
9.1

IBM MQ in containers

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
51.

This edition applies to version 9 release 1 of IBM® MQ and to all subsequent releases and modifications until otherwise
indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 2007, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

IBM MQ in containers...5
Planning for IBM MQ in containers.. 5

Choosing how you want to use IBM MQ in containers.. 5
Support for IBM MQ certified containers...6
Support for building your own IBM MQ container images and charts.. 8
Storage considerations for IBM MQ Advanced certified container...8
High availability for IBM MQ Advanced certified container.. 10
User authentication and authorization for IBM MQ Advanced certified container............................ 11

Installing and uninstalling the IBM MQ Operator on OpenShift...12
Installing the IBM MQ Operator using the OpenShift web console.. 12
Installing the IBM MQ Operator using the OpenShift CLI... 13

Deploying IBM MQ certified containers.. 15
Preparing your OpenShift project for IBM MQ using the OpenShift CLI... 15
Deploying a queue manager using the IBM Cloud Pak for Integration Platform Navigator...............16
Deploying a queue manager using the OpenShift web console..17
Deploying a queue manager using the OpenShift CLI...18
Integrating with the IBM Cloud Pak for Integration Operations Dashboard...................................... 20
Building an image with custom MQSC and INI files, using the OpenShift CLI................................... 21
Deploying IBM MQ certified containers using Helm..22
Deploying previous CD releases of IBM MQ into an IBM Cloud Private cluster................................. 26
Adding previous CD releases of an IBM MQ image into an IBM Cloud Private cluster...................... 28
Adding previous CD releases of an IBM MQ image into an IBM Cloud Kubernetes Service cluster..28

Connecting to a queue manager deployed in an OpenShift cluster .. 29
Connecting to the IBM MQ Console deployed in an OpenShift cluster..31
Backing up and restoring queue manager configuration using the OpenShift CLI.................................. 31
Building your own IBM MQ container..32

Planning your own IBM MQ queue manager image using a container... 33
Building a sample IBM MQ queue manager image using Docker... 33
Running local binding applications in separate containers.. 36

API reference for the IBM MQ Operator..38
API reference for mq.ibm.com/v1beta1..38

Notices..51
Programming interface information.. 52
Trademarks.. 52

 iii

iv

IBM MQ in containers

Containers allow you to package an IBM MQ queue manager or IBM MQ client application, with all of its
dependencies, into a standardized unit for software development.

You can run IBM MQ in the pre-packaged container provided in IBM MQ Advanced and IBM MQ Advanced
for Developers. This IBM MQ Advanced certified container offers a supported image and Helm chart, and
can be used to deploy a production-ready IBM MQ image into Red Hat® OpenShift®, IBM Cloud® Private, or
IBM Cloud Kubernetes Service.

You can also run IBM MQ in an IBM Cloud Pak® for Integration container, or in a container you build
yourself.

For more information about the IBM MQ Advanced certified container, see the
following links.

Planning for IBM MQ in containers
When planning for IBM MQ in containers, consider the support that IBM MQ provides for various
architectural options, such as how high availability is managed, and how to secure your queue managers.

About this task
Before you plan your IBM MQ in containers architecture, you should familiarize yourself with both
the basic IBM MQ concepts (see IBM MQ Technical overview) as well as basic Kubernetes/OpenShift
concepts (see OpenShift Container Platform architecture).

Procedure
• “Choosing how you want to use IBM MQ in containers” on page 5.
• “High availability for IBM MQ Advanced certified container” on page 10.
• “User authentication and authorization for IBM MQ Advanced certified container” on page 11.

Choosing how you want to use IBM MQ in
containers

There are multiple options for using IBM MQ in containers: you can choose to use pre-packaged certified
containers, or you can build your own images and deployment code.

Using the IBM MQ Advanced certified containers
If you are planning to deploy on Red Hat OpenShift Container Platform, then you probably want to use the
certified containers. There are three varieties of certified container:

• IBM MQ Advanced certified container for IBM Cloud Pak for Integration. This is a separate IBM product
that includes a version of a certified container.

• IBM MQ Advanced certified container
• IBM MQ Advanced for Developers certified container (unwarranted)

IBM MQ 9.1.4 and earlier CD releases were also supported on IBM Cloud Private and IBM Cloud
Kubernetes Service.

Note that the certified containers are evolving rapidly, and are therefore only supported under Continuous
Delivery releases.

© Copyright IBM Corp. 2007, 2025 5

https://docs.openshift.com/container-platform/4.3/architecture/architecture.html

The certified containers include both pre-built container images, as well as deployment code for running
on Red Hat OpenShift Container Platform. From IBM MQ 9.1.5 onwards, queue managers are managed
using an IBM MQ Operator. Prior versions of IBM MQ, up to and including version 9.1.5, are managed
using Helm charts.

Some IBM MQ features are not supported when using the certified containers. You will need to build your
own images and charts if you want to do any of the following:

• Use the REST APIs for administration or messaging
• Use any of the following MQ components:

– Managed File Transfer Agents and its resources. However you can use the certified containers to
provide one or more Coordination, Command, or Agent queue managers.

– AMQP
– IBM MQ Bridge to Salesforce
– IBM MQ Bridge to blockchain (not supported in containers)

• Use the web server when you're deploying using Helm charts (except for IBM Cloud Pak for Integration)
• Customize options used with crtmqm, strmqm and endmqm, such as configuring recovery logs

Building your own images and charts
This is the most flexible container solution, but it requires you to have strong skills in configuring
containers, and to "own" the resultant container. If you aren't planning to use Red Hat OpenShift
Container Platform, then you will need to build your own images and deployment code.

Samples for building your own images are available. See “Building your own IBM MQ container” on page
32. The Helm charts provided as part of the certified containers are published on GitHub, and can be
used as samples for when you are building your own images:

• Helm chart for IBM MQ Advanced certified container
• Helm chart for IBM MQ Advanced for Developers certified container

Related concepts
“Support for IBM MQ certified containers” on page 6
The IBM MQ certified containers are only supported in certain Kubernetes environments
“Support for building your own IBM MQ container images and charts” on page 8
Information to consider if you are using containers on a Linux system.

Support for IBM MQ certified containers
The IBM MQ certified containers are only supported in certain Kubernetes environments

For CD release V9.1.4 and later, the IBM MQ Advanced certified
container is supported for use with Red Hat OpenShift. See “Deploying a queue manager using the Helm
CLI” on page 24.

CD releases earlier than V9.1.4 were supported in the following Kubernetes environments:

• IBM Cloud Kubernetes Service
• IBM Cloud Private
• IBM Cloud Private with Red Hat OpenShift

For specific supported versions of Kubernetes, see the files qualification.yaml and Chart.yaml
inside a downloaded IBM MQ Advanced Helm chart. These versions vary from release to release.

The IBM MQ Advanced certified container is only supported when deployed using the IBM MQ Operator or
when using one of the following Helm charts:

• ibm-mqadvanced-server-prod

6 IBM MQ in containers

https://github.com/IBM/charts/tree/master/entitled/ibm-mqadvanced-server-prod
https://github.com/IBM/charts/tree/master/stable/ibm-mqadvanced-server-dev

• ibm-mqadvanced-server-integration-prod in the IBM Cloud Pak for Integration

Note: The use of Helm charts is deprecated, following the release of the IBM MQ Operator.

Because container technology is evolving rapidly, the IBM MQ Advanced certified container is only
supported on the latest version of the platforms that this chart supports at the time of release. If you
want to use an older platform version, then you might need to use an older version of the IBM MQ
Advanced certified container.

The IBM MQ Advanced certified container image is based on IBM MQ Continuous Delivery (CD) releases.
These are supported for up to one year, or for two CD releases, whichever is longer. Long Term Support
releases of IBM MQ are not available as a certified container.

From IBM MQ Advanced certified container V4.0 onwards, the image provides an installation of IBM MQ
on a Red Hat Universal Base Image (UBI), which includes key Linux libraries and utilities used by IBM MQ.
The UBI is supported by Red Hat when run on a Red Hat Enterprise Linux host. Earlier versions of the IBM
MQ Advanced certified container used an unsupported Ubuntu base image.

Related concepts
“Support for building your own IBM MQ container images and charts” on page 8
Information to consider if you are using containers on a Linux system.

Version support for the IBM MQ Advanced
certified container
A set of tables showing the mapping between supported versions of the IBM MQ Advanced certified
container, IBM MQ, IBM Cloud Kubernetes Service, IBM Cloud Pak for Integration, and IBM Cloud Private.

IBM MQ Operator

The IBM MQ Operator is supported for use as part of IBM Cloud Pak for Integration version 2020.2, or
independently, with IBM MQ version 9.1.5 and above.

The IBM MQ Operator is supported on Red Hat OpenShift Container Platform version 4.4 or above.

IBM MQ Advanced certified container (Helm chart) — deprecated
Includes the Helm chart ibm-mqadvanced-server-prod.

From IBM MQ Advanced certified container V5.0.x onwards, the Helm chart, image, and
fixes, are shipped via the IBM Entitled Catalog and Registry. Earlier versions were shipped via Passport
Advantage®, and fix releases are available from IBM Fix Central.

Table 1. Support for the IBM MQ Advanced certified container

Ve
rsi
on

IBM MQ version End of support Supported platforms

6.
0.
x

9.1.5 Continuous
Delivery Release

March 2021 Detailed System Requirements

5.
0.
x

9.1.4 Continuous
Delivery Release

December 2020 Detailed System Requirements

4.
1.
x

9.1.3 Continuous
Delivery Release

July 2020 Detailed System Requirements

IBM MQ in containers 7

https://www.ibm.com/software/reports/compatibility/clarity-reports/report/html/softwareReqsForProduct?deliverableId=611D2F50FCBA11E9BCF401BE73544226&osPlatforms=&duComponentIds=C013&mandatoryCapIds=16&optionalCapIds=30%7C341%7C47%7C12%7C9%7C1%7C25%7C20%7C28%7C184%7C185%7C70%7C15%7C26
https://www.ibm.com/software/reports/compatibility/clarity-reports/report/html/softwareReqsForProduct?deliverableId=3F22B7E0D2DF11E8A90C175D6F87BFB2&osPlatforms=Linux&duComponentIds=C012%7CC013%7CC011&mandatoryCapIds=16&optionalCapIds=30%7C341%7C47%7C12%7C9%7C1%7C25%7C20%7C28%7C184%7C185%7C70%7C15%7C26
https://www.ibm.com/software/reports/compatibility/clarity-reports/report/html/softwareReqsForProduct?deliverableId=F578D6B0D2DE11E8A90C175D6F87BFB2&osPlatforms=AIX%7CLinux%7CWindows%7Cz/OS&duComponentIds=C013%7CC012%7CC011&mandatoryCapIds=16&optionalCapIds=30%7C341%7C47%7C12%7C9%7C1%7C25%7C20%7C28%7C184%7C185%7C70%7C15%7C26

IBM MQ Advanced certified container software for the IBM Cloud Pak for Integration
(Helm chart) — deprecated

Includes the Helm chart ibm-mqadvanced-server-integration-prod.

Table 2. Version support for the IBM MQ Advanced certified container software for the IBM Cloud Pak for
Integration

Versio
n

IBM MQ version IBM Cloud Pak for Integration version

6.0.x 9.1.4 Continuous Delivery Release 2020.1.1 (System Requirements)

5.0.x 9.1.3 Continuous Delivery Release 2019.4.1 (System Requirements)

4.1.x 9.1.3 Continuous Delivery Release 2019.3.2.2 (System Requirements)

4.0.x 9.1.3 Continuous Delivery Release 2019.3.2 (System Requirements)

3.0.x 9.1.3 Continuous Delivery Release 2019.3.1 (System Requirements)

See the IBM Cloud Pak for Integration release notes for supported version information.

Support for building your own IBM MQ container images and charts
Information to consider if you are using containers on a Linux system.

• The base image used by the container image must use a Linux operating system that is supported.
• You must use the IBM MQ installers to install the product inside the container image.
• For a list of supported packages, see IBM MQ rpm components for Linux systems.

• The following packages are not supported:

– MQSeriesBCBridge
– MQSeriesRDQM

• The queue manager data directory (/var/mqm by default) must be stored on a container volume that
keeps persistent state.

Important: You cannot use the union file system.

You must either mount a host directory as a data volume, or use a data volume container. For more
information, see Manage data in containers.

• You must be able to run IBM MQ control commands, such as endmqm, within the container.
• You must be able to get files and directories from within the container for diagnostic purposes.

• You can use namespacing to share the namespaces of the container for the queue
manager with other containers, in order to locally bind applications to a queue manager running
in separate containers. For more information, see “Running local binding applications in separate
containers” on page 36.

Related concepts
“Support for IBM MQ certified containers” on page 6
The IBM MQ certified containers are only supported in certain Kubernetes environments

Storage considerations for IBM MQ
Advanced certified container

The IBM MQ Advanced certified container runs in two storage modes:

8 IBM MQ in containers

https://www.ibm.com/docs/SSGT7J_20.1/install/sysreqs.html
https://www.ibm.com/docs/SSGT7J_19.4/install/sysreqs.html
https://www.ibm.com/docs/SSGT7J_19.3/install/sysreqs.html
https://www.ibm.com/docs/SSGT7J_19.3/install/sysreqs.html
https://www.ibm.com/docs/SSGT7J_19.3/install/sysreqs.html
https://docs.docker.com/engine/userguide/dockervolumes/

• Ephemeral storage is used when all container state can be disposed of when the container restarts.
This is commonly used when environments are created for demonstration, or when developing with
stand-alone queue managers.

• Persistent storage is the common configuration for IBM MQ and ensures that if the container is
restarted, the existing configuration, logs and persistent messages are available in the restarted
container.

The IBM MQ operator provides the capability to customize the storage characteristics which can differ
considerably depending on the environment, and the desired storage mode.

Ephemeral storage
IBM MQ is a stateful application and persists this state to storage for recovery in the event of a restart. If
using ephemeral storage all queue manager state will be lost on restart. This includes:

• All messages
• All queue manager to queue manager communication state (channel message sequence numbers)
• The queue manager's MQ Cluster identity
• All transaction state
• All queue manager configuration
• All local diagnostic data

For this reason you need to consider if ephemeral storage is a suitable approach for a production, test or
development scenario. For example, where all messages are known to be non-persistent and the queue
manager is not a member of an MQ Cluster. As well as disposing of all messaging state at restart, the
queue manager configuration is also discarded. To enable a completely ephemeral container the IBM MQ
configuration must be added to the container image itself (for more information, see “Building an image
with custom MQSC and INI files, using the OpenShift CLI” on page 21). If this is not completed, then
IBM MQ will need to be configured each time the container restarts.

For example, to configure IBM MQ with ephemeral storage the storage type of the QueueManager should
include the following:

queueManager:
 storage:
 queueManager:
 type: ephemeral

Persistent storage
IBM MQ normally runs with persistence storage to assure the queue manager retains its persistent
messages and configuration after a restart. Therefore, this is the default behavior. Due to the various
storage providers and different capabilities each support, this often means that customization of
the configuration is required. The below outlines the common fields that customize the MQ storage
configuration in the v1beta1 API:

• spec.queueManager.availability controls the availability mode. If you are using SingleInstance you
only require ReadWriteOnce storage, while multiInstance requires a storage class that supports
ReadWriteMany with the correct file locking characteristics. IBM MQ provides a support statement
and a testing statement. The availability mode also influences the persistent volume layout. For more
information, see “High availability for IBM MQ Advanced certified container” on page 10

• spec.queueManager.storage controls the individual storage settings. A queue manager can be
configured to use between one and four persistent volumes

The following example shows a snippet of a simple configuration using a single-instance queue manager:

spec:
 queueManager:
 storage:

IBM MQ in containers 9

https://www.ibm.com/support/pages/node/391335
https://www.ibm.com/support/pages/testing-statement-ibm-mq-multi-instance-queue-manager-file-systems

 queueManager:
 enabled: true

The following example shows a snippet of a multi-instance queue manager configuration, with a non-
default storage class, and with file storage requiring supplemental groups:

spec:
 queueManager:
 availability:
 type: MultiInstance
 storage:
 queueManager:
 enabled: true
 class: ibmc-file-gold-gid
 persistedData:
 enabled: true
 class: ibmc-file-gold-gid
 recoveryLogs:
 enabled: true
 class: ibmc-file-gold-gid
 securityContext:
 supplementalGroups: [99]

High availability for IBM MQ Advanced certified
container

You have two main choices for high availability with IBM MQ Advanced certified container: Multi-instance
queue manager (which is an active-standby pair, using a shared, networked file system) and Single
resilient queue manager (which offers a simple approach for HA using networked storage).

You should consider separately message and service availability. With IBM MQ for Multiplatforms, a
message is stored on exactly one queue manager. So if that queue manager becomes unavailable, you
temporarily lose access to the messages it holds. To achieve high message availability, you need to be
able to recover a queue manager as quickly as possible. You can achieve service availability by having
multiple instances of queues for client applications to use, for example by using an IBM MQ uniform
cluster.

A queue manager can be thought of in two parts: the data stored on disk, and the running processes that
allow access to the data. Any queue manager can be moved to a different Kubernetes Node, as long as
it keeps the same data (provided by Kubernetes Persistent Volumes) and is still addressable across the
network by client applications. In Kubernetes, a Service is used to provide a consistent network identity.

IBM MQ relies on the availability of the data on the persistent volumes. Therefore, the availability of the
storage providing the persistent volumes is critical to queue manager availability, because IBM MQ cannot
be more available than the storage it is using. If you want to tolerate an outage of an entire availability
zone, you need to use a volume provider that replicates disk writes to another zone.

Multi-instance queue manager
Multi-instance queue managers involve an active and a standby Kubernetes Pod, which run as part of a
Kubernetes Stateful Set with exactly two replicas and a set of Kubernetes Persistent Volumes. The queue
manager transaction logs and data are held on two persistent volumes, using a shared file system.

Multi-instance queue managers require both the active and the standby Pods to have concurrent access
to the persistent volume. To configure this, you use Kubernetes Persistent Volumes with access mode
set to ReadWriteMany. The volumes must also meet the IBM MQ requirements for shared file systems,
because IBM MQ relies on the automatic release of file locks to instigate a queue manager failover. IBM
MQ produces a list of tested file systems.

The recovery times for a multi-instance queue manager are controlled by the following factors:

1. How long it takes after a failure occurs for the shared file system to release the locks originally taken
by the active instance.

2. How long it takes for the standby instance to acquire the locks and then start.

10 IBM MQ in containers

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistent-volumes
https://www.ibm.com/support/docview.wss?rs=171&uid=swg21433474

3. How long it takes for the Kubernetes Pod readiness probe to detect that the container is ready. This is
configurable in the Helm chart.

4. How long it takes for IBM MQ clients to reconnect.

Single resilient queue manager
A single resilient queue manager is a single instance of a queue manager running in a single Kubernetes
Pod, where Kubernetes monitors the queue manager and replaces the Pod as necessary.

The IBM MQ requirements for shared file systems also apply when using a single resilient queue manager
(except for lease-based locking), but you do not need to use a shared file system. You can use block
storage, with a suitable file system on top. For example, xfs or ext4.

The recovery times for a single resilient queue manager are controlled by the following factors:

1. How long it takes for the liveness probe to run, and how many failures it tolerates. This is configurable
in the Helm chart.

2. How long the Kubernetes Scheduler takes to re-schedule the failed Pod to a new Node.
3. How long it takes to download the container image to the new Node. If you use an imagePullPolicy

value of IfNotPresent, then the image might already be available on that Node.
4. How long it takes for the new queue manager instance to start.
5. How long it takes for the Kubernetes Pod readiness probe to detect that the container is ready. This is

configurable in the Helm chart.
6. How long it takes for IBM MQ clients to reconnect.

Important:

Although the single resilient queue manager pattern offers some benefits, you need to understand
whether you can reach your availability goals with the limitations around Node failures.

In Kubernetes, a failing Pod is typically recovered quickly; but the failure of an entire Node is handled
differently. If the Kubernetes Master Node loses contact with a worker node, it cannot determine if the
node has failed, or if it has simply lost network connectivity. Therefore Kubernetes takes no action in this
case until one of the following events occurs:

1. The node recovers to a state where the Kubernetes Master Node can communicate with it.
2. An administrative action is taken to explicitly delete the Pod on the Kubernetes Master Node. This

does not necessarily stop the Pod from running, but just deletes it from the Kubernetes store. This
administrative action must therefore be taken very carefully.

Related concepts
High availability configurations

User authentication and authorization for IBM
MQ Advanced certified container

IBM MQ can be configured to use LDAP users and groups for authorization. This is the recommended
approach for the IBM MQ Advanced certified container.

In a multi-tenant containerized environment such as Red Hat OpenShift Container Platform,
security constraints are put in place to prevent potential security issues. For example, in Red Hat
OpenShift Container Platform the default SecurityContextConstraints (called restricted) uses a
randomized user ID, discouraging any users local to the container itself. IBM MQ typically uses privilege
escalation to check the passwords of users, which is also not recommended in multi-tenant container
environments. For these reasons, the use of users defined on the operating system libraries inside a
running container is not supported in the IBM MQ certified containers.

You need to configure your queue manager to use LDAP for user authentication and authorization. For
information about configuring IBM MQ to do this, see Connection authentication: User repositories and
LDAP authorization

IBM MQ in containers 11

Installing and uninstalling the IBM
MQ Operator on OpenShift

The IBM MQ Operator can be installed onto OpenShift using the Operator Hub.

Before you begin

Procedure
• “Installing the IBM MQ Operator using the OpenShift CLI” on page 13.
• “Installing the IBM MQ Operator using the OpenShift web console” on page 12.

Installing the IBM MQ Operator using
the OpenShift web console

The IBM MQ Operator can be installed onto OpenShift using the Operator Hub.

Before you begin
Log in to your OpenShift cluster's web console.

Procedure
1. Add the IBM Common Services operators to the list of installable operators

a) Click the plus icon. You see the Import YAML dialog box.
b) Paste the following resource definition in the dialog box.

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: opencloud-operators
 namespace: openshift-marketplace
spec:
 displayName: IBMCS Operators
 publisher: IBM
 sourceType: grpc
 image: docker.io/ibmcom/ibm-common-service-catalog:latest
 updateStrategy:
 registryPoll:
 interval: 45m

c) Click Create.
2. Add the IBM operators to the list of installable operators

a) Click the plus icon. You see the Import YAML dialog box.
b) Paste the following resource definition in the dialog box.

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: ibm-operator-catalog
 namespace: openshift-marketplace
spec:
 displayName: ibm-operator-catalog
 publisher: IBM Content
 sourceType: grpc
 image: docker.io/ibmcom/ibm-operator-catalog
 updateStrategy:
 registryPoll:
 interval: 45m

c) Click Create.
3. Create a namespace to use for the IBM MQ Operator

12 IBM MQ in containers

The IBM MQ operator can be installed scoped to a single namespace or all namespaces. This step is
only needed if you want to install into a particular namespace which does not already exist.
a) From the navigation pane, click the Home > Projects.

The Projects page is displayed.
b) Click Create Project. A Create Project area is displayed.
c) Enter details of the namespace that you are creating. For example, you can specify "ibm-mq" as the

name.
d) Click Create. The namespace for your IBM MQ Operator is created.

4. Install the IBM MQ Operator.
a) From the navigation pane, click Operators > OperatorHub.

The OperatorHub page is displayed.
b) In the All Items field, enter "IBM MQ".

The IBM MQ catalog entry is displayed.
c) Select IBM MQ.

The IBM MQ window is displayed.
d) Click Install.

You see the Create Operator Subscription page.
e) Set Installation Mode to either the specific namespace that you created, or the cluster wide scope
f) Click Subscribe.

You will see IBM MQ on the Installed Operators page.
g) Check the status of the Operator on the Installed Operators page, the status will change to

Succeeded when the installation is complete.

What to do next
“Deploying IBM MQ certified containers” on page 15

Installing the IBM MQ Operator using
the OpenShift CLI

The IBM MQ Operator can be installed onto OpenShift using the Operator Hub.

Before you begin
Log into the OpenShift command line interface (CLI) using oc login. For these steps, you will need to be
a cluster administrator.

Procedure
1. Create an OperatorSource for the IBM Common Services operators

a) Create a YAML file defining the OperatorSource resource

Create a file called "operator-source-cs.yaml" with the following contents:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: opencloud-operators
 namespace: openshift-marketplace
spec:
 displayName: IBMCS Operators
 publisher: IBM
 sourceType: grpc
 image: docker.io/ibmcom/ibm-common-service-catalog:latest
 updateStrategy:

IBM MQ in containers 13

 registryPoll:
 interval: 45m

b) Apply the OperatorSource to the server.

oc apply -f operator-source-cs.yaml -n openshift-marketplace

2. Create an OperatorSource for the IBM operators
a) Create a YAML file defining the OperatorSource resource

Create a file called "operator-source-ibm.yaml" with the following contents:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: ibm-operator-catalog
 namespace: openshift-marketplace
spec:
 displayName: ibm-operator-catalog
 publisher: IBM Content
 sourceType: grpc
 image: docker.io/ibmcom/ibm-operator-catalog
 updateStrategy:
 registryPoll:
 interval: 45m

b) Apply the OperatorSource to the server.

oc apply -f operator-source-ibm.yaml -n openshift-marketplace

3. Create a namespace to use for the IBM MQ Operator
The IBM MQ operator can be installed scoped to a single namespace or all namespaces. This step is
only needed if you want to install into a particular namespace which does not already exist.

oc new-project ibm-mq

4. View the list of Operators available to the cluster from the OperatorHub

oc get packagemanifests -n openshift-marketplace

5. Inspect the IBM MQ Operator to verify its supported InstallModes and available Channels

oc describe packagemanifests ibm-mq -n openshift-marketplace

6. Create an OperatorGroup object YAML file

An OperatorGroup is an OLM resource that selects target namespaces in which to generate required
RBAC access for all Operators in the same namespace as the OperatorGroup.

The namespace to which you subscribe the Operator must have an OperatorGroup that matches the
Operator's InstallMode, either the AllNamespaces or SingleNamespace mode. If the Operator
you intend to install uses the AllNamespaces, then the openshift-operators namespace already
has an appropriate OperatorGroup in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate OperatorGroup in place, you must create one.

a) Create a file called "mq-operator-group.yaml" with the following contents:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace>
spec:
 targetNamespaces:
 - <namespace>

b) Create the OperatorGroup object

14 IBM MQ in containers

oc apply -f mq-operator-group.yaml

7. Create a Subscription object YAML file to subscribe a namespace to the MQ Operator
a) Create a file called "mq-sub.yaml" with the following contents:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ibm-mq
 namespace: openshift-operators
spec:
 channel:
 name: ibm-mq
 source: ibm-operator-catalog
 sourceNamespace: openshift-marketplace

For AllNamespaces InstallMode usage, specify openshift-operators namespace.
Otherwise, specify the relevant single namespace for SingleNamespace InstallMode usage.

b) Create the Subscription object

oc apply -f mq-sub.yaml

8. Check the status of the Operator
Once the installation of the Operator has succeeded, the pod status shows as Running.
For AllNamespaces InstallMode usage, specify openshift-operators as the namespace.
Otherwise, specify the relevant single namespace for SingleNamespace InstallMode usage.

What to do next
“Deploying IBM MQ certified containers” on page 15

Deploying IBM MQ certified containers
IBM MQ version 9.1.5 and above can be deployed to Red Hat OpenShift using the IBM MQ Operator. IBM
MQ versions 9.1.5 and 9.1.4 can be deployed to Red Hat OpenShift using Helm. Earlier CD versions can be
deployed to an IBM Cloud Private cluster or an IBM Cloud Kubernetes Service cluster, using Helm.

About this task

Procedure
• “Deploying a queue manager using the Helm CLI” on page 24.
• “Deploying previous CD releases of IBM MQ into an IBM Cloud Private cluster” on page 26.
• “Adding previous CD releases of an IBM MQ image into an IBM Cloud Private cluster” on page 28.
• “Adding previous CD releases of an IBM MQ image into an IBM Cloud Kubernetes Service cluster” on

page 28.

Preparing your OpenShift project for IBM MQ
using the OpenShift CLI

Prepare your Red Hat OpenShift Container Platform cluster, so that it's ready to deploy a queue manager
using the IBM MQ Operator. This task should be completed by a project administrator.

Before you begin
Note: If you plan to use IBM MQ in a project with other IBM Cloud Pak for Integration components already
installed, you may not need to follow these instructions.

Log into your cluster using cloudctl login (for IBM Cloud Pak for Integration), or oc login.

IBM MQ in containers 15

About this task
The IBM MQ Advanced certified container images are pulled from a container registry that performs a
license entitlement check. This check requires an entitlement key that is stored in a docker-registry
pull secret. If you do not yet have an entitlement key, follow these instructions to get an entitlement key
and create a pull secret.

Procedure
1. Get the entitlement key that is assigned to your ID.

a) Log in to MyIBM Container Software Library with the IBM ID and password that are associated with
the entitled software.

b) In the Entitlement keys section, select Copy key to copy the entitlement key to the clipboard.
2. Create a secret containing your entitlement key, in the project where you want to deploy your queue

manager.
Run the following command, where <entitlement-key> is the key retrieved in step 1, and <user-email>
is the IBM ID associated with the entitled software.

oc create secret docker-registry ibm-entitlement-key \
--docker-server=cp.icr.io \
--docker-username=cp \
--docker-password=<entitlement-key> \
--docker-email=<user-email>

What to do next
“Deploying a queue manager using the OpenShift CLI” on page 18

Deploying a queue manager using the
IBM Cloud Pak for Integration Platform Navigator

Use the QueueManager custom resource to deploy a queue manager onto a Red Hat OpenShift Container
Platform cluster using the IBM Cloud Pak for Integration Platform Navigator. This task should be
completed by a project administrator

Before you begin
In a browser, launch the IBM Cloud Pak for Integration Platform Navigator.

If this is the first time deploying a queue manager into this Red Hat OpenShift project, then follow the
steps for “Preparing your OpenShift project for IBM MQ using the OpenShift CLI” on page 15.

Procedure
1. Deploy a queue manager.

The following example deploys a "quick start" queue manager, which uses ephemeral (non-persistent)
storage, and turns off MQ security. Messages will not be persisted across restarts of the queue
manager. You can adjust the configuration to change many queue manager settings.
a) In the IBM Cloud Pak for Integration Platform Navigator, click Runtime and instances.
b) Click Create instance.
c) Select Queue Manager, and click Next.

The form to create an instance of a QueueManager is displayed.

Note: You can also click Code to view or change the QueueManager configuration YAML.
d) In the Details section, check or update the Name field, and specify the Namespace in which to

create the queue manager instance.
e) If you accept the IBM Cloud Pak for Integration license agreement, change License acceptance to

On.

16 IBM MQ in containers

https://myibm.ibm.com/products-services/containerlibrary

You must accept the license to deploy a queue manager.
f) In the Queue Manager Config section, check or update the Name of the underlying queue

manager.
By default, the name of the queue manager used by IBM MQ client applications will be the same as
the name of the QueueManager, but with any invalid characters (such as hyphens) removed. If you
want to force the use of a particular name, you can edit this here.

g) Click Create
The list of queue managers in the current project (namespace) is now displayed. The new
QueueManager should have a status of Pending

2. Check the queue manager is running
The creation is complete when the QueueManager status is Running.

Related tasks
“Connecting to a queue manager deployed in an OpenShift cluster ” on page 29
A set of configuration examples for connecting to a queue manager deployed in a Red Hat OpenShift
cluster.
“Connecting to the IBM MQ Console deployed in an OpenShift cluster” on page 31
How to connect to the IBM MQ Console of a queue manager which has been deployed onto a Red Hat
OpenShift Container Platform cluster.

Deploying a queue manager using the
OpenShift web console

Use the QueueManager custom resource to deploy a queue manager onto a Red Hat OpenShift Container
Platform cluster using the Red Hat OpenShift web console. This task should be completed by a project
administrator

Before you begin
Log in to your OpenShift cluster's web console. You will need to select an existing Project (namespace) to
use, or create a new one.

If this is the first time deploying a queue manager into this Red Hat OpenShift project, then follow the
steps for “Preparing your OpenShift project for IBM MQ using the OpenShift CLI” on page 15.

Procedure
1. Deploy a queue manager.

The following example deploys a "quick start" queue manager, which uses ephemeral (non-persistent)
storage, and turns off MQ security. Messages will not be persisted across restarts of the queue
manager. You can adjust the configuration to change many queue manager settings.
a) In the OpenShift web console, from the navigation pane click Operators > Installed Operators
b) Click IBM MQ.
c) Click on the Queue Manager tab.
d) Click on the Create QueueManager button.

A YAML editor is displayed, containing example YAML for a QueueManager resource.

Note: You can also click Edit Form to view or change the QueueManager configuration.
e) If you accept the license agreement, change License acceptance to On.

IBM MQ is available under several different licenses. For more information on the valid licenses, see
“Licensing reference for mq.ibm.com/v1beta1” on page 38. You must accept the license to deploy
a queue manager.

f) Click Create

IBM MQ in containers 17

The list of queue managers in the current project (namespace) is now displayed. The new
QueueManager should be in a Pending state.

2. Check the queue manager is running
The creation is complete when the QueueManager status is Running.

Related tasks
“Connecting to a queue manager deployed in an OpenShift cluster ” on page 29
A set of configuration examples for connecting to a queue manager deployed in a Red Hat OpenShift
cluster.
“Connecting to the IBM MQ Console deployed in an OpenShift cluster” on page 31
How to connect to the IBM MQ Console of a queue manager which has been deployed onto a Red Hat
OpenShift Container Platform cluster.

Deploying a queue manager using the
OpenShift CLI

Use the QueueManager custom resource to deploy a queue manager onto a Red Hat OpenShift Container
Platform cluster using the command line interface (CLI). This task should be completed by a project
administrator

Before you begin
You need to install the Red Hat OpenShift Container Platform command-line interface.

Log into your cluster using cloudctl login (for IBM Cloud Pak for Integration), or oc login.

If this is the first time deploying a queue manager into this Red Hat OpenShift project, then follow the
steps for “Preparing your OpenShift project for IBM MQ using the OpenShift CLI” on page 15.

Procedure
1. Deploy a queue manager.

The following example deploys a "quick start" queue manager, which uses ephemeral (non-persistent)
storage, and turns off MQ security. Messages will not be persisted across restarts of the queue
manager. You can adjust the contents of the YAML to change many queue manager settings.
a) Create a QueueManager YAML file

For example, to install a basic queue manager in IBM Cloud Pak for Integration, create the file
"mq-quickstart.yaml" with the following contents:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: quickstart-cp4i
spec:
 version: 9.1.5.0-r2
 license:
 accept: false
 license: L-RJON-BN7PN3
 use: NonProduction
 web:
 enabled: true
 queueManager:
 name: "QUICKSTART"
 storage:
 queueManager:
 type: ephemeral
 template:
 pod:
 containers:
 - name: qmgr
 env:
 - name: MQSNOAUT
 value: "yes"

18 IBM MQ in containers

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html

Important:If you accept the IBM Cloud Pak for Integration license agreement, change accept:
false to accept: true. See “Licensing reference for mq.ibm.com/v1beta1” on page 38 for
details on the license.

This example also includes a web server deployed with the queue manager, with the web console
enabled with Single Sign-On with the Cloud Pak Identity and Access Manager.

To install a basic queue manager independently of IBM Cloud Pak for Integration, create the file
"mq-quickstart.yaml" with the following contents:

apiVersion: mq.ibm.com/v1beta1
kind: QueueManager
metadata:
 name: quickstart
spec:
 version: 9.1.5.0-r2
 license:
 accept: false
 license: L-APIG-BM7GDH
 use: Development
 web:
 enabled: true
 queueManager:
 name: "QUICKSTART"
 storage:
 queueManager:
 type: ephemeral
 template:
 pod:
 containers:
 - name: qmgr
 env:
 - name: MQSNOAUT
 value: "yes"

Important:If you accept the MQ license agreement, change accept: false to accept: true.
See “Licensing reference for mq.ibm.com/v1beta1” on page 38 for details on the license.

b) Create the QueueManager object

oc apply -f mq-quickstart.yaml

2. Check the queue manager is running
You can validate the deployment by running

oc describe queuemanager <QueueManagerResourceName>

, and then checking the status.
For example, run

oc describe queuemanager quickstart

, and check that the status.Phase field indicates Running

Related tasks
“Connecting to a queue manager deployed in an OpenShift cluster ” on page 29
A set of configuration examples for connecting to a queue manager deployed in a Red Hat OpenShift
cluster.
“Connecting to the IBM MQ Console deployed in an OpenShift cluster” on page 31

IBM MQ in containers 19

How to connect to the IBM MQ Console of a queue manager which has been deployed onto a Red Hat
OpenShift Container Platform cluster.

Integrating with the IBM Cloud Pak for
Integration Operations Dashboard

The ability to trace transactions through IBM Cloud Pak for Integration is provided by the Operations
Dashboard.

About this task
Enabling integration with the Operations Dashboard installs an MQ API exit to your queue manager. The
API exit will send tracing data to the Operations Dashboard data store, about messages which are flowing
through the queue manager.

Note that only messages which are sent using MQ client bindings are traced.

Procedure
1. Deploy a queue manager with tracing enabled

By default, the tracing feature is disabled.

If you are deploying using the IBM Cloud Pak for Integration Platform Navigator, then you can enable
tracing while deploying, by setting Enable Tracing to On, and setting the Tracing Namespace to
the namespace where the Operations Dashboard is installed. For more information on deploying a
queue manager, see “Deploying a queue manager using the IBM Cloud Pak for Integration Platform
Navigator” on page 16

If you are deploying using the OpenShift CLI or OpenShift web console, then you can enable tracing
with the following YAML snippet:

spec:
 tracing:
 enabled: true
 namespace: <Operations_Dashboard_Namespace

If you are deploying using Helm, then you can
enable tracing by setting odTracingConfig.enabled=true and
odTracingConfig.odTracingNamespace=<Operations_Dashboard_Namespace. If you want
to enable Operations Dashboard integration on an existing queue manager, then you can apply this
setting during when upgrading the Helm release.

Important: The queue manager will not start until MQ has been registered with the Operations
Dashboard (see the next step).

Note that when this feature is enabled, it will run two sidecar containers ("Agent" and "Collector") in
addition to the queue manager container. The images for these sidecar containers will be available in
the same registry as the main MQ image, and will use the same pull policy and pull secret. There are
additional settings available to configure CPU and memory limits.

2. If this is the first time a queue manager with Operations Dashboard integration has been deployed in
this namespace, then you need to Register with the Operations Dashboard.
Registering creates a Secret object which the queue manager Pod needs to successfully start.

20 IBM MQ in containers

https://www.ibm.com/docs/SSGT7J_20.2/tracing/installation_and_configuration/capability_registration/capability_registration.html

Building an image with custom MQSC
and INI files, using the OpenShift CLI

Use an Red Hat OpenShift Container Platform Pipeline to create a new IBM MQ container image, with
MQSC and INI files you want to be applied to queue managers using this image. This task should be
completed by a project administrator

Before you begin
You need to install the Red Hat OpenShift Container Platform command-line interface.

Log into your cluster using cloudctl login (for IBM Cloud Pak for Integration), or oc login.

If you don't have an OpenShift Secret for the IBM Entitled Registry in your Red Hat OpenShift project, then
follow the steps for “Preparing your OpenShift project for IBM MQ using the OpenShift CLI” on page 15.

Procedure
1. Create an ImageStream

An image stream and its associated tags provide an abstraction for referencing container images from
within Red Hat OpenShift Container Platform. The image stream and its tags allow you to see what
images are available and ensure that you are using the specific image you need even if the image in the
repository changes.

oc create imagestream mymq

2. Create a BuildConfig for your new image
A BuildConfig will allow builds for your new image, which will be based off the IBM official images,
but will add any MQSC or INI files you want to be run on container start-up.
a) Create a YAML file defining the BuildConfig resource

For example, create a file called "mq-build-config.yaml" with the following contents:

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: mymq
spec:
 source:
 dockerfile: |-
 FROM cp.icr.io/cp/ibm-mqadvanced-server-integration:9.1.5.0-r2-amd64
 RUN printf "DEFINE QLOCAL(foo) REPLACE\n" > /etc/mqm/my.mqsc \
 && printf "Channels:\n\tMQIBindType=FASTPATH\n" > /etc/mqm/my.ini
 LABEL summary "My custom MQ image"
 strategy:
 type: Docker
 dockerStrategy:
 from:
 kind: "DockerImage"
 name: "cp.icr.io/cp/ibm-mqadvanced-server-integration:9.1.5.0-r2-amd64"
 pullSecret:
 name: ibm-entitlement-key
 output:
 to:
 kind: ImageStreamTag
 name: 'mymq:latest-amd64'

You will need to replace the two places where the base IBM MQ is mentioned, to point at the
correct base image for the version and fix you want to use. As fixes are applied, you will need to
repeat these steps to re-build your image.

This example creates a new image based on the IBM official image, and adds files called "my.mqsc"
and "my.ini" into the /etc/mqm directory. Any MQSC or INI files found in this directory will be
applied by the container at start-up. INI files are applied using the crtmqm -ii option, and
merged with the existing INI files. MQSC files are applied in alphabetical order.

IBM MQ in containers 21

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html

It is important that your MQSC commands are repeatable, as they will be run every time the
queue manager starts up. This typically means adding the REPLACE parameter on any DEFINE
commands, and adding the IGNSTATE(YES) parameter to any START or STOP commands.

b) Apply the BuildConfig to the server.

oc apply -f mq-build-config.yaml

3. Run a build to create your image
a) Start the build

oc start-build mymq

You should see output similar to the following:

build.build.openshift.io/mymq-1 started

b) Check the status of the build
For example, you can run the following command, using the build identifier returned in the previous
step:

oc describe build mymq-1

4. Deploy a queue manager, using your new image
Follow the steps described in “Deploying a queue manager using the OpenShift CLI” on page 18,
adding your new custom image into the YAML.
You could add the following snippet of YAML into your normal QueueManager YAML, where my-
namespace is the OpenShift project/namespace you are using, and image is the name of the image you
created earlier (for example, "mymq:latest-amd64"):

spec:
 queueManager:
 image: image-registry.openshift-image-registry.svc:5000/my-namespace/my-image

Related tasks
“Deploying a queue manager using the OpenShift CLI” on page 18
Use the QueueManager custom resource to deploy a queue manager onto a Red Hat OpenShift Container
Platform cluster using the command line interface (CLI). This task should be completed by a project
administrator

Deploying IBM MQ certified containers using
Helm

From IBM MQ 9.1.5.0, the recommended way to deploy a queue manager is to use the IBM MQ Operator.
IBM MQ 9.1.5.0 and previous CD releases can be deployed using Helm, using the following instructions.

About this task

Procedure
• “Preparing your OpenShift cluster for IBM MQ on OpenShift using Helm” on page 23.
• “Deploying a queue manager using the Helm CLI” on page 24.

22 IBM MQ in containers

Preparing your OpenShift cluster for IBM MQ on
OpenShift using Helm
Prepare your Red Hat OpenShift Container Platform cluster, so that it's ready to deploy a queue manager
using Helm. This task should be completed by a cluster administrator.

Before you begin
Note: If you are using IBM Cloud Pak for Integration, then the installer should have prepared an
OpenShift project (namespace) for you to use with IBM MQ, so you may not need to follow these
instructions.

Log into your cluster using cloudctl login (for IBM Cloud Pak for Integration), or oc login.

Procedure
1. Ensure that you've added the IBM Helm repository to your local copy of Helm.

For example, you can run the following command:

helm repo add ibm-entitled-charts https://raw.githubusercontent.com/IBM/charts/master/repo/
entitled

2. Ensure that you have a Helm server (called "Tiller") installed on your cluster.
Follow the instructions in Getting started with Helm on OpenShift to install Helm on your cluster.

3. Ensure that Service Accounts in your OpenShift project (namespace) are authorized to use the right
Security Context Constraints (SCCs).

IBM MQ works under the default SCC of "restricted", so this step can normally be
skipped.

Applying changes to SCCs needs to be done by an OpenShift cluster administrator. Each Helm chart
version has different requirements for SCCs, which are documented in the individual README file for
that Helm chart:

helm inspect readme ibm-entitled-charts/ibm-mqadvanced-server-prod

There are instructions in each README for setting up authorization for SCCs. Note that the IBM MQ
Helm charts create a Service Account for their own use, which means that SCC permissions need to be
applied at the "group" level (for all Service Accounts in the namespace).

4. Ensure that you have a valid "image pull secret" to pull images from your chosen container registry
The IBM MQ Advanced certified container images are pulled from a container registry that performs
a license entitlement check. This check requires an entitlement key that is stored in a docker-
registry pull secret. If you do not yet have an entitlement key, follow these instructions to get an
entitlement key and create a pull secret.
a) Get the entitlement key that is assigned to your ID.

i) Log in to MyIBM Container Software Library with the IBM ID and password that are associated
with the entitled software.

ii) In the Entitlement keys section, select Copy key to copy the entitlement key to the clipboard.
b) Create the secret in the namespace in which you want to deploy your queue manager.

• Run the following command, where <entitlement-key> is the key retrieved in step 1, and <user-
email> is the IBM ID associated with the entitled software.

oc create secret docker-registry ibm-entitlement-key \
--docker-server=cp.icr.io \
--docker-username=cp \
--docker-password=<entitlement-key> \
--docker-email=<user-email>

IBM MQ in containers 23

https://blog.openshift.com/getting-started-helm-openshift/
https://myibm.ibm.com/products-services/containerlibrary

What to do next
“Deploying a queue manager using the Helm CLI” on page 24

Deploying a queue manager using the
Helm CLI
Use Helm to deploy a queue manager onto a Red Hat OpenShift Container Platform cluster. This task
should be completed by a project administrator.

Before you begin
You need to install Helm V2 and the Red Hat OpenShift Container Platform command-line interface. If
you're not using IBM Cloud Pak for Integration, then follow the steps for “Preparing your OpenShift cluster
for IBM MQ on OpenShift using Helm” on page 23.

Log into your cluster using cloudctl login (for IBM Cloud Pak for Integration), or oc login.

Procedure
1. Ensure that you've added the IBM Helm repository to your local copy of Helm.

For example, you can run the following command:

helm repo add ibm-entitled-charts https://raw.githubusercontent.com/IBM/charts/master/repo/
entitled

2. Review the configuration options for your queue manager

The deployment step includes both installation and configuration steps. Some settings for your queue
manager must be set at deployment time, and changing them requires a re-deployment.

You can view the Helm chart README for details of all the available deployment options, by running
one of the following commands:

• For IBM MQ Advanced certified container in IBM Cloud Pak for Integration:

helm inspect readme ibm-entitled-charts/ibm-mqadvanced-server-integration-prod

• For IBM MQ Advanced certified container:

helm inspect readme ibm-entitled-charts/ibm-mqadvanced-server-prod

You will typically need at least the following parameters:

a. Release name. For example: my-release
b. Remote Helm repository. For example: ibm-entitled-charts
c. Helm chart: for example ibm-mqadvanced-server-prod or ibm-mqadvanced-server-
integration-prod

d. Image pull secret name. For example: entitled-registry. Note this is not needed if you are
deploying into the pre-defined project for MQ in IBM Cloud Pak for Integration

3. Deploy a queue manager.

Note that by default, the Helm chart assumes that you have a default Storage Class set in your Red Hat
OpenShift Container Platform cluster.

For example, to install a basic queue manager in IBM Cloud Pak for Integration, run the following
command:

helm install \
--tls \
--name my-release \
ibm-entitled-charts/ibm-mqadvanced-server-integration-prod \
--set license=accept \

24 IBM MQ in containers

https://v2.helm.sh
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html
https://kubernetes.io/docs/concepts/storage/storage-classes

--set tls.hostname=my.cluster \
--set tls.generate=true

You can enter any hostname in the tls.hostname field (this is a required field but will not be used as
in this example we are generating a new self-signed certificate)

To install a basic queue manager independently of IBM Cloud Pak for Integration, you could run the
following command:

helm install \
--name my-release \
ibm-entitled-charts/ibm-mqadvanced-server-prod \
--set license=accept \
--set image.pullSecret=ibm-entitlement-key

Related tasks
“Connecting to a queue manager deployed in an OpenShift cluster ” on page 29
A set of configuration examples for connecting to a queue manager deployed in a Red Hat OpenShift
cluster.
“Connecting to the IBM MQ Console deployed in an OpenShift cluster” on page 31
How to connect to the IBM MQ Console of a queue manager which has been deployed onto a Red Hat
OpenShift Container Platform cluster.

Deploying a queue manager with IBM
Cloud File Storage, using the Helm CLI
Example scenario to use Helm to deploy a queue manager onto a Red Hat OpenShift on IBM Cloud cluster,
using IBM Cloud File Storage. This task should be completed by a project administrator

Before you begin
You need to install Helm V2 and the Red Hat OpenShift Container Platform command-line interface. If
you're not using IBM Cloud Pak for Integration, then follow the steps for “Preparing your OpenShift cluster
for IBM MQ on OpenShift using Helm” on page 23.

Log into your cluster using cloudctl login (for IBM Cloud Pak for Integration), or oc login.

Procedure
1. Ensure that you've added the IBM Helm repository to your local copy of Helm.

For example, you can run the following command:

helm repo add ibm-entitled-charts https://raw.githubusercontent.com/IBM/charts/master/repo/
entitled

2. Deploy a queue manager.
When using IBM Cloud File Storage, you will typically see the best results using the ibmc-file-
gold-gid storage class. This storage class enables storage that can be written to by users in the
correct file system group.

For example, to install a basic queue manager in IBM Cloud Pak for Integration, run the following
command:

helm install \
--tls \
--name my-release \
ibm-entitled-charts/ibm-mqadvanced-server-integration-prod \
--set license=accept \
--set tls.hostname=my.cluster \
--set tls.generate=true \
--set dataPVC.storageClassName=ibmc-file-gold-gid \
--set security.context.supplementalGroups={99}

You can enter any hostname in the tls.hostname field (this is a required field but is not used here,
because in this example we are generating a new self-signed certificate).

IBM MQ in containers 25

https://v2.helm.sh
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html

To install a basic queue manager independently of IBM Cloud Pak for Integration, you could run the
following command:

helm install \
--name my-release \
ibm-entitled-charts/ibm-mqadvanced-server-prod \
--set license=accept \
--set image.pullSecret=ibm-entitlement-key \
--set dataPVC.storageClassName=ibmc-file-gold-gid \
--set security.context.supplementalGroups={99}

Related tasks
“Connecting to a queue manager deployed in an OpenShift cluster ” on page 29
A set of configuration examples for connecting to a queue manager deployed in a Red Hat OpenShift
cluster.
“Connecting to the IBM MQ Console deployed in an OpenShift cluster” on page 31
How to connect to the IBM MQ Console of a queue manager which has been deployed onto a Red Hat
OpenShift Container Platform cluster.

Deploying previous CD releases of IBM MQ into
an IBM Cloud Private cluster

For CD versions of IBM MQ earlier than 9.1.4, use the IBM Cloud Private management console to deploy a
queue manager into IBM Cloud Private.

Before you begin

Attention: This deployment is not supported in IBM MQ 9.1.4 or later versions.

This task assumes that you have already added an IBM MQ image into an IBM Cloud Private cluster.

The Helm chart README.md file is available from the IBM Cloud Private catalog entry, which is displayed
after you complete this substep, or from the command line by adding your IBM Cloud Private's local-
charts repository as a remote Helm repository and running the following command:

helm inspect readme remote_repo_name/ibm-mqadvanced-server-prod

You must have a PodSecurityPolicy, or a SecurityContextConstraint (for IBM Cloud Private on Red Hat
OpenShift) that supports the necessary security context. Details, including examples, can be found from
the Helm chart README.md file.

Details on how to configure your Helm release can also be found in the Helm chart README.md file.

Note:

• If you are deploying to an IBM Cloud Private environment that does not support the required
security settings by default, enable your deployment by following the instructions in Deploying Helm
charts that require elevated privileges in a non-default namespace in the IBM Cloud Private product
documentation.

• If you are using SELinux, you must meet the IBM MQ requirements described in IBM MQ support for
SELinux on Red Hat Enterprise Linux.

About this task
IBM Cloud Private offers a platform for managing on-premises, containerized applications. After you have
added an IBM MQ image into an IBM Cloud Private cluster, you can use either the IBM Cloud Private
management console or the command line to deploy a queue manager.

Procedure
• Using the IBM Cloud Private Management Console

26 IBM MQ in containers

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://docs.openshift.com/enterprise/3.0/admin_guide/manage_scc.html
https://www-01.ibm.com/support/docview.wss?uid=swg21714191
https://www-01.ibm.com/support/docview.wss?uid=swg21714191

a) Open the IBM Cloud Private management console in a web browser, and click Catalog.

See Accessing your IBM Cloud Private cluster by using the management console in the IBM Cloud
Private product documentation.

b) Select the ibm-mqadvanced-server-prod chart from the list.
c) Select Configure, then complete the following configuration steps:

a. Enter a release name.
b. Read and accept the license agreements.
c. Under the dataPVC section, set storageclass to your desired storage class. Leave blank to

select the default storage class.
d. Under the image section, set the repository to the full image path. For example:

mycluster.icp:8500/namespace_name/ibm-mqadvanced-server-prod

e. Under the image section, set the tag to the image tag. For example:

9.1.3.0-r1

f. If you need a Kubernetes pull secret to access the image registry, add it as the pullSecret.
g. Under the queueManager section, set the name of the queue manager.

d) Click Install to deploy your queue manager as a Helm release.
• Using the command line

a) Configure cloudctl to access your IBM Cloud Private cluster.

See Installing the IBM Cloud Private CLI in the IBM Cloud Private product documentation.
b) Ensure that you have added your IBM Cloud Private's local-charts repository as a remote Helm

repository.
c) Install the chart.

Run the following command, specifying these parameters:

a. Release name (for example my-release)
b. Name of the remote helm repository that contains the ibm-mqadvanced-server-prod chart

(for example my-repo)
c. Image repository (for example mycluster.icp:8500/namespace_name/ibm-
mqadvanced-server-prod)

d. Image tag (for example 9.1.3.0-r1)

helm install --name my-release --repo my-repo ibm-mqadvanced-server-prod --set
license=accept --set image.repository=mycluster.icp:8500/namespace_name/ibm-mqadvanced-
server-prod --set image.tag=9.1.3.0-r1 --tls

Related tasks
“Deploying a queue manager using the Helm CLI” on page 24
Use Helm to deploy a queue manager onto a Red Hat OpenShift Container Platform cluster. This task
should be completed by a project administrator.
“Adding previous CD releases of an IBM MQ image into an IBM Cloud Private cluster” on page 28
For CD versions of IBM MQ earlier than 9.1.4, prepare your IBM Cloud Private cluster to deploy a
production-ready image for IBM MQ.
“Adding previous CD releases of an IBM MQ image into an IBM Cloud Kubernetes Service cluster” on page
28

IBM MQ in containers 27

For CD versions of IBM MQ earlier than 9.1.4, import a production-ready image for IBM MQ into IBM
Cloud Kubernetes Service.

Adding previous CD releases of an IBM MQ
image into an IBM Cloud Private cluster

For CD versions of IBM MQ earlier than 9.1.4, prepare your IBM Cloud Private cluster to deploy a
production-ready image for IBM MQ.

About this task

Attention: This import is not supported in IBM MQ 9.1.4 or later versions.

You can download an IBM MQ image from Passport Advantage and import it into an IBM Cloud Private
container.

Procedure
1. Download the latest IBM MQ image from the Passport Advantage and Passport Advantage Express

web site.

For details of available downloads, go to Downloading IBM MQ 9.1 then click the tab for the release
that you want to download. The name and number of the part to download are listed in a table.

2. Import the downloaded archive file into IBM Cloud Private.

See Adding IBM software to the IBM Cloud Private Catalog in the IBM Cloud Private product
documentation.

What to do next
You are now ready to Deploy a queue manager into IBM Cloud Private.
Related tasks
“Deploying a queue manager using the Helm CLI” on page 24
Use Helm to deploy a queue manager onto a Red Hat OpenShift Container Platform cluster. This task
should be completed by a project administrator.
“Deploying previous CD releases of IBM MQ into an IBM Cloud Private cluster” on page 26
For CD versions of IBM MQ earlier than 9.1.4, use the IBM Cloud Private management console to deploy a
queue manager into IBM Cloud Private.
“Adding previous CD releases of an IBM MQ image into an IBM Cloud Kubernetes Service cluster” on page
28
For CD versions of IBM MQ earlier than 9.1.4, import a production-ready image for IBM MQ into IBM
Cloud Kubernetes Service.

Adding previous CD releases of an IBM MQ
image into an IBM Cloud Kubernetes Service cluster

For CD versions of IBM MQ earlier than 9.1.4, import a production-ready image for IBM MQ into IBM
Cloud Kubernetes Service.

About this task

Attention: This import is not supported in IBM MQ 9.1.4 or later versions.

You can download an IBM MQ image from Passport Advantage and import it into an IBM Cloud
Kubernetes Service cluster.

28 IBM MQ in containers

https://www.ibm.com/software/passportadvantage/index.html
https://www.ibm.com/software/passportadvantage/index.html
https://www.ibm.com/support/pages/node/317001

Procedure
1. Download the latest IBM MQ image from the Passport Advantage and Passport Advantage Express

web site.

For details of available downloads, go to Downloading IBM MQ 9.1 then click the tab for the release
that you want to download. The name and number of the part to download are listed in a table.

2. Import the downloaded archive file into IBM Cloud Kubernetes Service.

See Running IBM Cloud Private images in public Kubernetes containers.

Related tasks
“Deploying a queue manager using the Helm CLI” on page 24
Use Helm to deploy a queue manager onto a Red Hat OpenShift Container Platform cluster. This task
should be completed by a project administrator.
“Deploying previous CD releases of IBM MQ into an IBM Cloud Private cluster” on page 26
For CD versions of IBM MQ earlier than 9.1.4, use the IBM Cloud Private management console to deploy a
queue manager into IBM Cloud Private.
“Adding previous CD releases of an IBM MQ image into an IBM Cloud Private cluster” on page 28
For CD versions of IBM MQ earlier than 9.1.4, prepare your IBM Cloud Private cluster to deploy a
production-ready image for IBM MQ.

Connecting to a queue manager
deployed in an OpenShift cluster

A set of configuration examples for connecting to a queue manager deployed in a Red Hat OpenShift
cluster.

About this task
You need an OpenShift Route to connect an application to an IBM MQ queue manager from outside a Red
Hat OpenShift cluster.

You must enable TLS on your IBM MQ queue manager and client application, because Server Name
Indication (SNI) is only available in the TLS protocol. The Red Hat OpenShift Container Platform Router
uses SNI for routing requests to the IBM MQ queue manager.

The required configuration of the OpenShift Route depends on the SNI behavior of your client application.

To set the SNI header as TLS 1.2 or higher, a CipherSpec or CipherSuite must be used for your TLS
communication.

The SNI is set to the MQ channel if the following conditions are met:

• The IBM MQ C Client is V8 or later.
• The Java/JMS Client is V9.1.1 or later, and the Java installation supports the
javax.net.ssl.SNIHostName class.

• The .NET Client is in unmanaged mode.

The SNI is set to the Hostname if a hostname is supplied as the connection name, and the following
conditions are met:

• The .NET Client is in managed mode.
• The AMQP or XR client is used.
• The Java/JMS Clients are used with AllowOutboundSNI set to NO.

The SNI is not set and is blank under the following conditions:

• The IBM MQ C Client is V7.5 or earlier.
• IBM MQ C Client is used with AllowOutboundSNI set to NO.

IBM MQ in containers 29

https://www.ibm.com/software/passportadvantage/index.html
https://www.ibm.com/software/passportadvantage/index.html
https://www.ibm.com/support/pages/node/317001
https://cloud.ibm.com/docs/containers?topic=containers-hybrid_iks_icp#hybrid_ppa_importer
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html
https://tools.ietf.org/html/rfc3546#page-8
https://tools.ietf.org/html/rfc3546#page-8

• The Java/JMS Clients are used with a Java installation that does not support the
javax.net.ssl.SNIHostName class.

Example

Host name based OpenShift Routes : For client applications that set the SNI to the host name

The following Helm charts automatically create a host name based OpenShift Route for connecting an
application to an IBM MQ queue manager. Client applications that set the SNI to the host name can use
this OpenShift Route.

• ibm-mqadvanced-server-dev
• ibm-mqadvanced-server-prod
• ibm-mqadvanced-server-integration-prod in the IBM Cloud Pak for Integration.

If you are not using these charts and need to create your own host name based OpenShift Route, you can
apply the following yaml in your cluster:

apiVersion: route.openshift.io/v1
 kind: Route
 metadata:
 name: <provide a unique name for the Route>
 namespace: <namespace of your MQ deployment>
 spec:
 to:
 kind: Service
 name: <name of the Kubernetes Service for your MQ deployment (for example "<Helm Release>-ibm-
mq")>
 port:
 targetPort: 1414
 tls:
 termination: passthrough

MQ channel based OpenShift Routes : For client applications that set the SNI to the MQ channel

Client applications that set the SNI to the MQ channel require a new OpenShift Route to be created for
each channel you wish to connect to. You also have to use unique channel names across your Red Hat
OpenShift cluster, to allow routing to the correct queue manager.

To determine the required host name for each of your new OpenShift Routes, you need to map
each channel name to an SNI address as documented here: https://www.ibm.com/support/pages/ibm-
websphere-mq-how-does-mq-provide-multiple-certificates-certlabl-capability

You must then create a new OpenShift Route (for each channel) by applying the following yaml in your
cluster:

 apiVersion: route.openshift.io/v1
 kind: Route
 metadata:
 name: <provide a unique name for the Route>
 namespace: <the namespace of your MQ deployment>
 spec:
 host: <SNI address mapping for the channel>
 to:
 kind: Service
 name: <the name of the Kubernetes Service for your MQ deployment (for example "<Helm Release>-
ibm-mq")>
 port:
 targetPort: 1414
 tls:
 termination: passthrough

Configuring your client application connection details

You can determine the host name to use for your client connection by running the following command:

oc get route <Name of hostname based Route (for example "<Helm Release>-ibm-mq-qm")>
-n <namespace of your MQ deployment> -o jsonpath="{.spec.host}"

30 IBM MQ in containers

https://www.ibm.com/support/pages/ibm-websphere-mq-how-does-mq-provide-multiple-certificates-certlabl-capability
https://www.ibm.com/support/pages/ibm-websphere-mq-how-does-mq-provide-multiple-certificates-certlabl-capability

The port for your client connection should be set to the port used by the OpenShift Container Platform
(OCP) Router - normally 443.

Related tasks
“Deploying a queue manager using the Helm CLI” on page 24
Use Helm to deploy a queue manager onto a Red Hat OpenShift Container Platform cluster. This task
should be completed by a project administrator.
“Connecting to the IBM MQ Console deployed in an OpenShift cluster” on page 31
How to connect to the IBM MQ Console of a queue manager which has been deployed onto a Red Hat
OpenShift Container Platform cluster.

Connecting to the IBM MQ Console
deployed in an OpenShift cluster

How to connect to the IBM MQ Console of a queue manager which has been deployed onto a Red Hat
OpenShift Container Platform cluster.

About this task
If you are using the IBM MQ Operator, the IBM MQ Console URL can be found on the QueueManager
details page in the OpenShift web console or in the IBM Cloud Pak for Integration Platform Navigator.
Alternatively, it can be found from the OpenShift CLI by running the following command:

oc get queuemanager <QueueManager Name> -n <namespace of your MQ deployment> --output
jsonpath='{.status.adminUiUrl}'

Example

The following Helm charts automatically create an OpenShift Route for accessing the IBM MQ Console

• ibm-mqadvanced-server-dev
• ibm-mqadvanced-server-integration-prod in the IBM Cloud Pak for Integration.

You can get the hostname of the OpenShift Route by running the following command:

oc get route <Route Name (for example "<Helm Release>-ibm-mq-web")>
-n <namespace of your MQ deployment> --output jsonpath='{.spec.host}'

You can access the IBM MQ Console using the following URL:

https://<Route Hostname>/ibmmq/console

Related tasks
“Deploying a queue manager using the Helm CLI” on page 24
Use Helm to deploy a queue manager onto a Red Hat OpenShift Container Platform cluster. This task
should be completed by a project administrator.
“Connecting to a queue manager deployed in an OpenShift cluster ” on page 29
A set of configuration examples for connecting to a queue manager deployed in a Red Hat OpenShift
cluster.

Backing up and restoring queue manager
configuration using the OpenShift CLI

Backing up queue manager configuration can help you to rebuild a queue manager from its definitions
if the queue manager configuration is lost. This procedure does not back up queue manager log data.

IBM MQ in containers 31

Because of the transient nature of messages, historical log data is likely to be irrelevant at the time of
restore.

Before you begin
Log into your cluster using cloudctl login (for IBM Cloud Pak for Integration), or oc login.

Procedure
• Back up queue manager configuration.

You can use the dmpmqcfg command to dump the configuration of an IBM MQ queue manager.

a) Get the name of the pod for your queue manager.
For example, if you are using the Operator, you could run the following command, where
queue_manager_name is the name of your QueueManager resource:

oc get pods --selector app.kubernetes.io/name=ibm-mq,app.kubernetes.io/
instance=queue_manager_name

For example, if you are using Helm, you could run the following command, where release_name is
the name of your Helm release.

oc get pods --selector release=release_name

b) Run the dmpmqcfg command on the pod, directing the output into a file on your local machine.

dmpmqcfg outputs the queue manager's MQSC configuration.

oc exec -it pod_name -- dmpmqcfg > backup.mqsc

• Restore queue manager configuration.

Having followed the backup procedure outlined in the previous step, you should have a backup.mqsc
file that contains the queue manager configuration. You can restore the configuration by applying this
file to a new queue manager.

a) Get the name of the pod for your queue manager.
For example, if you are using the Operator, you could run the following command, where
queue_manager_name is the name of your QueueManager resource:

oc get pods --selector app.kubernetes.io/name=ibm-mq,app.kubernetes.io/
instance=queue_manager_name

For example, if you are using Helm, you could run the following command, where release_name is
the name of your Helm release.

oc get pods --selector release=release_name

b) Run the runmqsc command on the pod, directing in the content of the backup.mqsc file.

oc exec -i pod_name -- runmqsc < backup.mqsc

Building your own IBM MQ container
Develop a self-built container, formerly referred to as the "Docker container image". This is the most
flexible container solution, but it requires you to have strong skills in configuring containers, and to "own"
the resultant container.

Before you begin
Before you develop your own container, consider whether you can instead use one of the pre-packaged
containers provided by IBM. See IBM MQ in containers

32 IBM MQ in containers

About this task
When you package IBM MQ as a container image, changes to your application can be deployed to test and
staging systems quickly and easily. This can be a major benefit to continuous delivery in your enterprise.

Procedure
• For information on how to build an IBM MQ container image by using Docker, see the following

subtopics:

– “Support for building your own IBM MQ container images and charts” on page 8
– “Planning your own IBM MQ queue manager image using a container” on page 33
– “Building a sample IBM MQ queue manager image using Docker” on page 33
– “Running local binding applications in separate containers” on page 36

Related concepts
IBM MQ in containers

Planning your own IBM MQ queue manager image using a container
There are several requirements to consider when running an IBM MQ queue manager in a container. The
sample container image provides a way to handle these requirements, but if you want to use your own
image, you need to consider how these requirements are handled.

Process supervision
When you run a container, you are essentially running a single process (PID 1 inside the container), which
can later spawn child processes.

If the main process ends, the container runtime stops the container. An IBM MQ queue manager requires
multiple processes to be running in the background.

For this reason, you need to make sure that your main process stays active as long as the queue manager
is running. It is good practice to check that the queue manager is active from this process, for example, by
performing administrative queries.

Populating /var/mqm
Containers must be configured with /var/mqm as a volume.

When you do this, the directory of the volume is empty when the container first starts. This directory is
usually populated at installation time, but installation and runtime are separate environments when using
a container.

To solve this, when your container starts, you can use the crtmqdir command to
populate /var/mqm when it runs for the first time.

Building a sample IBM MQ queue manager image using Docker
Use this information to build a sample container image for running an IBM MQ queue manager in a
container.

About this task
Firstly, you build a base image containing an Red Hat Universal Base Image file system and a clean
installation of IBM MQ.

Secondly, you build another container image layer on top of the base, which adds some IBM MQ
configuration to allow basic user ID and password security.

IBM MQ in containers 33

Finally, you run a container using this image as its file system, with the contents of /var/mqm provided by
a container-specific volume on the host file system.

Procedure
• For information on how to build a sample container image for running an IBM MQ queue manager in a

container, see the following subtopics:

– “Building a sample base IBM MQ queue manager image” on page 34
– “Building a sample configured IBM MQ queue manager image” on page 34

Building a sample base IBM MQ queue manager image
In order to use IBM MQ in your own container image, you need initially to build a base image with a clean
IBM MQ installation. The following steps show you how to build a sample base image, using sample code
hosted on GitHub.

Procedure
• Use the make files supplied in the mq-container GitHub repository to build your production container

image.

Follow the instructions in Building a container image on GitHub.

Results
You now have a base container image with IBM MQ installed.

Building a sample configured IBM MQ queue manager image
After you have built your generic base IBM MQ container image, you need to apply your own configuration
to allow secure access. To do this, create your own container image layer, using the generic image as a
parent.

Before you begin
For an IBM MQ 9.1 image, you cannot configure secure access using the Red Hat OpenShift Container
Platform "restricted" Security Context Constraint (SCC). The "restricted" SCC uses random user IDs, and
prevents privilege escalation by changing to a different user. The IBM MQ 9.1 RPM-based installer relies
on an mqm user and group, and also uses setuid bits on executable programs.

This restriction is removed in IBM MQ 9.2.

Procedure
1. Create a new directory, and add a file called config.mqsc, with the following contents:

DEFINE CHANNEL(PASSWORD.SVRCONN) CHLTYPE(SVRCONN)
SET CHLAUTH(PASSWORD.SVRCONN) TYPE(BLOCKUSER) USERLIST('nobody') +
DESCR('Allow privileged users on this channel')
SET CHLAUTH('*') TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(NOACCESS) DESCR('BackStop rule')
SET CHLAUTH(PASSWORD.SVRCONN) TYPE(ADDRESSMAP) ADDRESS('*') USERSRC(CHANNEL) CHCKCLNT(REQUIRED)
ALTER AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) AUTHTYPE(IDPWOS) ADOPTCTX(YES)
REFRESH SECURITY TYPE(CONNAUTH)

Note that the preceding example uses simple user ID and password authentication. However, you can
apply any security configuration that your enterprise requires.

2. Create a file called Dockerfile, with the following contents:

FROM mq
RUN useradd johndoe -G mqm && \

34 IBM MQ in containers

https://github.com/ibm-messaging/mq-container
https://github.com/ibm-messaging/mq-container/blob/master/docs/building.md

 echo johndoe:passw0rd | chpasswd
COPY config.mqsc /etc/mqm/

where:

• johndoe is the user ID that you want to add
• passw0rd is the original password

3. Build your custom container image using the following command:

sudo docker build -t mymq .

where "." is the directory containing the two files you have just created.

Docker then creates a temporary container using that image, and runs the remaining commands.

The RUN command adds a user named johndoe with password passw0rd and the COPY command
adds the config.mqsc file into a specific location known by the parent image.

Note: On Red Hat Enterprise Linux (RHEL), you use the command docker (RHEL V7) or podman (RHEL
V7 or RHEL V8). In the case of podman, you don't need sudo at the beginning of the command.

4. Run your new customized image to create a new container, with the disk image you have just created.

Your new image layer did not specify any particular command to run, so that has been inherited from
the parent image. The entry point of the parent (the code is available on GitHub):

• Creates a queue manager
• Starts the queue manager
• Creates a default listener
• Then runs any MQSC commands from /etc/mqm/config.mqsc.

Issue the following commands to run your new customized image:

sudo docker run \
 --env LICENSE=accept \
 --env MQ_QMGR_NAME=QM1 \
 --volume /var/example:/var/mqm \
 --publish 1414:1414 \
 --detach \
 mymq

where the:
First env parameter

Passes an environment variable into the container, which acknowledges your acceptance of the
license for IBM IBM WebSphere® MQ. You can also set the LICENSE variable to view to view the
license.
See IBM MQ license information for further details on IBM MQ licenses.

Second env parameter
Sets the queue manager name that you are using.

Volume parameter
Tells the container that whatever MQ writes to /var/mqm should actually be written to /var/
example on the host.
This option means that you can easily delete the container later, and still keep any persistent data.
This option also makes it easier to view log files.

Publish parameter
Maps ports on the host system to ports in the container. The container runs by default with its
own internal IP address, which means that you need to specifically map any ports that you want to
expose.
In this example, that means mapping port 1414 on the host to port 1414 in the container.

Detach parameter
Runs the container in the background.

IBM MQ in containers 35

Results
You have built a configured container image and can view running containers using the docker ps
command. You can view the IBM MQ processes running in your container using the docker top command.

Attention:

You can view the logs of a container using the docker logs ${CONTAINER_ID} command.

What to do next
• If your container is not shown when you use the docker ps command the container might have failed.

You can see failed containers by using the docker ps -a command.
• When you use the docker ps -a command, the container ID is displayed. This ID was also printed when

you issued the docker run command.
• You can view the logs of a container by using the docker logs ${CONTAINER_ID} command.
• You can set the maximum number of open files by using the command sysctl fs.file-
max=524288.

Running local binding applications in separate containers
With process namespace sharing between containers in Docker, you can run applications that require a
local binding connection to IBM MQ in separate containers from the IBM MQ queue manager.

About this task
This functionality is supported in IBM MQ 9.0.3 and later queue managers.

You must adhere to the following restrictions:

• You must share the containers PID namespace using the --pid argument.
• You must share the containers IPC namespace using the --ipc argument.
• You must either:

1. Share the containers UTS namespace with the host using the --uts argument, or
2. Ensure the containers have the same hostname using the -h or --hostname argument.

• You must mount the IBM MQ data directory in a volume that is available to the all containers under
the /var/mqm directory.

You can try this functionality out, by completing the following steps on a Linux system that already has
Docker installed.

The following example uses the sample IBM MQ container image. You can find details of this image on
Github.

Procedure
1. Create a temporary directory to act as your volume, by issuing the following command:

mkdir /tmp/dockerVolume

2. Create a queue manager (QM1) in a container, with the name sharedNamespace, by issuing the
following command:

docker run -d -e LICENSE=accept -e MQ_QMGR_NAME=QM1 --volume /tmp/dockerVol:/mnt/mqm
--uts host --name sharedNamespace ibmcom/mq

3. Start a second container called secondaryContainer, based off ibmcom/mq, but do not create a
queue manager, by issuing the following command:

36 IBM MQ in containers

https://github.com/ibm-messaging/mq-docker

docker run --entrypoint /bin/bash --volumes-from sharedNamespace --pid
container:sharedNamespace --ipc container:sharedNamespace --uts host --name
secondaryContainer -it --detach ibmcom/mq

4. Run the dspmq command on the second container, to see the status for both queue managers, by
issuing the following command:

docker exec secondaryContainer dspmq

5. Run the following command to process MQSC commands against the queue manager running on the
other container:

docker exec -it secondaryContainer runmqsc QM1

Results
You now have local applications running in separate containers, and you can now successfully run
commands like dspmq, amqsput, amqsget, and runmqsc as local bindings to the QM1 queue manager
from the secondary container.

If you do not see the result you expected, see “Troubleshooting your namespace applications” on page
37 for more information.

Troubleshooting your namespace applications
When using shared namespaces, you must ensure that you share all namespaces (IPC, PID and UTS/
hostname) and mounted volumes, otherwise your applications will not work.

See “Running local binding applications in separate containers” on page 36 for a list of restrictions you
must follow.

If your application does not meet all the restrictions listed, you could encounter problems where the
container starts, but the functionality you expect does not work.

The following list outlines some common causes, and the behavior you are likely see if you have forgotten
to meet one of the restrictions.

• If you forget to share either the namespace (UTS/PID/IPC), or the hostname of the containers, and you
mount the volume, then your container will be able to see the queue manager but not interact with the
queue manager.

– For dspmq commands, you see the following:

docker exec container dspmq

QMNAME(QM1) STATUS(Status not available)

– For runmqsc commands, or other commands that try to connect to the queue manager, you are likely
to receive an AMQ8146 error message:

docker exec -it container runmqsc QM1
5724-H72 (C) Copyright IBM Corp. 1994, 2025.
Starting MQSC for queue manager QM1.
AMQ8146: IBM MQ queue manager not available

• If you share all the required namespaces but you do not mount a shared volume to the /var/mqm
directory, and you have a valid IBM MQ data path, then your commands also receive AMQ8146 error
messages.

However, dspmq is not able to see your queue manager at all, and instead returns a blank response:

docker exec container dspmq

IBM MQ in containers 37

• If you share all the required namespaces but you do not mount a shared volume to the /var/mqm
directory, and you do not have a valid IBM MQ data path (or no IBM MQ data path), then you see various
errors as the data path is a key component of an IBM MQ installation. Without the data path, IBM MQ
cannot operate.

If you run any of the following commands, and you see responses similar to those shown in these
examples, you should verify that you have mounted the directory or created an IBM MQ data directory:

docker exec container dspmq
'No such file or directory' from /var/mqm/mqs.ini
AMQ6090: IBM MQ was unable to display an error message FFFFFFFF.
AMQffff

docker exec container dspmqver
AMQ7047: An unexpected error was encountered by a command. Reason code is 0.

docker exec container mqrc
<file path>/mqrc.c[1152]
lpiObtainQMDetails --> 545261715

docker exec container crtmqm QM1
AMQ8101: IBM MQ error (893) has occurred.

docker exec container strmqm QM1
AMQ6239: Permission denied attempting to access filesystem location '/var/mqm'.
AMQ7002: An error occurred manipulating a file.

docker exec container endmqm QM1
AMQ8101: IBM MQ error (893) has occurred.

docker exec container dltmqm QM1
AMQ7002: An error occurred manipulating a file.

docker exec container strmqweb
<file path>/mqrc.c[1152]
lpiObtainQMDetails --> 545261715

API reference for the IBM MQ
Operator

IBM MQ provides a Kubernetes Operator, which provides native integration with OpenShift Container
Platform.

API reference for mq.ibm.com/v1beta1
The v1beta1 API can be used to create and manage QueueManager resources.

Licensing reference for mq.ibm.com/
v1beta1
The spec.license.license field must contain the license identifier for the license you are accepting.
Valid values are as follows:

Value of
spec.license.license

Value of spec.license.use License information

L-RJON-BN7PN3 Production or
NonProduction

IBM Cloud Pak for Integration
2020.2

L-RJON-BPHL2Y IBM Cloud Pak for Integration
Limited Edition 2020.2

L-APIG-BJAKBF Production or Development IBM MQ Advanced 9.1.5

38 IBM MQ in containers

https://www14.software.ibm.com/cgi-bin/weblap/lap.pl?popup=Y&li_formnum=L-RJON-BN7PN3
https://www14.software.ibm.com/cgi-bin/weblap/lap.pl?popup=Y&li_formnum=L-RJON-BN7PN3
https://www14.software.ibm.com/cgi-bin/weblap/lap.pl?popup=Y&li_formnum=L-RJON-BPHL2Y
https://www14.software.ibm.com/cgi-bin/weblap/lap.pl?popup=Y&li_formnum=L-RJON-BPHL2Y
https://www14.software.ibm.com/cgi-bin/weblap/lap.pl?popup=Y&li_formnum=L-APIG-BJAKBF

Value of
spec.license.license

Value of spec.license.use License information

L-APIG-BM7GDH Development IBM MQ Advanced for Developers
9.1.5

Note that the license version is specified, which is not always the same as the version of IBM MQ.

API reference for QueueManager
(mq.ibm.com/v1beta1)

QueueManager
A QueueManager is an IBM MQ server which provides queuing and publish/subscribe services to
applications.

Field Description

apiVersion string APIVersion defines the versioned schema of this representation of an object.
Servers should convert recognized schemas to the latest internal value,
and may reject unrecognized values. More info: https://git.k8s.io/community/
contributors/devel/sig-architecture/api-conventions.md#resources.

kind string Kind is a string value representing the REST resource this object represents.
Servers may infer this from the endpoint the client submits requests to.
Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/
contributors/devel/sig-architecture/api-conventions.md#types-kinds.

metadata

spec “QueueManagerSpec”
on page 43

The desired state of the QueueManager.

status
“QueueManagerStatus” on
page 44

The observed state of the QueueManager.

Availability
Availability settings for the Queue Manager, such as whether or not to use an active-standby pair.

Appears in:

• “QueueManagerConfig” on page 41

Field Description

type string The type of availability to use. Use "SingleInstance" for a single Pod, which will
be restarted automatically (in some cases) by Kubernetes. Use "MultiInstance"
for a pair of Pods, one of which is the "active" Queue Manager, and the other of
which is a standby. See High availability for IBM MQ in containers in the latest
version of IBM MQ.

License
Settings that control your acceptance of the license, and which license metrics to use.

Appears in:

• “QueueManagerSpec” on page 43

IBM MQ in containers 39

https://www14.software.ibm.com/cgi-bin/weblap/lap.pl?popup=Y&li_formnum=L-APIG-BM7GDH
https://www14.software.ibm.com/cgi-bin/weblap/lap.pl?popup=Y&li_formnum=L-APIG-BM7GDH
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds

Field Description

use string Setting that controls how the software will to be used, where the license
supports multiple uses. See https://ibm.biz/BdqvCF for valid values.

accept boolean Whether or not you accept the license associated with this software (required).

license string The identifier of the license you are accepting. This must be the correct license
identifier for the version of MQ you are using. See https://ibm.biz/BdqvCF for
valid values.

metric string Setting that specifies which license metric to use. For example,
"ProcessorValueUnit", "VirtualProcessorCore" or "ManagedVirtualServer".

Limits
QueueManagerResourceList defines CPU & memory settings.

Appears in:

• “Resources” on page 46

Field Description

cpu

memory

LocalObjectReference
LocalObjectReference contains enough information to let you locate the referenced object inside the
same namespace.

Appears in:

• “QueueManagerSpec” on page 43

Field Description

name string Name of the referent. More info: https://kubernetes.io/docs/concepts/
overview/working-with-objects/names/#names TODO: Add other useful fields.
apiVersion, kind, uid?.

PKI
Public Key Infrastructure settings, for defining keys and certificates for use with Transport Layer Security
(TLS) or MQ Advanced Message Security (AMS).

Appears in:

• “QueueManagerSpec” on page 43

Field Description

keys “PKISource” on page
40 array

Private keys to add to the Queue Manager's key repository.

trust “PKISource” on page
40 array

Certificates to add to the Queue Manager's key repository.

PKISource
PKISource defines a source of Public Key Infrastructure information, such as keys or certificates.

40 IBM MQ in containers

https://ibm.biz/BdqvCF
https://ibm.biz/BdqvCF
https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names

Appears in:

• “PKI” on page 40

Field Description

name string Name is used as the label for the key or certificate. Must be a lowercase
alphanumeric string.

secret “Secret” on page 46 Supply a key using a Kubernetes Secret.

QueueManagerConfig
QueueManagerConfig defines the settings for the Queue Manager container and underlying Queue
Manager.

Appears in:

• “QueueManagerSpec” on page 43

Field Description

logFormat string Which log format to use for this container. Use "JSON" for JSON-formatted
logs from the container. Use "Basic" for text-formatted messages.

metrics
“QueueManagerMetrics” on
page 42

Settings for Prometheus-style metrics.

readinessProbe
“QueueManagerReadinessPro
be” on page 42

Settings that control the readiness probe.

resources “Resources” on
page 46

Settings that control resource requirements.

storage
“QueueManagerStorage” on
page 45

Storage settings to control the Queue Manager's use of Persistent Volumes
and Storage Classes.

availability “Availability”
on page 39

Availability settings for the Queue Manager, such as whether or not to use an
active-standby pair.

imagePullPolicy string Setting that controls when the kubelet attempts to pull the specified image.

livenessProbe
“QueueManagerLivenessProb
e” on page 41

Settings that control the liveness probe.

debug boolean Whether or not to log debug messages from the container-specific code, to the
container log.

image string The container image that will be used.

name string Name of the underlying MQ Queue Manager, if different from metadata.name.
Use this field if you want a Queue Manager name which does not conform to
the Kubernetes rules for names (for example, a name which includes captial
letters).

QueueManagerLivenessProbe
Settings that control the liveness probe.

Appears in:

IBM MQ in containers 41

• “QueueManagerConfig” on page 41

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed after
having succeeded.

initialDelaySeconds
integer

Number of seconds after the container has started before liveness probes
are initiated. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe.

successThreshold integer Minimum consecutive successes for the probe to be considered successful
after having failed.

timeoutSeconds integer Number of seconds after which the probe times
out. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-
lifecycle#container-probes.

QueueManagerMetrics
Settings for Prometheus-style metrics.

Appears in:

• “QueueManagerConfig” on page 41

Field Description

enabled boolean Whether or not to enable a Prometheus-compatible metrics endpoint.

QueueManagerOptionalVolume
PersistentVolume details for MQ recovery logs. Required when using multi-instance Queue Manager.

Appears in:

• “QueueManagerStorage” on page 45

Field Description

class string Storage class to use for this volume. Only valid if "type" is "persistent-claim".

enabled boolean Whether or not this volume should be enabled as a separate volume, or be
placed on the default "queueManager" volume.

size string Size of the PersistentVolume to pass to Kubernetes. Only valid if "type" is
"persistent-claim".

sizeLimit string Size limit when using an "ephemeral" volume. Files are still written to a
temporary directory, so you can use this option to limit the size. Only valid
if type is "ephemeral".

type string Type of volume to use. Choose ephemeral to create a non-persistent
"emptyDir" volume, or persistent-claim to use a persistent volume.

QueueManagerReadinessProbe
Settings that control the readiness probe.

Appears in:

• “QueueManagerConfig” on page 41

42 IBM MQ in containers

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed after
having succeeded.

initialDelaySeconds
integer

Number of seconds after the container has started before liveness probes
are initiated. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe.

successThreshold integer Minimum consecutive successes for the probe to be considered successful
after having failed.

timeoutSeconds integer Number of seconds after which the probe times
out. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-
lifecycle#container-probes.

QueueManagerSpec
The desired state of the QueueManager.

Appears in:

• “QueueManager” on page 39

Field Description

license “License” on page
39

Settings that control your acceptance of the license, and which license metrics
to use.

pki “PKI” on page 40 Public Key Infrastructure settings, for defining keys and certificates for use
with Transport Layer Security (TLS) or MQ Advanced Message Security (AMS).

queueManager
“QueueManagerConfig” on
page 41

QueueManagerConfig defines the settings for the Queue Manager container
and underlying Queue Manager.

securityContext
“SecurityContext” on page
47

Security settings to add to the Queue Manager Pod's securityContext.

tracing “TracingConfig” on
page 48

Settings for tracing integration with the Cloud Pak for Integration Operations
Dashboard.

version string Setting that controls the version of MQ that will be used (required). For
example: "9.1.5.0-r2" would specify MQ version 9.1.5.0, using the second
revision of the container image. Container-specific fixes are often applied in
revisions, such as fixes to the base image.

affinity Standard Kubernetes affinity rules. For more information,
see https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
#affinity-v1-core.

imagePullSecrets
“LocalObjectReference” on
page 40 array

An optional list of references to secrets in the same namespace to use for
pulling any of the images used by this QueueManager. If specified, these
secrets will be passed to individual puller implementations for them to
use. For example, in the case of docker, only DockerConfig type secrets
are honored. For more information, see https://kubernetes.io/docs/concepts/
containers/images#specifying-imagepullsecrets-on-a-pod.

IBM MQ in containers 43

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#affinity-v1-core
https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod
https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod

Field Description

template “Template” on
page 47

Advanced templating for Kubernetes resources. The template allows users to
override how IBM MQ generates the underlying Kubernetes resources, such
as StatefulSet, Pods and Services. This is for advanced users only, as it has
the potential to disrupt normal operation of MQ if used incorrectly. Any values
specified anywhere else in the QueueManager resource will be overridden by
settings in the template.

terminationGracePeriod
Seconds integer

Optional duration in seconds the Pod needs to terminate gracefully. Value
must be non-negative integer. The value zero indicates delete immediately.
The target time in which ending the queue manager is attempted,
escalating the phases of application disconnection. Essential queue manager
maintenance tasks are interrupted if necessary.

web “WebServerConfig” on
page 49

Settings for the MQ web server.

QueueManagerStatus
The observed state of the QueueManager.

Appears in:

• “QueueManager” on page 39

Field Description

endpoints
“QueueManagerStatusEndpoi
nt” on page 44 array

Information on the endpoints that this Queue Manager is exposing, such as
API or UI endpoints.

name string The name of the Queue Manager.

versions
“QueueManagerStatusVersion
” on page 45

Version of MQ being used, and other versions available from the IBM Entitled
Registry.

adminUiUrl string URL for the Admin UI.

conditions
“QueueManagerStatusConditi
on” on page 44 array

Conditions represent the latest available observations of the Queue Manager's
state.

QueueManagerStatusCondition
QueueManagerStatusCondition defines the conditions of the Queue Manager.

Appears in:

• “QueueManagerStatus” on page 44

Field Description

message string Human-readable message indicating details about last transition.

type string Type of condition.

lastTransitionTime string Last time the condition transitioned from one status to another.

QueueManagerStatusEndpoint
QueueManagerStatusEndpoint defines the endpoints for the QueueManager.

44 IBM MQ in containers

Appears in:

• “QueueManagerStatus” on page 44

Field Description

name string Name of the endpoint.

type string The type of the endpoint, for example 'UI' for a UI endpoint, 'API' for an API
endpoint, 'OpenAPI' for API documentation.

uri string URI for the endpoint.

QueueManagerStatusVersion
Version of MQ being used, and other versions available from the IBM Entitled Registry.

Appears in:

• “QueueManagerStatus” on page 44

Field Description

available
“QueueManagerStatusVersion
Available” on page 45

Other versions of MQ available from the IBM Entitled Registry.

reconciled string The specific version of IBM MQ being used. If a custom image is specified,
then this may not match the version of MQ actually being used.

QueueManagerStatusVersionAvailable
Other versions of MQ available from the IBM Entitled Registry.

Appears in:

• “QueueManagerStatusVersion” on page 45

Field Description

channels array Channels which are available for automatically updating the MQ version.

versions “Versions” on page
49 array

Specific versions of MQ which are available.

QueueManagerStorage
Storage settings to control the Queue Manager's use of Persistent Volumes and Storage Classes.

Appears in:

• “QueueManagerConfig” on page 41

Field Description

persistedData
“QueueManagerOptionalVolu
me” on page 42

PersistentVolume details for MQ persisted data, including configuration,
queues and messages. Required when using multi-instance Queue Manager.

queueManager
“QueueManagerVolume” on
page 46

Default PersistentVolume for any data normally under /var/mqm. Will contain
all persisted data and recovery logs, if no other volumes are specified.

IBM MQ in containers 45

Field Description

recoveryLogs
“QueueManagerOptionalVolu
me” on page 42

PersistentVolume details for MQ recovery logs. Required when using multi-
instance Queue Manager.

QueueManagerVolume
Default PersistentVolume for any data normally under /var/mqm. Will contain all persisted data and
recovery logs, if no other volumes are specified.

Appears in:

• “QueueManagerStorage” on page 45

Field Description

class string Storage class to use for this volume. Only valid if "type" is "persistent-claim".

size string Size of the PersistentVolume to pass to Kubernetes. Only valid if "type" is
"persistent-claim".

sizeLimit string Size limit when using an "ephemeral" volume. Files are still written to a
temporary directory, so you can use this option to limit the size. Only valid
if type is "ephemeral".

type string Type of volume to use. Choose ephemeral to create a non-persistent
"emptyDir" volume, or persistent-claim to use a persistent volume.

Requests
QueueManagerResourceList defines CPU & memory settings.

Appears in:

• “Resources” on page 46

Field Description

memory

cpu

Resources
Settings that control resource requirements.

Appears in:

• “QueueManagerConfig” on page 41

Field Description

limits “Limits” on page 40 QueueManagerResourceList defines CPU & memory settings.

requests “Requests” on
page 46

QueueManagerResourceList defines CPU & memory settings.

Secret
Supply a key using a Kubernetes Secret.

Appears in:

• “PKISource” on page 40

46 IBM MQ in containers

Field Description

items array Keys inside the Kubernetes secret which should be added to the Queue
Manager container.

secretName string The name of the Kubernetes secret.

SecurityContext
Security settings to add to the Queue Manager Pod's securityContext.

Appears in:

• “QueueManagerSpec” on page 43

Field Description

supplementalGroups array A list of groups applied to the first process run in each container, in addition
to the container's primary GID. If unspecified, no groups will be added to any
container.

fsGroup integer A special supplemental group that applies to all containers in a pod. Some
volume types allow the Kubelet to change the ownership of that volume to
be owned by the pod: 1. The owning GID will be the FSGroup 2. The setgid
bit is set (new files created in the volume will be owned by FSGroup) 3. The
permission bits are OR'd with rw-rw---- If unset, the Kubelet will not modify
the ownership and permissions of any volume.

initVolumeAsRoot boolean This affects the securityContext used by the container which initializes the
PersistentVolume. Set this to "true" if you are using a storage provider
which requires you to be the root user to access newly provisioned
volumes. Setting this to "true" affects which Security Context Constraints
(SCC) object you can use, and the Queue Manager may fail to start if
you are not authorized to use an SCC which allows the root user. For
more information, see https://docs.openshift.com/container-platform/latest/
authentication/managing-security-context-constraints.html.

Template
Advanced templating for Kubernetes resources. The template allows users to override how IBM MQ
generates the underlying Kubernetes resources, such as StatefulSet, Pods and Services. This is for
advanced users only, as it has the potential to disrupt normal operation of MQ if used incorrectly. Any
values specified anywhere else in the QueueManager resource will be overridden by settings in the
template.

Appears in:

• “QueueManagerSpec” on page 43

Field Description

pod Overrides for the template used for the Pod. See https://kubernetes.io/docs/
reference/generated/kubernetes-api/v1.17/#podspec-v1-core.

TracingAgent
In Cloud Pak for Integration only, you can configure settings for the optional Tracing Agent.

Appears in:

• “TracingConfig” on page 48

IBM MQ in containers 47

https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html
https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#podspec-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/#podspec-v1-core

Field Description

image string The container image that will be used.

imagePullPolicy string Setting that controls when the kubelet attempts to pull the specified image.

livenessProbe
“TracingProbe” on page 48

Settings that control the liveness probe.

readinessProbe
“TracingProbe” on page 48

Settings that control the readiness probe.

TracingCollector
In Cloud Pak for Integration only, you can configure settings for the optional Tracing Collector.

Appears in:

• “TracingConfig” on page 48

Field Description

image string The container image that will be used.

imagePullPolicy string Setting that controls when the kubelet attempts to pull the specified image.

livenessProbe
“TracingProbe” on page 48

Settings that control the liveness probe.

readinessProbe
“TracingProbe” on page 48

Settings that control the readiness probe.

TracingConfig
Settings for tracing integration with the Cloud Pak for Integration Operations Dashboard.

Appears in:

• “QueueManagerSpec” on page 43

Field Description

agent “TracingAgent” on
page 47

In Cloud Pak for Integration only, you can configure settings for the optional
Tracing Agent.

collector
“TracingCollector” on page 48

In Cloud Pak for Integration only, you can configure settings for the optional
Tracing Collector.

enabled boolean Whether or not to enable integration with the Cloud Pak for Integration
Operations Dashboard, via tracing.

namespace string Namespace where the Cloud Pak for Integration Operations Dashboard is
installed.

TracingProbe
Settings that control the readiness probe.

Appears in:

• “TracingCollector” on page 48

48 IBM MQ in containers

Field Description

failureThreshold integer Minimum consecutive failures for the probe to be considered failed after
having succeeded.

initialDelaySeconds
integer

Number of seconds after the container has started before liveness probes
are initiated. More info: https://kubernetes.io/docs/concepts/workloads/pods/
pod-lifecycle#container-probes.

periodSeconds integer How often (in seconds) to perform the probe.

successThreshold integer Minimum consecutive successes for the probe to be considered successful
after having failed.

timeoutSeconds integer Number of seconds after which the probe times
out. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-
lifecycle#container-probes.

Versions
QueueManagerStatusVersion defines a version of MQ.

Appears in:

• “QueueManagerStatusVersionAvailable” on page 45

Field Description

name string Version "name" for this version of QueueManager. These are valid values for
the spec.version field.

WebServerConfig
Settings for the MQ web server.

Appears in:

• “QueueManagerSpec” on page 43

Field Description

enabled boolean Whether or not to enable the web server.

IBM MQ in containers 49

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

50 IBM MQ in containers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2007, 2025 51

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at "Copyright and trademark
information"www.ibm.com/legal/copytrade.shtml. Other product and service names might be trademarks
of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

52 Notices

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (http://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 53

54 IBM MQ in containers

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	IBM MQ in containers
	Planning for IBM MQ in containers
	Choosing how you want to use IBM MQ in containers
	Support for IBM MQ certified containers
	Version support for the IBM MQ Advanced certified container

	Support for building your own IBM MQ container images and charts
	Storage considerations for IBM MQ Advanced certified container
	High availability for IBM MQ Advanced certified container
	User authentication and authorization for IBM MQ Advanced certified container

	Installing and uninstalling the IBM MQ Operator on OpenShift
	Installing the IBM MQ Operator using the OpenShift web console
	Installing the IBM MQ Operator using the OpenShift CLI

	Deploying IBM MQ certified containers
	Preparing your OpenShift project for IBM MQ using the OpenShift CLI
	Deploying a queue manager using the IBM Cloud Pak for Integration Platform Navigator
	Deploying a queue manager using the OpenShift web console
	Deploying a queue manager using the OpenShift CLI
	Integrating with the IBM Cloud Pak for Integration Operations Dashboard
	Building an image with custom MQSC and INI files, using the OpenShift CLI
	Deploying IBM MQ certified containers using Helm
	Preparing your OpenShift cluster for IBM MQ on OpenShift using Helm
	Deploying a queue manager using the Helm CLI
	Deploying a queue manager with IBM Cloud File Storage, using the Helm CLI

	Deploying previous CD releases of IBM MQ into an IBM Cloud Private cluster
	Adding previous CD releases of an IBM MQ image into an IBM Cloud Private cluster
	Adding previous CD releases of an IBM MQ image into an IBM Cloud Kubernetes Service cluster

	Connecting to a queue manager deployed in an OpenShift cluster
	Connecting to the IBM MQ Console deployed in an OpenShift cluster
	Backing up and restoring queue manager configuration using the OpenShift CLI
	Building your own IBM MQ container
	Planning your own IBM MQ queue manager image using a container
	Building a sample IBM MQ queue manager image using Docker
	Building a sample base IBM MQ queue manager image
	Building a sample configured IBM MQ queue manager image

	Running local binding applications in separate containers
	Troubleshooting your namespace applications

	API reference for the IBM MQ Operator
	API reference for mq.ibm.com/v1beta1
	Licensing reference for mq.ibm.com/v1beta1
	API reference for QueueManager (mq.ibm.com/v1beta1)

	Notices
	Programming interface information
	Trademarks

