example QSG1 is the name of a queue sharing group, and queue managers QM4 and QM5 are the
names of members of the group.

154 IBM MQ Configuration Reference

Queue sharing group definitions
Producing the following object definitions for one member of the queue sharing group makes them
available to all the other members.

Queue managers QM4 and QM5 are members of the queue sharing group. The definitions produced for
QM4 are also available for QM5.

It is assumed that the coupling facility list structure is called 'APPLICATION1'. If it is not called
'APPLICATION1', you must use your own coupling facility list structure name for the example.

Shared objects
The shared object definitions are stored in Db2® and their associated messages are stored within the
coupling facility.

DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) REPLACE PUT(ENABLED) GET(ENABLED) +
CFSTRUCT(APPLICATION1) +
DESCR('Shared queue for payroll details')

DEFINE QLOCAL(QM3) QSGDISP(SHARED) REPLACE USAGE(XMITQ) PUT(ENABLED) +
CFSTRUCT(APPLICATION1) +
DESCR('Transmission queue to QM3') TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QSG1.TO.QM3) GET(ENABLED) INITQ(SYSTEM.CHANNEL.INITQ)

Group objects
The group object definitions are stored in Db2, and each queue manager in the queue sharing group
creates a local copy of the defined object.

Sender channel definition for a TCP/IP connection:

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM3') XMITQ(QM3) +
CONNAME('192.0.2.0(1411)')

Sender channel definition for an LU 6.2 connection:

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM3') XMITQ(QM3) +
CONNAME('LUNAME1')

Receiver channel definition for a TCP/IP connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM3') QSGDISP(GROUP)

Receiver channel definition for an LU 6.2 connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM3') QSGDISP(GROUP)

Related reference
“QSGDISP (Disposition)” on page 110

Configuration reference 155

This attribute specifies the disposition of the channel in a queue sharing group. It is valid on z/OS only.

Queue manager QM3 example for z/OS
QM3 is not a member of the queue sharing group. The following object definitions allow it to put
messages to a queue in the queue sharing group.

The CONNAME for this channel is the generic address of the queue sharing group, which varies according
to transport type.

For a TCP/IP connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QSG1') XMITQ(QSG1) +
CONNAME('QSG1.MVSIP(1414)')

For an LU 6.2 connection:

DEFINE CHANNEL(QM3.TO.QSG1) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QSG1') XMITQ(QSG1) +
CONNAME('LUQSG1') TPNAME('MQSERIES') MODENAME('#INTER')

Other definitions
These definitions are required for the same purposes as the definitions in the first example.

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QSG1') REPLACE +
PUT(ENABLED) XMITQ(QSG1) RNAME(APPL) RQMNAME(QSG1)

DEFINE QLOCAL(QSG1) DESCR('Transmission queue to QSG1') REPLACE +
USAGE(XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM3.TO.QSG1) INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QSG1')

DEFINE CHANNEL(QSG1.TO.QM3) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QSG1')

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QSG1')

Running the queue sharing group example for z/OS
When you have created the required objects you need to start the channel initiators for all three queue
managers. You also need to start the listeners for both queue managers in the queue sharing group.

For a TCP/IP connection, each member of the group must have a group listener started that is listening on
port 1414.

STA LSTR PORT(1414) IPADDR(MVSIP01) INDISP(GROUP)

The previous entry starts the listener on QM4, for example.

For an LU6.2 connection, each member of the group must have a group listener started that is listening on
a symbolic luname. This luname must correspond to the generic resource LUQSG1.

• Start the listener on QM3

STA LSTR PORT(1411)

156 IBM MQ Configuration Reference

Using an alias to refer to an MQ library
You can define an alias to refer to an MQ library in your JCL, rather than use the name of the MQ library
directly. Then, if the name of the MQ library changes, you have only to delete and redefine the alias.

Example

The following example defines an alias MQM.SCSQANLE to refer to the MQ library MQM.V600.SCSQANLE:

//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DELETE (MQM.SCSQANLE)
DEFINE ALIAS (NAME(MQM.SCSQANLE) RELATE(MQM.V600.SCSQANLE))
/*

Then, to refer to the MQM.V600.SCSQANLE library in your JCL, use the alias MQM.SCSQANLE.

Note: The library and alias names must be in the same catalog, so use the same high level qualifier for
both; in this example, the high level qualifier is MQM.

Managed File Transfer configuration reference
Reference information to help you configure Managed File Transfer.

The use of environment variables in MFT properties
From IBM WebSphere MQ 7.5, it is possible for environment variables to be used in Managed File Transfer
properties that represent file or directory locations. This allows the locations of files or directories used
when running parts of the product, to vary depending on environment changes. For example, which user is
running the process.

The following properties accept file or directory locations and can therefore contain environment
variables:

• agentSslKeyStore
• agentSslKeyStoreCredentialsFile
• agentSslTrustStore
• agentSslTrustStoreCredentialsFile
• cdNodeKeystoreCredentialsFile
• cdNodeTruststoreCredentialsFile
• cdTmpDir
• cdNodeKeystore
• cdNodeTruststore
• commandPath
• connectionSslKeyStore
• connectionSslKeyStoreCredentialsFile
• connectionSslTrustStore
• connectionSslTrustStoreCredentialsFile
• coordinationSslKeyStore
• coordinationSslKeyStoreCredentialsFile
• coordinationSslTrustStore
• coordinationSslTrustStoreCredentialsFile
• exitClassPath

Configuration reference 157

• exitNativeLibraryPath
• javaCoreTriggerFile
• sandboxRoot
• transferRoot
• wmqfte.database.credentials.file

Example for Windows

In this example on a Windows system, a user fteuser using an environment variable of
USERPROFILE:

wmqfte.database.credentials.file=%USERPROFILE%\\logger\\mqmftcredentials.xml

Resolves to the following file path:

C:\Users\fteuser\logger\mqmftcredentials.xml

Example for AIX and Linux

In this example on a UNIX system, a user fteuser using an environment
variable of HOME:

transferRoot=$HOME/fte/

Resolves to the following file path:

/home/fteuser/fte/

The MFT installation.properties file
The installation.properties file specifies the name of your default set of configuration options.
This entry points Managed File Transfer to a structured set of directories and property files that contain
the configuration to use. Typically the name of a set of configuration options is the name of the associated
coordination queue manager.

This file is created by the installer, and can be changed by using the
fteChangeDefaultConfigurationOptions command.

The installation.properties file is located in your MQ_DATA_PATH directory. For example on
Windows, the default file location is MQ_DATA_PATH\mqft\installations\installation_name
and on AIX and Linux systems, the default file location is /var/mqm/mqft/installations/
installation_name.

For the Redistributable Managed File Transfer Agent, the data path is set when you run the
fteCreateEnvironment command. If you run the command and specify your chosen location
with the -d parameter, the data path is set for this location. If you do not specify the
location with the fteCreateEnvironment command, a directory mftdata is created under
the root directory where the Redistributable Managed File Transfer Agent is extracted. The
installation.properties file for the Redistributable Managed File Transfer Agent is located in the
MQ_DATA_PATH\mqft\installations\MFTZipInstall directory.

The installation.properties file contains the following values:

158 IBM MQ Configuration Reference

Table 31. Basic properties

Property name Description Default value

commandMessagePriority Sets the priority of both
internal messages and command
messages for the fteStopAgent,
fteCancelTransfer and
ftePingAgent commands.

If you submit a large number of
transfer requests to transfer many
small files in quick succession,
for example, the new transfer
requests can become queued
on the source agent's command
queue. The external and internal
messages have the default IBM MQ
message priority so the internal
messages are blocked by the new
transfer requests. This can cause
the transfer negotiation time to be
exceeded and for the transfers to
go into recovery.

You can also use the
commandMessagePriority property
to set the priority
of internal acknowledgment
and acknowledgment-expected
messages.

To prioritize the internal Managed
File Transfer messages above new
transfer requests, set this property
to a value between 1 (the lowest)
and 9 (the highest).

The default value of the
commandMessagePriority property
is 8. This means that, if
the IBM MQ attribute DEFPRTY
(default priority) on an agent
command queue is less than or
equal to 7, internal negotiation
messages are prioritized ahead
of new transfer requests. If the
value of the DEFPRTY attribute
is set to either 8 or 9, to
maintain the effectiveness of the
commandMessagePriority property,
you must change either DEFPRTY
or the commandMessagePriority
property.

For IBM MQ 9.0.0.0 and later, the
default value is 8.

For earlier releases, and before
APAR IT06213, the default value is
the MQPRI_PRIORITY_AS_Q_DEF
constant, which has a value of -1.

Configuration reference 159

https://www.ibm.com/support/pages/node/4680963

Table 31. Basic properties (continued)

Property name Description Default value

commonCredentialsKeyFile

The fully qualified path name of the
file containing the credential key
used while encrypting credentials.
The most common name of
the MFT credentials file is
MQMFTCredentials.xml.

For more information on using
the commonCredentialsKeyFile
property, see Decrypting
credentials.

The fully-qualified path of the key
file

defaultProperties The name of the default set of
configuration options. This value is
the name of a directory located in
the configuration directory, which
contains directories and properties
files that specify configuration
information.

No default

enableFunctionalFixPack The fix pack function level to
enable. By default, any new
function included with a fix pack is
not enabled. Set this property to a
version identifier to enable the new
features available with that version.

You can specify the version
identifier with or without period
characters (.). For example, to use
the function available with IBM MQ
8.0.0 Fix Pack 2, set this property
to 8002 or 8.0.0.2.

No default

160 IBM MQ Configuration Reference

Table 31. Basic properties (continued)

Property name Description Default value

messagePublicationFormat Allows you to specify the message
publication format used by MFT
agents for their status XML
messages. This property can be set
to the following values:
messagePublicationFormat=mixe
d

Messages are published
without an MQMD FORMAT
(MQFMT_NONE), except for
those messages that are
published under the /LOG topic
tree, which are published
in the MQMD format of
MQFMT_STRING.

messagePublicationFormat=MQF
MT_NONE

Messages are published
without an MQMD FORMAT.

messagePublicationFormat=MQF
MT_STRING

Messages are published in a
string format.

Before IBM MQ 8.0, MFT agents
published XML status messages
to the SYSTEM.FTE topic in a
string format (MQFMT_STRING).
If possible, applications that
previously used IBM WebSphere
MQ 7.5 must be updated to
process messages in the IBM MQ
8.0 or later format. If it is not
possible to change an application,
set the messagePublicationFormat
property to MQFMT_STRING to
revert to the IBM WebSphere MQ
7.5 behavior.

messagePublicationFormat=mixed

z/OS-specific:

Configuration reference 161

Table 31. Basic properties (continued)

Property name Description Default value

productId
Product type against which MFT
usage is to be recorded:

• Standalone Managed File Transfer
product. (MFT is the productID).

• Part of an IBM MQ Advanced
product. (ADVANCED is the
productID).

• Part of an IBM MQ Advanced
for z/OS Value Unit Edition
product. (ADVANCEDVUE is the
productID).

See Reporting product information
for more information on product
usage recording.

This property is
ignored on Multiplatforms.

MFT

The following text is an example of the contents of a installation.properties file.

defaultProperties=ERIS

ERIS is the name of a directory that is located in the same directory as the installation.properties
file. The directory ERIS contains directories and properties files that describe a set of configuration
options.
Related concepts
MFT configuration options on Multiplatforms
Related reference
fteChangeDefaultConfigurationOptions

The MFT agent.properties file
Each Managed File Transfer Agent has its own properties file, agent.properties, that must contain the
information that an agent uses to connect to its queue manager. The agent.properties file can also
contain properties that alter the behavior of the agent.

The agent.properties file is created by the installer or by the fteCreateAgent,
fteCreateBridgeAgent or fteCreateCDAgent command. You can use any of these commands with
the -f flag to change the basic agent queue manager properties and those advanced agent properties
that are associated with the type of agent that you are creating. To change or add advanced agent
properties, you must edit the file in a text editor.

On Multiplatforms, the agent.properties file for an agent is in the MQ_DATA_PATH/
mqft/config/coordination_qmgr_name/agents/agent_name directory.

On z/OS, the agent.properties file location is $BFG_CONFIG variable/mqft/
config/coordination_qmgr_name/agents/agent_name.

If you change the agent.properties file you must restart the agent to pick up the changes.

You can use environment variables in some Managed File Transfer properties that represent file or
directory locations. This allows you to use the locations of files or directories when running parts of the

162 IBM MQ Configuration Reference

https://www.ibm.com/docs/en/zos/2.4.0?topic=management-reporting-product-information

product to vary depending on environment changes, such as which user is running the process. For more
information, see “The use of environment variables in MFT properties” on page 157.

Note: On Windows, two properties:

• windowsService
• windowsServiceVersion

are added into the agent.properties file by the MFT commands used to set up an agent to run as a
Windows service.

You should not add the properties, or modify them, manually as this will prevent the agent from working
properly.

Basic agent properties
Each MFT agent.properties file contains the following basic agent properties:

Table 32. Basic agent properties

Property name Description Default value

agentName The name of the agent. The name of the agent must conform to the
IBM MQ object naming conventions. For more information, see “MFT
object naming conventions” on page 219.

No default

agentDesc The description of the agent - if you choose to create a description. No default

agentQMgr The agent queue manager name. No default

agentQMgrHost The host name or IP address of the agent queue manager. No default

agentQMgrPort The port number that is used for client connections to the agent
queue manager.

1414

agentQMgrChannel The SVRCONN channel name that is used to connect to the agent
queue manager.

SYSTEM.DEF.SVRCONN

agentType The type of agent:

• Standard non-bridge agent (STANDARD)
• Protocol bridge agent (BRIDGE)
• Connect:Direct® bridge agent (CD_BRIDGE)
• Embedded agent as used by IBM Integration Bus (EMBEDDED)
• Sterling File Gateway embedded agent (SFG)

STANDARD

If you do not specify a value for the agentQMgrHost property, bindings mode is used by default.

If you specify a value for the agentQMgrHost property but do not specify values for the agentQMgrPort
and agentQMgrChannel properties, a port number of 1414 and a channel of SYSTEM.DEF.SVRCONN are
used by default.

Advanced agent properties
Managed File Transfer also provides more advanced agent properties that help you configure agents. If
you want to use any of the following properties, manually edit the agent.properties file to add the
required advanced properties. When you specify file paths on Windows, ensure the separator character
backslash (\) is entered as double backslashes (\\), that is, escaped backslash (\). Alternatively, you can
use a single forward slash (/) character as a separator. For more information about character escaping in
Java properties files, see the Oracle documentation Javadoc for the Properties class.

• Agent size properties
• Code page properties
• Command properties

Configuration reference 163

https://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

• Connection properties
• Connect:Direct bridge properties
• File to message and message to file agent properties
• General agent properties

• High availability properties
• Input/output properties

• Transfer log properties
• Multi-channel support properties
• Multi-instance properties
• Process controller properties
• Protocol bridge properties
• Protocol bridge agent log properties
• Queue properties
• Resource monitoring properties
• Root directory properties
• Scheduler property
• Security properties
• SSL/TLS properties
• Timeout properties
• Transfer recovery timeout properties
• Trace and logging properties
• Transfer limit properties
• User exit routine properties
• IBM MQ client compression properties

• z/OS-specific properties
• Other properties

Table 33. Advanced agent properties: Agent size

Property name Description Default value

agentCheckpointInterval The interval in complete frames of data between which a checkpoint is taken
for recovery purposes. This is an advanced property and for most Managed
File Transfer configurations it is not necessary to modify its value.

If there is a problem which causes the transfer to go into recovery, the
transfer can recover only to a checkpoint boundary. Hence, the larger this
value (with large agentChunkSize, agentWindowSize, and agentFrameSize
values), the longer the time that is needed for the agent to recover transfers.
For reliable Managed File Transfer networks where transfers rarely enter a
recovery state, it may be beneficial to increase this value to increase overall
performance.

1

agentChunkSize The size of each transfer chunk for the transport of file data. Hence, denotes
the maximum size of the IBM MQ messages that are transferred between the
source and the destination agents. This is an advanced property and for most
Managed File Transfer configurations it is not necessary to modify its value.

This value is negotiated between the source agent and the destination agent,
and the larger of the two values is used. If you want to change the value of
this property, change the value at both the source agent and at the destination
agent.

agentChunkSize is an integer value. For example: agentChunkSize = 10240
sets the chunk size to 10 KB.

262144-byte (which is equivalent to
256 KB)

164 IBM MQ Configuration Reference

Table 33. Advanced agent properties: Agent size (continued)

Property name Description Default value

agentFrameSize The number of windows for the transfer frame. This is an advanced property
and for most Managed File Transfer configurations it is not necessary to
modify its value.

For networks that have high latency, increasing this value may improve overall
performance as it causes the agent to have more message chunks active
concurrently.

The value of this property, multiplied by agentWindowSize, multiplied by
agentChunkSize, denotes the upper limit of the memory consumption of the
agent for each transfer. For example, 262144-byte chunks x 10 x 5 = 12.5 MB
for each transfer.

Note: If the size of the files that is transferred in a single transfer is less than
12.5 MB increasing this property has no effect on the performance of the
transfer.

5

agentWindowSize The number of chunks for each window. This is an advanced property and for
most Managed File Transfer configurations it is not necessary to modify its
value.

For networks that have high latency, increasing this value may improve overall
performance. This is because it causes the agent to have more message
chunks active concurrently and reduces the frequency that acknowledgment
messages are sent back to the source agent.

The value of this property, multiplied by agentFrameSize, multiplied by
agentChunkSize, denotes the upper limit of the memory consumption of the
agent for each transfer, and denotes the upper limit of the IBM MQ message
data on the data queue of the destination agent. For example, 262144-byte
chunks x 10 x 5 = an upper limit of 12.5 MB, for each transfer.

Note: If the size of the files that is transferred in a single transfer is less
than 12.5 MB increasing the value of this property has no effect on the
performance of the transfer.

10

Table 34. Advanced agent properties: Code page

Property name Description Default value

agentCcsid The code page the agent connects to its agent queue manager with. If
you specify a value for agentCcsid, you must also specify a value for
agentCcsidName. For information on how to view the known code pages for
the JVM, see the -hsc parameter in the fteCreateBridgeAgent command.

1208

agentCcsidName The Java representation of the agentCcsid. If you specify a value for
agentCcsidName, you must also specify a value for agentCcsid.

UTF8

Table 35. Advanced agent properties: Command

Property name Description Default value

maxCommandHandlerThreads Controls the number of threads available for the initial parsing and
processing of transfer command messages. When active, the threads require
a connection to the queue manager but the threads release the connection
when idle.

5

maxCommandOutput The maximum number of bytes stored for command output. This property
applies to commands specified for a managed call and preSource, postSource,
preDestination, and postDestination commands for a managed transfer. This
limits the length of command output that is written to the transfer log on the
SYSTEM.FTE topic.

10240

maxCommandRetries The maximum number of retries for a command that the agent permits.
This property applies to commands specified for a managed call and the
preSource, postSource, preDestination, and postDestination commands for a
managed transfer.

9

maxCommandWait The maximum wait, in seconds, between retries that the agent permits.
This property applies to commands specified for a managed call and the
preSource, postSource, preDestination, and postDestination commands for a
managed transfer.

60

Configuration reference 165

Table 35. Advanced agent properties: Command (continued)

Property name Description Default value

immediateShutdownTimeout For an immediate shutdown of an agent, you can use this property to specify
the maximum amount of time in seconds an agent waits for its transfers to
complete before forcing a shutdown.

Note: Do not change the value of this property to less than the default of
10 seconds. An immediate shutdown of an agent requires sufficient time to
end any external processes. If the value of this property is too low, processes
might be left running.

If the value 0 is specified for this property, the agent waits for all outstanding
transfers to stop. If an invalid value is specified for this property, the default
value is used.

10

Table 36. Advanced agent properties: Connection

Property name Description Default value

javaLibraryPath When connecting to a queue manager in bindings mode, Managed File
Transfer must have access to the IBM MQ Java bindings libraries. By default
Managed File Transfer looks for the bindings libraries in the default location
that is defined by IBM MQ. If the bindings libraries are in a different location,
use this property to specify the location of the bindings libraries.

None

Table 37. Advanced agent properties: Connect:Direct bridge

Property name Description Default value

cdNode Required property if you want to use the Connect:Direct bridge.

The name of the Connect:Direct node to use to transfer messages from the
Connect:Direct bridge agent to destination Connect:Direct nodes. This node
is part of the Connect:Direct bridge, not the remote node that is the source
or destination of the transfer. For more information, see The Connect:Direct
bridge.

No default

cdNodeHost The host name or IP address of the Connect:Direct node to use to
transfer files from the Connect:Direct bridge agent to destination nodes (the
Connect:Direct bridge node).

In most cases, the Connect:Direct bridge node is on the same system as
the Connect:Direct bridge agent. In these cases, the default value of this
property, which is the IP address of the local system, is correct. If your
system has multiple IP addresses, or your Connect:Direct bridge node is on
a different system to your Connect:Direct bridge agent and their systems
share a file system, use this property to specify the correct host name for the
Connect:Direct bridge node.

If you have not set the cdNode property, this property is ignored.

The host name or IP address of the
local system

cdNodePort The port number of the Connect:Direct bridge node that client applications
use to communicate with the node. In Connect:Direct product documentation,
this port is referred to as the API port.

If you have not set the cdNode property, this property is ignored.

1363

cimpDir The location to store files temporarily on the system where the Connect:Direct
bridge agent is running before they are transferred to the destination
Connect:Direct node.

This property specifies the full path of the directory where files are
temporarily stored. For example, if cdTmpDir is set to /tmp then the files
are temporarily placed in the /tmp directory.

The Connect:Direct bridge agent and the Connect:Direct bridge node must be
able to access the directory specified by this parameter using the same path
name. Consider this when planning the installation of your Connect:Direct
bridge. If possible, create the agent on the system where the Connect:Direct
node that is part of the Connect:Direct bridge is located. If your agent
and node are on separate systems, the directory must be on a shared file
system and be accessible from both systems using the same path name. For
more information about the supported configurations, see The Connect:Direct
bridge.

If you have not set the cdNode property, this property is ignored.

The value of this property can contain environment variables.

See “The use of environment variables in MFT properties” on page 157 for
more information.

value_of_java.io.tmpdir
/cdbridge-agentName

On Windows,

value_of_java.io.tmpdir
\cdbridge-agentName

166 IBM MQ Configuration Reference

Table 37. Advanced agent properties: Connect:Direct bridge (continued)

Property name Description Default value

cdTrace Whether the agent traces data that is sent between the Connect:Direct bridge
agent and its Connect:Direct node. The value of this property can be true or
false.

false

cdMaxConnectionRetries The maximum number of Connect:Direct connection attempts, for a file
transfer where a successful connection has not yet been made, before the
transfer fails.

-1 (an infinite number of attempts)

cdMaxPartialWorkConnectionRetries The maximum number of Connect:Direct connection attempts, for a file
transfer where a previous connection attempt has been successful and
transfer work has completed, before the transfer fails.

-1 (an infinite number of attempts)

cdMaxWaitForProcessEndStats The maximum time in milliseconds to wait for Connect:Direct process
completion information to become available within the Connect:Direct node
statistics information, after the process has ended, before the file transfer
is judged to have failed. Typically the information is available immediately,
but under certain failure conditions the information is not published. In these
conditions the file transfer fails after waiting for the amount of time that is
specified by this property.

60000

cdAppName The application name that the Connect:Direct bridge agent uses to connect to
the Connect:Direct node that is part of the bridge.

Managed File Transfer current
version, where current version is the
version number of the product.

cdNodeLocalPortRange The range of local ports to use for socket connections between the
Connect:Direct bridge agent and the Connect:Direct node that is part of the
bridge. The format of this value is a comma-separated list of values or ranges.

By default, the operating system selects the local port numbers.

None

cdNodeProtocol The protocol that the Connect:Direct bridge agent uses to connect to the
Connect:Direct node that is part of the bridge. The following values are valid:

• TCPIP

• SSL

• TLS

TCPIP

cdNodeKeystore The path to the keystore that is used for secure communications between the
Connect:Direct bridge agent and the Connect:Direct node that is part of the
bridge.

If you have not set the cdNodeProtocol property to SSL or TLS, this property is
ignored.

For IBM WebSphere MQ 7.5, or later, the value of this property can contain
environment variables.

See “The use of environment variables in MFT properties” on page 157 for
more information.

None

cdNodeKeystoreType The file format of the keystore that is specified by the cdNodeKeystore
property. The following values are valid: jks and pkcs12.

If you have not set the cdNodeProtocol property to SSL or TLS, this property is
ignored.

jks

cdNodeKeystoreCredentialsFile The path to the file that contains the cdNodeKeystore credentials.

The value of this property can contain environment variables.

See “The use of environment variables in MFT properties” on page 157 for
more information.

For details on
creating the Authentication
Credentials File see Configuring
MQMFTCredentials.xml on z/OS.

See Configuring
MQMFTCredentials.xml for
information on the location and
permissions of this file.

Further details
on creating the Authentication
Credentials File are in MFT and IBM
MQ connection authentication

Configuration reference 167

Table 37. Advanced agent properties: Connect:Direct bridge (continued)

Property name Description Default value

cdNodeTruststore The path to the truststore that is used for secure communications between
the Connect:Direct bridge agent and the Connect:Direct node that is part of
the bridge.

If you have not set the cdNodeProtocol property to SSL or TLS, this property is
ignored.

The value of this property can contain environment variables.

See “The use of environment variables in MFT properties” on page 157 for
more information.

None

cdNodeTruststoreType The file format of the truststore that is specified by the cdNodeTruststore
property. The following values are valid: jks and pkcs12.

If you have not set the cdNodeProtocol property to SSL or TLS, this property is
ignored.

jks

cdNodeTruststoreCredentialsFile The path to the file that contains the cdNodeTruststore credentials.

The value of this property can contain environment variables.

See “The use of environment variables in MFT properties” on page 157 for
more information.

For details on
creating the Authentication
Credentials File see Configuring
MQMFTCredentials.xml on z/OS

See Configuring
MQMFTCredentials.xml for
information on the location and
permissions of this file.

Further details
on creating the Authentication
Credentials File are in MFT and IBM
MQ connection authentication

logCDProcess The level of Connect:Direct process logging that is recorded in the agent event
log in the output0.log file. The values that this property can have are None
or Failures or All.

None

Table 38. Advanced agent properties: File to message and message to file agent

Property name Description Default value

deleteTmpFileAfterRenameFailure Setting this property to a value of false ensures that temporary files are not
deleted from the destination if the rename operation fails. In this case, the
transferred data remains at the destination in a temporary (.part) file. You can
manually rename this file later. By default this property has the value of true.
This property applies to both message-to-file and file-to-file transfers.

true

enableQueueInputOutput By default, the agent cannot read data from a source queue or write data to a
destination queue as part of a transfer. Setting this value to true enables the
agent to perform file to message, and message to file transfers. The value of
this property can be true or false.

false

enableSystemQueueInputOutput Specifies whether the agent can read from or write to IBM MQ system queues.
System queues are prefixed with the qualifier SYSTEM.

Note: System queues are used by IBM MQ, Managed File Transfer, and
other applications to transmit important information. Changing this property
enables the agent to access these queues. If you enable this property, use
user sandboxing to limit the queues that the agent can access.

false

enableClusterQueueInputOutput Specifies whether the agent can read from or write to IBM MQ clustered
queues.

Note: You must specify the enableClusterQueueInputOutput agent property
in addition to the enableQueueInputOutput property.

false

maxDelimiterMatchLength The maximum number of characters that can be matched by the Java regular
expression that is used to split a text file into multiple messages as part of a
file-to-message transfer.

5

168 IBM MQ Configuration Reference

Table 38. Advanced agent properties: File to message and message to file agent (continued)

Property name Description Default value

maxInputOutputMessageLength The maximum length, in bytes, of a message that is read from a
source queue or written to a destination queue by an agent. The
maxInputOutputMessageLength property of the source agent in a transfer
determines how many bytes can be read from a message on the source
queue. The maxInputOutputMessageLength property of the destination agent
in a transfer determines how many bytes can be written to a message on
the destination queue. If the length of the message exceeds the value of
this property the transfer fails with an error. This property does not affect
the Managed File Transfer internal queues. For information about changing
this property, see Guidance for setting MQ attributes and MFT properties
associated with message size.

1048576

monitorGroupRetryLimit The maximum number of times that a monitor triggers a message-to-file
transfer again if the message group still exists on the queue. The number of
times that the message-to-file transfer triggers is determined from the MQMD
backout count of the first message in the group.

If the agent is restarted the monitor triggers a transfer again even
if the number of times the transfer triggers exceeds the value of
monitorGroupRetryLimit. If this behavior causes the number of times that
the transfer triggers to exceed the value of monitorGroupRetryLimit, the agent
writes an error to its event log.

If the value -1 is specified for this property, the monitor triggers the transfer
again an unlimited number of times until the trigger condition is not satisfied.

10

Table 39. Advanced agent properties: General

Property name Description Default value

agentStatusPublishRateLimit The maximum rate in seconds that the agent republishes its status because of
a change in file transfer status.

If you set this property to too small a value, the performance of the IBM MQ
network might be negatively affected.

30

agentStatusPublishRateMin The minimum rate in seconds that the agent publishes its status.
This value must be greater than or equal to the value of the
agentStatusPublishRateLimit property.

300

enableMemoryAllocationChecking The value of this property can be true or false. It determines whether the
Managed File Transfer Agent checks that there is sufficient memory available
to run a transfer before a transfer is accepted. The check is made on both the
source and destination agents. If there is insufficient memory available, the
transfer is rejected.

When calculating the memory required for a transfer, the maximum memory
that is required by the transfer is used. Therefore, the value might be
greater than the actual memory that is used by the transfer. For this
reason, the number of concurrent transfers that can run might be reduced
if the enableMemoryAllocationChecking property is set to true. You
are recommended to set the property to true only if you are experiencing
problems with Managed File Transfer failing with out-of-memory errors. The
transfers that are likely to consume large amounts of memory are file-to-
message and message-to-file transfers where the sizes of the messages are
large.

false

enableDetailedReplyMessages The value of this property can be true or false. Setting this property
to true enables managed transfer request replies to contain detailed
information about the transferred files. The detailed information and format
is the same as that published to the transfer log in the progress messages,
that is, the <transferSet> element. For more information, see File transfer log
message formats.

The detailed reply information is included only when the managed transfer
request specifies that detailed reply information is required. To specify this
requirement, set the detailed attribute of the <reply> element of the
managedTransfer XML request message sent to the source agent. For more
information, see File transfer request message format.

Multiple reply messages can be generated for each transfer request. This
number is equal to the number of transfer log progress messages for the
transfer plus 1 (where the first reply message is a simple ACK reply). Detailed
information is included in all messages, except for the ACK reply messages,
but the overall transfer result is included only in the last detailed reply
message.

true

Configuration reference 169

Table 39. Advanced agent properties: General (continued)

Property name Description Default value

enableUserMetadataOptions The value of this property can be true or false. It determines whether
you can use known keys for user-defined metadata in new transfer
requests to provide more transfer options. These known keys always
start with the following prefix com.ibm.wmqfte.. As a consequence
when the enableUserMetadataOptions property is set to true, keys
that use this prefix are not supported for user-defined use. When the
enableUserMetadataOptions property is set to true, the keys that are
supported currently are as follows:

com.ibm.wmqfte.insertRecordLineSeparator

For text transfers. When this key is set to true, specifies that when
reading record-oriented files, such as z/OS data sets, line separators are
to be inserted between records.

When this key is set to false, specifies that when reading record-
oriented files, line separators are not to be inserted between records.

com.ibm.wmqfte.newRecordOnLineSeparator

For text transfers. When this key is set to true, specifies that when
writing to record-oriented files, such as z/OS data sets, that line
separators indicate a new record and are not written as part of the data.

When this key is set to false, specifies that, when writing to record-
oriented files, line separators are to be treated like any other character
(that is, no record breaks).

com.ibm.wmqfte.convertLineSeparators

For text transfers. Specifies whether the line separator sequences CRLF
and LF are converted to the required line separator sequence for the
destination. This conversion currently only takes effect for the following
cases:

• If the user-defined metadata key
com.ibm.wmqfte.newRecordOnLineSeparator is set to false
and the transfer is to a record-oriented file.

• If the user-defined metadata key
com.ibm.wmqfte.com.ibm.wmqfte.insertRecordLineSepara
tor is set to false and the transfer is from a record-oriented file.

See also fteCreateTransfer: start a new file transfer.

false

failTransferOnFirstFailure The value of this property can be true or false. It allows an agent to be
configured to fail a managed transfer as soon as a transfer item within that
managed transfer fails.

To enable this feature, APAR IT03450 must be applied for both the source
agent and the destination agent, and the failTransferOnFirstFailure
property must be set to true in the source agent's agent.properties file.
Setting the property to true on the destination agent is optional.

When the failTransferOnFirstFailure property is set to true, the
agent starts processing managed transfer requests as normal. However,
as soon as a transfer item fails, then the managed transfer is marked as
failed and no further transfer items are processed. Transfer items that were
successfully processed before the managed transfer failed are handled in the
following way:

• The source disposition for those transfer items is honored. For example, if
the source disposition for the transfer item was set to delete, then the
source file is deleted.

• The destination files that were written remain on the destination file
system and are not deleted.

If the failTransferOnFirstFailure property is not set to true and
a managed file transfer contains multiple files and one of these files fails
to transfer, for example because the destination file already exists and the
overwrite property is set to error, the source agent continues and attempts
to transfer any remaining files in the request.

false

itemsPerProgressMessage The number of files that are transferred before an agent publishes its next
progress log message. This property controls the rate that progress log
messages are published to the coordination queue manager during a transfer.

The maximum value this property can be set to is 1000.

Note: Progress messages include information about every file that is
transferred since the last progress message was published. Increasing this
value increases the size of the progress messages, which might affect
performance.

50

170 IBM MQ Configuration Reference

https://www.ibm.com/support/pages/apar/IT03450

Table 39. Advanced agent properties: General (continued)

Property name Description Default value

maxInlineFileSize For single file-to-file, or file-to-message transfers, the maximum file size
(in bytes) that can be automatically included in the initial transfer request
message.

You can use this property to improve the speed of your transfers, but if you set
the file size to too large a value, this might degrade performance. A suggested
initial size for this property is 100 KB but you are recommended to thoroughly
test different values until you find the best file size for your system.

This feature is turned off by default, or by setting the maxInlineFileSize
property to 0.

0

Table 40. Advanced agent properties: High availability

Property name Description Default value

highlyAvailable This property is read during agent startup and if set to the value true, the
agent is started in high availability mode. If you do not specify the property, or
set the value to false, the agent starts as a non-highly available agent.

false

standbyPollInterval This property is used by the standby instance to attempt to open the shared
queue at specified intervals.

From IBM MQ 9.2.4 and IBM MQ 9.2.0
Fix Pack 5, this property is also used by all instances to determine how long
an instance waits between reconnection attempts if it becomes disconnected
from its agent queue manager.

The attempts are repeated until either an instance reconnects to its agent
queue manager, opens the SYSTEM.FTE.HA.<agent name> queue (if it
has already registered itself as a standby instance), or is stopped by the
fteStopAgent command.

5 seconds

standbyStatusDiscardTime This property sets the time duration for which the active instance waits for a
status publication from a standby instance.

If no publication is received from a standby instance, even after this ait time,
the active instance removes the standby instance information from its list of
standby instances.

The default value is twice that of the standbyStatusPublishInterval
property, so that the active instance waits longer before removing the standby
instance from its list.

600 seconds

standbyStatusExpiry This property sets the expiry time of the standby status message put to the
command queue of an agent. The message expires if the active instance of an
agent does not process this message.

30 seconds

standbyStatusPublishInterval This property is used to set the frequency at which the standby instance
publishes its state.

300 seconds

Table 41. Advanced agent properties: Input/output

Property name Description Default value

doNotUseTempOutputFile By default, the agent writes to a temporary file at the destination and renames
this temporary file to the required file name after the file transfer is complete.
Setting this value to true causes the agent to write directly to the final
destination file.

On z/OS systems, this behavior does not apply to
sequential data sets, but does apply to PDS data set members.

The value of this property for a transfer is defined by the destination agent.

false

Configuration reference 171

Table 41. Advanced agent properties: Input/output (continued)

Property name Description Default value

enableMandatoryLocking When accessing normal files, Managed File Transfer takes a shared lock for
reading and an exclusive lock for writing.

On Windows file locking is advisory only. When this
property is set to true, Managed File Transfer enforces file locking. On
Windows this means that if another application has a file open, monitoring
of that file does not trigger until the file is closed. Managed File Transfer
transfers involving that file fail.

On UNIX type platforms, file locking is fulfilled across
processes. For UNIX type platforms, setting this property has no effect.

This property applies to normal Managed File Transfer agents only. Managed
File Transfer does not support the file locking mechanism on a file server. This
property therefore does not work for a protocol bridge agent because protocol
bridge agent does not lock a file on a file server when transferring a file.

The value of this property can be true or false.

false

ioIdleThreadTimeout Time in milliseconds for a file system input/output thread to remain idle
before the thread shuts down.

From IBM MQ 9.2.1, this property does
not apply to agents running on IBM MQ for z/OS.

10000

ioQueueDepth The maximum number of input/output requests to queue up. 10

ioThreadPoolSize Maximum number of file system input/output threads available. Typically each
transfer uses its own file system input/output thread, but if the number of
concurrent transfers exceeds this limit, the file system input/output threads
are shared between transfers.

If you think you are likely to regularly have more concurrent transfers in
progress than the ioThreadPoolSize value, you might see an improvement
by increasing this value, so that each transfer has its own file system input/
output thread.

10

textReplacementCharacterSequence For text mode transfer, if any of the data bytes cannot be converted from the
source code page to the destination code page, the default behavior is for the
file transfer to fail.

Set this property to allow the transfer to complete successfully by inserting
the specified character value. This property value is a single character.
Typically, a question mark (?) is used for any unmappable characters. For
example, use this format textReplacementCharacterSequence=? where the
question mark (?) is the replacement character. You cannot use a white space
character as a replacement character.

None

Table 42. Advanced agent properties: Transfer log

Property name Description Default value

logTransfer

See “Output produced by the
LogTransfer function” on page 202 for
examples of the logging information
produced.

Turn on or turn off transfer logging.

The possible values are:

info
Enables high level log information of a transfer.

This is the default value.

moderate
Enables intermediate level log information of a transfer.

verbose
Enables detailed log information of a transfer.

off
Turns off transfer logging

info

logTransferFileSize

Defines the maximum size of a transfer log file in megabytes 20

logTransferFiles
Defines the maximum number of transfer files that are retained before the
oldest file is discarded.

5

172 IBM MQ Configuration Reference

Table 43. Advanced agent properties: Multi-channel support

Property name Description Default value

agentMultipleChannelsEnabled Setting this property to true enables a Managed File Transfer Agent to send
transfer data messages across multiple IBM MQ channels. In some scenarios,
setting this property might improve performance. However, only enable multi-
channel support only if there is a demonstrable performance benefit. Only
messages that are put to the SYSTEM.FTE.DATA.destinationAgentName queue
are sent across multiple channels. The behavior for all other messages
remains unchanged.

When you set this property to true, you must also complete the IBM MQ
configuration steps in one of the following topics to enable multi-channel
support:

• Configuring an MFT agent for multiple channels in a cluster

• Configuring an MFT agent for multiple channels: non-clustered

Additionally, you must also complete the standard IBM MQ configuration
steps that are required for a Managed File Transfer agent, which are detailed
in Configuring MFT for first use.

The value of this property can be true or false.

false

agentMessageBatchSize When configured with multiple channels, a source agent sends data messages
for a transfer across each channel on a round-robin basis. This property
controls the number of messages that are sent down each channel at a time.

5

Table 44. Advanced agent properties: Multi-instance queue manager

Property name Description Default value

agentQMgrStandby The host name and the port number that are used for client connections,
in IBM MQ CONNAME format, for the standby instance of a multi-
instance agent queue manager that is defined by agentQMgr. For example,
host_name(port_number)

The agent attempts to connect to the standby queue manager when it detects
a connection broken error, for example, MQRC 2009. Once the agent gets
connected to the standby queue manager the agent remains connected until
the standby queue manager becomes unavailable.

No default

Table 45. Advanced agent properties: Process controller

Property name Description Default value

agentQMgrRetryInterval The interval, in seconds, between checks on the availability of the queue
manager by the agent's process controller.

30

maxRestartCount The maximum number of restarts that can happen within the time interval
that is specified by the value of the maxRestartInterval property. When
this value is exceeded the agent's process controller stops restarting the
agent, and instead makes an action that is based on the value of the
maxRestartDelay property.

4

maxRestartInterval The interval, in seconds, that the agent's process controller measures agent
restarts over. If the number of restarts in this interval exceeds the value of the
maxRestartCount property, the agent's process controller stops restarting the
agent. Instead the agent's process controller makes an action that is based on
the value of the maxRestartDelay property.

120

maxRestartDelay Determines the behavior of the agent's process controller when the
rate of agent restarts exceeds the value of the maxRestartCount and
maxRestartInterval properties. If you specify a value less than or equal to
zero, the agent's process controller is stopped. If you specify a value greater
than zero, it is the number of seconds to wait before the restart history
information held by the agent's process controller is reset and the agent is
restarted.

-1

Table 46. Advanced agent properties: Protocol bridge

Property name Description Default value

protocolBridgeCredentialConfiguratio
n

The value of this property is passed in as a string to the initialize() method of
the exit classes that are specified by protocolBridgeCredentialExitClasses.

null

protocolBridgeCredentialExitClasses Specifies a comma-separated list of classes that implement a protocol bridge
credential user exit routine. For more information, see Mapping credentials for
a file server by using exit classes.

No default.

Configuration reference 173

Table 46. Advanced agent properties: Protocol bridge (continued)

Property name Description Default value

protocolBridgeDataTimeout The timeout in milliseconds that the protocol bridge agent waits to either
establish a data connection to an FTP server or to receive data from an FTP
server over a connection that is already established. If you set this property
to a value of 0, the protocol bridge agent waits indefinitely. If the timeout
elapses, the protocol bridge agent closes any existing data connections to the
FTP server and attempts to establish a new data connection before resuming
the current transfer. If the attempt to establish the new data connection fails,
the current transfer also fails.

0

protocolBridgeLogoutBeforeDisconne
ct

Specifies whether the protocol bridge agent logs the user out of the file server
before closing the FTP session and disconnecting. If you set this property
to true, the protocol bridge agent issues an FTP QUIT command to the file
server.

false

protocolBridgePropertiesConfiguratio
n

Passed as one of the bridge properties to the initialize() method of the exit
classes that are specified by the protocolBridgeServerPropertiesExitClasses
property.

No default

protocolBridgePropertiesExitClasses Specifies a comma-separated list of classes that implement a protocol
bridge server properties user exit routine. For more information, see
ProtocolBridgePropertiesExit2: Looking up protocol file server properties.

No default

Table 47. Advanced agent properties: Protocol bridge agent logging

Property name Description Default value

agentLog Key value pair component and operation to enable or disable logging of FTP
commands and responses between the Protocol Bridge Agent and FTP/SFTP/
FTPS file servers.

For example:

agentLog=on
Turn on logging for all components

agentLog=off
Turn off logging for all components

agentLog=ftp=on, sftp=on, ftps=off
Turn on logging for FTP and SFTP, and turn off for FTPS

No default

agentLogFileSize Defines the maximum size of a capture file in megabytes. Same as the default
for regular trace default file size.

20

agentLogFiles Defines the maximum number of capture files that are retained before the

oldest file is discarded.

• The default value of agentLogFiles agent property has changed from
10 to 5. This means that from IBM MQ 9.2.4 onwards, if the default is
set, there can be a maximum of five protocol bridge agent event log files,
starting from agentevent0.log to agentevent4.log. However, you can
change this value if required.

• If the agent is migrated from a version prior to IBM MQ 9.2.4, you should
manually delete the agentevent5.log to agentevent9.log files if any
exist.

• However, the size of each log file remains at 20 MB.

From IBM MQ
9.2.4, the default value is 5.

Before IBM MQ 9.2.4, the default
value is 10.

agentLogFilter By default captures communication with all FTP servers the agent is
connecting to.

For example:

• Filter on host/ip address

host=ftpprod.ibm.com, ftp2.ibm.com
host=9.182.*

• Filter based on metadata

metadata="outbound files to xyz corp"

*

174 IBM MQ Configuration Reference

Table 48. Advanced agent properties: Queue

Property name Description Default value

dynamicQueuePrefix

This property defines the prefix to use when creating a temporary dynamic
queue.

WMQFTE.*

modelQueueName

This property defines the name of the module queue to use when creating a
temporary dynamic queue.

SYSTEM.DEFAULT.MODEL.QUEUE

publicationMDUser The MQMD user ID to associate with messages sent to be published by the
coordination queue manager. If you do not set this property, the MQMD user
ID is set based on the IBM MQ rules for setting MQMD user IDs.

No default

Table 49. Advanced agent properties: Resource monitoring

Property name Description Default value

monitorFilepathPlatformSeparator Specifies whether to use platform-specific path separators within the
$FILEPATH variable. A value of true uses platform-specific path separators.
A value of false uses a UNIX style forward slash (/) path separator on all
platforms.

true

monitorMaxResourcesInPoll Specifies the maximum number of monitored resources to be triggered in
each poll interval. For example, if you specify a monitor pattern of *.txt, a
poll interval of 10 seconds, and set the monitorMaxResourcesInPoll property
to 10, the monitorMaxResourcesInPoll property limits the agent to trigger on
a maximum of 10 matches for each poll interval. Matching resources beyond
the limit of 10 are triggered in later poll intervals.

In addition, you can use the monitorMaxResourcesInPoll property in
combination with a matching -bs parameter on the fteCreateMonitor
command, for example, to restrict each poll interval to triggering one transfer
only.

A value less than or equal to zero means that the number of monitor
resources that are triggered in a polling interval is unlimited.

-1

monitorReportTriggerFail Specifies whether failure conditions, in the environment and configuration,
that are detected in the monitor are reported as a log message to the
SYSTEM.FTE topic. A value of true logs messages. A value of false does
not log messages.

true

monitorReportTriggerNotSatisfied Specifies whether a non-satisfied trigger sends a log message to the
SYSTEM.FTE topic that contains the details. A value of true logs messages. A
value of false does not log messages.

false

monitorReportTriggerSatisfied Specifies whether a satisfied trigger sends a log message to the SYSTEM.FTE
topic that contains the details. A value of true logs messages. A value of
false does not log messages.

false

monitorSilenceOnTriggerFailure The number of consecutive failures of the resource monitor trigger before the
failures are no longer reported.

5

monitorStopOnInternalFailure The number of consecutive internal FFDC conditions of the resource monitor
before the monitor changes its state to stop.

10

Configuration reference 175

Table 50. Advanced agent properties: Root directory

Property name Description Default value

commandPath Specifies the set of paths that commands can be called by, using one of the
following methods:

• Agent Ant fte:call Ant task, fte:filecopy, or fte:filemove tasks

• In an XML message passed to an agent, using one of the supported
Managed File Transfer Agent command XML schemas (for example,
managedCall or managedTransfer).

For information about the valid syntax of the value of the commandPath
property, see commandPath MFT property.

Important: Take extreme care when you set this property because any
command in one of the specified commandPaths can effectively be called
from a remote client system that is able to send commands to the agent. For
this reason, by default, when you specify a commandPath:

• Any existing agent sandbox is configured by the agent when it starts up
so that all commandPath directories are automatically added to the list of
directories that have denied access for a transfer.

• Any existing user sandboxes are updated when the agent starts up so that
all the commandPath directories (and their subdirectories) are added as
<exclude> elements to the <read> and <write> elements.

• If the agent is not configured to use either an agent sandbox, or user
sandboxes, then a new agent sandbox is created when the agent starts up
that has the commandPath directories specified as denied directories.

For IBM WebSphere MQ 7.5, or later, the value of this property can contain
environment variables.

See “The use of environment variables in MFT properties” on page 157 for
more information.

You can set the addCommandPathToSandbox property to false to override this
default behavior for compatibility with the following releases:

• IBM WebSphere MQ File Transfer Edition. Note that IBM WebSphere MQ
File Transfer Edition (FTE) is no longer a supported product. To migrate
from FTE to the Managed File Transfer component in IBM MQ, see
Migrating Managed File Transfer.

• The IBM WebSphere MQ 7.5.0 Fix Pack 1 Managed File Transfer
component (or earlier).

• The IBM WebSphere MQ 7.5.0 Fix Pack 2 Managed File Transfer
component (or later) on an installation that does not have the installation
property enableFunctionalFixPack=7502 set.

Important: Be aware that this override effectively enables a client to transfer
any command to the agent system and call the command, and so should be
used with extreme care.

None - no commands can be called

addCommandPathToSandbox Specifies whether the directories specified by the commandPath property
(and all of their subdirectories) should be added to:

• The denied directories for an existing agent sandbox.

• The <exclude> elements for the <read> and <write> elements for any
user sandboxes that have been defined.

• A new agent sandbox, if an agent has not been configured with either an
agent sandbox, or one or more user sandboxes.

This provides compatibility with the following releases:

• IBM WebSphere MQ File Transfer Edition. Note that IBM WebSphere MQ
File Transfer Edition (FTE) is no longer a supported product. To migrate
from FTE to the Managed File Transfer component in IBM MQ, see
Migrating Managed File Transfer.

• The IBM WebSphere MQ 7.5.0 Fix Pack 1 Managed File Transfer
component (or earlier).

• The IBM WebSphere MQ 7.5.0 Fix Pack 2 Managed File Transfer
component (or later) on an installation that does not have the installation
property enableFunctionalFixPack=7502 set.

For more information, see commandPath MFT property.

True

176 IBM MQ Configuration Reference

Table 50. Advanced agent properties: Root directory (continued)

Property name Description Default value

additionalWildcardSandboxChecking Specifies whether additional checks are to be made on wildcard transfers for
an agent that has been configured with a user or agent sandbox in order to
restrict the locations that the agent can transfer files to and from.

When this property is set to true, the additional checking is enabled. If a
transfer request attempts to read a location that is outside of the defined
sandbox for file matching of the wildcard, the transfer fails. If there are
multiple transfers within one transfer request, and one of these requests fails
due to it attempting to read a location outside of the sandbox, the entire
transfer fails. If checking fails, the reason for failure is given in an error
messages (see Additional checks for wildcard transfers).

If the property is omitted or set to false then no additional checks are made
on wildcard transfers.

None

sandboxRoot Specifies the set of root paths to include and exclude when you use
sandboxing. See Working with MFT agent sandboxes for information about
this feature.

Separate paths with a platform-specific path separator. Prefix paths with an
exclamation point (!) character to denote paths as excluded from the sandbox.
This feature is useful if you want to exclude a subdirectory under an included
root path.

The sandboxRoot property is not supported on protocol bridge agents.

You cannot specify the sandboxRoot property and the userSandboxes
property together.

The value of this property can contain environment variables.

See “The use of environment variables in MFT properties” on page 157 for
more information.

None - no sandbox

transferRoot Default root directory for relative paths that are specified to the agent.

The value of this property can contain environment variables.

See “The use of environment variables in MFT properties” on page 157 for
more information.

The home directory for the user that
started the agent process.

transferRootHLQ Default HLQ (user ID) for non-fully qualified data sets specified to the agent The user name of the user that
started the agent process.

userSandboxes Restrict the area of the file system that files can be transferred to and from
based on the MQMD user name of the user that requests the transfer. For
more information, see Working with MFT user sandboxes.

The userSandboxes property is not supported on protocol bridge agents.

You cannot specify the sandboxRoot property and the userSandboxes
property together.

false

Table 51. Advanced agent properties: Scheduler property

Property name Description Default value

maxSchedulerRunDelay The maximum interval, in minutes, that the agent waits to check for
scheduled transfers. Specify a positive integer to enable this property. For
more information about why you might want to use this property, see What to
do if your scheduled file transfer does not run or is delayed.

Because the agent might be reading a command from its command queue at
the time that scheduled transfers are due to run, there may be an additional
delay before the scheduled transfers are started. In this case, the scheduler
runs immediately after that command completes.

-1

Table 52. Advanced agent properties: Security

Property name Description Default value

agentCredentialsKeyFile

Name of the file containing the credential key used while encrypting
credentials.

A string property having no default
value.

Configuration reference 177

Table 52. Advanced agent properties: Security (continued)

Property name Description Default value

agentQMgrAuthenticationCredentials
File

The path to the file that contains the MQ connection credentials.
For details on

creating the Authentication
Credentials File see Configuring
MQMFTCredentials.xml on z/OS.

See Configuring
MQMFTCredentials.xml on
Mulitplatforms for information on the
location and permissions of this file.

Further details
on creating the Authentication
Credentials File are in MFT and IBM
MQ connection authentication

authorityChecking Specifies whether the security features described in Restricting user
authorities on MFT agent actions are enabled.

The inquire permission is a required permission on all of the agent authority
queues.

false

logAuthorityChecks The level of authority check logging that is recorded in the agent event log
in the output0.log file. The values that this property can have are None or
Failures or All.

None

userIdForClientConnect The user ID that gets flowed through the client connections to IBM MQ. If java
is specified, the user name reported by the JVM is flowed as part of the IBM
MQ connection request. The values that this property can have are None or
java.

None

Table 53. Advanced agent properties: SSL/TLS

Property name Description Default value

agentSslCipherSpec Specifies the protocol, hash algorithm, and encryption algorithm that is used,
and how many bits are used in the encryption key, when data is exchanged
between the agent and the agent queue manager.

The value of agentSslCipherSpec is a CipherSpec name. This CipherSpec
name is the same as the CipherSpec name used on the agent queue manager
channel. A list of valid CipherSpec names is included in SSL/TLS CipherSpecs
and CipherSuites in IBM MQ classes for Java and SSL/TLS CipherSpecs and
CipherSuites in IBM MQ classes for JMS.

agentSslCipherSpec is similar to agentSslCipherSuite. If both
agentSslCipherSuite and agentSslCipherSpec are specified, the value of
agentSslCipherSpec is used.

None

agentSslCipherSuite Specifies SSL aspects of how the agent and the agent queue manager
exchange data.

The value of agentSslCipherSuite is a CipherSuite name. The CipherSuite
name maps to the CipherSpec name used on the agent queue manager
channel. For more information, see CipherSuite and CipherSpec name
mappings.

agentSslCipherSuite is similar to agentSslCipherSpec. If both
agentSslCipherSuite and agentSslCipherSpec are specified, the value of
agentSslCipherSpec is used.

None

agentSslPeerName Specifies a distinguished name skeleton that must match the name that is
provided by the agent queue manager. The distinguished name is used to
check the identifying certificate that is presented by the queue manager on
connection.

None

agentSslTrustStore Specifies the location of the certificates that the agent trusts. The value of
agentSslTrustStore is a file path. If it is a Windows file path the backslash
character (\) must be escaped (\\).

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

None

agentSslKeyStore Specifies the location of the private key of the agent. The value of
agentSslKeyStore is a file path. If it is a Windows file path the backslash
character (\) must be escaped (\\). This property is only required if the agent
queue manager requires client authentication.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

None

178 IBM MQ Configuration Reference

Table 53. Advanced agent properties: SSL/TLS (continued)

Property name Description Default value

agentSslFipsRequired Specifies that you want to enable FIPS support at the level of the agent. The
value of this property can be true or false. For more information, see FIPS
support in MFT.

false

agentSslKeyStoreType The type of SSL keystore you want to use. JKS and PKCS#12 keystores are
supported. The value of this property can be either jks or pkcs12.

jks

agentSslKeyStoreCredentialsFile The path to the file that contains the agentSslKeyStore credential.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

The default value for
this property is %USERPROFILE%
\MQMFTCredentials.xml on
Windows and $HOME/
MQMFTCredentials.xml on other
platforms.

agentSslTrustStoreType The type of SSL keystore you want to use. JKS and PKCS#12 keystores are
supported. The value of this property can be either jks or pkcs12.

jks

agentSslTrustStoreCredentialsFile The path to the file that contains the agentSslTrustStore credential.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

The default value for
this property is %USERPROFILE%
\MQMFTCredentials.xml on
Windows and $HOME/
MQMFTCredentials.xml on other
platforms.

Table 54. Advanced agent properties: Timeout

Property name Description Default value

maxTransferNegotiationTime The maximum time in milliseconds that a transfer waits for a destination
agent to complete negotiation. If negotiation does not complete in this time,
the transfer is put into a resynchronization state and allows another transfer,
when available, to run.

In scenarios where the source or destination agent is under heavy load it is
possible that the default value is too low for the agent to respond quickly
enough to the negotiation request. This is most likely when a source agent has
a large number of resource monitors defined or when its resource monitors
are monitoring directories that contain large numbers of files. However, it can
also occur when a large number of transfer requests is submitted to an agent.
Increasing the value of this property to 200,000 or more may be necessary in
such scenarios.

30 000

recoverableTransferRetryInterval The time to wait in milliseconds between detecting a recoverable transfer
error and attempting to resume the transfer.

60 000

senderTransferRetryInterval The time in milliseconds to wait until a rejected transfer is retried because the
destination is already running the maximum number of transfers. Minimum
value is 1000.

30 000

transferAckTimeout Timeout in milliseconds that a transfer waits for acknowledgment or data
from the other end before a retry is issued. This is an advanced property and
for most Managed File Transfer configurations it is not necessary to modify its
value.

Acknowledgments are sent from the receiving agent to the sending agent
whenever a complete window of data is received. For bandwidth-constrained
or unreliable networks and large agentWindowSize and agentChunkSize
settings, it is possible that the default is not long enough. This can cause
unnecessary retransfer of data between the agents. Therefore increasing this
value might be beneficial and may reduce the likelihood of a transfer going
into recovery mode because of a slow network.

60 000

transferAckTimeoutRetries Maximum number of acknowledgment retries for a transfer without a
response before the agent gives up and moves the transfer into a recovery
state

5

xmlConfigReloadInterval The interval in seconds between the agent reloading XML configuration files
during runtime. To prevent the agent from reloading XML configuration files
during runtime set this property to -1. The following XML configuration files
are affected by this property:

• ConnectDirectCredentials.xml

• ConnectDirectNodeProperties.xml

• ConnectDirectProcessDefinitions.xml

• ProtocolBridgeCredentials.xml

• ProtocolBridgeProperties.xml

• UserSandboxes.xml

30

Configuration reference 179

Table 55. Advanced agent properties: Tracing and logging

Property name Description Default value

javaCoreTriggerFile The full path to a file location that the agent monitors. If the file exists at the
specified location the agent startup will trigger a Javacore. After starting the
agent, if you update a file at this location, the agent triggers a Javacore file
again.

A separate thread polls this file every 30 seconds to check whether the file
has been created or updated. If the file has been created or updated since
the last poll, the agent generates a Javacore file in one of the following
directories:

• AIX and Linux: MQ_DATA_PATH/mqft/logs/
coordination_qmgr_name/agents/agent_name

• Windows:
MQ_DATA_PATH\mqft\logs\coordination_qmgr_name\agents\age
nt_name

When you specify this property, the agent outputs the following message at
startup:

BFGAG0092I The <insert_0> file will be used to
request JVM diagnostic information.

The value of this property can contain environment variables.

See “The use of environment variables in MFT properties” on page 157 for
more information.

None

trace The trace specification to use when the agent is started. This is a comma-
separated list of classes and/or packages, the equals character, and a trace
level.

For example, to trace the com.ibm.wmqfte.agent.Agent class and the
classes in the com.ibm.wmqfte.commandhandler package from agent
startup, add the following entry to the agent.properties file:

trace=com.ibm.wmqfte.agent.Agent,com.ibm.wmqfte.command
handler=all

You can specify multiple trace specifications in a colon-separated list. For
example,

trace=com.ibm.wmqfte.agent.Agent=all:com.ibm.wmqfte.com
mandhandler=moderate

The special trace specification =all is used to trace the agent and the Java
Message Queuing Interface (JMQI) which handles all of the communication
with the agent queue manager. To enable this, add the following entry to the
agent.properties file:

trace==all

Unless otherwise specified by your IBM Support Representative, use the trace
specification com.ibm.wmqfte=all like this:

trace=com.ibm.wmqfte=all

None

outputLogFiles The total number of output.log files to keep. This value applies to an
agent's process controller and the agent itself.

5

outputLogSize The maximum size in MB of each output.log file before output wraps onto
the next file. This value applies to an agent's process controller and the agent
itself.

1

outputLogEncoding The character encoding that the agent uses when it writes to the output.log
file.

The default character encoding of the
platform that the agent is running on.

traceFiles The total number of trace files to keep. This value applies to an agent's
process controller as well and the agent itself.

5

traceSize The maximum size in MB of each trace file before trace wraps onto the next
file. This value applies to an agent's process controller and the agent itself.

20

traceMaxBytes The limit to the amount of message data that is output in the trace file. 4096 bytes

logTransferRecovery When this property is set to a value of true, whenever a transfer enters
recovery diagnostic events are reported to the agent's event log in the
output0.log file.

For IBM MQ 9.0.0.0 and later, the
default value is true.

180 IBM MQ Configuration Reference

Table 55. Advanced agent properties: Tracing and logging (continued)

Property name Description Default value

logCapture Captures transfer request messages that are submitted to this agent and
log messages that are published by the agent to the coordination queue
manager. These captured messages can be helpful when debugging transfer
problems. Captured messages are stored in files in the agent log directory
called capture?.log. The ? is a numeric value. The file that contains the
number 0 holds the newest captured messages.

false

logCaptureFileSize Defines the maximum size of a capture file in megabytes. 10

logCaptureFiles Defines the maximum number of capture files that are retained before the
oldest file is discarded.

10

logCaptureFilter A Java regular expression that the agent uses to match the topic name of
the message. Only those messages that match the regular expression are
captured.

.* (match all)

resourceMonitorLog Key value pair of resource monitor and operation to turn on, or turn off,
logging.

The possible values are:

• info

• moderate

• verbose

• off

For example:

• resourceMonitorLog=MON1,MON2=info:MON3=off

Turn on logging for MON1 and MON2, and turn off logging for MON3.

• resourceMonitorLog=info

Turn on info level logging for all resource monitors.

The resource monitor logs are written to a file named resmoneventN.log,
where N stands for a number; for example, resmonevent0.log.

Attention: All resource monitors of an agent write to the same log
file.

See Logging MFT resource monitors for more information.

info

resourceMonitorLogFileSize Defines the maximum size of a capture file in megabytes. 20

resourceMonitorLogFiles Defines the maximum number of capture files that are retained before the
oldest file is discarded.

• The default value of the resourceMonitorLogFiles agent property has
changed from 10 to 5. This means that, from IBM MQ 9.2.4 onwards, if the
default is set, there can be a maximum of five resource monitor event log
files, starting from resmonevent0.log to resmonevent4.log. However,
you can change this value if required.

• If the agent is migrated from a version prior to IBM MQ 9.2.4, you should
manually delete the resmonevent5.log to resmonevent9.log files if
any exist.

• However, the size of each log file remains at 20 MB.

From IBM MQ
9.2.4, the default value is 5.

Before IBM MQ 9.2.4, the default
value is 10.

Table 56. Advanced agent properties: Transfer limit

Property name Description Default value

maxDestinationTransfers The maximum number of concurrent transfers that the destination agent
processes at any point in time. Each transfer request that is submitted to
an agent counts against this total regardless of the number of files that are
transferred to satisfy the request. This means that a transfer request that
transfers a single file counts in the same way as a transfer request that
transfers 10 files.

The agent queues transfers when the destination agent reaches the limit that
is specified by the maxDestinationTransfers property.

If the sum of the following agent property values: maxSourceTransfers +
maxDestinationTransfers + maxQueuedTransfers exceeds the value of the
MAXDEPTH setting of the state store queue (SYSTEM.FTE.STATE.agent name),
the agent does not start.

25 (for all agents except
Connect:Direct

5 (for Connect:Direct bridge agents)

Configuration reference 181

Table 56. Advanced agent properties: Transfer limit (continued)

Property name Description Default value

maxFilesForTransfer The maximum number of transfer items that are allowed for a single managed
transfer. If a managed transfer contains more items than the value of
maxFilesForTransfer, the managed transfer fails and no transfer items are
processed.

Setting this property prevents you from accidentally transferring too many
files because of a bad transfer request, for example, if a user accidentally
specifies the transfer of the root directory / on a Linux or AIX system.

5000

maxSourceTransfers The maximum number of concurrent transfers that the source agent
processes at any point in time. Each transfer request that is submitted to
an agent counts against this total regardless of the number of files that are
transferred to satisfy the request. This means that a transfer request that
transfers a single file counts in the same way as a transfer request that
transfers 10 files.

The source agent queues transfers when the destination agent reaches the
limit that is specified by the maxSourceTransfers property.

If the sum of the following agent property values: maxSourceTransfers +
maxDestinationTransfers + maxQueuedTransfers exceeds the value of the
MAXDEPTH setting of the state store queue (SYSTEM.FTE.STATE.agent name),
the agent does not start.

25 (for all agents except
Connect:Direct bridge agents)

5 (for Connect:Direct bridge agents)

maxQueuedTransfers The maximum number of pending transfers that can be queued by a
source agent until the agent rejects a new transfer request. You can set
this property so that despite of the limits of maxDestinationTransfers and
maxSourceTransfers being met or exceeded, any new transfer requests that
you make now are accepted, queued and then carried out later.

The order that queued transfer requests are processed in is a factor of their
priority and how long they have been queued. Old and high priority pending
transfers are selected first. Transfers with a low priority that have been on
the queue for a long time are selected in preference to newer, higher priority
transfers.

If the sum of the following agent property values: maxSourceTransfers +
maxDestinationTransfers + maxQueuedTransfers exceeds the value of the
MAXDEPTH setting of the state store queue (SYSTEM.FTE.STATE.agent name),
the agent does not start.

1000

Table 57. Advanced agent properties: Transfer recovery timeout

Property name Description Default value

transferRecoveryTimeout Set amount of time, in seconds, during which a source agent keeps trying to
recover a stalled file transfer.

When the property is not set, the default behavior of the agent is to keep
retrying until it successfully recovers the transfer. You can set the following
values for the transfer recovery timeout property:

-1
The agent continues to attempt to recover the stalled transfer until the
transfer is complete. Using this option is the equivalent of the default
behavior of the agent when the property is not set.

0
The agent stops the file transfer as soon as it enters recovery.

>0
The agent continues to attempt to recover the stalled transfer for the
amount of time in seconds as set by the positive integer value specified.
For example, transferRecoveryTimeout=21600 indicates that the
agent keeps trying to recover the transfer for 6 hours from when it enters
recovery. The maximum value for this parameter is 999999999.

-1

Table 58. Advanced agent properties: User exit routine

Property name Description Default value

agentForceConsistentPathDelimiters Force the path delimiter in the source file and destination file information that
is provided to the transfer exits to be the UNIX style: forward slash (/). Valid
options are true and false.

false

destinationTransferEndExitClasses Specifies a comma-separated list of classes that implement a destination
transfer user exit routine.

No default

destinationTransferStartExitClasses Specifies a comma-separated list of classes that implement a destination
transfer start user exit routine.

No default

182 IBM MQ Configuration Reference

Table 58. Advanced agent properties: User exit routine (continued)

Property name Description Default value

exitClassPath Specifies a platform-specific, character-delimited list of directories that act as
the class path for user exit routines.

The agent exits directory is searched before any entries in this class path.

Agent's exits directory

exitNativeLibraryPath Specifies a platform-specific, character-delimited list of directories that act as
the native library path for user exit routines.

Agent's exits directory

ioMaxRecordLength The maximum record length, in bytes, that can be supported for a record-
oriented file. Managed File Transfer can support writing to record-oriented
files with any record length. However, large record lengths might cause out-
of-memory errors, so to avoid these errors the maximum record length is
restricted by default to 64 K. When reading from record-oriented files an
entire record must fit into a single transfer chunk, therefore the record length
is additionally limited by the transfer chunk size. This property is used only for
I/O user exit record-oriented files.

64 KB

monitorExitClasses Specifies a comma-separated list of classes that implement a monitor exit
routine. For more information, see MFT resource monitor user exits.

No default

protocolBridgeCredentialExitClasses Specifies a comma-separated list of classes that implement a protocol bridge
credential user exit routine. For more information, see Mapping credentials for
a file server by using exit classes.

No default.

sourceTransferEndExitClasses Specifies a comma-separated list of classes that implement a source transfer
end exit routine.

No default

sourceTransferStartExitClasses Specifies a comma-separated list of classes that implement a source transfer
start exit routine.

No default

IOExitClasses Specifies a comma-separated list of classes that implement an I/O user exit
routine. List only the classes that implement the IOExit interface, that is, do
not list classes that implement the other I/O user exit interfaces, for example
IOExitResourcePath and IOExitChannel. For more information, see Using MFT
transfer I/O user exits.

No default.

Table 59. Advanced agent properties: IBM MQ client compression

Property name Description Default value

agentDataCompression This property is supported for client connections only.

A comma-separated list of the compression types for the transfer of file data
to negotiate with the remote IBM MQ server. You can find information about
these compression types in the following topic: Message data compression
list.

The values are checked for validity and then passed through in order
of appearance as properties to the agent client channel. The IBM MQ
client then handles negotiation between this client channel and the remote
server channel to find the matching lowest common denominator between
the compression properties on the two channels. If no match is found,
MQCOMPRESS_NONE is always selected.

MQCOMPRESS_NONE

agentHeaderCompression This property is supported for client connections only.

A comma-separated list of the compression types for the transfer of header
data to negotiate with the remote IBM MQ server. Accepted values are
MQCOMPRESS_NONE or MQCOMPRESS_SYSTEM. You can find information
about these compression types in the following topic: HdrCompList [2]
(MQLONG).

The values are checked for validity and then passed through in order
of appearance as properties to the agent client channel. The IBM MQ
client then handles negotiation between this client channel and the remote
server channel to find the matching lowest common denominator between
the compression properties on the two channels. If no match is found,
MQCOMPRESS_NONE is always selected.

MQCOMPRESS_NONE

Configuration reference 183

Table 60. Advanced agent properties: z/OS-specific

Property name Description Default value

adminGroup A security manager group. Members of this group can:

• Start the agent by using the fteStartAgent command.

• Stop the agent by using the fteStopAgent command.

• Turn on or turn off trace for the agent by using the
fteSetAgentTraceLevel command.

• Turn on or turn off logs for the agent by using the fteSetAgentLogLevel
command

• Display details of a local agent by running the fteShowAgentDetails
command with the -d parameter specified.

Define a security manager group, for example MFTADMIN and then add the
started task userid and administrator TSO ids to this group. Edit the agent
properties file and set the adminGroup property to be the name of this
security manager group.

adminGroup=MFTADMIN

None

bpxwdynAllocAdditionalOptions Managed File Transfer uses the BPXWDYN text interface to create and open
z/OS data sets. When BPXWDYN is used for data set allocation by default
Managed File Transfer ensures, when possible, the data device is mounted
(not required for disk-based data sets but is required for tape data sets).
Because the options might not be supported for certain environments, use
this property to change this behavior. Also when transferring to a data set it
is also possible to specify options for BPXWDYN on the command line; these
options are in addition to those options specified by this property.

Some BPXWDYN options must not be specified when using the
bpxwdynAllocAdditionalOptions property in the agent.properties
file. For a list of these properties, see BPXWDYN properties you must not use
with MFT.

Default is as follows:

• MOUNT for z/OS V1R8 and later

armELEMTYPE Optional property. If the agent is configured for restart by the Automatic
Restart Manager (ARM), then set this property to the ARM ELEMTYPE
parameter value specified in the associated ARM policy. For an agent, set
ELEMTYPE to SYSBFGAG.

Not set

armELEMENT Optional property. If the agent is configured for restart by the Automatic
Restart Manager (ARM), then set this property to the ARM ELEMENT
parameter value specified in the associated ARM policy. You can set the
ELEMENT value to correspond to the agent name.

Not set

Table 61. Advanced agent properties: Other properties

Property name Description Default value

legacyXMLMessageMQMDFormat

Managed File Transfer XML messages that are generated by the agent (for
example, log and transfer progress messages), are now sent to a queue with
a blank MQMD format field. Previous versions of the product set the MQMD
format field to MQSTR (a text message string). Setting this property to true
enables the Managed File Transfer XML messages generated by the agent to
be sent to a queue with MQMD format field of MQSTR.

Note: Agent reply messages to commands will be sent with a message format
matching the corresponding command request.

If the MQMD format field is set to MQSTR, there is potential for Managed File
Transfer command XML messages to be corrupted if there are channels in the
MQ network with data conversion enabled.

false

adjustScheduleTimeForDaylightSavin
g

If your enterprise runs scheduled transfers every day, because the scheduled
transfer was created with:

• -oi parameter set to days, and

• -tb parameter set to source

on the fteCreateTransfer command for example, then setting this property to
true will move the scheduled transfer time forward one hour when the clocks
go forward by one hour and back by one hour when the clocks go back one
hour.

For example, if your scheduled transfer is due to run at 1:00 am, when the
clocks go forward, the transfer will run at 2:00 am and when the clocks go
back, the transfer reverts to 1:00 am.

true

184 IBM MQ Configuration Reference

Related tasks
Configuring an MFT agent for multiple channels in a cluster
Configuring an MFT agent for multiple channels: non-clustered
Related reference
MFT configuration options on Multiplatforms
“Java system properties for MFT” on page 205
A number of Managed File Transfer command and agent properties must be defined as Java system
properties, because they define configuration for early function that is unable to use the command or
agent properties mechanism.
SSL/TLS properties for MFT
“The MFT command.properties file” on page 189
The command.properties file specifies the command queue manager to connect to when you issue
commands and the information that Managed File Transfer requires to contact that queue manager.
“The MFT coordination.properties file” on page 185
The coordination.properties file specifies the connection details to the coordination queue
manager. Because several Managed File Transfer installations might share the same coordination queue
manager, you can use a symbolic link to a common coordination.properties file on a shared drive.
“The MFT logger.properties file” on page 193
The Managed File Transfer logger has a set of configuration properties. Specify these
properties in the logger.properties file, which is in the MQ_DATA_PATH/mqft/config/
coordination_qmgr_name/loggers/logger_name directory.
fteCreateAgent
fteCreateBridgeAgent
fteCreateCDAgent
“The use of environment variables in MFT properties” on page 157
From IBM WebSphere MQ 7.5, it is possible for environment variables to be used in Managed File Transfer
properties that represent file or directory locations. This allows the locations of files or directories used
when running parts of the product, to vary depending on environment changes. For example, which user is
running the process.
Timeout option for file transfers in recovery
MFT sandboxes

The MFT coordination.properties file
The coordination.properties file specifies the connection details to the coordination queue
manager. Because several Managed File Transfer installations might share the same coordination queue
manager, you can use a symbolic link to a common coordination.properties file on a shared drive.

The coordination.properties file is created by the installer or by the fteSetupCoordination
command. You can use the fteSetupCoordination command with the -f flag to change the basic
coordination queue manager properties in this file. To change or add advanced coordination queue
manager properties you must edit the file in a text editor.

The coordination.properties file is located in the MQ_DATA_PATH/mqft/config/
coordination_qmgr_name directory.

The MFT coordination.properties file contains the following values:

Table 62. Basic coordination queue manager properties

Property name Description Default value

coordinationCredentialsKeyFile

Name of the file containing the credential key used while encrypting
credentials.

A string property having no default
value.

coordinationQMgr The name of the coordination queue manager. No default

coordinationQMgrHost The host name or IP address of the coordination queue manager. No default

Configuration reference 185

Table 62. Basic coordination queue manager properties (continued)

Property name Description Default value

coordinationQMgrPort The port number used for client connections to the coordination queue
manager.

1414

coordinationQMgrChannel The SVRCONN channel name used to connect to the coordination queue
manager.

SYSTEM.DEF.SVRCONN

If you do not specify a value for the coordinationQMgrHost property, bindings mode is used by default.

If you specify a value for the coordinationQMgrHost property but do not specify values for the
coordinationQMgrPort and coordinationQMgrChannel properties, a port number of 1414 and a channel
of SYSTEM.DEF.SVRCONN are used by default.

Here is an example of the contents of a coordination.properties file:

coordinationQMgr=ERIS
coordinationQMgrHost=kuiper.example.com
coordinationQMgrPort=2005
coordinationQMgrChannel=SYSTEM.DEF.SVRCONN

In this example, ERIS is the name of an IBM MQ queue manager that is located on the system
kuiper.example.com. The queue manager ERIS is the queue manager that Managed File Transfer
sends log information to.

Advanced coordination properties
Managed File Transfer also provides more advanced coordination properties. If you want to use any
of the following properties, manually edit the coordination.properties file to add the required
advanced properties. When you specify file paths on Windows, ensure the separator character backslash
(\) is entered as double backslashes (\\), that is, escaped backslash (\). Alternatively, you can use a
single forward slash (/) character as a separator. For more information about character escaping in Java
properties files, see the Oracle documentation Javadoc for the Properties class.

• Agent properties
• Code page properties
• Connection properties
• Multi-instance queue manager properties
• Queue properties
• Security properties
• SSL properties
• Subscription properties

Table 63. Advanced coordination properties: Agent

Property name Description Default value

agentStatusJitterTolerance The maximum amount of time an agent status message publication can
be delayed by before the message is considered as overdue. This value is
measured in milliseconds.

The age of a status message is based on the time at which it was published
at the coordination queue manager. However, the message is emitted by the
agent some time before it is received at the coordination queue manager
to allow for the time required to travel across the IBM MQ network. If this
transit always takes the same amount of time, messages created 60 seconds
apart are published 60 seconds apart, regardless of the actual time in transit.
However, if the transit time varies between messages, they might be created
at 60-second intervals but published at intervals of, for example, 61, 59, 58,
and 62 seconds. The maximum deviation from 60, 2 seconds in this example,
is the jitter. This property determines the maximum delay due to jitter before
the message is treated as overdue.

3000

186 IBM MQ Configuration Reference

https://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

Table 64. Advanced coordination properties: Code page

Property name Description Default value

coordinationCcsid The code page the commands connect to the coordination queue manager
with. Also any publications to the coordination queue manager made by
the agent are performed with this code page. If you specify a value for
coordinationCcsid you must also specify a value for coordinationCcsidName.

1208

coordinationCcsidName The Java representation of the coordinationCcsid. If you specify a value for
coordinationCcsidName you must also specify a value for coordinationCcsid.

UTF8

Table 65. Advanced coordination properties: Connection

Property name Description Default value

javaLibraryPath When connecting to a queue manager in bindings mode Managed File Transfer
must have access to the IBM MQ Java bindings libraries. By default Managed
File Transfer looks for the bindings libraries in the default location defined by
IBM MQ. If the bindings libraries are in a different location use this property to
specify the location of the bindings libraries.

MQ_INSTALLATION_PATH/
java/lib

Table 66. Advanced coordination properties: Multi-instance queue manager

Property name Description Default value

coordinationQMgrStandby The host name and the port number used for client connections, in IBM MQ
CONNAME format, for the standby instance of a multi-instance coordination
queue manager defined by the coordinationQMgr property. For example,
host_name(port_number)

No default

Table 67. Advanced coordination properties: Queue

Property name Description Default value

dynamicQueuePrefix This property defines the IBM MQ prefix to use for generating a temporary
queue name.

The format of the dynamicQueuePrefix property follows the format of the
DynamicQName field of the IBM MQ MQOD structure. For more information,
see Creating dynamic queues.

You can also define this property in the command.properties file if you
want to use a specific IBM MQ prefix for temporary reply queues that are
generated by commands that require a response from the agent.

WMQFTE.*

modelQueueName This property defines the IBM MQ model queue to use for generating a
temporary queue.

You can also define this property in the command.properties file if you want
to use a specific IBM MQ model queue for temporary reply queues that are
generated by commands that require a response from the agent. For more
information, see “The MFT command.properties file” on page 189.

SYSTEM.DEFAULT.MODEL.QUEUE

Table 68. Advanced coordination properties: Security

Property name Description Default value

userIdForClientConnect The user ID that gets flowed through the client connections to IBM MQ. If java
is specified the user name reported by the JVM is flowed as part of the IBM
MQ connection request. The value of this property can be None or java.

None

coordinationQMgrAuthenticationCred
entialsFile

The path to the file that contains the MQ connection credentials for
connection to the coordination queue manager. For details on

creating the Authentication
Credentials File see Configuring
MQMFTCredentials.xml on z/OS.

See Configuring
MQMFTCredentials.xml for
information on the location and
permissions of this file.

Further details
on creating the Authentication
Credentials File are in MFT and IBM
MQ connection authentication

Configuration reference 187

Table 69. Advanced coordination properties: SSL/TLS

Property name Description Default value

coordinationSslCipherSpec Specifies the protocol, hash algorithm, and encryption algorithm that is used,
and how many bits are used in the encryption key, when data is exchanged
between the commands and the coordination queue manager.

The value of coordinationSslCipherSpec is a CipherSpec name. This
CipherSpec name is the same as the CipherSpec name used on the
coordination queue manager channel. A list of valid CipherSpec names is
included in SSL/TLS CipherSpecs and CipherSuites in IBM MQ classes for Java
and SSL/TLS CipherSpecs and CipherSuites in IBM MQ classes for JMS.

coordinationSslCipherSpec is similar to coordinationSslCipherSuite. If both
coordinationSslCipherSuite and coordinationSslCipherSpec are specified, the
value of coordinationSslCipherSpec is used.

None

coordinationSslCipherSuite Specifies SSL aspects of how the commands and the coordination queue
manager exchange data.

The value of coordinationSslCipherSuite is a CipherSuite name. The
CipherSuite name maps to the CipherSpec name used on the agent queue
manager channel. For more information, see CipherSuite and CipherSpec
name mappings.

coordinationSslCipherSuite is similar to coordinationSslCipherSpec. If both
coordinationSslCipherSuite and coordinationSslCipherSpec are specified, the
value of coordinationSslCipherSpec is used.

None

coordinationSslPeerName Specifies a distinguished name skeleton that must match the name that is
provided by the coordination queue manager. The distinguished name is used
to check the identifying certificate that is presented by the coordination queue
manager on connection.

None

coordinationSslTrustStore Specifies the location of the certificates that the commands trust. The value
of coordinationSslTrustStore is a file path. If it is a Windows file path, the
backslash character (\) must be escaped (\\).

From IBM WebSphere MQ 7.5 or later, the value of this property can contain
environment variables.

None

coordinationSslTrustStoreType The type of SSL keystore you want to use. JKS and PKCS#12 keystores are
supported. The value of this property can be either jks or pkcs12.

jks

coordinationSslTrustStoreCredentials
File

The path to the file that contains the coordinationSslTrustStore credentials.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

The default value for
this property is %USERPROFILE%
\MQMFTCredentials.xml on
Windows and $HOME/
MQMFTCredentials.xml on other
platforms.

coordinationSslKeyStore Specifies the location of the private key of the commands. The value of
coordinationSslKeyStore is a file path. If it is a Windows file path, the
backslash character (\) must be escaped (\\). This property is only required
if the coordination queue manager requires client authentication.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

None

coordinationSslKeyStoreType The type of SSL keystore you want to use. JKS and PKCS#12 keystores are
supported. The value of this property can be either jks or pkcs12.

jks

coordinationSslKeyStoreCredentialsFi
le

The path to the file that contains the coordinationSslKeyStore credentials.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

The default value for
this property is %USERPROFILE%
\MQMFTCredentials.xml on
Windows and $HOME/
MQMFTCredentials.xml on other
platforms.

coordinationSslFipsRequired Specifies that you want to enable FIPS support at the level of the coordination
queue manager. The value of this property can be true or false. For more
information, see FIPS support in MFT.

false

188 IBM MQ Configuration Reference

Table 70. Advanced coordination properties: Subscription

Property name Description Default value

coordinationSubscriptionTopic Use this property to specify a topic other than SYSTEM.FTE to subscribe to
in order to obtain publications about the status of the IBM MQ network. All
tooling still publishes to the SYSTEM.FTE topic, but you can change your IBM
MQ topology to distribute these publications to different topics based on their
content. You can then use this function to force the tooling to subscribe to one
of these other topics.

For IBM WebSphere MQ 7.5 and later fix packs, you require an interim fix for
APAR IC96850 for the property to be recognized by IBM MQ Explorer and the
fteListMonitors command.

SYSTEM.FTE

Related concepts
MFT configuration options on Multiplatforms
Related reference
fteSetupCoordination
SSL/TLS properties for MFT
“The MFT agent.properties file” on page 162
Each Managed File Transfer Agent has its own properties file, agent.properties, that must contain the
information that an agent uses to connect to its queue manager. The agent.properties file can also
contain properties that alter the behavior of the agent.
“The MFT command.properties file” on page 189
The command.properties file specifies the command queue manager to connect to when you issue
commands and the information that Managed File Transfer requires to contact that queue manager.
“The MFT logger.properties file” on page 193
The Managed File Transfer logger has a set of configuration properties. Specify these
properties in the logger.properties file, which is in the MQ_DATA_PATH/mqft/config/
coordination_qmgr_name/loggers/logger_name directory.

The MFT command.properties file
The command.properties file specifies the command queue manager to connect to when you issue
commands and the information that Managed File Transfer requires to contact that queue manager.

The command.properties file is created by the installer or by the fteSetupCommands command.
You can use the fteSetupCommands command with the -f flag to change the basic command queue
manager properties in this file. To change or add advanced command queue manager properties you must
edit the file in a text editor.

Some Managed File Transfer commands connect to the agent queue manager or coordination queue
manager instead of the command queue manager. For information about which commands connect to
which queue manager, see Which MFT command connects to which queue manager.

The command.properties file is located in the MQ_DATA_PATH/mqft/config/
coordination_qmgr_name directory.

The MFT command.properties file contains the following values:

Table 71. Basic command queue manager properties

Property name Description Default value

connectionCredentialsKeyFile

Name of the file containing the credential key used while encrypting
credentials.

A string property having no default
value.

connectionQMgr The name of the queue manager used to connect to the IBM MQ network. No default

connectionQMgrHost The host name or IP address of the connection queue manager. No default

connectionQMgrPort The port number used to connect to the connection queue manager in client
mode.

1414

connectionQMgrChannel The SVRCONN channel name used to connect to the connection queue
manager.

SYSTEM.DEF.SVRCONN

Configuration reference 189

If you do not specify a value for the connectionQMgrHost property, bindings mode is used by default.

If you specify a value for the connectionQMgrHost property but do not specify values for the
connectionQMgrPort and connectionQMgrChannel properties, a port number of 1414 and a channel of
SYSTEM.DEF.SVRCONN are used by default.

Here is an example of the contents of a command.properties file:

connectionQMgr=PLUTO
connectionQMgrHost=kuiper.example.com
connectionQMgrPort=1930
connectionQMgrChannel=SYSTEM.DEF.SVRCONN

In this example, PLUTO is the name of an IBM MQ queue manager that is located on the system
kuiper.example.com. The queue manager PLUTO is the queue manager that the Managed File Transfer
commands connect to.

Advanced command properties
Managed File Transfer also provides more advanced command properties. If you want to use any of
the following properties, manually edit the command.properties file to add the required advanced
properties. When you specify file paths on Windows, ensure the separator character backslash (\) is
entered as double backslashes (\\), that is, escaped backslash (\). Alternatively, you can use a single
forward slash (/) character as a separator. For more information about character escaping in Java
properties files, see the Oracle documentation Javadoc for the Properties class.

• Agent properties
• Code page properties
• Multi-instance queue manager properties
• Queue properties
• Security properties
• SSL properties

Table 72. Advanced command properties: Agent

Property name Description Default value

failCleanAgentWithNoArguments By default, the value of this property is true, which means that the
fteCleanAgent command fails to run if only the agent name parameter is
specified. Setting the property to false means that, if only the agent name
parameter is set, the behavior of the fteCleanAgent command is equivalent
to specifying the -all parameter.

true

Table 73. Advanced command properties: Code page

Property name Description Default value

connectionCcsid The code page the commands connect to the command queue manager with.
If you specify a value for connectionCcsid you must also specify a value for
connectionCcsidName.

1208

connectionCcsidName The Java representation of the connectionCcsid. If you specify a value for
connectionCcsidName you must also specify a value for connectionCcsid.

UTF8

Table 74. Advanced connection properties: Multi-instance queue manager

Property name Description Default value

connectionQMgrStandby The host name and the port number used for client connections, in IBM MQ
CONNAME format, for the standby instance of a multi-instance command
queue manager defined by the connectionQMgr property. For example,
host_name(port_number)

No default

190 IBM MQ Configuration Reference

https://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

Table 75. Advanced command properties: Queue

Property name Description Default value

dynamicQueuePrefix For commands that require a response from the agent, this property defines
the IBM MQ prefix to use for generating the temporary reply queue name.

The format of the dynamicQueuePrefix property follows the format of the
DynamicQName field of the IBM MQ MQOD structure. For more information,
see Creating dynamic queues.

You can also define this property in the coordination.properties file
if you want to use a specific IBM MQ prefix for temporary queues that are
generated by WMQFTE.

WMQFTE.*

modelQueueName For commands that require a response from the agent, this property defines
the IBM MQ model queue to use for generating the temporary reply queue.

You can also define this property in the coordination.properties file if
you want to use a specific IBM MQ model queue for temporary queues
that are generated by WMQFTE. For more information, see “The MFT
coordination.properties file” on page 185.

SYSTEM.DEFAULT.MODEL.QUEUE

Connection properties:

javaLibraryPath When connecting to a queue manager in bindings mode Managed File Transfer
must have access to the IBM MQ Java bindings libraries. By default Managed
File Transfer looks for the bindings libraries in the default location defined by
IBM MQ. If the bindings libraries are in a different location use this property to
specify the location of the bindings libraries.

/opt/mqm/java/lib

legacyXMLMessageMQMDFormat

Managed File Transfer command XML messages are now sent to a queue with
a blank MQMD format field. Previous versions of the product set the MQMD
format field to MQSTR (a text message string). Setting this property to true
enables the Managed File Transfer command XML messages to be sent to a
queue with MQMD format field of MQSTR.

If the MQMD format field is set to MQSTR, there is potential for Managed File
Transfer command XML messages to be corrupted if there are channels in the
MQ network with data conversion enabled.

false

Table 76. Advanced command properties: Security

Property name Description Default value

userIdForClientConnect The user ID that gets flowed through the client connections to IBM MQ. If java
is specified the user name reported by the JVM is flowed as part of the IBM
MQ connection request. The value of this property can be None or java.

None

connectionQMgrAuthenticationCrede
ntialsFile

The path to the file that contains the MQ connection credentials for
connection to the command queue manager.

See Configuring
MQMFTCredentials.xml on
Multiplatforms and

Configuring
MQMFTCredentials.xml on z/OS.

Further details
on creating the Authentication
Credentials File are in MFT and IBM
MQ connection authentication

Table 77. Advanced command properties: SSL/TLS

Property name Description Default value

connectionSslCipherSpec Specifies the protocol, hash algorithm, and encryption algorithm that is used,
and how many bits are used in the encryption key, when data is exchanged
between the commands and the command queue manager.

The value of connectionSslCipherSpec is a CipherSpec name. This CipherSpec
name is the same as the CipherSpec name used on the command queue
manager channel. A list of valid CipherSpec names is included in SSL/TLS
CipherSpecs and CipherSuites in IBM MQ classes for Java and SSL/TLS
CipherSpecs and CipherSuites in IBM MQ classes for JMS.

connectionSslCipherSpec is similar to connectionSslCipherSuite. If both
connectionSslCipherSuite and connectionSslCipherSpec are specified, the
value of connectionSslCipherSpec is used.

None

Configuration reference 191

Table 77. Advanced command properties: SSL/TLS (continued)

Property name Description Default value

connectionSslCipherSuite Specifies SSL aspects of how the commands and the command queue
manager exchange data.

The value of connectionSslCipherSuite is a CipherSuite name. The CipherSuite
name maps to the CipherSpec name used on the agent queue manager
channel. For more information, see CipherSuite and CipherSpec name
mappings.

connectionSslCipherSuite is similar to connectionSslCipherSpec. If both
connectionSslCipherSuite and connectionSslCipherSpec are specified, the
value of connectionSslCipherSpec is used.

None

connectionSslPeerName Specifies a distinguished name skeleton that must match the name that is
provided by the command queue manager. The distinguished name is used
to check the identifying certificate that is presented by the command queue
manager on connection.

None

connectionSslTrustStore Specifies the location of the certificates that the commands trust. The value
of connectionSslTrustStore is a file path. If it is a Windows file path, the
backslash character (\) must be escaped (\\).

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

None

connectionSslTrustStoreType The type of SSL truststore you want to use. JKS and PKCS#12 keystores are
supported. The value of this property can be either jks or pkcs12.

jks

connectionSslTrustStoreCredentialsFi
le

The path to the file that contains the connectionSslTrustStore credentials.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

The default value for
this property is %USERPROFILE%
\MQMFTCredentials.xml on
Windows and $HOME/
MQMFTCredentials.xml on other
platforms.

connectionSslKeyStore Specifies the location of the private key of the commands. The value of
connectionSslKeyStore is a file path. If it is a Windows file path, the backslash
character (\) must be escaped (\\). This property is only required if the
command queue manager requires client authentication.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

None

connectionSslKeyStoreType The type of SSL keystore you want to use. JKS and PKCS#12 keystores are
supported. The value of this property can be either jks or pkcs12.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

jks

connectionSslKeyStoreCredentialsFil
e

The path to the file that contains the connectionSslKeyStore credentials.

From IBM WebSphere MQ 7.5, the value of this property can contain
environment variables.

The default value for
this property is %USERPROFILE%
\MQMFTCredentials.xml on
Windows and $HOME/
MQMFTCredentials.xml on other
platforms.

connectionSslFipsRequired Specifies that you want to enable FIPS support at the level of the command
queue manager. The value of this property can be true or false. For more
information, see FIPS support in MFT.

false

Related concepts
MFT configuration options on Multiplatforms
Related reference
“Java system properties for MFT” on page 205
A number of Managed File Transfer command and agent properties must be defined as Java system
properties, because they define configuration for early function that is unable to use the command or
agent properties mechanism.
SSL/TLS properties for MFT
“The MFT agent.properties file” on page 162
Each Managed File Transfer Agent has its own properties file, agent.properties, that must contain the
information that an agent uses to connect to its queue manager. The agent.properties file can also
contain properties that alter the behavior of the agent.
“The MFT coordination.properties file” on page 185

192 IBM MQ Configuration Reference

The coordination.properties file specifies the connection details to the coordination queue
manager. Because several Managed File Transfer installations might share the same coordination queue
manager, you can use a symbolic link to a common coordination.properties file on a shared drive.
“The MFT logger.properties file” on page 193
The Managed File Transfer logger has a set of configuration properties. Specify these
properties in the logger.properties file, which is in the MQ_DATA_PATH/mqft/config/
coordination_qmgr_name/loggers/logger_name directory.
fteSetupCommands: create the MFT command.properties file
fteCleanAgent: clean up an MFT Agent

The MFT logger.properties file
The Managed File Transfer logger has a set of configuration properties. Specify these
properties in the logger.properties file, which is in the MQ_DATA_PATH/mqft/config/
coordination_qmgr_name/loggers/logger_name directory.

From IBM WebSphere MQ 7.5, you can use environment variables in some Managed File Transfer
properties that represent file or directory locations. This allows the locations of files or directories that are
used when running parts of the product, to vary depending on environment changes, such as which user is
running the process. For more information, see “The use of environment variables in MFT properties” on
page 157.

Note: When you specify file paths on Windows, the backslash (\) separator character must
appear as double backslashes (\\) (that is, escaped \). Alternatively, you can use a single forward slash
character (/) as a separator. For more information about character escaping in Java properties files in
Oracle, see Javadoc for the Properties class.

The MFT logger.properties file contains the following values:

• “Bindings mode connection properties” on page 193
• “Client mode SSL/TLS connection properties” on page 200

Bindings mode connection properties
Table 78. Bindings mode connection properties for the logger.properties file

Property name Description Default value

wmqfte.logger.type The logger type in use: file, or database. Set this
value to FILE, or DATABASE.

No default value

wmqfte.max.transaction.messages The maximum number of messages that is processed
in a transaction before the transaction is committed.
In circular logging mode, a queue manager has a
fixed amount of space available for inflight data.
Ensure that you set this property with a sufficiently
low value so that the available space does not run
out.

50

wmqfte.max.transaction.time The maximum length of time in milliseconds that
passes between transaction commits.

5000

wmqfte.max.consecutive.reject The maximum number of messages that can be
rejected consecutively (that is, without encountering
a valid message).

If this number is exceeded the logger concludes that
the problem is not with the messages themselves
but with the configuration. For example, if you make
an agent-name column in the database narrower
than all of your agent names, all messages referring
to agents are rejected.

50

Configuration reference 193

https://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)

Table 78. Bindings mode connection properties for the logger.properties file (continued)

Property name Description Default value

wmqfte.reject.queue.name The name of a queue to which the logger puts
messages that the logger cannot handle. If you have
a database logger see MFT logger error handling and
rejection for details of which messages might be put
onto this queue.

SYSTEM.FTE.LOG.RJCT.logger_name

wmqfte.command.queue.name The name of a queue that the logger reads command
messages controlling its behavior from.

SYSTEM.FTE.LOG.CMD.logger_name

wmqfte.queue.manager The queue manager that the logger connects to. This
parameter is required, and is all that is needed for
bindings mode connections to the queue manager.
(For the properties for connecting to a remote queue
manager, see Table 79 on page 200.)

No default value

wmqfte.message.source.type One of the following values:

automatic subscription
The default value. The logger creates and
uses its own durable, managed subscription
on the queue manager that is defined in
SYSTEM.FTE/Log/#. This is an appropriate value
for most scenarios.

administrative subscription
If the automatic subscription is not appropriate,
you can define a different subscription (for
example, by using the IBM MQ Explorer,
MQSC, or PCF) and instruct the logger to
use that subscription. For example, use this
value to partition the log space so that one
logger handles agents from A-H, another logger
handles I-P, and a third logger from Q-Z.

queue
If the IBM MQ topology means that creating a
subscription for the logger is not convenient,
you can use a queue instead. Configure IBM
MQ so that the queue receives the messages
that are typically received by a subscription to
SYSTEM.FTE/Log/# on the coordination queue
manager.

automatic subscription

wmqfte.message.source.name If the message source type is administrative
subscription or queue, the name of the
subscription or queue to use. This property is ignored
if the source type is automatic subscription.

No default value

wmqfte.database.credentials.file The file that contains the user name and password
for connecting to the database.

For IBM WebSphere MQ 7.5, or later, the value of this
property can contain environment variables.

For more information, see MFT credentials file
format.

For information about
creating the authentication credentials file,
see Configuring MQMFTCredentials.xml on
z/OS.

For information on the
location and permissions of this file, see
Configuring MQMFTCredentials.xml.

See also MFT and IBM MQ
connection authentication.

194 IBM MQ Configuration Reference

Table 78. Bindings mode connection properties for the logger.properties file (continued)

Property name Description Default value

wmqfte.database.driver The location of the JDBC driver classes for the
database. This is typically the path and file name of a
JAR file.

For example, the Type 2 driver
for Db2 on AIX systems requires the
file /opt/IBM/db2/V9.5/java/db2jcc.jar.

On Windows systems, specify the
path separator as a forward slash character (/)
for example, C:/Program Files/IBM/SQLLIB/
java/db2jcc.jar.

On z/OS, specify the
full path of the db2jcc.jar file.
For example, wmqfte.database.driver=/db2/
db2v10/jdbc/classes/db2jcc.jar.

On z/OS systems, you must
reference all of the following JAR files:

• db2jcc.jar
• db2jcc_license_cisuz.jar
• db2jcc_javax.jar

If your database driver consists of multiple JAR files
(for example, Db2 V9.1 requires a driver JAR file and
a license JAR file), include all of these JAR files in
this property. Separate multiple file names by using
the classpath separator for your platform, that is, the
semicolon character (;) on Windows systems and the
colon character (:) on other platforms.

No default value

wmqfte.database.exclude .duplicate.
metadata

Controls whether entries are stored in the metadata
table that contains information that can be found
in other tables within the database logger schema.
Set this value to true, or false. These metadata
entries are no longer stored by default as it is
duplication of existing data and a waste of database
storage capacity. The property entries and the tables,
where the same data appears, are as follows:

• com.ibm.wmqfte.SourceAgent TRANSFER_EVENT
or CALL_REQUEST

• com.ibm.wmqfte.DestinationAgent
TRANSFER_EVENT

• com.ibm.wmqfte.MqmdUser TRANSFER_EVENT or
CALL_REQUEST

• com.ibm.wmqfte.OriginatingUser
TRANSFER_EVENT or CALL_REQUEST

• com.ibm.wmqfte.OriginatingHost
TRANSFER_EVENT or CALL_REQUEST

• com.ibm.wmqfte.TransferId TRANSFER or
CALL_REQUEST

• com.ibm.wmqfte.JobName TRANSFER or
CALL_REQUEST

Setting the value of this property to false causes
these metadata entries to be stored in the metadata
table.

true

Configuration reference 195

Table 78. Bindings mode connection properties for the logger.properties file (continued)

Property name Description Default value

wmqfte.database.host Db2 only:

For IBM WebSphere MQ 7.5, or later, the host name
of the database server to connect to using a Type 4
JDBC driver. If a value for this property is specified,
then a value for wmqfte.database.port must also
be specified. If both properties are not defined, the
database logger connects by using the default Type 2
JDBC driver.

If a value for this property is specified, then a
credentials file for this logger (file path defined by
the wmqfte.database.credentials.file property) must
exist, and be accessible to define the user name and
password for connecting to the database, even if the
database is on the local system.

No default value

wmqfte.database.name The name of the database instance (or subsystem
when using Db2 for z/OS) that contains the Managed
File Transfer log tables.

No default value

wmqfte.database.type The database management system in use: Db2 or
Oracle. Set this value to db2 or oracle.

db2

wmqfte.database.port Db2 only:

For IBM WebSphere MQ 7.5, or later, the port
number of the database server to connect to using
a Type 4 JDBC driver. If a value for this property is
specified, then a value for wmqfte.database.host
must also be specified. If both properties are not
defined, the database logger connects by using the
default Type 2 JDBC driver.

If a value for this property is specified, then a
credentials file for this logger (file path defined by
the wmqfte.database.credentials.file property) must
exist, and be accessible to define the user name and
password for connecting to the database, even if the
database is on the local system.

No default value

wmqfte.database.schema Db2 only:

The database schema that contains the Managed File
Transfer logging tables. In most cases the default
value is appropriate, but you might need to specify
an alternative value depending on your own site-
specific database considerations.

FTELOG

wmqfte.database.native.library.path The path that contains the native libraries that are
needed by your chosen database driver (if any).

For example, the Type 2 driver
for Db2 on AIX systems requires libraries
from /opt/IBM/db2/V9.5/lib32/. As an
alternative to this property, you can set the
java.library.path system property by using other
methods.

No default value

wmqfte.file.logger.fileDirectory The directory where the file logger log files are
located.

mqft/logs/coordination_dir/
loggers/logger_name/logs

wmqfte.file.logger.fileSize The maximum size that a log file is allowed to grow
to. The size value is a positive integer, greater than
zero, followed by one of the following units: KB, MB,
GB, m (minutes), h (hours), d (days), w (weeks). For
example, wmqfte.file.logger.fileSize=5MB
specifies a maximum file size of 5MB, and
wmqfte.file.logger.fileSize=2d specifies a
maximum file size of 2 days of data.

10MB

196 IBM MQ Configuration Reference

Table 78. Bindings mode connection properties for the logger.properties file (continued)

Property name Description Default value

wmqfte.file.logger.fileCount The maximum number of log files to create. When
the amount of data exceeds the maximum amount
that can be stored in this number of files, the oldest
file is deleted so that the number of files never
exceeds the value that is specified.

3

wmqfte.file.logger.mode The logger mode in use: circular, or linear. Set this
value to CIRCULAR, or LINEAR.

CIRCULAR - The file logger writes information
to a file until that file reaches its
maximum size as defined by using the
wmqfte.file.logger.fileSize property. When
the maximum size is reached, the file logger
starts a new file. The maximum number
of files that are written in this mode is
controlled by the value that is defined by using
the wmqfte.file.logger.fileCount property.
When this maximum number of files is reached,
the file logger deletes the first file and re-creates
it for use as the currently active file. If the value
defined in the wmqfte.file.logger.fileSize
property is a fixed size byte unit (for example,
KB, MB, or GB) then the upper limit on disk
space that is used in this mode equals fileSize
multiplied by fileCount. If the value defined in
the wmqfte.file.logger.fileSize property is
a time unit (for example, m, h, d, or w) then the
maximum size depends on the throughput of log
messages in your system over these time periods.
The log file naming convention that is used when
running in this mode is:logger_namenumber-
timestamp.log where:

• logger_name is the name that is given to the logger
in the fteCreateLogger command.

• number is the number of the file within the set.
• timestamp is the timestamp of when the file was

created.

For example, LOGGER1-20111216123430147.log

LINEAR - The file logger writes information to a file
until that file reaches its maximum size as defined
by using the wmqfte.file.logger.fileSize
property. When the maximum size is reached the
file logger starts a new file. Previously written files
are not deleted, which allows them to be kept
as a historical record of log messages. Files are
not deleted when running in linear mode, so
the wmqfte.file.logger.fileCount property is
ignored because there is no upper limit to the
number of files that can be created. Because there
is no upper limit when running in this mode, it is
necessary to track the amount of disk space that
is used by the log files to avoid running low on
disk space. The log file naming convention that is
used when running in this mode is: logger_name-
timestamp.log where:

• logger_name is the name that is given to the logger
in the fteCreateLogger command.

• timestamp is the timestamp of when the file was
created.

For example, LOGGER-20111216123430147.log

No default value

Configuration reference 197

Table 78. Bindings mode connection properties for the logger.properties file (continued)

Property name Description Default value

wmqfte.max.retry.interval The maximum time, in seconds, between retries
when the logger encounters a persistent error.

Some error conditions (for example, loss of database
connection) prevent the logger from continuing.
When this type of condition occurs, the logger rolls
back the current transaction, waits for a period, and
then retries. The time that the logger waits is initially
very short, so that transitory errors can be overcome
quickly. However, each time the logger retries, the
time that it waits is increased. This prevents too
much unnecessary work from taking place when the
error condition is longer-lasting, for example when a
database is taken down for maintenance.

Use this property to set a limit to the length of the
wait so that a retry occurs in a reasonable time of the
error condition being resolved.

600

immediateShutdownTimeout

The time, in seconds, that the logger waits for
any outstanding operations to complete and shut
down gracefully. By default, the logger waits for 10
seconds for operations to complete. If operations are
not completed before the timeout, the logger writes
the following event message to output0.log, and
ends.

BFGDB0082I: The logger is ending
immediately.

If you specify the value of zero, the logger waits for
ever to complete current operations.

The default value is used if the value of
immediateShutdownTimeout is set to less than
zero.

The property applies to both the stand-alone
database logger as well as the file type logger.

10

loggerCredentialsKeyFile

Name of the file containing the credential key used
while encrypting credentials.

A string property having no default value.

loggerQMgrRetryInterval The interval, in seconds, between checks on the
availability of the queue manager by the logger's
process controller.

30

maxRestartCount The maximum number of restarts that can happen
within the time interval specified by the value of
the maxRestartInterval property. When this value
is exceeded the logger's process controller stops
restarting the logger, and instead performs an action
that is based on the value of the maxRestartDelay
property.

4

maxRestartInterval The interval, in seconds, that the logger's process
controller measures logger restarts over. If the
number of restarts in this interval exceeds the
value of the maxRestartCount property, the logger's
process controller stops restarting the logger.
Instead the logger's process controller performs
an action that is based on the value of the
maxRestartDelay property.

120

198 IBM MQ Configuration Reference

Table 78. Bindings mode connection properties for the logger.properties file (continued)

Property name Description Default value

maxRestartDelay Determines the behavior of the logger's process
controller when the rate of logger restarts
exceeds the value of the maxRestartCount and
maxRestartInterval properties. If you specify a value
less than or equal to zero, the logger's process
controller is stopped. If you specify a value greater
than zero, this is the number of seconds to wait
before the restart history information held by the
logger's process controller is reset and the logger is
restarted.

-1

wmqfte.oracle.port The port that the logger uses to connect to the
Oracle instance. This port is also known as a TNS
listener.

1521

wmqfte.oracle.host The host that the logger uses to connect to the
Oracle instance.

localhost

armELEMTYPE Optional property. If the logger is configured for
restart by the Automatic Restart Manager (ARM),
then set this property to the ARM ELEMTYPE
parameter value specified in the associated ARM
policy. For a logger, set ELEMTYPE to SYSBFGLG.

Not set

armELEMENT Optional property. If the logger is configured for
restart by the Automatic Restart Manager (ARM),
then set this property to the ARM ELEMENT
parameter value specified in the associated ARM
policy. You can set the ELEMENT value to correspond
to the logger name.

Not set

loggerQMgrAuthenticationCredentials
File

The path to the file that contains the MQ
connection credentials for connection to the logger's
coordination queue manager.

For information about
creating the authentication credentials file,
see Configuring MQMFTCredentials.xml on
z/OS.

For information about the
location and permissions for this file, see
Configuring MQMFTCredentials.xml.

See also MFT and IBM MQ
connection authentication.

trace Optional property. Trace specification when the
logger is to be run with trace enabled at logger start.
The trace specification is a comma-separated list of
classes, the equals character, and a trace level.

For example, com.ibm.wmqfte.databaselogger,
and
com.ibm.wmqfte.databaselogger.operation
=all

You can specify multiple trace specifications in a
colon-separated list. For example,
com.ibm.wmqfte.databaselogger=moderate:
com.ibm.wmqfte.databaselogger.operation
=all

None

traceFiles Optional property. The total number of trace files to
keep. This value applies to the process controller of a
logger, as well as the logger itself.

5

traceSize Optional property. The maximum size in MB of each
trace file, before trace wraps onto the next file. This
value applies to the process controller of the logger,
and the logger itself.

20

Configuration reference 199

Table 78. Bindings mode connection properties for the logger.properties file (continued)

Property name Description Default value

wmqfte.file.logger.filePermissions

Optional property. Use to specify what sort of
permission is required for the log file of the logger.

The property applies to both linear and circular
logs, and can take the values UserReadWriteOnly or
UserReadWriteAllRead.

The UserReadWriteOnly value has the existing
equivalent authority of 600 and the
UserReadWriteAllRead value has the equivalent
authority of 644.

Any change in permission is applicable to newly
created logger files.

If you enter a value for the property that is not
valid, the logger takes the default value and issues
message BFGDB0083W to the output log.

UserReadWriteOnly

Client mode SSL/TLS connection properties
The properties required to support client mode connection to a logger queue manager using SSL/TLS.

Table 79. Client mode SSL/TLS connection properties for the logger.properties file

Property name Description Default value

wmqfte.queue.manager.host Host name, or IP address, of logger queue
manager.

No default value

wmqfte.queue.manager.port Port on which the logger queue manager is
listening.

1414

wmqfte.queue.manager.channel Name of the server connection channel on
the logger queue manager.

SYSTEM.DEF.SVRCONN

wmqfte.Ssl.CipherSuite Specifies TLS aspects of how the logger and
the logger queue manager exchange data.

The value of wmqfte.Ssl.CipherSuite is
a CipherSuite name. The CipherSuite name
maps to the CipherSpec name used on the
logger queue manager channel.

For more information, see CipherSuite and
CipherSpec name mappings.

No default value

wmqfte.Ssl.PeerName Specifies a distinguished name skeleton that
must match the name that is provided by
the logger queue manager. The distinguished
name is used to check the identifying
certificate that is presented by the queue
manager on connection.

No default value

wmqfte.Ssl.TrustStore Specifies the location of the certificates
that the logger trusts. The value of
wmqfte.Ssl.TrustStore is a file path.

If the file path is a Windows
file path the backslash character (\) must be
escaped with a further backslash character
(\\).

Note that the value of this property can
contain environment variables.

No default value

wmqfte.Ssl.TrustStoreCredentialsFile The path to the file that contains the
wmqfte.Ssl.TrustStore credential.

Note that the value of this property can
contain environment variables.

No default value

200 IBM MQ Configuration Reference

Table 79. Client mode SSL/TLS connection properties for the logger.properties file (continued)

Property name Description Default value

wmqfte.Ssl.TrustStoreType The type of SSL keystore you want to use.
JKS and PKCS#12 keystores are supported.
The value of this property can be either jks
or pkcs12.

jks

wmqfte.Ssl.KeyStore Specifies the location of the private
key of the logger. The value of
wmqfte.Ssl.KeyStore is a file path.

If the file path is a Windows
file path the backslash character (\) must be
escaped with a further backslash character
(\\).

Note that the value of this property can
contain environment variables.

No default value

wmqfte.Ssl.KeyStore.CredentialsFile The path to the file that contains the
wmqfte.Ssl.KeyStore credential.

Note that the value of this property can
contain environment variables.

No default value

wmqfte.Ssl.KeyStoreType The type of SSL keystore you want to use.
JKS and PKCS#12 keystores are supported.
The value of this property can be either jks
or pkcs12.

jks

wmqfte.Ssl.FipsRequired Specifies that you want to enable FIPS
support at the level of the logger. The value
of this property can be true or false. For
more information, see FIPS support in MFT.

false

Related reference
“The use of environment variables in MFT properties” on page 157
From IBM WebSphere MQ 7.5, it is possible for environment variables to be used in Managed File Transfer
properties that represent file or directory locations. This allows the locations of files or directories used
when running parts of the product, to vary depending on environment changes. For example, which user is
running the process.
SSL/TLS properties for MFT
“The MFT agent.properties file” on page 162
Each Managed File Transfer Agent has its own properties file, agent.properties, that must contain the
information that an agent uses to connect to its queue manager. The agent.properties file can also
contain properties that alter the behavior of the agent.
“The MFT command.properties file” on page 189
The command.properties file specifies the command queue manager to connect to when you issue
commands and the information that Managed File Transfer requires to contact that queue manager.
“The MFT coordination.properties file” on page 185

Configuration reference 201

The coordination.properties file specifies the connection details to the coordination queue
manager. Because several Managed File Transfer installations might share the same coordination queue
manager, you can use a symbolic link to a common coordination.properties file on a shared drive.

Output produced by the LogTransfer function
Transfer log events capture the details of transfer progress from the time transfer is submitted until
it is completed. Information about transfer going into resynchronization is also captured to help you
understand the progress of a transfer.

Transfer event format
Transfer events are in JSON format and written to the transferlogN.json file, which is created in
the log directory of the agent, where N is a number with 0 being the default. Every event includes the
following common attributes:

• Date and time (in UTC)
• Unique ID

There are additional attributes included in the event information written, depending on the type of the
event and the level of transfer log. While the transfer log level info writes minimal information, the verbose
level includes a more detailed information. The following “Sample events” on page 202 section describes
a few examples of transfer events logged by an agent.

Unique ID
The unique id is included to help you easily identify the different phases as a transfer progresses, for
example, BFGTL0001. The unique ID is part of the eventDescription attribute and is made up of two
parts:
BFGTL

The prefix used for all identifiers, where BFG is the standard suffix used in Managed File Transfer and
TL indicates this is a transfer log.

Number
A unique number starting from 1. For example:

{
 "eventDescription": "BFGTL0001: New transfer request submitted"
}

Sample events
The following table describes some of the events as examples of the information logged by the additional
function. The second column of the table Log Level indicates the level at which the event is logged.

Important: The following attributes are included in the event information if the logTransfer level is set
to verbose or moderate:

• sourceAgent
• destinationAgent
• threadId

202 IBM MQ Configuration Reference

Event Log level Description

List of items to transfer verbose
{
 "dateTime": "<Data time in UTC>",
 "eventDescription": "BFGTL0002I: Generated detailed transfer item
list.",
 "destinationAgent": "<Name of destination agent>",
 "sourceAgent": "<Name of source agent>",
 "threadId": "0000001d",
 "totalItemsInTransfer": <Number of items in the transfer>,
 "transferId": "<Transfer Identifier>",
 "transferItemsList": [{"source":"source item name",
 "destination": "destination item name"}]
}

Example:
{
 "dateTime": "2022-01-14T12:56:54.219Z UTC",
 "eventDescription": "BFGTL0002I: Generated detailed transfer item
list.",
 "destinationAgent": "QMBAGQ",
 "sourceAgent": "QMBAG1",
 "threadId": "0000001d",
 "totalItems": 1,
 "transferId": "414d5120514d4120202020202020202063bd17610a390040",
 "transferItems": [{
 "destination": "/results/rts/target/destFile.txt",
 "source": "DESTINATIONQ@QMB"
 }]
}

Configuration reference 203

Event Log level Description

Audit information of transfer logged by
source agent

info,
moderate,
verbose

{
 "dateTime": "<Date and time in UTC>",
 "transferId": "<Transfer Id>",
 "eventDescription": "BFGTL0008: Transfer progress information ",
 "progressInformation": [{
 "destination": "<Destination item name>",
 "resultCode": "<Result of transfer>",
 "supplement": "<Any supplemental information.>"
 "source": "<Source item name>"
 }],
 "sourceAgent": "<Source agent name>",
 "destinationAgent": "<Destination agent name>",
 "threadId": "Thread Id",
}

Example:
{
 "dateTime": "2022-01-14T14:17:20.075Z UTC",
 "transferId": "414D5120514D412020202020202020202FD01761013B0040",
 "eventDescription": "BFGTL0008: Transfer progress information",
 "progressInformation": [{
 "source": "MONITORQ@QMA"
 "destination": "/results/rts/target/destinationFile.txt",
 "resultCode": "Successful",
 "supplement": ""
 }],
 "sourceAgent": "QMAAG1",
 "destinationAgent": "QMBAG1",
 "threadId": "00000023",
}

Following is an example of the information logged if the level is info:

{
 "dateTime":"2022-01-16T03:28:26.234Z UTC",
"transferId":"414D51204D4654514D20202020202020EB89416101760040",
"eventDescription":"BFGTL0008I: Transfer progress information",
 "progressInformation": {
 "warnings":0,
 "failed":1,
 "successful":0,
 "unknown":0}
}

Following is an example of the information logged if the level is moderate:

{
"dateTime":"2022-01-16T03:30:46.766Z UTC",
"transferId":"414D51204D4654514D20202020202020EB89416101850040",
"eventDescription":"BFGTL0008I: Transfer progress information",
"progressInformation": [{
"source":"FileZilla:/home/mft/*",
"destination":"C:/MFT/FileZilla:/home/mft/*",
"itemSize":0,
"resultCode":"Failed",
"supplement":"BFGIO0110E: File \"/home/mft/*\" does not exist."}],
"sourceAgent":"IMQFT01"
"destinationAgent":"SRC",
}

Error occurred when opening an item info
{
 "dateTime": "<Date and time in UTC>",
 "transferId": "<Transfer Id>",
 "eventDescription": "BFGTL0054E: Failed to open an item to transfer
data.",
 "itemName": "Name of file or queue",
 "error":"<Error description>"
 "sourceAgent": "<Source agent name>",
 "destinationAgent": "<Destination agent name>",
 "threadId": "<Thread Id>",
}

Example:
{
 "dateTime": "2022-01-14T14:42:24.902Z UTC",
 "transferId": "414D512043514D485830312020202020B0D4176101370040",
 "eventDescription": " BFGTL0054E: Failed to open an item to transfer
data.",
 "itemName":"/inbound/resource.xml",
 "error": "File not found"
 "sourceAgent": "CQMHX01AG1",
 "destinationAgent": "HX01AG1",
 "threadId": "0000001c"

204 IBM MQ Configuration Reference

Event Log level Description

List of transfers to be recovered at the
start of the agent

verbose
{
 "dateTime": "<Date and time in UTC>",
 "eventDescription": "The list of transfers being recovered as part
of agent recovery process.",
 "agentName": "<Agent name>",
 "transfers": [{"transferId":"<transfer state>"}]
 "threadId": "<Thread Id>",
}

Example:
{
 "dateTime": "2022-01-14T14:42:24.902Z UTC",
 "eventDescription": "The list of transfers being recovered as part
of agent recovery process.",
 "agentName": "CQMHX01AG1",
 "transfers":
[{"414D512043514D485830312020202020B0D4176101370040":"completeReceived
"},
{"414D512043514D485830312020202020B0D4176101370050":"resynchronizing"}]
 "threadId": "0000001c",
}

Related reference
“Java system properties for MFT” on page 205
A number of Managed File Transfer command and agent properties must be defined as Java system
properties, because they define configuration for early function that is unable to use the command or
agent properties mechanism.
fteCreateAgent
“The use of environment variables in MFT properties” on page 157
From IBM WebSphere MQ 7.5, it is possible for environment variables to be used in Managed File Transfer
properties that represent file or directory locations. This allows the locations of files or directories used
when running parts of the product, to vary depending on environment changes. For example, which user is
running the process.

Java system properties for MFT
A number of Managed File Transfer command and agent properties must be defined as Java system
properties, because they define configuration for early function that is unable to use the command or
agent properties mechanism.

Define system properties and other JVM options for the JVM that is to run Managed File Transfer
commands by defining the environment variable BFG_JVM_PROPERTIES. For example, to set the
com.ibm.wmqfte.maxConsoleLineLength property on a UNIX-type platform, define the variable as
follows:

export BFG_JVM_PROPERTIES="-Dcom.ibm.wmqfte.maxConsoleLineLength=132"

If you are running an agent as a Windows service, you can modify the agent's Java system properties by
specifying the -sj parameter on the fteModifyAgent command.

Table 80. Java system properties

Property name Description Value

com.ibm.wmqfte.maxConsoleLineLength Maximum length of line that can be written
to the console. Lines that exceed this length
are word wrapped. This value is expressed in
bytes (not characters).

The
default length for
IBM i is 132 bytes.

For
z/OS, AIX, Linux, and
Windows, the length
is unlimited.

Configuration reference 205

Table 80. Java system properties (continued)

Property name Description Value

com.ibm.wmqfte.daemon.windows.windowsServiceLogFilesm (Windows only.) Specifies the maximum
number of Windows service log files to
keep. Windows service log files are created
in the agent and database logger logs
directories if these applications are running
as a Windows service. Windows service log
files are named with the prefix service, and
contain messages about the starting and
stopping of the service.

5

Related concepts
MFT configuration options on Multiplatforms
Hints and tips for using MFT

SHA-2 CipherSpecs and CipherSuites for MFT
Managed File Transfer supports SHA-2 CipherSpecs and CipherSuites.

For more information about CipherSpecs and CipherSuites that are available for connections between
agents and IBM MQ queue managers, see SSL CipherSpecs and CipherSuites.

For more information about configuring CipherSpecs and CipherSuites for use with the protocol bridge
agents (PBAs) and FTPS servers, see FTPS server support by the protocol bridge and Protocol bridge
properties file format.

If you want to comply with SP 800-131A, you must satisfy the following requirements:

• You must use FTPS, which you have configured appropriately; SFTP is not supported.
• The remote server must send SP 800-131A-compliant cipher suites only.

Related reference
SSL/TLS properties for MFT

MFT file logger configuration files
In addition to the logger.properties file, a Managed File Transfer stand-alone file logger
also has an XML configuration file in its configuration directory. This configuration file is called
FileLoggerFormat.xml and it defines the format used by the file logger to write messages to the
log file. The content of this file must conform to the XML schema defined in the FileLoggerFormat.xsd
file.

MFT stand-alone file logger default log format
Default log file format definition for the Managed File Transfer stand-alone file logger.

<?xml version="1.0" encoding="UTF-8"?>
<logFormatDefinition xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 version="1.00" xsi:noNamespaceSchemaLocation="FileLoggerFormat.xsd">
 <messageTypes>
 <callCompleted>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/transaction/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/transaction/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="false">/transaction/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/agent/@agent</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/agent/@QMgr</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/job/name</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/transferSet/call/command/
@type</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/transferSet/call/command/
@name</insert>
 <insert type="system" width="0" ignoreNull="true">callArguments</insert>

206 IBM MQ Configuration Reference

 <insert type="user" width="0" ignoreNull="true">/transaction/transferSet/call/callResult/
@outcome</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/transferSet/call/callResult/
result/error</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </callCompleted>
 <callStarted>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/transaction/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/transaction/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/agent/@agent</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/agent/@QMgr</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/job/name</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/transferSet/call/command/
@type</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/transferSet/call/command/
@name</insert>
 <insert type="system" width="0" ignoreNull="true">callArguments</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </callStarted>
 <monitorAction>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/monitorLog/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/monitorLog/@referenceId</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="false">/monitorLog/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/@monitorName</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/monitorAgent/@agent</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/monitorAgent/@QMgr</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/action</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </monitorAction>
 <monitorCreate>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/monitorLog/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/monitorLog/@referenceId</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/@monitorName</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/monitorAgent/@agent</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/monitorAgent/@QMgr</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/action</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </monitorCreate>
 <monitorFired>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/monitorLog/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/monitorLog/@referenceId</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="false">/monitorLog/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/@monitorName</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/monitorAgent/@agent</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/monitorAgent/@QMgr</insert>
 <insert type="user" width="0" ignoreNull="false">/monitorLog/action</insert>
 <insert type="user" width="48" ignoreNull="false">/monitorLog/references/taskRequest</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </monitorFired>
 <notAuthorized>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/notAuthorized/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/notAuthorized/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="false">/notAuthorized/status/@resultCode</insert>
 <insert type="user" width="12" ignoreNull="false">/notAuthorized/action</insert>
 <insert type="user" width="12" ignoreNull="false">/notAuthorized/authority</insert>
 <insert type="user" width="0" ignoreNull="false">/notAuthorized/originator/userID</insert>
 <insert type="user" width="0" ignoreNull="false">/notAuthorized/status/supplement</insert>

Configuration reference 207

 </inserts>
 <separator>;</separator>
 </format>
 </notAuthorized>
 <scheduleDelete>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/schedulelog/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/schedulelog/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="false">/schedulelog/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/schedulelog/sourceAgent/@agent</insert>
 <insert type="user" width="12" ignoreNull="false">/schedulelog/action</insert>
 <insert type="user" width="0" ignoreNull="false">/schedulelog/originator/userID</insert>
 <insert type="user" width="0" ignoreNull="true">/schedulelog/status/supplement</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </scheduleDelete>
 <scheduleExpire>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/schedulelog/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/schedulelog/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="false">/schedulelog/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/schedulelog/sourceAgent/@agent</insert>
 <insert type="user" width="12" ignoreNull="false">/schedulelog/action</insert>
 <insert type="user" width="0" ignoreNull="false">/schedulelog/originator/userID</insert>
 <insert type="user" width="0" ignoreNull="true">/schedulelog/status/supplement</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </scheduleExpire>
 <scheduleSkipped>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/schedulelog/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/schedulelog/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="false">/schedulelog/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/schedulelog/sourceAgent/@agent</insert>
 <insert type="user" width="12" ignoreNull="false">/schedulelog/action</insert>
 <insert type="user" width="0" ignoreNull="false">/schedulelog/originator/userID</insert>
 <insert type="user" width="0" ignoreNull="true">/schedulelog/status/supplement</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </scheduleSkipped>
 <scheduleSubmitInfo>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/schedulelog/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/schedulelog/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="false">/schedulelog/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/schedulelog/sourceAgent/@agent</insert>
 <insert type="user" width="12" ignoreNull="false">/schedulelog/action</insert>
 <insert type="user" width="0" ignoreNull="false">/schedulelog/originator/userID</insert>
 <insert type="user" width="0" ignoreNull="true">/schedulelog/schedule/submit/</insert>
 <insert type="user" width="0" ignoreNull="true">/schedulelog/schedule/submit/@timezone</
insert>
 <insert type="user" width="3" ignoreNull="true">/schedulelog/schedule/repeat/frequency</
insert>
 <insert type="user" width="12" ignoreNull="true">/schedulelog/schedule/repeat/frequency/
@interval</insert>
 <insert type="user" width="3" ignoreNull="true">/schedulelog/schedule/repeat/expireCount</
insert>
 <insert type="user" width="0" ignoreNull="true">/schedulelog/status/supplement</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </scheduleSubmitInfo>
 <scheduleSubmitTransfer>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/schedulelog/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/schedulelog/@ID</insert>
 <insert type="system" width="10" ignoreNull="false">type</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/sourceAgent/@agent |
 /transaction/sourceWebUser/@webGatewayAgentName |
 /transaction/sourceWebGateway/@webGatewayAgentName</insert>

208 IBM MQ Configuration Reference

 <insert type="user" width="0" ignoreNull="false">/transaction/sourceAgent/@QMgr |
 /transaction/sourceWebUser/@webGatewayAgentQMgr |
 /transaction/sourceWebGateway/@webGatewayAgentQMgr</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/destinationAgent/@agent |
 /transaction/destinationWebUser/@webGatewayAgentName |
 /transaction/destinationWebGateway/@webGatewayAgentName</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/destinationAgent/@QMgr |
 /transaction/destinationWebUser/@webGatewayAgentQMgr |
 /transaction/destinationWebGateway/@webGatewayAgentQMgr</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </scheduleSubmitTransfer>
 <scheduleSubmitTransferSet>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/schedulelog/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/schedulelog/@ID</insert>
 <insert type="system" width="10" ignoreNull="false">type</insert>
 <insert type="user" width="0" ignoreNull="false">source/file | source/queue</insert>
 <insert type="user" width="5" ignoreNull="true">source/@type</insert>
 <insert type="user" width="6" ignoreNull="true">source/@disposition</insert>
 <insert type="user" width="0" ignoreNull="false">destination/file | destination/queue</
insert>
 <insert type="user" width="5" ignoreNull="true">destination/@type</insert>
 <insert type="user" width="9" ignoreNull="true">destination/@exist</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </scheduleSubmitTransferSet>
 <transferStarted>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/transaction/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/transaction/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="true">/transaction/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/sourceAgent/@agent |
 /transaction/sourceWebUser/@webGatewayAgentName |
 /transaction/sourceWebGateway/@webGatewayAgentName</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/sourceAgent/@QMgr |
 /transaction/sourceWebUser/@webGatewayAgentQMgr |
 /transaction/sourceWebGateway/@webGatewayAgentQMgr</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/sourceAgent/@agentType |
 /transaction/sourceWebUser/@webGatewayAgentType |
 /transaction/sourceWebGateway/@webGatewayAgentType</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/destinationAgent/@agent |
 /transaction/destinationWebUser/@webGatewayAgentName |
 /transaction/destinationWebGateway/@webGatewayAgentName</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/destinationAgent/@QMgr |
 /transaction/destinationWebUser/@webGatewayAgentQMgr |
 /transaction/destinationWebGateway/@webGatewayAgentQMgr</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/originator/userID</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/job/name</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/scheduleLog/@ID</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </transferStarted>
 <transferCancelled>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/transaction/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/transaction/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="true">/transaction/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/sourceAgent/@agent |
 /transaction/sourceWebUser/@webGatewayAgentName |
 /transaction/sourceWebGateway/@webGatewayAgentName</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/sourceAgent/@QMgr |
 /transaction/sourceWebUser/@webGatewayAgentQMgr |
 /transaction/sourceWebGateway/@webGatewayAgentQMgr</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/sourceAgent/@agentType |
 /transaction/sourceWebUser/@webGatewayAgentType |
 /transaction/sourceWebGateway/@webGatewayAgentType</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/destinationAgent/@agent |
 /transaction/destinationWebUser/@webGatewayAgentName |
 /transaction/destinationWebGateway/@webGatewayAgentName</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/destinationAgent/@QMgr |
 /transaction/destinationWebUser/@webGatewayAgentQMgr |
 /transaction/destinationWebGateway/@webGatewayAgentQMgr</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/destinationAgent/@agentType |

Configuration reference 209

 /transaction/destinationWebUser/@webGatewayAgentType |
 /transaction/destinationWebGateway/@webGatewayAgentType</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/originator/userID</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/job/name</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/status/supplement</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </transferCancelled>
 <transferComplete>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/transaction/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/transaction/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="true">/transaction/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/sourceAgent/@agent |
 /transaction/sourceWebUser/@webGatewayAgentName |
 /transaction/sourceWebGateway/@webGatewayAgentName</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/sourceAgent/@QMgr |
 /transaction/sourceWebUser/@webGatewayAgentQMgr |
 /transaction/sourceWebGateway/@webGatewayAgentQMgr</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/sourceAgent/@agentType |
 /transaction/sourceWebUser/@webGatewayAgentType |
 /transaction/sourceWebGateway/@webGatewayAgentType</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/destinationAgent/@agent |
 /transaction/destinationWebUser/@webGatewayAgentName |
 /transaction/destinationWebGateway/@webGatewayAgentName</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/destinationAgent/@QMgr |
 /transaction/destinationWebUser/@webGatewayAgentQMgr |
 /transaction/destinationWebGateway/@webGatewayAgentQMgr</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/destinationAgent/@agentType |
 /transaction/destinationWebUser/@webGatewayAgentType |
 /transaction/destinationWebGateway/@webGatewayAgentType</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/originator/userID</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/job/name</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/status/supplement</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </transferComplete>
 <transferDelete>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/transaction/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/transaction/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="true">/transaction/status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/sourceAgent/@agent |
 /transaction/sourceWebUser/@webGatewayAgentName |
 /transaction/sourceWebGateway/@webGatewayAgentName</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/sourceAgent/@QMgr |
 /transaction/sourceWebUser/@webGatewayAgentQMgr |
 /transaction/sourceWebGateway/@webGatewayAgentQMgr</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/sourceAgent/@agentType |
 /transaction/sourceWebUser/@webGatewayAgentType |
 /transaction/sourceWebGateway/@webGatewayAgentType</insert>
 <insert type="user" width="0" ignoreNull="false">/transaction/destinationAgent/@agent |
 /transaction/destinationWebUser/@webGatewayAgentName |
 /transaction/destinationWebGateway/@webGatewayAgentName</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/destinationAgent/@QMgr |
 /transaction/destinationWebUser/@webGatewayAgentQMgr |
 /transaction/destinationWebGateway/@webGatewayAgentQMgr</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/destinationAgent/@agentType |
 /transaction/destinationWebUser/@webGatewayAgentType |
 /transaction/destinationWebGateway/@webGatewayAgentType</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/originator/userID</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/job/name</insert>
 <insert type="user" width="0" ignoreNull="true">/transaction/status/supplement</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </transferDelete>
 <transferProgress>
 <format>
 <inserts>
 <insert type="user" width="19" ignoreNull="false">/transaction/action/@time</insert>
 <insert type="user" width="48" ignoreNull="false">/transaction/@ID</insert>
 <insert type="system" width="6" ignoreNull="false">type</insert>
 <insert type="user" width="3" ignoreNull="true">status/@resultCode</insert>
 <insert type="user" width="0" ignoreNull="false">source/file | source/queue</insert>
 <insert type="user" width="0" ignoreNull="false">source/file/@size | source/queue/@size</

210 IBM MQ Configuration Reference

insert>
 <insert type="user" width="5" ignoreNull="true">source/@type</insert>
 <insert type="user" width="6" ignoreNull="true">source/@disposition</insert>
 <insert type="user" width="0" ignoreNull="true">source/file/@alias | source/queue/@alias</
insert>
 <insert type="user" width="0" ignoreNull="true">source/file/@filespace | source/queue/
@filespace</insert>
 <insert type="user" width="0" ignoreNull="true">source/@correlationBoolean1</insert>
 <insert type="user" width="0" ignoreNull="true">source/@correlationNum1</insert>
 <insert type="user" width="0" ignoreNull="true">source/@correlationString1</insert>
 <insert type="user" width="0" ignoreNull="false">destination/file | destination/queue</
insert>
 <insert type="user" width="0" ignoreNull="false">destination/file/@size | destination/queue/
@size</insert>
 <insert type="user" width="5" ignoreNull="true">destination/@type</insert>
 <insert type="user" width="9" ignoreNull="true">destination/@exist</insert>
 <insert type="user" width="0" ignoreNull="true">destination/file/@alias | destination/queue/
@alias</insert>
 <insert type="user" width="0" ignoreNull="true">destination/file/@filespace | destination/
queue/@filespace</insert>
 <insert type="user" width="0" ignoreNull="true">destination/file/@truncateRecords</insert>
 <insert type="user" width="0" ignoreNull="true">destination/@correlationBoolean1</insert>
 <insert type="user" width="0" ignoreNull="true">destination/@correlationNum1</insert>
 <insert type="user" width="0" ignoreNull="true">destination/@correlationString1</insert>
 <insert type="user" width="0" ignoreNull="true">status/supplement</insert>
 </inserts>
 <separator>;</separator>
 </format>
 </transferProgress>
 </messageTypes>
</logFormatDefinition>

Related reference
MFT stand-alone file logger format
“Stand-alone file logger format XSD” on page 211
The schema for a stand-alone file format.

Stand-alone file logger format XSD
The schema for a stand-alone file format.

Schema
<?xml version="1.0" encoding="UTF-8"?>
<!--
@start_non_restricted_prolog@
Version: %Z% %I% %W% %E% %U% [%H% %T%]

Licensed Materials - Property of IBM

5724-H72

Copyright IBM Corp. 2011, 2024. All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
@end_non_restricted_prolog@
 -->

<!--
 This schema defines the format of the FileLoggerFormat XML file that contains the definition
 of the format to use when logging FTE log messages to a file. When an XML file that conforms
 to this schema is processed by a file logger it can contain definitions for one or more
 message type(s) that define how log messages of those types are output to the file log.
-->

<xsd:schema xmlns:xsd="https://www.w3.org/2001/XMLSchema">

<xsd:include schemaLocation="fteutils.xsd"/>

 <!--
 Defines the logFileDefinition and version number
 <logFileDefinition version="1.00" ...
 <messageTypes>
 ...

Configuration reference 211

 </messageTypes>
 </logFileDefinition>
 -->
 <xsd:element name="logFileDefinition">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageTypes" type="messageTypesType" maxOccurs="1" minOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="versionType" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <!--
 Defines the set of accepted message types. The definition of individual message types
 is optional. If a particular types element is present but empty then no line will be
 output for messages of that type. If a particular types element is not present then
 the default format will be used to format messages of that type.
 -->
 <xsd:complexType name="messageTypesType">
 <xsd:sequence>
 <xsd:element name="callCompleted" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="callStarted" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="monitorAction" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="monitorCreate" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="monitorFired" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="notAuthorized" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="scheduleDelete" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="scheduleExpire" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="scheduleSkipped" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="scheduleSubmitInfo" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="scheduleSubmitTransfer" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="scheduleSubmitTransferSet" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="transferStarted" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="transferCancelled" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="transferComplete" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="transferDelete" type="messageType" maxOccurs="1"
minOccurs="0"/>
 <xsd:element name="transferProgress" type="messageType" maxOccurs="1"
minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines the content of a message type definition e.g.

 <callStarted>
 <format>
 ...
 </format>
 <callStarted>
 -->
 <xsd:complexType name="messageType">
 <xsd:sequence>
 <xsd:element name="format" type="messageFormatType" maxOccurs="1" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines the content of a message format definition e.g.

 <format>
 <inserts>
 ...
 </inserts
 <separator>;</separator>
 </format>
 -->

212 IBM MQ Configuration Reference

 <xsd:complexType name="messageFormatType">
 <xsd:sequence>
 <xsd:element name="inserts" type="insertsType" maxOccurs="1" minOccurs="1"/>
 <xsd:element name="separator" type="scheduleType" maxOccurs="1" minOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines the content of the inserts element e.g.

 <inserts>
 <insert ...>
 <insert ...>
 ...
 </inserts>
 -->
 <xsd:complexType name="insertsType">
 <xsd:sequence>
 <xsd:element name="insert" type="insertType" maxOccurs="unbounded" minOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Defines the content of an insert definition e.g.

 <insert type="user" width="0" ignoreNull="true">/transaction/@ID</insert>
 -->
 <xsd:complexType name="insertType">
 <xsd:attribute name="type" type="insertTypeType" use="required"/>
 <xsd:attribute name="width" type="xsd:nonNegativeInteger" use="required"/>
 <xsd:attribute name="ignoreNull" type="xsd:boolean" use="required"/>
 </xsd:complexType>

 <!--
 Defines the accepted choices for the insert type attribute.
 -->
 <xsd:simpleType name="insertTypeType">
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="user"/>
 <xsd:enumeration value="system"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

Related reference
MFT stand-alone file logger format
“MFT stand-alone file logger default log format” on page 206
Default log file format definition for the Managed File Transfer stand-alone file logger.

The SCSQFCMD library
The SCSQFCMD library provided by IBM MQ Managed File Transfer for z/OS contains
members that act as templates for jobs which can be used to create a Managed File Transfer
configuration, and create and administer an agent or logger.

The contents of the library are shown in the following table.

Member Description

BFGCOPY Job used to create a copy of the SCSQFCMD library

BFGCUSTM Job used to customize a copy of the library for an agent or logger

BFGXCROB fteObfuscate sample template.

BFGXLGCR fteCreateLogger template.

BFGXMNCR fteCreateMonitor sample template.

BFGXMNDE fteDeleteMonitor sample template.

BFGXPRAN fteAnt sample template

Configuration reference 213

Member Description

BFGXSTDE fteDeleteScheduledTransfer sample template

BFGXTMCR fteCreateTemplate sample template

BFGXTMDE fteDeleteTemplate sample template

BFGXTRCA fteCancelTransfer sample template

BFGXTRCR fteCreateTransfer sample template

BFGYAGST Template for a started task procedure to start an agent

BFGYLGST Template for a started task procedure to start a logger

BFGZAGCL fteCleanAgent sample template

BFGZAGCR fteCreateAgent sample template

BFGZAGDE fteDeleteAgent sample template

BFGZAGLG fteSetAgentLogLevel sample template

BFGZAGLI fteListAgents sample template

BFGZAGMG “1”
on page 215

fteMigrateAgent sample template

BFGZAGPI ftePingAgent sample template

BFGZAGSH fteShowAgentDetails sample template

BFGZAGSP fteStopAgent sample template

BFGZAGST fteStartAgent sample template

BFGZAGTC fteSetAgentTraceLevel sample template

BFGZCFCR fteSetupCoordination sample template

BFGZCFDF fteChangeDefaultConfigurationOptions sample template

BFGZCMCR fteSetupCommands sample template

BFGZCMD Template for REXX script used by other members in the data set

BFGZLGDE fteDeleteLogger sample template

BFGZLGMG “1”
on page 215

fteMigrateLogger sample template

BFGZLGSH fteShowLoggerDetails sample template

BFGZLGSP fteStopLogger sample template

BFGZLGST fteStartLogger sample template

BFGZLGTC fteSetLoggerTraceLevel sample template

BFGZMNLI fteListMonitors sample template

BFGZPID fteSetProductId sample template

BFGZPROF Template for shell script used by other members in the data set

BFGZPRSH fteDisplayVersion sample template

214 IBM MQ Configuration Reference

Member Description

BFGZRAS fteRas sample template

BFGZSTLI fteListScheduledTransfers sample template

BFGZTMLI fteListTemplates sample template

Notes:

1. For Continuous Delivery, the fteMigrateAgent and fteMigrateLogger commands
are removed at IBM MQ 9.2.1.

These commands are still available for IBM MQ 9.2 Long Term Support.

For details about how the SCSQFCMD library is used to generate a new library for creating a Managed File
Transfer configuration, and creating and administering an agent or logger, see Configuring Managed File
Transfer for z/OS.

Related reference
“The use of environment variables in MFT properties” on page 157
From IBM WebSphere MQ 7.5, it is possible for environment variables to be used in Managed File Transfer
properties that represent file or directory locations. This allows the locations of files or directories used
when running parts of the product, to vary depending on environment changes. For example, which user is
running the process.

SYSTEM.FTE topic
The SYSTEM.FTE topic is a topic on the coordination queue manager that Managed File Transfer uses to
log transfers and store information about agents, monitors, schedules, and templates.

Topic structure

SYSTEM.FTE
 /Agents
 /agent_name
 /monitors
 /agent_name
 /Scheduler
 /agent_name
 /Templates
 /template_ID
 /Transfers
 /agent_name
 /transfer_ID
 /Log
 /agent_name
 /Monitors
 /schedule_ID
 /transfer_ID

SYSTEM.FTE/Agents/agent_name
This topic contains a retained publication that describes an agent in your Managed File Transfer
network and its properties. The message on this topic is updated periodically with the agent status.
For more information, see MFT agent status message format.

SYSTEM.FTE/monitors/agent_name
This topic contains retained publications that describe the resource monitors associated with the
agent agent_name. The XML of the retained publication conforms to the schema MonitorList.xsd.
For more information, see MFT monitor list message format.

SYSTEM.FTE/Scheduler/agent_name
This topic contains a retained publication that describes all of the active schedules that are
associated with the agent agent_name. The XML of the retained publication conforms to the schema
ScheduleList.xsd. For more information, see MFT schedule list message format.

Configuration reference 215

SYSTEM.FTE/Templates
This topic contains retained publications that describe all of the templates that are defined in your
Managed File Transfer topology.

• The publication that is associated with each template is published to a subtopic with the name
SYSTEM.FTE/Templates/template_ID.

For an example of the contents of this retained publication, see MFT example template XML message.
SYSTEM.FTE/Transfers/agent_name

This topic contains publications that describe that status of transfers that originate at the agent
agent_name. The publications that are associated with each transfer are published to a subtopic with
the name SYSTEM.FTE/Transfers/agent_name/transfer_ID. These publications are used by
the IBM MQ Explorer plug-in to provide progress information about individual transfers. The XML
of the publication conforms to the schema TransferStatus.xsd. For more information, see File
transfer status message format.

SYSTEM.FTE/Log/agent_name
This topic contains publications that log information about transfers, monitors, and schedules that
originate at the agent agent_name. These publications can be logged by the database logger to
provide audit records of the events that happen in your Managed File Transfer network.

• The publications that are associated with each transfer are published to a subtopic with the name
SYSTEM.FTE/Log/agent_name/transfer_ID and the XML of the publication conforms to the
schema TransferLog.xsd. For more information, see File transfer log message formats.

• The publications that are associated with each scheduled transfer are published to a subtopic
with the name SYSTEM.FTE/Log/agent_name/schedule_ID and the XML of the publication
conforms to the schema ScheduleLog.xsd. For more information, see Scheduled file transfer log
message formats.

• The publications that are associated with each monitor are published to a subtopic with the name
SYSTEM.FTE/Log/agent_name/Monitors/monitor_name/monitor_ID and the XML of the
publication conforms to the schema MonitorLog.xsd. For more information, see MFT monitor log
message format.

MFT Agent queue settings
The MQSC command scripts generated by the fteCreateAgent command create the agent queues with
parameters set to the following values. If you do not use the MQSC scripts provided to create the queues,
but create the queues manually, ensure you set the following parameters to the values given.

Agent operation queues
The agent's operation queues have the following names:

• SYSTEM.FTE.COMMAND.agent_name
• SYSTEM.FTE.DATA.agent_name
• SYSTEM.FTE.EVENT.agent_name
• SYSTEM.FTE.REPLY.agent_name
• SYSTEM.FTE.STATE.agent_name

Table 81. Agent operation queue parameters

Parameter Value (if applicable)

DEFPRTY 0

DEFSOPT SHARED

GET ENABLED

MAXDEPTH 5000

216 IBM MQ Configuration Reference

Table 81. Agent operation queue parameters (continued)

Parameter Value (if applicable)

MAXMSGL 4194304

MSGDLVSQ PRIORITY

PUT ENABLED

RETINTVL 999999999

SHARE

NOTRIGGER

USAGE NORMAL

REPLACE

Agent authority queues
The agent's authority queues have the following names:

• SYSTEM.FTE.AUTHADM1.agent_name
• SYSTEM.FTE.AUTHAGT1. agent_name
• SYSTEM.FTE.AUTHMON1.agent_name
• SYSTEM.FTE.AUTHOPS1.agent_name
• SYSTEM.FTE.AUTHSCH1.agent_name
• SYSTEM.FTE.AUTHTRN1.agent_name

Table 82. Agent authority queue parameters

Parameter Value (if applicable)

DEFPRTY 0

DEFSOPT SHARED

GET ENABLED

MAXDEPTH 0

MAXMSGL 0

MSGDLVSQ PRIORITY

PUT ENABLED

RETINTVL 999999999

SHARE

NOTRIGGER

USAGE NORMAL

REPLACE

Related reference
fteCreateAgent

Configuration reference 217

MFT system queues and the system topic
Managed File Transfer has a number of system queues and one system topic that are for internal use only.

Any queues with a name beginning SYSTEM.FTE are internal system queues for Managed File Transfer
(MFT). Do not delete these queues, as doing so prevents IBM MQ MFT from working correctly. Table 83 on
page 218 shows which type of message is on each queue:

Table 83. Queue names, type and usage

Queue name Queue type Usage

SYSTEM.FTE.AUTHAGT1.agent_n
ame

Authority Queue for configuring authority
for sending and receiving transfer
requests.

SYSTEM.FTE.AUTHTRN1.agent_n
ame

Authority Queue for configuring authority
to start and cancel managed
transfers. Also to start managed
calls.

SYSTEM.FTE.AUTHMON1.agent_
name

Authority Queue for configuring authority
to allow a user to create or
delete resource monitors that
were created by the same user.

SYSTEM.FTE.AUTHOPS1.agent_n
ame

Authority Queue for configuring authority
to delete resource monitors and
scheduled transfers that were
created by another user.

SYSTEM.FTE.AUTHSCH1.agent_n
ame

Authority Queue for configuring authority
to create or delete scheduled
transfers that were created by
the same user.

SYSTEM.FTE.AUTHADM1.agent_
name

Authority Queue for configuring authority to
shut down the agent, using the
-m option on the fteStopAgent
command.

SYSTEM.FTE.COMMAND.agent_n
ame

Operation Queue for sending command
requests to an agent.

SYSTEM.FTE.DATA.agent_name Operation Queue used by a destination
agent for holding data sent by a
source agent.

SYSTEM.FTE.REPLY.agent_name Operation Queue for receiving replies from
a destination agent.

SYSTEM.FTE.STATE.agent_name Operation Queue for holding the status of a
transfer request.

SYSTEM.FTE.EVENT.agent_name Operation Queue for holding resource
monitor history.

SYSTEM.FTE.HA.agent_name Operation Queue used as a lock by highly
available agent instances.

If an agent is participating in message-to-file or file-to-message transfers, the definition of the
SYSTEM.FTE.STATE.agent_name queue might need to be modified to allow these managed transfers
to take place. For more information on this, see Guidance for setting MQ attributes and MFT properties
associated with message size.

218 IBM MQ Configuration Reference

Attention: You should not change the definitions of the other system queues.

Also, do not modify or delete the SYSTEM.FTE topic as this is also for internal use only.

Temporary queues
Managed File Transfer creates temporary queues for a number of purposes. The name of each queue
starts with WMQFTE. by default. (The period is part of the default prefix.) If you want to change
this prefix, you can use the dynamicQueuePrefix property in the command.properties file or the
coordination.properties file or both. The property in the command.properties file is used to set
the prefix of temporary queues that are created for responses to commands that require a response from
the agent. The property in the coordination.properties file is used to set the prefix of temporary
queues that are created for other purposes; for example, the WMQFTE.FTE.TIMECHCK.QUEUE, where
WMQFTE. is the value defined by the dynamicQueuePrefix property.
Related reference
Restricting user authorities on MFT agent actions

MFT object naming conventions
Use the following naming conventions for your Managed File Transfer objects:

• Agent and logger names:

– Can be a maximum of 28 characters long and are not case-sensitive.
– Entered in lowercase or mixed case are converted to uppercase
– Must conform to standard IBM MQ object naming conventions.

These conventions are detailed as follows: Rules for naming IBM MQ objects.
• In addition to the IBM MQ object naming conventions, the:

– Forward slash (/) character cannot be used in agent names or logger names
– Percent (%) character cannot be used in agent names or logger names.

• The names of properties in the properties files are case-sensitive.
• Queue manager names are case-sensitive.
• File names are case-sensitive for some platforms.
• Resource monitor and transfer template names:

– Are not case-sensitive
– Entered in lowercase or mixed case are converted to uppercase
– Must not contain asterisk (*), percent (%) or question mark (?) characters

• Protocol file server names must:

– Be a minimum of 2 characters long, but there is no maximum length limit
– Are not case-sensitive
– Must conform to standard IBM MQ object naming conventions.

These conventions are detailed as follows: Rules for naming IBM MQ objects.

Files in the IBM i integrated file system (IFS)
File names in the IFS cannot contain any of the following characters:

• Backslash (\)
• Forward slash (/)
• Colon (:)
• Asterisk (*)
• Question mark (?)

Configuration reference 219

• Quotation marks (")
• Less than symbol (<)
• Greater than symbol (>)
• Vertical bar (|)

If you attempt to transfer files with names containing any of these characters to an IBM i IFS, the transfer
of these files fails.

Data set names
Data sets have naming restrictions, which affect the maximum name length and the

available characters that you can use for data set names. PDS data set member names can be a maximum
of eight characters and cannot contain the dot (.) character. When you transfer to a data set, you must
explicitly specify the name, which means these naming restrictions do not cause a problem. But when
you transfer from files to PDS members the file path might not map to a PDS member name. When you
transfer to a PDS data set, each source file becomes a PDS member and each member name is generated
from the name of the source.

PDS member names are z/OS unqualified names and are defined by the following regular expression:

 [a-zA-Z$#@][a-zA-Z0-9$#@]{0-7}

The following scheme is used to convert a source data set or source file name to a valid PDS member
name. The considerations are applied in the order listed:

1. Only the characters in the name after the last forward slash (/), the last backslash (\), or the last colon
(:) character, are used. That is, only the name part of a file path is used.

2. For source files (not data sets or PDS members), the characters after and including the last dot (.)
character, are ignored.

3. For any name longer than eight characters, the last eight characters only are used.
4. Dot characters are replaced with at sign (@) characters.
5. Invalid characters are replaced with at sign (@) characters.
6. If the conversion produces no characters, the PDS member name is @.

MFT agent status messages
High availability agents publish status information in XML format.

Sample XML showing information about three standby instances

<?xml version="1.0" encoding="UTF-8"?>
<AgentStandbyStatus version="6.00" xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AgentStandbyStatus.xsd">
 <instance host="9.122.123.124" agentVersion="9.1.4.0" />
 <instance host="agenthost.ibm.com" agentVersion="9.1.4.0" />
 <instance host="10.11.12.14" agentVersion="9.1.4.0" />
</AgentStandby>

Agent status publication with standby status XML embedded.
The standby status XML is shown in bold type.

<?xml version="1.0" encoding="UTF-8"?>
<properties version="1.0">
 <entry key="SourceTransferStates"/>
 <entry key="queueManagerPort">1414</entry>
 <entry key="agentStandbyInstances"><?xml version="1.0" encoding="UTF-8"?><AgentStandbyStatus
version="6.00"

220 IBM MQ Configuration Reference

 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="AgentStandbyStatus.xsd"><Instances><instance
host="9.122.123.124"
 agentVersion="9.1.4.0" /><instance host="agenthost.ibm.com" agentVersion="9.1.4.0" /
><instance host="10.11.12.14"
 agentVersion="9.1.4.0" /></Instances></AgentStandbyStatus></entry>
 <entry key="agentType">STANDARD</entry>
 <entry key="agentDeclaredHostName">MFTHA1</entry>
 <entry key="agentDescription"/>
 <entry key="maxQueuedTransfers">1000</entry>
 <entry key="agentTimeZone">America/Los_Angeles</entry>
 <entry key="agentOsName">Windows Server 2012 R2</entry>
 <entry key="PublishTimeUTC">2019-05-22T06:02:50Z</entry>
 <entry key="queueManagerHost">localhost</entry>
 <entry key="AgentStartTimeUTC">2019-05-22T04:13:02Z</entry>
 <entry key="agentTraceLevel"><?xml version="1.0" encoding="UTF-8"?><
 agentTraceStatus version="6.00" xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="AgentTraceStatus.xsd"><trace
 level="all">com.ibm.wmqfte</trace></agentTraceStatus></entry>
 <entry key="DestinationTransferStates"/>
 <entry key="queueManager">MFTHAQM</entry>
 <entry key="agentProductVersion">9.1.4.0</entry>
 <entry key="AgentStatusPublishRate">300</entry>
 <entry key="maxSourceTransfers">25</entry>
 <entry key="AgentStatus">STARTED</entry>
 <entry key="maxDestinationTransfers">25</entry>
 <entry key="agentName">SRC</entry>
 <entry key="CommandTimeUTC">2019-05-22T06:02:50Z</entry>
 <entry key="queueManagerChannel">MFT_HA_CHN</entry>
 <entry key="agentInterfaceVersion">6.00</entry>
 <entry key="agentVersion">p914-L191119</entry>
</properties>

Related reference
fteCreateAgent
agent GET

IBM MQ Internet Pass-Thru configuration reference
IBM MQ Internet Pass-Thru (MQIPT) uses a configuration file called mqipt.conf to define routes and to
control the actions of the MQIPT server. From IBM MQ 9.2, configuration properties for the mqiptAdmin
command can also be specified in a properties file.

The MQIPT configuration file
The MQIPT configuration file comprises a number of sections. There is one [global] section, and an
additional [route] section for each route through MQIPT that has been defined.

Each section contains name/value property pairs. Some properties can appear only in the [global]
section, some can appear only in the [route] sections, and some can appear both in [route] and
[global] sections. If a property appears in both route and [global] sections, the value of the property
in the [route] section overrides the global value, but only for the route in question. In this way, the
[global] section can be used to establish the default values to be used for those properties not set in
the individual [route] sections.

The [global] section starts with a line containing the characters [global] and ends when the first
[route] section starts. The [global] section must precede all [route] sections in the file.

Each [route] section starts with a line containing the characters [route] and ends when the next
[route] section starts, or when the end of the configuration file is reached.

Any unrecognized property name is ignored. If a property in a [route] section has a recognized name
but has an invalid value (for example MinConnectionThreads=x or HTTP=unsure), that route is
disabled (that is, it does not listen for any incoming connections).

Attention: The maximum limit for the number of routes that can be added in the mqipt.conf file
is 100.

Configuration reference 221

Invalid values for properties in the [global] section might prevent MQIPT,
or the command server, from starting. If the command server does not start, MQIPT does not listen
for administrative commands sent by the mqiptAdmin command to the affected command port. If
properties with invalid values in the [global] section are present when MQIPT is refreshed, a warning
message is issued and the effective value of the property remains unchanged. This prevents invalid
property values from causing an active instance of MQIPT to shut down when it is refreshed.

Where a property is listed as taking the values true or false, any mixture of uppercase and lowercase
characters can be used in the property value.

You can change the value of a property by editing the mqipt.conf file. To apply any changes, refresh
MQIPT by using the mqiptAdmin command with the -refresh keyword.

To include comments in the configuration file, start a line with a "#" character.

Changes to certain properties cause a route to be restarted only if other properties are already enabled.
For example, any changes to the HTTP properties have an effect only if the HTTP property is also enabled.

When a route is restarted, existing connections are terminated. To override this behavior, set the
RouteRestart property to false. This prevents the route from restarting, allowing existing connections
to remain active until the RouteRestart property is re-enabled.

For information about how to set up some simple configurations, see Getting started with MQIPT. For a
sample configuration, see the mqiptSample.conf file in the MQIPT installation directory.

The mqiptAdmin properties file

Configuration properties for the mqiptAdmin command can be specified in a separate properties file.
These configuration properties are needed when mqiptAdmin connects to the MQIPT TLS command
port.

For the list of properties that can be specified in the mqiptAdmin properties file, see “mqiptAdmin
properties” on page 248. Property names are case-sensitive. Any unrecognized properties are ignored.

Comments can be included in the properties file by starting a line with a "#" character.

Summary of MQIPT properties
This table shows a summary of MQIPT configuration properties and includes the following information:

• An alphabetical list of MQIPT properties with links to further information in the [route] section, or the
[global] section if the [route] section does not apply.

• The property that must be set to true for a value to have an effect.
• Whether the property applies to the [global] section, the [route] section, or both.
• Default values that are used if a property is missing from both the [route] section and the [global]

section. When specifying the values true and false, any mixture of uppercase and lowercase
characters can be used.

Name of property Property to set
true

Global Route Default

AccessPW yes no null

Active yes yes true

ClientAccess yes yes false

CommandPort yes no null

222 IBM MQ Configuration Reference

Name of property Property to set
true

Global Route Default

CommandPortListenerAddress

yes no null

ConnectionLog yes no true

Destination no yes null

DestinationPort no yes 1414

“[MQ 9.2.0 Jul
2020]EnableAdvancedCapabilities” on
page 229

yes no false

HTTP yes yes false

HTTPProxy HTTP yes yes null

HTTPProxyPort HTTP yes yes 8080

HTTPS HTTP yes yes false

HTTPServer HTTP yes yes null

HTTPServerPort HTTP yes yes null

IdleTimeout yes yes 0

IgnoreExpiredCRLs yes yes false

LDAP yes yes false

LDAPIgnoreErrors LDAP yes yes false

LDAPCacheTimeout LDAP yes yes 24

LDAPServer1 LDAP yes yes null

LDAPServer1Port LDAP yes yes 389

LDAPServer1Userid LDAP yes yes null

LDAPServer1Password LDAP yes yes null

LDAPServer1Timeout LDAP yes yes 0

LDAPServer2 LDAP yes yes null

LDAPServer2Port LDAP yes yes 389

LDAPServer2Userid LDAP yes yes null

LDAPServer2Password LDAP yes yes null

LDAPServer2Timeout LDAP yes yes 0

ListenerAddress yes yes null

ListenerPort no yes null

LocalAddress yes yes null

LocalAdmin

yes no true

MaxConnectionThreads yes yes 100

Configuration reference 223

Name of property Property to set
true

Global Route Default

MaxLogFileSize yes no 50

MinConnectionThreads yes yes 5

Name no yes null

OutgoingPort no yes 0

QMgrAccess yes yes true

RemoteCommandAuthentication

yes no none

RemoteShutdown yes no false

RouteRestart yes yes true

SecurityExit yes yes false

SecurityExitName SecurityExit yes yes null

SecurityExitPath SecurityExit yes yes mqipt_home
\exits

SecurityExitTimeout SecurityExit yes yes 30

SecurityManager yes no false

SecurityManagerPolicy yes no null

SocksClient yes yes false

SocksProxyHost SocksClient yes yes null

SocksProxyPort SocksClient yes yes 1080

SocksServer yes yes false

SSLClient yes yes false

SSLClientCAKeyRing SSLClient yes yes null

SSLClientCAKeyRingPW SSLClient yes yes null

“[MQ 9.2.0 Jul
2020]SSLClientCAKeyRingUseCryptoH
ardware” on page 236

SSLClient yes yes false

SSLClientCipherSuites SSLClient yes yes null

SSLClientConnectTimeout SSLClient yes yes 30

SSLClientCustomOutboundSNI

SSLClient yes yes null

SSLClientDN_C SSLClient yes yes * (Note 1)

SSLClientDN_CN SSLClient yes yes * (Note 1)

SSLClientDN_DC SSLClient yes yes * (Note 1)

SSLClientDN_DNQ SSLClient yes yes * (Note 1)

SSLClientDN_L SSLClient yes yes * (Note 1)

SSLClientDN_O SSLClient yes yes * (Note 1)

224 IBM MQ Configuration Reference

Name of property Property to set
true

Global Route Default

SSLClientDN_OU SSLClient yes yes * (Note 1)

SSLClientDN_PC SSLClient yes yes * (Note 1)

SSLClientDN_ST SSLClient yes yes * (Note 1)

SSLClientDN_Street SSLClient yes yes * (Note 1)

SSLClientDN_T SSLClient yes yes * (Note 1)

SSLClientDN_UID SSLClient yes yes * (Note 1)

SSLClientExit yes yes false

SSLClientKeyRing SSLClient yes yes null

SSLClientKeyRingPW SSLClient yes yes null

“[MQ 9.2.0 Jul
2020]SSLClientKeyRingUseCryptoHar
dware” on page 238

SSLClient yes yes false

“[MQ 9.2.5 Feb
2022]SSLClientOutboundSNI” on
page 239

SSLClient yes yes hostname

SSLClientProtocols SSLClient yes yes

TLSv1.2
TLSv1.3

SSLClientSiteDN_C SSLClient yes yes * (Note 1)

SSLClientSiteDN_CN SSLClient yes yes * (Note 1)

SSLClientSiteDN_DC SSLClient yes yes * (Note 1)

SSLClientSiteDN_DNQ SSLClient yes yes * (Note 1)

SSLClientSiteDN_L SSLClient yes yes * (Note 1)

SSLClientSiteDN_O SSLClient yes yes * (Note 1)

SSLClientSiteDN_OU SSLClient yes yes * (Note 1)

SSLClientSiteDN_PC SSLClient yes yes * (Note 1)

SSLClientSiteDN_ST SSLClient yes yes * (Note 1)

SSLClientSiteDN_Street SSLClient yes yes * (Note 1)

SSLClientSiteDN_T SSLClient yes yes * (Note 1)

SSLClientSiteDN_UID SSLClient yes yes * (Note 1)

SSLClientSiteLabel SSLClient yes yes null

SSLCommandPort

yes no null

SSLCommandPortCipherSuites

yes no null

SSLCommandPortListenerAddress

yes no null

Configuration reference 225

Name of property Property to set
true

Global Route Default

SSLCommandPortKeyRing

yes no null

SSLCommandPortKeyRingPW

yes no null

SSLCommandPortKeyRingUseCryptoH
ardware

yes no false

SSLCommandPortProtocols

yes no

TLSv1.2
TLSv1.3

SSLCommandPortSiteLabel

yes no null

SSLExitData SSLServerExit yes yes null

SSLExitName SSLServerExit yes yes null

SSLExitPath SSLServerExit yes yes mqipt_home
\ exits

SSLExitTimeout SSLServerExit yes yes 30

SSLProxyMode yes yes false

SSLPlainConnections either SSLServer
or SSLProxyMode

yes yes false

SSLServer yes yes false

SSLServerAskClientAuth SSLServer yes yes false

SSLServerCAKeyRing SSLServer yes yes null

SSLServerCAKeyRingPW SSLServer yes yes null

“[MQ 9.2.0 Jul
2020]SSLServerCAKeyRingUseCrypto
Hardware” on page 243

SSLServer yes yes false

SSLServerCipherSuites SSLServer yes yes null

SSLServerDN_C SSLServer yes yes * (Note 1)

SSLServerDN_CN SSLServer yes yes * (Note 1)

SSLServerDN_DC SSLServer yes yes * (Note 1)

SSLServerDN_DNQ SSLServer yes yes * (Note 1)

SSLServerDN_L SSLServer yes yes * (Note 1)

SSLServerDN_O SSLServer yes yes * (Note 1)

SSLServerDN_OU SSLServer yes yes * (Note 1)

SSLServerDN_PC SSLServer yes yes * (Note 1)

SSLServerDN_ST SSLServer yes yes * (Note 1)

226 IBM MQ Configuration Reference

Name of property Property to set
true

Global Route Default

SSLServerDN_Street SSLServer yes yes * (Note 1)

SSLServerDN_T SSLServer yes yes * (Note 1)

SSLServerDN_UID SSLServer yes yes * (Note 1)

SSLServerExit yes yes false

SSLServerKeyRing SSLServer yes yes null

SSLServerKeyRingPW SSLServer yes yes null

“[MQ 9.2.0 Jul
2020]SSLServerKeyRingUseCryptoHar
dware” on page 245

SSLServer yes yes false

SSLServerProtocols SSLServer yes yes

TLSv1.2
TLSv1.3

SSLServerSiteDN_C SSLServer yes yes * (Note 1)

SSLServerSiteDN_CN SSLServer yes yes * (Note 1)

SSLServerSiteDN_DC SSLServer yes yes * (Note 1)

SSLServerSiteDN_DNQ SSLServer yes yes * (Note 1)

SSLServerSiteDN_L SSLServer yes yes * (Note 1)

SSLServerSiteDN_O SSLServer yes yes * (Note 1)

SSLServerSiteDN_OU SSLServer yes yes * (Note 1)

SSLServerSiteDN_PC SSLServer yes yes * (Note 1)

SSLServerSiteDN_ST SSLServer yes yes * (Note 1)

SSLServerSiteDN_Street SSLServer yes yes * (Note 1)

SSLServerSiteDN_T SSLServer yes yes * (Note 1)

SSLServerSiteDN_UID SSLServer yes yes * (Note 1)

SSLServerSiteLabel SSLServer yes yes null

StoredCredentialsFormat

yes yes null

TCPKeepAlive yes yes false

Trace yes yes 0

UriName HTTP yes yes (Note 2)

Notes:

1. The asterisk (*) represents a wildcard.
2. See UriName in “MQIPT route properties” on page 231 for details about the default settings.

Related reference
“IBM MQ Internet Pass-Thru configuration reference” on page 221

Configuration reference 227

IBM MQ Internet Pass-Thru (MQIPT) uses a configuration file called mqipt.conf to define routes and to
control the actions of the MQIPT server. From IBM MQ 9.2, configuration properties for the mqiptAdmin
command can also be specified in a properties file.
“MQIPT global properties” on page 228
The mqipt.conf configuration file can contain a number of global properties.
“MQIPT route properties” on page 231
The mqipt.conf configuration file can contain properties for individual routes.

MQIPT global properties
The mqipt.conf configuration file can contain a number of global properties.

The following properties can appear only in the [global] section of mqipt.conf. All the route
properties except ListenerPort, Destination, DestinationPort, Name, and OutgoingPort can
also appear in the [global] section. If a property appears in both route and [global] sections, the
value of the property in the [route] section overrides the global value, but only for the route in question.
In this way, the [global] section can be used to establish the default values to be used for those
properties not set in the individual [route] sections.

AccessPW
The password used to authenticate commands sent to the MQIPT command port using the
mqiptAdmin command.

The value can be either a password that has been encrypted using the mqiptPW
command, or a plain text password. Plain text passwords can only contain alphanumeric characters.
You are strongly encouraged to encrypt passwords that are stored in the MQIPT configuration.
For more information on encrypting passwords in the MQIPT configuration, see Encrypting stored
passwords.
Authentication is performed for administrative commands received by the command port if both of
the following conditions are true:

• The AccessPW property is specified and set to a value that is not blank.

• The RemoteCommandAuthentication property is specified and set to
a value other than none.

CommandPort
The TCP/IP port number of the unsecured command port. MQIPT accepts administrative commands
that are sent by the mqiptAdmin command to this command port.

Connections to the unsecured command port are not secured with TLS.
Data sent to the command port, including the access password, might be accessed by other users
of the network. To configure a command port that is secured with TLS, set the SSLCommandPort
property instead.
If the CommandPort property is not specified, MQIPT does not listen for administrative commands
on the unsecured command port. To use the default port number, 1881, used by default by the
mqiptAdmin command, set CommandPort to 1881.

CommandPortListenerAddress
The local listener address to be used by the unsecured command port. By setting the local listener
address you can restrict inbound connections to the unsecured command port to those from a
particular network interface. The default is to listen on all network interfaces.

ConnectionLog
Either true or false. When true, MQIPT logs all connection attempts (successful or otherwise) in
the logs subdirectory and disconnection events to the file mqiptYYYYMMDDHHmmSS.log (where
YYYYMMDDHHmmSS are characters representing the current date and time). The default value of
ConnectionLog is true. When this property is changed from true to false, MQIPT closes the
existing connection log and creates a new one. The new log is used when the property is reset to
true.

228 IBM MQ Configuration Reference

EnableAdvancedCapabilities
Set this property to true to confirm that advanced capabilities that require IBM MQ Advanced, IBM
MQ Appliance, IBM MQ Advanced for z/OS, or IBM MQ Advanced for z/OS VUE entitlement can be
used by MQIPT. If you have appropriate entitlement you can use the advanced capabilities in MQIPT.
If advanced capabilities are enabled on a route, the local queue manager that is connected using the
MQIPT route is also required to have IBM MQ Advanced, IBM MQ Appliance, IBM MQ Advanced for
z/OS, or IBM MQ Advanced for z/OS VUE entitlement. Routes that use advanced capabilities cannot
start unless this property is set to true. When this property is changed from true to false, routes
that use advanced capabilities are stopped.

LocalAdmin
Specifies whether local administration without a command port is permitted. Administrative
commands sent by the mqiptAdmin command using local administration instead of the command
port, are not accepted if this property is set to false.
Valid values for this property are true and false. The default value is true.

MaxLogFileSize
The maximum size (specified in KB) of the connection log file. When the file size increases above
this maximum a backup copy (mqipt001.log) is made, and a new file is started. Only two backup
files are kept (mqipt001.log and mqipt002.log); each time the main log file fills up, any earlier
backups are erased. The default value of MaxLogFileSize is 50; the minimum allowed value is 5.

RemoteCommandAuthentication
Specifies whether administrative commands received by the unsecured command port or TLS
command port should be authenticated. Commands are authenticated by checking that the password
supplied matches the password specified in the AccessPW property. The value can be one of the
following values:
none

No authentication is performed on commands issued to either of the command ports. Users of the
mqiptAdmin command do not need to enter a password. This is the default value.

optional
Users of the mqiptAdmin command are not required to provide a password. However, if a
password is provided it must be valid.

required
Users of the mqiptAdmin command are required to provide a valid password with every
command issued to the command ports.

The AccessPW property must also be specified to enable authentication for the command ports.
RemoteShutDown

Specifies whether MQIPT can be shut down by a stop command sent to the unsecured command port
or the TLS command port by the mqiptAdmin command. This property must be set to true for stop
commands received by either of the command ports to be processed.
Valid values for this property are true and false. The default value is false.

SecurityManager
Set this property to true to enable the Java security manager for this instance of MQIPT. You must
ensure that the correct permissions are granted. See Java security manager for more information. The
default value for this property is false.

SecurityManagerPolicy
The fully-qualified file name of a policy file. If this property is not set then only the default system
and user policy files are used. If the Java security manager is already enabled, then changes to this
property have no effect until the Java security manager has been disabled and re-enabled.

SSLCommandPort
The TCP/IP port number of the TLS command port. MQIPT accepts administrative commands that are
sent by the mqiptAdmin command to this command port. This port only accepts TLS connections.
This property must be specified in order to enable the TLS command port.

Configuration reference 229

SSLCommandPortCipherSuites
The name of the cipher suites to enable on the TLS command port. More than one cipher suite can
be specified by separating the values with commas. Only TLS 1.2 and TLS 1.3 cipher suites that are
enabled by default in the Java runtime environment (JRE) supplied with MQIPT can be specified. If
this property is not specified, all cipher suites that are enabled in the JRE are enabled on the TLS
command port.

SSLCommandPortListenerAddress
The local listener address to be used by the TLS command port. By setting the local listener address
you can restrict inbound connections to the TLS command port to those from a particular network
interface. The default is to listen on all network interfaces.

SSLCommandPortKeyRing
The name of the PKCS#12 key ring file that contains the TLS command port server certificate.
On Windows platforms, you must use a double backslash (\\) as the file separator.

SSLCommandPortKeyRingPW
The encrypted password to access the TLS command port key ring file or the PKCS #11 key store. The
password must be encrypted using the mqiptPW command, and the value of this property set to the
string output by mqiptPW.

SSLCommandPortKeyRingUseCryptoHardware
Specifies whether cryptographic hardware that supports the PKCS #11 interface is used as the key
store for the TLS command port server certificate. Valid values for this property are true and false.
If this property is set to true, the SSLCommandPortKeyRing cannot also be specified.
Use of cryptographic hardware in MQIPT is an IBM MQ Advanced feature. The
EnableAdvancedCapabilities property must be set to true to confirm that you have IBM MQ
Advanced entitlement.

SSLCommandPortProtocols
A comma-separated list of protocols to enable on the TLS command port. One or more of the
following values can be specified.

Table 84. Permitted values for command port TLS protocols

Value Protocol

TLSv1.2 TLS 1.2

TLSv1.3 TLS 1.3

In versions earlier than IBM MQ 9.2.5, if you do not specify this property, the only protocol enabled by

default is TLS 1.2. From IBM MQ 9.2.5, if you do not specify this property, TLS 1.2 and
TLS 1.3 are enabled by default.

SSLCommandPortSiteLabel
The label name of the server certificate used by the TLS command port. If this property is not
specified, any certificate in the TLS command port key store that is compatible with the cipher suite is
selected.

Trace

The level of trace for global MQIPT threads that are not associated with a route, and for routes that
have no Trace property set. For example, the main MQIPT control thread and the command server
threads are not associated with a route and are only traced if trace is enabled in the [global]
section. The value of the Trace property in a [route] section overrides the global Trace property,
for that route. For information about tracing threads associated with a route, see Trace in the
[route] section.

230 IBM MQ Configuration Reference

The value of this property can be one of the following:
0

Trace is not enabled
Any positive integer

Trace is enabled

The default value is 0.

MQIPT route properties
The mqipt.conf configuration file can contain properties for individual routes.

The [route] section of the mqipt.conf configuration file can contain the following properties:

Active
The route accepts incoming connections only if the value of Active is set to true. This means that
you can temporarily shut off access to the destination, by setting this value to false, without having
to delete the [route] section from the configuration file. If you change this property to false, the
route is stopped when a refresh command is issued. All connections to the route are stopped.

ClientAccess
The route allows incoming client channel connections only if the value of ClientAccess is set to
true. Note that potentially you can configure MQIPT to accept client requests only, queue manager
requests only, or both types of request. Use this property in conjunction with the QMgrAccess
property. If you change this property to false, the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

Destination
The host name (or dotted decimal IP address) of the queue manager, or subsequent MQIPT instance,
to which this route is to connect. Each [route] section must contain an explicit Destination value,
but several [route] sections can refer to the same destination. If a change to this property affects a
route, the route is stopped, and restarted when a refresh command is issued. All connections to the
route are stopped. When using the SocksProxyHost property the Destination property must use
the dotted decimal IPv4 address format.

DestinationPort
The port on the destination host to which this route is to connect. Each [route] section must
contain an explicit DestinationPort value, but several routes can refer to the same combination of
Destination and DestinationPortvalues. If a change to this property affects a route, the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

HTTP
Set HTTP to true for routes responsible for making outbound HTTP tunneling requests. The
Destination property for the route must be the host name of another MQIPT when HTTP it set
to true. Set HTTP to false for routes connected to IBM MQ queue managers. If you change this
property, the route is stopped. At least one of the HTTPProxy or HTTPServer properties must
also be specified when HTTP is set to true. This property cannot be used in conjunction with the
SocksClient property.

HTTPProxy
The host name (or dotted decimal IP address) of the HTTP proxy used by all connections for this
route. A CONNECT request is issued to the HTTP proxy, instead of the POST request that is normally
used when no HTTP proxy is configured. If you change this property (and HTTP is set to true), the
route is stopped, and restarted when a refresh command is issued. All connections to the route are
stopped.

HTTPProxyPort
The port address to use on the HTTP proxy. The default value is 8080. If you change this property
(and HTTP is set to true), the route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

Configuration reference 231

HTTPServer
The host name (or dotted decimal IP address) of the HTTP server used by all connections for this
route. This is usually the host name of another MQIPT.
If HTTPProxy is not specified, MQIPT connects to the host specified in HTTPServer, and issues
HTTP POST requests to the host specified in the route Destination property. If HTTPProxy is
specified, MQIPT connects to the host specified in HTTPProxy instead, and requests that the proxy
establish a tunnel to the host specified in HTTPServer.
If HTTPProxy is specified, the default value is the route Destination.
If you change this property (and HTTP is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

HTTPS
Set HTTPS to true to make HTTPS requests. The HTTP and SSLClient properties must
also be enabled, and the client key ring configured using the SSLClientKeyRing or
SSLClientKeyRingUseCryptoHardware property, as for SSL/TLS operation. If you change the
HTTPS property (and HTTP is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

HTTPServerPort
The port address to use on the HTTP server. The default value is 8080, unless HTTPProxy is
specified, in which case the default value is the route DestinationPort.
If you change this property (and HTTP is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

IdleTimeout
The time, in minutes, after which an idle connection is closed. Note that queue manager to queue
manager channels also have the DISCINT property. If you set the IdleTimeout parameter, take note
of DISCINT. If IdleTimeout is set to 0, there is no idle timeout. Changes to this property take effect
only when the route is restarted.

IgnoreExpiredCRLs
Set IgnoreExpiredCRLs to true to ignore an expired CRL. The default value is false. Note that
if you set IgnoreExpiredCRLs to true, a revoked certificate could be used to make an SSL/TLS
connection.

LDAP
Set LDAP to true to enable use of an LDAP server when using SSL/TLS connections. MQIPT will use
the LDAP server to retrieve CRLs and ARLs. The SSLClient property or SSLServer property must
also be set to true for this property to take effect.

LDAPCacheTimeout
The expiry time, in hours, of the temporary cache in which a CRL retrieved from an LDAP server, is
stored. After this time, the entire CRL cache is emptied. For example, specifying a value of 1 hour
means that the cache is emptied once per hour. The default value is 24. If you specify a timeout
value of 0, entries in the cache will not expire until the route is restarted. If you change this property
(and LDAP is set to true), the route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

LDAPIgnoreErrors
Set LDAPIgnoreErrors to true to ignore any connection or timeout errors when performing an
LDAP search. If MQIPT cannot perform a successful search, it will not allow the client connection to
complete, unless this property has been enabled. A successful search means that a CRL has been
retrieved or there are no CRLs available for the specified CA. If you change this property (and LDAP is
set to true), the route is stopped, and restarted when a refresh command is issued. All connections
to the route are stopped.

Note: If you enable this property, a revoked certificate could be used to make an SSL/TLS connection.

LDAPServer1
The host name or IP address of the main LDAP server. This property must be set if LDAP has been set
to true. If you change this property (and LDAP is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

232 IBM MQ Configuration Reference

LDAPServer1Port
The listening port number of the main LDAP server. The default value is 389. If you change this
property (and LDAP is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

LDAPServer1Userid
The user ID needed to access the main LDAP server. This property must be set if authorization to
access the main LDAP server is required. If you change this property (and LDAP is set to true), the
route is stopped, and restarted when a refresh command is issued. All connections to the route are
stopped.

LDAPServer1Password
The password needed to access the main LDAP server. This property must be set if
LDAPServer1Userid has been set to true. If you change this property (and LDAP is set to true),
the route is stopped, and restarted when a refresh command is issued. All connections to the route
are stopped.

The value can be either a password that has been encrypted using the mqiptPW
command, or a plain text password. Plain text passwords can only contain alphanumeric characters.
You are strongly encouraged to encrypt passwords that are stored in the MQIPT configuration.
For more information on encrypting passwords in the MQIPT configuration, see Encrypting stored
passwords.

LDAPServer1Timeout
The time, in seconds, that MQIPT waits for a response from the main LDAP server. The default value
is 0, which means the connection will not time out. If you change this property (and LDAP is set to
true), the route is stopped, and restarted when a refresh command is issued. All connections to the
route are stopped.

LDAPServer2
The host name or IP address of the backup LDAP server. This property is optional. If you change this
property (and LDAP is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

LDAPServer2Port
The listening port number of the backup LDAP server. The default value is 389. If you change this
property (and LDAP is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

LDAPServer2Userid
The userid needed to access the backup LDAP server. This property must be set if authorization to
access the backup LDAP server is required. If you change this property (and LDAP is set to true), the
route is stopped, and restarted when a refresh command is issued. All connections to the route are
stopped.

LDAPServer2Password
The password needed to access the backup LDAP server. This property must be set if LDAPServer2
has been set to true. If you change this property (and LDAP is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are stopped.

The value can be either a password that has been encrypted using the mqiptPW
command, or a plain text password. Plain text passwords can only contain alphanumeric characters.
You are strongly encouraged to encrypt passwords that are stored in the MQIPT configuration.
For more information on encrypting passwords in the MQIPT configuration, see Encrypting stored
passwords.

LDAPServer2Timeout
The time, in seconds, that MQIPT will wait for a response from the backup LDAP server. The default
value is 0, which means the connection will not time out. If you change this property (and LDAP is set
to true), the route is stopped, and restarted when a refresh command is issued. All connections to
the route are stopped.

Configuration reference 233

ListenerAddress
Use this property if the MQIPT system has multiple IP addresses and you need to bind the route
listener port to a specific address. This is useful for restricting inbound connections to those from a
particular network interface. The value of this property should be an IP address belonging to one of
the network interfaces on the system where MQIPT is running. The default is to accept connections
from all network interfaces.

ListenerPort
The port number on which the route should listen for incoming requests. Each [route] section must
contain an explicit ListenerPort value The ListenerPort values set in each section must be
distinct. Any valid port number can be used, including ports 80 and 443, provided that the ports
chosen are not already in use by any other TCP/IP listener running on the same host.

LocalAddress
The IP address to bind all connections to for this route on this computer. The chosen address must be
an IP address that is associated with one of the network interfaces on the computer on which MQIPT
is running. If you change this property, the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

MaxConnectionThreads
The maximum number of connection threads, and thus the maximum number of concurrent
connections, that can be handled by this route. If this limit is reached, the MaxConnectionThreads
value also indicates the number of connections that are queued when all the threads are in use.
Beyond that number, subsequent connection requests are refused. The minimum allowed value is
the greater of 1 and the value of MinConnectionThreads. If a change to this property affects a
route, the new value is used when the refresh command is issued. All connections use the new value
immediately. The route is not stopped.

MinConnectionThreads
The number of connection threads allocated to handle incoming connections on a route when
the route is started. The number of threads allocated does not drop below this value during
the time the route is active. The minimum allowed value is the lesser of 0 and the value of
MaxConnectionThreads. Changes to this property take effect only when the route is restarted.

Name
A name to help identify the route. This property is optional. The value is shown in console messages
and tracing information. Changes to this property take effect only when the route is restarted.

OutgoingPort
The starting port number used by outgoing connections. The range of port numbers match the
MaxConnectionThread value for this route. The default value of 0 uses a system-defined port
number. If you change this property, the route is stopped and restarted when a refresh command
is issued. All connections to this route are stopped. When HTTP is used, each channel connection
requires two outgoing ports. For more information, see Port number control.

QMgrAccess
Set QMgrAccess to true to allow incoming queue manager channel connections (for example sender
channels). If you change this property to false, the route is stopped when a refresh command is
issued. All connections to this route are stopped.

RouteRestart
Set RouteRestart to false to stop the route from restarting when other route properties have been
changed and a refresh command has been issued. The default value for this property is true.

SecurityExit
Set SecurityExit to true to enable a user-defined security exit. The default value for this property
is false.

SecurityExitName
The class name of the user-defined security exit. This property must be set if SecurityExit has
been set to true. If you change this property (and SecurityExit is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to this route are stopped.

234 IBM MQ Configuration Reference

SecurityExitPath
The fully-qualified path name containing the user-defined security exit. If this property has not
been set, then it will default to the exits subdirectory. This property can also define the name of
a Java archive (JAR) file containing the user-defined security exit. If you change this property (and
SecurityExit is set to true), the route is stopped and restarted when a refresh command is issued.
All connections to this route are stopped.

SecurityExitTimeout
The timeout value (in seconds) used by MQIPT to determine how long to wait for a response
when validating a connection request. The default value is 30. If you change this property (and
SecurityExit is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

SocksClient
Set SocksClient to true to make the route act as a SOCKS client and define all connections
through the SOCKS proxy with the SocksProxyHost and SocksProxyPort properties. If you
change this property, the route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped. This property cannot be used with:

• HTTP
• SocksServer
• SSLClient
• SSLProxyMode

SocksProxyHost
The host name (or dotted decimal IPv4 address) of the SOCKS proxy that all connections for this
route use. If you change this property (and SocksClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to this route are stopped. When using
the SocksProxyHost property the Destination property must use the dotted decimal format.

SocksProxyPort
The port number to use on a SOCKS proxy. The default value is 1080. If you change this property (and
SocksClient is set to true), the route is stopped, and restarted when a refresh command is issued.
All connections to the route are stopped.

SocksServer
Set SocksServer to true to make the route act as a SOCKS proxy and accept SOCKS client
connections. If you change this property, the route is stopped, and restarted when a refresh command
is issued. All connections to the route are stopped. This property cannot be used with the following
properties:

• SocksClient
• SSLProxyMode
• SSLServer

SSLClient
Set SSLClient to true to make the route act as an SSL/TLS client and make outgoing SSL/TLS
connections. Setting SSLClient to true implies that the destination is either another instance of
MQIPT acting as an SSL/TLS server, or an HTTP proxy/server.

If you set SSLClient to true, you must specify a SSL/TLS client key ring using
the SSLClientKeyRing or SSLClientCAKeyRing property, or configure MQIPT to
use cryptographic hardware by setting the SSLClientKeyRingUseCryptoHardware or
SSLClientCAKeyRingUseCryptoHardware property.

If you change SSLClient, the route is stopped, and restarted when a refresh command is issued. All
connections to this route are stopped.

This property cannot be used in conjunction with the following property:

• SSLProxyMode

Configuration reference 235

SSLClientCAKeyRing
The fully-qualified file name of the key ring file containing CA certificates, used to authenticate
certificates from the SSL/TLS server. On Windows platforms, you must use a double backslash (\\) as
the file separator. If you change this property (and SSLClient is set to true), the route is stopped,
and restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientCAKeyRingPW
The password to open the SSL/TLS client CA key ring file specified with the
SSLClientCAKeyRing property, or to connect to the cryptographic hardware key store if the
SSLClientCAKeyRingUseCryptoHardware property is set to true.

The value can be either a password that has been encrypted using the mqiptPW
command, or the fully-qualified file name of the file containing an encrypted password. If you specify
a file name on Windows platforms, you must use a double backslash (\\) as the file separator. You
are encouraged to migrate any key ring passwords currently stored in a file to use the latest and
most secure protection method, by re-encrypting the passwords using the mqiptPW utility. For more
information on encrypting passwords in the MQIPT configuration, see Encrypting stored passwords.
If you change this property (and SSLClient is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

SSLClientCAKeyRingUseCryptoHardware

Specifies whether cryptographic hardware that supports the PKCS #11 interface is used as the key
store for CA certificates used to authenticate server certificates from the SSL/TLS server, when MQIPT
is acting as a SSL/TLS client. If this property is set to true, SSLClientCAKeyRing cannot be set on
the same route.

If you change this property (and SSLClient is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

Use of cryptographic hardware with MQIPT is an IBM MQ Advanced capability. To use this
capability, the local queue manager that is connected using the MQIPT route is also required to
have IBM MQ Advanced, IBM MQ Appliance, IBM MQ Advanced for z/OS, or IBM MQ Advanced
for z/OS VUE entitlement. The route will not start when this property is set to true unless
the EnableAdvancedCapabilities global property is set to confirm that IBM MQ Advanced
capabilities can be used.

SSLClientCipherSuites
The name of the SSL/TLS CipherSuite to use on the SSL/TLS client side. This can be one or more of the
supported CipherSuites. If you leave this property blank, any CipherSuite for the enabled protocols
that is compatible with the client certificate in the key ring is used. If you change this property (and
SSLClient is set to true), the route is stopped, and restarted when a refresh command is issued. All
connections to this route are stopped.

SSLClientConnectTimeout
The time (in seconds) that an SSL/TLS client waits for an SSL/TLS connection to be accepted. If you
change this property (and SSLClient is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLClientCustomOutboundSNI
Specifies the value of the Server Name Indication (SNI) when MQIPT initiates a TLS connection to the
route destination, if the route is configured with SSLClientOutboundSNI set to custom. Use this
property to set the SNI to a specific value that cannot be set automatically by MQIPT. For example, if
you want to set the SNI to a hostname, but the route destination is configured with an IP address.
The value must be a valid Internationalized Domain Name (IDN) compliant with the RFC 3490
specification and cannot end with a trailing dot. The route does not start if an invalid value is specified.
If you change the value of this property, and SSLClientOutboundSNI is set to custom, the route is
stopped and restarted when a refresh command is issued.

236 IBM MQ Configuration Reference

https://tools.ietf.org/html/rfc3546#page-8

Attention: You must not use this setting when forwarding connections to an IBM MQ channel
that has a certificate label configured in the channel CERTLABL field. If you forward a client in
such a way, it will be rejected with a MQRC_SSL_INITIALIZATION_ERROR return code, and an
AMQ9673 error printed in the remote queue manager error logs.

SSLClientDN_C
Use this property to accept certificates received from the SSL/TLS server that match this country
name. The name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate
matching is not case sensitive. If you do not specify this property, all country names are accepted. If
you change this property (and SSLClient is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLClientDN_CN
Use this property to accept certificates received from the SSL/TLS server that match this common
name. The name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate
matching is not case sensitive. If you do not specify this property, all common names are accepted. If
you change this property (and SSLClient is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLClientDN_DC
Use this property to accept certificates received from the SSL/TLS server that match this domain
component. The name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate
matching is not case sensitive. You can specify multiple DCs by separating them with commas. Each
DC represents an element in a domain name, for example the domain name example.ibm.com
is represented as example,ibm,com using commas to separate the multiple values. If you do
not specify this property, all domain components are accepted. If you change this property (and
SSLClient is set to true), the route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

SSLClientDN_DNQ
Use this property to accept certificates received from the SSL/TLS server that match this domain
qualifier. The name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate
matching is not case sensitive. If you do not specify this property, all domain qualifiers are accepted.
If you change this property (and SSLClient is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

SSLClientDN_L
Use this property to accept certificates received from the SSL/TLS server that match this location. The
name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not
case sensitive. If you do not specify this property, you imply "all locations". If you change this property
(and SSLClient is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

SSLClientDN_O
Use this property to accept certificates received from the SSL/TLS server that match this organization.
The name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is
not case sensitive. If you do not specify this property, certificates are accepted from all organizations.
If you change this property (and SSLClient is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

SSLClientDN_OU
Use this property to accept certificates received from the SSL/TLS server that match this
Organizational Unit (OU). The name can be prefixed or suffixed with an asterisk (*) to extend its scope.
You can specify multiple OUs by separating them with commas. (Match a literal comma by prefixing
it with a backslash (\) character.) Certificate matching is not case sensitive. If you do not specify this
property, certificates are accepted with any OU name. If you change this property (and SSLClient is
set to true), the route is stopped and restarted when a refresh command is issued. All connections to
this route are stopped.

SSLClientDN_PC
Use this property to accept certificates received from the SSL/TLS server that match this postal code.
The name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is
not case sensitive. If you do not specify this property, all postal codes are accepted. If you change

Configuration reference 237

this property (and SSLClient is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

SSLClientDN_ST
Use this property to accept certificates received from the SSL/TLS server that match this state. The
name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not
case sensitive. If you do not specify this property, certificates are accepted from servers in all states.
If you change this property (and SSLClient is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

SSLClientDN_Street
Use this property to accept certificates received from the SSL/TLS server that match this street name.
The name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is
not case sensitive. If you do not specify this property, all street names are accepted. If you change
this property (and SSLClient is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

SSLClientDN_T
Use this property to accept certificates received from the SSL/TLS server that match this title. The
name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not
case sensitive. If you do not specify this property, all titles are accepted. If you change this property
(and SSLClient is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

SSLClientDN_UID
Use this property to accept certificates received from the SSL/TLS server that match this user ID.
The name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching
is not case sensitive. If you do not specify this property, all user IDs are accepted. If you change
this property (and SSLClient is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

SSLClientExit
Use this property to enable or disable the use of an exit when the route is acting as an SSL/TLS client.
This allows you to define exit details in the configuration file without them actually being used.

SSLClientKeyRing
The fully-qualified file name of the key ring file containing the client certificate. On Windows
platforms, you must use a double backslash (\\) as the file separator. If you change
SSLClientKeyRing (and SSLClient is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLClientKeyRingPW
The password to open the SSL/TLS client key ring file specified with the
SSLClientKeyRing property, or to connect to the cryptographic hardware key store if the
SSLClientKeyRingUseCryptoHardware property is set to true.

The value can be either a password that has been encrypted using the mqiptPW
command, or the fully-qualified file name of the file containing an encrypted password. If you specify
a file name on Windows platforms, you must use a double backslash (\\) as the file separator. You
are encouraged to migrate any key ring passwords currently stored in a file to use the latest and
most secure protection method, by re-encrypting the passwords using the mqiptPW utility. For more
information on encrypting passwords in the MQIPT configuration, see Encrypting stored passwords.
If you change SSLClientKeyRingPW (and SSLClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientKeyRingUseCryptoHardware

Specifies whether cryptographic hardware that supports the PKCS #11 interface is used as the key
store containing the client certificate, when MQIPT is acting as a SSL/TLS client. If this property is set
to true, SSLClientKeyRing cannot be set on the same route.

238 IBM MQ Configuration Reference

If you change this property (and SSLClient is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

Use of cryptographic hardware with MQIPT is an IBM MQ Advanced capability. To use this
capability, the local queue manager that is connected using the MQIPT route is also required to
have IBM MQ Advanced, IBM MQ Appliance, IBM MQ Advanced for z/OS, or IBM MQ Advanced
for z/OS VUE entitlement. The route will not start when this property is set to true unless
the EnableAdvancedCapabilities global property is set to confirm that IBM MQ Advanced
capabilities can be used.

SSLClientOutboundSNI
Specifies the value of the Server Name Indication (SNI) extension when MQIPT initiates a TLS
connection to the route destination. The SNI is either used by IBM MQ queue managers to present the
correct certificate during the TLS handshake, or to route connections to the destination, depending on
the configuration.
This property is only applicable to routes that are defined with SSLClient=true, and cannot
be specified for routes defined with HTTP=true. If you change the value of this property, and
SSLClient is set to true, the route is stopped and restarted when a refresh command is issued.

Attention: If the destination channel is configured with a certificate label on the
channel object CERTLABL field, you must set the CERTLABL setting to the channel
value. If a client is forwarded without the channel SNI setting, it is rejected with an
MQRC_SSL_INITIALIZATION_ERROR return code and an AMQ9673 message printed in the
remote queue manager error logs.

The value of the property can be one of the following values:
hostname

The SNI is set to the hostname of the route destination. Use this option if the route connects to a
load balancer or router that uses the SNI to route requests. For example, the Red Hat® OpenShift®

Container Platform Router uses the SNI to route requests to the IBM MQ queue manager.
If the route destination is a queue manager, connection requests receive the default certificate of
the remote queue manager during the TLS handshake, and so per-channel certificates cannot be
used.
If the route destination is specified using an IP address, and a reverse DNS lookup cannot be
performed, the SNI is blank.
This is the default value.

channel
The SNI is set to the IBM MQ channel name. Use this option to allow per-channel certificates to
be used by the destination queue manager, if connections received by the route do not contain the
channel name in the SNI for one of the following reasons:

• The route is configured to accept connections that are not secured with TLS with either
SSLServer=false or SSLPlainConnections=true.

• The application that connects to the route cannot set the SNI, or is configured to set the SNI to a
value other than the IBM MQ channel name.

passthru
If the route is defined with SSLServer=true, the SNI on the outbound connection is set to the
value of the SNI received on the inbound connection to the route. If the route is not configured to
accept TLS connections, the SNI is set to the destination hostname.

custom
The SNI is set to the value specified in the SSLClientCustomOutboundSNI property. If the
SSLClientCustomOutboundSNI property is not specified, the SNI is set as if the route is
configured with SSLClientOutboundSNI=hostname.

none
The SNI is not set.

Configuration reference 239

https://tools.ietf.org/html/rfc3546#page-8

SSLClientProtocols
Used to restrict the set of enabled secure socket protocols that are used to make outbound
connections to the destination for a route when SSLClient is set to true.

You can specify multiple values by separating them with commas. In versions earlier than IBM MQ

9.2.5, if you do not specify this property, the only protocol enabled by default is TLS 1.2.
From IBM MQ 9.2.5, if you do not specify this property, TLS 1.2 and TLS 1.3 are enabled by default.
To enable protocols other than TLS 1.2 or TLS 1.3, you must specify the protocols to enable in this
property, and also add support for the protocol in the Java runtime environment by following the
procedure in Enabling deprecated protocols and CipherSuites. You can specify one or more of the
following values.

Table 85. Permitted values for SSL/TLS protocols

Value Protocol

SSLv3 SSL 3.0

TLSv1 TLS 1.0

TLSv1.1 TLS 1.1

TLSv1.2 TLS 1.2

TLSv1.3 TLS 1.3

Use the entry listed in the Value column in the route property. The corresponding entry in the
Protocol column is for information only.

SSLClientSiteDN_C
Use this property to specify a country name to select a certificate to send to the SSL/TLS server.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any country name. If you change this property (and SSLClient is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_CN
Use this property to specify a common name to select a certificate to send to the SSL/TLS server.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any common name. If you change this property (and SSLClient is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_DC
Use this property to specify a domain component name to select a certificate to send to the SSL/TLS
server. Certificate matching is not case sensitive. You can specify multiple DCs by separating them
with commas. Each DC represents an element in a domain name, for example the domain name
example.ibm.com is represented as example,ibm,com using commas to separate the multiple
values. If you do not specify this property, certificates are accepted with any domain component
name. If you change this property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_DNQ
Use this property to specify a domain qualifier to select a certificate to send to the SSL/TLS server.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any domain qualifier. If you change this property (and SSLClient is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_L
Use this property to specify a Location name to select a certificate to send to the SSL/TLS server.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any location name. If you change this property (and SSLClient is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

240 IBM MQ Configuration Reference

SSLClientSiteDN_O
Use this property to specify an Organization name to select a certificate to send to the SSL/TLS server.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any organization name. If you change this property (and SSLClient is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_OU
Use this property to specify an Organizational Unit (OU) name to select a certificate to send to the
SSL/TLS server. You can specify multiple OUs by separating them with commas. (Match a literal
comma by prefixing it with a backslash (\) character.) Certificate matching is not case sensitive. If you
do not specify this property, certificates are accepted with any OU name. If you change this property
(and SSLClient is set to true), the route is stopped and restarted when a refresh command is
issued. All connections to this route are stopped.

SSLClientSiteDN_PC
Use this property to specify a postal code to select a certificate to send to the SSL/TLS server.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any postal code. If you change this property (and SSLClient is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_ST
Use this property to specify a State name to select a certificate to send to the SSL/TLS server.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any state name. If you change this property (and SSLClient is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_Street
Use this property to specify a street name to select a certificate to send to the SSL/TLS server.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any street name. If you change this property (and SSLClient is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_T
Use this property to specify a title to select a certificate to send to the SSL/TLS server. Certificate
matching is not case sensitive. If you do not specify this property, certificates are accepted with any
title. If you change this property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_UID
Use this property to specify a user ID to select a certificate to send to the SSL/TLS server. Certificate
matching is not case sensitive. If you do not specify this property, certificates are accepted with
any user ID. If you change this property (and SSLClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteLabel
Use this property to specify a label name to select a certificate to send to the SSL/TLS server. If you
do not specify this property, certificates are accepted with any label name. If you change this property
(and SSLClient is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

SSLExitData
Use this property to provide a user-defined string to be passed to the exit.

SSLExitName
Use this property to define the class name for the exit that will be called when the route is acting
as an SSL/TLS client or an SSL/TLS server. The name must include any package name; for example,
com.ibm.mq.ipt.exit.TestExit.

SSLExitPath
Use this property to define the location of the exit to be used to load a copy of the exit. The name must
be a fully qualified name to be used to locate the class file or the name of a .jar file that contains the
class file; for example, C:\mqipt\exits or C:\mqipt\exits\exits.jar.

Configuration reference 241

SSLExitTimeout
Use this property to define how long MQIPT waits for the exit to complete before terminating the
connection request. A value of 0 means that MQIPT waits indefinitely.

SSLPlainConnections
Use this property to specify whether SSL/TLS is mandatory for connections to the MQIPT listener port
of a route configured to accept inbound SSL/TLS connections. This property is applicable to routes
that have either the SSLServer or SSLProxyMode property set to true. If enabled, this property
allows unencrypted connections to connect to the route listener port, which means that MQIPT can
forward all IBM MQ connections to the queue manager's listener port regardless of whether the
connection is encrypted. If you do not set this parameter, or set it to false, only inbound SSL/TLS
connections are allowed. If you change this property, the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLProxyMode
Set this property to true to make the route accept only SSL/TLS client connection requests and to
tunnel the request directly to the destination. If you change this property, the route is stopped and
restarted when a refresh command is issued. All connections to this route are stopped. This property
cannot be used in conjunction with the following properties:

• SocksClient
• SocksServer
• SSLClient
• SSLServer

SSLServer
Set this property to true to make the route act as an SSL/TLS server and accept incoming SSL/TLS
connections. Setting SSLServer to true implies that the caller is another MQIPT acting as an
SSL/TLS client, or is an IBM MQ client or queue manager with SSL/TLS enabled.

If you set SSLServer to true, you must specify a SSL/TLS server key ring using the
SSLServerKeyRing property, or configure MQIPT to use cryptographic hardware by setting the
SSLServerKeyRingUseCryptoHardware property.

If you change this property, the route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

This property cannot be used in conjunction with the following properties:

• SocksServer
• SSLProxyMode

SSLServerCAKeyRing
The fully-qualified file name of the key ring file containing CA certificates, used to authenticate
certificates from the SSL/TLS client. On Windows platforms, you must use a double backslash (\\) as
the file separator. If you change this property (and SSLServer is set to true), the route is stopped,
and restarted when a refresh command is issued. All connections to this route are stopped.

SSLServerCAKeyRingPW
The password to open the SSL/TLS server CA key ring file specified with the
SSLServerCAKeyRing property, or to connect to the cryptographic hardware key store if the
SSLServerCAKeyRingUseCryptoHardware property is set to true.

The value can be either a password that has been encrypted using the mqiptPW
command, or the fully-qualified file name of the file containing an encrypted password. If you specify
a file name on Windows platforms, you must use a double backslash (\\) as the file separator. You
are encouraged to migrate any key ring passwords currently stored in a file to use the latest and
most secure protection method, by re-encrypting the passwords using the mqiptPW utility. For more
information on encrypting passwords in the MQIPT configuration, see Encrypting stored passwords.
If you change this property (and SSLServer is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

242 IBM MQ Configuration Reference

SSLServerCAKeyRingUseCryptoHardware

Specifies whether cryptographic hardware that supports the PKCS #11 interface is used as the key
store for the CA certificates, used to authenticate certificates from the SSL/TLS client. If this property
is set to true, SSLServerCAKeyRing cannot be set on the same route.

If you change this property (and SSLServer is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

Use of cryptographic hardware with MQIPT is an IBM MQ Advanced capability. To use this
capability, the local queue manager that is connected using the MQIPT route is also required to
have IBM MQ Advanced, IBM MQ Appliance, IBM MQ Advanced for z/OS, or IBM MQ Advanced
for z/OS VUE entitlement. The route will not start when this property is set to true unless
the EnableAdvancedCapabilities global property is set to confirm that IBM MQ Advanced
capabilities can be used.

SSLServerAskClientAuth
Use this property to request SSL/TLS client authentication by the SSL/TLS server. The SSL/TLS client
must have its own certificate to send to the SSL/TLS server. The certificate is retrieved from the
key ring file. If you change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to this route are stopped.

SSLServerCipherSuites
The name of the SSL/TLS CipherSuite to use on the SSL/TLS server side. This can be one or more of
the supported CipherSuites. If you leave this blank, any CipherSuite for the enabled protocols that
is compatible with the server certificate in the key ring is used. If you change this property (and
SSLServer is set to true), the route is stopped, and restarted when a refresh command is issued. All
connections to this route are stopped.

SSLServerDN_C
Use this property to accept certificates received from the SSL/TLS client of this country name. The
name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not
case sensitive. If you do not specify this property, certificates are accepted with any company name. If
you change this property (and SSLServer is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLServerDN_CN
Use this property to accept certificates received from the SSL/TLS client of this common name. The
name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not
case sensitive. If you do not specify this property, certificates are accepted with any common name. If
you change this property (and SSLServer is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLServerDN_DC
Use this property to accept certificates received from the SSL/TLS client of this domain component
name. The name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate
matching is not case sensitive. You can specify multiple DCs by separating them with commas. Each
DC represents an element in a domain name, for example the domain name example.ibm.com
is represented as example,ibm,com using commas to separate the multiple values. If you do not
specify this property, certificates are accepted with any domain component name. If you change
this property (and SSLServer is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

SSLServerDN_DNQ
Use this property to accept certificates received from the SSL/TLS client of this domain qualifier. The
name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not
case sensitive. If you do not specify this property, certificates are accepted with any domain qualifier.
If you change this property (and SSLServer is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

Configuration reference 243

SSLServerDN_L
Use this property to accept certificates received from the SSL/TLS client of this location. The name
can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not case
sensitive. If you do not specify this property, certificates are accepted with any location. If you change
this property (and SSLServer is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

SSLServerDN_O
Use this property to accept certificates received from the SSL/TLS client of this organization. The
name can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not
case sensitive. If you do not specify this property, certificates are accepted with any organization. If
you change this property (and SSLServer is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLServerDN_OU
Use this property to accept certificates received from the SSL/TLS client of this Organizational Unit
(OU). The name can be prefixed or suffixed with an asterisk (*) to extend its scope. You can specify
multiple OUs by separating them with commas. (Match a literal comma by prefixing it with a backslash
(\) character.) Certificate matching is not case sensitive. If you do not specify this property, certificates
are accepted with any OU name. If you change this property (and SSLServer is set to true), the
route is stopped and restarted when a refresh command is issued. All connections to this route are
stopped.

SSLServerDN_PC
Use this property to accept certificates received from the SSL/TLS client of this postal code. The name
can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not case
sensitive. If you do not specify this property, certificates are accepted with any postal code. If you
change this property (and SSLServer is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLServerDN_ST
Use this property to accept certificates received from the SSL/TLS client of this state. The name
can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not case
sensitive. If you do not specify this property, certificates are accepted with any state. If you change
this property (and SSLServer is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

SSLServerDN_Street
Use this property to accept certificates received from the SSL/TLS client of this street name. The name
can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not case
sensitive. If you do not specify this property, certificates are accepted with any street name. If you
change this property (and SSLServer is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLServerDN_T
Use this property to accept certificates received from the SSL/TLS client of this title. The name can be
prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not case sensitive.
If you do not specify this property, certificates are accepted with any title. If you change this property
(and SSLServer is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

SSLServerDN_UID
Use this property to accept certificates received from the SSL/TLS client of this user ID. The name
can be prefixed or suffixed with an asterisk (*) to extend its scope. Certificate matching is not case
sensitive. If you do not specify this property, certificates are accepted with any user ID. If you change
this property (and SSLServer is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

SSLServerExit
Use this property to enable or disable the use of an exit when the route is acting as an SSL/TLS server.
This allows you to define exit details in the configuration file without them actually being used.

244 IBM MQ Configuration Reference

SSLServerKeyRing
The fully-qualified file name of the key ring file containing the server certificate. On Windows
platforms, you must use a double backslash (\\) as the file separator. If you change this property
(and SSLServer is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

SSLServerKeyRingPW
The password to open the SSL/TLS server key ring file specified with the
SSLServerKeyRing property, or to connect to the cryptographic hardware key store if the
SSLServerKeyRingUseCryptoHardware property is set to true.

The value can be either a password that has been encrypted using the mqiptPW
command, or the fully-qualified file name of the file containing an encrypted password. If you specify
a file name on Windows platforms, you must use a double backslash (\\) as the file separator. You
are encouraged to migrate any key ring passwords currently stored in a file to use the latest and
most secure protection method, by re-encrypting the passwords using the mqiptPW utility. For more
information on encrypting passwords in the MQIPT configuration, see Encrypting stored passwords.
You must specify SSLServerKeyRingPW if you set SSLServer to true.
If you change this property (and SSLServer is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

SSLServerKeyRingUseCryptoHardware

Specifies whether cryptographic hardware that supports the PKCS #11 interface is used as the key
store for the server certificate, when MQIPT is acting as a SSL/TLS server. If this property is set to
true, SSLServerKeyRing cannot be set on the same route.

If you change this property (and SSLServer is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

Use of cryptographic hardware with MQIPT is an IBM MQ Advanced capability. To use this
capability, the local queue manager that is connected using the MQIPT route is also required to
have IBM MQ Advanced, IBM MQ Appliance, IBM MQ Advanced for z/OS, or IBM MQ Advanced
for z/OS VUE entitlement. The route will not start when this property is set to true unless
the EnableAdvancedCapabilities global property is set to confirm that IBM MQ Advanced
capabilities can be used.

SSLServerProtocols
Used to restrict the set of enabled secure socket protocols that are used to accept inbound
connections to the route listener port for a route when SSLServer is set to true).

You can specify multiple values by separating them with commas. In versions earlier than IBM MQ

9.2.5, if you do not specify this property, the only protocol enabled by default is TLS 1.2.
From IBM MQ 9.2.5, if you do not specify this property, TLS 1.2 and TLS 1.3 are enabled by default.
To enable protocols other than TLS 1.2 or TLS 1.3, you must specify the protocols to enable in this
property, and also add support for the protocol in the Java runtime environment by following the
procedure in Enabling deprecated protocols and CipherSuites. You can specify one or more of the
following values.

Table 86. Permitted values for SSL/TLS protocols

Value Protocol

SSLv3 SSL 3.0

TLSv1 TLS 1.0

TLSv1.1 TLS 1.1

TLSv1.2 TLS 1.2

Configuration reference 245

Table 86. Permitted values for SSL/TLS protocols (continued)

Value Protocol

TLSv1.3 TLS 1.3

Use the entry listed in the Value column in the route property. The corresponding entry in the
Protocol column is for information only.

SSLServerSiteDN_C
Use this property to specify a country name to select a certificate to send to the SSL/TLS client.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any country name. If you change this property (and SSLServer is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_CN
Use this property to specify a Common Name to select a certificate to send to the SSL/TLS client.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any common name. If you change this property (and SSLServer is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_DC
Use this property to specify a domain component name to select a certificate to send to the SSL/TLS
client. Certificate matching is not case sensitive. You can specify multiple DCs by separating them
with commas. Each DC represents an element in a domain name, for example the domain name
example.ibm.com is represented as example,ibm,com using commas to separate the multiple
values. If you do not specify this property, certificates are accepted with any domain component
name. If you change this property (and SSLServer is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_DNQ
Use this property to specify a domain qualifier to select a certificate to send to the SSL/TLS client.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any domain qualifier. If you change this property (and SSLServer is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_L
Use this property to specify a Location name to select a certificate to send to the SSL/TLS client.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any location name. If you change this property (and SSLServer is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_O
Use this property to specify an organization name to select a certificate to send to the SSL/TLS client.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any organization name. If you change this property (and SSLServer is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_OU
Use this property to specify an Organizational Unit (OU) name to select a certificate to send to the
SSL/TLS client. You can specify multiple OUs by separating them with commas. (Match a literal
comma by prefixing it with a backslash (\) character.) Certificate matching is not case sensitive. If you
do not specify this property, certificates are accepted with any OU name. If you change this property
(and SSLServer is set to true), the route is stopped and restarted when a refresh command is
issued. All connections to this route are stopped.

SSLServerSiteDN_PC
Use this property to specify a postal code to select a certificate to send to the SSL/TLS client.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any postal code. If you change this property (and SSLServer is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

246 IBM MQ Configuration Reference

SSLServerSiteDN_ST
Use this property to specify a State name to select a certificate to send to the SSL/TLS client.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any state name. If you change this property (and SSLServer is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_Street
Use this property to specify a street name to select a certificate to send to the SSL/TLS client.
Certificate matching is not case sensitive. If you do not specify this property, certificates are accepted
with any street name. If you change this property (and SSLServer is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_T
Use this property to specify a title to select a certificate to send to the SSL/TLS client. Certificate
matching is not case sensitive. If you do not specify this property, certificates are accepted with any
title. If you change this property (and SSLServer is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_UID
Use this property to specify a user ID to select a certificate to send to the SSL/TLS client. Certificate
matching is not case sensitive. If you do not specify this property, certificates are accepted with
any user ID. If you change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteLabel
Use this property to specify a label name to select a certificate to send to the SSL/TLS client. If you
do not specify this property, certificates are accepted with any label name. If you change this property
(and SSLServer is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

StoredCredentialsFormat
Use this property to indicate whether the values of password properties use the encrypted password
format supported in MQIPT from IBM MQ 9.1.5. MQIPT can almost always detect whether passwords
are specified in the encrypted password format. This property only needs to be set in the unlikely
scenario that MQIPT cannot automatically differentiate between an encrypted password and a plain
text password or a file name.
The value can be one of the following values:
encrypted

Password properties contain an encrypted password in the format that is supported in MQIPT
from IBM MQ 9.1.5.

compat
Password properties contain either a plain text password, or for key ring passwords, the name of
the file containing an encrypted password.

TCPKeepAlive
Set this property to true to enable the sending of TCP/IP keep-alive packets periodically to prevent
the connections on this route becoming idle. This reduces the chances of the MQIPT connections
being severed by a firewall or router. The sending of TCP/IP keep-alive packets is controlled by
operating system tuning parameters; consult your operating system documentation for further details
on how to tune keep-alive. If you do not set this parameter, or set it to false, keep-alive packets are
not sent.

Trace
The level of tracing required for this route. Enabling trace for one route does not enable trace for
any other routes. If you need to trace more than one route, you must add the Trace property to the
[route] section of each route to be traced.

The value of this property can be one of the following:
0

Trace is not enabled

Configuration reference 247

Any positive integer
Trace is enabled

The default value is 0.

If the [route] section does not include a Trace property, the Trace property from the [global]
section is used. For information about tracing threads that are not associated with a route, see Trace
in the [global] section. If a change to this property affects a route, the new value is used when the
refresh command is issued. All connections use the new value immediately. The route is not stopped.

UriName

This property can be used to change the name of the Uniform Resource Identifier of the resource
when using an HTTP proxy, although the default value will suffice for most configurations:

HTTP://destination:destination_port/mqipt

If you change this property (and HTTP is set to true), the route is stopped, and restarted when a
refresh command is issued.

mqiptAdmin properties
The mqiptAdmin command reads configuration properties from a properties file that is specified when
the command is started.

The following properties can be specified in the properties file that is used by the mqiptAdmin command.
Property names are case-sensitive.

PasswordProtectionKeyFile
The name of the file containing the encryption key used to encrypt the trust store password that
is specified in the SSLClientCAKeyRingPW property. If this property is not specified, the default
encryption key is used to decrypt the password. The encryption key used to encrypt the mqiptAdmin
trust store password can be different to the encryption key used to encrypt passwords in the
mqipt.conf configuration file.

SSLClientCAKeyRing
The file name of the PKCS#12 trust store to use for connections to the MQIPT TLS command port. The
trust store should contain the CA certificate of the CA that signed the server certificate that the MQIPT
TLS command port is configured to use. Backslash (\) characters in the file name must be escaped
and specified as a double backslash (\\).

SSLClientCAKeyRingPW
The encrypted password to access the trust store specified using the SSLClientCAKeyRing
property. The password must be encrypted using the mqiptPW command, and the value of this
property set to the string output by mqiptPW.

248 IBM MQ Configuration Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2024 249

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

250 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (https://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 251

252 IBM MQ Configuration Reference

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	Configuration reference
	Example IBM MQ configuration for all platforms
	How to use the communication examples
	Multiple thread support - pipelining
	Example IBM MQ configuration for AIX
	Establishing an LU 6.2 connection
	Establishing a TCP connection
	IBM MQ for AIX configuration
	Channel configuration for AIX
	IBM MQ for AIX sender-channel definitions using SNA
	IBM MQ for AIX receiver-channel definitions using SNA
	IBM MQ for AIX TPN setup
	IBM MQ for AIX sender-channel definitions using TCP
	IBM MQ for AIX receiver-channel definitions using TCP

	Example IBM MQ configuration for IBM i
	Configuration parameters for an LU 6.2 connection
	Explanation of terms
	How to find network attributes
	How to find the value of Resource name

	Establishing an LU 6.2 connection
	Local node configuration
	Connection to partner node
	What next?

	Establishing a TCP connection
	IBM MQ for IBM i configuration
	Creating a queue manager
	Defining a queue
	Defining a channel on IBM i
	Channel configuration for IBM i
	Sender-channel definitions for IBM i
	Receiver-channel definitions for IBM i

	Example IBM MQ configuration for Linux
	Establishing an LU 6.2 connection
	Establishing a TCP connection on Linux
	IBM MQ for Linux configuration
	Channel configuration for Linux
	IBM MQ for Linux (x86 platform) sender-channel definitions using SNA
	IBM MQ for Linux (x86 platform) receiver-channel definitions using SNA
	IBM MQ for Linux sender-channel definitions using TCP
	IBM MQ for Linux receiver-channel definitions using TCP/IP

	Example IBM MQ configuration for Windows
	Establishing an LU 6.2 connection
	Establishing a TCP connection
	Establishing a NetBIOS connection
	IBM MQ for Windows configuration
	Basic configuration
	Channel configuration for Windows
	IBM MQ for Windows sender-channel definitions using SNA
	IBM MQ for Windows receiver-channel definitions using SNA
	IBM MQ for Windows sender-channel definitions using TCP/IP
	IBM MQ for Windows receiver-channel definitions using TCP

	Automatic startup
	Running channels as processes or threads

	Example IBM MQ configuration for z/OS
	Establishing a connection
	IBM MQ for z/OS configuration
	Channel configuration for z/OS
	IBM MQ for z/OS sender-channel definitions
	IBM MQ for z/OS receiver-channel definitions

	Example IBM MQ configuration for z/OS using QSGs
	Configuration parameters for an LU 6.2 connection
	Explanation of terms

	Establishing an LU 6.2 connection into a queue sharing group
	Defining yourself to the network using generic resources
	Defining a connection to a partner
	What next?

	Establishing a TCP connection Using Sysplex Distributor
	IBM MQ for z/OS shared channel configuration
	Shared channel configuration example
	IBM MQ for z/OS shared sender-channel definitions
	IBM MQ for z/OS shared receiver-channel definitions

	Example MQ configuration for z/OS using intra-group queuing
	Configuration 1
	Configuration 1 definitions

	Configuration 2
	Configuration 2 definitions

	Configuration 3
	Configuration 3 definitions

	Running the example
	Expanding the example

	IBM MQ file system permissions applied to /var/mqm
	IBM MQ file permissions in /opt/mqm with setuid for mqm

	IBM MQ file system permissions on Windows
	Naming restrictions for queues
	Naming restrictions for other objects
	Queue name resolution
	What is queue name resolution?
	How are destination object attributes resolved for aliases, remote queues and cluster queues?

	System and default objects
	SYSTEM.BASE.TOPIC

	Stanza information
	Configuration file stanzas for distributed queuing

	Channel attributes
	Channel attributes and channel types
	Channel attributes in alphabetical order of MQSC keywords
	AFFINITY (Connection affinity)
	ALTDATE (Alter date)
	ALTTIME (Alter time)
	AMQPKA (AMQP keep alive)
	BATCHHB (Batch Heartbeat Interval)
	BATCHINT (Batch interval)
	BATCHLIM (Batch limit)
	BATCHSZ (Batch size)
	CERTLABL (Certificate label)
	CHANNEL (Channel name)
	CHLTYPE (Channel type)
	CLNTWGHT (Client channel weight)
	CLUSNL (Cluster namelist)
	CLUSTER (Cluster)
	CLWLPRTY (Cluster workload priority)
	CLWLRANK (Cluster workload rank)
	CLWLWGHT (Cluster workload weight)
	COMPHDR (Header compression)
	COMPMSG (Data compression)
	CONNAME (Connection name)
	CONVERT (Convert message)
	DEFRECON (Default reconnection)
	DESCR (Description)
	DISCINT (Disconnect interval)
	HBINT (Heartbeat interval)
	KAINT (Keepalive Interval)
	LOCLADDR (Local Address)
	LONGRTY (Long retry count)
	LONGTMR (Long retry interval)
	MAXINST (Maximum instances)
	MAXINSTC (Maximum instances per client)
	MAXMSGL (Maximum message length)
	MCANAME (Message channel agent name)
	MCATYPE (Message channel agent type)
	MCAUSER (Message channel agent user identifier)
	MODENAME (LU 6.2 mode name)
	MONCHL (Monitoring)
	MRDATA (Message-retry exit user data)
	MREXIT (Message-retry exit name)
	MRRTY (Message retry count)
	MRTMR (Message retry interval)
	MSGDATA (Message exit user data)
	MSGEXIT (Message exit name)
	NETPRTY (Network-connection priority)
	NPMSPEED (Nonpersistent message speed)
	PASSWORD (Password)
	PORT (Port number)
	PUTAUT (PUT authority)
	QMNAME (Queue manager name)
	QSGDISP (Disposition)
	RCVDATA (Receive exit user data)
	RCVEXIT (Receive exit name)
	SCYDATA (Security exit user data)
	SCYEXIT (Security exit name)
	SENDDATA (Send exit user data)
	SENDEXIT (Send exit name)
	SEQWRAP (Sequence number wrap)
	SHORTRTY (Short retry count)
	SHORTTMR (Short retry interval)
	SPLPROT (Security policy protection)
	SSLCAUTH (SSL Client Authentication)
	SSLCIPH (SSL Cipher Specification)
	SSLPEER (SSL Peer)
	STATCHL (Channel statistics)
	TPNAME (LU 6.2 transaction program name)
	TPROOT (Topic root)
	TRPTYPE (Transport type)
	USECLTID (Use client ID)
	USEDLQ (Use Dead-Letter Queue)
	USERID (User ID)
	XMITQ (Transmission queue name)

	IBM MQ cluster commands
	Queue manager definition commands
	Channel definition commands
	Queue definition commands
	DISPLAY CLUSQMGR
	SUSPEND QMGR, RESUME QMGR and clusters
	REFRESH CLUSTER
	RESET CLUSTER: Forcibly removing a queue manager from a cluster
	Workload balancing in clusters
	Cluster workload balancing - channel attributes
	Cluster workload balancing - queue attributes
	Cluster workload balancing - queue manager attributes
	The cluster workload management algorithm

	Asynchronous behavior of CLUSTER commands on z/OS

	Channel programs
	Intercommunication jobs on IBM i
	Channel states on IBM i
	Message channel planning example for AIX, Linux, and Windows
	What the example for AIX, Linux, and Windows shows
	Queue manager QM1 example for AIX, Linux, and Windows
	Queue manager QM2 example for AIX, Linux, and Windows

	Running the example for AIX, Linux, and Windows

	Message channel planning example for IBM i
	What the example for IBM i shows
	Queue manager QM1 example for IBM i
	Queue manager QM2 example for IBM i

	Running the example for IBM i
	Expanding the example for IBM i

	Message channel planning example for z/OS
	What the example for z/OS shows
	Queue manager QM1 example for z/OS
	Queue manager QM2 example for z/OS

	Running the example for z/OS
	Expanding the example for z/OS

	Message channel planning example for z/OS using queue sharing groups
	What the queue sharing group example for z/OS shows
	Queue sharing group definitions
	Queue manager QM3 example for z/OS
	Running the queue sharing group example for z/OS

	Using an alias to refer to an MQ library
	Managed File Transfer configuration reference
	The use of environment variables in MFT properties
	The MFT installation.properties file
	The MFT agent.properties file
	The MFT coordination.properties file
	The MFT command.properties file
	The MFT logger.properties file
	Output produced by the LogTransfer function
	Java system properties for MFT
	SHA-2 CipherSpecs and CipherSuites for MFT
	MFT file logger configuration files
	MFT stand-alone file logger default log format
	Stand-alone file logger format XSD

	The SCSQFCMD library
	SYSTEM.FTE topic
	MFT Agent queue settings
	MFT system queues and the system topic
	MFT object naming conventions
	MFT agent status messages

	IBM MQ Internet Pass-Thru configuration reference
	Summary of MQIPT properties
	MQIPT global properties
	MQIPT route properties
	mqiptAdmin properties

	Notices
	Programming interface information
	Trademarks

